WorldWideScience

Sample records for apolipoprotein-e deficient mice

  1. Endothelial dysfunction of resistance vessels in female apolipoprotein E-deficient mice

    Directory of Open Access Journals (Sweden)

    Vasquez Elisardo C

    2010-05-01

    Full Text Available Abstract Background The effects of hypercholesterolemia on vasomotricity in apolipoprotein E-deficient (ApoE mice, a murine model of spontaneous atherosclerosis, are still unclear. The studies were mostly performed in conductance vessels from male mice fed a high-fat diet. In the present study, we evaluated the endothelial function of resistance vessels from normal C57BL/6 (C57 and hypercholesterolemic (ApoE female mice in both normal and ovariectomized conditions. Methods Twenty week-old C57 and ApoE mice underwent ovariectomy or sham surgery and were studied 30 days later. The vascular reactivities to norepinephrine (NE, 10-9 to 2 × 10-3 mol/L, acetylcholine (ACh and sodium nitroprusside (SNP (10-10 to 10-3 mol/L were evaluated in the isolated mesenteric arteriolar bed through dose-response curves. Results ACh-induced relaxation was significantly reduced (P 50 (-5.67 ± 0.18 vs. -6.23 ± 0.09 mol/L. Ovariectomy caused a significant impairment in ACh-induced relaxation in the C57 group (maximal response: 61 ± 4% but did not worsen the deficient state of relaxation in ApoE animals (maximal response: 39 ± 5%. SNP-induced vasorelaxation and NE-induced vasoconstriction were similar in ApoE and C57 female mice. Conclusion These data show an impairment of endothelial function in the resistance vessels of spontaneously atherosclerotic (ApoE-deficient female mice compared with normal (C57 female mice. The endothelial dysfunction in hypercholesterolemic animals was so marked that ovariectomy, which impaired endothelial function in C57 mice, did not cause additional vascular damage in ApoE-deficient mice.

  2. Melanocortin 1 Receptor Deficiency Promotes Atherosclerosis in Apolipoprotein E-/- Mice.

    Science.gov (United States)

    Rinne, Petteri; Kadiri, James J; Velasco-Delgado, Mauricio; Nuutinen, Salla; Viitala, Miro; Hollmén, Maija; Rami, Martina; Savontaus, Eriika; Steffens, Sabine

    2018-02-01

    The MC1-R (melanocortin 1 receptor) is expressed by monocytes and macrophages where it mediates anti-inflammatory actions. MC1-R also protects against macrophage foam cell formation primarily by promoting cholesterol efflux through the ABCA1 (ATP-binding cassette transporter subfamily A member 1) and ABCG1 (ATP-binding cassette transporter subfamily G member 1). In this study, we aimed to investigate whether global deficiency in MC1-R signaling affects the development of atherosclerosis. Apoe -/- (apolipoprotein E deficient) mice were crossed with recessive yellow (Mc1r e/e ) mice carrying dysfunctional MC1-R and fed a high-fat diet to induce atherosclerosis. Apoe -/- Mc1r e/e mice developed significantly larger atherosclerotic lesions in the aortic sinus and in the whole aorta compared with Apoe -/- controls. In terms of plaque composition, MC1-R deficiency was associated with less collagen and smooth muscle cells and increased necrotic core, indicative of more vulnerable lesions. These changes were accompanied by reduced Abca1 and Abcg1 expression in the aorta. Furthermore, Apoe -/- Mc1r e/e mice showed a defect in bile acid metabolism that aggravated high-fat diet-induced hypercholesterolemia and hepatic lipid accumulation. Flow cytometric analysis of leukocyte profile revealed that dysfunctional MC1-R enhanced arterial accumulation of classical Ly6C high monocytes and macrophages, effects that were evident in mice fed a normal chow diet but not under high-fat diet conditions. In support of enhanced arterial recruitment of Ly6C high monocytes, these cells had increased expression of L-selectin and P-selectin glycoprotein ligand 1. The present study highlights the importance of MC1-R in the development of atherosclerosis. Deficiency in MC1-R signaling exacerbates atherosclerosis by disturbing cholesterol handling and by increasing arterial monocyte accumulation. © 2017 The Authors.

  3. The transport of triglycerides through the secretory pathway of hepatocytes is impaired in apolipoprotein E deficient mice.

    NARCIS (Netherlands)

    Mensenkamp, A.R.; Luyn, M.J.A. van; Havinga, R.; Teusink, B.; Waterman, I.J.; Mann, C.J.; Elzinga, B.M.; Verkade, H.J.; Zammit, V.A.; Havekes, L.M.; Shoulders, C.C.; Kuipers, F.

    2004-01-01

    BACKGROUND/AIMS: Apolipoprotein E (apoE)-deficient mice develop hepatic steatosis and secrete reduced levels of VLDL-TG. METHODS AND RESULTS: We examined the effects of apoE-deficiency on intracellular lipid homeostasis and secretion of triglycerides (TG). We show that intracellular TG turnover and

  4. The transport of triglycerides through the secretory pathway of hepatocytes is impaired in apolipoprotein E deficient mice

    NARCIS (Netherlands)

    Mensenkamp, AR; van Luyn, MJA; Havinga, R; Teusink, B; Waterman, IJ; Mann, CJ; Elzinga, BM; Verkade, HJ; Zammit, VA; Havekes, LM; Shoulders, CC; Kuipers, F

    Background/Aims: Apolipoprotein E (apoE)-deficient mice develop hepatic steatosis and secrete reduced levels of VLDL-TG. Methods and results: We examined the effects of apoE-deficiency on intracellular lipid homeostasis and secretion of triglycerides (TG). We show that intracellular TG turnover and

  5. Suppressive effects of cacao polyphenols on the development of atherosclerosis in apolipoprotein E-deficient mice.

    Science.gov (United States)

    Natsume, Midori; Baba, Seigo

    2014-01-01

    Previous studies in humans have shown that the cacao polyphenols, (-)-epicatechin and its oligomers, prevent in vitro and ex vivo low-density lipoprotein oxidation mediated by free radical generators and metal ions and also reduce plasma LDL-cholesterol levels. The aim of this study was to examine the effects of cacao polyphenols on the development of atherosclerosis in apolipoprotein E-deficient (-/-) mice. Mice aged 8 weeks (n = 90) were randomized into three groups, and fed either normal mouse chow (controls) or chow supplemented with 0.25 or 0.40 % cacao polyphenols for 16 weeks. The mean plaque area in cross-sections of the brachiocephalic trunk was measured and found to be lower in the 0.25 % cacao polyphenol group than in the control group (p cacao polyphenol group (p cacao polyphenols inhibit the development of atherosclerosis in apolipoprotein E-deficient (-/-) mice by reducing oxidative stress and inflammatory responses.

  6. IL-25 inhibits atherosclerosis development in apolipoprotein E deficient mice.

    Directory of Open Access Journals (Sweden)

    Polyxeni T Mantani

    Full Text Available IL-25 has been implicated in the initiation of type 2 immunity and in the protection against autoimmune inflammatory diseases. Recent studies have identified the novel innate lymphoid type 2 cells (ILC2s as an IL-25 target cell population. The purpose of this study was to evaluate if IL-25 has any influence on atherosclerosis development in mice.Administration of 1 μg IL-25 per day for one week to atherosclerosis-prone apolipoprotein (apoE deficient mice, had limited effect on the frequency of T cell populations, but resulted in a large expansion of ILC2s in the spleen. The expansion was accompanied by increased levels of anti-phosphorylcholine (PC natural IgM antibodies in plasma and elevated levels of IL-5 in plasma and spleen. Transfer of ILC2s to apoE deficient mice elevated the natural antibody-producing B1a cell population in the spleen. Treatment of apoE/Rag-1 deficient mice with IL-25 was also associated with extensive expansion of splenic ILC2s and increased plasma IL-5, suggesting ILC2s to be the source of IL-5. Administration of IL-25 in IL-5 deficient mice resulted in an expanded ILC2 population, but did not stimulate generation of anti-PC IgM, indicating that IL-5 is not required for ILC2 expansion but for the downstream production of natural antibodies. Additionally, administration of 1 μg IL-25 per day for 4 weeks in apoE deficient mice reduced atherosclerosis in the aorta both during initiation and progression of the disease.The present findings demonstrate that IL-25 has a protective role in atherosclerosis mediated by innate responses, including ILC2 expansion, increased IL-5 secretion, B1a expansion and natural anti-PC IgM generation, rather than adaptive Th2 responses.

  7. High-salt diet combined with elevated angiotensin II accelerates atherosclerosis in apolipoprotein E-deficient mice

    DEFF Research Database (Denmark)

    Johansson, Maria E; Bernberg, Evelina; Andersson, Irene J

    2009-01-01

    to atherosclerosis. METHODS: Apolipoprotein E-deficient (ApoE-/-) mice received standard or high-salt diet (8%) alone or in combination with fixed angiotensin II (Ang II) infusion (0.5 microg/kg per min). BP was measured using telemetry, and plaque burden was assessed in the thoracic aorta and innominate artery. We...

  8. Functional blockage of EMMPRIN ameliorates atherosclerosis in apolipoprotein E-deficient mice.

    Science.gov (United States)

    Liu, Hong; Yang, Li-xia; Guo, Rui-wei; Zhu, Guo-Fu; Shi, Yan-Kun; Wang, Xian-mei; Qi, Feng; Guo, Chuan-ming; Ye, Jin-shan; Yang, Zhi-hua; Liang, Xing

    2013-10-09

    Extracellular matrix metalloproteinase inducer (EMMPRIN), a 58-kDa cell surface glycoprotein, has been identified as a key receptor for transmitting cellular signals mediating metalloproteinase activities, as well as inflammation and oxidative stress. Clinical evidence has revealed that EMMPRIN is expressed in human atherosclerotic plaque; however, the relationship between EMMPRIN and atherosclerosis is unclear. To evaluate the functional role of EMMPRIN in atherosclerosis, we treated apolipoprotein E-deficient (ApoE(-/-)) mice with an EMMPRIN function-blocking antibody. EMMPRIN was found to be up-regulated in ApoE(-/-) mice fed a 12-week high-fat diet in contrast to 12 weeks of normal diet. Administration of a function-blocking EMMPRIN antibody (100 μg, twice per week for 4 weeks) to ApoE(-/-) mice, starting after 12 weeks of high-fat diet feeding caused attenuated and more stable atherosclerotic lesions, less reactive oxygen stress generation on plaque, as well as down-regulation of circulating interleukin-6 and monocyte chemotactic protein-1 in ApoE(-/-) mice. The benefit of EMMPRIN functional blockage was associated with reduced metalloproteinases proteolytic activity, which delayed the circulating monocyte transmigrating into atherosclerotic lesions. EMMPRIN antibody intervention ameliorated atherosclerosis in ApoE(-/-) mice by the down-regulation of metalloproteinase activity, suggesting that EMMPRIN may be a viable therapeutic target in atherosclerosis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. Influence of depleted uranium on hepatic cholesterol metabolism in apolipoprotein E-deficient mice.

    Science.gov (United States)

    Souidi, M; Racine, R; Grandcolas, L; Grison, S; Stefani, J; Gourmelon, P; Lestaevel, P

    2012-04-01

    Depleted uranium (DU) is uranium with a lower content of the fissile isotope U-235 than natural uranium. It is a radioelement and a waste product from the enrichment process of natural uranium. Because of its very high density, it is used in the civil industry and for military purposes. DU exposure can affect many vital systems in the human body, because in addition to being weakly radioactive, uranium is a toxic metal. It should be emphasized that, to be exposed to radiation from DU, you have to eat, drink, or breathe it, or get it on your skin. This particular study is focusing on the health effects of DU for the cholesterol metabolism. Previous studies on the same issue have shown that the cholesterol metabolism was modulated at molecular level in the liver of laboratory rodents contaminated for nine months with DU. However, this modulation was not correlated with some effects at organs or body levels. It was therefore decided to use a "pathological model" such as hypercholesterolemic apolipoprotein E-deficient laboratory mice in order to try to clarify the situation. The purpose of the present study is to assess the effects of a chronic ingestion (during 3 months) of a low level DU-supplemented water (20 mg L(-1)) on the above mentioned mice in order to determine a possible contamination effect. Afterwards the cholesterol metabolism was studied in the liver especially focused on the gene expressions of cholesterol-catabolising enzymes (CYP7A1, CYP27A1 and CYP7B1), as well as those of associated nuclear receptors (LXRα, FXR, PPARα, and SREBP 2). In addition, mRNA levels of other enzymes of interest were measured (ACAT 2, as well as HMGCoA Reductase and HMGCoA Synthase). The gene expression study was completed with SRB1 and LDLr, apolipoproteins A1 and B and membrane transporters ABC A1, ABC G5. The major effect induced by a low level of DU contamination in apo-E deficient mice was a decrease in hepatic gene expression of the enzyme CYP7B1 (-23%) and nuclear

  10. Deficiency of cyclin-dependent kinase inhibitors p21Cip1 and p27Kip1 accelerates atherogenesis in apolipoprotein E-deficient mice

    International Nuclear Information System (INIS)

    Akyuerek, Levent M.; Boehm, Manfred; Olive, Michelle; Zhou, Alex-Xianghua; San, Hong; Nabel, Elizabeth G.

    2010-01-01

    Cyclin-dependent kinase inhibitors, p21 Cip1 and p27 Kip1 , are upregulated during vascular cell proliferation and negatively regulate growth of vascular cells. We hypothesized that absence of either p21 Cip1 or p27 Kip1 in apolipoprotein E (apoE)-deficiency may increase atherosclerotic plaque formation. Compared to apoE -/- aortae, both apoE -/- /p21 -/- and apoE -/- /p27 -/- aortae exhibited significantly more atherosclerotic plaque following a high-cholesterol regimen. This increase was particularly observed in the abdominal aortic regions. Deficiency of p27 Kip1 accelerated plaque formation significantly more than p21 -/- in apoE -/- mice. This increased plaque formation was in parallel with increased intima/media area ratios. Deficiency of p21 Cip1 and p27 Kip1 accelerates atherogenesis in apoE -/- mice. These findings have significant implications for our understanding of the molecular basis of atherosclerosis associated with excessive proliferation of vascular cells.

  11. Cigarette smoke exposure promotes arterial thrombosis and vessel remodeling after vascular injury in apolipoprotein E-deficient mice.

    Science.gov (United States)

    Schroeter, Marco R; Sawalich, Matthias; Humboldt, Tim; Leifheit, Maren; Meurrens, Kris; Berges, An; Xu, Haiyan; Lebrun, Stefan; Wallerath, Thomas; Konstantinides, Stavros; Schleef, Raymond; Schaefer, Katrin

    2008-01-01

    Cigarette smoking is a major risk factor for the development of cardiovascular disease. However, in terms of the vessel wall, the underlying pathomechanisms of cigarette smoking are incompletely understood, partly due to a lack of adequate in vivo models. Apolipoprotein E-deficient mice were exposed to filtered air (sham) or to cigarette mainstream smoke at a total particulate matter (TPM) concentration of 600 microg/l for 1, 2, 3, or 4 h, for 5 days/week. After exposure for 10 +/- 1 weeks, arterial thrombosis and neointima formation at the carotid artery were induced using 10% ferric chloride. Mice exposed to mainstream smoke exhibited shortened time to thrombotic occlusion (p < 0.01) and lower vascular patency rates (p < 0.001). Morphometric and immunohistochemical analysis of neointimal lesions demonstrated that mainstream smoke exposure increased the amount of alpha-actin-positive smooth muscle cells (p < 0.05) and dose-dependently increased the intima-to-media ratio (p < 0.05). Additional analysis of smooth muscle cells in vitro suggested that 10 microg TPM/ml increased cell proliferation without affecting viability or apoptosis, whereas higher concentrations (100 and 500 microg TPM/ml) appeared to be cytotoxic. Taken together, these findings suggest that cigarette smoking promotes arterial thrombosis and modulates the size and composition of neointimal lesions after arterial injury in apolipoprotein E-deficient mice. Copyright 2008 S. Karger AG, Basel.

  12. Increase of arginase activity in old apolipoprotein-E deficient mice under Western diet associated with changes in neurovascular unit

    Directory of Open Access Journals (Sweden)

    Badaut Jérôme

    2012-06-01

    Full Text Available Abstract Aging and atherosclerosis are well-recognized risk factors for cardiac and neurovascular diseases. The Apolipoprotein E deficient (ApoE−/− mouse on a high-fat diet is a classical model of atherosclerosis, characterized by the presence of atherosclerotic plaques in extracranial vessels but not in cerebral arteries. Increase in arginase activity was shown to participate in vascular dysfunction in the peripheral arteries of atherosclerotic mice by changing the level of nitric oxide (NO. NO plays a key role in the physiological functions of the neurovascular unit (NVU. However, the regulation of arginase expression and activity in the brain was never investigated in association with changes in the NVU, ApoE deficiency and high fat diet. Fourteen-month-old ApoE−/− mice on high-fat diet exhibited deposition of lipids in the NVU, impairment of blood–brain barrier properties, astrogliosis and an increase of aquaporin 4 staining. In association with these changes, brain arginase activity was significantly increased in the old ApoE−/− mice as compared to old wild type mice, with an increase in the level of arginase type I in the blood vessels. In conclusion, aging in this classical mouse model of atherosclerosis induces an increase in the level and activity of arginase I that may impair NO synthesis and contribute to changes in the NVU leading to blood–brain barrier leakage and inflammation.

  13. In the absence of endogenous mouse apolipoprotein E, apolipoprotein E*2(Arg-158 → Cys) transgenic mice develop more severe hyperlipoproteinemia than apolipoprotein E*3-Leiden transgenic mice

    NARCIS (Netherlands)

    Vlijmen, B.J.M. van; Dijk, K.W. van; Hof, H.B. van 't; Gorp, P.J.J. van; Zee, A. van der; Boom, H. van der; Breuer, M.L.; Hofker, M.H.; Havekesf, L.M.

    1996-01-01

    Apolipoprotein E*2(Arg-155 → Cys) (APOE*2) transgenic mice were generated and compared to the previously generated apolipoprotein E*3- Leiden (APOE*3-Leiden) transgenic mice to study the variable expression of hyperlipoproteinemia associated with these two APOE variants. In the presence of the

  14. Apolipoprotein E deficiency increases remnant lipoproteins and accelerates progressive atherosclerosis, but not xanthoma formation, in gene modified minipigs

    DEFF Research Database (Denmark)

    Shim, Jeong; Poulsen, Christian Bo; Hagensen, Mette K.

    2017-01-01

    Summary: Deficiency of apolipoprotein E (APOE) causes familial dysbetalipoproteinemia in humans resulting in a higher risk of atherosclerotic disease. In mice, APOE deficiency results in a severe atherosclerosis phenotype, but it is unknown to what extent this is unique to mice. In this study, AP...

  15. Kaempferol regulates OPN–CD44 pathway to inhibit the atherogenesis of apolipoprotein E deficient mice

    International Nuclear Information System (INIS)

    Xiao, Hong-Bo; Lu, Xiang-Yang; Sun, Zhi-Liang; Zhang, Heng-Bo

    2011-01-01

    Recent studies show that osteopontin (OPN) and its receptor cluster of differentiation 44 (CD44) are two pro-inflammatory cytokines contributing to the development of atherosclerosis. The objective of this study was to explore the inhibitory effect of kaempferol, a naturally occurring flavonoid compound, on atherogenesis and the mechanisms involved. The experiments were performed in aorta and plasma from C57BL/6J control and apolipoprotein E-deficient (ApoE −/− ) mice treated or not with kaempferol (50 or 100 mg/kg, intragastrically) for 4 weeks. Kaempferol treatment decreased atherosclerotic lesion area, improved endothelium-dependent vasorelaxation, and increased the maximal relaxation value concomitantly with decrease in the half-maximum effective concentration, plasma OPN level, aortic OPN expression, and aortic CD44 expression in ApoE −/− mice. In addition, treatment with kaempferol also significantly decreased reactive oxygen species production in mice aorta. The present results suggest that kaempferol regulates OPN–CD44 pathway to inhibit the atherogenesis of ApoE −/− mice. -- Graphical abstract: Kaempferol regulates OPN–CD44 pathway to inhibit the atherogenesis of ApoE −/− mice. Highlights: ► OPN–CD44 pathway plays a critical role in the development of atherosclerosis. ► We examine lesion area, OPN and CD44 changes after kaempferol treatment. ► Kaempferol treatment decreased atherosclerotic lesion area in ApoE −/− mice. ► Kaempferol treatment decreased aortic OPN and CD44 expressions in ApoE −/− mice. ► Kaempferol regulates OPN–CD44 pathway to inhibit the atherogenesis.

  16. Kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis of apolipoprotein E deficient mice

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Hong-Bo, E-mail: xhbzhb@yahoo.com [College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128 (China); Lu, Xiang-Yang; Sun, Zhi-Liang [Hunan Agricultural University, Changsha 410128 (China); Zhang, Heng-Bo [Furong District Red Cross Hospital, Changsha 410126 (China)

    2011-12-15

    Recent studies show that osteopontin (OPN) and its receptor cluster of differentiation 44 (CD44) are two pro-inflammatory cytokines contributing to the development of atherosclerosis. The objective of this study was to explore the inhibitory effect of kaempferol, a naturally occurring flavonoid compound, on atherogenesis and the mechanisms involved. The experiments were performed in aorta and plasma from C57BL/6J control and apolipoprotein E-deficient (ApoE{sup -/-}) mice treated or not with kaempferol (50 or 100 mg/kg, intragastrically) for 4 weeks. Kaempferol treatment decreased atherosclerotic lesion area, improved endothelium-dependent vasorelaxation, and increased the maximal relaxation value concomitantly with decrease in the half-maximum effective concentration, plasma OPN level, aortic OPN expression, and aortic CD44 expression in ApoE{sup -/-} mice. In addition, treatment with kaempferol also significantly decreased reactive oxygen species production in mice aorta. The present results suggest that kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis of ApoE{sup -/-} mice. -- Graphical abstract: Kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis of ApoE{sup -/-} mice. Highlights: Black-Right-Pointing-Pointer OPN-CD44 pathway plays a critical role in the development of atherosclerosis. Black-Right-Pointing-Pointer We examine lesion area, OPN and CD44 changes after kaempferol treatment. Black-Right-Pointing-Pointer Kaempferol treatment decreased atherosclerotic lesion area in ApoE{sup -/-} mice. Black-Right-Pointing-Pointer Kaempferol treatment decreased aortic OPN and CD44 expressions in ApoE{sup -/-} mice. Black-Right-Pointing-Pointer Kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis.

  17. Influences of a-tocopherol on cholesterol metabolism and fatty streak development in apolipoprotein E-deficient mice fed an atherogenic diet

    Directory of Open Access Journals (Sweden)

    Peluzio M.C.G.

    2001-01-01

    Full Text Available Although the role of oxidized lipoproteins is well known in atherogenesis, the role of vitamin E supplementation is still controversial. There is also little information about cholesterol metabolism (hepatic concentration and fecal excretion in the new models of atherosclerosis. In the present study, we evaluated the effect of moderate vitamin E supplementation on cholesterol metabolism and atherogenesis in apolipoprotein E (apo E-deficient mice. Apo E-deficient mice were fed an atherogenic diet containing 40 or 400 mg/kg of alpha-tocopherol acetate for 6 weeks. Total cholesterol in serum and liver and 3-OH-alpha-sterols in feces, and fecal excretion of bile acids were determined and histological analyses of aortic lesion were performed. A vitamin E-rich diet did not affect body weight, food intake or serum cholesterol. Serum and hepatic concentrations of cholesterol as well as sterol concentration in feces were similar in both groups. However, when compared to controls, the alpha-tocopherol-treated mice showed a reduction of about 60% in the atherosclerotic lesions when both the sum of lesion areas and the average of the largest lesion area were considered. These results demonstrate that supplementation of moderate doses of alpha-tocopherol was able to slow atherogenesis in apo E-deficient mice and to reduce atherogenic lipoproteins without modifying the hepatic pool or fecal excretion of cholesterol and bile acids.

  18. High-salt diet combined with elevated angiotensin II accelerates atherosclerosis in apolipoprotein E-deficient mice

    DEFF Research Database (Denmark)

    Johansson, Maria E; Bernberg, Evelina; Andersson, Irene J

    2009-01-01

    OBJECTIVES: High-salt diet likely elevates blood pressure (BP), thus increasing the risk of cardiovascular events. We hypothesized that a high-salt diet plays a critical role in subjects whose renin-angiotensin systems cannot adjust to variable salt intake, rendering them more susceptible...... to atherosclerosis. METHODS: Apolipoprotein E-deficient (ApoE-/-) mice received standard or high-salt diet (8%) alone or in combination with fixed angiotensin II (Ang II) infusion (0.5 microg/kg per min). BP was measured using telemetry, and plaque burden was assessed in the thoracic aorta and innominate artery. We...... used urinary isoprostane as a marker for oxidative stress. RESULTS: Although high-salt diet per se did not affect plaque extension, high salt combined with Ang II increased plaque area significantly in both the aorta and the innominate artery as compared with Ang II or salt alone (P

  19. Alanyl-glutamine attenuates 5-fluorouracil-induced intestinal mucositis in apolipoprotein E-deficient mice

    Directory of Open Access Journals (Sweden)

    C.V. Araújo

    2015-06-01

    Full Text Available Apolipoprotein E (APOE=gene, apoE=protein is a known factor regulating the inflammatory response that may have regenerative effects during tissue recovery from injury. We investigated whether apoE deficiency reduces the healing effect of alanyl-glutamine (Ala-Gln treatment, a recognized gut-trophic nutrient, during tissue recovery after 5-FU-induced intestinal mucositis. APOE-knockout (APOE-/- and wild-type (APOE+/+ C57BL6J male and female mice (N=86 were given either Ala-Gln (100 mM or phosphate buffered saline (PBS by gavage 3 days before and 5 days after a 5-fluorouracil (5-FU challenge (450 mg/kg, via intraperitoneal injection. Mouse body weight was monitored daily. The 5-FU cytotoxic effect was evaluated by leukometry. Intestinal villus height, villus/crypt ratio, and villin expression were monitored to assess recovery of the intestinal absorptive surface area. Crypt length, mitotic, apoptotic, and necrotic crypt indexes, and quantitative real-time PCR for insulin-like growth factor-1 (IGF-1 and B-cell lymphoma 2 (Bcl-2 intestinal mRNA transcripts were used to evaluate intestinal epithelial cell turnover. 5-FU challenge caused significant weight loss and leukopenia (P<0.001 in both mouse strains, which was not improved by Ala-Gln. Villus blunting, crypt hyperplasia, and reduced villus/crypt ratio (P<0.05 were found in all 5-FU-challenged mice but not in PBS controls. Ala-Gln improved villus/crypt ratio, crypt length and mitotic index in all challenged mice, compared with PBS controls. Ala-Gln improved villus height only in APOE-/- mice. Crypt cell apoptosis and necrotic scores were increased in all mice challenged by 5-FU, compared with untreated controls. Those scores were significantly lower in Ala-Gln-treated APOE+/+ mice than in controls. Bcl-2 and IGF-1 mRNA transcripts were reduced only in the APOE-/--challenged mice. Altogether our findings suggest APOE-independent Ala-Gln regenerative effects after 5-FU challenge.

  20. Alanyl-glutamine attenuates 5-fluorouracil-induced intestinal mucositis in apolipoprotein E-deficient mice

    Energy Technology Data Exchange (ETDEWEB)

    Araújo, C.V. [Laboratório da Biologia da Cicatrização, Ontogenia e Nutrição de Tecidos, INCT - Instituto de Biomedicina do Semiárido Brasileiro, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE (Brazil); Lazzarotto, C.R. [Laboratório de Biologia Molecular e do Desenvolvimento, Universidade de Fortaleza, Fortaleza, CE (Brazil); Aquino, C.C.; Figueiredo, I.L.; Costa, T.B.; Oliveira Alves, L.A. de [Laboratório da Biologia da Cicatrização, Ontogenia e Nutrição de Tecidos, INCT - Instituto de Biomedicina do Semiárido Brasileiro, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE (Brazil); Ribeiro, R.A. [Laboratório da Inflamação e Câncer, INCT - Instituto de Biomedicina do Semiárido Brasileiro, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE (Brazil); Bertolini, L.R. [Laboratório de Biologia Molecular e do Desenvolvimento, Universidade de Fortaleza, Fortaleza, CE (Brazil); Lima, A.A.M. [Laboratório de Doenças Infecciosas, INCT - Instituto de Biomedicina do Semiárido Brasileiro, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE (Brazil); Brito, G.A.C. [Laboratório da Inflamação e Câncer, INCT - Instituto de Biomedicina do Semiárido Brasileiro, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE (Brazil); Oriá, R.B. [Laboratório da Biologia da Cicatrização, Ontogenia e Nutrição de Tecidos, INCT - Instituto de Biomedicina do Semiárido Brasileiro, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE (Brazil)

    2015-04-28

    Apolipoprotein E (APOE=gene, apoE=protein) is a known factor regulating the inflammatory response that may have regenerative effects during tissue recovery from injury. We investigated whether apoE deficiency reduces the healing effect of alanyl-glutamine (Ala-Gln) treatment, a recognized gut-trophic nutrient, during tissue recovery after 5-FU-induced intestinal mucositis. APOE-knockout (APOE{sup -/-}) and wild-type (APOE{sup +/+}) C57BL6J male and female mice (N=86) were given either Ala-Gln (100 mM) or phosphate buffered saline (PBS) by gavage 3 days before and 5 days after a 5-fluorouracil (5-FU) challenge (450 mg/kg, via intraperitoneal injection). Mouse body weight was monitored daily. The 5-FU cytotoxic effect was evaluated by leukometry. Intestinal villus height, villus/crypt ratio, and villin expression were monitored to assess recovery of the intestinal absorptive surface area. Crypt length, mitotic, apoptotic, and necrotic crypt indexes, and quantitative real-time PCR for insulin-like growth factor-1 (IGF-1) and B-cell lymphoma 2 (Bcl-2) intestinal mRNA transcripts were used to evaluate intestinal epithelial cell turnover. 5-FU challenge caused significant weight loss and leukopenia (P<0.001) in both mouse strains, which was not improved by Ala-Gln. Villus blunting, crypt hyperplasia, and reduced villus/crypt ratio (P<0.05) were found in all 5-FU-challenged mice but not in PBS controls. Ala-Gln improved villus/crypt ratio, crypt length and mitotic index in all challenged mice, compared with PBS controls. Ala-Gln improved villus height only in APOE{sup -/-} mice. Crypt cell apoptosis and necrotic scores were increased in all mice challenged by 5-FU, compared with untreated controls. Those scores were significantly lower in Ala-Gln-treated APOE{sup +/+} mice than in controls. Bcl-2 and IGF-1 mRNA transcripts were reduced only in the APOE{sup -/-}-challenged mice. Altogether our findings suggest APOE-independent Ala-Gln regenerative effects after 5-FU

  1. Alanyl-glutamine attenuates 5-fluorouracil-induced intestinal mucositis in apolipoprotein E-deficient mice

    International Nuclear Information System (INIS)

    Araújo, C.V.; Lazzarotto, C.R.; Aquino, C.C.; Figueiredo, I.L.; Costa, T.B.; Oliveira Alves, L.A. de; Ribeiro, R.A.; Bertolini, L.R.; Lima, A.A.M.; Brito, G.A.C.; Oriá, R.B.

    2015-01-01

    Apolipoprotein E (APOE=gene, apoE=protein) is a known factor regulating the inflammatory response that may have regenerative effects during tissue recovery from injury. We investigated whether apoE deficiency reduces the healing effect of alanyl-glutamine (Ala-Gln) treatment, a recognized gut-trophic nutrient, during tissue recovery after 5-FU-induced intestinal mucositis. APOE-knockout (APOE -/- ) and wild-type (APOE +/+ ) C57BL6J male and female mice (N=86) were given either Ala-Gln (100 mM) or phosphate buffered saline (PBS) by gavage 3 days before and 5 days after a 5-fluorouracil (5-FU) challenge (450 mg/kg, via intraperitoneal injection). Mouse body weight was monitored daily. The 5-FU cytotoxic effect was evaluated by leukometry. Intestinal villus height, villus/crypt ratio, and villin expression were monitored to assess recovery of the intestinal absorptive surface area. Crypt length, mitotic, apoptotic, and necrotic crypt indexes, and quantitative real-time PCR for insulin-like growth factor-1 (IGF-1) and B-cell lymphoma 2 (Bcl-2) intestinal mRNA transcripts were used to evaluate intestinal epithelial cell turnover. 5-FU challenge caused significant weight loss and leukopenia (P<0.001) in both mouse strains, which was not improved by Ala-Gln. Villus blunting, crypt hyperplasia, and reduced villus/crypt ratio (P<0.05) were found in all 5-FU-challenged mice but not in PBS controls. Ala-Gln improved villus/crypt ratio, crypt length and mitotic index in all challenged mice, compared with PBS controls. Ala-Gln improved villus height only in APOE -/- mice. Crypt cell apoptosis and necrotic scores were increased in all mice challenged by 5-FU, compared with untreated controls. Those scores were significantly lower in Ala-Gln-treated APOE +/+ mice than in controls. Bcl-2 and IGF-1 mRNA transcripts were reduced only in the APOE -/- -challenged mice. Altogether our findings suggest APOE-independent Ala-Gln regenerative effects after 5-FU challenge

  2. Differential effect of walnut oil and safflower oil on the serum cholesterol level and lesion area in the aortic root of apolipoprotein E-deficient mice.

    Science.gov (United States)

    Iwamoto, Masako; Kono, Misaki; Kawamoto, Daisuke; Tomoyori, Hiroko; Sato, Masao; Imaizumi, Katsumi

    2002-01-01

    Walnut oil (WO) is a good source of alpha-linolenic acid. We compared the effects of WO and high-linoleic safflower oil (HLSO) on the serum lipid level and atherosclerosis development in male and female apolipoprotein (apo) E-deficient mice. The WO diet resulted in a higher level of serum cholesterol than with HLSO. Female mice fed on the WO diet had a greater lesion area in the aortic root than did those on the HLSO diet. There was no diet-dependent difference in the level of cholesterol and its oxidation products in the abdominal and thoracic aorta. These results suggest that the unpleasant effects of the WO diet on apo E-deficient mice may be attributable to alpha-linolenic acid.

  3. Effect of 12-O-tetradecanoylphorbol-13-acetate-induced psoriasis-like skin lesions on systemic inflammation and atherosclerosis in hypercholesterolaemic apolipoprotein E deficient mice

    DEFF Research Database (Denmark)

    Madsen, Marie; Hansen, Peter Riis; Nielsen, Lars Bo

    2016-01-01

    BACKGROUND: Risk of cardiovascular disease is increased in patients with psoriasis, but molecular mechanisms linking the two conditions have not been clearly established. Lack of appropriate animal models has hampered generation of new knowledge in this area of research and we therefore sought...... to develop an animal model with combined atherosclerosis and psoriasis-like skin inflammation. METHODS: Topical 12-O-tetradecanoylphorbol-13-acetate (TPA) was applied to the ears twice per week for 8 weeks in atherosclerosis-prone apolipoprotein E deficient (ApoE(-/-)) mice. RESULTS: TPA led to localized...

  4. High-dose recombinant apolipoprotein A-I(milano) mobilizes tissue cholesterol and rapidly reduces plaque lipid and macrophage content in apolipoprotein e-deficient mice. Potential implications for acute plaque stabilization.

    Science.gov (United States)

    Shah, P K; Yano, J; Reyes, O; Chyu, K Y; Kaul, S; Bisgaier, C L; Drake, S; Cercek, B

    2001-06-26

    Repeated doses of recombinant apolipoprotein A-I(Milano) phospholipid complex (apoA-I(m)) reduce atherosclerosis and favorably change plaque composition in rabbits and mice. In this study, we tested whether a single high dose of recombinant apoA-I(m) could rapidly mobilize tissue cholesterol and reduce plaque lipid and macrophage content in apoE-deficient mice. High cholesterol-fed, 26-week-old apoE-deficient mice received a single intravenous injection of saline (n=16), 1080 mg/kg dipalmitoylphosphatidylcholine (DPPC; n=14), or 400 mg/kg of recombinant apoA-I(m) complexed with DPPC (1:2.7 weight ratio; n=18). Blood was sampled before and 1 and 48 hours after injection, and aortic root plaques were evaluated for lipid content and macrophage content after oil-red O and immunostaining, respectively. One hour after injection, the plasma cholesterol efflux-promoting capacity was nearly 2-fold higher in recombinant apoA-I(m)-treated mice compared with saline and DPPC-treated mice (P<0.01). Compared with baseline values, serum free cholesterol, an index of tissue cholesterol mobilization, increased 1.6-fold by 1 hour after recombinant apoA-I(m) injection, and it remained significantly elevated at 48 hours (P<0.01). Mice receiving recombinant apoA-I(m) had 40% to 50% lower lipid content (P<0.01) and 29% to 36% lower macrophage content (P<0.05) in their plaques compared with the saline- and DPPC-treated mice, respectively. A single high dose of recombinant apoA-I(m) rapidly mobilizes tissue cholesterol and reduces plaque lipid and macrophage content in apoE-deficient mice. These findings suggest that this strategy could rapidly change plaque composition toward a more stable phenotype.

  5. Loss of PDZK1 causes coronary artery occlusion and myocardial infarction in Paigen diet-fed apolipoprotein E deficient mice.

    Directory of Open Access Journals (Sweden)

    Ayce Yesilaltay

    2009-12-01

    Full Text Available PDZK1 is a four PDZ-domain containing protein that binds to the carboxy terminus of the HDL receptor, scavenger receptor class B type I (SR-BI, and regulates its expression, localization and function in a tissue-specific manner. PDZK1 knockout (KO mice are characterized by a marked reduction of SR-BI protein expression ( approximately 95% in the liver (lesser or no reduction in other organs with a concomitant 1.7 fold increase in plasma cholesterol. PDZK1 has been shown to be atheroprotective using the high fat/high cholesterol ('Western' diet-fed murine apolipoprotein E (apoE KO model of atherosclerosis, presumably because of its role in promoting reverse cholesterol transport via SR-BI.Here, we have examined the effects of PDZK1 deficiency in apoE KO mice fed with the atherogenic 'Paigen' diet for three months. Relative to apoE KO, PDZK1/apoE double KO (dKO mice showed increased plasma lipids (33% increase in total cholesterol; 49 % increase in unesterified cholesterol; and 36% increase in phospholipids and a 26% increase in aortic root lesions. Compared to apoE KO, dKO mice exhibited substantial occlusive coronary artery disease: 375% increase in severe occlusions. Myocardial infarctions, not observed in apoE KO mice (although occasional minimal fibrosis was noted, were seen in 7 of 8 dKO mice, resulting in 12 times greater area of fibrosis in dKO cardiac muscle.These results show that Paigen-diet fed PDZK1/apoE dKO mice represent a new animal model useful for studying coronary heart disease and suggest that PDZK1 may represent a valuable target for therapeutic intervention.

  6. Endothelial surface layer degradation by chronic hyaluronidase infusion induces proteinuria in apolipoprotein E-deficient mice.

    Directory of Open Access Journals (Sweden)

    Marijn C Meuwese

    Full Text Available OBJECTIVE: Functional studies show that disruption of endothelial surface layer (ESL is accompanied by enhanced sensitivity of the vasculature towards atherogenic stimuli. However, relevance of ESL disruption as causal mechanism for vascular dysfunction remains to be demonstrated. We examined if loss of ESL through enzymatic degradation would affect vascular barrier properties in an atherogenic model. METHODS: Eight week old male apolipoprotein E deficient mice on Western-type diet for 10 weeks received continuous active or heat-inactivated hyaluronidase (10 U/hr, i.v. through an osmotic minipump during 4 weeks. Blood chemistry and anatomic changes in both macrovasculature and kidneys were examined. RESULTS: Infusion with active hyaluronidase resulted in decreased ESL (0.32±0.22 mL and plasma volume (1.03±0.18 mL compared to inactivated hyaluronidase (0.52±0.29 mL and 1.28±0.08 mL, p<0.05 respectively.Active hyaluronidase increased proteinuria compared to inactive hyaluronidase (0.27±0.02 vs. 0.15±0.01 µg/µg protein/creatinin, p<0.05 without changes in glomerular morphology or development of tubulo-interstitial inflammation. Atherosclerotic lesions in the aortic branches showed increased matrix production (collagen, 32±5 vs. 18±3%; glycosaminoglycans, 11±5 vs. 0.1±0.01%, active vs. inactive hyaluronidase, p<0.05. CONCLUSION: ESL degradation in apoE deficient mice contributes to reduced increased urinary protein excretion without significant changes in renal morphology. Second, the induction of compositional changes in atherogenic plaques by hyaluronidase point towards increased plaque vulnerability. These findings support further efforts to evaluate whether ESL restoration is a valuable target to prevent (micro vascular disease progression.

  7. Apolipoprotein E*3-Leiden transgenic mice mode for hypolipidaemic drugs

    NARCIS (Netherlands)

    Vlijmen, B.J.M. van; Pearce, N.J.; Bergö, M.; Staels, B.; Yates, J.W.; Gribble, A.D.; Bond, B.C.; Hofker, M.H.; Havekes, L.M.; Groot, P.H.E.

    1998-01-01

    Apolipoprotein (APO) E*3-Leiden mice with impaired chylomicron and VLDL (very low density lipoprotein) remnant metabolism display hyperlipidaemia and atherosclerosis. In the present study, these mice were used for testing the hypolipidaemic effect of two marketed agents, lovastatin (CAS 75330-75-5)

  8. Nuclear microprobe investigation into the trace elemental contents of carotid artery walls of apolipoprotein E deficient mice

    International Nuclear Information System (INIS)

    Ren Minqin; Huang En; Beck, Konstanze; Rajendran, Reshmi; Wu, Ben J.; Halliwell, Barry; Watt, Frank; Stocker, Roland

    2007-01-01

    Atherosclerosis is a progressive disease that causes lesions in large and medium-sized arteries. There is increasing evidence that the function of vascular endothelial cells is impaired by oxidation reactions, and that metal ions may participate in these processes. The nuclear microscopy facility in NUS, which has the ability to focus a 2 MeV proton beam down to sub micron spot sizes, was used to investigate the trace elemental changes (e.g. Zn and Fe) in atherosclerotic lesions in the common carotid artery of apolipoprotein E deficient mice fed a high fat diet. In this preliminary study, which is part of a larger study to investigate the effects of probucol on carotid artery atherosclerosis, two sets of mice were used; a test set fed a high fat diet +1% probucol, and a control set which was fed a high fat diet only. The results show that the Zn/Fe ratio was significantly higher in the media of arteries of probucol treated animals without overlying lesion (4.3) compared to the media with overlying lesion (1.3) (p = 0.004) for test mice. For the control mice, the arterial Zn/Fe ratio was 1.8 for media without overlying lesion, compared with 1.0 for media with overlying lesion (p = 0.1). Thus, for media without overlying lesion, the Zn/Fe ratio was significantly higher (p = 0.009) in probucol-treated (4.3) than control mice (1.8), whereas there was little difference in the ratios between the two groups in media with overlying lesion (1.3 compared with 1.0). These preliminary results are consistent with the idea that the levels of iron and zinc concentrations within the artery wall may influence the formation of atherosclerotic plaque in the carotid artery

  9. Uptake by J774 macrophages of very-low-density lipoproteins isolated from apoE-deficient mice is mediated by a distinct receptor and stimulated by lipoprotein lipase

    NARCIS (Netherlands)

    Hendriks, W.L.; Sman van der - Beer, F. de; Vlijmen, B.J.M. van; Vark, L.C. van; Hofker, M.H.; Havekes, L.M.

    1997-01-01

    Apolipoprotein (apo) E-deficient mice display marked accumulation in the plasma of VLDL deficient in both apoE and apoBl00 but containing apoB48, apoA-1, apoCs, and apoA-IV. Since apoE-deficient mice develop severe atherosclerotic lesions with lipid-laden macrophages, we reasoned that the uptake of

  10. Folate and S-adenosylmethionine modulate synaptic activity in cultured cortical neurons: acute differential impact on normal and apolipoprotein-deficient mice

    International Nuclear Information System (INIS)

    Serra, Michael; Chan, Amy; Dubey, Maya; Shea, Thomas B; Gilman, Vladimir

    2008-01-01

    Folate deficiency is accompanied by a decline in the cognitive neurotransmitter acetylcholine and a decline in cognitive performance in mice lacking apolipoprotein E (ApoE−/− mice), a low-density lipoprotein that regulates aspects of lipid metabolism. One direct consequence of folate deficiency is a decline in S-adenosylmethionine (SAM). Since dietary SAM supplementation maintains acetylcholine levels and cognitive performance in the absence of folate, we examined herein the impact of folate and SAM on neuronal synaptic activity. Embryonic cortical neurons from mice expressing or lacking ApoE (ApoE+/+ or −/−, respectively) were cultured for 1 month on multi-electrode arrays, and signaling was recorded. ApoE+/+ cultures displayed significantly more frequent spontaneous signals than ApoE−/− cultures. Supplementation with 166 µm SAM (not normally present in culture medium) increased signal frequency and decreased signal amplitude in ApoE+/+ cultures. SAM also increased the frequency of tightly clustered signal bursts. Folate deprivation reversibly reduced signal frequency in ApoE+/+ cultures; SAM supplementation maintained signal frequency despite folate deprivation. These findings support the importance of dietary supplementation with folate and SAM on neuronal health. Supplementation with 166 µm SAM did not alter signaling in ApoE−/− cultures, which may be a reflection of the reduced SAM levels in ApoE−/− mice. The differential impact of SAM on ApoE+/+ and −/− neurons underscores the combined impact of nutritional and genetic deficiencies on neuronal homeostasis. (communication)

  11. In vivo magnetic resonance imaging of atherosclerotic lesions with a newly developed Evans blue-DTPA-gadolinium contrast medium in apolipoprotein-E-deficient mice.

    Science.gov (United States)

    Yasuda, Satoshi; Ikuta, Kenjiro; Uwatoku, Toyokazu; Oi, Keiji; Abe, Kohtaro; Hyodo, Fuminori; Yoshimitsu, Kengo; Sugimura, Kohtaro; Utsumi, Hideo; Katayama, Yoshiki; Shimokawa, Hiroaki

    2008-01-01

    Magnetic resonance imaging (MRI) contrast agents that specifically detect atherosclerotic plaque may be useful for the noninvasive detection of the plaque. We have recently developed a new contrast agent, Evans blue-DTPA-gadolinium (EB-DTPA-Gd), which selectively accumulates vascular lesions with endothelial removal. In this study, we examined whether EB-DTPA-Gd is also useful for in vivo imaging of atherosclerotic plaques. We used male apolipoprotein-E-deficient (ApoE-/-) mice of different ages (3, 6 and 12 months old) and age-matched male wild-type mice. After a single intravenous administration of EB-DTPA-Gd (160 microM/kg body weight), MRI T(1) signal was obtained in vivo. Increased signal intensity in the aortic wall was noted within 10-20 min after intravenous injection of EB-DTPA-Gd and was maintained for 30 min. The MRI enhancement in the aorta of ApoE-/- mice was increased in accordance with age, whereas no such enhancement was noted in wild-type mice. Histological examination demonstrated that there was a topological correlation between the site of MRI enhancement and that of atherosclerotic plaque. These results indicate that EB-DTPA-Gd is a useful MRI contrast medium for the in vivo detection of atherosclerotic plaques. Copyright (c) 2007 S. Karger AG, Basel.

  12. Cardiovascular health effects of oral and pulmonary exposure to multi-walled carbon nanotubes in ApoE-deficient mice

    DEFF Research Database (Denmark)

    Christophersen, Daniel V.; Jacobsen, Nicklas R.; Andersen, Maria H. G.

    2016-01-01

    or pulmonary exposures to MWCNTs (4 or 40μg each week) in Apolipoprotein E-deficient (ApoE-/-) mice fed a Western-type diet. Intratracheal instillation of MWCNTs was associated with oxidative damage to DNA in lung tissue and elevated levels of lipid peroxidation products in plasma, whereas the exposure only...

  13. The intravenous injection of oxidized LDL- or Apolipoprotein B100 – Coupled splenocytes promotes Th1 polarization in wildtype and Apolipoprotein EDeficient mice

    International Nuclear Information System (INIS)

    Steinmetz, Martin; Ponnuswamy, Padmapriya; Laurans, Ludivine; Esposito, Bruno; Tedgui, Alain; Mallat, Ziad

    2015-01-01

    Background: Th1 responses in atherosclerosis are mainly associated with the aggravation of atherosclerotic plaques, whereas Th2 responses lead to a less pronounced disease in mouse models. The fixation of antigens on cells by means of ethylene carbodiimide (ECDI), and subsequent injection of these antigen-coupled splenocytes (Ag-SP) to induce tolerance against the attached antigens, has been successfully used to treat murine type 1 diabetes or encephalomyelitis in. We analyzed this approach in a mouse model for atherosclerosis. Methods and results: OTII-transgenic mice that were treated with a single dose of 5 × 10 7 OVA-coupled splenocytes (OVA-SP), had decreased splenocyte proliferation, and lower IFNγ production in vitro upon antigen recall. However, in vivo CD4 cell activation was increased. To try lipoprotein-derived, “atherosclerosis-associated” antigens, we first tested human oxidized LDL. In wild type mice, an increase of IFNγ production upon in vitro recall was detected in the oxLDL-SP group. In Apolipoprotein Edeficient (ApoE−/−) mice that received oxLDL-SP every 5 weeks for 20 weeks, we did not find any difference of atherosclerotic plaque burden, but again increased IFNγ production. To overcome xenogenous limitations, we then examined the effects of mouse Apolipoprotein B100 peptides P3 and P6. ApoB100-SP treatment again promoted a more IFNγ pronounced response upon in vitro recall. Flow cytometry analysis of cytokine secreting spleen cells revealed CD4 positive T cells to be mainly the source for IFNγ. In ApoE−/− mice that were administered ApoB100-SP during 20 weeks, the atherosclerotic plaque burden in aortic roots as well as total aorta was unchanged compared to PBS treated controls. Splenocyte proliferation upon antigen recall was not significantly altered in ApoB100-SP treated ApoE−/− mice. Conclusion: Although we did not observe a relevant anti-atherosclerotic benefit, the treatment with antigen

  14. The intravenous injection of oxidized LDL- or Apolipoprotein B100 – Coupled splenocytes promotes Th1 polarization in wildtype and Apolipoprotein EDeficient mice

    Energy Technology Data Exchange (ETDEWEB)

    Steinmetz, Martin, E-mail: martin.steinmetz@ukb.uni-bonn.de [INSERM, Unit 970, Paris Cardiovascular Research Center, 75015 Paris (France); Internal Medicine II, University Hospital Bonn, 53105 Bonn (Germany); Ponnuswamy, Padmapriya; Laurans, Ludivine; Esposito, Bruno; Tedgui, Alain [INSERM, Unit 970, Paris Cardiovascular Research Center, 75015 Paris (France); Mallat, Ziad [INSERM, Unit 970, Paris Cardiovascular Research Center, 75015 Paris (France); Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke' s Hospital, Cambridge, CB2 2QQ (United Kingdom)

    2015-08-14

    Background: Th1 responses in atherosclerosis are mainly associated with the aggravation of atherosclerotic plaques, whereas Th2 responses lead to a less pronounced disease in mouse models. The fixation of antigens on cells by means of ethylene carbodiimide (ECDI), and subsequent injection of these antigen-coupled splenocytes (Ag-SP) to induce tolerance against the attached antigens, has been successfully used to treat murine type 1 diabetes or encephalomyelitis in. We analyzed this approach in a mouse model for atherosclerosis. Methods and results: OTII-transgenic mice that were treated with a single dose of 5 × 10{sup 7} OVA-coupled splenocytes (OVA-SP), had decreased splenocyte proliferation, and lower IFNγ production in vitro upon antigen recall. However, in vivo CD4 cell activation was increased. To try lipoprotein-derived, “atherosclerosis-associated” antigens, we first tested human oxidized LDL. In wild type mice, an increase of IFNγ production upon in vitro recall was detected in the oxLDL-SP group. In Apolipoprotein Edeficient (ApoE−/−) mice that received oxLDL-SP every 5 weeks for 20 weeks, we did not find any difference of atherosclerotic plaque burden, but again increased IFNγ production. To overcome xenogenous limitations, we then examined the effects of mouse Apolipoprotein B100 peptides P3 and P6. ApoB100-SP treatment again promoted a more IFNγ pronounced response upon in vitro recall. Flow cytometry analysis of cytokine secreting spleen cells revealed CD4 positive T cells to be mainly the source for IFNγ. In ApoE−/− mice that were administered ApoB100-SP during 20 weeks, the atherosclerotic plaque burden in aortic roots as well as total aorta was unchanged compared to PBS treated controls. Splenocyte proliferation upon antigen recall was not significantly altered in ApoB100-SP treated ApoE−/− mice. Conclusion: Although we did not observe a relevant anti-atherosclerotic benefit, the treatment with antigen

  15. In LDL receptor-deficient mice, catabolism of remnant lipoproteins requires a high level of apoE but is inhibited by excess apoE

    NARCIS (Netherlands)

    Dijk, K.W. van; Vlijmen, B.J.M. van; Hof, H.B. van 't; Zee, A. van der; Santamarina-Fojo, S.; Berkel, T.J.C. van; Havekes, L.M.; Hofker, M.H.

    1999-01-01

    To investigate the quantitative requirement for apolipoprotein (apo) E in the clearance of lipoproteins via the non-low density lipoprotein (LDL) receptor mediated pathway, human APOE was overexpressed at various levels in the livers of mice deficient for both the endogenous Apoe and Ldlr genes

  16. Antiatherosclerotic Effects of 1-Methylnicotinamide in Apolipoprotein E/Low-Density Lipoprotein Receptor-Deficient Mice: A Comparison with Nicotinic Acid.

    Science.gov (United States)

    Mateuszuk, Lukasz; Jasztal, Agnieszka; Maslak, Edyta; Gasior-Glogowska, Marlena; Baranska, Malgorzata; Sitek, Barbara; Kostogrys, Renata; Zakrzewska, Agnieszka; Kij, Agnieszka; Walczak, Maria; Chlopicki, Stefan

    2016-02-01

    1-Methylnicotinamide (MNA), the major endogenous metabolite of nicotinic acid (NicA), may partially contribute to the vasoprotective properties of NicA. Here we compared the antiatherosclerotic effects of MNA and NicA in apolipoprotein E (ApoE)/low-density lipoprotein receptor (LDLR)-deficient mice. ApoE/LDLR(-/-) mice were treated with MNA or NicA (100 mg/kg). Plaque size, macrophages, and cholesterol content in the brachiocephalic artery, endothelial function in the aorta, systemic inflammation, platelet activation, as well as the concentration of MNA and its metabolites in plasma and urine were measured. MNA and NicA reduced atherosclerotic plaque area, plaque inflammation, and cholesterol content in the brachiocephalic artery. The antiatherosclerotic actions of MNA and NicA were associated with improved endothelial function, as evidenced by a higher concentration of 6-keto-prostaglandin F1 α and nitrite/nitrate in the aortic ring effluent, inhibition of platelets (blunted thromboxane B2 generation), and inhibition of systemic inflammation (lower plasma concentration of serum amyloid P, haptoglobin). NicA treatment resulted in an approximately 2-fold higher concentration of MNA and its metabolites in urine and a 4-fold higher nicotinamide/MNA ratio in plasma, compared with MNA treatment. In summary; MNA displays pronounced antiatherosclerotic action in ApoE/LDLR(-/-) mice, an effect associated with an improvement in prostacyclin- and nitric oxide-dependent endothelial function, inhibition of platelet activation, inhibition of inflammatory burden in plaques, and diminished systemic inflammation. Despite substantially higher MNA availability after NicA treatment, compared with an equivalent dose of MNA, the antiatherosclerotic effect of NicA was not stronger. We suggest that detrimental effects of NicA or its metabolites other than MNA may limit beneficial effects of NicA-derived MNA. Copyright © 2016 by The American Society for Pharmacology and Experimental

  17. Impaired endothelial barrier function in apolipoprotein M-deficient mice is dependent on sphingosine-1-phosphate receptor 1

    DEFF Research Database (Denmark)

    Christensen, Pernille M; Liu, Catherine H; Swendeman, Steven L

    2016-01-01

    Apolipoprotein M (ApoM) transports sphingosine-1-phosphate (S1P) in plasma, and ApoM-deficient mice (Apom(-/-)) have ∼50% reduced plasma S1P levels. There are 5 known S1P receptors, and S1P induces adherens junction formation between endothelial cells through the S1P1 receptor, which in turn...... suppresses vascular leak. Increased vascular permeability is a hallmark of inflammation. The purpose of this study was to explore the relationships between vascular leakage in ApoM deficiency and S1P1 function in normal physiology and in inflammation. Vascular permeability in the lungs was assessed...... by accumulation of dextran molecules (70 kDa) and was increased ∼40% in Apom(-/-) mice compared to WT (C57Bl6/j) mice. Reconstitution of plasma ApoM/S1P or treatment with an S1P1 receptor agonist (SEW2871) rapidly reversed the vascular leakage to a level similar to that in WT mice, suggesting that it is caused...

  18. Plasma lipid oxidation predicts atherosclerotic status better than cholesterol in diabetic apolipoprotein E deficient mice

    DEFF Research Database (Denmark)

    Petersen, Karen Ekkelund; Lykkesfeldt, Jens; Raun, Kirsten

    2017-01-01

    Increased levels of oxidative stress have been suggested to play a detrimental role in the development of diabetes-related vascular complications. Here, we investigated whether the concentration of malondialdehyde, a marker of lipid oxidation correlated to the degree of aortic plaque lesions...... in a proatherogenic diabetic mouse model. Three groups of apolipoprotein E knockout mice were studied for 20 weeks, a control, a streptozotocin-induced diabetic, and a diabetic enalapril-treated group. Enalapril was hypothesized to lower oxidative stress level and thus the plaque burden. Both diabetic groups were...... significantly different from the control group as they had higher blood glucose, HbA1c, total cholesterol, low-density lipoprotein, very low-density lipoprotein, together with a lower high-density lipoprotein concentration and body weight. Animals in the diabetic group had significantly higher plaque area...

  19. Long-term Western diet fed apolipoprotein E-deficient rats exhibit only modest early atherosclerotic characteristics

    DEFF Research Database (Denmark)

    Rune, Ida; Rolin, Bidda; Lykkesfeldt, Jens

    2018-01-01

    In the apolipoprotein E-deficient mouse, the gut microbiota has an impact on the development of atherosclerosis, but whether such correlations are also present in rats requires investigation. Therefore, we studied female SD-Apoe tm1sage (Apoe -/-) rats fed either a Western diet or a low-fat control...

  20. Renal Denervation Attenuates Progression of Atherosclerosis in Apolipoprotein E–Deficient Mice Independent of Blood Pressure Lowering

    Science.gov (United States)

    Wang, Hui; Wang, Jintao; Guo, Chiao; Luo, Wei; Kleiman, Kyle; Eitzman, Daniel T.

    2016-01-01

    The renal autonomic nervous system may contribute to hypertension and vascular disease. Although the effects of renal artery denervation on blood pressure lowering are controversial, there may be other beneficial vascular effects independent of blood pressure lowering. Bilateral renal denervation (RDN) or sham operation (SO) was performed in 14-week-old male apolipoprotein E–deficient mice on a Western diet starting at 10 weeks of age. Efficacy of RDN was confirmed by reduction of renal norepinephrine levels (SO: 3.8±0.1 versus RDN: 1.7±0.3 ng/mL; P<0.01) at 6 weeks after procedure. Compared with SO, RDN had no effect on blood pressure (SO: 101.0±2.4 versus RDN: 97.5±1.6 mm Hg; P=0.25), total cholesterol (SO: 536.7±28.5 versus RDN: 535.7±62.9 mg/dL; P=0.99), or triglycerides (SO: 83.7±3.5 versus RDN: 86.9±10.2 mg/dL; P=0.78). Quantification of atherosclerosis at 20 weeks of age demonstrated reduced atherosclerosis in mice receiving RDN compared with SO (arterial tree oil-red-O surface staining RDN: 4.2±0.5% versus SO: 6.3±0.7%; P<0.05). Reduced atherosclerosis was associated with increased smooth muscle cell content in atherosclerotic plaques (RDN: 13.3±2.1 versus SO: 8.1±0.6%; P<0.05). Serum levels of aldosterone, monocyte chemoattractant protein-1, and 8-isoprostane were lower in mice that received RDN compared with sham-operated mice (aldosterone; RDN: 206.8±33.2 versus SO: 405.5±59.4 pg/mL, P<0.05; monocyte chemoattractant protein-1; RDN: 51.7±7.9 versus SO: 91.71±4.6 pg/mL, P<0.05; 8-isoprostane; RDN: 331.9±38.2 versus SO: 468.5±42.0 pg/mL, P<0.05). RDN reduces progression of atherosclerosis in apolipoprotein E–deficient mice. These changes are associated with reduced aldosterone levels, monocyte chemoattractant protein-1, and markers of oxidative stress. PMID:25646301

  1. Apolipoprotein E-knockout mice on high-fat diet show autoimmune injury on kidney and aorta

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuehai [Cardiovascular Department, Liaocheng People’s Hospital of Shandong University, Liaocheng, Shandong 252000 (China); Cardiovascular Department, The Second Clinical Medical College of Fujian Medical University, Quanzhou, Fujian 362000 (China); Lu, Huixia [The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong 250012 (China); Huang, Ziyang, E-mail: huangziyang666@126.com [Cardiovascular Department, The Second Clinical Medical College of Fujian Medical University, Quanzhou, Fujian 362000 (China); Lin, Huili [Cardiovascular Department, The Second Clinical Medical College of Fujian Medical University, Quanzhou, Fujian 362000 (China); Lei, Zhenmin [Department of OB/GYN, University of Louisville School of Medicine, Louisville, KY 40292 (United States); Chen, Xiaoqing [Department of Rheumatism and Immunology, The Second Clinical Medical College of Fujian Medical University, Quanzhou, Fujian 362000 (China); Tang, Mengxiong; Gao, Fei; Dong, Mei [The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong 250012 (China); Li, Rongda [Department of Rheumatism and Immunology, The Second Clinical Medical College of Fujian Medical University, Quanzhou, Fujian 362000 (China); Lin, Ling, E-mail: qzlinl@163.com [Department of Rheumatism and Immunology, The Second Clinical Medical College of Fujian Medical University, Quanzhou, Fujian 362000 (China)

    2014-07-18

    Highlights: • Titers of ANA and anti-dsDNA antibodies were similar in ApoE{sup −/−} and Fas{sup −/−} mice. • The spleen weights and glomerular areas were similar in ApoE{sup −/−} and Fas{sup −/−} mice. • Expressions of IgG and C3 in glomeruli were similar in ApoE{sup −/−} and Fas{sup −/−} mice. • IgG, C3 and macrophage infiltration in aortic plaques were found in ApoE{sup −/−} mice. - Abstract: Background: Apolipoprotein E-knockout (ApoE{sup −/−}) mice is a classic model of atherosclerosis. We have found that ApoE{sup −/−} mice showed splenomegaly, higher titers of serum anti-nuclear antibody (ANA) and anti-dsDNA antibody compared with C57B6/L (B6) mice. However, whether ApoE{sup −/−} mice show autoimmune injury remains unclear. Methods and results: Six females and six males in each group, ApoE{sup −/−}, Fas{sup −/−} and B6 mice, were used in this study. The titers of serum ANA, anti-dsDNA antibody and creatinine and urine protein were measured by ELISA after 4 months of high-fat diet. The spleen weight and the glomerular area were determined. The expressions of IgG, C3 and macrophage in kidney and atherosclerotic plaque were detected by immunostaining followed by morphometric analysis. Similar to the characteristics of Fas{sup −/−} mice, a model of systemic lupus erythematosus (SLE), ApoE{sup −/−} mice, especially female, displayed significant increases of spleen weight and glomerular area when compared to B6 mice. Also, elevated titers of serum ANA, anti-dsDNA antibody and creatinine and urine protein. Moreover, the expressions of IgG, C3 and macrophage in glomeruli and aortic plaques were found in ApoE{sup −/−} mice. In addition, the IgG and C3 expressions in glomeruli and plaques significantly increased (or a trend of increase) in female ApoE{sup −/−} mice compared with males. Conclusions: Apolipoprotein E-knockout mice on high-fat diet show autoimmune injury on kidney and aorta.

  2. Apolipoprotein E-knockout mice on high-fat diet show autoimmune injury on kidney and aorta

    International Nuclear Information System (INIS)

    Wang, Yuehai; Lu, Huixia; Huang, Ziyang; Lin, Huili; Lei, Zhenmin; Chen, Xiaoqing; Tang, Mengxiong; Gao, Fei; Dong, Mei; Li, Rongda; Lin, Ling

    2014-01-01

    Highlights: • Titers of ANA and anti-dsDNA antibodies were similar in ApoE −/− and Fas −/− mice. • The spleen weights and glomerular areas were similar in ApoE −/− and Fas −/− mice. • Expressions of IgG and C3 in glomeruli were similar in ApoE −/− and Fas −/− mice. • IgG, C3 and macrophage infiltration in aortic plaques were found in ApoE −/− mice. - Abstract: Background: Apolipoprotein E-knockout (ApoE −/− ) mice is a classic model of atherosclerosis. We have found that ApoE −/− mice showed splenomegaly, higher titers of serum anti-nuclear antibody (ANA) and anti-dsDNA antibody compared with C57B6/L (B6) mice. However, whether ApoE −/− mice show autoimmune injury remains unclear. Methods and results: Six females and six males in each group, ApoE −/− , Fas −/− and B6 mice, were used in this study. The titers of serum ANA, anti-dsDNA antibody and creatinine and urine protein were measured by ELISA after 4 months of high-fat diet. The spleen weight and the glomerular area were determined. The expressions of IgG, C3 and macrophage in kidney and atherosclerotic plaque were detected by immunostaining followed by morphometric analysis. Similar to the characteristics of Fas −/− mice, a model of systemic lupus erythematosus (SLE), ApoE −/− mice, especially female, displayed significant increases of spleen weight and glomerular area when compared to B6 mice. Also, elevated titers of serum ANA, anti-dsDNA antibody and creatinine and urine protein. Moreover, the expressions of IgG, C3 and macrophage in glomeruli and aortic plaques were found in ApoE −/− mice. In addition, the IgG and C3 expressions in glomeruli and plaques significantly increased (or a trend of increase) in female ApoE −/− mice compared with males. Conclusions: Apolipoprotein E-knockout mice on high-fat diet show autoimmune injury on kidney and aorta

  3. Analysis of glomerulosclerosis and atherosclerosis in lecithin cholesterol acyltransferase-deficient mice.

    Science.gov (United States)

    Lambert, G; Sakai, N; Vaisman, B L; Neufeld, E B; Marteyn, B; Chan, C C; Paigen, B; Lupia, E; Thomas, A; Striker, L J; Blanchette-Mackie, J; Csako, G; Brady, J N; Costello, R; Striker, G E; Remaley, A T; Brewer, H B; Santamarina-Fojo, S

    2001-05-04

    To evaluate the biochemical and molecular mechanisms leading to glomerulosclerosis and the variable development of atherosclerosis in patients with familial lecithin cholesterol acyl transferase (LCAT) deficiency, we generated LCAT knockout (KO) mice and cross-bred them with apolipoprotein (apo) E KO, low density lipoprotein receptor (LDLr) KO, and cholesteryl ester transfer protein transgenic mice. LCAT-KO mice had normochromic normocytic anemia with increased reticulocyte and target cell counts as well as decreased red blood cell osmotic fragility. A subset of LCAT-KO mice accumulated lipoprotein X and developed proteinuria and glomerulosclerosis characterized by mesangial cell proliferation, sclerosis, lipid accumulation, and deposition of electron dense material throughout the glomeruli. LCAT deficiency reduced the plasma high density lipoprotein (HDL) cholesterol (-70 to -94%) and non-HDL cholesterol (-48 to -85%) levels in control, apoE-KO, LDLr-KO, and cholesteryl ester transfer protein-Tg mice. Transcriptome and Western blot analysis demonstrated up-regulation of hepatic LDLr and apoE expression in LCAT-KO mice. Despite decreased HDL, aortic atherosclerosis was significantly reduced (-35% to -99%) in all mouse models with LCAT deficiency. Our studies indicate (i) that the plasma levels of apoB containing lipoproteins rather than HDL may determine the atherogenic risk of patients with hypoalphalipoproteinemia due to LCAT deficiency and (ii) a potential etiological role for lipoproteins X in the development of glomerulosclerosis in LCAT deficiency. The availability of LCAT-KO mice characterized by lipid, hematologic, and renal abnormalities similar to familial LCAT deficiency patients will permit future evaluation of LCAT gene transfer as a possible treatment for glomerulosclerosis in LCAT-deficient states.

  4. Whole Body Vibration Retards Progression of Atherosclerosis via Insulin-Like Growth Factor 1 in Apolipoprotein E-Deficient Mice.

    Science.gov (United States)

    Wu, He; Zhang, Yibo; Yang, Xuan; Li, Xian; Shao, Zhenya; Zhou, Zipeng; Li, Yuanlong; Pan, Shuwen; Liu, Chang

    2018-01-01

    Whole body vibration (WBV) has a marked impact on lipid metabolism and the endocrine system, which is related to the progression of atherosclerosis (AS). To investigate the effects of WBV, we measured the atherosclerotic plaque area of apolipoprotein E-knockout (ApoE -/- ) AS mice, which were trained by WBV (15 Hz, 30 min) for 12 weeks. Simultaneously, serum levels of lipids, insulin-like growth factor 1 (IGF-1), insulin-like growth factor 1 receptor (IGF-1R), interleukin 6 (IL-6), and the mRNA and protein levels of the same in the aorta were compared between the control and WBV groups. The results indicated that WBV significantly reduced the atherosclerotic plaque area with lower very low-density lipoprotein (VLDL) and oxidized low-density lipoprotein (ox-LDL) in the blood. Moreover, the levels of IGF-1 in serum and expression of IL-6, IGF-1R, and p-IGF-1R protein in the mice aorta decreased significantly in the WBV group. In addition, we found that serum IGF-1 in mice increased to the highest concentration in 30 min after WBV for 10, 30, 60, and 120 minutes. These results suggested that appropriate WBV may delay the progression of AS, which was associated with acutely elevated serum IGF-1 and lower levels of IGF-1 and IL-6 in the aorta for long-term treatment.

  5. N-3 PUFAs protect against aortic inflammation and oxidative stress in angiotensin II-infused apolipoprotein E-/- mice.

    Directory of Open Access Journals (Sweden)

    Kathryn M Wales

    Full Text Available Abdominal aortic aneurysm is associated with infiltration of inflammatory cells into the aortic wall. The inflammatory response is also evident in animal models, such as apolipoprotein E-deficient (ApoE-/- mice that have been infused with angiotensin II, prior to development of aortic aneurysm. Since omega-3 polyunsaturated fatty acids (n-3 PUFAs and their metabolites have anti-inflammatory and pro-resolving activity, we hypothesised that dietary supplementation with n-3 PUFAs would protect against inflammatory processes in this mouse model. Twenty C57 and 20 ApoE-/- 3-4 week old male mice were supplemented with a low (0.14%, n = 10/group or high (0.70%, n = 10/group n-3 PUFA diet for 8 weeks before 2-day infusion with 0.9% saline or angiotensin II (1000 ng/kg/min. Four ApoE-/- mice on the low n-3 PUFA diet and none of the ApoE-/- mice on the high n-3 PUFA diet showed morphological evidence of abdominal aortic dissection. The plasma concentration of the n-3 PUFA metabolite, resolvin D1 was higher in angiotensin II-infused ApoE-/- mice fed the high, compared to the low n-3 PUFA diet. The number of neutrophils and macrophages infiltrating the abdominal aorta was elevated in ApoE-/- mice on the low n-3 PUFA diet, and this was significantly attenuated in mice that were fed the high n-3 PUFA diet. Most neutrophils and macrophages were associated with dissected aortas. Immunoreactivity of the catalytic subunit of nicotinamide-adenine dinucleotide phosphate (NADPH oxidase, Nox2, and superoxide were elevated in ApoE-/- mice that were fed the low n-3 PUFA diet, and this was also significantly attenuated in mice that were fed the high n-3 PUFA diet. Together, the findings indicate that supplementation of ApoE-/- mice with a diet high in n-3 PUFA content protected the mice against pro-inflammatory and oxidative stress responses following short-term infusion with angiotensin II.

  6. Modulating the gut microbiota improves glucose tolerance, lipoprotein profile and atherosclerotic plaque development in ApoE-deficient mice

    DEFF Research Database (Denmark)

    Rune, Ida; Rolin, Bidda; Larsen, Christian Schiøth

    2016-01-01

    cause of cardiovascular disease (CVD), and to increase CVD risk factors. Popular interest in the role of the intestine in a variety of disease states has now resulted in a significant proportion of individuals without coeliac disease switching to gluten-free diets. The effect of gluten-free diets...... on atherosclerosis and cardiovascular risk factors is largely unknown. We therefore investigated the effect of a gluten-free high-fat cholesterol-rich diet, as compared to the same diet in which the gluten peptide gliadin had been added back, on atherosclerosis and several cardiovascular risk factors...... in apolipoprotein E-deficient (Apoe-/-) mice. The gluten-free diet transiently altered GM composition in these mice, as compared to the gliadin-supplemented diet, but did not alter body weights, glucose tolerance, insulin levels, plasma lipids, or atherosclerosis. In parallel, other Apoe-/- mice fed the same diets...

  7. Whole Body Vibration Retards Progression of Atherosclerosis via Insulin-Like Growth Factor 1 in Apolipoprotein E-Deficient Mice

    Directory of Open Access Journals (Sweden)

    He Wu

    2018-01-01

    Full Text Available Whole body vibration (WBV has a marked impact on lipid metabolism and the endocrine system, which is related to the progression of atherosclerosis (AS. To investigate the effects of WBV, we measured the atherosclerotic plaque area of apolipoprotein E-knockout (ApoE−/− AS mice, which were trained by WBV (15 Hz, 30 min for 12 weeks. Simultaneously, serum levels of lipids, insulin-like growth factor 1 (IGF-1, insulin-like growth factor 1 receptor (IGF-1R, interleukin 6 (IL-6, and the mRNA and protein levels of the same in the aorta were compared between the control and WBV groups. The results indicated that WBV significantly reduced the atherosclerotic plaque area with lower very low-density lipoprotein (VLDL and oxidized low-density lipoprotein (ox-LDL in the blood. Moreover, the levels of IGF-1 in serum and expression of IL-6, IGF-1R, and p-IGF-1R protein in the mice aorta decreased significantly in the WBV group. In addition, we found that serum IGF-1 in mice increased to the highest concentration in 30 min after WBV for 10, 30, 60, and 120 minutes. These results suggested that appropriate WBV may delay the progression of AS, which was associated with acutely elevated serum IGF-1 and lower levels of IGF-1 and IL-6 in the aorta for long-term treatment.

  8. Equol Attenuates Atherosclerosis in Apolipoprotein E-Deficient Mice by Inhibiting Endoplasmic Reticulum Stress via Activation of Nrf2 in Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Ting Zhang

    Full Text Available The development of atherosclerosis is closely related to excessive endoplasmic reticulum stress (ERs. Equol reportedly protects against cardiovascular disease; however, the underlying mechanism for this protection remains unknown. Herein, the mechanisms contributing to the atheroprotective effect of equol were addressed using apolipoprotein E knockout (apoE-/- mice fed a high-fat diet (HFD with or without equol. Equol intervention reduced atherosclerotic lesions in the aorta in HFD-fed apoE-/- mice. Plasma lipid analysis showed that equol intervention reduced triglycerides, total cholesterol and LDL-cholesterol and increased HDL-cholesterol. Additionally, equol administration decreased lipid accumulation in the liver. Simultaneously, equol treatment inhibited cell apoptosis induced by t-BHP and thapsigargin in human umbilical vein endothelial cells (HUVECs. Furthermore, equol treatment attenuated palmitate, t-BHP or thapsigargin-induced upregulation of ER stress markers, including p-PERK, p-eIF2α, GRP78, ATF6 and CHOP proteins expression. The same tendency was also observed in aortic lysates in apoE-/- mice fed with equol plus HFD compared with HFD alone. Moreover, equol treatment dose dependently activated the Nrf2 signaling pathway under oxidative stress. Additionally, elevation of Nrf2 induction was found in aortic lysates in apoE-/- mice fed with a HFD diet containing equol compared with a HFD diet without equol. Importantly, Nrf2 siRNA interference induced CHOP and attenuated the effect of equol to inhibit t-BHP mediated CHOP induction, furthermore, abrogated cell apoptosis induced by t-BHP, suggesting a role for Nrf2 in the protective effect of equol in HUVECs. Collectively, these findings implicate that the improvement of atherosclerosis by equol through attenuation of ER stress is mediated, at least in part, by activating the Nrf2 signaling pathway.

  9. Differential interaction of Apolipoprotein-E isoforms with insulin receptors modulates brain insulin signaling in mutant human amyloid precursor protein transgenic mice.

    Science.gov (United States)

    Chan, Elizabeth S; Chen, Christopher; Cole, Gregory M; Wong, Boon-Seng

    2015-09-08

    It is unclear how human apolipoprotein E4 (ApoE4) increases the risk for Alzheimer's disease (AD). Although Aβ levels can lead to insulin signaling impairment, these experiments were done in the absence of human ApoE. To examine ApoE role, we crossed the human ApoE-targeted replacement mice with mutant human amyloid precursor protein (APP) mice. In 26 week old mice with lower Aβ levels, the expression and phosphorylation of insulin signaling proteins remained comparable among APP, ApoE3xAPP and ApoE4xAPP mouse brains. When the mice aged to 78 weeks, these proteins were markedly reduced in APP and ApoE4xAPP mouse brains. While Aβ can bind to insulin receptor, how ApoE isoforms modulate this interaction remains unknown. Here, we showed that ApoE3 had greater association with insulin receptor as compared to ApoE4, regardless of Aβ42 concentration. In contrast, ApoE4 bound more Aβ42 with increasing peptide levels. Using primary hippocampal neurons, we showed that ApoE3 and ApoE4 neurons are equally sensitive to physiological levels of insulin. However, in the presence of Aβ42, insulin failed to elicit a downstream response only in ApoE4 hippocampal neurons. Taken together, our data show that ApoE genotypes can modulate this Aβ-mediated insulin signaling impairment.

  10. Dietary Flaxseed Oil Prevents Western-Type Diet-Induced Nonalcoholic Fatty Liver Disease in Apolipoprotein-E Knockout Mice

    Directory of Open Access Journals (Sweden)

    Hao Han

    2017-01-01

    Full Text Available The prevalence of nonalcoholic fatty liver disease (NAFLD has dramatically increased globally during recent decades. Intake of n-3 polyunsaturated fatty acids (PUFAs, mainly eicosapentaenoic acid (EPA, C20:5n-3 and docosahexaenoic acid (DHA, C22:6n-3, is believed to be beneficial to the development of NAFLD. However, little information is available with regard to the effect of flaxseed oil rich in α-linolenic acid (ALA, C18:3n-3, a plant-derived n-3 PUFA, in improving NAFLD. This study was to gain the effect of flaxseed oil on NAFLD and further investigate the underlying mechanisms. Apolipoprotein-E knockout (apoE-KO mice were given a normal chow diet, a western-type high-fat and high-cholesterol diet (WTD, or a WTD diet containing 10% flaxseed oil (WTD + FO for 12 weeks. Our data showed that consumption of flaxseed oil significantly improved WTD-induced NAFLD, as well as ameliorated impaired lipid homeostasis, attenuated oxidative stress, and inhibited inflammation. These data were associated with the modification effects on expression levels of genes involved in de novo fat synthesis (SREBP-1c, ACC, triacylglycerol catabolism (PPARα, CPT1A, and ACOX1, inflammation (NF-κB, IL-6, TNF-α, and MCP-1, and oxidative stress (ROS, MDA, GSH, and SOD.

  11. Reversal of hypercholesterolemia in apolipoprotein E2 and apolipoprotein E3-Leiden transgenic mice by adenovirus-mediated gene transfer of the VLDL receptor

    NARCIS (Netherlands)

    Dijk, K.W. van; Vlijmen, B.J.M. van; Zee, A. van der; Hof, B. van 't; Boom, H. van der; Kobayashi, K.; Chan, L.; Havekes, L.M.; Hofker, M.H.

    1998-01-01

    We have investigated the interaction of apolipoprotein E2(Arg158- Cys) (apoE2) and apolipoprotein E3Leiden (apoE3-Leiden) with the very low density lipoprotein (VLDL) receptor in vivo and in vitro to define the possible role of this receptor in lipoprotein metabolism and atherosclerosis. The in vivo

  12. Apolipoprotein C3 deficiency results in diet-induced obesity and aggravated insulin resistance in mice

    NARCIS (Netherlands)

    Duivenvoorden, Ilse; Teusink, Bas; Rensen, Patrick C.; Romijn, Johannes A.; Havekes, Louis M.; Voshol, Peter J.

    2005-01-01

    Our aim was to study whether the absence of apolipoprotein (apo) C3, a strong inhibitor of lipoprotein lipase (LPL), accelerates the development of obesity and consequently insulin resistance. Apoc3(-/-) mice and wild-type littermates were fed a high-fat (46 energy %) diet for 20 weeks. After 20

  13. Effects of dietary fish oil on serum lipids and VLDL kinetics in hyperlipidemic apolipoprotein E*3-Leiden transgenic mice

    NARCIS (Netherlands)

    Vlijmen, B.J.M. van; Mensink, R.P.; Hof, H.B. van 't; Offermans, R.F.G.; Hofker, M.H.; Havekes, L.M.

    1998-01-01

    Studying the effects of dietary fish oil on VLDL metabolism in humans is subject to both large intra- and interindividual variability. In the present study we therefore used hyperlipidentic apolipoprotein (APO) E*3-Leiden mice, which have impaired chylomicron and very low density lipoprotein (VDL)

  14. A Novel Apolipoprotein C-II Mimetic Peptide That Activates Lipoprotein Lipase and Decreases Serum Triglycerides in Apolipoprotein E–Knockout Mice

    Science.gov (United States)

    Sakurai, Toshihiro; Sakurai-Ikuta, Akiko; Sviridov, Denis; Freeman, Lita; Ahsan, Lusana; Remaley, Alan T.

    2015-01-01

    Apolipoprotein A-I (apoA-I) mimetic peptides are currently being developed as possible new agents for the treatment of cardiovascular disease based on their ability to promote cholesterol efflux and their other beneficial antiatherogenic properties. Many of these peptides, however, have been reported to cause transient hypertriglyceridemia due to inhibition of lipolysis by lipoprotein lipase (LPL). We describe a novel bihelical amphipathic peptide (C-II-a) that contains an amphipathic helix (18A) for binding to lipoproteins and stimulating cholesterol efflux as well as a motif based on the last helix of apolipoprotein C-II (apoC-II) that activates lipolysis by LPL. The C-II-a peptide promoted cholesterol efflux from ATP-binding cassette transporter ABCA1-transfected BHK cells similar to apoA-I mimetic peptides. Furthermore, it was shown in vitro to be comparable to the full-length apoC-II protein in activating lipolysis by LPL. When added to serum from a patient with apoC-II deficiency, it restored normal levels of LPL-induced lipolysis and also enhanced lipolysis in serum from patients with type IV and V hypertriglyceridemia. Intravenous injection of C-II-a (30 mg/kg) in apolipoprotein E–knockout mice resulted in a significant reduction of plasma cholesterol and triglycerides of 38 ± 6% and 85 ± 7%, respectively, at 4 hours. When coinjected with the 5A peptide (60 mg/kg), the C-II-a (30 mg/kg) peptide was found to completely block the hypertriglyceridemic effect of the 5A peptide in C57Bl/6 mice. In summary, C-II-a is a novel peptide based on apoC-II, which promotes cholesterol efflux and lipolysis and may therefore be useful for the treatment of apoC-II deficiency and other forms of hypertriglyceridemia. PMID:25395590

  15. SAP deficiency mitigated atherosclerotic lesions in ApoE(-/-) mice.

    Science.gov (United States)

    Zheng, Lingyun; Wu, Teng; Zeng, Cuiling; Li, Xiangli; Li, Xiaoqiang; Wen, Dingwen; Ji, Tianxing; Lan, Tian; Xing, Liying; Li, Jiangchao; He, Xiaodong; Wang, Lijing

    2016-01-01

    Serum amyloid P conpoent (SAP), a member of the pentraxin family, interact with pathogens and cell debris to promote their removal by macrophages and neutrophils and is co-localized with atherosclerotic plaques in patients. However, the exact mechanism of SAP in atherogenesis is still unclear. We investigated whether SAP influence macrophage recruitment and foam cell formation and ultimately affect atherosclerotic progression. we generated apoE(-/-); SAP(-/-) (DKO) mice and fed them western diet for 4 and 8 weeks to characterize atherosclerosis development. SAP deficiency effectively reduced plaque size both in the aorta (p = 0.0006 for 4 wks; p = 0.0001 for 8 wks) and the aortic root (p = 0.0061 for 4 wks; p = 0.0079 for 8wks) compared with apoE(-/-) mice. Meanwhile, SAP deficiency inhibited oxLDL-induced foam cell formation (p = 0.0004) compared with apoE(-/-) mice and SAP treatment increases oxLDL-induced foam cell formation (p = 0.002) in RAW cells. Besides, SAP deficiency reduced macrophages recruitment (p = 0.035) in vivo and in vitro (p = 0.026). Furthermore, SAP treatment enhanced CD36 (p = 0.007) and FcγRI (p = 0.031) expression induced by oxLDL through upregulating JNK and p38 MAPK phosphorylation whereas specific JNK1/2 inhibitor reduced CD36 (p = 0.0005) and FcγRI (P = 0.0007) expression in RAW cell. SAP deficiency also significantly decreased the expression of M1 and M2 macrophage markers and inflammatory cytokines in oxLDL-induced macrophages. SAP deficiency mitigated foam cell formation and atherosclerotic development in apoE(-/-) mice, due to reduction in macrophages recruitment, polarization and pro-inflammatory cytokines and inhibition the CD36/FcγR-dependent signaling pathway. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Tofacitinib ameliorates atherosclerosis and reduces foam cell formation in apoE deficient mice.

    Science.gov (United States)

    Wang, Zaicun; Wang, Shumei; Wang, Zunzhe; Yun, Tiantian; Wang, Chenchen; Wang, Huating

    2017-08-19

    Atherosclerosis is a chronic inflammatory cardiovascular disease with high mortality worldwide. Tofacitinib (CP-690,550), an oral small-molecule Janus kinase inhibitor, has been shown to be effective in the treatment of rheumatoid arthritis, autoimmune encephalomyelitis and ulcerative colitis. However, its protective effect against atherosclerosis remains poorly understood. The aim of the present study was to evaluate the effects of Tofacitinib on atherogenic diet (ATD)-induced atherosclerosis using apolipoprotein E deficient (apoE-/-) mice. Atherosclerosis-prone apoE-/- mice were fed with ATD and treated with or without Tofacitinib through intragastrical administration (10 mg kg -1 day -1 ) for 8 weeks. Our results showed that Tofacitinib did not change plasma lipids, while significantly reduced the levels of plasma pro-inflammatory cytokines IL-6 and TNF-α. It also significantly attenuated atherosclerotic plaque lesion in the aortic root and macrophages contained in plaque as shown with Mac2 immuno-staining. Peritoneal macrophages (PMC) were separated from apoE-/- mice fed with 8-week ATD, and then subjected to inflammation tests. Flow cytometry analysis of F4/80 and CD206 and mRNA levels of M1 and M2 macrophages markers showed that M1 macrophages decreased while M2 macrophages increased in Tofacitinib treated group. Expressions of other inflammatory genes also indicated an anti-inflammatory status in mice treated with Tofacitinib. Ox-LDL was used to induce foam cell formation from PMC in wild type mice, and the results displayed a reduced formation of foam cells and decreased inflammation in mice with Tofacitinib administration (1 μM). The mRNA and protein levels of ATP binding cassette subfamily A member 1 (ABCA1), a key gene involved in cholesterol efflux, remarkably increased, while it was absence of alterations in scavenger receptors expression. Therefore, we demonstrated that Tofacitinib could attenuate atherosclerosis and foam cells formation by

  17. Increased sensitivity of apolipoprotein E knockout mice to copper-induced oxidative injury to the liver.

    Science.gov (United States)

    Chen, Yuan; Li, Bin; Zhao, Ran-ran; Zhang, Hui-feng; Zhen, Chao; Guo, Li

    2015-04-10

    Apolipoprotein E (ApoE) genotypes are related to clinical presentations in patients with Wilson's disease, indicating that ApoE may play an important role in the disease. However, our understanding of the role of ApoE in Wilson's disease is limited. High copper concentration in Wilson's disease induces excessive generation of free oxygen radicals. Meanwhile, ApoE proteins possess antioxidant effects. We therefore determined whether copper-induced oxidative damage differ in the liver of wild-type and ApoE knockout (ApoE(-/-)) mice. Both wild-type and ApoE(-/-) mice were intragastrically administered with 0.2 mL of copper sulfate pentahydrate (200 mg/kg; a total dose of 4 mg/d) or the same volume of saline daily for 12 weeks, respectively. Copper and oxidative stress markers in the liver tissue and in the serum were assessed. Our results showed that, compared with the wild-type mice administered with copper, TBARS as a marker of lipid peroxidation, the expression of oxygenase-1 (HO-1), NAD(P)H dehydrogenase, and quinone 1 (NQO1) significantly increased in the ApoE(-/-) mice administered with copper, meanwhile superoxide dismutase (SOD) activity significantly decreased. Thus, it is concluded that ApoE may protect the liver from copper-induced oxidative damage in Wilson's disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Effect of tocopherol on atherosclerosis, vascular function, and inflammation in apolipoprotein E knockout mice with subtotal nephrectomy.

    Science.gov (United States)

    Shing, Cecilia M; Fassett, Robert G; Peake, Jonathan M; Coombes, Jeff S

    2014-12-01

    Inflammation and endothelial dysfunction contribute to cardiovascular disease, prevalent in chronic kidney disease (CKD). Antioxidant supplements such as tocopherols may reduce inflammation and atherosclerosis. This study aimed to investigate the effect of tocopherol supplementation on vascular function, aortic plaque formation, and inflammation in apolipoprotein E(-/-) mice with 5/6 nephrectomy as a model of combined cardiovascular and kidney disease. Nephrectomized mice were assigned to a normal chow diet group (normal chow), a group receiving 1000 mg/kg diet of α-tocopherol supplementation or a group receiving 1000 mg/kg diet mixed-tocopherol (60% γ-tocopherol). Following 12 weeks, in vitro aortic endothelial-independent relaxation was enhanced with both α-tocopherol and mixed-tocopherol (P tocopherol enhanced aortic contraction at noradrenaline concentrations of 3 × 10(-7) M to 3 × 10(-5) M (P tocopherol reduced systemic concentrations of IL-6 (P tocopherol also reduced MCP-1 (P tocopherol supplementation when compared to normal chow (P Tocopherol supplementation favorably influenced vascular function and cytokine profile, while it was also effective in reducing atherosclerosis in the apolipoprotein E(-/-) mouse with CKD. © 2014 John Wiley & Sons Ltd.

  19. Effect of Lactobacillus delbrueckii on cholesterol metabolism in germ-free mice and on atherogenesis in apolipoprotein E knock-out mice

    Directory of Open Access Journals (Sweden)

    Portugal L.R.

    2006-01-01

    Full Text Available Elevated blood cholesterol is an important risk factor associated with atherosclerosis and coronary heart disease. Several studies have reported a decrease in serum cholesterol during the consumption of large doses of fermented dairy products or lactobacillus strains. The proposed mechanism for this effect is the removal or assimilation of intestinal cholesterol by the bacteria, reducing cholesterol absorption. Although this effect was demonstrated in vitro, its relevance in vivo is still controversial. Furthermore, few studies have investigated the role of lactobacilli in atherogenesis. The aim of the present study was to determine the effect of Lactobacillus delbrueckii on cholesterol metabolism in germ-free mice and the possible hypocholesterolemic and antiatherogenic action of these bacteria using atherosclerosis-prone apolipoprotein E (apo E knock-out (KO mice. For this purpose, Swiss/NIH germ-free mice were monoassociated with L. delbrueckii and fed a hypercholesterolemic diet for four weeks. In addition, apo E KO mice were fed a normal chow diet and treated with L. delbrueckii for 6 weeks. There was a reduction in cholesterol excretion in germ-free mice, which was not associated with changes in blood or liver cholesterol concentration. In apo E KO mice, no effect of L. delbrueckii was detected in blood, liver or fecal cholesterol. The atherosclerotic lesion in the aorta was also similar in mice receiving or not these bacteria. In conclusion, these results suggest that, although L. delbrueckii treatment was able to reduce cholesterol excretion in germ-free mice, no hypocholesterolemic or antiatherogenic effect was observed in apo E KO mice.

  20. Apocynin suppresses the progression of atherosclerosis in apoE-deficient mice by inactivation of macrophages

    International Nuclear Information System (INIS)

    Kinoshita, Hiroyuki; Matsumura, Takeshi; Ishii, Norio; Fukuda, Kazuki; Senokuchi, Takafumi; Motoshima, Hiroyuki; Kondo, Tatsuya; Taketa, Kayo; Kawasaki, Shuji; Hanatani, Satoko; Takeya, Motohiro; Nishikawa, Takeshi; Araki, Eiichi

    2013-01-01

    Highlights: ► We examined the anti-athrogenic effect of apocynin in atherosclerotic model mice. ► Apocynin prevented atherosclerotic lesion formation. ► Apocynin suppressed ROS production in aorta and in macrophages. ► Apocynin suppressed cytokine expression and cell proliferation in macrophages. ► Apocynin may be beneficial compound for the prevention of atherosclerosis. -- Abstract: Production of reactive oxygen species (ROS) and other proinflammatory substances by macrophages plays an important role in atherogenesis. Apocynin (4-hydroxy-3-methoxy-acetophenone), which is well known as a NADPH oxidase inhibitor, has anti-inflammatory effects including suppression of the generation of ROS. However, the suppressive effects of apocynin on the progression of atherosclerosis are not clearly understood. Thus, we investigated anti-atherosclerotic effects of apocynin using apolipoprotein E-deficient (apoE –/– ) mice in vivo and in mouse peritoneal macrophages in vitro. In atherosclerosis-prone apoE –/– mice, apocynin suppressed the progression of atherosclerosis, decreased 4-hydroxynonenal-positive area in atherosclerotic lesions, and mRNA expression of monocyte chemoattractant protein-1 (MCP-1) and interleukin-6 (IL-6) in aorta. In mouse peritoneal macrophages, apocynin suppressed the Ox-LDL-induced ROS generation, mRNA expression of MCP-1, IL-6 and granulocyte/macrophage colony-stimulating factor, and cell proliferation. Moreover, immunohistochemical studies revealed that apocynin decreased the number of proliferating cell nuclear antigen-positive macrophages in atherosclerotic lesions of apoE –/– mice. These results suggested that apocynin suppressed the formation of atherosclerotic lesions, at least in part, by inactivation of macrophages. Therefore, apocynin may be a potential therapeutic material to prevent the progression of atherosclerosis

  1. Apocynin suppresses the progression of atherosclerosis in apoE-deficient mice by inactivation of macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Hiroyuki [Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556 (Japan); Matsumura, Takeshi, E-mail: takeshim@gpo.kumamoto-u.ac.jp [Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556 (Japan); Ishii, Norio; Fukuda, Kazuki; Senokuchi, Takafumi; Motoshima, Hiroyuki; Kondo, Tatsuya; Taketa, Kayo; Kawasaki, Shuji; Hanatani, Satoko [Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556 (Japan); Takeya, Motohiro [Department of Cell Pathology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556 (Japan); Nishikawa, Takeshi; Araki, Eiichi [Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556 (Japan)

    2013-02-08

    Highlights: ► We examined the anti-athrogenic effect of apocynin in atherosclerotic model mice. ► Apocynin prevented atherosclerotic lesion formation. ► Apocynin suppressed ROS production in aorta and in macrophages. ► Apocynin suppressed cytokine expression and cell proliferation in macrophages. ► Apocynin may be beneficial compound for the prevention of atherosclerosis. -- Abstract: Production of reactive oxygen species (ROS) and other proinflammatory substances by macrophages plays an important role in atherogenesis. Apocynin (4-hydroxy-3-methoxy-acetophenone), which is well known as a NADPH oxidase inhibitor, has anti-inflammatory effects including suppression of the generation of ROS. However, the suppressive effects of apocynin on the progression of atherosclerosis are not clearly understood. Thus, we investigated anti-atherosclerotic effects of apocynin using apolipoprotein E-deficient (apoE{sup –/–}) mice in vivo and in mouse peritoneal macrophages in vitro. In atherosclerosis-prone apoE{sup –/–} mice, apocynin suppressed the progression of atherosclerosis, decreased 4-hydroxynonenal-positive area in atherosclerotic lesions, and mRNA expression of monocyte chemoattractant protein-1 (MCP-1) and interleukin-6 (IL-6) in aorta. In mouse peritoneal macrophages, apocynin suppressed the Ox-LDL-induced ROS generation, mRNA expression of MCP-1, IL-6 and granulocyte/macrophage colony-stimulating factor, and cell proliferation. Moreover, immunohistochemical studies revealed that apocynin decreased the number of proliferating cell nuclear antigen-positive macrophages in atherosclerotic lesions of apoE{sup –/–} mice. These results suggested that apocynin suppressed the formation of atherosclerotic lesions, at least in part, by inactivation of macrophages. Therefore, apocynin may be a potential therapeutic material to prevent the progression of atherosclerosis.

  2. Multiple system atrophy and apolipoprotein E.

    Science.gov (United States)

    Ogaki, Kotaro; Martens, Yuka A; Heckman, Michael G; Koga, Shunsuke; Labbé, Catherine; Lorenzo-Betancor, Oswaldo; Wernick, Anna I; Walton, Ronald L; Soto, Alexandra I; Vargas, Emily R; Nielsen, Henrietta M; Fujioka, Shinsuke; Kanekiyo, Takahisa; Uitti, Ryan J; van Gerpen, Jay A; Cheshire, William P; Wszolek, Zbigniew K; Low, Phillip A; Singer, Wolfgang; Dickson, Dennis W; Bu, Guojun; Ross, Owen A

    2018-04-01

    Dysregulation of the specialized lipid metabolism involved in myelin synthesis and maintenance by oligodendrocytes has been associated with the unique neuropathology of MSA. We hypothesized that apolipoprotein E, which is associated with neurodegeneration, may also play a role in the pathogenesis of MSA. This study evaluated genetic associations of Apolipoprotein E alleles with risk of MSA and α-synuclein pathology, and also examined whether apolipoprotein E isoforms differentially affect α-synuclein uptake in a oligodendrocyte cell. One hundred sixty-eight pathologically confirmed MSA patients, 89 clinically diagnosed MSA patients, and 1,277 control subjects were genotyped for Apolipoprotein E. Human oligodendrocyte cell lines were incubated with α-synuclein and recombinant human apolipoprotein E, with internalized α-synuclein imaged by confocal microscopy and cells analyzed by flow cytometry. No significant association with risk of MSA or was observed for either Apolipoprotein E ɛ2 or ɛ4. α-Synuclein burden was also not associated with Apolipoprotein E alleles in the pathologically confirmed patients. Interestingly, in our cell assays, apolipoprotein E ɛ4 significantly reduced α-synuclein uptake in the oligodendrocytic cell line. Despite differential effects of apolipoprotein E isoforms on α-synuclein uptake in a human oligodendrocytic cell, we did not observe a significant association at the Apolipoprotein E locus with risk of MSA or α-synuclein pathology. © 2018 International Parkinson and Movement Disorder Society. © 2018 International Parkinson and Movement Disorder Society.

  3. Endothelin-1 overexpression exacerbates atherosclerosis and induces aortic aneurysms in apolipoprotein E knockout mice.

    Science.gov (United States)

    Li, Melissa W; Mian, Muhammad Oneeb Rehman; Barhoumi, Tlili; Rehman, Asia; Mann, Koren; Paradis, Pierre; Schiffrin, Ernesto L

    2013-10-01

    Endothelin (ET)-1 plays a role in vascular reactive oxygen species production and inflammation. ET-1 has been implicated in human atherosclerosis and abdominal aortic aneurysm (AAA) development. ET-1 overexpression exacerbates high-fat diet-induced atherosclerosis in apolipoprotein E(-/-) (Apoe(-/-)) mice. ET-1-induced reactive oxygen species and inflammation may contribute to atherosclerosis progression and AAA development. Eight-week-old male wild-type mice, transgenic mice overexpressing ET-1 selectively in endothelium (eET-1), Apoe(-/-) mice, and eET-1/Apoe(-/-) mice were fed high-fat diet for 8 weeks. eET-1/Apoe(-/-) had a 45% reduction in plasma high-density lipoprotein (P<0.05) and presented ≥ 2-fold more aortic atherosclerotic lesions compared with Apoe(-/-) (P<0.01). AAAs were detected only in eET-1/Apoe(-/-) (8/21; P<0.05). Reactive oxygen species production was increased ≥ 2-fold in perivascular fat, media, or atherosclerotic lesions in the ascending aorta and AAAs of eET-1/Apoe(-/-) compared with Apoe(-/-) (P<0.05). Monocyte/macrophage infiltration was enhanced ≥ 2.5-fold in perivascular fat of ascending aorta and AAAs in eET-1/Apoe(-/-) compared with Apoe(-/-) (P<0.05). CD4(+) T cells were detected almost exclusively in perivascular fat (3/6) and atherosclerotic lesions (5/6) in ascending aorta of eET-1/Apoe(-/-) (P<0.05). The percentage of spleen proinflammatory Ly-6C(hi) monocytes was enhanced 26% by ET-1 overexpression in Apoe(-/-) (P<0.05), and matrix metalloproteinase-2 was increased 2-fold in plaques of eET-1/Apoe(-/-) (P<0.05) compared with Apoe(-/-). ET-1 plays a role in progression of atherosclerosis and AAA formation by decreasing high-density lipoprotein, and increasing oxidative stress, inflammatory cell infiltration, and matrix metalloproteinase-2 in perivascular fat, vascular wall, and atherosclerotic lesions.

  4. Exopolysaccharide-producing probiotic Lactobacilli reduce serum cholesterol and modify enteric microbiota in ApoE-deficient mice.

    Science.gov (United States)

    London, Lis E E; Kumar, Arun H S; Wall, Rebecca; Casey, Pat G; O'Sullivan, Orla; Shanahan, Fergus; Hill, Colin; Cotter, Paul D; Fitzgerald, Gerald F; Ross, R Paul; Caplice, Noel M; Stanton, Catherine

    2014-12-01

    Probiotic bacteria have been associated with a reduction in cardiovascular disease risk, a leading cause of death and disability. The aim of this study was to assess the impact of dietary administration of exopolysaccharide-producing probiotic Lactobacillus cultures on lipid metabolism and gut microbiota in apolipoprotein E (apoE)-deficient mice. First, we examined lipid metabolism in response to dietary supplementation with recombinant β-glucan-producing Lactobacillus paracasei National Food Biotechnology Centre (NFBC) 338 expressing the glycosyltransferase (Gtf) gene from Pediococcus parvulus 2.6 (GTF), and naturally exopolysaccharide-producing Lactobacillus mucosae Dairy Product Culture Collection (DPC) 6426 (DPC 6426) compared with the non-β-glucan-producing isogenic control strain Lactobacillus paracasei NFBC 338 (PNZ) and placebo (15% wt:vol trehalose). Second, we examined the effects on the gut microbiota of dietary administration of DPC 6426 compared with placebo. Probiotic Lactobacillus strains at 1 × 10(9) colony-forming units/d per animal were administered to apoE(-/-) mice fed a high-fat (60% fat)/high-cholesterol (2% wt:wt) diet for 12 wk. At the end of the study, aortic plaque development and serum, liver, and fecal variables involved in lipid metabolism were analyzed, and culture-independent microbial analyses of cecal content were performed. Total cholesterol was reduced in serum (P mice supplemented with GTF or DPC 6426 compared with the PNZ or placebo group, respectively. In addition, dietary intervention with GTF led to increased amounts of fecal cholesterol excretion (P mice. © 2014 American Society for Nutrition.

  5. Clinical chemistry of common apolipoprotein E isoforms

    NARCIS (Netherlands)

    Brouwer, DAJ; vanDoormaal, JJ; Muskiet, FAJ

    1996-01-01

    Apolipoprotein E plays a central role in clearance of lipoprotein remnants by serving as a ligand for low-density lipoprotein and apolipoprotein E receptors. Three common alleles (apolipoprotein E(2), E(3) and E(4)) give rise to six phenotypes. Apolipoprotein E(3) is the ancestral form. Common

  6. Apolipoprotein E-specific innate immune response in astrocytes from targeted replacement mice

    Directory of Open Access Journals (Sweden)

    Montine Thomas J

    2006-04-01

    Full Text Available Abstract Background Inheritance of the three different alleles of the human apolipoprotein (apo E gene (APOE are associated with varying risk or clinical outcome from a variety of neurologic diseases. ApoE isoform-specific modulation of several pathogenic processes, in addition to amyloid β metabolism in Alzheimer's disease, have been proposed: one of these is innate immune response by glia. Previously we have shown that primary microglia cultures from targeted replacement (TR APOE mice have apoE isoform-dependent innate immune activation and paracrine damage to neurons that is greatest with TR by the ε4 allele (TR APOE4 and that derives from p38 mitogen-activated protein kinase (p38MAPK activity. Methods Primary cultures of TR APOE2, TR APOE3 and TR APOE4 astrocytes were stimulated with lipopolysaccharide (LPS. ApoE secretion, cytokine production, and nuclear factor-kappa B (NF-κB subunit activity were measured and compared. Results Here we showed that activation of primary astrocytes from TR APOE mice with LPS led to TR APOE-dependent differences in cytokine secretion that were greatest in TR APOE2 and that were associated with differences in NF-κB subunit activity. Conclusion Our results suggest that LPS activation of innate immune response in TR APOE glia results in opposing outcomes from microglia and astrocytes as a result of TR APOE-dependent activation of p38MAPK or NF-κB signaling in these two cell types.

  7. The common polymorphism of apolipoprotein E

    DEFF Research Database (Denmark)

    Gerdes, Ulrik

    2003-01-01

    from only 10-15% in southern Europe to 40-50% in the north. The gradient may be a trace of the demic expansion of agriculture that began about 10,000 years ago, but it may also reflect the possibility that APOE*4 carriers are less likely to develop vitamin D deficiency. The common APOE polymorphism......Apolipoprotein E (apoE) has important functions in systemic and local lipid transport, but also has other functions. The gene (APOE) shows a common polymorphism with three alleles--APOE*2, APOE*3, and APOE*4. Their frequencies vary substantially around the world, but APOE*3 is the most common...

  8. Apolipoprotein E as a novel therapeutic neuroprotection target after traumatic spinal cord injury.

    Science.gov (United States)

    Cheng, Xiaoxin; Zheng, Yiyan; Bu, Ping; Qi, Xiangbei; Fan, Chunling; Li, Fengqiao; Kim, Dong H; Cao, Qilin

    2018-01-01

    Apolipoprotein E (apoE), a plasma lipoprotein well known for its important role in lipid and cholesterol metabolism, has also been implicated in many neurological diseases. In this study, we examined the effect of apoE on the pathophysiology of traumatic spinal cord injury (SCI). ApoE-deficient mutant (apoE -/- ) and wild-type mice received a T9 moderate contusion SCI and were evaluated using histological and behavioral analyses after injury. At 3days after injury, the permeability of spinal cord-blood-barrier, measured by extravasation of Evans blue dye, was significantly increased in apoE -/- mice compared to wild type. The inflammation and spared white matter was also significantly increased and decreased, respectively, in apoE -/- mice compared to the wild type ones. The apoptosis of both neurons and oligodendrocytes was also significantly increased in apoE -/- mice. At 42days after injury, the inflammation was still robust in the injured spinal cord in apoE -/- but not wild type mice. CD45+ leukocytes from peripheral blood persisted in the injured spinal cord of apoE -/- mice. The spared white matter was significantly decreased in apoE -/- mice compared to wild type ones. Locomotor function was significantly decreased in apoE -/- mice compared to wild type ones from week 1 to week 8 after contusion. Treatment of exogenous apoE mimetic peptides partially restored the permeability of spinal cord-blood-barrier in apoE -/- mice after SCI. Importantly, the exogenous apoE peptides decreased inflammation, increased spared white matter and promoted locomotor recovery in apoE -/- mice after SCI. Our results indicate that endogenous apoE plays important roles in maintaining the spinal cord-blood-barrier and decreasing inflammation and spinal cord tissue loss after SCI, suggesting its important neuroprotective function after SCI. Our results further suggest that exogenous apoE mimetic peptides could be a novel and promising neuroprotective reagent for SCI. Copyright

  9. Angiotensin II blockade causes acute renal failure in eNOS-deficient mice

    Directory of Open Access Journals (Sweden)

    Jürgen Schnermann

    2001-03-01

    Full Text Available Compared with wild-type mice, adult endothelial nitric oxide synthase (eNOS knockout mice (eight months of age have increased blood pressure (BP (126±9 mmHg vs. 100±4 mmHg, and an increased renal vascular resistance (155±16 vs. 65±4 mmHg.min/ml. Renal vascular resistance responses to i.v. administration of noradrenaline were markedly enhanced in eNOS knockout mice. Glomerular filtration rate (GFR of anaesthetised eNOS -/- mice was 324±57 µl/min gKW, significantly lower than the GFR of 761±126 µl/min.gKW in wild-type mice. AT1-receptor blockade with i.v. candesartan (1—1.5 mg/kg reduced arterial blood pressure and renal vascular resistance, and increased renal blood flow (RBF to about the same extent in wild-type and eNOS -/- mice. Candesartan did not alter GFR in wild-type mice (761±126 vs. 720±95 µl/min.gKW, but caused a marked decrease in GFR in eNOS -/- mice (324.5±75.2 vs. 77±18 µl/min.gKW. A similar reduction in GFR of eNOS deficient mice was also caused by angiotensin-converting enzyme (ACE inhibition. Afferent arteriolar granularity, a measure of renal renin expression, was found to be reduced in eNOS -/- compared with wild-type mice. In chronically eNOS-deficient mice, angiotensin II (Ang II is critical for maintaining glomerular filtration pressure and GFR, presumably through its effect on efferent arteriolar tone.

  10. Apolipoprotein E4 reduces evoked hippocampal acetylcholine release in adult mice

    Czech Academy of Sciences Publication Activity Database

    Dolejší, Eva; Liraz, O.; Rudajev, Vladimír; Zimčík, Pavel; Doležal, Vladimír; Michaelson, D. M.

    2016-01-01

    Roč. 136, č. 3 (2016), s. 503-509 ISSN 0022-3042 R&D Projects: GA MŠk(CZ) LH13269 Institutional support: RVO:67985823 Keywords : acetylcholine release * Alzheimer's disease (AD) * apolipoprotein E4 (apoE4) * hippocampus Subject RIV: FH - Neurology Impact factor: 4.083, year: 2016

  11. Apolipoprotein E expression and behavioral toxicity of high charge, high energy (HZE) particle radiation

    Science.gov (United States)

    Higuchi, Yoshinori; Nelson, Gregory A.; Vazquez, Marcelo; Laskowitz, Daniel T.; Slater, James M.; Pearlstein, Robert D.

    2002-01-01

    Apolipoprotein E (apoE) is a lipid binding protein that plays an important role in tissue repair following brain injury. In the present studies, we have investigated whether apoE affects the behavioral toxicity of high charge, high energy (HZE) particle radiation. METHODS: Sixteen male apoE knockout (KO) mice and sixteen genetically matched wild-type (WT) C57BL mice were used in this experiment. Half of the KO and half of the WT animals were irradiated with 600 MeV/amu iron particles (2 Gy whole body). The effect of irradiation on motor coordination and stamina (Rotarod test), exploratory behavior (open field test), and spatial working and reference memory (Morris water maze) was assessed. ROTAROD TEST: Performance was adversely affected by radiation exposure in both KO and WT groups at 30 d after irradiation. By 60 d after radiation, the radiation effect was lost in WT, but still apparent in irradiated KO mice. OPEN FIELD TEST: Radiation reduced open field exploratory activity 14, 28, 56, 84, and 168 d after irradiation of KO mice, but had no effect on WT mice. MORRIS WATER MAZE: Radiation adversely affected spatial working memory in the KO mice, but had no discernible effect in the WT mice as assessed 180 d after irradiation. In contrast, irradiated WT mice showed marked impairment of spatial reference memory in comparison to non-irradiated mice, while no effect of radiation was observed in KO mice. CONCLUSIONS: These studies show that apoE expression influences the behavioral toxicity of HZE particle radiation and suggest that apoE plays a role in the repair/recovery from radiation injury of the CNS. ApoE deficiency may exacerbate the previously reported effects of HZE particle radiation in accelerating the brain aging process.

  12. Apolipoprotein E expression and behavioral toxicity of high charge, high energy (HZE) particle radiation

    International Nuclear Information System (INIS)

    Higuchi, Yoshinori; Nelson, G.A.; Slater, J.M.; Pearlstein, R.D.; Laskowitz, D.T.

    2002-01-01

    Apolipoprotein E (apoE) is a lipid binding protein that plays an important role in tissue repair following brain injury. In the present studies, we have investigated whether apoE affects the behavioral toxicity of high charge, high energy (HZE) particle radiation. Sixteen male apoE knockout (KO) mice and sixteen genetically matched wild-type (WT) C57BL mice were used in this experiment. Half of the KO and half of the WT animals were irradiated with 600 MeV/amu iron particles (2 Gy whole body). The effect of irradiation on motor coordination and stamina (Rotarod test), exploratory behavior (open field test), and spatial working and reference memory (Morris water maze) was assessed. Rotarod test: Performance was adversely affected by radiation exposure in both KO and WT groups at 30 d after irradiation. By 60 d after radiation, the radiation effect was lost in WT, but still apparent in irradiated KO mice. Open field test: Radiation reduced open field exploratory activity 14, 28, 56, 84, and 168 d after irradiation of KO mice, but had no effect on WT mice. Morris water maze: Radiation adversely affected spatial working memory in the KO mice, but had no discernible effect in the WT mice as assessed 180 d after irradiation. In contrast, irradiated WT mice showed marked impairment of spatial reference memory in comparison to non-irradiated mice, while no effect of radiation was observed in KO mice. These studies show that apoE expression influences the behavioral toxicity of HZE particle radiation and suggest that apoE plays a role in the repair/recovery from radiation injury of the central nervous system (CNS). ApoE deficiency may exacerbate the previously reported effects of HZE particle radiation in accelerating the brain aging process. (author)

  13. Apolipoprotein E expression and behavioral toxicity of high charge, high energy (HZE) particle radiation

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, Yoshinori; Nelson, G.A.; Slater, J.M.; Pearlstein, R.D. [Loma Linda Univ., CA (United States). Medical Center; Vazquez, M. [Brookhaven National Lab., Upton, NY (United States); Laskowitz, D.T. [Duke Univ., Durham, NC (United States). Medical Center

    2002-12-01

    Apolipoprotein E (apoE) is a lipid binding protein that plays an important role in tissue repair following brain injury. In the present studies, we have investigated whether apoE affects the behavioral toxicity of high charge, high energy (HZE) particle radiation. Sixteen male apoE knockout (KO) mice and sixteen genetically matched wild-type (WT) C57BL mice were used in this experiment. Half of the KO and half of the WT animals were irradiated with 600 MeV/amu iron particles (2 Gy whole body). The effect of irradiation on motor coordination and stamina (Rotarod test), exploratory behavior (open field test), and spatial working and reference memory (Morris water maze) was assessed. Rotarod test: Performance was adversely affected by radiation exposure in both KO and WT groups at 30 d after irradiation. By 60 d after radiation, the radiation effect was lost in WT, but still apparent in irradiated KO mice. Open field test: Radiation reduced open field exploratory activity 14, 28, 56, 84, and 168 d after irradiation of KO mice, but had no effect on WT mice. Morris water maze: Radiation adversely affected spatial working memory in the KO mice, but had no discernible effect in the WT mice as assessed 180 d after irradiation. In contrast, irradiated WT mice showed marked impairment of spatial reference memory in comparison to non-irradiated mice, while no effect of radiation was observed in KO mice. These studies show that apoE expression influences the behavioral toxicity of HZE particle radiation and suggest that apoE plays a role in the repair/recovery from radiation injury of the central nervous system (CNS). ApoE deficiency may exacerbate the previously reported effects of HZE particle radiation in accelerating the brain aging process. (author)

  14. Left ventricular dysfunction with reduced functional cardiac reserve in diabetic and non-diabetic LDL-receptor deficient apolipoprotein B100-only mice

    Directory of Open Access Journals (Sweden)

    Bosch Fatima

    2011-06-01

    Full Text Available Abstract Background Lack of suitable mouse models has hindered the studying of diabetic macrovascular complications. We examined the effects of type 2 diabetes on coronary artery disease and cardiac function in hypercholesterolemic low-density lipoprotein receptor-deficient apolipoprotein B100-only mice (LDLR-/-ApoB100/100. Methods and results 18-month-old LDLR-/-ApoB100/100 (n = 12, diabetic LDLR-/-ApoB100/100 mice overexpressing insulin-like growth factor-II (IGF-II in pancreatic beta cells (IGF-II/LDLR-/-ApoB100/100, n = 14 and age-matched C57Bl/6 mice (n = 15 were studied after three months of high-fat Western diet. Compared to LDLR-/-ApoB100/100 mice, diabetic IGF-II/LDLR-/-ApoB100/100 mice demonstrated more calcified atherosclerotic lesions in aorta. However, compensatory vascular enlargement was similar in both diabetic and non-diabetic mice with equal atherosclerosis (cross-sectional lesion area ~60% and consequently the lumen area was preserved. In coronary arteries, both hypercholesterolemic models showed significant stenosis (~80% despite positive remodeling. Echocardiography revealed severe left ventricular systolic dysfunction and anteroapical akinesia in both LDLR-/-ApoB100/100 and IGF-II/LDLR-/-ApoB100/100 mice. Myocardial scarring was not detected, cardiac reserve after dobutamine challenge was preserved and ultrasructural changes revealed ischemic yet viable myocardium, which together with coronary artery stenosis and slightly impaired myocardial perfusion suggest myocardial hibernation resulting from chronic hypoperfusion. Conclusions LDLR-/-ApoB100/100 mice develop significant coronary atherosclerosis, severe left ventricular dysfunction with preserved but diminished cardiac reserve and signs of chronic myocardial hibernation. However, the cardiac outcome is not worsened by type 2 diabetes, despite more advanced aortic atherosclerosis in diabetic animals.

  15. Site-specific effects of apolipoprotein E expression on diet-induced obesity and white adipose tissue metabolic activation.

    Science.gov (United States)

    Hatziri, Aikaterini; Kalogeropoulou, Christina; Xepapadaki, Eva; Birli, Eleni; Karavia, Eleni A; Papakosta, Eugenia; Filou, Serafoula; Constantinou, Caterina; Kypreos, Kyriakos E

    2018-02-01

    Apolipoprotein E (APOE) has been strongly implicated in the development of diet induced obesity. In the present study, we investigated the contribution of brain and peripherally expressed human apolipoprotein E3 (APOE3), the most common human isoform, to diet induced obesity. In our studies APOE3 knock-in (Apoe3 knock-in ), Apoe-deficient (apoe -/- ) and brain-specific expressing APOE3 (Apoe3 brain ) mice were fed western-type diet for 12week and biochemical analyses were performed. Moreover, AAV-mediated gene transfer of APOE3 to apoe -/- mice was employed, as a means to achieve APOE3 expression selectively in periphery, since peripherally expressed APOE does not cross blood brain barrier (BBB) or blood-cerebrospinal fluid barrier (BCSFB). Our data suggest a bimodal role of APOE3 in visceral white adipose tissue (WAT) mitochondrial metabolic activation that is highly dependent on its site of expression and independent of postprandial dietary lipid deposition. Our findings indicate that brain APOE3 expression is associated with a potent inhibition of visceral WAT mitochondrial oxidative phosphorylation, leading to significantly reduced substrate oxidation, increased fat accumulation and obesity. In contrast, peripherally expressed APOE3 is associated with a notable shift of substrate oxidation towards non-shivering thermogenesis in visceral WAT mitochondria, leading to resistance to obesity. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Age-dependent effect of apolipoprotein E4 on functional outcome after controlled cortical impact in mice.

    Science.gov (United States)

    Mannix, Rebekah C; Zhang, Jimmy; Park, Juyeon; Zhang, Xuan; Bilal, Kiran; Walker, Kendall; Tanzi, Rudolph E; Tesco, Giuseppina; Whalen, Michael J

    2011-01-01

    The apolipoprotein E4 (APOE4) gene leads to increased brain amyloid beta (Aβ) and poor outcome in adults with traumatic brain injury (TBI); however, its role in childhood TBI is controversial. We hypothesized that the transgenic expression of human APOE4 worsens the outcome after controlled cortical impact (CCI) in adult but not immature mice. Adult and immature APOE4 mice had worse motor outcome after CCI (P<0.001 versus wild type (WT)), but the Morris water maze performance was worse only in adult APOE4 mice (P=0.028 at 2 weeks, P=0.019 at 6 months versus WT), because immature APOE4 mice had performance similar to WT for up to 1 year after injury. Brain lesion size was similar in adult APOE4 mice but was decreased (P=0.029 versus WT) in injured immature APOE4 mice. Microgliosis was similar in all groups. Soluble brain Aβ(40) was increased at 48 hours after CCI in adult and immature APOE4 mice and in adult WT (P<0.05), and was dynamically regulated during the chronic period by APOE4 in adults but not immature mice. The data suggest age-dependent effects of APOE4 on cognitive outcome after TBI, and that therapies targeting APOE4 may be more effective in adults versus children with TBI.

  17. Apolipoprotein E promotes lipid accumulation and differentiation in human adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Lasrich, Dorothee; Bartelt, Alexander [Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg (Germany); Grewal, Thomas, E-mail: thomas.grewal@sydney.edu.au [Faculty of Pharmacy A15, The University of Sydney, Sydney, NSW 2006 (Australia); Heeren, Joerg, E-mail: heeren@uke.de [Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg (Germany)

    2015-09-10

    Several studies in mice indicate a role for apolipoprotein E (APOE) in lipid accumulation and adipogenic differentiation in adipose tissue. However, little is yet known if APOE functions in a similar manner in human adipocytes. This prompted us to compare lipid loading and expression of adipocyte differentiation markers in APOE-deficient and control adipocytes using the differentiated human mesenchymal stem cell line hMSC-Tert as well as primary human and mouse adipocytes as model systems. Differentiated hMSC-Tert were stably transduced with or without siRNA targeting APOE while murine adipocytes were isolated from wild type and Apoe knockout mice. Human APOE knockdown hMSC-Tert adipocytes accumulated markedly less triglycerides compared to control cells. This correlated with strongly decreased gene expression levels of adipocyte markers such as adiponectin (ADIPOQ) and fatty acid binding protein 4 (FABP4) as well as the key transcription factor driving adipocyte differentiation, peroxisome proliferator activator receptor gamma (PPARG), in particular the PPARG2 isoform. Similarly, differentiation of murine Apoe-deficient adipocytes was characterized by reduced gene expression of Adipoq, Fabp4 and Pparg. Interestingly, incubation of APOE-deficient hMSC-Tert adipocytes with conditioned media from APOE3-overexpressing adipocytes or APOE-containing Very Low Density Lipoprotein (VLDL) partially restored triglyceride accumulation, but were unable to induce adipocyte differentiation, as judged by expression of adipocyte markers. Taken together, depletion of endogenous APOE in human adipocytes severely impairs lipid accumulation, which is associated with an inability to initiate differentiation. - Highlights: • Immortalized human mesenchymal stem cells were used to study adipocyte development. • Knockdown of endogenous APOE lead to impaired lipid accumulation and adipogenesis. • APOE supplementation partially restored lipid accumulation but not differentiation.

  18. Human apolipoprotein E genotypes differentially modify house dust mite-induced airway disease in mice

    DEFF Research Database (Denmark)

    Yao, Xianglan; Dai, Cuilian; Fredriksson, Karin

    2012-01-01

    Apolipoprotein E (apoE) is an endogenous negative regulator of airway hyperreactivity (AHR) and mucous cell metaplasia in experimental models of house dust mite (HDM)-induced airway disease. The gene encoding human apoE is polymorphic, with three common alleles (e2, e3, and e4) reflecting single ...

  19. Quantification of plaque lipids in the aortic root of ApoE-deficient mice by 3D DIXON magnetic resonance imaging in an ex vivo model

    International Nuclear Information System (INIS)

    Dietel, Barbara; Kuehn, Constanze; Achenbach, Stephan; Budinsky, Lubos; Uder, Michael; Hess, Andreas

    2015-01-01

    To establish a dedicated protocol for the three-dimensional (3D) quantification of plaque lipids in apolipoprotein E-deficient (apoE -/- ) mice using ex vivo MRI. ApoE -/- mice were fed a high-fat diet (n = 10) or normal food (n = 10) for 3 months. Subsequently, a 3D FLASH MRI sequence was used to view the anatomy of the aortic root in the isolated hearts, where a 3D double-echo two-excitation pulse sequence (DIXON sequence) was used to selectively image plaque lipids. The vessel wall, lumen and plaque lipid volumes were quantified by MRI and histology for correlation analysis. DIXON MRI allowed visualisation and accurate quantification of plaque lipids. When comparing the vessel wall, lumen and plaque lipid sizes in the aortic root, Bland-Altman and linear regression analysis revealed a close correlation between MRI results and the histological data both on a slice-by-slice basis and of the volumetric measurements (vessel wall: r 2 = 0.775, p 2 = 0.875; p = 0.002; plaque lipid: r 2 = 0.819, p = 0.003). The combination of 3D FLASH and DIXON-sequence MRI permits an accurate ex vivo assessment of the investigated plaque parameters in the aortic root of mice, particularly the lipid content. (orig.)

  20. Apolipoprotein E4 Causes Age- and Sex-Dependent Impairments of Hilar GABAergic Interneurons and Learning and Memory Deficits in Mice

    Science.gov (United States)

    Leung, Laura; Andrews-Zwilling, Yaisa; Yoon, Seo Yeon; Jain, Sachi; Ring, Karen; Dai, Jessica; Wang, Max Mu; Tong, Leslie; Walker, David; Huang, Yadong

    2012-01-01

    Apolipoprotein (apo) E4 is the major genetic risk factor for Alzheimer's disease (AD). ApoE4 has sex-dependent effects, whereby the risk of developing AD is higher in apoE4-expressing females than males. However, the mechanism underlying the sex difference, in relation to apoE4, is unknown. Previous findings indicate that apoE4 causes age-dependent impairments of hilar GABAergic interneurons in female mice, leading to learning and memory deficits. Here, we investigate whether the detrimental effects of apoE4 on hilar GABAergic interneurons are sex-dependent using apoE knock-in (KI) mice across different ages. We found that in female apoE-KI mice, there was an age-dependent depletion of hilar GABAergic interneurons, whereby GAD67- or somatostatin-positive–but not NPY- or parvalbumin-positive–interneuron loss was exacerbated by apoE4. Loss of these neuronal populations was correlated with the severity of spatial learning deficits at 16 months of age in female apoE4-KI mice; however, this effect was not observed in female apoE3-KI mice. In contrast, we found an increase in the numbers of hilar GABAergic interneurons with advancing age in male apoE-KI mice, regardless of apoE genotype. Moreover, male apoE-KI mice showed a consistent ratio of hilar inhibitory GABAergic interneurons to excitatory mossy cells approximating 1.5 that is independent of apoE genotype and age, whereas female apoE-KI mice exhibited an age-dependent decrease in this ratio, which was exacerbated by apoE4. Interestingly, there are no apoE genotype effects on GABAergic interneurons in the CA1 and CA3 subregions of the hippocampus as well as the entorhinal and auditory cortexes. These findings suggest that the sex-dependent effects of apoE4 on developing AD is in part attributable to inherent sex-based differences in the numbers of hilar GABAergic interneurons, which is further modulated by apoE genotype. PMID:23300939

  1. Hyperlipidemia and cutaneous abnormalities in transgenic mice overexpressing human apolipoprotein C1

    NARCIS (Netherlands)

    Jong, M. C.; Gijbels, M. J.; Dahlmans, V. E.; Gorp, P. J.; Koopman, S. J.; Ponec, M.; Hofker, M. H.; Havekes, L. M.

    1998-01-01

    Transgenic mice were generated with different levels of human apolipoprotein C1 (APOC1) expression in liver and skin. At 2 mo of age, serum levels of cholesterol, triglycerides (TG), and FFA were strongly elevated in APOC1 transgenic mice compared with wild-type mice. These elevated levels of serum

  2. Modest vasomotor dysfunction induced by low doses of C60 fullerenes in apolipoprotein E knockout mice with different degree of atherosclerosis

    Directory of Open Access Journals (Sweden)

    Loft Steffen

    2009-02-01

    Full Text Available Abstract Background Exposure to small size particulate matter in urban air is regarded as a risk factor for cardiovascular effects, whereas there is little information about the impact on the cardiovascular system by exposure to pure carbonaceous materials in the nano-size range. C60 fullerenes are nano-sized particles that are expected to have a widespread use, including cosmetics and medicines. Methods We investigated the association between intraperitoneal injection of pristine C60 fullerenes and vasomotor dysfunction in the aorta of 11–13 and 40–42 weeks old apolipoprotein E knockout mice (apoE-/- with different degree of atherosclerosis. Results The aged apoE-/-mice had lower endothelium-dependent vasorelaxation elicited by acetylcholine in aorta segments mounted in myographs and the phenylephrine-dependent vasoconstriction response was increased. One hour after an intraperitoneal injection of 0.05 or 0.5 mg/kg of C60 fullerenes, the young apoE-/- mice had slightly reduced maximal endothelium-dependent vasorelaxation. A similar tendency was observed in the old apoE-/- mice. Hampered endothelium-independent vasorelaxation was also observed as slightly increased EC50 of sodium nitroprusside-induced vasorelaxation response in young apoE-/- mice. Conclusion Treatment with C60 fullerenes affected mainly the response to vasorelaxation in young apoE-/- mice, whereas the vasomotor dysfunction in old apoE-/- mice with more advanced atherosclerosis was less affected by acute C60 fullerene treatment. These findings represent an important step in the hazard characterization of C60 fullerenes by showing that intraperitoneal administration is associated with a moderate decrease in the vascular function of mice with atherosclerosis.

  3. High ethanol and acetaldehyde impair spatial memory in mouse models: opposite effects of aldehyde dehydrogenase 2 and apolipoprotein E on memory.

    Science.gov (United States)

    Jamal, Mostofa; Ameno, Kiyoshi; Miki, Takanori; Tanaka, Naoko; Ono, Junichiro; Shirakami, Gotaro; Sultana, Ruby; Yu, Nakamura; Kinoshita, Hiroshi

    2012-05-01

    Aldehyde dehydrogenase 2 deficiency may directly contribute to excess acetaldehyde (AcH) accumulation after ethanol (EtOH) drinking and AcH mediates some of the behavioral effects of EtOH. Apolipoprotein E has been suggested to be involved in the alteration of attention and memory. We have chosen Aldh2-knockout (Aldh2-KO), ApoE-KO, and their wild-type (WT) control mice to examine the effects of EtOH and AcH on spatial memory and to compare the possible relationship between genetic deficiency and memory using two behavioral assessments. Mice were trained for 4 days, with EtOH (0.5, 1.0, 2.0 g/kg) being given intraperitoneally on day 4. A probe trial was given on day 5 in the non-EtOH state in the Morris water maze (MWM). The results showed that 2.0 g/kg EtOH increased errors, indicating memory impairment on the eight-arm radial maze (RAM) for all the mice studied. One gram per kilogram EtOH impaired the performance of Aldh2-KO and ApoE-KO mice, but not WT mice. We found similar effects of EtOH on the MWM performance, with 2.0 g/kg EtOH increasing the latencies. One gram per kilogram EtOH increased the latencies of Aldh2-KO and WT mice, but not ApoE-KO mice. The 2.0 g/kg EtOH-induced memory impairment in Aldh2-KO mice was greater, suggesting an AcH effect. Furthermore, time spent on the probe trial was shorter in mice that had previously received 2.0 g/kg EtOH. ApoE-KO mice learned more slowly, while Aldh2-KO mice learned more quickly. Both the RAM and MWM results suggest that high EtOH and AcH impair spatial memory in mice, while lower doses do not have consistent memory effects. In addition, we conclude that genetic differences might underlie some of EtOH's effects on memory. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Cerebrospinal Fluid Apolipoprotein E Levels in Delirium

    Directory of Open Access Journals (Sweden)

    Gideon A. Caplan

    2017-07-01

    Full Text Available Background/Aims: Delirium and the apolipoprotein E ε4 allele are risk factors for late-onset Alzheimer disease (LOAD, but the connection is unclear. We looked for an association. Methods: Inpatients with delirium (n = 18 were compared with LOAD outpatients (n = 19, assaying blood and cerebrospinal fluid (CSF using multiplex ELISA. Results: The patients with delirium had a higher Confusion Assessment Method (CAM score (5.6 ± 1.2 vs. 0.0 ± 0.0; p < 0.001 and Delirium Index (13.1 ± 4.0 vs. 2.9 ± 1.2; p = 0.001 but a lower Mini-Mental State Examination (MMSE score (14.3 ± 6.8 vs. 20.8 ± 4.6; p = 0.003. There was a reduction in absolute CSF apolipoprotein E level during delirium (median [interquartile range]: 9.55 μg/mL [5.65–15.05] vs. 16.86 μg/mL [14.82–20.88]; p = 0.016 but no differences in apolipoprotein A1, B, C3, H, and J. There were no differences in blood apolipoprotein levels, and no correlations between blood and CSF apolipoprotein levels. CSF apolipoprotein E correlated negatively with the CAM score (r = –0.354; p = 0.034 and Delirium Index (r = –0.341; p = 0.042 but not with the Acute Physiology and Chronic Health Evaluation (APACHE index, or the MMSE or Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE. Conclusion: Reduced CSF apolipoprotein E levels during delirium may be a mechanistic link between two important risk factors for LOAD.

  5. Apolipoprotein E in umbilical cord blood plasma

    International Nuclear Information System (INIS)

    Forte, T.M.; Davis, P.A.; Blum, C.B.

    1983-01-01

    Adolipoprotein E (apo E), with a molecular weight of approximately 37,000 daltons, is a minor apolipoprotein constituent in adult plasma lipoproteins. This apolipoprotein, like apolipoprotein B, is a ligand recognized by specific lipoprotein receptor sites (B-E receptors) on cell surfaces. We have recently shown that a pronounced apo E band appears in umbilical cord blood low-density (LDL) lipoproteins and also in high density (HDL) lipoproteins. Densitometric scans of Coomassie blue G-250 stained polyacrylamide gels suggested that apo E was probably elevated in cord blood lipoproteins. To pursue this suggestion, apo E in cord blood was quantitated by radioimmunoassay and correlated with cord blood lipid levels. In addition, apo E levels in 20 normal adult volunteers were also examined

  6. Red Wine administration to Apolipoprotein E-deficient Mice reduces their Macrophage-derived Extracellular Matrix Atherogenic Properties

    Directory of Open Access Journals (Sweden)

    MARIELLE KAPLAN

    2004-01-01

    Full Text Available Proteoglycans (PGs from the arterial extracellular matrix (ECM contribute to the trapping of LDL and oxidized LDL (Ox-LDL in the arterial wall, a phenomenon called "lipoprotein retention". Moreover, we have shown that subsequent to their binding to the matrix, LDL and Ox-LDL are taken up by macrophages. Oxidative stress significantly increases macrophage secretion of ECM-PGs, lipoprotein binding to the ECM and the uptake of ECM-retained lipoproteins by macrophages. The aim of the present study was to determine whether red wine administration to atherosclerotic mice would affect their peritoneal macrophage-derived extracellular matrix properties, such as the glycosaminoglycan content and the ability to bind LDL. In addition, we questioned the ability of LDL bound to the mice peritoneal macrophages-derived ECM to be taken up by macrophages. Red wine administration to atherosclerotic mice did not affect the mice peritoneal macrophages-derived ECM glycosaminoglycan content but it significantly reduced the mice peritoneal macrophages-derived ECM ability to bind LDL and the subsequent uptake of ECM-retained LDL by the macrophages. The present study thus clearly demonstrated the inhibitory effect of red wine consumption by E0 mice on their peritoneal macrophage-derived extracellular matrix atherogenic properties.

  7. Lipoprotein lipase activity and mass, apolipoprotein C-II mass and polymorphisms of apolipoproteins E and A5 in subjects with prior acute hypertriglyceridaemic pancreatitis

    Directory of Open Access Journals (Sweden)

    García-Arias Carlota

    2009-06-01

    Full Text Available Abstract Background Severe hypertriglyceridaemia due to chylomicronemia may trigger an acute pancreatitis. However, the basic underlying mechanism is usually not well understood. We decided to analyze some proteins involved in the catabolism of triglyceride-rich lipoproteins in patients with severe hypertriglyceridaemia. Methods Twenty-four survivors of acute hypertriglyceridaemic pancreatitis (cases and 31 patients with severe hypertriglyceridaemia (controls were included. Clinical and anthropometrical data, chylomicronaemia, lipoprotein profile, postheparin lipoprotein lipase mass and activity, hepatic lipase activity, apolipoprotein C II and CIII mass, apo E and A5 polymorphisms were assessed. Results Only five cases were found to have LPL mass and activity deficiency, all of them thin and having the first episode in childhood. No cases had apolipoprotein CII deficiency. No significant differences were found between the non-deficient LPL cases and the controls in terms of obesity, diabetes, alcohol consumption, drug therapy, gender distribution, evidence of fasting chylomicronaemia, lipid levels, LPL activity and mass, hepatic lipase activity, CII and CIII mass or apo E polymorphisms. However, the SNP S19W of apo A5 tended to be more prevalent in cases than controls (40% vs. 23%, NS. Conclusion Primary defects in LPL and C-II are rare in survivors of acute hypertriglyceridaemic pancreatitis; lipase activity measurements should be restricted to those having their first episode during chilhood.

  8. Lipoprotein lipase activity and mass, apolipoprotein C-II mass and polymorphisms of apolipoproteins E and A5 in subjects with prior acute hypertriglyceridaemic pancreatitis

    Science.gov (United States)

    2009-01-01

    Background Severe hypertriglyceridaemia due to chylomicronemia may trigger an acute pancreatitis. However, the basic underlying mechanism is usually not well understood. We decided to analyze some proteins involved in the catabolism of triglyceride-rich lipoproteins in patients with severe hypertriglyceridaemia. Methods Twenty-four survivors of acute hypertriglyceridaemic pancreatitis (cases) and 31 patients with severe hypertriglyceridaemia (controls) were included. Clinical and anthropometrical data, chylomicronaemia, lipoprotein profile, postheparin lipoprotein lipase mass and activity, hepatic lipase activity, apolipoprotein C II and CIII mass, apo E and A5 polymorphisms were assessed. Results Only five cases were found to have LPL mass and activity deficiency, all of them thin and having the first episode in childhood. No cases had apolipoprotein CII deficiency. No significant differences were found between the non-deficient LPL cases and the controls in terms of obesity, diabetes, alcohol consumption, drug therapy, gender distribution, evidence of fasting chylomicronaemia, lipid levels, LPL activity and mass, hepatic lipase activity, CII and CIII mass or apo E polymorphisms. However, the SNP S19W of apo A5 tended to be more prevalent in cases than controls (40% vs. 23%, NS). Conclusion Primary defects in LPL and C-II are rare in survivors of acute hypertriglyceridaemic pancreatitis; lipase activity measurements should be restricted to those having their first episode during chilhood. PMID:19534808

  9. Apolipoprotein E Mimetic Promotes Functional and Histological Recovery in Lysolecithin-Induced Spinal Cord Demyelination in Mice.

    Science.gov (United States)

    Gu, Zhen; Li, Fengqiao; Zhang, Yi Ping; Shields, Lisa B E; Hu, Xiaoling; Zheng, Yiyan; Yu, Panpan; Zhang, Yongjie; Cai, Jun; Vitek, Michael P; Shields, Christopher B

    2013-04-01

    Considering demyelination is the pathological hallmark of multiple sclerosis (MS), reducing demyelination and/or promoting remyelination is a practical therapeutic strategy to improve functional recovery for MS. An apolipoprotein E (apoE)-mimetic peptide COG112 has previously demonstrated therapeutic efficacy on functional and histological recovery in a mouse experimental autoimmune encephalomyelitis (EAE) model of human MS. In the current study, we further investigated whether COG112 promotes remyelination and improves functional recovery in lysolecithin induced focal demyelination in the white matter of spinal cord in mice. A focal demyelination model was created by stereotaxically injecting lysolecithin into the bilateral ventrolateral funiculus (VLF) of T8 and T9 mouse spinal cords. Immediately after lysolecithin injection mice were treated with COG112, prefix peptide control or vehicle control for 21 days. The locomotor function of the mice was measured by the beam walking test and Basso Mouse Scale (BMS) assessment. The nerve transmission of the VLF of mice was assessed in vivo by transcranial magnetic motor evoked potentials (tcMMEPs). The histological changes were also examined by by eriochrome cyanine staining, immunohistochemistry staining and electron microscopy (EM) method. The area of demyelination in the spinal cord was significantly reduced in the COG112 group. EM examination showed that treatment with COG112 increased the thickness of myelin sheaths and the numbers of surviving axons in the lesion epicenter. Locomotor function was improved in COG112 treated animals when measured by the beam walking test and BMS assessment compared to controls. TcMMEPs also demonstrated the COG112-mediated enhancement of amplitude of evoked responses. The apoE-mimetic COG112 demonstrates a favorable combination of activities in suppressing inflammatory response, mitigating demyelination and in promoting remyelination and associated functional recovery in animal model

  10. Astragaloside IV Prevents Cardiac Remodeling in the Apolipoprotein E-Deficient Mice by Regulating Cardiac Homeostasis and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Xiong-Zhi Li

    2017-12-01

    Full Text Available Background: Hypercholesterolemia is a risk factor for the development of cardiac hypertrophy. Astragaloside IV (AST-IV possesses cardiovascular protective properties. We hypothesize that AST-IV prevents cardiac remodeling with hypercholesterolemia via modulating tissue homeostasis and alleviating oxidative stress. Methods: The ApoE-/- mice were treated with AST-IV at 1 or 10 mg/kg for 8 weeks. The blood lipids tests, echocardiography, and TUNEL were performed. The mRNA expression profile was detected by real-time PCR. The myocytes size and number, and the expressions of proliferation (ki67, senescence (p16INK4a, oxidant (NADPH oxidase 4, NOX4 and antioxidant (superoxide dismutase, SOD were observed by immunofluorescence staining. Results: Neither 1 mg/kg nor 10 mg/kg AST-IV treatment could decrease blood lipids in ApoE-/- mice. However, the decreased left ventricular ejection fraction (LVEF and fractional shortening (FS in ApoE–/– mice were significantly improved after AST-IV treatment. The cardiac collagen volume fraction declined nearly in half after AST-IV treatment. The enlarged myocyte size was suppressed, and myocyte number was recovered, and the alterations of genes expressions linked to cell cycle, proliferation, senescence, p53-apoptosis pathway and oxidant-antioxidants in the hearts of ApoE-/- mice were reversed after AST-IV treatment. The decreased ki67 and increased p16INK4a in the hearts of ApoE-/- mice were recovered after AST-IV treatment. The percentages of apoptotic myocytes and NOX4-positive cells in AST-IV treated mice were decreased, which were consistent with the gene expressions. Conclusion: AST-IV treatment could prevent cardiac remodeling and recover the impaired ventricular function induced by hypercholesterolemia. The beneficial effect of AST-IV might partly be through regulating cardiac homeostasis and anti-oxidative stress.

  11. Apolipoprotein Mimetic Peptides: A New Approach for the Treatment of Asthma

    Directory of Open Access Journals (Sweden)

    Xianglan eYao

    2012-03-01

    Full Text Available New treatments are needed for severe asthmatics to improve disease control and avoid severe toxicities associated with oral corticosteroids. We have used a murine model of house dust mite (HDM-induced asthma to identify steroid-unresponsive genes that might represent targets for new therapeutic approaches for severe asthma. This strategy identified apolipoprotein E as a steroid-unresponsive gene with increased mRNA expression in the lungs of HDM-challenged mice. Furthermore, apolipoprotein E functioned as an endogenous negative regulator of airway hyperreactivity and goblet cell hyperplasia in experimental HDM-induced asthma. The ability of apolipoprotein E, which is expressed by lung macrophages, to attenuate AHR and goblet cell hyperplasia is mediated by low density lipoprotein (LDL receptors expressed by airway epithelial cells. Consistent with this, administration of an apolipoprotein E mimetic peptide, corresponding to amino acids 130 to 149 of the LDL receptor-binding domain of the holo-apoE protein, significantly reduced AHR and goblet cell hyperplasia in HDM-challenged apoE-/- mice. These findings identified the apolipoprotein E - LDL receptor pathway as a new druggable target for asthma that can be activated by administration of apoE mimetic peptides. Similarly, apolipoprotein A-I may have therapeutic potential in asthma based upon its anti-inflammatory, anti-oxidative and anti-fibrotic properties. Furthermore, administration of apolipoprotein A-I mimetic peptides has attenuated airway inflammation, airway remodeling and airway hyperreactivity in murine models of experimental asthma. Thus, site-directed delivery of inhaled apolipoprotein E or apolipoprotein A-I mimetic peptides may represent novel treatment approaches that can be developed for asthma, including severe disease.

  12. Effect of Lowering Asymmetric Dimethylarginine (ADMA on Vascular Pathology in Atherosclerotic ApoE-Deficient Mice with Reduced Renal Mass

    Directory of Open Access Journals (Sweden)

    Johannes Jacobi

    2014-03-01

    Full Text Available The purpose of the work was to study the impact of the endogenous nitric oxide synthase (NOS inhibitor asymmetric dimethylarginine (ADMA and its degrading enzyme, dimethylarginine dimethylaminohydrolase (DDAH1, on atherosclerosis in subtotally nephrectomized (SNX ApoE-deficient mice. Male DDAH1 transgenic mice (TG, n = 39 and C57Bl/6J wild-type littermates (WT, n = 27 with or without the deletion of the ApoE gene underwent SNX at the age of eight weeks. Animals were sacrificed at 12 months of age, and blood chemistry, as well as the extent of atherosclerosis within the entire aorta were analyzed. Sham treated (no renal mass reduction ApoE-competent DDAH1 transgenic and wild-type littermates (n = 11 served as a control group. Overexpression of DDAH1 was associated with significantly lower ADMA levels in all treatment groups. Surprisingly, SNX mice did not exhibit higher ADMA levels compared to sham treated control mice. Furthermore, the degree of atherosclerosis in ApoE-deficient mice with SNX was similar in mice with or without overexpression of DDAH1. Overexpression of the ADMA degrading enzyme, DDAH1, did not ameliorate atherosclerosis in ApoE-deficient SNX mice. Furthermore, SNX in mice had no impact on ADMA levels, suggesting a minor role of this molecule in chronic kidney disease (CKD in this mouse model.

  13. Impaired LDL receptor-related protein 1 translocation correlates with improved dyslipidemia and atherosclerosis in apoE-deficient mice.

    Directory of Open Access Journals (Sweden)

    Philip L S M Gordts

    Full Text Available OBJECTIVE: Determination of the in vivo significance of LDL receptor-related protein 1 (LRP1 dysfunction on lipid metabolism and atherosclerosis development in absence of its main ligand apoE. METHODS AND RESULTS: LRP1 knock-in mice carrying an inactivating mutation in the NPxYxxL motif were crossed with apoE-deficient mice. In the absence of apoE, relative to LRP1 wild-type animals, LRP1 mutated mice showed an increased clearance of postprandial lipids despite a compromised LRP1 endocytosis rate and inefficient insulin-mediated translocation of the receptor to the plasma membrane, likely due to inefficient slow recycling of the mutated receptor. Postprandial lipoprotein improvement was explained by increased hepatic clearance of triglyceride-rich remnant lipoproteins and accompanied by a compensatory 1.6-fold upregulation of LDLR expression in hepatocytes. One year-old apoE-deficient mice having the dysfunctional LRP1 revealed a 3-fold decrease in spontaneous atherosclerosis development and a 2-fold reduction in LDL-cholesterol levels. CONCLUSION: These findings demonstrate that the NPxYxxL motif in LRP1 is important for insulin-mediated translocation and slow perinuclear endosomal recycling. These LRP1 impairments correlated with reduced atherogenesis and cholesterol levels in apoE-deficient mice, likely via compensatory LDLR upregulation.

  14. Scavenger receptor deficiency leads to more complex atherosclerotic lesions in APOE3Leiden transgenic mice

    NARCIS (Netherlands)

    Winther, M.P.J. de; Gijbels, M.J.J.; Dijk, K.W. van; Gorp, P.J.J. van; Suzuki, H.; Kodama, T.; Frants, R.R.; Havekes, L.M.; Hofker, M.H.

    1999-01-01

    Apolipoprotein (apo) E3Leiden is a dysfunctional apo E variant associated with familial dysbetalipoproteinemia in humans. Transgenic mice carrying the APOE3Leiden gene develop hyperlipidemia and are highly susceptible to diet-induced atherosclerosis. An early step in atherosclerosis is foam cell

  15. Reduced phosphorylation of brain insulin receptor substrate and Akt proteins in apolipoprotein-E4 targeted replacement mice.

    Science.gov (United States)

    Ong, Qi-Rui; Chan, Elizabeth S; Lim, Mei-Li; Cole, Gregory M; Wong, Boon-Seng

    2014-01-17

    Human ApoE4 accelerates memory decline in ageing and in Alzheimer's disease. Although intranasal insulin can improve cognition, this has little effect in ApoE4 subjects. To understand this ApoE genotype-dependent effect, we examined brain insulin signaling in huApoE3 and huApoE4 targeted replacement (TR) mice. At 32 weeks, lower insulin receptor substrate 1 (IRS1) at S636/639 and Akt phosphorylation at T308 were detected in fasting huApoE4 TR mice as compared to fasting huApoE3 TR mice. These changes in fasting huApoE4 TR mice were linked to lower brain glucose content and have no effect on plasma glucose level. However, at 72 weeks of age, these early changes were accompanied by reduction in IRS2 expression, IRS1 phosphorylation at Y608, Akt phosphorylation at S473, and MAPK (p38 and p44/42) activation in the fasting huApoE4 TR mice. The lower brain glucose was significantly associated with higher brain insulin in the aged huApoE4 TR mice. These results show that ApoE4 reduces brain insulin signaling and glucose level leading to higher insulin content.

  16. Rosuvastatin reduces atherosclerotic lesions and promotes progenitor cell mobilisation and recruitment in apolipoprotein E knockout mice.

    Science.gov (United States)

    Schroeter, Marco R; Humboldt, Tim; Schäfer, Katrin; Konstantinides, Stavros

    2009-07-01

    Statins enhance incorporation of bone marrow-derived cells into experimental neointimal lesions. However, the contribution of progenitor cells to progression of spontaneous atherosclerotic plaques, and the possible modulatory role of statins in this process, remain poorly understood. We compared the effects of rosuvastatin (1 and 10mg/kg BW) and pravastatin (10mg/kg) on progenitor cell mobilisation, recruitment into atherosclerotic plaques, and lesion growth. Statins were administered over 8 weeks to apolipoprotein E knockout mice on atherogenic diet. In addition, mice were lethally irradiated, followed by transplantation of bone marrow from LacZ transgenic mice. Rosuvastatin reduced lesion area and intima-to-media ratio at the brachiocephalic artery compared to vehicle, while both parameters were not significantly altered by pravastatin. Rosuvastatin also augmented endothelialisation (P<0.05) and reduced the smooth muscle cells (SMC) content (P=0.042) of lesions. Numbers of c-kit, sca-1 and flk-1, sca-1 double-positive progenitor cells were significantly increased in rosuvastatin compared to control-treated mice, both in the bone marrow and the peripheral blood. Similarly, the number of spleen-derived acLDL, lectin double-positive progenitor cells (P=0.001) and colony-forming units (P=0.0104) was significantly increased in mice treated with rosuvastatin compared to vehicle alone. In the bone marrow, increased Akt and p42/44 MAP kinase phosphorylation and upregulated SDF1alpha mRNA expression were observed. Importantly, rosuvastatin treatment also increased the plasma levels of c-kit ligand (P=0.003), and the number of c-kit-positive cells within atherosclerotic lesions (P=0.041). Our findings suggest that rosuvastatin reduces the size of atherosclerotic plaques, and this effect appears to involve progenitor cell mobilisation and recruitment into vascular lesions.

  17. Mice lacking prostaglandin E receptor subtype 4 manifest disrupted lipid metabolism attributable to impaired triglyceride clearance.

    Science.gov (United States)

    Cai, Yin; Ying, Fan; Song, Erfei; Wang, Yu; Xu, Aimin; Vanhoutte, Paul M; Tang, Eva Hoi-Ching

    2015-12-01

    Upon high-fat feeding, prostaglandin E receptor subtype 4 (EP4)-knockout mice gain less body weight than their EP4(+/+) littermates. We investigated the cause of the lean phenotype. The mice showed a 68.8% reduction in weight gain with diminished fat mass that was not attributable to reduced food intake, fat malabsorption, or increased energy expenditure. Plasma triglycerides in the mice were elevated by 244.9%. The increase in plasma triglycerides was independent of changes in hepatic very low density lipoprotein (VLDL)-triglyceride production or intestinal chylomicron-triglyceride synthesis. However, VLDL-triglyceride clearance was drastically impaired in the EP4-knockout mice. The absence of EP4 in mice compromised the activation of lipoprotein lipase (LPL), the key enzyme responsible for trafficking of plasma triglycerides into peripheral tissues. Deficiency in EP4 reduced hepatic mRNA expression of the transcriptional factor cAMP response element binding protein H (by 36.8%) and LPL activators, including apolipoprotein (Apo)a5 (by 40.2%) and Apoc2 (by 61.3%). In summary, the lean phenotype of EP4-deficient mice resulted from reduction in adipose tissue and accretion of other peripheral organs caused by impaired triglyceride clearance. The findings identify a new metabolic dimension in the physiologic role played by endogenous EP4. © FASEB.

  18. Antiatherogenic effects of oleanolic acid in apolipoprotein E knockout mice

    DEFF Research Database (Denmark)

    Buus, Niels Henrik; Hansson, Nicolaj Christopher; Rodriguez-Rodriguez, Rosalia

    2011-01-01

    were investigated in vitro. Inducible nitric oxide synthase (iNOS) was visualized using immunoblotting. As opposed to WT and fluvastatin- and vehicle-treated mice, OA-fed ApoE(-/-) mice gained no weight during the treatment period. Plasma concentrations of total-cholesterol and triglyceride were...... in combination with OA (100 mg/kg/day), fluvastatin (5 mg/kg/day) or vehicle, with wild type (WT) mice serving as controls. After 8 weeks of treatment atherosclerotic plaque areas in the aortic arch and plasma lipid concentrations were determined. Vasoconstriction and relaxation of the proximal part of aorta...... not significantly reduced by OA- or fluvastatin treatment. Plaque area of vehicle-treated mice was 25%, but only 14% in OA- and 19% in fluvastatin-treated mice. As compared to WT, vasoconstriction to phenylephrine was attenuated in ApoE(-/-) mice. The NOS inhibitor asymmetric dimethylarginine (ADMA) enhanced...

  19. The Dipeptidyl Peptidase-4 Inhibitor Sitagliptin Protects against Dyslipidemia-Related Kidney Injury in Apolipoprotein E Knockout Mice

    Directory of Open Access Journals (Sweden)

    Jingjing Li

    2014-06-01

    Full Text Available The goal of this study was to investigate the possible protective effects of sitagliptin against dyslipidemia-related kidney injury in apolipoprotein E knockout (apoE−/− mice. Eight-week-old male apoE−/− mice were randomized to receive either a high fat diet (HFD, apoE−/− group or HFD mixed with sitagliptin (sita + apoE−/− group for 16 weeks. A control group of age- and gender-matched C57BL/6J mice were fed a HFD. The apoE−/− group exhibited increases in body weight and serum lipid levels in addition to high-density lipoprotein, and increases in 24-h urinary 8-hydroxy-2-deoxyguanosine and albuminuria excretion. Decreased insulin sensitivity was also observed in the apoE−/− group. These mice additionally contained enlargements of the glomerular mesangial matrix area, lipid deposition area, and renal interstitium collagen area. The apoE−/− group also demonstrated down-regulation of phosphorylated AMP-activated protein kinase (AMPK, increases in renal mRNA expression of transforming growth factor-beta 1 (TGF-β1 and fibronectin (FN, and increased protein expression of Akt, TGF-β1, FN and p38/ERK mitogen-activated protein kinase (MAPK. Sitagliptin treatment successfully ameliorated all the deleterious effects of dyslipidemia tested. To our knowledge, this is the first time that sitagliptin has been shown to reverse the renal dysfunction and structural damage induced by dyslipidemia in apoE−/− mice. Our results suggest that the renoprotective mechanism of sitagliptin may be due to a reduction in Akt levels, a restoration of AMPK activity, and inhibition of TGF-β1, FN, and p38/ERK MAPK signaling pathways.

  20. Effect of uremia on HDL composition, vascular inflammation, and atherosclerosis in wild-type mice

    DEFF Research Database (Denmark)

    Bang, Christian A; Bro, Susanne; Bartels, Emil D

    2007-01-01

    Wild-type mice normally do not develop atherosclerosis, unless fed cholic acid. Uremia is proinflammatory and increases atherosclerosis 6- to 10-fold in apolipoprotein E-deficient mice. This study examined the effect of uremia on lipoproteins, vascular inflammation, and atherosclerosis in wild...... in cholic acid-fed sham mice. The results suggest that moderate uremia neither induces aortic inflammation nor atherosclerosis in C57BL/6J mice despite increased LDL/HDL cholesterol ratio and altered HDL composition....

  1. A salmon protein hydrolysate exerts lipid-independent anti-atherosclerotic activity in ApoE-deficient mice.

    Directory of Open Access Journals (Sweden)

    Cinzia Parolini

    Full Text Available Fish consumption is considered health beneficial as it decreases cardiovascular disease (CVD-risk through effects on plasma lipids and inflammation. We investigated a salmon protein hydrolysate (SPH that is hypothesized to influence lipid metabolism and to have anti-atherosclerotic and anti-inflammatory properties. 24 female apolipoprotein (apo E(-/- mice were divided into two groups and fed a high-fat diet with or without 5% (w/w SPH for 12 weeks. The atherosclerotic plaque area in aortic sinus and arch, plasma lipid profile, fatty acid composition, hepatic enzyme activities and gene expression were determined. A significantly reduced atherosclerotic plaque area in the aortic arch and aortic sinus was found in the 12 apoE(-/- mice fed 5% SPH for 12 weeks compared to the 12 casein-fed control mice. Immunohistochemical characterization of atherosclerotic lesions in aortic sinus displayed no differences in plaque composition between mice fed SPH compared to controls. However, reduced mRNA level of Icam1 in the aortic arch was found. The plasma content of arachidonic acid (C20:4n-6 and oleic acid (C18:1n-9 were increased and decreased, respectively. SPH-feeding decreased the plasma concentration of IL-1β, IL-6, TNF-α and GM-CSF, whereas plasma cholesterol and triacylglycerols (TAG were unchanged, accompanied by unchanged mitochondrial fatty acid oxidation and acyl-CoA:cholesterol acyltransferase (ACAT-activity. These data show that a 5% (w/w SPH diet reduces atherosclerosis in apoE(-/- mice and attenuate risk factors related to atherosclerotic disorders by acting both at vascular and systemic levels, and not directly related to changes in plasma lipids or fatty acids.

  2. Genetic association of apolipoprotein E with age-related macular degeneration

    NARCIS (Netherlands)

    M. Kliffen (Mike); C.M. van Duijn (Cornelia); M. Cruts (Marc); D.E. Grobbee (Diederick); P.T.V.M. de Jong (Paulus); C.C.W. Klaver (Caroline); C. van Broeckhoven (Christine); A. Hofman (Albert)

    1998-01-01

    textabstractAge-related macular degeneration (AMD) is the most common geriatric eye disorder leading to blindness and is characterized by degeneration of the neuroepithelium in the macular area of the eye. Apolipoprotein E (apoE), the major apolipoprotein of the CNS and an

  3. Maternal Phytosterol Supplementation during Pregnancy and Lactation Modulates Lipid and Lipoprotein Response in Offspring of apoE-Deficient Mice.

    Science.gov (United States)

    Rideout, Todd C; Movsesian, Cheryl; Tsai, Yi-Ting; Iqbal, Aadil; Raslawsky, Amy; Patel, Mulchand S

    2015-08-01

    In utero exposure to excessive cholesterol has been shown to increase fetal plasma cholesterol concentration and predispose adult offspring to cardiovascular disease (CVD) risk. Because lipid-lowering drugs are contraindicated during pregnancy, natural cholesterol-lowering compounds may be a safe and effective alternative to reduce CVD risk in offspring born to hypercholesterolemic mothers. This study used the hypercholesterolemic apolipoprotein E-deficient (apoE(-/-)) mouse model to test the hypothesis that mothers supplemented with phytosterols during gestation and lactation would produce offspring with a more favorable lipid profile than offspring from unsupplemented mothers, despite having a genetic predisposition toward hypercholesterolemia. Sixteen female apoE(-/-) mice were randomly assigned to 2 diets fed throughout the gestation and lactation periods: a cholesterol-enriched diet (CH) (0.15%) or the cholesterol-enriched diet supplemented with phytosterols (CH/PS) (2%). Serum lipids and lipoproteins were measured by enzyme assay and nuclear magnetic resonance spectroscopy, respectively, and liver cholesterol was analyzed by GC. Compared with the CH-fed dams at the end of lactation, phytosterol-supplemented dams displayed lower (P 0.05) in HDL cholesterol and triacylglycerol (TG) concentrations. Pups from phytosterol-fed dams demonstrated lower (P 0.05) in HDL cholesterol compared with pups from CH-fed dams. Furthermore, compared with pups from CH-fed dams, pups from phytosterol-supplemented dams displayed a lower (P phytosterols during gestation and lactation exhibit favorable liver and serum lipid responses compared with pups from unsupplemented mothers. © 2015 American Society for Nutrition.

  4. Identification of chemical components of combustion emissions that affect pro-atherosclerotic vascular responses in mice

    OpenAIRE

    Seilkop, Steven K.; Campen, Matthew J.; Lund, Amie K.; McDonald, Jacob D.; Mauderly, Joe L.

    2012-01-01

    Combustion emissions cause pro-atherosclerotic responses in apolipoprotein E-deficient (ApoE/−) mice, but the causal components of these complex mixtures are unresolved. In studies previously reported, ApoE−/− mice were exposed by inhalation 6 h/day for 50 consecutive days to multiple dilutions of diesel or gasoline exhaust, wood smoke, or simulated “downwind” coal emissions. In this study, the analysis of the combined four-study database using the Multiple Additive Regression Trees (MART) da...

  5. Apolipoprotein E and familial longevity

    DEFF Research Database (Denmark)

    Schupf, Nicole; Barral, Sandra; Perls, Thomas

    2013-01-01

    Exceptional longevity is associated with substantial heritability. The ε4 allele in apolipoprotein E and the linked G allele in rs2075650 of TOMM40 have been associated with increased mortality and the ε2 allele with decreased mortality, although inconsistently. Offspring from long-lived families...

  6. Voluntary exercise decreases atherosclerosis in nephrectomised ApoE knockout mice.

    Directory of Open Access Journals (Sweden)

    Cecilia M Shing

    Full Text Available Cardiovascular disease is the main cause of morbidity and mortality in patients with kidney disease. The effectiveness of exercise for cardiovascular disease that is accelerated by the presence of chronic kidney disease remains unknown. The present study utilized apolipoprotein E knockout mice with 5/6 nephrectomy as a model of combined kidney disease and cardiovascular disease to investigate the effect of exercise on aortic plaque formation, vascular function and systemic inflammation. Animals were randomly assigned to nephrectomy or control and then to either voluntary wheel running exercise or sedentary. Following 12-weeks, aortic plaque area was significantly (p0.05. Nephrectomy increased IL-6 and TNF-α concentrations compared with control mice (p0.05. Exercise was an effective non-pharmacologic approach to slow cardiovascular disease in the presence of kidney disease in the apolipoprotein E knockout mouse.

  7. High incidence of HPV-associated head and neck cancers in FA deficient mice is associated with E7's induction of DNA damage through its inactivation of pocket proteins.

    Science.gov (United States)

    Park, Jung Wook; Shin, Myeong-Kyun; Pitot, Henry C; Lambert, Paul F

    2013-01-01

    Fanconi anemia (FA) patients are highly susceptible to solid tumors at multiple anatomical sites including head and neck region. A subset of head and neck cancers (HNCs) is associated with 'high-risk' HPVs, particularly HPV16. However, the correlation between HPV oncogenes and cancers in FA patients is still unclear. We previously learned that FA deficiency in mice predisposes HPV16 E7 transgenic mice to HNCs. To address HPV16 E6's oncogenic potential under FA deficiency in HNCs, we utilized HPV16 E6-transgenic mice (K14E6) and HPV16 E6/E7-bi-transgenic mice (K14E6E7) on genetic backgrounds sufficient or deficient for one of the fanc genes, fancD2 and monitored their susceptibility to HNCs. K14E6 mice failed to develop tumor. However, E6 and fancD2-deficiency accelerated E7-driven tumor development in K14E6E7 mice. The increased tumor incidence was more correlated with E7-driven DNA damage than proliferation. We also found that deficiency of pocket proteins, pRb, p107, and p130 that are well-established targets of E7, could recapitulate E7's induction of DNA damage. Our findings support the hypothesis that E7 induces HPV-associated HNCs by promoting DNA damage through the inactivation of pocket proteins, which explains why a deficiency in DNA damage repair would increase susceptibility to E7-driven cancer. Our results further demonstrate the unexpected finding that FA deficiency does not predispose E6 transgenic mice to HNCs, indicating a specificity in the synergy between FA deficiency and HPV oncogenes in causing HNCs.

  8. High incidence of HPV-associated head and neck cancers in FA deficient mice is associated with E7's induction of DNA damage through its inactivation of pocket proteins.

    Directory of Open Access Journals (Sweden)

    Jung Wook Park

    Full Text Available Fanconi anemia (FA patients are highly susceptible to solid tumors at multiple anatomical sites including head and neck region. A subset of head and neck cancers (HNCs is associated with 'high-risk' HPVs, particularly HPV16. However, the correlation between HPV oncogenes and cancers in FA patients is still unclear. We previously learned that FA deficiency in mice predisposes HPV16 E7 transgenic mice to HNCs. To address HPV16 E6's oncogenic potential under FA deficiency in HNCs, we utilized HPV16 E6-transgenic mice (K14E6 and HPV16 E6/E7-bi-transgenic mice (K14E6E7 on genetic backgrounds sufficient or deficient for one of the fanc genes, fancD2 and monitored their susceptibility to HNCs. K14E6 mice failed to develop tumor. However, E6 and fancD2-deficiency accelerated E7-driven tumor development in K14E6E7 mice. The increased tumor incidence was more correlated with E7-driven DNA damage than proliferation. We also found that deficiency of pocket proteins, pRb, p107, and p130 that are well-established targets of E7, could recapitulate E7's induction of DNA damage. Our findings support the hypothesis that E7 induces HPV-associated HNCs by promoting DNA damage through the inactivation of pocket proteins, which explains why a deficiency in DNA damage repair would increase susceptibility to E7-driven cancer. Our results further demonstrate the unexpected finding that FA deficiency does not predispose E6 transgenic mice to HNCs, indicating a specificity in the synergy between FA deficiency and HPV oncogenes in causing HNCs.

  9. Selective improvement of pulmonary arterial hypertension with a dual ETA/ETB receptors antagonist in the apolipoprotein E-/- model of PAH and atherosclerosis.

    Science.gov (United States)

    Renshall, Lewis; Arnold, Nadine; West, Laura; Braithwaite, Adam; Pickworth, Josephine; Walker, Rachel; Alfaidi, Mabruka; Chamberlain, Janet; Casbolt, Helen; Thompson, A A Roger; Holt, Cathy; Iglarz, Marc; Francis, Sheila; Lawrie, Allan

    2018-01-01

    Idiopathic pulmonary arterial hypertension (IPAH) is increasingly diagnosed in elderly patients who also have an increased risk of co-morbid atherosclerosis. Apolipoprotein E-deficient (ApoE -/- ) mice develop atherosclerosis with severe PAH when fed a high-fat diet (HFD) and have increased levels of endothelin (ET)-1. ET-1 receptor antagonists (ERAs) are used for the treatment of PAH but less is known about whether ERAs are beneficial in atherosclerosis. We therefore examined whether treatment of HFD-ApoE -/- mice with macitentan, a dual ET A /ET B receptor antagonist, would have any effect on both atherosclerosis and PAH. ApoE -/- mice were fed chow or HFD for eight weeks. After four weeks of HFD, mice were randomized to a four-week treatment of macitentan by food (30 mg/kg/day dual ET A /ET B antagonist), or placebo groups. Echocardiography and closed-chest right heart catheterization were used to determine PAH phenotype and serum samples were collected for cytokine analysis. Thoracic aortas were harvested to assess vascular reactivity using wire myography, and histological analyses were performed on the brachiocephalic artery and aortic root to assess atherosclerotic burden. Macitentan treatment of HFD-fed ApoE -/- mice was associated with a beneficial effect on the PAH phenotype and led to an increase in endothelial-dependent relaxation in thoracic aortae. Macitentan treatment was also associated with a significant reduction in interleukin 6 (IL-6) concentration but there was no significant effect on atherosclerotic burden. Dual blockade of ET A /ET B receptors improves endothelial function and improves experimental PAH but had no significant effect on atherosclerosis.

  10. Skin wound healing in MMP2-deficient and MMP2 / plasminogen double-deficient mice

    DEFF Research Database (Denmark)

    Frøssing, Signe; Rønø, Birgitte; Hald, Andreas

    2010-01-01

    -sensitive MMPs during wound healing. To address whether MMP2 is accountable for the galardin-induced healing deficiency in wildtype and Plg-deficient mice, incisional skin wounds were generated in MMP2 single-deficient mice and in MMP2/Plg double-deficient mice and followed until healed. Alternatively, tissue...... was isolated 7 days post wounding for histological and biochemical analyses. No difference was found in the time from wounding to overt gross restoration of the epidermal surface between MMP2-deficient and wildtype control littermate mice. MMP2/Plg double-deficient mice were viable and fertile, and displayed...... an unchallenged general phenotype resembling that of Plg-deficient mice, including development of rectal prolapses. MMP2/Plg double-deficient mice displayed a slight increase in the wound length throughout the healing period compared with Plg-deficient mice. However, the overall time to complete healing...

  11. Influence of apolipoprotein-E gene on lipid profile, physical activity and body fat relationship

    Directory of Open Access Journals (Sweden)

    Thales Boaventura Rachid Nascimento

    2012-03-01

    Full Text Available Physical activity and body fat modify lipemia, and this effect seems to be influenced by apolipoprotein-E (APOE gene polymorphism. Thus, the purpose of this article was to review main results of studies that have analyzed the relation of APOE gene with physical activity and body fat on triglycerides, total cholesterol and low (LDL and high density lipoprotein (HDL concentrations. The Scientific Electronic Library Online – SciELO, Web of Science and PubMed database were used to locate the articles. The keywords used in combination were: apoe genotype, apolipoprotein-E polymorphism, physical exercise, physical activity, aerobic exercise, body fat and obesity. Originals scientific investigations performed with humans were included, and excluded those ones which involved samples with diseases, except obesity and/or lipemic disorders. It was observed a trend, that ε2 allele carriers are the ones with the greater improvements on lipemia from physical exercise. In addition, the body fat impact on the elevation of triglycerides and LDL are stronger in carriers of the ε2 and ε4 allele, respectively. Considering the small number of originals scientific investigations and their divergent results, reliable inferences can not be made about the APOE gene polymorphism influences on physical activity and body fat effect on lipemia. Thus, further studies with others populations and more volunteers for allele, as well as others exercise modalities and intensities, are necessary.

  12. DMPD: Regulation of endogenous apolipoprotein E secretion by macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18388328 Regulation of endogenous apolipoprotein E secretion by macrophages. Kockx ...svg) (.html) (.csml) Show Regulation of endogenous apolipoprotein E secretion by macrophages. PubmedID 18388...328 Title Regulation of endogenous apolipoprotein E secretion by macrophages. Aut

  13. Protection from obesity and insulin resistance in mice overexpressing human apolipoprotein C1

    NARCIS (Netherlands)

    Jong, M. C.; Voshol, P. J.; Muurling, M.; Dahlmans, V. E.; Romijn, J. A.; Pijl, H.; Havekes, L. M.

    2001-01-01

    Apolipoprotein (APO) C1 is a 6.6-kDa protein present in plasma and associated with lipoproteins. Using hyperinsulinemic-euglycemic clamp tests, we previously found that in APOC1 transgenic mice, the whole-body insulin-mediated glucose uptake is increased concomitant with a decreased fatty acid

  14. Vitamin E-deficiency did not exacerbate partial skin reactions in mice locally irradiated with X-rays

    International Nuclear Information System (INIS)

    Chi, C.; Hayashi, Daisuke; Nemoto, Masato; Nyui, Minako; Anzai, Kazunori; Urano, Shiro

    2011-01-01

    We previously showed that free radicals and oxidative stress are involved in radiation-induced skin reactions. Since vitamin E (VE) is a particularly important lipophilic antioxidant, VE-deficient mice were used to examine its effects on radiation-induced skin damage. The VE content of the skin was reduced to one fourth of levels of normal mice. Neither the time of onset nor the extent of the reactions quantified with a scoring system differed between normal and VE-deficient mice after local X-irradiation (50 Gy). Similarly, there was no difference in the levels of the ascorbyl radical between the groups, although they were higher in irradiated skin than non-irradiated skin. X-irradiation increased the amount of Bax protein in the skin of normal mice both in the latent and acute inflammatory stages, time- and dose-dependently. The increase was associated with an increase in cytochrome c in the cytosolic fraction, indicating that apoptosis was also promoted by the irradiation. The increase in Bax protein correlated well with the thickness of the skin. Although a deficiency in VE should lower resistance to free radicals in the mitochondrial membrane and thus enhance radiation-induced Bax expression and apoptosis, it actually attenuated the increase in Bax protein caused by irradiation. (author)

  15. High Incidence of HPV-Associated Head and Neck Cancers in FA Deficient Mice Is Associated with E7’s Induction of DNA Damage through Its Inactivation of Pocket Proteins

    Science.gov (United States)

    Park, Jung Wook; Shin, Myeong-Kyun; Pitot, Henry C.; Lambert, Paul F.

    2013-01-01

    Fanconi anemia (FA) patients are highly susceptible to solid tumors at multiple anatomical sites including head and neck region. A subset of head and neck cancers (HNCs) is associated with ‘high-risk’ HPVs, particularly HPV16. However, the correlation between HPV oncogenes and cancers in FA patients is still unclear. We previously learned that FA deficiency in mice predisposes HPV16 E7 transgenic mice to HNCs. To address HPV16 E6’s oncogenic potential under FA deficiency in HNCs, we utilized HPV16 E6-transgenic mice (K14E6) and HPV16 E6/E7-bi-transgenic mice (K14E6E7) on genetic backgrounds sufficient or deficient for one of the fanc genes, fancD2 and monitored their susceptibility to HNCs. K14E6 mice failed to develop tumor. However, E6 and fancD2-deficiency accelerated E7-driven tumor development in K14E6E7 mice. The increased tumor incidence was more correlated with E7-driven DNA damage than proliferation. We also found that deficiency of pocket proteins, pRb, p107, and p130 that are well-established targets of E7, could recapitulate E7’s induction of DNA damage. Our findings support the hypothesis that E7 induces HPV-associated HNCs by promoting DNA damage through the inactivation of pocket proteins, which explains why a deficiency in DNA damage repair would increase susceptibility to E7-driven cancer. Our results further demonstrate the unexpected finding that FA deficiency does not predispose E6 transgenic mice to HNCs, indicating a specificity in the synergy between FA deficiency and HPV oncogenes in causing HNCs. PMID:24086435

  16. Apolipoprotein E Mimetic Promotes Functional and Histological Recovery in Lysolecithin-Induced Spinal Cord Demyelination in Mice

    OpenAIRE

    Gu, Zhen; Li, Fengqiao; Zhang, Yi Ping; Shields, Lisa B.E.; Hu, Xiaoling; Zheng, Yiyan; Yu, Panpan; Zhang, Yongjie; Cai, Jun; Vitek, Michael P.; Shields, Christopher B.

    2014-01-01

    Objective Considering demyelination is the pathological hallmark of multiple sclerosis (MS), reducing demyelination and/or promoting remyelination is a practical therapeutic strategy to improve functional recovery for MS. An apolipoprotein E (apoE)-mimetic peptide COG112 has previously demonstrated therapeutic efficacy on functional and histological recovery in a mouse experimental autoimmune encephalomyelitis (EAE) model of human MS. In the current study, we further investigated whether COG1...

  17. The pro-inflammatory effect of uraemia overrules the anti-atherogenic potential of immunization with oxidized LDL in apoE-/- mice

    DEFF Research Database (Denmark)

    Pedersen, Tanja X; Binder, Christoph J; Fredrikson, Gunilla N

    2010-01-01

    BACKGROUND: Uraemia increases oxidative stress, plasma titres of antibodies recognizing oxidized low-density lipoprotein (oxLDL) and development of atherosclerosis. Immunization with oxLDL prevents classical, non-uraemic atherosclerosis. We have investigated whether immunization with oxLDL might...... also prevent uraemia-induced atherosclerosis in apolipoprotein E knockout (apoE-/-) mice. METHODS: ApoE-/- mice were immunized with either native LDL (n = 25), Cu(2+)-oxidized LDL (n = 25), PBS (n = 25), the apolipoprotein B-derived peptide P45 (apoB-peptide P45) conjugated to bovine serum albumin (BSA...

  18. Radiation effects on membranes. I. Vitamin E deficiency and lipid peroxidation

    International Nuclear Information System (INIS)

    Konings, A.W.T.; Drijver, E.B.

    1979-01-01

    Mice which had received a vitamin E-deficient diet from weaning on, were more sensitive to x irradiation than were normal mice, LD/sub 50/30/ being decreased by 0.25 Gy. The vitamin E-deficient mice also showed an increased spleen shrinkage. The cellular membranes of the vitamin E-deficient mice were more vulnerable to lipid peroxidation. X irradiation in vivo shortened the lag period prior to rapid lipid peroxidation as measured in vitro. Injection of the mice with glutathione prior to x irradiation protected the membranes in the in vitro test of peroxidation capacity as was demonstrated by an extended lag period. The possible meaning of these results with respect to the concept that membranes may be important sites for radiation damage is discussed

  19. Irbesartan increased PPARγ activity in vivo in white adipose tissue of atherosclerotic mice and improved adipose tissue dysfunction

    International Nuclear Information System (INIS)

    Iwai, Masaru; Kanno, Harumi; Senba, Izumi; Nakaoka, Hirotomo; Moritani, Tomozo; Horiuchi, Masatsugu

    2011-01-01

    Research highlights: → Atherosclerotic apolipoprotein E-deficient (ApoEKO) mice were treated with irbesartan. → Irbesartan decreased white adipose tissue weight without affecting body weight. → DNA-binding for PPARγ was increased in white adipose tissue in vivo by irbesartan. → Irbesartan increased adipocyte number in white adipose tissue. → Irbesatan increased the expression of adiponectin and leptin in white adipose tissue. -- Abstract: The effect of the PPARγ agonistic action of an AT 1 receptor blocker, irbesartan, on adipose tissue dysfunction was explored using atherosclerotic model mice. Adult male apolipoprotein E-deficient (ApoEKO) mice at 9 weeks of age were treated with a high-cholesterol diet (HCD) with or without irbesartan at a dose of 50 mg/kg/day for 4 weeks. The weight of epididymal and retroperitoneal adipose tissue was decreased by irbesartan without changing food intake or body weight. Treatment with irbesartan increased the expression of PPARγ in white adipose tissue and the DNA-binding activity of PPARγ in nuclear extract prepared from adipose tissue. The expression of adiponectin, leptin and insulin receptor was also increased by irbesartan. These results suggest that irbesartan induced activation of PPARγ and improved adipose tissue dysfunction including insulin resistance.

  20. Anthocyanin-Rich Extract from Red Chinese Cabbage Alleviates Vascular Inflammation in Endothelial Cells and Apo E−/− Mice

    Directory of Open Access Journals (Sweden)

    Hee Kyoung Joo

    2018-03-01

    Full Text Available Anthocyanins, the most prevalent flavonoids in red/purple fruits and vegetables, are known to improve immune responses and reduce chronic disease risks. In this study, the anti-inflammatory activities of an anthocyanin-rich extract from red Chinese cabbage (ArCC were shown based on its inhibitory effects in cultured endothelial cells and hyperlipidemic apolipoprotein E-deficient mice. ArCC treatment suppressed monocyte adhesion to tumor necrosis factor-α-stimulated endothelial cells. This was validated by ArCC’s ability to downregulate the expression and transcription of endothelial adhesion molecules, determined by immunoblot and luciferase promoter assays, respectively. The regulation of adhesion molecules was accompanied by transcriptional inhibition of nuclear factor-κB, which restricted cytoplasmic localization as shown by immunocytochemistry. Administration of ArCC (150 or 300 mg/kg/day inhibited aortic inflammation in hyperlipidemic apolipoprotein E-deficient mice, as shown by in vivo imaging. Immunohistochemistry and plasma analysis showed that the aortas from these mice exhibited markedly lower leukocyte infiltration, reduced plaque formation, and lower concentrations of blood inflammatory cytokines than those observed in the control mice. The results suggest that the consumption of anthocyanin-rich red Chinese cabbage is closely correlated with lowering the risk of vascular inflammatory diseases.

  1. The signal peptide anchors apolipoprotein M in plasma lipoproteins and prevents rapid clearance of apolipoprotein M from plasma

    DEFF Research Database (Denmark)

    Christoffersen, Christina; Ahnström, Josefin; Axler, Olof

    2008-01-01

    Lipoproteins consist of lipids solubilized by apolipoproteins. The lipid-binding structural motifs of apolipoproteins include amphipathic alpha-helixes and beta-sheets. Plasma apolipoprotein (apo) M lacks an external amphipathic motif but, nevertheless, is exclusively associated with lipoproteins...... (mainly high density lipoprotein). Uniquely, however, apoM is secreted to plasma without cleavage of its hydrophobic NH(2)-terminal signal peptide. To test whether the signal peptide serves as a lipoprotein anchor for apoM in plasma, we generated mice expressing a mutated apoM(Q22A) cDNA in the liver (apoM......(Q22A)-Tg mice (transgenic mice)) and compared them with mice expressing wild-type human apoM (apoM-Tg mice). The substitution of the amino acid glutamine 22 with alanine in apoM(Q22A) results in secretion of human apoM without a signal peptide. The human apoM mRNA level in liver and the amount...

  2. Serum apolipoprotein e level is not increased in Alzheimer's disease : The Rotterdam study

    NARCIS (Netherlands)

    Slooter, A.J.C.; Knijff, P. de; Hofman, A.; Cruts, M.; Breteler, M.M.B.; Broeckhoven, C. van; Havekes, L.M.; Duijn, C.M. van

    1998-01-01

    The APOE*4 allele of the apolipoprotein E gene (APOE) is an important risk factor for Alzheimer's disease. It has been suggested that levels of apolipoprotein E (apoE) in plasma are increased in Alzheimer's disease. In this population-based study, we found that serum apoE levels were lower in

  3. The Effect of a High-Fat Diet on Brain Plasticity, Inflammation and Cognition in Female ApoE4-Knockin and ApoE-Knockout Mice.

    Directory of Open Access Journals (Sweden)

    Carola I F Janssen

    Full Text Available Apolipoprotein E4 (ApoE4, one of three common isoforms of ApoE, is a major risk factor for late-onset Alzheimer disease (AD. ApoE-deficient mice, as well as mice expressing human ApoE4, display impaired learning and memory functions and signs of neurodegeneration. Moreover, ApoE protects against high-fat (HF diet induced neurodegeneration by its role in the maintenance of the integrity of the blood-brain barrier. The influence of a HF diet on the progression of AD-like cognitive and neuropathological changes was assessed in wild-type (WT, human ApoE4 and ApoE-knockout (ApoE-/- mice to evaluate the modulatory role of ApoE in this process. From 12 months of age, female WT, ApoE4, and ApoE-/- mice were fed either a standard or a HF diet (19% butter, 0.5% cholate, 1.25% cholesterol throughout life. At 15 months of age mice performed the Morris water maze, evaluating spatial learning and memory. ApoE-/- showed increased spatial learning compared to WT mice (p = 0.009. HF diet improved spatial learning in WT mice (p = 0.045, but did not affect ApoE4 and ApoE-/- mice. Immunohistochemical analyses of the hippocampus demonstrated increased neuroinflammation (CD68 in the cornu ammonis 1 (CA1 region in ApoE4 (p = 0.001 and in ApoE-/- (p = 0.032 mice on standard diet. HF diet tended to increase CD68 in the CA1 in WT mice (p = 0.052, while it decreased in ApoE4 (p = 0.009, but ApoE-/- remained unaffected. A trend towards increased neurogenesis (DCX was found in both ApoE4 (p = 0.052 and ApoE-/- mice (p = 0.068. In conclusion, these data suggest that HF intake induces different effects in WT mice compared to ApoE4 and ApoE-/- with respect to markers for cognition and neurodegeneration. We propose that HF intake inhibits the compensatory mechanisms of neuroinflammation and neurogenesis in aged female ApoE4 and ApoE-/- mice.

  4. Apolipoprotein E4 causes early olfactory network abnormalities and short-term olfactory memory impairments.

    Science.gov (United States)

    Peng, Katherine Y; Mathews, Paul M; Levy, Efrat; Wilson, Donald A

    2017-02-20

    While apolipoprotein (Apo) E4 is linked to increased incidence of Alzheimer's disease (AD), there is growing evidence that it plays a role in functional brain irregularities that are independent of AD pathology. However, ApoE4-driven functional differences within olfactory processing regions have yet to be examined. Utilizing knock-in mice humanized to ApoE4 versus the more common ApoE3, we examined a simple olfactory perceptual memory that relies on the transfer of information from the olfactory bulb (OB) to the piriform cortex (PCX), the primary cortical region involved in higher order olfaction. In addition, we have recorded in vivo resting and odor-evoked local field potentials (LPF) from both brain regions and measured corresponding odor response magnitudes in anesthetized young (6-month-old) and middle-aged (12-month-old) ApoE mice. Young ApoE4 compared to ApoE3 mice exhibited a behavioral olfactory deficit coinciding with hyperactive odor-evoked response magnitudes within the OB that were not observed in older ApoE4 mice. Meanwhile, middle-aged ApoE4 compared to ApoE3 mice exhibited heightened response magnitudes in the PCX without a corresponding olfactory deficit, suggesting a shift with aging in ApoE4-driven effects from OB to PCX. Interestingly, the increased ApoE4-specific response in the PCX at middle-age was primarily due to a dampening of baseline spontaneous activity rather than an increase in evoked response power. Our findings indicate that early ApoE4-driven olfactory memory impairments and OB network abnormalities may be a precursor to later network dysfunction in the PCX, a region that not only is targeted early in AD, but may be selectively vulnerable to ApoE4 genotype. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Synergistic effects of high fat feeding and apolipoprotein E deletion on enterocytic amyloid-beta abundance

    Directory of Open Access Journals (Sweden)

    Dhaliwal Satvinder S

    2008-04-01

    Full Text Available Abstract Background Amyloid-β (Aβ, a key protein found in amyloid plaques of subjects with Alzheimer's disease is expressed in the absorptive epithelial cells of the small intestine. Ingestion of saturated fat significantly enhances enterocytic Aβ abundance whereas fasting abolishes expression. Apolipoprotein (apo E has been shown to directly modulate Aβ biogenesis in liver and neuronal cells but it's effect in enterocytes is not known. In addition, apo E modulates villi length, which may indirectly modulate Aβ as a consequence of differences in lipid absorption. This study compared Aβ abundance and villi length in wild-type (WT and apo E knockout (KO mice maintained on either a low-fat or high-fat diet. Wild-type C57BL/6J and apo E KO mice were randomised for six-months to a diet containing either 4% (w/w unsaturated fats, or chow comprising 16% saturated fats and 1% cholesterol. Quantitative immunohistochemistry was used to assess Aβ abundance in small intestinal enterocytes. Apo E KO mice given the low-fat diet had similar enterocytic Aβ abundance compared to WT controls. Results The saturated fat diet substantially increased enterocytic Aβ in WT and in apo E KO mice, however the effect was greater in the latter. Villi height was significantly greater in apo E KO mice than for WT controls when given the low-fat diet. However, WT mice had comparable villi length to apo E KO when fed the saturated fat and cholesterol enriched diet. There was no effect of the high-fat diet on villi length in apo E KO mice. Conclusion The findings of this study are consistent with the notion that lipid substrate availability modulates enterocytic Aβ. Apo E may influence enterocytic lipid availability by modulating absorptive capacity.

  6. Interactions of metals and Apolipoprotein E in Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    He eXu

    2014-06-01

    Full Text Available Alzheimer’s disease (AD is the most common form of dementia, which is characterized by the neuropathological accumulation of extracellular amyloid plaques and intracellular neurofibrillary tangles (NFTs. Clinically, patients will endure a gradual erosion of memory and other higher order cognitive functions. Whilst the underlying etiology of the disease remains to be definitively identified, a body of work has developed over the last two decades demonstrating that AD plasma/serum and brain are characterized by a dyshomeostasis in a number of metal ions. Furthermore, these metals (such as zinc, copper and iron play roles in the regulation of the levels AD-related proteins, including the amyloid precursor protein (APP and tau. It is becoming apparent that metals also interact with other proteins, including apolipoprotein E (ApoE. The Apolipoprotein E gene (APOE is critically associated with AD, with APOE4 representing the strongest genetic risk factor for the development of late-onset AD whereas APOE2 appears to have a protective role. In this review we will summarize the evidence supporting a role for metals in the function of Apolipoprotein E (ApoE and its consequent role in the pathogenesis of AD.

  7. Apolipoprotein E Genotype-Dependent Paradoxical Short-Term Effects of 56Fe Irradiation on the Brain

    International Nuclear Information System (INIS)

    Haley, Gwendolen E.; Villasana, Laura; Dayger, Catherine; Davis, Matthew J.; Raber, Jacob

    2012-01-01

    Purpose: In humans, apolipoprotein E (apoE) is encoded by three major alleles (ε2, ε3, and ε4) and, compared to apoE3, apoE4 increases the risk of developing Alzheimer disease and cognitive impairments following various environmental challenges. Exposure to irradiation, including that of 56 Fe, during space missions poses a significant risk to the central nervous system, and apoE isoform might modulate this risk. Methods and Materials: We investigated whether apoE isoform modulates hippocampus-dependent cognitive performance starting 2 weeks after 56 Fe irradiation. Changes in reactive oxygen species (ROS) can affect cognition and are induced by irradiation. Therefore, after cognitive testing, we assessed hippocampal ROS levels in ex vivo brain slices, using the ROS-sensitive fluorescent probe, dihydroethidium (DHE). Brain levels of 3-nitrotyrosine (3-NT), CuZn superoxide dismutase (CuZnSOD), extracellular SOD, and apoE were assessed using Western blotting analysis. Results: In the water maze, spatial memory retention was impaired by irradiation in apoE2 and apoE4 mice but enhanced by irradiation in apoE3 mice. Irradiation reduced DHE-oxidation levels in the enclosed blade of the dentate gyrus and levels of 3-NT and CuZnSOD in apoE2 but not apoE3 or apoE4 mice. Finally, irradiation increased apoE levels in apoE3 but not apoE2 or apoE4 mice. Conclusions: The short-term effects of 56 Fe irradiation on hippocampal ROS levels and hippocampus-dependent spatial memory retention are apoE isoform-dependent.

  8. Preservation of endothelium-dependent relaxation in atherosclerotic mice with endothelium-restricted endothelin-1 overexpression.

    Science.gov (United States)

    Mian, Muhammad Oneeb Rehman; Idris-Khodja, Noureddine; Li, Melissa W; Leibowitz, Avshalom; Paradis, Pierre; Rautureau, Yohann; Schiffrin, Ernesto L

    2013-10-01

    In human atherosclerosis, which is associated with elevated plasma and coronary endothelin (ET)-1 levels, ETA receptor antagonists improve coronary endothelial function. Mice overexpressing ET-1 specifically in the endothelium (eET-1) crossed with atherosclerosis-prone apolipoprotein E knockout mice (Apoe(-/-)) exhibit exaggerated high-fat diet (HFD)-induced atherosclerosis. Since endothelial dysfunction often precedes atherosclerosis development, we hypothesized that mice overexpressing endothelial ET-1 on a genetic background deficient in apolipoprotein E (eET-1/Apoe(-/-)) would have severe endothelial dysfunction. To test this hypothesis, we investigated endothelium-dependent relaxation (EDR) to acetylcholine in eET-1/Apoe(-/-) mice. EDR in mesenteric resistance arteries from 8- and 16-week-old mice fed a normal diet or HFD was improved in eET-1/Apoe(-/-) compared with Apoe(-/-) mice. Nitric oxide synthase (NOS) inhibition abolished EDR in Apoe(-/-). EDR in eET-1/Apoe(-/-) mice was resistant to NOS inhibition irrespective of age or diet. Inhibition of cyclooxygenase, the cytochrome P450 pathway, and endothelium-dependent hyperpolarization (EDH) resulted in little or no inhibition of EDR in eET-1/Apoe(-/-) compared with wild-type (WT) mice. In eET-1/Apoe(-/-) mice, blocking of EDH or soluble guanylate cyclase (sGC), in addition to NOS inhibition, decreased EDR by 36 and 30%, respectively. The activation of 4-aminopyridine-sensitive voltage-dependent potassium channels (Kv) during EDR was increased in eET-1/Apoe(-/-) compared with WT mice. We conclude that increasing eET-1 in mice that develop atherosclerosis results in decreased mutual dependence of endothelial signaling pathways responsible for EDR, and that NOS-independent activation of sGC and increased activation of Kv are responsible for enhanced EDR in this model of atherosclerosis associated with elevated endothelial and circulating ET-1.

  9. Apolipoprotein A5 deficiency aggravates high-fat diet-induced obesity due to impaired central regulation of food intake

    NARCIS (Netherlands)

    Berg, S.A.A. van den; Heemskerk, M.M.; Geerling, J.J.; Klinken, J.B. van; Schaap, F.G.; Bijland, S.; Berbée, J.F.P.; Harmelen, V.J.A. van; Pronk, A.C.M.; Schreurs, M.; Havekes, L.M.; Rensen, P.C.N.; Dijk, K.W. van

    2013-01-01

    Mutations in apolipoprotein A5 (APOA5) have been associated with hypertriglyceridemia in humans and mice. This has been attributed to a stimulating role for APOA5 in lipoprotein lipase-mediated triglyceride hydrolysis and hepatic clearance of lipoprotein remnant particles. However, because of the

  10. Apolipoprotein A5 deficiency aggravates high-fat diet-induced obesity due to impaired central regulation of food intake

    NARCIS (Netherlands)

    van den Berg, Sjoerd A. A.; Heemskerk, Mattijs M.; Geerling, Janine J.; van Klinken, Jan-Bert; Schaap, Frank G.; Bijland, Silvia; Berbee, Jimmy F. P.; van Harmelen, Vanessa J. A.; Pronk, Amanda C. M.; Bijker-Schreurs, Marijke; Havekes, Louis M.; Rensen, Patrick C. N.; van Dijk, Ko Willems

    Mutations in apolipoprotein A5 (APOA5) have been associated with hypertriglyceridemia in humans and mice. This has been attributed to a stimulating role for APOA5 in lipoprotein lipase-mediated triglyceride hydrolysis and hepatic clearance of lipoprotein remnant particles. However, because of the

  11. Irbesartan increased PPAR{gamma} activity in vivo in white adipose tissue of atherosclerotic mice and improved adipose tissue dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Iwai, Masaru; Kanno, Harumi; Senba, Izumi; Nakaoka, Hirotomo; Moritani, Tomozo [Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Shitsukawa, Tohon, Ehime 791-0295 (Japan); Horiuchi, Masatsugu, E-mail: horiuchi@m.ehime-u.ac.jp [Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Shitsukawa, Tohon, Ehime 791-0295 (Japan)

    2011-03-04

    Research highlights: {yields} Atherosclerotic apolipoprotein E-deficient (ApoEKO) mice were treated with irbesartan. {yields} Irbesartan decreased white adipose tissue weight without affecting body weight. {yields} DNA-binding for PPAR{gamma} was increased in white adipose tissue in vivo by irbesartan. {yields} Irbesartan increased adipocyte number in white adipose tissue. {yields} Irbesatan increased the expression of adiponectin and leptin in white adipose tissue. -- Abstract: The effect of the PPAR{gamma} agonistic action of an AT{sub 1} receptor blocker, irbesartan, on adipose tissue dysfunction was explored using atherosclerotic model mice. Adult male apolipoprotein E-deficient (ApoEKO) mice at 9 weeks of age were treated with a high-cholesterol diet (HCD) with or without irbesartan at a dose of 50 mg/kg/day for 4 weeks. The weight of epididymal and retroperitoneal adipose tissue was decreased by irbesartan without changing food intake or body weight. Treatment with irbesartan increased the expression of PPAR{gamma} in white adipose tissue and the DNA-binding activity of PPAR{gamma} in nuclear extract prepared from adipose tissue. The expression of adiponectin, leptin and insulin receptor was also increased by irbesartan. These results suggest that irbesartan induced activation of PPAR{gamma} and improved adipose tissue dysfunction including insulin resistance.

  12. Folate Deficiency Could Restrain Decidual Angiogenesis in Pregnant Mice

    Directory of Open Access Journals (Sweden)

    Yanli Li

    2015-08-01

    Full Text Available The mechanism of birth defects induced by folate deficiency was focused on mainly in fetal development. Little is known about the effect of folate deficiency on the maternal uterus, especially on decidual angiogenesis after implantation which establishes vessel networks to support embryo development. The aim of this study was to investigate the effects of folate deficiency on decidual angiogenesis. Serum folate levels were measured by electrochemiluminescence. The status of decidual angiogenesis was examined by cluster designation 34 (CD34 immunohistochemistry and the expression of angiogenic factors, including vascular endothelial growth factor A (VEGFA, placental growth factor (PLGF, and VEGF receptor 2 (VEGFR2 were also tested. Serum levels of homocysteine (Hcy, follicle stimulating hormone (FSH, luteinizing hormone (LH, prolactin (PRL, progesterone (P4, and estradiol (E2 were detected by Enzyme-linked immunosorbent assay. The folate-deficient mice had a lower folate level and a higher Hcy level. Folate deficiency restrained decidual angiogenesis with significant abnormalities in vascular density and the enlargement and elongation of the vascular sinus. It also showed a reduction in the expressions of VEGFA, VEGFR2, and PLGF. In addition, the serum levels of P4, E2, LH, and PRL were reduced in folate-deficient mice, and the expression of progesterone receptor (PR and estrogen receptor α (ERα were abnormal. These results indicated that folate deficiency could impaire decidual angiogenesis and it may be related to the vasculotoxic properties of Hcy and the imbalance of the reproductive hormone.

  13. Preventive effect of dipeptidyl peptidase-4 inhibitor on atherosclerosis is mainly attributable to incretin's actions in nondiabetic and diabetic apolipoprotein E-null mice.

    Directory of Open Access Journals (Sweden)

    Michishige Terasaki

    Full Text Available AIM: Several recent reports have revealed that dipeptidyl peptidase (DPP-4 inhibitors have suppressive effects on atherosclerosis in apolipoprotein E-null (Apoe (-/- mice. It remains to be seen, however, whether this effect stems from increased levels of the two active incretins, glucagon-like peptide-1 (GLP-1 and glucose-dependent insulinotropic polypeptide (GIP. METHODS: Nontreated Apoe (-/- mice, streptozotocin-induced diabetic Apoe (-/- mice, and db/db diabetic mice were administered the DPP-4 inhibitor vildagliptin in drinking water and co-infused with either saline, the GLP-1 receptor blocker, exendin(9-39, the GIP receptor blocker, (Pro(3GIP, or both via osmotic minipumps for 4 weeks. Aortic atherosclerosis and oxidized low-density lipoprotein-induced foam cell formation in exudate peritoneal macrophages were determined. RESULTS: Vildagliptin increased plasma GLP-1 and GIP levels without affecting food intake, body weight, blood pressure, or plasma lipid profile in any of the animals tested, though it reduced HbA1c in the diabetic mice. Diabetic Apoe (-/- mice exhibited further-progressed atherosclerotic lesions and foam cell formation compared with nondiabetic counterparts. Nondiabetic and diabetic Apoe (-/- mice showed a comparable response to vildagliptin, namely, remarkable suppression of atherosclerotic lesions with macrophage accumulation and foam cell formation in peritoneal macrophages. Exendin(9-39 or (Pro(3GIP partially attenuated the vildagliptin-induced suppression of atherosclerosis. The two blockers in combination abolished the anti-atherosclerotic effect of vildagliptin in nondiabetic mice but only partly attenuated it in diabetic mice. Vildagliptin suppressed macrophage foam cell formation in nondiabetic and diabetic mice, and this suppressive effect was abolished by infusions with exendin(9-39+(Pro(3GIP. Incubation of DPP-4 or vildagliptin in vitro had no effect on macrophage foam cell formation. CONCLUSIONS: Vildagliptin

  14. Mechanism of lipid lowering in mice expressing human apolipoprotein A5

    Energy Technology Data Exchange (ETDEWEB)

    Fruchart-Najib, Jamila; Bauge, Eric; Niculescu, Loredan-Stefan; Pham, Tatiana; Thomas, Benoit; Rommens, Corinne; Majd, Zouher; Brewer, Bryan; Rubin, Edward M.; Pennacchio, Len A.; Fruchart, Jean-Charles

    2004-01-15

    Recently, we reported that apoAV plays key role in triglycerides lowering. Here, we attempted to determine the mechanism underlying this hypotriglyceridemic effect. We showed that triglyceride turnover is faster in hAPOA5 transgenic compared to wild type mice. Moreover, both apoB and apoCIII are decreased and LPL activity is increased in postheparin plasma of hAPOA5 transgenic mice. These data suggest a decrease in size and number of VLDL. To further investigate the mechanism of hAPOA5 in hyperlipidemic background, we intercrossed hAPOA5 and hAPOC3 transgenic mice. The effect resulted in a marked decreased of VLDL triglyceride, cholesterol, apolipoproteins B and CIII. In postprandial state, the triglyceride response is abolished in hAPOA5 transgenic mice. We demonstrated that in response to the fat load in hAPOA5XhAPOC3 mice, apoAV shifted from HDL to VLDL, probably to limit the elevation of triglycerides. In vitro, apoAV activates lipoprotein lipase. However, apoAV does not interact with LPL but interacts physically with apoCIII. This interaction does not seem to displace apoCIII from VLDL but may induce conformational change in apoCIII and consequently change in its function leading the activation of lipoprotein lipase.

  15. Activation of Adiponectin Receptor Regulates Proprotein Convertase Subtilisin/Kexin Type 9 Expression and Inhibits Lesions in ApoE-Deficient Mice.

    Science.gov (United States)

    Sun, Lei; Yang, Xiaoxiao; Li, Qi; Zeng, Peng; Liu, Ying; Liu, Lipei; Chen, Yuanli; Yu, Miao; Ma, Chuanrui; Li, Xiaoju; Li, Yan; Zhang, Rongxin; Zhu, Yan; Miao, Qing Robert; Han, Jihong; Duan, Yajun

    2017-07-01

    The reduced adiponectin levels are associated with atherosclerosis. Adiponectin exerts its functions by activating adiponectin receptor (AdipoR). Proprotein convertase subtilisin kexin type 9 (PCSK9) degrades LDLR protein (low-density lipoprotein receptor) to increase serum LDL-cholesterol levels. PCSK9 expression can be regulated by PPARγ (peroxisome proliferator-activated receptor γ) or SREBP2 (sterol regulatory element-binding protein 2). The effects of AdipoR agonists on PCSK9 and LDLR expression, serum lipid profiles, and atherosclerosis remain unknown. At cellular levels, AdipoR agonists (ADP355 and AdipoRon) induced PCSK9 transcription/expression that solely depended on activation of PPAR-responsive element in the PCSK9 promoter. AdipoR agonists induced PPARγ expression; thus, the AdipoR agonist-activated PCSK9 expression/production was impaired in PPARγ deficient hepatocytes. Meanwhile, AdipoR agonists transcriptionally activated LDLR expression by activating SRE in the LDLR promoter. Moreover, AMP-activated protein kinase α (AMPKα) was involved in AdipoR agonist-activated PCSK9 expression. In wild-type mice, ADP355 increased PCSK9 and LDLR expression and serum PCSK9 levels, which was associated with activation of PPARγ, AMPKα and SREBP2 and reduction of LDL-cholesterol levels. In contrast, ADP355 reduced PCSK9 expression/secretion in apoE-deficient (apoE -/- ) mice, but it still activated hepatic LDLR, PPARγ, AMPKα, and SREBP2. More importantly, ADP355 inhibited lesions in en face aortas and sinus lesions in aortic root in apoE -/- mice with amelioration of lipid profiles. Our study demonstrates that AdipoR activation by agonists regulated PCSK9 expression differently in wild-type and apoE -/- mice. However, ADP355 activated hepatic LDLR expression and ameliorated lipid metabolism in both types of mice and inhibited atherosclerosis in apoE -/- mice. © 2017 American Heart Association, Inc.

  16. Effects of Restoration of Blood Flow on the Development of Aortic Atherosclerosis in ApoE-/- Mice With Unilateral Renal Artery Stenosis.

    Science.gov (United States)

    Pathak, Alokkumar S; Huang, Jianhua; Rojas, Mauricio; Bazemore, Taylor C; Zhou, Ruihai; Stouffer, George A

    2016-04-03

    Chronic unilateral renal artery stenosis (RAS) causes accelerated atherosclerosis in apolipoprotein E-deficient (ApoE(-/-)) mice, but effects of restoration of renal blood flow on aortic atherosclerosis are unknown. Male ApoE(-/-) mice underwent sham surgery (n=16) or had partial ligation of the right renal artery (n=41) with the ligature being removed 4 days later (D4LR; n=6), 8 days later (D8LR; n=11), or left in place for 90 days (chronic RAS; n=24). Ligature removal at 4 or 8 days resulted in improved renal blood flow, decreased plasma angiotensin II levels, a return of systolic blood pressure to baseline, and increased plasma levels of neutrophil gelatinase associated lipocalin. Chronic RAS resulted in increased lipid staining in the aortic arch (33.2% [24.4, 47.5] vs 11.6% [6.1, 14.2]; Prenal blood flow at either 4 or 8 days after unilateral RAS had a beneficial effect on systolic blood pressure, aortic lipid deposition, and atheroma inflammation. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  17. Susceptibility of Mice to Trypanosoma evansi Treated with Human Plasma Containing Different Concentrations of Apolipoprotein L-1

    Science.gov (United States)

    Fanfa, Vinicius R.; Otto, Mateus A.; Gressler, Lucas T.; Tavares, Kaio C.S.; Lazzarotto, Cícera R.; Tonin, Alexandre A.; Miletti, Luiz C.; Duarte, Marta M.M.F.; Monteiro, Silvia G.

    2011-01-01

    The aim of this study was to test the susceptibility of mice to Trypanosoma evansi treated with human plasma containing different concentrations of apolipoprotein L-1 (APOL1). For this experiment, a strain of T. evansi and human plasma (plasmas 1, 2, and 3) from 3 adult males clinically healthy were used. In vivo test used 50 mice divided in 5 groups (A to E) with 10 animals in each group. Animals of groups B to E were infected, and then treated with 0.2 ml of human plasma in the following outline: negative control (A), positive control (B), treatment with plasma 1 (C), treatment with plasma 2 (D), and treatment with plasma 3 (E). Mice treated with human plasma showed an increase in longevity of 40.9±0.3 (C), 20±9.0 (D) and 35.6±9.3 (E) days compared to the control group (B) which was 4.3±0.5 days. The number of surviving mice and free of the parasite (blood smear and PCR negative) at the end of the experiment was 90%, 0%, and 60% for groups C, D, and E, respectively. The quantification of APOL1 was performed due to the large difference in the treatments that differed in the source plasma. In plasmas 1, 2, and 3 was detected the concentration of 194, 99, and 115 mg/dl of APOL1, respectively. However, we believe that this difference in the treatment efficiency is related to the level of APOL1 in plasmas. PMID:22355213

  18. Comparison of lipoprotein electrophoresis and apolipoprotein e genotyping in investigating dysbetalipoproteinemia

    International Nuclear Information System (INIS)

    Ahmed, F.; Kadiki, A.E.

    2017-01-01

    Dysbetalipoproteinemia is often associated with apolipoprotein E2E2 homozygosity; however, lipoprotein electrophoresis may also be used to assist in the diagnosis. The aim of this study was to compare apolipoprotein E (apo E) genotyping and lipoprotein electrophoresis in investigating dysbetalipoproteinemia. Data were collected over a three-year period from a lipid clinic in a tertiary referral centre and reviewed for apo E genotyping and lipoprotein electrophoresis. Sixty-two patients had both apo E genotyping and lipoprotein electrophoresis. Of these, 16 patients showed broad beta band on electrophoresis. However, only 3 of them had apo E2E2 homozygosity on genotyping. Lipoprotein electrophoresis and apo E genotyping results showed poor concordance. This was primarily due to visual interpretation error of lipoprotein electrophoresis which may over diagnose dysbetalipoproteinemia. (author)

  19. Comparison of Lipoprotein Electrophoresis and Apolipoprotein E Genotyping in Investigating Dysbetalipoproteinemia.

    Science.gov (United States)

    Ahmed, Farhan; El-Kadiki, Alia; Gibbons, Stephen

    2017-06-01

    Dysbetalipoproteinemia is often associated with apolipoprotein E2E2 homozygosity; however, lipoprotein electrophoresis may also be used to assist in the diagnosis. The aim of this study was to compare apolipoprotein E (apo E) genotyping and lipoprotein electrophoresis in investigating dysbetalipoproteinemia. Data were collected over a three-year period from a lipid clinic in a tertiary referral centre and reviewed for apo E genotyping and lipoprotein electrophoresis. Sixty-two patients had both apo E genotyping and lipoprotein electrophoresis. Of these, 16 patients showed broad beta band on electrophoresis. However, only 3 of them had apo E2E2 homozygosity on genotyping. Lipoprotein electrophoresis and apo E genotyping results showed poor concordance. This was primarily due to visual interpretation error of lipoprotein electrophoresis which may over diagnose dysbetalipoproteinemia.

  20. Sildenafil (Viagra® Prevents Cox-1/ TXA2 Pathway-Mediated Vascular Hypercontractility in ApoE-/- Mice

    Directory of Open Access Journals (Sweden)

    Marcos A.S. Leal

    2017-12-01

    Full Text Available Background/Aims: The atherosclerotic apolipoprotein E-deficient (apoE-/- mouse exhibits impaired vasodilation and enhanced vasoconstriction responsiveness. The objectives of this study were: a to determine the relative contribution of cyclooxygenases (Cox-1 and Cox-2, thromboxane A2 (TXA2 and endothelin-1 (ET-1 to enhancing vascular hyperresponsiveness in this model of atherosclerosis and b to investigate the beneficial effects of the phosphodiesterase 5 inhibitor sildenafil on this endothelial dysfunction. Methods: Adult male apoE-/- mice were treated with sildenafil (40 mg/kg/day, for 3 weeks and compared with non-treated ApoE-/- and wild-type mice. The beneficial effects of sildenafil on vascular contractile response to phenylephrine (PE in aortic rings were evaluated before and after incubation with Cox-1 (SC-560 or Cox-2 (NS-398 inhibitors or the TP antagonist SQ-29548, and on contractile responsiveness to ET-1. Results: ApoE-/- mice exhibited enhanced vasoconstriction to PE (Rmax ∼35%, p<0.01, which was prevented by treatment with sildenafil. The enhanced PE-induced contractions were abolished by both Cox-1 inhibition and TP antagonist, but were not modified by Cox-2 inhibition. Aortic rings from ApoE-/- mice also exhibited enhanced contractions to ET-1 (Rmax ∼30%, p<0.01, which were attenuated in sildenafil-treated ApoE-/- mice. In addition, we observed augmented levels of vascular proinflammatory cytokines in ApoE-/- mice, which were partially corrected by treatment with sildenafil (IL-6, IL-10/IL-6 ratio and MCP-1. Conclusion: The present data show that the Cox-1/TXA2 pathway prevails over the Cox-2 isoform in the mediation of vascular hypercontractility observed in apoE-/-mice. The results also show a beneficial effect of sildenafil on this endothelial dysfunction and on the proinflammatory cytokines in atherosclerotic animals, opening new perspectives for the treatment of other endothelium-related cardiovascular abnormalities.

  1. Selective deletion of apolipoprotein E in astrocytes ameliorates the spatial learning and memory deficits in Alzheimer's disease (APP/PS1) mice by inhibiting TGF-β/Smad2/STAT3 signaling.

    Science.gov (United States)

    Zheng, Jin-Yu; Sun, Jian; Ji, Chun-Mei; Shen, Lin; Chen, Zhong-Jun; Xie, Peng; Sun, Yuan-Zhao; Yu, Ru-Tong

    2017-06-01

    Astrocytes and apolipoprotein E (apoE) play critical roles in cognitive function, not only under physiological conditions but also in some pathological situations, particularly in the pathological progression of Alzheimer's disease (AD). The regulatory mechanisms underlying the effect of apoE, derived from astrocytes, on cognitive deficits during AD pathology development are unclear. In this study, we generated amyloid precursor protein/apoE knockout (APP/apoE KO ) and APP/glial fibrillary acidic protein (GFAP)-apoE KO mice (the AD mice model used in this study was based on the APP-familial Alzheimer disease overexpression) to investigate the role of apoE, derived from astrocytes, in AD pathology and cognitive function. To explore the mechanism, we investigated the amyloidogenic process related transforming growth factor β/mothers against decapentaplegic homolog 2/signal transducer and activator of transcription 3 (TGF-β/Smad2/STAT3) signaling pathway and further confirmed by administering TGF-β-overexpression adeno-associated virus (specific to astrocytes) to APP/GFAP-apoE KO mice and TGF-β-inhibition adeno-associated virus (specific to astrocytes) to APP/WT mice. Whole body deletion of apoE significantly ameliorated the spatial learning and memory impairment, reduced amyloid β-protein production and inhibited astrogliosis in APP/apoE KO mice, as well as specific deletion apoE in astrocytes in APP/GFAP-apoE KO mice. Moreover, amyloid β-protein accumulation was increased due to promotion of amyloidogenesis of APP, and astrogliosis was upregulated by activation of TGF-β/Smad2/STAT3 signaling. Furthermore, the overexpression of TGF-β in astrocytes in APP/GFAP-apoE KO mice abrogated the effects of apoE knockout. In contrast, repression of TGF-β in astrocytes of APP/WT mice exerted a therapeutic effect similar to apoE knockout. These data suggested that apoE derived from astrocytes contributes to the risk of AD through TGF-β/Smad2/STAT3 signaling activation

  2. Panax Notoginseng Saponins Promote Endothelial Progenitor Cell Mobilization and Attenuate Atherosclerotic Lesions in Apolipoprotein E Knockout Mice

    Directory of Open Access Journals (Sweden)

    Ya Liu

    2013-09-01

    Full Text Available Background: Endothelial progenitor cells (EPCs derived from the bone marrow (BM play a key role in the homeostasis of vascular repair by enhanced reendothelialization. Panax notoginseng saponins (PNS, a highly valued traditional Chinese medicine, has been shown to reduce morbidity and mortality from coronary artery disease. The present research was designed to explore the contribution of progenitor cells to the progression of atherosclerotic plaques and the possible modulatory role of PNS in this process. Methods: PNS (60 or 120 mg/kg via intraperitoneal injection was administered over 8 weeks in apolipoprotein E knockout mice on an atherogenic diet. The sizes and histochemical alteration of atherosclerotic lesions and numbers of EPCs in BM and peripheral blood were analyzed. The expression of chemokine stromal cell-derived factor 1α (SDF-1α and its receptor, CXCR4, was monitored as well. Results: PNS significantly reduced the lesion area and intima-to-media ratio compared to vehicle treatment. PNS also augmented endothelialization and reduced the smooth muscle cell (SMCs content of the lesions. The number of c-kit and sca-1 double-positive progenitor cells and flk-1 and sca-1 double-positive progenitor cells were significantly increased in the BM and the peripheral blood of the PNS-treated groups. PNS treatment increased the plasma levels of SDF-1α and SCF as well as the BM levels of matrix metalloproteinase-9 (MMP-9. Moreover, the mRNA levels of SDF-1α and protein levels of CXCR4 were both increased in the BM of mice treated with PNS, while SDF-1α expression decreased. Conclusion: PNS reduce the size of atherosclerotic plaques, and this effect appears to involve progenitor cell mobilization. SDF-1α-CXCR4 interactions and the possible modulatory role of PNS in this process may contribute to the increased progenitor cell mobilization.

  3. Apolipoprotein E in Temporal Lobe Epilepsy: A Case-Control Study

    Directory of Open Access Journals (Sweden)

    Amit Kumar

    2006-01-01

    Full Text Available Purpose: To investigate the relationship of apolipoprotein E (apoE genotype, plasma levels of apoE and lipids in temporal lobe epilepsy (TLE patients in Asian Indians. Status of plasma levels of Apo E in epilepsy patients has not been reported till date.

  4. Vascular effects of multiwalled carbon nanotubes in dyslipidemic ApoE-/- mice and cultured endothelial cells

    DEFF Research Database (Denmark)

    Cao, Yi; Jacobsen, Nicklas Raun; Danielsen, Pernille Høgh

    2014-01-01

    Accumulating evidences indicate that pulmonary exposure to carbon nanotubes (CNTs) is associated with increased risk of lung diseases, whereas the effect on the vascular system is less studied. We investigated vascular effects of 2 types of multiwalled CNTs (MWCNTs) in apolipoprotein E(-/-) mice,...

  5. Genetic and pharmacological modifications of thrombin formation in apolipoprotein e-deficient mice determine atherosclerosis severity and atherothrombosis onset in a neutrophil-dependent manner.

    Directory of Open Access Journals (Sweden)

    Julian I Borissoff

    Full Text Available BACKGROUND: Variations in the blood coagulation activity, determined genetically or by medication, may alter atherosclerotic plaque progression, by influencing pleiotropic effects of coagulation proteases. Published experimental studies have yielded contradictory findings on the role of hypercoagulability in atherogenesis. We therefore sought to address this matter by extensively investigating the in vivo significance of genetic alterations and pharmacologic inhibition of thrombin formation for the onset and progression of atherosclerosis, and plaque phenotype determination. METHODOLOGY/PRINCIPAL FINDINGS: We generated transgenic atherosclerosis-prone mice with diminished coagulant or hypercoagulable phenotype and employed two distinct models of atherosclerosis. Gene-targeted 50% reduction in prothrombin (FII(-/WT:ApoE(-/- was remarkably effective in limiting disease compared to control ApoE(-/- mice, associated with significant qualitative benefits, including diminished leukocyte infiltration, altered collagen and vascular smooth muscle cell content. Genetically-imposed hypercoagulability in TM(Pro/Pro:ApoE(-/- mice resulted in severe atherosclerosis, plaque vulnerability and spontaneous atherothrombosis. Hypercoagulability was associated with a pronounced neutrophilia, neutrophil hyper-reactivity, markedly increased oxidative stress, neutrophil intraplaque infiltration and apoptosis. Administration of either the synthetic specific thrombin inhibitor Dabigatran etexilate, or recombinant activated protein C (APC, counteracted the pro-inflammatory and pro-atherogenic phenotype of pro-thrombotic TM(Pro/Pro:ApoE(-/- mice. CONCLUSIONS/SIGNIFICANCE: We provide new evidence highlighting the importance of neutrophils in the coagulation-inflammation interplay during atherogenesis. Our findings reveal that thrombin-mediated proteolysis is an unexpectedly powerful determinant of atherosclerosis in multiple distinct settings. These studies suggest that

  6. Apolipoprotein E Genotype-Dependent Paradoxical Short-Term Effects of {sup 56}Fe Irradiation on the Brain

    Energy Technology Data Exchange (ETDEWEB)

    Haley, Gwendolen E. [Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR (United States); Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR (United States); Villasana, Laura; Dayger, Catherine; Davis, Matthew J. [Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR (United States); Raber, Jacob, E-mail: raberj@ohsu.edu [Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR (United States); Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR (United States); Department of Neurology, Oregon Health and Science University, Portland, OR (United States)

    2012-11-01

    Purpose: In humans, apolipoprotein E (apoE) is encoded by three major alleles ({epsilon}2, {epsilon}3, and {epsilon}4) and, compared to apoE3, apoE4 increases the risk of developing Alzheimer disease and cognitive impairments following various environmental challenges. Exposure to irradiation, including that of {sup 56}Fe, during space missions poses a significant risk to the central nervous system, and apoE isoform might modulate this risk. Methods and Materials: We investigated whether apoE isoform modulates hippocampus-dependent cognitive performance starting 2 weeks after {sup 56}Fe irradiation. Changes in reactive oxygen species (ROS) can affect cognition and are induced by irradiation. Therefore, after cognitive testing, we assessed hippocampal ROS levels in ex vivo brain slices, using the ROS-sensitive fluorescent probe, dihydroethidium (DHE). Brain levels of 3-nitrotyrosine (3-NT), CuZn superoxide dismutase (CuZnSOD), extracellular SOD, and apoE were assessed using Western blotting analysis. Results: In the water maze, spatial memory retention was impaired by irradiation in apoE2 and apoE4 mice but enhanced by irradiation in apoE3 mice. Irradiation reduced DHE-oxidation levels in the enclosed blade of the dentate gyrus and levels of 3-NT and CuZnSOD in apoE2 but not apoE3 or apoE4 mice. Finally, irradiation increased apoE levels in apoE3 but not apoE2 or apoE4 mice. Conclusions: The short-term effects of {sup 56}Fe irradiation on hippocampal ROS levels and hippocampus-dependent spatial memory retention are apoE isoform-dependent.

  7. Apolipoprotein e4 allele and cognitive decline in elderly men

    NARCIS (Netherlands)

    Feskens, E.J.M.; Havekes, L.M.; Kalmijn, S.; Knijff, P. de; Launer, L.J.; Kromhout, D.

    1994-01-01

    Objectives - To determine whether polymorphism of apolipoprotein E - notably, the e4 allele - predicts cognitive deterioration in the general population. Design - Population based cohort investigated in 1990 and in 1993. Setting - Zutphen, the Netherlands. Subjects - Representative cohort of 538

  8. Gender affects skin wound healing in plasminogen deficient mice.

    Directory of Open Access Journals (Sweden)

    Birgitte Rønø

    Full Text Available The fibrinolytic activity of plasmin plays a fundamental role in resolution of blood clots and clearance of extravascular deposited fibrin in damaged tissues. These vital functions of plasmin are exploited by malignant cells to accelerate tumor growth and facilitate metastases. Mice lacking functional plasmin thus display decreased tumor growth in a variety of cancer models. Interestingly, this role of plasmin has, in regard to skin cancer, been shown to be restricted to male mice. It remains to be clarified whether gender also affects other phenotypic characteristics of plasmin deficiency or if this gender effect is restricted to skin cancer. To investigate this, we tested the effect of gender on plasmin dependent immune cell migration, accumulation of hepatic fibrin depositions, skin composition, and skin wound healing. Gender did not affect immune cell migration or hepatic fibrin accumulation in neither wildtype nor plasmin deficient mice, and the existing differences in skin composition between males and females were unaffected by plasmin deficiency. In contrast, gender had a marked effect on the ability of plasmin deficient mice to heal skin wounds, which was seen as an accelerated wound closure in female versus male plasmin deficient mice. Further studies showed that this gender effect could not be reversed by ovariectomy, suggesting that female sex-hormones did not mediate the accelerated skin wound healing in plasmin deficient female mice. Histological examination of healed wounds revealed larger amounts of fibrotic scars in the provisional matrix of plasmin deficient male mice compared to female mice. These fibrotic scars correlated to an obstruction of cell infiltration of the granulation tissue, which is a prerequisite for wound healing. In conclusion, the presented data show that the gender dependent effect of plasmin deficiency is tissue specific and may be secondary to already established differences between genders, such as skin

  9. Apolipoprotein M promotes mobilization of cellular cholesterol in vivo

    DEFF Research Database (Denmark)

    Elsøe, Sara; Christoffersen, Christina; Luchoomun, Jayraz

    2013-01-01

    The HDL associated apolipoprotein M (apoM) protects against experimental atherosclerosis but the mechanism is unknown. ApoM increases prebeta-HDL formation. We explored whether plasma apoM affects mobilization of cholesterol from peripheral cells in mice.......The HDL associated apolipoprotein M (apoM) protects against experimental atherosclerosis but the mechanism is unknown. ApoM increases prebeta-HDL formation. We explored whether plasma apoM affects mobilization of cholesterol from peripheral cells in mice....

  10. Amphipathic α-Helices in Apolipoproteins Are Crucial to the Formation of Infectious Hepatitis C Virus Particles

    Science.gov (United States)

    Nakamura, Shota; Ono, Chikako; Shiokawa, Mai; Yamamoto, Satomi; Motomura, Takashi; Okamoto, Toru; Okuzaki, Daisuke; Yamamoto, Masahiro; Saito, Izumu; Wakita, Takaji; Koike, Kazuhiko; Matsuura, Yoshiharu

    2014-01-01

    Apolipoprotein B (ApoB) and ApoE have been shown to participate in the particle formation and the tissue tropism of hepatitis C virus (HCV), but their precise roles remain uncertain. Here we show that amphipathic α-helices in the apolipoproteins participate in the HCV particle formation by using zinc finger nucleases-mediated apolipoprotein B (ApoB) and/or ApoE gene knockout Huh7 cells. Although Huh7 cells deficient in either ApoB or ApoE gene exhibited slight reduction of particles formation, knockout of both ApoB and ApoE genes in Huh7 (DKO) cells severely impaired the formation of infectious HCV particles, suggesting that ApoB and ApoE have redundant roles in the formation of infectious HCV particles. cDNA microarray analyses revealed that ApoB and ApoE are dominantly expressed in Huh7 cells, in contrast to the high level expression of all of the exchangeable apolipoproteins, including ApoA1, ApoA2, ApoC1, ApoC2 and ApoC3 in human liver tissues. The exogenous expression of not only ApoE, but also other exchangeable apolipoproteins rescued the infectious particle formation of HCV in DKO cells. In addition, expression of these apolipoproteins facilitated the formation of infectious particles of genotype 1b and 3a chimeric viruses. Furthermore, expression of amphipathic α-helices in the exchangeable apolipoproteins facilitated the particle formation in DKO cells through an interaction with viral particles. These results suggest that amphipathic α-helices in the exchangeable apolipoproteins play crucial roles in the infectious particle formation of HCV and provide clues to the understanding of life cycle of HCV and the development of novel anti-HCV therapeutics targeting for viral assembly. PMID:25502789

  11. Bicarbonate-sensitive calcification and lifespan of klotho-deficient mice.

    Science.gov (United States)

    Leibrock, Christina B; Voelkl, Jakob; Kohlhofer, Ursula; Quintanilla-Martinez, Leticia; Kuro-O, Makoto; Lang, Florian

    2016-01-01

    Klotho, a protein counteracting aging, is a powerful inhibitor of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] formation and regulator of mineral metabolism. In klotho hypomorphic (kl/kl) mice, excessive 1,25(OH)2D3 formation leads to hypercalcemia, hyperphosphatemia and vascular calcification, severe growth deficits, accelerated aging and early death. Kl/kl mice further suffer from extracellular volume depletion and hypotension, leading to the stimulation of antidiuretic hormone and aldosterone release. A vitamin D-deficient diet, restriction of dietary phosphate, inhibition of mineralocorticoid receptors with spironolactone, and dietary NaCl all extend the lifespan of kl/kl mice. Kl/kl mice suffer from acidosis. The present study explored whether replacement of tap drinking water by 150 mM NaHCO3 affects the growth, tissue calcification, and lifespan of kl/kl mice. As a result, NaHCO3 administration to kl/kl mice did not reverse the growth deficit but substantially decreased tissue calcification and significantly increased the average lifespan from 78 to 127 days. NaHCO3 did not significantly affect plasma concentrations of 1,25(OH)2D3 and Ca(2+) but significantly decreased plasma phosphate concentration and plasma aldosterone concentration. The present study reveals a novel effect of bicarbonate, i.e., a favorable influence on vascular calcification and early death of klotho-deficient mice. Copyright © 2016 the American Physiological Society.

  12. Effects of Nrf2 deficiency on arsenic metabolism in mice.

    Science.gov (United States)

    Wang, Huihui; Zhu, Jiayu; Li, Lu; Li, Yongfang; Lv, Hang; Xu, Yuanyuan; Sun, Guifan; Pi, Jingbo

    2017-12-15

    Inorganic arsenic (iAs) is a known toxicant and carcinogen. Worldwide arsenic exposure has become a threat to human health. The severity of arsenic toxicity is strongly correlated with the speed of arsenic metabolism (methylation) and clearance. Furthermore, oxidative stress is recognized as a major mechanism for arsenic-induced toxicity. Nuclear factor-E2-related factor 2 (Nrf2), a key regulator in cellular adaptive antioxidant response, is clearly involved in alleviation of arsenic-induced oxidative damage. Multiple studies demonstrate that Nrf2 deficiency mice are more vulnerable to arsenic-induced intoxication. However, what effect Nrf2 deficiency might have on arsenic metabolism in mice is still unknown. In the present study, we measured the key enzymes involved in arsenic metabolism in Nrf2-WT and Nrf2-KO mice. Our results showed that basal transcript levels of glutathione S-transferase omega 2 (Gsto2) were significantly higher and GST mu 1 (Gstm1) lower in Nrf2-KO mice compared to Nrf2-WT control. Arsenic speciation and methylation rate in liver and urine was then studied in mice treated with 5mg/kg sodium arsenite for 12h. Although there were some alterations in arsenic metabolism enzymes between Nrf2-WT and Nrf2-KO mice, the Nrf2 deficiency had no significant effect on arsenic methylation. These results suggest that the Nrf2-KO mice are more sensitive to arsenic than Nrf2-WT mainly because of differences in adaptive antioxidant detoxification capacity rather than arsenic methylation capacity. Copyright © 2017. Published by Elsevier Inc.

  13. IGF-1 deficiency impairs cerebral myogenic autoregulation in hypertensive mice.

    Science.gov (United States)

    Toth, Peter; Tucsek, Zsuzsanna; Tarantini, Stefano; Sosnowska, Danuta; Gautam, Tripti; Mitschelen, Matthew; Koller, Akos; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2014-12-01

    Aging impairs autoregulatory protection in the brain, exacerbating hypertension-induced cerebromicrovascular injury, neuroinflammation, and development of vascular cognitive impairment. Despite the importance of the age-related decline in circulating insulin-like growth factor-1 (IGF-1) levels in cerebrovascular aging, the effects of IGF-1 deficiency on functional adaptation of cerebral arteries to high blood pressure remain elusive. To determine whether IGF-1 deficiency impairs autoregulatory protection, hypertension was induced in control and IGF-1-deficient mice (Igf1(f/f)+TBG-iCre-AAV8) by chronic infusion of angiotensin-II. In hypertensive control mice, cerebral blood flow (CBF) autoregulation was extended to higher pressure values and the pressure-induced tone of middle cerebral arteries (MCAs) was increased. In hypertensive IGF-1-deficient mice, autoregulation was markedly disrupted, and MCAs did not show adaptive increases in myogenic tone. In control mice, the mechanism of adaptation to hypertension involved upregulation of TRPC channels in MCAs and this mechanism was impaired in hypertensive IGF-1-deficient mice. Likely downstream consequences of cerebrovascular autoregulatory dysfunction in hypertensive IGF-1-deficient mice included exacerbated disruption of the blood-brain barrier and neuroinflammation (microglia activation and upregulation of proinflammatory cytokines and chemokines), which were associated with impaired hippocampal cognitive function. Collectively, IGF-1 deficiency impairs autoregulatory protection in the brain of hypertensive mice, potentially exacerbating cerebromicrovascular injury and neuroinflammation mimicking the aging phenotype.

  14. Air pollution is associated with the development of atherosclerosis via the cooperation of CD36 and NLRP3 inflammasome in ApoE-/- mice.

    Science.gov (United States)

    Du, Xihao; Jiang, Shuo; Zeng, Xuejiao; Zhang, Jia; Pan, Kun; Zhou, Ji; Xie, Yuquan; Kan, Haidong; Song, Weimin; Sun, Qinghua; Zhao, Jinzhuo

    2018-06-15

    Previous studies have indicated that the main air pollutant fine particulate matter (≤2.5 μm; PM 2.5 ) exposure is associated with the development of atherosclerosis. Although the mechanism is not fully illustrated, the inflammatory responses play an important role. The present study aimed to explore whether PM 2.5 -exacerbated atherosclerosis was mediated by the cooperation of cluster of differentiation 36 (CD36) and nucleotide-binding oligomerization domain-like receptor protein (NLRP3) inflammasome in apolipoprotein E -/- (ApoE -/- ) mice. Thirty-two ApoE -/- mice were randomly divided into two groups. One group was fed with high fat chow (HFC) for 10 weeks to establish atherosclerotic model, and the other was fed with normal chow (NC). From week 11, the mice were exposed to concentrated PM 2.5 (PM) or filtered air (FA) using Shanghai Meteorological and Environmental Animal Exposure System for 16 weeks. In both NC and HFC groups, PM 2.5 exposure induced the formation of atherosclerosis plaque. Similarly, PM mice appeared higher lipid content in the aortic root than that in the FA mice. Compared with the FA mice, PM mice appeared a decrease in high density lipoprotein-cholesterol (HDL-C) and apolipoprotein A1 along with an increase in apolipoprotein B, low density lipoprotein-cholesterol (LDL-C) and oxidized low-density lipoprotein (ox-LDL). Moreover, PM 2.5 exposure induced increase of CD36 in serum and aorta. In both NC and HFC groups, NLRP3 inflammasome activation-related indicators were activated or increased in the aorta of the PM mice when compared with the FA mice. The cooperation of CD36 and NLRP3 inflammasome activation may be the potential mechanisms linkixposed to concentrated PM 2.5 (PM) or filtered air (FA) using Shanghai Meteorological and Environmental Animal Exposure System for 16 weeks. In both NC and HFC groups, PM 2.5 exposure induced the formation of atherosclerosis plaque. Similarly, PM mice appeared higher lipid content in the aortic

  15. Meta-analysis of melanin-concentrating hormone signaling-deficient mice on behavioral and metabolic phenotypes.

    Directory of Open Access Journals (Sweden)

    Kenkichi Takase

    Full Text Available The demand for meta-analyses in basic biomedical research has been increasing because the phenotyping of genetically modified mice does not always produce consistent results. Melanin-concentrating hormone (MCH has been reported to be involved in a variety of behaviors that include feeding, body-weight regulation, anxiety, sleep, and reward behavior. However, the reported behavioral and metabolic characteristics of MCH signaling-deficient mice, such as MCH-deficient mice and MCH receptor 1 (MCHR1-deficient mice, are not consistent with each other. In the present study, we performed a meta-analysis of the published data related to MCH-deficient and MCHR1-deficient mice to obtain robust conclusions about the role of MCH signaling. Overall, the meta-analysis revealed that the deletion of MCH signaling enhanced wakefulness, locomotor activity, aggression, and male sexual behavior and that MCH signaling deficiency suppressed non-REM sleep, anxiety, responses to novelty, startle responses, and conditioned place preferences. In contrast to the acute orexigenic effect of MCH, MCH signaling deficiency significantly increased food intake. Overall, the meta-analysis also revealed that the deletion of MCH signaling suppressed the body weight, fat mass, and plasma leptin, while MCH signaling deficiency increased the body temperature, oxygen consumption, heart rate, and mean arterial pressure. The lean phenotype of the MCH signaling-deficient mice was also confirmed in separate meta-analyses that were specific to sex and background strain (i.e., C57BL/6 and 129Sv. MCH signaling deficiency caused a weak anxiolytic effect as assessed with the elevated plus maze and the open field test but also caused a weak anxiogenic effect as assessed with the emergence test. MCH signaling-deficient mice also exhibited increased plasma corticosterone under non-stressed conditions, which suggests enhanced activity of the hypothalamic-pituitary-adrenal axis. To the best of our

  16. Quantitation of apolipoprotein epsilon gene expression by competitive polymerase chain reaction in a patient with familial apolipoprotein E deficiency.

    Science.gov (United States)

    Dobmeyer, J M; Rexin, M; Dobmeyer, T S; Klein, S A; Rossol, R; Feussner, G

    1998-06-22

    A simple method of obtaining semiquantitative and reliable data on apolipoprotein (apo) sigma gene expression is described. We detected apo sigma specific sequences by reverse transcription (rT)-PCR. For quantitative measurement, an apo sigma DNA standard was produced allowing the development of a competitive PCR-method. The efficiency of RNA extraction and cDNA synthesis was controlled by quantitation of a housekeeping gene (glyceraldehyde-3-phosphatedehydrogenase, G3PDH) in separate reactions. To imitate a defined induction of apo sigma gene expression, serial twofold dilutions of total RNA were reversely transcribed and the respective cDNAs used to perform a competitive apo sigma and G3PDH PCR. The change in apo sigma cDNA and G3PDH cDNA was 1.7-2.3-fold with an expected value of 2.0-fold. Standard deviations in three independently performed experiments were within a range of < 15% of the mean, indicating low intra-assay variation and high reproducibility. To illustrate this method, apo sigma gene expression was measured in a patient with complete lack of functional active apo E in comparison to healthy controls. The method presented here might be valuable in assessment of apo sigma gene expression in human disease.

  17. Apolipoprotein E4 influences growth and cognitive responses to micronutrient supplementation in shantytown children from northeast Brazil

    Directory of Open Access Journals (Sweden)

    Sumeet S Mitter

    2012-01-01

    Full Text Available OBJECTIVE: Apolipoprotein E4 may benefit children during early periods of life when the body is challenged by infection and nutritional decline. We examined whether apolipoprotein E4 affects intestinal barrier function, improving short-term growth and long-term cognitive outcomes in Brazilian shantytown children. METHODS: A total of 213 Brazilian shantytown children with below-median height-for-age z-scores (HAZ received 200,000 IU of retinol (every four months, zinc (40 mg twice weekly, or both for one year, with half of each group receiving glutamine supplementation for 10 days. Height-for-age z-scores, weight-for-age z-scores, weight-forheight z-scores, and lactulose:mannitol ratios were assessed during the initial four months of treatment. An average of four years (range 1.4-6.6 later, the children underwent cognitive testing to evaluate non-verbal intelligence, coding, verbal fluency, verbal learning, and delayed verbal learning. Apolipoprotein E4 carriage was determined by PCR analysis for 144 children. RESULTS: Thirty-seven children were apolipoprotein E4(+, with an allele frequency of 13.9%. Significant associations were found for vitamin A and glutamine with intestinal barrier function. Apolipoprotein E4(+ children receiving glutamine presented significant positive Pearson correlations between the change in height-for-age z-scores over four months and delayed verbal learning, along with correlated changes over the same period in weight-for-age z-scores and weight-for-height z-scores associated with non-verbal intelligence quotients. There was a significant correlation between vitamin A supplementation of apolipoprotein E4(+ children and improved delta lactulose/mannitol. Apolipoprotein E4(- children, regardless of intervention, exhibited negative Pearson correlations between the change in lactulose-to-mannitol ratio over four months and verbal learning and non-verbal intelligence. CONCLUSIONS: During development, apolipoprotein E4 may

  18. Polymicrobial infection with major periodontal pathogens induced periodontal disease and aortic atherosclerosis in hyperlipidemic ApoE(null mice.

    Directory of Open Access Journals (Sweden)

    Mercedes F Rivera

    Full Text Available Periodontal disease (PD and atherosclerosis are both polymicrobial and multifactorial and although observational studies supported the association, the causative relationship between these two diseases is not yet established. Polymicrobial infection-induced periodontal disease is postulated to accelerate atherosclerotic plaque growth by enhancing atherosclerotic risk factors of orally infected Apolipoprotein E deficient (ApoE(null mice. At 16 weeks of infection, samples of blood, mandible, maxilla, aorta, heart, spleen, and liver were collected, analyzed for bacterial genomic DNA, immune response, inflammation, alveolar bone loss, serum inflammatory marker, atherosclerosis risk factors, and aortic atherosclerosis. PCR analysis of polymicrobial-infected (Porphyromonas gingivalis [P. gingivalis], Treponema denticola [T. denticola], and Tannerella forsythia [T. forsythia] mice resulted in detection of bacterial genomic DNA in oral plaque samples indicating colonization of the oral cavity by all three species. Fluorescent in situ hybridization detected P. gingivalis and T. denticola within gingival tissues of infected mice and morphometric analysis showed an increase in palatal alveolar bone loss (p<0.0001 and intrabony defects suggesting development of periodontal disease in this model. Polymicrobial-infected mice also showed an increase in aortic plaque area (p<0.05 with macrophage accumulation, enhanced serum amyloid A, and increased serum cholesterol and triglycerides. A systemic infection was indicated by the detection of bacterial genomic DNA in the aorta and liver of infected mice and elevated levels of bacterial specific IgG antibodies (p<0.0001. This study was a unique effort to understand the effects of a polymicrobial infection with P. gingivalis, T. denticola and T. forsythia on periodontal disease and associated atherosclerosis in ApoE(null mice.

  19. Apolipoprotein E and cardiovascular disease

    Directory of Open Access Journals (Sweden)

    Adriana Moreno Valladares

    2006-01-01

    Full Text Available Apolipoprotein E is a polymorphic glycoprotein who interacts with the lipoprotein receptors (LRP-Receptor Related Protein and the receptors for low density lipoproteins of (LDL receptors. When lipoproteins bring up the receptors begins lipids captation and degradation which allows cholesterol utilization, taking place an intracellular auto regulation. The three isoforms of greater importance: Apo E2, E3 and E4 are product of three alleles e2, e3, e4 of one only gene. This factor is related with the amount of lipoproteins that contains ApoE for E/B receptors. A low concentration of lipoproteins with ApoE can increase the activity of LDL receptors and consequently downward the circulating LDL. In the other hand particles with Apo E3 or Apo E4, can cause a downward regulation of LDL and in this way produces a LDL plasma elevation. Many studies in human populations have concluded that this polymorphism of apoE and the plasma variation of lipoproteins are associated with cardiovascular risk. Cardiovascular disease is the result of different interaction between factors which are genetic factor specially ApoE polymorphism e4 allelic of ApoE can explain, in some degree, the greater frequency of cardiovascular disease in those who carries it.

  20. Sildenafil restores endothelial function in the apolipoprotein E knockout mouse

    Directory of Open Access Journals (Sweden)

    Balarini Camille M

    2013-01-01

    Full Text Available Abstract Background Atherosclerosis is an inflammatory process of the arterial walls and is initiated by endothelial dysfunction accompanied by an imbalance in the production of reactive oxygen species (ROS and nitric oxide (NO. Sildenafil, a selective phosphodiesterase-5 (PDE5 inhibitor used for erectile dysfunction, exerts its cardiovascular effects by enhancing the effects of NO. The aim of this study was to investigate the influence of sildenafil on endothelial function and atherosclerosis progression in apolipoprotein E knockout (apoE−/− mice. Methods ApoE−/− mice treated with sildenafil (Viagra®, 40 mg/kg/day, for 3 weeks, by oral gavage were compared to the untreated apoE−/− and the wild-type (WT mice. Aortic rings were used to evaluate the relaxation responses to acetylcholine (ACh in all of the groups. In a separate set of experiments, the roles of NO and ROS in the relaxation response to ACh were evaluated by incubating the aortic rings with L-NAME (NO synthase inhibitor or apocynin (NADPH oxidase inhibitor. In addition, the atherosclerotic lesions were quantified and superoxide production was assessed. Results Sildenafil restored the vasodilator response to acetylcholine (ACh in the aortic rings of the apoE−/− mice. Treatment with L-NAME abolished the vasodilator responses to ACh in all three groups of mice and revealed an augmented participation of NO in the endothelium-dependent vasodilation in the sildenafil-treated animals. The normalized endothelial function in sildenafil-treated apoE−/− mice was unaffected by apocynin highlighting the low levels of ROS production in these animals. Moreover, morphological analysis showed that sildenafil treatment caused approximately a 40% decrease in plaque deposition in the aorta. Conclusion This is the first study demonstrating the beneficial effects of chronic treatment with sildenafil on endothelial dysfunction and atherosclerosis in a model of spontaneous

  1. Learning and memory in mice with neuropathic pain: impact of old age and progranulin deficiency

    Directory of Open Access Journals (Sweden)

    Boris eAlbuquerque

    2013-11-01

    Full Text Available Persistent neuropathic pain is a frequent consequence of peripheral nerve injuries, particularly in the elderly. Using the IntelliCage we studied if a sciatic nerve injury obstructed learning and memory in young and aged mice, each in wild type and progranulin deficient mice, which develop premature signs of brain aging and are more susceptible to nerve injury evoked nociceptive hypersensitivity and hence allow to assess a potential mutual aggravation of pain and old age. Both young and aged mice developed long-term nerve injury-evoked hyperalgesia and allodynia but, in both genotypes, only aged mice with neuropathic pain showed high error rates in place avoidance acquisition tasks. Once learnt however, aged mice with neuropathic pain maintained the aversive memory longer, i.e. the extinction was significantly slowed. In addition, nerve injury in progranulin deficient mice impaired the learning of spatial sequences of awarded places, particularly in aged mice, whereas easy place preference learning was not affected by nerve injury or progranulin deficiency. The sequencing task required a discrimination of clockwise and anti-clockwise sequences and spatial flexibility to re-learn a novel sequence. The loss of spatial flexibility did not occur in sham operated mice, i.e. was a consequence of nerve injury and suggests that neuropathic pain accelerates manifestations of old age and progranulin deficiency. Neuropathic pain at old age, irrespective of the genotype, resulted in a long maintenance of aversive memory suggesting a negative alliance and possibly mutual aggravation of chronic neuropathic pain and aversive memory at old age.

  2. Impaired bone formation in Pdia3 deficient mice.

    Directory of Open Access Journals (Sweden)

    Yun Wang

    Full Text Available 1α,25-Dihydroxyvitamin D3 [1α,25(OH2D3] is crucial for normal skeletal development and bone homeostasis. Protein disulfide isomerase family A, member 3 (PDIA3 mediates 1α,25(OH2D3 initiated-rapid membrane signaling in several cell types. To understand its role in regulating skeletal development, we generated Pdia3-deficient mice and examined the physiologic consequence of Pdia3-disruption in embryos and Pdia3+/- heterozygotes at different ages. No mice homozygous for the Pdia3-deletion were found at birth nor were there embryos after E12.5, indicating that targeted disruption of the Pdia3 gene resulted in early embryonic lethality. Pdia3-deficiency also resulted in skeletal manifestations as revealed by µCT analysis of the tibias. In comparison to wild type mice, Pdia3 heterozygous mice displayed expanded growth plates associated with decreased tether formation. Histomorphometry also showed that the hypertrophic zone in Pdia3+/- mice was more cellular than seen in wild type growth plates. Metaphyseal trabecular bone in Pdia3+/- mice exhibited an age-dependent phenotype with lower BV/TV and trabecular numbers, which was most pronounced at 15 weeks of age. Bone marrow cells from Pdia3+/- mice exhibited impaired osteoblastic differentiation, based on reduced expression of osteoblast markers and mineral deposition compared to cells from wild type animals. Collectively, our findings provide in vivo evidence that PDIA3 is essential for normal skeletal development. The fact that the Pdia3+/- heterozygous mice share a similar growth plate and bone phenotype to nVdr knockout mice, suggests that PDIA3-mediated rapid membrane signaling might be an alternative mechanism responsible for 1α,25(OH2D3's actions in regulating skeletal development.

  3. Apolipoprotein E and carotid artery atherosclerosis - The Rotterdam study

    NARCIS (Netherlands)

    Slooter, AJC; Bots, ML; Havekes, LM; del Sol, AI; Cruts, M; Grobbee, DE; Hofman, A; Van Broeckhoven, C; Witteman, JCM; van Duijn, CM

    Background and Purpose-Carotid artery atherosclerosis is a strong predictor for future stroke. It is yet unclear whether the apolipoprotein E polymorphism (APOE) is related to atherosclerosis in the carotid arteries. The aim of the present study was to investigate the role of APOE in carotid artery

  4. [Apolipoprotein e polymorphism and cognitive function change of the elderly in a rural area, Korea].

    Science.gov (United States)

    Kim, Sang Kyu; Hwang, Tae Yoon; Lee, Kyeong Soo; Kang, Pock Soo; Cho, Hee Soon; Bae, Young Kyung

    2009-07-01

    The aim of this study is to examine the cognitive function change related to aging, the incidence of cognitive impairment, and the association between apolipoprotein E polymorphism and cognitive impairment through a follow-up of the elderly with normal cognitive ability at baseline. Two hundred and fifteen subjects aged 65 and over were surveyed in February, 1998 (baseline survey), and their cognitive function was assessed again in 2003 (1st follow-up) and the once again in 2006 (2nd follow-up). Ninety one subjects completed all surveys up through the 2nd follow-up and their cognitive function scores using MMSE-K (Korean Version of the Mini-Mental State Examination) and the distribution of apolipoprotein E allele were analyzed. The cognitive function scores decreased with aging and the difference between baseline and the 2nd follow-up scores of the study increased with the age group. The incidence rate of cognitive impairment through an 8-year follow-up was 38.5% and higher in older age groups. Age was the only significant factor for incidence of cognitive impairment, but there was no significant association between apolipoprotein E genotype and incidence of cognitive impairment. The cognition of the elderly decreased with aging and the association of apolipoprotein E genotype with incidence of cognitive impairment was not significant in this study. To confirm the association between apolipoprotein E polymorphism and incidence of cognitive impairment further studies will be needed.

  5. Lipoxin A4 and platelet activating factor are involved in E. coli or LPS-induced lung inflammation in CFTR-deficient mice.

    Directory of Open Access Journals (Sweden)

    Haiya Wu

    Full Text Available CFTR (cystic fibrosis transmembrane conductance regulator is expressed by both neutrophils and platelets. Lack of functional CFTR could lead to severe lung infection and inflammation. Here, we found that mutation of CFTR (F508del or inhibition of CFTR in mice led to more severe thrombocytopenia, alveolar neutrocytosis and bacteriosis, and lower lipoxin A4/MIP-2 (macrophage inhibitory protein-2 or lipoxin A4/neutrophil ratios in the BAL (bronchoalveolar lavage during acute E. coli pneumonia. In vitro, inhibition of CFTR promotes MIP-2 production in LPS-stimulated neutrophils; however, lipoxin A4 could dose-dependently suppress this effect. In LPS-induced acute lung inflammation, blockade of PSGL-1 (P-selectin glycoprotein ligand-1 or P-selectin, antagonism of PAF by WEB2086, or correction of mutated CFTR trafficking by KM11060 could significantly increase plasma lipoxin A4 levels in F508del relevant to wildtype mice. Concurrently, F508del mice had higher plasma platelet activating factor (PAF levels and PAF-AH activity compared to wildtype under LPS challenge. Inhibiting hydrolysis of PAF by a specific PAF-AH (PAF-acetylhydrolase inhibitor, MAFP, could worsen LPS-induced lung inflammation in F508del mice compared to vehicle treated F508del group. Particularly, depletion of platelets in F508del mice could significantly decrease plasma lipoxin A4 and PAF-AH activity and deteriorate LPS-induced lung inflammation compared to control F508del mice. Taken together, lipoxin A4 and PAF are involved in E. coli or LPS-induced lung inflammation in CFTR-deficient mice, suggesting that lipoxin A4 and PAF might be therapeutic targets for ameliorating CFTR-deficiency deteriorated lung inflammation.

  6. Circadian behaviour in neuroglobin deficient mice

    DEFF Research Database (Denmark)

    Hundahl, Christian A; Fahrenkrug, Jan; Hay-Schmidt, Anders

    2012-01-01

    on circadian behavior. Ngb-deficient and wild-type (wt) mice were placed in running wheels and their activity rhythms, endogenous period and response to light stimuli were investigated. The effect of Ngb deficiency on the expression of Period1 (Per1) and the immediate early gene Fos was determined after light...

  7. Normal macrophage function in copper deficient mice

    International Nuclear Information System (INIS)

    Lukasewycz, O.A.; Kolquist, K.L.; Prohaska, J.R.

    1986-01-01

    Copper deficiency (-Cu) was produced in C57 BL and C58 mice by feeding a low copper diet (modified AIN-76A) from birth. Mice given supplemental copper in the drinking water (+Cu) served as controls. Copper status was monitored by assay of ceruloplasmin (CP) activity. Macrophages (M0) were obtained from matched +Cu and -Cu male 7 week-old mice by peritoneal lavage 3 days after thioglycollate stimulation. M0 were assayed in terms of lipopolysaccharide-induced hexose monophosphate shunt activity by monitoring 14 CO 2 production from [1- 14 C]-glucose and by the determination of phagocytic index using fluorescein labelled latex bead ingestion. M0 from -Cu mice were equivalent to those of +Cu mice in both these parameters. However, superoxide dismutase and cytochrome oxidase activities were both significantly lower in -Cu M0, confirming a functional copper deficiency. Previous results from this laboratory have shown that -Cu mice have a decreased antibody response to sheep erythrocyte antigens and a diminished reactivity to B and T cell mitogens. These immunological insufficiencies appear to be proportional to the severity of copper depletion as determined by CP levels. Furthermore, -Cu lymphocytes exhibit depressed mixed lymphocyte reactivity consistent with alterations at the membrane surface. The present results suggest that M0/monocytes are less severely affected than lymphocytes in copper deficiency states

  8. Loss of Dependence on Continued Expression of the Human Papillomavirus 16 E7 Oncogene in Cervical Cancers and Precancerous Lesions Arising in Fanconi Anemia Pathway-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Soyeong Park

    2016-05-01

    Full Text Available Fanconi anemia (FA is a rare genetic disorder caused by defects in DNA damage repair. FA patients often develop squamous cell carcinoma (SCC at sites where high-risk human papillomaviruses (HPVs are known to cause cancer, including the cervix. However, SCCs found in human FA patients are often HPV negative, even though the majority of female FA patients with anogenital cancers had preexisting HPV-positive dysplasia. We hypothesize that HPVs contribute to the development of SCCs in FA patients but that the continued expression of HPV oncogenes is not required for the maintenance of the cancer state because FA deficiency leads to an accumulation of mutations in cellular genes that render the cancer no longer dependent upon viral oncogenes. We tested this hypothesis, making use of Bi-L E7 transgenic mice in which we temporally controlled expression of HPV16 E7, the dominant viral oncogene in HPV-associated cancers. As seen before, the persistence of cervical neoplastic disease was highly dependent upon the continued expression of HPV16 E7 in FA-sufficient mice. However, in mice with FA deficiency, cervical cancers persisted in a large fraction of the mice after HPV16 E7 expression was turned off, indicating that these cancers had escaped from their dependency on E7. Furthermore, the severity of precancerous lesions also failed to be reduced significantly in the mice with FA deficiency upon turning off expression of E7. These findings confirm our hypothesis and may explain the fact that, while FA patients have a high frequency of infections by HPVs and HPV-induced precancerous lesions, the cancers are frequently HPV negative.

  9. Essential fatty acid deficiency in mice impairs lactose digestion

    NARCIS (Netherlands)

    Lukovac, S.; Los, E. L.; Stellaard, F.; Rings, E. H. H. M.; Verkade, H. J.

    Essential fatty acid (EFA) deficiency in mice induces fat malabsorption. We previously reported indications that the underlying mechanism is located at the level of the intestinal mucosa. We have investigated the effects of EFA deficiency on small intestinal morphology and function. Mice were fed an

  10. Cardiovascular changes in atherosclerotic ApoE-deficient mice exposed to Co60 (γ radiation.

    Directory of Open Access Journals (Sweden)

    Prem Kumarathasan

    Full Text Available BACKGROUND: There is evidence for a role of ionizing radiation in cardiovascular diseases. The goal of this work was to identify changes in oxidative and nitrative stress pathways and the status of the endothelinergic system during progression of atherosclerosis in ApoE-deficient mice after single and repeated exposure to ionizing radiation. METHODS AND RESULTS: B6.129P2-ApoE tmlUnc mice on a low-fat diet were acutely exposed (whole body to Co60 (γ (single dose 0, 0.5, and 2 Gy at a dose rate of 36.32 cGy/min, or repeatedly (cumulative dose 0 and 2 Gy at a dose-rate of 0.1 cGy/min for 5 d/wk, over a period of 4 weeks. Biological endpoints were investigated after 3-6 months of recovery post-radiation. The nitrative stress marker 3-nitrotyrosine and the vasoregulator peptides endothelin-1 and endothelin-3 in plasma were increased (p<0.05 in a dose-dependent manner 3-6 months after acute or chronic exposure to radiation. The oxidative stress marker 8-isoprostane was not affected by radiation, while plasma 8-hydroxydeoxyguanosine and L-3,4-dihydroxyphenylalanine decreased (p<0.05 after treatment. At 2Gy radiation dose, serum cholesterol was increased (p = 0.008 relative to controls. Percent lesion area increased (p = 0.005 with age of animal, but not with radiation treatment. CONCLUSIONS: Our observations are consistent with persistent nitrative stress and activation of the endothelinergic system in ApoE-/- mice after low-level ionizing radiation exposures. These mechanisms are known factors in the progression of atherosclerosis and other cardiovascular diseases.

  11. Apolipoprotein E genotype, cardiovascular biomarkers and risk of stroke

    DEFF Research Database (Denmark)

    Khan, Tauseef A; Shah, Tina; Prieto, David

    2013-01-01

    At the APOE gene, encoding apolipoprotein E, genotypes of the ε2/ε3/ε4 alleles associated with higher LDL-cholesterol (LDL-C) levels are also associated with higher coronary risk. However, the association of APOE genotype with other cardiovascular biomarkers and risk of ischaemic stroke is less c...

  12. Human thrombomodulin knock-in mice reveal differential effects of human thrombomodulin on thrombosis and atherosclerosis.

    Science.gov (United States)

    Raife, Thomas J; Dwyre, Denis M; Stevens, Jeff W; Erger, Rochelle A; Leo, Lorie; Wilson, Katina M; Fernández, Jose A; Wilder, Jennifer; Kim, Hyung-Suk; Griffin, John H; Maeda, Nobuyo; Lentz, Steven R

    2011-11-01

    We sought to develop a murine model to examine the antithrombotic and antiinflammatory functions of human thrombomodulin in vivo. Knock-in mice that express human thrombomodulin from the murine thrombomodulin gene locus were generated. Compared with wild-type mice, human thrombomodulin knock-in mice exhibited decreased protein C activation in the aorta (Pknock-in mice compared with wild-type mice (Pknock-in mice (12±3 minutes) than in wild-type mice (31±6 minutes; Pknock-in and wild-type mice after injection of endotoxin. When crossed with apolipoprotein E-deficient mice and fed a Western diet, knock-in mice had a further decrease in protein C activation but did not exhibit increased atherosclerosis. Expression of human thrombomodulin in place of murine thrombomodulin produces viable mice with a prothrombotic phenotype but unaltered responses to systemic inflammatory or atherogenic stimuli. This humanized animal model will be useful for investigating the function of human thrombomodulin under pathophysiological conditions in vivo.

  13. Apolipoprotein A5 deficiency aggravates high-fat diet-induced obesity due to impaired central regulation of food intake.

    Science.gov (United States)

    van den Berg, Sjoerd A A; Heemskerk, Mattijs M; Geerling, Janine J; van Klinken, Jan-Bert; Schaap, Frank G; Bijland, Silvia; Berbée, Jimmy F P; van Harmelen, Vanessa J A; Pronk, Amanda C M; Schreurs, Marijke; Havekes, Louis M; Rensen, Patrick C N; van Dijk, Ko Willems

    2013-08-01

    Mutations in apolipoprotein A5 (APOA5) have been associated with hypertriglyceridemia in humans and mice. This has been attributed to a stimulating role for APOA5 in lipoprotein lipase-mediated triglyceride hydrolysis and hepatic clearance of lipoprotein remnant particles. However, because of the low APOA5 plasma abundance, we investigated an additional signaling role for APOA5 in high-fat diet (HFD)-induced obesity. Wild-type (WT) and Apoa5(-/-) mice fed a chow diet showed no difference in body weight or 24-h food intake (Apoa5(-/-), 4.5±0.6 g; WT, 4.2±0.5 g), while Apoa5(-/-) mice fed an HFD ate more in 24 h (Apoa5(-/-), 2.8±0.4 g; WT, 2.5±0.3 g, Pcentral regulation of food intake.

  14. Adaptive gene regulation in the Striatum of RGS9-deficient mice.

    Directory of Open Access Journals (Sweden)

    Kathy Busse

    Full Text Available BACKGROUND: RGS9-deficient mice show drug-induced dyskinesia but normal locomotor activity under unchallenged conditions. RESULTS: Genes related to Ca2+ signaling and their functions were regulated in RGS9-deficient mice. CONCLUSION: Changes in Ca2+ signaling that compensate for RGS9 loss-of-function can explain the normal locomotor activity in RGS9-deficient mice under unchallenged conditions. SIGNIFICANCE: Identified signaling components may represent novel targets in antidyskinetic therapy. The long splice variant of the regulator of G-protein signaling 9 (RGS9-2 is enriched in striatal medium spiny neurons and dampens dopamine D2 receptor signaling. Lack of RGS9-2 can promote while its overexpression prevents drug-induced dyskinesia. Other animal models of drug-induced dyskinesia rather pointed towards overactivity of dopamine receptor-mediated signaling. To evaluate changes in signaling pathways mRNA expression levels were determined and compared in wild-type and RGS9-deficient mice. Unexpectedly, expression levels of dopamine receptors were unchanged in RGS9-deficient mice, while several genes related to Ca2+ signaling and long-term depression were differentially expressed when compared to wild type animals. Detailed investigations at the protein level revealed hyperphosphorylation of DARPP32 at Thr34 and of ERK1/2 in striata of RGS9-deficient mice. Whole cell patch clamp recordings showed that spontaneous synaptic events are increased (frequency and size in RGS9-deficient mice while long-term depression is reduced in acute brain slices. These changes are compatible with a Ca2+-induced potentiation of dopamine receptor signaling which may contribute to the drug-induced dyskinesia in RGS9-deficient mice.

  15. Apolipoprotein E in Temporal Lobe Epilepsy: A Case-Control Study

    Science.gov (United States)

    Kumar, Amit; Tripathi, Manjari; Pandey, Ravindra M.; Ramakrishnan, Lakshmy; Srinivas, M.; Luthra, Kalpana

    2006-01-01

    Purpose: To investigate the relationship of apolipoprotein E (apoE) genotype, plasma levels of apoE and lipids in temporal lobe epilepsy (TLE) patients in Asian Indians. Status of plasma levels of Apo E in epilepsy patients has not been reported till date. Methods: ApoE gene polymorphism was analyzed in 58 patients with temporal lobe epilepsy (TLE) and 57 age and sex approximated controls using Polymerase chain reaction- restriction fragment length polymorphism (PCR-RFLP). Levels of plasma apoE and lipids were measured using ELISA and enzymatic kits respectively. Results: The distribution of ApoE genotype in epilepsy patients and controls was comparable. Higher levels of plasma ApoE were observed in TLE patients as compared to controls (p = 0.0001). Individuals with plasma levels of apoE > 190 mg/L were at 20 times higher odds (95%CI = 2.46–163.34, p = 0.005), while those with levels of apoE between 150–190 mg/L were at 4.9 times higher odds (95% CI = 1.85–13.9, p = 0.001), to develop TLE. Conclusions: We have observed for the first time, high levels of plasma apoE in epilepsy patients. The findings of this case-control study suggest that apolipoprotein E may play an important role in epilepsy. PMID:17264404

  16. Cardiovascular effects of uremia in apolipoprotein E-deficient mice

    DEFF Research Database (Denmark)

    Bro, Susanne

    2009-01-01

    atherosclerosis independently of BP and plasma homocysteine levels. Also, the accelerated atherosclerosis could not be fully explained by changes in total plasma cholesterol. Morphologic and biochemical analyses of aortas suggested that accelerated initiation and expansion rather than a specific uremic lesion...

  17. In vivo human apolipoprotein E isoform fractional turnover rates in the CNS.

    Directory of Open Access Journals (Sweden)

    Kristin R Wildsmith

    Full Text Available Apolipoprotein E (ApoE is the strongest genetic risk factor for Alzheimer's disease and has been implicated in the risk for other neurological disorders. The three common ApoE isoforms (ApoE2, E3, and E4 each differ by a single amino acid, with ApoE4 increasing and ApoE2 decreasing the risk of Alzheimer's disease (AD. Both the isoform and amount of ApoE in the brain modulate AD pathology by altering the extent of amyloid beta (Aβ peptide deposition. Therefore, quantifying ApoE isoform production and clearance rates may advance our understanding of the role of ApoE in health and disease. To measure the kinetics of ApoE in the central nervous system (CNS, we applied in vivo stable isotope labeling to quantify the fractional turnover rates of ApoE isoforms in 18 cognitively-normal adults and in ApoE3 and ApoE4 targeted-replacement mice. No isoform-specific differences in CNS ApoE3 and ApoE4 turnover rates were observed when measured in human CSF or mouse brain. However, CNS and peripheral ApoE isoform turnover rates differed substantially, which is consistent with previous reports and suggests that the pathways responsible for ApoE metabolism are different in the CNS and the periphery. We also demonstrate a slower turnover rate for CSF ApoE than that for amyloid beta, another molecule critically important in AD pathogenesis.

  18. Circadian behaviour in neuroglobin deficient mice.

    Directory of Open Access Journals (Sweden)

    Christian A Hundahl

    Full Text Available Neuroglobin (Ngb, a neuron-specific oxygen-binding globin with an unknown function, has been proposed to play a key role in neuronal survival. We have previously shown Ngb to be highly expressed in the rat suprachiasmatic nucleus (SCN. The present study addresses the effect of Ngb deficiency on circadian behavior. Ngb-deficient and wild-type (wt mice were placed in running wheels and their activity rhythms, endogenous period and response to light stimuli were investigated. The effect of Ngb deficiency on the expression of Period1 (Per1 and the immediate early gene Fos was determined after light stimulation at night and the neurochemical phenotype of Ngb expressing neurons in wt mice was characterized. Loss of Ngb function had no effect on overall circadian entrainment, but resulted in a significantly larger phase delay of circadian rhythm upon light stimulation at early night. A light-induced increase in Per1, but not Fos, gene expression was observed in Ngb-deficient mice. Ngb expressing neurons which co-stored Gastrin Releasing Peptide (GRP and were innervated from the eye and the geniculo-hypothalamic tract expressed FOS after light stimulation. No PER1 expression was observed in Ngb-positive neurons. The present study demonstrates for the first time that the genetic elimination of Ngb does not affect core clock function but evokes an increased behavioural response to light concomitant with increased Per1 gene expression in the SCN at early night.

  19. Select cognitive deficits in Vasoactive Intestinal Peptide deficient mice

    Directory of Open Access Journals (Sweden)

    Hagopian Arkady

    2008-07-01

    Full Text Available Abstract Background The neuropeptide vasoactive intestinal peptide (VIP is widely distributed in the adult central nervous system where this peptide functions to regulate synaptic transmission and neural excitability. The expression of VIP and its receptors in brain regions implicated in learning and memory functions, including the hippocampus, cortex, and amygdala, raise the possibility that this peptide may function to modulate learned behaviors. Among other actions, the loss of VIP has a profound effect on circadian timing and may specifically influence the temporal regulation of learning and memory functions. Results In the present study, we utilized transgenic VIP-deficient mice and the contextual fear conditioning paradigm to explore the impact of the loss of this peptide on a learned behavior. We found that VIP-deficient mice exhibited normal shock-evoked freezing behavior and increases in corticosterone. Similarly, these mutant mice exhibited no deficits in the acquisition or recall of the fear-conditioned behavior when tested 24-hours after training. The VIP-deficient mice exhibited a significant reduction in recall when tested 48-hours or longer after training. Surprisingly, we found that the VIP-deficient mice continued to express circadian rhythms in the recall of the training even in those individual mice whose wheel running wheel activity was arrhythmic. One mechanistic explanation is suggested by the finding that daily rhythms in the expression of the clock gene Period2 continue in the hippocampus of VIP-deficient mice. Conclusion Together these data suggest that the neuropeptide VIP regulates the recall of at least one learned behavior but does not impact the circadian regulation of this behavior.

  20. Magnetic Resonance Imaging of Atherosclerosis Using CD81-Targeted Microparticles of Iron Oxide in Mice

    Directory of Open Access Journals (Sweden)

    Fei Yan

    2015-01-01

    Full Text Available The goal of this study is to investigate the feasibility of using CD81- (Cluster of Differentiation 81 protein- targeted microparticles of iron oxide (CD81-MPIO for magnetic resonance imaging (MRI of the murine atherosclerosis. CD81-MPIO and IgG- (Immunoglobulin G- MPIO were prepared by covalently conjugating, respectively, with anti-CD81 monoclonal and IgG antibodies to the surface of the tosyl activated MPIO. The relevant binding capability of the MPIO was examined by incubating them with murine bEnd.3 cells stimulated with phenazine methosulfate (PMS and its effect in shortening T2 relaxation time was also examined. MRI in apolipoprotein E-deficient mice was studied in vivo. Our results show that CD81-MPIO, but not IgG-MPIO, can bind to the PMS-stimulated bEnd.3 cells. The T2 relaxation time was significantly shortened for stimulated bEnd.3 cells when compared with IgG-MPIO. In vivo MRI in apolipoprotein E-deficient mice showed highly conspicuous areas of low signal after CD81-MPIO injection. Quantitative analysis of the area of CD81-MPIO contrast effects showed 8.96- and 6.98-fold increase in comparison with IgG-MPIO or plain MPIO, respectively (P<0.01. Histological assay confirmed the expression of CD81 and CD81-MPIO binding onto atherosclerotic lesions. In conclusion, CD81-MPIO allows molecular assessment of murine atherosclerotic lesions by magnetic resonance imaging.

  1. Adipose tissue deficiency of hormone-sensitive lipase causes fatty liver in mice.

    Science.gov (United States)

    Xia, Bo; Cai, Guo He; Yang, Hao; Wang, Shu Pei; Mitchell, Grant A; Wu, Jiang Wei

    2017-12-01

    Fatty liver is a major health problem worldwide. People with hereditary deficiency of hormone-sensitive lipase (HSL) are reported to develop fatty liver. In this study, systemic and tissue-specific HSL-deficient mice were used as models to explore the underlying mechanism of this association. We found that systemic HSL deficient mice developed fatty liver in an age-dependent fashion between 3 and 8 months of age. To further explore the mechanism of fatty liver in HSL deficiency, liver-specific HSL knockout mice were created. Surprisingly, liver HSL deficiency did not influence liver fat content, suggesting that fatty liver in HSL deficiency is not liver autonomous. Given the importance of adipose tissue in systemic triglyceride metabolism, we created adipose-specific HSL knockout mice and found that adipose HSL deficiency, to a similar extent as systemic HSL deficiency, causes age-dependent fatty liver in mice. Mechanistic study revealed that deficiency of HSL in adipose tissue caused inflammatory macrophage infiltrates, progressive lipodystrophy, abnormal adipokine secretion and systemic insulin resistance. These changes in adipose tissue were associated with a constellation of changes in liver: low levels of fatty acid oxidation, of very low density lipoprotein secretion and of triglyceride hydrolase activity, each favoring the development of hepatic steatosis. In conclusion, HSL-deficient mice revealed a complex interorgan interaction between adipose tissue and liver: the role of HSL in the liver is minimal but adipose tissue deficiency of HSL can cause age-dependent hepatic steatosis. Adipose tissue is a potential target for treating the hepatic steatosis of HSL deficiency.

  2. Loss of Dependence on Continued Expression of the Human Papillomavirus 16 E7 Oncogene in Cervical Cancers and Precancerous Lesions Arising in Fanconi Anemia Pathway-Deficient Mice

    Science.gov (United States)

    Park, Soyeong; Park, Jung Wook; Pitot, Henry C.

    2016-01-01

    ABSTRACT   Fanconi anemia (FA) is a rare genetic disorder caused by defects in DNA damage repair. FA patients often develop squamous cell carcinoma (SCC) at sites where high-risk human papillomaviruses (HPVs) are known to cause cancer, including the cervix. However, SCCs found in human FA patients are often HPV negative, even though the majority of female FA patients with anogenital cancers had preexisting HPV-positive dysplasia. We hypothesize that HPVs contribute to the development of SCCs in FA patients but that the continued expression of HPV oncogenes is not required for the maintenance of the cancer state because FA deficiency leads to an accumulation of mutations in cellular genes that render the cancer no longer dependent upon viral oncogenes. We tested this hypothesis, making use of Bi-L E7 transgenic mice in which we temporally controlled expression of HPV16 E7, the dominant viral oncogene in HPV-associated cancers. As seen before, the persistence of cervical neoplastic disease was highly dependent upon the continued expression of HPV16 E7 in FA-sufficient mice. However, in mice with FA deficiency, cervical cancers persisted in a large fraction of the mice after HPV16 E7 expression was turned off, indicating that these cancers had escaped from their dependency on E7. Furthermore, the severity of precancerous lesions also failed to be reduced significantly in the mice with FA deficiency upon turning off expression of E7. These findings confirm our hypothesis and may explain the fact that, while FA patients have a high frequency of infections by HPVs and HPV-induced precancerous lesions, the cancers are frequently HPV negative. Importance   Fanconi anemia (FA) patients are at high risk for developing squamous cell carcinoma (SCC) at sites where high-risk human papillomaviruses (HPVs) frequently cause cancer. Yet these SCCs are often HPV negative. FA patients have a genetic defect in their capacity to repair damaged DNA. HPV oncogenes cause an

  3. A simple approach for human recombinant apolipoprotein E4 expression and purification.

    Science.gov (United States)

    Argyri, Letta; Skamnaki, Vassiliki; Stratikos, Efstratios; Chroni, Angeliki

    2011-10-01

    We report a simple expression and purification procedure for the production of recombinant apolipoprotein E4 (apoE4), an important protein for the lipid homeostasis in humans that plays critical roles in the pathogenesis of cardiovascular and neurodegenerative diseases. Our approach is based on the expression of a thioredoxin-apoE4 fusion construct in bacterial cells and subsequent removal of the fused thioredoxin using the highly specific 3C protease, avoiding costly and laborious lipidation-delipidation steps used before. Our approach results in rapid, high-yield production of structurally and functionally competent apoE4 as evidenced by secondary structure measurements, thermal and chemical melting profiles and the kinetic profile of solubilization of dimyristoyl-phosphatidylcholine (DMPC) vesicles. This protocol is appropriate for laboratories with little experience in apolipoprotein biochemistry and will facilitate future studies on the role of apoE4 in the pathogenesis of cardiovascular disease and neurodegenerative diseases, including Alzheimer's disease. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Spontaneous chondroma formation in CD2-Cre-driven Erk-deficient mice.

    Science.gov (United States)

    Shiokawa, Moe; Lu, Xiuyuan; Miyake, Yasunobu; Ishikawa, Eri; Pagès, Gilles; Pouysségur, Jacques; Ogata, Masato; Yamasaki, Sho

    2017-12-18

    Lineage-specific Cre Tg mice are widely used to delineate the functions of genes in a tissue-specific manner. Several T-cell-specific promoter cassettes have been developed; however, the activities of those promoters in non-T cells have not been investigated extensively. Here, we report that CD2-Cre-mediated deletion of Erk proteins by generating CD2-Cre × Erk1-/-Erk2flox/flox (Erk∆CD2-Cre) mice results in abnormal cartilage hyperplasia. Histological analysis revealed that this abnormality is caused by aberrant hyperplasia of chondrocytes. The presence of Erk-deficient T cells is not required for this chondroma formation, as it was similarly observed in the absence of T cells in a CD3ε-deficient background. In addition, adoptive transfer of bone marrow cells from Erk∆CD2-Cre mice to wild-type recipients did not cause chondroma formation, suggesting that Erk-deficient non-immune cells are responsible for this abnormality. By tracing Cre-expressed tissues using a ROSA26-STOP-RFP allele, we found that the chondroma emitted RFP fluorescence, indicating that functional Cre is expressed in hyperplastic chondrocytes in Erk∆CD2-Cre mice. Furthermore, RFP+ chondrocytes were also found in an Erk-sufficient background, albeit without aberrant growth. These results suggest that unexpected expression of CD2-driven Cre in chondrocytes generates Erk-deficient chondrocytes, resulting in hyperplastic cartilage formation. Recently, two independent reports showed that CD4-Cre-mediated Ras-Erk signaling ablation led to similar abnormal cartilage formation (Guittard, G., Gallardo, D. L., Li, W. et al. 2017. Unexpected cartilage phenotype in CD4-Cre-conditional SOS-deficient mice. Front. Immunol. 8:343; Wehenkel, M., Corr, M., Guy, C. S. et al. 2017. Extracellular signal-regulated kinase signaling in CD4-expressing cells inhibits osteochondromas. Front. Immunol. 8:482). Together with these reports, our study suggests that an unexpected link exists between T-like cell and

  5. Apolipoprotein A5: A newly identified gene impacting plasmatriglyceride levels in humans and mice

    Energy Technology Data Exchange (ETDEWEB)

    Pennacchio, Len A.; Rubin, Edward M.

    2002-09-15

    Apolipoprotein A5 (APOA5) is a newly described member of theapolipoprotein gene family whose initial discovery arose from comparativesequence analysis of the mammalian APOA1/C3/A4 gene cluster. Functionalstudies in mice indicated that alteration in the level of APOA5significantly impacted plasma triglyceride concentrations. Miceover-expressing human APOA5 displayed significantly reducedtriglycerides, while mice lacking apoA5 had a large increase in thislipid parameter. Studies in humans have also suggested an important rolefor APOA5 in determining plasma triglyceride concentrations. In theseexperiments, polymorphisms in the human gene were found to define severalcommon haplotypes that were associated with significant changes intriglyceride concentrations in multiple populations. Several separateclinical studies have provided consistent and strong support for theeffect with 24 percent of Caucasians, 35 percent of African-Americans and53 percent of Hispanics carrying APOA5 haplotypes associated withincreased plasma triglyceride levels. In summary, APOA5 represents anewly discovered gene involved in triglyceride metabolism in both humansand mice whose mechanism of action remains to be deciphered.

  6. Exhaustion of CTL memory and recrudescence of viremia in lymphocytic choriomeningitis virus-infected MHC class II-deficient mice and B cell-deficient mice

    DEFF Research Database (Denmark)

    Thomsen, Allan Randrup; Johansen, J; Marker, O

    1996-01-01

    To study the contribution of CD4+ T cells and B cells to antiviral immunity and long term virus control, MHC class II-deficient and B cell-deficient mice were infected with lymphocytic choriomeningitis virus. In class II-deficient mice, which lack CD4+ T cells, the primary CTL response is virtually...... this phenomenon could reflect participation of B cells and/or Abs in long term virus control, similar experiments were performed with mice that do not have mature B cells because of a disrupted membrane exon of the mu chain gene. In these mice, the cell-mediated immune response was slightly delayed, but transient...... and that in their absence, the virus-specific CTL potential becomes exhausted. Together our results indicate that while CD8+ cells play a dominant role in acute virus control, all three major components of the immune system are required for long term virus control....

  7. Uptakes of trace elements in Zn-deficient mice

    International Nuclear Information System (INIS)

    Ohyama, T.; Yanaga, M.; Yoshida, T.; Maetsu, H.; Suganuma, H.; Omori, T.

    2002-01-01

    A multitracer technique was used to obtain uptake rates of essential trace elements in various organs and tissues in Zn-deficient mice. A multitracer solution, containing more than 20 radioisotopes, was injected intraperitoneally into Zn-deficient state mice and control ones. Uptake rates of the radioisotopes were compared with concentrations of trace elements determined by instrumental neutron activation analysis (INAA) in order to study a specific metabolism of Zn and other essential trace elements, such as Mn, Co, Se, Rb, and Sr. The result suggests that Zn is supplied from bone to other organs and tissues and an increase in Co concentration in all organs and tissues depends on its chemical form, under the Z-deficient state. (author)

  8. Fucosylation Deficiency in Mice Leads to Colitis and Adenocarcinoma

    Science.gov (United States)

    Wang, Yiwei; Huang, Dan; Chen, Kai-Yuan; Cui, Min; Wang, Weihuan; Huang, Xiaoran; Awadellah, Amad; Li, Qing; Friedman, Ann; Xin, William W.; Di Martino, Luca; Cominelli, Fabio; Miron, Alex; Chan, Ricky; Fox, James; Xu, Yan; Shen, Xiling; Kalady, Mathew F.; Markowitz, Sanford; Maillard, Ivan; Lowe, John B.; Xin, Wei; Zhou, Lan

    2016-01-01

    Background & Aims De novo synthesis of GDP-fucose, a substrate for fucosylglycans, requires sequential reactions mediated by GDP-mannose 4,6-dehydratase (GMDS) and GDP-4-keto-6-deoxymannose 3,5-epimerase-4-reductase (FX or TSTA3). GMDS deletions and mutations are found in 6%–13% of colorectal cancers; these mostly affect ascending and transverse colon. We investigated whether lack of fucosylation consequent to loss of GDP-fucose synthesis contributes to colon carcinogenesis. Methods FX deficiency and GMDS deletion produce the same biochemical phenotype of GDP-fucose deficiency. We studied a mouse model of fucosylation deficiency (Fx–/– mice) and mice with the full-length Fx gene (controls). Mice were placed on standard chow or fucose-containing diet (equivalent to a control fucosylglycan phenotype). Colon tissues were collected and analyzed histologically or by ELISAs to measure cytokine levels; T cells were also collected and analyzed. Fecal samples were analyzed by 16s rRNA sequencing. Mucosal barrier function was measured by uptake of fluorescent dextran. We transplanted bone marrow cells from Fx–/– or control mice (Ly5.2) into irradiated 8-week old Fx–/– or control mice (Ly5.1). We performed immunohistochemical analyses for expression of Notch and the hes family bHLH transcription factor (HES1) in colon tissues from mice and a panel of 60 human colorectal cancer specimens (27 left-sided, 33 right-sided). Results Fx–/– mice developed colitis and serrated-like lesions. The intestinal pathology of Fx–/– mice was reversed by addition of fucose to the diet, which restored fucosylation via a salvage pathway. In the absence of fucosylation, dysplasia appeared and progressed to adenocarcinoma in up to 40% of mice, affecting mainly the right colon and cecum. Notch was not activated in Fx–/– mice fed standard chow, leading to decreased expression of its target Hes1. Fucosylation deficiency altered the composition of the fecal microbiota, reduced

  9. Crossroads between peripheral atherosclerosis, western-type diet and skeletal muscle pathophysiology: emphasis on apolipoprotein E deficiency and peripheral arterial disease.

    Science.gov (United States)

    Sfyri, Peggy; Matsakas, Antonios

    2017-07-08

    Atherosclerosis is a chronic inflammatory process that, in the presence of hyperlipidaemia, promotes the formation of atheromatous plaques in large vessels of the cardiovascular system. It also affects peripheral arteries with major implications for a number of other non-vascular tissues such as the skeletal muscle, the liver and the kidney. The aim of this review is to critically discuss and assimilate current knowledge on the impact of peripheral atherosclerosis and its implications on skeletal muscle homeostasis. Accumulating data suggests that manifestations of peripheral atherosclerosis in skeletal muscle originates in a combination of increased i)-oxidative stress, ii)-inflammation, iii)-mitochondrial deficits, iv)-altered myofibre morphology and fibrosis, v)-chronic ischemia followed by impaired oxygen supply, vi)-reduced capillary density, vii)- proteolysis and viii)-apoptosis. These structural, biochemical and pathophysiological alterations impact on skeletal muscle metabolic and physiologic homeostasis and its capacity to generate force, which further affects the individual's quality of life. Particular emphasis is given on two major areas representing basic and applied science respectively: a)-the abundant evidence from a well-recognised atherogenic model; the Apolipoprotein E deficient mouse and the role of a western-type diet and b)-on skeletal myopathy and oxidative stress-induced myofibre damage from human studies on peripheral arterial disease. A significant source of reactive oxygen species production and oxidative stress in cardiovascular disease is the family of NADPH oxidases that contribute to several pathologies. Finally, strategies targeting NADPH oxidases in skeletal muscle in an attempt to attenuate cellular oxidative stress are highlighted, providing a better understanding of the crossroads between peripheral atherosclerosis and skeletal muscle pathophysiology.

  10. Absence of Wip1 partially rescues Atm deficiency phenotypes in mice

    Science.gov (United States)

    Darlington, Yolanda; Nguyen, Thuy-Ai; Moon, Sung-Hwan; Herron, Alan; Rao, Pulivarthi; Zhu, Chengming; Lu, Xiongbin; Donehower, Lawrence A.

    2011-01-01

    Wildtype p53-Induced Phosphatase 1 (WIP1) is a serine/threonine phosphatase that dephosphorylates proteins in the ataxia telangiectasia mutated (ATM)-initiated DNA damage response pathway. WIP1 may play a homeostatic role in ATM signaling by returning the cell to a normal pre-stress state following completion of DNA repair. To better understand the effects of WIP1 on ATM signaling, we crossed Atm-deficient mice to Wip1-deficient mice and characterized phenotypes of the double knockout progeny. We hypothesized that the absence of Wip1 might rescue Atm deficiency phenotypes. Atm null mice, like ATM-deficient humans with the inherited syndrome ataxia telangiectasia, exhibit radiation sensitivity, fertility defects, and are T-cell lymphoma prone. Most double knockout mice were largely protected from lymphoma development and had a greatly extended lifespan compared to Atm null mice. Double knockout mice had increased p53 and H2AX phosphorylation and p21 expression compared to their Atm null counterparts, indicating enhanced p53 and DNA damage responses. Additionally, double knockout splenocytes displayed reduced chromosomal instability compared to Atm null mice. Finally, doubly null mice were partially rescued from infertility defects observed in Atm null mice. These results indicate that inhibition of WIP1 may represent a useful strategy for cancer treatment in general and A-T patients in particular. PMID:21765465

  11. Effect of treatment with human apolipoprotein A-I on atherosclerosis in uremic apolipoprotein-E deficient mice

    DEFF Research Database (Denmark)

    Pedersen, Tanja Xenia; Bro, Susanne; Andersen, Mikkel H

    2009-01-01

    OBJECTIVE: Uremia markedly increases the risk of atherosclerosis. Thus, effective anti-atherogenic treatments are needed for uremic patients. This study examined effects of non-lipidated recombinant human apoA-I (h-apoA-I) and a recombinant trimeric apoA-I molecule (TripA-I) on lipid metabolism a...

  12. Reduced metastasis of transgenic mammary cancer in urokinase-deficient mice

    DEFF Research Database (Denmark)

    Almholt, Kasper; Lund, L.R.; Rygaard, Jørgen

    2005-01-01

    A prominent phenotype of plasmin deficiency in mice is reduced metastasis in the MMTV-PymT transgenic breast cancer model. Proteolytically active plasmin is generated from inactive plasminogen by one of 2 activators, uPA or tPA. We now find that uPA deficiency alone significantly reduces metastasis...... >7-fold in the MMTV-PymT model. We studied a cohort of 55 MMTV-PymT transgenic mice, either uPA-deficient or wild-type controls. Tumor incidence, latency, growth rate and final primary tumor burden were not significantly affected by uPA deficiency. In contrast, average lung metastasis volume...

  13. Anti-Atherosclerotic Action of Agmatine in ApoE-Knockout Mice.

    Science.gov (United States)

    Wiśniewska, Anna; Olszanecki, Rafał; Totoń-Żurańska, Justyna; Kuś, Katarzyna; Stachowicz, Aneta; Suski, Maciej; Gębska, Anna; Gajda, Mariusz; Jawień, Jacek; Korbut, Ryszard

    2017-08-04

    Atherosclerosis is an inflammatory disease in which dysfunction of mitochondria play an important role, and disorders of lipid management intensify this process. Agmatine, an endogenous polyamine formed by decarboxylation of arginine, exerts a protective effect on mitochondria and modulates fatty acid metabolism. We investigated the effect of exogenous agmatine on the development of atherosclerosis and changes in lipid profile in apolipoprotein E knockout (apoE-/-) mice. Agmatine caused an approximate 40% decrease of atherosclerotic lesions, as estimated by en face and cross-section methods with an influence on macrophage but not on smooth muscle content in the plaques. Agmatine treatment did not changed gelatinase activity within the plaque area. What is more, the action of agmatine was associated with an increase in the number of high density lipoproteins (HDL) in blood. Real-Time PCR analysis showed that agmatine modulates liver mRNA levels of many factors involved in oxidation of fatty acid and cholesterol biosynthesis. Two-dimensional electrophoresis coupled with mass spectrometry identified 27 differentially expressed mitochondrial proteins upon agmatine treatment in the liver of apoE-/- mice, mostly proteins related to metabolism and apoptosis. In conclusion, prolonged administration of agmatine inhibits atherosclerosis in apoE-/- mice; however, the exact mechanisms linking observed changes and elevations of HDL plasma require further investigation.

  14. Aldose Reductase-Deficient Mice Develop Nephrogenic Diabetes Insipidus

    Science.gov (United States)

    Ho, Horace T. B.; Chung, Sookja K.; Law, Janice W. S.; Ko, Ben C. B.; Tam, Sidney C. F.; Brooks, Heddwen L.; Knepper, Mark A.; Chung, Stephen S. M.

    2000-01-01

    Aldose reductase (ALR2) is thought to be involved in the pathogenesis of various diseases associated with diabetes mellitus, such as cataract, retinopathy, neuropathy, and nephropathy. However, its physiological functions are not well understood. We developed mice deficient in this enzyme and found that they had no apparent developmental or reproductive abnormality except that they drank and urinated significantly more than their wild-type littermates. These ALR2-deficient mice exhibited a partially defective urine-concentrating ability, having a phenotype resembling that of nephrogenic diabetes insipidus. PMID:10913167

  15. Gender affects skin wound healing in plasminogen deficient mice

    DEFF Research Database (Denmark)

    Rønø, Birgitte; Engelholm, Lars Henning; Lund, Leif Røge

    2013-01-01

    closure in female versus male plasmin deficient mice. Further studies showed that this gender effect could not be reversed by ovariectomy, suggesting that female sex-hormones did not mediate the accelerated skin wound healing in plasmin deficient female mice. Histological examination of healed wounds...... functional plasmin thus display decreased tumor growth in a variety of cancer models. Interestingly, this role of plasmin has, in regard to skin cancer, been shown to be restricted to male mice. It remains to be clarified whether gender also affects other phenotypic characteristics of plasmin deficiency...... or if this gender effect is restricted to skin cancer. To investigate this, we tested the effect of gender on plasmin dependent immune cell migration, accumulation of hepatic fibrin depositions, skin composition, and skin wound healing. Gender did not affect immune cell migration or hepatic fibrin accumulation...

  16. PLAG1 deficiency impairs spermatogenesis and sperm motility in mice.

    Science.gov (United States)

    Juma, Almas R; Grommen, Sylvia V H; O'Bryan, Moira K; O'Connor, Anne E; Merriner, D Jo; Hall, Nathan E; Doyle, Stephen R; Damdimopoulou, Pauliina E; Barriga, Daniel; Hart, Adam H; Van de Ven, Wim J M; De Groef, Bert

    2017-07-13

    Deficiency in pleomorphic adenoma gene 1 (PLAG1) leads to reduced fertility in male mice, but the mechanism by which PLAG1 contributes to reproduction is unknown. To investigate the involvement of PLAG1 in testicular function, we determined (i) the spatial distribution of PLAG1 in the testis using X-gal staining; (ii) transcriptomic consequences of PLAG1 deficiency in knock-out and heterozygous mice compared to wild-type mice using RNA-seq; and (iii) morphological and functional consequences of PLAG1 deficiency by determining testicular histology, daily sperm production and sperm motility in knock-out and wild-type mice. PLAG1 was sparsely expressed in germ cells and in Sertoli cells. Genes known to be involved in spermatogenesis were downregulated in the testes of knock-out mice, as well as Hsd17b3, which encodes a key enzyme in androgen biosynthesis. In the absence of Plag1, a number of genes involved in immune processes and epididymis-specific genes were upregulated in the testes. Finally, loss of PLAG1 resulted in significantly lowered daily sperm production, in reduced sperm motility, and in several animals, in sloughing of the germinal epithelium. Our results demonstrate that the subfertility seen in male PLAG1-deficient mice is, at least in part, the result of significantly reduced sperm output and sperm motility.

  17. Skeletal muscle apolipoprotein B expression reduces muscular triglyceride accumulation

    DEFF Research Database (Denmark)

    Bartels, Emil D; Ploug, Thorkil; Størling, Joachim

    2014-01-01

    Abstract Background. Lipid accumulation in skeletal muscle is associated with impaired insulin sensitivity in type 2 diabetes. In cardiac myocytes, lipoprotein secretion controlled by apolipoproteinB (apoB) and microsomal triglyceride transfer protein (MTP) affects lipid homeostasis. Design. In t...... accumulation and attenuates peripheral insulin resistance in obese mice........ In this study, we investigated whether expression of a human apoB transgene affects triglyceride accumulation and insulin sensitivity in skeletal muscle in fat fed obese mice. Results. Expression of apoB and MTP mRNA and the human apoB transgene was seen in skeletal muscle of the transgene mice. Human apo......Abstract Background. Lipid accumulation in skeletal muscle is associated with impaired insulin sensitivity in type 2 diabetes. In cardiac myocytes, lipoprotein secretion controlled by apolipoproteinB (apoB) and microsomal triglyceride transfer protein (MTP) affects lipid homeostasis. Design...

  18. Microbiome and metabolome modifying effects of several cardiovascular disease interventions in apo-E-/- mice.

    Science.gov (United States)

    Ryan, Paul M; London, Lis E E; Bjorndahl, Trent C; Mandal, Rupasri; Murphy, Kiera; Fitzgerald, Gerald F; Shanahan, Fergus; Ross, R Paul; Wishart, David S; Caplice, Noel M; Stanton, Catherine

    2017-03-13

    There is strong evidence indicating that gut microbiota have the potential to modify, or be modified by the drugs and nutritional interventions that we rely upon. This study aims to characterize the compositional and functional effects of several nutritional, neutraceutical, and pharmaceutical cardiovascular disease interventions on the gut microbiome, through metagenomic and metabolomic approaches. Apolipoprotein-E-deficient mice were fed for 24 weeks either high-fat/cholesterol diet alone (control, HFC) or high-fat/cholesterol in conjunction with one of three dietary interventions, as follows: plant sterol ester (PSE), oat β-glucan (OBG) and bile salt hydrolase-active Lactobacillus reuteri APC 2587 (BSH), or the drug atorvastatin (STAT). The gut microbiome composition was then investigated, in addition to the host fecal and serum metabolome. We observed major shifts in the composition of the gut microbiome of PSE mice, while OBG and BSH mice displayed more modest fluctuations, and STAT showed relatively few alterations. Interestingly, these compositional effects imparted by PSE were coupled with an increase in acetate and reduction in isovalerate (p metabolome, including alterations in several acylcarnitines previously associated with a state of metabolic dysfunction (p < 0.05). We observed functional alterations in microbial and host-derived metabolites, which may have important implications for systemic metabolic health, suggesting that cardiovascular disease interventions may have a significant impact on the microbiome composition and functionality. This study indicates that the gut microbiome-modifying effects of novel therapeutics should be considered, in addition to the direct host effects.

  19. Estrogen Deficiency Promotes Cerebral Aneurysm Rupture by Upregulation of Th17 Cells and Interleukin-17A Which Downregulates E-Cadherin.

    Science.gov (United States)

    Hoh, Brian L; Rojas, Kelley; Lin, Li; Fazal, Hanain Z; Hourani, Siham; Nowicki, Kamil W; Schneider, Matheus B; Hosaka, Koji

    2018-04-13

    Estrogen deficiency is associated with the development of cerebral aneurysms; however, the mechanism remains unknown. We explored the pathway of cerebral aneurysm development by investigating the potential link between estrogen deficiency and inflammatory factors. First, we established the role of interleukin-17 (IL-17)A. We performed a cytokine screen demonstrating that IL-17A is significantly expressed in mouse and human aneurysms ( P =0.03). Likewise, IL-17A inhibition was shown to prevent aneurysm formation by 42% ( P =0.02) and rupture by 34% ( P <0.05). Second, we found that estrogen deficiency upregulates T helper 17 cells and IL-17A and promotes aneurysm rupture. Estrogen-deficient mice had more ruptures than control mice (47% versus 7%; P =0.04). Estradiol supplementation or IL-17A inhibition decreased the number of ruptures in estrogen-deficient mice (estradiol 6% versus 37%; P =0.04; IL-17A inhibition 18% versus 47%; P =0.018). Third, we found that IL-17A-blockade protects against aneurysm formation and rupture by increased E-cadherin expression. IL-17-inhibited mice had increased E-cadherin expression ( P =0.003). E-cadherin inhibition reversed the protective effect of IL-17A inhibition and increased the rate of aneurysm formation (65% versus 28%; P =0.04) and rupture (12% versus 0%; P =0.22). However, E-cadherin inhibition alone does not significantly increase aneurysm formation in normal mice or in estrogen-deficient mice. In cell migration assays, E-cadherin inhibition promoted macrophage infiltration across endothelial cells ( P <0.05), which may be the mechanism for the estrogen deficiency/IL-17/E-cadherin aneurysm pathway. Our data suggest that estrogen deficiency promotes cerebral aneurysm rupture by upregulating IL-17A, which downregulates E-cadherin, encouraging macrophage infiltration in the aneurysm vessel wall. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  20. Enhanced radiosensitivity in 1,25-dihydroxyvitamin D3 deficient mice

    International Nuclear Information System (INIS)

    Zhang Zengli; Ding Xiaofei; Tong Jian; Li Bingyan

    2011-01-01

    To investigate whether impaired osteogenesis resulting from vitamin D deficiency can influence hematopoiesis recovery after radiation, the 25-hydroxyvitamin D-1α-hydroxylase (1α-hydroxylase) gene knockout (KO) mice and wild type (WT) mice were subjected to different doses of gamma ray. The survival rates, peripheral blood cell counts and bone marrow cellularity were studied after irradiation (IR). The survival rates of the KO mice were significantly lower than that of WT mice after 6 or 8 Gy dose of radiation. The recovery of white blood cells in KO mice was significantly delayed compared with that in WT mice after radiation. The red blood cell number in WT mice was observed to increase more than that in KO mice at days 14 and 28 after radiation. The nadir platelet count in KO mice was nearly half of that in WT mice. Dramatically higher bone marrow cell numbers were found in WT mice compared with KO mice. Our findings demonstrate the enhanced radiosensitivity in 1,25-dihydroxyvitamin D3 (1,25-(OH) 2 D 3 ) deficient mice. (author)

  1. Maternal Phytosterol Supplementation during Pregnancy and Lactation Modulates Lipid and Lipoprotein Response in Offspring of apoE-Deficient Mice123

    Science.gov (United States)

    Rideout, Todd C; Movsesian, Cheryl; Tsai, Yi-Ting; Iqbal, Aadil; Raslawsky, Amy; Patel, Mulchand S

    2015-01-01

    Background: In utero exposure to excessive cholesterol has been shown to increase fetal plasma cholesterol concentration and predispose adult offspring to cardiovascular disease (CVD) risk. Because lipid-lowering drugs are contraindicated during pregnancy, natural cholesterol-lowering compounds may be a safe and effective alternative to reduce CVD risk in offspring born to hypercholesterolemic mothers. Objective: This study used the hypercholesterolemic apolipoprotein E–deficient (apoE−/−) mouse model to test the hypothesis that mothers supplemented with phytosterols during gestation and lactation would produce offspring with a more favorable lipid profile than offspring from unsupplemented mothers, despite having a genetic predisposition toward hypercholesterolemia. Methods: Sixteen female apoE−/− mice were randomly assigned to 2 diets fed throughout the gestation and lactation periods: a cholesterol-enriched diet (CH) (0.15%) or the cholesterol-enriched diet supplemented with phytosterols (CH/PS) (2%). Serum lipids and lipoproteins were measured by enzyme assay and nuclear magnetic resonance spectroscopy, respectively, and liver cholesterol was analyzed by GC. Results: Compared with the CH-fed dams at the end of lactation, phytosterol-supplemented dams displayed lower (P 0.05) in HDL cholesterol and triacylglycerol (TG) concentrations. Pups from phytosterol-fed dams demonstrated lower (P 0.05) in HDL cholesterol compared with pups from CH-fed dams. Furthermore, compared with pups from CH-fed dams, pups from phytosterol-supplemented dams displayed a lower (P phytosterols during gestation and lactation exhibit favorable liver and serum lipid responses compared with pups from unsupplemented mothers. PMID:26084365

  2. Inner ear dysfunction in caspase-3 deficient mice

    Directory of Open Access Journals (Sweden)

    Woo Minna

    2011-10-01

    Full Text Available Abstract Background Caspase-3 is one of the most downstream enzymes activated in the apoptotic pathway. In caspase-3 deficient mice, loss of cochlear hair cells and spiral ganglion cells coincide closely with hearing loss. In contrast with the auditory system, details of the vestibular phenotype have not been characterized. Here we report the vestibular phenotype and inner ear anatomy in the caspase-3 deficient (Casp3-/- mouse strain. Results Average ABR thresholds of Casp3-/- mice were significantly elevated (P Casp3+/- mice and Casp3+/+ mice at 3 months of age. In DPOAE testing, distortion product 2F1-F2 was significantly decreased (P Casp3-/- mice, whereas Casp3+/- and Casp3+/+ mice showed normal and comparable values to each other. Casp3-/- mice were hyperactive and exhibited circling behavior when excited. In lateral canal VOR testing, Casp3-/- mice had minimal response to any of the stimuli tested, whereas Casp3+/- mice had an intermediate response compared to Casp3+/+ mice. Inner ear anatomical and histological analysis revealed gross hypomorphism of the vestibular organs, in which the main site was the anterior semicircular canal. Hair cell numbers in the anterior- and lateral crista, and utricle were significantly smaller in Casp3-/- mice whereas the Casp3+/- and Casp3+/+ mice had normal hair cell numbers. Conclusions These results indicate that caspase-3 is essential for correct functioning of the cochlea as well as normal development and function of the vestibule.

  3. Increased susceptibility to Yersinia enterocolitica Infection of Tff2 deficient mice.

    Science.gov (United States)

    Shah, Aftab A; Mihalj, Martina; Ratkay, Ivana; Lubka-Pathak, Maria; Balogh, Peter; Klingel, Karin; Bohn, Erwin; Blin, Nikolaus; Baus-Loncar, Mirela

    2012-01-01

    TFF2 is one of the members of the trefoil factor family, known for its role in protection of gastrointestinal epithelia upon injury; however, recent studies suggest that TFF2 could also play an important role in the immune system. In the present study Tff2 deficient and wild type mice were infected by Y. enterocolitica which resulted in a lethal outcome in all Tff2 deficient mice, but not in WT animals. Yersinia invaded Peyer's patches more efficiently as shown by high bacterial titers in the KO mice while wild type mice displayed lower titers and a visible bacterial accumulation in the intestine. Bacterial accumulation in Peyer's patches of Tff2 deficient mice was accompanied by increased recruitment of macrophages. While an increased level of MAC-1 positive cells was observed in the spleens of both Tff2 deficient and WT mice at third day post infection, bacterial dissemination to liver, lung and kidneys was observed only in Tff2 knock-out mice. Analysis of the cellular composition of spleen did not reveal any substantial alteration to WT animals, suggesting possible disregulation of hemopoietic cells involved in immune response to Y. enterocolitica. These new data indicate that Tff2 plays an important role in immune response by protecting the organism from consequences of infection and that Tff2 knock-out mice react adversely to bacterial infections, in this case specifically to Y. enterocolitica. Copyright © 2012 S. Karger AG, Basel.

  4. Fucosylation Deficiency in Mice Leads to Colitis and Adenocarcinoma.

    Science.gov (United States)

    Wang, Yiwei; Huang, Dan; Chen, Kai-Yuan; Cui, Min; Wang, Weihuan; Huang, Xiaoran; Awadellah, Amad; Li, Qing; Friedman, Ann; Xin, William W; Di Martino, Luca; Cominelli, Fabio; Miron, Alex; Chan, Ricky; Fox, James G; Xu, Yan; Shen, Xiling; Kalady, Mathew F; Markowitz, Sanford; Maillard, Ivan; Lowe, John B; Xin, Wei; Zhou, Lan

    2017-01-01

    De novo synthesis of guanosine diphosphate (GDP)-fucose, a substrate for fucosylglycans, requires sequential reactions mediated by GDP-mannose 4,6-dehydratase (GMDS) and GDP-4-keto-6-deoxymannose 3,5-epimerase-4-reductase (FX or tissue specific transplantation antigen P35B [TSTA3]). GMDS deletions and mutations are found in 6%-13% of colorectal cancers; these mostly affect the ascending and transverse colon. We investigated whether a lack of fucosylation consequent to loss of GDP-fucose synthesis contributes to colon carcinogenesis. FX deficiency and GMDS deletion produce the same biochemical phenotype of GDP-fucose deficiency. We studied a mouse model of fucosylation deficiency (Fx-/- mice) and mice with the full-length Fx gene (controls). Mice were placed on standard chow or fucose-containing diet (equivalent to a control fucosylglycan phenotype). Colon tissues were collected and analyzed histologically or by enzyme-linked immunosorbent assays to measure cytokine levels; T cells also were collected and analyzed. Fecal samples were analyzed by 16s ribosomal RNA sequencing. Mucosal barrier function was measured by uptake of fluorescent dextran. We transplanted bone marrow cells from Fx-/- or control mice (Ly5.2) into irradiated 8-week-old Fx-/- or control mice (Ly5.1). We performed immunohistochemical analyses for expression of Notch and the hes family bHLH transcription factor (HES1) in colon tissues from mice and a panel of 60 human colorectal cancer specimens (27 left-sided, 33 right-sided). Fx-/- mice developed colitis and serrated-like lesions. The intestinal pathology of Fx-/- mice was reversed by addition of fucose to the diet, which restored fucosylation via a salvage pathway. In the absence of fucosylation, dysplasia appeared and progressed to adenocarcinoma in up to 40% of mice, affecting mainly the right colon and cecum. Notch was not activated in Fx-/- mice fed standard chow, leading to decreased expression of its target Hes1. Fucosylation deficiency

  5. Influence of apolipoprotein-E gene on lipid profile, physical activity and body fat relationship. DOI:10.5007/1980-0037.2012v14n2p221

    Directory of Open Access Journals (Sweden)

    Thales Boaventura Rachid Nascimento

    2012-02-01

    Full Text Available Physical activity and body fat modify lipemia, and this effect seems to be influenced by apolipoprotein-E (APOE gene polymorphism. Thus, the purpose of this article was to review main results of studies that have analyzed the relation of APOE gene with physical activity and body fat on triglycerides, total cholesterol and low (LDL and high density lipoprotein (HDL concentrations. The Scientific Electronic Library Online – SciELO, Web of Science and PubMed database were used to locate the articles. The keywords used in combination were: apoe genotype, apolipoprotein-E polymorphism, physical exercise, physical activity, aerobic exercise, body fat and obesity. Originals scientific investigations performed with humans were included, and excluded those ones which involved samples with diseases, except obesity and/or lipemic disorders. It was observed a trend, that ε2 allele carriers are the ones with the greater improvements on lipemia from physical exercise. In addition, the body fat impact on the elevation of triglycerides and LDL are stronger in carriers of the ε2 and ε4 allele, respectively. Considering the small number of originals scientific investigations and their divergent results, reliable inferences can not be made about the APOE gene polymorphism influences on physical activity and body fat effect on lipemia. Thus, further studies with others populations and more volunteers for allele, as well as others exercise modalities and intensities, are necessary.

  6. Megalin is a receptor for apolipoprotein M, and kidney-specific megalin-deficiency confers urinary excretion of apolipoprotein M

    DEFF Research Database (Denmark)

    Faber, Kirsten; Hvidberg, Vibeke; Moestrup, Søren K

    2006-01-01

    . In addition, apoM is expressed at high levels in the kidney tubule cells. In this study, we show that the multiligand receptor megalin, which is expressed in kidney proximal tubule cells, is a receptor for apoM and mediates its uptake in the kidney. To examine apoM binding to megalin, a recombinant apo....... To examine the importance of apoM binding by megalin in vivo, we analyzed mice with a tissue-specific deficiency of megalin in the kidney. Megalin deficiency was associated with pronounced urinary excretion of apoM, whereas apoM was not detected in normal mouse, human, or rat urine. Gel filtration analysis...... showed that the urinary apoM-containing particles were small and devoid of apoA-I. The results suggest that apoM binds to megalin and that megalin-mediated endocytosis in kidney proximal tubules prevents apoM excretion in the urine....

  7. Synchronization of the seminiferous epithelium after vitamin A replacement in vitamin A-deficient mice

    NARCIS (Netherlands)

    van Pelt, A. M.; de rooij, D. G.

    1990-01-01

    The effect of vitamin A deficiency and vitamin A replacement on spermatogenesis was studied in mice. Breeding pairs of Cpb-N mice were given a vitamin A-deficient diet for at least 4 wk. The born male mice received the same diet and developed signs of vitamin A deficiency at the age of 14-16 wk. At

  8. Sick sinus syndrome in HCN1-deficient mice.

    Science.gov (United States)

    Fenske, Stefanie; Krause, Stefanie C; Hassan, Sami I H; Becirovic, Elvir; Auer, Franziska; Bernard, Rebekka; Kupatt, Christian; Lange, Philipp; Ziegler, Tilman; Wotjak, Carsten T; Zhang, Henggui; Hammelmann, Verena; Paparizos, Christos; Biel, Martin; Wahl-Schott, Christian A

    2013-12-17

    Sinus node dysfunction (SND) is a major clinically relevant disease that is associated with sudden cardiac death and requires surgical implantation of electric pacemaker devices. Frequently, SND occurs in heart failure and hypertension, conditions that lead to electric instability of the heart. Although the pathologies of acquired SND have been studied extensively, little is known about the molecular and cellular mechanisms that cause congenital SND. Here, we show that the HCN1 protein is highly expressed in the sinoatrial node and is colocalized with HCN4, the main sinoatrial pacemaker channel isoform. To characterize the cardiac phenotype of HCN1-deficient mice, a detailed functional characterization of pacemaker mechanisms in single isolated sinoatrial node cells, explanted beating sinoatrial node preparation, telemetric in vivo electrocardiography, echocardiography, and in vivo electrophysiology was performed. On the basis of these experiments we demonstrate that mice lacking the pacemaker channel HCN1 display congenital SND characterized by bradycardia, sinus dysrhythmia, prolonged sinoatrial node recovery time, increased sinoatrial conduction time, and recurrent sinus pauses. As a consequence of SND, HCN1-deficient mice display a severely reduced cardiac output. We propose that HCN1 stabilizes the leading pacemaker region within the sinoatrial node and hence is crucial for stable heart rate and regular beat-to-beat variation. Furthermore, we suggest that HCN1-deficient mice may be a valuable genetic disease model for human SND.

  9. Nitro-fatty acids reduce atherosclerosis in apolipoprotein E-deficient mice

    Czech Academy of Sciences Publication Activity Database

    Rudolph, T.K.; Rudolph, V.; Edreira, M.M.; Cole, M.P.; Bonacci, G.; Schopfer, F.J.; Woodcock, S.R.; Franek, A.; Pekarová, Michaela; Khoo, N.K.H.; Hasty, A.H.; Baldus, S.; Freeman, B.A.

    2010-01-01

    Roč. 30, č. 5 (2010), s. 938-945 ISSN 1079-5642 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : nitro-fatty acids * atherosclerosis * foam cells Subject RIV: BO - Biophysics Impact factor: 7.215, year: 2010

  10. Myostatin deficiency partially rescues the bone phenotype of osteogenesis imperfecta model mice.

    Science.gov (United States)

    Oestreich, A K; Carleton, S M; Yao, X; Gentry, B A; Raw, C E; Brown, M; Pfeiffer, F M; Wang, Y; Phillips, C L

    2016-01-01

    Mice with osteogenesis imperfecta (+/oim), a disorder of bone fragility, were bred to mice with muscle over growth to test whether increasing muscle mass genetically would improve bone quality and strength. The results demonstrate that femora from mice carrying both mutations have greater mechanical integrity than their +/oim littermates. Osteogenesis imperfecta is a heritable connective tissue disorder due primarily to mutations in the type I collagen genes resulting in skeletal deformity and fragility. Currently, there is no cure, and therapeutic strategies encompass the use of antiresorptive pharmaceuticals and surgical bracing, with limited success and significant potential for adverse effects. Bone, a mechanosensing organ, can respond to high mechanical loads by increasing new bone formation and altering bone geometry to withstand increased forces. Skeletal muscle is a major source of physiological loading on bone, and bone strength is proportional to muscle mass. To test the hypothesis that congenic increases in muscle mass in the osteogenesis imperfecta murine model mouse (oim) will improve their compromised bone quality and strength, heterozygous (+/oim) mice were bred to mice deficient in myostatin (+/mstn), a negative regulator of muscle growth. The resulting adult offspring were evaluated for hindlimb muscle mass, and bone microarchitecture, physiochemistry, and biomechanical integrity. +/oim mice deficient in myostatin (+/mstn +/oim) were generated and demonstrated that myostatin deficiency increased body weight, muscle mass, and biomechanical strength in +/mstn +/oim mice as compared to +/oim mice. Additionally, myostatin deficiency altered the physiochemical properties of the +/oim bone but did not alter bone remodeling. Myostatin deficiency partially improved the reduced femoral bone biomechanical strength of adult +/oim mice by increasing muscle mass with concomitant improvements in bone microarchitecture and physiochemical properties.

  11. Impaired IL-13-mediated functions of macrophages in STAT6-deficient mice.

    Science.gov (United States)

    Takeda, K; Kamanaka, M; Tanaka, T; Kishimoto, T; Akira, S

    1996-10-15

    IL-13 shares many biologic responses with IL-4. In contrast to well-characterized IL-4 signaling pathways, which utilize STAT6 and 4PS/IRS2, IL-13 signaling pathways are poorly understood. Recent studies performed with STAT6-deficient mice have demonstrated that STAT6 plays an essential role in IL-4 signaling. In this study, the functions of peritoneal macrophages of STAT6-deficient mice in response to IL-13 were analyzed. In STAT6-deficient mice, neither morphologic changes nor augmentation of MHC class II expression in response to IL-13 was observed. In addition, IL-13 did not decrease the nitric oxide production by activated macrophages. Taken together, these results suggest that the macrophage functions in response to IL-13 were impaired in STAT6-deficient mice, indicating that IL-13 and IL-4 share the signaling pathway via STAT6.

  12. Is Apolipoprotein E4 an Important Risk Factor for Dementia in Persons with Down Syndrome?

    Science.gov (United States)

    Rohn, Troy T; McCarty, Katie L; Love, Julia E; Head, Elizabeth

    2014-12-08

    Down syndrome is one of the most common genetic causes of intellectual disability and is characterized by a number of behavioral as well as cognitive symptoms. Triplication of all or part of human chromosome 21 has been considered as the main cause of Down syndrome. Due to the location of the amyloid precursor protein on chromosome 21, many of the neuropathological features of early-onset Alzheimer's disease including senile plaques and neurofibrillary tangles are also present in Down syndrome patients who are either demented or nondemented. Significant advances in medical treatment have increased longevity in people with Down syndrome resulting in an increased population that may be subjected to many of the same risk factors as those with Alzheimer's disease. It is well established that harboring one or both apolipoprotein E4 alleles greatly increases the risk for Alzheimer's disease. However, whether apolipoprotein E4 contributes to an earlier onset of dementia or increased mortality in Down syndrome patients is still a matter of debate. The purpose of this mini review is to provide an updated assessment on apolipoprotein E4 status and risk potential of developing dementia and mortality associated with Down syndrome.

  13. Wound Healing in Mac-1 Deficient Mice

    Science.gov (United States)

    2017-05-01

    Dentistry, University of Illinois at Chicago, Chicago, IL, USA. 2 Department of Defense Biotechnology High Performance Computing Software...study, we used a commercially available Mac-1 deficient strain to examine whether this deficit 5 extends to slightly smaller wounds and incisional...levels of Collagen I and Collagen III in wounds from the two strains of mice at any time point. Unwounded skin from both WT and Mac-1 -/- mice contained

  14. PD-L1 Deficiency within Islets Reduces Allograft Survival in Mice.

    Directory of Open Access Journals (Sweden)

    Dongxia Ma

    Full Text Available Islet transplantation may potentially cure type 1 diabetes mellitus (T1DM. However, immune rejection, especially that induced by the alloreactive T-cell response, remains a restraining factor for the long-term survival of grafted islets. Programmed death ligand-1 (PD-L1 is a negative costimulatory molecule. PD-L1 deficiency within the donor heart accelerates allograft rejection. Here, we investigate whether PD-L1 deficiency in donor islets reduces allograft survival time.Glucose Stimulation Assays were performed to evaluate whether PD-L1 deficiency has detrimental effects on islet function. Islets isolated from PDL1-deficient mice or wild- type (WT mice (C57BL/6j were implanted beneath the renal capsule of streptozotocin (STZ-induced diabetic BALB/c mice. Blood glucose levels and graft survival time after transplantation were monitored. Moreover, we analyzed the residual islets, infiltrating immune cells and alloreactive cells from the recipients.PD-L1 deficiency within islets does not affect islet function. However, islet PD-L1 deficiency increased allograft rejection and was associated with enhanced inflammatory cell infiltration and recipient T-cell alloreactivity.This is the first report to demonstrate that PD-L1 deficiency accelerated islet allograft rejection and regulated recipient alloimmune responses.

  15. Atherosclerosis, apolipoprotein E and the prevalence of dementia and Alzheimer's disease in a population-based study: the Rotterdam Study

    NARCIS (Netherlands)

    A. Ott (Alewijn); M.L. Bots (Michiel); A.J.C. Slooter (Arjen); F. van Harskamp (Frans); C.M. van Duijn (Cornelia); D.E. Grobbee (Diederick); M.M.B. Breteler (Monique); C. van Broeckhoven (Christine); A. Hofman (Albert)

    1997-01-01

    textabstractBACKGROUND: Vascular disorders have been implicated in dementia, but whether atherosclerosis is related to the most frequent type of dementia, Alzheimer's disease, is not known. The apolipoprotein-E genotype has been associated with Alzheimer's disease, and we postulate that it plays a

  16. Strategies to rescue the consequences of inducible arginase-1 deficiency in mice.

    Directory of Open Access Journals (Sweden)

    Laurel L Ballantyne

    Full Text Available Arginase-1 catalyzes the conversion of arginine to ornithine and urea, which is the final step of the urea cycle used to remove excess ammonia from the body. Arginase-1 deficiency leads to hyperargininemia in mice and man with severe lethal consequences in the former and progressive neurological impairment to varying degrees in the latter. In a tamoxifen-induced arginase-1 deficient mouse model, mice succumb to the enzyme deficiency within 2 weeks after inducing the knockout and retain <2 % enzyme in the liver. Standard clinical care regimens for arginase-1 deficiency (low-protein diet, the nitrogen-scavenging drug sodium phenylbutyrate, ornithine supplementation either failed to extend lifespan (ornithine or only minimally prolonged lifespan (maximum 8 days with low-protein diet and drug. A conditional, tamoxifen-inducible arginase-1 transgenic mouse strain expressing the enzyme from the Rosa26 locus modestly extended lifespan of neonatal mice, but not that of 4-week old mice, when crossed to the inducible arginase-1 knockout mouse strain. Delivery of an arginase-1/enhanced green fluorescent fusion construct by adeno-associated viral delivery (rh10 serotype with a strong cytomegalovirus-chicken β-actin hybrid promoter rescued about 30% of male mice with lifespan prolongation to at least 6 months, extensive hepatic expression and restoration of significant enzyme activity in liver. In contrast, a vector of the AAV8 serotype driven by the thyroxine-binding globulin promoter led to weaker liver expression and did not rescue arginase-1 deficient mice to any great extent. Since the induced arginase-1 deficient mouse model displays a much more severe phenotype when compared to human arginase-1 deficiency, these studies reveal that it may be feasible with gene therapy strategies to correct the various manifestations of the disorder and they provide optimism for future clinical studies.

  17. Attentional processing in C57BL/6J mice exposed to developmental vitamin D deficiency.

    Directory of Open Access Journals (Sweden)

    Lauren R Harms

    Full Text Available Epidemiological evidence suggests that Developmental Vitamin D (DVD deficiency is associated with an increased risk of schizophrenia. DVD deficiency in mice is associated with altered behaviour, however there has been no detailed investigation of cognitive behaviours in DVD-deficient mice. The aim of this study was to determine the effect of DVD deficiency on a range of cognitive tasks assessing attentional processing in C57BL/6J mice. DVD deficiency was established by feeding female C57BL/6J mice a vitamin D-deficient diet from four weeks of age. After six weeks on the diet, vitamin D-deficient and control females were mated with vitamin D-normal males and upon birth of the pups, all dams were returned to a diet containing vitamin D. The adult offspring were tested on a range of cognitive behavioural tests, including the five-choice serial reaction task (5C-SRT and five-choice continuous performance test (5C-CPT, as well as latent inhibition using a fear conditioning paradigm. DVD deficiency was not associated with altered attentional performance on the 5C-SRT. In the 5C-CPT DVD-deficient male mice exhibited an impairment in inhibiting repetitive responses by making more perseverative responses, with no changes in premature or false alarm responding. DVD deficiency did not affect the acquisition or retention of cued fear conditioning, nor did it affect the expression of latent inhibition using a fear conditioning paradigm. DVD-deficient mice exhibited no major impairments in any of the cognitive domains tested. However, impairments in perseverative responding in DVD-deficient mice may indicate that these animals have specific alterations in systems governing compulsive or reward-seeking behaviour.

  18. LNA-enhanced detection of single nucleotide polymorphisms in the apolipoprotein E

    DEFF Research Database (Denmark)

    Jacobsen, Nana; Bentzen, Joan; Meldgaard, Michael

    2002-01-01

    Genotyping of single nucleotide polymorphisms (SNPs) in large populations presents a great challenge, especially if the SNPs are embedded in GC-rich regions, such as the codon 112 SNP in the human apolipoprotein E (apoE). In the present study, we have used immobilized locked nucleic acid (LNA...... was applied to a panel of patient samples with simultaneous genotyping of the patients by DNA sequencing. The apoE genotyping assays for the codons 112 and 158 SNPs resulted in unambiguous results for all patient samples, concurring with those obtained by DNA sequencing....

  19. Age-related retinopathy in NRF2-deficient mice.

    Directory of Open Access Journals (Sweden)

    Zhenyang Zhao

    2011-04-01

    Full Text Available Cumulative oxidative damage is implicated in the pathogenesis of age-related macular degeneration (AMD. Nuclear factor erythroid 2-related factor 2 (NRF2 is a transcription factor that plays key roles in retinal antioxidant and detoxification responses. The purposes of this study were to determine whether NRF2-deficient mice would develop AMD-like retinal pathology with aging and to explore the underlying mechanisms.Eyes of both wild type and Nrf2(-/- mice were examined in vivo by fundus photography and electroretinography (ERG. Structural changes of the outer retina in aged animals were examined by light and electron microscopy, and immunofluorescence labeling. Our results showed that Nrf2(-/- mice developed age-dependent degenerative pathology in the retinal pigment epithelium (RPE. Drusen-like deposits, accumulation of lipofuscin, spontaneous choroidal neovascularization (CNV and sub-RPE deposition of inflammatory proteins were present in Nrf2(-/- mice after 12 months. Accumulation of autophagy-related vacuoles and multivesicular bodies was identified by electron microscopy both within the RPE and in Bruch's membrane of aged Nrf2(-/- mice.Our data suggest that disruption of Nfe2l2 gene increased the vulnerability of outer retina to age-related degeneration. NRF2-deficient mice developed ocular pathology similar to cardinal features of human AMD and deregulated autophagy is likely a mechanistic link between oxidative injury and inflammation. The Nrf2(-/- mice can provide a novel model for mechanistic and translational research on AMD.

  20. Effect of Saffron on Metabolic Profile and Retina in Apolipoprotein E-Knockout Mice Fed a High-Fat Diet.

    Science.gov (United States)

    Doumouchtsis, Evangelos K; Tzani, Aspasia; Doulamis, Ilias P; Konstantopoulos, Panagiotis; Laskarina-Maria, Korou; Agrogiannis, Georgios; Agapitos, Emmanouil; Moschos, Marilita M; Kostakis, Alkiviadis; Perrea, Despina N

    2017-09-22

    Saffron is a spice that has been traditionally used as a regimen for a variety of diseases due to its potent antioxidant attributes. It is well documented that impaired systemic oxidative status is firmly associated with diverse adverse effects including retinal damage. The aim of this study was to investigate the role of saffron administration against the retinal damage in apoE -/- mice fed a high-fat diet, since they constitute a designated experimental model susceptible to oxidative stress. Twenty-one mice were allocated into three groups: Group A (control, n = 7 c57bl/6 mice) received standard chow diet; Group B (high-fat, n = 7 apoE -/- mice) received a high-fat diet; and Group C (high-fat and saffron, n = 7 apoE -/- mice) received a high-fat diet and saffron (25 mg/kg/d) through their drinking water. The duration of the study was 20 weeks. Lipidemic profile, glucose, C-reactive protein (CRP), and total oxidative capacity (PerOX) were measured in blood serum. Histological analysis of retina was also conducted. Administration of saffron resulted in enhanced glycemic control and preservation of retinal thickness when compared with apoE -/- mice fed a high-fat diet. The outcomes of the study suggest the potential protective role of saffron against retinal damage induced by oxidative stress. Nevertheless, verification of these results in humans is required before any definite conclusions can be drawn.

  1. Amelioration of behavioral abnormalities in BH(4-deficient mice by dietary supplementation of tyrosine.

    Directory of Open Access Journals (Sweden)

    Sang Su Kwak

    Full Text Available This study reports an amelioration of abnormal motor behaviors in tetrahydrobiopterin (BH4-deficient Spr (-/- mice by the dietary supplementation of tyrosine. Since BH4 is an essential cofactor for the conversion of phenylalanine into tyrosine as well as the synthesis of dopamine neurotransmitter within the central nervous system, the levels of tyrosine and dopamine were severely reduced in brains of BH4-deficient Spr (-/- mice. We found that Spr (-/- mice display variable 'open-field' behaviors, impaired motor functions on the 'rotating rod', and dystonic 'hind-limb clasping'. In this study, we report that these aberrant motor deficits displayed by Spr (-/- mice were ameliorated by the therapeutic tyrosine diet for 10 days. This study also suggests that dopamine deficiency in brains of Spr (-/- mice may not be the biological feature of aberrant motor behaviors associated with BH4 deficiency. Brain levels of dopamine (DA and its metabolites in Spr (-/- mice were not substantially increased by the dietary tyrosine therapy. However, we found that mTORC1 activity severely suppressed in brains of Spr (-/- mice fed a normal diet was restored 10 days after feeding the mice the tyrosine diet. The present study proposes that brain mTORC1 signaling pathway is one of the potential targets in understanding abnormal motor behaviors associated with BH4-deficiency.

  2. The Protective Effects of Oral Low-dose Quercetin on Diabetic Nephropathy in Hypercholesterolemic Mice

    Directory of Open Access Journals (Sweden)

    Isabele Beserra Santos Gomes

    2015-09-01

    Full Text Available Aims: Diabetic nephropathy (DN is one of the major causes of end-stage renal disease, and the incidence of DN is increasing worldwide. Considering our previous report indicating that chronic treatment with oral low-dose quercetin (10 mg/Kg demonstrated renoprotective, anti-oxidative and anti-apoptotic effects in the C57BL/6J model of diabetic nephropathy, we investigated whether this flavonoid could also have beneficial effects in concurrent DN and spontaneous atherosclerosis using the apolipoprotein E-deficient mouse (apoE-/-. Methods: DN was induced by streptozotocin (100 mg/kg/day, for 3 days in adult apoE-/-mice. Six weeks later, the mice were divided into the following groups: diabetic apoE-/- mice treated with quercetin (DQ, 10 mg/kg/day, 4 weeks, diabetic ApoE-/- mice treated with vehicle (DV and non-treated non-diabetic (ND mice.Results: Quercetin treatment caused a reduction in polyuria (~30%, glycemia (~25%, abolished the hypertriglyceridemia and had significant effects on renal function, including decreased proteinuria (~15% and creatininemia (~30%, which were accompanied by beneficial effects on the renal structural changes, including normalization of the index of glomerulosclerosis and kidney weight.Conclusions: Our data revealed that quercetin treatment significantly reduced DN in hypercholesterolemic mice by inducing biochemical and morphological modifications. Thus, this translational study highlights the importance of quercetin as a potential nutraceutical for the management of DN, including in diabetes associated with dyslipidemia.

  3. RhoE deficiency produces postnatal lethality, profound motor deficits and neurodevelopmental delay in mice.

    Directory of Open Access Journals (Sweden)

    Enric Mocholí

    Full Text Available Rnd proteins are a subfamily of Rho GTPases involved in the control of actin cytoskeleton dynamics and other cell functions such as motility, proliferation and survival. Unlike other members of the Rho family, Rnd proteins lack GTPase activity and therefore remain constitutively active. We have recently described that RhoE/Rnd3 is expressed in the Central Nervous System and that it has a role in promoting neurite formation. Despite their possible relevance during development, the role of Rnd proteins in vivo is not known. To get insight into the in vivo function of RhoE we have generated mice lacking RhoE expression by an exon trapping cassette. RhoE null mice (RhoE gt/gt are smaller at birth, display growth retardation and early postnatal death since only half of RhoE gt/gt mice survive beyond postnatal day (PD 15 and 100% are dead by PD 29. RhoE gt/gt mice show an abnormal body position with profound motor impairment and impaired performance in most neurobehavioral tests. Null mutant mice are hypoactive, show an immature locomotor pattern and display a significant delay in the appearance of the hindlimb mature responses. Moreover, they perform worse than the control littermates in the wire suspension, vertical climbing and clinging, righting reflex and negative geotaxis tests. Also, RhoE ablation results in a delay of neuromuscular maturation and in a reduction in the number of spinal motor neurons. Finally, RhoE gt/gt mice lack the common peroneal nerve and, consequently, show a complete atrophy of the target muscles. This is the first model to study the in vivo functions of a member of the Rnd subfamily of proteins, revealing the important role of Rnd3/RhoE in the normal development and suggesting the possible involvement of this protein in neurological disorders.

  4. Cathepsin E deficiency impairs autophagic proteolysis in macrophages.

    Directory of Open Access Journals (Sweden)

    Takayuki Tsukuba

    Full Text Available Cathepsin E is an endosomal aspartic proteinase that is predominantly expressed in immune-related cells. Recently, we showed that macrophages derived from cathepsin E-deficient (CatE(-/- mice display accumulation of lysosomal membrane proteins and abnormal membrane trafficking. In this study, we demonstrated that CatE(-/- macrophages exhibit abnormalities in autophagy, a bulk degradation system for aggregated proteins and damaged organelles. CatE(-/- macrophages showed increased accumulation of autophagy marker proteins such as LC3 and p62, and polyubiquitinated proteins. Cathepsin E deficiency also altered autophagy-related signaling pathways such as those mediated by the mammalian target of rapamycin (mTOR, Akt, and extracellular signal-related kinase (ERK. Furthermore, immunofluorescence microscopy analyses showed that LC3-positive vesicles were merged with acidic compartments in wild-type macrophages, but not in CatE(-/- macrophages, indicating inhibition of fusion of autophagosome with lysosomes in CatE(-/- cells. Delayed degradation of LC3 protein was also observed under starvation-induced conditions. Since the autophagy system is involved in the degradation of damaged mitochondria, we examined the accumulation of damaged mitochondria in CatE(-/- macrophages. Several mitochondrial abnormalities such as decreased intracellular ATP levels, depolarized mitochondrial membrane potential, and decreased mitochondrial oxygen consumption were observed. Such mitochondrial dysfunction likely led to the accompanying oxidative stress. In fact, CatE(-/- macrophages showed increased reactive oxygen species (ROS production and up-regulation of oxidized peroxiredoxin-6, but decreased antioxidant glutathione. These results indicate that cathepsin E deficiency causes autophagy impairment concomitantly with increased aberrant mitochondria as well as increased oxidative stress.

  5. Measurement of apolipoprotein E and amyloid β clearance rates in the mouse brain using bolus stable isotope labeling

    Science.gov (United States)

    2012-01-01

    Background Abnormal proteostasis due to alterations in protein turnover has been postulated to play a central role in several neurodegenerative diseases. Therefore, the development of techniques to quantify protein turnover in the brain is critical for understanding the pathogenic mechanisms of these diseases. We have developed a bolus stable isotope-labeling kinetics (SILK) technique coupled with multiple reaction monitoring mass spectrometry to measure the clearance of proteins in the mouse brain. Results Cohorts of mice were pulse labeled with 13 C6-leucine and the brains were isolated after pre-determined time points. The extent of label incorporation was measured over time using mass spectrometry to measure the ratio of labeled to unlabeled apolipoprotein E (apoE) and amyloid β (Aβ). The fractional clearance rate (FCR) was then calculated by analyzing the time course of disappearance for the labeled protein species. To validate the technique, apoE clearance was measured in mice that overexpress the low-density lipoprotein receptor (LDLR). The FCR in these mice was 2.7-fold faster than wild-type mice. To demonstrate the potential of this technique for understanding the pathogenesis of neurodegenerative disease, we applied our SILK technique to determine the effect of ATP binding cassette A1 (ABCA1) on both apoE and Aβ clearance. ABCA1 had previously been shown to regulate both the amount of apoE in the brain, along with the extent of Aβ deposition, and represents a potential molecular target for lowering brain amyloid levels in Alzheimer's disease patients. The FCR of apoE was increased by 1.9- and 1.5-fold in mice that either lacked or overexpressed ABCA1, respectively. However, ABCA1 had no effect on the FCR of Aβ, suggesting that ABCA1 does not regulate Aβ metabolism in the brain. Conclusions Our SILK strategy represents a straightforward, cost-effective, and efficient method to measure the clearance of proteins in the mouse brain. We expect that

  6. Reduced hepatic tumor incidence in cyclin G1-deficient mice

    DEFF Research Database (Denmark)

    Jensen, Michael Rugaard; Factor, Valentina M; Fantozzi, Anna

    2003-01-01

    found that the p53 levels in the cyclin G1-deficient mice are 2-fold higher that in wild-type mice. Moreover, we showed that treatment of mice with the alkylating agent 1,4-bis[N,N'-di(ethylene)-phosphamide]piperazine (Dipin), followed by partial hepatectomy, decreased G1-S transition in cyclin G1-null...

  7. Impact of chocolate liquor on vascular lesions in apoE-knockout mice.

    Science.gov (United States)

    Yazdekhasti, Narges; Brandsch, Corinna; Hirche, Frank; Kühn, Julia; Schloesser, Anke; Esatbeyoglu, Tuba; Huebbe, Patricia; Wolffram, Siegfried; Rimbach, Gerald; Stangl, Gabriele I

    2017-10-15

    Cocoa polyphenols are thought to reduce the risk of cardiovascular diseases. Thus, cocoa-containing foods may have significant health benefits. Here, we studied the impact of chocolate liquor on vascular lesion development and plaque composition in a mouse model of atherosclerosis. Apolipoprotein E (apoE)-knockout mice were assigned to two groups and fed a Western diet that contained 250 g/kg of either chocolate liquor or a polyphenol-free isoenergetic control paste for 16 weeks. In addition to fat, protein, and fibers, the chocolate liquor contained 2 g/kg of polyphenols. Compared with the control group, mice fed the chocolate liquor had larger plaque areas in the descending aorta and aortic root, which were attributed to a higher mass of vascular smooth muscle cells (VSMCs) and collagen. Vascular lipid deposits and calcification areas did not differ between the two groups. The aortic tissue level of interleukin-6 (IL-6) mRNA was 5-fold higher in the mice fed chocolate liquor than in the control mice. Chocolate-fed mice exhibited an increased hepatic saturated to polyunsaturated fatty acid ratio than the controls. Although the chocolate liquor contained 14 µg/kg of vitamin D 2 , the chocolate liquor-fed mice did not have measurable 25-hydroxyvitamin D 2 in the serum. These mice even showed a 25% reduction in the level of 25-hydroxyvitamin D 3 compared with the control mice. Overall, present data may contribute to our understanding how chocolate constituents can impact vascular lesion development. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  8. Improved muscle function and quality after diet intervention with leucine-enriched whey and antioxidants in antioxidant deficient aged mice.

    Science.gov (United States)

    van Dijk, Miriam; Dijk, Francina J; Bunschoten, Annelies; van Dartel, Dorien A M; van Norren, Klaske; Walrand, Stephane; Jourdan, Marion; Verlaan, Sjors; Luiking, Yvette

    2016-04-05

    Antioxidant (AOX) deficiencies are commonly observed in older adults and oxidative stress has been suggested to contribute to sarcopenia. Here we investigate if 1) low levels of dietary antioxidants had a negative impact on parameters of muscle mass, function and quality, and 2) to study if nutritional interventions with AOX and/or leucine-enriched whey protein could improve these muscle parameters in aged mice. 18-months-old mice were fed a casein-based antioxidant-deficient (lowox) diet or a casein-based control-diet (CTRL) for 7 months. During the last 3 months, lowox-mice were subjected to either: a) continued lowox, b) supplementation with vitamin A/E, Selenium and Zinc (AOX), c) substitution of casein with leucine-enriched whey protein (PROT) or d) a combination of both AOX and PROT (TOTAL). After 7 months lowox-mice displayed lower muscle strength and more muscle fatigue compared to CTRL. Compared to lowox-mice, PROT-mice showed improved muscle power, grip strength and less muscle fatigue. AOX-mice showed improved oxidative status, less muscle fatigue, improved grip strength and mitochondrial dynamics compared to lowox-mice. The TOTAL-mice showed the combined effects of both interventions compared to lowox-mice. In conclusion, nutritional intervention with AOX and/or leucine-enriched whey protein can play a role in improving muscle health in a AOX-deficient mouse model.

  9. Modest phenotypic improvements in ASA-deficient mice with only one UDP-galactose:ceramide-galactosyltransferase gene

    Directory of Open Access Journals (Sweden)

    De Deyn PP

    2006-08-01

    Full Text Available Summary Background Arylsulfatase A (ASA-deficient mice are a model for the lysosomal storage disorder metachromatic leukodystrophy. This lipidosis is characterised by the lysosomal accumulation of the sphingolipid sulfatide. Storage of this lipid is associated with progressive demyelination. We have mated ASA-deficient mice with mice heterozygous for a non-functional allele of UDP-galactose:ceramide-galactosyltransferase (CGT. This deficiency is known to lead to a decreased synthesis of galactosylceramide and sulfatide, which should reduce sulfatide storage and improve pathology in ASA-deficient mice. Results ASA-/- CGT+/- mice, however, showed no detectable decrease in sulfatide storage. Neuronal degeneration of cells in the spiral ganglion of the inner ear, however, was decreased. Behavioural tests showed small but clear improvements of the phenotype in ASA-/- CGT+/- mice. Conclusion Thus the reduction of galactosylceramide and sulfatide biosynthesis by genetic means overall causes modest improvements of pathology.

  10. Modest phenotypic improvements in ASA-deficient mice with only one UDP-galactose:ceramide-galactosyltransferase gene

    OpenAIRE

    Franken, S; Wittke, D; Mansson, JE; D'Hooge, R; De Deyn, PP; Lüllmann-Rauch, R; Matzner, U; Gieselmann, V

    2006-01-01

    Summary Background Arylsulfatase A (ASA)-deficient mice are a model for the lysosomal storage disorder metachromatic leukodystrophy. This lipidosis is characterised by the lysosomal accumulation of the sphingolipid sulfatide. Storage of this lipid is associated with progressive demyelination. We have mated ASA-deficient mice with mice heterozygous for a non-functional allele of UDP-galactose:ceramide-galactosyltransferase (CGT). This deficiency is known to lead to a decreased synthesis of gal...

  11. Antiatherosclerotic and renoprotective effects of ebselen in the diabetic apolipoprotein E/GPx1-double knockout mouse.

    Science.gov (United States)

    Chew, Phyllis; Yuen, Derek Y C; Stefanovic, Nada; Pete, Josefa; Coughlan, Melinda T; Jandeleit-Dahm, Karin A; Thomas, Merlin C; Rosenfeldt, Franklin; Cooper, Mark E; de Haan, Judy B

    2010-12-01

    To investigate the effect of the GPx1-mimetic ebselen on diabetes-associated atherosclerosis and renal injury in a model of increased oxidative stress. The study was performed using diabetic apolipoprotein E/GPx1 (ApoE(-/-)GPx1(-/-))-double knockout (dKO) mice, a model combining hyperlipidemia and hyperglycemia with increased oxidative stress. Mice were randomized into two groups, one injected with streptozotocin, the other with vehicle, at 8 weeks of age. Groups were further randomized to receive either ebselen or no treatment for 20 weeks. Ebselen reduced diabetes-associated atherosclerosis in most aortic regions, with the exception of the aortic sinus, and protected dKO mice from renal structural and functional injury. The protective effects of ebselen were associated with a reduction in oxidative stress (hydroperoxides in plasma, 8-isoprostane in urine, nitrotyrosine in the kidney, and 4-hydroxynonenal in the aorta) as well as a reduction in VEGF, CTGF, VCAM-1, MCP-1, and Nox2 after 10 weeks of diabetes in the dKO aorta. Ebselen also significantly reduced the expression of proteins implicated in fibrosis and inflammation in the kidney as well as reducing related key intracellular signaling pathways. Ebselen has an antiatherosclerotic and renoprotective effect in a model of accelerated diabetic complications in the setting of enhanced oxidative stress. Our data suggest that ebselen effectively repletes the lack of GPx1, and indicate that ebselen may be an effective therapeutic for the treatment of diabetes-related atherosclerosis and nephropathy. Furthermore, this study highlights the feasibility of addressing two diabetic complications with one treatment regimen through the unifying approach of targeted antioxidant therapy.

  12. Apolipoprotein D is associated with long-term outcome in patients with schizophrenia

    DEFF Research Database (Denmark)

    Hansen, T; Hemmingsen, R P; Wang, A G

    2006-01-01

    Accumulating evidence implicates deficiencies in apolipoprotein D (ApoD) function and arachidonic acid signaling in schizophrenic disorders. We addressed two hypotheses in relation to ApoD: first, polymorphisms in the ApoD gene confer susceptibility to or are markers of disease, and, second, gene......D alleles, genotypes or haplotypes to be associated with disease. However, we did find that long-term clinical outcome was associated with the ApoD polymorphism rs7659 (P = 0.041) following adjustment for lifetime clinical global impression, age at first admission and gender.......Accumulating evidence implicates deficiencies in apolipoprotein D (ApoD) function and arachidonic acid signaling in schizophrenic disorders. We addressed two hypotheses in relation to ApoD: first, polymorphisms in the ApoD gene confer susceptibility to or are markers of disease, and, second...

  13. The role of endoplasmic reticulum stress in hippocampal insulin resistance.

    Science.gov (United States)

    Sims-Robinson, Catrina; Bakeman, Anna; Glasser, Rebecca; Boggs, Janet; Pacut, Crystal; Feldman, Eva L

    2016-03-01

    Metabolic syndrome, which includes hypertension, hyperglycemia, obesity, insulin resistance, and dyslipidemia, has a negative impact on cognitive health. Endoplasmic reticulum (ER) stress is activated during metabolic syndrome, however it is not known which factor associated with metabolic syndrome contributes to this stress. ER stress has been reported to play a role in the development of insulin resistance in peripheral tissues. The role of ER stress in the development of insulin resistance in hippocampal neurons is not known. In the current study, we investigated ER stress in the hippocampus of 3 different mouse models of metabolic syndrome: the C57BL6 mouse on a high fat (HF) diet; apolipoprotein E, leptin, and apolipoprotein B-48 deficient (ApoE 3KO) mice; and the low density lipoprotein receptor, leptin, and apolipoprotein B-48 deficient (LDLR 3KO) mice. We demonstrate that ER stress is activated in the hippocampus of HF mice, and for the first time, in ApoE 3KO mice, but not LDLR 3KO mice. The HF and ApoE 3KO mice are hyperglycemic; however, the LDLR 3KO mice have normal glycemia. This suggests that hyperglycemia may play a role in the activation of ER stress in the hippocampus. Similarly, we also demonstrate that impaired insulin signaling is only present in the HF and ApoE 3KO mice, which suggests that ER stress may play a role in insulin resistance in the hippocampus. To confirm this we pharmacologically induced ER stress with thapsigargin in human hippocampal neurons. We demonstrate for the first time that thapsigargin leads to ER stress and impaired insulin signaling in human hippocampal neurons. Our results may provide a potential mechanism that links metabolic syndrome and cognitive health. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Proteomic data show an increase in autoantibodies and alpha-fetoprotein and a decrease in apolipoprotein A-II with time in sera from senescence-accelerated mice

    Energy Technology Data Exchange (ETDEWEB)

    Guo, S.J. [Beijing Institute of Pharmacology and Toxicology, Beijing (China); Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Qi, C.H.; Zhou, W.X.; Zhang, Y.X. [Beijing Institute of Pharmacology and Toxicology, Beijing (China); Zhang, X.M.; Wang, J.; Wang, H.X. [National Center of Biomedical Analysis, Beijing (China)

    2013-04-12

    We evaluated changes in levels by comparing serum proteins in senescence-accelerated mouse-prone 8 (SAMP8) mice at 2, 6, 12, and 15 months of age (SAMP8-2 m, -6 m, -12 m, -15 m) to age-matched SAM-resistant 1 (SAMR1) mice. Mice were sacrificed, and blood was analyzed by 2-dimensional electrophoresis combined with mass spectrometry. Five protein spots were present in all SAMP8 serum samples, but only appeared in SAMR1 samples at 15 months of age except for spot 3, which also showed a slight expression in SAMR1-12 m sera. Two proteins decreased in the sera from SAMP8-2 m, -6 m, and -12 m mice, and divided into 2 spots each in SAMP8-15 m sera. Thus, the total number of altered spots in SAMP8 sera was 7; of these, 4 were identified as Ig kappa chain V region (M-T413), chain A of an activity suppressing Fab fragment to cytochrome P450 aromatase (32C2-A), alpha-fetoprotein, and apolipoprotein A-II. M-T413 is a monoclonal CD4 antibody, which inhibits T cell proliferation. We found that M-T413 RNA level was significantly enhanced in splenocytes from SAMP8-2 m mice. This agreed with serum M-T413 protein alterations and a strikingly lower blood CD4{sup +} T cell count in SAMP8 mice when compared to the age-matched SAMR1 mice, with the latter negatively correlating with serum M-T413 protein volume. Age-related changes in serum proteins favored an increase in autoantibodies and alpha-fetoprotein and a decrease of apolipoprotein A-II, which occurred in SAMP8 mice at 2 months of age and onwards. These proteins may serve as candidate biomarkers for early aging.

  15. Proteomic data show an increase in autoantibodies and alpha-fetoprotein and a decrease in apolipoprotein A-II with time in sera from senescence-accelerated mice

    International Nuclear Information System (INIS)

    Guo, S.J.; Qi, C.H.; Zhou, W.X.; Zhang, Y.X.; Zhang, X.M.; Wang, J.; Wang, H.X.

    2013-01-01

    We evaluated changes in levels by comparing serum proteins in senescence-accelerated mouse-prone 8 (SAMP8) mice at 2, 6, 12, and 15 months of age (SAMP8-2 m, -6 m, -12 m, -15 m) to age-matched SAM-resistant 1 (SAMR1) mice. Mice were sacrificed, and blood was analyzed by 2-dimensional electrophoresis combined with mass spectrometry. Five protein spots were present in all SAMP8 serum samples, but only appeared in SAMR1 samples at 15 months of age except for spot 3, which also showed a slight expression in SAMR1-12 m sera. Two proteins decreased in the sera from SAMP8-2 m, -6 m, and -12 m mice, and divided into 2 spots each in SAMP8-15 m sera. Thus, the total number of altered spots in SAMP8 sera was 7; of these, 4 were identified as Ig kappa chain V region (M-T413), chain A of an activity suppressing Fab fragment to cytochrome P450 aromatase (32C2-A), alpha-fetoprotein, and apolipoprotein A-II. M-T413 is a monoclonal CD4 antibody, which inhibits T cell proliferation. We found that M-T413 RNA level was significantly enhanced in splenocytes from SAMP8-2 m mice. This agreed with serum M-T413 protein alterations and a strikingly lower blood CD4 + T cell count in SAMP8 mice when compared to the age-matched SAMR1 mice, with the latter negatively correlating with serum M-T413 protein volume. Age-related changes in serum proteins favored an increase in autoantibodies and alpha-fetoprotein and a decrease of apolipoprotein A-II, which occurred in SAMP8 mice at 2 months of age and onwards. These proteins may serve as candidate biomarkers for early aging

  16. Immunity to sporozoite-induced malaria infection in mice. I. The effect of immunization of T and B cell-deficient mice

    International Nuclear Information System (INIS)

    Chen, D.H.; Tigelaar, R.E.; Weinbaum, F.I.

    1977-01-01

    The cellular basis of immunity to sporozoites was investigated by examining the effect of immunization of T and B cell-deficient C57BL/6N x BALB/c AnN F 1 (BLCF 1 ) mice compared to immunocompetent controls. Immunization of T cell-deficient (ATX-BM-ATS) BLCF 1 mice with x-irradiated sporozoites did not result in the generation of protective immunity. The same immunization protocols protected all immunocompetent controls. In contrast, B cell-deficient (μ-suppressed) BLCF 1 mice were protected by immunization in the majority of cases. The absence of detectable serum circumsporozoite precipitins or sporozoite neutralizing activity in the μ-suppressed mice that resisted a sporozoite challenge suggests a minor role for these humoral factors in protection. These data demonstrate a preeminent role for T cells in the induction of protective immunity in BLCF 1 mice against a P. berghei sporozoite infection

  17. Moderate beer consumption does not change early or mature atherosclerosis in mice

    Directory of Open Access Journals (Sweden)

    Blanco-Vaca Francisco

    2004-01-01

    Full Text Available Abstract Background Although the consumption of wine in particular has been associated with a lower risk of atherothrombotic cardiovascular disease, systematic reviews differ as to the relative protective effect of beer, wine and spirits. Two previous studies showed that red wine reduces fatty streak formation (early atherosclerosis but not mature atherosclerosis in apolipoprotein (apo E-deficient (apoE-/- mice. Aim of the study To determine whether a moderate beer intake would affect early and mature atherosclerotic lesion formation using control C57BL/6 and apoE-/- mice, respectively, as models. Methods Control C57BL/6 and apoE-/- mice were randomized to receive either water, ethanol, mild beer, dark beer or ethanol-free beer. The level of beer was designed to approximate the alcohol intake currently believed to be beneficial in reducing human vascular risk. Control C57BL/6 mice were fed a Western diet for 24 weeks, and apoE-/- mice a chow diet for 12 weeks. At the end of the trial period, mice were euthanized and atherosclerotic lesions quantified. Plasma lipid concentrations were also measured. Results The amount of atherosclerosis and average number of lesions in the proximal aortic region did not differ among groups in control C57BL/6 mice (p = 0.32 and p = 0.29, respectively and apoE-/- mice (p = 0.19 and p = 0.59, respectively. No consistent differences were observed in plasma lipid and lipoprotein concentrations among water, ethanol and beer groups. Conclusions Moderate beer consumption does not change the development of early or mature atherosclerosis in mice. Our findings do not support the hypothesis of an anti-atherogenic effect of beer. Other potential protective actions of moderate beer consumption such as plaque stabilization, a reduction in plaque intrinsic thrombogenicity, or a reduction in the systemic propensity to thrombosis, remain to be studied.

  18. Marginal Biotin Deficiency Is Teratogenic in ICR Mice1,2

    OpenAIRE

    Mock, Donald M.; Mock, Nell I.; Stewart, Christopher W.; LaBorde, James B.; Hansen, Deborah K.

    2003-01-01

    The incidence of marginal biotin deficiency in normal human gestation is approximately one in three. In ICR mice, maternal biotin deficiency results in cleft palate, micrognathia, microglossia and limb hypoplasia. However, the relationships among the severity of maternal biotin deficiency, fetal biotin status and malformations have not been reported. This study utilized validated indices of biotin status to investigate the relationships among maternal biotin status, fetal biotin status and th...

  19. Unexpected Cartilage Phenotype in CD4-Cre-Conditional SOS-Deficient Mice.

    Science.gov (United States)

    Guittard, Geoffrey; Gallardo, Devorah L; Li, Wenmei; Melis, Nicolas; Lui, Julian C; Kortum, Robert L; Shakarishvili, Nicholas G; Huh, Sunmee; Baron, Jeffrey; Weigert, Roberto; Kramer, Joshua A; Samelson, Lawrence E; Sommers, Connie L

    2017-01-01

    RAS signaling is central to many cellular processes and SOS proteins promote RAS activation. To investigate the role of SOS proteins in T cell biology, we crossed Sos1 f/f Sos2 -/- mice to CD4-Cre transgenic mice. We previously reported an effect of these mutations on T cell signaling and T cell migration. Unexpectedly, we observed nodules on the joints of greater than 90% of these mutant mice at 5 months of age, especially on the carpal joints. As the mice aged further, some also displayed joint stiffness, hind limb paralysis, and lameness. Histological analysis indicated that the abnormal growth in joints originated from dysplastic chondrocytes. Second harmonic generation imaging of the carpal nodules revealed that nodules were encased by rich collagen fibrous networks. Nodules formed in mice also deficient in RAG2, indicating that conventional T cells, which undergo rearrangement of the T cell antigen receptor, are not required for this phenotype. CD4-Cre expression in a subset of cells, either immune lineage cells (e.g., non-conventional T cells) or non-immune lineage cells (e.g., chondrocytes) likely mediates the dramatic phenotype observed in this study. Disruptions of genes in the RAS signaling pathway are especially likely to cause this phenotype. These results also serve as a cautionary tale to those intending to use CD4-Cre transgenic mice to specifically delete genes in conventional T cells.

  20. Progression and regression of atherosclerosis in APOE3-Leiden transgenic mice : An immunohistochemical study

    NARCIS (Netherlands)

    Gijbels, M.J.J.; Cammen, M. van der; Laan, L.J.W. van der; Emeis, J.J.; Havekes, L.M.; Hofker, M.H.; Kraal, G.

    1999-01-01

    Apolipoprotein E3-Leiden (APOE3-Leiden) transgenic mice develop hyperlipidemia and are highly susceptible to diet-induced atherosclerosis. We have studied the progression and regression of atherosclerosis using immunohistochemistry. Female transgenic mice were fed a moderate fat diet to study

  1. Association of apolipoprotein E allele {epsilon}4 with late-onset sporadic Alzheimer`s disease

    Energy Technology Data Exchange (ETDEWEB)

    Lucotte, G.; David, F.; Berriche, S. [Regional Center of Neurogenetics, Reims (France)] [and others

    1994-09-15

    Apolipoprotein E, type {epsilon}4 allele (ApoE {epsilon}4), is associated with late-onset sporadic Alzheimer`s disease (AD) in French patients. The association is highly significant (0.45 AD versus 0.12 controls for {epsilon}4 allele frequencies). These data support the involvement of ApoE {epsilon}4 allele as a very important risk factor for the clinical expression of AD. 22 refs., 1 fig., 3 tabs.

  2. Vaccination against lymphocytic choriomeningitis virus infection in MHC class II-deficient mice

    DEFF Research Database (Denmark)

    Holst, Peter Johannes; Christensen, Jan Pravsgaard; Thomsen, Allan Randrup

    2011-01-01

    response could be elicited in MHC class II-deficient mice by vaccination with adenovirus encoding lymphocytic choriomeningitis virus (LCMV) glycoprotein tethered to MHC class II-associated invariant chain. Moreover, the response induced conferred significant cytolytic CD8(+) T cell-mediated protection...... against challenge with a high dose of the invasive clone 13 strain of LCMV. In contrast, vaccination with adenovirus encoding unlinked LCMV glycoprotein induced weak virus control in the absence of CD4(+) T cells, and mice may die of increased immunopathology associated with incomplete protection. Acute...... mortality was not observed in any vaccinated mice following infection with the less-invasive Traub strain. However, LCMV Traub infection caused accelerated late mortality in unvaccinated MHC class II-deficient mice; in this case, we observed a strong trend toward delayed mortality in vaccinated mice...

  3. IgE actions on CD4+ T cells, mast cells, and macrophages participate in the pathogenesis of experimental abdominal aortic aneurysms

    DEFF Research Database (Denmark)

    Wang, Jing; Lindholt, Jes S; Sukhova, Galina K

    2014-01-01

    Immunoglobulin E (IgE) activates mast cells (MCs). It remains unknown whether IgE also activates other inflammatory cells, and contributes to the pathogenesis of abdominal aortic aneurysms (AAAs). This study demonstrates that CD4+ T cells express IgE receptor FcεR1, at much higher levels than do CD......8+ T cells. IgE induces CD4+ T-cell production of IL6 and IFN-γ, but reduces their production of IL10. FcεR1 deficiency (Fcer1a-/-) protects apolipoprotein E-deficient (Apoe-/-) mice from angiotensin-II infusion-induced AAAs and reduces plasma IL6 levels. Adoptive transfer of CD4+ T cells (but...... with AAAs had significantly higher plasma IgE levels than those without AAAs. This study establishes an important role of IgE in AAA pathogenesis by activating CD4+ T cells, MCs, and macrophages and supports consideration of neutralizing plasma IgE in the therapeutics of human AAAs....

  4. Mice deficient in transmembrane prostatic acid phosphatase display increased GABAergic transmission and neurological alterations.

    Directory of Open Access Journals (Sweden)

    Heidi O Nousiainen

    Full Text Available Prostatic acid phosphatase (PAP, the first diagnostic marker and present therapeutic target for prostate cancer, modulates nociception at the dorsal root ganglia (DRG, but its function in the central nervous system has remained unknown. We studied expression and function of TMPAP (the transmembrane isoform of PAP in the brain by utilizing mice deficient in TMPAP (PAP-/- mice. Here we report that TMPAP is expressed in a subpopulation of cerebral GABAergic neurons, and mice deficient in TMPAP show multiple behavioral and neurochemical features linked to hyperdopaminergic dysregulation and altered GABAergic transmission. In addition to increased anxiety, disturbed prepulse inhibition, increased synthesis of striatal dopamine, and augmented response to amphetamine, PAP-deficient mice have enlarged lateral ventricles, reduced diazepam-induced loss of righting reflex, and increased GABAergic tone in the hippocampus. TMPAP in the mouse brain is localized presynaptically, and colocalized with SNARE-associated protein snapin, a protein involved in synaptic vesicle docking and fusion, and PAP-deficient mice display altered subcellular distribution of snapin. We have previously shown TMPAP to reside in prostatic exosomes and we propose that TMPAP is involved in the control of GABAergic tone in the brain also through exocytosis, and that PAP deficiency produces a distinct neurological phenotype.

  5. Slitrk1-deficient mice display elevated anxiety-like behavior and noradrenergic abnormalities.

    Science.gov (United States)

    Katayama, K; Yamada, K; Ornthanalai, V G; Inoue, T; Ota, M; Murphy, N P; Aruga, J

    2010-02-01

    Mutations in SLITRK1 are found in patients with Tourette's syndrome and trichotillomania. SLITRK1 encodes a transmembrane protein containing leucine-rich repeats that is produced predominantly in the nervous system. However, the role of this protein is largely unknown, except that it can modulate neurite outgrowth in vitro. To clarify the role of Slitrk1 in vivo, we developed Slitrk1-knockout mice and analyzed their behavioral and neurochemical phenotypes. Slitrk1-deficient mice exhibited elevated anxiety-like behavior in the elevated plus-maze test as well as increased immobility time in forced swimming and tail suspension tests. Neurochemical analysis revealed that Slitrk1-knockout mice had increased levels of norepinephrine and its metabolite 3-methoxy-4-hydroxyphenylglycol. Administration of clonidine, an alpha2-adrenergic agonist that is frequently used to treat patients with Tourette's syndrome, attenuated the anxiety-like behavior of Slitrk1-deficient mice in the elevated plus-maze test. These results lead us to conclude that noradrenergic mechanisms are involved in the behavioral abnormalities of Slitrk1-deficient mice. Elevated anxiety due to Slitrk1 dysfunction may contribute to the pathogenesis of neuropsychiatric diseases such as Tourette's syndrome and trichotillomania.

  6. Vitamin D deficiency in mice impairs colonic antibacterial activity and predisposes to colitis.

    Science.gov (United States)

    Lagishetty, Venu; Misharin, Alexander V; Liu, Nancy Q; Lisse, Thomas S; Chun, Rene F; Ouyang, Yi; McLachlan, Sandra M; Adams, John S; Hewison, Martin

    2010-06-01

    Vitamin D insufficiency is a global health issue. Although classically associated with rickets, low vitamin D levels have also been linked to aberrant immune function and associated health problems such as inflammatory bowel disease (IBD). To test the hypothesis that impaired vitamin D status predisposes to IBD, 8-wk-old C57BL/6 mice were raised from weaning on vitamin D-deficient or vitamin D-sufficient diets and then treated with dextran sodium sulphate (DSS) to induce colitis. Vitamin D-deficient mice showed decreased serum levels of precursor 25-hydroxyvitamin D(3) (2.5 +/- 0.1 vs. 24.4 +/- 1.8 ng/ml) and active 1,25-dihydroxyvitamin D(3) (28.8 +/- 3.1 vs. 45.6 +/- 4.2 pg/ml), greater DSS-induced weight loss (9 vs. 5%), increased colitis (4.71 +/- 0.85 vs. 1.57 +/- 0.18), and splenomegaly relative to mice on vitamin D-sufficient chow. DNA array analysis of colon tissue (n = 4 mice) identified 27 genes consistently (P < 0.05) up-regulated or down-regulated more than 2-fold in vitamin D-deficient vs. vitamin D-sufficient mice, in the absence of DSS-induced colitis. This included angiogenin-4, an antimicrobial protein involved in host containment of enteric bacteria. Immunohistochemistry confirmed that colonic angiogenin-4 protein was significantly decreased in vitamin D-deficient mice even in the absence of colitis. Moreover, the same animals showed elevated levels (50-fold) of bacteria in colonic tissue. These data show for the first time that simple vitamin D deficiency predisposes mice to colitis via dysregulated colonic antimicrobial activity and impaired homeostasis of enteric bacteria. This may be a pivotal mechanism linking vitamin D status with IBD in humans.

  7. Structure-Activity Relationships in the Cytoprotective Effect of Caffeic Acid Phenethyl Ester (CAPE) and Fluorinated Derivatives: Effects on Heme Oxygenase-1 Induction and Antioxidant Activities

    Science.gov (United States)

    2010-03-09

    Hishikawa, K., Nakaki, T., Fujita, T., 2005. Oral flavonoid supplementation attenuates atherosclerosis development in apolipoprotein E-deficient mice... flavonoids . Free Radical Biology & Medicine 20, 331–342. Wakabayashi, N., Dinkova-Kostova, A.T., Holtzclaw, W.D., Kang, M.I., Kobayashi, A., Yamamoto, M

  8. Sex differences in obesity development in pair-fed neuronal lipoprotein lipase deficient mice

    Directory of Open Access Journals (Sweden)

    Hong Wang

    2016-10-01

    Full Text Available Objective: Compared to men, postmenopausal women suffer from a disproportionate burden of many co-morbidities associated with obesity, e.g. cardiovascular disease, cancer, and dementia. The underlying mechanism for this sex difference is not well understood but is believed to relate to absence of the protective effect of estrogen through the action of estrogen receptor alpha (ERα in the central nervous system. With the recently developed neuron-specific lipoprotein lipase deficient mice (NEXLPL−/− (Wang et al., Cell Metabolism, 2011 [15], we set to explore the possible role of lipid sensing in sex differences in obesity development. Methods: Both male and female NEXLPL−/− mice and littermate WT controls were subjected to pair feeding (pf where daily food amount given was adjusted according to body weight to match the food intake of ad libitum (ad fed control WT mice. Food intake and body weight were measured daily, and pair feeding was maintained to 42 wk in male mice and to 38 wk in female mice. Various brain regions of the mice were harvested, and ERα gene expression was examined in both male and female NEXLPL−/− and WT control mice under both ad- and pf-fed conditions. Results: Although both male and female NEXLPL−/− mice developed obesity similarly on standard chow, male NEXLPL−/− mice still developed obesity under with pair feeding, but on a much delayed time course, while female NEXLPL−/− mice were protected from extra body weight and fat mass gain compared to pair-fed WT control mice. Pair feeding alone induced extra fat mass gain in both male and female WT mice, and this was mostly driven by the reduction in physical activity. LPL deficiency resulted in an increase in ERα mRNA in the hypothalamus of ad-fed female mice, while pair feeding alone also resulted in an increase of ERα in both female WT control and NEXLPL−/− mice. The effect on increasing ERα by pair feeding and LPL deficiency was additive in

  9. MCPIP1 deficiency in mice results in severe anemia related to autoimmune mechanisms.

    Directory of Open Access Journals (Sweden)

    Zhou Zhou

    Full Text Available Autoimmune gastritis is an organ-specific autoimmune disease of the stomach associated with pernicious anemia. The previous work from us and other groups identified MCPIP1 as an essential factor controlling inflammation and immune homeostasis. MCPIP1(-/- developed severe anemia. However, the mechanisms underlying this phenotype remain unclear. In the present study, we found that MCPIP1 deficiency in mice resulted in severe anemia related to autoimmune mechanisms. Although MCPIP1 deficiency did not affect erythropoiesis per se, the erythropoiesis in MCPIP1(-/- bone marrow erythroblasts was significantly attenuated due to iron and vitamin B12 (VB12 deficiency, which was mainly resulted from autoimmunity-associated gastritis and parietal cell loss. Consistently, exogenous supplement of iron and VB12 greatly improved the anemia phenotype of MCPIP1(-/- mice. Finally, we have evidence suggesting that autoimmune hemolysis may also contribute to anemia phenotype of MCPIP1(-/- mice. Taken together, our study suggests that MCPIP1 deficiency in mice leads to the development of autoimmune gastritis and pernicious anemia. Thus, MCPIP1(-/- mice may be a good mouse model for investigating the pathogenesis of pernicious anemia and testing the efficacy of some potential drugs for treatment of this disease.

  10. Apolipoprotein A-V Deficiency Results in MarkedHypertriglyceridemia Attributable to Decreased Lipolysis ofTriglyceride-Rich Lipoproteins and Removal of Their Remnants

    Energy Technology Data Exchange (ETDEWEB)

    Grosskopf, Itamar; Baroukh, Nadine; Lee, Sung-Joon; Kamari,Yehuda; Harats, Dror; Rubin, Edward M.; Pennacchio, Len A.; Cooper, AllenD.

    2005-09-01

    Objective--ApoAV, a newly discovered apoprotein, affectsplasma triglyceride level. To determine how this occurs, we studiedtriglyceride-rich lipoprotein (TRL) metabolism in mice deficient inapoAV. Methods and Results No significant difference in triglycerideproduction rate was found between apoa5_/_ mice and controls. Thepresence or absence of apoAV affected TRL catabolism. After the injectionof 14C-palmitate and 3H-cholesterol labeled chylomicrons and 125I-labeledchylomicron remnants, the disappearance of 14C, 3H, and 125I wassignificantly slower in apoa5_/_ mice relative to controls. This wasbecause of diminished lipolysis of TRL and the reduced rate of uptake oftheir remnants in apoa5_/_ mice. Observed elevated cholesterol level wascaused by increased high-density lipoprotein (HDL) cholesterol inapoa5_/_ mice. VLDL from apoa5_/_ mice were poor substrate forlipoprotein lipase, and did not bind to the low-density lipoprotein (LDL)receptor as well as normal very-low-density lipoprotein (VLDL). LDLreceptor levels were slightly elevated in apoa5_/_ mice consistent withlower remnant uptake rates. These alterations may be the result of thelower apoE-to-apoC ratio found in VLDL isolated from apoa5_/_mice.Conclusions These results support the hypothesis that the absence ofapoAV slows lipolysis of TRL and the removal of their remnants byregulating their apoproteins content after secretion.

  11. Comprehensive Behavioral Analysis of Activating Transcription Factor 5-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Mariko Umemura

    2017-07-01

    Full Text Available Activating transcription factor 5 (ATF5 is a member of the CREB/ATF family of basic leucine zipper transcription factors. We previously reported that ATF5-deficient (ATF5-/- mice demonstrated abnormal olfactory bulb development due to impaired interneuron supply. Furthermore, ATF5-/- mice were less aggressive than ATF5+/+ mice. Although ATF5 is widely expressed in the brain, and involved in the regulation of proliferation and development of neurons, the physiological role of ATF5 in the higher brain remains unknown. Our objective was to investigate the physiological role of ATF5 in the higher brain. We performed a comprehensive behavioral analysis using ATF5-/- mice and wild type littermates. ATF5-/- mice exhibited abnormal locomotor activity in the open field test. They also exhibited abnormal anxiety-like behavior in the light/dark transition test and open field test. Furthermore, ATF5-/- mice displayed reduced social interaction in the Crawley’s social interaction test and increased pain sensitivity in the hot plate test compared with wild type. Finally, behavioral flexibility was reduced in the T-maze test in ATF5-/- mice compared with wild type. In addition, we demonstrated that ATF5-/- mice display disturbances of monoamine neurotransmitter levels in several brain regions. These results indicate that ATF5 deficiency elicits abnormal behaviors and the disturbance of monoamine neurotransmitter levels in the brain. The behavioral abnormalities of ATF5-/- mice may be due to the disturbance of monoamine levels. Taken together, these findings suggest that ATF5-/- mice may be a unique animal model of some psychiatric disorders.

  12. Human placenta secretes apolipoprotein B-100-containing lipoproteins

    DEFF Research Database (Denmark)

    Munk-Madsen, Eva; Lindegaard, Marie Louise Skakkebæk; Andersen, Claus B

    2004-01-01

    Supply of lipids from the mother is essential for fetal growth and development. In mice, disruption of yolk sac cell secretion of apolipoprotein (apo) B-containing lipoproteins results in embryonic lethality. In humans, the yolk sac is vestigial. Nutritional functions are instead established very...... of lipid transfer from the mother to the developing fetus....

  13. Increased susceptibility to diet-induced obesity in histamine-deficient mice

    DEFF Research Database (Denmark)

    Jørgensen, Emilie A; Vogelsang, Thomas W; Knigge, Ulrich

    2006-01-01

    in the development of high-fat diet (HFD)-induced obesity. METHODS: Histamine-deficient histidine decarboxylase knock-out (HDC-KO) mice and C57BL/6J wild-type (WT) mice were given either a standard diet (STD) or HFD for 8 weeks. Body weight, 24-hour caloric intake, epididymal adipose tissue size, plasma leptin...... weeks, whereas a significant difference in body weight gain was first observed after 5 weeks in WT mice. After 8 weeks 24-hour caloric intake was significantly lower in HFD- than in STD-fed WT mice. In HDC-KO mice no difference in caloric intake was observed between HFD- and STD-fed mice. After 8 weeks...

  14. Impaired Coronary and Renal Vascular Function in Spontaneously Type 2 Diabetic Leptin-Deficient Mice.

    Directory of Open Access Journals (Sweden)

    Helena U Westergren

    Full Text Available Type 2 diabetes is associated with macro- and microvascular complications in man. Microvascular dysfunction affects both cardiac and renal function and is now recognized as a main driver of cardiovascular mortality and morbidity. However, progression of microvascular dysfunction in experimental models is often obscured by macrovascular pathology and consequently demanding to study. The obese type 2 diabetic leptin-deficient (ob/ob mouse lacks macrovascular complications, i.e. occlusive atherosclerotic disease, and may therefore be a potential model for microvascular dysfunction. The present study aimed to test the hypothesis that these mice with an insulin resistant phenotype might display microvascular dysfunction in both coronary and renal vascular beds.In this study we used non-invasive Doppler ultrasound imaging to characterize microvascular dysfunction during the progression of diabetes in ob/ob mice. Impaired coronary flow velocity reserve was observed in the ob/ob mice at 16 and 21 weeks of age compared to lean controls. In addition, renal resistivity index as well as pulsatility index was higher in the ob/ob mice at 21 weeks compared to lean controls. Moreover, plasma L-arginine was lower in ob/ob mice, while asymmetric dimethylarginine was unaltered. Furthermore, a decrease in renal vascular density was observed in the ob/ob mice.In parallel to previously described metabolic disturbances, the leptin-deficient ob/ob mice also display cardiac and renal microvascular dysfunction. This model may therefore be suitable for translational, mechanistic and interventional studies to improve the understanding of microvascular complications in type 2 diabetes.

  15. Plasma lipoproteins in familial dysbetalipoproteinemia associated with apolipoproteins E2 (Arg158 -->Cys), E3-Leiden, and E2 (Lys146-->Gln), and effects of treatment with simvastatin

    NARCIS (Netherlands)

    Zhao, S.P.; Smelt, A.H.; Maagdenberg, A.M. van den; Tol, A. van; Vroom T.F.; Gevers Leuven, J.A.; Frants, R.R.; Havekes, L.M.; Laarse, A. van der; Hooft, F.M. van 't

    1994-01-01

    Using a density-gradient ultracentrifugation technique, we analyzed in detail the plasma lipoprotein profiles of 18 patients with familial dysbetalipoproteinemia (FD) who had apolipoprotein (apo) E2(Arg158-->Cys) homozygosity (the E2-158 variant, n = 6), apoE3-Leiden heterozygosity (the E3-Leiden

  16. The influence of chronic stress on anxiety-like behavior and cognitive function in different human GFAP-ApoE transgenic adult male mice.

    Science.gov (United States)

    Meng, Fan-Tao; Zhao, Jun; Fang, Hui; Liu, Ya-Jing

    2015-01-01

    The apolipoprotein E (ApoE) ɛ4 allele (ApoE4) is an important genetic risk factor for the pathogenesis of Alzheimer's disease (AD). In addition to genetic factors, environmental factors such as stress may play a critical role in AD pathogenesis. This study was designed to investigate the anxiety-like behavioral and cognitive changes in different human glial fibrillary acidic protein (GFAP)-ApoE transgenic adult male mice under chronic stress conditions. On the open field test, anxiety-like behavior was increased in the non-stressed GFAP-ApoE4 transgenic mice relative to the corresponding GFAP-ApoE3 (ApoE ɛ3 allele) mice. Anxiety-like behavior was increased in the stressed GFAP-ApoE3 mice relative to non-stressed GFAP-ApoE3 mice, but was unexpectedly decreased in the stressed GFAP-ApoE4 mice relative to non-stressed GFAP-ApoE4 mice. On the novel object recognition task, both GFAP-ApoE4 and GFAP-ApoE3 mice exhibited long-term non-spatial memory impairment after chronic stress. Interestingly, short-term non-spatial memory impairment (based on the novel object recognition task) was observed only in the stressed GFAP-ApoE4 male mice relative to non-stressed GFAP-ApoE4 transgenic mice. In addition, short-term spatial memory impairment was observed in the stressed GFAP-ApoE3 transgenic male mice relative to non-stressed GFAP-ApoE3 transgenic male mice; however, short-term spatial memory performance of GFAP-ApoE4 transgenic male mice was not reduced compared to non-stressed control mice based on the Y-maze task. In conclusion, our findings suggested that chronic stress affects anxiety-like behavior and spatial and non-spatial memory in GFAP-ApoE transgenic mice in an ApoE isoform-dependent manner.

  17. Surface-Associated Lipoproteins Link Enterococcus faecalis Virulence to Colitogenic Activity in IL-10-Deficient Mice Independent of Their Expression Levels.

    Directory of Open Access Journals (Sweden)

    Soeren Ocvirk

    2015-06-01

    Full Text Available The commensal Enterococcus faecalis is among the most common causes of nosocomial infections. Recent findings regarding increased abundance of enterococci in the intestinal microbiota of patients with inflammatory bowel diseases and induction of colitis in IL-10-deficient (IL-10-/- mice put a new perspective on the contribution of E. faecalis to chronic intestinal inflammation. Based on the expression of virulence-related genes in the inflammatory milieu of IL-10-/- mice using RNA-sequencing analysis, we characterized the colitogenic role of two bacterial structures that substantially impact on E. faecalis virulence by different mechanisms: the enterococcal polysaccharide antigen and cell surface-associated lipoproteins. Germ-free wild type and IL-10-/- mice were monoassociated with E. faecalis wild type OG1RF or the respective isogenic mutants for 16 weeks. Intestinal tissue and mesenteric lymph nodes (MLN were collected to characterize tissue pathology, loss of intestinal barrier function, bacterial adhesion to intestinal epithelium and immune cell activation. Bone marrow-derived dendritic cells (BMDC were stimulated with bacterial lysates and E. faecalis virulence was additionally investigated in three invertebrate models. Colitogenic activity of wild type E. faecalis (OG1RF score: 7.2±1.2 in monoassociated IL-10-/- mice was partially impaired in E. faecalis lacking enterococcal polysaccharide antigen (ΔepaB score: 4.7±2.3; p<0.05 and was almost completely abrogated in E. faecalis deficient for lipoproteins (Δlgt score: 2.3±2.3; p<0.0001. Consistently both E. faecalis mutants showed significantly impaired virulence in Galleria mellonella and Caenorhabditis elegans. Loss of E-cadherin in the epithelium was shown for all bacterial strains in inflamed IL-10-/- but not wild type mice. Inactivation of epaB in E. faecalis reduced microcolony and biofilm formation in vitro, altered bacterial adhesion to intestinal epithelium of germ

  18. Cell type-specific deficiency of c-kit gene expression in mutant mice of mi/mi genotype.

    Science.gov (United States)

    Isozaki, K.; Tsujimura, T.; Nomura, S.; Morii, E.; Koshimizu, U.; Nishimune, Y.; Kitamura, Y.

    1994-01-01

    The mi locus of mice encodes a novel member of the basic-helix-loop-helix-leucine zipper protein family of transcription factors (hereafter called mi factor). In addition to microphthalmus, osteopetrosis, and lack of melanocytes, mice of mi/mi genotype are deficient in mast cells. Since the c-kit receptor tyrosine kinase plays an important role in the development of mast cells, and since the c-kit expression by cultured mast cells from mi/mi mice is deficient in both mRNA and protein levels, the mast cell deficiency of mi/mi mice has been attributed at least in part to the deficient expression of c-kit. However, it remained to be examined whether the c-kit expression was also deficient in tissues of mi/mi mice. In the present study, we examined the c-kit expression by mi/mi skin mast cells using in situ hybridization and immunohistochemistry. Moreover, we examined the c-kit expression by various cells other than mast cells in tissues of mi/mi mice. We found that the c-kit expression was deficient in mast cells but not in erythroid precursors, testicular germ cells, and neurons of mi/mi mice. This suggested that the regulation of the c-kit transcription by the mi factor was dependent on cell types. Mice of mi/mi genotype appeared to be a useful model to analyze the function of transcription factors in the whole-animal level. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7524330

  19. Correction of lysosomal enzyme deficiency in various organs of beta-glucuronidase-deficient mice by allogeneic bone marrow transplantation

    NARCIS (Netherlands)

    Hoogerbrugge, P. M.; Poorthuis, B. J.; Mulder, A. H.; Wagemaker, G.; Dooren, L. J.; Vossen, J. M.; van Bekkum, D. W.

    1987-01-01

    The correction of lysosomal enzyme deficiency was investigated for various organs of beta-glucuronidase-deficient C3H/Rij mice after allogeneic bone marrow transplantation from an enzymatically normal donor strain (C57BL/Rij). In the hemopoietic organs, the enzyme level increased to levels found in

  20. Defective bone repair in mast cell-deficient Cpa3Cre/+ mice.

    Directory of Open Access Journals (Sweden)

    Jose Luis Ramirez-GarciaLuna

    Full Text Available In the adult skeleton, cells of the immune system interact with those of the skeleton during all phases of bone repair to influence the outcome. Mast cells are immune cells best known for their pathologic role in allergy, and may be involved in chronic inflammatory and fibrotic disorders. Potential roles for mast cells in tissue homeostasis, vascularization and repair remain enigmatic. Previous studies in combined mast cell- and Kit-deficient KitW-sh/W-sh mice (KitW-sh implicated mast cells in bone repair but KitW-sh mice suffer from additional Kit-dependent hematopoietic and non- hematopoietic deficiencies that could have confounded the outcome. The goal of the current study was to compare bone repair in normal wild type (WT and Cpa3Cre/+ mice, which lack mast cells in the absence of any other hematopoietic or non- hematopoietic deficiencies. Repair of a femoral window defect was characterized using micro CT imaging and histological analyses from the early inflammatory phase, through soft and hard callus formation, and finally the remodeling phase. The data indicate 1 mast cells appear in healing bone of WT mice but not Cpa3Cre/+ mice, beginning 14 days after surgery; 2 re-vascularization of repair tissue and deposition of mineralized bone was delayed and dis-organised in Cpa3Cre/+ mice compared with WT mice; 3 the defects in Cpa3Cre/+ mice were associated with little change in anabolic activity and biphasic alterations in osteoclast and macrophage activity. The outcome at 56 days postoperative was complete bridging of the defect in most WT mice and fibrous mal-union in most Cpa3Cre/+ mice. The results indicate that mast cells promote bone healing, possibly by recruiting vascular endothelial cells during the inflammatory phase and coordinating anabolic and catabolic activity during tissue remodeling. Taken together the data indicate that mast cells have a positive impact on bone repair.

  1. Defective bone repair in mast cell-deficient Cpa3Cre/+ mice.

    Science.gov (United States)

    Ramirez-GarciaLuna, Jose Luis; Chan, Daniel; Samberg, Robert; Abou-Rjeili, Mira; Wong, Timothy H; Li, Ailian; Feyerabend, Thorsten B; Rodewald, Hans-Reimer; Henderson, Janet E; Martineau, Paul A

    2017-01-01

    In the adult skeleton, cells of the immune system interact with those of the skeleton during all phases of bone repair to influence the outcome. Mast cells are immune cells best known for their pathologic role in allergy, and may be involved in chronic inflammatory and fibrotic disorders. Potential roles for mast cells in tissue homeostasis, vascularization and repair remain enigmatic. Previous studies in combined mast cell- and Kit-deficient KitW-sh/W-sh mice (KitW-sh) implicated mast cells in bone repair but KitW-sh mice suffer from additional Kit-dependent hematopoietic and non- hematopoietic deficiencies that could have confounded the outcome. The goal of the current study was to compare bone repair in normal wild type (WT) and Cpa3Cre/+ mice, which lack mast cells in the absence of any other hematopoietic or non- hematopoietic deficiencies. Repair of a femoral window defect was characterized using micro CT imaging and histological analyses from the early inflammatory phase, through soft and hard callus formation, and finally the remodeling phase. The data indicate 1) mast cells appear in healing bone of WT mice but not Cpa3Cre/+ mice, beginning 14 days after surgery; 2) re-vascularization of repair tissue and deposition of mineralized bone was delayed and dis-organised in Cpa3Cre/+ mice compared with WT mice; 3) the defects in Cpa3Cre/+ mice were associated with little change in anabolic activity and biphasic alterations in osteoclast and macrophage activity. The outcome at 56 days postoperative was complete bridging of the defect in most WT mice and fibrous mal-union in most Cpa3Cre/+ mice. The results indicate that mast cells promote bone healing, possibly by recruiting vascular endothelial cells during the inflammatory phase and coordinating anabolic and catabolic activity during tissue remodeling. Taken together the data indicate that mast cells have a positive impact on bone repair.

  2. Middle-aged human apoE4 targeted-replacement mice show retention deficits on a wide range of spatial memory tasks.

    Science.gov (United States)

    Bour, Alexandra; Grootendorst, Jeannette; Vogel, Elise; Kelche, Christian; Dodart, Jean-Cosme; Bales, Kelly; Moreau, Pierre-Henri; Sullivan, Patrick M; Mathis, Chantal

    2008-11-21

    Apolipoprotein (apo) E4, one of three human apoE (h-apoE) isoforms, has been identified as a major genetic risk factor for Alzheimer's disease and for cognitive deficits associated with aging. However, the biological mechanisms involving apoE in learning and memory processes are unclear. A potential isoform-dependent role of apoE in cognitive processes was studied in human apoE targeted-replacement (TR) mice. These mice express either the human apoE3 or apoE4 gene under the control of endogenous murine apoE regulatory sequences, resulting in physiological expression of h-apoE in both a temporal and spatial pattern similar to humans. Male and female apoE3-TR, apoE4-TR, apoE-knockout and C57BL/6J mice (15-18 months) were tested with spatial memory and avoidance conditioning tasks. Compared to apoE3-TR mice, spatial memory in female apoE4-TR mice was impaired based on their poor performances in; (i) the probe test of the water-maze reference memory task, (ii) the water-maze working memory task and (iii) an active avoidance Y-maze task. Retention performance on a passive avoidance task was also impaired in apoE4-TR mice, but not in other genotypes. These deficits in both spatial and avoidance memory tasks may be related to the anatomical and functional abnormalities previously reported in the hippocampus and the amygdala of apoE4-TR mice. We conclude that the apoE4-TR mice provide an excellent model for understanding the mechanisms underlying apoE4-dependent susceptibility to cognitive decline.

  3. Apolipoprotein M

    Directory of Open Access Journals (Sweden)

    Nilsson-Ehle Peter

    2004-10-01

    Full Text Available Abstract Apolipoprotein M (apoM is a 26-kDa protein that is mainly associated with high-density lipoprotein (HDL in human plasma, with a small proportion present in triglyceride-rich lipoproteins (TGRLP and low-density lipoproteins (LDL. Human apoM gene is located in p21.31 on chromosome 6 (chromosome 17, in mouse. Human apoM cDNA (734 base pairs encodes 188-amino acid residue-long protein. It belongs to lipocalin protein superfamily. Human tissue expression array study indicates that apoM is only expressed in liver and in kidney and small amounts are found in fetal liver and kidney. In situ apoM mRNA hybridization demonstrates that apoM is exclusively expressed in the hepatocytes and in the tubule epithelial cells in kidney. Expression of apoM could be regulated by platelet activating factor (PAF, transforming growth factors (TGF, insulin-like growth factor (IGF and leptin in vivo and/or in vitro. It has been demonstrated that apoM expression is dramatically decreased in apoA-I deficient mouse. Hepatocyte nuclear factor-1α (HNF-1α is an activator of apoM gene promoter. Deficiency of HNF-1α mouse shows lack of apoM expression. Mutations in HNF-1α (MODY3 have reduced serum apoM levels. Expression of apoM is significantly decreased in leptin deficient (ob/ob mouse or leptin receptor deficient (db/db mouse. ApoM concentration in plasma is positively correlated to leptin level in obese subjects. These may suggest that apoM is related to the initiation and progression of MODY3 and/or obesity.

  4. Cardiovascular phenotype in Smad3 deficient mice with renovascular hypertension.

    Science.gov (United States)

    Kashyap, Sonu; Warner, Gina; Hu, Zeng; Gao, Feng; Osman, Mazen; Al Saiegh, Yousif; Lien, Karen R; Nath, Karl; Grande, Joseph P

    2017-01-01

    Renovascular hypertension (RVH) has deleterious effects on both the kidney and the heart. TGF-β signaling through Smad3 directs tissue fibrosis in chronic injury models. In the 2-kidney 1-clip (2K1C) model of RVH, employing mice on the 129 genetic background, Smad3 deficiency (KO) protects the stenotic kidney (STK) from development of interstitial fibrosis. However, these mice have an increased incidence of sudden cardiac death following 2K1C surgery. The purpose of this study was to characterize the cardiovascular phenotype of these mice. Renal artery stenosis (RAS) was established in Wild-type (WT) and Smad3 KO mice (129 genetic background) by placement of a polytetrafluoroethylene cuff on the right renal artery. Mortality was 25.5% for KO mice with RAS, 4.1% for KO sham mice, 1.2% for WT with RAS, and 1.8% for WT sham mice. Myocardial tissue of mice studied at 3 days following surgery showed extensive myocyte necrosis in KO but not WT mice. Myocyte necrosis was associated with a rapid induction of Ccl2 expression, macrophage influx, and increased MMP-9 activity. At later time points, both KO and WT mice developed myocardial fibrosis. No aortic aneurysms or dissections were observed at any time point. Smad3 KO mice were backcrossed to the C57BL/6J strain and subjected to RAS. Sudden death was observed at 10-14 days following surgery in 62.5% of mice; necropsy revealed aortic dissections as the cause of death. As observed in the 129 mice, the STK of Smad3 KO mice on the C57BL/6J background did not develop significant chronic renal damage. We conclude that the cardiovascular manifestations of Smad3 deficient mice are strain-specific, with myocyte necrosis in 129 mice and aortic rupture in C57BL/6J mice. Future studies will define mechanisms underlying this strain-specific effect on the cardiovascular system.

  5. Cardiovascular phenotype in Smad3 deficient mice with renovascular hypertension.

    Directory of Open Access Journals (Sweden)

    Sonu Kashyap

    Full Text Available Renovascular hypertension (RVH has deleterious effects on both the kidney and the heart. TGF-β signaling through Smad3 directs tissue fibrosis in chronic injury models. In the 2-kidney 1-clip (2K1C model of RVH, employing mice on the 129 genetic background, Smad3 deficiency (KO protects the stenotic kidney (STK from development of interstitial fibrosis. However, these mice have an increased incidence of sudden cardiac death following 2K1C surgery. The purpose of this study was to characterize the cardiovascular phenotype of these mice. Renal artery stenosis (RAS was established in Wild-type (WT and Smad3 KO mice (129 genetic background by placement of a polytetrafluoroethylene cuff on the right renal artery. Mortality was 25.5% for KO mice with RAS, 4.1% for KO sham mice, 1.2% for WT with RAS, and 1.8% for WT sham mice. Myocardial tissue of mice studied at 3 days following surgery showed extensive myocyte necrosis in KO but not WT mice. Myocyte necrosis was associated with a rapid induction of Ccl2 expression, macrophage influx, and increased MMP-9 activity. At later time points, both KO and WT mice developed myocardial fibrosis. No aortic aneurysms or dissections were observed at any time point. Smad3 KO mice were backcrossed to the C57BL/6J strain and subjected to RAS. Sudden death was observed at 10-14 days following surgery in 62.5% of mice; necropsy revealed aortic dissections as the cause of death. As observed in the 129 mice, the STK of Smad3 KO mice on the C57BL/6J background did not develop significant chronic renal damage. We conclude that the cardiovascular manifestations of Smad3 deficient mice are strain-specific, with myocyte necrosis in 129 mice and aortic rupture in C57BL/6J mice. Future studies will define mechanisms underlying this strain-specific effect on the cardiovascular system.

  6. Nanobody-Based Apolipoprotein E Immunosensor for Point-of-Care Testing.

    Science.gov (United States)

    Ren, Xiang; Yan, Junrong; Wu, Dan; Wei, Qin; Wan, Yakun

    2017-09-22

    Alzheimer's disease (AD) biomarkers can reflect the neurochemical indicators used to estimate the risk in clinical nephrology. Apolipoprotein E (ApoE) is an early biomarker for AD in clinical diagnosis. In this research, through bactrian camel immunization, lymphocyte isolation, RNA extraction, and library construction, ApoE-specific Nbs with high affinity were successfully separated from an immune phage display nanobody library. Herein, a colorimetric immunosensor was developed for the point-of-care testing of ApoE by layer-by-layer nanoassembly techniques and novel nanobodies (Nbs). Using highly oriented Nbs as the capture and detection antibodies, an on-site immunosensor was developed by detecting the mean gray value of fade color due to the glutaraldehyde@3-aminopropyltrimethoxysilane oxidation by H 2 O 2 . The detection limit of AopE is 0.42 pg/mL, and the clinical analysis achieves a good performance. The novel easily operated immunosensor may have potential application in the clinical diagnosis and real-time monitoring for AD.

  7. Possible Alzheimer’s Disease in an Apolipoprotein E2 Homozygote

    Science.gov (United States)

    Ignatov, Ignat; Belden, Christine; Jacobson, Sandra; Connor, Donald; Sabbagh, Marwan N.

    2010-01-01

    The objective of this study was to describe a case of Alzheimer’s disease in an ApoE ε2/ε2 homozygote. ApoE ε2/ε2 is the rarest of the apolipoprotein E genotypes, representing only 1.4% of the population. There is only one case reported in the literature of a nonagenarian with minimal cognitive changes whose brain showed AD pathology on postmortem study. Here we report an 87-year-old ApoE ε2/ε2 female who meets clinical criteria for Alzheimer’s disease, with confirmation from neuropsychological testing and PET scan. Clinical course is typical for Alzheimer’s disease with decline on the Mini-Mental Status Examination from a score of 25 to 19 over 3.5 years. The patient is currently treated with donepezil and memantine. In conclusion, a clinically confirmed case of Alzheimer’s disease is rare in Apo E2 homozygotes but can occur. PMID:19158419

  8. Apolipoprotein E e4 allele does not increase the risk of early postoperative delirium after major surgery.

    Science.gov (United States)

    Abelha, Fernando José; Fernandes, Vera; Botelho, Miguela; Santos, Patricia; Santos, Alice; Machado, J C; Barros, Henrique

    2012-02-01

    BACKGROUND: A relationship between patients with a genetic predisposition to and those who develop postoperative delirium has not been yet determined. The aim of this study was to determine whether there is an association between apolipoprotein E epsilon 4 allele (APOE4) and delirium after major surgery. METHODS: Of 230 intensive care patients admitted to the post anesthesia care unit (PACU) over a period of 3 months, 173 were enrolled in the study. Patients' demographics and intra- and postoperative data were collected. Patients were followed for the development of delirium using the Intensive Care Delirium Screening Checklist, and DNA was obtained at PACU admission to determine apolipoprotein E genotype. RESULTS: Fifteen percent of patients developed delirium after surgery. Twenty-four patients had one copy of APOE4. The presence of APOE4 was not associated with an increased risk of early postoperative delirium (4% vs. 17%; P = 0.088). The presence of APOE4 was not associated with differences in any studied variables. Multivariate analysis identified age [odds ratio (OR) 9.3, 95% confidence interval (CI) 2.0-43.0, P = 0.004 for age ≥65 years), congestive heart disease (OR 6.2, 95% CI 2.0-19.3, P = 0.002), and emergency surgery (OR 59.7, 95% CI 6.7-530.5, P < 0.001) as independent predictors for development of delirium. The Simplified Acute Physiology Score II (SAPS II) and The Acute Physiology and Chronic Health Evaluation II (APACHE II) were significantly higher in patients with delirium (P < 0.001 and 0.008, respectively). Hospital mortality rates of these patients was higher and they had a longer median PACU stay. CONCLUSIONS: Apolipoprotein e4 carrier status was not associated with an increased risk for early postoperative delirium. Age, congestive heart failure, and emergency surgery were independent risk factors for the development of delirium after major surgery.

  9. Primer for non-immunologists on immune-deficient mice and their applications in research.

    Science.gov (United States)

    Croy, B A; Linder, K E; Yager, J A

    2001-08-01

    Studies of immune deficiencies have a history as long as that of immunology. However, reports of two key spontaneous recessive mutations in mice (nude in 1966-1968 and scid in 1983) laid the foundations for widespread application of immune-deficient rodents to a broad range of research topics. More recently, technologies modifying the mouse genome by transgenesis, gene ablation and crossbreeding for lines with multiple immune deficits have provided a large number of new types of immunologically impaired mice. The primary goals of this overview are to help non-immunologists understand key differences between some of the immunodeficient strains, develop an appreciation for the value of information derived from immunodeficient mouse-based research and to encourage expanded, creative use of these specialized research animals. Secondary goals are to promote greater awareness of unexpected outcomes that can arise when working with genetically immune-deficient mice, the need for vigilance in maintaining these research animals, and the care required in interpretation of the data that immune-deficient modeling provides. Two illustrations on developing appropriate immune deficient animal models for a new research application conclude the review.

  10. Lung inflammation and genotoxicity following pulmonary exposure to nanoparticles in ApoE-/- mice

    Directory of Open Access Journals (Sweden)

    Ladefoged Ole

    2009-01-01

    Full Text Available Abstract Background The toxic and inflammatory potential of 5 different types of nanoparticles were studied in a sensitive model for pulmonary effects in apolipoprotein E knockout mice (ApoE-/-. We studied the effects instillation or inhalation Printex 90 of carbon black (CB and compared CB instillation in ApoE-/- and C57 mice. Three and 24 h after pulmonary exposure, inflammation was assessed by mRNA levels of cytokines in lung tissue, cell composition, genotoxicity, protein and lactate dehydrogenase activity in broncho-alveolar lavage (BAL fluid. Results Firstly, we found that intratracheal instillation of CB caused far more pulmonary toxicity in ApoE-/- mice than in C57 mice. Secondly, we showed that instillation of CB was more toxic than inhalation of a presumed similar dose with respect to inflammation in the lungs of ApoE-/- mice. Thirdly, we compared effects of instillation in ApoE-/- mice of three carbonaceous particles; CB, fullerenes C60 (C60 and single walled carbon nanotubes (SWCNT as well as gold particles and quantum dots (QDs. Characterization of the instillation media revealed that all particles were delivered as agglomerates and aggregates. Significant increases in Il-6, Mip-2 and Mcp-1 mRNA were detected in lung tissue, 3 h and 24 h following instillation of SWCNT, CB and QDs. DNA damage in BAL cells, the fraction of neutrophils in BAL cells and protein in BAL fluid increased statistically significantly. Gold and C60 particles caused much weaker inflammatory responses. Conclusion Our data suggest that ApoE-/- model is sensitive for evaluating particle induced inflammation. Overall QDs had greatest effects followed by CB and SWCNT with C60 and gold being least inflammatory and DNA-damaging. However the gold was used at a much lower mass dose than the other particles. The strong effects of QDs were likely due to Cd release. The surface area of the instilled dose correlated well the inflammatory response for low toxicity particles.

  11. Apolipoprotein D is associated with long-term outcome in patients with schizophrenia

    DEFF Research Database (Denmark)

    Hansen, Thomas Folkmann; Hemmingsen, R P; Wang, A G

    2006-01-01

    Accumulating evidence implicates deficiencies in apolipoprotein D (ApoD) function and arachidonic acid signaling in schizophrenic disorders. We addressed two hypotheses in relation to ApoD: first, polymorphisms in the ApoD gene confer susceptibility to or are markers of disease, and, second, gene...

  12. Curcumin Protects against Atherosclerosis in Apolipoprotein E-Knockout Mice by Inhibiting Toll-like Receptor 4 Expression.

    Science.gov (United States)

    Zhang, Shanshan; Zou, Jun; Li, Peiyang; Zheng, Xiumei; Feng, Dan

    2018-01-17

    Toll-like receptor 4 (TLR4) has been reported to play a critical role in the pathogenesis of atherosclerosis, the current study aimed to investigate whether curcumin suppresses atherosclerosis development in ApoE-knockout (ApoE -/- ) mice by inhibiting TLR4 expression. ApoE -/- mice were fed a high-fat diet supplemented with or without curcumin (0.1% w/w) for 16 weeks. Curcumin supplementation significantly reduced TLR4 expression and macrophage infiltration in atherosclerotic plaques. Curcumin also reduced aortic interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) expression, nuclear factor-κB (NF-κB) activity, and plasma IL-1β, TNF-α, soluble VCAM-1 and ICAM-1 levels. In addition, aortic sinus sections revealed that curcumin treatment reduced the extent of atherosclerotic lesions and inhibited atherosclerosis development. In vitro, curcumin inhibited NF-κB activation in macrophages and reduced TLR4 expression induced by lipopolysaccharide. Our results indicate that curcumin protects against atherosclerosis at least partially by inhibiting TLR4 expression and its related inflammatory reaction.

  13. Ultrastructural analysis of development of myocardium in calreticulin-deficient mice

    Directory of Open Access Journals (Sweden)

    Michalak Marek

    2006-11-01

    Full Text Available Abstract Background Calreticulin is a Ca2+ binding chaperone of the endoplasmic reticulum which influences gene expression and cell adhesion. The levels of both vinculin and N-cadherin are induced by calreticulin expression, which play important roles in cell adhesiveness. Cardiac development is strictly dependent upon the ability of cells to adhere to their substratum and to communicate with their neighbours. Results We show here that the levels of N-cadherin are downregulated in calreticulin-deficient mouse embryonic hearts, which may lead to the disarray and wavy appearance of myofibrils in these mice, which we detected at all investigated stages of cardiac development. Calreticulin wild type mice exhibited straight, thick and abundant myofibrils, which were in stark contrast to the thin, less numerous, disorganized myofibrils of the calreticulin-deficient hearts. Interestingly, these major differences were only detected in the developing ventricles while the atria of both calreticulin phenotypes were similar in appearance at all developmental stages. Glycogen also accumulated in the ventricles of calreticulin-deficient mice, indicating an abnormality in cardiomyocyte metabolism. Conclusion Calreticulin is temporarily expressed during heart development where it is required for proper myofibrillogenesis. We postulate that calreticulin be considered as a novel cardiac fetal gene.

  14. Clearance of Giardia muris infection in mice deficient in natural killer cells.

    OpenAIRE

    Heyworth, M F; Kung, J E; Eriksson, E C

    1986-01-01

    Immunocompetent C57BL/6J mice and beige mice (which are deficient in natural killer cells) were infected with Giardia muris. Both types of mice cleared G. muris infection at similar rates. This observation suggests that clearance of G. muris parasites from the mouse intestine is not mediated by natural killer cells.

  15. Inducible arginase 1 deficiency in mice leads to hyperargininemia and altered amino acid metabolism.

    Directory of Open Access Journals (Sweden)

    Yuan Yan Sin

    Full Text Available Arginase deficiency is a rare autosomal recessive disorder resulting from a loss of the liver arginase isoform, arginase 1 (ARG1, which is the final step in the urea cycle for detoxifying ammonia. ARG1 deficiency leads to hyperargininemia, characterized by progressive neurological impairment, persistent growth retardation and infrequent episodes of hyperammonemia. Using the Cre/loxP-directed conditional gene knockout system, we generated an inducible Arg1-deficient mouse model by crossing "floxed" Arg1 mice with CreER(T2 mice. The resulting mice (Arg-Cre die about two weeks after tamoxifen administration regardless of the starting age of inducing the knockout. These treated mice were nearly devoid of Arg1 mRNA, protein and liver arginase activity, and exhibited symptoms of hyperammonemia. Plasma amino acid analysis revealed pronounced hyperargininemia and significant alterations in amino acid and guanidino compound metabolism, including increased citrulline and guanidinoacetic acid. Despite no alteration in ornithine levels, concentrations of other amino acids such as proline and the branched-chain amino acids were reduced. In summary, we have generated and characterized an inducible Arg1-deficient mouse model exhibiting several pathologic manifestations of hyperargininemia. This model should prove useful for exploring potential treatment options of ARG1 deficiency.

  16. Ageing Fxr deficient mice develop increased energy expenditure, improved glucose control and liver damage resembling NASH.

    Directory of Open Access Journals (Sweden)

    Mikael Bjursell

    Full Text Available Nuclear receptor subfamily 1, group H, member 4 (Nr1h4, FXR is a bile acid activated nuclear receptor mainly expressed in the liver, intestine, kidney and adrenal glands. Upon activation, the primary function is to suppress cholesterol 7 alpha-hydroxylase (Cyp7a1, the rate-limiting enzyme in the classic or neutral bile acid synthesis pathway. In the present study, a novel Fxr deficient mouse line was created and studied with respect to metabolism and liver function in ageing mice fed chow diet. The Fxr deficient mice were similar to wild type mice in terms of body weight, body composition, energy intake and expenditure as well as behaviours at a young age. However, from 15 weeks of age and onwards, the Fxr deficient mice had almost no body weight increase up to 39 weeks of age mainly because of lower body fat mass. The lower body weight gain was associated with increased energy expenditure that was not compensated by increased food intake. Fasting levels of glucose and insulin were lower and glucose tolerance was improved in old and lean Fxr deficient mice. However, the Fxr deficient mice displayed significantly increased liver weight, steatosis, hepatocyte ballooning degeneration and lobular inflammation together with elevated plasma levels of ALT, bilirubin and bile acids, findings compatible with non-alcoholic steatohepatitis (NASH and cholestasis. In conclusion, ageing Fxr deficient mice display late onset leanness associated with elevated energy expenditure and improved glucose control but develop severe NASH-like liver pathology.

  17. Ageing Fxr deficient mice develop increased energy expenditure, improved glucose control and liver damage resembling NASH.

    Science.gov (United States)

    Bjursell, Mikael; Wedin, Marianne; Admyre, Therése; Hermansson, Majlis; Böttcher, Gerhard; Göransson, Melker; Lindén, Daniel; Bamberg, Krister; Oscarsson, Jan; Bohlooly-Y, Mohammad

    2013-01-01

    Nuclear receptor subfamily 1, group H, member 4 (Nr1h4, FXR) is a bile acid activated nuclear receptor mainly expressed in the liver, intestine, kidney and adrenal glands. Upon activation, the primary function is to suppress cholesterol 7 alpha-hydroxylase (Cyp7a1), the rate-limiting enzyme in the classic or neutral bile acid synthesis pathway. In the present study, a novel Fxr deficient mouse line was created and studied with respect to metabolism and liver function in ageing mice fed chow diet. The Fxr deficient mice were similar to wild type mice in terms of body weight, body composition, energy intake and expenditure as well as behaviours at a young age. However, from 15 weeks of age and onwards, the Fxr deficient mice had almost no body weight increase up to 39 weeks of age mainly because of lower body fat mass. The lower body weight gain was associated with increased energy expenditure that was not compensated by increased food intake. Fasting levels of glucose and insulin were lower and glucose tolerance was improved in old and lean Fxr deficient mice. However, the Fxr deficient mice displayed significantly increased liver weight, steatosis, hepatocyte ballooning degeneration and lobular inflammation together with elevated plasma levels of ALT, bilirubin and bile acids, findings compatible with non-alcoholic steatohepatitis (NASH) and cholestasis. In conclusion, ageing Fxr deficient mice display late onset leanness associated with elevated energy expenditure and improved glucose control but develop severe NASH-like liver pathology.

  18. Medium-chain triglycerides promote macrophage reverse cholesterol transport and improve atherosclerosis in ApoE-deficient mice fed a high-fat diet.

    Science.gov (United States)

    Zhang, Xinsheng; Zhang, Yong; Liu, Yinghua; Wang, Jin; Xu, Qing; Yu, Xiaoming; Yang, Xueyan; Liu, Zhao; Xue, Changyong

    2016-09-01

    We previously observed that medium-chain triglycerides (MCTs) could reduce body fat mass and improve the metabolism of cholesterol. We hypothesized that MCTs can improve atherosclerosis by promoting the reverse cholesterol transport (RCT) process. Therefore, the objective of this study was to investigate the roles of MCTs in macrophage RCT and the progression of atherosclerosis. To test this hypothesis, 30 4-week-old ApoE-deficient (ApoE(-/-)) mice were randomly divided into 2 groups and fed a diet of 2% MCTs or long-chain triglycerides (LCTs) for 16 weeks. Ten age- and sex-matched C57BL/6J mice were fed a diet of 2% LCTs as the control. Macrophage-to-feces RCT was assessed in vivo by intraperitoneal injection of RAW 264.7 macrophages containing (3)H-labeled cholesterol, and atherosclerotic plaques were measured. The mRNA and protein expressions were determined by reverse transcriptase polymerase chain reaction and Western blot analyses, respectively. There was a greater decrease in body fat mass, atherosclerotic plaques, and an improvement in serum lipid profiles. In addition, the MCT mice group showed an increase in (3)H-tracer in the feces and a decrease in the liver. Significantly higher levels of mRNA and protein expression of hepatic ATP-binding cassette transporter A1, ATP-binding cassette transporter G5, cholesterol 7α-hydroxylase, and intestinal ATP-binding cassette transporter G8, as well as lower levels of expression of intestinal Niemann-Pick C1-like 1, were found in the MCT group. These results suggest that MCTs could obviously promote macrophage RCT and improve atherosclerosis in ApoE(-/-) mice, indicating that MCTs have the potential to prevent cardiovascular disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Systemic MCP1/CCR2 blockade and leukocyte specific MCP1/CCR2 inhibition affect aortic aneurysm formation differently

    NARCIS (Netherlands)

    de Waard, Vivian; Bot, Ilze; de Jager, Saskia C. A.; Talib, Sara; Egashira, Kensuke; de Vries, Margreet R.; Quax, Paul H. A.; Biessen, Erik A. L.; van Berkel, Theo J. C.

    2010-01-01

    Objective: CCR2, the receptor for monocyte chemoattractant protein 1 (MCP1), is involved in atherosclerosis and abdominal aortic aneurysms (AAAs). Here, we explored the potential beneficial blockade of the MCP1/CCR2 pathway. Methods: We applied an AAA model in aging apolipoprotein E deficient mice

  20. Influence of apolipoprotein E genotype on senile dementia of the Alzheimer and Lewy body types. Significance for etiological theories of Alzheimer's disease.

    OpenAIRE

    Harrington, C. R.; Louwagie, J.; Rossau, R.; Vanmechelen, E.; Perry, R. H.; Perry, E. K.; Xuereb, J. H.; Roth, M.; Wischik, C. M.

    1994-01-01

    Alzheimer's disease (AD) is associated with an increased frequency of the apolipoprotein E type epsilon 4 allele. To address both the disease and the allele specificity of this association, we have examined the apolipoprotein E allele distribution in 255 elderly persons including those with autopsy-confirmed AD, senile dementia of the Lewy body type (SDLT), vascular dementia, Parkinson's disease (PD) or Huntington's disease and in nondemented controls either with or without coronary complicat...

  1. Abalation of Ghrelin receptor in leptin-deficient mice has paradoxical effects on glucose homeostasis compared to Ghrelin-abalated Leptin-deficient mice

    Science.gov (United States)

    Ghrelin is produced predominantly in stomach and is known to be the endogenous ligand of the growth hormone secretagogue receptor (GHSR). Ghrelin is a GH stimulator and an orexigenic hormone. In contrast, leptin is an anorexic hormone, and leptin-deficient ob/ob mice are obese and diabetic. To study...

  2. 4PS/insulin receptor substrate (IRS)-2 is the alternative substrate of the insulin receptor in IRS-1-deficient mice.

    Science.gov (United States)

    Patti, M E; Sun, X J; Bruening, J C; Araki, E; Lipes, M A; White, M F; Kahn, C R

    1995-10-20

    Insulin receptor substrate-1 (IRS-1) is the major cytoplasmic substrate of the insulin and insulin-like growth factor (IGF)-1 receptors. Transgenic mice lacking IRS-1 are resistant to insulin and IGF-1, but exhibit significant residual insulin action which corresponds to the presence of an alternative high molecular weight substrate in liver and muscle. Recently, Sun et al. (Sun, X.-J., Wang, L.-M., Zhang, Y., Yenush, L. P., Myers, M. G., Jr., Glasheen, E., Lane, W.S., Pierce, J. H., and White, M. F. (1995) Nature 377, 173-177) purified and cloned 4PS, the major substrate of the IL-4 receptor-associated tyrosine kinase in myeloid cells, which has significant structural similarity to IRS-1. To determine if 4PS is the alternative substrate of the insulin receptor in IRS-1-deficient mice, we performed immunoprecipitation, immunoblotting, and phosphatidylinositol (PI) 3-kinase assays using specific antibodies to 4PS. Following insulin stimulation, 4PS is rapidly phosphorylated in liver and muscle, binds to the p85 subunit of PI 3-kinase, and activates the enzyme. Insulin stimulation also results in the association of 4PS with Grb 2 in both liver and muscle. In IRS-1-deficient mice, both the phosphorylation of 4PS and associated PI 3-kinase activity are enhanced, without an increase in protein expression. Immunodepletion of 4PS from liver and muscle homogenates removes most of the phosphotyrosine-associated PI 3-kinase activity in IRS-1-deficient mice. Thus, 4PS is the primary alternative substrate, i.e. IRS-2, which plays a major role in physiologic insulin signal transduction via both PI 3-kinase activation and Grb 2/Sos association. In IRS-1-deficient mice, 4PS/IRS-2 provides signal transduction to these two major pathways of insulin signaling.

  3. A modified choline-deficient, ethionine-supplemented diet reduces morbidity and retains a liver progenitor cell response in mice

    Directory of Open Access Journals (Sweden)

    Adam M. Passman

    2015-12-01

    Full Text Available The choline-deficient, ethionine-supplemented (CDE dietary model induces chronic liver damage, and stimulates liver progenitor cell (LPC-mediated repair. Long-term CDE administration leads to hepatocellular carcinoma in rodents and lineage-tracing studies show that LPCs differentiate into functional hepatocytes in this model. The CDE diet was first modified for mice by our laboratory by separately administering choline-deficient chow and ethionine in the drinking water (CD+E diet. Although this CD+E diet is widely used, concerns with variability in weight loss, morbidity, mortality and LPC response have been raised by researchers who have adopted this model. We propose that these inconsistencies are due to differential consumption of chow and ethionine in the drinking water, and that incorporating ethionine in the choline-deficient chow, and altering the strength, will achieve better outcomes. Therefore, C57Bl/6 mice, 5 and 6 weeks of age, were fed an all-inclusive CDE diet of various strengths (67% to 100% for 3 weeks. The LPC response was quantitated and cell lines were derived. We found that animal survival, LPC response and liver damage are correlated with CDE diet strength. The 67% and 75% CDE diet administered to mice older than 5 weeks and greater than 18 g provides a consistent and acceptable level of animal welfare and induces a substantial LPC response, permitting their isolation and establishment of cell lines. This study shows that an all-inclusive CDE diet for mice reproducibly induces an LPC response conducive to in vivo studies and isolation, whilst minimizing morbidity and mortality.

  4. Selection on alleles affecting human longevity and late-life disease: the example of apolipoprotein E.

    Directory of Open Access Journals (Sweden)

    Fotios Drenos

    2010-04-01

    Full Text Available It is often claimed that genes affecting health in old age, such as cardiovascular and Alzheimer diseases, are beyond the reach of natural selection. We show in a simulation study based on known genetic (apolipoprotein E and non-genetic risk factors (gender, diet, smoking, alcohol, exercise that, because there is a statistical distribution of ages at which these genes exert their influence on morbidity and mortality, the effects of selection are in fact non-negligible. A gradual increase with each generation of the epsilon2 and epsilon3 alleles of the gene at the expense of the epsilon4 allele was predicted from the model. The epsilon2 allele frequency was found to increase slightly more rapidly than that for epsilon3, although there was no statistically significant difference between the two. Our result may explain the recent evolutionary history of the epsilon 2, 3 and 4 alleles of the apolipoprotein E gene and has wider relevance for genes affecting human longevity.

  5. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy.

    Science.gov (United States)

    Liu, Chia-Chen; Liu, Chia-Chan; Kanekiyo, Takahisa; Xu, Huaxi; Bu, Guojun

    2013-02-01

    Apolipoprotein E (Apo-E) is a major cholesterol carrier that supports lipid transport and injury repair in the brain. APOE polymorphic alleles are the main genetic determinants of Alzheimer disease (AD) risk: individuals carrying the ε4 allele are at increased risk of AD compared with those carrying the more common ε3 allele, whereas the ε2 allele decreases risk. Presence of the APOE ε4 allele is also associated with increased risk of cerebral amyloid angiopathy and age-related cognitive decline during normal ageing. Apo-E-lipoproteins bind to several cell-surface receptors to deliver lipids, and also to hydrophobic amyloid-β (Aβ) peptide, which is thought to initiate toxic events that lead to synaptic dysfunction and neurodegeneration in AD. Apo-E isoforms differentially regulate Aβ aggregation and clearance in the brain, and have distinct functions in regulating brain lipid transport, glucose metabolism, neuronal signalling, neuroinflammation, and mitochondrial function. In this Review, we describe current knowledge on Apo-E in the CNS, with a particular emphasis on the clinical and pathological features associated with carriers of different Apo-E isoforms. We also discuss Aβ-dependent and Aβ-independent mechanisms that link Apo-E4 status with AD risk, and consider how to design effective strategies for AD therapy by targeting Apo-E.

  6. Influence of Peripheral Artery Disease and Statin Therapy on Apolipoprotein Profiles

    Directory of Open Access Journals (Sweden)

    Andrew W. Gardner

    2013-01-01

    Full Text Available Apolipoprotein B is a stronger predictor of myocardial infarction than LDL cholesterol, and it is inversely related to physical activity and modifiable with exercise training. As such, apolipoprotein measures may be of particular relevance for subjects with PAD and claudication. We compared plasma apolipoprotein profiles in 29 subjects with peripheral artery disease (PAD and intermittent claudication and in 39 control subjects. Furthermore, we compared the plasma apolipoprotein profiles of subjects with PAD either treated (n=17 or untreated (n=12 with statin medications. For the apolipoprotein subparticle analyses, subjects with PAD had higher age-adjusted Lp-B:C (P<0.05 and lower values of Lp-A-I:A-II (P<0.05 than controls. The PAD group taking statins had lower age-adjusted values for apoB (P<0.05, Lp-A-II:B:C:D:E (P<0.05, Lp-B:E + Lp-B:C:E (P<0.05, Lp-B:C (P<0.05, and Lp-A-I (P<0.05 than the untreated PAD group. Subjects with PAD have impaired apolipoprotein profiles than controls, characterized by Lp-B:C and Lp-A-I:A-II. Furthermore, subjects with PAD on statin medications have a more favorable risk profile, particularly noted in multiple apolipoprotein subparticles. The efficacy of statin therapy to improve cardiovascular risk appears more evident in the apolipoprotein sub-particle profile than in the more traditional lipid profile of subjects with PAD and claudication. This trial is registered with ClinicalTrials.gov NCT00618670.

  7. Leptin Increases Striatal Dopamine D2 Receptor Binding in Leptin-Deficient Obese (ob/ob) Mice

    Energy Technology Data Exchange (ETDEWEB)

    Pfaffly, J.; Michaelides, M.; Wang, G-J.; Pessin, J.E.; Volkow, N.D.; Thanos, P.K.

    2010-06-01

    Peripheral and central leptin administration have been shown to mediate central dopamine (DA) signaling. Leptin-receptor deficient rodents show decreased DA D2 receptor (D2R) binding in striatum and unique DA profiles compared to controls. Leptin-deficient mice show increased DA activity in reward-related brain regions. The objective of this study was to examine whether basal D2R-binding differences contribute to the phenotypic behaviors of leptin-deficient ob/ob mice, and whether D2R binding is altered in response to peripheral leptin treatment in these mice. Leptin decreased body weight, food intake, and plasma insulin concentration in ob/ob mice but not in wild-type mice. Basal striatal D2R binding (measured with autoradiography [{sup 3}H] spiperone) did not differ between ob/ob and wild-type mice but the response to leptin did. In wild-type mice, leptin decreased striatal D2R binding, whereas, in ob/ob mice, leptin increased D2R binding. Our findings provide further evidence that leptin modulates D2R expression in striatum and that these effects are genotype/phenotype dependent.

  8. Adaptation of enterovirus 71 to adult interferon deficient mice.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Caine

    Full Text Available Non-polio enteroviruses, including enterovirus 71 (EV71, have caused severe and fatal cases of hand, foot and mouth disease (HFMD in the Asia-Pacific region. The development of a vaccine or antiviral against these pathogens has been hampered by the lack of a reliable small animal model. In this study, a mouse adapted EV71 strain was produced by conducting serial passages through A129 (α/β interferon (IFN receptor deficient and AG129 (α/β, γ IFN receptor deficient mice. A B2 sub genotype of EV71 was inoculated intraperitoneally (i.p. into neonatal AG129 mice and brain-harvested virus was subsequently passaged through 12 and 15 day-old A129 mice. When tested in 10 week-old AG129 mice, this adapted strain produced 100% lethality with clinical signs including limb paralysis, eye irritation, loss of balance, and death. This virus caused only 17% mortality in same age A129 mice, confirming that in the absence of a functional IFN response, adult AG129 mice are susceptible to infection by adapted EV71 isolates. Subsequent studies in adult AG129 and young A129 mice with the adapted EV71 virus examined the efficacy of an inactivated EV71 candidate vaccine and determined the role of humoral immunity in protection. Passive transfer of rabbit immune sera raised against the EV71 vaccine provided protection in a dose dependent manner in 15 day-old A129 mice. Intramuscular injections (i.m. in five week-old AG129 mice with the alum adjuvanted vaccine also provided protection against the mouse adapted homologous strain. No clinical signs of disease or mortality were observed in vaccinated animals, which received a prime-and-boost, whereas 71% of control animals were euthanized after exhibiting systemic clinical signs (P<0.05. The development of this animal model will facilitate studies on EV71 pathogenesis, antiviral testing, the evaluation of immunogenicity and efficacy of vaccine candidates, and has the potential to establish correlates of protection

  9. Altered lipid partitioning and glucocorticoid availability in CBG-deficient male mice with diet-induced obesity.

    Science.gov (United States)

    Gulfo, José; Ledda, Angelo; Serra, Elisabet; Cabot, Cristina; Esteve, Montserrat; Grasa, Mar

    2016-08-01

    To evaluate how deficiency in corticosteroid-binding globulin (CBG), the specific carrier of glucocorticoids, affects glucocorticoid availability and adipose tissue in obesity. C57BL/6 (WT) and CBG-deficient (KO) male mice were fed during 12 weeks with standard or hyperlipidic diet (HL). Glucocorticoid availability and metabolic parameters were assessed. Body weight and food intake were increased in KO compared with WT mice fed a standard diet and were similar when fed a HL diet. Expression of CBG was found in white adipose tissue by immunochemistry, real-time PCR, and Western blot. In obesity, the subcutaneous depot developed less in KO mice compared with WT, which was associated with a minor adipocyte area and peroxisome proliferator-activated receptor-γ expression. Conversely, the epididymal depot displayed higher weight and adipocyte area in KO than in WT mice. CBG deficiency caused a fall of hepatic 11β-hydroxysteroid dehydrogenase type 2 expression and an increase in epidymal adipose tissue, particularly in HL mice. Deficiency in CBG drives lipid partitioning from subcutaneous to visceral adipose depot under a context of lipid excess and differentially modulates 11β-hydroxysteroid dehydrogenase type 2 expression. © 2016 The Obesity Society.

  10. Pervasive and stochastic changes in the TCR repertoire of regulatory T-cell-deficient mice.

    Science.gov (United States)

    Zheng, Lingjie; Sharma, Rahul; Kung, John T; Deshmukh, Umesh S; Jarjour, Wael N; Fu, Shu Man; Ju, Shyr-Te

    2008-04-01

    We hypothesize that regulatory T-cell (Treg)-deficient strains have an altered TCR repertoire in part due to the expansion of autoimmune repertoire by self-antigen. We compared the Vbeta family expression profile between B6 and Treg-lacking B6.Cg-Foxp3(sf)(/Y) (B6.sf) mice using fluorescent anti-Vbeta mAbs and observed no changes. However, while the spectratypes of 20 Vbeta families among B6 mice were highly similar, the Vbeta family spectratypes of B6.sf mice were remarkably different from B6 mice and from each other. Significant spectratype changes in many Vbeta families were also observed in Treg-deficient IL-2 knockout (KO) and IL-2Ralpha KO mice. Such changes were not observed with anti-CD3 mAb-treated B6 mice or B6 CD4+CD25- T cells. TCR transgenic (OT-II.sf) mice displayed dramatic reduction of clonotypic TCR with concomitant increase in T cells bearing non-transgenic Vbeta and Valpha families, including T cells with dual receptors expressing reduced levels of transgenic Valpha and endogenous Valpha. Collectively, the data demonstrate that Treg deficiency allows polyclonal expansion of T cells in a stochastic manner, resulting in widespread changes in the TCR repertoire.

  11. The influence of selenium, vitamin E, and oestrogen on the development of tumours in mice exposed to 90Sr

    International Nuclear Information System (INIS)

    Bierke, P.

    1994-01-01

    The primary object of this experiment was to evaluate the potential role of the antioxidants, selenium and vitamin E, in the anti-tumour defence of mice internally irradiated with 90 Sr. Comparison in terms of neoplastic response was made between mice kept on a selenium and vitamin E deficient diet and mice given the same deficient diet but administered selenium and/or vitamin E in a controlled manner. The influence of simultaneous oestrogen treatment, known to promote radiogenic osteosarcoma induction, was also investigated. Non-irradiated mice were used as controls. Results are presented as crude and actuarial tumour incidence. No significant difference in tumour yield or actuarial tumour incidence was found when the differently treated mouse groups were compared, and accordingly no support was gained for the theory that the antioxidants selenium and vitamin E constitute a critical part of the complex defence system against neoplasms. (orig.)

  12. Apolipoprotein E Regulates Amyloid Formation within Endosomes of Pigment Cells

    Directory of Open Access Journals (Sweden)

    Guillaume van Niel

    2015-10-01

    Full Text Available Accumulation of toxic amyloid oligomers is a key feature in the pathogenesis of amyloid-related diseases. Formation of mature amyloid fibrils is one defense mechanism to neutralize toxic prefibrillar oligomers. This mechanism is notably influenced by apolipoprotein E variants. Cells that produce mature amyloid fibrils to serve physiological functions must exploit specific mechanisms to avoid potential accumulation of toxic species. Pigment cells have tuned their endosomes to maximize the formation of functional amyloid from the protein PMEL. Here, we show that ApoE is associated with intraluminal vesicles (ILV within endosomes and remain associated with ILVs when they are secreted as exosomes. ApoE functions in the ESCRT-independent sorting mechanism of PMEL onto ILVs and regulates the endosomal formation of PMEL amyloid fibrils in vitro and in vivo. This process secures the physiological formation of amyloid fibrils by exploiting ILVs as amyloid nucleating platforms.

  13. Apolipoprotein E-epsilon 4 frequency in affective disorder

    DEFF Research Database (Denmark)

    Kessing, L V; Jørgensen, O S

    1999-01-01

    -Bråne-Steen Dementia Rating Scale, and the Global Deterioration Scale. RESULTS: The frequency of APOE-epsilon 4 allele was approximately the same in unipolar patients (.189) and in bipolar patients (.167). Although patients showed more cognitive impairment than controls, no significant overall difference was found...... was found with gender, age at onset, the number of affective episodes, the presence of psychotic features, or the prevalence of familial affective disorder. CONCLUSIONS: It seems that cognitive impairment in affective disorder can be attributed to pathways other than the APOE genotype.......BACKGROUND: The epsilon 4 allele of apolipoprotein E (APOE) as well as affective disorder have been found to be associated with Alzheimer's disease, but it is unclear whether cognitive impairment in affective disorder or subtypes of affective disorder is mediated by the epsilon 4 allele of APOE...

  14. Intranasal delivery of E-selectin reduces atherosclerosis in ApoE-/- mice.

    Directory of Open Access Journals (Sweden)

    Xinhui Li

    Full Text Available Mucosal tolerance to E-selectin prevents stroke and protects against ischemic brain damage in experimental models of stroke studying healthy animals or spontaneously hypertensive stroke-prone rats. A reduction in inflammation and neural damage was associated with immunomodulatory or "tolerogenic" responses to E-selectin. The purpose of the current study on ApoE deficient mice is to assess the capacity of this stroke prevention innovation to influence atherosclerosis, a major underlying cause for ischemic strokes; human E-selectin is being translated as a potential clinical prevention strategy for secondary stroke. Female ApoE-/- mice received intranasal delivery of E-selectin prior to (pre-tolerization or simultaneously with initiation of a high-fat diet. After 7 weeks on the high-fat diet, lipid lesions in the aorta, serum triglycerides, and total cholesterol were assessed as markers of atherosclerosis development. We also assessed E-selectin-specific antibodies and cytokine responses, in addition to inflammatory responses that included macrophage infiltration of the aorta and altered gene expression profiles of aortic mRNA. Intranasal delivery of E-selectin prior to initiation of high-fat chow decreased atherosclerosis, serum total cholesterol, and expression of the leucocyte chemoattractant CCL21 that is typically upregulated in atherosclerotic lesions of ApoE-/- mice. This response was associated with the induction of E-selectin specific cells producing the immunomodulatory cytokine IL-10 and immunosuppressive antibody isotypes. Intranasal administration of E-selectin generates E-selectin specific immune responses that are immunosuppressive in nature and can ameliorate atherosclerosis, a major risk factor for ischemic stroke. These results provide additional preclinical support for the potential of induction of mucosal tolerance to E-selectin to prevent stroke.

  15. Estrogen deficiency heterogeneously affects tissue specific stem cells in mice

    Science.gov (United States)

    Kitajima, Yuriko; Doi, Hanako; Ono, Yusuke; Urata, Yoshishige; Goto, Shinji; Kitajima, Michio; Miura, Kiyonori; Li, Tao-Sheng; Masuzaki, Hideaki

    2015-01-01

    Postmenopausal disorders are frequently observed in various organs, but their relationship with estrogen deficiency and mechanisms remain unclear. As tissue-specific stem cells have been found to express estrogen receptors, we examined the hypothesis that estrogen deficiency impairs stem cells, which consequently contributes to postmenopausal disorders. Six-week-old C57BL/6 female mice were ovariectomized, following which they received 17β-estradiol replacement or vehicle (control). Sham-operated mice were used as healthy controls. All mice were killed for evaluation 2 months after treatments. Compared with the healthy control, ovariectomy significantly decreased uterine weight, which was partially recovered by 17β-estradiol replacement. Ovariectomy significantly increased the numbers of c-kit-positive hematopoietic stem/progenitor cells in bone marrow, but impaired their capacity to grow mixed cell-type colonies in vitro. Estrogen replacement further increased the numbers of c-kit-positive hematopoietic stem/progenitor cells in bone marrow, without significantly affecting colony growth in vitro. The number of CD105-positive mesenchymal stem cells in bone marrow also significantly decreased after ovariectomy, but completely recovered following estrogen replacement. Otherwise, neither ovariectomy nor estrogen replacement changed the number of Pax7-positive satellite cells, which are a skeletal muscle-type stem cell. Estrogen deficiency heterogeneously affected tissue-specific stem cells, suggesting a likely and direct relationship with postmenopausal disorders. PMID:26245252

  16. Function and Comorbidities of Apolipoprotein E in Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Valérie Leduc

    2011-01-01

    Full Text Available Alzheimer's disease (AD—the most common type of dementia among the elderly—represents one of the most challenging and urgent medical mysteries affecting our aging population. Although dominant inherited mutation in genes involved in the amyloid metabolism can elicit familial AD, the overwhelming majority of AD cases, dubbed sporadic AD, do not display this Mendelian inheritance pattern. Apolipoprotein E (APOE, the main lipid carrier protein in the central nervous system, is the only gene that has been robustly and consistently associated with AD risk. The purpose of the current paper is thus to highlight the pleiotropic roles and the structure-function relationship of APOE to stimulate both the functional characterization and the identification of novel lipid homeostasis-related molecular targets involved in AD.

  17. Bile acids override steatosis in farnesoid X receptor deficient mice in a model of non-alcoholic steatohepatitis

    International Nuclear Information System (INIS)

    Wu, Weibin; Liu, Xijun; Peng, Xiaomin; Xue, Ruyi; Ji, Lingling; Shen, Xizhong; Chen, She; Gu, Jianxin; Zhang, Si

    2014-01-01

    Highlights: • FXR deficiency enhanced MCD diet-induced hepatic fibrosis. • FXR deficiency attenuated MCD diet-induced hepatic steatosis. • FXR deficiency repressed genes involved in fatty acid uptake and triglyceride accumulation. - Abstract: Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases, and the pathogenesis is still not well known. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily and plays an essential role in maintaining bile acid and lipid homeostasis. In this study, we study the role of FXR in the pathogenesis of NFALD. We found that FXR deficient (FXR −/− ) mice fed methionine- and choline-deficient (MCD) diet had higher serum ALT and AST activities and lower hepatic triglyceride levels than wild-type (WT) mice fed MCD diet. Expression of genes involved in inflammation (VCAM-1) and fibrosis (α-SMA) was increased in FXR −/− mice fed MCD diet (FXR −/− /MCD) compared to WT mice fed MCD diet (WT/MCD). Although MCD diet significantly induced hepatic fibrosis in terms of liver histology, FXR −/− /MCD mice showed less degree of hepatic steatosis than WT/MCD mice. Moreover, FXR deficiency synergistically potentiated the elevation effects of MCD diet on serum and hepatic bile acids levels. The super-physiological concentrations of hepatic bile acids in FXR −/− /MCD mice inhibited the expression of genes involved in fatty acid uptake and triglyceride accumulation, which may be an explanation for less steatosis in FXR −/− /MCD mice in contrast to WT/MCD mice. These results suggest that hepatic bile acids accumulation could override simple steatosis in hepatic injury during the progression of NAFLD and further emphasize the role of FXR in maintaining hepatic bile acid homeostasis in liver disorders and in hepatic protection

  18. Bile acids override steatosis in farnesoid X receptor deficient mice in a model of non-alcoholic steatohepatitis

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Weibin; Liu, Xijun; Peng, Xiaomin [Gene Research Center, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Xue, Ruyi [Department of Gastroenterology and Hepatology, Zhongshan Hospital, Shanghai Institute of Liver Disease, Fudan University, Shanghai 200032 (China); Ji, Lingling [Gene Research Center, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Shen, Xizhong [Department of Gastroenterology and Hepatology, Zhongshan Hospital, Shanghai Institute of Liver Disease, Fudan University, Shanghai 200032 (China); Chen, She, E-mail: shechen@fudan.edu.cn [Gene Research Center, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Gu, Jianxin [Gene Research Center, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Zhang, Si, E-mail: zhangsi@fudan.edu.cn [Gene Research Center, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China)

    2014-05-23

    Highlights: • FXR deficiency enhanced MCD diet-induced hepatic fibrosis. • FXR deficiency attenuated MCD diet-induced hepatic steatosis. • FXR deficiency repressed genes involved in fatty acid uptake and triglyceride accumulation. - Abstract: Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases, and the pathogenesis is still not well known. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily and plays an essential role in maintaining bile acid and lipid homeostasis. In this study, we study the role of FXR in the pathogenesis of NFALD. We found that FXR deficient (FXR{sup −/−}) mice fed methionine- and choline-deficient (MCD) diet had higher serum ALT and AST activities and lower hepatic triglyceride levels than wild-type (WT) mice fed MCD diet. Expression of genes involved in inflammation (VCAM-1) and fibrosis (α-SMA) was increased in FXR{sup −/−} mice fed MCD diet (FXR{sup −/−}/MCD) compared to WT mice fed MCD diet (WT/MCD). Although MCD diet significantly induced hepatic fibrosis in terms of liver histology, FXR{sup −/−}/MCD mice showed less degree of hepatic steatosis than WT/MCD mice. Moreover, FXR deficiency synergistically potentiated the elevation effects of MCD diet on serum and hepatic bile acids levels. The super-physiological concentrations of hepatic bile acids in FXR{sup −/−}/MCD mice inhibited the expression of genes involved in fatty acid uptake and triglyceride accumulation, which may be an explanation for less steatosis in FXR{sup −/−}/MCD mice in contrast to WT/MCD mice. These results suggest that hepatic bile acids accumulation could override simple steatosis in hepatic injury during the progression of NAFLD and further emphasize the role of FXR in maintaining hepatic bile acid homeostasis in liver disorders and in hepatic protection.

  19. Wfs1-deficient mice display altered function of serotonergic system and increased behavioural response to antidepressants

    Directory of Open Access Journals (Sweden)

    Tanel eVisnapuu

    2013-07-01

    Full Text Available It has been shown that mutations in the WFS1 gene make humans more susceptible to mood disorders. Besides that, mood disorders are associated with alterations in the activity of serotonergic and noradrenergic systems. Therefore, in this study, the effects of imipramine, an inhibitor of serotonin (5-HT and noradrenaline (NA reuptake, and paroxetine, a selective inhibitor of 5-HT reuptake, were studied in tests of behavioural despair. The tail suspension test (TST and forced swimming test (FST were performed in Wfs1-deficient mice. Simultaneously, gene expression and monoamine metabolism studies were conducted to evaluate changes in 5-HT- and NA-ergic systems of Wfs1-deficient mice. The basal immobility time of Wfs1-deficient mice in TST and FST did not differ from that of their wild-type littermates. However, a significant reduction of immobility time in response to lower doses of imipramine and paroxetine was observed in homozygous Wfs1-deficient mice, but not in their wild-type littermates. In gene expression studies, the levels of 5-HT transporter (SERT were significantly reduced in the pons of homozygous animals. Monoamine metabolism was assayed separately in the dorsal and ventral striatum of naive mice and mice exposed for 30 minutes tobrightly lit motility boxes. We found that this aversive challenge caused a significant increase in the levels of 5-HT and 5-hydroxyindoleacetic acid (5-HIAA, a metabolite of 5-HT, in the ventral and dorsal striatum of wild-type mice, but not in their homozygous littermates. Taken together, the blunted 5-HT metabolism and reduced levels of SERT are a likely reason for the elevated sensitivity of these mice to the action of imipramine and paroxetine. These changes in the pharmacological and neurochemical phenotype of Wfs1-deficient mice may help to explain the increased susceptibility of Wolfram syndrome patients to depressive states.

  20. Germline mutation rates at tandem repeat loci in DNA-repair deficient mice

    International Nuclear Information System (INIS)

    Barber, Ruth C.; Miccoli, Laurent; Buul, Paul P.W. van; Burr, Karen L.-A.; Duyn-Goedhart, Annemarie van; Angulo, Jaime F.; Dubrova, Yuri E.

    2004-01-01

    Mutation rates at two expanded simple tandem repeat (ESTR) loci were studied in the germline of non-exposed and irradiated severe combined immunodeficient (scid) and poly(ADP-ribose) polymerase (PARP-1 -/- ) deficient male mice. Non-exposed scid and PARP -/- male mice showed considerably elevated ESTR mutation rates, far higher than those in wild-type isogenic mice and other inbred strains. The irradiated scid and PARP-1 -/- male mice did not show any detectable increases in their mutation rate, whereas significant ESTR mutation induction was observed in the irradiated wild-type isogenic males. ESTR mutation spectra in the scid and PARP-1 -/- strains did not differ from those in the isogenic wild-type strains. Considering these data and the results of previous studies, we propose that a delay in repair of DNA damage in scid and PARP-1 -/- mice could result in replication fork pausing which, in turn, may affect ESTR mutation rate in the non-irradiated males. The lack of mutation induction in irradiated scid and PARP-1 -/- can be explained by the high cell killing effects of irradiation on the germline of deficient mice

  1. Induction of premalignant host responses by cathepsin x/z-deficiency in Helicobacter pylori-infected mice.

    Directory of Open Access Journals (Sweden)

    Sabine Krueger

    Full Text Available Helicobacter pylori are responsible for the induction of chronic gastric inflammation progressing to atrophy, metaplasia, and gastric cancer. The overexpression of Cathepsin X/Z (Ctsz in H. pylori-infected mucosa and gastric cancer is mediated predominantly by an augmented migration of ctsz(-/-positive macrophages and the up-regulation of Ctsz in tumor epithelium. To explore the Ctsz-function in the context of chronic inflammation and the development of preneoplastic lesions, we used Ctsz-deficient mice in a H. pylori gastritis model. Ctsz (-/- and wild-type (wt mice were infected with H. pylori strain SS1. The mice were sacrificed at 24, 36, and 50 weeks post infection (wpi. The stomach was removed, and gastric strips were snap-frozen or embedded and stained with H&E. Tissue sections were scored for epithelial lesions and inflammation. Ki-67 and F4/80 immunostaining were used to measure epithelial cell proliferation and macrophage infiltration, respectively. The upregulation of compensating cathepsins and cytokines were confirmed by Western blotting and quantitative RT-PCR. SS1-infected wt and ctsz (-/- mice showed strong inflammation, foveolar hyperplasia, atrophy, and cystically-dilated glands. However, at 50 wpi, ctsz (-/- mice developed significantly more severe spasmolytic polypeptide-expressing metaplasia (SPEM, showed enhanced epithelial proliferation, and higher levels of infiltrating macrophages. Induction of cytokines was higher and significantly prolonged in ctsz (-/- mice compared to wt. Ctsz deficiency supports H. pylori-dependent development of chronic gastritis up to metaplasia, indicating a protective, but not proteolytic, function of Ctsz in inflammatory gastric disease.

  2. Diminished exercise capacity and mitochondrial bc1 complex deficiency in tafazzin-knockdown mice.

    Directory of Open Access Journals (Sweden)

    Corey ePowers

    2013-04-01

    Full Text Available The phospholipid, cardiolipin, is essential for maintaining mitochondrial structure and optimal function. Cardiolipin-deficiency in humans, Barth syndrome, is characterized by exercise intolerance, dilated cardiomyopathy, neutropenia and 3-methyl-glutaconic aciduria. The causative gene is the mitochondrial acyl-transferase, tafazzin that is essential for remodeling acyl chains of cardiolipin. We sought to determine metabolic rates in tafazzin-deficient mice during resting and exercise, and investigate the impact of cardiolipin deficiency on mitochondrial respiratory chain activities. Tafazzin knockdown in mice markedly impaired oxygen consumption rates during an exercise, without any significant effect on resting metabolic rates. CL-deficiency resulted in significant reduction of mitochondrial respiratory reserve capacity in neonatal cardiomyocytes that is likely to be caused by diminished activity of complex-III, which requires CL for its assembly and optimal activity. Our results may provide mechanistic insights of Barth syndrome pathogenesis.

  3. Adult vitamin D deficiency exacerbates impairments caused by social stress in BALB/c and C57BL/6 mice.

    Science.gov (United States)

    Groves, Natalie J; Zhou, Mei; Jhaveri, Dhanisha J; McGrath, John J; Burne, Thomas H J

    2017-12-01

    Vitamin D deficiency is prevalent in adults throughout the world. Epidemiological studies have shown significant associations between vitamin D deficiency and an increased risk of various neuropsychiatric and neurodegenerative disorders, such as schizophrenia, depression, Alzheimer's disease and cognitive impairment. However, studies based on observational epidemiology cannot address questions of causality; they cannot determine if vitamin D deficiency is a causal factor leading to the adverse health outcome. The main aim of this study was to determine if AVD deficiency would exacerbate the effects of a secondary exposure, in this case social stress, in BALB/c mice and in the more resilient C57BL/6 mice. Ten-week old male BALB/c and C57BL/6 mice were fed a control or vitamin D deficient diet for 10 weeks, and the mice were further separated into one of two groups for social treatment, either Separated (SEP) or Social Defeat (DEF). SEP mice were placed two per cage with a perforated Plexiglas divider, whereas the DEF mice underwent 10days of social defeat prior to behavioural testing. We found that AVD-deficient mice were more vulnerable to the effects of social stress using a social avoidance test, and this was dependent on strain. These results support the hypothesis that vitamin D deficiency may exacerbate behavioural outcomes in mice vulnerable to stress, a finding that can help guide future studies. Importantly, these discoveries support the epidemiological link between vitamin D deficiency and neuropsychiatric and neurodegenerative disorders; and has provided clues that can guide future studies related to unravelling the mechanisms of action linking adult vitamin D deficiency and adverse brain related outcomes. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  4. RIPK3 Mediates Necroptosis during Embryonic Development and Postnatal Inflammation in Fadd-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Qun Zhao

    2017-04-01

    Full Text Available RIPK3 mediates cell death and regulates inflammatory responses. Although genetic studies have suggested that RIPK3-MLKL-mediated necroptosis leads to embryonic lethality in Fadd or Caspase-8-deficient mice, the exact mechanisms are not fully understood. Here, we generated Ripk3 mutant mice by altering the RIPK3 kinase domain (Ripk3Δ/Δ mice, thus abolishing its kinase activity. Ripk3Δ/Δ cells were resistant to necroptosis stimulation in vitro, and Ripk3Δ/Δ mice were protected from necroptotic diseases. Although the Ripk3Δ/Δ mutation rescued embryonic lethality in Fadd−/− embryos, Fadd−/− Ripk3Δ/Δ mice died within 1 day after birth due to massive inflammation. These results indicate that Ripk3 ablation rescues embryonic lethality in Fadd-deficient mice by suppressing two RIPK3-mediating processes: necroptosis during embryogenesis and inflammation during postnatal development in Fadd−/− mice.

  5. A modified choline-deficient, ethionine-supplemented diet reduces morbidity and retains a liver progenitor cell response in mice.

    Science.gov (United States)

    Passman, Adam M; Strauss, Robyn P; McSpadden, Sarah B; Finch-Edmondson, Megan L; Woo, Ken H; Diepeveen, Luke A; London, Roslyn; Callus, Bernard A; Yeoh, George C

    2015-12-01

    The choline-deficient, ethionine-supplemented (CDE) dietary model induces chronic liver damage, and stimulates liver progenitor cell (LPC)-mediated repair. Long-term CDE administration leads to hepatocellular carcinoma in rodents and lineage-tracing studies show that LPCs differentiate into functional hepatocytes in this model. The CDE diet was first modified for mice by our laboratory by separately administering choline-deficient chow and ethionine in the drinking water (CD+E diet). Although this CD+E diet is widely used, concerns with variability in weight loss, morbidity, mortality and LPC response have been raised by researchers who have adopted this model. We propose that these inconsistencies are due to differential consumption of chow and ethionine in the drinking water, and that incorporating ethionine in the choline-deficient chow, and altering the strength, will achieve better outcomes. Therefore, C57Bl/6 mice, 5 and 6 weeks of age, were fed an all-inclusive CDE diet of various strengths (67% to 100%) for 3 weeks. The LPC response was quantitated and cell lines were derived. We found that animal survival, LPC response and liver damage are correlated with CDE diet strength. The 67% and 75% CDE diet administered to mice older than 5 weeks and greater than 18 g provides a consistent and acceptable level of animal welfare and induces a substantial LPC response, permitting their isolation and establishment of cell lines. This study shows that an all-inclusive CDE diet for mice reproducibly induces an LPC response conducive to in vivo studies and isolation, whilst minimizing morbidity and mortality. © 2015. Published by The Company of Biologists Ltd.

  6. Loss of stearoyl-CoA desaturase 1 rescues cardiac function in obese leptin-deficient mice.

    Science.gov (United States)

    Dobrzyn, Pawel; Dobrzyn, Agnieszka; Miyazaki, Makoto; Ntambi, James M

    2010-08-01

    The heart of leptin-deficient ob/ob mice is characterized by pathologic left ventricular hypertrophy along with elevated triglyceride (TG) content, increased stearoyl-CoA desaturase (SCD) activity, and increased myocyte apoptosis. In the present study, using an ob/ob;SCD1(-/-) mouse model, we tested the hypothesis that lack of SCD1 could improve steatosis and left ventricle (LV) function in leptin deficiency. We show that disruption of the SCD1 gene improves cardiac function in ob/ob mice by correcting systolic and diastolic dysfunction without affecting levels of plasma TG and FFA. The improvement is associated with reduced expression of genes involved in FA transport and lipid synthesis in the heart, as well as reduction in cardiac FFA, diacylglycerol, TG, and ceramide levels. The rate of FA beta-oxidation is also significantly lower in the heart of ob/ob;SCD1(-/-) mice compared with ob/ob controls. Moreover, SCD1 deficiency reduces cardiac apoptosis in ob/ob mice due to increased expression of antiapoptotic factor Bcl-2 and inhibition of inducible nitric oxide synthase and caspase-3 activities. Reduction in myocardial lipid accumulation and inhibition of apoptosis appear to be one of the main mechanisms responsible for improved LV function in ob/ob mice caused by SCD1 deficiency.

  7. Toll-like receptor 4 (TLR4) deficient mice are protected from adipose tissue inflammation in aging.

    Science.gov (United States)

    Ghosh, Amiya K; O'Brien, Martin; Mau, Theresa; Yung, Raymond

    2017-09-07

    Adipose tissue (AT) inflammation is a central mechanism for metabolic dysfunction in both diet-induced obesity and age-associated obesity. Studies in diet-induced obesity have characterized the role of Fetuin A (Fet A) in Free Fatty Acids (FFA)-mediated TLR4 activation and adipose tissue inflammation. However, the role of Fet A & TLR4 in aging-related adipose tissue inflammation is unknown. In the current study, analysis of epidymymal fat pads of C57/Bl6 male mice, we found that, in contrast to data from diet-induced obesity models, adipose tissue from aged mice have normal Fet A and TLR4 expression. Interestingly, aged TLR4-deficient mice have diminished adipose tissue inflammation compared to normal controls. We further demonstrated that reduced AT inflammation in old TLR4-deficient mice is linked to impaired ER stress, augmented autophagy activity, and diminished senescence phenomenon. Importantly, old TLR4-deficient mice have improved glucose tolerance compared to age-matched wild type mice, suggesting that the observed reduced AT inflammation in aged TLR4-deficient mice has important physiological consequences. Taken together, our present study establishes novel aspect of aging-associated AT inflammation that is distinct from diet-induced AT inflammation. Our results also provide strong evidence that TLR4 plays a significant role in promoting aging adipose tissue inflammation.

  8. Alleviation of lipopolysaccharide/d-galactosamine-induced liver injury in leukocyte cell-derived chemotaxin 2 deficient mice

    Directory of Open Access Journals (Sweden)

    Akinori Okumura

    2017-12-01

    Full Text Available Leukocyte cell-derived chemotaxin 2 (LECT2 is a secreted pleiotropic protein that is mainly produced by the liver. We have previously shown that LECT2 plays an important role in the pathogenesis of inflammatory liver diseases. Lipopolysaccharide/d-galactosamine (LPS/d-GalN-induced acute liver injury is a known animal model of fulminant hepatic failure. Here we found that this hepatic injury was alleviated in LECT2-deficient mice. The levels of TNF-α and IFN-γ, which mediate this hepatitis, had significantly decreased in these mice, with the decrease in IFN-γ production notably greater than that in TNF-α. We therefore analyzed IFN-γ-producing cells in liver mononuclear cells. Flow cytometric analysis showed significantly reduced IFN-γ production in hepatic NK and NKT cells in LECT2-deficient mice compared with in wild-type mice. We also demonstrated a decrease in IFN-γ production in LECT2-deficient mice after systemic administration of recombinant IL-12, which is known to induce IFN-γ in NK and NKT cells. These results indicate that a decrease of IFN-γ production in NK and NKT cells was involved in the alleviation of LPS/d-GalN-induced liver injury in LECT2-deficient mice.

  9. TAP1-deficiency does not alter atherosclerosis development in Apoe-/- mice.

    Directory of Open Access Journals (Sweden)

    Daniel Kolbus

    Full Text Available Antigen presenting cells (APC have the ability to present both extra-cellular and intra-cellular antigens via MHC class I molecules to CD8(+ T cells. The cross presentation of extra-cellular antigens is reduced in mice with deficient Antigen Peptide Transporter 1 (TAP1-dependent MHC class I antigen presentation, and these mice are characterized by a diminished CD8(+ T cell population. We have recently reported an increased activation of CD8(+ T cells in hypercholesterolemic Apoe(-/- mice. Therefore, this study included TAP1-deficient Apoe(-/- mice (Apoe(-/-Tap1(-/- to test the atherogenicity of CD8(+ T cells and TAP1-dependent cross presentation in a hypercholesterolemic environment. As expected the CD8(+ T cell numbers were low in Apoe(-/-Tap1(-/- mice in comparison to Apoe(-/- mice, constituting ~1% of the lymphocyte population. In spite of this there were no differences in the extent of atherosclerosis as assessed by en face Oil Red O staining of the aorta and cross-sections of the aortic root between Apoe(-/-Tap1(-/- and Apoe(-/- mice. Moreover, no differences were detected in lesion infiltration of macrophages or CD3(+ T cells in Apoe(-/-Tap1(-/- compared to Apoe(-/- mice. The CD3(+CD4(+ T cell fraction was increased in Apoe(-/-Tap1(-/- mice, suggesting a compensation for the decreased CD8(+ T cell population. Interestingly, the fraction of CD8(+ effector memory T cells was increased but this appeared to have little impact on the atherosclerosis development.In conclusion, Apoe(-/-Tap1(-/- mice develop atherosclerosis equal to Apoe(-/- mice, indicating a minor role for CD8(+ T cells and TAP1-dependent antigen presentation in the disease process.

  10. Activation of c-Raf-1 kinase signal transduction pathway in alpha(7) integrin-deficient mice.

    Science.gov (United States)

    Saher, G; Hildt, E

    1999-09-24

    Integrin alpha(7)-deficient mice develop a novel form of muscular dystrophy. Here we report that deficiency of alpha(7) integrin causes an activation of the c-Raf-1/mitogen-activated protein (MAP) 2 kinase signal transduction pathway in muscle cells. The observed activation of c-Raf-1/MAP2 kinases is a specific effect, because the alpha(7) integrin deficiency does not cause unspecific stress as determined by measurement of the Hsp72/73 level and activity of the JNK2 kinase. Because an increased level of activated FAK was found in muscle of alpha(7) integrin-deficient mice, the activation of c-Raf-1 kinase is triggered most likely by an integrin-dependent pathway. In accordance with this, in the integrin alpha(7)-deficient mice, part of the integrin beta(1D) variant in muscle is replaced by the beta(1A) variant, which permits the FAK activation. A recent report describes that integrin activity can be down-modulated by the c-Raf-1/MAP2 kinase pathway. Specific activation of the c-Raf-1/MAP2 kinases by cell-permeable peptides in skeletal muscle of rabbits causes degeneration of muscle fibers. Therefore, we conclude that in alpha(7) integrin-deficient mice, the continuous activation of c-Raf-1 kinase causes a permanent reduction of integrin activity diminishing integrin-dependent cell-matrix interactions and thereby contributing to the development of the dystrophic phenotype.

  11. Contrasting effect of fish oil supplementation on the development of atherosclerosis in murine models

    DEFF Research Database (Denmark)

    Zampolli, Antonella; Bysted, Anette; Leth, Torben

    2006-01-01

    Objective: Increased fish oil intake is associated with protection against coronary heart disease and sudden death, while effects on atherosclerosis are controversial. We explored the effects of supplementing fish oil (rich in n-3 polyunsaturated fatty acids, PUFA) or corn oil (rich in n-6 PUFA......) in two different models of atherosclerosis. Methods and Results: Sixty-three low density lipoprotein receptor-deficient (LDLR-/-) mice and sixty-nine apolipoprotein E-deficient (apoE(-/-)) mice were fed diets without supplementations or supplemented with either 1% fish oil or 1% corn oil. In apo......E(-/-) mice, neither fish oil nor corn oil had any major impact on plasma lipids or atherosclerosis. In LDLR-/- mice, conversely, the fish oil and the corn oil group had lower levels of LDL-cholesterol and triglycerides and had lesser atherosclerosis in the aortic root and in the entire aorta (P

  12. Serum apolipoprotein E concentration and polymorphism influence serum lipid levels in Chinese Shandong Han population.

    Science.gov (United States)

    Han, ShuYi; Xu, YiHui; Gao, MeiHua; Wang, YunShan; Wang, Jun; Liu, YanYan; Wang, Min; Zhang, XiaoQian

    2016-12-01

    Apolipoprotein E (ApoE), which has been shown to influence serum lipid parameters, can bind to multiple types of lipids and plays an important role in the metabolism and homeostasis of lipids and lipoproteins. A previous study showed that ApoE concentration significantly affects serum lipid levels independently of ApoE polymorphism. The serum lipid levels were also closely correlated with dietary habits, and Shandong cuisine is famous for its high salt and oil contents, which widely differ among the different areas in China. Therefore, studying the effect of ApoE polymorphism on ApoE concentration and serum lipid levels in Shandong province is very important.A total of 815 subjects including 285 men and 530 women were randomly selected and studied from Jinan, Shandong province. In order to evaluate the association of ApoE polymorphism and serum level on lipid profiles, the ApoE genotypes, as well as levels of fasting serum ApoE and other lipid parameters, were detected in all subjects.The frequency of the ApoE E3 allele was highest (83.1%), while those of E2 and E4 were 9.4% and 7.5%, respectively, which are similar to those in other Asian populations. ApoE2 allele carriers showed significantly increased ApoE levels but lower levels of serum total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and Apolipoprotein B (ApoB).We found that ApoE level is influenced by ApoE polymorphism in a gene-dependent manner. The ApoE polymorphism showed different influences on serum lipid parameters with increasing age and body mass index (BMI) in our Shandong Han population.

  13. ADAM12 overexpression does not improve outcome in mice with laminin alpha2-deficient muscular dystrophy

    DEFF Research Database (Denmark)

    Guo, Ling T; Shelton, G Diane; Wewer, Ulla M

    2005-01-01

    We have recently shown that overexpression of ADAM12 results in increased muscle regeneration and significantly reduced pathology in mdx, dystrophin deficient mice. In the present study, we tested the effect of overexpressing ADAM12 in dy(W) laminin-deficient mice. dy mice have a very severe...... clinical phenotype and would be expected to benefit greatly from enhanced regeneration. We found that dy(W) mice overexpressing ADAM12 indeed have increased muscle regeneration, as evidenced by increased numbers of muscle fibers expressing fetal myosin. However, overexpression of ADAM12 had no significant...

  14. Vitamin D-deficient mice have more invasive urinary tract infection.

    Science.gov (United States)

    Hertting, Olof; Lüthje, Petra; Sullivan, Devin; Aspenström, Pontus; Brauner, Annelie

    2017-01-01

    Vitamin D deficiency is a common health problem with consequences not limited to bone and calcium hemostasis. Low levels have also been linked to tuberculosis and other respiratory infections as well as autoimmune diseases. We have previously shown that supplementation with vitamin D can induce the antimicrobial peptide cathelicidin during ex vivo infection of human urinary bladder. In rodents, however, cathelicidin expression is not linked to vitamin D and therefore this vitamin D-related effect fighting bacterial invasion is not relevant. To determine if vitamin D had further protective mechanisms during urinary tract infections, we therefore used a mouse model. In vitamin D-deficient mice, we detected more intracellular bacterial communities in the urinary bladder, higher degree of bacterial spread to the upper urinary tract and a skewed cytokine response. Furthermore, we show that the vitamin D receptor was upregulated in the urinary bladder and translocated into the cell nucleus after E. coli infection. This study supports a more general role for vitamin D as a local immune response mediator in the urinary tract.

  15. Delayed onset of experimental autoimmune encephalomyelitis in Olig1 deficient mice.

    Directory of Open Access Journals (Sweden)

    Xiaoli Guo

    Full Text Available BACKGROUND: Olig1 is a basic helix-loop-helix (bHLH transcription factor that is essential for oligodendrogenesis and efficient remyelination. However, its role in neurodegenerative disorders has not been well-elucidated. METHODOLOGY/PRINCIPAL FINDINGS: Here we investigated the effects of Olig1 deficiency on experimental autoimmune encephalomyelitis (EAE, an animal model of multiple sclerosis (MS. We show that the mean disease onset of myelin oligodendrocyte glycoprotein (MOG-induced EAE in Olig1(-/- mice is significantly slower than wide-type (WT mice (19.8 ± 2.2 in Olig1(-/- mice and 9.5 ± 0.3 days in WT mice. In addition, 10% of Olig1(-/- mice did not develop EAE by the end of the observation periods (60 days. The severity of EAE, the extent of demyelination, and the activation of microglial cells and astrocytes in spinal cords, were significantly milder in Olig1(-/- mice compared with WT mice in the early stage. Moreover, the visual function, as assessed by the second-kernel of multifocal electroretinograms, was better preserved, and the number of degenerating axons in the optic nerve was significantly reduced in Olig1(-/- mice. Interestingly, Olig1 deficiency had no effect on T cell response capability, however, it reduced the expression of myelin proteins such as MOG, myelin basic protein (MBP and myelin-associated glycoprotein (MAG. The expression of Olig2 remained unchanged in the optic nerve and brain, and it was reduced in the spinal cord of Olig1(-/- mice. CONCLUSIONS/SIGNIFICANCE: Our results suggest that the Olig1 signaling pathways may be involved in the incidence rate and the severity of neurological symptoms in MS.

  16. Autism-like Deficits in Shank3-Deficient Mice Are Rescued by Targeting Actin Regulators

    Directory of Open Access Journals (Sweden)

    Lara J. Duffney

    2015-06-01

    Full Text Available Haploinsufficiency of the Shank3 gene, which encodes a scaffolding protein at glutamatergic synapses, is a highly prevalent and penetrant risk factor for autism. Using combined behavioral, electrophysiological, biochemical, imaging, and molecular approaches, we find that Shank3-deficient mice exhibit autism-like social deficits and repetitive behaviors, as well as the significantly diminished NMDA receptor (NMDAR synaptic function and synaptic distribution in prefrontal cortex. Concomitantly, Shank3-deficient mice have a marked loss of cortical actin filaments, which is associated with the reduced Rac1/PAK activity and increased activity of cofilin, the major actin depolymerizing factor. The social deficits and NMDAR hypofunction are rescued by inhibiting cofilin or activating Rac1 in Shank3-deficient mice and are induced by inhibiting PAK or Rac1 in wild-type mice. These results indicate that the aberrant regulation of synaptic actin filaments and loss of synaptic NMDARs contribute to the manifestation of autism-like phenotypes. Thus, targeting actin regulators provides a strategy for autism treatment.

  17. Metabolic Effects of CX3CR1 Deficiency in Diet-Induced Obese Mice.

    Directory of Open Access Journals (Sweden)

    Rachana Shah

    Full Text Available The fractalkine (CX3CL1-CX3CR1 chemokine system is associated with obesity-related inflammation and type 2 diabetes, but data on effects of Cx3cr1 deficiency on metabolic pathways is contradictory. We examined male C57BL/6 Cx3cr1-/- mice on chow and high-fat diet to determine the metabolic effects of Cx3cr1 deficiency. We found no difference in body weight and fat content or feeding and energy expenditure between Cx3cr1-/- and WT mice. Cx3cr1-/- mice had reduced glucose intolerance assessed by intraperitoneal glucose tolerance tests at chow and high-fat fed states, though there was no difference in glucose-stimulated insulin values. Cx3cr1-/- mice also had improved insulin sensitivity at hyperinsulinemic-euglycemic clamp, with higher glucose infusion rate, rate of disposal, and hepatic glucose production suppression compared to WT mice. Enhanced insulin signaling in response to acute intravenous insulin injection was demonstrated in Cx3cr1-/- by increased liver protein levels of phosphorylated AKT and GSK3β proteins. There were no differences in adipose tissue macrophage populations, circulating inflammatory monocytes, adipokines, lipids, or inflammatory markers. In conclusion, we demonstrate a moderate and reproducible protective effect of Cx3cr1 deficiency on glucose intolerance and insulin resistance.

  18. Lessons learned from mice deficient in lectin complement pathway molecules

    DEFF Research Database (Denmark)

    Genster, Ninette; Takahashi, Minoru; Sekine, Hideharu

    2014-01-01

    in turn activate downstream complement components, ultimately leading to elimination of the pathogen. Mice deficient in the key molecules of lectin pathway of complement have been generated in order to build knowledge of the molecular mechanisms of the lectin pathway in health and disease. Despite......The lectin pathway of the complement system is initiated when the pattern-recognition molecules, mannose-binding lectin (MBL), ficolins or collectin-11, bind to invading pathogens or damaged host cells. This leads to activation of MBL/ficolin/collectin-11 associated serine proteases (MASPs), which...... differences in the genetic arrangements of murine and human orthologues of lectin pathway molecules, the knockout mice have proven to be valuable models to explore the effect of deficiency states in humans. In addition, new insight and unexpected findings on the diverse roles of lectin pathway molecules...

  19. Apolipoprotein E levels in cerebrospinal fluid and the effects of ABCA1 polymorphisms

    Directory of Open Access Journals (Sweden)

    Mayo Kevin

    2007-04-01

    Full Text Available Abstract Background Animal studies suggest that brain apolipoprotein E (apoE levels influence amyloid-β (Aβ deposition and thus risk for Alzheimer's disease (AD. We have previously demonstrated that deletion of the ATP-binding cassette A1 transporter (ABCA1 in mice causes dramatic reductions in brain and cerebrospinal fluid (CSF apoE levels and lipidation. To examine whether polymorphisms in ABCA1 affect CSF apoE levels in humans, we measured apoE in CSF taken from 168 subjects who were 43 to 91 years old and were either cognitively normal or who had mild AD. We then genotyped the subjects for ten previously identified ABCA1 single nucleotide polymorphisms (SNPs. Results In all subjects, the mean CSF apoE level was 9.09 μg/ml with a standard deviation of 2.70 μg/ml. Levels of apoE in CSF samples taken from the same individual two weeks apart were strongly correlated (r2 = 0.93, p APOE genotype, gender or race. Average apoE levels increased with age by ~0.5 μg/ml per 10 years (r2 = 0.05, p = 0.003. We found no significant associations between CSF apoE levels and the ten ABCA1 SNPs we genotyped. Moreover, in a separate sample of 1225 AD cases and 1431 controls, we found no association between the ABCA1 SNP rs2230806 and AD as has been previously reported. Conclusion We found that CSF apoE levels vary widely between individuals, but are stable within individuals over a two-week interval. AD status, APOE genotype, gender and race do not affect CSF apoE levels, but average CSF apoE levels increase with age. Given the lack of association between CSF apoE levels and genotypes for the ABCA1 SNPs we examined, either these SNPs do not affect ABCA1 function or if they do, they do not have strong effects in the CNS. Finally, we find no evidence for an association between the ABCA1 SNP rs2230806 and AD in a large sample set.

  20. Increased demyelination and axonal damage in metallothionein I+II-deficient mice during experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Penkowa, M; Espejo, C; Martínez-Cáceres, E M

    2003-01-01

    Metallothioneins I+II (MT-I+II) are antioxidant, neuroprotective factors. We previously showed that MT-I+II deficiency during experimental autoimmune encephalomyelitis (EAE) leads to increased disease incidence and clinical symptoms. Moreover, the inflammatory response of macrophages and T cells......, oxidative stress, and apoptotic cell death during EAE were increased by MT-I+II deficiency. We now show for the first time that demyelination and axonal damage are significantly increased in MT-I+II deficient mice during EAE. Furthermore, oligodendroglial regeneration, growth cone formation, and tissue...... repair including expression of trophic factors were significantly reduced in MT-I+II-deficient mice during EAE. Accordingly, MT-I+II have protective and regenerative roles in the brain....

  1. Deficiency of the Erc/mesothelin gene ameliorates renal carcinogenesis in Tsc2 knockout mice.

    Science.gov (United States)

    Zhang, Danqing; Kobayashi, Toshiyuki; Kojima, Tetsuo; Kanenishi, Kenji; Hagiwara, Yoshiaki; Abe, Masaaki; Okura, Hidehiro; Hamano, Yoshitomo; Sun, Guodong; Maeda, Masahiro; Jishage, Kou-ichi; Noda, Tetsuo; Hino, Okio

    2011-04-01

    Genetic crossing experiments were performed between tuberous sclerosis-2 (Tsc2) KO and expressed in renal carcinoma (Erc) KO mice to analyze the function of the Erc/mesothelin gene in renal carcinogenesis. We found the number and size of renal tumors were significantly less in Tsc2+/-;Erc-/- mice than in Tsc2+/-;Erc+/+ and Tsc2+/-;Erc+/- mice. Tumors from Tsc2+/-;Erc-/- mice exhibited reduced cell proliferation and increased apoptosis, as determined by proliferating cell nuclear antigen (Ki67) and TUNEL analysis, respectively. Adhesion to collagen-coated plates in vitro was enhanced in Erc-restored cells and decreased in Erc-suppressed cells with siRNA. Tumor formation by Tsc2-deficient cells in nude mice was remarkably suppressed by stable knockdown of Erc with shRNA. Western blot analysis showed that the phosphorylation of focal adhesion kinase, Akt and signal transducer and activator of transcription protein 3 were weaker in Erc-deficient/suppressed cells compared with Erc-expressed cells. These results indicate that deficiency of the Erc/mesothelin gene ameliorates renal carcinogenesis in Tsc2 KO mice and inhibits the phosphorylation of several kinases of cell adhesion mechanism. This suggests that Erc/mesothelin may have an important role in the promotion and/or maintenance of carcinogenesis by influencing cell-substrate adhesion via the integrin-related signal pathway. © 2011 Japanese Cancer Association.

  2. Association between ε2/3/4, Promoter Polymorphism (−491A/T, −427T/C, and −219T/G at the Apolipoprotein E Gene, and Mental Retardation in Children from an Iodine Deficiency Area, China

    Directory of Open Access Journals (Sweden)

    Jun Li

    2014-01-01

    Full Text Available Background. Several common single-nucleotide polymorphisms (SNPs at apolipoprotein E (ApoE have been linked with late onset sporadic Alzheimer’s disease and declining normative cognitive ability in elder people, but we are unclear about their relationship with cognition in children. Results. We studied -491A/T, -427T/C, and -219G/T promoter polymorphisms and ε2/ε3/ε4 at ApoE among children with mental retardation (MR, n=130, borderline MR (n=124, and controls (n=334 from an iodine deficiency area in China. The allelic and genotypic distribution of individual locus did not significantly differ among three groups with Mantel-Haenszel χ2 test (P>0.05. However, frequencies of haplotype of -491A/-427T/-219T/ε4 were distributed as MR > borderline MR > controls (P uncorrected = 0.004, indicating that the presence of this haplotype may increase the risk of disease. Conclusions. In this large population-based study in children, we did not find any significant association between single locus of the four common ApoE polymorphisms (-491A/T, -427T/C, -219T/G, and ε2/3/4 and MR or borderline MR. However, we found that the presence of ATTε4 haplotype was associated with an increased risk of MR and borderline MR. Our present work may help enlarge our knowledge of the cognitive role of ApoE across the lifespan and the mechanisms of human cognition.

  3. Association between apolipoprotein E genotype, serum lipids, and colorectal cancer in Brazilian individuals

    OpenAIRE

    Souza, D.R.S.; Nakazone, M.A.; Pinhel, M.A.S.; Alvares, R.M.; Monaco, A.C.; Pinheiro, A.; Barros, C.F.D.C.; Cury, P.M.; Cunrath, G.S.; Netinho, J.G.

    2009-01-01

    We evaluated genetic variants of apolipoprotein E (APOE HhaI) and their association with serum lipids in colorectal cancer (CRC), together with eating habits and personal history. Eight-seven adults with CRC and 73 controls were studied. APOE*2 (rs7412) and APOE*4 (rs429358) were identified by polymerase chain reaction-restriction fragment length polymorphism. APOE gene polymorphisms were similar in both groups, but the ε4/ε4 genotype (6%) was present only in controls. The patients ...

  4. Zinc deficiency with reduced mastication impairs spatial memory in young adult mice.

    Science.gov (United States)

    Kida, Kumiko; Tsuji, Tadataka; Tanaka, Susumu; Kogo, Mikihiko

    2015-12-01

    Sufficient oral microelements such as zinc and fully chewing of foods are required to maintain cognitive function despite aging. No knowledge exists about the combination of factors such as zinc deficiency and reduced mastication on learning and memory. Here we show that tooth extraction only in 8-week-old mice did not change the density of glial fibrillary acidic protein-labeled astrocytes in the hippocampus or spatial memory parameters. However, tooth extraction followed by zinc deprivation strongly impaired spatial memory and led to an increase in astrocytic density in the hippocampal CA1 region. The impaired spatial performance in the zinc-deficient only (ZD) mice also coincided well with the increase in the astrocytic density in the hippocampal CA1 region. After switching both zinc-deficient groups to a normal diet with sufficient zinc, spatial memory recovered, and more time was spent in the quadrant with the goal in the probe test in the mice with tooth extraction followed by zinc deprivation (EZD) compared to the ZD mice. Interestingly, we found no differences in astrocytic density in the CA1 region among all groups at 22 weeks of age. Furthermore, the escape latency in a visible probe test at all times was longer in zinc-deficient groups than the others and demonstrated a negative correlation with body weight. No significant differences in escape latency were observed in the visible probe test among the ZD, EZD, and normal-fed control at 4 weeks (CT4w) groups in which body weight was standardized to that of the EZD group, or in the daily reduction in latency between the normal-fed control and CT4w groups. Our data showed that zinc-deficient feeding during a young age impairs spatial memory performance and leads to an increase in astrocytic density in the hippocampal CA1 region and that zinc-sufficient feeding is followed by recovery of the impaired spatial memory along with changes in astrocytic density. The combination of the two factors, zinc deficiency

  5. Severe osteogenesis imperfecta in cyclophilin B-deficient mice.

    Directory of Open Access Journals (Sweden)

    Jae Won Choi

    2009-12-01

    Full Text Available Osteogenesis Imperfecta (OI is a human syndrome characterized by exquisitely fragile bones due to osteoporosis. The majority of autosomal dominant OI cases result from point or splice site mutations in the type I collagen genes, which are thought to lead to aberrant osteoid within developing bones. OI also occurs in humans with homozygous mutations in Prolyl-3-Hydroxylase-1 (LEPRE1. Although P3H1 is known to hydroxylate a single residue (pro-986 in type I collagen chains, it is unclear how this modification acts to facilitate collagen fibril formation. P3H1 exists in a complex with CRTAP and the peptidyl-prolyl isomerase cyclophilin B (CypB, encoded by the Ppib gene. Mutations in CRTAP cause OI in mice and humans, through an unknown mechanism, while the role of CypB in this complex has been a complete mystery. To study the role of mammalian CypB, we generated mice lacking this protein. Early in life, Ppib-/- mice developed kyphosis and severe osteoporosis. Collagen fibrils in Ppib-/- mice had abnormal morphology, further consistent with an OI phenotype. In vitro studies revealed that in CypB-deficient fibroblasts, procollagen did not localize properly to the golgi. We found that levels of P3H1 were substantially reduced in Ppib-/- cells, while CRTAP was unaffected by loss of CypB. Conversely, knockdown of either P3H1 or CRTAP did not affect cellular levels of CypB, but prevented its interaction with collagen in vitro. Furthermore, knockdown of CRTAP also caused depletion of cellular P3H1. Consistent with these changes, post translational prolyl-3-hydroxylation of type I collagen by P3H1 was essentially absent in CypB-deficient cells and tissues from CypB-knockout mice. These data provide significant new mechanistic insight into the pathophysiology of OI and reveal how the members of the P3H1/CRTAP/CypB complex interact to direct proper formation of collagen and bone.

  6. Severe Osteogenesis Imperfecta in Cyclophilin B–Deficient Mice

    Science.gov (United States)

    Choi, Jae Won; Sutor, Shari L.; Lindquist, Lonn; Evans, Glenda L.; Madden, Benjamin J.; Bergen, H. Robert; Hefferan, Theresa E.; Yaszemski, Michael J.; Bram, Richard J.

    2009-01-01

    Osteogenesis Imperfecta (OI) is a human syndrome characterized by exquisitely fragile bones due to osteoporosis. The majority of autosomal dominant OI cases result from point or splice site mutations in the type I collagen genes, which are thought to lead to aberrant osteoid within developing bones. OI also occurs in humans with homozygous mutations in Prolyl-3-Hydroxylase-1 (LEPRE1). Although P3H1 is known to hydroxylate a single residue (pro-986) in type I collagen chains, it is unclear how this modification acts to facilitate collagen fibril formation. P3H1 exists in a complex with CRTAP and the peptidyl-prolyl isomerase cyclophilin B (CypB), encoded by the Ppib gene. Mutations in CRTAP cause OI in mice and humans, through an unknown mechanism, while the role of CypB in this complex has been a complete mystery. To study the role of mammalian CypB, we generated mice lacking this protein. Early in life, Ppib-/- mice developed kyphosis and severe osteoporosis. Collagen fibrils in Ppib-/- mice had abnormal morphology, further consistent with an OI phenotype. In vitro studies revealed that in CypB–deficient fibroblasts, procollagen did not localize properly to the golgi. We found that levels of P3H1 were substantially reduced in Ppib-/- cells, while CRTAP was unaffected by loss of CypB. Conversely, knockdown of either P3H1 or CRTAP did not affect cellular levels of CypB, but prevented its interaction with collagen in vitro. Furthermore, knockdown of CRTAP also caused depletion of cellular P3H1. Consistent with these changes, post translational prolyl-3-hydroxylation of type I collagen by P3H1 was essentially absent in CypB–deficient cells and tissues from CypB–knockout mice. These data provide significant new mechanistic insight into the pathophysiology of OI and reveal how the members of the P3H1/CRTAP/CypB complex interact to direct proper formation of collagen and bone. PMID:19997487

  7. Severe osteogenesis imperfecta in cyclophilin B-deficient mice.

    Science.gov (United States)

    Choi, Jae Won; Sutor, Shari L; Lindquist, Lonn; Evans, Glenda L; Madden, Benjamin J; Bergen, H Robert; Hefferan, Theresa E; Yaszemski, Michael J; Bram, Richard J

    2009-12-01

    Osteogenesis Imperfecta (OI) is a human syndrome characterized by exquisitely fragile bones due to osteoporosis. The majority of autosomal dominant OI cases result from point or splice site mutations in the type I collagen genes, which are thought to lead to aberrant osteoid within developing bones. OI also occurs in humans with homozygous mutations in Prolyl-3-Hydroxylase-1 (LEPRE1). Although P3H1 is known to hydroxylate a single residue (pro-986) in type I collagen chains, it is unclear how this modification acts to facilitate collagen fibril formation. P3H1 exists in a complex with CRTAP and the peptidyl-prolyl isomerase cyclophilin B (CypB), encoded by the Ppib gene. Mutations in CRTAP cause OI in mice and humans, through an unknown mechanism, while the role of CypB in this complex has been a complete mystery. To study the role of mammalian CypB, we generated mice lacking this protein. Early in life, Ppib-/- mice developed kyphosis and severe osteoporosis. Collagen fibrils in Ppib-/- mice had abnormal morphology, further consistent with an OI phenotype. In vitro studies revealed that in CypB-deficient fibroblasts, procollagen did not localize properly to the golgi. We found that levels of P3H1 were substantially reduced in Ppib-/- cells, while CRTAP was unaffected by loss of CypB. Conversely, knockdown of either P3H1 or CRTAP did not affect cellular levels of CypB, but prevented its interaction with collagen in vitro. Furthermore, knockdown of CRTAP also caused depletion of cellular P3H1. Consistent with these changes, post translational prolyl-3-hydroxylation of type I collagen by P3H1 was essentially absent in CypB-deficient cells and tissues from CypB-knockout mice. These data provide significant new mechanistic insight into the pathophysiology of OI and reveal how the members of the P3H1/CRTAP/CypB complex interact to direct proper formation of collagen and bone.

  8. Apolipoprotein E gene polymorphism and Alzheimer's disease in Chinese population: a meta-analysis

    Science.gov (United States)

    Liu, Mengying; Bian, Chen; Zhang, Jiqiang; Wen, Feng

    2014-03-01

    The relationship between Apolipoprotein E (ApoE) genotype and the risk of Alzheimer's disease (AD) is relatively well established in Caucasians, but less established in other ethnicities. To examine the association between ApoE polymorphism and the onset of AD in Chinese population, we searched the commonly used electronic databases between January 2000 and November 2013 for relevant studies. Total 20 studies, including 1576 cases and 1741 controls, were retrieved. The results showed statistically significant positive association between risk factor ɛ4 allele carriers and AD in Chinese population (OR = 3.93, 95% CI = 3.37-4.58, P risk suffering from AD than controls in Chinese population. The results also provide a support for the protection effect of ApoE ɛ3 allele in developing AD.

  9. Apolipoprotein M

    DEFF Research Database (Denmark)

    Christoffersen, Christina; Dahlbäck, B; Nielsen, L B

    2006-01-01

    ApoM is a novel apolipoprotein mainly present in high-density lipoprotein (HDL). It belongs to the lipocalin protein superfamily and may bind a small but so far unknown lipophilic ligand. It is secreted without cleavage of its hydrophobic signal peptide, which probably anchors apoM...... in the phospholipid moiety of plasma lipoproteins. Recent studies suggest that apoM may affect HDL metabolism and have anti-atherogenic functions. The subfraction of human HDL that contains apoM therefore protects LDL from oxidation and mediates cholesterol efflux more efficiently then HDL without apoM. In addition...... to hepatocytes, apoM is highly expressed in kidney proximal tubule cells. Recent data suggest that apoM is secreted into the pre-urine from the tubule cells but is normally taken up again in a megalin-dependent fashion. Further studies of mice with genetically modified apoM expression will be essential...

  10. Enriched environment reduces apolipoprotein E (ApoE) in reactive astrocytes and attenuates inflammation of the peri-infarct tissue after experimental stroke

    DEFF Research Database (Denmark)

    Ruscher, Karsten; Johannesson, Emelie; Brugiere, Elena

    2009-01-01

    Apolipoprotein E (ApoE), a cholesterol transporter and an immunomodulator, is brain protective after experimental stroke and implicated in brain repair. Here, we study the involvement of ApoE in the restoration of brain function after experimental stroke, by using animal housing conditions...... lower in animals housed in an enriched environment. We propose that during the subacute phase after experimental stroke a zone for tissue reorganization with low cellular ApoE levels is formed. We conclude that the strong sensori-motor stimulation provided by enriched housing conditions mitigates...

  11. Human cathepsin L rescues the neurodegeneration and lethality incathepsin B/L double deficient mice

    Energy Technology Data Exchange (ETDEWEB)

    Sevenich, Lisa; Pennacchio, Len A.; Peters, Christoph; Reinheckel, Thomas

    2006-01-09

    Cathepsin B (CTSB) and cathepsin L (CTSL) are two widelyexpressed cysteine proteases thought to predominantly reside withinlysosomes. Functional analysis of CTSL in humans is complicated by theexistence of two CTSL-like homologues (CTSL and CTSL2), in contrast tomice which contain only one CTSL enzyme. Thus transgenic expression ofhuman CTSL in CTSL deficient mice provides an opportunity to study the invivo functions of this human protease without interference by its highlyrelated homologue. While mice with single gene deficiencies for murineCTSB or CTSL survive without apparent neuromuscular impairment, murineCTSB/CTSL double deficient mice display degeneration of cerebellarPurkinje cells and neurons of the cerebral cortex, resulting in severehypotrophy, motility defects, and lethality during their third to fourthweek of life. Here we show that expression of human CTSL through agenomic transgene results in widespread expression of human CTSL in themouse which is capable of rescuing the lethality found in CTSB/CTSLdouble-deficient animals. Human CTSL is expressed in the brain of thesecompound mutants predominantly in neurons of the cerebral cortex and inPurkinje cells of the cerebellum, where it appears to prevent neuronalcell death.

  12. Differential effect of ionizing radiation on transcription in repair-deficient and repair-proficient mice

    International Nuclear Information System (INIS)

    Munson, G.P.; Woloschak, G.E.

    1990-01-01

    Experiments were designed to examine in vivo changes in total transcription and in the expression of the c-fos gene following whole-body exposure of mice to JANUS fission-spectrum neutrons. Radiation repair-deficient (wst/wst) and -proficient (wst/., C57BL/6 x C3H F1) mice were exposed to JANUS fission-spectrum neutrons calibrated to deliver a gut dose of 50 cGy. Animals were sacrificed less than 10 or at 60 min postirradiation, and gut tissues were removed for study. Our results revealed that, in repair-proficient mice, an immediate depression (relative to untreated control) in total transcription was evident that continued through 1 h postirradiation. Conversely, radiation-sensitive wst/wst mice displayed doubled transcription levels postirradiation. Expression of c-fos was consistently depressed following radiation exposure in control and wst/wst mice. However, the depression of c-fos mRNA was delayed in wst/wst mice relative to controls. These results demonstrate abnormal regulation of transcription and of c-fos mRNA accumulation in repair-deficient wasted mice following exposure to ionizing radiation. In addition, this work documents rapid total transcriptional depression in normal mice following radiation exposure

  13. Functional substitution by TAT-utrophin in dystrophin-deficient mice.

    Directory of Open Access Journals (Sweden)

    Kevin J Sonnemann

    2009-05-01

    Full Text Available The loss of dystrophin compromises muscle cell membrane stability and causes Duchenne muscular dystrophy and/or various forms of cardiomyopathy. Increased expression of the dystrophin homolog utrophin by gene delivery or pharmacologic up-regulation has been demonstrated to restore membrane integrity and improve the phenotype in the dystrophin-deficient mdx mouse. However, the lack of a viable therapy in humans predicates the need to explore alternative methods to combat dystrophin deficiency. We investigated whether systemic administration of recombinant full-length utrophin (Utr or DeltaR4-21 "micro" utrophin (muUtr protein modified with the cell-penetrating TAT protein transduction domain could attenuate the phenotype of mdx mice.Recombinant TAT-Utr and TAT-muUtr proteins were expressed using the baculovirus system and purified using FLAG-affinity chromatography. Age-matched mdx mice received six twice-weekly intraperitoneal injections of either recombinant protein or PBS. Three days after the final injection, mice were analyzed for several phenotypic parameters of dystrophin deficiency. Injected TAT-muUtr transduced all tissues examined, integrated with members of the dystrophin complex, reduced serum levels of creatine kinase (11,290+/-920 U versus 5,950+/-1,120 U; PBS versus TAT, the prevalence of muscle degeneration/regeneration (54%+/-5% versus 37%+/-4% of centrally nucleated fibers; PBS versus TAT, the susceptibility to eccentric contraction-induced force drop (72%+/-5% versus 40%+/-8% drop; PBS versus TAT, and increased specific force production (9.7+/-1.1 N/cm(2 versus 12.8+/-0.9 N/cm(2; PBS versus TAT.These results are, to our knowledge, the first to establish the efficacy and feasibility of TAT-utrophin-based constructs as a novel direct protein-replacement therapy for the treatment of skeletal and cardiac muscle diseases caused by loss of dystrophin.

  14. Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet

    International Nuclear Information System (INIS)

    Zhang, Yu-Kun Jennifer; Wu, Kai Connie; Liu, Jie; Klaassen, Curtis D.

    2012-01-01

    Nrf2, a master regulator of intracellular redox homeostasis, is indicated to participate in fatty acid metabolism in liver. However, its role in diet-induced obesity remains controversial. In the current study, genetically engineered Nrf2-null, wild-type (WT), and Nrf2-activated, Keap1-knockdown (K1-KD) mice were fed either a control or a high-fat Western diet (HFD) for 12 weeks. The results indicate that the absence or enhancement of Nrf2 activity did not prevent diet-induced obesity, had limited effects on lipid metabolism, but affected blood glucose homeostasis. Whereas the Nrf2-null mice were resistant to HFD-induced glucose intolerance, the Nrf2-activated K1-KD mice exhibited prolonged elevation of circulating glucose during a glucose tolerance test even on the control diet. Feeding a HFD did not activate the Nrf2 signaling pathway in mouse livers. Fibroblast growth factor 21 (Fgf21) is a liver-derived anti-diabetic hormone that exerts glucose- and lipid-lowering effects. Fgf21 mRNA and protein were both elevated in livers of Nrf2-null mice, and Fgf21 protein was lower in K1-KD mice than WT mice. The inverse correlation between Nrf2 activity and hepatic expression of Fgf21 might explain the improved glucose tolerance in Nrf2-null mice. Furthermore, a more oxidative cellular environment in Nrf2-null mice could affect insulin signaling in liver. For example, mRNA of insulin-like growth factor binding protein 1, a gene repressed by insulin in hepatocytes, was markedly elevated in livers of Nrf2-null mice. In conclusion, genetic alteration of Nrf2 does not prevent diet-induced obesity in mice, but deficiency of Nrf2 improves glucose homeostasis, possibly through its effects on Fgf21 and/or insulin signaling. -- Highlights: ► Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet. ► The anti-diabetic hormone, Fgf21, is highly expressed in livers of Nrf2-null mice. ► The absence of Nrf2 increases the insulin-regulated Igfbp-1 mRNA in liver.

  15. Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu-Kun Jennifer; Wu, Kai Connie; Liu, Jie; Klaassen, Curtis D., E-mail: cklaasse@kumc.edu

    2012-11-01

    Nrf2, a master regulator of intracellular redox homeostasis, is indicated to participate in fatty acid metabolism in liver. However, its role in diet-induced obesity remains controversial. In the current study, genetically engineered Nrf2-null, wild-type (WT), and Nrf2-activated, Keap1-knockdown (K1-KD) mice were fed either a control or a high-fat Western diet (HFD) for 12 weeks. The results indicate that the absence or enhancement of Nrf2 activity did not prevent diet-induced obesity, had limited effects on lipid metabolism, but affected blood glucose homeostasis. Whereas the Nrf2-null mice were resistant to HFD-induced glucose intolerance, the Nrf2-activated K1-KD mice exhibited prolonged elevation of circulating glucose during a glucose tolerance test even on the control diet. Feeding a HFD did not activate the Nrf2 signaling pathway in mouse livers. Fibroblast growth factor 21 (Fgf21) is a liver-derived anti-diabetic hormone that exerts glucose- and lipid-lowering effects. Fgf21 mRNA and protein were both elevated in livers of Nrf2-null mice, and Fgf21 protein was lower in K1-KD mice than WT mice. The inverse correlation between Nrf2 activity and hepatic expression of Fgf21 might explain the improved glucose tolerance in Nrf2-null mice. Furthermore, a more oxidative cellular environment in Nrf2-null mice could affect insulin signaling in liver. For example, mRNA of insulin-like growth factor binding protein 1, a gene repressed by insulin in hepatocytes, was markedly elevated in livers of Nrf2-null mice. In conclusion, genetic alteration of Nrf2 does not prevent diet-induced obesity in mice, but deficiency of Nrf2 improves glucose homeostasis, possibly through its effects on Fgf21 and/or insulin signaling. -- Highlights: ► Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet. ► The anti-diabetic hormone, Fgf21, is highly expressed in livers of Nrf2-null mice. ► The absence of Nrf2 increases the insulin-regulated Igfbp-1 mRNA in liver.

  16. The pathogenic implication of abnormal interaction between apolipoprotein E isoforms, amyloid-beta peptides, and sulfatides in Alzheimer's disease.

    Science.gov (United States)

    Han, Xianlin

    2010-06-01

    Alzheimer's disease (AD) is the most common cause of dementia in the aging population. Prior work has shown that the epsilon4 allele of apolipoprotein E (apoE4) is a major risk factor for "sporadic" AD, which accounts for >99% of AD cases without a defined underlying mechanism. Recently, we have demonstrated that sulfatides are substantially and specifically depleted at the very early stage of AD. To identify the mechanism(s) of sulfatide loss concurrent with AD onset, we have found that: (1) sulfatides are specifically associated with apoE-associated particles in cerebrospinal fluid (CSF); (2) apoE modulates cellular sulfatide levels; and (3) the modulation of sulfatide content is apoE isoform dependent. These findings not only lead to identification of the potential mechanisms underlying sulfatide depletion at the earliest stages of AD but also serve as mechanistic links to explain the genetic association of apoE4 with AD. Moreover, our recent studies further demonstrated that (1) apoE mediates sulfatide depletion in amyloid-beta precursor protein transgenic mice; (2) sulfatides enhance amyloid beta (Abeta) peptides binding to apoE-associated particles; (3) Abeta42 content notably correlates with sulfatide content in CSF; (4) sulfatides markedly enhance the uptake of Abeta peptides; and (5) abnormal sulfatide-facilitated Abeta uptake results in the accumulation of Abeta in lysosomes. Collectively, our studies clearly provide a link between apoE, Abeta, and sulfatides in AD and establish a foundation for the development of effective therapeutic interventions for AD.

  17. Aged PROP1 deficient dwarf mice maintain ACTH production.

    Directory of Open Access Journals (Sweden)

    Igor O Nasonkin

    Full Text Available Humans with PROP1 mutations have multiple pituitary hormone deficiencies (MPHD that typically advance from growth insufficiency diagnosed in infancy to include more severe growth hormone (GH deficiency and progressive reduction in other anterior pituitary hormones, eventually including adrenocorticotropic hormone (ACTH deficiency and hypocortisolism. Congenital deficiencies of GH, prolactin, and thyroid stimulating hormone have been reported in the Prop1(null (Prop1(-/- and the Ames dwarf (Prop1(df/df mouse models, but corticotroph and pituitary adrenal axis function have not been thoroughly investigated. Here we report that the C57BL6 background sensitizes mutants to a wasting phenotype that causes approximately one third to die precipitously between weaning and adulthood, while remaining homozygotes live with no signs of illness. The wasting phenotype is associated with severe hypoglycemia. Circulating ACTH and corticosterone levels are elevated in juvenile and aged Prop1 mutants, indicating activation of the pituitary-adrenal axis. Despite this, young adult Prop1 deficient mice are capable of responding to restraint stress with further elevation of ACTH and corticosterone. Low blood glucose, an expected side effect of GH deficiency, is likely responsible for the elevated corticosterone level. These studies suggest that the mouse model differs from the human patients who display progressive hormone loss and hypocortisolism.

  18. Failure of pulmonary clearance of Rhodococcus equi infection in CD4+ T-lymphocyte-deficient transgenic mice.

    OpenAIRE

    Kanaly, S T; Hines, S A; Palmer, G H

    1993-01-01

    Pulmonary clearance of Rhodococcus equi requires functional T lymphocytes. In this study, CD8+ T-lymphocyte-deficient transgenic mice cleared virulent R. equi from the lungs while infection in CD4+ T-lymphocyte-deficient transgenic mice persisted. Although both CD4+ and CD8+ T cells function early in pulmonary defense against R. equi, clearance is dependent on CD4+ T lymphocytes.

  19. Increased numbers of spleen colony forming units in B cell deficient CBA/N mice

    International Nuclear Information System (INIS)

    Wiktor-Jedrzejczak, W.; Krupienicz, A.; Scher, I.

    1986-01-01

    The formation of exogenous and endogenous spleen colonies was studied in immune-defective mice expressing the CBA/N X-linked xid gene. Bone marrow and spleen cells of immune deficient mice formed increased numbers of eight-day exogenous spleen colonies when transferred to either normal or B cell deficient lethally irradiated recipients. Moreover, defective mice showed increased formation of five-day endogenous spleen colonies (derived from transient endogenous colony forming units; T-CFU) and of ten-day endogenous spleen colonies (derived from CFU-S). Among the possible mechanisms responsible for the observed effects, the most probable appears the one in which decreased numbers of B cell precursors stimulate stem cell pools through a feedback mechanism. (orig.) [de

  20. Dual specificity phosphatase 6 deficiency is associated with impaired systemic glucose tolerance and reversible weight retardation in mice.

    Directory of Open Access Journals (Sweden)

    Katrin Pfuhlmann

    Full Text Available Here, we aimed to investigate the potential role of DUSP6, a dual specificity phosphatase, that specifically inactivates extracellular signal-regulated kinase (ERK, for the regulation of body weight and glucose homeostasis. We further assessed whether metabolic challenges affect Dusp6 expression in selected brain areas or white adipose tissue. Hypothalamic Dusp6 mRNA levels remained unchanged in chow-fed lean vs. high fat diet (HFD fed obese C57Bl/6J mice, and in C57Bl/6J mice undergoing prolonged fasting or refeeding with fat free diet (FFD or HFD. Similarly, Dusp6 expression levels were unchanged in selected brain regions of Lepob mice treated with 1 mg/kg of leptin for 6 days, compared to pair-fed or saline-treated Lepob controls. Dusp6 expression levels remained unaltered in vitro in primary adipocytes undergoing differentiation, but were increased in eWAT of HFD-fed obese C57Bl/6J mice, compared to chow-fed lean controls. Global chow-fed DUSP6 KO mice displayed reduced body weight and lean mass and slightly increased fat mass at a young age, which is indicative for early-age weight retardation. Subsequent exposure to HFD led to a significant increase in lean mass and body weight in DUSP6 deficient mice, compared to WT controls. Nevertheless, after 26 weeks of high-fat diet exposure, we observed comparable body weight, fat and lean mass in DUSP6 WT and KO mice, suggesting overall normal susceptibility to develop obesity. In line with the increased weight gain to compensate for early-age weight retardation, HFD-fed DUSP6 KO displayed increased expression levels of anabolic genes involved in lipid and cholesterol metabolism in the epididymal white adipose tissue (eWAT, compared to WT controls. Glucose tolerance was perturbed in both chow-fed lean or HFD-fed obese DUSP6 KO, compared to their respective WT controls. Overall, our data indicate that DUSP6 deficiency has limited impact on the regulation of energy metabolism, but impairs systemic

  1. Female Nur77-deficient mice show increased susceptibility to diet-induced obesity.

    Directory of Open Access Journals (Sweden)

    Sonia Perez-Sieira

    Full Text Available Adipose tissue is essential in the regulation of body weight. The key process in fat catabolism and the provision of energy substrate during times of nutrient deprivation or enhanced energy demand is the hydrolysis of triglycerides and the release of fatty acids and glycerol. Nur77 is a member of the NR4A subfamily of nuclear receptors that plays an important metabolic role, modulating hepatic glucose metabolism and lipolysis in muscle. However, its endogenous role on white adipose tissue, as well as the gender dependency of these mechanisms, remains largely unknown. Male and female wild type and Nur77 deficient mice were fed with a high fat diet (45% calories from fat for 4 months. Mice were analyzed in vivo with the indirect calorimetry system, and tissues were analyzed by real-time PCR and Western blot analysis. Female, but not male Nur77 deficient mice, gained more weight and fat mass when compared to wild type mice fed with high fat diet, which can be explained by decreased energy expenditure. The lack of Nur77 also led to a decreased pHSL/HSL ratio in white adipose tissue and increased expression of CIDEA in brown adipose tissue of female Nur77 deficient mice. Overall, these findings suggest that Nur77 is an important physiological modulator of lipid metabolism in adipose tissue and that there are gender differences in the sensitivity to deletion of the Nur77 signaling. The decreased energy expenditure and the actions of Nur77 on liver, muscle, brown and white adipose tissue contribute to the increased susceptibility to diet-induced obesity in females lacking Nur77.

  2. Effects of genetic deficiency of cyclooxygenase-1 or cyclooxygenase-2 on functional and histological outcomes following traumatic brain injury in mice

    Directory of Open Access Journals (Sweden)

    Scheff Stephen W

    2009-08-01

    Full Text Available Abstract Background Neuroinflammation contributes to the pathophysiology of acute CNS injury, including traumatic brain injury (TBI. Although prostaglandin lipid mediators of inflammation contribute to a variety of inflammatory responses, their importance in neuroinflammation is not clear. There are conflicting reports as to the efficacy of inhibiting the enzymes required for prostaglandin formation, cyclooxygenase (COX -1 and COX-2, for improving outcomes following TBI. The purpose of the current study was to determine the role of the COX isoforms in contributing to pathological processes resulting from TBI by utilizing mice deficient in COX-1 or COX-2. Results Following a mild controlled cortical impact injury, the amount of cortical tissue loss, the level of microglial activation, and the capacity for functional recovery was compared between COX-1-deficient mice or COX-2-deficient mice, and their matching wild-type controls. The deficiency of COX-2 resulted in a minor (6%, although statistically significant, increase in the sparing of cortical tissue following TBI. The deficiency of COX-1 resulted in no detectable effect on cortical tissue loss following TBI. As determined by 3[H]-PK11195 autoradiography, TBI produced a similar increase in microglial activation in multiple brain regions of both COX-1 wild-type and COX-1-deficient mice. In COX-2 wild-type and COX-2-deficient mice, TBI increased 3[H]-PK11195 binding in all brain regions that were analyzed. Following injury, 3[H]-PK11195 binding in the dentate gyrus and CA1 region of the hippocampus was greater in COX-2-deficient mice, as compared to COX-2 wild-type mice. Cognitive assessment was performed in the wild-type, COX-1-deficient and COX-2-deficient mice following 4 days of recovery from TBI. There was no significant cognitive effect that resulted from the deficiency of either COX-1 or COX-2, as determined by acquisition and spatial memory retention testing in a Morris water maze

  3. CXCL14 deficiency in mice attenuates obesity and inhibits feeding behavior in a novel environment.

    Directory of Open Access Journals (Sweden)

    Kosuke Tanegashima

    Full Text Available BACKGROUND: CXCL14 is a chemoattractant for macrophages and immature dendritic cells. We recently reported that CXCL14-deficient (CXCL14(-/- female mice in the mixed background are protected from obesity-induced hyperglycemia and insulin resistance. The decreased macrophage infiltration into visceral adipose tissues and the increased insulin sensitivity of skeletal muscle contributed to these phenotypes. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we performed a comprehensive study for the body weight control of CXCL14(-/- mice in the C57BL/6 background. We show that both male and female CXCL14(-/- mice have a 7-11% lower body weight compared to CXCL14(+/- and CXCL14(+/+ mice in adulthood. This is mainly caused by decreased food intake, and not by increased energy expenditure or locomotor activity. Reduced body weight resulting from the CXCL14 deficiency was more pronounced in double mutant CXCL14(-/-ob/ob and CXCL14(-/-A(y mice. In the case of CXCL14(-/-A(y mice, oxygen consumption was increased compared to CXCL14(+/-A(y mice, in addition to the reduced food intake. In CXCL14(-/- mice, fasting-induced up-regulation of Npy and Agrp mRNAs in the hypothalamus was blunted. As intracerebroventricular injection of recombinant CXCL14 did not change the food intake of CXCL14(-/- mice, CXCL14 could indirectly regulate appetite. Intriguingly, the food intake of CXCL14(-/- mice was significantly repressed when mice were transferred to a novel environment. CONCLUSIONS/SIGNIFICANCE: We demonstrated that CXCL14 is involved in the body weight control leading to the fully obese phenotype in leptin-deficient or A(y mutant mice. In addition, we obtained evidence indicating that CXCL14 may play an important role in central nervous system regulation of feeding behavior.

  4. Leisure activities, apolipoprotein E e4 status, and the risk of dementia.

    Science.gov (United States)

    Yang, Sheng-Ying; Weng, Pei-Hsuan; Chen, Jen-Hau; Chiou, Jeng-Min; Lew-Ting, Chih-Yin; Chen, Ta-Fu; Sun, Yu; Wen, Li-Li; Yip, Ping-Keung; Chu, Yi-Min; Chen, Yen-Ching

    2015-12-01

    Leisure activities have been associated with a decreased risk of dementia. However, to date, no study has explored how apolipoprotein E (ApoE) e4 status or vascular risk factors modified the association between leisure activities and dementia risks. This case-control study recruited patients (age ≥ 60 years) with Alzheimer's disease (AD; n = 292) and vascular dementia (VaD; n = 144) and healthy controls (n = 506) from three teaching hospitals in Taiwan between 2007 and 2010. Information on patient's leisure activities were obtained through a questionnaire. Conditional logistic regression models were used to assess the association of leisure activities and ApoE e4 status with the risk of dementia. High-frequency physical activity was associated with a decreased risk of AD [adjusted odds ratio (AOR) = 0.45], and the results become more evident among ApoE e4 carriers with AD (AOR = 0.30) and VaD (AOR = 0.26). Similar findings were observed for cognitive (AOR = 0.42) and social activities (AOR = 0.55) for AD. High-frequency physical, cognitive, and social activities were associated with a decreased risk of VaD (AOR = 0.29-0.60). Physical and social activities significantly interacted with each other on the risk of VaD (pinteraction = 0.04). Physical activity consistently protects against AD and VaD. Significant interactions were identified across different types of leisure activities in lowering dementia risk. Copyright © 2014. Published by Elsevier B.V.

  5. Crif1 Deficiency Reduces Adipose OXPHOS Capacity and Triggers Inflammation and Insulin Resistance in Mice

    Science.gov (United States)

    Ryu, Min Jeong; Kim, Soung Jung; Kim, Yong Kyung; Choi, Min Jeong; Tadi, Surendar; Lee, Min Hee; Lee, Seong Eun; Chung, Hyo Kyun; Jung, Saet Byel; Kim, Hyun-Jin; Jo, Young Suk; Kim, Koon Soon; Lee, Sang-Hee; Kim, Jin Man; Kweon, Gi Ryang; Park, Ki Cheol; Lee, Jung Uee; Kong, Young Yun; Lee, Chul-Ho; Chung, Jongkyeong; Shong, Minho

    2013-01-01

    Impaired mitochondrial oxidative phosphorylation (OXPHOS) has been proposed as an etiological mechanism underlying insulin resistance. However, the initiating organ of OXPHOS dysfunction during the development of systemic insulin resistance has yet to be identified. To determine whether adipose OXPHOS deficiency plays an etiological role in systemic insulin resistance, the metabolic phenotype of mice with OXPHOS–deficient adipose tissue was examined. Crif1 is a protein required for the intramitochondrial production of mtDNA–encoded OXPHOS subunits; therefore, Crif1 haploinsufficient deficiency in mice results in a mild, but specific, failure of OXPHOS capacity in vivo. Although adipose-specific Crif1-haploinsufficient mice showed normal growth and development, they became insulin-resistant. Crif1-silenced adipocytes showed higher expression of chemokines, the expression of which is dependent upon stress kinases and antioxidant. Accordingly, examination of adipose tissue from Crif1-haploinsufficient mice revealed increased secretion of MCP1 and TNFα, as well as marked infiltration by macrophages. These findings indicate that the OXPHOS status of adipose tissue determines its metabolic and inflammatory responses, and may cause systemic inflammation and insulin resistance. PMID:23516375

  6. Embryonic Lethality Due to Arrested Cardiac Development in Psip1/Hdgfrp2 Double-Deficient Mice.

    Directory of Open Access Journals (Sweden)

    Hao Wang

    Full Text Available Hepatoma-derived growth factor (HDGF related protein 2 (HRP2 and lens epithelium-derived growth factor (LEDGF/p75 are closely related members of the HRP2 protein family. LEDGF/p75 has been implicated in numerous human pathologies including cancer, autoimmunity, and infectious disease. Knockout of the Psip1 gene, which encodes for LEDGF/p75 and the shorter LEDGF/p52 isoform, was previously shown to cause perinatal lethality in mice. The function of HRP2 was by contrast largely unknown. To learn about the role of HRP2 in development, we knocked out the Hdgfrp2 gene, which encodes for HRP2, in both normal and Psip1 knockout mice. Hdgfrp2 knockout mice developed normally and were fertile. By contrast, the double deficient mice died at approximate embryonic day (E 13.5. Histological examination revealed ventricular septal defect (VSD associated with E14.5 double knockout embryos. To investigate the underlying molecular mechanism(s, RNA recovered from ventricular tissue was subjected to RNA-sequencing on the Illumina platform. Bioinformatic analysis revealed several genes and biological pathways that were significantly deregulated by the Psip1 knockout and/or Psip1/Hdgfrp2 double knockout. Among the dozen genes known to encode for LEDGF/p75 binding factors, only the expression of Nova1, which encodes an RNA splicing factor, was significantly deregulated by the knockouts. However the expression of other RNA splicing factors, including the LEDGF/p52-interacting protein ASF/SF2, was not significantly altered, indicating that deregulation of global RNA splicing was not a driving factor in the pathology of the VSD. Tumor growth factor (Tgf β-signaling, which plays a key role in cardiac morphogenesis during development, was the only pathway significantly deregulated by the double knockout as compared to control and Psip1 knockout samples. We accordingly speculate that deregulated Tgf-β signaling was a contributing factor to the VSD and prenatal lethality

  7. Progressive Retinal Degeneration and Accumulation of Autofluorescent Lipopigments in Progranulin Deficient Mice

    Science.gov (United States)

    Hafler, Brian P.; Klein, Zoe A.; Zhou, Z. Jimmy; Strittmatter, Stephen M.

    2014-01-01

    Prior investigations have shown that patients with neuronal ceroid lipofuscinosis (NCL) develop neurodegeneration characterized by vision loss, motor dysfunction, seizures, and often early death. Neuropathological analysis of patients with NCL shows accumulation of intracellular autofluorescent storage material, lipopigment, throughout neurons in the central nervous system including in the retina. A recent study of a sibling pair with adult onset NCL and retinal degeneration showed linkage to the region of the progranulin (GRN) locus and a homozygous mutation was demonstrated in GRN. In particular, the sibling pair with a mutation in GRN developed retinal degeneration and optic atrophy. This locus for this form of adult onset neuronal ceroid lipofuscinosis was designated neuronal ceroid lipofuscinosis-11 (CLN11). Based on these clinical observations, we wished to determine whether Grn-null mice develop accumulation of autofluorescent particles and retinal degeneration. Retinas of both wild-type and Progranulin deficient mice were examined by immunostaining and autofluorescence. Accumulation of autofluorescent material was present in Progranulin deficient mice at 12 months. Degeneration of multiple classes of neurons including photoreceptors and retinal ganglion cells was noted in mice at 12 and 18 months. Our data shows that Grn−/− mice develop degenerative pathology similar to features of human CLN11. PMID:25234724

  8. Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurones.

    Science.gov (United States)

    Zensi, Anja; Begley, David; Pontikis, Charles; Legros, Celine; Mihoreanu, Larisa; Wagner, Sylvia; Büchel, Claudia; von Briesen, Hagen; Kreuter, Jörg

    2009-07-01

    The blood-brain barrier (BBB) represents a considerable obstacle to brain entry of the majority of drugs and thus severely restricts the therapy of many serious CNS diseases including brain tumours, brain HIV, Alzheimer and other neurodegenerative diseases. The use of nanoparticles coated with polysorbate 80 or with attached apolipoprotein E has enabled the delivery of drugs across the BBB. However, the mechanism of this enhanced transport is still not fully understood. In this present study, human serum albumin nanoparticles, with covalently bound apolipoprotein E (Apo E) as a targetor as well as without apolipoprotein E, were manufactured and injected intravenously into SV 129 mice. The animals were sacrificed after 15 and 30 min, and their brains were examined by transmission electron microscopy. Only the nanoparticles with covalently bound apolipoprotein E were detected in brain capillary endothelial cells and neurones, whereas no uptake into the brain was detectable with nanoparticles without apolipoprotein E. We have also demonstrated uptake of the albumin/ApoE nanoparticles into mouse endothelial (b.End3) cells in vitro and their intracellular localisation. These findings indicate that nanoparticles with covalently bound apolipoprotein E are taken up into the cerebral endothelium by an endocytic mechanism followed by transcytosis into brain parenchyma.

  9. Influences of apolipoprotein E on soluble and heparin-immobilized hepatic lipase

    International Nuclear Information System (INIS)

    Landis, B.A.; Rotolo, F.S.; Meyers, W.C.; Clark, A.B.; Quarfordt, S.H.

    1987-01-01

    The effect of human apolipoprotein E (apoE), either alone or in combination with apoC, on the lipolysis of a radiolabeled triglyceride emulsion was studied with hepatic lipase in solution and immobilized on heparin-Sepharose. The soluble hepatic lipase was inhibited, whereas the heparin-immobilized lipase was stimulated by apoE. This stimulation was attenuated by combining apoE with either apoC-II or C-III. The heparin-immobilized lipase demonstrated much less lipolysis of the zwitterionic phosphatidylcholine-stabilized triglyceride emulsion than did the soluble enzyme. This difference was less when the emulsion was stabilized by a nonionic detergent. apoE inhibited lipase activity when assayed under conditions (0.4 M NaCl) of bound enzyme and unbound substrate. Increasing the emulsion apoE content beyond optimum inhibited lipolysis by the immobilized enzyme. Kinetic analysis of phosphatidylcholine-stabilized triglyceride emulsions revealed a significant decrease in immobilized enzyme K/sub m/ and an increase in V/sub max/ when the emulsion was supplemented with apoE. Distributing the immobilized lipase in clustered aggregates produced more lipolysis than when the same enzyme content was uniformly bound

  10. Abnormalities in osteoclastogenesis and decreased tumorigenesis in mice deficient for ovarian cancer G protein-coupled receptor 1.

    Directory of Open Access Journals (Sweden)

    Hui Li

    2009-05-01

    Full Text Available Ovarian cancer G protein-coupled receptor 1 (OGR1 has been shown to be a proton sensing receptor in vitro. We have shown that OGR1 functions as a tumor metastasis suppressor gene when it is over-expressed in human prostate cancer cells in vivo. To examine the physiological functions of OGR1, we generated conditional OGR1 deficient mice by homologous recombination. OGR1 deficient mice were viable and upon gross-inspection appeared normal. Consistent with in vitro studies showing that OGR1 is involved in osteoclastogenesis, reduced osteoclasts were detected in OGR1 deficient mice. A pH-dependent osteoclasts survival effect was also observed. However, overall abnormality in the bones of these animals was not observed. In addition, melanoma cell tumorigenesis was significantly inhibited in OGR1 deficient mice. OGR1 deficient mice in the mixed background produced significantly less peritoneal macrophages when stimulated with thioglycolate. These macrophages also showed altered extracellular signal-regulated kinases (ERK activation and nitric oxide (NO production in response to lipopolysaccharide. OGR1-dependent pH responses assessed by cAMP production and cell survival in macrophages or brown fat cells were not observed, presumably due to the presence of other proton sensing receptors in these cells. Our results indicate that OGR1's role in osteoclastogenesis is not strong enough to affect overall bone development and its role in tumorigenesis warrants further investigation. The mice generated can be potentially used for several disease models, including cancers or osteoclast-related diseases.

  11. Colonic lesions, cytokine profiles, and gut microbiota in plasminogen-deficient mice

    DEFF Research Database (Denmark)

    Vestergaard, Bill; Krych, Lukasz; Lund, Leif R.

    2015-01-01

    Plasminogen-deficient (FVB/NPan-plg(tm1Jld), plg(tm1Jld)) mice, which are widely used as a wound-healing model, are prone to spontaneous rectal prolapses. The aims of this study were 1) to evaluate the fecal microbiome of plg(tm1Jld) mice for features that might contribute to the development...... the composition of the gut microbiota, and none of the clinical or biochemical parameters correlated with the gut microbiota composition....

  12. Reduced biliary sterol output with no change in total faecal excretion in mice expressing a human apolipoprotein A-I variant.

    Science.gov (United States)

    Parolini, Cinzia; Caligari, Silvia; Gilio, Donatella; Manzini, Stefano; Busnelli, Marco; Montagnani, Marco; Locatelli, Marcello; Diani, Erika; Giavarini, Flavio; Caruso, Donatella; Roda, Enrico; Roda, Aldo; Sirtori, Cesare R; Chiesa, Giulia

    2012-10-01

    Apolipoprotein (apo)A-I(M) (ilano), is a molecular variant of apoA-I(wild-type), associated with dramatically low HDL-cholesterol levels, but no increased risk for cardiovascular disease. In view of the present uncertainties on the role of apoA-I in liver cholesterol removal by way of bile acids and neutral sterols, and of the greater capacity of apoA-I(M) (ilano) to remove arterial cholesterol, biliary sterol metabolism was evaluated in transgenic mice expressing apoA-I(M) (ilano). ApoA-I(M) (ilano) mice were fed a high-cholesterol/high-fat diet, and compared with human apoA-I(wild-type) mice. Plasma lipid levels, hepatic bile flow and composition, hepatic and intestinal cholesterol and bile acid content, and faecal sterol content were measured. Moreover, the expression of hepatic ABCA1, SR-B1 and that of hepatic and intestinal genes involved in bile acid metabolism were evaluated. The dietary treatment led to a strong elevation in HDL-cholesterol levels in A-I(M) (ilano) mice, associated with an increased expression of hepatic ABCA1. ApoA-I(M) (ilano) mice showed lower cholesterol output from the liver compared with apoA-I(wild-type) mice, in the absence of liver sterol accumulation. Faecal excretion of neutral sterols and bile acids was similar in the two mouse lines. In spite of a different response to the dietary challenge, with an increased ABCA1 expression and a lower hepatic cholesterol output in apoA-I(M) (ilano) mice, the net sterol excretion is comparable in the two transgenic lines. © 2012 John Wiley & Sons A/S.

  13. Impaired Latent Inhibition in GDNF-Deficient Mice Exposed to Chronic Stress

    Directory of Open Access Journals (Sweden)

    Mona Buhusi

    2017-10-01

    Full Text Available Increased reactivity to stress is maladaptive and linked to abnormal behaviors and psychopathology. Chronic unpredictable stress (CUS alters catecholaminergic neurotransmission and remodels neuronal circuits involved in learning, attention and decision making. Glial-derived neurotrophic factor (GDNF is essential for the physiology and survival of dopaminergic neurons in substantia nigra and of noradrenergic neurons in the locus coeruleus. Up-regulation of GDNF expression during stress is linked to resilience; on the other hand, the inability to up-regulate GDNF in response to stress, as a result of either genetic or epigenetic modifications, induces behavioral alterations. For example, GDNF-deficient mice exposed to chronic stress exhibit alterations of executive function, such as increased temporal discounting. Here we investigated the effects of CUS on latent inhibition (LI, a measure of selective attention and learning, in GDNF-heterozygous (HET mice and their wild-type (WT littermate controls. No differences in LI were found between GDNF HET and WT mice under baseline experimental conditions. However, following CUS, GDNF-deficient mice failed to express LI. Moreover, stressed GDNF-HET mice, but not their WT controls, showed decreased neuronal activation (number of c-Fos positive neurons in the nucleus accumbens shell and increased activation in the nucleus accumbens core, both key regions in the expression of LI. Our results add LI to the list of behaviors affected by chronic stress and support a role for GDNF deficits in stress-induced pathological behaviors relevant to schizophrenia and other psychiatric disorders.

  14. Mcph1-deficient mice reveal a role for MCPH1 in otitis media.

    Directory of Open Access Journals (Sweden)

    Jing Chen

    Full Text Available Otitis media is a common reason for hearing loss, especially in children. Otitis media is a multifactorial disease and environmental factors, anatomic dysmorphology and genetic predisposition can all contribute to its pathogenesis. However, the reasons for the variable susceptibility to otitis media are elusive. MCPH1 mutations cause primary microcephaly in humans. So far, no hearing impairment has been reported either in the MCPH1 patients or mouse models with Mcph1 deficiency. In this study, Mcph1-deficient (Mcph1(tm1a (/tm1a mice were produced using embryonic stem cells with a targeted mutation by the Sanger Institute's Mouse Genetics Project. Auditory brainstem response measurements revealed that Mcph1(tm1a (/tm1a mice had mild to moderate hearing impairment with around 70% penetrance. We found otitis media with effusion in the hearing-impaired Mcph1(tm1a (/tm1a mice by anatomic and histological examinations. Expression of Mcph1 in the epithelial cells of middle ear cavities supported its involvement in the development of otitis media. Other defects of Mcph1(tm1a (/tm1a mice included small skull sizes, increased micronuclei in red blood cells, increased B cells and ocular abnormalities. These findings not only recapitulated the defects found in other Mcph1-deficient mice or MCPH1 patients, but also revealed an unexpected phenotype, otitis media with hearing impairment, which suggests Mcph1 is a new gene underlying genetic predisposition to otitis media.

  15. CDKL5 deficiency entails sleep apneas in mice.

    Science.gov (United States)

    Lo Martire, Viviana; Alvente, Sara; Bastianini, Stefano; Berteotti, Chiara; Silvani, Alessandro; Valli, Alice; Viggiano, Rocchina; Ciani, Elisabetta; Zoccoli, Giovanna

    2017-08-01

    A recently discovered neurodevelopmental disorder caused by the mutation of the cyclin-dependent kinase-like 5 gene (CDKL5) entails complex autistic-like behaviours similar to Rett syndrome, but its impact upon physiological functions remains largely unexplored. Sleep-disordered breathing is common and potentially life-threatening in patients with Rett syndrome; however, evidence is limited in children with CDKL5 disorder, and is lacking altogether in adults. The aim of this study was to test whether the breathing pattern during sleep differs between adult Cdkl5 knockout (Cdkl5-KO) and wild-type (WT) mice. Using whole-body plethysmography, sleep and breathing were recorded non-invasively for 8 h during the light period. Sleep apneas occurred more frequently in Cdkl5-KO than in WT mice. A receiver operating characteristic (ROC) analysis discriminated Cdkl5-KO significantly from WT mice based on sleep apnea occurrence. These data demonstrate that sleep apneas are a core feature of CDKL5 disorder and a respiratory biomarker of CDKL5 deficiency in mice, and suggest that sleep-disordered breathing should be evaluated routinely in CDKL5 patients. © 2017 European Sleep Research Society.

  16. Hippocampal infusions of apolipoprotein E peptides induce long-lasting cognitive impairment.

    Science.gov (United States)

    Eddins, Donnie; Klein, Rebecca C; Yakel, Jerrel L; Levin, Edward D

    2009-04-29

    The inheritance of the varepsilon4 allele of apolipoprotein E (ApoE4) and cholinergic system dysfunction have long been associated with the pathology of Alzheimer's disease (AD). Recently, in vitro studies have established a direct link between ApoE and cholinergic function in that synthetic peptides containing segments of the ApoE protein (ApoE(133-149) and ApoE(141-148)) interact with alpha7 nicotinic acetylcholine receptors (nAChRs) in the hippocampus. This raises the possibility that ApoE peptides may contribute to cognitive impairment in AD in that the hippocampus plays a key role in cognitive functioning. To test this, we acutely infused ApoE peptides into the ventral hippocampus of female Sprague-Dawley rats and assessed the resultant effects on radial-arm maze choice accuracy over a period of weeks after the infusion. Local ventral hippocampal infusion of ApoE peptides caused significant cognitive impairment in radial-arm maze learning that persisted several weeks after the acute infusion. This persisting deficit may be an important model for understanding the relationship between ApoE protein-induced neurotoxicity and cognitive impairment as well as serve as a platform for the development of new therapies to avoid neurotoxicity and cognitive decline.

  17. Genetics Home Reference: ataxia with vitamin E deficiency

    Science.gov (United States)

    ... Conditions Ataxia with vitamin E deficiency Ataxia with vitamin E deficiency Printable PDF Open All Close All Enable ... view the expand/collapse boxes. Description Ataxia with vitamin E deficiency is a disorder that impairs the body's ...

  18. Lipid profiles reflecting high and low risk for coronary heart disease : Contribution of apolipoprotein E polymorphism and lifestyle

    NARCIS (Netherlands)

    Boer, J.M.A.; Feskens, E.J.M.; Schouten, E.G.; Havekes, L.M.; Seidell, J.C.; Kromhout, D.

    1998-01-01

    To elucidate the role of modifiable factors and the apolipoprotein E polymorphism in explaining lipid profiles reflecting low, average and high risk for coronary heart disease, we selected subjects from a large population-based study. Subjects with low total cholesterol (TC) (< 15th percentile) and

  19. Lipid profiles reflecting high and low risk for coronary heart disease: contribution of apolipoprotein E polymorphism and lifestyle.

    NARCIS (Netherlands)

    Boer, J.M.A.; Feskens, E.J.M.; Schouten, E.G.; Havekes, L.M.; Seidell, J.C.; Kromhout, D.

    1998-01-01

    To elucidate the role of modifiable factors and the apolipoprotein E polymorphism in explaining lipid profiles reflecting low, average and high risk for coronary heart disease, we selected subjects from a large population-based study. Subjects with low total cholesterol (TC) (<15th percentile)

  20. Data on IL-10R neutralization-induced chronic colitis in Lipocalin 2 deficient mice on BALB/c background

    Directory of Open Access Journals (Sweden)

    Vishal Singh

    2017-04-01

    Full Text Available The data herein is related to the research article entitled “Microbiota-inducible Innate Immune, Siderophore Binding Protein Lipocalin 2 is Critical for Intestinal Homeostasis” (Singh et al., 2016 [1] where we have demonstrated that C57BL/6 Lipocalin 2 deficient mice (Lcn2KO developed chronic colitis upon anti-interleukin-10 receptor (αIL-10R monoclonal antibody administration. In the present article, we evaluated the susceptibility of BALB/c Lcn2KO mice and their WT littermates to the αIL-10R neutralization-induced chronic colitis. Our data showed that αIL-10R mAb-treated BALB/c Lcn2KO mice exhibited severe chronic colitis (i.e., splenomegaly, colomegaly, colonic pathology, and incidence of rectal prolapse when compared to WT mice.

  1. GRAF1 deficiency blunts sarcolemmal injury repair and exacerbates cardiac and skeletal muscle pathology in dystrophin-deficient mice.

    Science.gov (United States)

    Lenhart, Kaitlin C; O'Neill, Thomas J; Cheng, Zhaokang; Dee, Rachel; Demonbreun, Alexis R; Li, Jianbin; Xiao, Xiao; McNally, Elizabeth M; Mack, Christopher P; Taylor, Joan M

    2015-01-01

    The plasma membranes of striated muscle cells are particularly susceptible to rupture as they endure significant mechanical stress and strain during muscle contraction, and studies have shown that defects in membrane repair can contribute to the progression of muscular dystrophy. The synaptotagmin-related protein, dysferlin, has been implicated in mediating rapid membrane repair through its ability to direct intracellular vesicles to sites of membrane injury. However, further work is required to identify the precise molecular mechanisms that govern dysferlin targeting and membrane repair. We previously showed that the bin-amphiphysin-Rvs (BAR)-pleckstrin homology (PH) domain containing Rho-GAP GTPase regulator associated with focal adhesion kinase-1 (GRAF1) was dynamically recruited to the tips of fusing myoblasts wherein it promoted membrane merging by facilitating ferlin-dependent capturing of intracellular vesicles. Because acute membrane repair responses involve similar vesicle trafficking complexes/events and because our prior studies in GRAF1-deficient tadpoles revealed a putative role for GRAF1 in maintaining muscle membrane integrity, we postulated that GRAF1 might also play an important role in facilitating dysferlin-dependent plasma membrane repair. We used an in vitro laser-injury model to test whether GRAF1 was necessary for efficient muscle membrane repair. We also generated dystrophin/GRAF1 doubledeficient mice by breeding mdx mice with GRAF1 hypomorphic mice. Evans blue dye uptake and extensive morphometric analyses were used to assess sarcolemmal integrity and related pathologies in cardiac and skeletal muscles isolated from these mice. Herein, we show that GRAF1 is dynamically recruited to damaged skeletal and cardiac muscle plasma membranes and that GRAF1-depleted muscle cells have reduced membrane healing abilities. Moreover, we show that dystrophin depletion exacerbated muscle damage in GRAF1-deficient mice and that mice with dystrophin/GRAF1

  2. Apolipoprotein e4 Is Associated with More Rapid Decline in Odor Identification than in Odor Threshold or Dementia Rating Scale Scores

    Science.gov (United States)

    Calhoun-Haney, R.; Murphy, C.

    2005-01-01

    Individuals with the apolipoprotein E e4 genetic risk factor for Alzheimer's disease (AD) show deficits in olfactory function. The purpose of the present study was to examine longitudinally odor identification (odor ID), odor threshold, picture identification, and global cognitive status in allele positive (e4+) and negative (e4-) persons.…

  3. Consumption of a low-carbohydrate and high-fat diet (the ketogenic diet) exaggerates biotin deficiency in mice.

    Science.gov (United States)

    Yuasa, Masahiro; Matsui, Tomoyoshi; Ando, Saori; Ishii, Yoshie; Sawamura, Hiromi; Ebara, Shuhei; Watanabe, Toshiaki

    2013-10-01

    Biotin is a water-soluble vitamin that acts as a cofactor for several carboxylases. The ketogenic diet, a low-carbohydrate, high-fat diet, is used to treat drug-resistant epilepsy and promote weight loss. In Japan, the infant version of the ketogenic diet is known as the "ketone formula." However, as the special infant formulas used in Japan, including the ketone formula, do not contain sufficient amounts of biotin, biotin deficiency can develop in infants who consume the ketone formula. Therefore, the aim of this study was to evaluate the effects of the ketogenic diet on biotin status in mice. Male mice (N = 32) were divided into the following groups: control diet group, biotin-deficient (BD) diet group, ketogenic control diet group, and ketogenic biotin-deficient (KBD) diet group. Eight mice were used in each group. At 9 wk, the typical symptoms of biotin deficiency such as hair loss and dermatitis had only developed in the KBD diet group. The total protein expression level of biotin-dependent carboxylases and the total tissue biotin content were significantly decreased in the KBD and BD diet groups. However, these changes were more severe in the KBD diet group. These findings demonstrated that the ketogenic diet increases biotin bioavailability and consumption, and hence, promotes energy production by gluconeogenesis and branched-chain amino acid metabolism, which results in exaggerated biotin deficiency in biotin-deficient mice. Therefore, biotin supplementation is important for mice that consume the ketogenic diet. It is suggested that individuals that consume the ketogenic diet have an increased biotin requirement. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Aldose reductase deficiency protects from autoimmune- and endotoxin-induced uveitis in mice.

    Science.gov (United States)

    Yadav, Umesh C S; Shoeb, Mohammed; Srivastava, Satish K; Ramana, Kota V

    2011-10-17

    To investigate the effect of aldose reductase (AR) deficiency in protecting the chronic experimental autoimmune (EAU) and acute endotoxin-induced uveitis (EIU) in c57BL/6 mice. The WT and AR-null (ARKO) mice were immunized with human interphotoreceptor retinoid-binding peptide (hIRPB-1-20), to induce EAU, or were injected subcutaneously with lipopolysaccharide (LPS; 100 μg) to induce EIU. The mice were killed on day 21 for EAU and at 24 hours for EIU, when the disease was at its peak, and the eyes were immediately enucleated for histologic and biochemical studies. Spleen-derived T-lymphocytes were used to study the antigen-specific immune response in vitro and in vivo. In WT-EAU mice, severe damage to the retinal wall, especially to the photoreceptor layer was observed, corresponding to a pathologic score of ∼2, which was significantly prevented in the ARKO or AR inhibitor-treated mice. The levels of cytokines and chemokines increased markedly in the whole-eye homogenates of WT-EAU mice, but not in ARKO-EAU mice. Further, expression of inflammatory marker proteins such as inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, tumor necrosis factor (TNF)-α, and vascular cell adhesion molecule (VCAM)-1 was increased in the WT-EIU mouse eyes but not in the ARKO-EIU eyes. The T cells proliferated vigorously when exposed to the hIRPB antigen in vitro and secreted various cytokines and chemokines, which were significantly inhibited in the T cells isolated from the ARKO mice. These findings suggest that AR-deficiency/inhibition protects against acute as well as chronic forms of ocular inflammatory complications such as uveitis.

  5. Apolipoprotein B is a calcium binding protein

    International Nuclear Information System (INIS)

    Dashti, N.; Lee, D.M.; Mok, T.

    1986-01-01

    Human hepatocarcinoma Hep G2 cells were grown in culture medium containing [ 45 Ca 2+ ]. The secreted lipoproteins of d 45 Ca] from the gels showed that the peak of radioactivity corresponded to the apolipoprotein B band. The molar ratio of the incorporated [ 45 Ca 2+ ] and apolipoprotein B was close to unity. No radioactivity was found associated with any other secreted apolipoproteins. To confirm these findings, apolipoprotein B-containing lipoproteins were precipitated with anti-apolipoprotein B and high density lipoproteins were precipitated with anti-apolipoprotein A-I. Only the former precipitate was radioactive. These results suggest that apolipoprotein B is a calcium binding protein

  6. Rejection of class I MHC-deficient haemopoietic cells by irradiated MHC-matched mice

    International Nuclear Information System (INIS)

    Bix, M.; Nanshih Liao; Raulet, D.; Zijlstra, M.; Loring, J.; Jaenisch, R.

    1991-01-01

    Irradiated MHC-heterozygous mice often reject bone marrow cells transplanted from one of the homozygous parental strains, a phenomenon ('hybrid resistance') that appears to violate the laws of transplantation. Rejection of parental and allogeneic marrow cells also differs from conventional T cell-mediated rejection mechanisms as it is effected by NK1.1 + cells. To account for the unusual specificity of bone marrow rejection, it has been proposed that NK1.1 + cells destroy marrow cells that fail to express the full complement of self MHC class I (MHC-I) molecules. We show here that NK1.1 + cells in normal mice reject haemopoietic transplants from mice that are deficient for normal cell-surface MHC-I expression because of a targeted mutation in the β 2 -microglobulin gene. These findings demonstrate that deficient expression of MHC-I molecules renders marrow cells susceptible to rejection. (author)

  7. Primary coenzyme Q deficiency in Pdss2 mutant mice causes isolated renal disease.

    Directory of Open Access Journals (Sweden)

    Min Peng

    2008-04-01

    Full Text Available Coenzyme Q (CoQ is an essential electron carrier in the respiratory chain whose deficiency has been implicated in a wide variety of human mitochondrial disease manifestations. Its multi-step biosynthesis involves production of polyisoprenoid diphosphate in a reaction that requires the enzymes be encoded by PDSS1 and PDSS2. Homozygous mutations in either of these genes, in humans, lead to severe neuromuscular disease, with nephrotic syndrome seen in PDSS2 deficiency. We now show that a presumed autoimmune kidney disease in mice with the missense Pdss2(kd/kd genotype can be attributed to a mitochondrial CoQ biosynthetic defect. Levels of CoQ9 and CoQ10 in kidney homogenates from B6.Pdss2(kd/kd mutants were significantly lower than those in B6 control mice. Disease manifestations originate specifically in glomerular podocytes, as renal disease is seen in Podocin/cre,Pdss2(loxP/loxP knockout mice but not in conditional knockouts targeted to renal tubular epithelium, monocytes, or hepatocytes. Liver-conditional B6.Alb/cre,Pdss2(loxP/loxP knockout mice have no overt disease despite demonstration that their livers have undetectable CoQ9 levels, impaired respiratory capacity, and significantly altered intermediary metabolism as evidenced by transcriptional profiling and amino acid quantitation. These data suggest that disease manifestations of CoQ deficiency relate to tissue-specific respiratory capacity thresholds, with glomerular podocytes displaying the greatest sensitivity to Pdss2 impairment.

  8. Brain transcriptional responses to high-fat diet in Acads-deficient mice reveal energy sensing pathways.

    Directory of Open Access Journals (Sweden)

    Claudia Kruger

    Full Text Available How signals from fatty acid metabolism are translated into changes in food intake remains unclear. Previously we reported that mice with a genetic inactivation of Acads (acyl-coenzyme A dehydrogenase, short-chain, the enzyme responsible for mitochondrial beta-oxidation of C4-C6 short-chain fatty acids (SCFAs, shift consumption away from fat and toward carbohydrate when offered a choice between diets. In the current study, we sought to indentify candidate genes and pathways underlying the effects of SCFA oxidation deficiency on food intake in Acads-/- mice.We performed a transcriptional analysis of gene expression in brain tissue of Acads-/- and Acads+/+ mice fed either a high-fat (HF or low-fat (LF diet for 2 d. Ingenuity Pathway Analysis revealed three top-scoring pathways significantly modified by genotype or diet: oxidative phosphorylation, mitochondrial dysfunction, and CREB signaling in neurons. A comparison of statistically significant responses in HF Acads-/- vs. HF Acads+/+ (3917 and Acads+/+ HF vs. LF Acads+/+ (3879 revealed 2551 genes or approximately 65% in common between the two experimental comparisons. All but one of these genes were expressed in opposite direction with similar magnitude, demonstrating that HF-fed Acads-deficient mice display transcriptional responses that strongly resemble those of Acads+/+ mice fed LF diet. Intriguingly, genes involved in both AMP-kinase regulation and the neural control of food intake followed this pattern. Quantitative RT-PCR in hypothalamus confirmed the dysregulation of genes in these pathways. Western blotting showed an increase in hypothalamic AMP-kinase in Acads-/- mice and HF diet increased, a key protein in an energy-sensing cascade that responds to depletion of ATP.Our results suggest that the decreased beta-oxidation of short-chain fatty acids in Acads-deficient mice fed HF diet produces a state of energy deficiency in the brain and that AMP-kinase may be the cellular energy

  9. Imaging colon cancer development in mice: IL-6 deficiency prevents adenoma in azoxymethane-treated Smad3 knockouts

    Science.gov (United States)

    Harpel, Kaitlin; Leung, Sarah; Faith Rice, Photini; Jones, Mykella; Barton, Jennifer K.; Bommireddy, Ramireddy

    2016-02-01

    The development of colorectal cancer in the azoxymethane-induced mouse model can be observed by using a miniaturized optical coherence tomography (OCT) imaging system. This system is uniquely capable of tracking disease development over time, allowing for the monitoring of morphological changes in the distal colon due to tumor development and the presence of lymphoid aggregates. By using genetically engineered mouse models deficient in Interleukin 6 (IL-6) and Smad family member 3 (Smad3), the role of inflammation on tumor development and the immune system can be elucidated. Smad3 knockout mice develop inflammatory response, wasting, and colitis associated cancer while deficiency of proinflammatory cytokine IL-6 confers resistance to tumorigenesis. We present pilot data showing that the Smad3 knockout group had the highest tumor burden, highest spleen weight, and lowest thymus weight. The IL-6 deficiency in Smad3 knockout mice prevented tumor development, splenomegaly, and thymic atrophy. This finding suggests that agents that inhibit IL-6 (e.g. anti-IL-6 antibody, non-steroidal anti-inflammatory drugs [NSAIDs], etc.) could be used as novel therapeutic agents to prevent disease progression and increase the efficacy of anti-cancer agents. OCT can also be useful for initiating early therapy and assessing the benefit of combination therapy targeting inflammation.

  10. Circadian rhythms and food anticipatory behavior in Wfs1-deficient mice

    DEFF Research Database (Denmark)

    Luuk, Hendrik; Fahrenkrug, Jan; Hannibal, Jens

    2012-01-01

    in significantly lower body weight and reduced wheel-running activity. Circadian rhythmicity of behavior was normal in Wfs1-deficient mice under ad libitum feeding apart from elongated free-running period in constant light. The amount of food anticipatory activity induced by restricted feeding...

  11. Sustained beta-cell dysfunction but normalized islet mass in aged thrombospondin-1 deficient mice.

    Directory of Open Access Journals (Sweden)

    Carl Johan Drott

    Full Text Available Pancreatic islet endothelial cells have in recent years been shown to support beta-cell mass and function by paracrine interactions. Recently, we identified an islets endothelial-specific glycoprotein, thrombospondin-1 (TSP-1, that showed to be of importance for islet angiogenesis and beta-cell function in young mice. The present study aimed to investigate long-term consequences for islet morphology and beta-cell function of TSP-1 deficiency. Islet and beta-cell mass were observed increased at 10-12 weeks of age in TSP-1 deficient mice, but were normalized before 16 weeks of age when compared to wild-type controls. Islet vascularity was normal in 10-12 and 16-week-old TSP-1 deficient animals, whereas islets of one-year-old animals lacking TSP-1 were hypervascular. Beta-cell dysfunction in TSP-1 deficient animals was present at similar magnitudes between 10-12 and 52 weeks of age, as evaluated by glucose tolerance tests. The insulin secretion capacity in vivo of islets in one-year-old TSP-1 deficient animals was only ∼15% of that in wild-type animals. Using a transplantation model, we reconstituted TSP-1 in adult TSP-deficient islets. In contrast to neonatal TSP-1 deficient islets that we previously reported to regain function after TSP-1 reconstitution, adult islets failed to recover. We conclude that TSP-1 deficiency in islets causes changing vascular and endocrine morphological alterations postnatally, but is coupled to a chronic beta-cell dysfunction. The beta-cell dysfunction induced by TSP-1 deficiency is irreversible if not substituted early in life.

  12. CMKLR1 deficiency maintains ovarian steroid production in mice treated chronically with dihydrotestosterone.

    Science.gov (United States)

    Tang, Mi; Huang, Chen; Wang, Yu-Fei; Ren, Pei-Gen; Chen, Li; Xiao, Tian-Xia; Wang, Bao-Bei; Pan, Yan-Fei; Tsang, Benjamin K; Zabel, Brian A; Ma, Bao-Hua; Zhao, Hui-Ying; Zhang, Jian V

    2016-02-19

    Elevated serum chemerin levels correlate with increased severity of polycystic ovary syndrome (PCOS). However, the role of CMKLR1 signaling in ovarian biology under conditions of excess DHT remains unclear. In this study we compared the effects of continuous 90-day high dose DHT exposure (83.3 □g/day) on wild type and CMKLR1-deficient mice. DHT induced PCOS-like clinical signs in wild type mice as well as significant changes in the expression of hormone receptors, steroid synthesis enzymes, and BMPs and their receptors. In contrast, CMKLR1-deficient mice significantly attenuated DHT-induced clinical signs of PCOS and alterations in ovarian gene expression. To determine whether the BMP4 signaling pathway was involved in the pathogenic effects of CMKLR1 signaling in DHT-induced ovarian steroidogenesis, antral follicles were isolated from wild type and CMKLR1 knockout (KO) mice and treated in vitro with combinations of hCG, DHT, and BMP4 inhibitors. BMP4 inhibition attenuated the induction effects of hCG and DHT on estrogen and progesterone secretion in CMKLR1 KO mice, but not in WT mice, implicating the BMP4 signaling pathway in the CMKLR1-dependent response to DHT. In conclusion, CMKLR1 gene deletion attenuates the effects of chronic DHT treatment on ovarian function in experimental PCOS, likely via BMP4 signaling.

  13. Dietary magnesium deficiency affects gut microbiota and anxiety-like behaviour in C57BL/6N mice.

    Science.gov (United States)

    Pyndt Jørgensen, Bettina; Winther, Gudrun; Kihl, Pernille; Nielsen, Dennis S; Wegener, Gregers; Hansen, Axel K; Sørensen, Dorte B

    2015-10-01

    Magnesium deficiency has been associated with anxiety in humans, and rodent studies have demonstrated the gut microbiota to impact behaviour. We investigated the impact of 6 weeks of dietary magnesium deficiency on gut microbiota composition and anxiety-like behaviour and whether there was a link between the two. A total of 20 C57BL/6 mice, fed either a standard diet or a magnesium-deficient diet for 6 weeks, were tested using the light-dark box anxiety test. Gut microbiota composition was analysed by denaturation gradient gel electrophoresis. We demonstrated that the gut microbiota composition correlated significantly with the behaviour of dietary unchallenged mice. A magnesium-deficient diet altered the gut microbiota, and was associated with altered anxiety-like behaviour, measured by decreased latency to enter the light box. Magnesium deficiency altered behavior. The duration of magnesium deficiency is suggested to influence behaviour in the evaluated test.

  14. Osbpl8 deficiency in mouse causes an elevation of high-density lipoproteins and gender-specific alterations of lipid metabolism.

    Directory of Open Access Journals (Sweden)

    Olivier Béaslas

    Full Text Available OSBP-related protein 8 (ORP8 encoded by Osbpl8 is an endoplasmic reticulum sterol sensor implicated in cellular lipid metabolism. We generated an Osbpl8(-/- (KO C57Bl/6 mouse strain. Wild-type and Osbpl8KO animals at the age of 13-weeks were fed for 5 weeks either chow or high-fat diet, and their plasma lipids/lipoproteins and hepatic lipids were analyzed. The chow-fed Osbpl8KO male mice showed a marked elevation of high-density lipoprotein (HDL cholesterol (+79% and phospholipids (+35%, while only minor increase of apolipoprotein A-I (apoA-I was detected. In chow-fed female KO mice a less prominent increase of HDL cholesterol (+27% was observed, while on western diet the HDL increment was prominent in both genders. The HDL increase was accompanied by an elevated level of HDL-associated apolipoprotein E in male, but not female KO animals. No differences between genotypes were observed in lecithin:cholesterol acyltransferase (LCAT or hepatic lipase (HL activity, or in the fractional catabolic rate of fluorescently labeled mouse HDL injected in chow-diet fed animals. The Osbpl8KO mice of both genders displayed reduced phospholipid transfer protein (PLTP activity, but only on chow diet. These findings are consistent with a model in which Osbpl8 deficiency results in altered biosynthesis of HDL. Consistent with this hypothesis, ORP8 depleted mouse hepatocytes secreted an increased amount of nascent HDL into the culture medium. In addition to the HDL phenotype, distinct gender-specific alterations in lipid metabolism were detected: Female KO animals on chow diet showed reduced lipoprotein lipase (LPL activity and increased plasma triglycerides, while the male KO mice displayed elevated plasma cholesterol biosynthetic markers cholestenol, desmosterol, and lathosterol. Moreover, modest gender-specific alterations in the hepatic expression of lipid homeostatic genes were observed. In conclusion, we report the first viable OsbplKO mouse model

  15. Crybb2 deficiency impairs fertility in female mice

    International Nuclear Information System (INIS)

    Gao, Qian; Sun, Li-Li; Xiang, Fen-Fen; Gao, Li; Jia, Yin; Zhang, Jian-Rong; Tao, Hai-Bo; Zhang, Jun-Jie; Li, Wen-Jie

    2014-01-01

    Highlights: • Crybb2 deletion impaired female fertility. • Crybb2 deletion dramatically affected the production of reproduction-related hormones and hormone response. • Crybb2 deletion impaired follicular development and inhibited the proliferation of granulosa cells. • Crybb2 deletion promoted follicular atresia and apoptosis in granulosa cells. - Abstract: Beta-B2-crystallin (CRYBB2), encoded by Crybb2 gene, is a major protein in the mammalian eye lens that plays an important role in maintaining the transparency of the ocular lens. However, CRYBB2 also plays important roles in many extra-lenticular tissues and organs such as the retina, brain and testis. Our previous studies demonstrated that male Crybb2 deficient (Crybb2 −/− ) mice have reduced fertility compared with wild-type (WT) mice, while female Crybb2 −/− mice exhibited reduced ovary weights and shorter estrous cycle percentages. Here we specifically investigated the role of CRYBB2 in the female reproductive system. Our studies revealed that ovaries from female Crybb2 −/− mice exhibited significantly reduced numbers of primordial, secondary and pre-ovulatory follicles when compared with WT mice, while the rate of atretic follicles was also increased. Additionally, fewer eggs were collected from the oviduct of Crybb2 −/− female mice after superovulation. Estrogen levels were higher in the metestrus and diestrus cycles of female Crybb2 −/− mice, while progesterone levels were lower in diestrus cycles. Furthermore, the expression of survival and cell cycle genes, Bcl-2, Cdk4 and Ccnd2, were significantly decreased in granulosa cells isolated from female Crybb2 −/− mice, consistent with the predominant expression of CRYBB2 in ovarian granulosa cells. Our results reveal a critical role for CRYBB2 in female fertility and specific effects on the proliferation and survival status of ovarian granulosa cells

  16. Crybb2 deficiency impairs fertility in female mice

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Qian [Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Sun, Li-Li [Aviation Medical Evaluation and Training Center of Airforce in Dalian, Dalian, Liaoning Province 116013 (China); Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Xiang, Fen-Fen [Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062 (China); Gao, Li [Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Jia, Yin; Zhang, Jian-Rong; Tao, Hai-Bo [Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Zhang, Jun-Jie, E-mail: zhangjj910@163.com [Department of Obstetrics and Gynecology, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Li, Wen-Jie, E-mail: wenjieli@pku.org.cn [Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China)

    2014-10-10

    Highlights: • Crybb2 deletion impaired female fertility. • Crybb2 deletion dramatically affected the production of reproduction-related hormones and hormone response. • Crybb2 deletion impaired follicular development and inhibited the proliferation of granulosa cells. • Crybb2 deletion promoted follicular atresia and apoptosis in granulosa cells. - Abstract: Beta-B2-crystallin (CRYBB2), encoded by Crybb2 gene, is a major protein in the mammalian eye lens that plays an important role in maintaining the transparency of the ocular lens. However, CRYBB2 also plays important roles in many extra-lenticular tissues and organs such as the retina, brain and testis. Our previous studies demonstrated that male Crybb2 deficient (Crybb2{sup −/−}) mice have reduced fertility compared with wild-type (WT) mice, while female Crybb2{sup −/−} mice exhibited reduced ovary weights and shorter estrous cycle percentages. Here we specifically investigated the role of CRYBB2 in the female reproductive system. Our studies revealed that ovaries from female Crybb2{sup −/−} mice exhibited significantly reduced numbers of primordial, secondary and pre-ovulatory follicles when compared with WT mice, while the rate of atretic follicles was also increased. Additionally, fewer eggs were collected from the oviduct of Crybb2{sup −/−} female mice after superovulation. Estrogen levels were higher in the metestrus and diestrus cycles of female Crybb2{sup −/−} mice, while progesterone levels were lower in diestrus cycles. Furthermore, the expression of survival and cell cycle genes, Bcl-2, Cdk4 and Ccnd2, were significantly decreased in granulosa cells isolated from female Crybb2{sup −/−} mice, consistent with the predominant expression of CRYBB2 in ovarian granulosa cells. Our results reveal a critical role for CRYBB2 in female fertility and specific effects on the proliferation and survival status of ovarian granulosa cells.

  17. Magnesium deficiency induces anxiety-and depression-like behavior and metabolic dysfunction in C57Bl/6J mice

    DEFF Research Database (Denmark)

    Winther, G.; Wang, T.; Singewald, N.

    2012-01-01

    ) in mice through depression-and anxiety phenotyping experiments, namely the forced swim test and light-dark box respectively. We determined the behavioural effects 30 minutes after treatment with imipramine (20 mg/kg), diazepam (2 mg/kg) and ketamine (3 mg/kg). The glucose tolerance test was used to assess...... metabolic function in Mg deficient mice. Results: We found that, compared to control (n=10), mice receiving Mg deficient diet (n=10) (10 % RDA), were more immobile in the forced swim test....

  18. Loss of synaptic zinc transport in progranulin deficient mice may contribute to progranulin-associated psychopathology and chronic pain.

    Science.gov (United States)

    Hardt, Stefanie; Heidler, Juliana; Albuquerque, Boris; Valek, Lucie; Altmann, Christine; Wilken-Schmitz, Annett; Schäfer, Michael K E; Wittig, Ilka; Tegeder, Irmgard

    2017-11-01

    Affective and cognitive processing of nociception contributes to the development of chronic pain and vice versa, pain may precipitate psychopathologic symptoms. We hypothesized a higher risk for the latter with immanent neurologic diseases and studied this potential interrelationship in progranulin-deficient mice, which are a model for frontotemporal dementia, a disease dominated by behavioral abnormalities in humans. Young naïve progranulin deficient mice behaved normal in tests of short-term memory, anxiety, depression and nociception, but after peripheral nerve injury, they showed attention-deficit and depression-like behavior, over-activity, loss of shelter-seeking, reduced impulse control and compulsive feeding behavior, which did not occur in equally injured controls. Hence, only the interaction of 'pain x progranulin deficiency' resulted in the complex phenotype at young age, but neither pain nor progranulin deficiency alone. A deep proteome analysis of the prefrontal cortex and olfactory bulb revealed progranulin-dependent alterations of proteins involved in synaptic transport, including neurotransmitter transporters of the solute carrier superfamily. In particular, progranulin deficiency was associated with a deficiency of nuclear and synaptic zinc transporters (ZnT9/Slc30a9; ZnT3/Slc30a3) with low plasma zinc. Dietary zinc supplementation partly normalized the attention deficit of progranulin-deficient mice, which was in part reminiscent of autism-like and compulsive behavior of synaptic zinc transporter Znt3-knockout mice. Hence, the molecular studies point to defective zinc transport possibly contributing to progranulin-deficiency-associated psychopathology. Translated to humans, our data suggest that neuropathic pain may precipitate cognitive and psychopathological symptoms of an inherent, still silent neurodegenerative disease. Copyright © 2017. Published by Elsevier B.V.

  19. Telomerase Reverse Transcriptase Deficiency Prevents Neointima Formation Through Chromatin Silencing of E2F1 Target Genes.

    Science.gov (United States)

    Endorf, Elizabeth B; Qing, Hua; Aono, Jun; Terami, Naoto; Doyon, Geneviève; Hyzny, Eric; Jones, Karrie L; Findeisen, Hannes M; Bruemmer, Dennis

    2017-02-01

    Aberrant proliferation of smooth muscle cells (SMC) in response to injury induces pathological vascular remodeling during atherosclerosis and neointima formation. Telomerase is rate limiting for tissue renewal and cell replication; however, the physiological role of telomerase in vascular diseases remains to be determined. The goal of the present study was to determine whether telomerase reverse transcriptase (TERT) affects proliferative vascular remodeling and to define the molecular mechanism by which TERT supports SMC proliferation. We first demonstrate high levels of TERT expression in replicating SMC of atherosclerotic and neointimal lesions. Using a model of guidewire-induced arterial injury, we demonstrate decreased neointima formation in TERT-deficient mice. Studies in SMC isolated from TERT-deficient and TERT overexpressing mice with normal telomere length established that TERT is necessary and sufficient for cell proliferation. TERT deficiency did not induce a senescent phenotype but resulted in G1 arrest albeit hyperphosphorylation of the retinoblastoma protein. This proliferative arrest was associated with stable silencing of the E2F1-dependent S-phase gene expression program and not reversed by ectopic overexpression of E2F1. Finally, chromatin immunoprecipitation and accessibility assays revealed that TERT is recruited to E2F1 target sites and promotes chromatin accessibility for E2F1 by facilitating the acquisition of permissive histone modifications. These data indicate a previously unrecognized role for TERT in neointima formation through epigenetic regulation of proliferative gene expression in SMC. © 2016 American Heart Association, Inc.

  20. The biological effects of subacute inhalation of diesel exhaust following addition of cerium oxide nanoparticles in atherosclerosis-prone mice

    NARCIS (Netherlands)

    Cassee, Flemming R.; Campbell, Arezoo; Boere, A. John F.; McLean, Steven G.; Duffin, Rodger; Krystek, Petra; Gosens, Ilse; Miller, Mark R.

    Bacground: Cerium oxide (CeO 2) nanoparticles improve the burning efficiency of fuel, however, little is known about health impacts of altered emissions from the vehicles. Methods: Atherosclerosis-prone apolipoprotein E knockout (ApoE -/-) mice were exposed by inhalation to diluted exhaust (1.7mg/m

  1. Plasma levels of apolipoprotein E and risk of dementia in the general population

    DEFF Research Database (Denmark)

    Rasmussen, Katrine L.; Tybjaerg-Hansen, Anne; Nordestgaard, Børge G

    2015-01-01

    OBJECTIVE: The apolipoprotein E (APOE) ε4 allele is a major genetic risk factor for Alzheimer disease and dementia. However, it remains unclear whether plasma levels of apoE confer additional risk. We tested this hypothesis. METHODS: Using 75,708 participants from the general population, we tested...... whether low plasma levels of apoE at study enrollment were associated with increased risk of future Alzheimer disease and all dementia, and whether this association was independent of ε2/ε3/ε4 APOE genotype. RESULTS: Multifactorially adjusted hazard ratios (HRs) for Alzheimer disease and all dementia...... adjustment for ε2/ε3/ε4 APOE genotype, plasma apoE tertiles remained associated with Alzheimer disease (p for trend = 0.007) and all dementia (p for trend = 0.04). Plasma apoE tertiles did not interact with ε2/ε3/ε4 APOE genotype on risk of Alzheimer disease (p = 0.53) or all dementia (p = 0...

  2. Preliminary evidence of apathetic-like behavior in aged vesicular monoamine transporter 2 deficient mice

    Directory of Open Access Journals (Sweden)

    Aron Baumann

    2016-11-01

    Full Text Available Apathy is considered to be a core feature of Parkinson’s disease (PD and has been associated with a variety of states and symptoms of the disease, such as increased severity of motor symptoms, impaired cognition, executive dysfunction, and dementia. Apart from the high prevalence of apathy in PD, which is estimated to be about 40%, the underlying pathophysiology remains poorly understood and current treatment approaches are unspecific and proved to be only partially effective. In animal models, apathy has been sub-optimally modeled, mostly by means of pharmacological and stress-induced methods, whereby concomitant depressive-like symptoms could not be ruled out. In the context of PD only a few studies on toxin-based models (i.e. 6-OHDA or MPTP claimed to have determined apathetic symptoms in animals. The assessment of apathetic symptoms in more elaborated and multifaceted genetic animal models of PD could help to understand the pathophysiological development of apathy in PD and eventually advance specific treatments for afflicted patients. Here we report the presence of behavioral signs of apathy in 12 months old mice that express only ~5% of the vesicular monoamine transporter 2 (VMAT2. Apathetic-like behavior in VMAT2 deficient (LO mice was evidenced by impaired burrowing and nest building skills, and a reduced preference for sweet solution in the saccharin preference test, while the performance in the forced swimming test was normal. Our preliminary results suggest that VMAT2 deficient mice show an apathetic-like phenotype that might be independent of depressive-like symptoms. Therefore VMAT2 LO mice could be a useful tool to study of the pathophysiological substrates of apathy and to test novel treatment strategies for apathy in the context of PD.

  3. High Mutation Levels are Compatible with Normal Embryonic Development in Mlh1-Deficient Mice.

    Science.gov (United States)

    Fan, Xiaoyan; Li, Yan; Zhang, Yulong; Sang, Meixiang; Cai, Jianhui; Li, Qiaoxia; Ozaki, Toshinori; Ono, Tetsuya; He, Dongwei

    2016-10-01

    To elucidate the role of the mismatch repair gene Mlh1 in genome instability during the fetal stage, spontaneous mutations were studied in Mlh1-deficient lacZ-transgenic mouse fetuses. Mutation levels were high at 9.5 days post coitum (dpc) and gradually increased during the embryonic stage, after which they remained unchanged. In addition, mutations that were found in brain, liver, spleen, small intestine and thymus showed similar levels and no statistically significant difference was found. The molecular nature of mutations at 12.5 dpc in fetuses of Mlh1 +/+ and Mlh1 -/- mice showed their own unique spectra, suggesting that deletion mutations were the main causes in the deficiency of the Mlh1 gene. Of note, fetuses of irradiated mice exhibited marked differences such as post-implantation loss and Mendelian distribution. Collectively, these results strongly suggest that high mutation ofMlh1 -/- -deficient fetuses has little effect on the fetuses during their early developmental stages, whereas Mlh1 -/- -deficient fetuses from X-ray irradiated mothers are clearly effected.

  4. Telomerase-Deficient Mice Exhibit Bone Loss Owing to Defects in Osteoblasts and Increased Osteoclastogenesis by Inflammatory Microenvironment

    DEFF Research Database (Denmark)

    Saeed, H.; Abdallah, B. M.; Ditzel, N.

    2011-01-01

    Telomere shortening owing to telomerase deficiency leads to accelerated senescence of human skeletal (mesenchymal) stem cells (MSCs) in vitro, whereas overexpression leads to telomere elongation, extended life span, and enhanced bone formation. To study the role of telomere shortening in vivo, we...... studied the phenotype of telomerase-deficient mice (Terc(-/-)).Terc(-/-) mice exhibited accelerated age-related bone loss starting at 3 months of age and during 12 months of follow-up revealed by dual-energy X-ray absorptiometric (DXA) scanning and by micro-computed tomography (mu CT). Bone...... histomorphometry revealed decreased mineralized surface and bone-formation rate as well as increased osteoclast number and size in Terc(-/-) mice. Also, serum total deoxypyridinoline (tDPD) was increased in Terc(-/-) mice. MSCs and osteoprogenitors isolated from Terc(-l-) mice exhibited intrinsic defects...

  5. Transplantation of Gene-Edited Hepatocyte-like Cells Modestly Improves Survival of Arginase-1-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Yuan Yan Sin

    2018-03-01

    Full Text Available Progress in gene editing research has been accelerated by utilizing engineered nucleases in combination with induced pluripotent stem cell (iPSC technology. Here, we report transcription activator-like effector nuclease (TALEN-mediated reincorporation of Arg1 exons 7 and 8 in iPSCs derived from arginase-1-deficient mice possessing Arg1Δ alleles lacking these terminal exons. The edited cells could be induced to differentiate into hepatocyte-like cells (iHLCs in vitro and were subsequently used for transplantation into our previously described (Sin et al., PLoS ONE 2013 tamoxifen-inducible Arg1-Cre arginase-1-deficient mouse model. While successful gene-targeted repair was achieved in iPSCs containing Arg1Δ alleles, only minimal restoration of urea cycle function could be observed in the iHLC-transplanted mice compared to control mice, and survival in this lethal model was extended by up to a week in some mice. The partially rescued phenotype may be due to inadequate regenerative capacity of arginase-1-expressing cells in the correct metabolic zones. Technical hurdles exist and will need to be overcome for gene-edited iPSC to iHLC rescue of arginase-1 deficiency, a rare urea cycle disorder.

  6. Histidine Decarboxylase Deficiency Prevents Autoimmune Diabetes in NOD Mice

    Directory of Open Access Journals (Sweden)

    Manal Alkan

    2015-01-01

    Full Text Available Recent evidence has highlighted the role of histamine in inflammation. Since this monoamine has also been strongly implicated in the pathogenesis of type-1 diabetes, we assessed its effect in the nonobese diabetic (NOD mouse model. To this end, we used mice (inactivated knocked out for the gene encoding histidine decarboxylase, the unique histamine-forming enzyme, backcrossed on a NOD genetic background. We found that the lack of endogenous histamine in NOD HDC−/− mice decreased the incidence of diabetes in relation to their wild-type counterpart. Whereas the proportion of regulatory T and myeloid-derived suppressive cells was similar in both strains, histamine deficiency was associated with increased levels of immature macrophages, as compared with wild-type NOD mice. Concerning the cytokine pattern, we found a decrease in circulating IL-12 and IFN-γ in HDC−/− mice, while IL-6 or leptin remained unchanged, suggesting that histamine primarily modulates the inflammatory environment. Paradoxically, exogenous histamine given to NOD HDC−/− mice provided also protection against T1D. Our study supports the notion that histamine is involved in the pathogenesis of diabetes, thus providing additional evidence for its role in the regulation of the immune response.

  7. Developmental exposure to second-hand smoke increases adult atherogenesis and alters mitochondrial DNA copy number and deletions in apoE(-/- mice.

    Directory of Open Access Journals (Sweden)

    Jessica L Fetterman

    Full Text Available Cardiovascular disease is a major cause of morbidity and mortality in the United States. While many studies have focused upon the effects of adult second-hand smoke exposure on cardiovascular disease development, disease development occurs over decades and is likely influenced by childhood exposure. The impacts of in utero versus neonatal second-hand smoke exposure on adult atherosclerotic disease development are not known. The objective of the current study was to determine the effects of in utero versus neonatal exposure to a low dose (1 mg/m(3 total suspended particulate of second-hand smoke on adult atherosclerotic lesion development using the apolipoprotein E null mouse model. Consequently, apolipoprotein E null mice were exposed to either filtered air or second-hand smoke: (i in utero from gestation days 1-19, or (ii from birth until 3 weeks of age (neonatal. Subsequently, all animals were exposed to filtered air and sacrificed at 12-14 weeks of age. Oil red-O staining of whole aortas, measures of mitochondrial damage, and oxidative stress were performed. Results show that both in utero and neonatal second-hand smoke exposure significantly increased adult atherogenesis in mice compared to filtered air controls. These changes were associated with changes in aconitase and mitochondrial superoxide dismutase activities consistent with increased oxidative stress in the aorta, changes in mitochondrial DNA copy number and deletion levels. These studies show that in utero or neonatal exposure to second-hand smoke significantly influences adult atherosclerotic lesion development and results in significant alterations to the mitochondrion and its genome that may contribute to atherogenesis.

  8. Developmental exposure to second-hand smoke increases adult atherogenesis and alters mitochondrial DNA copy number and deletions in apoE(-/-) mice.

    Science.gov (United States)

    Fetterman, Jessica L; Pompilius, Melissa; Westbrook, David G; Uyeminami, Dale; Brown, Jamelle; Pinkerton, Kent E; Ballinger, Scott W

    2013-01-01

    Cardiovascular disease is a major cause of morbidity and mortality in the United States. While many studies have focused upon the effects of adult second-hand smoke exposure on cardiovascular disease development, disease development occurs over decades and is likely influenced by childhood exposure. The impacts of in utero versus neonatal second-hand smoke exposure on adult atherosclerotic disease development are not known. The objective of the current study was to determine the effects of in utero versus neonatal exposure to a low dose (1 mg/m(3) total suspended particulate) of second-hand smoke on adult atherosclerotic lesion development using the apolipoprotein E null mouse model. Consequently, apolipoprotein E null mice were exposed to either filtered air or second-hand smoke: (i) in utero from gestation days 1-19, or (ii) from birth until 3 weeks of age (neonatal). Subsequently, all animals were exposed to filtered air and sacrificed at 12-14 weeks of age. Oil red-O staining of whole aortas, measures of mitochondrial damage, and oxidative stress were performed. Results show that both in utero and neonatal second-hand smoke exposure significantly increased adult atherogenesis in mice compared to filtered air controls. These changes were associated with changes in aconitase and mitochondrial superoxide dismutase activities consistent with increased oxidative stress in the aorta, changes in mitochondrial DNA copy number and deletion levels. These studies show that in utero or neonatal exposure to second-hand smoke significantly influences adult atherosclerotic lesion development and results in significant alterations to the mitochondrion and its genome that may contribute to atherogenesis.

  9. Gender-specific effects of endogenous testosterone: female alpha-estrogen receptor-deficient C57Bl/6J mice develop glomerulosclerosis.

    Science.gov (United States)

    Elliot, S J; Berho, M; Korach, K; Doublier, S; Lupia, E; Striker, G E; Karl, M

    2007-08-01

    Young female mice on a C57Bl/6J (B6) background are considered glomerulosclerosis (GS)-resistant but aging B6 mice develop mild GS. Estrogen deficiency accelerates while estrogen replacement retards GS in young sclerosis-prone oligosyndactyly mutant mice on an ROP background. To explore the effects of sex hormones on glomerular structure and function in the context of gender and genetic background, we studied mice in which the estrogen-receptor (ER) genes alpha- or -beta were deleted (alpha- or betaER knockout (KO)) and crossed into the B6 background. We also studied ovariectomized (Ovx) B6 mice given testosterone. Male and female betaERKO and male alphaERKO mice had no glomerular dysfunction at 9 months of age; however, alphaERKO female mice displayed albuminuria and GS. Ovx prevented glomerular dysfunction in alphaERKO female mice by eliminating endogenous testosterone production while exogenous testosterone induced GS in Ovx B6 mice. Androgen receptor (AR) expression and function was found in microdissected glomeruli and cultured mesangial cells. Testosterone compared to placebo increased both AR expression and TGF-beta1 mRNA levels in glomeruli isolated from female B6 mice. Estrogen deficiency had no deleterious effects on the glomeruli in B6 mice. Our study shows that genetic traits strongly influence the GS-promoting effects of estrogen deficiency while testosterone induces GS in a gender-specific manner.

  10. Hormone-sensitive lipase deficiency suppresses insulin secretion from pancreatic islets of Lepob/ob mice

    International Nuclear Information System (INIS)

    Sekiya, Motohiro; Yahagi, Naoya; Tamura, Yoshiaki; Okazaki, Hiroaki; Igarashi, Masaki; Ohta, Keisuke; Takanashi, Mikio; Kumagai, Masayoshi; Takase, Satoru; Nishi, Makiko; Takeuchi, Yoshinori; Izumida, Yoshihiko; Kubota, Midori; Ohashi, Ken; Iizuka, Yoko; Yagyu, Hiroaki; Gotoda, Takanari; Nagai, Ryozo; Shimano, Hitoshi; Yamada, Nobuhiro

    2009-01-01

    It has long been a matter of debate whether the hormone-sensitive lipase (HSL)-mediated lipolysis in pancreatic β-cells can affect insulin secretion through the alteration of lipotoxicity. We generated mice lacking both leptin and HSL (Lep ob/ob /HSL -/- ) and explored the role of HSL in pancreatic β-cells in the setting of obesity. Lep ob/ob /HSL -/- developed elevated blood glucose levels and reduced plasma insulin levels compared with Lep ob/ob /HSL +/+ in a fed state, while the deficiency of HSL did not affect glucose homeostasis in Lep +/+ background. The deficiency of HSL exacerbated the accumulation of triglycerides in Lep ob/ob islets, leading to reduced glucose-stimulated insulin secretion. The deficiency of HSL also diminished the islet mass in Lep ob/ob mice due to decreased cell proliferation. In conclusion, HSL affects insulin secretary capacity especially in the setting of obesity.

  11. Prevalence of the apolipoprotein E ε4 allele in amyloid β positive subjects across the spectrum of Alzheimer's disease

    DEFF Research Database (Denmark)

    Mattsson, Niklas; Groot, Colin; Jansen, Willemijn J

    2018-01-01

    INTRODUCTION: Apolipoprotein E (APOE) ε4 is the major genetic risk factor for Alzheimer's disease (AD), but its prevalence is unclear because earlier studies did not require biomarker evidence of amyloid β (Aβ) pathology. METHODS: We included 3451 Aβ+ subjects (853 AD-type dementia, 1810 mild cog...

  12. Improved Insulin Sensitivity despite Increased Visceral Adiposity in Mice Deficient for the Immune Cell Transcription Factor T-bet

    Science.gov (United States)

    Stolarczyk, Emilie; Vong, Chi Teng; Perucha, Esperanza; Jackson, Ian; Cawthorne, Michael A.; Wargent, Edward T.; Powell, Nick; Canavan, James B.; Lord, Graham M.; Howard, Jane K.

    2013-01-01

    Summary Low-grade inflammation in fat is associated with insulin resistance, although the mechanisms are unclear. We report that mice deficient in the immune cell transcription factor T-bet have lower energy expenditure and increased visceral fat compared with wild-type mice, yet paradoxically are more insulin sensitive. This striking phenotype, present in young T-bet−/− mice, persisted with high-fat diet and increasing host age and was associated with altered immune cell numbers and cytokine secretion specifically in visceral adipose tissue. However, the favorable metabolic phenotype observed in T-bet-deficient hosts was lost in T-bet−/− mice also lacking adaptive immunity (T-bet−/−xRag2−/−), demonstrating that T-bet expression in the adaptive rather than the innate immune system impacts host glucose homeostasis. Indeed, adoptive transfer of T-bet-deficient, but not wild-type, CD4+ T cells to Rag2−/− mice improved insulin sensitivity. Our results reveal a role for T-bet in metabolic physiology and obesity-associated insulin resistance. PMID:23562076

  13. Placental growth factor deficiency is associated with impaired cerebral vascular development in mice.

    Science.gov (United States)

    Luna, Rayana Leal; Kay, Vanessa R; Rätsep, Matthew T; Khalaj, Kasra; Bidarimath, Mallikarjun; Peterson, Nichole; Carmeliet, Peter; Jin, Albert; Croy, B Anne

    2016-02-01

    Placental growth factor (PGF) is expressed in the developing mouse brain and contributes to vascularization and vessel patterning. PGF is dynamically expressed in fetal mouse brain, particularly forebrain, and is essential for normal cerebrovascular development. PGF rises in maternal plasma over normal human and mouse pregnancy but is low in many women with the acute onset hypertensive syndrome, pre-eclampsia (PE). Little is known about the expression of PGF in the fetus during PE. Pgf  (-/-) mice appear normal but recently cerebral vascular defects were documented in adult Pgf  (-/-) mice. Here, temporal-spatial expression of PGF is mapped in normal fetal mouse brains and cerebral vasculature development is compared between normal and congenic Pgf  (-/-) fetuses to assess the actions of PGF during cerebrovascular development. Pgf/PGF, Vegfa/VEGF, Vegf receptor (Vegfr)1 and Vegfr2 expression were examined in the brains of embryonic day (E)12.5, 14.5, 16.5 and 18.5 C57BL/6 (B6) mice using quantitative PCR and immunohistochemistry. The cerebral vasculature was compared between Pgf  (-/-) and B6 embryonic and adult brains using whole mount techniques. Vulnerability to cerebral ischemia was investigated using a left common carotid ligation assay. Pgf/PGF and Vegfr1 are highly expressed in E12.5-14.5 forebrain relative to VEGF and Vegfr2. Vegfa/VEGF is relatively more abundant in hindbrain (HB). PGF and VEGF expression were similar in midbrain. Delayed HB vascularization was seen at E10.5 and 11.5 in Pgf  (-/-) brains. At E14.5, Pgf  (-/-) circle of Willis showed unilateral hypoplasia and fewer collateral vessels, defects that persisted post-natally. Functionally, adult Pgf  (-/-) mice experienced cerebral ischemia after left common carotid arterial occlusion while B6 mice did not. Since Pgf  (-/-) mice were used, consequences of complete absence of maternal and fetal PGF were defined. Therefore, the effects of maternal versus fetal PGF

  14. Apolipoprotein E and presenilin-1 genotypes in Huntington's disease.

    Science.gov (United States)

    Panas, M; Avramopoulos, D; Karadima, G; Petersen, M B; Vassilopoulos, D

    1999-07-01

    Huntington's disease (HD) is an autosomal dominant degenerative disease of the central nervous system manifested by involuntary movements (chorea), psychiatric manifestations, and cognitive impairment with a variable age at onset. This variability is mainly attributed to genetic factors. The so-called aging genes [e.g., those for apolipoprotein E (APOE) and presenilin-1 (PS-1) have been implicated in determining the age at onset of Alzheimer's disease, a disease sharing common clinical features with HD. In 60 unrelated patients suffering from HD (mean age at onset 40.1 years, range 20-65) we determined number of CAG repeats and the distribution of the APOE alleles (epsilon2, epsilon3, epsilon4) and PS-1 alleles. The results showed that: (a) The age at onset was higher in the group of patients with the epsilon4 allele (51.6 vs. 38.0 P<0.002), (b) The correlation between the age at onset and the number of CAG repeats was strong in patients with the epsilon3/epsilon3 genotype while it was not detected in patients with epsilon3/epsilon4 genotype. (c) No correlation was found between age at onset and PS-1 alleles. In conclusion, APOE seems to be a significant factor influencing the age at onset of Huntington's disease.

  15. Human placenta secretes apolipoprotein B-100-containing lipoproteins

    DEFF Research Database (Denmark)

    Munk-Madsen, Eva; Lindegaard, Marie Louise Skakkebæk; Andersen, Claus B

    2004-01-01

    Supply of lipids from the mother is essential for fetal growth and development. In mice, disruption of yolk sac cell secretion of apolipoprotein (apo) B-containing lipoproteins results in embryonic lethality. In humans, the yolk sac is vestigial. Nutritional functions are instead established very...... lipoproteins secreted from placental tissue showed spherical particles with a diameter of 47 +/- 10 nm. These results demonstrate that human placenta expresses both apoB and MTP and consequently synthesize and secrete apoB-100-containing lipoproteins. Placental lipoprotein formation constitutes a novel pathway...

  16. Development of hepatocellular adenomas and carcinomas in mice with liver-specific G6Pase-α deficiency

    Directory of Open Access Journals (Sweden)

    Roberta Resaz

    2014-09-01

    Full Text Available Glycogen storage disease type 1a (GSD-1a is caused by a deficiency in glucose-6-phosphatase-α (G6Pase-α, and is characterized by impaired glucose homeostasis and a high risk of developing hepatocellular adenomas (HCAs. A globally G6Pase-α-deficient (G6pc−/− mouse model that shows pathological features similar to those of humans with GSD-1a has been developed. These mice show a very severe phenotype of disturbed glucose homeostasis and rarely live beyond weaning. We generated liver-specific G6Pase-α-deficient (LS‑G6pc−/− mice as an alternative animal model for studying the long-term pathophysiology of the liver and the potential treatment strategies, such as cell therapy. LS‑G6pc−/− mice were viable and exhibited normal glucose profiles in the fed state, but showed significantly lower blood glucose levels than their control littermates after 6 hours of fasting. LS‑G6pc−/− mice developed hepatomegaly with glycogen accumulation and hepatic steatosis, and progressive hepatic degeneration. Ninety percent of the mice analyzed developed amyloidosis by 12 months of age. Finally, 25% of the mice sacrificed at age 10–20 months showed the presence of multiple HCAs and in one case late development of hepatocellular carcinoma (HCC. In conclusion, LS‑G6pc−/− mice manifest hepatic symptoms similar to those of human GSD-1a and, therefore, represent a valid model to evaluate long-term liver pathogenesis of GSD-1a.

  17. Evolutionary analysis of apolipoprotein E by Maximum Likelihood and complex network methods

    Directory of Open Access Journals (Sweden)

    Leandro de Jesus Benevides

    Full Text Available Abstract Apolipoprotein E (apo E is a human glycoprotein with 299 amino acids, and it is a major component of very low density lipoproteins (VLDL and a group of high-density lipoproteins (HDL. Phylogenetic studies are important to clarify how various apo E proteins are related in groups of organisms and whether they evolved from a common ancestor. Here, we aimed at performing a phylogenetic study on apo E carrying organisms. We employed a classical and robust method, such as Maximum Likelihood (ML, and compared the results using a more recent approach based on complex networks. Thirty-two apo E amino acid sequences were downloaded from NCBI. A clear separation could be observed among three major groups: mammals, fish and amphibians. The results obtained from ML method, as well as from the constructed networks showed two different groups: one with mammals only (C1 and another with fish (C2, and a single node with the single sequence available for an amphibian. The accordance in results from the different methods shows that the complex networks approach is effective in phylogenetic studies. Furthermore, our results revealed the conservation of apo E among animal groups.

  18. Protection against high-fat diet-induced obesity in Helz2-deficient male mice due to enhanced expression of hepatic leptin receptor.

    Science.gov (United States)

    Yoshino, Satoshi; Satoh, Tetsurou; Yamada, Masanobu; Hashimoto, Koshi; Tomaru, Takuya; Katano-Toki, Akiko; Kakizaki, Satoru; Okada, Shuichi; Shimizu, Hiroyuki; Ozawa, Atsushi; Tuchiya, Takafumi; Ikota, Hayato; Nakazato, Yoichi; Mori, Munemasa; Matozaki, Takashi; Sasaki, Tsutomu; Kitamura, Tadahiro; Mori, Masatomo

    2014-09-01

    Obesity arises from impaired energy balance, which is centrally coordinated by leptin through activation of the long form of leptin receptor (Leprb). Obesity causes central leptin resistance. However, whether enhanced peripheral leptin sensitivity could overcome central leptin resistance remains obscure. A peripheral metabolic organ targeted by leptin is the liver, with low Leprb expression. We here show that mice fed a high-fat diet (HFD) and obese patients with hepatosteatosis exhibit increased expression of hepatic helicase with zinc finger 2, a transcriptional coactivator (Helz2), which functions as a transcriptional coregulator of several nuclear receptors, including peroxisome proliferator-activated receptor γ in vitro. To explore the physiological importance of Helz2, we generated Helz2-deficient mice and analyzed their metabolic phenotypes. Helz2-deficient mice showing hyperleptinemia associated with central leptin resistance were protected against HFD-induced obesity and had significantly up-regulated hepatic Leprb expression. Helz2 deficiency and adenovirus-mediated liver-specific exogenous Leprb overexpression in wild-type mice significantly stimulated hepatic AMP-activated protein kinase on HFD, whereas Helz2-deficient db/db mice lacking functional Leprb did not. Fatty acid-β oxidation was increased in Helz2-deficeint hepatocytes, and Helz2-deficient mice revealed increased oxygen consumption and decreased respiratory quotient in calorimetry analyses. The enhanced hepatic AMP-activated protein kinase energy-sensing pathway in Helz2-deficient mice ameliorated hyperlipidemia, hepatosteatosis, and insulin resistance by reducing lipogenic gene expression and stimulating lipid-burning gene expression in the liver. These findings together demonstrate that Helz2 deficiency ameliorates HFD-induced metabolic abnormalities by stimulating endogenous hepatic Leprb expression, despite central leptin resistance. Hepatic HELZ2 might be a novel target molecule for

  19. Cystathionine-gamma-lyase deficient mice are protected against the development of multiorgan failure and exhibit reduced inflammatory response during burn.

    Science.gov (United States)

    Ahmad, Akbar; Druzhyna, Nadiya; Szabo, Csaba

    2017-08-01

    Considering the role of H 2 S in critical illness, the aim of this study was to compare the outcome of burn in wild-type mice and in mice deficient in CSE, one of the principal mammalian H 2 S-generating enzymes. Animals were subjected to scald burn. Outcome variables included indices of organ injury, clinical chemistry parameters and plasma levels of inflammatory mediators. Plasma levels of H 2 S significantly increased in response to burn in wild-type mice, but remained unchanged in CSE -/- mice. Expression of the three H 2 S-producing enzymes (CSE, CBS and 3-MST) in the lung and liver, and the capacity of tissue homogenates to produce H 2 S, however, was not affected by burn. In CSE deficient mice there was a significant amelioration of burn-induced accumulation of myeloperoxidase levels in heart, lung, liver and kidney and significantly lower degree of malon dialdehyde accumulation in the heart, lung and kidney than in wild-type mice. CSE deficient mice, compared to wild-type mice, showed a significant attenuation of the burn-induced elevation in circulating alkaline aminotransferase and blood urea nitrogen and creatinine levels, indicative of protective effects of CSE deficiency against burn-induced hepatic, and renal functional impairment. Multiple burn-induced inflammatory mediators (TNF-α, IL-1β, IL-4, IL-6, IL-10 and IL-12) were significantly lower in the plasma of CSE -/- animals after burn than in the plasma of wild-type controls subjected to burns. In conclusion, CSE deficiency improves organ function and attenuates the inflammatory response in a murine model of burn. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  20. Factor XI Deficiency Alters the Cytokine Response and Activation of Contact Proteases during Polymicrobial Sepsis in Mice.

    Directory of Open Access Journals (Sweden)

    Charles E Bane

    Full Text Available Sepsis, a systemic inflammatory response to infection, is often accompanied by abnormalities of blood coagulation. Prior work with a mouse model of sepsis induced by cecal ligation and puncture (CLP suggested that the protease factor XIa contributed to disseminated intravascular coagulation (DIC and to the cytokine response during sepsis. We investigated the importance of factor XI to cytokine and coagulation responses during the first 24 hours after CLP. Compared to wild type littermates, factor XI-deficient (FXI-/- mice had a survival advantage after CLP, with smaller increases in plasma levels of TNF-α and IL-10 and delayed IL-1β and IL-6 responses. Plasma levels of serum amyloid P, an acute phase protein, were increased in wild type mice 24 hours post-CLP, but not in FXI-/- mice, supporting the impression of a reduced inflammatory response in the absence of factor XI. Surprisingly, there was little evidence of DIC in mice of either genotype. Plasma levels of the contact factors factor XII and prekallikrein were reduced in WT mice after CLP, consistent with induction of contact activation. However, factor XII and PK levels were not reduced in FXI-/- animals, indicating factor XI deficiency blunted contact activation. Intravenous infusion of polyphosphate into WT mice also induced changes in factor XII, but had much less effect in FXI deficient mice. In vitro analysis revealed that factor XIa activates factor XII, and that this reaction is enhanced by polyanions such polyphosphate and nucleic acids. These data suggest that factor XI deficiency confers a survival advantage in the CLP sepsis model by altering the cytokine response to infection and blunting activation of the contact (kallikrein-kinin system. The findings support the hypothesis that factor XI functions as a bidirectional interface between contact activation and thrombin generation, allowing the two processes to influence each other.

  1. Proinflammatory Stimulation of Toll-Like Receptor 9 with High Dose CpG ODN 1826 Impairs Endothelial Regeneration and Promotes Atherosclerosis in Mice.

    Directory of Open Access Journals (Sweden)

    Alexander O Krogmann

    Full Text Available Toll-like receptors (TLR of the innate immune system have been closely linked with the development of atherosclerotic lesions. TLR9 is activated by unmethylated CpG motifs within ssDNA, but also by CpG motifs in nucleic acids released during vascular apoptosis and necrosis. The role of TLR9 in vascular disease remains controversial and we sought to investigate the effects of a proinflammatory TLR9 stimulation in mice.TLR9-stimulation with high dose CpG ODN at concentrations between 6.25 nM to 30 nM induced a significant proinflammatory cytokine response in mice. This was associated with impaired reendothelialization upon acute denudation of the carotid and increased numbers of circulating endothelial microparticles, as a marker for amplified endothelial damage. Chronic TLR9 agonism in apolipoprotein E-deficient (ApoE-/- mice fed a cholesterol-rich diet increased aortic production of reactive oxygen species, the number of circulating endothelial microparticles, circulating sca-1/flk-1 positive cells, and most importantly augmented atherosclerotic plaque formation when compared to vehicle treated animals. Importantly, high concentrations of CpG ODN are required for these proatherogenic effects.Systemic stimulation of TLR9 with high dose CpG ODN impaired reendothelialization upon acute vascular injury and increased atherosclerotic plaque development in ApoE-/- mice. Further studies are necessary to fully decipher the contradictory finding of TLR9 agonism in vascular biology.

  2. BTB and CNC homolog 1 (Bach1) deficiency ameliorates TNBS colitis in mice: role of M2 macrophages and heme oxygenase-1.

    Science.gov (United States)

    Harusato, Akihito; Naito, Yuji; Takagi, Tomohisa; Uchiyama, Kazuhiko; Mizushima, Katsura; Hirai, Yasuko; Higashimura, Yasuki; Katada, Kazuhiro; Handa, Osamu; Ishikawa, Takeshi; Yagi, Nobuaki; Kokura, Satoshi; Ichikawa, Hiroshi; Muto, Akihiko; Igarashi, Kazuhiko; Yoshikawa, Toshikazu

    2013-01-01

    BTB and CNC homolog 1 (Bach1) is a transcriptional repressor of heme oxygenase-1 (HO-1), which plays an important role in the protection of cells and tissues against acute and chronic inflammation. However, the role of Bach1 in the gastrointestinal mucosal defense system remains little understood. HO-1 supports the suppression of experimental colitis and localizes mainly in macrophages in colonic mucosa. This study was undertaken to elucidate the Bach1/HO-1 system's effects on the pathogenesis of experimental colitis. This study used C57BL/6 (wild-type) and homozygous Bach1-deficient C57BL/6 mice in which colonic damage was induced by the administration of an enema of 2,4,6-trinitrobenzene sulfonic acid (TNBS). Subsequently, they were evaluated macroscopically, histologically, and biochemically. Peritoneal macrophages from the respective mice were isolated and analyzed. Then, wild-type mice were injected with peritoneal macrophages from the respective mice. Acute colitis was induced similarly. TNBS-induced colitis was inhibited in Bach1-deficient mice. TNBS administration increased the expression of HO-1 messenger RNA and protein in colonic mucosa in Bach1-deficient mice. The expression of HO-1 mainly localized in F4/80-immunopositive and CD11b-immunopositive macrophages. Isolated peritoneal macrophages from Bach1-deficient mice highly expressed HO-1 and also manifested M2 macrophage markers, such as Arginase-1, Fizz-1, Ym1, and MRC1. Furthermore, TNBS-induced colitis was inhibited by the transfer of Bach1-deficient macrophages into wild-type mice. Deficiency of Bach1 ameliorated TNBS-induced colitis. Bach1-deficient macrophages played a key role in protection against colitis. Targeting of this mechanism is applicable to cell therapy for human inflammatory bowel disease.

  3. Roles of high apolipoprotein E blood levels and HDL in development of familial dysbetalipoproteinemia in ε2ε2 subjects

    NARCIS (Netherlands)

    Corsetti, James P; Sparks, Charles E; Bakker, Stephan J L; Gruppen, Eke G; Dullaart, Robin P F

    2017-01-01

    OBJECTIVE: Familial dysbetalipoproteinemia (FD) or Type III hyperlipoproteinemia is a mixed hyperlipidemia closely associated with the ε2ε2 genotype of the common APOE polymorphism although not all homozygotes progress to FD. Unlike the polymorphism, few studies explore effects of apolipoprotein E

  4. Deficient Mechanical Activation of Anabolic Transcripts and Post-Traumatic Cartilage Degeneration in Matrilin-1 Knockout Mice.

    Directory of Open Access Journals (Sweden)

    Yupeng Chen

    Full Text Available Matrilin-1 (Matn1, a cartilage-specific peri-cellular and extracellular matrix (ECM protein, has been hypothesized to regulate ECM interactions and transmit mechanical signals in cartilage. Since Matn1 knock-out (Matn1-/- mice exhibit a normal skeleton, its function in vivo is unclear. In this study, we found that the anabolic Acan and Col2a transcript levels were significantly higher in wildtype (Matn1+/+ mouse cartilage than that of MATN1-/- mice in vivo. However, such difference was not observed between Matn1+/+ and MATN1-/- chondrocytes cultured under stationary conditions in vitro. Cyclic loading significantly stimulated Acan and Col2a transcript levels in Matn1+/+ but not in MATN1-/- chondrocytes. This suggests that, while Matn1+/+ chondrocytes increase their anabolic gene expression in response to mechanical loading, the MATN1-/- chondrocytes fail to do so because of the deficiency in mechanotransduction. We also found that altered elastic modulus of cartilage matrix in Matn1-/- mice, suggesting the mechanotransduction has changed due to the deficiency of Matn1. To understand the impact of such deficiency on joint disease, mechanical loading was altered in vivo by destabilization of medial meniscus. While Matn1+/+ mice exhibited superficial fissures and clefts consistent with mechanical damage to the articular joint, Matn1-/- mice presented more severe cartilage lesions characterized by proteoglycan loss and disorganization of cells and ECM. This suggests that Matn1 deficiency affects pathogenesis of post-traumatic osteoarthritis by failing to up-regulate anabolic gene expression. This is the first demonstration of Matn1 function in vivo, which suggests its protective role in cartilage degeneration under altered mechanical environment.

  5. Gene therapy/bone marrow transplantation in ADA-deficient mice: roles of enzyme-replacement therapy and cytoreduction.

    Science.gov (United States)

    Carbonaro, Denise A; Jin, Xiangyang; Wang, Xingchao; Yu, Xiao-Jin; Rozengurt, Nora; Kaufman, Michael L; Wang, Xiaoyan; Gjertson, David; Zhou, Yang; Blackburn, Michael R; Kohn, Donald B

    2012-11-01

    Gene therapy (GT) for adenosine deaminase-deficient severe combined immune deficiency (ADA-SCID) can provide significant long-term benefit when patients are given nonmyeloablative conditioning and ADA enzyme-replacement therapy (ERT) is withheld before autologous transplantation of γ-retroviral vector-transduced BM CD34+ cells. To determine the contributions of conditioning and discontinuation of ERT to the therapeutic effects, we analyzed these factors in Ada gene knockout mice (Ada(-/-)). Mice were transplanted with ADA-deficient marrow transduced with an ADA-expressing γ-retroviral vector without preconditioning or after 200 cGy or 900 cGy total-body irradiation and evaluated after 4 months. In all tissues analyzed, vector copy numbers (VCNs) were 100- to 1000-fold greater in mice receiving 900 cGy compared with 200 cGy (P < .05). In mice receiving 200 cGy, VCN was similar whether ERT was stopped or given for 1 or 4 months after GT. In unconditioned mice, there was decreased survival with and without ERT, and VCN was very low to undetectable. When recipients were conditioned with 200 cGy and received transduced lineage-depleted marrow, only recipients receiving ERT (1 or 4 months) had detectable vector sequences in thymocytes. In conclusion, cytoreduction is important for the engraftment of gene-transduced HSC, and short-term ERT after GT did not diminish the capacity of gene-corrected cells to engraft and persist.

  6. Base excision repair deficient mice lacking the Aag alkyladenine DNA glycosylase.

    NARCIS (Netherlands)

    B.P. Engelward (Bevin); G. Weeda (Geert); M.D. Wyatt; J.L.M. Broekhof (Jose'); J. de Wit (Jan); I. Donker (Ingrid); J.M. Allan (James); B. Gold (Bert); J.H.J. Hoeijmakers (Jan); L.D. Samson (Leona)

    1997-01-01

    textabstract3-methyladenine (3MeA) DNA glycosylases remove 3MeAs from alkylated DNA to initiate the base excision repair pathway. Here we report the generation of mice deficient in the 3MeA DNA glycosylase encoded by the Aag (Mpg) gene. Alkyladenine DNA glycosylase turns out to be the major DNA

  7. Increasing brain serotonin corrects CO2 chemosensitivity in methyl-CpG-binding protein 2 (Mecp2)-deficient mice

    Science.gov (United States)

    Toward, Marie A.; Abdala, Ana P.; Knopp, Sharon J.; Paton, Julian F. R.; Bissonnette, John M.

    2013-01-01

    Mice deficient in the transcription factor methyl-CpG-binding protein 2 (Mecp2), a mouse model of Rett syndrome, display reduced CO2 chemosensitivity, which may contribute to their breathing abnormalities. In addition, patients with Rett syndrome and male mice that are null for Mecp2 show reduced levels of brain serotonin (5-HT). Serotonin is known to play a role in central chemosensitivity, and we hypothesized that increasing the availability of 5-HT in this mouse model would improve their respiratory response to CO2. Here we determined the apnoeic threshold in heterozygous Mecp2-deficient female mice and examined the effects of blocking 5-HT reuptake on the CO2 response in Mecp2-null male mice. Studies were performed in B6.129P2(C)-Mecp2τm1.1Bird null males and heterozygous females. In an in situ preparation, seven of eight Mecp2-deficient heterozygous females showed arrest of phrenic nerve activity when arterial CO2 was lowered to 3%, whereas the wild-types maintained phrenic nerve amplitude at 53 ± 3% of maximal. In vivo plethysmography studies were used to determine CO2 chemosensitivity in null males. These mice were exposed sequentially to 1, 3 and 5% CO2. The percentage increase in minute ventilation in response to increased inspired CO2 was less in Mecp2−/y than in Mecp2+/y mice. Pretreatment with citalopram, a selective 5-HT reuptake inhibitor (2.5 mg kg−1 I.P.), 40 min prior to CO2 exposure, in Mecp2−/y mice resulted in an improvement in CO2 chemosensitivity to wild-type levels. These results suggest that decreased 5-HT in Mecp2-deficient mice reduces CO2 chemosensitivity, and restoring 5-HT levels can reverse this effect. PMID:23180809

  8. Monocyte chemotactic protein-1 deficiency attenuates and high-fat diet exacerbates bone loss in mice with Lewis lung carcinoma.

    Science.gov (United States)

    Yan, Lin; Nielsen, Forrest H; Sundaram, Sneha; Cao, Jay

    2017-04-04

    Bone loss occurs in obesity and cancer-associated complications including wasting. This study determined whether a high-fat diet and a deficiency in monocyte chemotactic protein-1 (MCP-1) altered bone structural defects in male C57BL/6 mice with Lewis lung carcinoma (LLC) metastases in lungs. Compared to non-tumor-bearing mice, LLC reduced bone volume fraction, connectivity density, trabecular number, trabecular thickness and bone mineral density and increased trabecular separation in femurs. Similar changes occurred in vertebrae. The high-fat diet compared to the AIN93G diet exacerbated LLC-induced detrimental structural changes; the exacerbation was greater in femurs than in vertebrae. Mice deficient in MCP-1 compared to wild-type mice exhibited increases in bone volume fraction, connectivity density, trabecular number and decreases in trabecular separation in both femurs and vertebrae, and increases in trabecular thickness and bone mineral density and a decrease in structure model index in vertebrae. Lewis lung carcinoma significantly decreased osteocalcin but increased tartrate-resistant acid phosphatase 5b (TRAP 5b) in plasma. In LLC-bearing mice, the high-fat diet increased and MCP-1 deficiency decreased plasma TRAP 5b; neither the high-fat diet nor MCP-1 deficiency resulted in significant changes in plasma concentration of osteocalcin. In conclusion, pulmonary metastasis of LLC is accompanied by detrimental bone structural changes; MCP-1 deficiency attenuates and high-fat diet exacerbates the metastasis-associated bone wasting.

  9. Behavioral Characteristics of Ubiquitin-Specific Peptidase 46-Deficient Mice

    Science.gov (United States)

    Imai, Saki; Kano, Makoto; Nonoyama, Keiko; Ebihara, Shizufumi

    2013-01-01

    We have previously identified Usp46, which encodes for ubiquitin-specific peptidase 46, as a quantitative trait gene affecting the immobility time of mice in the tail suspension test (TST) and forced swimming test. The mutation that we identified was a 3-bp deletion coding for lysine (Lys 92), and mice with this mutation (MT mice), as well as Usp46 KO mice exhibited shorter TST immobility times. Behavioral pharmacology suggests that the gamma aminobutyric acid A (GABAA) receptor is involved in regulating TST immobility time. In order to understand how far Usp46 controls behavioral phenotypes, which could be related to mental disorders in humans, we subjected Usp46 MT and KO mice to multiple behavioral tests, including the open field test, ethanol preference test, ethanol-induced loss of righting reflex test, sucrose preference test, novelty-suppressed feeding test, marble burying test, and novel object recognition test. Although behavioral phenotypes of the Usp46 MT and KO mice were not always identical, deficiency of Usp46 significantly affected performance in all these tests. In the open field test, activity levels were lower in Usp46 KO mice than wild type (WT) or MT mice. Both MT and KO mice showed lower ethanol preference and shorter recovery times after ethanol administration. Compared to WT mice, Usp46 MT and KO mice exhibited decreased sucrose preference, took longer latency periods to bite pellets, and buried more marbles in the sucrose preference test, novelty-suppressed feeding test, and marble burying test, respectively. In the novel object recognition test, neither MT nor KO mice showed an increase in exploration of a new object 24 hours after training. These findings indicate that Usp46 regulates a wide range of behavioral phenotypes that might be related to human mental disorders and provides insight into the function of USP46 deubiquitinating enzyme in the neural system. PMID:23472206

  10. Behavioral characteristics of ubiquitin-specific peptidase 46-deficient mice.

    Directory of Open Access Journals (Sweden)

    Saki Imai

    Full Text Available We have previously identified Usp46, which encodes for ubiquitin-specific peptidase 46, as a quantitative trait gene affecting the immobility time of mice in the tail suspension test (TST and forced swimming test. The mutation that we identified was a 3-bp deletion coding for lysine (Lys 92, and mice with this mutation (MT mice, as well as Usp46 KO mice exhibited shorter TST immobility times. Behavioral pharmacology suggests that the gamma aminobutyric acid A (GABAA receptor is involved in regulating TST immobility time. In order to understand how far Usp46 controls behavioral phenotypes, which could be related to mental disorders in humans, we subjected Usp46 MT and KO mice to multiple behavioral tests, including the open field test, ethanol preference test, ethanol-induced loss of righting reflex test, sucrose preference test, novelty-suppressed feeding test, marble burying test, and novel object recognition test. Although behavioral phenotypes of the Usp46 MT and KO mice were not always identical, deficiency of Usp46 significantly affected performance in all these tests. In the open field test, activity levels were lower in Usp46 KO mice than wild type (WT or MT mice. Both MT and KO mice showed lower ethanol preference and shorter recovery times after ethanol administration. Compared to WT mice, Usp46 MT and KO mice exhibited decreased sucrose preference, took longer latency periods to bite pellets, and buried more marbles in the sucrose preference test, novelty-suppressed feeding test, and marble burying test, respectively. In the novel object recognition test, neither MT nor KO mice showed an increase in exploration of a new object 24 hours after training. These findings indicate that Usp46 regulates a wide range of behavioral phenotypes that might be related to human mental disorders and provides insight into the function of USP46 deubiquitinating enzyme in the neural system.

  11. Reversible skeletal abnormalities in gamma-glutamyl transpeptidase-deficient mice

    Science.gov (United States)

    Levasseur, Regis; Barrios, Roberto; Elefteriou, Florent; Glass, Donald A 2nd; Lieberman, Michael W.; Karsenty, Gerard

    2003-01-01

    Gamma-glutamyl transpeptidase (GGT) is a widely distributed ectopeptidase responsible for the degradation of glutathione in the gamma-glutamyl cycle. This cycle is implicated in the metabolism of cysteine, and absence of GGT causes a severe intracellular decrease in this amino acid. GGT-deficient (GGT-/-) mice have multiple metabolic abnormalities and are dwarf. We show here that this latter phenotype is due to a decreased of the growth plate cartilage total height resulting from a proliferative defect of chondrocytes. In addition, analysis of vertebrae and tibiae of GGT-/- mice revealed a severe osteopenia. Histomorphometric studies showed that this low bone mass phenotype results from an increased osteoclast number and activity as well as from a marked decrease in osteoblast activity. Interestingly, neither osteoblasts, osteoclasts, nor chondrocytes express GGT, suggesting that the observed defects are secondary to other abnormalities. N-acetylcysteine supplementation has been shown to reverse the metabolic abnormalities of the GGT-/- mice and in particular to restore the level of IGF-1 and sex steroids in these mice. Consistent with these previous observations, N-acetylcysteine treatment of GGT-/- mice ameliorates their skeletal abnormalities by normalizing chondrocytes proliferation and osteoblastic function. In contrast, resorbtion parameters are only partially normalized in GGT-/- N-acetylcysteine-treated mice, suggesting that GGT regulates osteoclast biology at least partly independently of these hormones. These results establish the importance of cysteine metabolism for the regulation of bone remodeling and longitudinal growth.

  12. Hawthorn (Crataegus pinnatifida Bunge) leave flavonoids attenuate atherosclerosis development in apoE knock-out mice.

    Science.gov (United States)

    Dong, Pengzhi; Pan, Lanlan; Zhang, Xiting; Zhang, Wenwen; Wang, Xue; Jiang, Meixiu; Chen, Yuanli; Duan, Yajun; Wu, Honghua; Xu, Yantong; Zhang, Peng; Zhu, Yan

    2017-02-23

    Hawthorn (Crataegus pinnatifida Bunge) leave have been used to treat cardiovascular diseases in China and Europe. Hawthorn leave flavonoids (HLF) are the main part of extraction. Whether hawthorn leave flavonoids could attenuate the development of atherosclerosis and the possible mechanism remain unknown. High-fat diet (HFD) mixed with HLF at concentrations of 5mg/kg and 20mg/kg were administered to apolipoprotein E (apoE) knock out mice. 16 weeks later, mouse serum was collected to determine the lipid profile while the mouse aorta dissected was prepared to measure the lesion area. Hepatic mRNA of genes involved in lipid metabolism were determined. Peritoneal macrophages were collected to study the impact of HLF on cholesterol efflux, formation of foam cell and the expression of ATP binding cassette transporter A1 (ABCA1). Besides, in vivo reverse cholesterol transport (RCT) was conducted. HLF attenuated the development of atherosclerosis that the mean atherosclerotic lesion area in en face aortas was reduced by 23.1% (Pflavonoids can slow down the development of atherosclerosis in apoE knockout mice via induced expression of genes involved in antioxidant activities, inhibition of the foam cell formation and promotion of RCT in vivo, which implies the potential use in the prevention of atherosclerosis. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  13. Subcellular distribution of apolipoprotein E along the lipoprotein synthetic pathway of rat liver

    International Nuclear Information System (INIS)

    Cole, T.G.; Stockhausen, D.C.

    1986-01-01

    Apolipoprotein E (apoE) is synthesized by the liver and is secreted as a component of VLDL. To define the intracellular locations of apoE, liver from 10 nonfasted male rats were removed and subcellular organelles prepared by differential pelleting through sucrose gradients. Mass of apoE was measured by radioimmunoassay. Approximately 10% of total hepatic apoE was recovered in rough endoplasmic reticulum (RER), smooth endoplasmic reticulum (SER) and Golgi fractions. Concentrations of apoE (ng/mg protein) were: homogenate, 302 +/- 59; RER, 653 +/- 251; SER, 1250 +/- 471; Golgi, 11,044 +/- 4291. Total apoE content of each reaction (μg/organelle) was: homogenate (whole liver), 517 +/- 103; RER, 15 +/- 3; SER, 9 +/- 3; Golgi, 28 +/- 8. These data indicate that along the putative pathway of lipoprotein synthesis (RER->SER->Golgi), apoE concentration increases in each successive organelle and that flux of apoE is apparently most rapid through SER. Furthermore, the majority of apoE in the rat liver is apparently not directly associated with the lipoprotein synthetic pathway and may be associated with internalized lipoproteins or may be involved in non-lipoprotein related functions

  14. Thyroid hormones upregulate apolipoprotein E gene expression in astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Roman, Corina; Fuior, Elena V.; Trusca, Violeta G. [Institute of Cellular Biology and Pathology “Nicolae Simionescu”, Bucharest (Romania); Kardassis, Dimitris [University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, Crete (Greece); Simionescu, Maya [Institute of Cellular Biology and Pathology “Nicolae Simionescu”, Bucharest (Romania); Gafencu, Anca V., E-mail: anca.gafencu@icbp.ro [Institute of Cellular Biology and Pathology “Nicolae Simionescu”, Bucharest (Romania)

    2015-12-04

    Apolipoprotein E (apoE), a protein mainly involved in lipid metabolism, is associated with several neurodegenerative disorders including Alzheimer's disease. Despite numerous attempts to elucidate apoE gene regulation in the brain, the exact mechanism is still uncovered. The mechanism of apoE gene regulation in the brain involves the proximal promoter and multienhancers ME.1 and ME.2, which evolved by gene duplication. Herein we questioned whether thyroid hormones and their nuclear receptors have a role in apoE gene regulation in astrocytes. Our data showed that thyroid hormones increase apoE gene expression in HTB14 astrocytes in a dose-dependent manner. This effect can be intermediated by the thyroid receptor β (TRβ) which is expressed in these cells. In the presence of triiodothyronine (T3) and 9-cis retinoic acid, in astrocytes transfected to overexpress TRβ and retinoid X receptor α (RXRα), apoE promoter was indirectly activated through the interaction with ME.2. To determine the location of TRβ/RXRα binding site on ME.2, we performed DNA pull down assays and found that TRβ/RXRα complex bound to the region 341–488 of ME.2. This result was confirmed by transient transfection experiments in which a series of 5′- and 3′-deletion mutants of ME.2 were used. These data support the existence of a biologically active TRβ binding site starting at 409 in ME.2. In conclusion, our data revealed that ligand-activated TRβ/RXRα heterodimers bind with high efficiency on tissue-specific distal regulatory element ME.2 and thus modulate apoE gene expression in the brain. - Highlights: • T3 induce a dose-dependent increase of apoE expression in astrocytes. • Thyroid hormones activate apoE promoter in a cell specific manner. • Ligand activated TRβ/RXRα bind on the distal regulatory element ME.2 to modulate apoE. • The binding site of TRβ/RXRα heterodimer is located at 409 bp on ME.2.

  15. Thyroid hormones upregulate apolipoprotein E gene expression in astrocytes

    International Nuclear Information System (INIS)

    Roman, Corina; Fuior, Elena V.; Trusca, Violeta G.; Kardassis, Dimitris; Simionescu, Maya; Gafencu, Anca V.

    2015-01-01

    Apolipoprotein E (apoE), a protein mainly involved in lipid metabolism, is associated with several neurodegenerative disorders including Alzheimer's disease. Despite numerous attempts to elucidate apoE gene regulation in the brain, the exact mechanism is still uncovered. The mechanism of apoE gene regulation in the brain involves the proximal promoter and multienhancers ME.1 and ME.2, which evolved by gene duplication. Herein we questioned whether thyroid hormones and their nuclear receptors have a role in apoE gene regulation in astrocytes. Our data showed that thyroid hormones increase apoE gene expression in HTB14 astrocytes in a dose-dependent manner. This effect can be intermediated by the thyroid receptor β (TRβ) which is expressed in these cells. In the presence of triiodothyronine (T3) and 9-cis retinoic acid, in astrocytes transfected to overexpress TRβ and retinoid X receptor α (RXRα), apoE promoter was indirectly activated through the interaction with ME.2. To determine the location of TRβ/RXRα binding site on ME.2, we performed DNA pull down assays and found that TRβ/RXRα complex bound to the region 341–488 of ME.2. This result was confirmed by transient transfection experiments in which a series of 5′- and 3′-deletion mutants of ME.2 were used. These data support the existence of a biologically active TRβ binding site starting at 409 in ME.2. In conclusion, our data revealed that ligand-activated TRβ/RXRα heterodimers bind with high efficiency on tissue-specific distal regulatory element ME.2 and thus modulate apoE gene expression in the brain. - Highlights: • T3 induce a dose-dependent increase of apoE expression in astrocytes. • Thyroid hormones activate apoE promoter in a cell specific manner. • Ligand activated TRβ/RXRα bind on the distal regulatory element ME.2 to modulate apoE. • The binding site of TRβ/RXRα heterodimer is located at 409 bp on ME.2.

  16. Meta-analysis of peripheral blood apolipoprotein E levels in Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Chong Wang

    Full Text Available BACKGROUND: Peripheral blood Apolipoprotein E (ApoE levels have been proposed as biomarkers of Alzheimer's disease (AD, but previous studies on levels of ApoE in blood remain inconsistent. This meta-analysis was designed to re-examine the potential role of peripheral ApoE in AD diagnosis and its potential value as a candidate biomarker. METHODS: We conducted a systematic literature search of MEDLINE, EMBASE, the Cochrane library, and BIOSIS previews for case-control studies measuring ApoE levels in serum or plasma from AD subjects and healthy controls. The pooled weighted mean difference (WMD and 95% confidence interval (CI were used to estimate the association between ApoE levels and AD risk. RESULTS: Eight studies with a total of 2250 controls and 1498 AD cases were identified and analyzed. The pooled WMD from a random-effect model of AD participants compared with the healthy controls was -5.59 mg/l (95% CI: [-8.12, -3.06]. The overall pattern in WMD was not varied by characteristics of study, including age, country, assay method, publication year, and sample type. CONCLUSIONS: Our meta-analysis supports a lowered level of blood ApoE in AD patients, and indicates its potential value as an important risk factor for AD. Further investigation employing standardized assay for ApoE measurement are still warranted to uncover the precise role of ApoE in the pathophysiology of AD.

  17. Trichloroethylene exposure aggravates behavioral abnormalities in mice that are deficient in superoxide dismutase.

    Science.gov (United States)

    Otsuki, Noriyuki; Homma, Takujiro; Fujiwara, Hiroki; Kaneko, Kenya; Hozumi, Yasukazu; Shichiri, Mototada; Takashima, Mizuki; Ito, Junitsu; Konno, Tasuku; Kurahashi, Toshihiro; Yoshida, Yasukazu; Goto, Kaoru; Fujii, Satoshi; Fujii, Junichi

    2016-08-01

    Trichloroethylene (TCE) has been implicated as a causative agent for Parkinson's disease (PD). The administration of TCE to rodents induces neurotoxicity associated with dopaminergic neuron death, and evidence suggests that oxidative stress as a major player in the progression of PD. Here we report on TCE-induced behavioral abnormality in mice that are deficient in superoxide dismutase 1 (SOD1). Wild-type (WT) and SOD1-deficient (Sod1(-/-)) mice were intraperitoneally administered TCE (500 mg/kg) over a period of 4 weeks. Although the TCE-administrated Sod1(-/-) mice showed marked abnormal motor behavior, no significant differences were observed among the experimental groups by biochemical and histopathological analyses. However, treating mouse neuroblastoma-derived NB2a cells with TCE resulted in the down regulation of the SOD1 protein and elevated oxidative stress under conditions where SOD1 production was suppressed. Taken together, these data indicate that SOD1 plays a pivotal role in protecting motor neuron function against TCE toxicity. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. IGF-1 deficiency impairs neurovascular coupling in mice: implications for cerebromicrovascular aging.

    Science.gov (United States)

    Toth, Peter; Tarantini, Stefano; Ashpole, Nicole M; Tucsek, Zsuzsanna; Milne, Ginger L; Valcarcel-Ares, Noa M; Menyhart, Akos; Farkas, Eszter; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2015-12-01

    Aging is associated with marked deficiency in circulating IGF-1, which has been shown to contribute to age-related cognitive decline. Impairment of moment-to-moment adjustment of cerebral blood flow (CBF) via neurovascular coupling is thought to play a critical role in the genesis of age-related cognitive impairment. To establish the link between IGF-1 deficiency and cerebromicrovascular impairment, neurovascular coupling mechanisms were studied in a novel mouse model of IGF-1 deficiency (Igf1(f/f) -TBG-Cre-AAV8) and accelerated vascular aging. We found that IGF-1-deficient mice exhibit neurovascular uncoupling and show a deficit in hippocampal-dependent spatial memory test, mimicking the aging phenotype. IGF-1 deficiency significantly impaired cerebromicrovascular endothelial function decreasing NO mediation of neurovascular coupling. IGF-1 deficiency also impaired glutamate-mediated CBF responses, likely due to dysregulation of astrocytic expression of metabotropic glutamate receptors and impairing mediation of CBF responses by eicosanoid gliotransmitters. Collectively, we demonstrate that IGF-1 deficiency promotes cerebromicrovascular dysfunction and neurovascular uncoupling mimicking the aging phenotype, which are likely to contribute to cognitive impairment. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  19. Uremia does not affect neointima formation in mice

    DEFF Research Database (Denmark)

    Aarup, Annemarie; Nielsen, Carsten H; Bisgaard, Line S

    2017-01-01

    Atherosclerotic cardiovascular disease is a major complication of chronic kidney disease (CKD). CKD leads to uremia, which modulates the phenotype of aortic smooth muscle cells (SMCs). Phenotypic modulation of SMCs plays a key role in accelerating atherosclerosis. We investigated the hypothesis...... that uremia potentiates neointima formation in response to vascular injury in mice. Carotid wire injury was performed on C57BL/6 wt and apolipoprotein E knockout (Apoe-/-) mice two weeks after induction of uremia by 5/6 nephrectomy. Wire injury led to neointima formation and downregulation of genes encoding...... classical SMC markers (i.e., myocardin, α-smooth muscle actin, SM22-alpha, and smooth muscle myosin heavy chain) in both wt and Apoe-/-mice. Contrary to our expectations, uremia did not potentiate neointima formation, nor did it affect intimal lesion composition as judged from magnetic resonance imaging...

  20. Apolipoprotein e genotype, plasma cholesterol, and cancer: a Mendelian randomization study.

    LENUS (Irish Health Repository)

    Trompet, Stella

    2009-12-01

    Observational studies have shown an association between low plasma cholesterol levels and increased risk of cancer, whereas most randomized clinical trials involving cholesterol-lowering medications have not shown this association. Between 1997 and 2002, the authors assessed the association between plasma cholesterol levels and cancer risk, free from confounding and reverse causality, in a Mendelian randomization study using apolipoprotein E (ApoE) genotype. ApoE genotype, plasma cholesterol levels, and cancer incidence and mortality were measured during a 3-year follow-up period among 2,913 participants in the Prospective Study of Pravastatin in the Elderly at Risk. Subjects within the lowest third of plasma cholesterol level at baseline had increased risks of cancer incidence (hazard ratio (HR) = 1.90, 95% confidence interval (CI): 1.34, 2.70) and cancer mortality (HR = 2.03, 95% CI: 1.23, 3.34) relative to subjects within the highest third of plasma cholesterol. However, carriers of the ApoE2 genotype (n = 332), who had 9% lower plasma cholesterol levels than carriers of the ApoE4 genotype (n = 635), did not have increased risk of cancer incidence (HR = 0.86, 95% CI: 0.50, 1.47) or cancer mortality (HR = 0.70, 95% CI: 0.30, 1.60) compared with ApoE4 carriers. These findings suggest that low cholesterol levels are not causally related to increased cancer risk.

  1. Beijing ambient particle exposure accelerates atherosclerosis in ApoE knockout mice.

    Science.gov (United States)

    Chen, Tian; Jia, Guang; Wei, Yongjie; Li, Jiucun

    2013-11-25

    Air pollution is associated with significant adverse health effects including increased cardiovascular morbidity and mortality. However research on the cardiovascular effect of "real-world" exposure to ambient particulate matter (PM) in susceptible animal model is very limited. In this study, we aimed to investigate the association between Beijing ambient particle exposure and the atherosclerosis development in the apolipoprotein E knockout mice (ApoE(-/-) mice). Two parallel exposure chambers were used for whole body exposure among ApoE knockout mice. One of the chambers was supplied with untreated ambient air (PM group) and the other chamber was treated with ambient air filtered by high-efficiency particulate air (HEPA) filter (FA group). Twenty mice were divided into two groups and exposed to ambient PM (n=10 for PM group) or filtered air (n=10 for FA group) for two months from January 18th to March 18th, 2010. During the exposure, the mass concentrations of PM2.5 and PM10 in the two chambers were continuously monitored. Additionally, a receptor source apportionment model of chemical mass balance using 19 organic tracers was applied to determine the contributions of sources on the PM2.5 in terms of natural gas, diesel vehicle, gasoline vehicle, coal burning, vegetable debris, biomass burning and cooking. At the end of the two-month exposure, biomarkers of oxidative stress, inflammation and lipid metabolism in bronchoalveolar lavage fluid (BAL) and blood samples were determined and the plaque area on the aortic endothelium was quantified. In the experiment, the concentrations of PM10 and PM2.5 in PM chamber were 99.45μg/m(3) and 61.0μg/m(3) respectively, while PM2.5 in FA chamber was 17.6μg/m(3). Source apportionment analysis by organic tracers showed that gasoline vehicle (39.9%) and coal burning (24.3%) emission were the two major sources contributing to the mass concentration of PM2.5 in Beijing. Among the ApoE knockout mice, the PM group were significantly

  2. Domains of apolipoprotein E contributing to triglyceride and cholesterol homeostasis in vivo. Carboxyl-terminal region 203-299 promotes hepatic very low density lipoprotein-triglyceride secretion

    NARCIS (Netherlands)

    Kypreos, K.E.; Dijk, K.W. van; Zee, A. van der; Havekes, L.M.; Zannis, V.I.

    2001-01-01

    Apolipoprotein (apo) E has been implicated in cholesterol and triglyceride homeostasis in humans. At physiological concentration apoE promotes efficient clearance of apoE-containing lipoprotein remnants. However, high apoE plasma levels correlate with high plasma triglyceride levels. We have used

  3. Transgenic neuronal expression of proopiomelanocortin attenuates hyperphagic response to fasting and reverses metabolic impairments in leptin-deficient obese mice.

    Science.gov (United States)

    Mizuno, Tooru M; Kelley, Kevin A; Pasinetti, Giulio M; Roberts, James L; Mobbs, Charles V

    2003-11-01

    Hypothalamic proopiomelanocortin (POMC) gene expression is reduced in many forms of obesity and diabetes, particularly in those attributable to deficiencies in leptin or its receptor. To assess the functional significance of POMC in mediating metabolic phenotypes associated with leptin deficiency, leptin-deficient mice bearing a transgene expressing the POMC gene under control of the neuron-specific enolase promoter were produced. The POMC transgene attenuated fasting-induced hyperphagia in wild-type mice. Furthermore, the POMC transgene partially reversed obesity, hyperphagia, and hypothermia and effectively normalized hyperglycemia, glucosuria, glucose intolerance, and insulin resistance in leptin-deficient mice. Effects of the POMC transgene on glucose homeostasis were independent of the partial correction of hyperphagia and obesity. Furthermore, the POMC transgene normalized the profile of hepatic and adipose gene expression associated with gluconeogenesis, glucose output, and insulin sensitivity. These results indicate that central POMC is a key modulator of glucose homeostasis and that agonists of POMC products may provide effective therapy in treating impairments in glucose homeostasis when hypothalamic POMC expression is reduced, as occurs with leptin deficiency, hypothalamic damage, and aging.

  4. Maternal Vitamin D Deficiency and Fetal Programming - Lessons Learned from Humans and Mice

    Directory of Open Access Journals (Sweden)

    Christoph Reichetzeder

    2014-09-01

    Full Text Available Background/Aims: Cardiovascular disease partially originates from poor environmental and nutritional conditions in early life. Lack of micronutrients like 25 hydroxy vitamin D3 (25OHD during pregnancy may be an important treatable causal factor. The present study explored the effect of maternal 25OHD deficiency on the offspring. Methods: We performed a prospective observational study analyzing the association of maternal 25OHD deficiency during pregnancy with birth outcomes considering confounding. To show that vitamin D deficiency may be causally involved in the observed associations, mice were set on either 25OHD sufficient or insufficient diets before and during pregnancy. Growth, glucose tolerance and mortality was analyzed in the F1 generation. Results: The clinical study showed that severe 25OHD deficiency was associated with low birth weight and low gestational age. ANCOVA models indicated that established confounding factors such as offspring sex, smoking during pregnancy and maternal BMI did not influence the impact of 25OHD on birth weight. However, there was a significant interaction between 25OHD and gestational age. Maternal 25OHD deficiency was also independently associated with low APGAR scores 5 minutes postpartum. The offspring of 25OHD deficient mice grew slower after birth, had an impaired glucose tolerance shortly after birth and an increased mortality during follow-up. Conclusions: Our study demonstrates an association between maternal 25OHD and offspring birth weight. The effect of 25OHD on birth weight seems to be mediated by vitamin D controlling gestational age. Results from an animal experiment suggest that gestational 25OHD insufficiency is causally linked to adverse pregnancy outcomes. Since birth weight and prematurity are associated with an adverse cardiovascular outcome in later life, this study emphasizes the need for novel monitoring and treatment guidelines of vitamin D deficiency during pregnancy.

  5. Dysregulation of Aldosterone Secretion in Mast Cell-Deficient Mice.

    Science.gov (United States)

    Boyer, Hadrien-Gaël; Wils, Julien; Renouf, Sylvie; Arabo, Arnaud; Duparc, Céline; Boutelet, Isabelle; Lefebvre, Hervé; Louiset, Estelle

    2017-12-01

    Resident adrenal mast cells have been shown to activate aldosterone secretion in rat and man. Especially, mast cell proliferation has been observed in adrenal tissues from patients with aldosterone-producing adrenocortical adenoma. In the present study, we show that the activity of adrenal mast cells is stimulated by low-sodium diet and correlates with aldosterone synthesis in C57BL/6 and BALB/c mice. We have also investigated the regulation of aldosterone secretion in mast cell-deficient C57BL/6 Kit W-sh/W-sh mice in comparison with wild-type C57BL/6 mice. Kit W-sh/W-sh mice submitted to normal sodium diet had basal plasma aldosterone levels similar to those observed in wild-type animals. Conversely, low-sodium diet unexpectedly induced an exaggerated aldosterone response, which seemed to result from an increase in adrenal renin and angiotensin type 1 receptor expression. Severe hyperaldosteronism was associated with an increase in systolic blood pressure and marked hypokalemia, which favored polyuria. Adrenal renin and angiotensin type 1 receptor overexpression may represent a compensatory mechanism aimed at activating aldosterone production in the absence of mast cells. Finally, C57BL/6 Kit W-sh/W-sh mice represent an unexpected animal model of primary aldosteronism, which has the particularity to be triggered by sodium restriction. © 2017 American Heart Association, Inc.

  6. Cardiac remodeling after myocardial infarction is impaired in IGF-1 deficient mice

    NARCIS (Netherlands)

    Palmen, M.; Daemen, M. J.; Bronsaer, R.; Dassen, W. R.; Zandbergen, H. R.; Kockx, M.; Smits, J. F.; van der Zee, R.; Doevendans, P. A.

    2001-01-01

    To obtain more insight in the role of IGF-1 in cardiac remodeling and function after experimental myocardial infarction. We hypothesized that cardiac remodeling is altered in IGF-1 deficient mice, which may affect cardiac function. A myocardial infarction was induced by surgical coronary artery

  7. Erythrocyte-bound apolipoprotein B in relation to atherosclerosis, serum lipids and ABO blood group.

    Directory of Open Access Journals (Sweden)

    Boudewijn Klop

    Full Text Available INTRODUCTION: Erythrocytes carry apolipoprotein B on their membrane, but the determining factors of erythrocyte-bound apolipoprotein B (ery-apoB are unknown. We aimed to explore the determinants of ery-apoB to gain more insight into potential mechanisms. METHODS: Subjects with and without CVD were included (N = 398. Ery-apoB was measured on fresh whole blood samples using flow cytometry. Subjects with ery-apoB levels ≤ 0.20 a.u. were considered deficient. Carotid intima media thickness (CIMT was determined as a measure of (subclinical atherosclerosis. RESULTS: Mean ery-apoB value was 23.2% lower in subjects with increased CIMT (0.80 ± 0.09 mm, N = 140 compared to subjects with a normal CIMT (0.57 ± 0.08 mm, N = 258 (P = 0.007, adjusted P<0.001. CIMT and ery-apoB were inversely correlated (Spearman's r: -0.116, P = 0.021. A total of 55 subjects (13.6% were considered ery-apoB deficient, which was associated with a medical history of CVD (OR: 1.86, 95% CI 1.04-3.33; adjusted OR: 1.55; 95% CI 0.85-2.82. Discontinuation of statins in 54 subjects did not influence ery-apoB values despite a 58.4% increase in serum apolipoprotein B. Subjects with blood group O had significantly higher ery-apoB values (1.56 ± 0.94 a.u. when compared to subjects with blood group A (0.89 ± 1.15 a.u, blood group B (0.73 ± 0.1.12 a.u. or blood group AB (0.69 ± 0.69 a.u. (P-ANOVA = 0.002. CONCLUSION: Absence or very low values of ery-apoB are associated with clinical and subclinical atherosclerosis. While serum apolipoprotein B is not associated with ery-apoB, the ABO blood group seems to be a significant determinant.

  8. Association between iris constitution and apolipoprotein e gene polymorphism in hypertensives.

    Science.gov (United States)

    Um, Jae-Young; Hwang, Chung-Yeon; Hwang, Woo-Jun; Kang, Sung-Do; Do, Keum-Rok; Cho, Ju-Jang; Cho, Jae-Woon; Kim, Sung-Hoon; Shin, Tae-Yong; Kim, Yun-Kyung; Kim, Hyung-Min; Hong, Seung-Heon

    2004-12-01

    Iridology is a complementary and alternative medicine (CAM) that involves the diagnosis of medical conditions by noting irregularities of the pigmentation in the iris. Iris constitution has a strong familial aggregation and heredity is implicated. Apolipoprotein E (apoE) gene polymorphism is one of the most well-studied genetic markers for vascular diseases, including hypertension. In this study, we investigated the relationship between iris constitution and apoE polymorphism in hypertensives. We classified 87 hypertensives and 79 controls according to iris constitution and determined the apoE genotype of each individual. A significantly higher percentage of individuals with neurogenic constitutions was found in the hypertensive group when compared with the control group (chi(2) = 40.244, p < 0.001). In addition, a neurogenic constitution increased the relative risk for hypertension for subjects with an apo epsilon2 or an epsilon4 allele (chi(2) = 4.086, p = 0.049, odds ratio = 2.633, confidence interval = 1.004-6.905). Our results imply that a neurogenic iris constitution enhances the relative risk for hypertension in subjects with the apo epsilon2 or epsilon4 allele. Furthermore, we attempted to evaluate the efficacy of iris constitutional medicine and to find an association with hypertension.

  9. Identifying activated T cells in reconstituted RAG deficient mice using retrovirally transduced Pax5 deficient pro-B cells.

    Directory of Open Access Journals (Sweden)

    Nadesan Gajendran

    Full Text Available Various methods have been used to identify activated T cells such as binding of MHC tetramers and expression of cell surface markers in addition to cytokine-based assays. In contrast to these published methods, we here describe a strategy to identify T cells that respond to any antigen and track the fate of these activated T cells. We constructed a retroviral double-reporter construct with enhanced green fluorescence protein (EGFP and a far-red fluorescent protein from Heteractis crispa (HcRed. LTR-driven EGFP expression was used to enrich and identify transduced cells, while HcRed expression is driven by the CD40Ligand (CD40L promoter, which is inducible and enables the identification and cell fate tracing of T cells that have responded to infection/inflammation. Pax5 deficient pro-B cells that can give rise to different hematopoietic cells like T cells, were retrovirally transduced with this double-reporter cassette and were used to reconstitute the T cell pool in RAG1 deficient mice that lack T and B cells. By using flow cytometry and histology, we identified activated T cells that had developed from Pax5 deficient pro-B cells and responded to infection with the bacterial pathogen Listeria monocytogenes. Microscopic examination of organ sections allowed visual identification of HcRed-expressing cells. To further characterize the immune response to a given stimuli, this strategy can be easily adapted to identify other cells of the hematopoietic system that respond to infection/inflammation. This can be achieved by using an inducible reporter, choosing the appropriate promoter, and reconstituting mice lacking cells of interest by injecting gene-modified Pax5 deficient pro-B cells.

  10. Whole-Body Vibration Mimics the Metabolic Effects of Exercise in Male Leptin Receptor-Deficient Mice.

    Science.gov (United States)

    McGee-Lawrence, Meghan E; Wenger, Karl H; Misra, Sudipta; Davis, Catherine L; Pollock, Norman K; Elsalanty, Mohammed; Ding, Kehong; Isales, Carlos M; Hamrick, Mark W; Wosiski-Kuhn, Marlena; Arounleut, Phonepasong; Mattson, Mark P; Cutler, Roy G; Yu, Jack C; Stranahan, Alexis M

    2017-05-01

    Whole-body vibration (WBV) has gained attention as a potential exercise mimetic, but direct comparisons with the metabolic effects of exercise are scarce. To determine whether WBV recapitulates the metabolic and osteogenic effects of physical activity, we exposed male wild-type (WT) and leptin receptor-deficient (db/db) mice to daily treadmill exercise (TE) or WBV for 3 months. Body weights were analyzed and compared with WT and db/db mice that remained sedentary. Glucose and insulin tolerance testing revealed comparable attenuation of hyperglycemia and insulin resistance in db/db mice following TE or WBV. Both interventions reduced body weight in db/db mice and normalized muscle fiber diameter. TE or WBV also attenuated adipocyte hypertrophy in visceral adipose tissue and reduced hepatic lipid content in db/db mice. Although the effects of leptin receptor deficiency on cortical bone structure were not eliminated by either intervention, exercise and WBV increased circulating levels of osteocalcin in db/db mice. In the context of increased serum osteocalcin, the modest effects of TE and WBV on bone geometry, mineralization, and biomechanics may reflect subtle increases in osteoblast activity in multiple areas of the skeleton. Taken together, these observations indicate that WBV recapitulates the effects of exercise on metabolism in type 2 diabetes.

  11. Fractalkine receptor (CX3CR1 deficiency sensitizes mice to the behavioral changes induced by lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Kelley Keith W

    2010-12-01

    Full Text Available Abstract Background Interactions between fractalkine (CX3CL1 and fractalkine receptor (CX3CR1 regulate microglial activation in the CNS. Recent findings indicate that age-associated impairments in CX3CL1 and CX3CR1 are directly associated with exaggerated microglial activation and an impaired recovery from sickness behavior after peripheral injection of lipopolysaccharide (LPS. Therefore, the purpose of this study was to determine the extent to which an acute LPS injection causes amplified and prolonged microglial activation and behavioral deficits in CX3CR1-deficient mice (CX3CR1-/-. Methods CX3CR1-/- mice or control heterozygote mice (CX3CR1+/- were injected with LPS (0.5 mg/kg i.p. or saline and behavior (i.e., sickness and depression-like behavior, microglial activation, and markers of tryptophan metabolism were determined. All data were analyzed using Statistical Analysis Systems General Linear Model procedures and were subjected to one-, two-, or three-way ANOVA to determine significant main effects and interactions. Results LPS injection caused a prolonged duration of social withdrawal in CX3CR1-/- mice compared to control mice. This extended social withdrawal was associated with enhanced mRNA expression of IL-1β, indolamine 2,3-dioxygenase (IDO and kynurenine monooxygenase (KMO in microglia 4 h after LPS. Moreover, elevated expression of IL-1β and CD14 was still detected in microglia of CX3CR1-/- mice 24 h after LPS. There was also increased turnover of tryptophan, serotonin, and dopamine in the brain 24 h after LPS, but these increases were independent of CX3CR1 expression. When submitted to the tail suspension test 48 and 72 h after LPS, an increased duration of immobility was evident only in CX3CR1-/- mice. This depression-like behavior in CX3CR1-/- mice was associated with a persistent activated microglial phenotype in the hippocampus and prefrontal cortex. Conclusions Taken together, these data indicate that a deficiency of CX3CR1

  12. Fractalkine receptor (CX3CR1) deficiency sensitizes mice to the behavioral changes induced by lipopolysaccharide

    Science.gov (United States)

    2010-01-01

    Background Interactions between fractalkine (CX3CL1) and fractalkine receptor (CX3CR1) regulate microglial activation in the CNS. Recent findings indicate that age-associated impairments in CX3CL1 and CX3CR1 are directly associated with exaggerated microglial activation and an impaired recovery from sickness behavior after peripheral injection of lipopolysaccharide (LPS). Therefore, the purpose of this study was to determine the extent to which an acute LPS injection causes amplified and prolonged microglial activation and behavioral deficits in CX3CR1-deficient mice (CX3CR1-/-). Methods CX3CR1-/- mice or control heterozygote mice (CX3CR1+/-) were injected with LPS (0.5 mg/kg i.p.) or saline and behavior (i.e., sickness and depression-like behavior), microglial activation, and markers of tryptophan metabolism were determined. All data were analyzed using Statistical Analysis Systems General Linear Model procedures and were subjected to one-, two-, or three-way ANOVA to determine significant main effects and interactions. Results LPS injection caused a prolonged duration of social withdrawal in CX3CR1-/- mice compared to control mice. This extended social withdrawal was associated with enhanced mRNA expression of IL-1β, indolamine 2,3-dioxygenase (IDO) and kynurenine monooxygenase (KMO) in microglia 4 h after LPS. Moreover, elevated expression of IL-1β and CD14 was still detected in microglia of CX3CR1-/- mice 24 h after LPS. There was also increased turnover of tryptophan, serotonin, and dopamine in the brain 24 h after LPS, but these increases were independent of CX3CR1 expression. When submitted to the tail suspension test 48 and 72 h after LPS, an increased duration of immobility was evident only in CX3CR1-/- mice. This depression-like behavior in CX3CR1-/- mice was associated with a persistent activated microglial phenotype in the hippocampus and prefrontal cortex. Conclusions Taken together, these data indicate that a deficiency of CX3CR1 is permissive to

  13. Aberrant Muscle Antigen Exposure in Mice Is Sufficient to Cause Myositis in a Treg Cell–Deficient Milieu

    Science.gov (United States)

    Young, Nicholas A; Sharma, Rahul; Friedman, Alexandra K; Kaffenberger, Benjamin H; Bolon, Brad; Jarjour, Wael N

    2013-01-01

    Objective Myositis is associated with muscle-targeted inflammation and is observed in some Treg cell–deficient mouse models. Because an autoimmune pathogenesis has been strongly implicated, the aim of this study was to investigate the hypothesis that abnormal exposure to muscle antigens, as observed in muscle injury, can induce autoimmune-mediated myositis in susceptible hosts. Methods FoxP3 mutant (scurfy) mice were mated to synaptotagmin VII (Syt VII) mutant mice, which resulted in a new mouse strain that combines impaired membrane resealing with Treg cell deficiency. Lymphocyte preparations from double-mutant mice were adoptively transferred intraperitoneally, with or without purified Treg cells, into recombination-activating gene 1 (RAG-1)–null recipients. Lymph node cells from mice with the FoxP3 mutation were transferred into RAG-1–null mice either 1) intraperitoneally in conjunction with muscle homogenate or purified myosin protein or 2) intramuscularly with or without cotransfer of purified Treg cells. Results FoxP3-deficient mouse lymph node cells transferred in conjunction with myosin protein or muscle homogenate induced robust skeletal muscle inflammation. The infiltrates consisted predominantly of CD4+ and CD8+ T cells, a limited number of macrophages, and no B cells. Significant inflammation was also seen in similar experiments using lymph node cells from FoxP3/Syt VII double-mutant mice but was absent in experiments using adoptive transfer of FoxP3 mutant mouse cells alone. The cotransfer of Treg cells completely suppressed myositis. Conclusion These data, derived from a new, reproducible model, demonstrate the critical roles of Treg cell deficiency and aberrant muscle antigen exposure in the priming of autoreactive cells to induce myositis. This mouse system has multifaceted potential for examining the interplay in vivo between tissue injury and autoimmunity. PMID:24022275

  14. Human serum albumin nanoparticles modified with apolipoprotein A-I cross the blood-brain barrier and enter the rodent brain.

    Science.gov (United States)

    Zensi, Anja; Begley, David; Pontikis, Charles; Legros, Celine; Mihoreanu, Larisa; Büchel, Claudia; Kreuter, Jörg

    2010-12-01

    Nanoparticles made of human serum albumin (HSA) and modified with apolipoproteins have previously been shown to transport drugs, which normally do not enter the brain, across the blood-brain barrier (BBB). However the precise mechanism by which nanoparticles with different apolipoproteins on their surface can target to the brain, as yet, has not been totally elucidated. In the present study, HSA nanoparticles with covalently bound apolipoprotein A-I (Apo A-I) as a targetor for brain capillary endothelial cells were injected intravenously into SV 129 mice and Wistar rats. The rodents were sacrificed after 15 or 30 min, and their brains were examined by transmission electron microscopy. Apo A-I nanoparticles could be found inside the endothelial cells of brain capillaries as well as within parenchymal brain tissue of both, mice and rats, whereas control particles without Apo A-I on their surface did not cross the BBB during our experiments. The maintenance of tight junction integrity and barrier function during treatment with nanoparticles was demonstrated by perfusion with a fixative containing lanthanum nitrate as an electron dense marker for the permeability of tight junctions.

  15. Na(v)1.8 channelopathy in mutant mice deficient for myelin protein zero is detrimental to motor axons

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Alvarez Herrero, Susana; Pinchenko, Volodymyr

    2011-01-01

    Myelin protein zero mutations were found to produce Charcot-Marie-Tooth disease phenotypes with various degrees of myelin impairment and axonal loss, ranging from the mild 'demyelinating' adult form to severe and early onset forms. Protein zero deficient homozygous mice ( ) show a severe and prog......Myelin protein zero mutations were found to produce Charcot-Marie-Tooth disease phenotypes with various degrees of myelin impairment and axonal loss, ranging from the mild 'demyelinating' adult form to severe and early onset forms. Protein zero deficient homozygous mice ( ) show a severe...... and progressive dysmyelinating neuropathy from birth with compromised myelin compaction, hypomyelination and distal axonal degeneration. A previous study using immunofluorescence showed that motor nerves deficient of myelin protein zero upregulate the Na(V)1.8 voltage gated sodium channel isoform, which...... is normally present only in restricted populations of sensory axons. The aim of this study was to investigate the function of motor axons in protein zero-deficient mice with particular emphasis on ectopic Na(V)1.8 voltage gated sodium channel. We combined 'threshold tracking' excitability studies...

  16. Secretion of hepatitis C virus envelope glycoproteins depends on assembly of apolipoprotein B positive lipoproteins.

    Directory of Open Access Journals (Sweden)

    Vinca Icard

    Full Text Available The density of circulating hepatitis C virus (HCV particles in the blood of chronically infected patients is very heterogeneous. The very low density of some particles has been attributed to an association of the virus with apolipoprotein B (apoB positive and triglyceride rich lipoproteins (TRL likely resulting in hybrid lipoproteins known as lipo-viro-particles (LVP containing the viral envelope glycoproteins E1 and E2, capsid and viral RNA. The specific infectivity of these particles has been shown to be higher than the infectivity of particles of higher density. The nature of the association of HCV particles with lipoproteins remains elusive and the role of apolipoproteins in the synthesis and assembly of the viral particles is unknown. The human intestinal Caco-2 cell line differentiates in vitro into polarized and apoB secreting cells during asymmetric culture on porous filters. By using this cell culture system, cells stably expressing E1 and E2 secreted the glycoproteins into the basal culture medium after one week of differentiation concomitantly with TRL secretion. Secreted glycoproteins were only detected in apoB containing density fractions. The E1-E2 and apoB containing particles were unique complexes bearing the envelope glycoproteins at their surface since apoB could be co-immunoprecipitated with E2-specific antibodies. Envelope protein secretion was reduced by inhibiting the lipidation of apoB with an inhibitor of the microsomal triglyceride transfer protein. HCV glycoproteins were similarly secreted in association with TRL from the human liver cell line HepG2 but not by Huh-7 and Huh-7.5 hepatoma cells that proved deficient for lipoprotein assembly. These data indicate that HCV envelope glycoproteins have the intrinsic capacity to utilize apoB synthesis and lipoprotein assembly machinery even in the absence of the other HCV proteins. A model for LVP assembly is proposed.

  17. The effect of iron-deficiency anemia on cytolytic activity of mice spleen and peritoneal cells against allogenic tumor cells

    International Nuclear Information System (INIS)

    Kuvibidila, S.R.; Baliga, B.S.; Suskind, R.M.

    1983-01-01

    The capacity of spleen and peritoneal cells from iron deficient mice, ad libitum fed control mice, and pair-fed mice to kill allogenic tumor cells (mastocytoma tumor P815) has been investigated. In the first study, mice were sensitized in vivo with 10(7) viable tumor cells 51 and 56 days after weaning. The capacity of splenic cells and peritoneal cells from sensitized and nonsensitized mice to kill tumor cells was evaluated 5 days after the second dose of tumor cells. At ratios of 2.5:1 to 100:1 of attacker to target cells, the percentage 51 Cr release after 4 h of incubation was significantly less in iron-deficient mice than control and/or pair-fed mice (p less than 0.05). Protein-energy undernutrition in pair-fed mice had no significant effect. In the second study, spleen cells and enriched T cell fractions were incubated in vitro for 5 days with uv irradiated Balb/C spleen cells in a 2:1 ratio. The cytotoxic capacity against the same allogenic tumor cells was again evaluated. The percentage chromium release at different attacker to target cells was less than 30% in the iron-deficient group compared to either control or pair-fed supporting the results of in vivo sensitized cells. The possible mode of impairment of the cytotoxic capacity is discussed

  18. Runx2 is required for early stages of endochondral bone formation but delays final stages of bone repair in Axin2-deficient mice

    Science.gov (United States)

    McGee-Lawrence, Meghan E.; Carpio, Lomeli R.; Bradley, Elizabeth W.; Dudakovic, Amel; Lian, Jane B.; van Wijnen, Andre J.; Kakar, Sanjeev; Hsu, Wei; Westendorf, Jennifer J.

    2014-01-01

    Runx2 and Axin2 regulate skeletal development. We recently determined that Axin2 and Runx2 molecularly interact in differentiating osteoblasts to regulate intramembranous bone formation, but the relationship between these factors in endochondral bone formation was unresolved. To address this, we examined the effects of Axin2 deficiency on the cleidocranial dysplasia (CCD) phenotype of Runx2+/− mice, focusing on skeletal defects attributed to improper endochondral bone formation. Axin2 deficiency unexpectedly exacerbated calvarial components of the CCD phenotype in the Runx2+/− mice; the endocranial layer of the frontal suture, which develops by endochondral bone formation, failed to mineralize in the Axin2−/−:Runx2+/− mice, resulting in a cartilaginous, fibrotic and larger fontanel than observed in Runx2+/− mice. Transcripts associated with cartilage development (e.g., Acan, miR140) were expressed at higher levels, whereas blood vessel morphogenesis transcripts (e.g., Slit2) were suppressed in Axin2−/−:Runx2+/− calvaria. Cartilage maturation was impaired, as primary chondrocytes from double mutant mice demonstrated delayed differentiation and produced less calcified matrix in vitro. The genetic dominance of Runx2 was also reflected during endochondral fracture repair, as both Runx2+/− and double mutant Axin2−/−:Runx2+/− mice had enlarged fracture calluses at early stages of healing. However, by the end stages of fracture healing, double mutant animals diverged from the Runx2+/− mice, showing smaller calluses and increased torsional strength indicative of more rapid end stage bone formation as seen in the Axin2−/− mice. Taken together, our data demonstrate a dominant role for Runx2 in chondrocyte maturation, but implicate Axin2 as an important modulator of the terminal stages of endochondral bone formation. PMID:24973690

  19. Morphological study of tooth development in podoplanin-deficient mice.

    Directory of Open Access Journals (Sweden)

    Kenyo Takara

    Full Text Available Podoplanin is a mucin-type highly O-glycosylated glycoprotein identified in several somatyic cells: podocytes, alveolar epithelial cells, lymphatic endothelial cells, lymph node stromal fibroblastic reticular cells, osteocytes, odontoblasts, mesothelial cells, glia cells, and others. It has been reported that podoplanin-RhoA interaction induces cytoskeleton relaxation and cell process stretching in fibroblastic cells and osteocytes, and that podoplanin plays a critical role in type I alveolar cell differentiation. It appears that podoplanin plays a number of different roles in contributing to cell functioning and growth by signaling. However, little is known about the functions of podoplanin in the somatic cells of the adult organism because an absence of podoplanin is lethal at birth by the respiratory failure. In this report, we investigated the tooth germ development in podoplanin-knockout mice, and the dentin formation in podoplanin-conditional knockout mice having neural crest-derived cells with deficiency in podoplanin by the Wnt1 promoter and enhancer-driven Cre recombinase: Wnt1-Cre;PdpnΔ/Δmice. In the Wnt1-Cre;PdpnΔ/Δmice, the tooth and alveolar bone showed no morphological abnormalities and grow normally, indicating that podoplanin is not critical in the development of the tooth and bone.

  20. Morphological study of tooth development in podoplanin-deficient mice.

    Science.gov (United States)

    Takara, Kenyo; Maruo, Naoki; Oka, Kyoko; Kaji, Chiaki; Hatakeyama, Yuji; Sawa, Naruhiko; Kato, Yukinari; Yamashita, Junro; Kojima, Hiroshi; Sawa, Yoshihiko

    2017-01-01

    Podoplanin is a mucin-type highly O-glycosylated glycoprotein identified in several somatyic cells: podocytes, alveolar epithelial cells, lymphatic endothelial cells, lymph node stromal fibroblastic reticular cells, osteocytes, odontoblasts, mesothelial cells, glia cells, and others. It has been reported that podoplanin-RhoA interaction induces cytoskeleton relaxation and cell process stretching in fibroblastic cells and osteocytes, and that podoplanin plays a critical role in type I alveolar cell differentiation. It appears that podoplanin plays a number of different roles in contributing to cell functioning and growth by signaling. However, little is known about the functions of podoplanin in the somatic cells of the adult organism because an absence of podoplanin is lethal at birth by the respiratory failure. In this report, we investigated the tooth germ development in podoplanin-knockout mice, and the dentin formation in podoplanin-conditional knockout mice having neural crest-derived cells with deficiency in podoplanin by the Wnt1 promoter and enhancer-driven Cre recombinase: Wnt1-Cre;PdpnΔ/Δmice. In the Wnt1-Cre;PdpnΔ/Δmice, the tooth and alveolar bone showed no morphological abnormalities and grow normally, indicating that podoplanin is not critical in the development of the tooth and bone.

  1. Indomethacin induced gastropathy in CD18, intercellular adhesion molecule 1, or P-selectin deficient mice

    Science.gov (United States)

    Morise, Z; Granger, D; Fuseler, J; Anderson, D; Grisham, M

    1999-01-01

    BACKGROUND—Neutrophil-endothelial cell interactions are thought to play a critical role in the pathophysiology of non-steroidal anti-inflammatory drug (NSAID) induced gastropathy.
AIMS—To optimise a mouse model of NSAID induced gastropathy and to evaluate the importance of adhesion molecules using adhesion molecule deficient mice.
METHODS—Gastropathy was induced in C57BL/6 mice or their adhesion molecule deficient counterparts via oral administration of indomethacin (20 mg/kg). Lesion scores, mucosal permeability, and histopathology were used to assess gastric mucosal injury.
RESULTS—Intragastric administration of indomethacin induced linear haemorrhagic mucosal lesions, primarily in the corpus of the stomach that were first observed at six hours. These lesions continued to develop over the next six hours with maximal lesion scores and mucosal permeabilities at 12 hours. When indomethacin was administered to mice deficient in CD18, intercellular adhesion molecule 1 (ICAM-1), or P-selectin, there were significant decreases in lesion scores compared with their C57BL/6 controls. In addition, mucosal permeabilities were found to be significantly lower in CD18 or ICAM-1 deficient mice observed at 12 hours.
CONCLUSION—Certain leucocyte and endothelial cell adhesion molecules are important determinants for full expression of indomethacin induced gastropathy. It is proposed that this modification of the mouse model may be useful for the investigation of other pathophysiological mechanisms of NSAID induced gastropathy.


Keywords: indomethacin; gastropathy; cyclooxygenase; intercellular adhesion molecule; VCAM; vascular cell adhesion molecule; P-selectin PMID:10486359

  2. Genomic instability in mice is greater in Fanconi anemia caused by deficiency of Fancd2 than Fancg.

    Science.gov (United States)

    Reliene, Ramune; Yamamoto, Mitsuko L; Rao, P Nagesh; Schiestl, Robert H

    2010-12-01

    Fanconi anemia (FA) results from mutations in the FANC genes and is characterized by bone marrow failure, birth defects, and a high incidence of cancer. FANCG is a part of the FA core complex that is responsible for monoubiquitination of FANCD2 and FANCI. The precise role of the FA pathway is not well understood, although it may be involved in homologous recombination (HR), nonhomologous end joining, and translesion synthesis (TLS). Fancd2(-/-) mice have a more severe phenotype than Fancg(-/-), and other FA core complex-deficient mice, although both Fancg and Fancd2 belong to the same FA pathway. We hypothesized that Fancd2 deficiency results in a more severe phenotype because Fancd2 also has a FA pathway-independent function in the maintenance of genomic integrity. To test this hypothesis, we determined the level of DNA damage and genomic instability in Fancd2(-/-), Fancg(-/-), and wild-type controls. Fancd2(-/-) mice displayed a higher magnitude of chromosomal breakage and micronucleus formation than the wild-type or Fancg(-/-) mice. Also, DNA strand breaks were increased in Fancd2(-/-) but not in Fancg(-/-) mice. In addition, Fancd2(-/-) mice displayed an elevated frequency of DNA deletions, resulting from HR at the endogenous p(un) locus. In contrast, in Fancg(-/-) mice, the frequency of DNA deletions was decreased. Thus, Fancd2 but not Fancg deficiency results in elevated chromosomal/DNA breakage and permanent genome rearrangements. This provides evidence that Fancd2 plays an additional role in the maintenance of genomic stability than Fancg, which might explain the higher predisposition to cancer seen in the Fancd2(-/-) mice.

  3. 7,8-Dihydroxyflavone Ameliorates Cognitive Impairment by Inhibiting Expression of Tau Pathology in ApoE-Knockout Mice

    Directory of Open Access Journals (Sweden)

    Yang Tan

    2016-11-01

    Full Text Available 7,8-Dihydroxyflavone (7,8-DHF, a tyrosine kinase B (TrkB agonist that mimics the neuroprotective properties of brain-derived neurotrophic factor, which can not efficiently deliver into the brain, has been reported to be useful in ameliorating cognitive impairment in many diseases. Researches have indicated that apolipoprotein E-knockout (ApoE-KO mouse was associated with cognitive alteration via various mechanisms. Our present study investigated the possible mechanisms of cognitive impairment of ApoE-KO mouse fed with western type diet and the protective effects of 7,8-DHF in improving spatial learning and memory in ApoE-KO mouse. 5-weeks-old ApoE-KO mice and C57BL/6 mice were chronically treated with 7,8-DHF (with a dosage of 5mg/kg or vehicles orally for 25 weeks, and then subjected to Morris water maze at the age of 30 weeks to evaluate the cognitive performances. Afterwards, histology analysis and western blotting were performed. Spatial learning and memory deficits were observed in ApoE-KO mice, which were consistent with higher expression of active-asparaginyl endopeptidase (active-AEP as well as AEP-derived truncated tauN368 compared with normal group. In addition to that, long-term treatment of 7,8-DHF dramatically ameliorated cognitive decline in ApoE-KO mice, accompanied by the activation in phosphorylated protein kinase B (Akt/glycogen synthase kinase-3β (GSK-3β pathway and down-regulated expression of tau S396 and PHF-tau (phosphorylated tau at ser396 and ser404 epitope. These findings suggested that cognitive impairment of ApoE-KO mouse might associate with tau pathology and 7,8-DHF could activate AKT and then phosphorylate its downstream molecule to inhibit expression of abnormal tau, meanwhile, 7,8-DHF could reduce the expression of active-AEP and then inhibit production of truncated tauN368.

  4. Gene therapy/bone marrow transplantation in ADA-deficient mice: roles of enzyme-replacement therapy and cytoreduction

    Science.gov (United States)

    Jin, Xiangyang; Wang, Xingchao; Yu, Xiao-Jin; Rozengurt, Nora; Kaufman, Michael L.; Wang, Xiaoyan; Gjertson, David; Zhou, Yang; Blackburn, Michael R.; Kohn, Donald B.

    2012-01-01

    Gene therapy (GT) for adenosine deaminase–deficient severe combined immune deficiency (ADA-SCID) can provide significant long-term benefit when patients are given nonmyeloablative conditioning and ADA enzyme-replacement therapy (ERT) is withheld before autologous transplantation of γ-retroviral vector-transduced BM CD34+ cells. To determine the contributions of conditioning and discontinuation of ERT to the therapeutic effects, we analyzed these factors in Ada gene knockout mice (Ada−/−). Mice were transplanted with ADA-deficient marrow transduced with an ADA-expressing γ-retroviral vector without preconditioning or after 200 cGy or 900 cGy total-body irradiation and evaluated after 4 months. In all tissues analyzed, vector copy numbers (VCNs) were 100- to 1000-fold greater in mice receiving 900 cGy compared with 200 cGy (P < .05). In mice receiving 200 cGy, VCN was similar whether ERT was stopped or given for 1 or 4 months after GT. In unconditioned mice, there was decreased survival with and without ERT, and VCN was very low to undetectable. When recipients were conditioned with 200 cGy and received transduced lineage-depleted marrow, only recipients receiving ERT (1 or 4 months) had detectable vector sequences in thymocytes. In conclusion, cytoreduction is important for the engraftment of gene-transduced HSC, and short-term ERT after GT did not diminish the capacity of gene-corrected cells to engraft and persist. PMID:22833548

  5. Mice with Sort1 deficiency display normal cognition but elevated anxiety-like behavior.

    Science.gov (United States)

    Ruan, Chun-Sheng; Yang, Chun-Rui; Li, Jia-Yi; Luo, Hai-Yun; Bobrovskaya, Larisa; Zhou, Xin-Fu

    2016-07-01

    Exposure to stressful life events plays a central role in the development of mood disorders in vulnerable individuals. However, the mechanisms that link mood disorders to stress are poorly understood. Brain-derived neurotrophic factor (BDNF) has long been implicated in positive regulation of depression and anxiety, while its precursor (proBDNF) recently showed an opposing effect on such mental illnesses. P75(NTR) and sortilin are co-receptors of proBDNF, however, the role of these receptors in mood regulation is not established. Here, we aimed to investigate the role of sortilin in regulating mood-related behaviors and its role in the proBDNF-mediated mood abnormality in mice. We found that sortilin was up-regulated in neocortex (by 78.3%) and hippocampus (by 111%) of chronically stressed mice as assessed by western blot analysis. These changes were associated with decreased mobility in the open field test and increased depression-like behavior in the forced swimming test. We also found that sortilin deficiency in mice resulted in hyperlocomotion in the open field test and increased anxiety-like behavior in both the open field and elevated plus maze tests. No depression-like behavior in the forced swimming test and no deficit in spatial cognition in the Morris water maze test were found in the Sort1-deficient mice. Moreover, the intracellular and extracellular levels of mature BDNF and proBDNF were not changed when sortilin was absent in vivo and in vitro. Finally, we found that both WT and Sort1-deficient mice injected with proBDNF in lateral ventricle displayed increased depression-like behavior in the forced swimming test but not anxiety-like behaviors in the open field and elevated plus maze tests. The present study suggests that sortilin functions as a negative regulator of mood performance and can be a therapeutic target for the treatment of mental illness. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  6. Disruption of Nrf2, a key inducer of antioxidant defenses, attenuates ApoE-mediated atherosclerosis in mice.

    Directory of Open Access Journals (Sweden)

    Thomas E Sussan

    Full Text Available BACKGROUND: Oxidative stress and inflammation are two critical factors that drive the formation of plaques in atherosclerosis. Nrf2 is a redox-sensitive transcription factor that upregulates a battery of antioxidative genes and cytoprotective enzymes that constitute the cellular response to oxidative stress. Our previous studies have shown that disruption of Nrf2 in mice (Nrf2(-/- causes increased susceptibility to pulmonary emphysema, asthma and sepsis due to increased oxidative stress and inflammation. Here we have tested the hypothesis that disruption of Nrf2 in mice causes increased atherosclerosis. PRINCIPAL FINDINGS: To investigate the role of Nrf2 in the development of atherosclerosis, we crossed Nrf2(-/- mice with apoliporotein E-deficient (ApoE(-/- mice. ApoE(-/- and ApoE(-/-Nrf2(-/- mice were fed an atherogenic diet for 20 weeks, and plaque area was assessed in the aortas. Surprisingly, ApoE(-/-Nrf2(-/- mice exhibited significantly smaller plaque area than ApoE(-/- controls (11.5% vs 29.5%. This decrease in plaque area observed in ApoE(-/-Nrf2(-/- mice was associated with a significant decrease in uptake of modified low density lipoproteins (AcLDL by isolated macrophages from ApoE(-/-Nrf2(-/- mice. Furthermore, atherosclerotic plaques and isolated macrophages from ApoE(-/-Nrf2(-/- mice exhibited decreased expression of the scavenger receptor CD36. CONCLUSIONS: Nrf2 is pro-atherogenic in mice, despite its antioxidative function. The net pro-atherogenic effect of Nrf2 may be mediated via positive regulation of CD36. Our data demonstrates that the potential effects of Nrf2-targeted therapies on cardiovascular disease need to be investigated.

  7. Synergistic associations of depression and apolipoprotein E genotype with incidence of dementia.

    Science.gov (United States)

    Kim, Jae-Min; Stewart, Robert; Kim, Seon-Young; Kim, Sung-Wan; Bae, Kyung-Yeol; Yang, Su-Jin; Shin, Il-Seon; Yoon, Jin-Sang

    2011-09-01

    A cohort study of Japanese-American men suggested interactive effects of depression and apolipoprotein E (APOE) e4 allele on risk of incident dementia. In another sample of East Asian origin, we sought to replicate the findings and to explore individual depressive symptoms where this interaction was most evident. Of 625 Korean community elders without dementia at baseline, 518 (83%) were followed over a 2.4-year period and were clinically assessed for incident dementia. Depression was identified by the Geriatric Mental State Schedule (GMS), and nine individual depressive symptoms relevant to DSM-IV major depressive episode criteria were extracted. APOE genotype was ascertained. Covariates included age, gender, education, and disability. There were synergistic interactions between depression and APOE e4 on incident dementia independent of covariates. This interaction was particularly strong for four depressive symptoms: depressed mood, worthlessness, concentration difficulty, and suicidal ideation. We were able to replicate the previous study, finding that, at least in East Asian origin populations, the APOE e4 allele is a stronger predictor of incident dementia in the presence of depressive syndrome, and particular depressive symptoms. Copyright © 2010 John Wiley & Sons, Ltd.

  8. Transient impairment of the adaptive response to fasting in FXR-deficient mice

    NARCIS (Netherlands)

    Cariou, B; van Harmelen, K; Duran-Sandoval, D; van Dijk, T; Grefhorst, A; Bouchaert, E; Fruchart, JC; Gonzalez, FJ; Kuipers, F; Staels, B

    2005-01-01

    The farnesoid X receptor (FXR) has been suggested to play a role in gluconeogenesis. To determine whether FXR modulates the response to fasting in vivo, FXR-deficient (FXR-/-) and wild-type mice were submitted to fasting for 48 h. Our results demonstrate that FXR modulates the kinetics of

  9. Change in Serum Lipid during Growth Hormone Therapy in a Growth Hormone-Deficient Patient with Decreased Serum Apolipoprotem C-II

    OpenAIRE

    Tadashi, Moriwake; Masanori, Takaiwa; Masako, Kawakami; Shouichi, Tanaka; Tetsuya, Nakamura; Department of Pediatrics, Iwakuni National Hospital; Department of Pediatrics, Iwakuni National Hospital; Department of Pediatrics, Iwakuni National Hospital; Department of Internal Medicine, Iwakuni National Hospital; Department of Radiology, Iwakuni National Hospital

    2003-01-01

    Introduction The effects of GH on lipid metabolism have been discussed frequently in relation to quality of adult life in childhood-onset GH deficiency, but its effects on lipid metabolism were not fully understood. In the present study, we analyzed the longitudinal change in serum lipid metabolites and apolipoproteins in a GH-deficient patient who had a history of cholelithiasis with decreased apolipoprotein C-II. Case K.Y. Four-year old boy visited the emergency clinic of Iwakuni National H...

  10. [Effect of extracts from Dendrobii ifficinalis flos on hyperthyroidism Yin deficiency mice].

    Science.gov (United States)

    Lei, Shan-shan; Lv, Gui-yuan; Jin, Ze-wu; Li, Bo; Yang, Zheng-biao; Chen, Su-hong

    2015-05-01

    Some unhealthy life habits, such as long-term smoking, heavy drinking, sexual overstrain and frequent stay-up could induce the Yin deficiency symptoms of zygomatic red and dysphoria. Stems of Dendrobii officinalis flos (DOF) showed the efficacy of nourishing Yin. In this study, the hyperthyroidism Yin deficiency model was set up to study the yin nourishing effect and action mechanism of DOF, in order to provide the pharmacological basis for developing DOF resources and decreasing resource wastes. ICR mice were divided into five groups: the normal control group, the model control group, the positive control group and DOF extract groups (6.4 g · kg(-1)). Except for the normal group, the other groups were administrated with thyroxine for 30 d to set up the hyperthyroidism yin deficiency model. At the same time, the other groups were administrated with the corresponding drugs for 30 d. After administration for 4 weeks, the signs (facial temperature, pain domain, heart rate and autonomic activity) in mice were measured, and the facial and ear micro-circulation blood flow were detected by laser Doppler technology. After the last administration, all mice were fasted for 12 hours, blood were collected from their orbits, and serum were separated to detect AST, ALT, TG and TP by the automatic biochemistry analyzer and test T3, T4 and TSH levels by ELISA. (1) Compared with the normal control group, the model control group showed significant increases in facial and ear micro-circulation blood flow, facial temperature and heart rate (P effects by impacting thyroxin substance metabolism, improving micro-circulation and reducing heart rate.

  11. Aromatase deficiency causes altered expression of molecules critical for calcium reabsorption in the kidneys of female mice *.

    NARCIS (Netherlands)

    Oz, O.K.; Hajibeigi, A.; Howard, K.; Cummins, C.L.; Abel, M. van; Bindels, R.J.M.; Word, R.A.; Kuro-o, M.; Pak, C.Y.; Zerwekh, J.E.

    2007-01-01

    Kidney stones increase after menopause, suggesting a role for estrogen deficiency. ArKO mice have hypercalciuria and lower levels of calcium transport proteins, whereas levels of the klotho protein are elevated. Thus, estrogen deficiency is sufficient to cause altered renal calcium handling.

  12. Additive effects of lupin protein and phytic acid on aortic calcification in ApoE deficient mice

    Directory of Open Access Journals (Sweden)

    Alexandra Schutkowski

    2015-03-01

    A two-factorial study with ApoE knockout mice was conducted in which mice received lupin protein isolate or casein with or without phytase. Phytic acid was added to the casein diets to a final concentration identical to the lupin protein diets. Here we show that the serum concentrations of cholesterol, lathosterol and desmosterol were lower and the faecal bile acid excretion was higher in the groups fed lupin proteins than in the groups fed casein (p < 0.05. Mice that received the lupin protein diet containing phytic acid were characterized by a lower aortic calcification than mice of the other three groups (p < 0.05. In conclusion, our results show that the cholesterol lowering properties of lupin protein isolate were not caused by phytic acid. However, the hypocalcific action of lupin proteins appears to depend on the combination of lupin proteins and phytic acid.

  13. Myeloid differentiation factor 88 (MyD88-deficiency increases risk of diabetes in mice.

    Directory of Open Access Journals (Sweden)

    Toru Hosoi

    Full Text Available BACKGROUND: Multiple lines of evidence suggest innate immune response pathways to be involved in the development of obesity-associated diabetes although the molecular mechanism underling the disease is unknown. Recent observations suggest that saturated fatty acids can act as a ligand for toll-like receptor (TLR 4, which is thought to mediate obesity-associated insulin resistance. Myeloid differentiation factor 88 (MyD88 is an adapter protein for TLR/IL-1 receptor signaling, which is involved in the activation of inflammatory pathways. To evaluate molecular mechanisms linking obesity-associated diabetes down-stream of TLR4, we investigated physiological role of MyD88 in high-fat diet (HFD-induced obesity. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we found MyD88-deficient mice fed a HFD had increased circulating levels of insulin, leptin and cholesterol, as well as liver dysfunction (increased induction of ALT levels, increased activation of JNK and cleavage of PARP, which were linked to the onset of severe diabetes. On the other hand, TNF-alpha would not be involved in HFD-induced diabetes in MyD88-deficient mice, because TNF-alpha level was attenuated in MyD88-deficient mice fed with HFD. CONCLUSIONS/SIGNIFICANCE: The present finding of an unexpected role for MyD88 in preventing diabetes may provide a potential novel target/strategy for treating metabolic syndrome.

  14. Rescuing cholinergic neurons from apoptotic degeneration by targeting of serotonin modulator- and apolipoprotein E-conjugated liposomes to the hippocampus

    Directory of Open Access Journals (Sweden)

    Kuo YC

    2016-12-01

    Full Text Available Yung-Chih Kuo, Yin-Jung Lee Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan, Republic of China Abstract: β-Amyloid (Aβ-targeting liposomes (LIP with surface serotonin modulator (SM and apolipoprotein E (ApoE were utilized to facilitate the delivery of nerve growth factor (NGF across the blood–brain barrier (BBB for neuroprotection in the hippocampus. The therapeutic efficacy of SM- and ApoE-grafted LIP carrying NGF (NGF-SM-ApoE-LIP was assessed by an in vitro Alzheimer’s disease (AD model of degenerated SK-N-MC cells and an in vivo AD model of Aβ-insulted Wistar rats. The experimental evidences revealed that the modified SM and ApoE on the surface of LIP increased the permeation of NGF across the BBB without serious damage to structural integrity of tight junction. When compared with free NGF, NGF-SM-ApoE-LIP upregulated the expression of phosphorylated neurotrophic tyrosine kinase receptor type 1 on cholinergic neurons and significantly improved their survival. In addition, NGF-SM-ApoE-LIP could reduce the secretion of acetylcholinesterase and malondialdehyde and rescue hippocampal neurons from apoptosis in rat brains. The synergistic effect of SM and ApoE is promising in the induction of NGF to inhibit the neurotoxicity of Aβ and NGF-SM-ApoE-LIP can be a potent antiapoptotic pharmacotherapy for clinical care of patients with AD. Keywords: Alzheimer’s disease, blood–brain barrier, serotonin modulator, apolipoprotein E, nerve growth factor, liposome

  15. The role of CD4+ T cells in cell-mediated immunity to LCMV: studies in MHC class I and class II deficient mice

    DEFF Research Database (Denmark)

    Christensen, Jan Pravsgaard; Marker, O; Thomsen, Allan Randrup

    1994-01-01

    Parameters of the virus-specific T-cell response were analysed in order to dissect the contribution of CD4+ and CD8+ T cells to cell-mediated immunity to lymphocytic choriomeningitis virus. In MHC class II deficient mice, initial T-cell responsiveness was not impaired, but virus clearance...... was delayed, and virus-specific Td activity declined more rapidly. Furthermore, class I restricted Tc memory appeared to be impaired in these mice. To directly evaluate the role of CD4+ cells in virus clearance and T-cell mediated inflammation, MHC class I deficient mice were also studied. No virus...... exudate. This low-grade response was associated with some degree of virus control as organ titres were lower in these animals than in matched T-cell deficient nu/nu mice or class I deficient mice treated with anti-CD4 monoclonal antibody. This confirms that CD4+ cells are not needed to induce a virus...

  16. Impact of PACAP and PAC1 receptor deficiency on the neurochemical and behavioral effects of acute and chronic restraint stress in male C57BL/6 mice.

    Science.gov (United States)

    Mustafa, Tomris; Jiang, Sunny Zhihong; Eiden, Adrian M; Weihe, Eberhard; Thistlethwaite, Ian; Eiden, Lee E

    2015-01-01

    Acute restraint stress (ARS) for 3 h causes corticosterone (CORT) elevation in venous blood, which is accompanied by Fos up-regulation in the paraventricular nucleus (PVN) of male C57BL/6 mice. CORT elevation by ARS is attenuated in PACAP-deficient mice, but unaffected in PAC1-deficient mice. Correspondingly, Fos up-regulation by ARS is greatly attenuated in PACAP-deficient mice, but much less so in PAC1-deficient animals. We noted that both PACAP- and PAC1-deficiency greatly attenuate CORT elevation after ARS when CORT measurements are performed on trunk blood following euthanasia by abrupt cervical separation: this latter observation is of critical importance in assessing the role of PACAP neurotransmission in ARS, based on previous reports in which serum CORT was sampled from trunk blood. Seven days of chronic restraint stress (CRS) induces non-habituating CORT elevation, and weight loss consequent to hypophagia, in wild-type male C57BL/6 mice. Both CORT elevation and weight loss following 7-day CRS are severely blunted in PACAP-deficient mice, but only slightly in PAC1-deficient mice. However, longer periods of daily restraint (14-21 days) resulted in sustained weight loss and elevated CORT in wild-type mice, and these effects of long-term chronic stress were attenuated or abolished in both PACAP- and PAC1-deficient mice. We conclude that while a PACAP receptor in addition to PAC1 may mediate some of the PACAP-dependent central effects of ARS and short-term (7 days) CRS.

  17. Effect of apolipoprotein M on high density lipoprotein metabolism and atherosclerosis in low density lipoprotein receptor knock-out mice

    DEFF Research Database (Denmark)

    Christoffersen, Christina; Jauhiainen, Matti; Moser, Markus

    2008-01-01

    To investigate the role of apoM in high density lipoprotein (HDL) metabolism and atherogenesis, we generated human apoM transgenic (apoM-Tg) and apoM-deficient (apoM(-/-)) mice. Plasma apoM was predominantly associated with 10-12-nm alpha-migrating HDL particles. Human apoM overexpression (11-fol...

  18. Effects of Vector Backbone and Pseudotype on Lentiviral Vector-mediated Gene Transfer: Studies in Infant ADA-Deficient Mice and Rhesus Monkeys

    Science.gov (United States)

    Carbonaro Sarracino, Denise; Tarantal, Alice F; Lee, C Chang I.; Martinez, Michele; Jin, Xiangyang; Wang, Xiaoyan; Hardee, Cinnamon L; Geiger, Sabine; Kahl, Christoph A; Kohn, Donald B

    2014-01-01

    Systemic delivery of a lentiviral vector carrying a therapeutic gene represents a new treatment for monogenic disease. Previously, we have shown that transfer of the adenosine deaminase (ADA) cDNA in vivo rescues the lethal phenotype and reconstitutes immune function in ADA-deficient mice. In order to translate this approach to ADA-deficient severe combined immune deficiency patients, neonatal ADA-deficient mice and newborn rhesus monkeys were treated with species-matched and mismatched vectors and pseudotypes. We compared gene delivery by the HIV-1-based vector to murine γ-retroviral vectors pseudotyped with vesicular stomatitis virus-glycoprotein or murine retroviral envelopes in ADA-deficient mice. The vesicular stomatitis virus-glycoprotein pseudotyped lentiviral vectors had the highest titer and resulted in the highest vector copy number in multiple tissues, particularly liver and lung. In monkeys, HIV-1 or simian immunodeficiency virus vectors resulted in similar biodistribution in most tissues including bone marrow, spleen, liver, and lung. Simian immunodeficiency virus pseudotyped with the gibbon ape leukemia virus envelope produced 10- to 30-fold lower titers than the vesicular stomatitis virus-glycoprotein pseudotype, but had a similar tissue biodistribution and similar copy number in blood cells. The relative copy numbers achieved in mice and monkeys were similar when adjusted to the administered dose per kg. These results suggest that this approach can be scaled-up to clinical levels for treatment of ADA-deficient severe combined immune deficiency subjects with suboptimal hematopoietic stem cell transplantation options. PMID:24925206

  19. Effects of vector backbone and pseudotype on lentiviral vector-mediated gene transfer: studies in infant ADA-deficient mice and rhesus monkeys.

    Science.gov (United States)

    Carbonaro Sarracino, Denise; Tarantal, Alice F; Lee, C Chang I; Martinez, Michele; Jin, Xiangyang; Wang, Xiaoyan; Hardee, Cinnamon L; Geiger, Sabine; Kahl, Christoph A; Kohn, Donald B

    2014-10-01

    Systemic delivery of a lentiviral vector carrying a therapeutic gene represents a new treatment for monogenic disease. Previously, we have shown that transfer of the adenosine deaminase (ADA) cDNA in vivo rescues the lethal phenotype and reconstitutes immune function in ADA-deficient mice. In order to translate this approach to ADA-deficient severe combined immune deficiency patients, neonatal ADA-deficient mice and newborn rhesus monkeys were treated with species-matched and mismatched vectors and pseudotypes. We compared gene delivery by the HIV-1-based vector to murine γ-retroviral vectors pseudotyped with vesicular stomatitis virus-glycoprotein or murine retroviral envelopes in ADA-deficient mice. The vesicular stomatitis virus-glycoprotein pseudotyped lentiviral vectors had the highest titer and resulted in the highest vector copy number in multiple tissues, particularly liver and lung. In monkeys, HIV-1 or simian immunodeficiency virus vectors resulted in similar biodistribution in most tissues including bone marrow, spleen, liver, and lung. Simian immunodeficiency virus pseudotyped with the gibbon ape leukemia virus envelope produced 10- to 30-fold lower titers than the vesicular stomatitis virus-glycoprotein pseudotype, but had a similar tissue biodistribution and similar copy number in blood cells. The relative copy numbers achieved in mice and monkeys were similar when adjusted to the administered dose per kg. These results suggest that this approach can be scaled-up to clinical levels for treatment of ADA-deficient severe combined immune deficiency subjects with suboptimal hematopoietic stem cell transplantation options.

  20. Remodeling of Sensorimotor Brain Connectivity in Gpr88-Deficient Mice.

    Science.gov (United States)

    Arefin, Tanzil Mahmud; Mechling, Anna E; Meirsman, Aura Carole; Bienert, Thomas; Hübner, Neele Saskia; Lee, Hsu-Lei; Ben Hamida, Sami; Ehrlich, Aliza; Roquet, Dan; Hennig, Jürgen; von Elverfeldt, Dominik; Kieffer, Brigitte Lina; Harsan, Laura-Adela

    2017-10-01

    Recent studies have demonstrated that orchestrated gene activity and expression support synchronous activity of brain networks. However, there is a paucity of information on the consequences of single gene function on overall brain functional organization and connectivity and how this translates at the behavioral level. In this study, we combined mouse mutagenesis with functional and structural magnetic resonance imaging (MRI) to determine whether targeted inactivation of a single gene would modify whole-brain connectivity in live animals. The targeted gene encodes GPR88 (G protein-coupled receptor 88), an orphan G protein-coupled receptor enriched in the striatum and previously linked to behavioral traits relevant to neuropsychiatric disorders. Connectivity analysis of Gpr88-deficient mice revealed extensive remodeling of intracortical and cortico-subcortical networks. Most prominent modifications were observed at the level of retrosplenial cortex connectivity, central to the default mode network (DMN) whose alteration is considered a hallmark of many psychiatric conditions. Next, somatosensory and motor cortical networks were most affected. These modifications directly relate to sensorimotor gating deficiency reported in mutant animals and also likely underlie their hyperactivity phenotype. Finally, we identified alterations within hippocampal and dorsal striatum functional connectivity, most relevant to a specific learning deficit that we previously reported in Gpr88 -/- animals. In addition, amygdala connectivity with cortex and striatum was weakened, perhaps underlying the risk-taking behavior of these animals. This is the first evidence demonstrating that GPR88 activity shapes the mouse brain functional and structural connectome. The concordance between connectivity alterations and behavior deficits observed in Gpr88-deficient mice suggests a role for GPR88 in brain communication.

  1. An apolipoprotein A-V gene SNP is associated with marked hypertriglyceridemia among Asian-American patients

    NARCIS (Netherlands)

    C.R. Pullinger (Clive); B.E. Aouizerat (Bradley); I. Movsesyan (Irina); V. Durlach (Vincent); E.J.G. Sijbrands (Eric); K. Nakajima (Katsuyuki); A. Poon (Annie); G.M. Dallinga-Thie (Geesje); H. Hattori (Hiroaki); L.L. Green (Lauri); P.-Y. Kwok (Pui-Yan); R.J. Havel (Richard); P.H. Frost (Philip); M.J. Malloy (Mary); J.P. Kane (John)

    2008-01-01

    textabstractApolipoprotein A-V (apoA-V) is an important regulator of plasma levels of triglyceride (TG) in mice. In humans, APOA5 genetic variation is associated with TG in several populations. In this study, we determined the effects of the p.185Gly>Cys (c.553G>T; rs2075291) polymorphism on plasma

  2. Truncated recombinant human SP-D attenuates emphysema and type II cell changes in SP-D deficient mice

    Directory of Open Access Journals (Sweden)

    Mühlfeld Christian

    2007-10-01

    Full Text Available Abstract Background Surfactant protein D (SP-D deficient mice develop emphysema-like pathology associated with focal accumulations of foamy alveolar macrophages, an excess of surfactant phospholipids in the alveolar space and both hypertrophy and hyperplasia of alveolar type II cells. These findings are associated with a chronic inflammatory state. Treatment of SP-D deficient mice with a truncated recombinant fragment of human SP-D (rfhSP-D has been shown to decrease the lipidosis and alveolar macrophage accumulation as well as production of proinflammatory chemokines. The aim of this study was to investigate if rfhSP-D treatment reduces the structural abnormalities in parenchymal architecture and type II cells characteristic of SP-D deficiency. Methods SP-D knock-out mice, aged 3 weeks, 6 weeks and 9 weeks were treated with rfhSP-D for 9, 6 and 3 weeks, respectively. All mice were sacrificed at age 12 weeks and compared to both PBS treated SP-D deficient and wild-type groups. Lung structure was quantified by design-based stereology at the light and electron microscopic level. Emphasis was put on quantification of emphysema, type II cell changes and intracellular surfactant. Data were analysed with two sided non-parametric Mann-Whitney U-test. Main Results After 3 weeks of treatment, alveolar number was higher and mean alveolar size was smaller compared to saline-treated SP-D knock-out controls. There was no significant difference concerning these indices of pulmonary emphysema within rfhSP-D treated groups. Type II cell number and size were smaller as a consequence of treatment. The total volume of lamellar bodies per type II cell and per lung was smaller after 6 weeks of treatment. Conclusion Treatment of SP-D deficient mice with rfhSP-D leads to a reduction in the degree of emphysema and a correction of type II cell hyperplasia and hypertrophy. This supports the concept that rfhSP-D might become a therapeutic option in diseases that are

  3. Early-Life Persistent Vitamin D Deficiency Alters Cardiopulmonary Responses to Particulate Matter-Enhanced Atmospheric Smog in Adult Mice

    Science.gov (United States)

    This study demonstrates that early-life persistent vitamin D deficiency alters the cardiopulmonary response to smog in mice and may increase risk of adverse effects. Early life nutritional deficiencies can lead to increased cardiovascular susceptibility to environme...

  4. Cultured cells of the blood-brain barrier from apolipoprotein B-100 transgenic mice: effects of oxidized low-density lipoprotein treatment.

    Science.gov (United States)

    Lénárt, Nikolett; Walter, Fruzsina R; Bocsik, Alexandra; Sántha, Petra; Tóth, Melinda E; Harazin, András; Tóth, Andrea E; Vizler, Csaba; Török, Zsolt; Pilbat, Ana-Maria; Vígh, László; Puskás, László G; Sántha, Miklós; Deli, Mária A

    2015-07-17

    The apolipoprotein B-100 (ApoB-100) transgenic mouse line is a model of human atherosclerosis. Latest findings suggest the importance of ApoB-100 in the development of neurodegenerative diseases and microvascular/perivascular localization of ApoB-100 protein was demonstrated in the cerebral cortex of ApoB-100 transgenic mice. The aim of the study was to characterize cultured brain endothelial cells, pericytes and glial cells from wild-type and ApoB-100 transgenic mice and to study the effect of oxidized low-density lipoprotein (oxLDL) on these cells. Morphology of cells isolated from brains of wild type and ApoB-100 transgenic mice was characterized by immunohistochemistry and the intensity of immunolabeling was quantified by image analysis. Toxicity of oxLDL treatment was monitored by real-time impedance measurement and lactate dehydrogenase release. Reactive oxygen species and nitric oxide production, barrier permeability in triple co-culture blood-brain barrier model and membrane fluidity were also determined after low-density lipoprotein (LDL) or oxLDL treatment. The presence of ApoB-100 was confirmed in brain endothelial cells, while no morphological change was observed between wild type and transgenic cells. Oxidized but not native LDL exerted dose-dependent toxicity in all three cell types, induced barrier dysfunction and increased reactive oxygen species (ROS) production in both genotypes. A partial protection from oxLDL toxicity was seen in brain endothelial and glial cells from ApoB-100 transgenic mice. Increased membrane rigidity was measured in brain endothelial cells from ApoB-100 transgenic mice and in LDL or oxLDL treated wild type cells. The morphological and functional properties of cultured brain endothelial cells, pericytes and glial cells from ApoB-100 transgenic mice were characterized and compared to wild type cells for the first time. The membrane fluidity changes in ApoB-100 transgenic cells related to brain microvasculature indicate

  5. In vivo imaging of macrophages during the early-stages of abdominal aortic aneurysm using high resolution MRI in ApoE mice.

    Directory of Open Access Journals (Sweden)

    Yuyu Yao

    Full Text Available BACKGROUND: Angiotensin II (ANG II promotes vascular inflammation and induces abdominal aortic aneurysm (AAA in hyperlipidemic apolipoprotein E knock-out (apoE(-/- mice. The aim of the present study was to detect macrophage activities in an ANG II-induced early-stage AAA model using superparamagnetic iron oxide (SPIO as a marker. METHODOLOGY/PRINCIPAL FINDINGS: Twenty-six male apoE(-/- mice received saline or ANG II (1000 or 500 ng/kg/min infusion for 14 days. All animals underwent MRI scanning following administration of SPIO with the exception of three mice in the 1000 ng ANG II group, which were scanned without SPIO administration. MR imaging was performed using black-blood T2 to proton density -weighted multi-spin multi-echo sequence. In vivo MRI measurement of SPIO uptake and abdominal aortic diameter were obtained. Prussian blue, CD68,α-SMC and MAC3 immunohistological stains were used for the detection of SPIO, macrophages and smooth muscle cells. ANG II infusion with 1000 ng/kg/min induced AAA in all of the apoE(-/- mice. ANG II infusion exhibited significantly higher degrees of SPIO uptake, which was detected using MRI as a distinct loss of signal intensity. The contrast-to-noise ratio value decreased in proportion to an increase in the number of iron-laden macrophages in the aneurysm. The aneurysmal vessel wall in both groups of ANG II treated mice contained more iron-positive macrophages than saline-treated mice. However, the presence of cells capable of phagocytosing haemosiderin in mural thrombi also induced low-signal-intensities via MRI imaging. CONCLUSIONS/SIGNIFICANCE: SPIO is taken up by macrophages in the shoulder and the outer layer of AAA. This alters the MRI signaling properties and can be used in imaging inflammation associated with AAA. It is important to compare images of the aorta before and after SPIO injection.

  6. Amplification of EDHF-type vasodilatations in TRPC1-deficient mice

    DEFF Research Database (Denmark)

    Schmidt, Kjestine; Dubrovska, Galyna; Nielsen, Gorm

    2010-01-01

    -deficient mice (TRPC1-/-). Experimental approach. Vascular responses were studied using pressure/wire-myography and intravital microscopy. We performed electrophysiological measurements, and confocal Ca(2+) imaging for studying K(Ca)-channel functions and Ca(2+)sparks. Key results. TRPC1-deficiency...... in carotid arteries produced a twofold augmentation of TRAM-34- and UCL1684-sensitive EDHF-type vasodilatations and of endothelial hyperpolarization to acetylcholine. NO-mediated vasodilatations were unchanged. TRPC1-/- exhibited enhanced EDHF-type vasodilatations in resistance-sized arterioles in vivo...... associated with reduced spontaneous tone. Endothelial IK(Ca)/SK(Ca)-type K(Ca) currents, smooth muscle cell Ca(2+) sparks and associated BK(Ca)-mediated spontaneous transient outward currents (STOC) were unchanged in TRPC1-/-. Smooth muscle contractility induced by receptor-operated Ca(2+) influx or Ca(2...

  7. Influence of apolipoprotein A-V on the metabolic fate of triacylglycerol.

    Science.gov (United States)

    Sharma, Vineeta; Forte, Trudy M; Ryan, Robert O

    2013-04-01

    Apolipoprotein (apo) A-V functions to modulate intracellular and extracellular triacylglycerol metabolism. The present review addresses molecular mechanisms underlying these effects. The relevance of apoA-V to human disease conditions is illustrated by the strong correlation between single nucleotide polymorphisms in APOA5, elevated plasma triacylglycerol and dyslipidemic disease. Despite undergoing processing for secretion from hepatocytes, a portion of apoA-V escapes this destiny and accumulates as a component of cytosolic lipid droplets. Expression of recombinant apoA-V in hepatocarcinoma cells results in increased lipid droplet size and number at the expense of triacylglycerol secretion.ApoA-V modulates atherosclerosis in hypercholesterolemic apoE null mice. ApoE null/human apoA-V transgenic mice had reduced levels of triacylglycerol and cholesterol in plasma along with decreased aortic lesion size. ApoA-V modulates triacylglycerol metabolic fate. Following its synthesis, apoA-V enters the endoplasmic reticulum and associates with membrane defects created by triacylglycerol accumulation. Association of apoA-V with endoplasmic reticulum membrane defects promotes nascent lipid droplets budding toward the cytosol. Despite its low concentration in plasma (∼150 ng/ml), apoA-V modulates lipoprotein metabolism by binding to glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1. This interaction effectively localizes triacylglycerol-rich lipoproteins in the vicinity of glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein1's other ligand, lipoprotein lipase.

  8. Thymidine kinase 2 deficiency-induced mitochondrial DNA depletion causes abnormal development of adipose tissues and adipokine levels in mice.

    Directory of Open Access Journals (Sweden)

    Joan Villarroya

    Full Text Available Mammal adipose tissues require mitochondrial activity for proper development and differentiation. The components of the mitochondrial respiratory chain/oxidative phosphorylation system (OXPHOS are encoded by both mitochondrial and nuclear genomes. The maintenance of mitochondrial DNA (mtDNA is a key element for a functional mitochondrial oxidative activity in mammalian cells. To ascertain the role of mtDNA levels in adipose tissue, we have analyzed the alterations in white (WAT and brown (BAT adipose tissues in thymidine kinase 2 (Tk2 H126N knockin mice, a model of TK2 deficiency-induced mtDNA depletion. We observed respectively severe and moderate mtDNA depletion in TK2-deficient BAT and WAT, showing both tissues moderate hypotrophy and reduced fat accumulation. Electron microscopy revealed altered mitochondrial morphology in brown but not in white adipocytes from TK2-deficient mice. Although significant reduction in mtDNA-encoded transcripts was observed both in WAT and BAT, protein levels from distinct OXPHOS complexes were significantly reduced only in TK2-deficient BAT. Accordingly, the activity of cytochrome c oxidase was significantly lowered only in BAT from TK2-deficient mice. The analysis of transcripts encoding up to fourteen components of specific adipose tissue functions revealed that, in both TK2-deficient WAT and BAT, there was a consistent reduction of thermogenesis related gene expression and a severe reduction in leptin mRNA. Reduced levels of resistin mRNA were found in BAT from TK2-deficient mice. Analysis of serum indicated a dramatic reduction in circulating levels of leptin and resistin. In summary, our present study establishes that mtDNA depletion leads to a moderate impairment in mitochondrial respiratory function, especially in BAT, causes substantial alterations in WAT and BAT development, and has a profound impact in the endocrine properties of adipose tissues.

  9. Thymidine kinase 2 deficiency-induced mitochondrial DNA depletion causes abnormal development of adipose tissues and adipokine levels in mice.

    Science.gov (United States)

    Villarroya, Joan; Dorado, Beatriz; Vilà, Maya R; Garcia-Arumí, Elena; Domingo, Pere; Giralt, Marta; Hirano, Michio; Villarroya, Francesc

    2011-01-01

    Mammal adipose tissues require mitochondrial activity for proper development and differentiation. The components of the mitochondrial respiratory chain/oxidative phosphorylation system (OXPHOS) are encoded by both mitochondrial and nuclear genomes. The maintenance of mitochondrial DNA (mtDNA) is a key element for a functional mitochondrial oxidative activity in mammalian cells. To ascertain the role of mtDNA levels in adipose tissue, we have analyzed the alterations in white (WAT) and brown (BAT) adipose tissues in thymidine kinase 2 (Tk2) H126N knockin mice, a model of TK2 deficiency-induced mtDNA depletion. We observed respectively severe and moderate mtDNA depletion in TK2-deficient BAT and WAT, showing both tissues moderate hypotrophy and reduced fat accumulation. Electron microscopy revealed altered mitochondrial morphology in brown but not in white adipocytes from TK2-deficient mice. Although significant reduction in mtDNA-encoded transcripts was observed both in WAT and BAT, protein levels from distinct OXPHOS complexes were significantly reduced only in TK2-deficient BAT. Accordingly, the activity of cytochrome c oxidase was significantly lowered only in BAT from TK2-deficient mice. The analysis of transcripts encoding up to fourteen components of specific adipose tissue functions revealed that, in both TK2-deficient WAT and BAT, there was a consistent reduction of thermogenesis related gene expression and a severe reduction in leptin mRNA. Reduced levels of resistin mRNA were found in BAT from TK2-deficient mice. Analysis of serum indicated a dramatic reduction in circulating levels of leptin and resistin. In summary, our present study establishes that mtDNA depletion leads to a moderate impairment in mitochondrial respiratory function, especially in BAT, causes substantial alterations in WAT and BAT development, and has a profound impact in the endocrine properties of adipose tissues. © 2011 Villarroya et al.

  10. E2F transcription factor-1 deficiency reduces pathophysiology in the mouse model of Duchenne muscular dystrophy through increased muscle oxidative metabolism.

    Science.gov (United States)

    Blanchet, Emilie; Annicotte, Jean-Sébastien; Pradelli, Ludivine A; Hugon, Gérald; Matecki, Stéfan; Mornet, Dominique; Rivier, François; Fajas, Lluis

    2012-09-01

    E2F1 deletion leads to increased mitochondrial number and function, increased body temperature in response to cold and increased resistance to fatigue with exercise. Since E2f1-/- mice show increased muscle performance, we examined the effect of E2f1 genetic inactivation in the mdx background, a mouse model of Duchenne muscular dystrophy (DMD). E2f1-/-;mdx mice demonstrated a strong reduction of physiopathological signs of DMD, including preservation of muscle structure, decreased inflammatory profile, increased utrophin expression, resulting in better endurance and muscle contractile parameters, comparable to normal mdx mice. E2f1 deficiency in the mdx genetic background increased the oxidative metabolic gene program, mitochondrial activity and improved muscle functions. Interestingly, we observed increased E2F1 protein levels in DMD patients, suggesting that E2F1 might represent a promising target for the treatment of DMD.

  11. Fetal skeletal muscle progenitors have regenerative capacity after intramuscular engraftment in dystrophin deficient mice.

    Directory of Open Access Journals (Sweden)

    Hiroshi Sakai

    Full Text Available Muscle satellite cells (SCs are stem cells that reside in skeletal muscles and contribute to regeneration upon muscle injury. SCs arise from skeletal muscle progenitors expressing transcription factors Pax3 and/or Pax7 during embryogenesis in mice. However, it is unclear whether these fetal progenitors possess regenerative ability when transplanted in adult muscle. Here we address this question by investigating whether fetal skeletal muscle progenitors (FMPs isolated from Pax3(GFP/+ embryos have the capacity to regenerate muscle after engraftment into Dystrophin-deficient mice, a model of Duchenne muscular dystrophy. The capacity of FMPs to engraft and enter the myogenic program in regenerating muscle was compared with that of SCs derived from adult Pax3(GFP/+ mice. Transplanted FMPs contributed to the reconstitution of damaged myofibers in Dystrophin-deficient mice. However, despite FMPs and SCs having similar myogenic ability in culture, the regenerative ability of FMPs was less than that of SCs in vivo. FMPs that had activated MyoD engrafted more efficiently to regenerate myofibers than MyoD-negative FMPs. Transcriptome and surface marker analyses of these cells suggest the importance of myogenic priming for the efficient myogenic engraftment. Our findings suggest the regenerative capability of FMPs in the context of muscle repair and cell therapy for degenerative muscle disease.

  12. Firing properties of dopamine neurons in freely moving dopamine-deficient mice: Effects of dopamine receptor activation and anesthesia

    OpenAIRE

    Robinson, Siobhan; Smith, David M.; Mizumori, Sheri J. Y.; Palmiter, Richard D.

    2004-01-01

    To examine the regulation of midbrain dopamine neurons, recordings were obtained from single neurons of freely moving, genetically engineered dopamine-deficient (DD) mice. DD mice were tested without dopamine signaling (basal state) and with endogenous dopamine signaling (after L-dopa administration). In the basal state, when dopamine concentration in DD mice is

  13. Age-Related Effects of the Apolipoprotein E Gene on Brain Function.

    Science.gov (United States)

    Matura, Silke; Prvulovic, David; Hartmann, Daniel; Scheibe, Monika; Sepanski, Beate; Butz, Marius; Oertel-Knöchel, Viola; Knöchel, Christian; Karakaya, Tarik; Fußer, Fabian; Hattingen, Elke; Pantel, Johannes

    2016-03-16

    The apolipoprotein E (ApoE) ɛ4 allele is a well-established genetic risk factor for sporadic Alzheimer's disease. Some evidence suggests a negative role of the ApoE ɛ4 allele for cognitive performance in late life, while beneficial effects on cognition have been shown in young age. We investigated age-related effects of the ApoE gene on brain function by assessing cognitive performance, as well as functional activation patterns during retrieval of Face-Name pairs in a group of young (n = 50; age 26.4±4.6 years, 25 ɛ4 carriers) and old (n = 40; age 66.1±7.0 years, 20 ɛ4 carriers) participants. A cross-sectional factorial design was used to examine the effects of age, ApoE genotype, and their interaction on both cognitive performance and the blood oxygenation level dependent (BOLD) brain response during retrieval of Face-Name pairs. While there were no genotype-related differences in cognitive performance, we found a significant interaction of age and ApoE genotype on task-related activation bilaterally in anterior cingulate gyrus and superior frontal gyrus, as well as left and right insula. Old age was associated with increased activity in ɛ4 carriers. The increased BOLD response in old ɛ4 carriers during retrieval could indicate a neurocognitive disadvantage associated with the ɛ4 allele with increasing age. Furthermore, recruitment of neuronal resources resulted in enhanced memory performance in young ɛ4 carriers, pointing to a better neurofunctional capacity associated with the ApoE4 genotype in young age.

  14. Plasma and liver lipidomics response to an intervention of rimonabant in ApoE*3Leiden.CETP transgenic mice.

    Directory of Open Access Journals (Sweden)

    Chunxiu Hu

    Full Text Available Lipids are known to play crucial roles in the development of life-style related risk factors such as obesity, dyslipoproteinemia, hypertension and diabetes. The first selective cannabinoid-1 receptor blocker rimonabant, an anorectic anti-obesity drug, was frequently used in conjunction with diet and exercise for patients with a body mass index greater than 30 kg/m(2 with associated risk factors such as type II diabetes and dyslipidaemia in the past. Less is known about the impact of this drug on the regulation of lipid metabolism in plasma and liver in the early stage of obesity.We designed a four-week parallel controlled intervention on apolipoprotein E3 Leiden cholesteryl ester transfer protein (ApoE*3Leiden.CETP transgenic mice with mild overweight and hypercholesterolemia. A liquid chromatography-linear ion trap-Fourier transform ion cyclotron resonance-mass spectrometric approach was employed to investigate plasma and liver lipid responses to the rimonabant intervention. Rimonabant was found to induce a significant body weight loss (9.4%, p<0.05 and a significant plasma total cholesterol reduction (24%, p<0.05. Six plasma and three liver lipids in ApoE*3Leiden.CETP transgenic mice were detected to most significantly respond to rimonabant treatment. Distinct lipid patterns between the mice were observed for both plasma and liver samples in rimonabant treatment vs. non-treated controls. This study successfully applied, for the first time, systems biology based lipidomics approaches to evaluate treatment effects of rimonabant in the early stage of obesity.The effects of rimonabant on lipid metabolism and body weight reduction in the early stage obesity were shown to be moderate in ApoE*3Leiden.CETP mice on high-fat diet.

  15. Selenoprotein-deficient transgenic mice exhibit enhanced exercise-induced muscle growth.

    Science.gov (United States)

    Hornberger, Troy A; McLoughlin, Thomas J; Leszczynski, Jori K; Armstrong, Dustin D; Jameson, Ruth R; Bowen, Phyllis E; Hwang, Eun-Sun; Hou, Honglin; Moustafa, Mohamed E; Carlson, Bradley A; Hatfield, Dolph L; Diamond, Alan M; Esser, Karyn A

    2003-10-01

    Dietary intake of selenium has been implicated in a wide range of health issues, including aging, heart disease and cancer. Selenium deficiency, which can reduce selenoprotein levels, has been associated with several striated muscle pathologies. To investigate the role of selenoproteins in skeletal muscle biology, we used a transgenic mouse (referred to as i6A-) that has reduced levels of selenoproteins due to the introduction and expression of a dominantly acting mutant form of selenocysteine transfer RNA (tRNA[Ser]Sec). As a consequence, each organ contains reduced levels of most selenoproteins, yet these mice are normal with regard to fertility, overall health, behavior and blood chemistries. In the present study, although skeletal muscles from i6A- mice were phenotypically indistinguishable from those of wild-type mice, plantaris muscles were approximately 50% heavier after synergist ablation, a model of exercise overload. Like muscle in wild-type mice, the enhanced growth in the i6A- mice was completely blocked by inhibition of the mammalian target of rapamycin (mTOR) pathway. Muscles of transgenic mice exhibited increased site-specific phosphorylation on both Akt and p70 ribosomal S6 kinase (p70S6k) (P accounting for the enhanced response to synergist ablation. Thus, a single genetic alteration resulted in enhanced skeletal muscle adaptation after exercise, and this is likely through subtle changes in the resting phosphorylation state of growth-related kinases.

  16. An apolipoprotein A-V gene SNP is associated with marked hypertriglyceridemia among Asian-American patients

    NARCIS (Netherlands)

    Pullinger, Clive R.; Aouizerat, Bradley E.; Movsesyan, Irina; Durlach, Vincent; Sijbrands, Eric J.; Nakajima, Katsuyuki; Poon, Annie; Dallinga-Thie, Geesje M.; Hattori, Hiroaki; Green, Lauri L.; Kwok, Pui-Yan; Havel, Richard J.; Frost, Philip H.; Malloy, Mary J.; Kane, John P.

    2008-01-01

    Apolipoprotein A-V (apoA-V) is an important regulator of plasma levels of triglyceride (TG) in mice. In humans, APOA5 genetic variation is associated with TG in several populations. In this study, we determined the effects of the p.185Gly>Cys (c.553G>T; rs2075291) polymorphism on plasma TG levels in

  17. PNPLA1 Deficiency in Mice and Humans Leads to a Defect in the Synthesis of Omega-O-Acylceramides

    Science.gov (United States)

    Grond, Susanne; Eichmann, Thomas O.; Dubrac, Sandrine; Kolb, Dagmar; Schmuth, Matthias; Fischer, Judith; Crumrine, Debra; Elias, Peter M.; Haemmerle, Guenter; Zechner, Rudolf; Lass, Achim; Radner, Franz P.W.

    2017-01-01

    Mutations in PNPLA1 have been identified as causative for autosomal recessive congenital ichthyosis in humans and dogs. So far, the underlying molecular mechanisms are unknown. In this study, we generated and characterized PNPLA1-deficient mice and found that PNPLA1 is crucial for epidermal sphingolipid synthesis. The absence of functional PNPLA1 in mice impaired the formation of omega-O-acylceramides and led to an accumulation of nonesterified omega-hydroxy-ceramides. As a consequence, PNPLA1-deficient mice lacked a functional corneocyte-bound lipid envelope leading to a severe skin barrier defect and premature death of newborn animals. Functional analyses of differentiated keratinocytes from a patient with mutated PNPLA1 demonstrated an identical defect in omega-O-acylceramide synthesis in human cells, indicating that PNPLA1 function is conserved among mammals and indispensable for normal skin physiology. Notably, topical application of epidermal lipids from wild-type onto Pnpla1-mutant mice promoted rebuilding of the corneocyte-bound lipid envelope, indicating that supplementation of ichthyotic skin with omega-O-acylceramides might be a therapeutic approach for the treatment of skin symptoms in individuals affected by omega-O-acylceramide deficiency. PMID:27751867

  18. Abnormal brain iron metabolism in Irp2 deficient mice is associated with mild neurological and behavioral impairments.

    Directory of Open Access Journals (Sweden)

    Kimberly B Zumbrennen-Bullough

    Full Text Available Iron Regulatory Protein 2 (Irp2, Ireb2 is a central regulator of cellular iron homeostasis in vertebrates. Two global knockout mouse models have been generated to explore the role of Irp2 in regulating iron metabolism. While both mouse models show that loss of Irp2 results in microcytic anemia and altered body iron distribution, discrepant results have drawn into question the role of Irp2 in regulating brain iron metabolism. One model shows that aged Irp2 deficient mice develop adult-onset progressive neurodegeneration that is associated with axonal degeneration and loss of Purkinje cells in the central nervous system. These mice show iron deposition in white matter tracts and oligodendrocyte soma throughout the brain. A contrasting model of global Irp2 deficiency shows no overt or pathological signs of neurodegeneration or brain iron accumulation, and display only mild motor coordination and balance deficits when challenged by specific tests. Explanations for conflicting findings in the severity of the clinical phenotype, brain iron accumulation and neuronal degeneration remain unclear. Here, we describe an additional mouse model of global Irp2 deficiency. Our aged Irp2-/- mice show marked iron deposition in white matter and in oligodendrocytes while iron content is significantly reduced in neurons. Ferritin and transferrin receptor 1 (TfR1, Tfrc, expression are increased and decreased, respectively, in the brain from Irp2-/- mice. These mice show impairments in locomotion, exploration, motor coordination/balance and nociception when assessed by neurological and behavioral tests, but lack overt signs of neurodegenerative disease. Ultrastructural studies of specific brain regions show no evidence of neurodegeneration. Our data suggest that Irp2 deficiency dysregulates brain iron metabolism causing cellular dysfunction that ultimately leads to mild neurological, behavioral and nociceptive impairments.

  19. Opposing effects of CXCR3 and CCR5 deficiency on CD8+ T cell-mediated inflammation in the central nervous system of virus-infected mice

    DEFF Research Database (Denmark)

    de Lemos, Carina; Christensen, Jeanette Erbo; Nansen, Anneline

    2005-01-01

    and therefore protect mice against the otherwise fatal CD8+ T cell-mediated immune attack. Contrary to expectations, the accumulation of mononuclear cells in cerebrospinal fluid was only slightly delayed compared with mice with normal expression of both receptors. Even more surprising, CXCR3/CCR5 double-deficient......T cells play a key role in the control of viral infection in the CNS but may also contribute to immune-mediated cell damage. To study the redundancy of the chemokine receptors CXCR3 and CCR5 in regulating virus-induced CD8+ T cell-mediated inflammation in the brain, CXCR3/CCR5 double-deficient mice...... mice were more susceptible to intracerebral infection than CXCR3-deficient mice. Analysis of effector T cell generation revealed an accelerated antiviral CD8+ T cell response in CXCR3/CCR5 double-deficient mice. Furthermore, while the accumulation of CD8+ T cells in the neural parenchyma...

  20. The role of interleukin-5 (IL-5 in vivo: studies with IL-5 deficient mice

    Directory of Open Access Journals (Sweden)

    Klaus I Matthaei

    1997-12-01

    Full Text Available Eosinophil recruitment is a characteristic feature of a number of pathological conditions and was the topic of the recent International Symposium on allergic inflammation, asthma, parasitic and infectious diseases (Rio de Janeiro, June 3-5, 1996. Since interleukin5 (IL5 is believed to regulate the growth, differentiation and activation of eosinophils (Coffman et al. 1989, Sanderson 1992, the role of eosinophils and IL5 are closely linked. Although IL5 specifically regulates eosinophilia in vivo and this is its most well established activity, it is becoming clear that IL5 also has other biological effects. The recent derivation of an IL5 deficient mouse (Kopf et al. 1996, provides a model for exploring not only the role of IL5 and eosinophils but also other novel activities of IL5. Of note is that although the IL5 deficient mice cannot elicit a pronounced eosinophilia in response to inflammatory stimulation following aeroallergen challenge or parasite infection they still produce basal levels of eosinophils that appear to be morphologically and functionally normal. However, the basal levels of eosinophils appear insufficient for normal host defence as IL5 deficiency has now been shown to compromise defence against several helminth infections. In addition, IL5 deficient mice appear to have functional deficiencies in B-1 B lymphocytes and in IgA production.

  1. Chronic mild stress impairs latent inhibition and induces region-specific neural activation in CHL1-deficient mice, a mouse model of schizophrenia.

    Science.gov (United States)

    Buhusi, Mona; Obray, Daniel; Guercio, Bret; Bartlett, Mitchell J; Buhusi, Catalin V

    2017-08-30

    Schizophrenia is a neurodevelopmental disorder characterized by abnormal processing of information and attentional deficits. Schizophrenia has a high genetic component but is precipitated by environmental factors, as proposed by the 'two-hit' theory of schizophrenia. Here we compared latent inhibition as a measure of learning and attention, in CHL1-deficient mice, an animal model of schizophrenia, and their wild-type littermates, under no-stress and chronic mild stress conditions. All unstressed mice as well as the stressed wild-type mice showed latent inhibition. In contrast, CHL1-deficient mice did not show latent inhibition after exposure to chronic stress. Differences in neuronal activation (c-Fos-positive cell counts) were noted in brain regions associated with latent inhibition: Neuronal activation in the prelimbic/infralimbic cortices and the nucleus accumbens shell was affected solely by stress. Neuronal activation in basolateral amygdala and ventral hippocampus was affected independently by stress and genotype. Most importantly, neural activation in nucleus accumbens core was affected by the interaction between stress and genotype. These results provide strong support for a 'two-hit' (genes x environment) effect on latent inhibition in CHL1-deficient mice, and identify CHL1-deficient mice as a model of schizophrenia-like learning and attention impairments. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Apolipoprotein E epsilon 4 (APOE-ε4) genotype is associated with decreased 6-month verbal memory performance after mild traumatic brain injury

    NARCIS (Netherlands)

    J.K. Yue (John); Robinson, C.K. (Caitlin K.); J.F. Burke (John F.); E.A. Winkler (Ethan A.); Deng, H. (Hansen); M.C. Cnossen (Maryse); H.F. Lingsma (Hester); A.R. Ferguson (Adam); McAllister, T.W. (Thomas W.); J. Rosand (Jonathan); E.G. Burchard (Esteban); M.D. Sorani (Marco); S. Sharma (Sourabh); J.L. Nielson (Jessica L.); G.G. Satris (Gabriela G.); Talbott, J.F. (Jason F.); P.E. Tarapore (Phiroz E.); F.K. Korley (Frederick K.); Wang, K.K.W. (Kevin K.W.); E.L. Yuh (Esther); P. Mukherjee (Pratik); R. Diaz-Arrastia (Ramon); A.B. Valadka (Alex); D. Okonkwo (David); G. Manley (Geoffrey)

    2017-01-01

    textabstractIntroduction: The apolipoprotein E (APOE) ε4 allele associates with memory impairment in neurodegenerative diseases. Its association with memory after mild traumatic brain injury (mTBI) is unclear. Methods: mTBI patients (Glasgow Coma Scale score 13–15, no neurosurgical intervention,

  3. Hematopoietic sphingosine 1-phosphate lyase deficiency decreases atherosclerotic lesion development in LDL-receptor deficient mice.

    Directory of Open Access Journals (Sweden)

    Martine Bot

    Full Text Available AIMS: Altered sphingosine 1-phosphate (S1P homeostasis and signaling is implicated in various inflammatory diseases including atherosclerosis. As S1P levels are tightly controlled by S1P lyase, we investigated the impact of hematopoietic S1P lyase (Sgpl1(-/- deficiency on leukocyte subsets relevant to atherosclerosis. METHODS AND RESULTS: LDL receptor deficient mice that were transplanted with Sgpl1(-/- bone marrow showed disrupted S1P gradients translating into lymphopenia and abrogated lymphocyte mitogenic and cytokine response as compared to controls. Remarkably however, Sgpl1(-/- chimeras displayed mild monocytosis, due to impeded stromal retention and myelopoiesis, and plasma cytokine and macrophage expression patterns, that were largely compatible with classical macrophage activation. Collectively these two phenotypic features of Sgpl1 deficiency culminated in diminished atherogenic response. CONCLUSIONS: Here we not only firmly establish the critical role of hematopoietic S1P lyase in controlling S1P levels and T cell trafficking in blood and lymphoid tissue, but also identify leukocyte Sgpl1 as critical factor in monocyte macrophage differentiation and function. Its, partly counterbalancing, pro- and anti-inflammatory activity spectrum imply that intervention in S1P lyase function in inflammatory disorders such as atherosclerosis should be considered with caution.

  4. Female mice deficient in alpha-fetoprotein show female-typical neural responses to conspecific-derived pheromones.

    Directory of Open Access Journals (Sweden)

    Olivier Brock

    Full Text Available The neural mechanisms controlling sexual behavior are sexually differentiated by the perinatal actions of sex steroid hormones. We recently observed using female mice deficient in alpha-fetoprotein (AFP-KO and which lack the protective actions of AFP against maternal estradiol, that exposure to prenatal estradiol completely defeminized the potential to show lordosis behavior in adulthood. Furthermore, AFP-KO females failed to show any male-directed mate preferences following treatment with estradiol and progesterone, indicating a reduced sexual motivation to seek out the male. In the present study, we asked whether neural responses to male- and female-derived odors are also affected in AFP-KO female mice. Therefore, we compared patterns of Fos, the protein product of the immediate early gene, c-fos, commonly used as a marker of neuronal activation, between wild-type (WT and AFP-KO female mice following exposure to male or estrous female urine. We also tested WT males to confirm the previously observed sex differences in neural responses to male urinary odors. Interestingly, AFP-KO females showed normal, female-like Fos responses, i.e. exposure to urinary odors from male but not estrous female mice induced equivalent levels of Fos protein in the accessory olfactory pathways (e.g. the medial part of the preoptic nucleus, the bed nucleus of the stria terminalis, the amygdala, and the lateral part of the ventromedial hypothalamic nucleus as well as in the main olfactory pathways (e.g. the piriform cortex and the anterior cortical amygdaloid nucleus, as WT females. By contrast, WT males did not show any significant induction of Fos protein in these brain areas upon exposure to either male or estrous female urinary odors. These results thus suggest that prenatal estradiol is not involved in the sexual differentiation of neural Fos responses to male-derived odors.

  5. Intestinal colonization of IL-2 deficient mice with non-colitogenic B. vulgatus prevents DC maturation and T-cell polarization.

    Directory of Open Access Journals (Sweden)

    Martina Müller

    Full Text Available BACKGROUND: IL-2 deficient (IL-2(-/- mice mono-colonized with E. coli mpk develop colitis whereas IL-2(-/--mice mono-colonized with B. vulgatus mpk do not and are even protected from E. coli mpk induced colitis. METHODOLOGY/PRINCIPAL FINDINGS: We investigated if mono-colonization with E. coli mpk or B. vulgatus mpk differentially modulates distribution, activation and maturation of intestinal lamina propria (LP dendritic cells (DC. LP DC in mice mono-colonized with protective B. vulgatus mpk or co-colonized with E. coli mpk/B. vulgatus mpk featured a semi-mature LP DC phenotype (CD40(loCD80(loMHC-II(hi whereas mono-colonization with colitogenic E. coli mpk induced LP DC activation and maturation prior to onset of colitis. Accordingly, chemokine receptor (CCR 7 surface expression was more strikingly enhanced in mesenteric lymph node DC from E. coli mpk than B. vulgatus mpk mono- or co-colonized mice. Mature but not semi-mature LP DC promoted Th1 polarization. As B. vulgatus mpk promotes differentiation of semi-mature DC presumably by IL-6, mRNA and protein expression of IL-6 was investigated in LP DC. The data demonstrated that IL-6 mRNA and protein was increased in LP DC of B. vulgatus mpk as compared to E. coli mpk mono-colonized IL-2(-/--mice. The B. vulgatus mpk mediated suppression of CCR7 expression and DC migration was abolished in IL-6(-/--DC in vitro. CONCLUSIONS/SIGNIFICANCE: From this data we conclude that the B. vulgatus triggered IL-6 secretion by LP DC in absence of proinflammatory cytokines such as IL-12 or TNF-alpha induces a semi-mature LP DC phenotype, which might prevent T-cell activation and thereby the induction of colitis in IL-2(-/--mice. The data provide new evidence that IL-6 might act as an immune regulatory cytokine in the mucosa by targeting intestinal DC.

  6. Macrophage p53 controls macrophage death in atherosclerotic lesions of apolipoprotein E deficient mice

    NARCIS (Netherlands)

    Boesten, L.S.M.; Zadelaar, A.S.M.; Nieuwkoop, A. van; Hu, L.; Teunisse, A.F.A.S.; Jochemsen, A.G.; Evers, B.; Water, B. van de; Gijbels, M.J.J.; Vlijmen, B.J.M. van; Havekes, L.M.; Winther, M.P.J. de

    2009-01-01

    The cellular composition of atherosclerotic lesions is determined by many factors including cell infiltration, proliferation and cell death. Tumor suppressor gene p53 has been shown to regulate both cell proliferation and cell death in many cell types. In the present study, we investigated the role

  7. Toll-like receptor 2 or toll-like receptor 4 deficiency does not modify lupus in MRLlpr mice.

    Directory of Open Access Journals (Sweden)

    Simon J Freeley

    Full Text Available Systemic lupus erythematosus is an autoimmune disease with a high morbidity and nephritis is a common manifestation. Previous studies in murine lupus models have suggest a role for Toll-like receptor 2 and 4. We examined the role of these molecules in MRL lpr mice which is one of the most established and robust murine models. We compared disease parameters in Toll-like receptor 2 or Toll-like receptor 4 deficient mice with their littermate controls. We found no difference in the severity of glomerulonephritis as assessed by histology, serum creatinine and albuminuria when Toll-like receptor 2 or Toll-like receptor 4 deficient MRLlpr mice were compared with Toll-like receptor sufficient controls. We also found similar levels of anti-dsDNA and anti-ssDNA antibodies. These results show that Toll-like receptor 2 and Toll-like receptor 4 do not play a significant role in MRLlpr mice, and therefore they may not be important in human lupus.

  8. Using "Mighty Mouse" to understand masticatory plasticity: myostatin-deficient mice and musculoskeletal function.

    Science.gov (United States)

    Ravosa, Matthew J; López, Elisabeth K; Menegaz, Rachel A; Stock, Stuart R; Stack, M Sharon; Hamrick, Mark W

    2008-09-01

    Knockout mice lacking myostatin (Mstn), a negative regulator of the growth of skeletal muscle, develop significant increases in the relative mass of masticatory muscles as well as the ability to generate higher maximal muscle forces. Wild-type and Mstn-deficient mice were compared to investigate the postnatal influence of elevated masticatory loads due to increased jaw-adductor and bite forces on the biomineralization of mandibular articular and cortical bone, the internal structure of the jaw joints, and the composition of temporomandibular joint (TMJ) articular cartilage. To provide an interspecific perspective on the long-term responses of mammalian jaw joints to altered loading conditions, the findings on mice were compared to similar data for growing rabbits subjected to long-term dietary manipulation. Statistically significant differences in joint proportions and bone mineral density between normal and Mstn-deficient mice, which are similar to those observed between rabbit loading cohorts, underscore the need for a comprehensive analysis of masticatory tissue plasticity vis-à-vis altered mechanical loads, one in which variation in external and internal structure are considered. Differences in the expression of proteoglycans and type-II collagen in TMJ articular cartilage between the mouse and rabbit comparisons suggest that the duration and magnitude of the loading stimulus will significantly affect patterns of adaptive and degradative responses. These data on mammals subjected to long-term loading conditions offer novel insights regarding variation in ontogeny, life history, and the ecomorphology of the feeding apparatus.

  9. TDRP deficiency contributes to low sperm motility and is a potential risk factor for male infertility.

    Science.gov (United States)

    Mao, Shanhua; Wu, Fei; Cao, Xinyi; He, Min; Liu, Naijia; Wu, Huihui; Yang, Zhihong; Ding, Qiang; Wang, Xuanchun

    2016-01-01

    TDRP (Testis Development-Related Protein), a nuclear factor, might play an important role in spermatogenesis. However, the molecular mechanisms of TDRP underlying these fundamental processes remain elusive. In this study, a Tdrp-deficient mouse model was generated. Fertility tests and semen analysis were performed. Tdrp-deficient mice were not significantly different from wild-type littermates in development of testes, genitourinary tract, or sperm count. Morphologically, spermatozoa of the Tdrp-deficient mice was not significantly different from the wild type. Several sperm motility indexes, i.e. the average path velocity (VAP), the straight line velocity (VSL) and the curvilinear velocity (VCL) were significantly decreased in Tdrp-deficient mice (psperm also increased significantly in the mutant mice (psperm motility, but Tdrp deficiency alone was not sufficient to cause male infertility in mice. Additionally, TDRP1 might participate in spermatogenes is through interaction with PRM2.

  10. Human plasma lipid modulation in schistosomiasis mansoni depends on apolipoprotein E polymorphism.

    Directory of Open Access Journals (Sweden)

    Caíque Silveira Martins da Fonseca

    Full Text Available Schistosomiasis mansoni is a parasitic liver disease, which causes several metabolic disturbances. Here, we evaluate the influence of Apolipoprotein E (APOE gene polymorphism, a known modulator of lipid metabolism, on plasma lipid levels in patients with hepatosplenic schistosomiasis.Blood samples were used for APOE genotyping and to measure total cholesterol (TC, LDL-C, HDL-C and triglycerides. Schistosomiasis patients had reduced TC, LDL-C and triglycerides (25%, 38% and 32% lower, respectively; Pε3>ε4 was absent in patients (ε2 or ε4>ε3, and the increase in HDL-C of ε2 or ε4 patients compared to ε3 patients was not seen in the control groups.We confirm that human schistosomiasis causes dyslipidemia and report for the first time that certain changes in plasma lipid and lipoprotein levels depend on APOE gene polymorphism. Importantly, we also concluded that S. mansoni disrupts the expected regulation of plasma lipids by the different ApoE isoforms. This finding suggests ways to identify new metabolic pathways affected by schistosomiasis and also potential molecular targets to treat associated morbidities.

  11. Methamphetamine Increases Locomotion and Dopamine Transporter Activity in Dopamine D5 Receptor-Deficient Mice

    OpenAIRE

    Hayashizaki, Seiji; Hirai, Shinobu; Ito, Yumi; Honda, Yoshiko; Arime, Yosefu; Sora, Ichiro; Okado, Haruo; Kodama, Tohru; Takada, Masahiko

    2013-01-01

    Dopamine regulates the psychomotor stimulant activities of amphetamine-like substances in the brain. The effects of dopamine are mediated through five known dopamine receptor subtypes in mammals. The functional relevance of D5 dopamine receptors in the central nervous system is not well understood. To determine the functional relevance of D5 dopamine receptors, we created D5 dopamine receptor-deficient mice and then used these mice to assess the roles of D5 dopamine receptors in the behaviora...

  12. Relative Tissue Factor Deficiency Attenuates Ventilator-Induced Coagulopathy but Does Not Protect against Ventilator-Induced Lung Injury in Mice

    Directory of Open Access Journals (Sweden)

    Esther K. Wolthuis

    2012-01-01

    Full Text Available Preventing tissue-factor-(TF- mediated systemic coagulopathy improves outcome in models of sepsis. Preventing TF-mediated pulmonary coagulopathy could attenuate ventilator-induced lung injury (VILI. We investigated the effect of relative TF deficiency on pulmonary coagulopathy and inflammation in a murine model of VILI. Heterozygous TF knockout (TF+/− mice and their wild-type (TF+/+ littermates were sedated (controls or sedated, tracheotomized, and mechanically ventilated with either low or high tidal volumes for 5 hours. Mechanical ventilation resulted in pulmonary coagulopathy and inflammation, with more injury after mechanical ventilation with higher tidal volumes. Compared with TF+/+ mice, TF+/− mice demonstrated significantly lower pulmonary thrombin-antithrombin complex levels in both ventilation groups. There were, however, no differences in lung wet-to-dry ratio, BALF total protein levels, neutrophil influx, and lung histopathology scores between TF+/− and TF+/+ mice. Notably, pulmonary levels of cytokines were significantly higher in TF+/− as compared to TF+/+ mice. Systemic levels of cytokines were not altered by the relative absence of TF. TF deficiency is associated with decreased pulmonary coagulation independent of the ventilation strategy. However, relative TF deficiency does not reduce VILI and actually results in higher pulmonary levels of inflammatory mediators.

  13. Association of Apolipoprotein E Polymorphism with Ischemic Stroke Subtypes in Taiwan

    Directory of Open Access Journals (Sweden)

    Chiou-Lian Lai

    2007-10-01

    Full Text Available The aim of this study was to clarify whether the apolipoprotein E gene (APOE is related to ischemic stroke subtypes in Taiwan's Chinese population. Using the classification of Cerebrovascular Diseases III, 143 patients with lacunar infarction, 114 patients with atherothrombotic infarction, and 112 healthy controls were enrolled. APOE genotype was determined using polymerase chain reaction. Regarding the distribution of APOE genotypes, the frequency of ϵ3/ϵ4 genotypes in lacunar patients was significantly different from that in control subjects, by logistic regression, using ϵ3/ϵ3 as a reference group. There was no significant difference between atherothrombotic patients and the control group in the distribution of APOE genotypes or alleles. The present finding suggests that there is a probable association between ϵ3/ϵ4 genotype and lacunar infarcts, but not atherothrombotic infarcts. This indicates that genetic factors may play a role, at least partially, in lacunar infarction in Taiwan's Chinese population.

  14. Caspase-1 deficiency in mice reduces intestinal triglyceride absorption and hepatic triglyceride secretion

    NARCIS (Netherlands)

    Diepen, J.A. van; Stienstra, R.; Vroegrijk, I.O.C.M.; Berg, S.A.A. van den; Salvatori, D.; Hooiveld, G.J.; Kersten, S.; Tack, C.J.; Netea, M.G.; Smit, J.W.A.; Joosten, L.A.B.; Havekes, L.M.; Dijk, K.W. van; Rensen, P.C.N.

    2013-01-01

    Caspase-1 is known to activate the proinflammatory cytokines IL-1β and IL-18. Additionally, it can cleave other substrates, including proteins involved in metabolism. Recently, we showed that caspase-1 deficiency in mice strongly reduces high-fat diet-induced weight gain, at least partly caused by

  15. New function for an old enzyme: NEP deficient mice develop late-onset obesity.

    Directory of Open Access Journals (Sweden)

    Matthias Becker

    Full Text Available BACKGROUND: According to the World Health Organization (WHO there is a pandemic of obesity with approximately 300 million people being obese. Typically, human obesity has a polygenetic causation. Neutral endopeptidase (NEP, also known as neprilysin, is considered to be one of the key enzymes in the metabolism of many active peptide hormones. METHODOLOGY/PRINCIPAL FINDINGS: An incidental observation in NEP-deficient mice was a late-onset excessive gain in body weight exclusively from a ubiquitous accumulation of fat tissue. In accord with polygenetic human obesity, mice were characterized by deregulation of lipid metabolism, higher blood glucose levels, with impaired glucose tolerance. The key role of NEP in determining body mass was confirmed by the use of the NEP inhibitor candoxatril in wild-type mice that increased body weight due to increased food intake. This is a peripheral and not a central NEP action on the switch for appetite control, since candoxatril cannot cross the blood-brain barrier. Furthermore, we demonstrated that inhibition of NEP in mice with cachexia delayed rapid body weight loss. Thus, lack in NEP activity, genetically or pharmacologically, leads to a gain in body fat. CONCLUSIONS/SIGNIFICANCE: In the present study, we have identified NEP to be a crucial player in the development of obesity. NEP-deficient mice start to become obese under a normocaloric diet in an age of 6-7 months and thus are an ideal model for the typical human late-onset obesity. Therefore, the described obesity model is an ideal tool for research on development, molecular mechanisms, diagnosis, and therapy of the pandemic obesity.

  16. Enhancement of antigen-induced eosinophilic inflammation in the airways of mast-cell deficient mice by diesel exhaust particles

    International Nuclear Information System (INIS)

    Ichinose, Takamichi; Takano, Hirohisa; Miyabara, Yuichi; Sadakaneo, Kaori; Sagai, Masaru; Shibamoto, Takayuki

    2002-01-01

    The present study was conducted to clarify the involvement of mast cells in the exacerbating effect of diesel exhaust particles (DEP) toward allergic airway inflammation and airway hyperresponsiveness (AHR). Airway inflammation by the infiltration of cosinophils with goblet cell proliferation and AHR, as well as by the production of antigen-specific IgG1 and IgE, in plasma were examined using mast cell-deficient mice (W/W v ) and normal mice (W/W + ). Both groups of mice received ovalbumin (OVA) or OVA+DEP intratracheally. The eosinophilic airway inflammation and goblet cell proliferation promoted by OVA were significantly greater in W/W + than in W/W v . A similar result was observed in AHR, but was not significant among both groups of mice. DEP enhanced OVA induced-allergic airway inflammation, goblet cell proliferation, and development of AHR in W/W v , but not in W/W + . DEP decreased production of antigen-specific IgG1 and IgE in both groups of mice. Mast cells were observed in the submucosal layer of the main bronchus in W/W v . The number of mast cells was significantly decreased by OVA treatment. The results indicate that mast cells are not necessary to enhance airway damage and development of AHR in W/W v by DEP. However, mast cells may be required for the OVA-induced cosinophilic inflammation, airway damage with goblet cell proliferation, and AHR in W/W +

  17. Delayed allogeneic skin graft rejection in CD26-deficient mice.

    Science.gov (United States)

    Zhao, Xiangli; Zhang, Kai; Daniel, Peter; Wisbrun, Natali; Fuchs, Hendrik; Fan, Hua

    2018-03-23

    Organ transplantation is an effective therapeutic tool for treating many terminal diseases. However, one of the biggest challenges of transplantation is determining how to achieve the long-term survival of the allogeneic or xenogeneic transplant by, for example, preventing transplant rejection. In the current study, CD26 gene-knockout mice were used to investigate the potential role of CD26/dipeptidyl peptidase-4 (DPPIV) in allogeneic skin graft rejection by tail-skin transplantation. Compared with wild-type (CD26 +/+ ) counterparts, CD26 -/- mice showed reduced necrosis of grafts and delayed graft rejection after skin transplantation. Concentrations of serum IgG, including its subclasses IgG1 and IgG2a, were significantly reduced in CD26 -/- mice during graft rejection. Moreover, after allogeneic skin transplantation, the secretion levels of the cytokines IFN-γ, IL-2, IL-6, IL-4, and IL-13 were significantly reduced, whereas the level of the cytokine IL-10 was increased in the serum of CD26 -/- mice compared with that in the serum of CD26 +/+ mice. Additionally, the concentration of IL-17 in serum and the percentage of cells secreting IL-17 in mouse peripheral blood lymphocytes (MPBLs) were both significantly lower, while the percentage of regulatory T cells (Tregs) was significantly higher in MPBLs of CD26 -/- mice than in those of CD26 +/+ mice. Furthermore, a lower percentage of CD8 + T cells in MPBLs and fewer infiltrated macrophages and T cells in graft tissues of CD26 -/- mice were detected during graft rejection. These results indicate that CD26 is involved in allogeneic skin graft rejection and provides another hint that CD26 deficiency leads to less rejection due to lower activation and proliferation of host immune cells.

  18. Hematopoietic Kit Deficiency, rather than Lack of Mast Cells, Protects Mice from Obesity and Insulin Resistance.

    Science.gov (United States)

    Gutierrez, Dario A; Muralidhar, Sathya; Feyerabend, Thorsten B; Herzig, Stephan; Rodewald, Hans-Reimer

    2015-05-05

    Obesity, insulin resistance, and related pathologies are associated with immune-mediated chronic inflammation. Kit mutant mice are protected from diet-induced obesity and associated co-morbidities, and this phenotype has previously been attributed to their lack of mast cells. We performed a comprehensive metabolic analysis of Kit-dependent Kit(W/Wv) and Kit-independent Cpa3(Cre/+) mast-cell-deficient mouse strains, employing diet-induced or genetic (Lep(Ob/Ob) background) models of obesity. Our results show that mast cell deficiency, in the absence of Kit mutations, plays no role in the regulation of weight gain or insulin resistance. Moreover, we provide evidence that the metabolic phenotype observed in Kit mutant mice, while independent of mast cells, is immune regulated. Our data underscore the value of definitive mast cell deficiency models to conclusively test the involvement of this enigmatic cell in immune-mediated pathologies and identify Kit as a key hematopoietic factor in the pathogenesis of metabolic syndrome. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Keratinocytes from APP/APLP2-deficient mice are impaired in proliferation, adhesion and migration in vitro

    International Nuclear Information System (INIS)

    Siemes, Christina; Quast, Thomas; Kummer, Christiane; Wehner, Sven; Kirfel, Gregor; Mueller, Ulrike; Herzog, Volker

    2006-01-01

    Growing evidence shows that the soluble N-terminal form (sAPPα) of the amyloid precursor protein (APP) represents an epidermal growth factor fostering keratinocyte proliferation, migration and adhesion. APP is a member of a protein family including the two mammalian amyloid precursor-like proteins APLP1 and APLP2. In the mammalian epidermis, only APP and APLP2 are expressed. APP and APLP2-deficient mice die shortly after birth but do not display a specific epidermal phenotype. In this report, we investigated the epidermis of APP and/or APLP2 knockout mice. Basal keratinocytes showed reduced proliferation in vivo by about 40%. Likewise, isolated keratinocytes exhibited reduced proliferation rates in vitro, which could be completely rescued by either exogenously added recombinant sAPPα, or by co-culture with dermal fibroblasts derived from APP knockout mice. Moreover, APP-knockout keratinocytes revealed reduced migration velocity resulting from severely compromised cell substrate adhesion. Keratinocytes from double knockout mice died within the first week of culture, indicating essential functions of APP-family members for survival in vitro. Our data indicate that sAPPα has to be considered as an essential epidermal growth factor which, however, in vivo can be functionally compensated to a certain extent by other growth factors, e.g., factors released from dermal fibroblasts

  20. Effect of ultraviolet irradiation on mast cell-deficient W/Wv mice

    International Nuclear Information System (INIS)

    Ikai, K.; Danno, K.; Horio, T.; Narumiya, S.

    1985-01-01

    The effect of UV irradiation on the skin was investigated in (WB-W/+) X (C57BL/6J-Wv/+)F1-W/Wv mice, which are genetically deficient in tissue mast cells. Their congenic littermates (+/+) and normal albino mice (ICR or BALB/c) were used as controls. Mice were irradiated with 500 mJ/cm2 of UVB and the increment of ear thickness was measured before and 6, 12, and 24 h after irradiation. Ear swelling in W/Wv mice at 12 and 24 h after irradiation was significantly smaller than that in +/+ and ICR mice. In contrast, the number of sunburn cells formed 24 h after UVB irradiation (200 or 500 mJ/cm2) was similar in W/Wv, +/+ and ICR mice. On the other hand, when mice were treated with 8-methoxy-psoralen (0.5%) plus UVA irradiation (4 J/cm2) (topical PUVA), ears of W/Wv and BALB/c mice, which were both white in color, were thickened similarly 72 h after treatment, but less swelling was observed in +/+ mice, which were black in skin color. The amount of prostaglandin D2 (PGD2) in ears, determined by radioimmunoassay specific for PGD2, was elevated 3-fold in +/+ and ICR mice at 3 h after irradiation with 500 mJ/cm2 of UVB in comparison with basal level without irradiation. However, such elevation was not observed in W/Wv mice. These results suggest that mast cells play an important role in UVB-induced inflammation, and PGs from mast cells are responsible at least in part for the development of this reaction. However, neither mast cells nor PGs contribute to the sunburn cell formation and ear swelling response by PUVA treatment