WorldWideScience

Sample records for antiviral enzyme activity

  1. Puromycin-sensitive aminopeptidase: an antiviral prodrug activating enzyme.

    Science.gov (United States)

    Tehler, Ulrika; Nelson, Cara H; Peterson, Larryn W; Provoda, Chester J; Hilfinger, John M; Lee, Kyung-Dall; McKenna, Charles E; Amidon, Gordon L

    2010-03-01

    Cidofovir (HPMPC) is a broad-spectrum antiviral agent, currently used to treat AIDS-related human cytomegalovirus retinitis. Cidofovir has recognized therapeutic potential for orthopox virus infections, although its use is hampered by its inherent low oral bioavailability. Val-Ser-cyclic HPMPC (Val-Ser-cHPMPC) is a promising peptide prodrug which has previously been shown by us to improve the permeability and bioavailability of the parent compound in rodent models (Eriksson et al., 2008. Molecular Pharmaceutics 5, 598-609). Puromycin-sensitive aminopeptidase was partially purified from Caco-2 cell homogenates and identified as a prodrug activating enzyme for Val-Ser-cHPMPC. The prodrug activation process initially involves an enzymatic step where the l-Valine residue is removed by puromycin-sensitive aminopeptidase, a step that is bestatin-sensitive. Subsequent chemical hydrolysis results in the generation of cHPMPC. A recombinant puromycin-sensitive aminopeptidase was generated and its substrate specificity investigated. The k(cat) for Val-pNA was significantly lower than that for Ala-pNA, suggesting that some amino acids are preferred over others. Furthermore, the three-fold higher k(cat) for Val-Ser-cHPMPC as compared to Val-pNA suggests that the leaving group may play an important role in determining hydrolytic activity. In addition to its ability to hydrolyze a variety of substrates, these observations strongly suggest that puromycin-sensitive aminopeptidase is an important enzyme for activating Val-Ser-cHPMPC in vivo. Taken together, our data suggest that puromycin-sensitive aminopeptidase makes an attractive target for future prodrug design.

  2. Proteolytic activation of the SARS-coronavirus spike protein: cutting enzymes at the cutting edge of antiviral research.

    Science.gov (United States)

    Simmons, Graham; Zmora, Pawel; Gierer, Stefanie; Heurich, Adeline; Pöhlmann, Stefan

    2013-12-01

    The severe acute respiratory syndrome (SARS) pandemic revealed that zoonotic transmission of animal coronaviruses (CoV) to humans poses a significant threat to public health and warrants surveillance and the development of countermeasures. The activity of host cell proteases, which cleave and activate the SARS-CoV spike (S) protein, is essential for viral infectivity and constitutes a target for intervention. However, the identities of the proteases involved have been unclear. Pioneer studies identified cathepsins and type II transmembrane serine proteases as cellular activators of SARS-CoV and demonstrated that several emerging viruses might exploit these enzymes to promote their spread. Here, we will review the proteolytic systems hijacked by SARS-CoV for S protein activation, we will discuss their contribution to viral spread in the host and we will outline antiviral strategies targeting these enzymes. This paper forms part of a series of invited articles in Antiviral Research on "From SARS to MERS: 10years of research on highly pathogenic human coronaviruses.'' Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Enzymes and Enzyme Activity Encoded by Nonenveloped Viruses.

    Science.gov (United States)

    Azad, Kimi; Banerjee, Manidipa; Johnson, John E

    2017-09-29

    Viruses are obligate intracellular parasites that rely on host cell machineries for their replication and survival. Although viruses tend to make optimal use of the host cell protein repertoire, they need to encode essential enzymatic or effector functions that may not be available or accessible in the host cellular milieu. The enzymes encoded by nonenveloped viruses-a group of viruses that lack any lipid coating or envelope-play vital roles in all the stages of the viral life cycle. This review summarizes the structural, biochemical, and mechanistic information available for several classes of enzymes and autocatalytic activity encoded by nonenveloped viruses. Advances in research and development of antiviral inhibitors targeting specific viral enzymes are also highlighted.

  4. Antiviral activity of platinum (II) and palladium (II) complexes of dimethyl sulfoxide (DMSO) in vitro

    International Nuclear Information System (INIS)

    Al-Allaf, T.; Rashan, L

    1996-01-01

    The antiviral activity of complexes cis-[Pt(DMSO) 2 CI 2 ] and trans-[Pd(DMSO) 2 CI 2 ] against the reverse transcriptase enzyme, herpes and influenza viruses have been studied in vitro. Both complexes demonstrated some activity against the reverse transcriptase enzyme in which the inhibition concentration (IC 5 0) of the cis-Pt and the trans-Pd complexes were shown to be 37.6 and 35.5 μ g/ml respectively. This activity was compared with that of the standard reference; the phosphonoformate (PFA). On the other hand, both complexes have no antiviral activity against herpes and influenza viruses No cytotoxic effects on the three cell lines, Raji, K562 and Mrc-5 were demonstrated by these complexes at the concentrations studied in vitro. (authors). 16 refs., 1 tab., 2 figs

  5. Variation in antiviral 2',5'-oligoadenylate synthetase (2'5'AS) enzyme activity is controlled by a single-nucleotide polymorphism at a splice-acceptor site in the OAS1 gene

    DEFF Research Database (Denmark)

    Bonnevie-Nielsen, Vagn; Field, L Leigh; Lu, Shao

    2005-01-01

    It is likely that human genetic differences mediate susceptibility to viral infection and virus-triggered disorders. OAS genes encoding the antiviral enzyme 2',5'-oligoadenylate synthetase (2'5'AS) are critical components of the innate immune response to viruses. This enzyme uses adenosine......=.0044), but not spousal pairs, suggesting strong genetic control of basal activity. We next analyzed association between basal activity and 15 markers across the OAS gene cluster. Significant association was detected at multiple markers, the strongest being at an A/G single-nucleotide polymorphism...... at the exon 7 splice-acceptor site (AG or AA) of the OAS1 gene. At this unusual polymorphism, allele G had a higher gene frequency in persons with high enzyme activity than in those with low enzyme activity (0.44 vs. 0.20; P=3 x 10(-11)). Enzyme activity varied in a dose-dependent manner across the GG, GA...

  6. Antiviral Drug Research Proposal Activity

    Directory of Open Access Journals (Sweden)

    Lisa Injaian

    2011-03-01

    Full Text Available The development of antiviral drugs provides an excellent example of how basic and clinical research must be used together in order to achieve the final goal of treating disease. A Research Oriented Learning Activity was designed to help students to better understand how basic and clinical research can be combined toward a common goal. Through this project students gained a better understanding of the process of scientific research and increased their information literacy in the field of virology. The students worked as teams to research the many aspects involved in the antiviral drug design process, with each student becoming an "expert" in one aspect of the project. The Antiviral Drug Research Proposal (ADRP culminated with students presenting their proposals to their peers and local virologists in a poster session. Assessment data showed increased student awareness and knowledge of the research process and the steps involved in the development of antiviral drugs as a result of this activity.

  7. Broad and potent antiviral activity of the NAE inhibitor MLN4924.

    Science.gov (United States)

    Le-Trilling, Vu Thuy Khanh; Megger, Dominik A; Katschinski, Benjamin; Landsberg, Christine D; Rückborn, Meike U; Tao, Sha; Krawczyk, Adalbert; Bayer, Wibke; Drexler, Ingo; Tenbusch, Matthias; Sitek, Barbara; Trilling, Mirko

    2016-02-01

    In terms of infected human individuals, herpesviruses range among the most successful virus families. Subclinical herpesviral infections in healthy individuals contrast with life-threatening syndromes under immunocompromising and immunoimmature conditions. Based on our finding that cytomegaloviruses interact with Cullin Roc ubiquitin ligases (CRLs) in the context of interferon antagonism, we systematically assessed viral dependency on CRLs by utilizing the drug MLN4924. CRL activity is regulated through the conjugation of Cullins with the ubiquitin-like molecule Nedd8. By inhibiting the Nedd8-activating Enzyme (NAE), MLN4924 interferes with Nedd8 conjugation and CRL activity. MLN4924 exhibited pronounced antiviral activity against mouse and human cytomegalovirus, herpes simplex virus (HSV)- 1 (including multi-drug resistant clinical isolates), HSV-2, adeno and influenza viruses. Human cytomegalovirus genome amplification was blocked at nanomolar MLN4924 concentrations. Global proteome analyses revealed that MLN4924 blocks cytomegaloviral replication despite increased IE1 amounts. Expression of dominant negative Cullins assigned this IE regulation to defined Cullin molecules and phenocopied the antiviral effect of MLN4924.

  8. ANTI-VIRAL ACTIVITY OF GLYCIRRHETINIC AND GLYCIRRHIZIC ACIDS

    Directory of Open Access Journals (Sweden)

    V. V. Zarubaev

    2016-01-01

    Full Text Available Influenza is a highly contagious human disease. In the course of use of antiviral drugs drug-resistant strains of the virus are formed, resulting in reduced efficiency of the chemotherapy. The review describes the biological activity of glycirrhetinic (GLA and glycirrhizic (GA acids in terms of their use as a therapeutic agent for viral infections. So, these compounds are against a broad spectrum of viruses, including herpes, corona-, alphaand flaviviruses, human immunodeficiency virus, vaccinia virus, poliovirus type I, vesicular stomatitis virus and influenza A virus. These data indicate that anti-viral effect of these compounds is due to several types of activity — direct antiviral effects, effects on cellular proand anti-viral and immunomodulating pathways, in particular by activation of innate immunity system. GA interferes with early steps of the viral reproductive cycle such as virus binding to its receptor, the absorption of the virus by endocytosis or virus decapsidation in the cytoplasm. This is due to the effect of GA-induced reduction of membrane fluidity. Thus, one mechanism for the antiviral activity of GA is that GA molecule increases the rigidity of cellular and viral membranes after incorporation in there. This results in increasing of energy threshold required for the formation of negative curvature at the fusion zones, as well as difficult lateral migration of the virus-receptor complexes. In addition, glycyrrhizin prevents interaction of viral nucleoprotein with cellular protein HMGB1, which is necessary for the viral life cycle. Glycyrrhizin also inhibits the induction of oxidative stress during influenza infection, exhibiting antioxidant properties, which leads to a reduction of virus-induced production of cytokines/chemokines, without affecting the replication of the virus. A wide spectrum of biological activity and effect on various aspects of the viral pathogenesis substantiate the effect of GA and GLA as a component

  9. Antiviral Activity of Polyacrylic and Polymethacrylic Acids

    Science.gov (United States)

    De Somer, P.; De Clercq, E.; Billiau, A.; Schonne, E.; Claesen, M.

    1968-01-01

    Polyacrylic acid (PAA) and polymethacrylic acid (PMAA) were investigated for their antiviral properties in tissue culture. Compared to other related polyanions, as dextran sulfate, polystyrene sulfonate, polyvinyl sulfate, and polyphloroglucinol phosphate, PAA and PMAA were found to be significantly more antivirally active and less cytotoxic. PMAA added 24 hr prior to virus inoculation inhibited viral growth most efficiently but it was still effective when added 3 hr after infection. Neither a direct irreversible action on the virus nor inhibition of virus penetration into the cell could explain the antiviral activity of PMAA. PMAA inhibited the adsorption of the virus to the host cell and suppressed the one-cycle viral synthesis in tissue cultures inoculated with infectious RNA. PMID:4302187

  10. In vitro antiviral activity of plant extracts from Asteraceae medicinal plants.

    Science.gov (United States)

    Visintini Jaime, María F; Redko, Flavia; Muschietti, Liliana V; Campos, Rodolfo H; Martino, Virginia S; Cavallaro, Lucia V

    2013-07-27

    Due to the high prevalence of viral infections having no specific treatment and the constant appearance of resistant viral strains, the development of novel antiviral agents is essential. The aim of this study was to evaluate the antiviral activity against bovine viral diarrhea virus, herpes simplex virus type 1 (HSV-1), poliovirus type 2 (PV-2) and vesicular stomatitis virus of organic (OE) and aqueous extracts (AE) from: Baccharis gaudichaudiana, B. spicata, Bidens subalternans, Pluchea sagittalis, Tagetes minuta and Tessaria absinthioides. A characterization of the antiviral activity of B. gaudichaudiana OE and AE and the bioassay-guided fractionation of the former and isolation of one active compound is also reported. The antiviral activity of the OE and AE of the selected plants was evaluated by reduction of the viral cytopathic effect. Active extracts were then assessed by plaque reduction assays. The antiviral activity of the most active extracts was characterized by evaluating their effect on the pretreatment, the virucidal activity and the effect on the adsorption or post-adsorption period of the viral cycle. The bioassay-guided fractionation of B. gaudichaudiana OE was carried out by column chromatography followed by semipreparative high performance liquid chromatography fractionation of the most active fraction and isolation of an active compound. The antiviral activity of this compound was also evaluated by plaque assay. B. gaudichaudiana and B. spicata OE were active against PV-2 and VSV. T. absinthioides OE was only active against PV-2. The corresponding three AE were active against HSV-1. B. gaudichaudiana extracts (OE and AE) were the most selective ones with selectivity index (SI) values of 10.9 (PV-2) and > 117 (HSV-1). For this reason, both extracts of B. gaudichaudiana were selected to characterize their antiviral effects. Further bioassay-guided fractionation of B. gaudichaudiana OE led to an active fraction, FC (EC50 = 3.1 μg/ml; SI = 37

  11. Antiviral Activities of Several Oral Traditional Chinese Medicines against Influenza Viruses.

    Science.gov (United States)

    Ma, Lin-Lin; Ge, Miao; Wang, Hui-Qiang; Yin, Jin-Qiu; Jiang, Jian-Dong; Li, Yu-Huan

    2015-01-01

    Influenza is still a serious threat to human health with significant morbidity and mortality. The emergence of drug-resistant influenza viruses poses a great challenge to existing antiviral drugs. Traditional Chinese medicines (TCMs) may be an alternative to overcome the challenge. Here, 10 oral proprietary Chinese medicines were selected to evaluate their anti-influenza activities. These drugs exhibit potent inhibitory effects against influenza A H1N1, influenza A H3N2, and influenza B virus. Importantly, they demonstrate potent antiviral activities against drug-resistant strains. In the study of mechanisms, we found that Xiaoqinglong mixture could increase antiviral interferon production by activating p38 MAPK, JNK/SAPK pathway, and relative nuclear transcription factors. Lastly, our studies also indicate that some of these medicines show inhibitory activities against EV71 and CVB strains. In conclusion, the 10 traditional Chinese medicines, as kind of compound combination medicines, show broad-spectrum antiviral activities, possibly also including inhibitory activities against strains resistant to available antiviral drugs.

  12. Antiviral and cytotoxic activities of some Indonesian plants.

    Science.gov (United States)

    Lohézic-Le Dévéhat, F; Bakhtiar, A; Bézivin, C; Amoros, M; Boustie, J

    2002-08-01

    Ten methanolic extracts from eight Indonesian medicinal plants were phytochemically screened and evaluated for antiviral (HSV-1 and Poliovirus) and cytotoxic activities on murine and human cancer lines (3LL, L1210, K562, U251, DU145, MCF-7). Besides Melastoma malabathricum (Melastomataceae), the Indonesian Loranthaceae species among which Elytranthe tubaeflora, E. maingayi, E. globosa and Scurrula ferruginea exhibited attractive antiviral and cytotoxic activities. Piper aduncum (Piperaceae) was found active on Poliovirus. S. ferruginea was selected for further studies because of its activity on the U251 glioblastoma cells.

  13. Mushrooms as a source of substances with antiviral activity

    Directory of Open Access Journals (Sweden)

    Martyna Kandefer-Szerszeń

    2014-08-01

    Full Text Available Water extracts the fructifications of 56 species of fungi were examined as a source of antiviral substances with activity against VS and vaccinia viruses. Extracts from 16 fungal species exhibited the antiviral activity. Water extracts from Boletus edulis active against vaccinia virus and extract from Armillariella mellea active against VS virus are particularly worth nothing. Both of them in applied concentrations were not toxic in chick embryo fibroblasts tissue culture.

  14. Viral Pseudo Enzymes Activate RIG-I via Deamidation to Evade Cytokine Production

    Science.gov (United States)

    He, Shanping; Zhao, Jun; Song, Shanshan; He, Xiaojing; Minassian, Arlet; Zhou, Yu; Zhang, Junjie; Brulois, Kevin; Wang, Yuqi; Cabo, Jackson; Zandi, Ebrahim; Liang, Chengyu; Jung, Jae U; Zhang, Xuewu; Feng, Pinghui

    2015-01-01

    SUMMARY RIG-I is a pattern recognition receptor that senses viral RNA and is crucial for host innate immune defense. Here we describe a mechanism of RIG-I activation through amidotransferase-mediated deamidation. We show that viral homologues of phosphoribosylformyglycinamide synthase (PFAS), although lacking intrinsic enzyme activity, recruit cellular PFAS to deamidate and activate RIG-I. Accordingly, depletion and biochemical inhibition of PFAS impair RIG-I deamidation and concomitant activation. Purified PFAS and viral homologue thereof deamidate RIG-I in vitro. Ultimately, herpesvirus hijacks activated RIG-I to avoid antiviral cytokine production; loss of RIG-I or inhibition of RIG-I deamidation results in elevated cytokine production. Together, these findings demonstrate a surprising mechanism of RIG-I activation that is mediated by an enzyme. PMID:25752576

  15. DMPD: What is disrupting IFN-alpha's antiviral activity? [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15283983 What is disrupting IFN-alpha's antiviral activity? Mbow ML, Sarisky RT. Tr...ends Biotechnol. 2004 Aug;22(8):395-9. (.png) (.svg) (.html) (.csml) Show What is disrupting IFN-alpha's ant...iviral activity? PubmedID 15283983 Title What is disrupting IFN-alpha's antiviral activity? Authors Mbow ML,

  16. Phytochemistry, cytotoxicity and antiviral activity of Eleusine indica (sambau)

    Science.gov (United States)

    Iberahim, Rashidah; Yaacob, Wan Ahmad; Ibrahim, Nazlina

    2015-09-01

    Goose grass also known as Eleusine indica (EI) is a local medicinal plant that displays antioxidant, antimicrobial and anticancer activities. The present study is to determine the phytochemical constituents, cytotoxicity and antiviral activities for both crude extract and fraction obtained from the plant. The crude extract contained more secondary metabolites compared to the hexane fraction as gauged using standard phytochemical tests. Cytotoxicity screening against Vero cells using MTT assay showed that the CC50 values for crude extract and hexane fraction were 2.07 and 5.62 mg/ml respectively. The antiviral activity towards Herpes Simplex Virus type 1 (HSV-1) was determined using plaque reduction assay. The selective indices (SI = CC50 / EC50) for both methanol extract and hexane fraction were 12.2 and 6.2 respectively. These results demonstrate that the extract prepared from E. indica possesses phytochemical compound that was non cytotoxic to the cell with potential antiviral activity.

  17. Antiviral activity of some South American medicinal plants.

    Science.gov (United States)

    Abad, M J; Bermejo, P; Sanchez Palomino, S; Chiriboga, X; Carrasco, L

    1999-03-01

    Folk medicinal plants are potential sources of useful therapeutic compounds including some with antiviral activities. Extracts prepared from 10 South American medicinal plants (Baccharis trinervis, Baccharis teindalensis, Eupatorium articulatum, Eupatorium glutinosum, Tagetes pusilla, Neurolaena lobata, Conyza floribunda, Phytolacca bogotensis, Phytolacca rivinoides and Heisteria acuminata) were screened for in vitro antiviral activity against herpes simplex type I (HSV-1), vesicular stomatitis virus (VSV) and poliovirus type 1. The most potent inhibition was observed with an aqueous extract of B. trinervis, which inhibited HSV-1 replication by 100% at 50-200 micrograms/mL, without showing cytotoxic effects. Good activities were also found with the ethanol extract of H. acuminata and the aqueous extract of E. articulatum, which exhibited antiviral effects against both DNA and RNA viruses (HSV-1 and VSV, respectively) at 125-250 micrograms/mL. The aqueous extracts of T. pusilla (100-250 micrograms/mL), B. teindalensis (50-125 micrograms/mL) and E. glutinosum (50-125 micrograms/mL) also inhibited the replication of VSV, but none of the extracts tested had any effect on poliovirus replication.

  18. Screening for Antiviral Activities of Isolated Compounds from Essential Oils

    Directory of Open Access Journals (Sweden)

    Akram Astani

    2011-01-01

    Full Text Available Essential oil of star anise as well as phenylpropanoids and sesquiterpenes, for example, trans-anethole, eugenol, β-eudesmol, farnesol, β-caryophyllene and β-caryophyllene oxide, which are present in many essential oils, were examined for their antiviral activity against herpes simplex virus type 1 (HSV-1 in vitro. Antiviral activity was analyzed by plaque reduction assays and mode of antiviral action was determined by addition of the drugs to uninfected cells, to the virus prior to infection or to herpesvirus-infected cells. Star anise oil reduced viral infectivity by >99%, phenylpropanoids inhibited HSV infectivity by about 60–80% and sesquiterpenes suppressed herpes virus infection by 40–98%. Both, star anise essential oil and all isolated compounds exhibited anti-HSV-1 activity by direct inactivation of free virus particles in viral suspension assays. All tested drugs interacted in a dose-dependent manner with herpesvirus particles, thereby inactivating viral infectivity. Star anise oil, rich in trans-anethole, revealed a high selectivity index of 160 against HSV, whereas among the isolated compounds only β-caryophyllene displayed a high selectivity index of 140. The presence of β-caryophyllene in many essential oils might contribute strongly to their antiviral ability. These results indicate that phenylpropanoids and sesquiterpenes present in essential oils contribute to their antiviral activity against HSV.

  19. Antiviral activity and mechanism of action of arbidol against Hantaan ...

    African Journals Online (AJOL)

    Keywords: Hantavirus, Arbidol, Toll-like receptors, inducible nitric oxide synthase, Antiviral activity, ... hantavirus infection. Arbidol is a broad-spectrum antiviral compound that has been shown to have inhibitory effect on influenza virus [4,5], respiratory syncytial virus [6], ..... species in hantavirus cardiopulmonary syndrome.

  20. Antiviral activity of maca (Lepidium meyenii) against human influenza virus.

    Science.gov (United States)

    Del Valle Mendoza, Juana; Pumarola, Tomàs; Gonzales, Libertad Alzamora; Del Valle, Luis J

    2014-09-01

    To investigate antiviral activity of maca to reduce viral load in Madin-Darby canine kidney (MDCK) cells infected with influenza type A and B viruses (Flu-A and Flu-B, respectively). Maca were extracted with methanol (1:2, v/v). The cell viability and toxicity of the extracts were evaluated on MDCK cells using method MTT assay. Antiviral activity of compounds against Flu-A and Flu-B viruses was assayed using a test for determining the inhibition of the cytopathic effect on cell culture and multiplex RT-PCR. The methanol extract of maca showed low cytotoxicity and inhibited influenza-induced cytopathic effect significantly, while viral load was reduced via inhibition of viral growth in MDCK infected cells. Maca contains potent inhibitors of Flu-A and Flu-B with a selectivity index [cytotoxic concentration 50%/IC50] of 157.4 and 110.5, respectively. In vitro assays demonstrated that maca has antiviral activity not only against Flu-A (like most antiviral agents) but also Flu-B viruses, providing remarkable therapeutic benefits. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  1. Amphipathic DNA polymers exhibit antiviral activity against systemic Murine Cytomegalovirus infection

    Directory of Open Access Journals (Sweden)

    Juteau Jean-Marc

    2009-12-01

    Full Text Available Abstract Background Phosphorothioated oligonucleotides (PS-ONs have a sequence-independent, broad spectrum antiviral activity as amphipathic polymers (APs and exhibit potent in vitro antiviral activity against a broad spectrum of herpesviruses: HSV-1, HSV-2, HCMV, VZV, EBV, and HHV-6A/B, and in vivo activity in a murine microbiocide model of genital HSV-2 infection. The activity of these agents against animal cytomegalovirus (CMV infections in vitro and in vivo was therefore investigated. Results In vitro, a 40 mer degenerate AP (REP 9 inhibited both murine CMV (MCMV and guinea pig CMV (GPCMV with an IC50 of 0.045 μM and 0.16 μM, respectively, and a 40 mer poly C AP (REP 9C inhibited MCMV with an IC50 of 0.05 μM. Addition of REP 9 to plaque assays during the first two hours of infection inhibited 78% of plaque formation whereas addition of REP 9 after 10 hours of infection did not significantly reduce the number of plaques, indicating that REP 9 antiviral activity against MCMV occurs at early times after infection. In a murine model of CMV infection, systemic treatment for 5 days significantly reduced virus replication in the spleens and livers of infected mice compared to saline-treated control mice. REP 9 and REP 9C were administered intraperitoneally for 5 consecutive days at 10 mg/kg, starting 2 days prior to MCMV infection. Splenomegaly was observed in infected mice treated with REP 9 but not in control mice or in REP 9 treated, uninfected mice, consistent with mild CpG-like activity. When REP 9C (which lacks CpG motifs was compared to REP 9, it exhibited comparable antiviral activity as REP 9 but was not associated with splenomegaly. This suggests that the direct antiviral activity of APs is the predominant therapeutic mechanism in vivo. Moreover, REP 9C, which is acid stable, was effective when administered orally in combination with known permeation enhancers. Conclusion These studies indicate that APs exhibit potent, well tolerated

  2. Antiviral activity of maca (Lepidium meyenii) against human influenza virus

    OpenAIRE

    Del Valle Mendoza, Juana; Pumarola, Tomas; Alzamora Gonzales, Libertad; Valle Mendoza, Luis Javier del

    2014-01-01

    Objective To investigate antiviral activity of maca to reduce viral load in Madin-Darby canine kidney (MDCK) cells infected with influenza type A and B viruses (Flu-A and Flu-B, respectively). Methods Maca were extracted with methanol (1:2, v/v). The cell viability and toxicity of the extracts were evaluated on MDCK cells using method MTT assay. Antiviral activity of compounds against Flu-A and Flu-B viruses was assayed using a test for determining the inhibition of the cytopathic ...

  3. Cytotoxic, Virucidal, and Antiviral Activity of South American Plant and Algae Extracts

    Directory of Open Access Journals (Sweden)

    Paula Faral-Tello

    2012-01-01

    Full Text Available Herpes simplex virus type 1 (HSV-1 infection has a prevalence of 70% in the human population. Treatment is based on acyclovir, valacyclovir, and foscarnet, three drugs that share the same mechanism of action and of which resistant strains have been isolated from patients. In this aspect, innovative drug therapies are required. Natural products offer unlimited opportunities for the discovery of antiviral compounds. In this study, 28 extracts corresponding to 24 plant species and 4 alga species were assayed in vitro to detect antiviral activity against HSV-1. Six of the methanolic extracts inactivated viral particles by direct interaction and 14 presented antiviral activity when incubated with cells already infected. Most interesting antiviral activity values obtained are those of Limonium brasiliense, Psidium guajava, and Phyllanthus niruri, which inhibit HSV-1 replication in vitro with 50% effective concentration (EC50 values of 185, 118, and 60 μg/mL, respectively. For these extracts toxicity values were calculated and therefore selectivity indexes (SI obtained. Further characterization of the bioactive components of antiviral plants will pave the way for the discovery of new compounds against HSV-1.

  4. Antiviral activities of streptomycetes against tobacco mosaic virus ...

    African Journals Online (AJOL)

    Mahera Shinwari

    2012-01-26

    Jan 26, 2012 ... Key words: Antiviral activity, tobacco mosaic virus, actinomycetes, Streptomyces, Datura metel ... have received less attention than those caused by fungal .... leaves were divided in to three partitions each containing triplicates.

  5. Antiviral activity of a serine protease from the digestive juice of Bombyx mori larvae against nucleopolyhedrovirus

    International Nuclear Information System (INIS)

    Nakazawa, Hiroshi; Tsuneishi, Eiko; Ponnuvel, Kangayam M.; Furukawa, Seiichi; Asaoka, Ai; Tanaka, Hiromitsu; Ishibashi, Jun; Yamakawa, Minoru

    2004-01-01

    A protein showing strong antiviral activity against Bombyx mori nucleopolyhedrovirus (BmNPV) was purified from the digestive juice of B. mori larvae. The molecular mass of this protein was 24 271 Da. Partial N-terminal amino acid sequence of the protein was determined and cDNA was cloned based on the amino acid sequence. A homology search of the deduced amino acid sequence of the cDNA showed 94% identity with B. mori serine protease so the protein was designated B. mori serine protease-2 (BmSP-2). Analysis of BmSP-2 gene expression showed that this gene is expressed in the midgut but not in other tissues. In addition, BmSP-2 gene was shown to not be expressed in the molting and wandering stages, indicating that the gene is hormonally regulated. Our results suggest that BmSP-2, an insect digestive enzyme, can be a potential antiviral factor against BmNPV at the initial site of viral infection

  6. Antiviral activity of Petiveria alliacea against the bovine viral diarrhea virus.

    Science.gov (United States)

    Ruffa, M J; Perusina, M; Alfonso, V; Wagner, M L; Suriano, M; Vicente, C; Campos, R; Cavallaro, L

    2002-07-01

    Natural products are a relevant source of antiviral drugs. Five medicinal plants used in Argentina have been assayed to detect inhibition of viral growth. Antiviral activity of the infusions and methanolic extracts of Aristolochia macroura, Celtis spinosa, Plantago major, Schinus areira, Petiveria alliacea and four extracts obtained from the leaves and stems of the last plant were evaluated by the plaque assay. P. alliacea, unlike A. macroura, C. spinosa, P. major and S. areira, inhibited bovine viral diarrhea virus (BVDV) replication. Neither P. alliacea nor the assays of the other plants were active against herpes simplex virus type 1, poliovirus type 1, adenovirus serotype 7 and vesicular stomatitis virus type 1. Four extracts of P. alliacea were assayed to detect anti-BVDV activity. Ethyl acetate (EC(50) of 25 microg/ml) and dichloromethane (EC(50) of 43 microg/ml) extracts were active; moreover, promising SI (IC(50)/EC(50)) values were obtained. BVDV is highly prevalent in the cattle population, there are no antiviral compounds available; additionally, it is a viral model of the hepatitis C virus. For these reasons and in view of the results obtained, the isolation and characterization of the antiviral components present in the P. alliacea extracts is worth carrying out in the future. Copyright 2002 S. Karger AG, Basel

  7. Antiviral activity of Aloe vera against herpes simplex virus type 2: An ...

    African Journals Online (AJOL)

    SERVER

    2007-08-06

    Aug 6, 2007 ... In this study we tested the antiviral activity of a crude hot glycerine extract of Aloe vera gel which was grown in Bushehr (Southwest of Iran) against HSV-2 replication in Vero cell line. The extract showed antiviral activity against HSV-2 not only before attachment and entry of virus to the Vero cells but also.

  8. Bilirubin: an endogenous molecule with antiviral activity in vitro.

    Directory of Open Access Journals (Sweden)

    Rosaria eSantangelo

    2012-03-01

    Full Text Available Bilirubin-IX-alpha (BR is the final product of heme metabolism through the heme oxygenase/biliverdin reductase (HO/BVR system. Previous papers reported on the microbicidal effects of the HO by-products biliverdin-IX-alpha, carbon monoxide and iron, through either direct or indirect mechanisms. In this paper the evidence of a virucidal effect of BR against human herpes simplex virus type 1 (HSV-1 and the enterovirus EV71 was provided. Bilirubin-IX-alpha, at concentrations 1-10 µM, close to those found in blood and tissues, significantly reduced HSV-1 and EV71 replication in Hep-2 and Vero cell lines, respectively. Bilirubin-IX-alpha inhibited viral infection of Hep-2 and Vero cells when given 2 hours before, concomitantly and 2 hours after viral infection. Furthermore, BR retained its antiviral activity even complexed with a saturating concentration of human serum-albumin. Moreover, 10 µM BR increased the formation of nitric oxide and the phosphorylation of JNK in Vero and Hep-2 cell lines, respectively, thus implying a role of these two pathways in the mechanism of antiviral activity of the bile pigment. In conclusion, these results support the antiviral effect of BR against HSV-1 and enterovirus in vitro, and put the basis for further basic and clinical studies to understand the real role of BR as an endogenous antiviral molecule.

  9. Antiviral activity of exopolysaccharides from Arthrospira platensis against koi herpesvirus.

    Science.gov (United States)

    Reichert, M; Bergmann, S M; Hwang, J; Buchholz, R; Lindenberger, C

    2017-10-01

    Although koi herpesvirus (KHV) has a history of causing severe economic losses in common carp and koi farms, there are still no treatments available on the market. Thus, the aim of this study was to test exopolysaccharides (EPS) for its antiviral activity against KHV, by monitoring inhibition and cytotoxic effects in common carp brain cells. These substances can be easily extracted from extracellular algae supernatant and were identified as groups of sulphated polysaccharides. In order to reach this aim, Arthrospira platensis, which is well known for its antiviral activity of intra- and extracellular compounds towards mammalian herpesviruses, was investigated as standard organism and compared to commercial antiviral drug, ganciclovir, which inhibits the viral DNA polymerization. The antiviral activity of polysaccharides of A. platensis against KHV was confirmed in vitro using qualitative assessment of KHV life cycle genes, and it was found by RT-PCR that EPS, applied at a concentration of >18 μg mL -1 and a multiplicity of infection (MOI) of 0.45 of KHV, suppressed the viral replication in common carp brain (CCB) cells even after 22 days post-infection, entirely. Further, this study presents first data indicating an enormous potential using polysaccharides as an additive for aquacultures to lower or hinder the spread of the KHV and koi herpesvirus disease (KHVD) in future. © 2017 John Wiley & Sons Ltd.

  10. Removal of the antiviral agent oseltamivir and its biological activity by oxidative processes

    International Nuclear Information System (INIS)

    Mestankova, Hana; Schirmer, Kristin; Escher, Beate I.; Gunten, Urs von

    2012-01-01

    The antiviral agent oseltamivir acid (OA, the active metabolite of Tamiflu ® ) may occur at high concentrations in wastewater during pandemic influenza events. To eliminate OA and its antiviral activity from wastewater, ozonation and advanced oxidation processes were investigated. For circumneutral pH, kinetic measurements yielded second-order rate constants of 1.7 ± 0.1 × 10 5 and 4.7 ± 0.2 × 10 9 M −1 s −1 for the reaction of OA with ozone and hydroxyl radical, respectively. During the degradation of OA by both oxidants, the antiviral activity of the treated aqueous solutions was measured by inhibition of neuraminidase activity of two different viral strains. A transient, moderate (two-fold) increase in antiviral activity was observed in solutions treated up to a level of 50% OA transformation, while for higher degrees of transformation the activity corresponded to that caused exclusively by OA. OA was efficiently removed by ozonation in a wastewater treatment plant effluent, suggesting that ozonation can be applied to remove OA from wastewater. - Highlights: ► Oseltamivir acid (OA) is oxidized by ozone and hydroxyl radical. ► Kinetics: We determined rate constants for the reaction with these oxidants. ► The specific activity of OA as neuraminidase inhibitor disappeared during oxidation. ► Ozonation and advanced oxidation can effectively remove OA from wastewaters. - Ozone and hydroxyl radical treatment processes can degrade aqueous oseltamivir acid and remove its antiviral activity.

  11. Evaluation of in vitro antiviral activity of a brown alga ( Cystoseira ...

    African Journals Online (AJOL)

    The hot water extract of a brown marine alga, Cystoseira myrica, from the Persian Gulf was evaluated as an antiviral compound against KOS strain of HSV-1 in cell culture. The extract exhibited antiviral activity against herpes simplex virus type 1 (HSV-1) not only during absorption of virus to the cells, but also on post ...

  12. Glutamylation of the DNA sensor cGAS regulates its binding and synthase activity in antiviral immunity.

    Science.gov (United States)

    Xia, Pengyan; Ye, Buqing; Wang, Shuo; Zhu, Xiaoxiao; Du, Ying; Xiong, Zhen; Tian, Yong; Fan, Zusen

    2016-04-01

    Cyclic GMP-AMP synthase (cGAS) senses cytosolic DNA during viral infection and catalyzes synthesis of the dinucleotide cGAMP, which activates the adaptor STING to initiate antiviral responses. Here we found that deficiency in the carboxypeptidase CCP5 or CCP6 led to susceptibility to DNA viruses. CCP5 and CCP6 were required for activation of the transcription factor IRF3 and interferons. Polyglutamylation of cGAS by the enzyme TTLL6 impeded its DNA-binding ability, whereas TTLL4-mediated monoglutamylation of cGAS blocked its synthase activity. Conversely, CCP6 removed the polyglutamylation of cGAS, whereas CCP5 hydrolyzed the monoglutamylation of cGAS, which together led to the activation of cGAS. Therefore, glutamylation and deglutamylation of cGAS tightly modulate immune responses to infection with DNA viruses.

  13. Antiviral Activity of Novel Quinoline Derivatives against Dengue Virus Serotype 2

    Directory of Open Access Journals (Sweden)

    Carolina de la Guardia

    2018-03-01

    Full Text Available Dengue virus causes dengue fever, a debilitating disease with an increasing incidence in many tropical and subtropical territories. So far, there are no effective antivirals licensed to treat this virus. Here we describe the synthesis and antiviral activity evaluation of two compounds based on the quinoline scaffold, which has shown potential for the development of molecules with various biological activities. Two of the tested compounds showed dose-dependent inhibition of dengue virus serotype 2 in the low and sub micromolar range. The compounds 1 and 2 were also able to impair the accumulation of the viral envelope glycoprotein in infected cells, while showing no sign of direct virucidal activity and acting possibly through a mechanism involving the early stages of the infection. The results are congruent with previously reported data showing the potential of quinoline derivatives as a promising scaffold for the development of new antivirals against this important virus.

  14. Antiviral activity of an N-allyl acridone against dengue virus

    OpenAIRE

    Mazzucco, María Belén; Talarico, Laura Beatriz; Vatansever, Sezen; Carro, Ana Clara; Fascio, Mirta Liliana; D'Accorso, Norma Beatriz; Garcia, Cybele; Damonte, Elsa Beatriz

    2016-01-01

    Dengue virus (DENV), a member of the family Flaviviridae, is at present the most widespread causative agent of a human viral disease transmitted by mosquitoes. Despite the increasing incidence of this pathogen, there are no antiviral drugs or vaccines currently available for treatment or prevention. In a previous screening assay, we identified a group of N-allyl acridones as effective virus inhibitors. Here, the antiviral activity and mode of action targeted to viral RNA replication of one of...

  15. Antiviral Activity of Peanut (Arachis hypogaea L.) Skin Extract Against Human Influenza Viruses.

    Science.gov (United States)

    Makau, Juliann Nzembi; Watanabe, Ken; Mohammed, Magdy M D; Nishida, Noriyuki

    2018-05-30

    The high propensity of influenza viruses to develop resistance to antiviral drugs necessitates the continuing search for new therapeutics. Peanut skins, which are low-value byproducts of the peanut industry, are known to contain high levels of polyphenols. In this study, we investigated the antiviral activity of ethanol extracts of peanut skins against various influenza viruses using cell-based assays. Extracts with a higher polyphenol content exhibited higher antiviral activities, suggesting that the active components are the polyphenols. An extract prepared from roasted peanut skins effectively inhibited the replication of influenza virus A/WSN/33 with a half maximal inhibitory concentration of 1.3 μg/mL. Plaque assay results suggested that the extract inhibits the early replication stages of the influenza virus. It demonstrated activity against both influenza type A and type B viruses. Notably, the extract exhibited a potent activity against a clinical isolate of the 2009 H1N1 pandemic, which had reduced sensitivity to oseltamivir. Moreover, a combination of peanut skin extract with the anti-influenza drugs, oseltamivir and amantadine, synergistically increased their antiviral activity. These data demonstrate the potential application of peanut skin extract in the development of new therapeutic options for influenza management.

  16. Tailoring acyclovir prodrugs with enhanced antiviral activity: rational design, synthesis, human plasma stability and in vitro evaluation.

    Science.gov (United States)

    Chayrov, Radoslav L; Stylos, Evgenios K; Chatziathanasiadou, Maria V; Chuchkov, Kiril N; Tencheva, Aleksandra I; Kostagianni, Androniki D; Milkova, Tsenka S; Angelova, Assia L; Galabov, Angel S; Shishkov, Stoyan A; Todorov, Daniel G; Tzakos, Andreas G; Stankova, Ivanka G

    2018-05-19

    Bile acid prodrugs have served as a viable strategy for refining the pharmaceutical profile of parent drugs through utilizing bile acid transporters. A series of three ester prodrugs of the antiherpetic drug acyclovir (ACV) with the bile acids cholic, chenodeoxycholic and deoxycholic were synthesized and evaluated along with valacyclovir for their in vitro antiviral activity against herpes simplex viruses type 1 and type 2 (HSV-1, HSV-2). The in vitro antiviral activity of the three bile acid prodrugs was also evaluated against Epstein-Barr virus (EBV). Plasma stability assays, utilizing ultra-high performance liquid chromatography coupled with tandem mass spectrometry, in vitro cytotoxicity and inhibitory experiments were conducted in order to establish the biological profile of ACV prodrugs. The antiviral assays demonstrated that ACV-cholate had slightly better antiviral activity than ACV against HSV-1, while it presented an eight-fold higher activity with respect to ACV against HSV-2. ACV-chenodeoxycholate presented a six-fold higher antiviral activity against HSV-2 with respect to ACV. Concerning EBV, the highest antiviral effect was demonstrated by ACV-chenodeoxycholate. Human plasma stability assays revealed that ACV-deoxycholate was more stable than the other two prodrugs. These results suggest that decorating the core structure of ACV with bile acids could deliver prodrugs with amplified antiviral activity.

  17. Ophthalmic antiviral chemotherapy : An overview

    Directory of Open Access Journals (Sweden)

    Athmanathan Sreedharan

    1997-01-01

    Full Text Available Antiviral drug development has been slow due to many factors. One such factor is the difficulty to block the viral replication in the cell without adversely affecting the host cell metabolic activity. Most of the antiviral compounds are analogs of purines and pyramidines. Currently available antiviral drugs mainly inhibit viral nucleic acid synthesis, hence act only on actively replicating viruses. This article presents an overview of some of the commonly used antiviral agents in clinical ophthalmology.

  18. Studies on Antiviral and Immuno-Regulation Activity of Low Molecular Weight Fucoidan from Laminaria japonica

    Science.gov (United States)

    Sun, Taohua; Zhang, Xinhui; Miao, Ying; Zhou, Yang; Shi, Jie; Yan, Meixing; Chen, Anjin

    2018-06-01

    The antiviral activity in vitro and in vivo and the effect of the immune system of two fucoidan fractions with low molecular weight and different sulfate content from Laminaria japonica (LMW fucoidans) were investigated in order to examine the possible mechanism. In vitro, I-type influenza virus, adenovirus and Parainfluenza virus I were used to infect Hep-2, Hela and MDCK cells, respectively. And 50% tissue culture infective dose was calculated to detect the antiviral activity of two LMW fucoidans. The results indicated that compared with the control group, 2 kinds of LMW fucoidans had remarkable antiviral activity in vitro in middle and high doses, while at low doses, the antiviral activity of 2 kinds of LMW fucoidans was not statistically different from that in the blank control group. And there was no statistically difference between two LMW fucoidans in antiviral activity. In vivo, LMW fucoidans could prolong the survival time of virus-infected mice, and could improve the lung index of virus-infected mice significantly, which have statistical differences with the control group significantly ( p 0.05). In this study, it was shown that both of two LMW fucoidans (LF1, LF2) could increase the thymus index, spleen index, phagocytic index, phagocytosis coefficient and half hemolysin value in middle and high doses, which suggested that LMW fucoidans could play an antiviral role by improving the quality of immune organs, improving immune cell phagocytosis and humoral immunity.

  19. Triazole nucleoside derivatives bearing aryl functionalities on the nucleobases show antiviral and anticancer activity.

    Science.gov (United States)

    Xia, Yi; Qu, Fanqi; Peng, Ling

    2010-08-01

    Synthetic nucleoside mimics are important candidates in the searing for antiviral and anticancer drugs. Ribavirin, the first antiviral nucleoside drug, is unique in its antiviral activity with mutilple modes of action, which are mainly due to its special triazole heterocycle as nucleobase. Additionally, introducing aromatic functionalities to the nucleobase is able to confer novel mechanisms of action for nucleoside mimics. With the aim to combine the special characteristics of unnatural triazole heterocycles with those of the appended aromatic groups on the nucleobases, novel 1,2,4-triazole nucleoside analogs bearing aromatic moieties were designed and developed. The present short review summarizes the molecular design, chemical synthesis and biological activity of these triazole nucleoside analogs. Indeed, the discovery of antiviral and anticancer activities shown by these triazole nucleosides as well as the new mechanism underlying the biological activity by one of the anticancer leads has validated the rationale for molecular design and impacted us to further explore the concept with the aim of developing structurally novel nucleoside drug candidates with new modes of action.

  20. Antiviral activity of human lactoferrin: inhibition of alphavirus interaction with heparan sulfate

    International Nuclear Information System (INIS)

    Waarts, Barry-Lee; Aneke, Onwuchekwa J.C.; Smit, Jolanda M.; Kimata, Koji; Bittman, Robert; Meijer, Dirk K.F.; Wilschut, Jan

    2005-01-01

    Human lactoferrin is a component of the non-specific immune system with distinct antiviral properties. We used alphaviruses, adapted to interaction with heparan sulfate (HS), as a tool to investigate the mechanism of lactoferrin's antiviral activity. Lactoferrin inhibited infection of BHK-21 cells by HS-adapted, but not by non-adapted, Sindbis virus (SIN) or Semliki Forest virus (SFV). Lactoferrin also inhibited binding of radiolabeled HS-adapted viruses to BHK-21 cells or liposomes containing lipid-conjugated heparin as a receptor analog. On the other hand, low-pH-induced fusion of the viruses with liposomes, which occurs independently of virus-receptor interaction, was unaffected. Studies involving preincubation of virus or cells with lactoferrin suggested that the protein does not bind to the virus, but rather blocks HS-moieties on the cell surface. Charge-modified human serum albumin, with a net positive charge, had a similar antiviral effect against HS-adapted SIN and SFV, suggesting that the antiviral activity of lactoferrin is related to its positive charge. It is concluded that human lactoferrin inhibits viral infection by interfering with virus-receptor interaction rather than by affecting subsequent steps in the viral cell entry or replication processes

  1. Antiviral lead compounds from marine sponges

    KAUST Repository

    Sagar, Sunil

    2010-10-11

    Marine sponges are currently one of the richest sources of pharmacologically active compounds found in the marine environment. These bioactive molecules are often secondary metabolites, whose main function is to enable and/or modulate cellular communication and defense. They are usually produced by functional enzyme clusters in sponges and/or their associated symbiotic microorganisms. Natural product lead compounds from sponges have often been found to be promising pharmaceutical agents. Several of them have successfully been approved as antiviral agents for clinical use or have been advanced to the late stages of clinical trials. Most of these drugs are used for the treatment of human immunodeficiency virus (HIV) and herpes simplex virus (HSV). The most important antiviral lead of marine origin reported thus far is nucleoside Ara-A (vidarabine) isolated from sponge Tethya crypta. It inhibits viral DNA polymerase and DNA synthesis of herpes, vaccinica and varicella zoster viruses. However due to the discovery of new types of viruses and emergence of drug resistant strains, it is necessary to develop new antiviral lead compounds continuously. Several sponge derived antiviral lead compounds which are hopedto be developed as future drugs are discussed in this review. Supply problems are usually the major bottleneck to the development of these compounds as drugs during clinical trials. However advances in the field of metagenomics and high throughput microbial cultivation has raised the possibility that these techniques could lead to the cost-effective large scale production of such compounds. Perspectives on biotechnological methods with respect to marine drug development are also discussed. 2010 by the authors; licensee MDPI.

  2. In vitro antiviral activity of chestnut and quebracho woods extracts against avian reovirus and metapneumovirus.

    Science.gov (United States)

    Lupini, C; Cecchinato, M; Scagliarini, A; Graziani, R; Catelli, E

    2009-12-01

    Field evidences have suggested that a natural extract, containing tannins, could be effective against poultry enteric viral infections. Moreover previous studies have shown that vegetable tannins can have antiviral activity against human viruses. Based on this knowledge three different Chestnut (Castanea spp.) wood extracts and one Quebracho (Schinopsis spp.) wood extract, all containing tannins and currently used in the animal feed industry, were tested for in vitro antiviral activity against avian reovirus (ARV) and avian metapneumovirus (AMPV). The MTT assay was used to evaluate the 50% cytotoxic compounds concentration (CC(50)) on Vero cells. The antiviral properties were tested before and after the adsorption of the viruses to Vero cells. Antiviral activities were expressed as IC(50) (concentration required to inhibit 50% of viral cytopathic effect). CC(50)s of tested compounds were > 200 microg/ml. All compounds had an extracellular antiviral effect against both ARV and AMPV with IC(50) values ranging from 25 to 66 microg/ml. Quebracho extract had also evident intracellular anti-ARV activity (IC(50) 24 microg/ml). These preliminary results suggest that the examined vegetable extracts might be good candidates in the control of some avian virus infections. Nevertheless further in vivo experiments are required to confirm these findings.

  3. Antiviral activity of the dichloromethane extracts from Artocarpus heterophyllus leaves against hepatitis C virus

    OpenAIRE

    Achmad Fuad Hafid; Chie Aoki-Utsubo; Adita Ayu Permanasari; Myrna Adianti; Lydia Tumewu; Aty Widyawaruyanti; Sri Puji Astuti Wahyuningsih; Tutik Sri Wahyuni; Maria Inge Lusida; Soetjipto; Hak Hotta

    2017-01-01

    Objective: To determine anti-viral activities of three Artocarpus species: Artocarpus altilis, Artocarpus camansi, and Artocarpus heterophyllus (A. heterophyllus) against Hepatitis C Virus (HCV). Methods: Antiviral activities of the crude extracts were examined by cell culture method using Huh7it-1 cells and HCV genotype 2a strain JFH1. The mode of action for anti-HCV activities was determined by time-of-addition experiments. The effect on HCV RNA replication and HCV accumulation in cells ...

  4. Antiviral activity of ovine interferon tau 4 against foot-and-mouth disease virus.

    Science.gov (United States)

    Usharani, Jayaramaiah; Park, Sun Young; Cho, Eun-Ju; Kim, Chungsu; Ko, Young-Joon; Tark, Dongseob; Kim, Su-Mi; Park, Jong-Hyeon; Lee, Kwang-Nyeong; Lee, Myoung-Heon; Lee, Hyang-Sim

    2017-07-01

    Foot-and-mouth disease (FMD) is an economically important disease in most parts of the world and new therapeutic agents are needed to protect the animals before vaccination can trigger the host immune response. Although several interferons have been used for their antiviral activities against Foot-and-mouth disease virus (FMDV), ovine interferon tau 4 (OvIFN-τ4), with a broad-spectrum of action, cross-species antiviral activity, and lower incidence of toxicity in comparison to other type І interferons, has not yet been evaluated for this indication. This is the first study to evaluate the antiviral activity of OvIFN-τ4 against various strains of FMDV. The effective anti-cytopathic concentration of OvIFN-τ4 and its effectiveness pre- and post-infection with FMDV were tested in vitro in LFBK cells. In vivo activity of OvIFN-τ4 was then confirmed in a mouse model of infection. OvIFN-τ4 at a concentration of 500 ng, protected mice until 5days post-FMDV challenge and provided 90% protection for 10 days following FMDV challenge. These results suggest that OvIFN-τ4 could be used as an alternative to other interferons or antiviral agents at the time of FMD outbreak. Copyright © 2017. Published by Elsevier B.V.

  5. Antiviral activity of Justicia gendarussa Burm.f. leaves against HIV ...

    African Journals Online (AJOL)

    Backgrounds: Justicia gendarussa Burm.f. has been known to have anti-HIV activity. This study was conducted to evaluate the effect of incubation time on the antiviral activity of the J. gendarussa leaves extract on HIV-infected MT-4 cells in vitro. Molecular docking test was also conducted to determine the interaction of ...

  6. In vitro characterization of the antiviral activity of fucoidan from Cladosiphon okamuranus against Newcastle Disease Virus

    Directory of Open Access Journals (Sweden)

    Elizondo-Gonzalez Regina

    2012-12-01

    Full Text Available Abstract Background Newcastle Disease Virus (NDV causes a serious infectious disease in birds that results in severe losses in the worldwide poultry industry. Despite vaccination, NDV outbreaks have increased the necessity of alternative prevention and control measures. Several recent studies focused on antiviral compounds obtained from natural resources. Many extracts from marine organisms have been isolated and tested for pharmacological purposes, and their antiviral activity has been demonstrated in vitro and in vivo. Fucoidan is a sulfated polysaccharide present in the cell wall matrix of brown algae that has been demonstrated to inhibit certain enveloped viruses with low toxicity. This study evaluated the potential antiviral activity and the mechanism of action of fucoidan from Cladosiphon okamuranus against NDV in the Vero cell line. Methods The cytotoxicity of fucoidan was determined by the MTT assay. To study its antiviral activity, fusion and plaque-forming unit (PFU inhibition assays were conducted. The mechanism of action was determined by time of addition, fusion inhibition, and penetration assays. The NDV vaccine strain (La Sota was used in the fusion inhibition assays. PFU and Western blot experiments were performed using a wild-type lentogenic NDV strain. Results Fucoidan exhibited antiviral activity against NDV La Sota, with an obtained IS50 >2000. In time of addition studies, we observed viral inhibition in the early stages of infection (0–60 min post-infection. The inhibition of viral penetration experiments with a wild-type NDV strain supported this result, as these experiments demonstrated a 48% decrease in viral infection as well as reduced HN protein expression. Ribavirin, which was used as an antiviral control, exhibited lower antiviral activity than fucoidan and high toxicity at active doses. In the fusion assays, the number of syncytia was significantly reduced (70% inhibition when fucoidan was added before cleavage of

  7. [Adenovirus-mediated canine interferon-gamma expression and its antiviral activity against canine parvovirus].

    Science.gov (United States)

    Zhang, Kao; Jin, Huijun; Zhong, Fei; Li, Xiujin; Neng, Changai; Chen, Huihui; Li, Wenyan; Wen, Jiexia

    2012-11-04

    To construct recombinant adenovirus containing canine interferon-gamma (cIFN-gamma) gene and to investigate its antiviral activity against canine parvovirus in Madin-Darby canine kidney cells (MDCK). [Methods] The cIFN-gamma gene was inserted into adenovirus shuttle plasmid to construct pShuttle3-cIFN-gamma expression vector, from which the cIFN-gamma expression cassette was transferred into the adenovirus genomic plasmid pAdeno-X by specific restriction sites to generate recombinant adenovirus genomic plasmid pAd-cIFN-gamma. The pAd-cIFN-gamma plasmid was linearized by digestion and transfected into human embryonic kidney (HEK) 293T cells to generate the replication-defective cIFN-gamma recombinant adenovirus (Ad-cIFN-gamma). To analyze its anti-canine parvovirus activity, the MDCK cells were pre-infected by Ad-cIFN-gamma recombinant adenovirus, and then infected by canine parvovirus. The antiviral activity of the Ad-cIFN-gamma recombinant adenovirus against parvovirus was analyzed. The recombinant adenovirus containing cIFN-gamma gene was constructed by the ligation method. The recombinant adenovirus could mediates recombinant cIFN-gamma secretory expression in MDCK cells. The Ad-cIFN-gamma recombinant adenovirus could significantly inhibit canine parvovirus replication in MDCK cells pre-infected with the recombinant adenovirus. These results indicate that the Ad-cIFN-gamma recombinant adenovirus has the potent antiviral activity against canine parvovirus. The Ad-cIFN-gamma recombinant adenovirus was successfully constructed by the ligation method and possessed a powerful antiviral activity against canine parvovirus.

  8. The cytoprotective enzyme heme oxygenase-1 suppresses Ebola virus replication.

    Science.gov (United States)

    Hill-Batorski, Lindsay; Halfmann, Peter; Neumann, Gabriele; Kawaoka, Yoshihiro

    2013-12-01

    Ebola virus (EBOV) is the causative agent of a severe hemorrhagic fever in humans with reported case fatality rates as high as 90%. There are currently no licensed vaccines or antiviral therapeutics to combat EBOV infections. Heme oxygenase-1 (HO-1), an enzyme that catalyzes the rate-limiting step in heme degradation, has antioxidative properties and protects cells from various stresses. Activated HO-1 was recently shown to have antiviral activity, potently inhibiting the replication of viruses such as hepatitis C virus and human immunodeficiency virus. However, the effect of HO-1 activation on EBOV replication remains unknown. To determine whether the upregulation of HO-1 attenuates EBOV replication, we treated cells with cobalt protoporphyrin (CoPP), a selective HO-1 inducer, and assessed its effects on EBOV replication. We found that CoPP treatment, pre- and postinfection, significantly suppressed EBOV replication in a manner dependent upon HO-1 upregulation and activity. In addition, stable overexpression of HO-1 significantly attenuated EBOV growth. Although the exact mechanism behind the antiviral properties of HO-1 remains to be elucidated, our data show that HO-1 upregulation does not attenuate EBOV entry or budding but specifically targets EBOV transcription/replication. Therefore, modulation of the cellular enzyme HO-1 may represent a novel therapeutic strategy against EBOV infection.

  9. In vitro antiviral activities of Caesalpinia pulcherrima and its related flavonoids.

    Science.gov (United States)

    Chiang, L C; Chiang, W; Liu, M C; Lin, C C

    2003-08-01

    The aim of this study was to search for new antiviral agents from Chinese herbal medicine. Pure flavonoids and aqueous extracts of Caesalpinia pulcherrima Swartz were used in experiments to test their influence on a series of viruses, namely herpesviruses (HSV-1, HSV-2) and adenoviruses (ADV-3, ADV-8, ADV-11). The EC50 was defined as the concentration required to achieve 50% protection against virus-induced cytopathic effects, and the selectivity index (SI) was determined as the ratio of CC50 (concentration of 50% cellular cytotoxicity) to EC50. Results showed that aqueous extracts of C. pulcherrima and its related quercetin possessed a broad-spectrum antiviral activity. Among them, the strongest activities against ADV-8 were fruit and seed (EC50 = 41.2 mg/l, SI = 83.2), stem and leaf (EC50 = 61.8 mg/l, SI = 52.1) and flower (EC50 = 177.9 mg/l, SI = 15.5), whereas quercetin possessed the strongest anti-ADV-3 activity (EC50 = 24.3 mg/l, SI = 20.4). In conclusion, some compounds of C. pulcherrima which possess antiviral activities may be derived from the flavonoid of quercetin. The mode of action of quercetin against HSV-1 and ADV-3 was found to be at the early stage of multiplication and with SI values greater than 20, suggesting the potential use of this compound for treatment of the infection caused by these two viruses.

  10. Antimicrobial, antiviral and antioxidant activities of "água-mel" from Portugal.

    Science.gov (United States)

    Miguel, Maria G; Faleiro, Leonor; Antunes, Maria D; Aazza, Smail; Duarte, Joana; Silvério, Ana R

    2013-06-01

    "Água-mel" is a honey-based product produced in Portugal for ancient times. Several attributes have been reported to "água-mel" particularly in the alleviation of simple symptoms of upper respiratory tract. Samples of "água-mel" from diverse beekeepers from different regions of Portugal were studied in what concerns antimicrobial, antioxidant and antiviral properties. The amounts of phenol and brown pigment were also evaluated and correlated with the antioxidant activities. A great variability on the levels of these compounds was found among samples which were responsible for the variability detected also on the antioxidant activities, independent on the method used. Generally, antioxidant activity correlated better with brown pigments' amount than with phenols' content. The antimicrobial activity found for "água-mel" samples confirm the virtues reported by popular findings. In addition, this work also reveals the antiviral properties of "água-mel" evidenced by a decrease on the infectivity of the Qβ bacteriophage. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Autophagy is involved in anti-viral activity of pentagalloylglucose (PGG) against Herpes simplex virus type 1 infection in vitro

    International Nuclear Information System (INIS)

    Pei, Ying; Chen, Zhen-Ping; Ju, Huai-Qiang; Komatsu, Masaaki; Ji, Yu-hua; Liu, Ge; Guo, Chao-wan; Zhang, Ying-Jun; Yang, Chong-Ren; Wang, Yi-Fei; Kitazato, Kaio

    2011-01-01

    Research highlights: → We showed PGG has anti-viral activity against Herpes simplex virus type 1 (HSV-1) and can induce autophgy. → Autophagy may be a novel and important mechanism mediating PGG anti-viral activities. → Inhibition of mTOR pathway is an important mechanism of induction of autophagy by PGG. -- Abstract: Pentagalloylglucose (PGG) is a natural polyphenolic compound with broad-spectrum anti-viral activity, however, the mechanisms underlying anti-viral activity remain undefined. In this study, we investigated the effects of PGG on anti-viral activity against Herpes simplex virus type 1 (HSV-1) associated with autophagy. We found that the PGG anti-HSV-1 activity was impaired significantly in MEF-atg7 -/- cells (autophagy-defective cells) derived from an atg7 -/- knockout mouse. Transmission electron microscopy revealed that PGG-induced autophagosomes engulfed HSV-1 virions. The mTOR signaling pathway, an essential pathway for the regulation of autophagy, was found to be suppressed following PGG treatment. Data presented in this report demonstrated for the first time that autophagy induced following PGG treatment contributed to its anti-HSV activity in vitro.

  12. Identification of Mx gene nucleotide dimorphism (G/A as genetic marker for antiviral activity in Egyptian chickens

    Directory of Open Access Journals (Sweden)

    Mohamed S. Hassanane

    2018-06-01

    Full Text Available Egyptian chickens, representing 2 breeds and 7 strains, were genotyped using the PCR-RFLP and sequencing techniques for detection of a non-synonymous dimorphism (G/A in exon 14 of chicken Myxovirus resistance (Mx gene. This dimorphic position is responsible for altering Mx protein’s antiviral activity. Polymerase Chain reactions were performed using Egyptian chickens DNA and specific primer set to amplify Mx DNA fragments of 299 or 301 bp, containing the dimorphic position. Amplicons were cut with restriction enzyme Hpy81. Genotype and allele frequencies for the resistant allele A and sensitive allele G were calculated in all the tested chickens. Results of PCR-RFLP were confirmed by sequencing. The three genotypes AA, AG, GG at the target nucleotide position in Mx gene were represented in all the studied Egyptian chicken breeds and strains except Baladi strain which showed only one genotype AA. The average allele frequency of the resistant A allele in the tested birds (0.67 was higher than the sensitive G allele average frequency in the same birds (0.33. Appling PCR-RFLP technique in the breeding program can be used to select chickens carrying the A allele with high frequencies. This will help in improving poultry breeding in Egypt by producing infectious disease-resistant chickens. Keywords: Egyptian chickens, Antiviral activity, Mx gene, Genotyping, PCR-RFLP

  13. Antiviral activity of some Tunisian medicinal plants against Herpes simplex virus type 1.

    Science.gov (United States)

    Sassi, A Ben; Harzallah-Skhiri, F; Bourgougnon, N; Aouni, M

    2008-01-10

    Fifteen species of Tunisian traditional medicinal plants, belonging to 10 families, were selected for this study. They were Inula viscosa (L.) Ait and Reichardia tingitana (L.) Roth ssp. discolor (Pom.) Batt. (Asteraceae), Mesembryanthemum cristallinum L. and M. nodiflorum L. (Aizoaceae), Arthrocnemum indicum (Willd.) Moq., Atriplex inflata Muell., A. parvifolia Lowe var. ifiniensis (Caball) Maire, and Salicornia fruticosa L. (Chenopodiaceae), Cistus monspeliensis L. (Cistaceae), Juniperus phoenicea L. (Cupressaceae), Erica multiflora L. (Ericaceae), Frankenia pulverulenta L. (Frankeniaceae), Hypericum crispum L. (Hypericaceae), Plantago coronopus L. ssp. eu-coronopus Pilger var. vulgaris G.G. (Plantaginaceae) and Zygophyllum album L. (Zygophyllaceae). Fifty extracts prepared from those plants were screened in order to assay their antiviral activity against Herpes simplex virus type 1 (HSV-1), using neutral red incorporation. Extracts from eight plants among these 15 showed some degree of antiviral activity, while the methanolic extract of E. multiflora was highly active with EC(50) of 132.6 microg mL(-1). These results corroborate that medicinal plants from Tunisia can be a rich source of potential antiviral compounds.

  14. Targeting APOBEC3A to the viral nucleoprotein complex confers antiviral activity

    Directory of Open Access Journals (Sweden)

    Strebel Klaus

    2007-08-01

    Full Text Available Abstract Background APOBEC3 (A3 proteins constitute a family of cytidine deaminases that provide intracellular resistance to retrovirus replication and to transposition of endogenous retroelements. A3A has significant homology to the C-terminus of A3G but has only a single cytidine deaminase active site (CDA, unlike A3G, which has a second N-terminal CDA previously found to be important for Vif sensitivity and virus encapsidation. A3A is packaged into HIV-1 virions but, unlike A3G, does not have antiviral properties. Here, we investigated the reason for the lack of A3A antiviral activity. Results Sequence alignment of A3G and A3A revealed significant homology of A3A to the C-terminal region of A3G. However, while A3G co-purified with detergent-resistant viral nucleoprotein complexes (NPC, virus-associated A3A was highly detergent-sensitive leading us to speculate that the ability to assemble into NPC may be a property conveyed by the A3G N-terminus. To test this model, we constructed an A3G-3A chimeric protein, in which the N-terminal half of A3G was fused to A3A. Interestingly, the A3G-3A chimera was packaged into HIV-1 particles and, unlike A3A, associated with the viral NPC. Furthermore, the A3G-3A chimera displayed strong antiviral activity against HIV-1 and was sensitive to inhibition by HIV-1 Vif. Conclusion Our results suggest that the A3G N-terminal domain carries determinants important for targeting the protein to viral NPCs. Transfer of this domain to A3A results in A3A targeting to viral NPCs and confers antiviral activity.

  15. Immunity in the Vagina (Part II): Anti-HIV Activity and Antiviral Content of Human Vaginal Secretions

    Science.gov (United States)

    Patel, Mickey V.; Ghosh, Mimi; Fahey, John V.; Ochsenbauer, Christina; Rossoll, Richard M.; Wira, Charles R.

    2015-01-01

    Problem Whether the concentrations of antiviral proteins, and anti-HIV activity, within human vaginal secretions changes across the menstrual cycle is unknown. Method of Study Using a menstrual cup, vaginal secretions from premenopausal women were recovered at the proliferative (d6–8), mid-cycle (d13–15) and secretory (d21–23) stages of the menstrual cycle. Antiviral protein concentration was determined by ELISA, and anti-HIV activity assessed using the TZM-bl reporter cell line. Results CCL20, RANTES, elafin, HBD2, SDF-1α and IL-8 levels were detectable in the secretions. Vaginal secretions had anti-HIV activity against specific clade B strains of HIV, with significant inhibition of IIIB and increased infectivity of transmitted/founder CH077.t. No significant differences in either antiviral protein concentration or anti-HIV activity with respect to menstrual cycle stage were measured, but marked differences were observed in both parameters over the course of the cycle between different women, and in consecutive cycles from the same woman. Conclusion The vagina contains a complement of antiviral proteins. The variation in anti-HIV activity demonstrates that immune protection in the vagina is not constant. Intra- and inter-individual variations suggest that factors in addition to sex hormones influence antiviral protection. Lastly, the menstrual cup is a new model for recovering undiluted vaginal secretions from women throughout their reproductive life. PMID:24806967

  16. HIV enhancing activity of semen impairs the antiviral efficacy of microbicides

    Science.gov (United States)

    Zirafi, Onofrio; Kim, Kyeong-Ae; Roan, Nadia R.; Kluge, Silvia F.; Müller, Janis A.; Jiang, Shibo; Mayer, Benjamin; Greene, Warner C.; Kirchhoff, Frank; Münch, Jan

    2015-01-01

    Topically applied microbicides potently inhibit HIV in vitro but have largely failed to exert protective effects in clinical trials. One possible reason for this discrepancy is that the preclinical testing of microbicides does not faithfully reflect the conditions of HIV sexual transmission. Here, we report that candidate microbicides that target HIV components show greatly reduced antiviral efficacy in the presence of semen, the main vector for HIV transmission. This diminished antiviral activity was dependent on the ability of amyloid fibrils in semen to enhance the infectivity of HIV. Thus, the anti-HIV efficacy of microbicides determined in the absence of semen greatly underestimated the drug concentrations needed to block semen-exposed virus. One notable exception was Maraviroc. This HIV entry inhibitor targets the host cell CCR5 coreceptor and was highly active against both untreated and semen-exposed HIV. These data help explain why microbicides have failed to protect against HIV in clinical trials and suggest that antiviral compounds targeting host factors hold promise for further development. These findings also suggest that the in vitro efficacy of candidate microbicides should be determined in the presence of semen to identify the best candidates for the prevention of HIV sexual transmission. PMID:25391483

  17. Autophagy is involved in anti-viral activity of pentagalloylglucose (PGG) against Herpes simplex virus type 1 infection in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Ying, E-mail: peiying-19802@163.com [Biomedicine Research and Development Center of Jinan University, Guangzhou, Guangdong 510632 (China); Chen, Zhen-Ping, E-mail: 530670663@qq.com [Biomedicine Research and Development Center of Jinan University, Guangzhou, Guangdong 510632 (China); Ju, Huai-Qiang, E-mail: 344464448@qq.com [Biomedicine Research and Development Center of Jinan University, Guangzhou, Guangdong 510632 (China); Komatsu, Masaaki, E-mail: komatsu-ms@igakuken.or.jp [Laboratory of Frontier Science, Tokyo Metropolitan Institute of Medical Science, Bunkyo-ku, Tokyo 113-8613 (Japan); Ji, Yu-hua, E-mail: tjyh@jnu.edu.cn [Institute of Tissue Transplantation and Immunology, College of Life Science and Technology, Jinan University, Guangzhou 510632 (China); Liu, Ge, E-mail: lggege_15@hotmail.com [Division of Molecular Pharmacology of Infectious agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521 (Japan); Guo, Chao-wan, E-mail: chaovan_kwok@hotmail.com [Division of Molecular Pharmacology of Infectious agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521 (Japan); Zhang, Ying-Jun, E-mail: zhangyj@mail.kib.ac.cn [Kunming Institute of Botany, the Chinese Academy of Sciences, Yunnan, Kunming 650204 (China); Yang, Chong-Ren, E-mail: cryang@mail.kib.ac.cn [Kunming Institute of Botany, the Chinese Academy of Sciences, Yunnan, Kunming 650204 (China); Wang, Yi-Fei, E-mail: twang-yf@163.com [Biomedicine Research and Development Center of Jinan University, Guangzhou, Guangdong 510632 (China); Kitazato, Kaio, E-mail: kkholi@msn.com [Division of Molecular Pharmacology of Infectious agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521 (Japan)

    2011-02-11

    Research highlights: {yields} We showed PGG has anti-viral activity against Herpes simplex virus type 1 (HSV-1) and can induce autophgy. {yields} Autophagy may be a novel and important mechanism mediating PGG anti-viral activities. {yields} Inhibition of mTOR pathway is an important mechanism of induction of autophagy by PGG. -- Abstract: Pentagalloylglucose (PGG) is a natural polyphenolic compound with broad-spectrum anti-viral activity, however, the mechanisms underlying anti-viral activity remain undefined. In this study, we investigated the effects of PGG on anti-viral activity against Herpes simplex virus type 1 (HSV-1) associated with autophagy. We found that the PGG anti-HSV-1 activity was impaired significantly in MEF-atg7{sup -/-} cells (autophagy-defective cells) derived from an atg7{sup -/-} knockout mouse. Transmission electron microscopy revealed that PGG-induced autophagosomes engulfed HSV-1 virions. The mTOR signaling pathway, an essential pathway for the regulation of autophagy, was found to be suppressed following PGG treatment. Data presented in this report demonstrated for the first time that autophagy induced following PGG treatment contributed to its anti-HSV activity in vitro.

  18. Antiviral activity and specific modes of action of bacterial prodigiosin against Bombyx mori nucleopolyhedrovirus in vitro.

    Science.gov (United States)

    Zhou, Wei; Zeng, Cheng; Liu, RenHua; Chen, Jie; Li, Ru; Wang, XinYan; Bai, WenWen; Liu, XiaoYuan; Xiang, TingTing; Zhang, Lin; Wan, YongJi

    2016-05-01

    Prodigiosin, the tripyrrole red pigment, is a bacterial secondary metabolite with multiple bioactivities; however, the antiviral activity has not been reported yet. In the present study, we found the antiviral activity of bacterial prodigiosin on Bombyx mori nucleopolyhedrovirus (BmNPV)-infected cells in vitro, with specific modes of action. Prodigiosin at nontoxic concentrations selectively killed virus-infected cells, inhibited viral gene transcription, especially viral early gene ie-1, and prevented virus-mediated membrane fusion. Under prodigiosin treatment, both progeny virus production and viral DNA replication were significantly inhibited. Fluorescent assays showed that prodigiosin predominantly located in cytoplasm which suggested it might interact with cytoplasm factors to inhibit virus replication. In conclusion, the present study clearly indicates that prodigiosin possesses significant antiviral activity against BmNPV.

  19. Synthesis and Antiviral Activity of 3-Aminoindole Nucleosides of 2-Acetamido-2-deoxy-D-glucose

    Energy Technology Data Exchange (ETDEWEB)

    Abdelrahman, Adel A. H.; Elessawy, Farag A.; Barakat, Yousif A. [Menoufia Univ., Shebin El-Koam (Egypt); Ellatif, Mona M. Abd [The British Univ. in Egypt, Cairo (Egypt)

    2012-10-15

    A new method for the construction of 3-aminoindole nucleosides of 2-acetamido-2-deoxy-D-glucose based is presented. Nitration and acetylation of the indole nucleosides by acetic anhydride-nitric acid mixture followed by reduction using silver catalyst (SNSM) impregnated on silica gel, afforded the corresponding amino indole nucleosides. The nucleosides were tested for antiviral activity against hepatitis B virus (HBV) to show different degrees of antiviral activities or inhibitory actions.

  20. Antiviral properties of photosensitizers

    International Nuclear Information System (INIS)

    Hudson, J.B.; Towers, G.H.N.

    1988-01-01

    We have studied the antiviral properties of three different groups of photo-sensitizers, viz. (i) various furyl compounds; (ii) β-carboline alkaloids; (iii) thiophenes and their acetylene derivatives. In general the antiviral potency of the furyl compounds correlated with their ability to produce DNA photoadducts. Among the naturally occurring β-carboline alkaloids, harmine was considerably more potent (in the presence of long wavelength UV radiation, UVA) than several other harmane-related compounds. Slight alterations in chemical structure had profound effects on their antiviral activities. Harmine was shown to inactivate the DNA-virus murine cytomegalovirus (MCMV) by inhibiting viral gene expression, although other targets may also exist. Several eudistomins, carboline derivatives isolated from a tunicate, were also photoactive against viruses. Various plant thiophenes and polyacetylenes were studied in detail. These compounds also required UVA for antiviral activity, and some of them were extremely potent against viruses with membranes, e.g. α-terthienyl, which showed significant activity at only 10 -5 μg/ml. When MCMV had been treated with α-terthienyl plus UVA, the virus retained its integrity and penetrated cells normally; but the virus did not replicate. (author)

  1. Antiviral Activities and Putative Identification of Compounds in Microbial Extracts from the Hawaiian Coastal Waters

    Directory of Open Access Journals (Sweden)

    Yuanan Lu

    2012-02-01

    Full Text Available Marine environments are a rich source of significant bioactive compounds. The Hawaiian archipelago, located in the middle of the Pacific Ocean, hosts diverse microorganisms, including many endemic species. Thirty-eight microbial extracts from Hawaiian coastal waters were evaluated for their antiviral activity against four mammalian viruses including herpes simplex virus type one (HSV-1, vesicular stomatitis virus (VSV, vaccinia virus and poliovirus type one (poliovirus-1 using in vitro cell culture assay. Nine of the 38 microbial crude extracts showed antiviral potencies and three of these nine microbial extracts exhibited significant activity against the enveloped viruses. A secosteroid, 5α(H,17α(H,(20R-beta-acetoxyergost-8(14-ene was putatively identified and confirmed to be the active compound in these marine microbial extracts. These results warrant future in-depth tests on the isolation of these active elements in order to explore and validate their antiviral potential as important therapeutic remedies.

  2. Innate immunity in the vagina (Part II): Anti-HIV activity and antiviral content of human vaginal secretions.

    Science.gov (United States)

    Patel, Mickey V; Ghosh, Mimi; Fahey, John V; Ochsenbauer, Christina; Rossoll, Richard M; Wira, Charles R

    2014-07-01

    Whether the concentrations of antiviral proteins, and anti-HIV activity, within human vaginal secretions change across the menstrual cycle is unknown. Using a menstrual cup, vaginal secretions from pre-menopausal women were recovered at the proliferative (d6-8), mid-cycle (d13-15), and secretory (d21-23) stages of the menstrual cycle. Antiviral protein concentration was determined by ELISA, and anti-HIV activity assessed using the TZM-bl reporter cell line. CCL20, RANTES, elafin, HBD2, SDF-1α, and IL-8 levels were detectable in the secretions. Vaginal secretions had anti-HIV activity against specific clade B strains of HIV, with significant inhibition of IIIB and increased infectivity of transmitted/founder CH077.t. No significant differences in either antiviral protein concentration or anti-HIV activity with respect to menstrual cycle stage were measured, but marked differences were observed in both parameters over the course of the cycle between different women and in consecutive cycles from the same woman. The vagina contains a complement of antiviral proteins. The variation in anti-HIV activity demonstrates that immune protection in the vagina is not constant. Intra- and interindividual variations suggest that factors in addition to sex hormones influence antiviral protection. Lastly, the menstrual cup is a new model for recovering undiluted vaginal secretions from women throughout their reproductive life. © 2014 John Wiley & Sons Ltd.

  3. Dextrans produced by lactic acid bacteria exhibit antiviral and immunomodulatory activity against salmonid viruses.

    Science.gov (United States)

    Nácher-Vázquez, Montserrat; Ballesteros, Natalia; Canales, Ángeles; Rodríguez Saint-Jean, Sylvia; Pérez-Prieto, Sara Isabel; Prieto, Alicia; Aznar, Rosa; López, Paloma

    2015-06-25

    Viral infections in the aquaculture of salmonids can lead to high mortality and substantial economic losses. Thus, there is industrial interest in new molecules active against these viruses. Here we describe the production, purification, and the physicochemical and structural characterization of high molecular weight dextrans synthesized by Lactobacillus sakei MN1 and Leuconostoc mesenteroides RTF10. The purified dextrans, and commercial dextrans with molecular weights ranging from 10 to 2000kDa, were assayed in infected BF-2 and EPC fish cell-line monolayers for antiviral activity. Only T2000 and dextrans from MN1 and RTF10 had significant antiviral activity. This was similar to results obtained against infectious pancreatic necrosis virus. However the dextran from MN1 showed ten-fold higher activity against hematopoietic necrosis virus than T2000. In vivo assays using the MN1 polymer confirmed the in vitro results and revealed immunomodulatory activity. These results together with the high levels of dextran production (2gL(-1)) by Lb. sakei MN1, indicate the compounds potential utility as an antiviral agent in aquaculture. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. In Vitro Antiviral Activity and Resistance Profile Characterization of the Hepatitis C Virus NS5A Inhibitor Ledipasvir.

    Science.gov (United States)

    Cheng, Guofeng; Tian, Yang; Doehle, Brian; Peng, Betty; Corsa, Amoreena; Lee, Yu-Jen; Gong, Ruoyu; Yu, Mei; Han, Bin; Xu, Simin; Dvory-Sobol, Hadas; Perron, Michel; Xu, Yili; Mo, Hongmei; Pagratis, Nikos; Link, John O; Delaney, William

    2016-01-11

    Ledipasvir (LDV; GS-5885), a component of Harvoni (a fixed-dose combination of LDV with sofosbuvir [SOF]), is approved to treat chronic hepatitis C virus (HCV) infection. Here, we report key preclinical antiviral properties of LDV, including in vitro potency, in vitro resistance profile, and activity in combination with other anti-HCV agents. LDV has picomolar antiviral activity against genotype 1a and genotype 1b replicons with 50% effective concentration (EC50) values of 0.031 nM and 0.004 nM, respectively. LDV is also active against HCV genotypes 4a, 4d, 5a, and 6a with EC50 values of 0.11 to 1.1 nM. LDV has relatively less in vitro antiviral activity against genotypes 2a, 2b, 3a, and 6e, with EC50 values of 16 to 530 nM. In vitro resistance selection with LDV identified the single Y93H and Q30E resistance-associated variants (RAVs) in the NS5A gene; these RAVs were also observed in patients after a 3-day monotherapy treatment. In vitro antiviral combination studies indicate that LDV has additive to moderately synergistic antiviral activity when combined with other classes of HCV direct-acting antiviral (DAA) agents, including NS3/4A protease inhibitors and the nucleotide NS5B polymerase inhibitor SOF. Furthermore, LDV is active against known NS3 protease and NS5B polymerase inhibitor RAVs with EC50 values equivalent to those for the wild type. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  5. Nose-to-Brain Delivery of Antiviral Drugs: A Way to Overcome Their Active Efflux?

    Directory of Open Access Journals (Sweden)

    Alessandro Dalpiaz

    2018-03-01

    Full Text Available Although several viruses can easily infect the central nervous system (CNS, antiviral drugs often show dramatic difficulties in penetrating the brain from the bloodstream since they are substrates of active efflux transporters (AETs. These transporters, located in the physiological barriers between blood and the CNS and in macrophage membranes, are able to recognize their substrates and actively efflux them into the bloodstream. The active transporters currently known to efflux antiviral drugs are P-glycoprotein (ABCB1 or P-gp or MDR1, multidrug resistance-associated proteins (ABCC1 or MRP1, ABCC4 or MRP4, ABCC5 or MRP5, and breast cancer resistance protein (ABCG2 or BCRP. Inhibitors of AETs may be considered, but their co-administration causes serious unwanted effects. Nasal administration of antiviral drugs is therefore proposed in order to overcome the aforementioned problems, but innovative devices, formulations (thermoreversible gels, polymeric micro- and nano-particles, solid lipid microparticles, nanoemulsions, absorption enhancers (chitosan, papaverine, and mucoadhesive agents (chitosan, polyvinilpyrrolidone are required in order to selectively target the antiviral drugs and, possibly, the AET inhibitors in the CNS. Moreover, several prodrugs of antiretroviral agents can inhibit or elude the AET systems, appearing as interesting substrates for innovative nasal formulations able to target anti-Human Immunodeficiency Virus (HIV agents into macrophages of the CNS, which are one of the most important HIV Sanctuaries of the body.

  6. Synthesis and antiviral activities of a novel class of thioflavone and flavonoid analogues

    Directory of Open Access Journals (Sweden)

    Dajun Zhang

    2012-12-01

    Full Text Available A novel class of thioflavone and flavonoid derivatives has been prepared and their antiviral activities against enterovirus 71 (EV71 and the coxsackievirus B3 (CVB3 and B6 (CVB6 were evaluated. Compounds 7d and 9b showed potent antiviral activities against EV71 with IC50 values of 8.27 and 5.48 μM, respectively. Compound 7f, which has been synthesized for the first time in this work, showed the highest level of inhibitory activity against both CVB3 and CVB6 with an IC50 value of 0.62 and 0.87 μM. Compounds 4b, 7a, 9c and 9e also showed strong inhibitory activities against both the CVB3 and CVB6 at low concentrations (IC50=1.42−7.15 μM, whereas compounds 4d, 7c, 7e and 7g showed strong activity against CVB6 (IC50=2.91–3.77 μM together with low levels of activity against CVB3. Compound 7d exhibited stronger inhibitory activity against CVB3 (IC50=6.44 μM than CVB6 (IC50>8.29 μM. The thioflavone derivatives 7a, 7c, 7d, 7e, 7f and 7g, represent a new class of lead compounds for the development of novel antiviral agents.

  7. Tannic acid modified silver nanoparticles show antiviral activity in herpes simplex virus type 2 infection.

    Directory of Open Access Journals (Sweden)

    Piotr Orlowski

    Full Text Available The interaction between silver nanoparticles and herpesviruses is attracting great interest due to their antiviral activity and possibility to use as microbicides for oral and anogenital herpes. In this work, we demonstrate that tannic acid modified silver nanoparticles sized 13 nm, 33 nm and 46 nm are capable of reducing HSV-2 infectivity both in vitro and in vivo. The antiviral activity of tannic acid modified silver nanoparticles was size-related, required direct interaction and blocked virus attachment, penetration and further spread. All tested tannic acid modified silver nanoparticles reduced both infection and inflammatory reaction in the mouse model of HSV-2 infection when used at infection or for a post-infection treatment. Smaller-sized nanoparticles induced production of cytokines and chemokines important for anti-viral response. The corresponding control buffers with tannic acid showed inferior antiviral effects in vitro and were ineffective in blocking in vivo infection. Our results show that tannic acid modified silver nanoparticles are good candidates for microbicides used in treatment of herpesvirus infections.

  8. Human and Mouse Eosinophils Have Antiviral Activity against Parainfluenza Virus.

    Science.gov (United States)

    Drake, Matthew G; Bivins-Smith, Elizabeth R; Proskocil, Becky J; Nie, Zhenying; Scott, Gregory D; Lee, James J; Lee, Nancy A; Fryer, Allison D; Jacoby, David B

    2016-09-01

    Respiratory viruses cause asthma exacerbations. Because eosinophils are the prominent leukocytes in the airways of 60-70% of patients with asthma, we evaluated the effects of eosinophils on a common respiratory virus, parainfluenza 1, in the lung. Eosinophils recruited to the airways of wild-type mice after ovalbumin sensitization and challenge significantly decreased parainfluenza virus RNA in the lungs 4 days after infection compared with nonsensitized animals. This antiviral effect was also seen in IL-5 transgenic mice with an abundance of airway eosinophils (NJ.1726) but was lost in transgenic eosinophil-deficient mice (PHIL) and in IL-5 transgenic mice crossed with eosinophil-deficient mice (NJ.1726-PHIL). Loss of the eosinophil granule protein eosinophil peroxidase, using eosinophil peroxidase-deficient transgenic mice, did not reduce eosinophils' antiviral effect. Eosinophil antiviral mechanisms were also explored in vitro. Isolated human eosinophils significantly reduced parainfluenza virus titers. This effect did not involve degradation of viral RNA by eosinophil granule RNases. However, eosinophils treated with a nitric oxide synthase inhibitor lost their antiviral activity, suggesting eosinophils attenuate viral infectivity through production of nitric oxide. Consequently, eosinophil nitric oxide production was measured with an intracellular fluorescent probe. Eosinophils produced nitric oxide in response to virus and to a synthetic agonist of the virus-sensing innate immune receptor, Toll-like receptor (TLR) 7. IFNγ increased expression of eosinophil TLR7 and potentiated TLR7-induced nitric oxide production. These results suggest that eosinophils promote viral clearance in the lung and contribute to innate immune responses against respiratory virus infections in humans.

  9. Cytotoxicity and antiviral activities of Asplenium nidus, Phaleria macrocarpa and Eleusine indica

    Science.gov (United States)

    Tahir, Mariya Mohd; Ibrahim, Nazlina; Yaacob, Wan Ahmad

    2014-09-01

    Three local medicinal plants namely Asplenium nidus (langsuyar), Eleusine indica (sambau) and Phaleria macrocarpa (mahkota dewa) were screened for the cytotoxicity and antiviral activities. Six plant extracts were prepared including the aqueous and methanol extracts from A. nidus leaf and root, aqueous extract from dried whole plant of E. indica and methanol extract from P. macrocarpa fruits. Cytotoxicity screening in Vero cell line by MTT assay showed that the CC50 values ranged from 15 to 60 mg/mL thus indicating the safety of the extracts even at high concentrations. Antiviral properties of the plant extracts were determined by plaque reduction assay. The EC50 concentrations were between 3.2 to 47 mg/mL. The selectivity indices (SI = CC50/EC50) of each tested extracts ranged from 4.3 to 63.25 indicating the usefulness of the extracts as potential antiviral agents.

  10. Antiviral activity of a small molecule deubiquitinase inhibitor occurs via induction of the unfolded protein response.

    Directory of Open Access Journals (Sweden)

    Jeffrey W Perry

    Full Text Available Ubiquitin (Ub is a vital regulatory component in various cellular processes, including cellular responses to viral infection. As obligate intracellular pathogens, viruses have the capacity to manipulate the ubiquitin (Ub cycle to their advantage by encoding Ub-modifying proteins including deubiquitinases (DUBs. However, how cellular DUBs modulate specific viral infections, such as norovirus, is poorly understood. To examine the role of DUBs during norovirus infection, we used WP1130, a small molecule inhibitor of a subset of cellular DUBs. Replication of murine norovirus in murine macrophages and the human norovirus Norwalk virus in a replicon system were significantly inhibited by WP1130. Chemical proteomics identified the cellular DUB USP14 as a target of WP1130 in murine macrophages, and pharmacologic inhibition or siRNA-mediated knockdown of USP14 inhibited murine norovirus infection. USP14 is a proteasome-associated DUB that also binds to inositol-requiring enzyme 1 (IRE1, a critical mediator of the unfolded protein response (UPR. WP1130 treatment of murine macrophages did not alter proteasome activity but activated the X-box binding protein-1 (XBP-1 through an IRE1-dependent mechanism. In addition, WP1130 treatment or induction of the UPR also reduced infection of other RNA viruses including encephalomyocarditis virus, Sindbis virus, and La Crosse virus but not vesicular stomatitis virus. Pharmacologic inhibition of the IRE1 endonuclease activity partially rescued the antiviral effect of WP1130. Taken together, our studies support a model whereby induction of the UPR through cellular DUB inhibition blocks specific viral infections, and suggest that cellular DUBs and the UPR represent novel targets for future development of broad spectrum antiviral therapies.

  11. Light-activated nanotube–porphyrin conjugates as effective antiviral agents

    International Nuclear Information System (INIS)

    Banerjee, Indrani; Douaisi, Marc P; Mondal, Dhananjoy; Kane, Ravi S

    2012-01-01

    Porphyrins have been used for photodynamic therapy (PDT) against a wide range of targets like bacteria, viruses and tumor cells. In this work, we report porphyrin-conjugated multi-walled carbon nanotubes (NT-P) as potent antiviral agents. Specifically, we used Protoporphyrin IX (PPIX), which we attached to acid-functionalized multi-walled carbon nanotubes (MWNTs). We decided to use carbon nanotubes as scaffolds because of their ease of recovery from a solution through filtration. In the presence of visible light, NT-P was found to significantly reduce the ability of Influenza A virus to infect mammalian cells. NT-P may be used effectively against influenza viruses with little or no chance of them developing resistance to the treatment. Furthermore, NT-P can be easily recovered through filtration which offers a facile strategy to reuse the active porphyrin moiety to its fullest extent. Thus NT-P conjugates represent a new approach for preparing ex vivo reusable antiviral agents. (paper)

  12. Antiviral activity of shikonin ester derivative PMM-034 against enterovirus 71 in vitro

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2017-08-01

    Full Text Available Human enterovirus 71 (EV71 is the major causative agent of hand, foot, and mouth disease (HFMD, particularly in infants and children below 4 years of age. Shikonin is a bioactive compound with anti-inflammatory, antiviral, and antibacterial activities derived from the roots of the Chinese medicinal herb Lithospermum erythrorhizon. This study aimed to examine the antiviral activity of PMM-034, a shikonin ester derivative, against EV71 in rhabdomyosarcoma (RD cells. Cytotoxicity of PMM-034 on RD cells was determined using WST-1 assay. Dose- and time-dependent effects of PMM-034 on EV71 replication in RD cells were determined using plaque reduction assay. mRNA expression levels of EV71/VP1 and pro-inflammatory cytokines (IL-1β, IL-6, IL-8, and TNF-α were determined by real-time RT-PCR, and EV71/VP1 and phospho-p65 protein expressions were determined by western blot analysis. PMM-034 exhibited only weak cytotoxicity against RD cells. However, PMM-034 exhibited significant antiviral activity against EV71 in RD cells with 50% inhibitory concentration of 2.31 μg/mL. The VP1 mRNA and protein levels were significantly reduced in cells treated with PMM-034. Furthermore, relative mRNA expression levels of IL-1β, IL-6, IL-8, and TNF-α significantly decreased in the cells treated with PMM-034, while the phospho-p65 protein expression was also significantly lower in the treated cells. These results indicated that PMM-034 suppressed the expressions of pro-inflammatory cytokines in RD cells, exhibiting antiviral activity against EV71, as evidenced by the reduced VP1 mRNA and protein levels in PMM-034-treated cells. Thus, PMM-034 is a promising candidate for further development as an EV71 inhibitor.

  13. Measuring the Enzyme Activity of Arabidopsis Deubiquitylating Enzymes.

    Science.gov (United States)

    Kalinowska, Kamila; Nagel, Marie-Kristin; Isono, Erika

    2016-01-01

    Deubiquitylating enzymes, or DUBs, are important regulators of ubiquitin homeostasis and substrate stability, though the molecular mechanisms of most of the DUBs in plants are not yet understood. As different ubiquitin chain types are implicated in different biological pathways, it is important to analyze the enzyme characteristic for studying a DUB. Quantitative analysis of DUB activity is also important to determine enzyme kinetics and the influence of DUB binding proteins on the enzyme activity. Here, we show methods to analyze DUB activity using immunodetection, Coomassie Brilliant Blue staining, and fluorescence measurement that can be useful for understanding the basic characteristic of DUBs.

  14. Activation of cGAS-dependent antiviral responses by DNA intercalating agents.

    Science.gov (United States)

    Pépin, Geneviève; Nejad, Charlotte; Thomas, Belinda J; Ferrand, Jonathan; McArthur, Kate; Bardin, Philip G; Williams, Bryan R G; Gantier, Michael P

    2017-01-09

    Acridine dyes, including proflavine and acriflavine, were commonly used as antiseptics before the advent of penicillins in the mid-1940s. While their mode of action on pathogens was originally attributed to their DNA intercalating activity, work in the early 1970s suggested involvement of the host immune responses, characterized by induction of interferon (IFN)-like activities through an unknown mechanism. We demonstrate here that sub-toxic concentrations of a mixture of acriflavine and proflavine instigate a cyclic-GMP-AMP (cGAMP) synthase (cGAS)-dependent type-I IFN antiviral response. This pertains to the capacity of these compounds to induce low level DNA damage and cytoplasmic DNA leakage, resulting in cGAS-dependent cGAMP-like activity. Critically, acriflavine:proflavine pre-treatment of human primary bronchial epithelial cells significantly reduced rhinovirus infection. Collectively, our findings constitute the first evidence that non-toxic DNA binding agents have the capacity to act as indirect agonists of cGAS, to exert potent antiviral effects in mammalian cells. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Coxsackievirus cloverleaf RNA containing a 5' triphosphate triggers an antiviral response via RIG-I activation.

    Directory of Open Access Journals (Sweden)

    Qian Feng

    Full Text Available Upon viral infections, pattern recognition receptors (PRRs recognize pathogen-associated molecular patterns (PAMPs and stimulate an antiviral state associated with the production of type I interferons (IFNs and inflammatory markers. Type I IFNs play crucial roles in innate antiviral responses by inducing expression of interferon-stimulated genes and by activating components of the adaptive immune system. Although pegylated IFNs have been used to treat hepatitis B and C virus infections for decades, they exert substantial side effects that limit their use. Current efforts are directed toward the use of PRR agonists as an alternative approach to elicit host antiviral responses in a manner similar to that achieved in a natural infection. RIG-I is a cytosolic PRR that recognizes 5' triphosphate (5'ppp-containing RNA ligands. Due to its ubiquitous expression profile, induction of the RIG-I pathway provides a promising platform for the development of novel antiviral agents and vaccine adjuvants. In this study, we investigated whether structured RNA elements in the genome of coxsackievirus B3 (CVB3, a picornavirus that is recognized by MDA5 during infection, could activate RIG-I when supplied with 5'ppp. We show here that a 5'ppp-containing cloverleaf (CL RNA structure is a potent RIG-I inducer that elicits an extensive antiviral response that includes induction of classical interferon-stimulated genes, as well as type III IFNs and proinflammatory cytokines and chemokines. In addition, we show that prophylactic treatment with CVB3 CL provides protection against various viral infections including dengue virus, vesicular stomatitis virus and enterovirus 71, demonstrating the antiviral efficacy of this RNA ligand.

  16. Phytochemical screening, cytotoxicity and antiviral activity of hexane fraction of Phaleria macrocarpa fruits

    Science.gov (United States)

    Ismaeel, Mahmud Yusef Yusef; Yaacob, Wan Ahmad; Tahir, Mariya Mohd.; Ibrahim, Nazlina

    2015-09-01

    Phaleria macrocarpa fruits have been widely used in the traditional medicine for the treatment of several infections. The current study was done to determine the phytochemical content, cytotoxicity and antiviral activity of the hexane fraction (HF) of P. macrocarpa fruits. In the hexane fraction of P. macarocarpa fruits, phytochemical screening showed the presence of terpenoids whereas saponins, alkaloids, tannins and anthraquinones were not present. Evaluation on Vero cell lines by using MTT assay showed that the 50% cytotoxic concentration (CC50) value was 0.48 mg/mL indicating that the fraction is not cytotoxic. Antiviral properties of the plant extracts were determined by plaque reduction assay. The effective concentration (EC50) was 0.18 mg/mL. Whereas the selective index (SI = CC50/EC50) of hexane fraction is 2.6 indicating low to moderate potential as antiviral agent.

  17. Antiviral activity of viro care gz-08 against newcastle disease virus in poultry and its in-vitro cytotoxicity assay

    International Nuclear Information System (INIS)

    Rasool, M.H.; Afzal, A.M.

    2014-01-01

    Newcastle disease (ND), one of the most important disease of poultry throughout the World is caused by Newcastle Disease Virus (NDV). It is causing huge economic losses in poultry industry of Pakistan. Regardless of vaccination, other prevention and control measures are necessary to prevent ND outbreaks. Natural resources have been exploited to obtain antiviral compounds in several latest studies. In this study, the antiviral activity of Viro Care GZ-081 was checked up in-vitro, in-ovo and in-vivo. The cytotoxicity assay of the product was performed using Vero cell line. All the trials revealed that the stock solution and 1:2 dilution of GZ-08 had some antiviral activity as well as were cytotoxic. As the concentration decreased, cytotoxicity as well as antiviral activities were lost. Based on these findings, it was concluded that GZ-08 sanitizer or spray can be used as antiviral agent to clean or disinfect some non-living surfaces against different viruses in general and NDV in particular. However, in-vivo use of GZ-08 in poultry against NDV is recommended only as pre-treatment with ND vaccines as it significantly reduced morbidity and mortality as compared to the use of vaccines alone. However, further work is recommended in future on GZ-08 for its use as post-treatment of ND as well as on other antiviral compounds of natural origin to develop a novel antiviral drug against NDV in poultry. (author)

  18. Antiviral activity of A771726, the active metabolite of leflunomide, against Junín virus.

    Science.gov (United States)

    Sepúlveda, Claudia S; García, Cybele C; Damonte, Elsa B

    2018-05-01

    The aim of this study was to investigate the effect of A771726, the active metabolite of leflunomide, (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad against the infection with Junín virus (JUNV), agent of Argentine hemorrhagic fever (AHF). The treatment with non-cytotoxic concentrations of A771726 of Vero and A549 cells infected with JUNV inhibited virus replication in a dose-dependent manner, as determined by virus yield reduction assay. The antiviral effectiveness of A771726 was not importantly affected by the multiplicity of infection and the virus strain. Moreover, the combination of A771726 and ribavirin had a significantly more potent antiviral activity than each single drug treatment. Mechanistic studies showed that the main action of A771726 is exerted before 6 h of JUNV infection. Accordingly, inhibition of viral RNA synthesis was detected in treated infected cells by real time RT-PCR. The exogenous addition of uridine or orotic acid produced a partial reversal of the inhibitory effect of A771726 on infective virus production whereas a total reversion was detected on JUNV RNA synthesis, probably by restoration of the enzymatic activity of dihydroorotate dehydrogenase (DHODH) and the intracellular pyrimidine pools. In conclusion, these results suggest that the antiviral target would be viral RNA synthesis through pyrimidine depletion, but any other effect of the compound on JUNV infection cannot be excluded. This study opens the possibility of the therapeutic application of a wide spectrum host-targeted compound alone or in combination with ribavirin to combat AHF as well as other human pathogenic arenaviruses. © 2018 Wiley Periodicals, Inc.

  19. ANTIMICROBIAL, ENTOMOPATHOGENIC AND ANTIVIRAL ACTIVITY OF GAUPSIN BIOPREPARATION CREATED ON THE BASIS OF Pseudomonas chlororaphis STRAINS

    Directory of Open Access Journals (Sweden)

    E. A. Kiprianova

    2017-02-01

    Full Text Available The aim of this review was to present the results of more than ten-year study of gaupsin biopreparation created on the basis of two strains Pseudomonas chlororaphis subsp. aureofaciens UCM В-111 and UCM В-306 with antifungal, entomopathogenic and antiviral activities. Data about antibiotic substances produced by these strains — phenazine and phenylpyrrole derivatives — are presented. Entomocidal properties against the wide spectrum of insect pests have been found out in the strains-producers. Antiviral activity of gaupsin due to the production of thermostable exopolymers containing neutral monosaccharides has been shown using the tobacco mosaic virus as a model. Lipopolysaccharides of the strains В-111 and В-306 also appeared to be highly active antiviral agents. Structure of their O-specific polysaccharides has been established. The last one are structurally heterogenic, presented by linear tri-and tetrasaccharide repeated links and have specific structure that has not been described previously.

  20. Antiviral Activity of Sukomycin Against Potato Virus Y And Tomato Mosaic Virus

    Directory of Open Access Journals (Sweden)

    Nikolay Petrov

    2016-12-01

    Full Text Available Potato virus Y (PVY and Tomato mosaic virus (ToMV are one of the most important plant viruses that strongly influence the quality and quantity of vegetable production and cause substantial losses to farmers. The most convetional and common method of pest and disease control is trough the use of pesticides. Unfortunately, most of them are synthetic compounds without antiviral activities and possess inherent toxicities that endanger the health of the farm operators, consumers and the environment. In order to carry out a control of viral infections in plants and to reduce the loss of production it is necessary the search for alternative and environmentally friendly methods for control. Sukomycin is a complex of substances with antimicrobial and antiviral activities produced from Streptomyces hygroscopicus isolated from soil. This natural complex reduces significantly symptoms and DAS-ELISA values of Potato virus Y and Tomato mosaic virus in tobacco plants.

  1. Antiprotozoan and Antiviral Activities of Non-Cytotoxic Truncated and Variant Analogues of Mussel Defensin

    Directory of Open Access Journals (Sweden)

    Philippe Roch

    2004-01-01

    Full Text Available We previously reported the crucial role displayed by loop 3 of defensin isolated from the Mediterranean mussel, Mytilus galloprovincialis, in antibacterial and antifungal activities. We now investigated antiprotozoan and antiviral activities of some previously reported fragments B, D, E, P and Q. Two fragments (D and P efficiently killed Trypanosoma brucei (ID50 4–12 μM and Leishmania major (ID50 12–45 μM in a time/dose-dependent manner. Killing of T. brucei started as early as 1 h after initiation of contact with fragment D and reached 55% mortality after 6 h. Killing was temperature dependent and a temperature of 4°C efficiently impaired the ability to kill T. brucei. Fragments bound to the entire external epithelium of T. brucei. Prevention of HIV-1 infestation was obtained only with fragments P and Q at 20 μM. Even if fragment P was active on both targets, the specificity of fragments D and Q suggest that antiprotozoan and antiviral activities are mediated by different mechanisms. Truncated sequences of mussel defensin, including amino acid replacement to maintain 3D structure and increased positive net charge, also possess antiprotozoan and antiviral capabilities. New alternative and/or complementary antibiotics can be derived from the vast reservoir of natural antimicrobial peptides (AMPs contained in marine invertebrates.

  2. Atividade antiviral de extratos de plantas medicinais disponíveis comercialmente frente aos herpesvírus suíno e bovino Antiviral activity of commercially available medicinal plants on suid and bovine herpesviruses

    Directory of Open Access Journals (Sweden)

    V.M. Kaziyama

    2012-01-01

    Full Text Available O presente trabalho teve como objetivo pesquisar a atividade antiviral in vitro de plantas medicinais disponíveis comercialmente sobre herpesvírus suíno (SuHV-1 e bovino (BoHV-1. As espécies adquiridas foram Mikania glomerata, Cymbopogon citratus, Equisetum arvense, Peumus boldus, Solanum paniculatum, Malva sylvestris, Piper umbellatun e Solidago microglossa. A citotoxicidade dos extratos foi avaliada na linhagem celular MDBK pelas alterações morfológicas das células e obtenção da concentração máxima não citotóxica (CMNC de cada planta. A atividade antiviral foi realizada com os extratos em suas respectivas CMNC e avaliada com base na redução do título viral e expressos em porcentagem de inibição. Os extratos aquosos de Peumus boldus e Solanum paniculatum apresentaram atividade antiviral sobre o SuHV-1 com 98% de inibição viral enquanto o de Peumus boldus inibiu apenas o BoHV-1 em 99%.This paper aims to find commercially available medicinal plants showing antiviral activity in vitro on suid and bovine herpesviruses. The following species were tested: Mikania glomerata, Cymbopogon citratus, Equisetum arvense, Peumus boldus, Solanum paniculatum, Malva sylvestris, Piper umbellatun and Solidago microglossa. The cytotoxicity was evaluated by morphological changes in cells determining the maximum not cytotoxic concentration (MNCC. The antiviral activity was evaluated by viral title reduction. The extracts from Peumus boldus and Solanum paniculatum showed antiviral activity against SuHV-1 with 98% of inhibition. The extract of Peumus boldus also showed activity against BoHV-1 with 99% of inhibition.

  3. Chemical composition of 8 eucalyptus species' essential oils and the evaluation of their antibacterial, antifungal and antiviral activities

    Directory of Open Access Journals (Sweden)

    Elaissi Ameur

    2012-06-01

    Full Text Available Abstract Background In 1957, Tunisia introduced 117 species of Eucalyptus; they have been used as fire wood, for the production of mine wood and to fight erosion. Actually, Eucalyptus essential oil is traditionally used to treat respiratory tract disorders such as pharyngitis, bronchitis, and sinusitis. A few investigations were reported on the biological activities of Eucalyptus oils worldwide. In Tunisia, our previous works conducted in 2010 and 2011 had been the first reports to study the antibacterial activities against reference strains. At that time it was not possible to evaluate their antimicrobial activities against clinical bacterial strains and other pathogens such as virus and fungi. Methods The essential oils of eight Eucalyptus species harvested from the Jbel Abderrahman, Korbous (North East Tunisia and Souinet arboreta (North of Tunisia were evaluated for their antimicrobial activities by disc diffusion and microbroth dilution methods against seven bacterial isolates: Haemophilus influenzae, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus agalactiae, Streptococcus pneumoniae and Streptococcus pyogenes. In addition, the bactericidal, fungicidal and the antiviral activities of the tested oils were carried out. Results Twenty five components were identified by GC/FID and GC/MS. These components were used to correlate with the biological activities of the tested oils. The chemical principal component analysis identified three groups, each of them constituted a chemotype. According to the values of zone diameter and percentage of the inhibition (zdi, % I, respectively, four groups and subgroups of bacterial strains and three groups of fungal strains were characterized by their sensitivity levels to Eucalyptus oils. The cytotoxic effect and the antiviral activity varied significantly within Eucalyptus species oils. Conclusions E. odorata showed the strongest activity against S. aureus, H. influenzae

  4. Chemical composition of 8 eucalyptus species' essential oils and the evaluation of their antibacterial, antifungal and antiviral activities

    Science.gov (United States)

    2012-01-01

    Background In 1957, Tunisia introduced 117 species of Eucalyptus; they have been used as fire wood, for the production of mine wood and to fight erosion. Actually, Eucalyptus essential oil is traditionally used to treat respiratory tract disorders such as pharyngitis, bronchitis, and sinusitis. A few investigations were reported on the biological activities of Eucalyptus oils worldwide. In Tunisia, our previous works conducted in 2010 and 2011 had been the first reports to study the antibacterial activities against reference strains. At that time it was not possible to evaluate their antimicrobial activities against clinical bacterial strains and other pathogens such as virus and fungi. Methods The essential oils of eight Eucalyptus species harvested from the Jbel Abderrahman, Korbous (North East Tunisia) and Souinet arboreta (North of Tunisia) were evaluated for their antimicrobial activities by disc diffusion and microbroth dilution methods against seven bacterial isolates: Haemophilus influenzae, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus agalactiae, Streptococcus pneumoniae and Streptococcus pyogenes. In addition, the bactericidal, fungicidal and the antiviral activities of the tested oils were carried out. Results Twenty five components were identified by GC/FID and GC/MS. These components were used to correlate with the biological activities of the tested oils. The chemical principal component analysis identified three groups, each of them constituted a chemotype. According to the values of zone diameter and percentage of the inhibition (zdi, % I, respectively), four groups and subgroups of bacterial strains and three groups of fungal strains were characterized by their sensitivity levels to Eucalyptus oils. The cytotoxic effect and the antiviral activity varied significantly within Eucalyptus species oils. Conclusions E. odorata showed the strongest activity against S. aureus, H. influenzae, S. agalactiae, S. pyogenes

  5. Arginine-rich histones have strong antiviral activity for influenza A viruses.

    Science.gov (United States)

    Hoeksema, Marloes; Tripathi, Shweta; White, Mitchell; Qi, Li; Taubenberger, Jeffery; van Eijk, Martin; Haagsman, Henk; Hartshorn, Kevan L

    2015-10-01

    While histones are best known for DNA binding and transcription-regulating properties, they also have antimicrobial activity against a broad range of potentially pathogenic organisms. Histones are abundant in neutrophil extracellular traps, where they play an important role in NET-mediated antimicrobial killing. Here, we show anti-influenza activity of histones against both seasonal H3N2 and H1N1, but not pandemic H1N1. The arginine rich histones, H3 and H4, had greater neutralizing and viral aggregating activity than the lysine rich histones, H2A and H2B. Of all core histones, histone H4 is most potent in neutralizing IAV, and incubation with IAV with histone H4 results in a decrease in uptake and viral replication by epithelial cells when measured by qRT-PCR. The antiviral activity of histone H4 is mediated principally by direct effects on viral particles. Histone H4 binds to IAV as assessed by ELISA and co-sedimentation of H4 with IAV. H4 also induces aggregation, as assessed by confocal microscopy and light transmission assays. Despite strong antiviral activity against the seasonal IAV strains, H4 was inactive against pandemic H1N1. These findings indicate a possible role for histones in the innate immune response against IAV. © The Author(s) 2015.

  6. In vitro antiviral activity of aqueous extract of Phaleria macrocarpa fruit against herpes simplex virus type 1

    Science.gov (United States)

    Ismaeel, Mahmud Yusef Yusef; Dyari, Herryawan Ryadi Eziwar; Yaacob, Wan Ahmad; Ibrahim, Nazlina

    2018-04-01

    Phaleria macrocarpa fruits have been used as herbal medicine for several diseases. This study aims to determine the cytotoxicity and antiviral activity of aqueous extract of P. macrocarpa fruit (AEPMF). Phytochemical analysis showed the presence of steroids, tannins, flavones aglycones, saponins, terpenoids and alkaloids. AEPMF was found to contain protein with the concentration of 740 µg/mL. The cytotoxicity towards Vero cell was evaluated using MTT assay with 50% cytotoxic concentration (CC50) value of AEPMF 5 mg/mL. The finding indicates that AEPMF is safe and not toxic towards Vero cells. Screening by plaque reduction assay showed that AEPMF have antiviral activity against herpes simplex virus type 1 (HSV-1) with effective concentration (EC50) was 0.28 mg/mL. The selective index (SI=CC50/EC50) of AEPMF is 17.9 indicating AEPMF have potential for further evaluation in antiviral activity.

  7. CNS activity of Pokeweed Anti-viral Protein (PAP in mice infected with Lymphocytic Choriomeningitis Virus (LCMV

    Directory of Open Access Journals (Sweden)

    Tibbles Heather E

    2005-02-01

    Full Text Available Abstract Background Others and we have previously described the potent in vivo and in vitro activity of the broad-spectrum antiviral agent PAP (Pokeweed antiviral protein against a wide range of viruses. The purpose of the present study was to further elucidate the anti-viral spectrum of PAP by examining its effects on the survival of mice challenged with lymphocytic choriomeningitis virus (LCMV. Methods We examined the therapeutic effect of PAP in CBA mice inoculated with intracerebral injections of the WE54 strain of LCMV at a 1000 PFU dose level that is lethal to 100% of mice within 7–9 days. Mice were treated either with vehicle or PAP administered intraperitoneally 24 hours prior to, 1 hour prior to and 24 hours, 48 hours 72 hours and 96 hours after virus inoculation. Results PAP exhibits significant in vivo anti- LCMV activity in mice challenged intracerebrally with an otherwise invariably fatal dose of LCMV. At non-toxic dose levels, PAP significantly prolonged survival in the absence of the majority of disease-associated symptoms. The median survival time of PAP-treated mice was >21 days as opposed to 7 days median survival for the control (p = 0.0069. Conclusion Our results presented herein provide unprecedented experimental evidence that PAP exhibits antiviral activity in the CNS of LCMV-infected mice.

  8. In vitro evaluation of antiviral and virucidal activity of a high molecular weight hyaluronic acid

    Directory of Open Access Journals (Sweden)

    Blasi Elisabetta

    2011-03-01

    Full Text Available Abstract Background hyaluronic acid (HA, a non-sulphated glycosaminoglycan, is present in synovial fluid, vitreous humour serum and many connective tissues. Pharmaceutical preparations of HA are used in clinical practice for wound healing, joint pain, kerato-conjunctivitis, asthma, mouth care, oesophageal-reflux, and gastritis. Moreover, it is used as a filler to counteract ageing and facial lipoatrophy. Our study aims at investigating the in vitro antiviral activity of a high molecular weight HA. Methods the MTT test was used to rule out the potential toxic effects of HA on the different cell lines used in the antiviral assays. The antiviral activity of HA against Coxsackievirus B5, Herpes Simplex Virus-1, Mumps Virus, Adenovirus-5, Influenza Virus A/H1N1, Human Herpesvirus-6, Porcine Parvovirus, Porcine Reproductive and Respiratory Syndrome Virus was assessed by virus yield assays. Results the most effective inhibition was observed against Coxsackievirus B5, with 3Log reduction of the virus yield at 4 mg/ml, and a reduction of 3.5Log and 2Log, at 2 mg/ml and 1 mg/ml, respectively: the selectivity index was 16. Mumps virus was highly inhibited too showing a reduction of 1.7Log at 1 mg/ml and 1Log at 4 mg/ml and 2 mg/ml (selectivity index = 12. The selectivity index for Influenza Virus was 12 with the highest inhibition (1Log observed at 4 mg/ml. Herpes Simplex Virus-1 and Porcine Parvovirus were mildly inhibited, whereas no antiviral activity was observed with respect to Adenovirus-5, Human Herpesvirus-6, Porcine Reproductive and Respiratory Syndrome Virus. No HA virucidal activity was ever observed against any of the viruses tested. Kinetic experiments showed that both Coxsackievirus B5 and Herpes simplex virus-1 replication were consistently inhibited, not influenced by the time of HA addition, during the virus replication cycle. Conclusions the spectrum of the antiviral activity exhibited by HA against both RNA and DNA viruses, known to have

  9. Antiviral activity of Dianthus superbusn L. against hepatitis B virus in ...

    African Journals Online (AJOL)

    Background: Hepatitis is a viral infection of hepatitis B virus (HBV). Limitations of drug used in the management of it opens the interest related to alternative medicine. The given study deals with the antiviral activity of Dianthus superbusn L. (DSL) against HBV in vitro & in vivo. Material and Methods: In vitro study liver cell line ...

  10. Design, Synthesis and Antiviral Activity Studies of Schizonepetin Derivatives

    Directory of Open Access Journals (Sweden)

    Anwei Ding

    2013-08-01

    Full Text Available A series of schizonepetin derivatives have been designed and synthesized in order to obtain potent antivirus agents. The antiviral activity against HSV-1 and influenza virus H3N2 as well as the cytotoxicity of these derivatives was evaluated by using cytopathic effect (CPE inhibition assay in vitro. Compounds M2, M4, M5 and M34 showed higher inhibitory activity against HSV-1 virus with the TC50 values being in micromole. Compounds M28, M33, and M35 showed higher inhibitory activity against influenza virus H3N2 with their TC50 values being 96.4, 71.0 and 75.4 μM, respectively. Preliminary biological activity evaluation indicated that the anti-H3N2 and anti-HSV-1 activities improved obviously through the introduction of halogen into the structure of schizonepetin.

  11. Antiviral activity of four types of bioflavonoid against dengue virus type-2

    Directory of Open Access Journals (Sweden)

    Zandi Keivan

    2011-12-01

    Full Text Available Abstract Background Dengue is a major mosquito-borne disease currently with no effective antiviral or vaccine available. Effort to find antivirals for it has focused on bioflavonoids, a plant-derived polyphenolic compounds with many potential health benefits. In the present study, antiviral activity of four types of bioflavonoid against dengue virus type -2 (DENV-2 in Vero cell was evaluated. Anti-dengue activity of these compounds was determined at different stages of DENV-2 infection and replication cycle. DENV replication was measured by Foci Forming Unit Reduction Assay (FFURA and quantitative RT-PCR. Selectivity Index value (SI was determined as the ratio of cytotoxic concentration 50 (CC50 to inhibitory concentration 50 (IC50 for each compound. Results The half maximal inhibitory concentration (IC50 of quercetin against dengue virus was 35.7 μg mL-1 when it was used after virus adsorption to the cells. The IC50 decreased to 28.9 μg mL-1 when the cells were treated continuously for 5 h before virus infection and up to 4 days post-infection. The SI values for quercetin were 7.07 and 8.74 μg mL-1, respectively, the highest compared to all bioflavonoids studied. Naringin only exhibited anti-adsorption effects against DENV-2 with IC50 = 168.2 μg mL-1 and its related SI was 1.3. Daidzein showed a weak anti-dengue activity with IC50 = 142.6 μg mL-1 when the DENV-2 infected cells were treated after virus adsorption. The SI value for this compound was 1.03. Hesperetin did not exhibit any antiviral activity against DENV-2. The findings obtained from Foci Forming Unit Reduction Assay (FFURA were corroborated by findings of the qRT-PCR assays. Quercetin and daidzein (50 μg mL-1 reduced DENV-2 RNA levels by 67% and 25%, respectively. There was no significant inhibition of DENV-2 RNA levels with naringin and hesperetin. Conclusion Results from the study suggest that only quercetin demonstrated significant anti-DENV-2 inhibitory activities. Other

  12. Antiviral Activity of Some Plants Used in Nepalese Traditional Medicine

    Directory of Open Access Journals (Sweden)

    M. Rajbhandari

    2009-01-01

    Full Text Available Methanolic extracts of 41 plant species belonging to 27 families used in the traditional medicine in Nepal have been investigated for in vitro antiviral activity against Herpes simplex virus type 1 (HSV-1 and influenza virus A by dye uptake assay in the systems HSV-1/Vero cells and influenza virus A/MDCK cells. The extracts of Astilbe rivularis, Bergenia ciliata, Cassiope fastigiata and Thymus linearis showed potent anti-herpes viral activity. The extracts of Allium oreoprasum, Androsace strigilosa, Asparagus filicinus, Astilbe rivularis, Bergenia ciliata and Verbascum thapsus exhibited strong anti-influenza viral activity. Only the extracts of A. rivularis and B. ciliata demonstrated remarkable activity against both viruses.

  13. From genome to antivirals: SARS as a test tube.

    Science.gov (United States)

    Kliger, Yossef; Levanon, Erez Y; Gerber, Doron

    2005-03-01

    The severe acute respiratory syndrome (SARS) epidemic brought into the spotlight the need for rapid development of effective anti-viral drugs against newly emerging viruses. Researchers have leveraged the 20-year battle against AIDS into a variety of possible treatments for SARS. Most prominently, based solely on viral genome information, silencers of viral genes, viral-enzyme blockers and viral-entry inhibitors were suggested as potential therapeutic agents for SARS. In particular, inhibitors of viral entry, comprising therapeutic peptides, were based on the recently launched anti-HIV drug enfuvirtide. This could represent one of the most direct routes from genome sequencing to the discovery of antiviral drugs.

  14. SUMO-interacting motifs of human TRIM5α are important for antiviral activity.

    Directory of Open Access Journals (Sweden)

    Gloria Arriagada

    2011-04-01

    Full Text Available Human TRIM5α potently restricts particular strains of murine leukemia viruses (the so-called N-tropic strains but not others (the B- or NB-tropic strains during early stages of infection. We show that overexpression of SUMO-1 in human 293T cells, but not in mouse MDTF cells, profoundly blocks N-MLV infection. This block is dependent on the tropism of the incoming virus, as neither B-, NB-, nor the mutant R110E of N-MLV CA (a B-tropic switch are affected by SUMO-1 overexpression. The block occurred prior to reverse transcription and could be abrogated by large amounts of restricted virus. Knockdown of TRIM5α in 293T SUMO-1-overexpressing cells resulted in ablation of the SUMO-1 antiviral effects, and this loss of restriction could be restored by expression of a human TRIM5α shRNA-resistant plasmid. Amino acid sequence analysis of human TRIM5α revealed a consensus SUMO conjugation site at the N-terminus and three putative SUMO interacting motifs (SIMs in the B30.2 domain. Mutations of the TRIM5α consensus SUMO conjugation site did not affect the antiviral activity of TRIM5α in any of the cell types tested. Mutation of the SIM consensus sequences, however, abolished TRIM5α antiviral activity against N-MLV. Mutation of lysines at a potential site of SUMOylation in the CA region of the Gag gene reduced the SUMO-1 block and the TRIM5α restriction of N-MLV. Our data suggest a novel aspect of TRIM5α-mediated restriction, in which the presence of intact SIMs in TRIM5α, and also the SUMO conjugation of CA, are required for restriction. We propose that at least a portion of the antiviral activity of TRIM5α is mediated through the binding of its SIMs to SUMO-conjugated CA.

  15. HBV Bypasses the Innate Immune Response and Does Not Protect HCV From Antiviral Activity of Interferon.

    Science.gov (United States)

    Mutz, Pascal; Metz, Philippe; Lempp, Florian A; Bender, Silke; Qu, Bingqian; Schöneweis, Katrin; Seitz, Stefan; Tu, Thomas; Restuccia, Agnese; Frankish, Jamie; Dächert, Christopher; Schusser, Benjamin; Koschny, Ronald; Polychronidis, Georgios; Schemmer, Peter; Hoffmann, Katrin; Baumert, Thomas F; Binder, Marco; Urban, Stephan; Bartenschlager, Ralf

    2018-05-01

    Hepatitis C virus (HCV) infection is sensitive to interferon (IFN)-based therapy, whereas hepatitis B virus (HBV) infection is not. It is unclear whether HBV escapes detection by the IFN-mediated immune response or actively suppresses it. Moreover, little is known on how HBV and HCV influence each other in coinfected cells. We investigated interactions between HBV and the IFN-mediated immune response using HepaRG cells and primary human hepatocytes (PHHs). We analyzed the effects of HBV on HCV replication, and vice versa, at the single-cell level. PHHs were isolated from liver resection tissues from HBV-, HCV-, and human immunodeficiency virus-negative patients. Differentiated HepaRG cells overexpressing the HBV receptor sodium taurocholate cotransporting polypeptide (dHepaRGNTCP) and PHHs were infected with HBV. Huh7.5 cells were transfected with circular HBV DNA genomes resembling viral covalently closed circular DNA (cccDNA), and subsequently infected with HCV; this served as a model of HBV and HCV coinfection. Cells were incubated with IFN inducers, or IFNs, and antiviral response and viral replication were analyzed by immune fluorescence, reverse-transcription quantitative polymerase chain reaction, enzyme-linked immunosorbent assays, and flow cytometry. HBV infection of dHepaRGNTCP cells and PHHs neither activated nor inhibited signaling via pattern recognition receptors. Incubation of dHepaRGNTCP cells and PHHs with IFN had little effect on HBV replication or levels of cccDNA. HBV infection of these cells did not inhibit JAK-STAT signaling or up-regulation of IFN-stimulated genes. In coinfected cells, HBV did not prevent IFN-induced suppression of HCV replication. In dHepaRGNTCP cells and PHHs, HBV evades the induction of IFN and IFN-induced antiviral effects. HBV infection does not rescue HCV from the IFN-mediated response. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.

  16. Changes in soluble factor-mediated CD8+ cell-derived antiviral activity in cynomolgus macaques infected with simian immunodeficiency virus SIVmac251: relationship to biological markers of progression.

    Science.gov (United States)

    Dioszeghy, Vincent; Benlhassan-Chahour, Kadija; Delache, Benoit; Dereuddre-Bosquet, Nathalie; Aubenque, Celine; Gras, Gabriel; Le Grand, Roger; Vaslin, Bruno

    2006-01-01

    Cross-sectional studies have shown that the capacity of CD8+ cells from human immunodeficiency virus (HIV)-infected patients and simian immunodeficiency virus (SIV) SIVmac-infected macaques to suppress the replication of human and simian immunodeficiency viruses in vitro depends on the clinical stage of disease, but little is known about changes in this antiviral activity over time in individual HIV-infected patients or SIV-infected macaques. We assessed changes in the soluble factor-mediated noncytolytic antiviral activity of CD8+ cells over time in eight cynomolgus macaques infected with SIVmac251 to determine the pathophysiological role of this activity. CD8+ cell-associated antiviral activity increased rapidly in the first week after viral inoculation and remained detectable during the early phase of infection. The net increase in antiviral activity of CD8+ cells was correlated with plasma viral load throughout the 15 months of follow-up. CD8+ cells gradually lost their antiviral activity over time and acquired virus replication-enhancing capacity. Levels of antiviral activity correlated with CD4+ T-cell counts after viral set point. Concentrations of beta-chemokines and interleukin-16 in CD8+ cell supernatants were not correlated with this antiviral activity, and alpha-defensins were not detected. The soluble factor-mediated antiviral activity of CD8+ cells was neither cytolytic nor restricted to major histocompatibility complex. This longitudinal study strongly suggests that the increase in noncytolytic antiviral activity from baseline and the maintenance of this increase over time in cynomolgus macaques depend on both viral replication and CD4+ T cells.

  17. Changes in Soluble Factor-Mediated CD8+ Cell-Derived Antiviral Activity in Cynomolgus Macaques Infected with Simian Immunodeficiency Virus SIVmac251: Relationship to Biological Markers of Progression†

    Science.gov (United States)

    Dioszeghy, Vincent; Benlhassan-Chahour, Kadija; Delache, Benoit; Dereuddre-Bosquet, Nathalie; Aubenque, Celine; Gras, Gabriel; Le Grand, Roger; Vaslin, Bruno

    2006-01-01

    Cross-sectional studies have shown that the capacity of CD8+ cells from human immunodeficiency virus (HIV)-infected patients and simian immunodeficiency virus (SIV) SIVmac-infected macaques to suppress the replication of human and simian immunodeficiency viruses in vitro depends on the clinical stage of disease, but little is known about changes in this antiviral activity over time in individual HIV-infected patients or SIV-infected macaques. We assessed changes in the soluble factor-mediated noncytolytic antiviral activity of CD8+ cells over time in eight cynomolgus macaques infected with SIVmac251 to determine the pathophysiological role of this activity. CD8+ cell-associated antiviral activity increased rapidly in the first week after viral inoculation and remained detectable during the early phase of infection. The net increase in antiviral activity of CD8+ cells was correlated with plasma viral load throughout the 15 months of follow-up. CD8+ cells gradually lost their antiviral activity over time and acquired virus replication-enhancing capacity. Levels of antiviral activity correlated with CD4+ T-cell counts after viral set point. Concentrations of β-chemokines and interleukin-16 in CD8+ cell supernatants were not correlated with this antiviral activity, and α-defensins were not detected. The soluble factor-mediated antiviral activity of CD8+ cells was neither cytolytic nor restricted to major histocompatibility complex. This longitudinal study strongly suggests that the increase in noncytolytic antiviral activity from baseline and the maintenance of this increase over time in cynomolgus macaques depend on both viral replication and CD4+ T cells. PMID:16352548

  18. Epimedium koreanum Nakai Water Extract Exhibits Antiviral Activity against Porcine Epidermic Diarrhea Virus In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Won-Kyung Cho

    2012-01-01

    Full Text Available Porcine epidemic diarrhea virus (PEDV causes diarrhea of pigs age-independently and death of young piglets, resulting in economic loss of porcine industry. We have screened 333 natural oriental herbal medicines to search for new antiviral candidates against PEDV. We found that two herbal extracts, KIOM 198 and KIOM 124, contain significant anti-PED viral effect. KIOM 198 and KIOM 124 were identified as Epimedium koreanum Nakai and Lonicera japonica Thunberg, respectively. The further plaque and CPE inhibition assay in vitro showed that KIOM 198 has much stronger antiviral activity than KIOM 124. Additionally, KIOM 198 exhibited a similar extent of antiviral effect against other subtypes of Corona virus such as sm98 and TGE viruses. Cytotoxicity results showed that KIOM 198 is nontoxic on the cells and suggest that it can be delivered safely for therapy. Furthermore, when we orally administered KIOM 198 to piglets and then infected them with PEDV, the piglets did not show any disease symptoms like diarrhea and biopsy results showed clean intestine, whereas control pigs without KIOM 198 treatment exhibited PED-related severe symptoms. These results imply that KIOM 198 contains strong antiviral activity and has a potential to be developed as an antiviral phytomedicine to treat PEDV-related diseases in pigs.

  19. Antiviral activity of a Bacillus sp: P34 peptide against pathogenic viruses of domestic animals

    Directory of Open Access Journals (Sweden)

    Débora Scopel e Silva

    2014-09-01

    Full Text Available P34 is an antimicrobial peptide produced by a Bacillus sp. strain isolated from the intestinal contents of a fish in the Brazilian Amazon basin with reported antibacterial activity. The aim of this work was to evaluate the peptide P34 for its in vitro antiviral properties against canine adenovirus type 2 (CAV-2, canine coronavirus (CCoV, canine distemper virus (CDV, canine parvovirus type 2 (CPV-2, equine arteritis virus (EAV, equine influenza virus (EIV, feline calicivirus (FCV and feline herpesvirus type 1 (FHV-1. The results showed that the peptide P34 exhibited antiviral activity against EAV and FHV-1. The peptide P34 inhibited the replication of EAV by 99.9% and FHV-1 by 94.4%. Virucidal activity was detected only against EAV. When P34 and EAV were incubated for 6 h at 37 °C the viral titer reduced from 10(4.5 TCID50 to 10(2.75 TCID50, showing a percent of inhibition of 98.6%. In conclusion, our results demonstrated that P34 inhibited EAV and FHV-1 replication in infected cell cultures and it showed virucidal activity against EAV. Since there is documented resistance to the current drugs used against herpesviruses and there is no treatment for equine viral arteritis, it is advisable to search for new antiviral compounds to overcome these infections.

  20. Identification of a novel multiple kinase inhibitor with potent antiviral activity against influenza virus by reducing viral polymerase activity

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Yutaka; Kakisaka, Michinori; Chutiwitoonchai, Nopporn [Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Tajima, Shigeru [Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640 (Japan); Hikono, Hirokazu; Saito, Takehiko [Influenza and Prion Disease Research Center, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856 (Japan); Aida, Yoko, E-mail: aida@riken.jp [Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2014-07-18

    Highlights: • Screening of 50,000 compounds and subsequent lead optimization identified WV970. • WV970 has antiviral effects against influenza A, B and highly pathogenic viral strains. • WV970 inhibits viral genome replication and transcription. • A target database search suggests that WV970 may bind to a number of kinases. • KINOMEscan screening revealed that WV970 has inhibitory effects on 15 kinases. - Abstract: Neuraminidase inhibitors are the only currently available influenza treatment, although resistant viruses to these drugs have already been reported. Thus, new antiviral drugs with novel mechanisms of action are urgently required. In this study, we identified a novel antiviral compound, WV970, through cell-based screening of a 50,000 compound library and subsequent lead optimization. This compound exhibited potent antiviral activity with nanomolar IC{sub 50} values against both influenza A and B viruses but not non-influenza RNA viruses. Time-of-addition and indirect immunofluorescence assays indicated that WV970 acted at an early stage of the influenza life cycle, but likely after nuclear entry of viral ribonucleoprotein (vRNP). Further analyses of viral RNA expression and viral polymerase activity indicated that WV970 inhibited vRNP-mediated viral genome replication and transcription. Finally, structure-based virtual screening and comprehensive human kinome screening were used to demonstrate that WV970 acts as a multiple kinase inhibitor, many of which are associated with influenza virus replication. Collectively, these results strongly suggest that WV970 is a promising anti-influenza drug candidate and that several kinases associated with viral replication are promising drug targets.

  1. Identification of a novel multiple kinase inhibitor with potent antiviral activity against influenza virus by reducing viral polymerase activity

    International Nuclear Information System (INIS)

    Sasaki, Yutaka; Kakisaka, Michinori; Chutiwitoonchai, Nopporn; Tajima, Shigeru; Hikono, Hirokazu; Saito, Takehiko; Aida, Yoko

    2014-01-01

    Highlights: • Screening of 50,000 compounds and subsequent lead optimization identified WV970. • WV970 has antiviral effects against influenza A, B and highly pathogenic viral strains. • WV970 inhibits viral genome replication and transcription. • A target database search suggests that WV970 may bind to a number of kinases. • KINOMEscan screening revealed that WV970 has inhibitory effects on 15 kinases. - Abstract: Neuraminidase inhibitors are the only currently available influenza treatment, although resistant viruses to these drugs have already been reported. Thus, new antiviral drugs with novel mechanisms of action are urgently required. In this study, we identified a novel antiviral compound, WV970, through cell-based screening of a 50,000 compound library and subsequent lead optimization. This compound exhibited potent antiviral activity with nanomolar IC 50 values against both influenza A and B viruses but not non-influenza RNA viruses. Time-of-addition and indirect immunofluorescence assays indicated that WV970 acted at an early stage of the influenza life cycle, but likely after nuclear entry of viral ribonucleoprotein (vRNP). Further analyses of viral RNA expression and viral polymerase activity indicated that WV970 inhibited vRNP-mediated viral genome replication and transcription. Finally, structure-based virtual screening and comprehensive human kinome screening were used to demonstrate that WV970 acts as a multiple kinase inhibitor, many of which are associated with influenza virus replication. Collectively, these results strongly suggest that WV970 is a promising anti-influenza drug candidate and that several kinases associated with viral replication are promising drug targets

  2. In vitro antiviral activity of Brazilian plants (Maytenus ilicifolia and Aniba rosaeodora) against bovine herpesvirus type 5 and avian metapneumovirus.

    Science.gov (United States)

    Kohn, L K; Queiroga, C L; Martini, M C; Barata, L E; Porto, P S S; Souza, L; Arns, C W

    2012-10-01

    Medicinal plants are well known for their use in traditional folk medicine as treatments for many diseases including infectious diseases. Six Brazilian medicinal plant species were subjected to an antiviral screening bioassay to investigate and evaluate their biological activities against five viruses: bovine herpesvirus type 5 (BHV-5), avian metapneumovirus (aMPV), murine hepatitis virus type 3, porcine parvovirus and bovine respiratory syncytial virus. The antiviral activity was determined by a titration technique that depends on the ability of plant extract dilutions (25 or 2.5 µg/mL) to inhibit the viral induced cytopathic effect and the extracts' inhibition percentage (IP). Two medicinal plant species showed potential antiviral activity. The Aniba rosaeodora Ducke (Lauraceae) extract had the best results, with 90% inhibition of viral growth at 2.5 µg/mL when the extract was added during the replication period of the aMPV infection cycle. The Maytenus ilicifolia (Schrad.) Planch. (Celastraceae) extracts at a concentration of 2.5 µg/mL exhibited antiviral activity during the attachment phase of BHV-5 (IP = 100%). The biomonitored fractionation of the active extracts from M. ilicifolia and A. rosaeodora could be a potential tool for identifying their active compounds and determining the exact mechanism of action.

  3. Monovalent Cation Activation of the Radical SAM Enzyme Pyruvate Formate-Lyase Activating Enzyme.

    Science.gov (United States)

    Shisler, Krista A; Hutcheson, Rachel U; Horitani, Masaki; Duschene, Kaitlin S; Crain, Adam V; Byer, Amanda S; Shepard, Eric M; Rasmussen, Ashley; Yang, Jian; Broderick, William E; Vey, Jessica L; Drennan, Catherine L; Hoffman, Brian M; Broderick, Joan B

    2017-08-30

    Pyruvate formate-lyase activating enzyme (PFL-AE) is a radical S-adenosyl-l-methionine (SAM) enzyme that installs a catalytically essential glycyl radical on pyruvate formate-lyase. We show that PFL-AE binds a catalytically essential monovalent cation at its active site, yet another parallel with B 12 enzymes, and we characterize this cation site by a combination of structural, biochemical, and spectroscopic approaches. Refinement of the PFL-AE crystal structure reveals Na + as the most likely ion present in the solved structures, and pulsed electron nuclear double resonance (ENDOR) demonstrates that the same cation site is occupied by 23 Na in the solution state of the as-isolated enzyme. A SAM carboxylate-oxygen is an M + ligand, and EPR and circular dichroism spectroscopies reveal that both the site occupancy and the identity of the cation perturb the electronic properties of the SAM-chelated iron-sulfur cluster. ENDOR studies of the PFL-AE/[ 13 C-methyl]-SAM complex show that the target sulfonium positioning varies with the cation, while the observation of an isotropic hyperfine coupling to the cation by ENDOR measurements establishes its intimate, SAM-mediated interaction with the cluster. This monovalent cation site controls enzyme activity: (i) PFL-AE in the absence of any simple monovalent cations has little-no activity; and (ii) among monocations, going down Group 1 of the periodic table from Li + to Cs + , PFL-AE activity sharply maximizes at K + , with NH 4 + closely matching the efficacy of K + . PFL-AE is thus a type I M + -activated enzyme whose M + controls reactivity by interactions with the cosubstrate, SAM, which is bound to the catalytic iron-sulfur cluster.

  4. Structure-Activity Relationships of Acyclic Selenopurine Nucleosides as Antiviral Agents

    Directory of Open Access Journals (Sweden)

    Pramod K. Sahu

    2017-07-01

    Full Text Available A series of acyclic selenopurine nucleosides 3a–f and 4a–g were synthesized based on the bioisosteric rationale between oxygen and selenium, and then evaluated for antiviral activity. Among the compounds tested, seleno-acyclovir (4a exhibited the most potent anti-herpes simplex virus (HSV-1 (EC50 = 1.47 µM and HSV-2 (EC50 = 6.34 µM activities without cytotoxicity up to 100 µM, while 2,6-diaminopurine derivatives 4e–g exhibited significant anti-human cytomegalovirus (HCMV activity, which is slightly more potent than the guanine derivative 4d, indicating that they might act as prodrugs of seleno-ganciclovir (4d.

  5. In-Vitro Antiviral Activities of Extracts of Plants of The Brazilian Cerrado against the Avian Metapneumovirus (aMPV

    Directory of Open Access Journals (Sweden)

    LK Kohn

    2015-09-01

    Full Text Available ABSTRACTAvian metapneumovirus (aMPV is a negative-sense single-stranded RNA enveloped virus of the Metapneumovirus genus belonging to theParamyxoviridae family. This virus may cause significant economic losses to the poultry industry, despite vaccination, which is the main tool for controlling and preventing aMPV. The aim of this study was to evaluate the antiviral activity of extracts of four different native plants of the Brazilian Cerrado against aMPV. The antiviral activity against aMPV was determined by titration. This technique measures the ability of plant extract dilutions (25 to 2.5 µg mL-1 to inhibit the cytopathic effect (CPE of the virus, expressed as inhibition percentage (IP. The maximum nontoxic concentration (MNTC of the extracts used in antiviral assay was 25 µg mL-1for Aspidosperma tomentosumand Gaylussacia brasiliensis, and 2.5 µg mL-1for Arrabidaea chicaand Virola sebifera. Twelve different extracts derived from four plant species collected from the Brazilian Cerrado were screened for antiviral activity against aMPV. G. brasiliensis, A. chica,and V. sebifera extracts presented inhibition rates of 99% in the early viral replication stages, suggesting that these extracts act during the adsorption phase. On the other hand, A. tomentosum inhibited 99% virus replication after the virus entered the cell. The biomonitored fractioning of extracts active against aMPV may be a tool to identify the active compounds of plant extracts and to determine their precise mode of action.

  6. Viruses and Antiviral Immunity in Drosophila

    Science.gov (United States)

    Xu, Jie; Cherry, Sara

    2013-01-01

    Viral pathogens present many challenges to organisms, driving the evolution of a myriad of antiviral strategies to combat infections. A wide variety of viruses infect invertebrates, including both natural pathogens that are insect-restricted, and viruses that are transmitted to vertebrates. Studies using the powerful tools available in the model organism Drosophila have expanded our understanding of antiviral defenses against diverse viruses. In this review, we will cover three major areas. First, we will describe the tools used to study viruses in Drosophila. Second, we will survey the major viruses that have been studied in Drosophila. And lastly, we will discuss the well-characterized mechanisms that are active against these diverse pathogens, focusing on non-RNAi mediated antiviral mechanisms. Antiviral RNAi is discussed in another paper in this issue. PMID:23680639

  7. Potential Antiviral Agents from Marine Fungi: An Overview

    Directory of Open Access Journals (Sweden)

    Soheil Zorofchian Moghadamtousi

    2015-07-01

    Full Text Available Biodiversity of the marine world is only partially subjected to detailed scientific scrutiny in comparison to terrestrial life. Life in the marine world depends heavily on marine fungi scavenging the oceans of lifeless plants and animals and entering them into the nutrient cycle by. Approximately 150 to 200 new compounds, including alkaloids, sesquiterpenes, polyketides, and aromatic compounds, are identified from marine fungi annually. In recent years, numerous investigations demonstrated the tremendous potential of marine fungi as a promising source to develop new antivirals against different important viruses, including herpes simplex viruses, the human immunodeficiency virus, and the influenza virus. Various genera of marine fungi such as Aspergillus, Penicillium, Cladosporium, and Fusarium were subjected to compound isolation and antiviral studies, which led to an illustration of the strong antiviral activity of a variety of marine fungi-derived compounds. The present review strives to summarize all available knowledge on active compounds isolated from marine fungi with antiviral activity.

  8. Perspective of Use of Antiviral Peptides against Influenza Virus

    Directory of Open Access Journals (Sweden)

    Sylvie Skalickova

    2015-10-01

    Full Text Available The threat of a worldwide influenza pandemic has greatly increased over the past decade with the emergence of highly virulent avian influenza strains. The increased frequency of drug-resistant influenza strains against currently available antiviral drugs requires urgent development of new strategies for antiviral therapy, too. The research in the field of therapeutic peptides began to develop extensively in the second half of the 20th century. Since then, the mechanisms of action for several peptides and their antiviral prospect received large attention due to the global threat posed by viruses. Here, we discussed the therapeutic properties of peptides used in influenza treatment. Peptides with antiviral activity against influenza can be divided into three main groups. First, entry blocker peptides such as a Flupep that interact with influenza hemagglutinin, block its binding to host cells and prevent viral fusion. Second, several peptides display virucidal activity, disrupting viral envelopes, e.g., Melittin. Finally, a third set of peptides interacts with the viral polymerase complex and act as viral replication inhibitors such as PB1 derived peptides. Here, we present a review of the current literature describing the antiviral activity, mechanism and future therapeutic potential of these influenza antiviral peptides.

  9. ANTIVIRAL ACTIVITY OF DIANTHUS SUPERBUSN L. AGAINST HEPATITIS B VIRUS IN VITRO AND IN VIVO.

    Science.gov (United States)

    Li, Wei-Guo; Wang, He-Qun

    2016-01-01

    Hepatitis is a viral infection of hepatitis B virus (HBV). Limitations of drug used in the management of it opens the interest related to alternative medicine. The given study deals with the antiviral activity of Dianthus superbusn L. (DSL) against HBV in vitro & in vivo . In vitro study liver cell line HepG2.2.15 was used by transinfected it with HBV. Cytotoxicity stduy was performed by using different concentrations of DSL such as 50, 100, 200, 500 & 1000 μg/ml. Anti HBV activity of DSL was estimated by assesing the concentration of HBsAg and HbeAg in cell culture medium by using ELISA. Whereas in vivo study was performed on ducklings and antiviral activity of DSL (100, 200, 400 mg/kg) was confirmed by estimating the serum concentration of HBV DNA and histopathology study of hepatocytes in HBV infected ducklings. Result of the study suggested that >500 μg/ml concentration of hydroalcoholic extract of DSL was found tobe cytotoxic. It was also observed that DSL significantly ( p <0.05) reduces the concentration of antigenes in cell culture media as per the concentration and days of treatment dependent. Moreover in vivo study confirms the anti viral activity of DSL (200 & 400 mg/kg) as it significantly ( p <0.05) decreases the serum concenetration of HBV DNA in HBV infected dukling compared to control group. Histopathology study was also reveals the hepatprotective effect of DSL in HBV infected ducklings. The given study concludes the antiviral activity DSL against HBV by in vitro and in vivo models.

  10. Antiviral Screening of Multiple Compounds against Ebola Virus.

    Science.gov (United States)

    Dowall, Stuart D; Bewley, Kevin; Watson, Robert J; Vasan, Seshadri S; Ghosh, Chandradhish; Konai, Mohini M; Gausdal, Gro; Lorens, James B; Long, Jason; Barclay, Wendy; Garcia-Dorival, Isabel; Hiscox, Julian; Bosworth, Andrew; Taylor, Irene; Easterbrook, Linda; Pitman, James; Summers, Sian; Chan-Pensley, Jenny; Funnell, Simon; Vipond, Julia; Charlton, Sue; Haldar, Jayanta; Hewson, Roger; Carroll, Miles W

    2016-10-27

    In light of the recent outbreak of Ebola virus (EBOV) disease in West Africa, there have been renewed efforts to search for effective antiviral countermeasures. A range of compounds currently available with broad antimicrobial activity have been tested for activity against EBOV. Using live EBOV, eighteen candidate compounds were screened for antiviral activity in vitro. The compounds were selected on a rational basis because their mechanisms of action suggested that they had the potential to disrupt EBOV entry, replication or exit from cells or because they had displayed some antiviral activity against EBOV in previous tests. Nine compounds caused no reduction in viral replication despite cells remaining healthy, so they were excluded from further analysis (zidovudine; didanosine; stavudine; abacavir sulphate; entecavir; JB1a; Aimspro; celgosivir; and castanospermine). A second screen of the remaining compounds and the feasibility of appropriateness for in vivo testing removed six further compounds (ouabain; omeprazole; esomeprazole; Gleevec; D-LANA-14; and Tasigna). The three most promising compounds (17-DMAG; BGB324; and NCK-8) were further screened for in vivo activity in the guinea pig model of EBOV disease. Two of the compounds, BGB324 and NCK-8, showed some effect against lethal infection in vivo at the concentrations tested, which warrants further investigation. Further, these data add to the body of knowledge on the antiviral activities of multiple compounds against EBOV and indicate that the scientific community should invest more effort into the development of novel and specific antiviral compounds to treat Ebola virus disease.

  11. Antiviral Screening of Multiple Compounds against Ebola Virus

    Directory of Open Access Journals (Sweden)

    Stuart D. Dowall

    2016-10-01

    Full Text Available In light of the recent outbreak of Ebola virus (EBOV disease in West Africa, there have been renewed efforts to search for effective antiviral countermeasures. A range of compounds currently available with broad antimicrobial activity have been tested for activity against EBOV. Using live EBOV, eighteen candidate compounds were screened for antiviral activity in vitro. The compounds were selected on a rational basis because their mechanisms of action suggested that they had the potential to disrupt EBOV entry, replication or exit from cells or because they had displayed some antiviral activity against EBOV in previous tests. Nine compounds caused no reduction in viral replication despite cells remaining healthy, so they were excluded from further analysis (zidovudine; didanosine; stavudine; abacavir sulphate; entecavir; JB1a; Aimspro; celgosivir; and castanospermine. A second screen of the remaining compounds and the feasibility of appropriateness for in vivo testing removed six further compounds (ouabain; omeprazole; esomeprazole; Gleevec; D-LANA-14; and Tasigna. The three most promising compounds (17-DMAG; BGB324; and NCK-8 were further screened for in vivo activity in the guinea pig model of EBOV disease. Two of the compounds, BGB324 and NCK-8, showed some effect against lethal infection in vivo at the concentrations tested, which warrants further investigation. Further, these data add to the body of knowledge on the antiviral activities of multiple compounds against EBOV and indicate that the scientific community should invest more effort into the development of novel and specific antiviral compounds to treat Ebola virus disease.

  12. IFN regulatory factor 1 restricts hepatitis E virus replication by activating STAT1 to induce antiviral IFN-stimulated genes.

    Science.gov (United States)

    Xu, Lei; Zhou, Xinying; Wang, Wenshi; Wang, Yijin; Yin, Yuebang; Laan, Luc J W van der; Sprengers, Dave; Metselaar, Herold J; Peppelenbosch, Maikel P; Pan, Qiuwei

    2016-10-01

    IFN regulatory factor 1 (IRF1) is one of the most important IFN-stimulated genes (ISGs) in cellular antiviral immunity. Although hepatitis E virus (HEV) is a leading cause of acute hepatitis worldwide, how ISGs counteract HEV infection is largely unknown. This study was conducted to investigate the effect of IRF1 on HEV replication. Multiple cell lines were used in 2 models that harbor HEV. In different HEV cell culture systems, IRF1 effectively inhibited HEV replication. IRF1 did not trigger IFN production, and chromatin immunoprecipitation sequencing data analysis revealed that IRF1 bound to the promoter region of signal transducers and activators of transcription 1 (STAT1). Functional assay confirmed that IRF1 could drive the transcription of STAT1, resulting in elevation of total and phosphorylated STAT1 proteins and further activating the transcription of a panel of downstream antiviral ISGs. By pharmacological inhibitors and RNAi-mediated gene-silencing approaches, we revealed that antiviral function of IRF1 is dependent on the JAK-STAT cascade. Furthermore, induction of ISGs and the anti-HEV effect of IRF1 overlapped that of IFNα, but was potentiated by ribavirin. We demonstrated that IRF1 effectively inhibits HEV replication through the activation of the JAK-STAT pathway, and the subsequent transcription of antiviral ISGs, but independent of IFN production.-Xu, L., Zhou, X., Wang, W., Wang, Y., Yin, Y., van der Laan, L. J. W., Sprengers, D., Metselaar, H. J., Peppelenbosch, M. P., Pan, Q. IFN regulatory factor 1 restricts hepatitis E virus replication by activating STAT1 to induce antiviral IFN-stimulated genes. © FASEB.

  13. The enzymatic activity of CEM15/Apobec-3G is essential for the regulation of the infectivity of HIV-1 virion but not a sole determinant of its antiviral activity.

    Science.gov (United States)

    Shindo, Keisuke; Takaori-Kondo, Akifumi; Kobayashi, Masayuki; Abudu, Aierken; Fukunaga, Keiko; Uchiyama, Takashi

    2003-11-07

    Human immunodeficiency virus, type 1 (HIV-1) Vif protein plays an essential role in the regulation of the infectivity of HIV-1 virion. Vif functions to counteract an anti-HIV-1 cellular factor in non-permissive cells, CEM15/Apobec-3G, which shares a cytidine deaminase motif. CEM15/Apobec-3G deaminates dC to dU in the minus strand DNA of HIV-1, resulting in G to A hypermutation in the plus strand DNA. In this study, we have done the mutagenesis analysis on two cytidine deaminase motifs in CEM15/Apobec-3G and examined their antiviral functions as well as the DNA editing activity. Point mutations in the C-terminal active site such as E259Q and C291A almost completely abrogated the antiviral function, while those in the N-terminal active site such as E67Q and C100A retained this activity to a lesser extent as compared with that of the wild type. The DNA editing activities of E67Q and E259Q mutants were both retained but impaired to the same extent. This indicates that the enzymatic activity of this protein is essential but not a sole determinant of the antiviral activity. Furthermore, all the deletion mutants tested in this study lost the antiviral activity because of the loss of the activity for dimerization, suggesting that the entire protein structure is necessary for the antiviral function.

  14. Actinobacteria from Termite Mounds Show Antiviral Activity against Bovine Viral Diarrhea Virus, a Surrogate Model for Hepatitis C Virus

    Directory of Open Access Journals (Sweden)

    Marina Aiello Padilla

    2015-01-01

    Full Text Available Extracts from termite-associated bacteria were evaluated for in vitro antiviral activity against bovine viral diarrhea virus (BVDV. Two bacterial strains were identified as active, with percentages of inhibition (IP equal to 98%. Both strains were subjected to functional analysis via the addition of virus and extract at different time points in cell culture; the results showed that they were effective as posttreatments. Moreover, we performed MTT colorimetric assays to identify the CC50, IC50, and SI values of these strains, and strain CDPA27 was considered the most promising. In parallel, the isolates were identified as Streptomyces through 16S rRNA gene sequencing analysis. Specifically, CDPA27 was identified as S. chartreusis. The CDPA27 extract was fractionated on a C18-E SPE cartridge, and the fractions were reevaluated. A 100% methanol fraction was identified to contain the compound(s responsible for antiviral activity, which had an SI of 262.41. GC-MS analysis showed that this activity was likely associated with the compound(s that had a peak retention time of 5 min. Taken together, the results of the present study provide new information for antiviral research using natural sources, demonstrate the antiviral potential of Streptomyces chartreusis compounds isolated from termite mounds against BVDV, and lay the foundation for further studies on the treatment of HCV infection.

  15. Enzyme Activities in Waste Water and Activated Sludge

    DEFF Research Database (Denmark)

    Nybroe, Ole; Jørgensen, Per Elberg; Henze, Mogens

    1992-01-01

    The purpose of the present study was to evaluate the potential of selected enzyme activity assays to determine microbial abundance and heterotrophic activity in waste water and activated sludge. In waste water, esterase and dehydrogenase activities were found to correlate with microbial abundance...... measured as colony forming units of heterotrophic bacteria. A panel of four enzyme activity assays, α-glucosidase, alanine-aminopeptidase, esterase and dehydrogenase were used to characterize activated sludge and anaerobic hydrolysis sludge from a pilot scale plant. The enzymatic activity profiles were...... distinctly different, suggesting that microbial populations were different, or had different physiological properties, in the two types of sludge. Enzyme activity profiles in activated sludge from four full-scale plants seemed to be highly influenced by the composition of the inlet. Addition of hydrolysed...

  16. [Antiviral activity of representatives of the family Crassulaceae].

    Science.gov (United States)

    Shirobokov, V P; Evtushenko, A I; Lapchik, V F; Shirobokova, D N; Suptel', E A

    1981-12-01

    The antiviral properties of the juice of 11 species of the orpine family were studied. 8 of them belonged to the genera Kalanchoe, i. e. Kalanchoe diagremontiona R. Hamet, K. pinnata (Zam.) Persoon, K. Peteri Werd., K. prolifera (Bovie) R. Hamet, K. marnierriana (Mann. et Boit) Jacobs; K. blossfeldiana v. Poelln, K. beharensis Drake del Gastillo, K. waldheimii R. Hamet et Perr and 3 belonged to the Sedum genera, i. e. Sedum telephium L., S. spectabile Boreau, S. acre L. A high virus neutralizing activity of the juice from 4 species of Kalanchoe, i. e. K. blossfeldiana, K. waldheimii, K. pinnata and K. beharensis was shown. Inhibition of the virus infecting activity was observed at the juice dilutions from 1-2 to 1-8000 and higher. The viricidal factor of Kalanchoe is stable. It is not destroyed by ether, alcohol and potassium periodate. It is not absorbed by bentonite at the acid pH values. Addition of cattle serum or purified proteins to the juice resulted in their precipitation which suppressed the viricidal activity of the juice.

  17. Rigid amphipathic fusion inhibitors demonstrate antiviral activity against African swine fever virus.

    Science.gov (United States)

    Hakobyan, Astghik; Galindo, Inmaculada; Nañez, Almudena; Arabyan, Erik; Karalyan, Zaven; Chistov, Alexey A; Streshnev, Philipp P; Korshun, Vladimir A; Alonso, Covadonga; Zakaryan, Hovakim

    2018-01-01

    Rigid amphipathic fusion inhibitors (RAFIs) are a family of nucleoside derivatives that inhibit the infectivity of several enveloped viruses by interacting with virion envelope lipids and inhibiting fusion between viral and cellular membranes. Here we tested the antiviral activity of two RAFIs, 5-(Perylen-3-ylethynyl)-arabino-uridine (aUY11) and 5-(Perylen-3-ylethynyl)uracil-1-acetic acid (cm1UY11) against African swine fever virus (ASFV), for which no effective vaccine is available. Both compounds displayed a potent, dose-dependent inhibitory effect on ASFV infection in Vero cells. The major antiviral effect was observed when aUY11 and cm1UY11 were added at early stages of infection and maintained during the complete viral cycle. Furthermore, virucidal assay revealed a significant extracellular anti-ASFV activity for both compounds. We also found decrease in the synthesis of early and late viral proteins in Vero cells treated with cm1UY11. Finally, the inhibitory effect of aUY11 and cm1UY11 on ASFV infection in porcine alveolar macrophages was confirmed. Overall, our study has identified novel anti-ASFV compounds with potential for future therapeutic developments.

  18. [Antiviral activity of different drugs in vitro against viruses of bovine infectious rhinotracheitis and bovine diarrhea].

    Science.gov (United States)

    Glotov, A G; Glotova, T I; Sergeev, A A; Belkina, T V; Sergeev, A N

    2004-01-01

    In vitro experiments studied the antiviral activity of 11 different drugs against viruses of bovine infective rhinotracheitis (BIRT) and bovine viral diarrhea (BVD). The 50% inhibiting concentrations of the test agents were determined in the monolayers of MDBK and KCT cell cultures. Only did phosprenyl show a virucidal activity against BIRT virus. All the tested drugs significantly inhibited the reproduction of BIRT virus in the sensitive MDBK cell cultures. Thus, bromuridin, acyclovir, ribavirin and methisazonum inhibited the virus by > or = 100,000 times; liposomal ribavirin, gossypolum, anandinum, polyprenolum, phosprenyl, by 1000-10,000 times; eracond and argovit, by 100 times. In experiments on BVD virus, the cultured KCT cells displayed the antiviral activity of bromuridin, phosprenil, polyprenolum, methisazonum, acyclovir, gossypolum, argovit, and ribavirin (in two variants), which caused a statistically significant (100-10,000-fold) decrease in the productive activity of this virus. Eracond and anandid proved to be ineffective.

  19. Specificity of a prodrug-activating enzyme hVACVase: the leaving group effect.

    Science.gov (United States)

    Sun, Jing; Dahan, Arik; Walls, Zachary F; Lai, Longsheng; Lee, Kyung-Dall; Amidon, Gordon L

    2010-12-06

    Human valacyclovirase (hVACVase) is a prodrug-activating enzyme for amino acid prodrugs including the antiviral drugs valacyclovir and valganciclovir. In hVACVase-catalyzed reactions, the leaving group of the substrate corresponds to the drug moiety of the prodrug, making the leaving group effect essential for the rational design of new prodrugs targeting hVACVase activation. In this study, a series of valine esters, phenylalanine esters, and a valine amide were characterized for the effect of the leaving group on the efficiency of hVACVase-mediated prodrug activation. Except for phenylalanine methyl and ethyl esters, all of the ester substrates exhibited a relatively high specificity constant (k(cat)/K(m)), ranging from 850 to 9490 mM(-1)·s(-1). The valine amide Val-3-APG exhibited significantly higher K(m) and lower k(cat) values compared to the corresponding ester Val-3-HPG, indicating poor specificity for hVACVase. In conclusion, the substrate leaving group has been shown to affect both binding and specific activity of hVACVase-catalyzed activation. It is proposed that hVACVase is an ideal target for α-amino acid ester prodrugs with relatively labile leaving groups while it is relatively inactivate toward amide prodrugs.

  20. An in vitro reprogrammable antiviral RISC with size-preferential ribonuclease activity.

    Science.gov (United States)

    Omarov, Rustem T; Ciomperlik, Jessica; Scholthof, Herman B

    2016-03-01

    Infection of Nicotiana benthamiana plants with Tomato bushy stunt virus (TBSV) mutants compromised for silencing suppression induces formation of an antiviral RISC (vRISC) that can be isolated using chromatography procedures. The isolated vRISC sequence-specifically degrades TBSV RNA in vitro, its activity can be down-regulated by removing siRNAs, and re-stimulated by exogenous supply of siRNAs. vRISC is most effective at hydrolyzing the ~4.8kb genomic RNA, but less so for a ~2.2kb TBSV subgenomic mRNA (sgRNA1), while the 3' co-terminal sgRNA2 of ~0.9kb appears insensitive to vRISC cleavage. Moreover, experiments with in vitro generated 5' co-terminal viral transcripts show that RNAs of ~2.7kb are efficiently cleaved while those of ~1.1kb or shorter are unaffected. The isolated antiviral ribonuclease complex fails to degrade ~0.4kb defective interfering RNAs (DIs) in vitro, agreeing with findings that in plants DIs are not targeted by silencing. Copyright © 2016. Published by Elsevier Inc.

  1. Nutritional and Chemical Composition and Antiviral Activity of Cultivated Seaweed Sargassum naozhouense Tseng et Lu 

    Directory of Open Access Journals (Sweden)

    Yonghong Liu

    2012-12-01

    Full Text Available Sargassum naozhouense is a brown seaweed used in folk medicine and applied for thousands of years in Zhanjiang, Guangdong province, China. This study is the first time to investigate its chemical composition and antiviral activity. On the dry weight basis, this seaweed was constituted of ca. 35.18% ash, 11.20% protein, 1.06% lipid and 47.73% total carbohydrate, and the main carbohydrate was water-soluble polysaccharide. The protein analysis indicated the presence of essential amino acids, which accounted for 36.35% of the protein. The most abundant fatty acids were C14:0, C16:0, C18:1 and C20:4. The ash fraction analysis indicated that essential minerals and trace elements, such as Fe, Zn and Cu, were present in the seaweed. IR analysis revealed that polysaccharides from cultivated S. naozhouense may be alginates and fucoidan. The polysaccharides possessed strong antiviral activity against HSV-1 in vitro with EC50 of 8.92 μg/mL. These results demonstrated cultivated S. naozhouense has a potential for its use in functional foods and antiviral new drugs.

  2. The human cathelicidin LL-37 has antiviral activity against respiratory syncytial virus.

    Directory of Open Access Journals (Sweden)

    Silke M Currie

    Full Text Available Respiratory syncytial virus is a leading cause of lower respiratory tract illness among infants, the elderly and immunocompromised individuals. Currently, there is no effective vaccine or disease modifying treatment available and novel interventions are urgently required. Cathelicidins are cationic host defence peptides expressed in the inflamed lung, with key roles in innate host defence against infection. We demonstrate that the human cathelicidin LL-37 has effective antiviral activity against RSV in vitro, retained by a truncated central peptide fragment. LL-37 prevented virus-induced cell death in epithelial cultures, significantly inhibited the production of new infectious particles and diminished the spread of infection, with antiviral effects directed both against the viral particles and the epithelial cells. LL-37 may represent an important targetable component of innate host defence against RSV infection. Prophylactic modulation of LL-37 expression and/or use of synthetic analogues post-infection may represent future novel strategies against RSV infection.

  3. Substrate-Competitive Activity-Based Profiling of Ester Prodrug Activating Enzymes.

    Science.gov (United States)

    Xu, Hao; Majmudar, Jaimeen D; Davda, Dahvid; Ghanakota, Phani; Kim, Ki H; Carlson, Heather A; Showalter, Hollis D; Martin, Brent R; Amidon, Gordon L

    2015-09-08

    Understanding the mechanistic basis of prodrug delivery and activation is critical for establishing species-specific prodrug sensitivities necessary for evaluating preclinical animal models and potential drug-drug interactions. Despite significant adoption of prodrug methodologies for enhanced pharmacokinetics, functional annotation of prodrug activating enzymes is laborious and often unaddressed. Activity-based protein profiling (ABPP) describes an emerging chemoproteomic approach to assay active site occupancy within a mechanistically similar enzyme class in native proteomes. The serine hydrolase enzyme family is broadly reactive with reporter-linked fluorophosphonates, which have shown to provide a mechanism-based covalent labeling strategy to assay the activation state and active site occupancy of cellular serine amidases, esterases, and thioesterases. Here we describe a modified ABPP approach using direct substrate competition to identify activating enzymes for an ethyl ester prodrug, the influenza neuraminidase inhibitor oseltamivir. Substrate-competitive ABPP analysis identified carboxylesterase 1 (CES1) as an oseltamivir-activating enzyme in intestinal cell homogenates. Saturating concentrations of oseltamivir lead to a four-fold reduction in the observed rate constant for CES1 inactivation by fluorophosphonates. WWL50, a reported carbamate inhibitor of mouse CES1, blocked oseltamivir hydrolysis activity in human cell homogenates, confirming CES1 is the primary prodrug activating enzyme for oseltamivir in human liver and intestinal cell lines. The related carbamate inhibitor WWL79 inhibited mouse but not human CES1, providing a series of probes for analyzing prodrug activation mechanisms in different preclinical models. Overall, we present a substrate-competitive activity-based profiling approach for broadly surveying candidate prodrug hydrolyzing enzymes and outline the kinetic parameters for activating enzyme discovery, ester prodrug design, and

  4. Antiviral activity of tenofovir against Cauliflower mosaic virus and its metabolism in Brassica pekinensis plants.

    Science.gov (United States)

    Spak, Josef; Votruba, Ivan; Pavingerová, Daniela; Holý, Antonín; Spaková, Vlastimila; Petrzik, Karel

    2011-11-01

    The antiviral effect of the acyclic nucleoside phosphonate tenofovir (R)-PMPA on double-stranded DNA Cauliflower mosaic virus (CaMV) in Brassica pekinensis plants grown in vitro on liquid medium was evaluated. Double antibody sandwich ELISA and PCR were used for relative quantification of viral protein and detecting nucleic acid in plants. (R)-PMPA at concentrations of 25 and 50 mg/l significantly reduced CaMV titers in plants within 6-9 weeks to levels detectable neither by ELISA nor by PCR. Virus-free plants were obtained after 3-month cultivation of meristem tips on semisolid medium containing 50 mg/l (R)-PMPA and their regeneration to whole plants in the greenhouse. Studying the metabolism of (R)-PMPA in B. pekinensis revealed that mono- and diphosphate, structural analogs of NDP and/or NTP, are the only metabolites formed. The data indicate very low substrate activity of the enzymes toward (R)-PMPA as substrate. The extent of phosphorylation in the plant's leaves represents only 4.5% of applied labeled (R)-PMPA. In roots, we detected no radioactive peaks of phosphorylated metabolites of (R)-PMPAp or (R)-PMPApp. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Thermodynamic activity-based intrinsic enzyme kinetic sheds light on enzyme-solvent interactions.

    Science.gov (United States)

    Grosch, Jan-Hendrik; Wagner, David; Nistelkas, Vasilios; Spieß, Antje C

    2017-01-01

    The reaction medium has major impact on biocatalytic reaction systems and on their economic significance. To allow for tailored medium engineering, thermodynamic phenomena, intrinsic enzyme kinetics, and enzyme-solvent interactions have to be discriminated. To this end, enzyme reaction kinetic modeling was coupled with thermodynamic calculations based on investigations of the alcohol dehydrogenase from Lactobacillus brevis (LbADH) in monophasic water/methyl tert-butyl ether (MTBE) mixtures as a model solvent. Substrate concentrations and substrate thermodynamic activities were varied separately to identify the individual thermodynamic and kinetic effects on the enzyme activity. Microkinetic parameters based on concentration and thermodynamic activity were derived to successfully identify a positive effect of MTBE on the availability of the substrate to the enzyme, but a negative effect on the enzyme performance. In conclusion, thermodynamic activity-based kinetic modeling might be a suitable tool to initially curtail the type of enzyme-solvent interactions and thus, a powerful first step to potentially understand the phenomena that occur in nonconventional media in more detail. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:96-103, 2017. © 2016 American Institute of Chemical Engineers.

  6. Design, Synthesis and Antiviral Activity of 5-Hydroxymethyl-3-phosphonyl-4,5-dihydrofuran Analogs of Nucleotides

    International Nuclear Information System (INIS)

    Lee, Hee Yoon; Lee, Ki Ho; Hah, Jung Hwan; Moon, Deuk Kyu; Lee, Chong Kyo

    2010-01-01

    We have designed and synthesized functionalized dihydrofurylphosphonates that are constrained analogs of 1-alkenyl-phosphonate derivatives of purine/pyrimidine nucleotides as they bear phosphonyl groups at the 3-position and bases at the methyl group of the 5-position of the furan ring. This newly designed dihydrofurylphosphonate analogs of nucleotide showed antiviral activity. Through the current synthetic strategy, structural diversification can be easily attainable for structure activity relationship study and for the better antiviral compounds. Phosphonate esters play an important role in studying the biological system as a hydrolytically stable replacement of phosphate groups and as prodrugs of phosphonates. In continuation of our study on the chemistry of 1-alkenylphosphonates, we were interested in designing and developing versatile synthetic routes to conformationally constrained structures of al-kenylphosphonate nucleotide analogs

  7. Antibacterial, antifungal, and antiviral activities of some flavonoids.

    Science.gov (United States)

    Orhan, Didem Deliorman; Ozçelik, Berrin; Ozgen, Selda; Ergun, Fatma

    2010-08-20

    Antibacterial and antifungal activities of six plant-derived flavonoids representing two different structural groups were evaluated against standard strains of Escherichia coli, Pseudomonas aeruginosa, Proteus mirabilis, Klebsiella pneumoniae, Acinetobacter baumannii, Staphylococcus aureus, Enterococcus faecalis, Bacillus subtilis and their drug-resistant isolates, as well as fungi (Candida albicans, C. krusei) using the microdilution broth method. Herpes simplex virus Type-1 and Parainfluenza-3 virus were employed for antiviral assessment of the flavonoids using Madin-Darby bovine kidney and Vero cell lines. Ampicillin, gentamycin, ofloxacin, levofloxacin, fluconazole, ketoconazole, acyclovir, and oseltamivir were used as the control agents. All tested compounds (32-128 microg/ml) showed strong antimicrobial and antifungal activities against isolated strains of P. aeruginosa, A. baumanni, S. aureus, and C. krusei. Rutin, 5,7-dimethoxyflavanone-4'-O-beta-D-glucopyranoside and 5,7,3'-trihydroxy-flavanone-4'-O-beta-D-glucopyranoside (0.2-0.05 microg/ml) were active against PI-3, while 5,7-dimethoxyflavanone-4'-O-[2''-O-(5'''-O-trans-cinnamoyl)-beta-D-apiofuranosyl]-beta-D-glucopyranoside (0.16-0.2 microg/ml) inhibited potently HSV-1. Copyright 2009 Elsevier GmbH. All rights reserved.

  8. Visualization of enzyme activities inside earthworm pores

    Science.gov (United States)

    Hoang, Duyen; Razavi, Bahar S.

    2015-04-01

    In extremely dynamic microhabitats as bio-pores made by earthworm, the in situ enzyme activities are assumed as a footprint of complex biotic interactions. Our study focused on the effect of earthworm on the enzyme activities inside bio-pores and visualizing the differences between bio-pores and earthworm-free soil by zymography technique (Spohn and Kuzyakov, 2013). For the first time, we aimed at quantitative imaging of enzyme activities in bio-pores. Lumbricus terrestris L. was placed into transparent box (15×20×15cm). After two weeks when bio-pore systems were formed by earthworms, we visualized in situ enzyme activities of five hydrolytic enzymes (β-glucosidase, cellobiohydrolase, chitinase, xylanase, leucine-aminopeptidase, and phosphatase. Zymography showed higher activity of β-glucosidase, chitinase, xylanase and phosphatase in biopores comparing to bulk soil. However, the differences in activity of cellobiohydrolase and leucine aminopeptidase between bio-pore and bulk soil were less pronounced. This demonstrated an applicability of zymography approach to monitor and to distinguish the in situ activity of hydrolytic enzymes in soil biopores.

  9. County-Scale Spatial Distribution of Soil Enzyme Activities and Enzyme Activity Indices in Agricultural Land: Implications for Soil Quality Assessment

    Directory of Open Access Journals (Sweden)

    Xiangping Tan

    2014-01-01

    Full Text Available Here the spatial distribution of soil enzymatic properties in agricultural land was evaluated on a county-wide (567 km2 scale in Changwu, Shaanxi Province, China. The spatial variations in activities of five hydrolytic enzymes were examined using geostatistical methods. The relationships between soil enzyme activities and other soil properties were evaluated using both an integrated total enzyme activity index (TEI and the geometric mean of enzyme activities (GME. At the county scale, soil invertase, phosphatase, and catalase activities were moderately spatially correlated, whereas urease and dehydrogenase activities were weakly spatially correlated. Correlation analysis showed that both TEI and GME were better correlated with selected soil physicochemical properties than single enzyme activities. Multivariate regression analysis showed that soil OM content had the strongest positive effect while soil pH had a negative effect on the two enzyme activity indices. In addition, total phosphorous content had a positive effect on TEI and GME in orchard soils, whereas alkali-hydrolyzable nitrogen and available potassium contents, respectively, had negative and positive effects on these two enzyme indices in cropland soils. The results indicate that land use changes strongly affect soil enzyme activities in agricultural land, where TEI provides a sensitive biological indicator for soil quality.

  10. Antiviral Activity of Favipiravir (T-705) against a Broad Range of Paramyxoviruses In Vitro and against Human Metapneumovirus in Hamsters.

    Science.gov (United States)

    Jochmans, D; van Nieuwkoop, S; Smits, S L; Neyts, J; Fouchier, R A M; van den Hoogen, B G

    2016-08-01

    The clinical impact of infections with respiratory viruses belonging to the family Paramyxoviridae argues for the development of antiviral therapies with broad-spectrum activity. Favipiravir (T-705) has demonstrated potent antiviral activity against multiple RNA virus families and is presently in clinical evaluation for the treatment of influenza. Here we demonstrate in vitro activity of T-705 against the paramyxoviruses human metapneumovirus (HMPV), respiratory syncytial virus, human parainfluenza virus, measles virus, Newcastle disease virus, and avian metapneumovirus. In addition, we demonstrate activity against HMPV in hamsters. T-705 treatment inhibited replication of all paramyxoviruses tested in vitro, with 90% effective concentration (EC90) values of 8 to 40 μM. Treatment of HMPV-challenged hamsters with T-705 at 200 mg/kg of body weight/day resulted in 100% protection from infection of the lungs. In all treated and challenged animals, viral RNA remained detectable in the respiratory tract. The observation that T-705 treatment had a significant effect on infectious viral titers, with a limited effect on viral genome titers, is in agreement with its proposed mode of action of viral mutagenesis. However, next-generation sequencing of viral genomes isolated from treated and challenged hamsters did not reveal (hyper)mutation. Polymerase activity assays revealed a specific effect of T-705 on the activity of the HMPV polymerase. With the reported antiviral activity of T-705 against a broad range of RNA virus families, this small molecule is a promising broad-range antiviral drug candidate for limiting the viral burden of paramyxoviruses and for evaluation for treatment of infections with (re)emerging viruses, such as the henipaviruses. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  11. Assessment of Inhibition of Ebola Virus Progeny Production by Antiviral Compounds.

    Science.gov (United States)

    Falzarano, Darryl

    2017-01-01

    Assessment of small molecule compounds against filoviruses, such as Ebola virus, has identified numerous compounds that appear to have antiviral activity and should presumably be further investigated in animal efficacy trials. However, despite the many compounds that are purported to have good antiviral activity in in vitro studies, there are few instances where any efficacy has been reported in nonhuman primate models. Many of the high-throughput screening assays use reporter systems that only recapitulate a portion of the virus life cycle, while other assays only assess antiviral activity at relatively early time points. Moreover, many assays do not assess virus progeny production. A more in-depth evaluation of small numbers of test compounds is useful to economize resources and to generate higher quality antiviral hits. Assessing virus progeny production as late as 5 days post-infection allows for the elimination of compounds that have initial antiviral effects that are not sustained or where the virus rapidly develops resistance. While this eliminates many potential lead compounds that may be worthy of further structure-activity relationship (SAR) development, it also quickly excludes compounds that in their current form are unlikely to be effective in animal models. In addition, the inclusion of multiple assays that assess both cell viability and cell cytotoxicity, via different mechanisms, provides a more thorough assessment to exclude compounds that are not direct-acting antivirals.

  12. Antiviral activity of Lactobacillus reuteri Protectis against Coxsackievirus A and Enterovirus 71 infection in human skeletal muscle and colon cell lines.

    Science.gov (United States)

    Ang, Lei Yin Emily; Too, Horng Khit Issac; Tan, Eng Lee; Chow, Tak-Kwong Vincent; Shek, Lynette Pei-Chi; Tham, Elizabeth Huiwen; Alonso, Sylvie

    2016-06-24

    Recurrence of hand, foot and mouth disease (HFMD) pandemics continues to threaten public health. Despite increasing awareness and efforts, effective vaccine and drug treatment have yet to be available. Probiotics have gained recognition in the field of healthcare worldwide, and have been extensively prescribed to babies and young children to relieve gastrointestinal (GI) disturbances and diseases, associated or not with microbial infections. Since the faecal-oral axis represents the major route of HFMD transmission, transient persistence of probiotic bacteria in the GI tract may confer some protection against HFMD and limit transmission among children. In this work, the antiviral activity of two commercially available probiotics, namely Lactobacillus reuteri Protectis (L. reuteri Protectis) and Lactobacillus casei Shirota (L. casei Shirota), was assayed against Coxsackieviruses and Enterovirus 71 (EV71), the main agents responsible for HFMD. In vitro infection set-ups using human skeletal muscle and colon cell lines were designed to assess the antiviral effect of the probiotic bacteria during entry and post-entry steps of the infection cycle. Our findings indicate that L. reuteri Protectis displays a significant dose-dependent antiviral activity against Coxsackievirus type A (CA) strain 6 (CA6), CA16 and EV71, but not against Coxsackievirus type B strain 2. Our data support that the antiviral effect is likely achieved through direct physical interaction between bacteria and virus particles, which impairs virus entry into its mammalian host cell. In contrast, no significant antiviral effect was observed with L. casei Shirota. Should the antiviral activity of L. reuteri Protectis observed in vitro be translated in vivo, such probiotics-based therapeutic approach may have the potential to address the urgent need for a safe and effective means to protect against HFMD and limit its transmission among children.

  13. Lysosomal enzyme activation in irradiated mammary tumors

    International Nuclear Information System (INIS)

    Clarke, C.; Wills, E.D.

    1976-01-01

    Lysosomal enzyme activity of C3H mouse mammary tumors was measured quantitatively by a histochemical method. Following whole-body doses of 3600 rad or less no changes were observed in the lysosomal enzyme activity for 12 hr after the irradiation, but very large increases in acid phosphatase and β-naphthylamidase activity were, however, observed 24 hr after irradiation. Significant increases in enzyme activity were detected 72 hr after a dose of 300 rad and the increases of enzyme activity were dose dependent over the range 300 to 900 rad. Testosterone (80 mg/kg) injected into mice 2 hr before irradiation (850 rad) caused a significant increase of lysosomal enzyme activity over and above that of the same dose of irradiation alone. If the tumor-bearing mice were given 95 percent oxygen/5 percent carbon dioxide to breathe for 8 min before irradiation the effect of 850 rad on lysosomal acid phosphatase was increased to 160 percent/that of the irradiation given alone. Activitation of lysosomal enzymes in mammary tumors is an important primary or secondary consequence of radiation

  14. Cytotoxicity and antiviral activity of electrochemical - synthesized silver nanoparticles against poliovirus.

    Science.gov (United States)

    Huy, Tran Quang; Hien Thanh, Nguyen Thi; Thuy, Nguyen Thanh; Chung, Pham Van; Hung, Pham Ngoc; Le, Anh-Tuan; Hong Hanh, Nguyen Thi

    2017-03-01

    Silver nanoparticles (AgNPs) have been proven to have noticeable cytotoxicity in vitro and antiviral activity against some types of enveloped viruses. This paper presents the cytotoxicity and antiviral activity of pure AgNPs synthesized by the electrochemical method, towards cell culture and poliovirus (a non-enveloped virus). Prepared AgNPs were characterized by ultraviolet-visible spectroscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy. Before incubation with poliovirus, different concentrations of AgNPs were added to human rhabdomyosarcoma (RD) cell monolayers seeded in 96 well plates for testing their cytotoxicity. The in vitro cytotoxicity and anti-poliovirus activity of AgNPs were daily assessed for cytopathic effect (CPE) through inverted light microscopy. CPE in the tested wells was determined in comparison with those in wells of negative and positive control. Structure analysis showed that AgNPs were formed with a quasi-spherical shape with mean size about 7.1nm and high purity. No CPE of RD cells was seen in wells at the time point of 48h post-incubation with AgNPs at concentration up to 100ppm. The anti-poliovirus activity of AgNPs was determined at 3.13ppm corresponding to the viral concentration of 1TCID 50 (Tissue Culture Infective Dose) after 30min, and 10TCID 50 after 60min, the cell viability was found up to 98% at 48h post-infection, with no CPE found. Whereas, a strong CPE of RD cells was found at 48h post-infection with the mixture of AgNPs and poliovirus at concentration of 100TCID 50 , and in wells of positive controls. With mentioned advantages, electrochemical-synthesized AgNPs are promising candidate for advanced biomedical and disinfection applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Spliceosome SNRNP200 Promotes Viral RNA Sensing and IRF3 Activation of Antiviral Response.

    Directory of Open Access Journals (Sweden)

    Nicolas Tremblay

    2016-07-01

    Full Text Available Spliceosomal SNRNP200 is a Ski2-like RNA helicase that is associated with retinitis pigmentosa 33 (RP33. Here we found that SNRNP200 promotes viral RNA sensing and IRF3 activation through the ability of its amino-terminal Sec63 domain (Sec63-1 to bind RNA and to interact with TBK1. We show that SNRNP200 relocalizes into TBK1-containing cytoplasmic structures upon infection, in contrast to the RP33-associated S1087L mutant, which is also unable to rescue antiviral response of SNRNP200 knockdown cells. This functional rescue correlates with the Sec63-1-mediated binding of viral RNA. The hindered IFN-β production of knockdown cells was further confirmed in peripheral blood cells of RP33 patients bearing missense mutation in SNRNP200 upon infection with Sendai virus (SeV. This work identifies a novel immunoregulatory role of the spliceosomal SNRNP200 helicase as an RNA sensor and TBK1 adaptor for the activation of IRF3-mediated antiviral innate response.

  16. Epigenetics of dominance for enzyme activity

    Indian Academy of Sciences (India)

    Unknown

    dimer over a wide range of H+ concentrations accounts for the epigenetics of dominance for enzyme activity. [Trehan K S ... The present study has been carried on acid phosphatase .... enzyme activity over mid parent value (table 3, col. 13),.

  17. SUMO Ligase Protein Inhibitor of Activated STAT1 (PIAS1) Is a Constituent Promyelocytic Leukemia Nuclear Body Protein That Contributes to the Intrinsic Antiviral Immune Response to Herpes Simplex Virus 1.

    Science.gov (United States)

    Brown, James R; Conn, Kristen L; Wasson, Peter; Charman, Matthew; Tong, Lily; Grant, Kyle; McFarlane, Steven; Boutell, Chris

    2016-07-01

    Aspects of intrinsic antiviral immunity are mediated by promyelocytic leukemia nuclear body (PML-NB) constituent proteins. During herpesvirus infection, these antiviral proteins are independently recruited to nuclear domains that contain infecting viral genomes to cooperatively promote viral genome silencing. Central to the execution of this particular antiviral response is the small ubiquitin-like modifier (SUMO) signaling pathway. However, the participating SUMOylation enzymes are not fully characterized. We identify the SUMO ligase protein inhibitor of activated STAT1 (PIAS1) as a constituent PML-NB protein. We show that PIAS1 localizes at PML-NBs in a SUMO interaction motif (SIM)-dependent manner that requires SUMOylated or SUMOylation-competent PML. Following infection with herpes simplex virus 1 (HSV-1), PIAS1 is recruited to nuclear sites associated with viral genome entry in a SIM-dependent manner, consistent with the SIM-dependent recruitment mechanisms of other well-characterized PML-NB proteins. In contrast to that of Daxx and Sp100, however, the recruitment of PIAS1 is enhanced by PML. PIAS1 promotes the stable accumulation of SUMO1 at nuclear sites associated with HSV-1 genome entry, whereas the accumulation of other evaluated PML-NB proteins occurs independently of PIAS1. We show that PIAS1 cooperatively contributes to HSV-1 restriction through mechanisms that are additive to those of PML and cooperative with those of PIAS4. The antiviral mechanisms of PIAS1 are counteracted by ICP0, the HSV-1 SUMO-targeted ubiquitin ligase, which disrupts the recruitment of PIAS1 to nuclear domains that contain infecting HSV-1 genomes through mechanisms that do not directly result in PIAS1 degradation. Adaptive, innate, and intrinsic immunity cooperatively and efficiently restrict the propagation of viral pathogens. Intrinsic immunity mediated by constitutively expressed cellular proteins represents the first line of intracellular defense against infection. PML

  18. Epimedium koreanum Nakai Displays Broad Spectrum of Antiviral Activity in Vitro and in Vivo by Inducing Cellular Antiviral State

    Directory of Open Access Journals (Sweden)

    Won-Kyung Cho

    2015-01-01

    Full Text Available Epimedium koreanum Nakai has been extensively used in traditional Korean and Chinese medicine to treat a variety of diseases. Despite the plant’s known immune modulatory potential and chemical make-up, scientific information on its antiviral properties and mode of action have not been completely investigated. In this study, the broad antiviral spectrum and mode of action of an aqueous extract from Epimedium koreanum Nakai was evaluated in vitro, and moreover, the protective effect against divergent influenza A subtypes was determined in BALB/c mice. An effective dose of Epimedium koreanum Nakai markedly reduced the replication of Influenza A Virus (PR8, Vesicular Stomatitis Virus (VSV, Herpes Simplex Virus (HSV and Newcastle Disease Virus (NDV in RAW264.7 and HEK293T cells. Mechanically, we found that an aqueous extract from Epimedium koreanum Nakai induced the secretion of type I IFN and pro-inflammatory cytokines and the subsequent stimulation of the antiviral state in cells. Among various components present in the extract, quercetin was confirmed to have striking antiviral properties. The oral administration of Epimedium koreanum Nakai exhibited preventive effects on BALB/c mice against lethal doses of highly pathogenic influenza A subtypes (H1N1, H5N2, H7N3 and H9N2. Therefore, an extract of Epimedium koreanum Nakai and its components play roles as immunomodulators in the innate immune response, and may be potential candidates for prophylactic or therapeutic treatments against diverse viruses in animal and humans.

  19. Atividade antiviral do extrato de própolis contra o calicivírus felino, adenovírus canino 2 e vírus da diarréia viral bovina Antiviral activity of propolis extracts against feline calicivirus, canine adenovirus 2, and bovine viral diarrhea virus

    Directory of Open Access Journals (Sweden)

    Ana Paula Cueto

    2011-10-01

    Full Text Available Dentre as propriedades biológicas da própolis, a atividade antimicrobiana tem merecido destacada atenção. Neste artigo, descreve-se a atividade antiviral de dois extratos etanólicos de própolis (EP1 e EP2 frente aos vírus: calicivírus felino (FCV, adenovírus canino tipo 2 (CAV-2 e vírus da diarréia viral bovina (BVDV. Um dos extratos (EP1 foi obtido por extração etanólica de própolis obtida da região central do Estado do Rio Grande do Sul e o segundo (EP2, obtido comercialmente de uma empresa de Minas Gerais. A análise dos extratos de própolis através da cromatografia líquida de alta eficiência (CLAE identificou a presença de flavonóides como: rutina, quercetina e ácido gálico. A atividade antiviral bem como a citotoxicidade dos extratos aos cultivos celulares foram avaliadas através do MTT [3- (4,5 dimetiltiazol-2yl-2-5-difenil-2H tetrazolato de bromo]. Ambos os extratos evidenciaram atividade antiviral frente ao BVDV e CAV-2 quando acrescidos ao cultivo celular anteriormente à inoculação viral. Os extratos foram menos efetivos contra o FCV em comparação aos resultados obtidos com os outros vírus, e a atividade antiviral neste caso foi observada apenas quando a própolis estava presente após a inoculação viral. O extrato obtido no laboratório (EP1 apresentou valores mais altos de índice de seletividade (IS=CC50/ CE50, quando comparado à outra amostra (EP2. Em resumo, a própolis apresentou atividade antiviral frente a três diferentes vírus, o que a torna alvo para o desenvolvimento de novos compostos naturais com atividade antiviral.Propolis is a resinous substance produced by bees for which several biological activities have been attributed. In this article, the antiviral activity of two propolis extracts was tested against bovine viral diarrhea virus (BVDV, canine adenovirus type 2 (CAV-2, and feline calicivirus (FCV. One of the extracts was obtained by ethanolic extraction of propolis from the Santa

  20. Spatial distribution of enzyme activities in the rhizosphere

    Science.gov (United States)

    Razavi, Bahar S.; Zarebanadkouki, Mohsen; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2015-04-01

    The rhizosphere, the tiny zone of soil surrounding roots, certainly represents one of the most dynamic habitat and interfaces on Earth. Activities of enzymes produced by both plant roots and microbes are the primary biological drivers of organic matter decomposition and nutrient cycling. That is why there is an urgent need in spatially explicit methods for the determination of the rhizosphere extension and enzyme distribution. Recently, zymography as a new technique based on diffusion of enzymes through the 1 mm gel plate for analysis has been introduced (Spohn & Kuzyakov, 2013). We developed the zymography technique to visualize the enzyme activities with a higher spatial resolution. For the first time, we aimed at quantitative imaging of enzyme activities as a function of distance from the root tip and the root surface in the soil. We visualized the two dimensional distribution of the activity of three enzymes: β-glucosidase, phosphatase and leucine amino peptidase in the rhizosphere of maize using fluorogenically labelled substrates. Spatial-resolution of fluorescent images was improved by direct application of a substrate saturated membrane to the soil-root system. The newly-developed direct zymography visualized heterogeneity of enzyme activities along the roots. The activity of all enzymes was the highest at the apical parts of individual roots. Across the roots, the enzyme activities were higher at immediate vicinity of the roots (1.5 mm) and gradually decreased towards the bulk soil. Spatial patterns of enzyme activities as a function of distance from the root surface were enzyme specific, with highest extension for phosphatase. We conclude that improved zymography is promising in situ technique to analyze, visualize and quantify spatial distribution of enzyme activities in the rhizosphere hotspots. References Spohn, M., Kuzyakov, Y., 2013. Phosphorus mineralization can be driven by microbial need for carbon. Soil Biology & Biochemistry 61: 69-75

  1. Antiviral potential of a diterpenoid compound sugiol from Metasequoia glyptostroboides.

    Science.gov (United States)

    Bajpai, Vivek K; Kim, Na-Hyung; Kim, Kangmin; Kang, Sun Chul

    2016-05-01

    This research reports first time antiviral activity of sugiol, a diterpenoid isolated from Metasequoia glyptostroboides in terms of its ability to inhibit in vitro growth of H1N1 influenza virus. Antiviral potential of sugiol was evaluated through hcytopathogenic reduction assay using Madin-Darby canine kidney (MDCK) cell line. Sugiol (500 μg/ml) was found to exhibit considerable anti-cytopathic effect on MDCK cell line confirming its antiviral efficacy against H1N1 influenza virus. These findings strongly reinforce the suggestion that sugiol could be a candidate of choice in combinational regimen with potential antiviral efficacy.

  2. Antiviral activity of gliotoxin, gentian violet and brilliant green against Nipah and Hendra virus in vitro

    Directory of Open Access Journals (Sweden)

    Meyer Adam G

    2009-11-01

    Full Text Available Abstract Background Using a recently described monolayer assay amenable to high throughput screening format for the identification of potential Nipah virus and Hendra virus antivirals, we have partially screened a low molecular weight compound library (>8,000 compounds directly against live virus infection and identified twenty eight promising lead molecules. Initial single blind screens were conducted with 10 μM compound in triplicate with a minimum efficacy of 90% required for lead selection. Lead compounds were then further characterised to determine the median efficacy (IC50, cytotoxicity (CC50 and the in vitro therapeutic index in live virus and pseudotype assay formats. Results While a number of leads were identified, the current work describes three commercially available compounds: brilliant green, gentian violet and gliotoxin, identified as having potent antiviral activity against Nipah and Hendra virus. Similar efficacy was observed against pseudotyped Nipah and Hendra virus, vesicular stomatitis virus and human parainfluenza virus type 3 while only gliotoxin inhibited an influenza A virus suggesting a non-specific, broad spectrum activity for this compound. Conclusion All three of these compounds have been used previously for various aspects of anti-bacterial and anti-fungal therapy and the current results suggest that while unsuitable for internal administration, they may be amenable to topical antiviral applications, or as disinfectants and provide excellent positive controls for future studies.

  3. Enzyme activity assay of glycoprotein enzymes based on a boronate affinity molecularly imprinted 96-well microplate.

    Science.gov (United States)

    Bi, Xiaodong; Liu, Zhen

    2014-12-16

    Enzyme activity assay is an important method in clinical diagnostics. However, conventional enzyme activity assay suffers from apparent interference from the sample matrix. Herein, we present a new format of enzyme activity assay that can effectively eliminate the effects of the sample matrix. The key is a 96-well microplate modified with molecularly imprinted polymer (MIP) prepared according to a newly proposed method called boronate affinity-based oriented surface imprinting. Alkaline phosphatase (ALP), a glycoprotein enzyme that has been routinely used as an indicator for several diseases in clinical tests, was taken as a representative target enzyme. The prepared MIP exhibited strong affinity toward the template enzyme (with a dissociation constant of 10(-10) M) as well as superb tolerance for interference. Thus, the enzyme molecules in a complicated sample matrix could be specifically captured and cleaned up for enzyme activity assay, which eliminated the interference from the sample matrix. On the other hand, because the boronate affinity MIP could well retain the enzymatic activity of glycoprotein enzymes, the enzyme captured by the MIP was directly used for activity assay. Thus, additional assay time and possible enzyme or activity loss due to an enzyme release step required by other methods were avoided. Assay of ALP in human serum was successfully demonstrated, suggesting a promising prospect of the proposed method in real-world applications.

  4. Which Plant Proteins Are Involved in Antiviral Defense? Review on In Vivo and In Vitro Activities of Selected Plant Proteins against Viruses

    Directory of Open Access Journals (Sweden)

    Oskar Musidlak

    2017-11-01

    Full Text Available Plants have evolved a variety of defense mechanisms to tackle virus attack. Endogenous plant proteins can function as virus suppressors. Different types of proteins mediate defense responses against plant viruses. Pathogenesis-related (PR proteins are activated upon pathogen infections or in different stress situations and their production is one of many components in plant defense. Ribosome-inactivating proteins (RIPs suppress translation by enzymatically damaging ribosomes and they have been found to have antiviral activity. RNA-binding proteins (RBPs bind to target RNAs via specialized RNA-binding domain and can directly or indirectly function in plant defense system against RNA viruses. Proteins involved in silencing machinery, namely Dicer-like (DCL proteins, Argonaute (AGO proteins, and RNA-dependent RNA polymerases (RDRs confer innate antiviral defense in plants as they are able to degrade foreign RNA of viral origin. This review aims to provide a comprehensive and up-to-date picture of plant proteins participating in antiviral defense. As a result we discuss proteins conferring plant antiviral resistance and their potential future applications in different fields of life including agriculture and medicine.

  5. The ultrasound technology for modifying enzyme activity

    Directory of Open Access Journals (Sweden)

    Meliza Lindsay

    2016-06-01

    Full Text Available Enzymes are protein complexes compounds widely studied and used due to their ability to catalyze reactions. The food processing mainly aims the inactivation of enzymes due to various undesirable effects. However, there are many processes that can be optimized by its catalytic activity. In this context, different technologies have been applied both to inactivate or to improve the enzymes efficiency. The Ultrasound technology emerges as an alternative mainly applied to achieve the enzyme inactivation. On the contrary, very few investigations show the ability of this technology under certain conditions to achieve the opposite effect (i.e. increase the catalytic activity of enzymes. The objective of this study was to correlate the ultrasonic energy delivered to the sample (J/mL with the residual enzymatic activity and explain the possible mechanisms which results in the enzymatic activation/inactivation complex behavior. The activity of POD in coconut water was evaluated as a model. The enzymatic activity initially increased, followed by reduction with a trend to enzyme inactivation. This complex behavior is directly related to the applied ultrasonic energy and their direct mechanical effects on the product, as well as the effect in the enzymatic infinite intermediate states and its structural conformation changes. The obtained results are useful for both academic and industrial perspectives.

  6. Lignin-degrading enzyme activities.

    Science.gov (United States)

    Chen, Yi-ru; Sarkanen, Simo; Wang, Yun-Yan

    2012-01-01

    Over the past three decades, the activities of four kinds of enzyme have been purported to furnish the mechanistic foundations for macromolecular lignin depolymerization in decaying plant cell walls. The pertinent fungal enzymes comprise lignin peroxidase (with a relatively high redox potential), manganese peroxidase, an alkyl aryl etherase, and laccase. The peroxidases and laccase, but not the etherase, are expressed extracellularly by white-rot fungi. A number of these microorganisms exhibit a marked preference toward lignin in their degradation of lignocellulose. Interestingly, some white-rot fungi secrete both kinds of peroxidase but no laccase, while others that are equally effective express extracellular laccase activity but no peroxidases. Actually, none of these enzymes has been reported to possess significant depolymerase activity toward macromolecular lignin substrates that are derived with little chemical modification from the native biopolymer. Here, the assays commonly employed for monitoring the traditional fungal peroxidases, alkyl aryl etherase, and laccase are described in their respective contexts. A soluble native polymeric substrate that can be isolated directly from a conventional milled-wood lignin preparation is characterized in relation to its utility in next-generation lignin-depolymerase assays.

  7. The ultrasound technology for modifying enzyme activity

    Directory of Open Access Journals (Sweden)

    Meliza Lindsay Rojas

    2016-01-01

    Full Text Available Enzymes are protein complexes compounds widely studied and used due to their ability to catalyze reactions. The food processing mainly a ims the inactivation of enzymes due to various undesirable effects. However, there are many processes that can be optimized by its catalytic activity. In this context, different technologies have been applied both to inactivate or to improve the enzymes ef ficiency. The Ultrasound technology emerges as an alternative mainly applied to achieve the enzyme inactivation. On the contrary, very few investigations show the ability of this technology under certain conditions to achieve the opposite effect (i.e. increase the catalytic activity of enzymes. The objective of this study was to correlate the ultrasonic energy delivered to the sample (J/mL with the residual enzymatic activity and explain the possible mechanisms which results in the enzymatic activation/in activation complex behavior. The activity of POD in coconut water was evaluated as a model. The enzymatic activity initially increased, followed by reduction with a trend to enzyme inactivation. This complex behavior is directly related to the applied ultr asonic energy and their direct mechanical effects on the product, as well as the effect in the enzymatic infinite intermediate states and its structural conformation changes. The obtained results are useful for both academic and industrial perspectives.

  8. The antiviral activity of arctigenin in traditional Chinese medicine on porcine circovirus type 2.

    Science.gov (United States)

    Chen, Jie; Li, Wentao; Jin, Erguang; He, Qigai; Yan, Weidong; Yang, Hanchun; Gong, Shiyu; Guo, Yi; Fu, Shulin; Chen, Xiabing; Ye, Shengqiang; Qian, Yunguo

    2016-06-01

    Arctigenin (ACT) is a phenylpropanoid dibenzylbutyrolactone lignan extracted from the traditional herb Arctium lappa L. (Compositae) with anti-viral and anti-inflammatory effects. Here, we investigated the antiviral activity of ACT found in traditional Chinese medicine on porcine circovirus type 2 (PCV2) in vitro and in vivo. Results showed that dosing of 15.6-62.5μg/mL ACT could significantly inhibit the PCV2 proliferation in PK-15 cells (P<0.01). Dosing of 62.5μg/mL ACT 0, 4 or 8h after challenge inoculation significantly inhibited the proliferation of 1MOI and 10MOI in PK-15 cells (P<0.01), and the inhibitory effect of ACT dosing 4h or 8h post-inoculation was greater than 0h after dosing (P<0.01). In vivo test with mice challenge against PCV2 infection demonstrated that intraperitoneal injection of 200μg/kg ACT significantly inhibited PCV2 proliferation in the lungs, spleens and inguinal lymph nodes, with an effect similar to ribavirin, demonstrating the effectiveness of ACT as an antiviral agent against PCV2 in vitro and in vivo. This compound, therefore, may have the potential to serve as a drug for protection of pigs against the infection of PCV2. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Dengue antiviral activity of polar extract from Melochia umbellata (Houtt) Stapf var. Visenia

    Science.gov (United States)

    Hariani Soekamto, Nunuk; Liong, S.; Fauziah, S.; Wahid, I.; Firdaus; Taba, P.; Ahmad, F.

    2018-03-01

    A research on the dengue antiviral activity test on the polar bark extract of M. umbelatta (Houtt.) Stapf var. Vicenia have been done to determine the relation to its activity againts brine shrimp Artemia salina. The bark was extracted by maceration with n-hexane, chloroform, and ethylacetate. The activity of the ethyl acetate extract was then tested against A. salina and dengue virus. It was found that the ethyl acetate extract was active to A. salina with the LC50 value of 101.66 μg/mL and also very active to dengue virus with the IC50 value of 1.67μg/mL. It is clear that the toxicity to brine shrimp A. salina has a positive correlation with the dengue anti virus.

  10. ISG15 inhibits Nedd4 ubiquitin E3 activity and enhances the innate antiviral response.

    Science.gov (United States)

    Malakhova, Oxana A; Zhang, Dong-Er

    2008-04-04

    Interferons regulate diverse immune functions through the transcriptional activation of hundreds of genes involved in anti-viral responses. The interferon-inducible ubiquitin-like protein ISG15 is expressed in cells in response to a variety of stress conditions like viral or bacterial infection and is present in its free form or is conjugated to cellular proteins. In addition, protein ubiquitination plays a regulatory role in the immune system. Many viruses modulate the ubiquitin (Ub) pathway to alter cellular signaling and the antiviral response. Ubiquitination of retroviral group-specific antigen precursors and matrix proteins of the Ebola, vesicular stomatitis, and rabies viruses by Nedd4 family HECT domain E3 ligases is an important step in facilitating viral release. We found that Nedd4 is negatively regulated by ISG15. Free ISG15 specifically bound to Nedd4 and blocked its interaction with Ub-E2 molecules, thus preventing further Ub transfer from E2 to E3. Furthermore, overexpression of ISG15 diminished the ability of Nedd4 to ubiquitinate viral matrix proteins and led to a decrease in the release of Ebola VP40 virus-like particles from the cells. These results point to a mechanistically novel function of ISG15 in the enhancement of the innate anti-viral response through specific inhibition of Nedd4 Ub-E3 activity. To our knowledge, this is the first example of a Ub-like protein with the ability to interfere with Ub-E2 and E3 interaction to inhibit protein ubiquitination.

  11. Potencial antiviral da quercetina sobre o parvovírus canino Antiviral potencial of quercetin in canine parvovirus

    Directory of Open Access Journals (Sweden)

    O.V. Carvalho

    2013-04-01

    Full Text Available Avaliou-se o efeito do flavonoide quercetina na replicação do parvovírus canino in vitro por meio do ensaio de determinação da atividade virucida (ensaio 1, ensaio de determinação da atividade sobre a célula (ensaio 2 e ensaio de tempo de adição das drogas em diferentes etapas do ciclo replicativo viral (ensaio 3. A quercetina apresentou significante atividade antiviral, com valores máximos de redução do título viral de 96,3% no ensaio 1, 90% no ensaio 2 e 90% no ensaio 3. Os efeitos mais expressivos ocorreram nas etapas de adsorção e penetração viral. Os resultados deste trabalho sugerem a importância da quercetina para a medicina veterinária.The in vitro effect of the flavonoid quercetin against canine parvovirus was evaluated. The antiviral activity of quercetin was evaluated by determining the virucidal activity (assay 1, determining the activity on the cell (assay 2 and using the time of addition assay to test the inhibition of the viral replication cycle (assay 3. Quercetin showed a significant antiviral activity, with maximum viral titer reduction of 96.3% in assay 1, 90% in assay 2 and 90% in assay 3. The most expressive effects occurred in the stages of viral adsorption and penetration. The results show the importance of quercetin for veterinary medicine.

  12. Enzyme with rhamnogalacturonase activity.

    NARCIS (Netherlands)

    Kofod, L.V.; Andersen, L.N.; Dalboge, H.; Kauppinen, M.S.; Christgau, S.; Heldt-Hansen, H.P.; Christophersen, C.; Nielsen, P.M.; Voragen, A.G.J.; Schols, H.A.

    1998-01-01

    An enzyme exhibiting rhamnogalacturonase activity, capable of cleaving a rhamnogalacturonan backbone in such a manner that galacturonic acids are left as the non-reducing ends, and which exhibits activity on hairy regions from a soy bean material and/or on saponified hairy regions from a sugar beet

  13. Fluorination of Naturally Occurring N6-Benzyladenosine Remarkably Increased Its Antiviral Activity and Selectivity

    Directory of Open Access Journals (Sweden)

    Vladimir E. Oslovsky

    2017-07-01

    Full Text Available Recently, we demonstrated that the natural cytokinin nucleosides N6-isopentenyladenosine (iPR and N6-benzyladenosine (BAPR exert a potent and selective antiviral effect on the replication of human enterovirus 71. In order to further characterize the antiviral profile of this class of compounds, we generated a series of fluorinated derivatives of BAPR and evaluated their activity on the replication of human enterovirus 71 in a cytopathic effect (CPE reduction assay. The monofluorination of the BAPR-phenyl group changed the selectivity index (SI slightly because of the concomitant high cell toxicity. Interestingly, the incorporation of a second fluorine atom resulted in a dramatic improvement of selectivity. Moreover, N6-trifluoromethylbenzyladenosine derivatives (9–11 exhibited also a very interesting profile, with low cytotoxicity observed. In particular, the analogue N6-(3-trifluoromethylbenzyl-adenosine (10 with a four-fold gain in potency as compared to BAPR and the best SI in the class represents a promising candidate for further development.

  14. Antiviral activities of Radix Isatidis polysaccharide against type II herpes simplex virus in vitro

    Directory of Open Access Journals (Sweden)

    Chunmei WANG

    2018-03-01

    Full Text Available Abstract This study investigated the antiviral activities of Radix Isatidis polysaccharide (RIP against type II herpes simplex virus (HSV-2 in vitro. RIP was prepared from the Radix Isatidis root. The toxicity of RIP on Vero cells was detected. The direct killing effect of RIP on HSV-2, inhibitory effect of RIP on HSV-2 replication and inhibitory effect of RIP on HSV-2 adsorption were determined. Results showed that, RIP in concentration range of 25-800 mg/L had no toxic effect on Vero cells. RIP with different concentrations could not directly inactivate the HSV-2. The effective rates on inhibition of HSV-2 replication and adsorption in 800 mg/L RIP group were 71.57% and 48.37%, respectively, which were the highest among different groups. In conclusion, RIP has the antiviral effect against HSV-2 in vitro. This effect mainly occurs in inhibiting the virus duplication and adsorption.

  15. Alpinone exhibited immunomodulatory and antiviral activities in Atlantic salmon.

    Science.gov (United States)

    Valenzuela, Beatriz; Rodríguez, Felipe E; Modak, Brenda; Imarai, Mónica

    2018-03-01

    In this study, we seek to identify flavonoids able to regulate the gene expression of a group of cytokines important for the control of infections in Atlantic salmon (Salmo salar). Particularly, we studied the potential immunomodulatory effects of two flavonoids, Alpinone and Pinocembrine, which were isolated and purified from resinous exudates of Heliotropium huascoense and Heliotropium sinuatum, respectively. The transcript levels of TNF-α and IL-1 (inflammatory cytokines), IFN-γ and IL-12 (T helper 1 type cytokines), IL4/13A (Th2-type cytokine), IL-17 (Th17 type cytokine) TGF-β1 (regulatory cytokine) and IFN-α (antiviral cytokine) were quantified by qRT-PCR in kidneys of flavonoid-treated and control fish. We demonstrated that the administration of a single intramuscular dose of purified Alpinone increased the transcriptional expression of five cytokines, named TNF-α, IL-1, IFN-α, IFN-γ and TGF-β1 in treated fish compared to untreated fish. Conversely, administration of purified Pinocembrine reduced the transcriptional expression of TNF-α, IL-1 and IL-12 in the kidney of treated fish. No other changes were observed. Interestingly, Alpinone also induced in vitro antiviral effects against Infectious Salmon Anaemia virus. Results showed that Alpinone but not Pinocembrine induces the expression of cytokines, which in vertebrates are essential to control viral infections while Pinocembrine reduces pro-inflammatory cytokines. Altogether results suggest that Alpinone is a good candidate to be further tested as immunostimulant and antiviral drug. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Photoperiodism and Enzyme Activity

    Science.gov (United States)

    Queiroz, Orlando; Morel, Claudine

    1974-01-01

    Metabolic readjustments after a change from long days to short days appear, in Kalanchoe blossfeldiana, to be achieved through the operation of two main mechanisms: variation in enzyme capacity, and circadian rhythmicity. After a lag time, capacity in phosphoenolpyruvate carboxylase and capacity in aspartate aminotransferase increase exponentially and appear to be allometrically linked during 50 to 60 short days; then a sudden fall takes place in the activity of the former. Malic enzyme and alanine aminotransferase behave differently. Thus, the operation of the two sections of the pathway (before and after the malate step) give rise to a continuously changing functional compartmentation in the pathway. Circadian rhythmicity, on the other hand, produces time compartmentation through phase shifts and variation in amplitude, independently for each enzyme. These characteristics suggest that the operation of a so-called biological clock would be involved. We propose the hypothesis that feedback regulation would be more accurate and efficient when applied to an already oscillating, clock-controlled enzyme system. PMID:16658749

  17. Effects of de-icing salt on soil enzyme activity

    Energy Technology Data Exchange (ETDEWEB)

    Guentner, M; Wilke, B M

    1983-01-01

    Effects of de-icing salt on dehydrogenase, urease, alkalinephosphatase and arylsulfatase activity of O/sub L/- and A/sub h/-horizons of a moder and a mull soil were investigated using a field experiment. Additions of 2.5 kg m/sup -2/ and 5.0 kg m/sup -2/ of de-icing salt reduced activities of most enzymes within four weeks. Eleven months after salt addition there was nearly no reduction of enzyme activity to be measured on salt treated soils. The percentage of reduced enzyme activity was generally higher in the moder soil. It was concluded that reductions of enzyme activity were due to decreases of microbial activity and not to inactivation of enzymes.

  18. [Interaction between CYP450 enzymes and metabolism of traditional Chinese medicine as well as enzyme activity assay].

    Science.gov (United States)

    Lu, Tu-lin; Su, Lian-lin; Ji, De; Gu, Wei; Mao, Chun-qin

    2015-09-01

    Drugs are exogenous compounds for human bodies, and will be metabolized by many enzymes after administration. CYP450 enzyme, as a major metabolic enzyme, is an important phase I drug metabolizing enzyme. In human bodies, about 75% of drug metabolism is conducted by CYP450 enzymes, and CYP450 enzymes is the key factor for drug interactions between traditional Chinese medicine( TCM) -TCM, TCM-medicine and other drug combination. In order to make clear the interaction between metabolic enzymes and TCM metabolism, we generally chose the enzymatic activity as an evaluation index. That is to say, the enhancement or reduction of CYP450 enzyme activity was used to infer the inducing or inhibitory effect of active ingredients and extracts of traditional Chinese medicine on enzymes. At present, the common method for measuring metabolic enzyme activity is Cocktail probe drugs, and it is the key to select the suitable probe substrates. This is of great significance for study drug's absorption, distribution, metabolism and excretion (ADME) process in organisms. The study focuses on the interaction between TCMs, active ingredients, herbal extracts, cocktail probe substrates as well as CYP450 enzymes, in order to guide future studies.

  19. Compounds from silicones alter enzyme activity in curing barnacle glue and model enzymes.

    Science.gov (United States)

    Rittschof, Daniel; Orihuela, Beatriz; Harder, Tilmann; Stafslien, Shane; Chisholm, Bret; Dickinson, Gary H

    2011-02-17

    Attachment strength of fouling organisms on silicone coatings is low. We hypothesized that low attachment strength on silicones is, in part, due to the interaction of surface available components with natural glues. Components could alter curing of glues through bulk changes or specifically through altered enzyme activity. GC-MS analysis of silicone coatings showed surface-available siloxanes when the coatings were gently rubbed with a cotton swab for 15 seconds or given a 30 second rinse with methanol. Mixtures of compounds were found on 2 commercial and 8 model silicone coatings. The hypothesis that silicone components alter glue curing enzymes was tested with curing barnacle glue and with commercial enzymes. In our model, barnacle glue curing involves trypsin-like serine protease(s), which activate enzymes and structural proteins, and a transglutaminase which cross-links glue proteins. Transglutaminase activity was significantly altered upon exposure of curing glue from individual barnacles to silicone eluates. Activity of purified trypsin and, to a greater extent, transglutaminase was significantly altered by relevant concentrations of silicone polymer constituents. Surface-associated silicone compounds can disrupt glue curing and alter enzyme properties. Altered curing of natural glues has potential in fouling management.

  20. Measurement of enzyme activity.

    Science.gov (United States)

    Harris, T K; Keshwani, M M

    2009-01-01

    To study and understand the nature of living cells, scientists have continually employed traditional biochemical techniques aimed to fractionate and characterize a designated network of macromolecular components required to carry out a particular cellular function. At the most rudimentary level, cellular functions ultimately entail rapid chemical transformations that otherwise would not occur in the physiological environment of the cell. The term enzyme is used to singularly designate a macromolecular gene product that specifically and greatly enhances the rate of a chemical transformation. Purification and characterization of individual and collective groups of enzymes has been and will remain essential toward advancement of the molecular biological sciences; and developing and utilizing enzyme reaction assays is central to this mission. First, basic kinetic principles are described for understanding chemical reaction rates and the catalytic effects of enzymes on such rates. Then, a number of methods are described for measuring enzyme-catalyzed reaction rates, which mainly differ with regard to techniques used to detect and quantify concentration changes of given reactants or products. Finally, short commentary is given toward formulation of reaction mixtures used to measure enzyme activity. Whereas a comprehensive treatment of enzymatic reaction assays is not within the scope of this chapter, the very core principles that are presented should enable new researchers to better understand the logic and utility of any given enzymatic assay that becomes of interest.

  1. Discovery of potent broad spectrum antivirals derived from marine actinobacteria.

    Directory of Open Access Journals (Sweden)

    Avi Raveh

    Full Text Available Natural products provide a vast array of chemical structures to explore in the discovery of new medicines. Although secondary metabolites produced by microbes have been developed to treat a variety of diseases, including bacterial and fungal infections, to date there has been limited investigation of natural products with antiviral activity. In this report, we used a phenotypic cell-based replicon assay coupled with an iterative biochemical fractionation process to identify, purify, and characterize antiviral compounds produced by marine microbes. We isolated a compound from Streptomyces kaviengensis, a novel actinomycetes isolated from marine sediments obtained off the coast of New Ireland, Papua New Guinea, which we identified as antimycin A1a. This compound displays potent activity against western equine encephalitis virus in cultured cells with half-maximal inhibitory concentrations of less than 4 nM and a selectivity index of greater than 550. Our efforts also revealed that several antimycin A analogues display antiviral activity, and mechanism of action studies confirmed that these Streptomyces-derived secondary metabolites function by inhibiting the cellular mitochondrial electron transport chain, thereby suppressing de novo pyrimidine synthesis. Furthermore, we found that antimycin A functions as a broad spectrum agent with activity against a wide range of RNA viruses in cultured cells, including members of the Togaviridae, Flaviviridae, Bunyaviridae, Picornaviridae, and Paramyxoviridae families. Finally, we demonstrate that antimycin A reduces central nervous system viral titers, improves clinical disease severity, and enhances survival in mice given a lethal challenge with western equine encephalitis virus. Our results provide conclusive validation for using natural product resources derived from marine microbes as source material for antiviral drug discovery, and they indicate that host mitochondrial electron transport is a viable

  2. Antiviral effect of diammonium glycyrrhizinate on cell infection by porcine parvovirus

    Science.gov (United States)

    Porcine parvovirus (PPV) can cause reproductive failure in swine resulting in economic losses to the industry. Antiviral effects of diammonium glycyrrhizinate (DG) have been reported on several animal viruses; however, to date it has yet to be tested on PPV. In this study, the antiviral activity of ...

  3. The effect of antiviral activity of a green seaweed from the Persian Gulf, Caulerpa sertularioides on Herpes Simplex Virus Type 1

    Directory of Open Access Journals (Sweden)

    Keyvan Zandi

    2006-09-01

    Full Text Available Background: By considering the daily increase in drug resistance of various viruses, novel antiviral compounds extracted from natural resources – due to their fewer side effects, had always been important to researchers. In the present study, we investigated antiviral activity of the hot water extract of a green seaweed, Caulerpa sertularioides, collected from coastal water of Bushehr in the Persian Gulf, against Herpes Simplex Virus Type 1 (HSV-1. Methods: The hot water extract of a green seaweed, Caulerpa sertularioides was sterilized by autoclave and filtration methods. After determining its cytotoxic concentration 50 (CC50 value, the effect of the extract on the inhibition of HSV-1 replication was examined in Vero cell culture. Results: The extract showed antiviral activity against HSV-1 in both attachment and entry of virus to the Vero cells and also on post attachment stages of virus replication. Inhibitory concentration 50 (IC50 values of the autoclaved extract were 81µg/ml and 126 µg/ml for attachment and post attachment stages, respectively. IC50 values of the filtered extract were 73 µg/ml and 104 µg/ml for attachment and post attachment stages, respectively. CC50 values for autoclaved and filtered extracts were 3140 µg/ml and 3095 µg/ml, respectively. Conclusion: The hot water extract of Caulerpa sertularioides of the Persian Gulf had antiviral effect against HSV-1.

  4. Enzyme activity and kinetics in substrate-amended river sediments

    Energy Technology Data Exchange (ETDEWEB)

    Duddridge, J E; Wainwright, M

    1982-01-01

    In determining the effects of heavy metals in microbial activity and litter degradation in river sediments, one approach is to determine the effects of these pollutants on sediment enzyme activity and synthesis. Methods to assay amylase, cellulase and urease activity in diverse river sediments are reported. Enzyme activity was low in non-amended sediments, but increased markedly when the appropriate substrate was added, paralleling both athropogenic and natural amendment. Linear relationships between enzyme activity, length of incubation, sample size and substrate concentration were established. Sediment enzyme activity generally obeyed Michaelis-Menton kinetics, but of the three enzymes, urease gave least significant correlation coefficients when the data for substrate concentration versus activity was applied to the Eadie-Hofstee transformation of the Michaelis-Menten equation. K/sub m/ and V/sub max/ for amylase, cellulase and urease in sediments are reported. (JMT)

  5. Enzyme Activity Experiments Using a Simple Spectrophotometer

    Science.gov (United States)

    Hurlbut, Jeffrey A.; And Others

    1977-01-01

    Experimental procedures for studying enzyme activity using a Spectronic 20 spectrophotometer are described. The experiments demonstrate the effect of pH, temperature, and inhibitors on enzyme activity and allow the determination of Km, Vmax, and Kcat. These procedures are designed for teaching large lower-level biochemistry classes. (MR)

  6. Activation of interfacial enzymes at membrane surfaces

    DEFF Research Database (Denmark)

    Mouritsen, Ole G.; Andresen, Thomas Lars; Halperin, Avi

    2006-01-01

    A host of water-soluble enzymes are active at membrane surfaces and in association with membranes. Some of these enzymes are involved in signalling and in modification and remodelling of the membranes. A special class of enzymes, the phospholipases, and in particular secretory phospholipase A2 (s...

  7. An antiviral protein from Bougainvillea spectabilis roots; purification and characterisation.

    Science.gov (United States)

    Balasaraswathi, R; Sadasivam, S; Ward, M; Walker, J M

    1998-04-01

    An antiviral protein active against mechanical transmission of tomato spotted wilt virus was identified in the root tissues of Bougainvillea spectabilis Willd. Bougainvillea Antiviral Protein I (BAP I) was purified to apparent homogeneity from the roots of Bougainvillea by ammonium sulphate precipitation, CM- and DEAE-Sepharose chromatography and reverse phase HPLC. BAP I is a highly basic protein (pI value > 8.6) with an Mr of 28,000. The N-terminal sequence of BAP I showed homology with other plant antiviral proteins. Preliminary tests suggest that purified BAP I is capable of interfering with in vitro protein synthesis.

  8. Activity assessment of microbial fibrinolytic enzymes.

    Science.gov (United States)

    Kotb, Essam

    2013-08-01

    Conversion of fibrinogen to fibrin inside blood vessels results in thrombosis, leading to myocardial infarction and other cardiovascular diseases. In general, there are four therapy options: surgical operation, intake of antiplatelets, anticoagulants, or fibrinolytic enzymes. Microbial fibrinolytic enzymes have attracted much more attention than typical thrombolytic agents because of the expensive prices and the side effects of the latter. The fibrinolytic enzymes were successively discovered from different microorganisms, the most important among which is the genus Bacillus. Microbial fibrinolytic enzymes, especially those from food-grade microorganisms, have the potential to be developed as functional food additives and drugs to prevent or cure thrombosis and other related diseases. There are several assay methods for these enzymes; this may due to the insolubility of substrate, fibrin. Existing assay methods can be divided into three major groups. The first group consists of assay of fibrinolytic activity with natural proteins as substrates, e.g., fibrin plate methods. The second and third groups of assays are suitable for kinetic studies and are based on the determination of hydrolysis of synthetic peptide esters. This review will deal primarily with the microorganisms that have been reported in literature to produce fibrinolytic enzymes and the first review discussing the methods used to assay the fibrinolytic activity.

  9. A Critical Subset Model Provides a Conceptual Basis for the High Antiviral Activity of Major HIV Drugs**

    Science.gov (United States)

    Shen, Lin; Rabi, S. Alireza; Sedaghat, Ahmad R.; Shan, Liang; Lai, Jun; Xing, Sifei; Siliciano, Robert F.

    2012-01-01

    Control of HIV-1 replication was first achieved with regimens that included a nonnucleoside reverse transcriptase inhibitor (NNRTI) or a protease inhibitor (PI); however, an explanation for the high antiviral activity of these drugs has been lacking. Indeed, conventional pharmacodynamic measures like IC50 (drug concentration causing 50% inhibition) do not differentiate NNRTIs and PIs from less active nucleoside reverse transcriptase inhibitors (NRTIs). Drug inhibitory potential depends on the slope of the dose-response curve (m), which represents how inhibition increases as a function of increasing drug concentration and is related to the Hill coefficient, a measure of intramolecular cooperativity in ligand binding to a multivalent receptor. Although NNRTIs and PIs bind univalent targets, they unexpectedly exhibit cooperative dose-response curves (m > 1). We show that this cooperative inhibition can be explained by a model in which infectivity requires participation of multiple copies of a drug target in an individual life cycle stage. A critical subset of these target molecules must be in the unbound state. Consistent with experimental observations, this model predicts m > 1 for NNRTIs and PIs and m = 1 in situations where a single drug target/virus mediates a step in the life cycle, as is the case with NRTIs and integrase strand transfer inhibitors. This model was tested experimentally by modulating the number of functional drug targets per virus, and dose-response curves for modulated virus populations fit model predictions. This model explains the high antiviral activity of two drug classes important for successful HIV-1 treatment and defines a characteristic of good targets for antiviral drugs in general, namely, intermolecular cooperativity. PMID:21753122

  10. A general strategy to endow natural fusion-protein-derived peptides with potent antiviral activity.

    Directory of Open Access Journals (Sweden)

    Antonello Pessi

    Full Text Available Fusion between the viral and target cell membranes is an obligatory step for the infectivity of all enveloped virus, and blocking this process is a clinically validated therapeutic strategy.Viral fusion is driven by specialized proteins which, although specific to each virus, act through a common mechanism, the formation of a complex between two heptad repeat (HR regions. The HR regions are initially separated in an intermediate termed "prehairpin", which bridges the viral and cell membranes, and then fold onto each other to form a 6-helical bundle (6HB, driving the two membranes to fuse. HR-derived peptides can inhibit viral infectivity by binding to the prehairpin intermediate and preventing its transition to the 6HB.The antiviral activity of HR-derived peptides differs considerably among enveloped viruses. For weak inhibitors, potency can be increased by peptide engineering strategies, but sequence-specific optimization is time-consuming. In seeking ways to increase potency without changing the native sequence, we previously reported that attachment to the HR peptide of a cholesterol group ("cholesterol-tagging" dramatically increases its antiviral potency, and simultaneously increases its half-life in vivo. We show here that antiviral potency may be increased by combining cholesterol-tagging with dimerization of the HR-derived sequence, using as examples human parainfluenza virus, Nipah virus, and HIV-1. Together, cholesterol-tagging and dimerization may represent strategies to boost HR peptide potency to levels that in some cases may be compatible with in vivo use, possibly contributing to emergency responses to outbreaks of existing or novel viruses.

  11. Detection of enzyme activity in decontaminated spices of industrial use

    International Nuclear Information System (INIS)

    Müller, R.; Theobald, R.

    1995-01-01

    A range of decontaminated spices of industrial use have been examinated for their enzymes (catalase, peroxidase, amylase, lipase activity). The genuine enzymes remain fully active in irradiated spices, whereas the microbial load is clearly reduced. In contrast steam treated spices no longer demonstrate enzyme activities. Steam treatment offers e.g. black pepper without lipase activity, which can no longer cause fat deterioration. Low microbial load in combination with clearly detectable enzyme activity in spices is an indication for irradiation, whereas, reduced microbial contamination combined with enzyme inactivation indicate steam treatment of raw material [de

  12. Direct-acting antivirals and host-targeting strategies to combat enterovirus infections.

    Science.gov (United States)

    Bauer, Lisa; Lyoo, Heyrhyoung; van der Schaar, Hilde M; Strating, Jeroen Rpm; van Kuppeveld, Frank Jm

    2017-06-01

    Enteroviruses (e.g., poliovirus, enterovirus-A71, coxsackievirus, enterovirus-D68, rhinovirus) include many human pathogens causative of various mild and more severe diseases, especially in young children. Unfortunately, antiviral drugs to treat enterovirus infections have not been approved yet. Over the past decades, several direct-acting inhibitors have been developed, including capsid binders, which block virus entry, and inhibitors of viral enzymes required for genome replication. Capsid binders and protease inhibitors have been clinically evaluated, but failed due to limited efficacy or toxicity issues. As an alternative approach, host-targeting inhibitors with potential broad-spectrum activity have been identified. Furthermore, drug repurposing screens have recently uncovered promising new inhibitors with disparate viral and host targets. Together, these findings raise hope for the development of (broad-range) anti-enteroviral drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Coxsackievirus cloverleaf RNA containing a 5' triphosphate triggers an antiviral response via RIG-I activation

    NARCIS (Netherlands)

    Feng, Qian; Langereis, Martijn A; Olagnier, David; Chiang, Cindy; van de Winkel, Roel; van Essen, Peter; Zoll, Jan; Hiscott, John; van Kuppeveld, Frank J M

    2014-01-01

    Upon viral infections, pattern recognition receptors (PRRs) recognize pathogen-associated molecular patterns (PAMPs) and stimulate an antiviral state associated with the production of type I interferons (IFNs) and inflammatory markers. Type I IFNs play crucial roles in innate antiviral responses by

  14. Antiviral activity of the extracts of Rhodophyceae from Morocco

    African Journals Online (AJOL)

    Administrator

    2010-11-15

    Nov 15, 2010 ... replication of HSV-1 in vitro at an EC50 (Effective Concentration 50%) ranging from <2.5 to 75.9 µg mL-1. No cytotoxic effect ... Keywords: Antiviral, Aqueous extracts, Organic extracts, Rhodophyceae, Herpes simplex virus. INTRODUCTION ... from a species of Bryopsis as a possible treatment of lung cancer ...

  15. Antiviral Activity of Natural Products Extracted from Marine Organisms

    Directory of Open Access Journals (Sweden)

    Sobia Tabassum

    2011-11-01

    Full Text Available Many epidemics have broken out over the centuries. Hundreds and thousands of humans have died over a disease. Available treatments for infectious diseases have always been limited. Some infections are more deadly than the others, especially viral pathogens. These pathogens have continuously resisted all kinds of medical treatment, due to a need for new treatments to be developed. Drugs are present in nature and are also synthesized in vitro and they help in combating diseases and restoring health. Synthesizing drugs is a hard and time consuming task, which requires a lot of man power and financial aid. However, the natural compounds are just lying around on the earth, may it be land or water. Over a thousand novel compounds isolated from marine organisms are used as antiviral agents. Others are being pharmacologically tested. Today, over forty antiviral compounds are present in the pharmacological market. Some of these compounds are undergoing clinical and pre-clinical stages. Marine compounds are paving the way for a new trend in modern medicine.

  16. Nucleic acid-induced antiviral immunity in invertebrates: an evolutionary perspective.

    Science.gov (United States)

    Wang, Pei-Hui; Weng, Shao-Ping; He, Jian-Guo

    2015-02-01

    Nucleic acids derived from viral pathogens are typical pathogen associated molecular patterns (PAMPs). In mammals, the recognition of viral nucleic acids by pattern recognition receptors (PRRs), which include Toll-like receptors (TLRs) and retinoic acid-inducible gene (RIG)-I-like receptors (RLRs), induces the release of inflammatory cytokines and type I interferons (IFNs) through the activation of nuclear factor κB (NF-κB) and interferon regulatory factor (IRF) 3/7 pathways, triggering the host antiviral state. However, whether nucleic acids can induce similar antiviral immunity in invertebrates remains ambiguous. Several studies have reported that nucleic acid mimics, especially dsRNA mimic poly(I:C), can strongly induce non-specific antiviral immune responses in insects, shrimp, and oyster. This behavior shows multiple similarities to the hallmarks of mammalian IFN responses. In this review, we highlight the current understanding of nucleic acid-induced antiviral immunity in invertebrates. We also discuss the potential recognition and regulatory mechanisms that confer non-specific antiviral immunity on invertebrate hosts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Effect of irradiation on lysosomal enzyme activation in cultured macrophages

    International Nuclear Information System (INIS)

    Clarke, C.; Wills, E.D.

    1980-01-01

    The effect of γrays on lysosomal enzyme activity of normal and immune macrophages of DBA/2 mice cultured in vitro has been studied. A dose of 500 rad did not significantly affect lysosomal enzyme activity 3 hours after irradiation but caused the activity to increase to 1.4 times the control value 22.5 hours after irradiation. 22.5 hours after a dose of 3000 rad the enzyme activity increased to 2.5 times the control. Lysosomal enzyme activity of the macrophages was also markedly increased by immunization of the mice with D lymphoma cells, before culture in vitro, but irradiation of these cells with a dose of 500 rad caused a further increase in lysosomal enzyme activity. The results indicate that immunization and irradiation both cause stimulation of lysosomal enzyme activity in macrophages but that the mechanisms of activation are unlikely to be identical. (author)

  18. In Vitro Study of Eight Indonesian Natural Extracts as Antiviral Against Dengue Virus

    Directory of Open Access Journals (Sweden)

    Leli Saptawati

    2017-07-01

    Full Text Available 800x600 Background: Dengue hemorrhagic fever (DHF caused by a dengue viruses is still a major problem in tropical countries, including Indonesia. World Health Organization data showed that over 40% of world population are at risk of DHF.1In 2014 there were 71.668 of DHF cases in 34 provinces with 641 death.2 In Central Java in 2013, the incidence rate and fatality rate of DHF was 45.52 in 100.000 populations and 1.21% respectively.3 Until nowadays, there is no vaccine or effective therapy is available as yet.4 Thus research on discovering specific antiviral against dengue is needed. Indonesia is rich in indigenous herbal plants, which may has potential antiviral activity, such as Psidium guajava (Jambu biji, Euphorbia hirta (Patikn kerbau, Piper bettle L (Sirih, Carica papaya (Pepaya, Curcuma longa L(Kunyit/turmeric, Phyllanthus niruri L (meniran, Andrographis paniculata (Sambiloto, Cymbopogon citrates (Serai. Previous studies show that these plants have antiviral and antibacterial properties.5However, there is only limited study of these plants against dengue virus . Objective: This study aimed to know whether these plants have potential activity against dengue virus in vitro. Method: Leave extracts of eight indigenous herbal plants as mention before were originated from Solo, Central Java, the crude extracts were tested in vitro against dengue virus serotype 2 (DENV-2 strain NGC using Huh7it-1 cell line. Those crude extracts were screened for antiviral activity using doses of 20mg/ml. Candidates that showed inhibition activity were further tested in various doses to determine IC50 and CC50. Result: From eight leave extracts tested, one of them i.e Carica papaya (pepaya inhibited virus replication up to 89,5%. Dose dependent assay with C.papaya resulted in IC50, CC50 and selectivity index 6,57 μg/mL, 244,76 μg/mL and 37, 25 μg/mL respectively. Conclusion: C.papaya has potential antiviral activity against dengue virus in vitro. Further study

  19. Antiviral activity of the adenosine analogue BCX4430 against West Nile virus and tick-borne flaviviruses

    Czech Academy of Sciences Publication Activity Database

    Eyer, Luděk; Zouharová, D.; Širmarová, J.; Fojtiková, M.; Štefánik, M.; Haviernik, J.; Nencka, Radim; De Clercq, E.; Růžek, Daniel

    2017-01-01

    Roč. 142, JUN (2017), s. 63-67 ISSN 0166-3542 R&D Projects: GA MZd(CZ) NV16-34238A; GA ČR(CZ) GA16-20054S Institutional support: RVO:60077344 ; RVO:61388963 Keywords : BCX4430 * Flavivirus * adenosine analogue * nucleoside inhibitor * antiviral activity * cytotoxicity Subject RIV: EE - Microbiology, Virology OBOR OECD: Virology Impact factor: 4.271, year: 2016

  20. Enzyme specific activity in functionalized nanoporous supports

    International Nuclear Information System (INIS)

    Lei Chenghong; Soares, Thereza A; Shin, Yongsoon; Liu Jun; Ackerman, Eric J

    2008-01-01

    Here we reveal that enzyme specific activity can be increased substantially by changing the protein loading density (P LD ) in functionalized nanoporous supports so that the enzyme immobilization efficiency (I e , defined as the ratio of the specific activity of the immobilized enzyme to the specific activity of the free enzyme in solution) can be much higher than 100%. A net negatively charged glucose oxidase (GOX) and a net positively charged organophosphorus hydrolase (OPH) were entrapped spontaneously in NH 2 - and HOOC-functionalized mesoporous silica (300 A, FMS) respectively. The specific activity of GOX entrapped in FMS increased with decreasing P LD . With decreasing P LD , I e of GOX in FMS increased from 150%. Unlike GOX, OPH in HOOC-FMS showed increased specific activity with increasing P LD . With increasing P LD , the corresponding I e of OPH in FMS increased from 100% to>200%. A protein structure-based analysis of the protein surface charges directing the electrostatic interaction-based orientation of the protein molecules in FMS demonstrates that substrate access to GOX molecules in FMS is limited at high P LD , consequently lowering the GOX specific activity. In contrast, substrate access to OPH molecules in FMS remains open at high P LD and may promote a more favorable confinement environment that enhances the OPH activity

  1. The antiviral effect of jiadifenoic acids C against coxsackievirus B3

    Directory of Open Access Journals (Sweden)

    Miao Ge

    2014-08-01

    Full Text Available Coxsackievirus B type 3 (CVB3 is one of the major causative pathogens associated with viral meningitis and myocarditis, which are widespread in the human population and especially prevalent in neonates and children. These infections can result in dilated cardiomyopathy (DCM and other severe clinical complications. There are no vaccines or drugs approved for the prevention or therapy of CVB3-induced diseases. During screening for anti-CVB3 candidates in our previous studies, we found that jiadifenoic acids C exhibited strong antiviral activities against CVB3 as well as other strains of Coxsackie B viruses (CVBs. The present studies were carried out to evaluate the antiviral activities of jiadifenoic acids C. Results showed that jiadifenoic acids C could reduce CVB3 RNA and proteins synthesis in a dose-dependent manner. Jiadifenoic acids C also had a similar antiviral effect on the pleconaril-resistant variant of CVB3. We further examined the impact of jiadifenoic acids C on the synthesis of viral structural and non-structural proteins, finding that jiadifenoic acids C could reduce VP1 and 3D protein production. A time-course study with Vero cells showed that jiadifenoic acids C displayed significant antiviral activities at 0–6 h after CVB3 inoculation, indicating that jiadifenoic acids C functioned at an early step of CVB3 replication. However, jiadifenoic acids C had no prophylactic effect against CVB3. Taken together, we show that jiadifenoic acids C exhibit strong antiviral activities against all strains of CVB, including the pleconaril-resistant variant. Our study could provide a significant lead for anti-CVB3 drug development.

  2. Potentiated virucidal activity of pomegranate rind extract (PRE and punicalagin against Herpes simplex virus (HSV when co-administered with zinc (II ions, and antiviral activity of PRE against HSV and aciclovir-resistant HSV.

    Directory of Open Access Journals (Sweden)

    David M J Houston

    Full Text Available There is a clinical need for new therapeutic products against Herpes simplex virus (HSV. The pomegranate, fruit of the tree Punica granatum L, has since ancient times been linked to activity against infection. This work probed the activity of pomegranate rind extract (PRE and co-administered zinc (II ions.PRE was used in conjunction with zinc (II salts to challenge HSV-1 and aciclovir-resistant HSV in terms of virucidal plaque assay reduction and antiviral activities in epithelial Vero host cells. Cytotoxicity was determined by the MTS assay using a commercial kit.Zinc sulphate, zinc citrate, zinc stearate and zinc gluconate demonstrated similar potentiated virucidal activity with PRE against HSV-1 by up to 4-fold. A generally parabolic relationship was observed when HSV-1 was challenged with PRE and varying concentrations of ZnSO4, with a maximum potentiation factor of 5.5. Punicalagin had 8-fold greater virucidal activity than an equivalent mass of PRE. However, antiviral data showed that punicalagin had significantly lower antiviral activity compared to the activity of PRE (EC50 = 0.56 μg mL-1 a value comparable to aciclovir (EC50 = 0.18 μg mL-1; however, PRE also demonstrated potency against aciclovir-resistant HSV (EC50 = 0.02 μg mL-1, whereas aciclovir showed no activity. Antiviral action of PRE was not influenced by ZnSO4. No cytotoxicity was detected with any test solution.The potentiated virucidal activity of PRE by coadministered zinc (II has potential as a multi-action novel topical therapeutic agent against HSV infections, such as coldsores.

  3. Essential Oil Composition, Antioxidant, Cytotoxic and Antiviral Activities of Teucrium pseudochamaepitys Growing Spontaneously in Tunisia

    Directory of Open Access Journals (Sweden)

    Saoussen Hammami

    2015-11-01

    Full Text Available The chemical composition, antioxidant, cytotoxic and antiviral activities of the essential oil obtained by hydrodistillation from the aerial parts of Teucrium pseudochamaepitys (Lamiaceae collected from Zaghouan province of Tunisia are reported. The essential oil was analyzed by gas chromatography equipped with a flame ionization detector (GC-FID and gas chromatography coupled with mass spectrometry (GC/MS. Thirty-one compounds were identified representing 88.6% of the total essential oil. Hexadecanoic acid was found to be the most abundant component (26.1% followed by caryophyllene oxide (6.3%, myristicin (4.9% and α-cubebene (3.9%. The antioxidant capacity of the oil was measured on the basis of the scavenging activity to the stable 2,2-diphenyl-1-picrylhydrazyl (DPPH. The IC50 value of the oil was evaluated as 0.77 mg·mL−1. In addition, the essential oil was found to possess moderate cytotoxic effects on the HEp-2 cell line (50% cytotoxic concentration (CC50 = 653.6 µg·mL−1. The potential antiviral effect was tested against Coxsackievirus B (CV-B, a significant human and mouse pathogen that causes pediatric central nervous system disease, commonly with acute syndromes. The reduction of viral infectivity by the essential oil was measured using a cytopathic (CPE reduction assay.

  4. EVOLUTIONARY TRANSITIONS IN ENZYME ACTIVITY OF ANT FUNGUS GARDENS

    DEFF Research Database (Denmark)

    De Fine Licht, Henrik H; Schiøtt, Morten; Mueller, Ulrich G

    2010-01-01

    an association with a monophyletic clade of specialized symbionts. In conjunction with the transition to specialized symbionts, the ants advanced in colony size and social complexity. Here we provide a comparative study of the functional specialization in extracellular enzyme activities in fungus gardens across...... the attine phylogeny. We show that, relative to sister clades, gardens of higher-attine ants have enhanced activity of protein-digesting enzymes, whereas gardens of leaf-cutting ants also have increased activity of starch-digesting enzymes. However, the enzyme activities of lower-attine fungus gardens...... are targeted primarily towards partial degradation of plant cell walls, reflecting a plesiomorphic state of non-domesticated fungi. The enzyme profiles of the higher-attine and leaf-cutting gardens appear particularly suited to digest fresh plant materials and to access nutrients from live cells without major...

  5. Viruses transfer the antiviral second messenger cGAMP between cells.

    Science.gov (United States)

    Bridgeman, A; Maelfait, J; Davenne, T; Partridge, T; Peng, Y; Mayer, A; Dong, T; Kaever, V; Borrow, P; Rehwinkel, J

    2015-09-11

    Cyclic GMP-AMP synthase (cGAS) detects cytosolic DNA during virus infection and induces an antiviral state. cGAS signals by synthesis of a second messenger, cyclic GMP-AMP (cGAMP), which activates stimulator of interferon genes (STING). We show that cGAMP is incorporated into viral particles, including lentivirus and herpesvirus virions, when these are produced in cGAS-expressing cells. Virions transferred cGAMP to newly infected cells and triggered a STING-dependent antiviral program. These effects were independent of exosomes and viral nucleic acids. Our results reveal a way by which a signal for innate immunity is transferred between cells, potentially accelerating and broadening antiviral responses. Moreover, infection of dendritic cells with cGAMP-loaded lentiviruses enhanced their activation. Loading viral vectors with cGAMP therefore holds promise for vaccine development. Copyright © 2015, American Association for the Advancement of Science.

  6. The Antiviral Effect of Baicalin on Enterovirus 71 In Vitro

    Directory of Open Access Journals (Sweden)

    Xiang Li

    2015-08-01

    Full Text Available Baicalin is a flavonoid compound extracted from Scutellaria roots that has been reported to possess antibacterial, anti-inflammatory, and antiviral activities. However, the antiviral effect of baicalin on enterovirus 71 (EV71 is still unknown. In this study, we found that baicalin showed inhibitory activity on EV71 infection and was independent of direct virucidal or prophylactic effect and inhibitory viral absorption. The expressions of EV71/3D mRNA and polymerase were significantly blocked by baicalin treatment at early stages of EV71 infection. In addition, baicalin could decrease the expressions of FasL and caspase-3, as well as inhibit the apoptosis of EV71-infected human embryonal rhabdomyosarcoma (RD cells. Altogether, these results indicate that baicalin exhibits potent antiviral effect on EV71 infection, probably through inhibiting EV71/3D polymerase expression and Fas/FasL signaling pathways.

  7. Smallpox Antiviral Drug

    Science.gov (United States)

    2007-01-01

    Candida albicans] A G1L (590 aa) Flag VV(WR) 30/ENDIDEILGIAHLLEHLLISF/50 107/HIKELENEYYFRNEVFH/123 H41A 30/ENDIDEILGIAALLEHLLISF/50 107...RSV) (Table 1). Additional antiviral drug examples include the use of interferon for human papilloma virus ( HPV ) [Cantell, 1995]. Antivirals are most...low oral bioavailability, and quick elimination from plasma [Ghosn et al., 2004; Hostetler et al., 1994; Kempf et al., 1991; Matsumoto et al., 2001

  8. Detection of Extracellular Enzyme Activities in Ganoderma neo-japonicum

    OpenAIRE

    Jo, Woo-Sik; Park, Ha-Na; Cho, Doo-Hyun; Yoo, Young-Bok; Park, Seung-Chun

    2011-01-01

    The ability of Ganoderma to produce extracellular enzymes, including β-glucosidase, cellulase, avicelase, pectinase, xylanase, protease, amylase, and ligninase was tested in chromogenic media. β-glucosidase showed the highest activity, among the eight tested enzymes. In particular, Ganoderma neo-japonicum showed significantly stronger activity for β-glucosidase than that of the other enzymes. Two Ganoderma lucidum isolates showed moderate activity for avicelase; however, Ganoderma neo-japonic...

  9. Topoisomerase 1 Inhibition Promotes Cyclic GMP-AMP Synthase-Dependent Antiviral Responses.

    Science.gov (United States)

    Pépin, Geneviève; Nejad, Charlotte; Ferrand, Jonathan; Thomas, Belinda J; Stunden, H James; Sanij, Elaine; Foo, Chwan-Hong; Stewart, Cameron R; Cain, Jason E; Bardin, Philip G; Williams, Bryan R G; Gantier, Michael P

    2017-10-03

    Inflammatory responses, while essential for pathogen clearance, can also be deleterious to the host. Chemical inhibition of topoisomerase 1 (Top1) by low-dose camptothecin (CPT) can suppress transcriptional induction of antiviral and inflammatory genes and protect animals from excessive and damaging inflammatory responses. We describe the unexpected finding that minor DNA damage from topoisomerase 1 inhibition with low-dose CPT can trigger a strong antiviral immune response through cyclic GMP-AMP synthase (cGAS) detection of cytoplasmic DNA. This argues against CPT having only anti-inflammatory activity. Furthermore, expression of the simian virus 40 (SV40) large T antigen was paramount to the proinflammatory antiviral activity of CPT, as it potentiated cytoplasmic DNA leakage and subsequent cGAS recruitment in human and mouse cell lines. This work suggests that the capacity of Top1 inhibitors to blunt inflammatory responses can be counteracted by viral oncogenes and that this should be taken into account for their therapeutic development. IMPORTANCE Recent studies suggest that low-dose DNA-damaging compounds traditionally used in cancer therapy can have opposite effects on antiviral responses, either suppressing (with the example of CPT) or potentiating (with the example of doxorubicin) them. Our work demonstrates that the minor DNA damage promoted by low-dose CPT can also trigger strong antiviral responses, dependent on the presence of viral oncogenes. Taken together, these results call for caution in the therapeutic use of low-dose chemotherapy agents to modulate antiviral responses in humans. Copyright © 2017 Pépin et al.

  10. Antibody complementarity-determining regions (CDRs can display differential antimicrobial, antiviral and antitumor activities.

    Directory of Open Access Journals (Sweden)

    Luciano Polonelli

    Full Text Available BACKGROUND: Complementarity-determining regions (CDRs are immunoglobulin (Ig hypervariable domains that determine specific antibody (Ab binding. We have shown that synthetic CDR-related peptides and many decapeptides spanning the variable region of a recombinant yeast killer toxin-like antiidiotypic Ab are candidacidal in vitro. An alanine-substituted decapeptide from the variable region of this Ab displayed increased cytotoxicity in vitro and/or therapeutic effects in vivo against various bacteria, fungi, protozoa and viruses. The possibility that isolated CDRs, represented by short synthetic peptides, may display antimicrobial, antiviral and antitumor activities irrespective of Ab specificity for a given antigen is addressed here. METHODOLOGY/PRINCIPAL FINDINGS: CDR-based synthetic peptides of murine and human monoclonal Abs directed to: a a protein epitope of Candida albicans cell wall stress mannoprotein; b a synthetic peptide containing well-characterized B-cell and T-cell epitopes; c a carbohydrate blood group A substance, showed differential inhibitory activities in vitro, ex vivo and/or in vivo against C. albicans, HIV-1 and B16F10-Nex2 melanoma cells, conceivably involving different mechanisms of action. Antitumor activities involved peptide-induced caspase-dependent apoptosis. Engineered peptides, obtained by alanine substitution of Ig CDR sequences, and used as surrogates of natural point mutations, showed further differential increased/unaltered/decreased antimicrobial, antiviral and/or antitumor activities. The inhibitory effects observed were largely independent of the specificity of the native Ab and involved chiefly germline encoded CDR1 and CDR2 of light and heavy chains. CONCLUSIONS/SIGNIFICANCE: The high frequency of bioactive peptides based on CDRs suggests that Ig molecules are sources of an unlimited number of sequences potentially active against infectious agents and tumor cells. The easy production and low cost of small

  11. An appraisal of the enzyme stability-activity trade-off.

    Science.gov (United States)

    Miller, Scott R

    2017-07-01

    A longstanding idea in evolutionary physiology is that an enzyme cannot jointly optimize performance at both high and low temperatures due to a trade-off between stability and activity. Although a stability-activity trade-off has been observed for well-characterized examples, such a trade-off is not imposed by any physical chemical constraint. To better understand the pervasiveness of this trade-off, I investigated the stability-activity relationship for comparative biochemical studies of purified orthologous enzymes identified by a literature search. The nature of this relationship varied greatly among studies. Notably, studies of enzymes with low mean synonymous nucleotide sequence divergence were less likely to exhibit the predicted negative correlation between stability and activity. Similarly, a survey of directed evolution investigations of the stability-activity relationship indicated that these traits are often uncoupled among nearly identical yet phenotypically divergent enzymes. This suggests that the presumptive trade-off often reported for investigations of enzymes with high mean sequence divergence may in some cases instead be a consequence of the degeneration over time of enzyme function in unselected environments, rather than a direct effect of thermal adaptation. The results caution against the general assertion of a stability-activity trade-off during enzyme adaptation. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  12. Extracellular enzyme activity assay as indicator of soil microbial functional diversity and activity

    DEFF Research Database (Denmark)

    Hendriksen, Niels Bohse; Winding, Anne

    2012-01-01

    Extracellular enzyme activity assay as indicator of soil microbial functional diversity and activity Niels Bohse Hendriksen, Anne Winding. Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark Soils provide numerous essential ecosystem services such as carbon cycling...... of soil microbial functions is still needed. In soil, enzymes originate from a variety of organisms, notably fungi and bacteria and especially hydrolytic extracellular enzymes are of pivotal importance for decomposition of organic substrates and biogeochemical cycling. Their activity will reflect...... the functional diversity and activity of the microorganisms involved in decomposition processes. Their activity has been measured by the use of fluorogenic model substrates e.g. methylumbelliferyl (MUF) substrates for a number of enzymes involved in the degradation of polysacharides as cellulose, hemicellulose...

  13. In vitro antiviral activity of a series of wild berry fruit extracts against representatives of Picorna-, Orthomyxo- and Paramyxoviridae.

    Science.gov (United States)

    Nikolaeva-Glomb, Lubomira; Mukova, Luchia; Nikolova, Nadya; Badjakov, Ilian; Dincheva, Ivayla; Kondakova, Violeta; Doumanova, Lyuba; Galabov, Angel S

    2014-01-01

    Wild berry species are known to exhibit a wide range of pharmacological activities. They have long been traditionally applied for their antiseptic, antimicrobial, cardioprotective and antioxidant properties. The aim of the present study is to reveal the potential for selective antiviral activity of total methanol extracts, as well as that of the anthocyanins and the non-anthocyanins from the following wild berries picked in Bulgaria: strawberry (Fragaria vesca L.) and raspberry (Rubus idaeus L.) of the Rosaceae plant family, and bilberry (Vaccinium myrtillis L.) and lingonberry (Vaccinium vitis-idaea L) of the Ericaceae. The antiviral effect has been tested against viruses that are important human pathogens and for which chemotherapy and/or chemoprophylaxis is indicated, namely poliovirus type 1 (PV-1) and coxsackievirus B1 (CV-B1) from the Picornaviridae virus family, human respiratory syncytial virus A2 (HRSV-A2) from the Paramyxoviridae and influenza virus A/H3N2 of Orthomyxoviridae. Wild berry fruits are freeze-dried and ground, then total methanol extracts are prepared. Further the extracts are fractioned by solid phase extraction and the non-anthocyanin and anthocyanin fractions are eluted. The in vitro antiviral effect is examined by the virus cytopathic effect (CPE) inhibition test. The results reveal that the total extracts of all tested berry fruits inhibit the replication of CV-B1 and influenza A virus. CV-B1 is inhibited to the highest degree by both bilberry and strawberry, as well as by lingonberry total extracts, and influenza A by bilberry and strawberry extracts. Anthocyanin fractions of all wild berries strongly inhibit the replication of influenza virus A/H3N2. Given the obtained results it is concluded that wild berry species are a valuable resource of antiviral substances and the present study should serve as a basis for further detailed research on the matter.

  14. Divergent antiviral effects of bioflavonoids on the hepatitis C virus life cycle

    Energy Technology Data Exchange (ETDEWEB)

    Khachatoorian, Ronik, E-mail: RnKhch@ucla.edu [Molecular Biology Interdepartmental Ph.D. Program (MBIDP), Molecular Biology Institute, David Geffen School of Medicine at University of California, Los Angeles, California, CA (United States); Molecular Biology Institute, David Geffen School of Medicine at University of California, Los Angeles, California, CA (United States); Arumugaswami, Vaithilingaraja, E-mail: VArumugaswami@mednet.ucla.edu [Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at University of California, Los Angeles, California, CA (United States); Department of Surgery, Regenerative Medicine Institute at Cedars-Sinai Medical Center, Los Angeles, California, CA (United States); Raychaudhuri, Santanu, E-mail: SRaychau@ucla.edu [Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles, California, CA (United States); Yeh, George K., E-mail: GgYeh@ucla.edu [Molecular Biology Interdepartmental Ph.D. Program (MBIDP), Molecular Biology Institute, David Geffen School of Medicine at University of California, Los Angeles, California, CA (United States); Molecular Biology Institute, David Geffen School of Medicine at University of California, Los Angeles, California, CA (United States); Maloney, Eden M., E-mail: EMaloney@ucla.edu [Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California, CA (United States); Wang, Julie, E-mail: JulieW1521@ucla.edu [Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles, California, CA (United States); and others

    2012-11-25

    We have previously demonstrated that quercetin, a bioflavonoid, blocks hepatitis C virus (HCV) proliferation by inhibiting NS5A-driven internal ribosomal entry site (IRES)-mediated translation of the viral genome. Here, we investigate the mechanisms of antiviral activity of quercetin and six additional bioflavonoids. We demonstrate that catechin, naringenin, and quercetin possess significant antiviral activity, with no associated cytotoxicity. Infectious virion secretion was not significantly altered by these bioflavonoids. Catechin and naringenin demonstrated stronger inhibition of infectious virion assembly compared to quercetin. Quercetin markedly blocked viral translation whereas catechin and naringenin demonstrated mild activity. Similarly quercetin completely blocked NS5A-augmented IRES-mediated translation in an IRES reporter assay, whereas catechin and naringenin had only a mild effect. Moreover, quercetin differentially inhibited HSP70 induction compared to catechin and naringenin. Thus, the antiviral activity of these bioflavonoids is mediated through different mechanisms. Therefore combination of these bioflavonoids may act synergistically against HCV.

  15. Niclosamide is a proton carrier and targets acidic endosomes with broad antiviral effects.

    Science.gov (United States)

    Jurgeit, Andreas; McDowell, Robert; Moese, Stefan; Meldrum, Eric; Schwendener, Reto; Greber, Urs F

    2012-01-01

    Viruses use a limited set of host pathways for infection. These pathways represent bona fide antiviral targets with low likelihood of viral resistance. We identified the salicylanilide niclosamide as a broad range antiviral agent targeting acidified endosomes. Niclosamide is approved for human use against helminthic infections, and has anti-neoplastic and antiviral effects. Its mode of action is unknown. Here, we show that niclosamide, which is a weak lipophilic acid inhibited infection with pH-dependent human rhinoviruses (HRV) and influenza virus. Structure-activity studies showed that antiviral efficacy and endolysosomal pH neutralization co-tracked, and acidification of the extracellular medium bypassed the virus entry block. Niclosamide did not affect the vacuolar H(+)-ATPase, but neutralized coated vesicles or synthetic liposomes, indicating a proton carrier mode-of-action independent of any protein target. This report demonstrates that physico-chemical interference with host pathways has broad range antiviral effects, and provides a proof of concept for the development of host-directed antivirals.

  16. Niclosamide is a proton carrier and targets acidic endosomes with broad antiviral effects.

    Directory of Open Access Journals (Sweden)

    Andreas Jurgeit

    Full Text Available Viruses use a limited set of host pathways for infection. These pathways represent bona fide antiviral targets with low likelihood of viral resistance. We identified the salicylanilide niclosamide as a broad range antiviral agent targeting acidified endosomes. Niclosamide is approved for human use against helminthic infections, and has anti-neoplastic and antiviral effects. Its mode of action is unknown. Here, we show that niclosamide, which is a weak lipophilic acid inhibited infection with pH-dependent human rhinoviruses (HRV and influenza virus. Structure-activity studies showed that antiviral efficacy and endolysosomal pH neutralization co-tracked, and acidification of the extracellular medium bypassed the virus entry block. Niclosamide did not affect the vacuolar H(+-ATPase, but neutralized coated vesicles or synthetic liposomes, indicating a proton carrier mode-of-action independent of any protein target. This report demonstrates that physico-chemical interference with host pathways has broad range antiviral effects, and provides a proof of concept for the development of host-directed antivirals.

  17. An antiviral RISC isolated from Tobacco rattle virus-infected plants.

    Science.gov (United States)

    Ciomperlik, Jessica J; Omarov, Rustem T; Scholthof, Herman B

    2011-03-30

    The RNAi model predicts that during antiviral defense a RNA-induced silencing complex (RISC) is programmed with viral short-interfering RNAs (siRNAs) to target the cognate viral RNA for degradation. We show that infection of Nicotiana benthamiana with Tobacco rattle virus (TRV) activates an antiviral nuclease that specifically cleaves TRV RNA in vitro. In agreement with known RISC properties, the nuclease activity was inhibited by NaCl and EDTA and stimulated by divalent metal cations; a novel property was its preferential targeting of elongated RNA molecules. Intriguingly, the specificity of the TRV RISC could be reprogrammed by exogenous addition of RNA (containing siRNAs) from plants infected with an unrelated virus, resulting in a newly acquired ability of RISC to target this heterologous genome in vitro. Evidently the virus-specific nuclease complex from N. benthamiana represents a genuine RISC that functions as a readily employable and reprogrammable antiviral defense unit. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Pharmacokinetics and antiviral activity of PHX1766, a novel HCV protease inhibitor, using an accelerated Phase I study design

    NARCIS (Netherlands)

    D.M. Hotho (Daphne); J. Bruijne (Joep); N. O'Farrell; T. Boyea (Teresa); J. Li (Jianke); M. Bracken (Michele); X. Li (Xin); D. Campbell (David); H.-P. Guler (Hans-Peter); C.J. Weegink (Christine); J. Schinkel (Janke); R. Molenkamp (Richard); J. Van De Wetering De Rooij (Jeroen); A.A. Vliet (Andre); H.L.A. Janssen (Harry); R.J. de Knegt (Robert); H.W. Reesink (Henk)

    2012-01-01

    textabstractBackground: PHX1766 is a novel HCV NS3/4 protease inhibitor with robust potency and high selectivity in replicon studies (50% maximal effective concentration 8 nM). Two clinical trials investigated the safety, tolerability, pharmacokinetics and antiviral activity of PHX1766 in healthy

  19. The traditional use of Vachellia nilotica for sexually transmitted diseases is substantiated by the antiviral activity of its bark extract against sexually transmitted viruses.

    Science.gov (United States)

    Donalisio, Manuela; Cagno, Valeria; Civra, Andrea; Gibellini, Davide; Musumeci, Giuseppina; Rittà, Massimo; Ghosh, Manik; Lembo, David

    2018-03-01

    Vachellia (Acacia) nilotica and other plants of this genus have been used in traditional medicine of Asian and African countries to treat many disorders, including sexually transmitted diseases, but few studies were performed to validate their anti-microbial and anti-viral activity against sexually transmitted infections. The present study was undertaken to explore whether the ethnomedical use of V.nilotica to treat genital lesions is substantiated by its antiviral activity against the human immunodeficiency virus (HIV), the herpes simplex virus (HSV) and the human papillomavirus (HPV). The antiviral activity of V.nilotica was tested in vitro by virus-specific inhibition assays using HSV-2 strains, sensible or resistant to acyclovir, HIV-1IIIb strain and HPV-16 pseudovirion (PsV). The potential mode of action of extract against HSV-2 and HPV-16 was further investigated by virus inactivation and time-of-addition assays on cell cultures. V.nilotica chloroform, methanolic and water bark extracts exerted antiviral activity against HSV-2 and HPV-16 PsV infections; among these, methanolic extract showed the best EC50s with values of 4.71 and 1.80µg/ml against HSV-2 and HPV-16, respectively, and it was also active against an acyclovir-resistant HSV-2 strain with an EC50 of 6.71µg/ml. By contrast, no suppression of HIV infection was observed. Investigation of the mechanism of action revealed that the methanolic extract directly inactivated the infectivity of the HPV-16 particles, whereas a partial virus inactivation and interference with virus attachment (EC50 of 2.74µg/ml) were both found to contribute to the anti-HSV-2 activity. These results support the traditional use of V.nilotica applied externally for the treatment of genital lesions. Further work remains to be done in order to identify the bioactive components. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Enterovirus 71 antagonizes the antiviral activity of host STAT3 and IL-6R with partial dependence on virus-induced miR-124.

    Science.gov (United States)

    Chang, Zhangmei; Wang, Yan; Bian, Liang; Liu, Qingqing; Long, Jian-Er

    2017-12-01

    Enterovirus 71 (EV71) has caused major outbreaks of hand, foot and mouth disease. EV71 infections increase the production of many host cytokines and pro-inflammatory factors, including interleukin (IL)-6, IL-10 and COX-2. Some of these molecules could stimulate the signal transducer and activator of transcription 3 (STAT3), which plays a key role in regulating host immune responses and several viral diseases. However, the role of STAT3 in EV71 infection remains unknown. This study found that the phosphorylation levels of STAT3 (p Y705 -STAT3) are closely related to EV71 infection. Further experiments revealed that STAT3 exerts an anti-EV71 activity. However, the antiviral activity of STAT3 is partially antagonized by EV71-induced miR-124, which directly targets STAT3 mRNA. Similarly, IL-6R, the α-subunit of the IL-6 receptor complex, exhibits anti-EV71 activity and is directly targeted by the virus-induced miR-124. These results indicate that EV71 can evade host IL-6R- and STAT3-mediated antiviral activities by EV71-induced miR-124. This suggests that controlling miR-124 and the downstream targets, IL-6R and STAT3, might benefit the antiviral treatment of EV71 infection.

  1. Current antiviral drugs and their analysis in biological materials - Part II: Antivirals against hepatitis and HIV viruses.

    Science.gov (United States)

    Nováková, Lucie; Pavlík, Jakub; Chrenková, Lucia; Martinec, Ondřej; Červený, Lukáš

    2018-01-05

    This review is a Part II of the series aiming to provide comprehensive overview of currently used antiviral drugs and to show modern approaches to their analysis. While in the Part I antivirals against herpes viruses and antivirals against respiratory viruses were addressed, this part concerns antivirals against hepatitis viruses (B and C) and human immunodeficiency virus (HIV). Many novel antivirals against hepatitis C virus (HCV) and HIV have been introduced into the clinical practice over the last decade. The recent broadening portfolio of these groups of antivirals is reflected in increasing number of developed analytical methods required to meet the needs of clinical terrain. Part II summarizes the mechanisms of action of antivirals against hepatitis B virus (HBV), HCV, and HIV, their use in clinical practice, and analytical methods for individual classes. It also provides expert opinion on state of art in the field of bioanalysis of these drugs. Analytical methods reflect novelty of these chemical structures and use by far the most current approaches, such as simple and high-throughput sample preparation and fast separation, often by means of UHPLC-MS/MS. Proper method validation based on requirements of bioanalytical guidelines is an inherent part of the developed methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Descriptive and predictive assessment of enzyme activity and enzyme related processes in biorefinery using IR spectroscopy and chemometrics

    DEFF Research Database (Denmark)

    Baum, Andreas

    the understanding of the structural properties of the extracted pectin. Secondly, enzyme kinetics of biomass converting enzymes was examined in terms of measuring enzyme activity by spectral evolution profiling utilizing FTIR. Chemometric multiway methods were used to analyze the tensor datasets enabling the second......-order calibration advantage (reference Theory of Analytical chemistry). As PAPER 3 illustrates the method is universally applicable without the need of any external standards and was exemplified by performing quantitative enzyme activity determinations for glucose oxidase, pectin lyase and a cellolytic enzyme blend...... (Celluclast 1.5L). In PAPER 4, the concept is extended to quantify enzyme activity of two simultaneously acting enzymes, namely pectin lyase and pectin methyl esterase. By doing so the multiway methods PARAFAC, TUCKER3 and NPLS were compared and evaluated towards accuracy and precision....

  3. General discussion about enzymes activities of radiation injury

    International Nuclear Information System (INIS)

    Vucicevic, M.; Sukalo, I.

    1989-01-01

    Researching reliable and practical indicators of radiation injury, however, is very interesting and considerable department of scientific studies, practical and theoretical. Enzymes activities are among biochemical indicators which are changed after radiation injury. Activity of these specific proteins is important in regulation of every biochemical reaction in existing beings. Biological macromolecules can be damaged by radiation or the cell permeability can be changed. All of these influence directly on enzymes activities. In this paper we present the review of the all important enzymes, indicators of the radiation injury, which variances on reference to normal values are significant of the functional and the structural changes of essential organs (author)

  4. General discussion about enzymes activities of radiation injury

    Energy Technology Data Exchange (ETDEWEB)

    Vucicevic, M; Sukalo, I [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1989-07-01

    Researching reliable and practical indicators of radiation injury, however, is very interesting and considerable department of scientific studies, practical and theoretical. Enzymes activities are among biochemical indicators which are changed after radiation injury. Activity of these specific proteins is important in regulation of every biochemical reaction in existing beings. Biological macromolecules can be damaged by radiation or the cell permeability can be changed. All of these influence directly on enzymes activities. In this paper we present the review of the all important enzymes, indicators of the radiation injury, which variances on reference to normal values are significant of the functional and the structural changes of essential organs (author)

  5. Actinomycete enzymes and activities involved in straw saccharification

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, A J; Ball, A S [Liverpool Univ. (UK). Dept. of Genetics and Microbiology

    1990-01-01

    This research programme has been directed towards the analysis of actinomycete enzyme systems involved in the degradation of plant biomass (lignocellulose.) The programme was innovative in that a novel source of enzymes was systematically screened and wheat straw saccharifying activity was the test criterion. Over 200 actinomycete strains representing a broad taxonomic range were screened. A range of specific enzyme activities were involved and included cellulase, xylanase, arabinofuranosidase, acetylesterase, {beta}-xylosidase and {beta}-glucosidase. Since hemicellulose (arabinoxylan) was the primary source of sugar, xylanases were characterized. The xylan-degrading systems of actinomycetes were complex and nonuniform, with up to six separate endoxylanases identified in active strains. Except for microbispora bispora, actinomycetes were found to be a poor source of cellulase activity. Evidence for activity against the lignin fraction of straw was produced for a range of actinomycete strains. While modification reactions were common, cleavage of inter-monomer bonds, and utilization of complex polyphenolic compounds were restricted to two strains: Thermomonospora mesophila and Streptomyces badius. Crude enzyme preparations from actinomycetes can be used to generate sugar, particularly pentoses, directly from cereal straw. The potential for improvements in yield rests with the formulation to cooperative enzyme combinations from different strains. The stability properties of enzymes from thermophilic strains and the general neutral to alkali pH optima offer advantages in certain process situations. Actinomycetes are a particularly rich source of xylanases for commercial application and can rapidly solubilise a lignocarbohydrate fraction of straw which may have both product and pretreatment potential. 31 refs., 4 figs., 5 tabs.

  6. Thermodynamic Activity-Based Progress Curve Analysis in Enzyme Kinetics.

    Science.gov (United States)

    Pleiss, Jürgen

    2018-03-01

    Macrokinetic Michaelis-Menten models based on thermodynamic activity provide insights into enzyme kinetics because they separate substrate-enzyme from substrate-solvent interactions. Kinetic parameters are estimated from experimental progress curves of enzyme-catalyzed reactions. Three pitfalls are discussed: deviations between thermodynamic and concentration-based models, product effects on the substrate activity coefficient, and product inhibition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Immobilized enzyme reactor chromatography: Optimization of protein retention and enzyme activity in monolithic silica stationary phases

    International Nuclear Information System (INIS)

    Besanger, Travis R.; Hodgson, Richard J.; Green, James R.A.; Brennan, John D.

    2006-01-01

    Our group recently reported on the application of protein-doped monolithic silica columns for immobilized enzyme reactor chromatography, which allowed screening of enzyme inhibitors present in mixtures using mass spectrometry for detection. The enzyme was immobilized by entrapment within a bimodal meso/macroporous silica material prepared by a biocompatible sol-gel processing route. While such columns proved to be useful for applications such as screening of protein-ligand interactions, significant amounts of entrapped proteins leached from the columns owing to the high proportion of macropores within the materials. Herein, we describe a detailed study of factors affecting the morphology of protein-doped bioaffinity columns and demonstrate that specific pH values and concentrations of poly(ethylene glycol) can be used to prepare essentially mesoporous columns that retain over 80% of initially loaded enzyme in an active and accessible form and yet still retain sufficient porosity to allow pressure-driven flow in the low μL/min range. Using the enzyme γ-glutamyl transpeptidase (γ-GT), we further evaluated the catalytic constants of the enzyme entrapped in capillary columns with different silica morphologies as a function of flowrate and backpressure using the enzyme reactor assay mode. It was found that the apparent activity of the enzyme was highest in mesoporous columns that retained high levels of enzyme. In such columns, enzyme activity increased by ∼2-fold with increases in both flowrate (from 250 to 1000 nL/min) and backpressure generated (from 500 to 2100 psi) during the chromatographic activity assay owing to increases in k cat and decreases in K M , switching from diffusion controlled to reaction controlled conditions at ca. 2000 psi. These results suggest that columns with minimal macropore volumes (<5%) are advantageous for the entrapment of soluble proteins for bioaffinity and bioreactor chromatography

  8. Inhibition of existing denitrification enzyme activity by chloramphenicol

    Science.gov (United States)

    Brooks, M.H.; Smith, R.L.; Macalady, D.L.

    1992-01-01

    Chloramphenicol completely inhibited the activity of existing denitrification enzymes in acetylene-block incubations with (i) sediments from a nitrate-contaminated aquifer and (ii) a continuous culture of denitrifying groundwater bacteria. Control flasks with no antibiotic produced significant amounts of nitrous oxide in the same time period. Amendment with chloramphenicol after nitrous oxide production had begun resulted in a significant decrease in the rate of nitrous oxide production. Chloramphenicol also decreased (>50%) the activity of existing denitrification enzymes in pure cultures of Pseudomonas denitrificans that were harvested during log- phase growth and maintained for 2 weeks in a starvation medium lacking electron donor. Short-term time courses of nitrate consumption and nitrous oxide production in the presence of acetylene with P. denitrificans undergoing carbon starvation were performed under optimal conditions designed to mimic denitrification enzyme activity assays used with soils. Time courses were linear for both chloramphenicol and control flasks, and rate estimates for the two treatments were significantly different at the 95% confidence level. Complete or partial inhibition of existing enzyme activity is not consistent with the current understanding of the mode of action of chloramphenicol or current practice, in which the compound is frequently employed to inhibit de novo protein synthesis during the course of microbial activity assays. The results of this study demonstrate that chloramphenicol amendment can inhibit the activity of existing denitrification enzymes and suggest that caution is needed in the design and interpretation of denitrification activity assays in which chloramphenicol is used to prevent new protein synthesis.

  9. Antiviral activity of extracts from Brazilian seaweeds against herpes simplex virus

    Directory of Open Access Journals (Sweden)

    Angélica Ribeiro Soares

    2012-08-01

    Full Text Available Organic extracts of 36 species of marine algae (sixteen species of Rhodophyta, eight species of Ochrophyta and twelve species of Chlorophyta from seven locations on the Brazilian coast were evaluated for their anti-HSV-1 and anti-HSV-2 activity resistant to Acyclovir (ACV. Activity tests in crude extracts, followed by the identification of the major compounds present, were performed for all species. The chemical profiles of all crude extracts were obtained by ¹H-NMR and 13C-NMR spectroscopy. The percentage of extracts with antiviral activity was higher for HSV-1 (86.1% than for HSV-2 (55.5%. The green algae Ulva fasciata and Codium decorticatum both showed the highest activity (99.9% against HSV-1, with triacylglycerols and fatty acids as the major components. The red alga Laurencia dendroidea showed good activity against HSV-1 (97.5% and the halogenated sesquiterpenes obtusol and (--elatol were identified as the major components in the extract. Against HSV-2, the green alga Penicillus capitatus (Chlorophyta and Stypopodium zonale (Ochrophyta were the most active (96.0 and 95.8%. Atomaric acid, a meroditerpene, was identified as the major secondary metabolite in the S. zonale extract. These results reinforce the role of seaweeds as important sources of compounds with the potential to enter into the pipeline for development of new drugs against herpes simplex.

  10. Antiviral activity of extracts from Brazilian seaweeds against herpes simplex virus

    Directory of Open Access Journals (Sweden)

    Angélica Ribeiro Soares

    2012-05-01

    Full Text Available Organic extracts of 36 species of marine algae (sixteen species of Rhodophyta, eight species of Ochrophyta and twelve species of Chlorophyta from seven locations on the Brazilian coast were evaluated for their anti-HSV-1 and anti-HSV-2 activity resistant to Acyclovir (ACV. Activity tests in crude extracts, followed by the identification of the major compounds present, were performed for all species. The chemical profiles of all crude extracts were obtained by ¹H-NMR and 13C-NMR spectroscopy. The percentage of extracts with antiviral activity was higher for HSV-1 (86.1% than for HSV-2 (55.5%. The green algae Ulva fasciata and Codium decorticatum both showed the highest activity (99.9% against HSV-1, with triacylglycerols and fatty acids as the major components. The red alga Laurencia dendroidea showed good activity against HSV-1 (97.5% and the halogenated sesquiterpenes obtusol and (--elatol were identified as the major components in the extract. Against HSV-2, the green alga Penicillus capitatus (Chlorophyta and Stypopodium zonale (Ochrophyta were the most active (96.0 and 95.8%. Atomaric acid, a meroditerpene, was identified as the major secondary metabolite in the S. zonale extract. These results reinforce the role of seaweeds as important sources of compounds with the potential to enter into the pipeline for development of new drugs against herpes simplex.

  11. Modification of polymer surfaces to enhance enzyme activity and stability

    DEFF Research Database (Denmark)

    Hoffmann, Christian

    Enzyme immobilization is an important concept for the development of improved biocatalytic processes, primarily through facilitated separation procedures. However, enzyme immobilization usually comes at a price of reduced biocatalytic activity. For this reason, different immobilization methods have...... already been developed, combining the same goal to improve enzyme activity, stability and selectivity. Polymer materials have shown, due to their easy processibility and versatile properties, high potential as enzyme support. However, in order to achieve improved enzyme performance, the combination...... on their tailored surface modification in order to obtain improved enzyme-support systems. Firstly, an off-stoichiometric thiol-ene (OSTE) thermosetting material was used for the development of a screening platform allowing the investigation of micro-environmental effects and their impact on the activity...

  12. Antiviral Potential of Algae Polysaccharides Isolated from Marine Sources: A Review

    Directory of Open Access Journals (Sweden)

    Azin Ahmadi

    2015-01-01

    Full Text Available From food to fertilizer, algal derived products are largely employed in assorted industries, including agricultural, biomedical, food, and pharmaceutical industries. Among different chemical compositions isolated from algae, polysaccharides are the most well-established compounds, which were subjected to a variety of studies due to extensive bioactivities. Over the past few decades, the promising results for antiviral potential of algae-derived polysaccharides have advocated them as inordinate candidates for pharmaceutical research. Numerous studies have isolated various algal polysaccharides possessing antiviral activities, including carrageenan, alginate, fucan, laminaran, and naviculan. In addition, different mechanisms of action have been reported for these polysaccharides, such as inhibiting the binding or internalization of virus into the host cells or suppressing DNA replication and protein synthesis. This review strives for compiling previous antiviral studies of algae-derived polysaccharides and their mechanism of action towards their development as natural antiviral agents for future investigations.

  13. In vivo evaluation of toxicity and antiviral activity of polyrhodanine nanoparticles by using the chicken embryo model.

    Science.gov (United States)

    Nazaktabar, Ahmad; Lashkenari, Mohammad Soleimani; Araghi, Atefeh; Ghorbani, Mohsen; Golshahi, Hannaneh

    2017-10-01

    Evaluation of the potential cytotoxicity of polyrhodanine nanoparticles is an important factor for its biological applications. In current study, for the first time histopathological and biochemical analysis of polyrhodanine besides of its antiviral activity against Newcastle disease virus (NDV) were examined on chicken embryo model. Polyrhodanine was synthesized by the chemical oxidative polymerization method. The obtained nanoparticles were characterized by scanning electron microscopy (SEM), and Fourier transform infrared (FTIR). Different doses of polyrhodanine nanoparticles were injected into the albumen in 4-day-old embryonic eggs for groups: (0.1ppm, 1ppm, 10ppm and 100ppm), while the Control group received only normal saline. The gross examination of chicks revealed no abnormality. No pathological changes were detected in microscopical examination of the liver, kidney, spleen, heart, bursa of Fabricius and central nervous system tissues. Blood serum biochemical indices showed no significant differences between control and treatment groups. Interestingly, polyrhodanine nanoparticles showed strong antiviral activity against NDV in ovo. These preliminary findings suggest that polyrhodanine nanoparticles without any toxicity effect could be utilized in controlling Newcastle disease in chickens. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Free fatty acids induce ER stress and block antiviral activity of interferon alpha against hepatitis C virus in cell culture

    Directory of Open Access Journals (Sweden)

    Gunduz Feyza

    2012-08-01

    Full Text Available Abstract Background Hepatic steatosis is recognized as a major risk factor for liver disease progression and impaired response to interferon based therapy in chronic hepatitis C (CHC patients. The mechanism of response to interferon-alpha (IFN-α therapy under the condition of hepatic steatosis is unexplored. We investigated the effect of hepatocellular steatosis on hepatitis C virus (HCV replication and IFN-α antiviral response in a cell culture model. Methods Sub-genomic replicon (S3-GFP and HCV infected Huh-7.5 cells were cultured with a mixture of saturated (palmitate and unsaturated (oleate long-chain free fatty acids (FFA. Intracytoplasmic fat accumulation in these cells was visualized by Nile red staining and electron microscopy then quantified by microfluorometry. The effect of FFA treatment on HCV replication and IFN-α antiviral response was measured by flow cytometric analysis, Renilla luciferase activity, and real-time RT-PCR. Results FFA treatment induced dose dependent hepatocellular steatosis and lipid droplet accumulation in the HCV replicon cells was confirmed by Nile red staining, microfluorometry, and by electron microscopy. Intracellular fat accumulation supports replication more in the persistently HCV infected culture than in the sub-genomic replicon (S3-GFP cell line. FFA treatment also partially blocked IFN-α response and viral clearance by reducing the phosphorylation of Stat1 and Stat2 dependent IFN-β promoter activation. We show that FFA treatment induces endoplasmic reticulum (ER stress response and down regulates the IFNAR1 chain of the type I IFN receptor leading to defective Jak-Stat signaling and impaired antiviral response. Conclusion These results suggest that intracellular fat accumulation in HCV cell culture induces ER stress, defective Jak-Stat signaling, and attenuates the antiviral response, thus providing an explanation to the clinical observation regarding how hepatocellular steatosis influences IFN

  15. In-vitro antiviral efficacy of ribavirin and interferon-alpha against canine distemper virus.

    Science.gov (United States)

    Carvalho, Otávio V; Saraiva, Giuliana L; Ferreira, Caroline G T; Felix, Daniele M; Fietto, Juliana L R; Bressan, Gustavo C; Almeida, Márcia R; Silva Júnior, Abelardo

    2014-10-01

    Canine distemper is a highly contagious disease with high incidence and lethality in the canine population. The objective of this study was to evaluate the efficacy of antiviral action with ribavirin (RBV), interferon-alpha (IFNα), and combinations of RBV and IFNα against canine distemper virus (CDV). Vero cells inoculated with CDV were treated with RBV, IFNα, and combinations of these drugs. The efficacy to inhibit viral replication was evaluated by adding the compounds at different times to determine which step of the viral replicative process was affected. Both drugs were effective against CDV in vitro. The IFNα was the most active compound, with an average IC50 (50% inhibitory concentration) value lower than the IC50 of the RBV. Ribavirin (RBV) was more selective than IFNα, however, and neither drug showed extracellular antiviral activity. The combination of RBV and IFNα exhibited antiviral activity for the intra- and extracellular stages of the replicative cycle of CDV, although the intracellular viral inhibition was higher. Both RBV and IFNα showed high antiviral efficacy against CDV, and furthermore, RBV + IFNα combinations have shown greater interference range in viral infectivity. These compounds could potentially be used to treat clinical disease associated with CDV infection.

  16. ENZYME ACTIVITIES OF PADDY SOILS AND RELATIONSHIPS WITH THE SOIL PROPERTIES

    Directory of Open Access Journals (Sweden)

    Rıdvan KIZILKAYA

    1998-03-01

    Full Text Available This study was carried out to determine the effect of soil properties on enzyme activities of paddy soils, the sample of which were taken from Üçpınar, Harız, Doğancı, Kaygusuz, Emenli, Sarıköy and Gelemenağarı villages where rice cultivation is an intensive agricultural system. In this study, soil properties having effects on urease, phosphatase, ß-glucosidase and catalase enzyme activities were setforth. Urease enzyme activities of soil samples varied from 24.12 to 39.03 mg N 100 g dry soil -1 . Significant correlations were determined between urease enzyme activities and organic matter (r = 0.89**, extractable Mn (r = 0.74**, exchangable K (r = 0.73** and total P content of soil (r = 0.81*. Acid phosphatase enzyme activity varied between 3.00-17.44 mg phenol 100 g dry soil -1 , alkaline phosphatase enzyme activity between 12.00-25.53 mg phenol 100 g dry soil-1 . Exchangable Mg (r = 0.71* and extractable Cu (r = 0.74* were found to have positive effect on acid phosphatase enzyme activity and pH (r = 0.73*, exchangable Ca (r = 0.74*, exchangable Mg (r = 0.71*, exchangable total basic cations (r = 0.79* and extractable Cu (r = 0.70* had positive effects on alkaline phosphatase enzyme activity, whereas total P (r = - 0.84** affected the activity negatively. ß-glucosidase enzyme activity was measured to vary between 1.12-3.64 mg salingen 100 g dry soil -1 . It was also observed that extractable Zn content of soil samples (r = - 0.97** had negative effect on ß-glucosidase activity, wheras total exchangable acidic cations (r = 0.70* affected the activity positively. Catalase enzyme activities of soils changed between 5.25 - 9.00 mg O2 5 g dry soil -1 . Significant correlations were found between catalase activities and fraction of soils and extractable Fe content. Positive correlations, however, were determined between catalase activities and clay fraction (r = 0.82* and salt content (r = 0.83** of samples.

  17. Mechanism of action of a pestivirus antiviral compound

    Science.gov (United States)

    Baginski, Scott G.; Pevear, Daniel C.; Seipel, Marty; Sun, Siu Chi Chang; Benetatos, Christopher A.; Chunduru, Srinivas K.; Rice, Charles M.; Collett, Marc S.

    2000-01-01

    We report here the discovery of a small molecule inhibitor of pestivirus replication. The compound, designated VP32947, inhibits the replication of bovine viral diarrhea virus (BVDV) in cell culture at a 50% inhibitory concentration of approximately 20 nM. VP32947 inhibits both cytopathic and noncytopathic pestiviruses, including isolates of BVDV-1, BVDV-2, border disease virus, and classical swine fever virus. However, the compound shows no activity against viruses from unrelated virus groups. Time of drug addition studies indicated that VP32947 acts after virus adsorption and penetration and before virus assembly and release. Analysis of viral macromolecular synthesis showed VP32947 had no effect on viral protein synthesis or polyprotein processing but did inhibit viral RNA synthesis. To identify the molecular target of VP32947, we isolated drug-resistant (DR) variants of BVDV-1 in cell culture. Sequence analysis of the complete genomic RNA of two DR variants revealed a single common amino acid change located within the coding region of the NS5B protein, the viral RNA-dependent RNA polymerase. When this single amino acid change was introduced into an infectious clone of drug-sensitive wild-type (WT) BVDV-1, replication of the resulting virus was resistant to VP32947. The RNA-dependent RNA polymerase activity of the NS5B proteins derived from WT and DR viruses expressed and purified from recombinant baculovirus-infected insect cells confirmed the drug sensitivity of the WT enzyme and the drug resistance of the DR enzyme. This work formally validates NS5B as a target for antiviral drug discovery and development. The utility of VP32947 and similar compounds for the control of pestivirus diseases, and for hepatitis C virus drug discovery efforts, is discussed. PMID:10869440

  18. Homology modelling and docking studies on Neuraminidase enzyme as a natural product target for combating influenza

    Directory of Open Access Journals (Sweden)

    Nisha Singh

    2017-10-01

    Full Text Available Influenza remains to be dreadful with yearly epidemics and sudden pandemic outbreaks causing significant mortality, even in nations with the most advanced health care systems. Thus, there has been a long-standing interest to develop effective and safe antiviral agents to treat infected individuals. Attempt to identify suitable molecular targets as antiviral compounds have focused recently on the influenza virus neuraminidase (NA, a key enzyme in viral replication [1]. In this research, virtual screening was done on a total of 600 natural compounds from 22 ethno medicinal Indian herbs for activity against neuraminidase enzyme exploiting representative protein conformations selected from molecular dynamics simulations. Neuraminidase enzyme sequences from different existing strains available on National Center of Biotechnology Information [2] (NCBI protein database were aligned using Clustal W [3] and CLC workbench 10 [4] to find the conserved residues. Neuraminidase protein sequence from H1N1 strain available on NCBI was used to structure 3D target model predicted against dataset from Protein data bank using modeller [5]. The target model was validated on different parameter at SAVES Server [6]. Using this target model a pharmacophore model was developed using ligand based strategy exploiting the three known inhibitors. The docking parameters were validated by redocking Zanamivir to its co-complex 2009 H1N1 NA crystal structure (PDB ID: 3TI5 generating best pose with a RMSD value of 0.7543 A°. This model was then used for in silico analysis of a library of natural compounds from 22 ethno medicinal Indian herbs known to have antiviral activity taken downloaded from PubChem database and selected on the basis of drug likeliness. All the compounds were docked in the binding pocket of neuraminidase. Top compounds having binding affinity better than or comparable to the control drug Zanamivir were selected and analyzed for their ADME and toxicity

  19. Finding Biomass Degrading Enzymes Through an Activity-Correlated Quantitative Proteomics Platform (ACPP)

    Science.gov (United States)

    Ma, Hongyan; Delafield, Daniel G.; Wang, Zhe; You, Jianlan; Wu, Si

    2017-04-01

    The microbial secretome, known as a pool of biomass (i.e., plant-based materials) degrading enzymes, can be utilized to discover industrial enzyme candidates for biofuel production. Proteomics approaches have been applied to discover novel enzyme candidates through comparing protein expression profiles with enzyme activity of the whole secretome under different growth conditions. However, the activity measurement of each enzyme candidate is needed for confident "active" enzyme assignments, which remains to be elucidated. To address this challenge, we have developed an Activity-Correlated Quantitative Proteomics Platform (ACPP) that systematically correlates protein-level enzymatic activity patterns and protein elution profiles using a label-free quantitative proteomics approach. The ACPP optimized a high performance anion exchange separation for efficiently fractionating complex protein samples while preserving enzymatic activities. The detected enzymatic activity patterns in sequential fractions using microplate-based assays were cross-correlated with protein elution profiles using a customized pattern-matching algorithm with a correlation R-score. The ACPP has been successfully applied to the identification of two types of "active" biomass-degrading enzymes (i.e., starch hydrolysis enzymes and cellulose hydrolysis enzymes) from Aspergillus niger secretome in a multiplexed fashion. By determining protein elution profiles of 156 proteins in A. niger secretome, we confidently identified the 1,4-α-glucosidase as the major "active" starch hydrolysis enzyme (R = 0.96) and the endoglucanase as the major "active" cellulose hydrolysis enzyme (R = 0.97). The results demonstrated that the ACPP facilitated the discovery of bioactive enzymes from complex protein samples in a high-throughput, multiplexing, and untargeted fashion.

  20. A single WAP domain (SWD)-containing protein with antiviral activity from Pacific white shrimp Litopenaeus vannamei.

    Science.gov (United States)

    Yang, Linwei; Niu, Shengwen; Gao, Jiefeng; Zuo, Hongliang; Yuan, Jia; Weng, Shaoping; He, Jianguo; Xu, Xiaopeng

    2018-02-01

    The single whey acidic protein (WAP) domain (SWD)-containing proteins, also called type III crustins, are a group of antimicrobial peptides (AMPs) in crustaceans. At present, a number of SWDs have been identified in shrimp, which showed essential antibacterial activities. However, the roles of SWDs in antiviral immune responses have not been reported up to now. In this study, a novel SWD (LvSWD3) was identified from Pacific white shrimp, Litopenaeus vannamei, which contained a typical single WAP domain homologous to those of other crustacean SWDs. Although lacking the pro and arg-rich region between the signal peptide and the WAP domain, LvSWD3 was closely clustered with other shrimp SWDs in the phylogenetic tree. Similar to many shrimp SWDs, the highest expression of LvSWD3 was detected in hemocytes. The LvSWD3 expression exhibited only limited changes after challenges with Vibrio parahaemolyticus, Poly (I:C) and lipopolysaccharide, but was significantly up-regulated after white spot syndrome virus (WSSV) infection. Silencing of LvSWDs significantly accelerated the death of the WSSV-infected but not the V. parahaemolyticus-infected shrimp. The recombinant LvSWD3 protein did not show proteinase inhibitory and antibacterial activities but could significantly postpone the death of WSSV-infected shrimp and reduce the viral load in tissues. These suggested that LvSWD3 was a novel SWD with antiviral activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Microbial Enzyme Activity and Carbon Cycling in Grassland Soil Fractions

    Science.gov (United States)

    Allison, S. D.; Jastrow, J. D.

    2004-12-01

    Extracellular enzymes are necessary to degrade complex organic compounds present in soils. Using physical fractionation procedures, we tested whether old soil carbon is spatially isolated from degradative enzymes across a prairie restoration chronosequence in Illinois, USA. We found that carbon-degrading enzymes were abundant in all soil fractions, including macroaggregates, microaggregates, and the clay fraction, which contains carbon with a mean residence time of ~200 years. The activities of two cellulose-degrading enzymes and a chitin-degrading enzyme were 2-10 times greater in organic matter fractions than in bulk soil, consistent with the rapid turnover of these fractions. Polyphenol oxidase activity was 3 times greater in the clay fraction than in the bulk soil, despite very slow carbon turnover in this fraction. Changes in enzyme activity across the restoration chronosequence were small once adjusted for increases in soil carbon concentration, although polyphenol oxidase activity per unit carbon declined by 50% in native prairie versus cultivated soil. These results are consistent with a `two-pool' model of enzyme and carbon turnover in grassland soils. In light organic matter fractions, enzyme production and carbon turnover both occur rapidly. However, in mineral-dominated fractions, both enzymes and their carbon substrates are immobilized on mineral surfaces, leading to slow turnover. Soil carbon accumulation in the clay fraction and across the prairie restoration chronosequence probably reflects increasing physical isolation of enzymes and substrates on the molecular scale, rather than the micron to millimeter scale.

  2. Bioprospecting of Red Sea Sponges for Novel Antiviral Pharmacophores

    KAUST Repository

    O'Rourke, Aubrie

    2015-05-01

    Natural products offer many possibilities for the treatment of disease. More than 70% of the Earth’s surface is ocean, and recent exploration and access has allowed for new additions to this catalog of natural treasures. The Central Red Sea off the coast of Saudi Arabia serves as a newly accessible location, which provides the opportunity to bioprospect marine sponges with the purpose of identifying novel antiviral scaffolds. Antivirals are underrepresented in present day clinical trials, as well as in the academic screens of marine natural product libraries. Here a high-throughput pipeline was initiated by prefacing the antiviral screen with an Image-based High-Content Screening (HCS) technique in order to identify candidates with antiviral potential. Prospective candidates were tested in a biochemical or cell-based assay for the ability to inhibit the NS3 protease of the West Nile Virus (WNV NS protease) as well as replication and reverse transcription of the Human Immunodeficiency Virus 1 (HIV-1). The analytical chemistry techniques of High-Performance Liquid Chromatograpy (HPLC), Liquid Chromatography-Mass Spectrometry (LC-MS), and Nuclear Magnetic Resonance (NMR) where used in order to identify the compounds responsible for the characteristic antiviral activity of the selected sponge fractions. We have identified a 3-alkyl pyridinium from Amphimedon chloros as the causative agent of the observed WNV NS3 protease inhibition in vitro. Additionally, we identified debromohymenialdisine, hymenialdisine, and oroidin from Stylissa carteri as prospective scaffolds capable of HIV-1 inhibition.

  3. Topoisomerase 1 Inhibition Promotes Cyclic GMP-AMP Synthase-Dependent Antiviral Responses

    Directory of Open Access Journals (Sweden)

    Geneviève Pèépin

    2017-10-01

    Full Text Available Inflammatory responses, while essential for pathogen clearance, can also be deleterious to the host. Chemical inhibition of topoisomerase 1 (Top1 by low-dose camptothecin (CPT can suppress transcriptional induction of antiviral and inflammatory genes and protect animals from excessive and damaging inflammatory responses. We describe the unexpected finding that minor DNA damage from topoisomerase 1 inhibition with low-dose CPT can trigger a strong antiviral immune response through cyclic GMP-AMP synthase (cGAS detection of cytoplasmic DNA. This argues against CPT having only anti-inflammatory activity. Furthermore, expression of the simian virus 40 (SV40 large T antigen was paramount to the proinflammatory antiviral activity of CPT, as it potentiated cytoplasmic DNA leakage and subsequent cGAS recruitment in human and mouse cell lines. This work suggests that the capacity of Top1 inhibitors to blunt inflammatory responses can be counteracted by viral oncogenes and that this should be taken into account for their therapeutic development.

  4. The role of fluoxetine in antiviral therapy for chronic hepatitis C

    Directory of Open Access Journals (Sweden)

    QIN Yuan

    2016-09-01

    Full Text Available More than 20% of chronic hepatitis C (CHC patients receiving the antiviral therapy with interferonα(IFNα experience depression, and fluoxetine is often used to alleviate this symptom. Fluoxetine has anti-inflammatory properties and can change the synthesis of liver lipids, but its influence on antiviral therapy for CHC and related mechanism remain unknown. Recent studies show that fluoxetine can inhibit hepatitis C virus (HCV infection and reduce the production of reactive oxygen species (ROS and lipid accumulation in Huh7.5 cells; in addition, it can promote the antiviral effect mediated by IFNα through activating STAT1 and JNK signaling pathways and thus reduce HCV viral load and the level of alanine aminotransferase in CHC patients. Fluoxetine elevates PPAR response element activity in CHC patients, and its inhibitory effect on HCV infection and lipid accumulation were partly reversed by antagonists including PPARβ/γ, suggesting that fluoxetine inhibits HCV infection, ROS production, and lipid accumulation through regulating PPARβ/γ and JNK/STAT pathways.

  5. Design and evaluation of novel interferon lambda analogs with enhanced antiviral activity and improved drug attributes

    Directory of Open Access Journals (Sweden)

    Yu D

    2016-01-01

    Full Text Available Debin Yu,1 Mingzhi Zhao,2 Liwei Dong,1 Lu Zhao,1 Mingwei Zou,3 Hetong Sun,4 Mengying Zhang,4 Hongyu Liu,4 Zhihua Zou1 1National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 2State Key Laboratory of Proteomics, National Engineering Research Center for Protein Drugs, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, People’s Republic of China; 3Department of Psychology, College of Liberal Arts and Social Sciences, University of Houston, Houston, TX, USA; 4Prosit Sole Biotechnology, Co., Ltd., Beijing, People’s Republic of China Abstract: Type III interferons (IFNs (also called IFN-λ: IFN-λ1, IFN-λ2, IFN-λ3, and IFN-λ4 are critical players in the defense against viral infection of mucosal epithelial cells, where the activity of type I IFNs is weak, and unlike type I IFNs that are associated with severe and diverse side effects, type III IFNs cause minimal side effects due to the highly restricted expression of their receptors, and thus appear to be promising agents for the treatment and prevention of respiratory and gastrointestinal viral infection. However, the antiviral potency of natural type III IFNs is weak compared to type I and, although IFN-λ3 possesses the highest bioactivity among the type III IFNs, IFN-λ1, instead of IFN-λ3, is being developed as a therapeutic drug due to the difficulty to express IFN-λ3 in the prokaryotic expression system. Here, to develop optimal IFN-λ molecules with improved drug attributes, we designed a series of IFN-λ analogs by replacing critical amino acids of IFN-λ1 with the IFN-λ3 counterparts, and vice versa. Four of the designed analogs were successfully expressed in Escherichia coli with high yield and were easily purified from inclusion bodies. Interestingly, all four analogs showed potent activity in inducing the

  6. C7L family of poxvirus host range genes inhibits antiviral activities induced by type I interferons and interferon regulatory factor 1.

    Science.gov (United States)

    Meng, Xiangzhi; Schoggins, John; Rose, Lloyd; Cao, Jingxin; Ploss, Alexander; Rice, Charles M; Xiang, Yan

    2012-04-01

    Vaccinia virus (VACV) K1L and C7L function equivalently in many mammalian cells to support VACV replication and antagonize antiviral activities induced by type I interferons (IFNs). While K1L is limited to orthopoxviruses, genes that are homologous to C7L are found in diverse mammalian poxviruses. In this study, we showed that the C7L homologues from sheeppox virus and swinepox virus could rescue the replication defect of a VACV mutant deleted of both K1L and C7L (vK1L(-)C7L(-)). Interestingly, the sheeppox virus C7L homologue could rescue the replication of vK1L(-)C7L(-) in human HeLa cells but not in murine 3T3 and LA-4 cells, in contrast to all other C7L homologues. Replacing amino acids 134 and 135 of the sheeppox virus C7L homologue, however, made it functional in the two murine cell lines, suggesting that these two residues are critical for antagonizing a putative host restriction factor which has some subtle sequence variation in human and murine cells. Furthermore, the C7L family of host range genes from diverse mammalian poxviruses were all capable of antagonizing type I IFN-induced antiviral activities against VACV. Screening of a library of more than 350 IFN-stimulated genes (ISGs) identified interferon-regulated factor 1 (IRF1) as an inhibitor of vK1L(-)C7L(-) but not wild-type VACV. Expression of either K1L or C7L, however, rendered vK1L(-)C7L(-) resistant to IRF1-induced antiviral activities. Altogether, our data show that K1L and C7L antagonize IRF1-induced antiviral activities and that the host modulation function of C7L is evolutionally conserved in all poxviruses that can readily replicate in tissue-cultured mammalian cells.

  7. Design, synthesis, antiviral activity and mode of action of phenanthrene-containing N-heterocyclic compounds inspired by the phenanthroindolizidine alkaloid antofine.

    Science.gov (United States)

    Yu, Xiuling; Wei, Peng; Wang, Ziwen; Liu, Yuxiu; Wang, Lizhong; Wang, Qingmin

    2016-02-01

    The phenanthroindolizidine alkaloid antofine and its analogues have excellent antiviral activity against tobacco mosaic virus (TMV). To simplify the structure and the synthesis of the phenanthroindolizidine alkaloid, a series of phenanthrene-containing N-heterocyclic compounds (compounds 1 to 33) were designed and synthesised, based on the intermolecular interaction of antofine and TMV RNA, and systematically evaluated for their anti-TMV activity. Most of these compounds exhibited good to reasonable anti-TMV activity. The optimum compounds 5, 12 and 21 displayed higher activity than the lead compound antofine and commercial ribavirin. Compound 12 was chosen for field trials of antiviral efficacy against TMV, and was found to exhibit better activity than control plant virus inhibitors. Compounds 5 and 12 were chosen for mode of action studies. The changes in fluorescence intensity of compounds 5 and 12 on separated TMV RNA showed that these small molecules can also bind to TMV RNA, but the mode is very different from that of antofine. The compounds combining phenanthrene and an N-heterocyclic ring could maintain the anti-TMV activity of phenanthroindolizidines, but their modes of action are different from that of antofine. The present study lays a good foundation for us to find more efficient anti-plant virus reagents. © 2015 Society of Chemical Industry.

  8. Enzyme hydration, activity and flexibility : A neutron scattering approach

    International Nuclear Information System (INIS)

    Kurkal-Siebert, V.; Finney, J.L.; Daniel, R.M.; Smith, Jeremy C.

    2006-01-01

    Recent measurements have demonstrated enzyme activity at hydrations as low as 3%. The question of whether the hydration-induced enzyme flexibility is important for activity is addressed by performing picosecond dynamic neutron scattering experiments on pig liver esterase powders at various temperatures as well as solutions. At all temperatures and hydrations investigated here, significant quasielastic scattering intensity is found in the protein, indicating the presence of anharmonic, diffusive motion. As the hydration increases a temperature-dependent dynamical transition appears and strengthens involving additional diffusive motion. At low temperature, increasing hydration resulted in lower flexibility of the enzyme. At higher temperatures, systems containing sufficient number of water molecules interacting with the protein exhibit increased flexibility. The implication of these results is that, although the additional hydration-induced diffusive motion and flexibility at high temperatures in the enzyme detected here may be related to increased activity, they are not required for the enzyme to function

  9. Isolation of a tyrosine-activating enzyme from baker's yeast

    NARCIS (Netherlands)

    Ven, A.M. van de; Koningsberger, V.V.; Overbeek, J.Th.G.

    1958-01-01

    The extracts of ether-CO2-frozen baker's yeast contain enzymes that catalyze the ATP-linked amino acid activation by way of pyrophosphate elimination. From the extract a tyrosine-activating enzyme could be isolated, which, judging from ultracentrifugation and electrophoretic data, was about 70% pure

  10. Synthesis and antiviral activity of 3'-deoxy-3'-C-hydroxymethyl nucleosides.

    Science.gov (United States)

    Bamford, M J; Coe, P L; Walker, R T

    1990-09-01

    A series of 3'-branched-chain sugar nucleosides, in particular 3'-deoxy-3'-C-hydroxmethyl nucleosides, have been synthesized and evaluated as antiviral agents. Reaction of 1-(2,3-epoxy-5-O-trityl-beta-D-lyxo-pentofuranosyl) derivatives 12 and 13, of uracil and thymine, respectively, with 5,6-dihydro-2-lithio-5-methyl-1,3,5-dithiazine 14 afforded the corresponding 3'-functionalized nucleosides 15 and 16, respectively. Replacement of the trityl group with tertbutyldiphenylsilyl allowed high yielding hydrolysis of the 3'-function to give the 3'-deoxy-3'-C-formyl-beta-D-arabino-pentofuranosyl nucleosides 21 and 22. Desilylation afforded the 1-(3-deoxy-3-C-formyl-beta- D-lyxo-pentofuranosyl) 3',5'-O-hemiacetal nucleosides 33 and 34, respectively. Reduction of the formyl group of 21 and 22, followed by desilylation, yielded the 3'-deoxy-3'-C-(hydroxymethyl)-beta-D-arabino- pentofuranosyl) analogues 7 and 8, respectively. The uracil base moiety of 7 was converted to 5-iodouracil and then to (E)-5-(2-bromovinyl)uracil to furnish an analogue 10 of BVaraU. The 1-(3-deoxy-3-C-(hydroxymethyl)-beta-D-lyxo-pentofuranosyl) and 1-(2,3-dideoxy-3-C-(hydroxymethyl)-beta-D-erythro-pentofuranosyl) derivatives of uracil (31 and 6, respectively) and 5-iodouracil (32 and 9, respectively) were also obtained. All novel, fully deprotected nucleoside analogues were evaluated for antiviral activity against human immunodeficiency virus type-1, herpes simplex virus types-1 and -2, varicella zoster virus, human cytomegalovirus and influenza A. Of the compounds tested only (E)-5-(2-bromovinyl)-1-[3-deoxy- 3-C-(hydroxymethyl)-beta-D-arabino-pentofuranosyl]uracil (10) inhibited VZV (alone), but did so at concentrations well below the cytotoxicity threshold.

  11. Enhancement of antiviral activity of collectin trimers through cross-linking and mutagenesis of the carbohydrate recognition domain

    DEFF Research Database (Denmark)

    White, Mitchell R; Boland, Patrick; Tecle, Tesfaldet

    2010-01-01

    Surfactant protein D (SP-D) plays important roles in innate defense against respiratory viruses [including influenza A viruses (IAVs)]. Truncated trimers composed of its neck and carbohydrate recognition domains (NCRDs) bind various ligands; however, they have minimal inhibitory activity for IAV......., complementary strategies, namely cross-linking of NCRDs through various means and mutagenesis of CRD residues to increase viral binding. These findings may be relevant for antiviral therapy....

  12. Distribution of enzyme activity hotspots induced by earthworms in top- and subsoil

    Science.gov (United States)

    Hoang, D. T. T.

    2016-12-01

    Earthworms (Lumbricus terrestris L.) not only affect soil physics, but they also boost microbial activities and consequently create important hotspots of microbial mediated carbon and nutrient turnover through their burrowing activity. However, it is still unknown to which extend earthworms change the enzyme distribution and activity inside their burrows in top- and subsoil horizons. We hypothesized that earthworm burrows, which are enriched in available substrates, have higher percentage of enzyme activity hotspots than soil without earthworms, and that enzyme activities decreased with increasing depth because of the increasing recalcitrance of organic matter in subsoil. We visualized enzyme distribution inside and outside of worm burrows (biopores) by in situ soil zymography and measured enzyme kinetics of 6 enzymes - β-glucosidase (GLU), cellobiohydrolase (CBH), xylanase (XYL), chitinase (NAG), leucine aminopeptidase (LAP) and acid phosphatase (APT) - in pore and bulk soil material up to 105 cm. Zymography showed a heterogeneous distribution of hotspots in worm burrows. The hotspot areas was 2.4 to 14 times larger in the burrows than in soil without earthworms. However, the dispersion index of hotspot distribution showed more aggregated hotspots in soil without earthworms than in soil with earthworms and burrow wall. Enzyme activities decreased with depth, by a factor of 2 to 8 due to fresh C input from the soil surface. Compared to bulk soil, enzyme activities in topsoil biopores were up to 11 times higher for all enzymes, but in the subsoil activities of XYL, NAG and APT were lower in earthworm biopores than bulk soil. In conclusion, hotspots were twice as concentrated close to earthworm burrows as in surrounding soil. Earthworms exerted stronger effects on enzyme activities in biopores in the topsoil than in subsoil. Keywords: Earthworms, hotspots, enzyme activities, enzyme distribution, subsoil

  13. Type I and Type III Interferons Display Different Dependency on Mitogen-Activated Protein Kinases to Mount an Antiviral State in the Human Gut.

    Science.gov (United States)

    Pervolaraki, Kalliopi; Stanifer, Megan L; Münchau, Stephanie; Renn, Lynnsey A; Albrecht, Dorothee; Kurzhals, Stefan; Senís, Elena; Grimm, Dirk; Schröder-Braunstein, Jutta; Rabin, Ronald L; Boulant, Steeve

    2017-01-01

    Intestinal epithelial cells (IECs) are constantly exposed to commensal flora and pathogen challenges. How IECs regulate their innate immune response to maintain gut homeostasis remains unclear. Interferons (IFNs) are cytokines produced during infections. While type I IFN receptors are ubiquitously expressed, type III IFN receptors are expressed only on epithelial cells. This epithelium specificity strongly suggests exclusive functions at epithelial surfaces, but the relative roles of type I and III IFNs in the establishment of an antiviral innate immune response in human IECs are not clearly defined. Here, we used mini-gut organoids to define the functions of types I and III IFNs to protect the human gut against viral infection. We show that primary non-transformed human IECs, upon viral challenge, upregulate the expression of both type I and type III IFNs at the transcriptional level but only secrete type III IFN in the supernatant. However, human IECs respond to both type I and type III IFNs by producing IFN-stimulated genes that in turn induce an antiviral state. Using genetic ablation of either type I or type III IFN receptors, we show that either IFN can independently restrict virus infection in human IECs. Importantly, we report, for the first time, differences in the mechanisms by which each IFN establishes the antiviral state. Contrary to type I IFN, the antiviral activity induced by type III IFN is strongly dependent on the mitogen-activated protein kinases signaling pathway, suggesting a pathway used by type III IFNs that non-redundantly contributes to the antiviral state. In conclusion, we demonstrate that human intestinal epithelial cells specifically regulate their innate immune response favoring type III IFN-mediated signaling, which allows for efficient protection against pathogens without producing excessive inflammation. Our results strongly suggest that type III IFN constitutes the frontline of antiviral response in the human gut. We propose that

  14. Chaperone-like activities of α-synuclein: α-Synuclein assists enzyme activities of esterases

    International Nuclear Information System (INIS)

    Ahn, Misun; Kim, SeungBum; Kang, Mira; Ryu, Yeonwoo; Doohun Kim, T.

    2006-01-01

    α-Synuclein, a major constituent of Lewy bodies (LBs), has been implicated to play a critical role in the pathogenesis of Parkinson's disease (PD), although the physiological function of α-synuclein has not yet been known. Here we have shown that α-synuclein, which has no well-defined secondary or tertiary structure, can protect the enzyme activity of microbial esterases against stress conditions such as heat, pH, and organic solvents. In particular, the flexibility of α-synuclein and its C-terminal region seems to be important for complex formation, but the structural integrity of the C-terminal region may not be required for stabilization of enzyme activity. In addition, atomic force microscopy (AFM) and in vivo enzyme assays showed highly specific interactions of esterases with α-synuclein. Our results indicate that α-synuclein not only protects the enzyme activity of microbial esterases in vitro, but also can stabilize the active conformation of microbial esterases in vivo

  15. Novel drugs targeting Toll-like receptors for antiviral therapy.

    Science.gov (United States)

    Patel, Mira C; Shirey, Kari Ann; Pletneva, Lioubov M; Boukhvalova, Marina S; Garzino-Demo, Alfredo; Vogel, Stefanie N; Blanco, Jorge Cg

    2014-09-01

    Toll-like receptors (TLRs) are sentinel receptors of the host innate immune system that recognize conserved 'pathogen-associated molecular patterns' of invading microbes, including viruses. The activation of TLRs establishes antiviral innate immune responses and coordinates the development of long-lasting adaptive immunity in order to control viral pathogenesis. However, microbe-induced damage to host tissues may release 'danger-associated molecular patterns' that also activate TLRs, leading to an overexuberant inflammatory response and, ultimately, to tissue damage. Thus, TLRs have proven to be promising targets as therapeutics for the treatment of viral infections that result in inflammatory damage or as adjuvants in order to enhance the efficacy of vaccines. Here, we explore recent advances in TLR biology with a focus on novel drugs that target TLRs (agonists and antagonists) for antiviral therapy.

  16. Antiviral Properties of Caffeic Acid Phenethyl Ester and Its Potential Application

    Directory of Open Access Journals (Sweden)

    Haci Kemal Erdemli

    2015-12-01

    Full Text Available Caffeic acid phenethyl ester (CAPE is found in variety of plants and well known active ingredient of the honeybee propolis. CAPE showed anti-inflammatory, anticarcinogenic, antimitogenic, antiviral and immunomodulatory properties in several studies. The beneficial effects of CAPE on different health issues attracted scientists to make more studies on CAPE. Specifically, the anti-viral effects of CAPE and its molecular mechanisms may reveal the important properties of virus-induced diseases. CAPE and its targets may have important roles to design new therapeutics and understand the molecular mechanisms of virus related diseases. In this mini-review, we summarize the antiviral effects of CAPE under the light of medical and chemical literature. [J Intercult Ethnopharmacol 2015; 4(4.000: 344-347

  17. Pandemic pharmaceutical dosing effects on wastewater treatment: no adaptation of activated sludge bacteria to degrade the antiviral drug oseltamivir (Tamiflu®) and loss of nutrient removal performance.

    Science.gov (United States)

    Slater, Frances R; Singer, Andrew C; Turner, Susan; Barr, Jeremy J; Bond, Philip L

    2011-02-01

    The 2009-2010 influenza pandemic saw many people treated with antivirals and antibiotics. High proportions of both classes of drugs are excreted and enter wastewater treatment plants (WWTPs) in biologically active forms. To date, there has been no study into the potential for influenza pandemic-scale pharmaceutical use to disrupt WWTP function. Furthermore, there is currently little indication as to whether WWTP microbial consortia can degrade antiviral neuraminidase inhibitors when exposed to pandemic-scale doses. In this study, we exposed an aerobic granular sludge sequencing batch reactor, operated for enhanced biological phosphorus removal (EBPR), to a simulated influenza-pandemic dosing of antibiotics and antivirals for 8 weeks. We monitored the removal of the active form of Tamiflu(®), oseltamivir carboxylate (OC), bacterial community structure, granule structure and changes in EBPR and nitrification performance. There was little removal of OC by sludge and no evidence that the activated sludge community adapted to degrade OC. There was evidence of changes to the bacterial community structure and disruption to EBPR and nitrification during and after high-OC dosing. This work highlights the potential for the antiviral contamination of receiving waters and indicates the risk of destabilizing WWTP microbial consortia as a result of high concentrations of bioactive pharmaceuticals during an influenza pandemic. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  18. Influence of 2. 45 GHz microwave radiation on enzyme activity

    Energy Technology Data Exchange (ETDEWEB)

    Galvin, M J; Parks, D L; McRee, D I

    1981-05-01

    The in vitro activity of acetylcholinesterase and creatine phosphokinase was determined during in vitro exposure to 2.45 GHz microwave radiation. The enzyme activities were examined during exposure to microwave radiation at specific absorption rates (SAR) of 1, 10, 50, and 100 mW/g. These specific absorption rates had no effect on the activity of either enzyme when the temperature of the control and exposed samples were similar. These data demonstrate that the activity of these two enzymes is not affected by microwave radiation at the SARs and frequency employed in this study.

  19. HPRT Enzyme Activity of Blood Cells From Patients With Downs Syndrome

    International Nuclear Information System (INIS)

    Sbubber, E.K.; Abdul-Rahman, M.H.; Sultan, A.F.; Hamamy, H.A.

    1998-01-01

    Hypoxanthine phosphoribosyl transferase (HPRT) enzyme activity was determined in erythrocytes from 16 children (aged below one year to 11 year) with down s syndrome using 8-C 14 Hypoxanthine and radioeleelrophorsis techniques. Significant (P<0.01) reduction in HPRT enzyme activity was seen in D S children compared to that of 18 (age and sex matched) healthy children. Pure 21 - trisomic erythrocytes expressed lower enzyme activity than mosaic cell. Mothers of D S children showed significantly (P<0.01) lower enzyme activity than mothers of normal children . Reduced activity of HPRT enzyme was also observed in PHA-stimulated lymphocytes of DS children and their mothers. These results indicated that deficiency of HPRT in D S patients may contribute to the abnormal purine metabolism associated with the symptomatology of this syndrome

  20. Interferon induced IFIT family genes in host antiviral defense.

    Science.gov (United States)

    Zhou, Xiang; Michal, Jennifer J; Zhang, Lifan; Ding, Bo; Lunney, Joan K; Liu, Bang; Jiang, Zhihua

    2013-01-01

    Secretion of interferons (IFNs) from virus-infected cells is a hallmark of host antiviral immunity and in fact, IFNs exert their antiviral activities through the induction of antiviral proteins. The IFN-induced protein with tetratricopeptide repeats (IFITs) family is among hundreds of IFN-stimulated genes. This family contains a cluster of duplicated loci. Most mammals have IFIT1, IFIT2, IFIT3 and IFIT5; however, bird, marsupial, frog and fish have only IFIT5. Regardless of species, IFIT5 is always adjacent to SLC16A12. IFIT family genes are predominantly induced by type I and type III interferons and are regulated by the pattern recognition and the JAK-STAT signaling pathway. IFIT family proteins are involved in many processes in response to viral infection. However, some viruses can escape the antiviral functions of the IFIT family by suppressing IFIT family genes expression or methylation of 5' cap of viral molecules. In addition, the variants of IFIT family genes could significantly influence the outcome of hepatitis C virus (HCV) therapy. We believe that our current review provides a comprehensive picture for the community to understand the structure and function of IFIT family genes in response to pathogens in human, as well as in animals.

  1. What You Should Know about Flu Antiviral Drugs

    Science.gov (United States)

    ... Other What You Should Know About Flu Antiviral Drugs Language: English (US) Español Recommend on Facebook Tweet ... used to treat flu illness. What are antiviral drugs? Antiviral drugs are prescription medicines (pills, liquid, an ...

  2. In vitro inhibition of canine distemper virus by flavonoids and phenolic acids: implications of structural differences for antiviral design.

    Science.gov (United States)

    Carvalho, O V; Botelho, C V; Ferreira, C G T; Ferreira, H C C; Santos, M R; Diaz, M A N; Oliveira, T T; Soares-Martins, J A P; Almeida, M R; Silva, A

    2013-10-01

    Infection caused by canine distemper virus (CDV) is a highly contagious disease with high incidence and lethality in the canine population. Antiviral activity of flavonoids quercetin, morin, rutin and hesperidin, and phenolic cinnamic, trans-cinnamic and ferulic acids were evaluated in vitro against the CDV using the time of addition assay to determine which step of the viral replicative cycle was affected. All flavonoids displayed great viral inhibition when they were added at the times 0 (adsorption) and 1h (penetration) of the viral replicative cycle. Both quercetin and hesperidin presented antiviral activity at the time 2h (intracellular). In the other hand, cinnamic acid showed antiviral activity at the times 0 and 2h while trans-cinnamic acid showed antiviral effect at the times -1h (pre-treatment) and 0 h. Ferulic acid inhibited CDV replicative cycle at the times 0 and 1h. Our study revealed promising candidates to be considered in the treatment of CDV. Structural differences among compounds and correlation to their antiviral activity were also explored. Our analysis suggest that these compounds could be useful in order to design new antiviral drugs against CDV as well as other viruses of great meaning in veterinary medicine. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Predictors of hepatitis B cure using gene therapy to deliver DNA cleavage enzymes: a mathematical modeling approach.

    Directory of Open Access Journals (Sweden)

    Joshua T Schiffer

    Full Text Available Most chronic viral infections are managed with small molecule therapies that inhibit replication but are not curative because non-replicating viral forms can persist despite decades of suppressive treatment. There are therefore numerous strategies in development to eradicate all non-replicating viruses from the body. We are currently engineering DNA cleavage enzymes that specifically target hepatitis B virus covalently closed circular DNA (HBV cccDNA, the episomal form of the virus that persists despite potent antiviral therapies. DNA cleavage enzymes, including homing endonucleases or meganucleases, zinc-finger nucleases (ZFNs, TAL effector nucleases (TALENs, and CRISPR-associated system 9 (Cas9 proteins, can disrupt specific regions of viral DNA. Because DNA repair is error prone, the virus can be neutralized after repeated cleavage events when a target sequence becomes mutated. DNA cleavage enzymes will be delivered as genes within viral vectors that enter hepatocytes. Here we develop mathematical models that describe the delivery and intracellular activity of DNA cleavage enzymes. Model simulations predict that high vector to target cell ratio, limited removal of delivery vectors by humoral immunity, and avid binding between enzyme and its DNA target will promote the highest level of cccDNA disruption. Development of de novo resistance to cleavage enzymes may occur if DNA cleavage and error prone repair does not render the viral episome replication incompetent: our model predicts that concurrent delivery of multiple enzymes which target different vital cccDNA regions, or sequential delivery of different enzymes, are both potentially useful strategies for avoiding multi-enzyme resistance. The underlying dynamics of cccDNA persistence are unlikely to impact the probability of cure provided that antiviral therapy is given concurrently during eradication trials. We conclude by describing experiments that can be used to validate the model, which

  4. Chaperone-Like Activity of ß-Casein and Its Effect on Residual in Vitro Activity of Food Enzymes

    DEFF Research Database (Denmark)

    Sulewska, Anna Maria

    ABSTRACT Activity of endogenous enzymes may cause browning of fruits and vegetables. These enzymes can be inactivated, for example by heat treatment, but the response of enzymes to heat treatment depends on many factors. Foods are very complex systems and the stability of enzymes......-casein on the enzymatic activity of three targets was tested by monitoring enzyme activity after heat treatment and by measuring the intensity of scattered light during and after heat treatment. β-Casein was shown to interact at elevated temperatures with three selected targets:horseradish peroxidase, tyrosinase from......, residual activity of horseradish peroxidase was lower in samples containing BSA than in samples without any addition. Horseradish peroxidase heated with BSA did not regain activity within one hour after treatment. BSA is often added to enzyme solutions to prevent enzyme adhesion to vial surfaces...

  5. Concentration profiles near an activated enzyme.

    Science.gov (United States)

    Park, Soohyung; Agmon, Noam

    2008-09-25

    When a resting enzyme is activated, substrate concentration profile evolves in its vicinity, ultimately tending to steady state. We use modern theories for many-body effects on diffusion-influenced reactions to derive approximate analytical expressions for the steady-state profile and the Laplace transform of the transient concentration profiles. These show excellent agreement with accurate many-particle Brownian-dynamics simulations for the Michaelis-Menten kinetics. The steady-state profile has a hyperbolic dependence on the distance of the substrate from the enzyme, albeit with a prefactor containing the complexity of the many-body effects. These are most conspicuous for the substrate concentration at the surface of the enzyme. It shows an interesting transition as a function of the enzyme turnover rate. When it is high, the contact concentration decays monotonically to steady state. However, for slow turnover it is nonmonotonic, showing a minimum due to reversible substrate binding, then a maximum due to diffusion of new substrate toward the enzyme, and finally decay to steady state. Under certain conditions one can obtain a good estimate for the critical value of the turnover rate constant at the transition.

  6. Extraction of Active Enzymes from "Hard-to-Break-Cells"

    DEFF Research Database (Denmark)

    Ottaviani, Alessio; Tesauro, Cinzia; Fjelstrup, S

    We present the utilization of a rolling circle amplification (RCA) based assay to investigate the extraction efficiency of active enzymes from a class of “hard-to-break” cells, yeast Saccaramyces cerevisiae. Current analyses of microorganisms, such as pathogenic bacteria, parasites or particular...... life stages of microorganisms (e.g. spores from bacteria or fungi) is hampered by the lack of efficient lysis protocols that preserve the activity and integrity of the cellular content. Presented herein is a flexible scheme to screen lysis protocols for active enzyme extraction. We also report a gentle...... yet effective approach for extraction of active enzymes by entrapping cells in microdroplets. Combined effort of optimized extraction protocols and effective analytical approaches is expected to generate impact in future disease diagnosis and environmental safety....

  7. Stimulation of Escherichia coli DNA photoreactivating enzyme activity by adenosine 5'-triphosphate

    International Nuclear Information System (INIS)

    Koka, P.

    1984-01-01

    A purification procedure consisting of Biorex-70, single-stranded DNA-agarose, and ultraviolet (UV) light irradiated DNA-cellulose chromatography has been adopted for the Escherichia coli photoreactivating enzyme, to obtain enzyme preparations that are free of extraneous nucleic acid or nucleotides. The purification yields high specific activities (75 000 pmol h -1 mg -1 ) with a 50% recovery. Enzyme preparations have also been obtained from UV-irradiated DNA-cellulose by exposure to visible light. These enzyme preparations contain oligoribonucleotides, up to 26 nucleotides in length in relation to DNA size markers, but these are not essential for enzymatic activity. When the enzyme is preincubated with exogenous ATP a 10-fold stimulation in the enzyme activity has been observed. It has been determined by polyacrylamide gel electrophoresis and high-voltage diethylaminoethyl paper electrophoresis that the light-released enzyme samples from a preincubated and washed mixture of the enzyme, [γ- 32 P]ATP, and UV-irradiated DNA-cellulose contained exogenous [γ- 32 P], which eluted with the enzyme-containing fractions when subjected to Bio-Gel P-30 chromatography. GTP caused a slight enhancement of the enzyme activity while ADP strongly inhibited photoreactivation, at the same concentration and conditions. Higher (X5) concentrations of ADP and adenosine 5'-(β, γ-methylenetriphosphate) totally inhibited the enzyme activity. Dialysis of a photoreactivating enzyme preparation against a buffer solution containing 1 mM ATP caused a 9-fold stimulation of the enzyme activity. In addition, there is an apparent hydrolysis of ATP during photoreactivation as measured by the release of 32 P from [γ- 32 P]ATP

  8. Enzyme activity measurement via spectral evolution profiling and PARAFAC

    DEFF Research Database (Denmark)

    Baum, Andreas; Meyer, Anne S.; Garcia, Javier Lopez

    2013-01-01

    The recent advances in multi-way analysis provide new solutions to traditional enzyme activity assessment. In the present study enzyme activity has been determined by monitoring spectral changes of substrates and products in real time. The method relies on measurement of distinct spectral...... fingerprints of the reaction mixture at specific time points during the course of the whole enzyme catalyzed reaction and employs multi-way analysis to detect the spectral changes. The methodology is demonstrated by spectral evolution profiling of Fourier Transform Infrared (FTIR) spectral fingerprints using...

  9. Patterns of functional enzyme activity in fungus farming ambrosia beetles.

    Science.gov (United States)

    De Fine Licht, Henrik H; Biedermann, Peter H W

    2012-06-06

    In wood-dwelling fungus-farming weevils, the so-called ambrosia beetles (Curculionidae: Scolytinae and Platypodinae), wood in the excavated tunnels is used as a medium for cultivating fungi by the combined action of digging larvae (which create more space for the fungi to grow) and of adults sowing and pruning the fungus. The beetles are obligately dependent on the fungus that provides essential vitamins, amino acids and sterols. However, to what extent microbial enzymes support fungus farming in ambrosia beetles is unknown. Here we measure (i) 13 plant cell-wall degrading enzymes in the fungus garden microbial consortium of the ambrosia beetle Xyleborinus saxesenii, including its primary fungal symbionts, in three compartments of laboratory maintained nests, at different time points after gallery foundation and (ii) four specific enzymes that may be either insect or microbially derived in X. saxesenii adult and larval individuals. We discovered that the activity of cellulases in ambrosia fungus gardens is relatively small compared to the activities of other cellulolytic enzymes. Enzyme activity in all compartments of the garden was mainly directed towards hemicellulose carbohydrates such as xylan, glucomannan and callose. Hemicellulolytic enzyme activity within the brood chamber increased with gallery age, whereas irrespective of the age of the gallery, the highest overall enzyme activity were detected in the gallery dump material expelled by the beetles. Interestingly endo-β-1,3(4)-glucanase activity capable of callose degradation was identified in whole-body extracts of both larvae and adult X. saxesenii, whereas endo-β-1,4-xylanase activity was exclusively detected in larvae. Similar to closely related fungi associated with bark beetles in phloem, the microbial symbionts of ambrosia beetles hardly degrade cellulose. Instead, their enzyme activity is directed mainly towards comparatively more easily accessible hemicellulose components of the ray

  10. In vitro schistosomicidal and antiviral activities of Arctium lappa L. (Asteraceae) against Schistosoma mansoni and Herpes simplex virus-1.

    Science.gov (United States)

    Dias, Mirna Meana; Zuza, Ohana; Riani, Lorena R; de Faria Pinto, Priscila; Pinto, Pedro Luiz Silva; Silva, Marcos P; de Moraes, Josué; Ataíde, Ana Caroline Z; de Oliveira Silva, Fernanda; Cecílio, Alzira Batista; Da Silva Filho, Ademar A

    2017-10-01

    Schistosomiasis and herpes diseases represent serious issues to the healthcare systems, infecting a large number of people worldwide, mainly in developing countries. Arctium lappa L. (Asteraceae), known as "bardana" and "burdock", is a medicinal plant popularly used for several purposes, including as antiseptic. In this study, we evaluated the in vitro schistosomicidal and antiherpes activities of the crude extract of A. lappa, which have not yet been described. Fruits of A. lappa L. were extracted by maceration with ethanol: H 2 O (96:4 v/v) in order to obtain the hydroalcoholic extract of A. lappa (AL). In vitro schistosomicidal assays were assessed against adult worms of Schistosoma mansoni, while the in vitro antiviral activity of AL was evaluated on replication of Herpes simplex virus type-1 (HSV-1). Cell viability was measured by MTT assay, using Vero cells and chemical composition of AL was determined by qualitative UPLC-ESI-QTOF-MS analysis. UPLC-ESI-QTOF-MS analysis of AL revealed the presence of dibenzylbutyrolactone lignans, such as arctiin and arctigenin. Results showed that AL was not cytotoxic to Vero cells even when tested at 400μg/mL. qPCR results indicated a significant viral load decreased for all tested concentrations of AL (400, 50, and 3.125μg/mL), which showed similar antiviral effect to acyclovir (50μg/mL) when tested at 400μg/mL. Also, AL (400, 200, and 100μg/mL) caused 100% mortality and significantly reduction on motor activity of all adult worms of S. mansoni. Confocal laser scanning microscopy showed tegumental morphological alterations and changes on the numbers of tubercles of S. mansoni worms in a dose-dependent manner after treatment with AL. This report provides the first evidence for the in vitro schistosomicidal and antiherpes activities of AL, opening the route to further schistosomicidal and antiviral studies with AL and their compounds, especially lignans. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. A Simple and Accurate Method for Measuring Enzyme Activity.

    Science.gov (United States)

    Yip, Din-Yan

    1997-01-01

    Presents methods commonly used for investigating enzyme activity using catalase and presents a new method for measuring catalase activity that is more reliable and accurate. Provides results that are readily reproduced and quantified. Can also be used for investigations of enzyme properties such as the effects of temperature, pH, inhibitors,…

  12. Evolutionary transitions in enzyme activity of ant fungus gardens.

    Science.gov (United States)

    De Fine Licht, Henrik H; Schiøtt, Morten; Mueller, Ulrich G; Boomsma, Jacobus J

    2010-07-01

    Fungus-growing (attine) ants and their fungal symbionts passed through several evolutionary transitions during their 50 million year old evolutionary history. The basal attine lineages often shifted between two main cultivar clades, whereas the derived higher-attine lineages maintained an association with a monophyletic clade of specialized symbionts. In conjunction with the transition to specialized symbionts, the ants advanced in colony size and social complexity. Here we provide a comparative study of the functional specialization in extracellular enzyme activities in fungus gardens across the attine phylogeny. We show that, relative to sister clades, gardens of higher-attine ants have enhanced activity of protein-digesting enzymes, whereas gardens of leaf-cutting ants also have increased activity of starch-digesting enzymes. However, the enzyme activities of lower-attine fungus gardens are targeted primarily toward partial degradation of plant cell walls, reflecting a plesiomorphic state of nondomesticated fungi. The enzyme profiles of the higher-attine and leaf-cutting gardens appear particularly suited to digest fresh plant materials and to access nutrients from live cells without major breakdown of cell walls. The adaptive significance of the lower-attine symbiont shifts remains unclear. One of these shifts was obligate, but digestive advantages remained ambiguous, whereas the other remained facultative despite providing greater digestive efficiency.

  13. Novel α,β-unsaturated amide derivatives bearing α-amino phosphonate moiety as potential antiviral agents.

    Science.gov (United States)

    Lan, Xianmin; Xie, Dandan; Yin, Limin; Wang, Zhenzhen; Chen, Jin; Zhang, Awei; Song, Baoan; Hu, Deyu

    2017-09-15

    Based on flexible construction and broad bioactivity of ferulic acid, a series of novel α,β-unsaturated amide derivatives bearing α-aminophosphonate moiety were designed, synthesized and systematically evaluated for their antiviral activity. Bioassay results indicated that some compounds exhibited good antiviral activities against cucumber mosaic virus (CMV) and tobacco mosaic virus (TMV) in vivo. Especially, compound g18 showed excellent curative and protective activities against CMV, with half-maximal effective concentration (EC 50 ) values of 284.67μg/mL and 216.30μg/mL, which were obviously superior to that of Ningnanmycin (352.08μg/mL and 262.53μg/mL). Preliminary structure-activity relationships (SARs) analysis revealed that the introduction of electron-withdrawing group at the 2-position or 4-position of the aromatic ring is favorable for antiviral activity. Present work provides a promising template for development of potential inhibitor of plant virus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Detection of the antiviral activity of epicatechin isolated from Salacia crassifolia (Celastraceae) against Mayaro virus based on protein C homology modelling and virtual screening.

    Science.gov (United States)

    Ferreira, P G; Ferraz, A C; Figueiredo, J E; Lima, C F; Rodrigues, V G; Taranto, A G; Ferreira, J M S; Brandão, G C; Vieira-Filho, S A; Duarte, L P; de Brito Magalhães, C L; de Magalhães, J C

    2018-02-24

    Mayaro fever, caused by Mayaro virus (MAYV) is a sub-lethal disease with symptoms that are easily confused with those of dengue fever, except for polyarthralgia, which may culminate in physical incapacitation. Recently, outbreaks of MAYV have been documented in metropolitan areas, and to date, there is no therapy or vaccine available. Moreover, there is no information regarding the three-dimensional structure of the viral proteins of MAYV, which is important in the search for antivirals. In this work, we constructed a three-dimensional model of protein C of MAYV by homology modelling, and this was employed in a manner similar to that of receptors in virtual screening studies to evaluate 590 molecules as prospective antiviral agents. In vitro bioassays were utilized to confirm the potential antiviral activity of the flavonoid epicatechin isolated from Salacia crassifolia (Celastraceae). The virtual screening showed that six flavonoids were promising ligands for protein C. The bioassays showed potent antiviral action of epicatechin, which protected the cells from almost all of the effects of viral infection. An effective concentration (EC 50 ) of 0.247 μmol/mL was observed with a selectivity index (SI) of 7. The cytotoxicity assay showed that epicatechin has low toxicity, with a 50% cytotoxic concentration (CC 50 ) greater than 1.723 µmol/mL. Epicatechin was found to be twice as potent as the reference antiviral ribavirin. Furthermore, a replication kinetics assay showed a strong inhibitory effect of epicatechin on MAYV growth, with a reduction of at least four logs in virus production. Our results indicate that epicatechin is a promising candidate for further testing as an antiviral agent against Mayaro virus and other alphaviruses.

  15. Hepatitis C Virus and Antiviral Drug Resistance.

    Science.gov (United States)

    Kim, Seungtaek; Han, Kwang-Hyub; Ahn, Sang Hoon

    2016-11-15

    Since its discovery in 1989, hepatitis C virus (HCV) has been intensively investigated to understand its biology and develop effective antiviral therapies. The efforts of the previous 25 years have resulted in a better understanding of the virus, and this was facilitated by the development of in vitro cell culture systems for HCV replication. Antiviral treatments and sustained virological responses have also improved from the early interferon monotherapy to the current all-oral regimens using direct-acting antivirals. However, antiviral resistance has become a critical issue in the treatment of chronic hepatitis C, similar to other chronic viral infections, and retreatment options following treatment failure have become important questions. Despite the clinical challenges in the management of chronic hepatitis C, substantial progress has been made in understanding HCV, which may facilitate the investigation of other closely related flaviviruses and lead to the development of antiviral agents against these human pathogens.

  16. Evasion of antiviral innate immunity by Theiler's virus L* protein through direct inhibition of RNase L.

    Directory of Open Access Journals (Sweden)

    Frédéric Sorgeloos

    Full Text Available Theiler's virus is a neurotropic picornavirus responsible for chronic infections of the central nervous system. The establishment of a persistent infection and the subsequent demyelinating disease triggered by the virus depend on the expression of L*, a viral accessory protein encoded by an alternative open reading frame of the virus. We discovered that L* potently inhibits the interferon-inducible OAS/RNase L pathway. The antagonism of RNase L by L* was particularly prominent in macrophages where baseline oligoadenylate synthetase (OAS and RNase L expression levels are elevated, but was detectable in fibroblasts after IFN pretreatment. L* mutations significantly affected Theiler's virus replication in primary macrophages derived from wild-type but not from RNase L-deficient mice. L* counteracted the OAS/RNase L pathway through direct interaction with the ankyrin domain of RNase L, resulting in the inhibition of this enzyme. Interestingly, RNase L inhibition was species-specific as Theiler's virus L* protein blocked murine RNase L but not human RNase L or RNase L of other mammals or birds. Direct RNase L inhibition by L* and species specificity were confirmed in an in vitro assay performed with purified proteins. These results demonstrate a novel viral mechanism to elude the antiviral OAS/RNase L pathway. By targeting the effector enzyme of this antiviral pathway, L* potently inhibits RNase L, underscoring the importance of this enzyme in innate immunity against Theiler's virus.

  17. Antiviral activity of Ecasol against feline calicivirus, a surrogate of human norovirus

    Directory of Open Access Journals (Sweden)

    Yogesh Chander

    2012-12-01

    Full Text Available Summary: Human norovirus (NoV is a major cause of acute gastroenteritis in closed settings such as hospitals, hotels and cruise ships. The virus survives on inanimate surfaces for extended periods of time, and environmental contamination has been implicated in its transmission. The disinfection of contaminated areas is important in controlling the spread of NoV infections. Neutral solutions of electrochemically activated (ECA-anolyte have been shown to be powerful disinfectants against a broad range of bacterial pathogens. The active chemical ingredient is hypochlorous acid (HOCl, which is registered as an approved food contact surface sanitizer in the United States by the Environmental Protection Agency, pursuant to 40 CFR 180.940. We evaluated the antiviral activity of Ecasol (an ECA-anolyte against feline calicivirus (FCV, a surrogate of NoV. FCV dried on plastic surfaces was exposed to Ecasol for 1, 2, or 5 min. After exposure to Ecasol, the virus titers were compared with untreated controls to determine the virus inactivation efficacy after different contact times. Ecasol was found to decrease the FCV titer by >5 log10 within 1 min of contact, indicating its suitability for inactivation of NoV on surfaces. Keywords: Ecasol, ECA-anolyte, Trustwater, Electrochemical activation, Norovirus, Feline calicivirus, Fomites

  18. La protéine CG4572 de Drosophile et la propagation du signal ARNi immun antiviral

    OpenAIRE

    Karlikow , Margot

    2015-01-01

    During viral infection, cell survival will depend on adequately giving, receiving and processing information to establish an efficient antiviral immune response. Cellular communication is therefore essential to allow the propagation of immune signals that will confer protection to the entire organism.The major antiviral defense in insects is the RNA interference (RNAi) mechanism that is activated by detection of viral double-stranded RNA (dsRNA). The antiviral RNAi mechanism can be divided in...

  19. Antiviral treatment for Bell's palsy (idiopathic facial paralysis).

    Science.gov (United States)

    Gagyor, Ildiko; Madhok, Vishnu B; Daly, Fergus; Somasundara, Dhruvashree; Sullivan, Michael; Gammie, Fiona; Sullivan, Frank

    2015-11-09

    Corticosteroids are widely used in the treatment of idiopathic facial paralysis (Bell's palsy), but the effectiveness of additional treatment with an antiviral agent is uncertain. Significant morbidity can be associated with severe cases of Bell's palsy. This review was first published in 2001 and revised several times, most recently in 2009. This version replaces an update of the review in Issue 7 of the Cochrane Library subsequently withdrawn because of an ongoing investigation into the reliability of data from an included study. To assess the effects of antiviral treatments alone or in combination with any other therapy for Bell's palsy. On 7 October 2014 we searched the Cochrane Neuromuscular Disease Group Specialized Register, CENTRAL, MEDLINE, EMBASE, LILACS, DARE, NHS EED, and HTA. We also reviewed the bibliographies of the identified trials and contacted trial authors and known experts in the field and relevant drug companies to identify additional published or unpublished data. We searched clinical trials registries for ongoing studies. We considered randomised controlled trials or quasi-randomised controlled trials of antivirals with and without corticosteroids versus control therapies for the treatment of Bell's palsy. We excluded trials that had a high risk of bias in several domains. Pairs of authors independently assessed trials for relevance, eligibility, and risk of bias, using standard Cochrane procedures. Ten trials, including 2280 participants, met the inclusion criteria and are included in the final analysis. Some of the trials were small, and a number were at high or unclear risk of bias. Other trials did not meet current best standards in allocation concealment and blinding. Incomplete recoveryWe found a significant benefit from adding antivirals to corticosteroids in comparison with corticosteroids alone for people with Bell's palsy (risk ratio (RR) 0.61, 95% confidence interval (CI) 0.39 to 0.97, n = 1315). For people with severe Bell

  20. Antiviral potential of medicinal plants against HIV, HSV, influenza, hepatitis, and coxsackievirus: A systematic review.

    Science.gov (United States)

    Akram, Muhammad; Tahir, Imtiaz Mahmood; Shah, Syed Muhammad Ali; Mahmood, Zahed; Altaf, Awais; Ahmad, Khalil; Munir, Naveed; Daniyal, Muhammad; Nasir, Suhaila; Mehboob, Huma

    2018-05-01

    Viral infections are being managed therapeutically through available antiviral regimens with unsatisfactory clinical outcomes. The refractory viral infections resistant to available antiviral drugs are alarming threats and a serious health concern. For viral hepatitis, the interferon and vaccine therapies solely are not ultimate solutions due to recurrence of hepatitis C virus. Owing to the growing incidences of viral infections and especially of resistant viral strains, the available therapeutic modalities need to be improved, complemented with the discovery of novel antiviral agents to combat refractory viral infections. It is widely accepted that medicinal plant heritage is nature gifted, precious, and fueled with the valuable resources for treatment of metabolic and infectious disorders. The aims of this review are to assemble the facts and to conclude the therapeutic potential of medicinal plants in the eradication and management of various viral diseases such as influenza, human immunodeficiency virus (HIV), herpes simplex virus (HSV), hepatitis, and coxsackievirus infections, which have been proven in diverse clinical studies. The articles, published in the English language since 1982 to 2017, were included from Web of Science, Cochrane Library, AMED, CISCOM, EMBASE, MEDLINE, Scopus, and PubMed by using relevant keywords including plants possessing antiviral activity, the antiviral effects of plants, and plants used in viral disorders. The scientific literature mainly focusing on plant extracts and herbal products with therapeutic efficacies against experimental models of influenza, HIV, HSV, hepatitis, and coxsackievirus were included in the study. Pure compounds possessing antiviral activity were excluded, and plants possessing activity against viruses other than viruses in inclusion criteria were excluded. Hundreds of plant extracts with antiviral effect were recognized. However, the data from only 36 families investigated through in vitro and in vivo

  1. [Studies on evaluation of natural products for antiviral effects and their applications].

    Science.gov (United States)

    Hayashi, Toshimitsu

    2008-01-01

    In the search for novel antiviral molecules from natural products, we have discovered various antiviral molecules with characteristic mechanisms of action. Scopadulciol (SDC), isolated from the tropical medicinal plant Scoparia dulcis L., showed stimulatory effects on the antiviral potency of acyclovir (ACV) or ganciclovir (GCV). This effect of SDC was exerted via the activation of viral thymidine kinase (HSV-1 TK) and, as a result, an increase in the cellular concentration of the active form of ACV/GCV, i.e., the triphosphate of ACV or GCV. On the basis of these experimental results, cancer gene therapy using the HSV-1 tk gene and ACV/GCV together with SDC was found to be effective in suppressing the growth of cancer cells in animals. Acidic polysaccharides such as calcium spirulan (Ca-SP) from Spirulina platensis, nostoflan from Nostoc flagelliforme, and a fucoidan from the sporophyll of Undaria pinnatifida (mekabu fucoidan) were also found to be potent inhibitors against several enveloped viruses. Their antiviral potency was dependent on molecular weight and content of the sulfate or carboxyl group as well as counterion species chelating with sulfate groups, indicating the importance of the three-dimensional structure of the molecules. In addition, unlike dextran sulfate, Ca-SP was shown to target not only viral absorption/penetration stages but also some replication stages of progeny viruses after penetration into cells. When mekabu fucoidan or nostoflan was administered with oseltamivir phosphate, their synergistic antiviral effects on influenza A virus were confirmed in vitro as well as in vivo.

  2. [{sup 11}C]FMAU and [{sup 18}F]FHPG as PET tracers for herpes simplex virus thymidine kinase enzyme activity and human cytomegalovirus infections

    Energy Technology Data Exchange (ETDEWEB)

    Vries, Erik F.J. de E-mail: e.f.j.de.vries@pet.azg.nl; Waarde, Aren van; Harmsen, Marco C.; Mulder, Nanno H.; Vaalburg, Willem; Hospers, Geke A.P

    2000-02-01

    [{sup 11}C]-2'-Fluoro-5-methyl-1-{beta}-D-arabinofuranosyluracil ([{sup 11}C]FMAU) and [{sup 18}F]-9-[(3-fluoro-1-hydroxy-2-propoxy)methyl]guanine ([{sup 18}F]FHPG), radiolabeled representatives of two classes of antiviral agents, were evaluated as tracers for measuring herpes simplex virus thymidine kinase (HSV-tk) enzyme activity after gene transfer and as tracers for localization of active human cytomegalovirus (HCMV) infections. In vitro accumulation experiments revealed that both [{sup 11}C]FMAU and [{sup 18}F]FHPG accumulated significantly more in HSV-tk expressing cells than they did in control cells. [{sup 18}F]FHPG uptake in HSV-tk expressing cells, however, was found to depend strongly on the cell line used, which might be due to cell type dependent membrane transport or cell type dependent substrate specific susceptibility of the enzyme. In vitro, both tracers exhibited a good selectivity for accumulation in HCMV-infected human umbilical vein endothelial cells over uninfected cells. In contrast to [{sup 18}F]FHPG, [{sup 11}C]FMAU uptake in control cells was relatively high due to phosphorylation of the tracer by host kinases. Therefore, [{sup 18}F]FHPG appears to be the more selective tracer not only to predict HSV-tk gene therapy outcome, but also to localize active HCMV infections with PET.

  3. New Approaches for Quantitating the Inhibition of HIV-1 Replication by Antiviral Drugs in vitro and in vivo

    Science.gov (United States)

    McMahon, Moira A.; Shen, Lin; Siliciano, Robert F.

    2014-01-01

    Purpose of review With highly active anti-retroviral therapy (HAART), HIV-1 infection has become a manageable lifelong disease. Developing optimal treatment regimens requires understanding how to best measure anti-HIV activity in vitro and how drug dose response curves generated in vitro correlate with in vivo efficacy. Recent findings Several recent studies have indicated that conventional multi-round infectivity assays are inferior to single cycle assays at both low and high levels of inhibition. Multi-round infectivity assays can fail to detect subtle but clinically significant anti-HIV activity. The discoveries of the anti-HIV activity of the hepatitis B drug entecavir and the herpes simplex drug acyclovir were facilitated by single round infectivity assays. Recent studies using a single round infectivity assay have shown that a previously neglected parameter, the dose response curve slope, is an extremely important determinant of antiviral activity. Some antiretroviral drugs have steep slopes that result in extraordinary levels of antiviral activity. The instantaneous inhibitory potential (IIP), the log reduction in infectivity in a single round assay at clinical drug concentrations, has been proposed as a novel index for comparing antiviral activity. Summary Among in vitro measures of antiviral activity, single round infection assays have the advantage of measure instantaneous inhibition by a drug. Re-evaluating the antiviral activity of approved HIV-1 drugs has shown that the slope parameter is an important factor in drug activity. Determining the IIP by using a single round infectivity assay may provide important insights that can predict the in vivo efficacy of anti-HIV-1 drugs. PMID:19841584

  4. Nucleoside analogues are activated by bacterial deoxyribonucleoside kinases in a species-specific manner

    DEFF Research Database (Denmark)

    Sandrini, Michael; Clausen, Anders; On, Stephen L. W.

    2007-01-01

    To investigate the bactericidal activity of antiviral and anticancer nucleoside analogues against a variety of pathogenic bacteria and characterize the activating enzymes, deoxyribonucleoside kinases (dNKs). Several FDA-approved nucleoside analogue drugs were screened for their potential bacteric......-specific manner. Therefore, nucleoside analogues have a potential to be employed as antibiotics in the fight against emerging multiresistant bacteria....

  5. Light-regulation of enzyme activity in anacystis nidulans (Richt.).

    Science.gov (United States)

    Duggan, J X; Anderson, L E

    1975-01-01

    The effect of light on the levels of activity of six enzymes which are light-modulated in higher plants was examined in the photosynthetic procaryot Anacystis nidulans. Ribulose-5-phosphate kinase (EC 2.7.1.19) was found to be light-activated in vivo and dithiothreitol-activated in vitro while glucose-6-phosphate dehydrogenase (EC 1.1.1.49) was light-inactivated and dithiothreitol-inactivated. The enzymes fructose-1,6-diphosphate phosphatase (EC 3.1.3.11), sedoheptulose-1,7-diphosphate phosphatase, NAD- and NADP-linked glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12; EC 1.2.1.13) were not affected by light treatment of the intact algae, but sedoheptulose-diphosphate phosphatase and the glyceraldehyde-3-phosphate dehydrogenases were dithiothreitol-activated in crude extracts. Light apparently controls the activity of the reductive and oxidative pentose phosphate pathway in this photosynthetic procaryot as in higher plants, through a process which probably involves reductive modulation of enzyme activity.

  6. Arbidol (Umifenovir): A broad-spectrum antiviral drug that inhibits medically important arthropod-borne flaviviruses

    Czech Academy of Sciences Publication Activity Database

    Haviernik, J.; Štefánik, M.; Fojtíková, M.; Kali, S.; Tordo, N.; Rudolf, Ivo; Hubálek, Zdeněk; Eyer, Luděk; Růžek, Daniel

    2018-01-01

    Roč. 10, č. 4 (2018), č. článku 184. ISSN 1999-4915 R&D Projects: GA ČR(CZ) GA16-20054S Institutional support: RVO:68081766 ; RVO:60077344 Keywords : Antiviral activity * Arbidol * Cell-type dependent antiviral effect * Cytotoxicity * Flavivirus * Umifenovir Subject RIV: EE - Microbiology, Virology OBOR OECD: Virology Impact factor: 3.465, year: 2016

  7. The Antiviral Mechanism of an Influenza A Virus Nucleoprotein-Specific Single-Domain Antibody Fragment

    Energy Technology Data Exchange (ETDEWEB)

    Hanke, Leo; Knockenhauer, Kevin E.; Brewer, R. Camille; van Diest, Eline; Schmidt, Florian I.; Schwartz, Thomas U.; Ploegh, Hidde L. (Whitehead); (MIT)

    2016-12-13

    Alpaca-derived single-domain antibody fragments (VHHs) that target the influenza A virus nucleoprotein (NP) can protect cells from infection when expressed in the cytosol. We found that one such VHH, αNP-VHH1, exhibits antiviral activity similar to that of Mx proteins by blocking nuclear import of incoming viral ribonucleoproteins (vRNPs) and viral transcription and replication in the nucleus. We determined a 3.2-Å crystal structure of αNP-VHH1 in complex with influenza A virus NP. The VHH binds to a nonconserved region on the body domain of NP, which has been associated with binding to host factors and serves as a determinant of host range. Several of the NP/VHH interface residues determine sensitivity of NP to antiviral Mx GTPases. The structure of the NP/αNP-VHH1 complex affords a plausible explanation for the inhibitory properties of the VHH and suggests a rationale for the antiviral properties of Mx proteins. Such knowledge can be leveraged for much-needed novel antiviral strategies.

    IMPORTANCEInfluenza virus strains can rapidly escape from protection afforded by seasonal vaccines or acquire resistance to available drugs. Additional ways to interfere with the virus life cycle are therefore urgently needed. The influenza virus nucleoprotein is one promising target for antiviral interventions. We have previously isolated alpaca-derived single-domain antibody fragments (VHHs) that protect cells from influenza virus infection if expressed intracellularly. We show here that one such VHH exhibits antiviral activities similar to those of proteins of the cellular antiviral defense (Mx proteins). We determined the three-dimensional structure of this VHH in complex with the influenza virus nucleoprotein and identified the interaction site, which overlaps regions that determine sensitivity of the virus to Mx proteins. Our data define a new vulnerability of influenza virus, help us to better understand the cellular antiviral mechanisms, and

  8. Antiviral RNA silencing suppression activity of Tomato spotted wilt virus NSs protein.

    Science.gov (United States)

    Ocampo Ocampo, T; Gabriel Peralta, S M; Bacheller, N; Uiterwaal, S; Knapp, A; Hennen, A; Ochoa-Martinez, D L; Garcia-Ruiz, H

    2016-06-17

    In addition to regulating gene expression, RNA silencing is an essential antiviral defense system in plants. Triggered by double-stranded RNA, silencing results in degradation or translational repression of target transcripts. Viruses are inducers and targets of RNA silencing. To condition susceptibility, most plant viruses encode silencing suppressors that interfere with this process, such as the Tomato spotted wilt virus (TSWV) NSs protein. The mechanism by which NSs suppresses RNA silencing and its role in viral infection and movement remain to be determined. We cloned NSs from the Hawaii isolate of TSWV and using two independent assays show for the first time that this protein restored pathogenicity and supported the formation of local infection foci by suppressor-deficient Turnip mosaic virus and Turnip crinkle virus. Demonstrating the suppression of RNA silencing directed against heterologous viruses establishes the foundation to determine the means used by NSs to block this antiviral process.

  9. Viral ancestors of antiviral systems.

    Science.gov (United States)

    Villarreal, Luis P

    2011-10-01

    All life must survive their corresponding viruses. Thus antiviral systems are essential in all living organisms. Remnants of virus derived information are also found in all life forms but have historically been considered mostly as junk DNA. However, such virus derived information can strongly affect host susceptibility to viruses. In this review, I evaluate the role viruses have had in the origin and evolution of host antiviral systems. From Archaea through bacteria and from simple to complex eukaryotes I trace the viral components that became essential elements of antiviral immunity. I conclude with a reexamination of the 'Big Bang' theory for the emergence of the adaptive immune system in vertebrates by horizontal transfer and note how viruses could have and did provide crucial and coordinated features.

  10. Activity enhancement of ligninolytic enzymes of Trametes versicolor ...

    African Journals Online (AJOL)

    Suspended cultures of white-rot fungus, Trametes versicolor, supplemented with bagasse powder showed a concentration dependent enhancement in the ligninolytic enzymes activity in liquid shake cultures. 2% (w/v) bagasse powder improved greater stability to the enzymes. The optimum pH is 3.5 and the optimum ...

  11. Synthesis, biological evaluation and molecular modeling investigation of some new Benzimidazole analogs as antiviral agents

    International Nuclear Information System (INIS)

    Goda, Fatma E.; Tantawy, Atif S.; Abou-Zeid, Laila A.; Badr, Sahar M.; Selim, Khalid B.

    2008-01-01

    A set heterocyclic benzimidazole derivatives bearing 1, 3, 5-triazine group with different substituents at C-2 and C-5 of the benzimidazole ring have been synthesized and evaluated for their antiviral activities against HASV-1. The structures of these compounds have been established by analytical data, IR spectra, H NMR and mass spectra. Compounds 8a and 8b proved to be the most active antiherpetic agents in this study, at EC 50% concentrations of 2.9. 3.4 mg/ml, respectively. Computational evaluation of the quantum chemical descriptors such as hydrphobicity (log P), HOMO-LUMO and the gap energy were calculated and correlated with the antiviral activity. The tested compounds showed proper degree of hydrophobicity ( 5). The HOMO-LUMO gap energy values of the tested compounds are comparable with the observed values for the antiviral drug Acyclovir. (author)

  12. SOME ASPECTS OF THE MARKETING STUDIES FOR THE PHARMACEUTICAL MARKET OF ANTIVIRAL DRUGS

    Directory of Open Access Journals (Sweden)

    A. G. Salnikova

    2015-01-01

    Full Text Available Antiviral drugs are widely used in medicinal practice. They suppress the originator and stimulate the protection of an organism. The drugs are used for the treatment of flu and ARVI, herpetic infections, virus hepatitis, HIV-infection. Contemporary pharmaceutical market is represented by a wide range of antiviral drugs. Marketing studies are conducted to develop strategies, used for the enhancement of pharmacy organization activity efficiency. Conduction of the marketing researches of pharmaceutical market is the purpose of this study. We have used State Registry of Drugs, State Record of Drugs, List of vital drugs, questionnaires of pharmaceutical workers during our work. Historical, sociological, mathematical methods, and a method of expert evaluation were used in the paper. As the result of the study we have made the following conclusions. We have studied and generalized the literature data about classification and application of antiviral drugs, marketing, competition. The assortment of antiviral drugs on the pharmaceutical market of the Russian Federation was also studied. We have conducted an analysis for the obtainment of the information about antiviral drugs by pharmaceutical workers. We have determined the competitiveness of antiviral drugs, and on the basis of the research conducted we have submitted an offer for pharmaceutical organizations to form the range of antiviral drugs.

  13. Temperature and UV light affect the activity of marine cell-free enzymes

    Directory of Open Access Journals (Sweden)

    B. Thomson

    2017-09-01

    Full Text Available Microbial extracellular enzymatic activity (EEA is the rate-limiting step in the degradation of organic matter in the oceans. These extracellular enzymes exist in two forms: cell-bound, which are attached to the microbial cell wall, and cell-free, which are completely free of the cell. Contrary to previous understanding, cell-free extracellular enzymes make up a substantial proportion of the total marine EEA. Little is known about these abundant cell-free enzymes, including what factors control their activity once they are away from their sites (cells. Experiments were run to assess how cell-free enzymes (excluding microbes respond to ultraviolet radiation (UVR and temperature manipulations, previously suggested as potential control factors for these enzymes. The experiments were done with New Zealand coastal waters and the enzymes studied were alkaline phosphatase (APase, β-glucosidase, (BGase, and leucine aminopeptidase (LAPase. Environmentally relevant UVR (i.e. in situ UVR levels measured at our site reduced cell-free enzyme activities by up to 87 % when compared to controls, likely a consequence of photodegradation. This effect of UVR on cell-free enzymes differed depending on the UVR fraction. Ambient levels of UV radiation were shown to reduce the activity of cell-free enzymes for the first time. Elevated temperatures (15 °C increased the activity of cell-free enzymes by up to 53 % when compared to controls (10 °C, likely by enhancing the catalytic activity of the enzymes. Our results suggest the importance of both UVR and temperature as control mechanisms for cell-free enzymes. Given the projected warming ocean environment and the variable UVR light regime, it is possible that there could be major changes in the cell-free EEA and in the enzymes contribution to organic matter remineralization in the future.

  14. A Review on the Effects of Supercritical Carbon Dioxide on Enzyme Activity

    Directory of Open Access Journals (Sweden)

    Marie Zarevúcka

    2010-01-01

    Full Text Available Different types of enzymes such as lipases, several phosphatases, dehydrogenases, oxidases, amylases and others are well suited for the reactions in SC-CO2. The stability and the activity of enzymes exposed to carbon dioxide under high pressure depend on enzyme species, water content in the solution and on the pressure and temperature of the reaction system. The three-dimensional structure of enzymes may be significantly altered under extreme conditions, causing their denaturation and consequent loss of activity. If the conditions are less adverse, the protein structure may be largely retained. Minor structural changes may induce an alternative active protein state with altered enzyme activity, specificity and stability.

  15. Nanoparticulate delivery systems for antiviral drugs.

    Science.gov (United States)

    Lembo, David; Cavalli, Roberta

    2010-01-01

    Nanomedicine opens new therapeutic avenues for attacking viral diseases and for improving treatment success rates. Nanoparticulate-based systems might change the release kinetics of antivirals, increase their bioavailability, improve their efficacy, restrict adverse drug side effects and reduce treatment costs. Moreover, they could permit the delivery of antiviral drugs to specific target sites and viral reservoirs in the body. These features are particularly relevant in viral diseases where high drug doses are needed, drugs are expensive and the success of a therapy is associated with a patient's adherence to the administration protocol. This review presents the current status in the emerging area of nanoparticulate delivery systems in antiviral therapy, providing their definition and description, and highlighting some peculiar features. The paper closes with a discussion on the future challenges that must be addressed before the potential of nanotechnology can be translated into safe and effective antiviral formulations for clinical use.

  16. Patterns of functional enzyme activity in fungus farming ambrosia beetles

    Directory of Open Access Journals (Sweden)

    De Fine Licht Henrik H

    2012-06-01

    Full Text Available Abstract Introduction In wood-dwelling fungus-farming weevils, the so-called ambrosia beetles (Curculionidae: Scolytinae and Platypodinae, wood in the excavated tunnels is used as a medium for cultivating fungi by the combined action of digging larvae (which create more space for the fungi to grow and of adults sowing and pruning the fungus. The beetles are obligately dependent on the fungus that provides essential vitamins, amino acids and sterols. However, to what extent microbial enzymes support fungus farming in ambrosia beetles is unknown. Here we measure (i 13 plant cell-wall degrading enzymes in the fungus garden microbial consortium of the ambrosia beetle Xyleborinus saxesenii, including its primary fungal symbionts, in three compartments of laboratory maintained nests, at different time points after gallery foundation and (ii four specific enzymes that may be either insect or microbially derived in X. saxesenii adult and larval individuals. Results We discovered that the activity of cellulases in ambrosia fungus gardens is relatively small compared to the activities of other cellulolytic enzymes. Enzyme activity in all compartments of the garden was mainly directed towards hemicellulose carbohydrates such as xylan, glucomannan and callose. Hemicellulolytic enzyme activity within the brood chamber increased with gallery age, whereas irrespective of the age of the gallery, the highest overall enzyme activity were detected in the gallery dump material expelled by the beetles. Interestingly endo-β-1,3(4-glucanase activity capable of callose degradation was identified in whole-body extracts of both larvae and adult X. saxesenii, whereas endo-β-1,4-xylanase activity was exclusively detected in larvae. Conclusion Similar to closely related fungi associated with bark beetles in phloem, the microbial symbionts of ambrosia beetles hardly degrade cellulose. Instead, their enzyme activity is directed mainly towards comparatively more easily

  17. Enzyme Stability and Activity in Non-Aqueous Reaction Systems: A Mini Review

    Directory of Open Access Journals (Sweden)

    Shihui Wang

    2016-02-01

    Full Text Available Enormous interest in biocatalysis in non-aqueous phase has recently been triggered due to the merits of good enantioselectivity, reverse thermodynamic equilibrium, and no water-dependent side reactions. It has been demonstrated that enzyme has high activity and stability in non-aqueous media, and the variation of enzyme activity is attributed to its conformational modifications. This review comprehensively addresses the stability and activity of the intact enzymes in various non-aqueous systems, such as organic solvents, ionic liquids, sub-/super-critical fluids and their combined mixtures. It has been revealed that critical factors such as Log P, functional groups and the molecular structures of the solvents define the microenvironment surrounding the enzyme molecule and affect enzyme tertiary and secondary structure, influencing enzyme catalytic properties. Therefore, it is of high importance for biocatalysis in non-aqueous media to elucidate the links between the microenvironment surrounding enzyme surface and its stability and activity. In fact, a better understanding of the correlation between different non-aqueous environments and enzyme structure, stability and activity can contribute to identifying the most suitable reaction medium for a given biotransformation.

  18. In vitro and in vivo mechanism of immunomodulatory and antiviral activity of Edible Bird's Nest (EBN) against influenza A virus (IAV) infection.

    Science.gov (United States)

    Haghani, Amin; Mehrbod, Parvaneh; Safi, Nikoo; Aminuddin, Nur Ain; Bahadoran, Azadeh; Omar, Abdul Rahman; Ideris, Aini

    2016-06-05

    For centuries, Edible Bird Nest (EBN) has been used in treatment of variety of respiratory diseases such as flu and cough as a Chinese natural medicine. This natural remedy showed the potential to inhibit influenza A virus (IAV). However, little is known about the mechanism of this process and also the evaluation of this product in an animal model. Hence, the current study was designed to elucidate the antiviral and immunomodulatory effects of EBN against IAV strain A/Puerto Rico/8/1934 (H1N1). First, influenza infected MDCK cells treated with EBNs from two locations of Malaysia (Teluk Intan and Gua Madai) that prepared with different enzymatic preparations were analyzed by RT-qPCR and ELISA for detection of viral and cytokines genes. The sialic acid composition of these EBNs was evaluated by H-NMR. Subsequently, after toxicity evaluation of EBN from Teluk Intan, antiviral and immunomodulatory effects of this natural product was evaluated in BALB/c mice by analysis of the viral NA gene and cytokine expressions in the first week of the infection. EBN showed high neuraminidase inhibitory properties in both in vitro and in vivo, which was as effective as Oseltamivir phosphate. In addition, EBN decreased NS1 copy number (p<0.05) of the virus along with high immunomodulatory effects against IAV. Some of the immune changes during treatment of IAV with EBN included significant increase in IFNγ, TNFα, NFκB, IL2, some proinflammatory cytokines like IL1β, IL6, and cytokines with regulatory properties like IL10, IL27, IL12, CCL2 and IL4 depends on the stage of the infection. EBNs from two locations contained different composition of sialic acid and thymol derivatives, which gave them different antiviral properties. EBN from Gua Madai that contained more acetylated sialic acid (Neu2,4,7,8,9 Ac6) showed higher antiviral activity. The findings of this study support the antiviral activity of EBN against influenza virus and validate the traditional usage of this natural remedy

  19. Visualization of enzyme activities inside earthworm biopores by in situ soil zymography

    Science.gov (United States)

    Thu Duyen Hoang, Thi; Razavi, Bahar. S.; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2015-04-01

    Earthworms can strongly activate microorganisms, increase microbial and enzyme activities and consequently the turnover of native soil organic matter. In extremely dynamic microhabitats and hotspots as biopores made by earthworms, the in situ enzyme activities are a footprint of complex biotic interactions. The effect of earthworms on the alteration of enzyme activities inside biopores and the difference between bio-pores and earthworm-free soil was visualized by in situ soil zymography (Spohn and Kuzyakov, 2014). For the first time, we prepared quantitative imaging of enzyme activities in biopores. Furthermore, we developed the zymography technique by direct application of a substrate saturated membrane to the soil to obtain better spatial resolution. Lumbricus terrestris L. was placed into transparent box (15×20×15cm). Simultaneously, maize seed was sown in the soil. Control soil box with maize and without earthworm was prepared in the same way. After two weeks when bio-pore systems were formed by earthworm, we visualized in situ enzyme activities of five hydrolytic enzymes (β-glucosidase, cellobiohydrolase, chitinase, xylanase, leucine aminopeptidase) and phosphatase. Followed by non-destructive zymography, biopore samples and control soil were destructively collected to assay enzyme kinetics by fluorogenically labeled substrates method. Zymography showed higher activity of β-glucosidase, chitinase, xylanase and phosphatase in biopores comparing to bulk soil. These differences were further confirmed by fluorimetric microplate enzyme assay detected significant difference of Vmax in four above mentioned enzymes. Vmax of β-glucosidase, chitinase, xylanase and phosphatase in biopores is 68%, 108%, 50% and 49% higher than that of control soil. However, no difference in cellobiohydrolase and leucine aminopeptidase kinetics between biopores and control soil were detected. This indicated little effect of earthworms on protein and cellulose transformation in soil

  20. Ribavirin: recent insights into antiviral mechanisms of action.

    Science.gov (United States)

    Reyes, G R

    2001-09-01

    Ribavirin, a nucleoside analog, used in combination with interferon-alpha (IFN alpha) results in a substantial improvement in the sustained virologic response in chronic hepatitis C. Identified antiviral mechanisms of action for ribavirin include: (i) inhibition of viral encoded polymerases; (ii) inhibition of genomic RNA capping; and (iii) inhibition of cellular encoded enzymes that control de novo synthesis of purine nucleosides. More recently, ribavirin has been shown to engender a bias toward helper T-cell (CD4+) type 1 (Th1) cytokine responses in models of immunity. Recent detailed analysis has also shown that ribavirin can be utilized and incorporated by the polio viral polymerase into genomic and antigenomic transcripts, and is capable of base pairing with either UMP (uridine monophosphate) or CMP (cytidine monophosphate). This results in ribavirin-mediated mutagenesis of the viral genome and has the potential to push the virus beyond tolerable set points in its mutation rate, leading to an overall reduced fitness of the viral population. Of the many mechanisms of action demonstrated for ribavirin, the current clinical trials of selective inosine 5'-monophosphate dehydrogenase (IMPDH) inhibitors and immunomodulating agents in hepatitis may facilitate our understanding of what activity (if any) predominates when ribavirin is used in combination with IFN alpha.

  1. Detoxification enzymes activities in deltamethrin and bendiocarb ...

    African Journals Online (AJOL)

    Detoxification enzymes activities in deltamethrin and bendiocarb resistant and susceptible malarial vectors ( Anopheles gambiae ) breeding in Bichi agricultural and residential sites, Kano state, Nigeria.

  2. Fluorogenic Substrates for Visualizing Acidic Organelle Enzyme Activities.

    Directory of Open Access Journals (Sweden)

    Fiona Karen Harlan

    Full Text Available Lysosomes are acidic cytoplasmic organelles that are present in all nucleated mammalian cells and are involved in a variety of cellular processes including repair of the plasma membrane, defense against pathogens, cholesterol homeostasis, bone remodeling, metabolism, apoptosis and cell signaling. Defects in lysosomal enzyme activity have been associated with a variety of neurological diseases including Parkinson's Disease, Lysosomal Storage Diseases, Alzheimer's disease and Huntington's disease. Fluorogenic lysosomal staining probes were synthesized for labeling lysosomes and other acidic organelles in a live-cell format and were shown to be capable of monitoring lysosomal metabolic activity. The new targeted substrates were prepared from fluorescent dyes having a low pKa value for optimum fluorescence at the lower physiological pH found in lysosomes. They were modified to contain targeting groups to direct their accumulation in lysosomes as well as enzyme-cleavable functions for monitoring specific enzyme activities using a live-cell staining format. Application to the staining of cells derived from blood and skin samples of patients with Metachromatic Leukodystrophy, Krabbe and Gaucher Diseases as well as healthy human fibroblast and leukocyte control cells exhibited localization to the lysosome when compared with known lysosomal stain LysoTracker® Red DND-99 as well as with anti-LAMP1 Antibody staining. When cell metabolism was inhibited with chloroquine, staining with an esterase substrate was reduced, demonstrating that the substrates can be used to measure cell metabolism. When applied to diseased cells, the intensity of staining was reflective of lysosomal enzyme levels found in diseased cells. Substrates specific to the enzyme deficiencies in Gaucher or Krabbe disease patient cell lines exhibited reduced staining compared to that in non-diseased cells. The new lysosome-targeted fluorogenic substrates should be useful for research

  3. Visualization of Enzyme Activities in Earthworm Biopores by In Situ Soil Zymography.

    Science.gov (United States)

    Razavi, Bahar S; Hoang, Duyen; Kuzyakov, Yakov

    2017-01-01

    Earthworms produce biopores with strongly increased microbial and enzyme activities and consequently they form microbial hotspots in soil. In extremely dynamic microhabitats and hotspots such as earthworm biopores, the in situ enzyme activities are a footprint of process rates and complex biotic interactions. The effect of earthworms on enzyme activities inside biopores, relative to earthworm-free soil, can be visualized by in situ soil zymography. Here, we describe the details of the approach and discuss its advantages and limitations. Direct zymography provides high spatial resolution for quantitative images of enzyme activities in biopores.

  4. Effects of protease and non-starch polysaccharide enzyme on performance, digestive function, activity and gene expression of endogenous enzyme of broilers.

    Directory of Open Access Journals (Sweden)

    Lin Yuan

    Full Text Available Three hundred one-day-old male broiler chickens (Ross-308 were fed corn-soybean basal diets containing non-starch polysaccharide (NSP enzyme and different levels of acid protease from 1 to 42 days of age to investigate the effects of exogenous enzymes on growth performance, digestive function, activity of endogenous digestive enzymes in the pancreas and mRNA expression of pancreatic digestive enzymes. For days 1-42, compared to the control chickens, average daily feed intake (ADFI and average daily gain (ADG were significantly enhanced by the addition of NSP enzyme in combination with protease supplementation at 40 or 80 mg/kg (p<0.05. Feed-to-gain ratio (FGR was significantly improved by supplementation with NSP enzymes or NSP enzyme combined with 40 or 80 mg/kg protease compared to the control diet (p<0.05. Apparent digestibility of crude protein (ADCP was significantly enhanced by the addition of NSP enzyme or NSP enzyme combined with 40 or 80 mg/kg protease (p<0.05. Cholecystokinin (CCK level in serum was reduced by 31.39% with NSP enzyme combined with protease supplementation at 160 mg/kg (p<0.05, but the CCK level in serum was increased by 26.51% with NSP enzyme supplementation alone. After 21 days, supplementation with NSP enzyme and NSP enzyme combined with 40 or 80 mg/kg protease increased the activity of pancreatic trypsin by 74.13%, 70.66% and 42.59% (p<0.05, respectively. After 42 days, supplementation with NSP enzyme and NSP enzyme combined with 40 mg/kg protease increased the activity of pancreatic trypsin by 32.45% and 27.41%, respectively (p<0.05. However, supplementation with NSP enzyme and 80 or 160 mg/kg protease decreased the activity of pancreatic trypsin by 10.75% and 25.88%, respectively (p<0.05. The activities of pancreatic lipase and amylase were significantly higher in treated animals than they were in the control group (p<0.05. Supplementation with NSP enzyme, NSP enzyme combined with 40 or 80 mg/kg protease increased

  5. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion

    Science.gov (United States)

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W.; Liu, Yan; Walter, Nils G.; Yan, Hao

    2016-01-01

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology. PMID:26861509

  6. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion

    Science.gov (United States)

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W.; Liu, Yan; Walter, Nils G.; Yan, Hao

    2016-02-01

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology.

  7. Viral Ancestors of Antiviral Systems

    Directory of Open Access Journals (Sweden)

    Luis P. Villarreal

    2011-10-01

    Full Text Available All life must survive their corresponding viruses. Thus antiviral systems are essential in all living organisms. Remnants of virus derived information are also found in all life forms but have historically been considered mostly as junk DNA. However, such virus derived information can strongly affect host susceptibility to viruses. In this review, I evaluate the role viruses have had in the origin and evolution of host antiviral systems. From Archaea through bacteria and from simple to complex eukaryotes I trace the viral components that became essential elements of antiviral immunity. I conclude with a reexamination of the ‘Big Bang’ theory for the emergence of the adaptive immune system in vertebrates by horizontal transfer and note how viruses could have and did provide crucial and coordinated features.

  8. Antiviral drug resistance and helicase-primase inhibitors of herpes simplex virus.

    Science.gov (United States)

    Field, Hugh J; Biswas, Subhajit

    2011-02-01

    A new class of chemical inhibitors has been discovered that interferes with the process of herpesvirus DNA replication. To date, the majority of useful herpesvirus antivirals are nucleoside analogues that block herpesvirus DNA replication by targeting the DNA polymerase. The new helicase-primase inhibitors (HPI) target a different enzyme complex that is also essential for herpesvirus DNA replication. This review will place the HPI in the context of previous work on the nucleoside analogues. Several promising highly potent HPI will be described with a particular focus on the identification of drug-resistance mutations. Several HPI have good pharmacological profiles and are now at the outset of phase II clinical trials. Provided there are no safety issues to stop their progress, this new class of compound will be a major advance in the herpesvirus antiviral field. Furthermore, HPI are likely to have a major impact on the therapy and prevention of herpes simplex virus and varicella zoster in both immunocompetent and immunocompromised patients alone or in combination with current nucleoside analogues. The possibility of acquired drug-resistance to HPI will then become an issue of great practical importance. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Activity of certain enzymes in cadmium-poisoned chicks

    Energy Technology Data Exchange (ETDEWEB)

    Kench, J E; Gubb, P J.D.

    1970-01-01

    Activities of a number of enzymes in the liver and other tissues of newly hatched cadmium poisoned chicks have been compared with those of normal controls before and after incubation with Cd/sup +2/ at a concentration similar to that present in vivo. Concentrations of Cd/sup +2/ in the various cellular fractions were determined, after wet oxidation, by atomic absorption spectrophotometry. Interaction of Cd/sup +2/ with enzymes may provide information on the localization of enzymes within mitochondria and other cellular structures. 7 references.

  10. Development Of Enzyme Digestive Activity Of Blue Crab Portunus Pelagicus Larvae

    OpenAIRE

    Nikhlani, Andi; Sukarti, Komsanah

    2017-01-01

    Seed production continuity of Portunus pelagicus larvae had been conducted but the results were still un-consistent Digestive activity was known to be associated with the type of feed consumed by larvae. Amylase, lipase, and trypsin enzymes were used as a biological indicators to measure the digestion of feed. The aim of this study was to describe the activity of digestive enzymes in blue swimming crab larvae. Digestive enzyme activity data obtained was presented in graphical form and anal...

  11. STING agonists enable antiviral cross-talk between human cells and confer protection against genital herpes in mice.

    Science.gov (United States)

    Skouboe, Morten K; Knudsen, Alice; Reinert, Line S; Boularan, Cedric; Lioux, Thierry; Perouzel, Eric; Thomsen, Martin K; Paludan, Søren R

    2018-04-01

    In recent years, there has been an increasing interest in immunomodulatory therapy as a means to treat various conditions, including infectious diseases. For instance, Toll-like receptor (TLR) agonists have been evaluated for treatment of genital herpes. However, although the TLR7 agonist imiquimod was shown to have antiviral activity in individual patients, no significant effects were observed in clinical trials, and the compound also exhibited significant side effects, including local inflammation. Cytosolic DNA is detected by the enzyme cyclic GMP-AMP (2'3'-cGAMP) synthase (cGAS) to stimulate antiviral pathways, mainly through induction of type I interferon (IFN)s. cGAS is activated upon DNA binding to produce the cyclic dinucleotide (CDN) 2'3'-cGAMP, which in turn binds and activates the adaptor protein Stimulator of interferon genes (STING), thus triggering type I IFN expression. In contrast to TLRs, STING is expressed broadly, including in epithelial cells. Here we report that natural and non-natural STING agonists strongly induce type I IFNs in human cells and in mice in vivo, without stimulating significant inflammatory gene expression. Systemic treatment with 2'3'-cGAMP reduced genital herpes simplex virus (HSV) 2 replication and improved the clinical outcome of infection. More importantly, local application of CDNs at the genital epithelial surface gave rise to local IFN activity, but only limited systemic responses, and this treatment conferred total protection against disease in both immunocompetent and immunocompromised mice. In direct comparison between CDNs and TLR agonists, only CDNs acted directly on epithelial cells, hence allowing a more rapid and IFN-focused immune response in the vaginal epithelium. Thus, specific activation of the STING pathway in the vagina evokes induction of the IFN system but limited inflammatory responses to allow control of HSV2 infections in vivo.

  12. Thymidine kinase 2 enzyme kinetics elucidate the mechanism of thymidine-induced mitochondrial DNA depletion.

    Science.gov (United States)

    Sun, Ren; Wang, Liya

    2014-10-07

    Mitochondrial thymidine kinase 2 (TK2) is a nuclear gene-encoded protein, synthesized in the cytosol and subsequently translocated into the mitochondrial matrix, where it catalyzes the phosphorylation of thymidine (dT) and deoxycytidine (dC). The kinetics of dT phosphorylation exhibits negative cooperativity, but dC phosphorylation follows hyperbolic Michaelis-Menten kinetics. The two substrates compete with each other in that dT is a competitive inhibitor of dC phosphorylation, while dC acts as a noncompetitive inhibitor of dT phosphorylation. In addition, TK2 is feedback inhibited by dTTP and dCTP. TK2 also phosphorylates a number of pyrimidine nucleoside analogues used in antiviral and anticancer therapy and thus plays an important role in mitochondrial toxicities caused by nucleoside analogues. Deficiency in TK2 activity due to genetic alterations causes devastating mitochondrial diseases, which are characterized by mitochondrial DNA (mtDNA) depletion or multiple deletions in the affected tissues. Severe TK2 deficiency is associated with early-onset fatal mitochondrial DNA depletion syndrome, while less severe deficiencies result in late-onset phenotypes. In this review, studies of the enzyme kinetic behavior of TK2 enzyme variants are used to explain the mechanism of mtDNA depletion caused by TK2 mutations, thymidine overload due to thymidine phosphorylase deficiency, and mitochondrial toxicity caused by antiviral thymidine analogues.

  13. Pathogenicity and cell wall-degrading enzyme activities of some ...

    African Journals Online (AJOL)

    Dr. J. T. Ekanem

    2005-12-17

    Dec 17, 2005 ... be attributed to the activities of these cell wall degrading enzymes. Keywords: Cowpea ... bacteria have long been known to produce enzymes capable of ... Inoculated seeds were sown in small plastic pots filled with steam- ...

  14. Plant carbohydrate binding module enhances activity of hybrid microbial cellulase enzyme

    Directory of Open Access Journals (Sweden)

    Caitlin Siobhan Byrt

    2012-11-01

    Full Text Available A synthetic, highly active cellulase enzyme suitable for in planta production may be a valuable tool for biotechnological approaches to develop transgenic biofuel crops with improved digestibility. Here, we demonstrate that the addition of a plant derived carbohydrate binding module (CBM to a synthetic glycosyl hydrolase (GH improved the activity of the hydrolase in releasing sugar from plant biomass. A CEL-HYB1-CBM enzyme was generated by fusing a hybrid microbial cellulase, CEL-HYB1, with the carbohydrate-binding module (CBM of the tomato (Solanum lycopersicum SlCel9C1 cellulase. CEL-HYB1 and CEL-HYB1-CBM enzymes were produced in vitro using Pichia pastoris and the activity of these enzymes was tested using CMC, MUC and native crystalline cellulose assays. The presence of the CBM substantially improved the endo-glucanase activity of CEL-HYB1, especially against the native crystalline cellulose encountered in Sorghum plant cell walls. These results indicate that addition of an endogenous plant derived CBM to cellulase enzymes may enhance hydrolytic activity.

  15. Reveal the response of enzyme activities to heavy metals through in situ zymography.

    Science.gov (United States)

    Duan, Chengjiao; Fang, Linchuan; Yang, Congli; Chen, Weibin; Cui, Yongxing; Li, Shiqing

    2018-07-30

    Enzymes in the soil are vital for assessing heavy metal soil pollution. Although the presence of heavy metals is thought to change the soil enzyme system, the distribution of enzyme activities in heavy metal polluted-soil is still unknown. For the first time, using soil zymography, we analyzed the distribution of enzyme activities of alfalfa rhizosphere and soil surface in the metal-contaminated soil. The results showed that the growth of alfalfa was significantly inhibited, and an impact that was most pronounced in seedling biomass and chlorophyll content. Catalase activity (CAT) in alfalfa decreased with increasing heavy metal concentrations, while malondialdehyde (MDA) content continually increased. The distribution of enzyme activities showed that both phosphatase and β-glucosidase activities were associated with the roots and were rarely distributed throughout the soil. In addition, the total hotspot areas of enzyme activities were the highest in extremely heavy pollution soil. The hotspot areas of phosphatase were 3.4%, 1.5% and 7.1% under none, moderate and extremely heavy pollution treatment, respectively, but increased from 0.1% to 0.9% for β-glucosidase with the increasing pollution levels. Compared with the traditional method of enzyme activities, zymography can directly and accurately reflect the distribution and extent of enzyme activity in heavy metals polluted soil. The results provide an efficient research method for exploring the interaction between enzyme activities and plant rhizosphere. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. A human genome-wide loss-of-function screen identifies effective chikungunya antiviral drugs.

    Science.gov (United States)

    Karlas, Alexander; Berre, Stefano; Couderc, Thérèse; Varjak, Margus; Braun, Peter; Meyer, Michael; Gangneux, Nicolas; Karo-Astover, Liis; Weege, Friderike; Raftery, Martin; Schönrich, Günther; Klemm, Uwe; Wurzlbauer, Anne; Bracher, Franz; Merits, Andres; Meyer, Thomas F; Lecuit, Marc

    2016-05-12

    Chikungunya virus (CHIKV) is a globally spreading alphavirus against which there is no commercially available vaccine or therapy. Here we use a genome-wide siRNA screen to identify 156 proviral and 41 antiviral host factors affecting CHIKV replication. We analyse the cellular pathways in which human proviral genes are involved and identify druggable targets. Twenty-one small-molecule inhibitors, some of which are FDA approved, targeting six proviral factors or pathways, have high antiviral activity in vitro, with low toxicity. Three identified inhibitors have prophylactic antiviral effects in mouse models of chikungunya infection. Two of them, the calmodulin inhibitor pimozide and the fatty acid synthesis inhibitor TOFA, have a therapeutic effect in vivo when combined. These results demonstrate the value of loss-of-function screening and pathway analysis for the rational identification of small molecules with therapeutic potential and pave the way for the development of new, host-directed, antiviral agents.

  17. DNA-directed control of enzyme-inhibitor complex formation: a modular approach to reversibly switch enzyme activity

    NARCIS (Netherlands)

    Janssen, B.M.G.; Engelen, W.; Merkx, M.

    2015-01-01

    DNA-templated reversible assembly of an enzyme–inhibitor complex is presented as a new and highly modular approach to control enzyme activity. TEM1-ß-lactamase and its inhibitor protein BLIP were conjugated to different oligonucleotides, resulting in enzyme inhibition in the presence of template

  18. Micropollutant degradation via extracted native enzymes from activated sludge.

    Science.gov (United States)

    Krah, Daniel; Ghattas, Ann-Kathrin; Wick, Arne; Bröder, Kathrin; Ternes, Thomas A

    2016-05-15

    A procedure was developed to assess the biodegradation of micropollutants in cell-free lysates produced from activated sludge of a municipal wastewater treatment plant (WWTP). This proof-of-principle provides the basis for further investigations of micropollutant biodegradation via native enzymes in a solution of reduced complexity, facilitating downstream protein analysis. Differently produced lysates, containing a variety of native enzymes, showed significant enzymatic activities of acid phosphatase, β-galactosidase and β-glucuronidase in conventional colorimetric enzyme assays, whereas heat-deactivated controls did not. To determine the enzymatic activity towards micropollutants, 20 compounds were spiked to the cell-free lysates under aerobic conditions and were monitored via LC-ESI-MS/MS. The micropollutants were selected to span a wide range of different biodegradabilities in conventional activated sludge treatment via distinct primary degradation reactions. Of the 20 spiked micropollutants, 18 could be degraded by intact sludge under assay conditions, while six showed reproducible degradation in the lysates compared to the heat-deactivated negative controls: acetaminophen, N-acetyl-sulfamethoxazole (acetyl-SMX), atenolol, bezafibrate, erythromycin and 10,11-dihydro-10-hydroxycarbamazepine (10-OH-CBZ). The primary biotransformation of the first four compounds can be attributed to amide hydrolysis. However, the observed biotransformations in the lysates were differently influenced by experimental parameters such as sludge pre-treatment and the addition of ammonium sulfate or peptidase inhibitors, suggesting that different hydrolase enzymes were involved in the primary degradation, among them possibly peptidases. Furthermore, the transformation of 10-OH-CBZ to 9-CA-ADIN was caused by a biologically-mediated oxidation, which indicates that in addition to hydrolases further enzyme classes (probably oxidoreductases) are present in the native lysates. Although the

  19. Identification of Novel 5,6-Dimethoxyindan-1-one Derivatives as Antiviral Agents.

    Science.gov (United States)

    Patil, Siddappa A; Patil, Vikrant; Patil, Renukadevi; Beaman, Kenneth; Patil, Shivaputra A

    2017-01-01

    Discovery of novel antiviral agents is essential because viral infection continues to threaten human life globally. Various heterocyclic small molecules have been developed as antiviral agents. The 5,6-dimethoxyindan-1-on nucleus is of considerable interest as this ring is the key constituent in a range of bioactive compounds, both naturally occurring and synthetic, and often of considerable complexity. The main purpose of this research was to discover and develop small molecule heterocycles as broad-spectrum of antiviral agents. A focused small set of 5,6-dimethoxyindan-1-one analogs (6-8) along with a thiopene derivative (9) was screened for selected viruses (Vaccinia virus - VACA, Human papillomavirus - HPV, Zika virus - ZIKV, Dengue virus - DENV, Measles virus - MV, Poliovirus 3 - PV, Rift Valley fever virus - RVFV, Tacaribe virus - TCRV, Venezuelan equine encephalitis virus - VEEV, Herpes simplex virus 1 -HSV-1 and Human cytomegalovirus - HCMV) using the National Institute of Allergy and Infectious Diseases (NIAID)'s Division of Microbiology and Infectious Diseases (DMID) antiviral screening program. These molecules demonstrated moderate to excellent antiviral activity towards variety of viruses. The 5,6-dimethoxyindan-1-one analog (7) demonstrated high efficacy towards vaccinia virus (EC50: 30.00 µM) in secondary plaque reduction assay. The thiophene analog (9) has shown very good viral inhibition towards several viruses such as Human papillomavirus, Measles virus, Rift Valley fever virus, Tacaribe virus and Herpes simplex virus 1. Our research identified a novel 5,6-dimethoxyindan-1-one analog (compound 7), as a potent antiviral agent for vaccinia virus, and heterocyclic chalcone analog (compound 9) as a broad spectrum antiviral agent. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Autoantigen La promotes efficient RNAi, antiviral response, and transposon silencing by facilitating multiple-turnover RISC catalysis.

    Science.gov (United States)

    Liu, Ying; Tan, Huiling; Tian, Hui; Liang, Chunyang; Chen, She; Liu, Qinghua

    2011-11-04

    The effector of RNA interference (RNAi) is the RNA-induced silencing complex (RISC). C3PO promotes the activation of RISC by degrading the Argonaute2 (Ago2)-nicked passenger strand of duplex siRNA. Active RISC is a multiple-turnover enzyme that uses the guide strand of siRNA to direct the Ago2-mediated sequence-specific cleavage of complementary mRNA. How this effector step of RNAi is regulated is currently unknown. Here, we used the human Ago2 minimal RISC system to purify Sjögren's syndrome antigen B (SSB)/autoantigen La as an activator of the RISC-mediated mRNA cleavage activity. Our reconstitution studies showed that La could promote multiple-turnover RISC catalysis by facilitating the release of cleaved mRNA from RISC. Moreover, we demonstrated that La was required for efficient RNAi, antiviral defense, and transposon silencing in vivo. Taken together, the findings of C3PO and La reveal a general concept that regulatory factors are required to remove Ago2-cleaved products to assemble or restore active RISC. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. RIG-I-like receptor-induced IRF3 mediated pathway of apoptosis (RIPA: a new antiviral pathway

    Directory of Open Access Journals (Sweden)

    Saurabh Chattopadhyay

    2016-11-01

    Full Text Available Abstract The innate immune response is the first line of host defense to eliminate viral infection. Pattern recognition receptors in the cytosol, such as RIG-I-like receptors (RLR and Nod-like receptors (NLR, and membrane bound Toll like receptors (TLR detect viral infection and initiate transcription of a cohort of antiviral genes, including interferon (IFN and interferon stimulated genes (ISGs, which ultimately block viral replication. Another mechanism to reduce viral spread is through RIPA, the RLR-induced IRF3-mediated pathway of apoptosis, which causes infected cells to undergo premature death. The transcription factor IRF3 can mediate cellular antiviral responses by both inducing antiviral genes and triggering apoptosis through the activation of RIPA. The mechanism of IRF3 activation in RIPA is distinct from that of transcriptional activation; it requires linear polyubiquitination of specific lysine residues of IRF3. Using RIPA-active, but transcriptionally inactive, IRF3 mutants, it was shown that RIPA can prevent viral replication and pathogenesis in mice.

  2. Activation of lysosomal enzymes and tumour regression caused by irradiation and steroid hormones

    International Nuclear Information System (INIS)

    Ball, A.; Barratt, G.M.; Wills, E.D.

    1982-01-01

    The lysosomal enzyme activity and membrane permeability of mouse C3H mammary tumours has been studied using quantitative cytochemical methods following irradiation of the tumours with doses of 1500, 3500 or 6000 rad ν rays. No change in the lysosomal enzyme activity was observed immediately after irradiation, but increased enzyme activity and increased membrane permeability were observed 24 hr after irradiation with doses of 3500 or 6000 rad. Twenty-four hours after injection of prednisolone there was a marked increase of lysosomal membrane permeability and enzyme activity, and injection of prednisolone soon after irradiation enhanced the effect of irradiation. After a dose of 6000 rad and prednisolone, the lysosomal membrane permeability increased to 191% of the control and the enzyme activity to 326% of the value of the control tumours. Measurement of tumour size after irradiation or after a combined treatment with irradiation and prednisolone showed that a close correlation exists between tumour regression and lysosomal enzyme activity. The experiments support the view that lysosomal enzymes play an important role in tumour regression following irradiation. (author)

  3. Hfq stimulates the activity of the CCA-adding enzyme

    Directory of Open Access Journals (Sweden)

    Betat Heike

    2007-10-01

    Full Text Available Abstract Background The bacterial Sm-like protein Hfq is known as an important regulator involved in many reactions of RNA metabolism. A prominent function of Hfq is the stimulation of RNA polyadenylation catalyzed by E. coli poly(A polymerase I (PAP. As a member of the nucleotidyltransferase superfamily, this enzyme shares a high sequence similarity with an other representative of this family, the tRNA nucleotidyltransferase that synthesizes the 3'-terminal sequence C-C-A to all tRNAs (CCA-adding enzyme. Therefore, it was assumed that Hfq might not only influence the poly(A polymerase in its specific activity, but also other, similar enzymes like the CCA-adding enzyme. Results Based on the close evolutionary relation of these two nucleotidyltransferases, it was tested whether Hfq is a specific modulator acting exclusively on PAP or whether it also influences the activity of the CCA-adding enzyme. The obtained data indicate that the reaction catalyzed by this enzyme is substantially accelerated in the presence of Hfq. Furthermore, Hfq binds specifically to tRNA transcripts, which seems to be the prerequisite for the observed effect on CCA-addition. Conclusion The increase of the CCA-addition in the presence of Hfq suggests that this protein acts as a stimulating factor not only for PAP, but also for the CCA-adding enzyme. In both cases, Hfq interacts with RNA substrates, while a direct binding to the corresponding enzymes was not demonstrated up to now (although experimental data indicate a possible interaction of PAP and Hfq. So far, the basic principle of these stimulatory effects is not clear yet. In case of the CCA-adding enzyme, however, the presented data indicate that the complex between Hfq and tRNA substrate might enhance the product release from the enzyme.

  4. Tannins from Hamamelis virginiana bark extract: characterization and improvement of the antiviral efficacy against influenza A virus and human papillomavirus.

    Directory of Open Access Journals (Sweden)

    Linda L Theisen

    Full Text Available Antiviral activity has been demonstrated for different tannin-rich plant extracts. Since tannins of different classes and molecular weights are often found together in plant extracts and may differ in their antiviral activity, we have compared the effect against influenza A virus (IAV of Hamamelis virginiana L. bark extract, fractions enriched in tannins of different molecular weights and individual tannins of defined structures, including pseudotannins. We demonstrate antiviral activity of the bark extract against different IAV strains, including the recently emerged H7N9, and show for the first time that a tannin-rich extract inhibits human papillomavirus (HPV type 16 infection. As the best performing antiviral candidate, we identified a highly potent fraction against both IAV and HPV, enriched in high molecular weight condensed tannins by ultrafiltration, a simple, reproducible and easily upscalable method. This ultrafiltration concentrate and the bark extract inhibited early and, to a minor extent, later steps in the IAV life cycle and tannin-dependently inhibited HPV attachment. We observed interesting mechanistic differences between tannin structures: High molecular weight tannin containing extracts and tannic acid (1702 g/mol inhibited both IAV receptor binding and neuraminidase activity. In contrast, low molecular weight compounds (<500 g/mol such as gallic acid, epigallocatechin gallate or hamamelitannin inhibited neuraminidase but not hemagglutination. Average molecular weight of the compounds seemed to positively correlate with receptor binding (but not neuraminidase inhibition. In general, neuraminidase inhibition seemed to contribute little to the antiviral activity. Importantly, antiviral use of the ultrafiltration fraction enriched in high molecular weight condensed tannins and, to a lesser extent, the unfractionated bark extract was preferable over individual isolated compounds. These results are of interest for developing and

  5. Carotenoid-cleavage activities of crude enzymes from Pandanous amryllifolius.

    Science.gov (United States)

    Ningrum, Andriati; Schreiner, Matthias

    2014-11-01

    Carotenoid degradation products, known as norisoprenoids, are aroma-impact compounds in several plants. Pandan wangi is a common name of the shrub Pandanus amaryllifolius. The genus name 'Pandanus' is derived from the Indonesian name of the tree, pandan. In Indonesia, the leaves from the plant are used for several purposes, e.g., as natural colorants and flavor, and as traditional treatments. The aim of this study was to determine the cleavage of β-carotene and β-apo-8'-carotenal by carotenoid-cleavage enzymes isolated from pandan leaves, to investigate dependencies of the enzymatic activities on temperature and pH, to determine the enzymatic reaction products by using Headspace Solid Phase Microextraction Gas Chromatography/Mass Spectrophotometry (HS-SPME GC/MS), and to investigate the influence of heat treatment and addition of crude enzyme on formation of norisoprenoids. Crude enzymes from pandan leaves showed higher activity against β-carotene than β-apo-8'-carotenal. The optimum temperature of crude enzymes was 70°, while the optimum pH value was 6. We identified β-ionone as the major volatile reaction product from the incubations of two different carotenoid substrates, β-carotene and β-apo-8'-carotenal. Several treatments, e.g., heat treatment and addition of crude enzymes in pandan leaves contributed to the norisoprenoid content. Our findings revealed that the crude enzymes from pandan leaves with carotenoid-cleavage activity might provide a potential application, especially for biocatalysis, in natural-flavor industry. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.

  6. Enzyme activities by indicator of quality in organic soil

    Science.gov (United States)

    Raigon Jiménez, Mo; Fita, Ana Delores; Rodriguez Burruezo, Adrián

    2016-04-01

    The analytical determination of biochemical parameters, as soil enzyme activities and those related to the microbial biomass is growing importance by biological indicator in soil science studies. The metabolic activity in soil is responsible of important processes such as mineralization and humification of organic matter. These biological reactions will affect other key processes involved with elements like carbon, nitrogen and phosphorus , and all transformations related in soil microbial biomass. The determination of biochemical parameters is useful in studies carried out on organic soil where microbial processes that are key to their conservation can be analyzed through parameters of the metabolic activity of these soils. The main objective of this work is to apply analytical methodologies of enzyme activities in soil collections of different physicochemical characteristics. There have been selective sampling of natural soils, organic farming soils, conventional farming soils and urban soils. The soils have been properly identified conserved at 4 ° C until analysis. The enzyme activities determinations have been: catalase, urease, cellulase, dehydrogenase and alkaline phosphatase, which bring together a representative group of biological transformations that occur in the soil environment. The results indicate that for natural and agronomic soil collections, the values of the enzymatic activities are within the ranges established for forestry and agricultural soils. Organic soils are generally higher level of enzymatic, regardless activity of the enzyme involved. Soil near an urban area, levels of activities have been significantly reduced. The vegetation cover applied to organic soils, results in greater enzymatic activity. So the quality of these soils, defined as the ability to maintain their biological productivity is increased with the use of cover crops, whether or spontaneous species. The practice of cover based on legumes could be used as an ideal choice

  7. Antiviral Defense Mechanisms in Honey Bees

    Science.gov (United States)

    Brutscher, Laura M.; Daughenbaugh, Katie F.; Flenniken, Michelle L.

    2015-01-01

    Honey bees are significant pollinators of agricultural crops and other important plant species. High annual losses of honey bee colonies in North America and in some parts of Europe have profound ecological and economic implications. Colony losses have been attributed to multiple factors including RNA viruses, thus understanding bee antiviral defense mechanisms may result in the development of strategies that mitigate colony losses. Honey bee antiviral defense mechanisms include RNA-interference, pathogen-associated molecular pattern (PAMP) triggered signal transduction cascades, and reactive oxygen species generation. However, the relative importance of these and other pathways is largely uncharacterized. Herein we review the current understanding of honey bee antiviral defense mechanisms and suggest important avenues for future investigation. PMID:26273564

  8. Antiviral activity of the exopolysaccharide produced by Serratia sp. strain Gsm01 against Cucumber mosaic virus.

    Science.gov (United States)

    Ipper, Nagesh S; Cho, Saeyoull; Lee, Seon Hwa; Cho, Jun Mo; Hur, Jang Hyun; Lim, Chun Keun

    2008-01-01

    The potential of the exopolysaccharide (EPS) from a Serratia sp. strain Gsm01 as an antiviral agent against a yellow strain of Cucumber mosaic virus (CMV-Y) was evaluated in tobacco plants (Nicotiana tabacum cv. Xanthi-nc). The spray treatment of plants using an EPS preparation, 72 before CMV-Y inoculation, protected them against symptom appearance. Fifteen days after challenge inoculation with CMVY, 33.33% of plants showed mosaic symptoms in EPS-treated plants compared with 100% in the control plants. The EPS-treated plants, which showed mosaic symptoms, appeared three days later than the controls. The enzyme-linked immunosorbent assay (ELISA) and reverse transcriptase polymerase chain reaction (RT-PCR) analyses of the leaves of the protected plants revealed that the EPS treatment affected virus accumulation in those plants. Analysis of phenylalanine ammonia lyase, peroxidase, and phenols in protected plants revealed enhanced accumulation of these substances. The pathogenesis-related (PR) genes expression represented by PR-1b was increased in EPS-treated plants. This is the first report of a systemic induction of protection triggered by EPS produced by Serratia sp. against CMV-Y.

  9. Alveolar macrophage–derived type I interferons orchestrate innate immunity to RSV through recruitment of antiviral monocytes

    Science.gov (United States)

    Goritzka, Michelle; Makris, Spyridon; Kausar, Fahima; Durant, Lydia R.; Pereira, Catherine; Kumagai, Yutaro; Culley, Fiona J.; Mack, Matthias; Akira, Shizuo

    2015-01-01

    Type I interferons (IFNs) are important for host defense from viral infections, acting to restrict viral production in infected cells and to promote antiviral immune responses. However, the type I IFN system has also been associated with severe lung inflammatory disease in response to respiratory syncytial virus (RSV). Which cells produce type I IFNs upon RSV infection and how this directs immune responses to the virus, and potentially results in pathological inflammation, is unclear. Here, we show that alveolar macrophages (AMs) are the major source of type I IFNs upon RSV infection in mice. AMs detect RSV via mitochondrial antiviral signaling protein (MAVS)–coupled retinoic acid–inducible gene 1 (RIG-I)–like receptors (RLRs), and loss of MAVS greatly compromises innate immune restriction of RSV. This is largely attributable to loss of type I IFN–dependent induction of monocyte chemoattractants and subsequent reduced recruitment of inflammatory monocytes (infMo) to the lungs. Notably, the latter have potent antiviral activity and are essential to control infection and lessen disease severity. Thus, infMo recruitment constitutes an important and hitherto underappreciated, cell-extrinsic mechanism of type I IFN–mediated antiviral activity. Dysregulation of this system of host antiviral defense may underlie the development of RSV-induced severe lung inflammation. PMID:25897172

  10. Cell- and virus-mediated regulation of the barrier-to-autointegration factor's phosphorylation state controls its DNA binding, dimerization, subcellular localization, and antipoxviral activity.

    Science.gov (United States)

    Jamin, Augusta; Wicklund, April; Wiebe, Matthew S

    2014-05-01

    Barrier-to-autointegration factor (BAF) is a DNA binding protein with multiple cellular functions, including the ability to act as a potent defense against vaccinia virus infection. This antiviral function involves BAF's ability to condense double-stranded DNA and subsequently prevent viral DNA replication. In recent years, it has become increasingly evident that dynamic phosphorylation involving the vaccinia virus B1 kinase and cellular enzymes is likely a key regulator of multiple BAF functions; however, the precise mechanisms are poorly understood. Here we analyzed how phosphorylation impacts BAF's DNA binding, subcellular localization, dimerization, and antipoxviral activity through the characterization of BAF phosphomimetic and unphosphorylatable mutants. Our studies demonstrate that increased phosphorylation enhances BAF's mobilization from the nucleus to the cytosol, while dephosphorylation restricts BAF to the nucleus. Phosphorylation also impairs both BAF's dimerization and its DNA binding activity. Furthermore, our studies of BAF's antiviral activity revealed that hyperphosphorylated BAF is unable to suppress viral DNA replication or virus production. Interestingly, the unphosphorylatable BAF mutant, which is capable of binding DNA but localizes predominantly to the nucleus, was also incapable of suppressing viral replication. Thus, both DNA binding and localization are important determinants of BAF's antiviral function. Finally, our examination of how phosphatases are involved in regulating BAF revealed that PP2A dephosphorylates BAF during vaccinia infection, thus counterbalancing the activity of the B1 kinase. Altogether, these data demonstrate that phosphoregulation of BAF by viral and cellular enzymes modulates this protein at multiple molecular levels, thus determining its effectiveness as an antiviral factor and likely other functions as well. The barrier-to-autointegration factor (BAF) contributes to cellular genomic integrity in multiple ways

  11. Effect of diffusion on enzyme activity in a microreactor

    NARCIS (Netherlands)

    Swarts, J.W.; Kolfschoten, R.C.; Jansen, M.C.A.A.; Janssen, A.E.M.; Boom, R.M.

    2010-01-01

    To establish general rules for setting up an enzyme microreactor system, we studied the effect of diffusion on enzyme activity in a microreactor. As a model system we used the hydrolysis of ortho-nitrophenyl-ß-d-galactopyranoside by ß-galactosidase from Kluyveromyces lactis. We found that the

  12. Differentiation between activity of digestive enzymes of Brachionus calyciflorus and extracellular enzymes of its epizooic bacteria

    Directory of Open Access Journals (Sweden)

    Wilko H. AHLRICHS

    2009-08-01

    Full Text Available The rotifer Brachionus calyciflorus was examined by scanning electron microscopy (SEM for surface-attached, i.e. epizootic, bacteria to ascertain their specific localization and thus find out if we could discern between rotifer and bacterial enzyme activity. The lorica of B. calyciflorus was colonized by one distinct type of bacteria, which originated from the algal culture used for rotifer feeding. The corona, posterior epidermis and foot of all inspected individuals were always without attached bacteria. The density of the attached bacteria was higher with the increasing age of B. calyciflorus: while young individuals were colonized by ~ tens of bacterial cells, older ones had on average hundreds to thousands of attached bacteria. We hypothesize that epizooic bacteria may produce the ectoenzymes phosphatases and β-N-acetylhexosaminidases on the lorica, but not on the corona of B. calyciflorus. Since enzyme activities of epizooic bacteria may influence the values and interpretation of bulk rotifer enzyme activities, we should take the bacterial contribution into account.

  13. Designing cyclopentapeptide inhibitor as potential antiviral drug for dengue virus ns5 methyltransferase.

    Science.gov (United States)

    Idrus, Syarifuddin; Tambunan, Usman Sumo Friend; Zubaidi, Ahmad Ardilla

    2012-01-01

    NS5 methyltransferase (Mtase) has a crucial role in the replication of dengue virus. There are two active sites on NS5 Mtase i.e., SAM and RNA-cap binding sites. Inhibition of the NS5 Mtase activity is expected to prevent the propagation of dengue virus. This study was conducted to design cyclic peptide ligands as enzyme inhibitors of dengue virus NS5 Mtase through computational approach. Cyclopentapeptides were designed as ligand of SAM binding site as much as 1635 and 736 cyclopentpeptides were designed as ligand of RNA-cap binding site. Interaction between ligand and NS5 Mtase has been conducted on the Docking simulation. The result shows that cyclopentapeptide CTWYC was the best peptide candidate on SAM binding site, with estimated free binding energy -30.72 kca/mol. Cyclopentapeptide CYEFC was the best peptide on RNA-cap binding site with estimated free binding energy -22.89 kcal/mol. Both peptides did not have tendency toward toxicity properties. So it is expected that both CTWYC and CYEFC ligands could be used as a potential antiviral drug candidates, which can inhibit the SAM and RNA-cap binding sites of dengue virus NS5 Mtase.

  14. Enzyme activities in reclaimed coal mine spoils and soils

    Energy Technology Data Exchange (ETDEWEB)

    Fresquez, P R; Aldon, E F; Lindemann, W C

    1987-11-01

    The segregation and stockpiling of topsoil material may reduce enzymatic activities that may hinder normal nutrient cycling processes in reclaimed minelands. The effects of topsoiling and reclamation age on dehydrogenase, nitrogenase, phosphatase, arylsulphatase, amylase, cellulase, invertase and urease activities were evaluated on three reclaimed non-top-soiled and five reclaimed topsoiled areas and compared with an indisturbed reference soil. Three months after topsoiling and revegetation, activities of the enzymes in the reclaimed areas, with the exception of dehydrogenase, were statistically equal to activities of the undisturbed soil. Most enzymes, including dehydrogenase, peaked in the next 1 or 2 years after reclamation with topsoiling and declined thereafter. A 4-year-old topsoiled site (revegetated in 1978) was statistically similar to the undisturbed soil. Amylase activity, however, was significantly lower after the fourth year compared to the undisturbed soil. The non-topsoiled areas, even after 6, 7 and 8 years, appeared to have lower enzyme activities than the younger topsoiled areas or the undisturbed soil. This trend was supported by the finding that the 4-year-old topsoiled site was more enzymatically similar to the undisturbed soil than was the 8-year-old non-topsoiled site (revegetated in 1974). The low enzyme acitivities found in the non-topsoiled areas may be a result of their adverse chemical and physical properties, as well as the low diversity of microorganisms. These studies demonstrate the value of topsoil use for early establishment of soil processes in reclaimed areas. 3 figs., 19 refs., 8 tabs.

  15. Phytobiotic Utilization as Feed Additive in Feed for Pancreatic Enzyme Activity of Broiler Chicken

    Directory of Open Access Journals (Sweden)

    Sri Purwanti

    2015-09-01

    Full Text Available This research was conducted to evaluate the effect of turmeric water extract, garlic and combination turmeric and garlic as a feed additive in the broiler diet on pancreatic enzyme activity of broiler chicken. Effectivity of treatments was assessed by addition of phytobiotic (control, 015% zinc bacitracin, 2.5% TE, 2.0% GE, 2.5% TGE which were arranged Completely Randomized Design with 4 replications. The variables measured were pancreatic enzyme activity(amylase enzyme activity, protease enzyme activity  and lipase enzyme activity.The results showed that enzyme protein activity content of 2.5% TE supplementation is also high at 82.02 U/ml, then supplemented 2.5% TGE, 2.0% GE, negative control and positive control respectively 75.98 ; 72.02; 68.74; and 66.57 U/ml. The lipase enzyme activity whereas the negative control and a positive control differ significantly higher (P<0.05 to treatment with the addition of 2.5% TE, 2.0% GE and 2.5% TGE phytobiotic. The research concluded that the incorporation of 2.5% TE, 2% GE and combined 2.5% TGE as feed additive enhanced pancreatic enzyme activity.

  16. [The restoration of the enzyme activity of chernozem soil after gamma-irradiation].

    Science.gov (United States)

    Denisova, T V; Kazeev, K Sh

    2006-01-01

    The Influence of gamma-radiation by dozes 1, 5, 10 and 20 kGy on enzyme activity of ordinary chemozem were studied. Dynamics of the restoration of the enzyme activity after the influence of gamma-radiation in model experiments in 3, 30, 90 and 180 days was investigated. The doze 1 kGy did no statistically significant influence on the investigated enzymes. Dehydrogenase is more radiosensitive enzyme than catalase. Values of the saccharase activity differed a significant variation so in most cases it has not been registered statistically significant changes. In 90-180 days of the incubation enzymes activity was restored up to control values. Dehydrogenase activity in 180 days in variants with dozes 10 and 20 kGy was restored up to a level of the control, over variants with dozes 1 and 5 kGy--is higher than the control over 78% and 23% accordingly. Saccharase activity in 180 days after the influence of gamma-radiation with a doze 20 kGy was on 61% lower than the control.

  17. Dynamic relationships between microbial biomass, respiration, inorganic nutrients and enzyme activities: informing enzyme based decomposition models

    Directory of Open Access Journals (Sweden)

    Daryl L Moorhead

    2013-08-01

    Full Text Available We re-examined data from a recent litter decay study to determine if additional insights could be gained to inform decomposition modeling. Rinkes et al. (2013 conducted 14-day laboratory incubations of sugar maple (Acer saccharum or white oak (Quercus alba leaves, mixed with sand (0.4% organic C content or loam (4.1% organic C. They measured microbial biomass C, carbon dioxide efflux, soil ammonium, nitrate, and phosphate concentrations, and β-glucosidase (BG, β-N-acetyl-glucosaminidase (NAG, and acid phosphatase (AP activities on days 1, 3, and 14. Analyses of relationships among variables yielded different insights than original analyses of individual variables. For example, although respiration rates per g soil were higher for loam than sand, rates per g soil C were actually higher for sand than loam, and rates per g microbial C showed little difference between treatments. Microbial biomass C peaked on day 3 when biomass-specific activities of enzymes were lowest, suggesting uptake of litter C without extracellular hydrolysis. This result refuted a common model assumption that all enzyme production is constitutive and thus proportional to biomass, and/or indicated that part of litter decay is independent of enzyme activity. The length and angle of vectors defined by ratios of enzyme activities (BG/NAG versus BG/AP represent relative microbial investments in C (length, and N and P (angle acquiring enzymes. Shorter lengths on day 3 suggested low C limitation, whereas greater lengths on day 14 suggested an increase in C limitation with decay. The soils and litter in this study generally had stronger P limitation (angles > 45˚. Reductions in vector angles to < 45˚ for sand by day 14 suggested a shift to N limitation. These relational variables inform enzyme-based models, and are usually much less ambiguous when obtained from a single study in which measurements were made on the same samples than when extrapolated from separate studies.

  18. An evaluation on elastase enzyme activity in gingival crevicular fluid in periodontitis

    Directory of Open Access Journals (Sweden)

    Qujeq D

    2003-08-01

    Full Text Available Statement of Problem: Changes in protein levels, host calls enzymes and inflammatory mediators in gingival"ncrevicular Fluid (GCF are considered as diagnostic indicators of Periodontitis."nPurpose: he aim of the present study was to measure the elastase enzyme activity in gingival crevicular Fluid"namong patients with periodontitis."nMaterial and Methods: In this study, 52 periodontitis patients (experimental group and 51 healthy subjects"nwithout any gingival inflammatio (control group were participated. Subjects of the periodontitis group"nshowed pockets of 4-5 mm depth without gingival enlargement and recession or pockets of 1-2 mm depth"nwith gingival recession. For enzyme activity measurement, lOOu,! of gingival fluid of each sample was mixed"nwith lOOu! of enzyme substrate on the tube. The mixture was incubated at 34°c for lh with a buffer solution"nof 1ml volume and absorbance was read at 410nm with spectrophotometer. The enzyme activity differences"nbetween two groups were analyzed by student t test."nResults: The elastase enzyme activity in gingival crevicular fluid in subjects with periodontium destruction"nand control subjects was 153±11.3 and 52.7±10.4 enzyme unit in ml per minute, respectively. The difference"nbetween groups was statistically significant (PO.05."nConclusion: Based on the findings of this study, the measurement of elastae enzyme activity could be a useful"nindication of tissue changes that may ultimately manifest clinically as periodontitis.

  19. Remote enzyme activation using gold coated magnetite as antennae for radio frequency fields

    Science.gov (United States)

    Collins, Christian B.; Ackerson, Christopher J.

    2018-02-01

    The emerging field of remote enzyme activation, or the ability to remotely turn thermophilic increase enzyme activity, could be a valuable tool for understanding cellular processes. Through exploitation of the temperature dependence of enzymatic processes and high thermal stability of thermophilic enzymes these experiments utilize nanoparticles as `antennae' that convert radiofrequency (RF) radiation into local heat, increasing activity of the enzymes without increasing the temperature of the surrounding bulk solution. To investigate this possible tool, thermolysin, a metalloprotease was covalently conjugated to 4nm gold coated magnetite particles via peptide bond formation with the protecting ligand shell. RF stimulated protease activity at 17.76 MHz in a solenoid shaped antenna, utilizing both electric and magnetic field interactions was investigated. On average 40 percent higher protease activity was observed in the radio frequency fields then when bulk heating the sample to the same temperature. This is attributed to electrophoretic motion of the nanoparticle enzyme conjugates and local regions of heat generated by the relaxation of the magnetite cores with the oscillating field. Radio frequency local heating of nanoparticles conjugated to enzymes as demonstrated could be useful in the activation of specific enzymes in complex cellular environments.

  20. Antiviral and Inflammatory Cellular Signaling Associated with Enterovirus 71 Infection

    Directory of Open Access Journals (Sweden)

    Yuefei Jin

    2018-03-01

    Full Text Available Enterovirus 71 (EV71 infection has become a major threat to global public health, especially in infants and young children. Epidemiological studies have indicated that EV71 infection is responsible for severe and even fatal cases of hand, foot, and mouth disease (HFMD. Accumulated evidence indicates that EV71 infection triggers a plethora of interactive signaling pathways, resulting in host immune evasion and inflammatory response. This review mainly covers the effects of EV71 infection on major antiviral and inflammatory cellular signal pathways. EV71 can activate cellular signaling networks including multiple cell surface and intracellular receptors, intracellular kinases, calcium flux, and transcription factors that regulate antiviral innate immunity and inflammatory response. Cellular signaling plays a critical role in the regulation of host innate immune and inflammatory pathogenesis. Elucidation of antiviral and inflammatory cellular signaling pathways initiated by EV71 will not only help uncover the potential mechanisms of EV71 infection-induced pathogenesis, but will also provide clues for the design of therapeutic strategies against EV71 infection.

  1. WITHDRAWN. Antiviral treatment for Bell's palsy (idiopathic facial paralysis).

    Science.gov (United States)

    Gagyor, Ildiko; Madhok, Vishnu B; Daly, Fergus; Somasundara, Dhruvashree; Sullivan, Michael; Gammie, Fiona; Sullivan, Frank

    2015-05-04

    Corticosteroids are widely used in the treatment of idiopathic facial paralysis (Bell's palsy), but the effectiveness of additional treatment with an antiviral agent is uncertain. Significant morbidity can be associated with severe cases of Bell's palsy. To assess the effects of antiviral treatments alone or in combination with any other therapy for Bell's palsy. On 7 October 2014 we searched the Cochrane Neuromuscular Disease Group Specialized Register, CENTRAL, MEDLINE, EMBASE, LILACS, DARE, NHS EED, and HTA. We also reviewed the bibliographies of the identified trials and contacted trial authors and known experts in the field and relevant drug companies to identify additional published or unpublished data. We searched clinical trials registries for ongoing studies. We considered randomised controlled trials or quasi-randomised controlled trials of antivirals with and without corticosteroids versus control therapies for the treatment of Bell's palsy. We excluded trials that had a high risk of bias in several domains. Pairs of authors independently assessed trials for relevance, eligibility, and risk of bias, using standard Cochrane procedures. Eleven trials, including 2883 participants, met the inclusion criteria and are included in the final analysis. We added four studies to the previous review for this update. Some of the trials were small, and a number were at high or unclear risk of bias. Other trials did not meet current best standards in allocation concealment and blinding. Incomplete recoveryWe found no significant benefit from adding antivirals to corticosteroids in comparison with corticosteroids alone for people with Bell's palsy (risk ratio (RR) 0.69, 95% confidence interval (CI) 0.47 to 1.02, n = 1715). For people with severe Bell's palsy (House-Brackmann scores of 5 and 6 or the equivalent in other scales), we found a reduction in the rate of incomplete recovery at month six when antivirals plus corticosteroids were used (RR 0.64, 95% CI 0.41 to 0

  2. Ligninolytic enzyme activities in mycelium of some wild and ...

    African Journals Online (AJOL)

    Lignin is probably one of the most recalcitrant compounds synthesized by plants. This compound is degraded by few microorganisms. White-rot fungi have been extensively studied due to its powerful ligninolytic enzymes. In this study, ligninolytic enzyme activities of different fungal species (six commercial and 13 wild) were ...

  3. Chemokines cooperate with TNF to provide protective anti-viral immunity and to enhance inflammation.

    Science.gov (United States)

    Alejo, Alí; Ruiz-Argüello, M Begoña; Pontejo, Sergio M; Fernández de Marco, María Del Mar; Saraiva, Margarida; Hernáez, Bruno; Alcamí, Antonio

    2018-05-03

    The role of cytokines and chemokines in anti-viral defense has been demonstrated, but their relative contribution to protective anti-viral responses in vivo is not fully understood. Cytokine response modifier D (CrmD) is a secreted receptor for TNF and lymphotoxin containing the smallpox virus-encoded chemokine receptor (SECRET) domain and is expressed by ectromelia virus, the causative agent of the smallpox-like disease mousepox. Here we show that CrmD is an essential virulence factor that controls natural killer cell activation and allows progression of fatal mousepox, and demonstrate that both SECRET and TNF binding domains are required for full CrmD activity. Vaccination with recombinant CrmD protects animals from lethal mousepox. These results indicate that a specific set of chemokines enhance the inflammatory and protective anti-viral responses mediated by TNF and lymphotoxin, and illustrate how viruses optimize anti-TNF strategies with the addition of a chemokine binding domain as soluble decoy receptors.

  4. Inhibition of dengue virus replication by novel inhibitors of RNA-dependent RNA polymerase and protease activities.

    Science.gov (United States)

    Pelliccia, Sveva; Wu, Yu-Hsuan; Coluccia, Antonio; La Regina, Giuseppe; Tseng, Chin-Kai; Famiglini, Valeria; Masci, Domiziana; Hiscott, John; Lee, Jin-Ching; Silvestri, Romano

    2017-12-01

    Dengue virus (DENV) is the leading mosquito-transmitted viral infection in the world. With more than 390 million new infections annually, and up to 1 million clinical cases with severe disease manifestations, there continues to be a need to develop new antiviral agents against dengue infection. In addition, there is no approved anti-DENV agents for treating DENV-infected patients. In the present study, we identified new compounds with anti-DENV replication activity by targeting viral replication enzymes - NS5, RNA-dependent RNA polymerase (RdRp) and NS3 protease, using cell-based reporter assay. Subsequently, we performed an enzyme-based assay to clarify the action of these compounds against DENV RdRp or NS3 protease activity. Moreover, these compounds exhibited anti-DENV activity in vivo in the ICR-suckling DENV-infected mouse model. Combination drug treatment exhibited a synergistic inhibition of DENV replication. These results describe novel prototypical small anti-DENV molecules for further development through compound modification and provide potential antivirals for treating DENV infection and DENV-related diseases.

  5. CRISPR-Cas Targeting of Host Genes as an Antiviral Strategy.

    Science.gov (United States)

    Chen, Shuliang; Yu, Xiao; Guo, Deyin

    2018-01-16

    Currently, a new gene editing tool-the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) associated (Cas) system-is becoming a promising approach for genetic manipulation at the genomic level. This simple method, originating from the adaptive immune defense system in prokaryotes, has been developed and applied to antiviral research in humans. Based on the characteristics of virus-host interactions and the basic rules of nucleic acid cleavage or gene activation of the CRISPR-Cas system, it can be used to target both the virus genome and host factors to clear viral reservoirs and prohibit virus infection or replication. Here, we summarize recent progress of the CRISPR-Cas technology in editing host genes as an antiviral strategy.

  6. Activity of selected hydrolytic enzymes in Allium sativum L. anthers.

    Science.gov (United States)

    Winiarczyk, Krystyna; Gębura, Joanna

    2016-05-01

    The aim of the study was to determine enzymatic activity in sterile Allium sativum anthers in the final stages of male gametophyte development (the stages of tetrads and free microspores). The analysed enzymes were shown to occur in the form of numerous isoforms. In the tetrad stage, esterase activity was predominant, which was manifested by the greater number of isoforms of the enzyme. In turn, in the microspore stage, higher numbers of isoforms of acid phosphatases and proteases were detected. The development of sterile pollen grains in garlic is associated with a high level of protease and acid phosphatase activity and lower level of esterase activities in the anther locule. Probably this is the first description of the enzymes activity (ACPH, EST, PRO) in the consecutives stages of cell wall formation which is considered to be one of the causes of male sterility in flowering plant. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Inhibition of enterovirus 71 (EV-71 infections by a novel antiviral peptide derived from EV-71 capsid protein VP1.

    Directory of Open Access Journals (Sweden)

    Chee Wah Tan

    Full Text Available Enterovirus 71 (EV-71 is the main causative agent of hand, foot and mouth disease (HFMD. In recent years, EV-71 infections were reported to cause high fatalities and severe neurological complications in Asia. Currently, no effective antiviral or vaccine is available to treat or prevent EV-71 infection. In this study, we have discovered a synthetic peptide which could be developed as a potential antiviral for inhibition of EV-71. Ninety five synthetic peptides (15-mers overlapping the entire EV-71 capsid protein, VP1, were chemically synthesized and tested for antiviral properties against EV-71 in human Rhabdomyosarcoma (RD cells. One peptide, SP40, was found to significantly reduce cytopathic effects of all representative EV-71 strains from genotypes A, B and C tested, with IC(50 values ranging from 6-9.3 µM in RD cells. The in vitro inhibitory effect of SP40 exhibited a dose dependent concentration corresponding to a decrease in infectious viral particles, total viral RNA and the levels of VP1 protein. The antiviral activity of SP40 peptide was not restricted to a specific cell line as inhibition of EV-71 was observed in RD, HeLa, HT-29 and Vero cells. Besides inhibition of EV-71, it also had antiviral activities against CV-A16 and poliovirus type 1 in cell culture. Mechanism of action studies suggested that the SP40 peptide was not virucidal but was able to block viral attachment to the RD cells. Substitutions of arginine and lysine residues with alanine in the SP40 peptide at positions R3A, R4A, K5A and R13A were found to significantly decrease antiviral activities, implying the importance of positively charged amino acids for the antiviral activities. The data demonstrated the potential and feasibility of SP40 as a broad spectrum antiviral agent against EV-71.

  8. Tyrosinase inhibitory components from Aloe vera and their antiviral activity.

    Science.gov (United States)

    Kim, Jang Hoon; Yoon, Ju-Yeon; Yang, Seo Young; Choi, Seung-Kook; Kwon, Sun Jung; Cho, In Sook; Jeong, Min Hee; Ho Kim, Young; Choi, Gug Seoun

    2017-12-01

    A new compound, 9-dihydroxyl-2'-O-(Z)-cinnamoyl-7-methoxy-aloesin (1), and eight known compounds (2-9) were isolated from Aloe vera. Their structures were elucidated using 1D/2D nuclear magnetic resonance and mass spectra. Compound 9 exhibited reversible competitive inhibitory activity against the enzyme tyrosinase, with an IC 50 value of 9.8 ± 0.9 µM. A molecular simulation revealed that compound 9 interacts via hydrogen bonding with residues His244, Thr261, and Val283 of tyrosinase. Additionally, compounds 3 and 7 were shown by half-leaf assays to exhibit inhibitory activity towards Pepper mild mottle virus.

  9. Murine Efficacy and Pharmacokinetic Evaluation of the Flaviviral NS5 Capping Enzyme 2-Thioxothiazolidin-4-One Inhibitor BG-323.

    Science.gov (United States)

    Bullard, Kristen M; Gullberg, Rebekah C; Soltani, Elnaz; Steel, J Jordan; Geiss, Brian J; Keenan, Susan M

    2015-01-01

    Arthropod-borne flavivirus infection continues to cause significant morbidity and mortality worldwide. Identification of drug targets and novel antiflaviviral compounds to treat these diseases has become a global health imperative. A previous screen of 235,456 commercially available small molecules identified the 2-thioxothiazolidin-4-one family of compounds as inhibitors of the flaviviral NS5 capping enzyme, a promising target for antiviral drug development. Rational drug design methodologies enabled identification of lead compound BG-323 from this series. We have shown previously that BG-323 potently inhibits NS5 capping enzyme activity, displays antiviral effects in dengue virus replicon assays and inhibits growth of West Nile and yellow fever viruses with low cytotoxicity in vitro. In this study we further characterized BG-323's antiviral activity in vitro and in vivo. We found that BG-323 was able to reduce replication of WNV (NY99) and Powassan viruses in culture, and we were unable to force resistance into WNV (Kunjin) in long-term culture experiments. We then evaluated the antiviral activity of BG-323 in a murine model. Mice were challenged with WNV NY99 and administered BG-323 or mock by IP inoculation immediately post challenge and twice daily thereafter. Mice were bled and viremia was quantified on day three. No significant differences in viremia were observed between BG-323-treated and control groups and clinical scores indicated both BG-323-treated and control mice developed signs of illness on approximately the same day post challenge. To determine whether differences in in vitro and in vivo efficacy were due to unfavorable pharmacokinetic properties of BG-323, we conducted a pharmacokinetic evaluation of this small molecule. Insights from pharmacokinetic studies indicate that BG-323 is cell permeable, has a low efflux ratio and does not significantly inhibit two common cytochrome P450 (CYP P450) isoforms thus suggesting this molecule may be less

  10. Murine Efficacy and Pharmacokinetic Evaluation of the Flaviviral NS5 Capping Enzyme 2-Thioxothiazolidin-4-One Inhibitor BG-323.

    Directory of Open Access Journals (Sweden)

    Kristen M Bullard

    Full Text Available Arthropod-borne flavivirus infection continues to cause significant morbidity and mortality worldwide. Identification of drug targets and novel antiflaviviral compounds to treat these diseases has become a global health imperative. A previous screen of 235,456 commercially available small molecules identified the 2-thioxothiazolidin-4-one family of compounds as inhibitors of the flaviviral NS5 capping enzyme, a promising target for antiviral drug development. Rational drug design methodologies enabled identification of lead compound BG-323 from this series. We have shown previously that BG-323 potently inhibits NS5 capping enzyme activity, displays antiviral effects in dengue virus replicon assays and inhibits growth of West Nile and yellow fever viruses with low cytotoxicity in vitro. In this study we further characterized BG-323's antiviral activity in vitro and in vivo. We found that BG-323 was able to reduce replication of WNV (NY99 and Powassan viruses in culture, and we were unable to force resistance into WNV (Kunjin in long-term culture experiments. We then evaluated the antiviral activity of BG-323 in a murine model. Mice were challenged with WNV NY99 and administered BG-323 or mock by IP inoculation immediately post challenge and twice daily thereafter. Mice were bled and viremia was quantified on day three. No significant differences in viremia were observed between BG-323-treated and control groups and clinical scores indicated both BG-323-treated and control mice developed signs of illness on approximately the same day post challenge. To determine whether differences in in vitro and in vivo efficacy were due to unfavorable pharmacokinetic properties of BG-323, we conducted a pharmacokinetic evaluation of this small molecule. Insights from pharmacokinetic studies indicate that BG-323 is cell permeable, has a low efflux ratio and does not significantly inhibit two common cytochrome P450 (CYP P450 isoforms thus suggesting this molecule

  11. Optimization of Enzyme Co-Immobilization with Sodium Alginate and Glutaraldehyde-Activated Chitosan Beads.

    Science.gov (United States)

    Gür, Sinem Diken; İdil, Neslihan; Aksöz, Nilüfer

    2018-02-01

    In this study, two different materials-alginate and glutaraldehyde-activated chitosan beads-were used for the co-immobilization of α-amylase, protease, and pectinase. Firstly, optimization of multienzyme immobilization with Na alginate beads was carried out. Optimum Na alginate and CaCl 2 concentration were found to be 2.5% and 0.1 M, respectively, and optimal enzyme loading ratio was determined as 2:1:0.02 for pectinase, protease, and α-amylase, respectively. Next, the immobilization of multiple enzymes on glutaraldehyde-activated chitosan beads was optimized (3% chitosan concentration, 0.25% glutaraldehyde with 3 h of activation and 3 h of coupling time). While co-immobilization was successfully performed with both materials, the specific activities of enzymes were found to be higher for the enzymes co-immobilized with glutaraldehyde-activated chitosan beads. In this process, glutaraldehyde was acting as a spacer arm. SEM and FTIR were used for the characterization of activated chitosan beads. Moreover, pectinase and α-amylase enzymes immobilized with chitosan beads were also found to have higher activity than their free forms. Three different enzymes were co-immobilized with these two materials for the first time in this study.

  12. Antiviral Effects of Saffron and its Major Ingredients.

    Science.gov (United States)

    Soleymani, Sepehr; Zabihollahi, Rezvan; Shahbazi, Sepideh; Bolhassani, Azam

    2018-01-01

    The lack of an effective vaccine against viral infections, toxicity of the synthetic anti-viral drugs and the generation of resistant viral strains led to discover novel inhibitors. Recently, saffron and its compounds were used to treat different pathological conditions. In this study, we tested the anti-HSV-1 and anti-HIV-1 activities of Iranian saffron extract and its major ingredients including crocin and picrocrocin as well as cytotoxicity in vitro. The data showed that the aqueous saffron extract was not active against HIV-1 and HSV-1 virions at certain doses (i.e., a mild activity), but crocin and picrocrocin indicated significant anti-HSV-1 and also anti-HIV-1 activities. Crocin inhibited the HSV replication at before and after entry of virions into Vero cells. Indeed, crocin carotenoid suppressed HSV penetration in the target cells as well as disturbed virus replication after entry into the cells. Picrocrocin was also effective for inhibiting virus entry and also its replication. This monoterpen aldehyde showed higher anti-HSV effects after virus penetrating in the cells. Generally, these sugar-containing compounds extracted from saffron showed to be effective antiherpetic drug candidates. The recent study is the first report suggesting antiviral activities for saffron extract and its major ingredients. Crocin and picrocrocin could be a promising anti-HSV and anti-HIV agent for herbal therapy against viral infections. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Revealing hidden effect of earthworm on C distribution and enzyme activity

    Science.gov (United States)

    Razavi, Bahar S.; Hoang, Duyen; Kuzyakov, Yakov

    2017-04-01

    Despite its importance for terrestrial nutrient and carbon cycling, the spatial organization and localization of microbial activity in soil and in biopores is poorly understood. We hypothesized that biopores created by earthworm play a critical role in reducing the gap of SOM input and microbial activities between topsoil and subsoil. Accordingly, Carbon (C) allocation by earthworms was related to enzyme distribution along soil profile. For the first time we visualized spatial distribution of enzyme activities (β-glucosidase, chitinase and acid phosphatase) and C allocation (by 14C imaging) in earthworm biopores in topsoil and subsoil. Soil zymography (an in situ method for the analysis of the two-dimensional distribution of enzyme activity in soil) was accompanied with 14C imaging (a method that enables to trace distribution of litter and C in soil profile) to visualize change of enzyme activities along with SOM incorporation by earthworms from topsoil to subsoil. Experiment was set up acquiring rhizoboxes (9×1×50 cm) filled up with fresh soil and 3 earthworms (L. terrestris), which were then layered with 14C-labeled plant-litter of 0.3 MBq on the soil surface. 14C imaging and zymography have been carried out after one month. Activities of all enzymes regardless of their nutrient involvement (C, N, P) were higher in the biopores than in bulk soil, but the differences were larger in topsoil compared to subsoil. Among three enzymes, Phosphatase activity was 4-times higher in the biopore than in the bulk soil. Phosphatase activity was closely associated with edge of burrows and correlate positively with 14C activity. These results emphasized especial contribution of hotspheres such as biopores to C allocation in subsoil - which is limited in C input and nutrients - and in stimulation of microbial and enzymatic activity by input of organic residues, e.g. by earthworms. In conclusion, biopore increased enzymatic mobilization of nutrients (e.g. P) inducing allocation

  14. Molecular dynamics explorations of active site structure in designed and evolved enzymes.

    Science.gov (United States)

    Osuna, Sílvia; Jiménez-Osés, Gonzalo; Noey, Elizabeth L; Houk, K N

    2015-04-21

    This Account describes the use of molecular dynamics (MD) simulations to reveal how mutations alter the structure and organization of enzyme active sites. As proposed by Pauling about 70 years ago and elaborated by many others since then, biocatalysis is efficient when functional groups in the active site of an enzyme are in optimal positions for transition state stabilization. Changes in mechanism and covalent interactions are often critical parts of enzyme catalysis. We describe our explorations of the dynamical preorganization of active sites using MD, studying the fluctuations between active and inactive conformations normally concealed to static crystallography. MD shows how the various arrangements of active site residues influence the free energy of the transition state and relates the populations of the catalytic conformational ensemble to the enzyme activity. This Account is organized around three case studies from our laboratory. We first describe the importance of dynamics in evaluating a series of computationally designed and experimentally evolved enzymes for the Kemp elimination, a popular subject in the enzyme design field. We find that the dynamics of the active site is influenced not only by the original sequence design and subsequent mutations but also by the nature of the ligand present in the active site. In the second example, we show how microsecond MD has been used to uncover the role of remote mutations in the active site dynamics and catalysis of a transesterase, LovD. This enzyme was evolved by Tang at UCLA and Codexis, Inc., and is a useful commercial catalyst for the production of the drug simvastatin. X-ray analysis of inactive and active mutants did not reveal differences in the active sites, but relatively long time scale MD in solution showed that the active site of the wild-type enzyme preorganizes only upon binding of the acyl carrier protein (ACP) that delivers the natural acyl group to the active site. In the absence of bound ACP

  15. Spatial distribution of enzyme activities along the root and in the rhizosphere of different plants

    Science.gov (United States)

    Razavi, Bahar S.; Zarebanadkouki, Mohsen; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2015-04-01

    Extracellular enzymes are important for decomposition of many biological macromolecules abundant in soil such as cellulose, hemicelluloses and proteins. Activities of enzymes produced by both plant roots and microbes are the primary biological drivers of organic matter decomposition and nutrient cycling. So far acquisition of in situ data about local activity of different enzymes in soil has been challenged. That is why there is an urgent need in spatially explicit methods such as 2-D zymography to determine the variation of enzymes along the roots in different plants. Here, we developed further the zymography technique in order to quantitatively visualize the enzyme activities (Spohn and Kuzyakov, 2013), with a better spatial resolution We grew Maize (Zea mays L.) and Lentil (Lens culinaris) in rhizoboxes under optimum conditions for 21 days to study spatial distribution of enzyme activity in soil and along roots. We visualized the 2D distribution of the activity of three enzymes:β-glucosidase, leucine amino peptidase and phosphatase, using fluorogenically labelled substrates. Spatial resolution of fluorescent images was improved by direct application of a substrate saturated membrane to the soil-root system. The newly-developed direct zymography shows different pattern of spatial distribution of enzyme activity along roots and soil of different plants. We observed a uniform distribution of enzyme activities along the root system of Lentil. However, root system of Maize demonstrated inhomogeneity of enzyme activities. The apical part of an individual root (root tip) in maize showed the highest activity. The activity of all enzymes was the highest at vicinity of the roots and it decreased towards the bulk soil. Spatial patterns of enzyme activities as a function of distance from the root surface were enzyme specific, with highest extension for phosphatase. We conclude that improved zymography is promising in situ technique to analyze, visualize and quantify

  16. A simple, rapid, and sensitive system for the evaluation of anti-viral drugs in rats

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaoguang [Tohoku University Graduate School of Medicine, Department of Internal Medicine/Division of Emerging Infectious Diseases, Sendai 980-8575 (Japan); Department of Medical Microbiology, Harbin Medical University, Harbin 150086 (China); Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811 (Japan); Qian, Hua [Tohoku University Graduate School of Medicine, Department of Internal Medicine/Division of Emerging Infectious Diseases, Sendai 980-8575 (Japan); Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811 (Japan); Miyamoto, Fusako [Tohoku University Graduate School of Medicine, Department of Internal Medicine/Division of Emerging Infectious Diseases, Sendai 980-8575 (Japan); Naito, Takeshi [Laboratory of Virus Control, Institute for Virus Research, Kyoto University, 53 Kawaramachi, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Kawaji, Kumi [Tohoku University Graduate School of Medicine, Department of Internal Medicine/Division of Emerging Infectious Diseases, Sendai 980-8575 (Japan); Kajiwara, Kazumi [Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan); JST Innovation Plaza Kyoto, Japan Science and Technology Agency, Nishigyo-ku, Kyoto 615-8245 (Japan); Hattori, Toshio [Tohoku University Graduate School of Medicine, Department of Internal Medicine/Division of Emerging Infectious Diseases, Sendai 980-8575 (Japan); Matsuoka, Masao [Laboratory of Virus Control, Institute for Virus Research, Kyoto University, 53 Kawaramachi, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Watanabe, Kentaro; Oishi, Shinya; Fujii, Nobutaka [Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan); and others

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer We established a novel, simple and rapid in vivo system for evaluation of anti-HIV-1 drugs with rats. Black-Right-Pointing-Pointer The system may be applicable for other antiviral drugs, and/or useful for initial screening in vivo. Black-Right-Pointing-Pointer In this system, TRI-1144 displayed the most potent anti-HIV-1 activity in vivo. -- Abstract: The lack of small animal models for the evaluation of anti-human immunodeficiency virus type 1 (HIV-1) agents hampers drug development. Here, we describe the establishment of a simple and rapid evaluation system in a rat model without animal infection facilities. After intraperitoneal administration of test drugs to rats, antiviral activity in the sera was examined by the MAGI assay. Recently developed inhibitors for HIV-1 entry, two CXCR4 antagonists, TF14016 and FC131, and four fusion inhibitors, T-20, T-20EK, SC29EK, and TRI-1144, were evaluated using HIV-1{sub IIIB} and HIV-1{sub BaL} as representative CXCR4- and CCR5-tropic HIV-1 strains, respectively. CXCR4 antagonists were shown to only possess anti-HIV-1{sub IIIB} activity, whereas fusion inhibitors showed both anti-HIV-1{sub IIIB} and anti-HIV-1{sub BaL} activities in rat sera. These results indicate that test drugs were successfully processed into the rat sera and could be detected by the MAGI assay. In this system, TRI-1144 showed the most potent and sustained antiviral activity. Sera from animals not administered drugs showed substantial anti-HIV-1 activity, indicating that relatively high dose or activity of the test drugs might be needed. In conclusion, the novel rat system established here, 'phenotypic drug evaluation', may be applicable for the evaluation of various antiviral drugs in vivo.

  17. A simple, rapid, and sensitive system for the evaluation of anti-viral drugs in rats

    International Nuclear Information System (INIS)

    Li, Xiaoguang; Qian, Hua; Miyamoto, Fusako; Naito, Takeshi; Kawaji, Kumi; Kajiwara, Kazumi; Hattori, Toshio; Matsuoka, Masao; Watanabe, Kentaro; Oishi, Shinya; Fujii, Nobutaka

    2012-01-01

    Highlights: ► We established a novel, simple and rapid in vivo system for evaluation of anti-HIV-1 drugs with rats. ► The system may be applicable for other antiviral drugs, and/or useful for initial screening in vivo. ► In this system, TRI-1144 displayed the most potent anti-HIV-1 activity in vivo. -- Abstract: The lack of small animal models for the evaluation of anti-human immunodeficiency virus type 1 (HIV-1) agents hampers drug development. Here, we describe the establishment of a simple and rapid evaluation system in a rat model without animal infection facilities. After intraperitoneal administration of test drugs to rats, antiviral activity in the sera was examined by the MAGI assay. Recently developed inhibitors for HIV-1 entry, two CXCR4 antagonists, TF14016 and FC131, and four fusion inhibitors, T-20, T-20EK, SC29EK, and TRI-1144, were evaluated using HIV-1 IIIB and HIV-1 BaL as representative CXCR4- and CCR5-tropic HIV-1 strains, respectively. CXCR4 antagonists were shown to only possess anti-HIV-1 IIIB activity, whereas fusion inhibitors showed both anti-HIV-1 IIIB and anti-HIV-1 BaL activities in rat sera. These results indicate that test drugs were successfully processed into the rat sera and could be detected by the MAGI assay. In this system, TRI-1144 showed the most potent and sustained antiviral activity. Sera from animals not administered drugs showed substantial anti-HIV-1 activity, indicating that relatively high dose or activity of the test drugs might be needed. In conclusion, the novel rat system established here, “phenotypic drug evaluation”, may be applicable for the evaluation of various antiviral drugs in vivo.

  18. Antiviral activity against human immunodeficiency virus-1 in vitro by myristoylated-peptide from Heliothis virescens

    International Nuclear Information System (INIS)

    Ourth, Donald D.

    2004-01-01

    An insect antiviral compound was purified from Heliothis virescens larval hemolymph by gel-filtration high pressure liquid chromatography (HPLC) and C-18 reverse-phase HPLC and its structure was determined by mass spectrometry. The antiviral compound is an N-myristoylated-peptide containing six amino acids with calculated molecular weight of 916 Da. The N-terminus contains the fatty acid myristoyl, and the C-terminus contains histidine with two methyl groups giving the histidine a permanent positive charge. The remainder of the compound is essentially non-polar. The structure of the compound corresponds with the 'myristate plus basic' motif expressed by certain viral proteins in their binding to the cytoplasmic side of the plasma membrane to initiate viral assembly and budding from a host cell. The insect antiviral compound may inhibit viral assembly and/or budding of viruses from host cells that could include the human immunodeficiency virus-1 (HIV-1) and herpes simplex virus-1 that use this motif for exit from a host cell. Using the formazan assay, the myristoylated-peptide was effective against HIV-1, with a nine times increase in the viability and protection in vitro of treated CEM-SS cells when compared with infected but untreated control cells

  19. Influence of long-term fertilization on soil enzyme activities

    Directory of Open Access Journals (Sweden)

    Alina Dora SAMUEL

    2009-05-01

    Full Text Available Soil enzyme activities (actual and potential dehydrogenase, catalase, acid and alkaline phosphatase were determined in the 0–10, 10–20, and 20–30 cm layers of a brown luvic soil submitted to a complex fertilization experiment with different types of green manure. It was found that each activity decreased with increasing sampling depth. It should be emphasized that greenmanuring of maize led to a significant increase in each of the five enzymatic activities determined. The enzymatic indicators of soil quality calculated from the values of enzymatic activities showed the order: lupinus + rape + oat > lupinus > vetch + oat + ryegrass > lupinus + oat + vetch > unfertilized plot. This order means that by determination of enzymatic activities valuable information can be obtained regarding fertility status of soils. There were significant correlations of soil enzyme activities with chemical properties.

  20. Antiviral resistance and the control of pandemic influenza.

    Directory of Open Access Journals (Sweden)

    Marc Lipsitch

    2007-01-01

    Full Text Available The response to the next influenza pandemic will likely include extensive use of antiviral drugs (mainly oseltamivir, combined with other transmission-reducing measures. Animal and in vitro studies suggest that some strains of influenza may become resistant to oseltamivir while maintaining infectiousness (fitness. Use of antiviral agents on the scale anticipated for the control of pandemic influenza will create an unprecedented selective pressure for the emergence and spread of these strains. Nonetheless, antiviral resistance has received little attention when evaluating these plans.We designed and analyzed a deterministic compartmental model of the transmission of oseltamivir-sensitive and -resistant influenza infections during a pandemic. The model predicts that even if antiviral treatment or prophylaxis leads to the emergence of a transmissible resistant strain in as few as 1 in 50,000 treated persons and 1 in 500,000 prophylaxed persons, widespread use of antivirals may strongly promote the spread of resistant strains at the population level, leading to a prevalence of tens of percent by the end of a pandemic. On the other hand, even in circumstances in which a resistant strain spreads widely, the use of antivirals may significantly delay and/or reduce the total size of the pandemic. If resistant strains carry some fitness cost, then, despite widespread emergence of resistance, antivirals could slow pandemic spread by months or more, and buy time for vaccine development; this delay would be prolonged by nondrug control measures (e.g., social distancing that reduce transmission, or use of a stockpiled suboptimal vaccine. Surprisingly, the model suggests that such nondrug control measures would increase the proportion of the epidemic caused by resistant strains.The benefits of antiviral drug use to control an influenza pandemic may be reduced, although not completely offset, by drug resistance in the virus. Therefore, the risk of resistance

  1. Decision Making with Regard to Antiviral Intervention during an Influenza Pandemic

    Science.gov (United States)

    Shim, Eunha; Chapman, Gretchen B.; Galvani, Alison P.

    2012-01-01

    Background Antiviral coverage is defined by the proportion of the population that takes antiviral prophylaxis or treatment. High coverage of an antiviral drug has epidemiological and evolutionary repercussions. Antivirals select for drug resistance within the population, and individuals may experience adverse effects. To determine optimal antiviral coverage in the context of an influenza outbreak, we compared 2 perspectives: 1) the individual level (the Nash perspective), and 2) the population level (utilitarian perspective). Methods We developed an epidemiological game-theoretic model of an influenza pandemic. The data sources were published literature and a national survey. The target population was the US population. The time horizon was 6 months. The perspective was individuals and the population overall. The interventions were antiviral prophylaxis and treatment. The outcome measures were the optimal coverage of antivirals in an influenza pandemic. Results At current antiviral pricing, the optimal Nash strategy is 0% coverage for prophylaxis and 30% coverage for treatment, whereas the optimal utilitarian strategy is 19% coverage for prophylaxis and 100% coverage for treatment. Subsidizing prophylaxis by $440 and treatment by $85 would bring the Nash and utilitarian strategies into alignment. For both prophylaxis and treatment, the optimal antiviral coverage decreases as pricing of antivirals increases. Our study does not incorporate the possibility of an effective vaccine and lacks probabilistic sensitivity analysis. Our survey also does not completely represent the US population. Because our model assumes a homogeneous population and homogeneous antiviral pricing, it does not incorporate heterogeneity of preference. Conclusions The optimal antiviral coverage from the population perspective and individual perspectives differs widely for both prophylaxis and treatment strategies. Optimal population and individual strategies for prophylaxis and treatment might

  2. A metal-based inhibitor of NEDD8-activating enzyme.

    Directory of Open Access Journals (Sweden)

    Hai-Jing Zhong

    Full Text Available A cyclometallated rhodium(III complex [Rh(ppy(2(dppz](+ (1 (where ppy=2-phenylpyridine and dppz=dipyrido[3,2-a:2',3'-c]phenazine dipyridophenazine has been prepared and identified as an inhibitor of NEDD8-activating enzyme (NAE. The complex inhibited NAE activity in cell-free and cell-based assays, and suppressed the CRL-regulated substrate degradation and NF-κB activation in human cancer cells with potency comparable to known NAE inhibitor MLN4924. Molecular modeling analysis suggested that the overall binding mode of 1 within the binding pocket of the APPBP1/UBA3 heterodimer resembled that for MLN4924. Complex 1 is the first metal complex reported to suppress the NEDDylation pathway via inhibition of the NEDD8-activating enzyme.

  3. New pathogenic viruses and novel antiviral drugs

    NARCIS (Netherlands)

    Berkhout, Ben; Eggink, Dirk

    2011-01-01

    The journal Antiviral Research was conceived and born in 1980, and launched in 1981, a time when very few antiviral drugs were around. This 30-year celebration meeting was convened by the publisher Elsevier and chaired by Eric de Clercq (Leuven University), who has acted as editor-in-chief for the

  4. Enzyme activity screening of thermophilic bacteria isolated from Dusun Tua Hot Spring, Malaysia

    Science.gov (United States)

    Msarah, Marwan; Ibrahim, Izyanti; Aqma, Wan Syaidatul

    2018-04-01

    Thermophilic bacteria have biotechnological importance due to the availability of unique enzymes which are stable in extreme circumstances. The aim of this study includes to isolate thermophilic bacteria from hot spring and screen for important enzyme activities. Water samples from the Dusun Tua Hot Spring were collected and the physiochemical characterisation of water was measured. Eight thermophilic bacteria were isolated and determined to have at least three strong enzyme activity including protease, lipase, amylase, cellulase, pectinase and xylanase. The results showed that HuluC2 displayed all the enzyme activities and can be further studied.

  5. Understanding drivers of peatland extracellular enzyme activity in the PEATcosm experiment: mixed evidence for enzymic latch hypothesis

    Science.gov (United States)

    Karl J. Romanowicz; Evan S. Kane; Lynette R. Potvin; Aleta L. Daniels; Randy Kolka; Erik A. Lilleskov

    2015-01-01

    Aims. Our objective was to assess the impacts of water table position and plant functional groups on peatland extracellular enzyme activity (EEA) framed within the context of the enzymic latch hypothesis. Methods. We utilized a full factorial experiment with 2 water table (WT) treatments (high and low) and 3 plant functional...

  6. Targeting Poxvirus Decapping Enzymes and mRNA Decay to Generate an Effective Oncolytic Virus

    Directory of Open Access Journals (Sweden)

    Hannah Burgess

    2018-03-01

    Full Text Available Through the action of two virus-encoded decapping enzymes (D9 and D10 that remove protective caps from mRNA 5′-termini, Vaccinia virus (VACV accelerates mRNA decay and limits activation of host defenses. D9- or D10-deficient VACV are markedly attenuated in mice and fail to counter cellular double-stranded RNA-responsive innate immune effectors, including PKR. Here, we capitalize upon this phenotype and demonstrate that VACV deficient in either decapping enzyme are effective oncolytic viruses. Significantly, D9- or D10-deficient VACV displayed anti-tumor activity against syngeneic mouse tumors of different genetic backgrounds and human hepatocellular carcinoma xenografts. Furthermore, D9- and D10-deficient VACV hyperactivated the host anti-viral enzyme PKR in non-tumorigenic cells compared to wild-type virus. This establishes a new genetic platform for oncolytic VACV development that is deficient for a major pathogenesis determinant while retaining viral genes that support robust productive replication like those required for nucleotide metabolism. It further demonstrates how VACV mutants unable to execute a fundamental step in virus-induced mRNA decay can be unexpectedly translated into a powerful anti-tumor therapy. Keywords: oncolytic virus, mRNA decay, decapping

  7. Subcellular distribution of histone-degrading enzyme activities from rat liver

    International Nuclear Information System (INIS)

    Heinrich, P.C.; Raydt, G.; Puschendorf, B.; Jusic, M.

    1976-01-01

    Chromatin prepared from liver tissue contains a histone-degrading enzyme activity with a pH optimum of 7.5-8.0, whereas chromatin isolated from purified nuclei is devoid of it. The histone-degrading enzyme activity was assayed with radioactively labelled total histones from Ehrlich ascites tumor cells. Among the different subcellular fractions assayed, only lysosomes and mitochondria exhibited histone-degrading enzymes. A pH optimum around 4.0-5.0 was found for the lysosomal fraction, whereas 7.5-8.0 has been found for mitochondria. Binding studies of frozen and thawed lysosomes or mitochondria to proteinase-free chromatin demonstrate that the proteinase associated with chromatin isolated from frozen tissue originates from damaged mitochondria. The protein degradation patterns obtained after acrylamide gel electrophoresis are similar for the chromatin-associated and the mitochondrial proteinase and different from that obtained after incubation with lysosomes. The chromatin-associated proteinase as well as the mitochondrial proteinase are strongly inhibited by 1.0 mM phenylmethanesulfonyl fluoride. Weak inhibition is found for lysosomal proteinases at pH 5. Kallikrein-trypsin inhibitor, however, inhibits lysosomal proteinase activity and has no effect on either chromatin-associated or mitochondrial proteinases. The higher template activity of chromatin isolated from a total homogenate compared to chromatin prepared from nuclei may be due to the presence of this histone-degrading enzyme activity. (orig.) [de

  8. Gaseous environment of plants and activity of enzymes of carbohydrate catabolism

    International Nuclear Information System (INIS)

    Ivanov, B.F.; Zemlyanukhin, A.A.; Igamberdiev, A.U.; Salam, A.M.M.

    1989-01-01

    The authors investigated the action of hypoxia and high CO 2 concentration in the atmosphere on activity of phosphofructokinase, aldolase, glucose phosphate isomerase, glucose-6-phosphate dehydrogenase, lactate dehydrogenase, alcohol dehydrogenase, and isocitrate lyase in pea seedlings (Pisum sativum L.), corn scutella (Zea mays L.), and hemp cotyledons (Cannabis sativa L.). The first 4-12h of hypoxia witnessed suppression of enzymes of the initial stages of glycolysis (glucose-6-phosphate isomerase, phosphofructokinase)and activation of enzymes of its final stages (alcohol dehydrogenase and lactate dehydrogenase) and enzymes linking glycolysis and the pentose phosphate pathway (aldolase and glucose-6-phosphate dehydrogenase). An excess of CO 2 in the environment accelerated and amplified this effect. At the end of a 24-h period of anaerobic incubation, deviations of enzyme activity from the control were leveled in both gaseous environments. An exception was observed in the case of phosphofructokinase, whose activity increased markedly at this time in plants exposed to CO 2 . Changes in activity of the enzymes were coupled with changes in their kinetic parameters (apparent K m and V max values). The activity of isocitrate lyase was suppressed in both variants of hypoxic gaseous environments, a finding that does not agree with the hypothesis as to participation of the glyoxylate cycle in the metabolic response of plants to oxygen stress. Thus, temporary inhibition of the system of glycolysis and activation of the pentose phosphate pathway constituted the initial response of the plants to O 2 stress, and CO 2 intensified this metabolic response

  9. Antiviral cationic peptides as a strategy for innovation in global health therapeutics for dengue virus: high yield production of the biologically active recombinant plectasin peptide.

    Science.gov (United States)

    Rothan, Hussin A; Mohamed, Zulqarnain; Suhaeb, Abdulrazzaq M; Rahman, Noorsaadah Abd; Yusof, Rohana

    2013-11-01

    Dengue virus infects millions of people worldwide, and there is no vaccine or anti-dengue therapeutic available. Antimicrobial peptides have been shown to possess effective antiviral activity against various viruses. One of the main limitations of developing these peptides as potent antiviral drugs is the high cost of production. In this study, high yield production of biologically active plectasin peptide was inexpensively achieved by producing tandem plectasin peptides as inclusion bodies in E. coli. Antiviral activity of the recombinant peptide towards dengue serotype-2 NS2B-NS3 protease (DENV2 NS2B-NS3pro) was assessed as a target to inhibit dengue virus replication in Vero cells. Single units of recombinant plectasin were collected after applying consecutive steps of refolding, cleaving by Factor Xa, and nickel column purification to obtain recombinant proteins of high purity. The maximal nontoxic dose (MNTD) of the recombinant peptide against Vero cells was 20 μM (100 μg/mL). The reaction velocity of DENV2 NS2B-NS3pro decreased significantly after increasing concentrations of recombinant plectasin were applied to the reaction mixture. Plectasin peptide noncompetitively inhibited DENV2 NS2B-NS3pro at Ki value of 5.03 ± 0.98 μM. The percentage of viral inhibition was more than 80% at the MNTD value of plectasin. In this study, biologically active recombinant plectasin which was able to inhibit dengue protease and viral replication in Vero cells was successfully produced in E. coli in a time- and cost- effective method. These findings are potentially important in the development of potent therapeutics against dengue infection.

  10. Ultrasound assisted intensification of enzyme activity and its properties: a mini-review.

    Science.gov (United States)

    Nadar, Shamraja S; Rathod, Virendra K

    2017-08-22

    Over the last decade, ultrasound technique has emerged as the potential technology which shows large applications in food and biotechnology processes. Earlier, ultrasound has been employed as a method of enzyme inactivation but recently, it has been found that ultrasound does not inactivate all enzymes, particularly, under mild conditions. It has been shown that the use of ultrasonic treatment at appropriate frequencies and intensity levels can lead to enhanced enzyme activity due to favourable conformational changes in protein molecules without altering its structural integrity. The present review article gives an overview of influence of ultrasound irradiation parameters (intensity, duty cycle and frequency) and enzyme related factors (enzyme concentration, temperature and pH) on the catalytic activity of enzyme during ultrasound treatment. Also, it includes the effect of ultrasound on thermal kinetic parameters and Michaelis-Menten kinetic parameters (k m and V max ) of enzymes. Further, in this review, the physical and chemical effects of ultrasound on enzyme have been correlated with thermodynamic parameters (enthalpy and entropy). Various techniques used for investigating the conformation changes in enzyme after sonication have been highlighted. At the end, different techniques of immobilization for ultrasound treated enzyme have been summarized.

  11. Synthesis and antiviral activity of 4,6-disubstituted pyrimido[4,5-b]indole ribonucleosides

    Czech Academy of Sciences Publication Activity Database

    Tichý, Michal; Pohl, Radek; Xu, H. Y.; Chen, Y. L.; Yokokawa, F.; Shi, P. Y.; Hocek, Michal

    2012-01-01

    Roč. 20, č. 20 (2012), s. 6123-6133 ISSN 0968-0896 R&D Projects: GA ČR GAP207/11/0344 Institutional support: RVO:61388963 Keywords : nucleosides * deazapurines * antivirals Subject RIV: CC - Organic Chemistry Impact factor: 2.903, year: 2012

  12. Identification of an antioxidant small-molecule with broad-spectrum antiviral activity.

    Science.gov (United States)

    Panchal, Rekha G; Reid, St Patrick; Tran, Julie P; Bergeron, Alison A; Wells, Jay; Kota, Krishna P; Aman, Javad; Bavari, Sina

    2012-01-01

    The highly lethal filoviruses, Ebola and Marburg cause severe hemorrhagic fever in humans and non-human primates. To date there are no licensed vaccines or therapeutics to counter these infections. Identifying novel pathways and host targets that play an essential role during infection will provide potential targets to develop therapeutics. Small molecule chemical screening for Ebola virus inhibitors resulted in identification of a compound NSC 62914. The compound was found to exhibit anti-filovirus activity in cell-based assays and in vivo protected mice following challenge with Ebola or Marburg viruses. Additionally, the compound was found to inhibit Rift Valley fever virus, Lassa virus and Venezuelan equine encephalitis virus in cell-based assays. Investigation of the mechanism of action of the compound revealed that it had antioxidant properties. Specifically, compound NSC 62914 was found to act as a scavenger of reactive oxygen species, and to up-regulate oxidative stress-induced genes. However, four known antioxidant compounds failed to inhibit filovirus infection, thus suggesting that the mechanistic basis of the antiviral function of the antioxidant NSC 62914 may involve modulation of multiple signaling pathways/targets. Published by Elsevier B.V.

  13. ATPase Activity Measurements by an Enzyme-Coupled Spectrophotometric Assay.

    Science.gov (United States)

    Sehgal, Pankaj; Olesen, Claus; Møller, Jesper V

    2016-01-01

    Enzymatic coupled assays are usually based on the spectrophotometric registration of changes in NADH/NAD(+) or NADPH/NADP(+) absorption at 340 nm accompanying the oxidation/reduction of reactants that by dehydrogenases and other helper enzymes are linked to the activity of the enzymatic reaction under study. The present NADH-ATP-coupled assay for ATPase activity is a seemingly somewhat complicated procedure, but in practice adaptation to performance is easily acquired. It is a more safe and elegant method than colorimetric methods, but not suitable for handling large number of samples, and also presupposes that the activity of the helper enzymes is not severely affected by the chemical environment of the sample in which it is tested.

  14. Interrogating the activities of conformational deformed enzyme by single-molecule fluorescence-magnetic tweezers microscopy

    Science.gov (United States)

    Guo, Qing; He, Yufan; Lu, H. Peter

    2015-01-01

    Characterizing the impact of fluctuating enzyme conformation on enzymatic activity is critical in understanding the structure–function relationship and enzymatic reaction dynamics. Different from studying enzyme conformations under a denaturing condition, it is highly informative to manipulate the conformation of an enzyme under an enzymatic reaction condition while monitoring the real-time enzymatic activity changes simultaneously. By perturbing conformation of horseradish peroxidase (HRP) molecules using our home-developed single-molecule total internal reflection magnetic tweezers, we successfully manipulated the enzymatic conformation and probed the enzymatic activity changes of HRP in a catalyzed H2O2–amplex red reaction. We also observed a significant tolerance of the enzyme activity to the enzyme conformational perturbation. Our results provide a further understanding of the relation between enzyme behavior and enzymatic conformational fluctuation, enzyme–substrate interactions, enzyme–substrate active complex formation, and protein folding–binding interactions. PMID:26512103

  15. Antiviral Inhibition of Enveloped Virus Release by Tetherin/BST-2: Action and Counteraction

    Directory of Open Access Journals (Sweden)

    Stuart J. D. Neil

    2011-05-01

    Full Text Available Tetherin (BST2/CD317 has been recently recognized as a potent interferon-induced antiviral molecule that inhibits the release of diverse mammalian enveloped virus particles from infected cells. By targeting an immutable structure common to all these viruses, the virion membrane, evasion of this antiviral mechanism has necessitated the development of specific countermeasures that directly inhibit tetherin activity. Here we review our current understanding of the molecular basis of tetherin’s mode of action, the viral countermeasures that antagonize it, and how virus/tetherin interactions may affect viral transmission and pathogenicity.

  16. Antiviral Efficacy of Verdinexor In Vivo in Two Animal Models of Influenza A Virus Infection

    Science.gov (United States)

    Perwitasari, Olivia; Johnson, Scott; Yan, Xiuzhen; Register, Emery; Crabtree, Jackelyn; Gabbard, Jon; Howerth, Elizabeth; Shacham, Sharon; Carlson, Robert; Tamir, Sharon; Tripp, Ralph A.

    2016-01-01

    Influenza A virus (IAV) causes seasonal epidemics of respiratory illness that can cause mild to severe illness and potentially death. Antiviral drugs are an important countermeasure against IAV; however, drug resistance has developed, thus new therapeutic approaches are being sought. Previously, we demonstrated the antiviral activity of a novel nuclear export inhibitor drug, verdinexor, to reduce influenza replication in vitro and pulmonary virus burden in mice. In this study, in vivo efficacy of verdinexor was further evaluated in two animal models or influenza virus infection, mice and ferrets. In mice, verdinexor was efficacious to limit virus shedding, reduce pulmonary pro-inflammatory cytokine expression, and moderate leukocyte infiltration into the bronchoalveolar space. Similarly, verdinexor-treated ferrets had reduced lung pathology, virus burden, and inflammatory cytokine expression in the nasal wash exudate. These findings support the anti-viral efficacy of verdinexor, and warrant its development as a novel antiviral therapeutic for influenza infection. PMID:27893810

  17. Antiviral Efficacy of Verdinexor In Vivo in Two Animal Models of Influenza A Virus Infection.

    Directory of Open Access Journals (Sweden)

    Olivia Perwitasari

    Full Text Available Influenza A virus (IAV causes seasonal epidemics of respiratory illness that can cause mild to severe illness and potentially death. Antiviral drugs are an important countermeasure against IAV; however, drug resistance has developed, thus new therapeutic approaches are being sought. Previously, we demonstrated the antiviral activity of a novel nuclear export inhibitor drug, verdinexor, to reduce influenza replication in vitro and pulmonary virus burden in mice. In this study, in vivo efficacy of verdinexor was further evaluated in two animal models or influenza virus infection, mice and ferrets. In mice, verdinexor was efficacious to limit virus shedding, reduce pulmonary pro-inflammatory cytokine expression, and moderate leukocyte infiltration into the bronchoalveolar space. Similarly, verdinexor-treated ferrets had reduced lung pathology, virus burden, and inflammatory cytokine expression in the nasal wash exudate. These findings support the anti-viral efficacy of verdinexor, and warrant its development as a novel antiviral therapeutic for influenza infection.

  18. Heterogeneity of hydrolytic enzyme activities under drought: imaging and quantitative analysis

    Science.gov (United States)

    Sanaullah, Muhammad; Razavi, Bahar S.; Kuzyakov, Yakov

    2015-04-01

    The zymography-based "snap-shoot" of enzyme activities in the rhizosphere is challenging to detect the in situ microbial response to global climate change. We developed in situ soil zymography and used it for identification and localization of hotspots of β-glucosidase activity in the rhizosphere of maize under drought stress (30% of field capacity). The zymographic signals were especially high at root tips and were much stronger for activity of β-glucosidase under drought as compared with optimal moisture (70% of field capacity). This distribution of enzyme activity was confirmed by fluorogenically labelled substrates applied directly to the root exudates. The activity of β-glucosidase in root exudates (produced by root and microorganism associated on the root surface), sampled within 1 hour after zymography was significantly higher by drought stressed plants as compared with optimal moisture. In contrast, the β-glucosidase activity in destructively sampled rhizosphere soil was lower under drought stress compared with optimal moisture. Furthermore, drought stress did not affected β-glucosidase activity in bulk soil, away from rhizosphere. Consequently, we conclude that higher release of mucilage by roots und drought stimulated β-glucosidase activity in the rhizosphere. Thus, the zymography revealed plant-mediated mechanisms accelerating β-glucosidase activity under drought at the root-soil interface. So, coupling of zymography and enzyme assays in the rhizosphere and non-rhizosphere soil enables precise mapping the changes in two-dimensional distribution of enzyme activities due to climate change within dynamic soil interfaces.

  19. Adsorption and enzyme activity of asparaginase at lipid Langmuir and Langmuir-Blodgett films

    International Nuclear Information System (INIS)

    Rocha Junior, Carlos da; Caseli, Luciano

    2017-01-01

    In this present work, the surface activity of the enzyme asparaginase was investigated at the air-water interface, presenting surface activity in high ionic strengths. Asparaginase was incorporated in Langmuir monolayers of the phospholipid dipalmitoylphosphatidylcholine (DPPC), forming a mixed film, which was characterized with surface pressure-area isotherms, surface potential-area isotherms, polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS), and Brewster angle microscopy (BAM). The adsorption of the enzyme at the air-water interface condensed the lipid monolayer and increased the film compressibility at high surface pressures. Amide bands in the PM-IRRAS spectra were identified, with the C−N and C =O dipole moments lying parallel to monolayer plane, revealing the structuring of the enzyme into α-helices and β-sheets. The floating monolayers were transferred to solid supports as Langmuir-Blodgett (LB) films and characterized with fluorescence spectroscopy and atomic force microscopy. Catalytic activities of the films were measured and compared to the homogenous medium. The enzyme accommodated in the LB films preserved more than 78% of the enzyme activity after 30 days, in contrast for the homogeneous medium, which preserved less than 13%. The method presented in this work not only allows for an enhanced catalytic activity, but also can help explain why certain film architectures exhibit better performance. - Highlights: • Biomembranes are mimicked with Langmuir monolayers. • Asparaginase is incorporated into the lipid monolayer. • Enzyme adsorption is confirmed with tensiometry and infrared spectroscopy. • Langmuir-Blodgett films of the enzyme present enzyme activity.

  20. Adsorption and enzyme activity of asparaginase at lipid Langmuir and Langmuir-Blodgett films

    Energy Technology Data Exchange (ETDEWEB)

    Rocha Junior, Carlos da; Caseli, Luciano, E-mail: lcaseli@unifesp.br

    2017-04-01

    In this present work, the surface activity of the enzyme asparaginase was investigated at the air-water interface, presenting surface activity in high ionic strengths. Asparaginase was incorporated in Langmuir monolayers of the phospholipid dipalmitoylphosphatidylcholine (DPPC), forming a mixed film, which was characterized with surface pressure-area isotherms, surface potential-area isotherms, polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS), and Brewster angle microscopy (BAM). The adsorption of the enzyme at the air-water interface condensed the lipid monolayer and increased the film compressibility at high surface pressures. Amide bands in the PM-IRRAS spectra were identified, with the C−N and C =O dipole moments lying parallel to monolayer plane, revealing the structuring of the enzyme into α-helices and β-sheets. The floating monolayers were transferred to solid supports as Langmuir-Blodgett (LB) films and characterized with fluorescence spectroscopy and atomic force microscopy. Catalytic activities of the films were measured and compared to the homogenous medium. The enzyme accommodated in the LB films preserved more than 78% of the enzyme activity after 30 days, in contrast for the homogeneous medium, which preserved less than 13%. The method presented in this work not only allows for an enhanced catalytic activity, but also can help explain why certain film architectures exhibit better performance. - Highlights: • Biomembranes are mimicked with Langmuir monolayers. • Asparaginase is incorporated into the lipid monolayer. • Enzyme adsorption is confirmed with tensiometry and infrared spectroscopy. • Langmuir-Blodgett films of the enzyme present enzyme activity.

  1. Experimental Strategy to Discover Microbes with Gluten-degrading Enzyme Activities.

    Science.gov (United States)

    Helmerhorst, Eva J; Wei, Guoxian

    2014-05-05

    Gluten proteins contained in the cereals barley, rye and wheat cause an inflammatory disorder called celiac disease in genetically predisposed individuals. Certain immunogenic gluten domains are resistant to degradation by mammalian digestive enzymes. Enzymes with the ability to target such domains are potentially of clinical use. Of particular interest are gluten-degrading enzymes that would be naturally present in the human body, e.g. associated with resident microbial species. This manuscript describes a selective gluten agar approach and four enzyme activity assays, including a gliadin zymogram assay, designed for the selection and discovery of novel gluten-degrading microorganisms from human biological samples. Resident and harmless bacteria and/or their derived enzymes could potentially find novel applications in the treatment of celiac disease, in the form of a probiotic agent or as a dietary enzyme supplement.

  2. Hydrolytic enzyme activity enhanced by Barium supplementation

    Directory of Open Access Journals (Sweden)

    Camilo Muñoz

    2016-10-01

    Full Text Available Hydrolysis of polymers is a first and often limiting step during the degradation of plant residues. Plant biomass is generally a major component of waste residues and a major renewable resource to obtain a variety of secondary products including biofuels. Improving the performance of enzymatic hydrolysis of plant material with minimum costs and limiting the use of additional microbial biomass or hydrolytic enzymes directly influences competitiveness of these green biotechnological processes. In this study, we cloned and expressed a cellulase and two esterases recovered from environmental thermophilic soil bacterial communities and characterize their optimum activity conditions including the effect of several metal ions. Results showed that supplementing these hydrolytic reactions with Barium increases the activity of these extracellular hydrolytic enzymes. This observation represents a simple but major improvement to enhance the efficiency and competitiveness of this process within an increasingly important biotechnological sector.

  3. Arbidol: a broad-spectrum antiviral that inhibits acute and chronic HCV infection

    Directory of Open Access Journals (Sweden)

    Pécheur Eve-Isabelle

    2006-07-01

    Full Text Available Abstract Arbidol (ARB is an antiviral compound that was originally proven effective for treatment of influenza and several other respiratory viral infections. The broad spectrum of ARB anti-viral activity led us to evaluate its effect on hepatitis C virus (HCV infection and replication in cell culture. Long-term ARB treatment of Huh7 cells chronically replicating a genomic length genotype 1b replicon resulted in sustained reduction of viral RNA and protein expression, and eventually cured HCV infected cells. Pre-treatment of human hepatoma Huh7.5.1 cells with 15 μM ARB for 24 to 48 hours inhibited acute infection with JFH-1 virus by up to 1000-fold. The inhibitory effect of ARB on HCV was not due to generalized cytotoxicity, nor to augmentation of IFN antiviral signaling pathways, but involved impaired virus-mediated membrane fusion. ARB's affinity for membranes may inhibit several aspects of the HCV lifecycle that are membrane-dependent.

  4. Antiviral Efficacy and Host Innate Immunity Associated with SB 9200 Treatment in the Woodchuck Model of Chronic Hepatitis B.

    Directory of Open Access Journals (Sweden)

    Kyle E Korolowicz

    Full Text Available SB 9200, an oral prodrug of the dinucleotide SB 9000, is being developed for the treatment of chronic hepatitis B virus (HBV infection and represents a novel class of antivirals. SB 9200 is thought to activate the viral sensor proteins, retinoic acid-inducible gene 1 (RIG-I and nucleotide-binding oligomerization domain-containing protein 2 (NOD2 resulting in interferon (IFN mediated antiviral immune responses in virus-infected cells. Additionally, the binding of SB 9200 to these sensor proteins could also sterically block the ability of the viral polymerase to access pre-genomic RNA for nucleic acid synthesis. The immune stimulating and direct antiviral properties of SB 9200 were evaluated in woodchucks chronically infected with woodchuck hepatitis virus (WHV by daily, oral dosing at 15 and 30 mg/kg for 12 weeks. Prolonged treatment resulted in 2.2 and 3.7 log10 reductions in serum WHV DNA and in 0.5 and 1.6 log10 declines in serum WHV surface antigen from pretreatment level with the lower or higher dose of SB 9200, respectively. SB 9200 treatment also resulted in lower hepatic levels of WHV nucleic acids and antigen and reduced liver inflammation. Following treatment cessation, recrudescence of viral replication was observed but with dose-dependent delays in viral relapse. The antiviral effects were associated with dose-dependent and long-lasting induction of IFN-α, IFN-β and IFN-stimulated genes in blood and liver, which correlated with the prolonged activation of the RIG-I/NOD2 pathway and hepatic presence of elevated RIG-I protein levels. These results suggest that in addition to a direct antiviral activity, SB 9200 induces antiviral immunity during chronic hepadnaviral infection via activation of the viral sensor pathway.

  5. Recent developments in antiviral agents against enterovirus 71 infection.

    Science.gov (United States)

    Tan, Chee Wah; Lai, Jeffrey Kam Fatt; Sam, I-Ching; Chan, Yoke Fun

    2014-02-12

    Enterovirus 71 (EV-71) is the main etiological agent of hand, foot and mouth disease (HFMD). Recent EV-71 outbreaks in Asia-Pacific were not limited to mild HFMD, but were associated with severe neurological complications such as aseptic meningitis and brainstem encephalitis, which may lead to cardiopulmonary failure and death. The absence of licensed therapeutics for clinical use has intensified research into anti-EV-71 development. This review highlights the potential antiviral agents targeting EV-71 attachment, entry, uncoating, translation, polyprotein processing, virus-induced formation of membranous RNA replication complexes, and RNA-dependent RNA polymerase. The strategies for antiviral development include target-based synthetic compounds, anti-rhinovirus and poliovirus libraries screening, and natural compound libraries screening. Growing knowledge of the EV-71 life cycle will lead to successful development of antivirals. The continued effort to develop antiviral agents for treatment is crucial in the absence of a vaccine. The coupling of antivirals with an effective vaccine will accelerate eradication of the disease.

  6. Evaluation of the organophosphorus hydrolase enzyme activity in creams and investigation of its stability

    Directory of Open Access Journals (Sweden)

    Mariye Rajaie

    2016-06-01

    Full Text Available The main purpose of this project is investigation of the organophosphorus hydrolase (OPH enzyme activity in water in oil (w/o and oil in water (o/w creams and investigation of the OPH enzyme stability in formulated creams. OPH enzyme was extracted and purified from strain flavobacterium. The w/o and o/w creams were prepared using different formulations. In order to achieve an emulsion with maximum stability, appropriate percentage of the cream components was selected by studying different formulations and the physical and chemical stability of the produced cream were considered. 5Uenzyme/90gcream enzyme was used for each formulation. To measure the enzyme activity in creams, extraction method was used and enzyme activity was determined based on parathion hydrolysis. The thermal stability of OPH in both types of w/o and o/w creams was studied at 4 and 30  °C for various time periods. The average enzyme activity was about 0.0065 U/gcream and 0.018 U/gcream for w/o and o/w creams respectivly. According to the results, the relative activity at 4 °C was reduced to 50% after 26 and 45 days in w/o and o/w creams, respectivly. The results showed that the OPH enzyme activity in o/w cream was 2.6 times more than that of w/o cream, because of the higher hydrophobicity of o/w cream compared to w/o. The OPH enzyme stability in o/w cream was greater in comparison to w/o cream. The OPH enzyme was active for nearly 2 months on o/w creams at 4 °C .

  7. Mineralogical impact on long-term patterns of soil nitrogen and phosphorus enzyme activities

    Science.gov (United States)

    Mikutta, Robert; Turner, Stephanie; Meyer-Stüve, Sandra; Guggenberger, Georg; Dohrmann, Reiner; Schippers, Axel

    2014-05-01

    Soil chronosequences provide a unique opportunity to study microbial activity over time in mineralogical diverse soils of different ages. The main objective of this study was to test the effect of mineralogical properties, nutrient and organic matter availability over whole soil pro-files on the abundance and activity of the microbial communities. We focused on microbio-logical processes involved in nitrogen and phosphorus cycling at the 120,000-year Franz Josef soil chronosequence. Microbial abundances (microbial biomass and total cell counts) and enzyme activities (protease, urease, aminopeptidase, and phosphatase) were determined and related to nutrient contents and mineralogical soil properties. Both, microbial abundances and enzyme activities decreased with soil depth at all sites. In the organic layers, microbial biomass and the activities of N-hydrolyzing enzymes showed their maximum at the intermediate-aged sites, corresponding to a high aboveground biomass. In contrast, the phosphatase activity increased with site age. The activities of N-hydrolyzing enzymes were positively correlated with total carbon and nitrogen contents, whereas the phosphatase activity was negatively correlated with the phosphorus content. In the mineral soil, the enzyme activities were generally low, thus reflecting the presence of strongly sorbing minerals. Sub-strate-normalized enzyme activities correlated negatively to clay content as well as poorly crystalline Al and Fe oxyhydroxides, supporting the view that the evolution of reactive sec-ondary mineral phases alters the activity of the microbial communities by constraining sub-strate availability. Our data suggest a strong mineralogical influence on nutrient cycling par-ticularly in subsoil environments.

  8. Seasonal variation in the temperature sensitivity of proteolytic enzyme activity in temperate forest soils

    Science.gov (United States)

    Brzostek, Edward R.; Finzi, Adrien C.

    2012-03-01

    Increasing soil temperature has the potential to alter the activity of the extracellular enzymes that mobilize nitrogen (N) from soil organic matter (SOM) and ultimately the availability of N for primary production. Proteolytic enzymes depolymerize N from proteinaceous components of SOM into amino acids, and their activity is a principal driver of the within-system cycle of soil N. The objectives of this study were to investigate whether the soils of temperate forest tree species differ in the temperature sensitivity of proteolytic enzyme activity over the growing season and the role of substrate limitation in regulating temperature sensitivity. Across species and sampling dates, proteolytic enzyme activity had relatively low sensitivity to temperature with a mean activation energy (Ea) of 33.5 kJ mol-1. Ea declined in white ash, American beech, and eastern hemlock soils across the growing season as soils warmed. By contrast, Eain sugar maple soil increased across the growing season. We used these data to develop a species-specific empirical model of proteolytic enzyme activity for the 2009 calendar year and studied the interactive effects of soil temperature (ambient or +5°C) and substrate limitation (ambient or elevated protein) on enzyme activity. Declines in substrate limitation had a larger single-factor effect on proteolytic enzyme activity than temperature, particularly in the spring. There was, however, a large synergistic effect of increasing temperature and substrate supply on proteolytic enzyme activity. Our results suggest limited increases in N availability with climate warming unless there is a parallel increase in the availability of protein substrates.

  9. Extracts of Equisetum giganteum L and Copaifera reticulate Ducke show strong antiviral activity against the sexually transmitted pathogen herpes simplex virus type 2.

    Science.gov (United States)

    Churqui, Marianela Patzi; Lind, Liza; Thörn, Karolina; Svensson, Alexandra; Savolainen, Otto; Aranda, Katty Terrazas; Eriksson, Kristina

    2018-01-10

    Equisetum giganteum L and Copaifera reticulate Ducke have been traditionally used by women of the Tacana tribe in the Bolivian Amazonas for genital hygiene and for treatment of genital infection/inflammation. To assess the ability of extracts from Equisetum giganteum L and Copaifera reticulate Ducke to block genital viral infection by herpes simplex virus type 2. Equisetum giganteum L and Copaifera reticulate Ducke were collected from the Amazon region of La Paz, Bolivia. Extracts were prepared and screened for anti-viral activity against herpes simplex virus type 2 (HSV-2) using both in vitro and in in vivo models of infection. Equisetum giganteum L and Copaifera reticulate Ducke efficiently blocked HSV-2 infection of cell cultures without major cell cytotoxic effects. Extracts of Equisetum giganteum L and Copaifera reticulate Ducke could prevent HSV-2 disease development when administered together with virus in a mouse model of genital HSV-2 infection. In vitro analyses revealed that both plant extracts exerted their anti-HSV-2 effects by interfering with viral cell attachment and entry, but could not block viral replication post entry. These studies show that extracts of Equisetum giganteum L and Copaifera reticulate Ducke have potent antiviral activities against HSV-2 comparable to those two previously identified plants, Croton lechleri Müll. Arg. and Uncaria tomentosa (Willd. ex Schult.) DC. These studies confirm that plants used by the Tacana tribe could be explored further for the development of novel topical antiviral microbicides. Copyright © 2017. Published by Elsevier B.V.

  10. Arabinogalactan proteins: focus on carbohydrate active enzymes

    Directory of Open Access Journals (Sweden)

    Eva eKnoch

    2014-06-01

    Full Text Available Arabinogalactan proteins (AGPs are a highly diverse class of cell surface proteoglycans that are commonly found in most plant species. AGPs play important roles in many cellular processes during plant development, such as reproduction, cell proliferation, pattern formation and growth, and in plant-microbe interaction. However, little is known about the molecular mechanisms of their function. Numerous studies using monoclonal antibodies that recognize different AGP glycan epitopes have shown the appearance of a slightly altered AGP glycan in a specific stage of development in plant cells. Therefore, it is anticipated that the biosynthesis and degradation of AGP glycan is tightly regulated during development. Until recently, however, little was known about the enzymes involved in the metabolism of AGP glycans. In this review, we summarize recent discoveries of carbohydrate active enzymes (CAZy; http://www.cazy.org/ involved in the biosynthesis and degradation of AGP glycans, and we discuss the biological role of these enzymes in plant development.

  11. Enzyme activity of a Phanerochaete chrysosporium cellobiohydrolase

    African Journals Online (AJOL)

    The aim of this study was to produce a secreted, heterologously expressed Phanerochaete chrysosporium cellobiohydrolase (CBHI.1) protein that required no in vitro chemical refolding and to investigate the cellulolytic activity of the clone expressing the glutathione S-transferase (GST) fused CBHI.1 protein. Plate enzyme ...

  12. Enzyme activity in bioregulator-treated tomato (Solanum ...

    African Journals Online (AJOL)

    USER

    2010-05-31

    May 31, 2010 ... African Journal of Biotechnology Vol. 9(22), pp. 3264-3271, 31 ... In this work, spectrophotometric analysis ... most stable enzymes in vegetables and its thermal destruc-tion ... proteins, carbohydrates, lipids and allelochemicals (Hedin et al., 1995) ..... activities isolated from corn root plasma membrane. Plant.

  13. Discovery of dapivirine, a nonnucleoside HIV-1 reverse transcriptase inhibitor, as a broad-spectrum antiviral against both influenza A and B viruses.

    Science.gov (United States)

    Hu, Yanmei; Zhang, Jiantao; Musharrafieh, Rami Ghassan; Ma, Chunlong; Hau, Raymond; Wang, Jun

    2017-09-01

    The emergence of multidrug-resistant influenza viruses poses a persistent threat to public health. The current prophylaxis and therapeutic interventions for influenza virus infection have limited efficacy due to the continuous antigenic drift and antigenic shift of influenza viruses. As part of our ongoing effort to develop the next generation of influenza antivirals with broad-spectrum antiviral activity and a high genetic barrier to drug resistance, in this study we report the discovery of dapivirine, an FDA-approved HIV nonnucleoside reverse transcriptase inhibitor, as a broad-spectrum antiviral against multiple strains of influenza A and B viruses with low micromolar efficacy. Mechanistic studies revealed that dapivirine inhibits the nuclear entry of viral ribonucleoproteins at the early stage of viral replication. As a result, viral RNA and protein synthesis were inhibited. Furthermore, dapivirine has a high in vitro genetic barrier to drug resistance, and its antiviral activity is synergistic with oseltamivir carboxylate. In summary, the in vitro antiviral results of dapivirine suggest it is a promising candidate for the development of the next generation of dual influenza and HIV antivirals. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. The feasibility of enzyme targeted activation for amino acid/dipeptide monoester prodrugs of floxuridine; cathepsin D as a potential targeted enzyme.

    Science.gov (United States)

    Tsume, Yasuhiro; Amidon, Gordon L

    2012-03-26

    The improvement of therapeutic efficacy for cancer agents has been a big challenge which includes the increase of tumor selectivity and the reduction of adverse effects at non-tumor sites. In order to achieve those goals, prodrug approaches have been extensively investigated. In this report, the potential activation enzymes for 5'-amino acid/dipeptide monoester floxuridine prodrugs in pancreatic cancer cells were selected and the feasibility of enzyme specific activation of prodrugs was evaluated. All prodrugs exhibited the range of 3.0-105.7 min of half life in Capan-2 cell homogenate with the presence and the absence of selective enzyme inhibitors. 5'-O-L-Phenylalanyl-L-tyrosyl-floxuridine exhibited longer half life only with the presence of pepstatin A. Human cathepsin B and D selectively hydrolized 5'-O-L-phenylalanyl-L-tyrosylfloxuridine and 5'-O-L-phenylalanyl-L-glycylfloxuridine compared to the other tested prodrugs. The wide range of growth inhibitory effect by floxuridine prodrugs in Capan-2 cells was observed due to the different affinities of prodrug promoieties to enzymes. In conclusion, it is feasible to design prodrugs which are activated by specific enzymes. Cathepsin D might be a good candidate as a target enzyme for prodrug activation and 5'-O-L-phenylalanyl-L-tyrosylfloxuridine may be the best candidate among the tested floxuridine prodrugs.

  15. Effect of Robola and Cabernet Sauvignon extracts on platelet activating factor enzymes activity on U937 cells.

    Science.gov (United States)

    Xanthopoulou, M N; Asimakopoulos, D; Antonopoulou, S; Demopoulos, C A; Fragopoulou, E

    2014-12-15

    A number of studies support the anti-atherogenic effect of wine compounds. The scope of this study was to examine the effect of a red (Cabernet Sauvignon-CS) and a white (Robola-R) wine, as well as resveratrol and quercetin, on the platelet activating factor (PAF) biosynthetic enzymes, acetyl-CoA:lyso-PAF acetyltransferase (lyso-PAF-AT) and DTT-insensitive CDP-choline 1-alkyl-2-acetyl-sn-glycerol cholinephosphotransferase (PAF-CPT), and its main catabolic enzyme (PAF acetylhydrolase; PAF-AH), on U937 cells, in cell free and in intact cell experiments. In cell free experiments, phenolic compounds and wine extracts inhibited PAF biosynthetic enzymes, however in higher concentrations than intact cell experiments. In the latter cases, polar lipids of both wines inhibited in the same order of magnitude the action of lyso-PAF-AT and of PAF-CPT. The water fractions possessed a dual action, in lower concentrations they activated both enzymes, while in higher concentrations only inhibited PAF-CPT. All fractions either did not affect or slightly activated PAF-AH activity. In conclusion, wine compounds may exert their anti-inflammatory activity by reducing PAF levels through modulation of the PAF metabolic enzymes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Antisense Phosphorodiamidate Morpholino Oligomers as Novel Antiviral Compounds

    Directory of Open Access Journals (Sweden)

    Yuchen Nan

    2018-04-01

    Full Text Available Phosphorodiamidate morpholino oligomers (PMO are short single-stranded DNA analogs that are built upon a backbone of morpholine rings connected by phosphorodiamidate linkages. As uncharged nucleic acid analogs, PMO bind to complementary sequences of target mRNA by Watson–Crick base pairing to block protein translation through steric blockade. PMO interference of viral protein translation operates independently of RNase H. Meanwhile, PMO are resistant to a variety of enzymes present in biologic fluids, a characteristic that makes them highly suitable for in vivo applications. Notably, PMO-based therapy for Duchenne muscular dystrophy (DMD has been approved by the United States Food and Drug Administration which is now a hallmark for PMO-based antisense therapy. In this review, the development history of PMO, delivery methods for improving cellular uptake of neutrally charged PMO molecules, past studies of PMO antagonism against RNA and DNA viruses, PMO target selection, and remaining questions of PMO antiviral strategies are discussed in detail and new insights are provided.

  17. Enzyme activity and allosteric characteristics of gamma-irradiated solid aspartate transcarbamylase

    International Nuclear Information System (INIS)

    Bigler, W.N.; Tolbert, B.M.

    1977-01-01

    Aspartate transcarbamylase purified from E. coli was lyophilized, irradiated in vacuo with γ radiation from a cesium-137 source, redissolved in buffer under a nitrogen atmosphere, and assayed for enzyme activity. Lyophilized and redissolved enzyme had normal catalytic and allosteric kinetic characteristics. The average D 37 observed with saturating substrate, 25 mM aspartate, was 4.1 Mrad. With less than saturating substrate, 5 mM aspartate, the activity increases from zero to 1.6 Mrad and then decreases with a D 37 of 7.2 Mrad. Inclusion of 1 mM CTP, an allosteric inhibitor, in the 5 mM aspartate assays results in a more pronounced maximum in the activity curve occurring at slightly higher dose, 2.2 Mrad. Inhibitability by CTP has a D 37 of 2.3 Mrad with doses below the activity maximum. Enzyme lyophilized in the presence of 1 mM CTP has a D 37 of 2.9 Mrad. ATCase activity changes caused by irradiation of lyophylized bacteria were qualitatively like the changes observed in the detailed studies with the purified enzyme. Apparent radiation sensitivities of ATCase in lyophilized bacteria were observed to vary with the technique used to disrupt the resuspended bacteria

  18. Thermophilic archaeal enzymes and applications in biocatalysis.

    Science.gov (United States)

    Littlechild, Jennifer A

    2011-01-01

    Thermophilic enzymes have advantages for their use in commercial applications and particularly for the production of chiral compounds to produce optically pure pharmaceuticals. They can be used as biocatalysts in the application of 'green chemistry'. The thermophilic archaea contain enzymes that have already been used in commercial applications such as the L-aminoacylase from Thermococcus litoralis for the resolution of amino acids and amino acid analogues. This enzyme differs from bacterial L-aminoacylases and has similarities to carboxypeptidases from other archaeal species. An amidase/γ-lactamase from Sulfolobus solfataricus has been used for the production of optically pure γ-lactam, the building block for antiviral carbocyclic nucleotides. This enzyme has similarities to the bacterial signature amidase family. An alcohol dehydrogenase from Aeropyrum pernix has been used for the production of optically pure alcohols and is related to the zinc-containing eukaryotic alcohol dehydrogenases. A transaminase and a dehalogenase from Sulfolobus species have also been studied. The archaeal transaminase is found in a pathway for serine synthesis which is found only in eukaryotes and not in bacteria. It can be used for the asymmetric synthesis of homochiral amines of high enantioselective purity. The L-2-haloacid dehalogenase has applications both in biocatalysis and in bioremediation. All of these enzymes have increased thermostability over their mesophilic counterparts.

  19. Disturbances in lysosomal enzymes activity in rats, following experimental postradiation disease

    International Nuclear Information System (INIS)

    Drozdz, M.; Piwowarczyk, B.; Olczyk, K.; Pikula-Zachara, M.

    1981-01-01

    The studies were aimed at detecting the biological effects of radiation on rat's organism, through studying the activity of lysosomal enzymes in blood plasma and some organs. The contemporary studies suggest that lysosomes play an important role in the occurrence and course of postradiation disease. The obtained results suggest the multidirectional gamma-rays effects on lysosomal enzymes response in serum, leucocytes, liver lysosomes and in liver, kidneys, lungs, heart. Increased activity of acid phosphatase, beta-glucoronidase and beta-acetyl-glucosaminase in the tissues of irradiated animals indicates that gamma rays labilizate the lysosomal membrane. The range of changes indicates a selective nature of this phenomenon. Kidneys, lungs and liver appeared the most ray-sensitive organs. The activity of acid phosphatase was found to be most increased in blood serum and leucocytes. The activity of all examined enzymes in liver lysosomes was decreased. Acid phosphatase exhibited the greatest activity increases. Lysosomal responses are indicative of the degree of destructive or regenerative changes in the organism. (author)

  20. Characterization of inhibitor(s) of β-glucuronidase enzyme activity in GUS-transgenic wheat

    KAUST Repository

    Ramadan, Ahmed M Ali

    2011-06-26

    The uidA gene, encoding for β-glucuronidase (GUS), is the most frequently used reporter gene in plants. As a reporter enzyme, GUS can be assayed both qualitatively and quantitatively. In wheat, there are numerous reports of failure in detecting GUS enzyme activity in tissues of transgenic plants, while other reports have suggested presence of β-glucuronidase inhibitor(s) in wheat tissues. In the present study, we show that the β-glucuronidase enzyme activity is not only tissue-specific but also genotype-dependent. Our data demonstrate that the glucuronic acid could be the candidate inhibitor for β-glucuronidase enzyme activity in wheat leaves and roots. It should be noted that the assays to detect β-glucuronidase enzyme activity in wheat should be interpreted carefully. Based on the data of our present study, we recommend studying the chemical pathways, the unintended effects and the possible loss-of-function of any candidate transgene prior to transformation experiments. © 2011 Springer Science+Business Media B.V.

  1. Characterization of inhibitor(s) of β-glucuronidase enzyme activity in GUS-transgenic wheat

    KAUST Repository

    Ramadan, Ahmed M Ali; Eissa, Hala F.; El-Domyati, Fotouh M.; Saleh, Osama Mesilhy; Ibrahim, Nasser E.; Salama, M. I.; Mahfouz, Magdy M.; Bahieldin, Ahmed M.

    2011-01-01

    The uidA gene, encoding for β-glucuronidase (GUS), is the most frequently used reporter gene in plants. As a reporter enzyme, GUS can be assayed both qualitatively and quantitatively. In wheat, there are numerous reports of failure in detecting GUS enzyme activity in tissues of transgenic plants, while other reports have suggested presence of β-glucuronidase inhibitor(s) in wheat tissues. In the present study, we show that the β-glucuronidase enzyme activity is not only tissue-specific but also genotype-dependent. Our data demonstrate that the glucuronic acid could be the candidate inhibitor for β-glucuronidase enzyme activity in wheat leaves and roots. It should be noted that the assays to detect β-glucuronidase enzyme activity in wheat should be interpreted carefully. Based on the data of our present study, we recommend studying the chemical pathways, the unintended effects and the possible loss-of-function of any candidate transgene prior to transformation experiments. © 2011 Springer Science+Business Media B.V.

  2. Antiviral effects of Curcuma longa L. against dengue virus in vitro and in vivo

    Science.gov (United States)

    Ichsyani, M.; Ridhanya, A.; Risanti, M.; Desti, H.; Ceria, R.; Putri, D. H.; Sudiro, T. M.; Dewi, B. E.

    2017-12-01

    Dengue is the most common infective disease caused by dengue virus (DENV) and endemic diseases in tropical and subtropical areas. Until now, there is no specific antiviral for dengue infection. It is known that viral load is related to disease severity. Curcuma longa L. (turmeric) with curcumin as major active compound has been identified for its antiviral effect. This study to determine antiviral effect of C. longa extract on DENV-2 in vitro and in vivo along with its toxicity in liver and kidney of ddY mice. Antiviral activity (IC50) and toxicity (CC50) in vitro was examined on Huh7it-1 cells by focus assay and a MTT assay, respectively. To determine the selectivity index (SI), we used CC50 and IC50 value. The safe doses obtained were used for toxicity tests of liver and kidney with histopathological and biochemical observations. The C. longa extracts was given orally with dose of 0.147 mg/mL for each mice at 2 hours after injected with DENV-2 infected Huh7it-1 cells. Serum was collected from intraorbital at 6 hours and 24 hours after infection and focus assay was used to determine viral load. In this study, the acquired value of IC50 was 17,91 μg/mL whereas the value of CC50 was 85,4 μg/mL. The value of SI of C. longa was 4.8. In vivo, we found that C. longa remarkable reduced of viral load after 24 hour. Histopathological examination showed no specific abnormalities in liver and kidney. There was no significant increase in levels of SGPT, SGOT, urea, and creatinine. From this study it can be concluded that C. longa could potentially be used as antiviral against DENV with low cytotoxicity and effective inhibition.

  3. Self-interest versus group-interest in antiviral control

    NARCIS (Netherlands)

    Boven, M. van; Klinkenberg, D.; Pen, I.; Weissing, F.J.; Heesterbeek, J.A.P.

    2008-01-01

    Antiviral agents have been hailed to hold considerable promise for the treatment and prevention of emerging viral diseases like H5N1 avian influenza and SARS. However, antiviral drugs are not completely harmless, and the conditions under which individuals are willing to participate in a

  4. Antiviral agents: structural basis of action and rational design.

    Science.gov (United States)

    Menéndez-Arias, Luis; Gago, Federico

    2013-01-01

    During the last 30 years, significant progress has been made in the development of novel antiviral drugs, mainly crystallizing in the establishment of potent antiretroviral therapies and the approval of drugs inhibiting hepatitis C virus replication. Although major targets of antiviral intervention involve intracellular processes required for the synthesis of viral proteins and nucleic acids, a number of inhibitors blocking virus assembly, budding, maturation, entry or uncoating act on virions or viral capsids. In this review, we focus on the drug discovery process while presenting the currently used methodologies to identify novel antiviral drugs by using a computer-based approach. We provide examples illustrating structure-based antiviral drug development, specifically neuraminidase inhibitors against influenza virus (e.g. oseltamivir and zanamivir) and human immunodeficiency virus type 1 protease inhibitors (i.e. the development of darunavir from early peptidomimetic compounds such as saquinavir). A number of drugs in preclinical development acting against picornaviruses, hepatitis B virus and human immunodeficiency virus and their mechanism of action are presented to show how viral capsids can be exploited as targets of antiviral therapy.

  5. Antibacterial and glucosyltransferase enzyme inhibitory activity of helmyntostachyszelanica

    Science.gov (United States)

    Kuspradini, H.; Putri, AS; Mitsunaga, T.

    2018-04-01

    Helminthostachyszeylanica is a terrestrial, herbaceous, fern-like plant of southeastern Asia and Australia, commonly known as tunjuk-langit. This kind of plant have a medicinal properties such as treatment of malaria, dysentery and can be eaten with betel in the treatment of whooping cough. To evaluate the scientific basis for the use of the plant, the antimicrobial activities of extracts of the stem and leaves were evaluated. The bacteria used in this study is Streptococcus sobrinus, a species of gram-positive, that may be associated with human dental caries. The dried powdered plant parts were extracted using methanol and 50% aqueous extract and screened for their antibacterial effects of Streptococcus sobrinus using the 96 well-plate microdilution broth method. The inhibitory activities of its related enzyme were also determined. The plant extracts showed variable antibacterial and Glucosyltransferase enzyme inhibitory activity while some extracts could not cause any inhibition. It was shown that 50% ethanolics of Helminthostachyzeylanica stem have a potency as anti dental caries agents.

  6. Optimization of ultrasound-assisted extraction of pectinase enzyme from guava (Psidium guajava) peel: Enzyme recovery, specific activity, temperature, and storage stability.

    Science.gov (United States)

    Amid, Mehrnoush; Murshid, Fara Syazana; Manap, Mohd Yazid; Islam Sarker, Zaidul

    2016-01-01

    This study aimed to investigate the effects of the ultrasound-assisted extraction conditions on the yield, specific activity, temperature, and storage stability of the pectinase enzyme from guava peel. The ultrasound variables studied were sonication time (10-30 min), ultrasound temperature (30-50 °C), pH (2.0-8.0), and solvent-to-sample ratio (2:1 mL/g to 6:1 mL/g). The main goal was to optimize the ultrasound-assisted extraction conditions to maximize the recovery of pectinase from guava peel with the most desirable enzyme-specific activity and stability. Under the optimum conditions, a high yield (96.2%), good specific activity (18.2 U/mg), temperature stability (88.3%), and storage stability (90.3%) of the extracted enzyme were achieved. The optimal conditions were 20 min sonication time, 40 °C temperature, at pH 5.0, using a 4:1 mL/g solvent-to-sample ratio. The study demonstrated that optimization of ultrasound-assisted process conditions for the enzyme extraction could improve the enzymatic characteristics and yield of the enzyme.

  7. In Vivo Antiviral Activity of 1,3-Bis(2-Chloroethyl)-1-Nitrosourea

    Science.gov (United States)

    Sidwell, Robert W.; Dixon, Glen J.; Sellers, Sara M.; Schabel, Frank M.

    1965-01-01

    A prolongation in the lives of Swiss mice inoculated intracerebrally with lymphocytic choriomeningitis virus (LCM) was observed after treatment with 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU). A variety of treatment schedules, including therapy once or twice daily up to 17 days and single treatments at various times after virus inoculation, were employed. Virus titers ranging to greater than 104 were detected in the blood and brains of surviving drug-treated animals. In three comparative studies in which different treatment schedules were used, BCNU was shown to exert a protective effect approximately equal to that of methotrexate in LCM virus-infected mice. Tests were also carried out to investigate the activity of BCNU in mice experimentally infected with eastern equine encephalomyelitis (EEE) virus, western equine encephalomyelitis virus, Semliki Forest (SF) virus, herpes simplex virus, influenza virus strain PR8, vaccinia virus strain WR, Rous sarcoma virus, Friend leukemia virus (FLV), and poliovirus. Slight increases in life span were observed in the treated EEE, SF, and influenza PR8 virus-infected animals. Significant reduction in splenomegaly in FLV-infected animals treated with BCNU was demonstrated. The possible mechanisms of LCM virus inhibition by BCNU, on the basis of these and other studies, were postulated to be either specific antiviral activity or inhibition of “lethal” immune response to the LCM virus. Each of these postulates is discussed. PMID:14339266

  8. An easy and efficient permeabilization protocol for in vivo enzyme activity assays in cyanobacteria

    DEFF Research Database (Denmark)

    Rasmussen, Randi Engelberth; Erstad, Simon Matthé; Ramos Martinez, Erick Miguel

    2016-01-01

    microbial cell factories. Better understanding of the activities of enzymes involved in the central carbon metabolism would lead to increasing product yields. Currently cell-free lysates are the most widely used method for determination of intracellular enzyme activities. However, due to thick cell walls...... used directly in the assays, the permeabilized cells exhibited the enzyme activities that are comparable or even higher than those detected for cell-free lysates. Moreover, the permeabilized cells could be stored at -20 °C without losing the enzyme activities. The permeabilization process...... for permeabilization of the cyanobacteria Synechococcus sp. PCC 7002 and Synechocystis sp. PCC 6803, and determination of two intracellular enzymes, ribulose-1,5-bisphosphate carboxylase/decarboxylase (Rubisco) and glucose-6-phosphate dehydrogenase (G6PDH), that play pivotal roles in the central carbon metabolism...

  9. Measurement of peroxisomal enzyme activities in the liver of brown trout (Salmo trutta, using spectrophotometric methods

    Directory of Open Access Journals (Sweden)

    Resende Albina D

    2003-03-01

    Full Text Available Abstract Background This study was aimed primarily at testing in the liver of brown trout (Salmo trutta spectrophotometric methods previously used to measure the activities of catalase and hydrogen peroxide producing oxidases in mammals. To evaluate the influence of temperature on the activities of those peroxisomal enzymes was the second objective. A third goal of this work was the study of enzyme distribution in crude cell fractions of brown trout liver. Results The assays revealed a linear increase in the activity of all peroxisomal enzymes as the temperature rose from 10° to 37°C. However, while the activities of hydrogen peroxide producing oxidases were strongly influenced by temperature, catalase activity was only slightly affected. A crude fraction enriched with peroxisomes was obtained by differential centrifugation of liver homogenates, and the contamination by other organelles was evaluated by the activities of marker enzymes for mitochondria (succinate dehydrogenase, lysosomes (aryl sulphatase and microsomes (NADPH cytochrome c reductase. For peroxisomal enzymes, the activities per mg of protein (specific activity in liver homogenates were strongly correlated with the activities per g of liver and with the total activities per liver. These correlations were not obtained with crude peroxisomal fractions. Conclusions The spectrophotometric protocols originally used to quantify the activity of mammalian peroxisomal enzymes can be successfully applied to the study of those enzymes in brown trout. Because the activity of all studied peroxisomal enzymes rose in a linear mode with temperature, their activities can be correctly measured between 10° and 37°C. Probably due to contamination by other organelles and losses of soluble matrix enzymes during homogenisation, enzyme activities in crude peroxisomal fractions do not correlate with the activities in liver homogenates. Thus, total homogenates will be used in future seasonal and

  10. Seasonality of fibrolytic enzyme activity in herbivore microbial ...

    African Journals Online (AJOL)

    2012-08-21

    Aug 21, 2012 ... liberating end-products such as volatile fatty acids. Cellulase enzyme ... All the other common chemicals such as glacial acetic acid, sodium azide .... specific activity was observed among animal species and between seasons ...

  11. Microbial enzyme activities of peatland soils in south central Alaska lowlands

    Science.gov (United States)

    Microbial enzyme activities related to carbon and nutrient acquisition were measured on Alaskan peatland soils as indicators of nutrient limitation and biochemical sustainability. Peat decomposition is mediated by microorganisms and enzymes that in turn are limited by various ph...

  12. Changes in growth, survival and digestive enzyme activities of Asian ...

    African Journals Online (AJOL)

    A study was conducted to determine the effects of different dietary treatments on the growth, survival and digestive enzyme activities of Mystus nemurus larvae. Newly hatched larvae were reared for 14 days in twelve 15 L glass aquaria (for growth and survival) and eight 300 L fiberglass tanks (for enzyme samples) at a ...

  13. Early bichemical markers of effects: Enzyme induction, oncogene activation and markers of oxidative damage

    DEFF Research Database (Denmark)

    Poulsen, Henrik E.; Loft, Steffen

    1995-01-01

    Early bichemical marker, enzyme induction, oncogene activation, oxidative damage, low-density lipoprotein......Early bichemical marker, enzyme induction, oncogene activation, oxidative damage, low-density lipoprotein...

  14. Improving enzymatic activities and thermostability of a tri-functional enzyme with SOD, catalase and cell-permeable activities.

    Science.gov (United States)

    Luangwattananun, Piriya; Eiamphungporn, Warawan; Songtawee, Napat; Bülow, Leif; Isarankura Na Ayudhya, Chartchalerm; Prachayasittikul, Virapong; Yainoy, Sakda

    2017-04-10

    Synergistic action of major antioxidant enzymes, e.g., superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) is known to be more effective than the action of any single enzyme. Recently, we have engineered a tri-functional enzyme, 6His-MnSOD-TAT/CAT-MnSOD (M-TAT/CM), with SOD, CAT and cell-permeable activities. The protein actively internalized into the cells and showed superior protection against oxidative stress-induced cell death over native enzymes fused with TAT. To improve its molecular size, enzymatic activity and stability, in this study, MnSOD portions of the engineered protein were replaced by CuZnSOD, which is the smallest and the most heat resistant SOD isoform. The newly engineered protein, CAT-CuZnSOD/6His-CuZnSOD-TAT (CS/S-TAT), had a 42% reduction in molecular size and an increase in SOD and CAT activities by 22% and 99%, respectively. After incubation at 70°C for 10min, the CS/S-TAT retained residual SOD activity up to 54% while SOD activity of the M-TAT/CM was completely abolished. Moreover, the protein exhibited a 5-fold improvement in half-life at 70°C. Thus, this work provides insights into the design and synthesis of a smaller but much more stable multifunctional antioxidant enzyme with ability to enter mammalian cells for further application as protective/therapeutic agent against oxidative stress-related conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Monitoring of the antiviral potential of bee venom and wax extracts against Adeno-7 (DNA) and Rift Valley fever virus (RNA) viruses models.

    Science.gov (United States)

    Hassan, Mostafa I; Mohamed, Aly F; Amer, Moner A; Hammad, Kotb M; Riad, Saber A

    2015-04-01

    This study monitored the antiviral potential of bee venom and four wax extracts, ethanol white and black beeswax (EWW/EBW) and acetone white and black beeswax (AWW/ABW) extracts. Two different virus models namely Adeno-7 as DNA model and RVFV as RNA virus models. End point calculation assay was used to calculate virus depletion titer. The depletion of viral infectivity titer of ABW to Adeno-7 virus showed strong antiviral activity recorded a depletion of viral infectivity titer (1.66 log (10)/ ml) that gave equal action with bee venom and more than interferon IFN (1 log (10)/ ml). On the other hand, antiviral activity of EBW showed a moderate potential, while AWW showed no antiviral activity. Finally EWW showed synergetic activity against Adeno-7 virus activity. Thus, activity of wax extracts to RVFV was arranged in order of IFN bee venom > AWW & EBW > EWW and ABW recorded 3.34, 0.65, 0.5, 0.34 respectively. It is the first time to study the beeswax effect against DNA and RNA virus' models; acetone black beeswax recorded a depletion titer 1.66 log (10)/ml.

  16. Extracellular enzyme activity in a willow sewage treatment system.

    Science.gov (United States)

    Brzezinska, Maria Swiontek; Lalke-Porczyk, Elżbieta; Kalwasińska, Agnieszka

    2012-12-01

    This paper presents the results of studies on the activity of extra-cellular enzymes in soil-willow vegetation filter soil which is used in the post-treatment of household sewage in an onsite wastewater treatment system located in central Poland. Wastewater is discharged from the detached house by gravity into the onsite wastewater treatment system. It flows through a connecting pipe into a single-chamber septic tank and is directed by the connecting pipe to a control well to be further channelled in the soil-willow filter by means of a subsurface leaching system. Soil samples for the studies were collected from two depths of 5 cm and 1 m from three plots: close to the wastewater inflow, at mid-length of the plot and close to its terminal part. Soil samples were collected from May to October 2009. The activity of the extra-cellular enzymes was assayed by the fluorometric method using 4-methylumbelliferyl and 7-amido-4-methylcoumarin substrate. The ranking of potential activity of the assayed enzymes was the same at 5 cm and 1 m soil depths, i.e. esterase > phosphmomoesterase > leucine-aminopeptidase > β-glucosidase > α-glucosidase. The highest values of enzymatic activity were recorded in the surface layer of the soil at the wastewater inflow and decreased with increasing distance from that point.

  17. High throughput screening for small molecule enhancers of the interferon signaling pathway to drive next-generation antiviral drug discovery.

    Directory of Open Access Journals (Sweden)

    Dhara A Patel

    Full Text Available Most of current strategies for antiviral therapeutics target the virus specifically and directly, but an alternative approach to drug discovery might be to enhance the immune response to a broad range of viruses. Based on clinical observation in humans and successful genetic strategies in experimental models, we reasoned that an improved interferon (IFN signaling system might better protect against viral infection. Here we aimed to identify small molecular weight compounds that might mimic this beneficial effect and improve antiviral defense. Accordingly, we developed a cell-based high-throughput screening (HTS assay to identify small molecules that enhance the IFN signaling pathway components. The assay is based on a phenotypic screen for increased IFN-stimulated response element (ISRE activity in a fully automated and robust format (Z'>0.7. Application of this assay system to a library of 2240 compounds (including 2160 already approved or approvable drugs led to the identification of 64 compounds with significant ISRE activity. From these, we chose the anthracycline antibiotic, idarubicin, for further validation and mechanism based on activity in the sub-µM range. We found that idarubicin action to increase ISRE activity was manifest by other members of this drug class and was independent of cytotoxic or topoisomerase inhibitory effects as well as endogenous IFN signaling or production. We also observed that this compound conferred a consequent increase in IFN-stimulated gene (ISG expression and a significant antiviral effect using a similar dose-range in a cell-culture system inoculated with encephalomyocarditis virus (EMCV. The antiviral effect was also found at compound concentrations below the ones observed for cytotoxicity. Taken together, our results provide proof of concept for using activators of components of the IFN signaling pathway to improve IFN efficacy and antiviral immune defense as well as a validated HTS approach to identify

  18. Enzyme Enzyme activities in relation to sugar accumulation in tomato

    International Nuclear Information System (INIS)

    Alam, M.J.; Rahman, M.H.; Mamun, M.A.; Islam, K.

    2006-01-01

    Enzyme activities in tomato juice of five different varieties viz. Ratan, Marglove, BARI-1, BARI-5 and BARI-6, in relation to sugar accumulation were investigated at different maturity stages. The highest amount of invertase and beta-galactosidase was found in Marglove and the lowest in BARI- 6 at all maturity stages. Total soluble sugar and sucrose contents were highest in BARI-1 and lowest in BARI-6. The activity of amylase was maximum in Ratan and minimum in Marglove. Protease activity was highest in Ratan and lowest in BARI-6. BARI-1 contained the highest cellulase activity and the lowest in BARI-5. The amount of total soluble sugar and sucrose increased moderately from premature to ripe stage. The activities of amylase and cellulase increased up to the mature stage and then decreased drastically in the ripe stage. The activities of invertase and protease increased sharply from the premature to the ripe stage while the beta-galactosidase activity decreased remarkably. No detectable amount of reducing sugar was present in the premature stage in all cultivars of tomato but increased thereafter upto the ripe stage. The highest reducing sugar was present in BARI-5 in all of the maturity stages. (author)

  19. Effects of Recurring Droughts on Extracellular Enzyme Activity in Mountain Grassland

    Science.gov (United States)

    Fuchslueger, L.; Bahn, M.; Kienzl, S.; Hofhansl, F.; Schnecker, J.; Richter, A.

    2015-12-01

    Water availability is a key factor for biogeochemical processes and determines microbial activity and functioning, and thereby organic matter decomposition in soils by affecting the osmotic potential, soil pore connectivity, substrate diffusion and nutrient availability. Low water availability during drought periods therefore directly affects microbial activity. Recurring drought periods likely induce shifts in microbial structure that might be reflected in altered responses of microbial turnover of organic matter by extracellular enzymes. To study this we measured a set of potential extracellular enzyme activity rates (cellobiohydrolase CBH; leucine-amino-peptidase LAP; phosphatase PHOS; phenoloxidase POX), in grassland soils that were exposed to extreme experimental droughts during the growing seasons of up to five subsequent years. During the first drought period after eight weeks of rain exclusion all measured potential enzyme activities were significantly decreased. In parallel, soil extractable organic carbon and nitrogen concentrations increased and microbial community structure, determined by phospholipid fatty acid analysis, changed. In soils that were exposed to two and three drought periods only PHOS decreased. After four years of drought again CBH, PHOS and POX decreased, while LAP was unaffected; after five years of drought PHOS and POX decreased and CBH and LAP remained stable. Thus, our results suggest that recurring extreme drought events can cause different responses of extracellular enzyme activities and that the responses change over time. We will discuss whether and to what degree these changes were related to shifts in microbial community composition. However, independent of whether a solitary or a recurrent drought was imposed, in cases when enzyme activity rates were altered during drought, they quickly recovered after rewetting. Overall, our data suggest that microbial functioning in mountain grassland is sensitive to drought, but highly

  20. High inorganic triphosphatase activities in bacteria and mammalian cells: identification of the enzymes involved.

    Directory of Open Access Journals (Sweden)

    Gregory Kohn

    Full Text Available BACKGROUND: We recently characterized a specific inorganic triphosphatase (PPPase from Nitrosomonas europaea. This enzyme belongs to the CYTH superfamily of proteins. Many bacterial members of this family are annotated as predicted adenylate cyclases, because one of the founding members is CyaB adenylate cyclase from A. hydrophila. The aim of the present study is to determine whether other members of the CYTH protein family also have a PPPase activity, if there are PPPase activities in animal tissues and what enzymes are responsible for these activities. METHODOLOGY/PRINCIPAL FINDINGS: Recombinant enzymes were expressed and purified as GST- or His-tagged fusion proteins and the enzyme activities were determined by measuring the release of inorganic phosphate. We show that the hitherto uncharacterized E. coli CYTH protein ygiF is a specific PPPase, but it contributes only marginally to the total PPPase activity in this organism, where the main enzyme responsible for hydrolysis of inorganic triphosphate (PPP(i is inorganic pyrophosphatase. We further show that CyaB hydrolyzes PPP(i but this activity is low compared to its adenylate cyclase activity. Finally we demonstrate a high PPPase activity in mammalian and quail tissue, particularly in the brain. We show that this activity is mainly due to Prune, an exopolyphosphatase overexpressed in metastatic tumors where it promotes cell motility. CONCLUSIONS AND GENERAL SIGNIFICANCE: We show for the first time that PPPase activities are widespread in bacteria and animals. We identified the enzymes responsible for these activities but we were unable to detect significant amounts of PPP(i in E. coli or brain extracts using ion chromatography and capillary electrophoresis. The role of these enzymes may be to hydrolyze PPP(i, which could be cytotoxic because of its high affinity for Ca(2+, thereby interfering with Ca(2+ signaling.

  1. Bioprospecting of Red Sea Sponges for Novel Antiviral Pharmacophores

    KAUST Repository

    O'Rourke, Aubrie

    2015-01-01

    the coast of Saudi Arabia serves as a newly accessible location, which provides the opportunity to bioprospect marine sponges with the purpose of identifying novel antiviral scaffolds. Antivirals are underrepresented in present day clinical trials, as well

  2. Evaluation of the cytotoxic effect and antibacterial, antifungal, and antiviral activities of Hypericum triquetrifolium Turra essential oils from Tunisia

    Science.gov (United States)

    2013-01-01

    Background A number of bio-active secondary metabolites have been identified and reported for several Hypericum species. Many studies have reported the potential use of the plant extracts against several pathogens. However, Hypericum triquetrifolium is one of the least studied species for its antimicrobial activity. The aim of the present study was to evaluate the cytotoxic effect of the essential oils of Hypericum triquetrifolium as well as their antimicrobial potential against coxsakievirus B3 and a range of bacterial and fungal strains. Methods The essential oils of Hypericum triquetrifolium harvested from five different Tunisian localities (Fondouk DJedid, Bou Arada, Bahra, Fernana and Dhrea Ben Jouder) were evaluated for their antimicrobial activities by micro-broth dilution methods against bacterial and fungal strains. In addition, the cytotoxic effect and the antiviral activity of these oils were carried out using Vero cell lines and coxsakievirus B3. Results The results showed a good antibacterial activities against a wide range of bacterial strains, MIC values ranging between 0.39-12.50 mg/ml and MBC values between 1.56-25.0 mg/ml. In addition, the essential oils showed promising antifungal activity with MIC values ranging between 0.39 μg/mL and 12.50 μg/mL; MFC values ranged between 3.12 μg/mL and 25.00 μg/mL; a significant anticandidal activity was noted (MIC values comprised between 0.39 μg/mL and 12.50 μg/mL). Although their low cytotoxic effect (CC50 ranged between 0.58 mg/mL and 12.00 mg/mL), the essential oils did not show antiviral activity against coxsakievirus B3. Conclusion The essential oils obtained from Hypericum triquetrifolium can be used as antimicrobial agents and could be safe at non cytotoxic doses. As shown for the tested essential oils, comparative analysis need to be undertaken to better characterize also the antimicrobial activities of Hypericum triquetrifolium extracts with different solvents as well as their

  3. Tissue specific distribution of pyrimidine deoxynucleoside salvage enzymes shed light on the mechanism of mitochondrial DNA depletion.

    Science.gov (United States)

    Wang, L; Eriksson, S

    2010-06-01

    Deficiency in thymidine kinase 2 (TK2) activity due to genetic alterations caused tissue specific mitochondrial DNA (mtDNA) depletion syndrome with symptoms resembling these of AIDS patients treated with nucleoside analogues. Mechanisms behind this mitochondrial effects is still not well understood. With rat as a model we isolated mitochondrial and cytosolic fractions from major organs and studied enzymes involved in thymidine (dT) and deoxycytidine (dC) phosphorylation by using ionic exchange column chromatography. A cytosolic form of TK2 was identified in all tested tissues in addition to mitochondrial TK2. TK1 was detected in liver and spleen cytosolic extracts while dCK was found in liver, spleen and lung cytosolic extracts. Thus, the nature of dT and dC salvage enzymes in each tissue type was determined. In most tissues TK2 is the only salvage enzyme present except liver and spleen. These results may help to explain the mechanisms of mitochondrial toxicity of antiviral nucleoside analogues and mtDNA depletion caused by TK2 deficiency.

  4. Antiviral treatment among older adults hospitalized with influenza, 2006-2012.

    Directory of Open Access Journals (Sweden)

    Mary Louise Lindegren

    Full Text Available To describe antiviral use among older, hospitalized adults during six influenza seasons (2006-2012 in Davidson County, Tennessee, USA.Among adults ≥50 years old hospitalized with symptoms of respiratory illness or non-localizing fever, we collected information on provider-initiated influenza testing and nasal/throat swabs for influenza by RT-PCR in a research laboratory, and calculated the proportion treated with antivirals.We enrolled 1753 adults hospitalized with acute respiratory illness. Only 26% (457/1753 of enrolled patients had provider-initiated influenza testing. Thirty-eight patients had a positive clinical laboratory test, representing 2.2% of total patients and 8.3% of tested patients. Among the 38 subjects with clinical laboratory-confirmed influenza, 26.3% received antivirals compared to only 4.5% of those with negative clinical influenza tests and 0.7% of those not tested (p<0.001. There were 125 (7.1% patients who tested positive for influenza in the research laboratory. Of those with research laboratory-confirmed influenza, 0.9%, 2.7%, and 2.8% received antivirals (p=.046 during pre-pandemic, pandemic, and post-pandemic influenza seasons, respectively. Both research laboratory-confirmed influenza (adjusted odds ratio [AOR] 3.04 95%CI 1.26-7.35 and clinical laboratory-confirmed influenza (AOR 3.05, 95%CI 1.07-8.71 were independently associated with antiviral treatment. Severity of disease, presence of a high-risk condition, and symptom duration were not associated with antiviral use.In urban Tennessee, antiviral use was low in patients recognized to have influenza by the provider as well as those unrecognized to have influenza. The use of antivirals remained low despite recommendations to treat all hospitalized patients with confirmed or suspected influenza.

  5. Molecular Characterization of Lys49 and Asp49 Phospholipases A2 from Snake Venom and Their Antiviral Activities against Dengue virus

    Directory of Open Access Journals (Sweden)

    Andre L. Fuly

    2013-10-01

    Full Text Available We report the detailed molecular characterization of two PLA2s, Lys49 and Asp49 isolated from Bothrops leucurus venom, and examined their effects against Dengue virus (DENV. The Bl-PLA2s, named BlK-PLA2 and BlD-PLA2, are composed of 121 and 122 amino acids determined by automated sequencing of the native proteins and peptides produced by digestion with trypsin. They contain fourteen cysteines with pIs of 9.05 and 8.18 for BlK- and BlD-PLA2s, and show a high degree of sequence similarity to homologous snake venom PLA2s, but may display different biological effects. Molecular masses of 13,689.220 (Lys49 and 13,978.386 (Asp49 were determined by mass spectrometry. DENV causes a prevalent arboviral disease in humans, and no clinically approved antiviral therapy is currently available to treat DENV infections. The maximum non-toxic concentration of the proteins to LLC-MK2 cells determined by MTT assay was 40 µg/mL for Bl-PLA2s (pool and 20 µg/mL for each isoform. Antiviral effects of Bl-PLA2s were assessed by quantitative Real-Time PCR. Bl-PLA2s were able to reduce DENV-1, DENV-2, and DENV-3 serotypes in LLC-MK2 cells infection. Our data provide further insight into the structural properties and their antiviral activity against DENV, opening up possibilities for biotechnological applications of these Bl-PLA2s as tools of research.

  6. Molecular Characterization of Lys49 and Asp49 Phospholipases A2 from Snake Venom and Their Antiviral Activities against Dengue virus

    Science.gov (United States)

    Cecilio, Alzira B.; Caldas, Sergio; De Oliveira, Raiana A.; Santos, Arthur S. B.; Richardson, Michael; Naumann, Gustavo B.; Schneider, Francisco S.; Alvarenga, Valeria G.; Estevão-Costa, Maria I.; Fuly, Andre L.; Eble, Johannes A.; Sanchez, Eladio F.

    2013-01-01

    We report the detailed molecular characterization of two PLA2s, Lys49 and Asp49 isolated from Bothrops leucurus venom, and examined their effects against Dengue virus (DENV). The Bl-PLA2s, named BlK-PLA2 and BlD-PLA2, are composed of 121 and 122 amino acids determined by automated sequencing of the native proteins and peptides produced by digestion with trypsin. They contain fourteen cysteines with pIs of 9.05 and 8.18 for BlK- and BlD-PLA2s, and show a high degree of sequence similarity to homologous snake venom PLA2s, but may display different biological effects. Molecular masses of 13,689.220 (Lys49) and 13,978.386 (Asp49) were determined by mass spectrometry. DENV causes a prevalent arboviral disease in humans, and no clinically approved antiviral therapy is currently available to treat DENV infections. The maximum non-toxic concentration of the proteins to LLC-MK2 cells determined by MTT assay was 40 µg/mL for Bl-PLA2s (pool) and 20 µg/mL for each isoform. Antiviral effects of Bl-PLA2s were assessed by quantitative Real-Time PCR. Bl-PLA2s were able to reduce DENV-1, DENV-2, and DENV-3 serotypes in LLC-MK2 cells infection. Our data provide further insight into the structural properties and their antiviral activity against DENV, opening up possibilities for biotechnological applications of these Bl-PLA2s as tools of research. PMID:24131891

  7. Protective Effect of Panax notoginseng Root Water Extract against Influenza A Virus Infection by Enhancing Antiviral Interferon-Mediated Immune Responses and Natural Killer Cell Activity

    Directory of Open Access Journals (Sweden)

    Jang-Gi Choi

    2017-11-01

    Full Text Available Influenza is an acute respiratory illness caused by the influenza A virus, which causes economic losses and social disruption mainly by increasing hospitalization and mortality rates among the elderly and people with chronic diseases. Influenza vaccines are the most effective means of preventing seasonal influenza, but can be completely ineffective if there is an antigenic mismatch between the seasonal vaccine virus and the virus circulating in the community. In addition, influenza viruses resistant to antiviral drugs are emerging worldwide. Thus, there is an urgent need to develop new vaccines and antiviral drugs against these viruses. In this study, we conducted in vitro and in vivo analyses of the antiviral effect of Panax notoginseng root (PNR, which is used as an herbal medicine and nutritional supplement in Korea and China. We confirmed that PNR significantly prevented influenza virus infection in a concentration-dependent manner in mouse macrophages. In addition, PNR pretreatment inhibited viral protein (PB1, PB2, HA, NA, M1, PA, M2, and NP and viral mRNA (NS1, HA, PB2, PA, NP, M1, and M2 expression. PNR pretreatment also increased the secretion of pro-inflammatory cytokines [tumor necrosis factor alpha and interleukin 6] and interferon (IFN-beta and the phosphorylation of type-I IFN-related proteins (TANK-binding kinase 1, STAT1, and IRF3 in vitro. In mice exposed to the influenza A H1N1 virus, PNR treatment decreased mortality by 90% and prevented weight loss (by approximately 10% compared with the findings in untreated animals. In addition, splenocytes from PNR-administered mice displayed significantly enhanced natural killer (NK cell activity against YAC-1 cells. Taking these findings together, PNR stimulates an antiviral response in murine macrophages and mice that protects against viral infection, which may be attributable to its ability to stimulate NK cell activity. Further investigations are needed to reveal the molecular

  8. Antiviral Action of Hydromethanolic Extract of Geopropolis from Scaptotrigona postica against Antiherpes Simplex Virus (HSV-1).

    Science.gov (United States)

    Coelho, Guilherme Rabelo; Mendonça, Ronaldo Zucatelli; Vilar, Karina de Senna; Figueiredo, Cristina Adelaide; Badari, Juliana Cuoco; Taniwaki, Noemi; Namiyama, Gisleine; de Oliveira, Maria Isabel; Curti, Suely Pires; Evelyn Silva, Patricia; Negri, Giuseppina

    2015-01-01

    The studies on chemical composition and biological activity of propolis had focused mainly on species Apis mellifera L. (Hymenoptera: Apidae). There are few studies about the uncommon propolis collected by stingless bees of the Meliponini tribe known as geopropolis. The geopropolis from Scaptotrigona postica was collected in the region of Barra do Corda, Maranhão state, Brazil. The chemical analysis of hydromethanolic extract of this geopropolis (HMG) was carried out through HPLC-DAD-ESI-MS/MS and the main constituents found were pyrrolizidine alkaloids and C-glycosyl flavones. The presence of alkaloids in extracts of propolis is detected for the first time in this sample. The antiviral activity of HMG was evaluated through viral DNA quantification experiments and electron microscopy experiments. Quantification of viral DNA from herpes virus showed reduction of about 98% in all conditions and concentration tested of the HMG extract. The results obtained were corroborated by transmission electron microscopy, in which the images did not show particle or viral replication complex. The antiviral activity of C-glycosyl flavones was reported for a variety of viruses, being observed at different points in the viral replication. This work is the first report about the antiviral activity of geopropolis from Scaptotrigona postica, in vitro, against antiherpes simplex virus (HSV).

  9. HIV-1 accessory proteins VPR and Vif modulate antiviral response by targeting IRF-3 for degradation

    International Nuclear Information System (INIS)

    Okumura, Atsushi; Alce, Tim; Lubyova, Barbora; Ezelle, Heather; Strebel, Klaus; Pitha, Paula M.

    2008-01-01

    The activation of IRF-3 during the early stages of viral infection is critical for the initiation of the antiviral response; however the activation of IRF-3 in HIV-1 infected cells has not yet been characterized. We demonstrate that the early steps of HIV-1 infection do not lead to the activation and nuclear translocation of IRF-3; instead, the relative levels of IRF-3 protein are decreased due to the ubiquitin-associated proteosome degradation. Addressing the molecular mechanism of this effect we show that the degradation is independent of HIV-1 replication and that virion-associated accessory proteins Vif and Vpr can independently degrade IRF-3. The null mutation of these two genes reduced the capacity of the HIV-1 virus to down modulate IRF-3 levels. The degradation was associated with Vif- and Vpr-mediated ubiquitination of IRF-3 and was independent of the activation of IRF-3. N-terminal lysine residues were shown to play a critical role in the Vif- and Vpr-mediated degradation of IRF-3. These data implicate Vif and Vpr in the disruption of the initial antiviral response and point to the need of HIV-1 to circumvent the antiviral response during the very early phase of replication

  10. Antiviral Action of Hydromethanolic Extract of Geopropolis from Scaptotrigona postica against Antiherpes Simplex Virus (HSV-1

    Directory of Open Access Journals (Sweden)

    Guilherme Rabelo Coelho

    2015-01-01

    Full Text Available The studies on chemical composition and biological activity of propolis had focused mainly on species Apis mellifera L. (Hymenoptera: Apidae. There are few studies about the uncommon propolis collected by stingless bees of the Meliponini tribe known as geopropolis. The geopropolis from Scaptotrigona postica was collected in the region of Barra do Corda, Maranhão state, Brazil. The chemical analysis of hydromethanolic extract of this geopropolis (HMG was carried out through HPLC-DAD-ESI-MS/MS and the main constituents found were pyrrolizidine alkaloids and C-glycosyl flavones. The presence of alkaloids in extracts of propolis is detected for the first time in this sample. The antiviral activity of HMG was evaluated through viral DNA quantification experiments and electron microscopy experiments. Quantification of viral DNA from herpes virus showed reduction of about 98% in all conditions and concentration tested of the HMG extract. The results obtained were corroborated by transmission electron microscopy, in which the images did not show particle or viral replication complex. The antiviral activity of C-glycosyl flavones was reported for a variety of viruses, being observed at different points in the viral replication. This work is the first report about the antiviral activity of geopropolis from Scaptotrigona postica, in vitro, against antiherpes simplex virus (HSV.

  11. Study on the Correlation between Gene Expression and Enzyme Activity of Seven Key Enzymes and Ginsenoside Content in Ginseng in Over Time in Ji'an, China.

    Science.gov (United States)

    Yin, Juxin; Zhang, Daihui; Zhuang, Jianjian; Huang, Yi; Mu, Ying; Lv, Shaowu

    2017-12-11

    Panax ginseng is a traditional medicine. Fresh ginseng is one of the most important industries related to ginseng development, and fresh ginseng of varying ages has different medicinal properties. Previous research has not systematically reported the correlation between changes in key enzyme activity with changes in ginsenoside content in fresh ginseng over time. In this study, for the first time, we use ginseng samples of varying ages in Ji'an and systematically reported the changes in the activity of seven key enzymes (HMGR, FPS, SS, SE, DS, CYP450, and GT). We investigated the content of ginsenoside and gene expression of these key enzymes. Ginsenoside content was measured using HPLC. HPLC, GC-MS, and LC-MS were combined to measure the enzyme activity of the key enzymes. Quantitative PCR was used in the investigation of gene expression. By analyzing the correlation between the enzyme activity and the transcription level of the key enzymes with ginsenoside content, we found that DS and GT enzyme activities are significantly correlated with the ginsenoside content in different ages of ginseng. Our findings might provide a new strategy to discriminate between ginseng of different years. Meanwhile, this research provides important information for the in-depth study of ginsenoside biosynthesis.

  12. The Feasibility of Enzyme Targeted Activation for Amino Acid/Dipeptide Monoester Prodrugs of Floxuridine; Cathepsin D as a Potential Targeted Enzyme

    Directory of Open Access Journals (Sweden)

    Gordon L. Amidon

    2012-03-01

    Full Text Available The improvement of therapeutic efficacy for cancer agents has been a big challenge which includes the increase of tumor selectivity and the reduction of adverse effects at non-tumor sites. In order to achieve those goals, prodrug approaches have been extensively investigated. In this report, the potential activation enzymes for 5¢-amino acid/dipeptide monoester floxuridine prodrugs in pancreatic cancer cells were selected and the feasibility of enzyme specific activation of prodrugs was evaluated. All prodrugs exhibited the range of 3.0–105.7 min of half life in Capan-2 cell homogenate with the presence and the absence of selective enzyme inhibitors. 5¢-O-L-Phenylalanyl-L-tyrosyl-floxuridine exhibited longer half life only with the presence of pepstatin A. Human cathepsin B and D selectively hydrolized 5¢-O-L-phenylalanyl-L-tyrosylfloxuridine and 5¢-O-L-phenylalanyl-L-glycylfloxuridine compared to the other tested prodrugs. The wide range of growth inhibitory effect by floxuridine prodrugs in Capan-2 cells was observed due to the different affinities of prodrug promoieties to enyzmes. In conclusion, it is feasible to design prodrugs which are activated by specific enzymes. Cathepsin D might be a good candidate as a target enzyme for prodrug activation and 5¢-O-L-phenylalanyl-L-tyrosylfloxuridine may be the best candidate among the tested floxuridine prodrugs.

  13. Innate and intrinsic antiviral immunity in skin.

    Science.gov (United States)

    Kawamura, Tatsuyoshi; Ogawa, Youichi; Aoki, Rui; Shimada, Shinji

    2014-09-01

    As the body's most exposed interface with the environment, the skin is constantly challenged by potentially pathogenic microbes, including viruses. To sense the invading viruses, various types of cells resident in the skin express many different pattern-recognition receptors (PRRs) such as C-type lectin receptors (CLRs), Toll-like receptors (TLRs), nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) and cytosolic DNA sensors, that can detect the pathogen-associated molecular patterns (PAMPs) of the viruses. The detection of viral PAMPs initiates two major innate immune signaling cascades: the first involves the activation of the downstream transcription factors, such as interferon regulatory factors (IRFs), nuclear factor kappa B (NF-κB) and activator protein 1 (AP-1), which cooperate to induce the transcription of type I interferons and pro-inflammatory cytokines. The second signaling pathway involves the caspase-1-mediated processing of IL-1β and IL-18 through the formation of an inflammasome complex. Cutaneous innate immunity including the production of the innate cytokines constitutes the first line of host defence that limits the virus dissemination from the skin, and also plays an important role in the activation of adaptive immune response, which represents the second line of defence. More recently, the third immunity "intrinsic immunity" has emerged, that provides an immediate and direct antiviral defense mediated by host intrinsic restriction factors. This review focuses on the recent advances regarding the antiviral immune systems, highlighting the innate and intrinsic immunity against the viral infections in the skin, and describes how viral components are recognized by cutaneous immune systems. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Resveratrol exhibits a strong cytotoxic activity in cultured cells and has an antiviral action against polyomavirus: potential clinical use

    Directory of Open Access Journals (Sweden)

    Galati Gaspare

    2009-07-01

    Full Text Available Abstract Background Resveratrol is a non flavonoid polyphenol compound present in many plants and fruits and, at especially high concentrations, in the grape berries of Vitis vinifera. This compound has a strong bioactivity and its cytoprotective action has been demonstrated, however at high concentrations the drug exhibits also an effective anti-proliferative action. We recently showed its ability to abolish the effects of oxidative stress in cultured cells. In this work we assayed the bioactivity of resveratrol as antiproliferative and antiviral drug in cultured fibroblasts. Studies by other Authors showed that this natural compound inhibits the proliferation of different viruses such as herpes simplex, varicella-zoster and influenza A. The results presented here show an evident toxic activity of the drug at high concentrations, on the other hand at sub-cytotoxic concentrations, resveratrol can effectively inhibit the synthesis of polyomavirus DNA. A possible interpretation is that, due to the damage caused by resveratrol to the plasma membrane, the transfer of the virus from the endoplasmic reticulum to the nucleus, may be hindered thus inhibiting the production of viral DNA. Methods The mouse fibroblast line 3T6 and the human tumor line HL60 were used throughout the work. Cell viability and vital cell count were assessed respectively, by the MTT assay and Trypan Blue staining. Cytotoxic properties and evaluation of viral DNA production by agarose gel electrophoresis were performed according to standard protocols. Results Our results show a clear dose dependent both cytotoxic and antiviral effect of resveratrol respectively at high and low concentrations. The cytotoxic action is exerted towards a stabilized cell-line (3T6 as well as a tumor-line (HL60. Furthermore the antiviral action is evident after the phase of virion entry, therefore data suggest that the drug acts during the synthesis of the viral progeny DNA. Conclusion Resveratrol is

  15. Characterization of Carbohydrate Active Enzymes Involved in Arabinogalactan Protein Metabolism

    DEFF Research Database (Denmark)

    Knoch, Eva

    and tissues, their functions and synthesis are still poorly understood. The aim of the research presented in the thesis was to characterize carbohydrate active enzymes involved in AGP biosynthesis and modification to gain insights into the biosynthesis of the glycoproteins in plants. Candidate...... glycosyltransferases and glycoside hydrolases were selected based on co-expression profiles from a transcriptomics analysis. Reverse genetics approach on a novel glucuronosyltransferase involved in AGP biosynthesis has revealed that the enzyme activity is required for normal cell elongation in etiolated seedlings....... The enzymatic activity of a hydrolase from GH family 17 was investigated, without successful determination of the activity. Members of hydrolase family 43 appeared to be localized in the Golgi-apparatus, which is also the compartment for glycan biosynthesis. The localization of these glycoside hydrolases...

  16. Antiviral Drugs: Seasonal Flu

    Centers for Disease Control (CDC) Podcasts

    2010-09-29

    In this podcast, Dr. Joe Bresee explains the nature of antiviral drugs and how they are used for seasonal flu.  Created: 9/29/2010 by National Center for Immunization and Respiratory Diseases (NCIRD).   Date Released: 9/29/2010.

  17. Deletion of creB in Aspergillus oryzae increases secreted hydrolytic enzyme activity.

    Science.gov (United States)

    Hunter, A J; Morris, T A; Jin, B; Saint, C P; Kelly, J M

    2013-09-01

    Aspergillus oryzae has been used in the food and beverage industry for centuries, and industrial strains have been produced by multiple rounds of selection. Targeted gene deletion technology is particularly useful for strain improvement in such strains, particularly when they do not have a well-characterized meiotic cycle. Phenotypes of an Aspergillus nidulans strain null for the CreB deubiquitinating enzyme include effects on growth and repression, including increased activity levels of various enzymes. We show that Aspergillus oryzae contains a functional homologue of the CreB deubiquitinating enzyme and that a null strain shows increased activity levels of industrially important secreted enzymes, including cellulases, xylanases, amylases, and proteases, as well as alleviated inhibition of spore germination on glucose medium. Reverse transcription-quantitative PCR (RT-qPCR) analysis showed that the increased levels of enzyme activity in both Aspergillus nidulans and Aspergillus oryzae are mirrored at the transcript level, indicating transcriptional regulation. We report that Aspergillus oryzae DAR3699, originally isolated from soy fermentation, has a similar phenotype to that of a creB deletion mutant of the RIB40 strain, and it contains a mutation in the creB gene. Collectively, the results for Aspergillus oryzae, Aspergillus nidulans, Trichoderma reesei, and Penicillium decumbens show that deletion of creB may be broadly useful in diverse fungi for increasing production of a variety of enzymes.

  18. Effect of different nutrient supply and other growth factors on the activity of the oxidizing enzymes in plants

    Energy Technology Data Exchange (ETDEWEB)

    Amberger, A

    1960-01-01

    Among the plants studied were french beans and peas; the oxidizing enzymes examined were ascorbic acid oxidase, cytochrome oxidase, phenol oxidase, peroxidase and catalase. Increasing the K dosage reduced enzyme activity and raised dry matter contents until at a very high dosage this action was reversed. Both N and P increased enzyme activity and yields. With B high enzyme activity and low dry matter content were both associated with deficiency and toxicity levels. Increasing the Fe dosage led to a rise in both dry matter content and enzyme activity, whereas F depressed yields and raised enzyme activity. Lack of water increased respiration. Light inhibited all enzyme activity.

  19. Cadmium Phytoavailability and Enzyme Activity under Humic Acid Treatment in Fluvo-aquic Soil

    Science.gov (United States)

    Liu, Borui; Huang, Qing; Su, Yuefeng

    2018-01-01

    A pot experiment was conducted to investigate the cadmium (Cd) availability to pakchois (Brassica chinensis L.) as well as the enzyme activities in fluvo-aquic soil under humic acid treatment. The results showed that the phytoavailability of Cd in soil decreased gradually as humic acid concentration rose (0 to 12 g·kg-1), while the activities of urease (UE), alkaline phosphatase (ALP) and catalase (CAT) kept increasing (P enzymes due to the Cd pollution. In conclusion, humic acid is effective for the reduction of both Cd phytoavailability and the damage to enzyme activities due to Cd pollution in fluvo-aquic soil

  20. Broad-spectrum non-toxic antiviral nanoparticles with a virucidal inhibition mechanism

    Science.gov (United States)

    Cagno, Valeria; Andreozzi, Patrizia; D'Alicarnasso, Marco; Jacob Silva, Paulo; Mueller, Marie; Galloux, Marie; Le Goffic, Ronan; Jones, Samuel T.; Vallino, Marta; Hodek, Jan; Weber, Jan; Sen, Soumyo; Janeček, Emma-Rose; Bekdemir, Ahmet; Sanavio, Barbara; Martinelli, Chiara; Donalisio, Manuela; Rameix Welti, Marie-Anne; Eleouet, Jean-Francois; Han, Yanxiao; Kaiser, Laurent; Vukovic, Lela; Tapparel, Caroline; Král, Petr; Krol, Silke; Lembo, David; Stellacci, Francesco

    2018-02-01

    Viral infections kill millions yearly. Available antiviral drugs are virus-specific and active against a limited panel of human pathogens. There are broad-spectrum substances that prevent the first step of virus-cell interaction by mimicking heparan sulfate proteoglycans (HSPG), the highly conserved target of viral attachment ligands (VALs). The reversible binding mechanism prevents their use as a drug, because, upon dilution, the inhibition is lost. Known VALs are made of closely packed repeating units, but the aforementioned substances are able to bind only a few of them. We designed antiviral nanoparticles with long and flexible linkers mimicking HSPG, allowing for effective viral association with a binding that we simulate to be strong and multivalent to the VAL repeating units, generating forces (~190 pN) that eventually lead to irreversible viral deformation. Virucidal assays, electron microscopy images, and molecular dynamics simulations support the proposed mechanism. These particles show no cytotoxicity, and in vitro nanomolar irreversible activity against herpes simplex virus (HSV), human papilloma virus, respiratory syncytial virus (RSV), dengue and lenti virus. They are active ex vivo in human cervicovaginal histocultures infected by HSV-2 and in vivo in mice infected with RSV.

  1. Is there any role of prolidase enzyme activity in the etiology of preeclampsia?

    Science.gov (United States)

    Pehlivan, Mustafa; Ozün Ozbay, Pelin; Temur, Muzaffer; Yılmaz, Ozgur; Verit, Fatma Ferda; Aksoy, Nurten; Korkmazer, Engin; Üstünyurt, Emin

    2017-05-01

    To evaluate a relationship between preeclampsia and prolidase enzyme activity. A prospective cohort study of 41 pregnant women diagnosed with preeclampsia and 31 healthy pregnant women as control group was selected at Harran University Hospital Department of Obstetrics and Gynecology. The prolidase enzyme activity was analyzed in maternal and umbilical cord plasma, amniotic fluid and placental and umbilical cord tissues by Chinard method in addition to maternal serum levels of lactate dehydrogenase (LDH), serum glutamate pyruvate transaminase (SGPT) and serum glutamate oxaloacetate transaminase (SGOT). A significant relationship was found between plasma prolidase activity (635 ± 83 U/L) (p  = 0.007), umbilical cord plasma prolidase activity (610 ± 90 U/L) (p = 0.013), amniotic fluid prolidase activity (558 ± 100 U/L) (p  = 0.001), umbilical cord tissue prolidase activity (4248 ± 1675 U/gr protein) (p  = 0.013) and placental tissue prolidase activity (2116 ± 601 U/gr protein) (p  = 0.001) in preeclamptic group when compared to healthy pregnant women. There is a strong correlation between prolidase enzyme activity and preeclampsia. Prolidase enzyme activity may play a role in preeclampsia.

  2. Upregulation of innate antiviral restricting factor expression in the cord blood and decidual tissue of HIV-infected mothers.

    Science.gov (United States)

    Pereira, Nátalli Zanete; Cardoso, Elaine Cristina; Oliveira, Luanda Mara da Silva; de Lima, Josenilson Feitosa; Branco, Anna Cláudia Calvielli Castelo; Ruocco, Rosa Maria de Souza Aveiro; Zugaib, Marcelo; de Oliveira Filho, João Bosco; Duarte, Alberto José da Silva; Sato, Maria Notomi

    2013-01-01

    Programs for the prevention of mother-to-child transmission of HIV have reduced the transmission rate of perinatal HIV infection and have thereby increased the number of HIV-exposed uninfected (HEU) infants. Natural immunity to HIV-1 infection in both mothers and newborns needs to be further explored. In this study, we compared the expression of antiviral restricting factors in HIV-infected pregnant mothers treated with antiretroviral therapy (ART) in pregnancy (n=23) and in cord blood (CB) (n=16), placental tissues (n=10-13) and colostrum (n=5-6) samples and compared them to expression in samples from uninfected (UN) pregnant mothers (n=21). Mononuclear cells (MNCs) were prepared from maternal and CB samples following deliveries by cesarean section. Maternal (decidua) and fetal (chorionic villus) placental tissues were obtained, and colostrum was collected 24 h after delivery. The mRNA and protein expression levels of antiviral factors were then evaluated. We observed a significant increase in the mRNA expression levels of antiviral factors in MNCs from HIV-infected mothers and CB, including the apolipoprotein B mRNA-editing enzyme 3G (A3G), A3F, tripartite motif family-5α (TRIM-5α), TRIM-22, myxovirus resistance protein A (MxA), stimulator of interferon (IFN) genes (STING) and IFN-β, compared with the levels detected in uninfected (UN) mother-CB pairs. Moreover, A3G transcript and protein levels and α-defensin transcript levels were decreased in the decidua of HIV-infected mothers. Decreased TRIM-5α protein levels in the villi and increased STING mRNA expression in both placental tissues were also observed in HIV-infected mothers compared with uninfected (UN) mothers. Additionally, colostrum cells from infected mothers showed increased tetherin and IFN-β mRNA levels and CXCL9 protein levels. The data presented here indicate that antiviral restricting factor expression can be induced in utero in HIV-infected mothers. Future studies are warranted to determine

  3. Protein Hydrolysis from Catfish Prepared by Papain Enzyme and Antioxidant Activity of Hydrolyzate

    Directory of Open Access Journals (Sweden)

    Ace Baehaki

    2015-12-01

    Full Text Available The objective of this research was to make a protein hydrolysates from catfish (Pangasius pangasius enzymatically using papain enzyme and analyzed the antioxidant activity of protein hydrolysates produced. The research used the method completely randomized design with two replications the treatment were the difference concentration of the papain enzyme (0%, 1%, 2%, 3%, 4%, 5%, and 6%. The parameters of research were antioxidative activity using DPPH (2,2-difenil-1–pikrilhidrazil, protein content, and molecular weight using SDS-PAGE (Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis. The results showed that catfish protein hydrolysates prepared by papain enzyme has antioxidative activity. The highest degree of hydrolysis was 71.98% at enzyme concentration of 6%. Based on the DPPH scavenging method catfish protein hydrolysates has the antioxidative activity with the value 37.85-67.62%. The protein content of catfish protein hydrolysates were 20.86-54.47 mg/ml. The molecular weight of catfish protein hydrolyzates were 11.90-65.20 kDa.

  4. Effect of citric acid and microbial phytase on serum enzyme activities ...

    African Journals Online (AJOL)

    Effect of citric acid and microbial phytase on serum enzyme activities and plasma minerals retention in broiler chicks. ... African Journal of Biotechnology ... An experiment was conducted to study the effect of microbial phytase supplementation and citric acid in broiler chicks fed corn-soybean meal base diets on enzyme ...

  5. Ratio Imaging of Enzyme Activity Using Dual Wavelength Optical Reporters

    Directory of Open Access Journals (Sweden)

    Moritz F. Kircher

    2002-04-01

    Full Text Available The design of near-infrared fluorescent (NIRF probes that are activated by specific proteases has, for the first time, allowed enzyme activity to be imaged in vivo. In the current study, we report on a method of imaging enzyme activity using two fluorescent probes that, together, provide improved quantitation of enzymatic activity. The method employs two chemically similar probes that differ in their degradability by cathepsin B. One probe consists of the NIRF dye Cy5.5 attached to a particulate carrier, a crosslinked iron oxide nanoparticle (CLIO, through cathepsin B cleavable l-arginyl peptides. A second probe consists of Cy3.5 attached to a CLIO through proteolytically resistant d-arginyl peptides. Using mixtures of the two probes, we have shown that the ratio of Cy5.5 to Cy3.5 fluorescence can be used to determine levels of cathepsin B in the environment of nanoparticles with macrophages in suspension. After intravenous injection, tissue fluorescence from the nondegradable Cy3.5–d-arginyl probe reflected nanoparticle accumulation, while fluorescence of the Cy5.5–l-arginyl probe was dependent on both accumulation and activation by cathepsin B. Dual wavelength ratio imaging can be used for the quantitative imaging of a variety of enzymes in clinically important settings, while the magnetic properties of the probes allow their detection by MR imaging.

  6. NEOGLYCOPROTEINS AS CARRIERS FOR ANTIVIRAL DRUGS - SYNTHESIS AND ANALYSIS OF PROTEIN DRUG CONJUGATES

    NARCIS (Netherlands)

    Molema, Grietje; Jansen, Robert W.; Visser, Jan; Herdewijn, Piet; Moolenaar, Frits; Meijer, Dirk K.F.

    In order to investigate whether neoglycoproteins can potentially act as carriers for targeting of antiviral drugs to certain cell types in the body, various neoglycoproteins were synthesized using thiophosgene-activated p-aminophenyl sugar derivatives. These neoglycoproteins were conjugated with the

  7. Tissue and plasma enzyme activities in juvenile green iguanas.

    Science.gov (United States)

    Wagner, R A; Wetzel, R

    1999-02-01

    To determine activities of intracellular enzymes in 8 major organs in juvenile green iguanas and to compare tissue and plasma activities. 6 green iguanas iguanas, but high values may not always indicate overt muscle disease. The AMS activity may be specific for the pancreas, but the wide range of plasma activity would likely limit its diagnostic usefulness. Activities of AST and LDH may reflect tissue damage or inflammation, but probably do not reflect damage to specific tissues or organs.

  8. Molecular Mechanisms of Foot-and-Mouth Disease Virus Targeting the Host Antiviral Response.

    Science.gov (United States)

    Rodríguez Pulido, Miguel; Sáiz, Margarita

    2017-01-01

    Foot-and-mouth disease virus (FMDV) is the causative agent of an acute vesicular disease affecting pigs, cattle and other domestic, and wild animals worldwide. The aim of the host interferon (IFN) response is to limit viral replication and spread. Detection of the viral genome and products by specialized cellular sensors initiates a signaling cascade that leads to a rapid antiviral response involving the secretion of type I- and type III-IFNs and other antiviral cytokines with antiproliferative and immunomodulatory functions. During co-evolution with their hosts, viruses have acquired strategies to actively counteract host antiviral responses and the balance between innate response and viral antagonism may determine the outcome of disease and pathogenesis. FMDV proteases Lpro and 3C have been found to antagonize the host IFN response by a repertoire of mechanisms. Moreover, the putative role of other viral proteins in IFN antagonism is being recently unveiled, uncovering sophisticated immune evasion strategies different to those reported to date for other members of the Picornaviridae family. Here, we review the interplay between antiviral responses induced by FMDV infection and viral countermeasures to block them. Research on strategies used by viruses to modulate immunity will provide insights into the function of host pathways involved in defense against pathogens and will also lead to development of new therapeutic strategies to fight virus infections.

  9. Eupafolin and Ethyl Acetate Fraction of Kalanchoe gracilis Stem Extract Show Potent Antiviral Activities against Enterovirus 71 and Coxsackievirus A16

    Science.gov (United States)

    Wang, Ching-Ying; Huang, Shun-Chueh; Lai, Zhen-Rung; Ho, Yu-Ling; Jou, Yu-Jen; Kung, Szu-Hao; Zhang, Yongjun; Chang, Yuan-Shiun; Lin, Cheng-Wen

    2013-01-01

    Enterovirus 71 (EV71) and coxsackievirus A16 (CoxA16) are main pathogens of hand-foot-and-mouth disease, occasionally causing aseptic meningitis and encephalitis in tropical and subtropical regions. Kalanchoe gracilis, Da-Huan-Hun, is a Chinese folk medicine for treating pain and inflammation, exhibiting antioxidant and anti-inflammatory activities. Our prior report (2012) cited K. gracilis leaf extract as moderately active against EV71 and CoxA16. This study further rates antienteroviral potential of K. gracilis stem (KGS) extract to identify potent antiviral fractions and components. The extract moderately inhibits viral cytopathicity and virus yield, as well as in vitro replication of EV71 (IC50 = 75.18 μg/mL) and CoxA16 (IC50 = 81.41 μg/mL). Ethyl acetate (EA) fraction of KGS extract showed greater antiviral activity than that of n-butanol or aqueous fraction: IC50 values of 4.21 μg/mL against EV71 and 9.08 μg/mL against CoxA16. HPLC analysis, UV-Vis absorption spectroscopy, and plaque reduction assay indicate that eupafolin is a vital component of EA fraction showing potent activity against EV71 (IC50 = 1.39 μM) and CoxA16 (IC50 = 5.24 μM). Eupafolin specifically lessened virus-induced upregulation of IL-6 and RANTES by inhibiting virus-induced ERK1/2, AP-1, and STAT3 signals. Anti-enteroviral potency of KGS EA fraction and eupafolin shows the clinical potential against EV71 and CoxA16 infection. PMID:24078828

  10. Eupafolin and Ethyl Acetate Fraction of Kalanchoe gracilis Stem Extract Show Potent Antiviral Activities against Enterovirus 71 and Coxsackievirus A16

    Directory of Open Access Journals (Sweden)

    Ching-Ying Wang

    2013-01-01

    Full Text Available Enterovirus 71 (EV71 and coxsackievirus A16 (CoxA16 are main pathogens of hand-foot-and-mouth disease, occasionally causing aseptic meningitis and encephalitis in tropical and subtropical regions. Kalanchoe gracilis, Da-Huan-Hun, is a Chinese folk medicine for treating pain and inflammation, exhibiting antioxidant and anti-inflammatory activities. Our prior report (2012 cited K. gracilis leaf extract as moderately active against EV71 and CoxA16. This study further rates antienteroviral potential of K. gracilis stem (KGS extract to identify potent antiviral fractions and components. The extract moderately inhibits viral cytopathicity and virus yield, as well as in vitro replication of EV71 (IC50 = 75.18 μg/mL and CoxA16 (IC50 = 81.41 μg/mL. Ethyl acetate (EA fraction of KGS extract showed greater antiviral activity than that of n-butanol or aqueous fraction: IC50 values of 4.21 μg/mL against EV71 and 9.08 μg/mL against CoxA16. HPLC analysis, UV-Vis absorption spectroscopy, and plaque reduction assay indicate that eupafolin is a vital component of EA fraction showing potent activity against EV71 (IC50 = 1.39 μM and CoxA16 (IC50 = 5.24 μM. Eupafolin specifically lessened virus-induced upregulation of IL-6 and RANTES by inhibiting virus-induced ERK1/2, AP-1, and STAT3 signals. Anti-enteroviral potency of KGS EA fraction and eupafolin shows the clinical potential against EV71 and CoxA16 infection.

  11. Enzyme activity assays within microstructured optical fibers enabled by automated alignment.

    Science.gov (United States)

    Warren-Smith, Stephen C; Nie, Guiying; Schartner, Erik P; Salamonsen, Lois A; Monro, Tanya M

    2012-12-01

    A fluorescence-based enzyme activity assay has been demonstrated within a small-core microstructured optical fiber (MOF) for the first time. To achieve this, a reflection-based automated alignment system has been developed, which uses feedback and piezoelectric actuators to maintain optical alignment. The auto-alignment system provides optical stability for the time required to perform an activity assay. The chosen assay is based on the enzyme proprotein convertase 5/6 (PC6) and has important applications in women's health.

  12. The effect of hyperthermia and radiation on lysosomal enzyme activity of mouse mammary tumours

    International Nuclear Information System (INIS)

    Barratt, G.M.; Wills, E.D.

    1979-01-01

    The effects of hyperthermia and radiation have been studied on the acid phosphatase and β-glucuronidase activities in lysosomes of C3H mice mammary tumours and of the spleen. Quantitative histochemical methods have been used. Hyperthermic treatment of both spontaneous and transplanted tumours caused an increase in the activity of both acid phosphatase and β-glucuronase when measured immediately after treatment, but the activities returned to normal after 24 hours. In contrast a radiation dose of 3500 rad did not cause an increase in activity of either enzyme immediately, but a large activation was observed after 24 hr. Combination of hyperthermic and radiation treatment caused increases in enzyme activities which were dependent on the time after treatment. Hyperthermic treatment of the lower body of mice bearing tumours also caused activation of lysosomal enzymes in the spleen. This may be hormone mediated. It is considered that the increased lysosomal enzyme activity observed after hyperthermia may be a consequence of increased permeability of the lysosomal membrane caused by hyperthermia. (author)

  13. DMPD: Regulation of mitochondrial antiviral signaling pathways. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18549796 Regulation of mitochondrial antiviral signaling pathways. Moore CB, Ting J...P. Immunity. 2008 Jun;28(6):735-9. (.png) (.svg) (.html) (.csml) Show Regulation of mitochondrial antiviral ...signaling pathways. PubmedID 18549796 Title Regulation of mitochondrial antiviral signaling pathways. Author

  14. [Estimation of adaptive capacities in Magnitogorsk children from the activity of some detoxification enzymes].

    Science.gov (United States)

    koganova, Z I; Ingel', F I; Antipanova, N A; Legostoeva, T B; Poliakova, O V

    2010-01-01

    The paper provides the first fragment of a multiparameter study analyzing the influence of environmental pollution, the social and psychological features of a family, and some endogenous factors on genome stability and sensitivity in a developed ferrous metallurgy town. It also gives data on the urine and serum activity of the lysosomal enzyme N-acetyl-b-D-glucosaminidase (NAG) and the serum activity of catalase in an organized contingent of apparently healthy children (n = 178; 6 kindergartens) aged 5-7 years, who live permanently in Magnitogorsk at different distances from the metallurgical works. More than 70% of children selected for examination were found to have average normal levels of activity of the enzymes studied. According to the average levels of enzyme activity, there were only 2 kindergartens (both from the left-bank region). In the children from the left-bank area, enzyme activities varied more greatly, which suggests the higher prevalence of tense adaptation. Correlation analysis revealed association between the children's serum activity of enzymes and some components of snow pollution. It is anticipated that the found changes in serum activities of N-acetyl-beta-D-glucosaminidase and catalase may be determined by individual differences in a child's response to ambient air pollutants.

  15. A fluorescence-based hydrolytic enzyme activity assay for quantifying toxic effects of Roundup® to Daphnia magna

    DEFF Research Database (Denmark)

    Ørsted, Michael; Roslev, Peter

    2015-01-01

    Daphnia magna is a widely used model organism for aquatic toxicity testing. In the present study, we investigated the hydrolytic enzyme activity of D. magna after exposure to toxicant stress. In vivo enzyme activity was quantified using 15 fluorogenic enzyme probes based on 4-methylumbelliferyl...... or 7-amino-4-methylcoumarin. Probing D. magna enzyme activity was evaluated using short-term exposure (24-48 h) to the reference chemical K2Cr2O7, or the herbicide formulation Roundup®. Toxicant induced changes in hydrolytic enzyme activity were compared to changes in mobility (ISO 6341). The results...... showed that hydrolytic enzyme activity was quantifiable as a combination of whole body fluorescence of D. magna, and fluorescence of the surrounding water. Exposure of D. magna to lethal and sublethal concentrations of Roundup® resulted in loss of whole body enzyme activity, and release of cell...

  16. Anti-viral effect of herbal medicine Korean traditional Cynanchum ...

    African Journals Online (AJOL)

    Background: Pestiviruses in general, and Bovine Viral Diarrhea (BVD) in particular, present several potential targets for directed antiviral therapy. Material and Methods: The antiviral effect of Cynanchum paniculatum (Bge.) Kitag (Dog strangling vine: DS) extract on the bovine viral diarrhea (BVD) virus was tested. First ...

  17. Spatial characterization of proteolytic enzyme activity in the foregut region of the adult necrophagous fly, Protophormia terraenovae.

    Science.gov (United States)

    Rivers, David B; Acca, Gillian; Fink, Marc; Brogan, Rebecca; Schoeffield, Andrew

    2014-08-01

    The spatial distribution of proteolytic enzymes in the adult foregut of Protophormia terraenovae was studied in the context of protein digestion and regurgitation. Based on substrate specificity, pH optima, and use of specific protease inhibitors, all adults tested displayed enzyme activity in the foregut consistent with pepsin, trypsin and chymotrypsin. Chymotrypsin-like and trypsin-like enzyme activity were detected in all gut fluids and tissues tested, with chymotrypsin displaying the highest activity in saliva and salivary gland tissue, whereas maximal trypsin activity was evident in the crop. Pepsin-like activity was only evident in crop fluids and tissues. The activity of all three enzymes was low or undetectable (pepsin) in the fluids and tissue homogenates derived from the esophagus and cardia of any of the adults assayed. Fed adult females displayed higher enzyme activities than fed males, and the activity of all three enzymes were much more prevalent in fed adults than starved. The pH optimum of the trypsin-like enzyme was between pH 7.0 and 8.0; chymotrypsin was near pH 8.0; and maximal pepsin-like activity occurred between pH 1.0 and 2.0. Regurgitate from fed adult females displayed enzyme activity consistent with the proteolytic enzymes detected in crop gut fluids. Enzymes in regurgitate were not derived from food sources based on assays of bovine liver samples. These latter observations suggest that adult flies release fluids from foregut when encountering dry foods, potentially as a means to initiate extra-oral digestion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Antiviral activity of α-helical stapled peptides designed from the HIV-1 capsid dimerization domain

    Directory of Open Access Journals (Sweden)

    Cowburn David

    2011-05-01

    Full Text Available Abstract Background The C-terminal domain (CTD of HIV-1 capsid (CA, like full-length CA, forms dimers in solution and CTD dimerization is a major driving force in Gag assembly and maturation. Mutations of the residues at the CTD dimer interface impair virus assembly and render the virus non-infectious. Therefore, the CTD represents a potential target for designing anti-HIV-1 drugs. Results Due to the pivotal role of the dimer interface, we reasoned that peptides from the α-helical region of the dimer interface might be effective as decoys to prevent CTD dimer formation. However, these small peptides do not have any structure in solution and they do not penetrate cells. Therefore, we used the hydrocarbon stapling technique to stabilize the α-helical structure and confirmed by confocal microscopy that this modification also made these peptides cell-penetrating. We also confirmed by using isothermal titration calorimetry (ITC, sedimentation equilibrium and NMR that these peptides indeed disrupt dimer formation. In in vitro assembly assays, the peptides inhibited mature-like virus particle formation and specifically inhibited HIV-1 production in cell-based assays. These peptides also showed potent antiviral activity against a large panel of laboratory-adapted and primary isolates, including viral strains resistant to inhibitors of reverse transcriptase and protease. Conclusions These preliminary data serve as the foundation for designing small, stable, α-helical peptides and small-molecule inhibitors targeted against the CTD dimer interface. The observation that relatively weak CA binders, such as NYAD-201 and NYAD-202, showed specificity and are able to disrupt the CTD dimer is encouraging for further exploration of a much broader class of antiviral compounds targeting CA. We cannot exclude the possibility that the CA-based peptides described here could elicit additional effects on virus replication not directly linked to their ability to bind

  19. Lead action on activity of some enzymes of plants

    International Nuclear Information System (INIS)

    Korolyov, A.N.; Koshkaryova, A.I.

    2008-01-01

    Lead action on activity of some enzymes of young plants of barley double-row (Hordeum distichon L.) families of cereals (Grominea). It is established that activity urease, catalase, ascorbatoxidase is in dependence as from a lead dose in a nutritious solution, and term ontogenesis. At later stages ontogenesis the increase in concentration of lead in an inhabitancy leads to sharp decrease in activity ascorbatoxidase. In the same conditions activity urease and catalase raises.

  20. Activity of an enzyme immobilized on superparamagnetic particles in a rotational magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Mizuki, Toru; Watanabe, Noriyuki; Nagaoka, Yutaka [Bio-Nano Electronics Research Centre, Toyo University, Saitama 350-8585 (Japan); Fukushima, Tadamasa [Shimadzu GLC Ltd., Phenomenex Support Centre, Tokyo 110-0016 (Japan); Morimoto, Hisao; Usami, Ron [Bio-Nano Electronics Research Centre, Toyo University, Saitama 350-8585 (Japan); Maekawa, Toru, E-mail: maekawa@toyonet.toyo.ac.jp [Bio-Nano Electronics Research Centre, Toyo University, Saitama 350-8585 (Japan)

    2010-03-19

    We immobilize {alpha}-amylase extracted from Bacillus Iicheniformis on the surfaces of superparamagnetic particles and investigate the effect of a rotational magnetic field on the enzyme's activity. We find that the activity of the enzyme molecules immobilized on superparamagnetic particles increases in the rotational magnetic field and reaches maximum at a certain frequency. We clarify the effect of the cluster structures formed by the superparamagnetic particles on the activity. Enzyme reactions are enhanced even in a tiny volume of solution using the present method, which is very important for the development of efficient micro reactors and micro total analysis systems ({mu}-TAS).

  1. In vivo enzyme activity in inborn errors of metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, G.N.; Walter, J.H.; Leonard, J.V.; Halliday, D. (Clinical Research Centre, Harrow (England))

    1990-08-01

    Low-dose continuous infusions of (2H5)phenylalanine, (1-13C)propionate, and (1-13C)leucine were used to quantitate phenylalanine hydroxylation in phenylketonuria (PKU, four subjects), propionate oxidation in methylmalonic acidaemia (MMA, four subjects), and propionic acidaemia (PA, four subjects) and leucine oxidation in maple syrup urine disease (MSUD, four subjects). In vivo enzyme activity in PKU, MMA, and PA subjects was similar to or in excess of that in adult controls (range of phenylalanine hydroxylation in PKU, 3.7 to 6.5 mumol/kg/h, control 3.2 to 7.9, n = 7; propionate oxidation in MMA, 15.2 to 64.8 mumol/kg/h, and in PA, 11.1 to 36.0, control 5.1 to 19.0, n = 5). By contrast, in vivo leucine oxidation was undetectable in three of the four MSUD subjects (less than 0.5 mumol/kg/h) and negligible in the remaining subject (2 mumol/kg/h, control 10.4 to 15.7, n = 6). These results suggest that significant substrate removal can be achieved in some inborn metabolic errors either through stimulation of residual enzyme activity in defective enzyme systems or by activation of alternate metabolic pathways. Both possibilities almost certainly depend on gross elevation of substrate concentrations. By contrast, only minimal in vivo oxidation of leucine appears possible in MSUD.

  2. In vivo enzyme activity in inborn errors of metabolism

    International Nuclear Information System (INIS)

    Thompson, G.N.; Walter, J.H.; Leonard, J.V.; Halliday, D.

    1990-01-01

    Low-dose continuous infusions of [2H5]phenylalanine, [1-13C]propionate, and [1-13C]leucine were used to quantitate phenylalanine hydroxylation in phenylketonuria (PKU, four subjects), propionate oxidation in methylmalonic acidaemia (MMA, four subjects), and propionic acidaemia (PA, four subjects) and leucine oxidation in maple syrup urine disease (MSUD, four subjects). In vivo enzyme activity in PKU, MMA, and PA subjects was similar to or in excess of that in adult controls (range of phenylalanine hydroxylation in PKU, 3.7 to 6.5 mumol/kg/h, control 3.2 to 7.9, n = 7; propionate oxidation in MMA, 15.2 to 64.8 mumol/kg/h, and in PA, 11.1 to 36.0, control 5.1 to 19.0, n = 5). By contrast, in vivo leucine oxidation was undetectable in three of the four MSUD subjects (less than 0.5 mumol/kg/h) and negligible in the remaining subject (2 mumol/kg/h, control 10.4 to 15.7, n = 6). These results suggest that significant substrate removal can be achieved in some inborn metabolic errors either through stimulation of residual enzyme activity in defective enzyme systems or by activation of alternate metabolic pathways. Both possibilities almost certainly depend on gross elevation of substrate concentrations. By contrast, only minimal in vivo oxidation of leucine appears possible in MSUD

  3. Phosphorus fractions, microbial biomass and enzyme activities in ...

    African Journals Online (AJOL)

    Potohar, northern Punjab, Pakistan in September, 2008 and analysed for P fractions and microbial parameters including microbial biomass C, microbial biomass N, microbial biomass P, and activities of dehydrogenase and alkaline phosphatase enzymes. The average size of different P fractions (% of total P) in the soils ...

  4. First glycoside hydrolase family 2 enzymes from Thermus antranikianii and Thermus brockianus with β-glucosidase activity

    Directory of Open Access Journals (Sweden)

    Carola eSchröder

    2015-06-01

    Full Text Available Two genes tagh2 and tbgh2 coding for enzymes with hydrolytic activity towards esculin were identified from the extreme thermophilic, aerobic bacteria Thermus antranikianii (Ta and T. brockianus (Tb. Shortened conserved domains predicted a membership of the enzymes of glycoside hydrolase (GH family 2. At present, β-galactosidase activity is found frequently in GH family 2 but β-glucosidase activity has not been reported in this family before. The enzymes TaGH2 and TbGH2 preferred hydrolysis of nitrophenol-linked β-D-glucopyranosides with specific activities of 3,966 U/mg and 660 U/mg, respectively. Residual activities of 40 % (TaGH2 and 51 % (TbGH2 towards 4-NP-β-D-galactopyranoside were observed. Furthermore, TaGH2 hydrolyzed cellobiose. TbGH2, however, showed no activity on cellobiose or lactose. The enzymes exhibited highest activity at 95 °C (TaGH2 and 90 °C (TbGH2 at pH 6.5. Both enzymes were extremely thermostable and thermal activation up to 250 % was observed at temperatures between 50 and 60 °C. Accordingly, the first thermoactive glycoside hydrolase family 2 enzymes with β glucosidase activity have been identified and characterized. The hydrolysis of cellobiose is a unique property of TaGH2 when compared to the enzymes of GH family 2.

  5. activity of enzyme trypsin immobilized onto macroporous poly(epoxy

    African Journals Online (AJOL)

    dell

    consequential effects of covalent immobilization. EXPERIMENTAL. Materials .... immersed into water bath. ... storage stability of the enzyme was studied ... pore size range of about 10 to 150 µm. ... figures, the differences in activities (slopes.

  6. Changes in photosynthesis and activities of enzymes involved in ...

    African Journals Online (AJOL)

    tolerance, respectively were used to investigate the oxygen consumption rate of photosystem I, the oxygen evolution rate of photosystem II, cab transcript levels, and activities of enzymes involved in photosynthetic carbon reduction cycle.

  7. Enzyme-activity mutations detected in mice after paternal fractionated irradiation

    International Nuclear Information System (INIS)

    Charles, D.J.; Pretsch, W.

    1986-01-01

    (101/E1 X C3H/E1)F 1 -hybrid male mice were exposed in a 24-h fractionation interval to either 3.0 + 3.0-Gy or 5.1 + 5.1-Gy X-irradiation, and mated to untreated Test-stock females. The offspring were examined for mutations at 7 recessive specific loci and for activity alterations of erythrocyte enzymes controlled presumably by 12 loci. No enzyme-activity mutant was found in 3610 F 1 -offspring of the control group. In the experimental groups, no mutant was detected in 533 (3.0 + 3.0 Gy) and 173 (5.1 + 5.1 Gy) offspring from postspermatogonial germ cells treated. After treatment of spermatogonia, 1 mutant in 3388 F 1 -offspring of the 3.0 + 3.0-Gy group, and 5 mutants in 3187 F 1 offspring of the 5.1 + 5.1-Gy group were found. The mutants were all genetically confirmed. The frequency (expressed as mutants/locus/gamete) of enzyme-activity mutations is 2 (5.1 + 5.1-Gy group) to 10 (3.0 + 3.0-Gy group) times lower than the frequency of recessive specific-locus mutations. (Auth.)

  8. Embryonic turkey liver: activities of biotransformation enzymes and activation of DNA-reactive carcinogens

    International Nuclear Information System (INIS)

    Perrone, Carmen E.; Duan, Jian Dong; Jeffrey, Alan M.; Williams, Gary M.; Ahr, Hans-Juergen; Schmidt, Ulrich; Enzmann, Harald H.

    2004-01-01

    Avian embryos are a potential alternative model for chemical toxicity and carcinogenicity research. Because the toxic and carcinogenic effects of some chemicals depend on bioactivation, activities of biotransformation enzymes and formation of DNA adducts in embryonic turkey liver were examined. Biochemical analyses of 22-day in ovoturkey liver post-mitochondrial fractions revealed activities of the biotransformation enzymes 7-ethoxycoumarin de-ethylase (ECOD), 7-ethoxyresorufin de-ethylase (EROD), aldrin epoxidase (ALD), epoxide hydrolase (EH), glutathione S-transferase (GST), and UDP-glucuronyltransferase (GLUT). Following the administration of phenobarbital (24 mg/egg) on day 21, enzyme activities of ECOD, EROD, ALD, EH and GLUT, but not of GST, were increased by two-fold or higher levels by day 22. In contrast, acute administration of 3-methylcholanthrene (5 mg/egg) induced only ECOD and EROD activities. Bioactivation of structurally diverse pro-carcinogens was also examined using 32 P-postlabeling for DNA adducts. In ovoexposure of turkey embryos on day 20 of gestation to 2-acetylaminofluorene (AAF), 4,4'-methylenebis(2-chloroaniline) (MOCA), benzo[a]pyrene (BaP), and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) resulted in the formation of DNA adducts in livers collected by day 21. Some of the DNA adducts had 32 P-postlabeling chromatographic migration patterns similar to DNA adducts found in livers from Fischer F344 rats exposed to the same pro-carcinogens. We conclude that 21-day embryonic turkey liver is capable of chemical biotransformation and activation of genotoxic carcinogens to form DNA adducts. Thus, turkey embryos could be utilized to investigate potential chemical toxicity and carcinogenicity. (orig.)

  9. Embryonic turkey liver: activities of biotransformation enzymes and activation of DNA-reactive carcinogens

    Energy Technology Data Exchange (ETDEWEB)

    Perrone, Carmen E.; Duan, Jian Dong; Jeffrey, Alan M.; Williams, Gary M. [New York Medical College, Department of Pathology, Valhalla (United States); Ahr, Hans-Juergen; Schmidt, Ulrich [Bayer AG, Institute of Toxicology, Wuppertal (Germany); Enzmann, Harald H. [Federal Institute for Drugs and Medical Devices, Bonn (Germany)

    2004-10-01

    Avian embryos are a potential alternative model for chemical toxicity and carcinogenicity research. Because the toxic and carcinogenic effects of some chemicals depend on bioactivation, activities of biotransformation enzymes and formation of DNA adducts in embryonic turkey liver were examined. Biochemical analyses of 22-day in ovoturkey liver post-mitochondrial fractions revealed activities of the biotransformation enzymes 7-ethoxycoumarin de-ethylase (ECOD), 7-ethoxyresorufin de-ethylase (EROD), aldrin epoxidase (ALD), epoxide hydrolase (EH), glutathione S-transferase (GST), and UDP-glucuronyltransferase (GLUT). Following the administration of phenobarbital (24 mg/egg) on day 21, enzyme activities of ECOD, EROD, ALD, EH and GLUT, but not of GST, were increased by two-fold or higher levels by day 22. In contrast, acute administration of 3-methylcholanthrene (5 mg/egg) induced only ECOD and EROD activities. Bioactivation of structurally diverse pro-carcinogens was also examined using {sup 32}P-postlabeling for DNA adducts. In ovoexposure of turkey embryos on day 20 of gestation to 2-acetylaminofluorene (AAF), 4,4'-methylenebis(2-chloroaniline) (MOCA), benzo[a]pyrene (BaP), and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) resulted in the formation of DNA adducts in livers collected by day 21. Some of the DNA adducts had {sup 32}P-postlabeling chromatographic migration patterns similar to DNA adducts found in livers from Fischer F344 rats exposed to the same pro-carcinogens. We conclude that 21-day embryonic turkey liver is capable of chemical biotransformation and activation of genotoxic carcinogens to form DNA adducts. Thus, turkey embryos could be utilized to investigate potential chemical toxicity and carcinogenicity. (orig.)

  10. Molecular Sleds and More: Novel Antiviral Agents via Single-Molecule Biology (441st Brookhaven Lecture)

    Energy Technology Data Exchange (ETDEWEB)

    Mangel, Wally (Ph.D., Biology Department)

    2008-10-15

    Vaccines are effective against viruses such as polio and measles, but vaccines against other important viruses, such as HIV and flu viruses, may be impossible to obtain. These viruses change their genetic makeup each time they replicate so that the immune system cannot recognize all their variations. Hence it is important to develop new antiviral agents that inhibit virus replication. During this lecture, Dr. Mangel will discuss his group's work with a model system, the human adenovirus, which causes, among other ailments, pink eye, blindness and obesity. Mangel's team has developed a promising drug candidate that works by inihibiting adenovirus proteinase, an enzyme necessary for viral replication.

  11. Probiotic activity of lignocellulosic enzyme as bioactivator for rice husk degradation

    Science.gov (United States)

    Lamid, Mirni; Al-Arif, Anam; Warsito, Sunaryo Hadi

    2017-02-01

    The utilization of lignocellulosic enzyme will increase nutritional value of rice husk. Cellulase consists of C1 (β-1, 4-glucan cellobiohydrolase or exo-β-1,4glucanase), Cc (endo-β-1,4-glucanase) and component and cellobiose (β-glucocidase). Hemicellulase enzyme consists of endo-β-1,4-xilanase, β-xilosidase, α-L arabinofuranosidase, α-D-glukuronidaseand asetil xilan esterase. This research aimed to study the activity of lignocellulosic enzyme, produced by cows in their rumen, which can be used as a bioactivator in rice husk degradation. This research resulted G6 and G7 bacteria, producing xylanase and cellulase with the activity of 0.004 U mL-1 and 0.021 U mL-1; 0.003 ( U mL-1) and 0.026 (U mL-1) respectively.

  12. Structural characterization and antiviral activity of a novel heteropolysaccharide isolated from Grifola frondosa against enterovirus 71.

    Science.gov (United States)

    Zhao, Chao; Gao, Luying; Wang, Chunyang; Liu, Bin; Jin, Yu; Xing, Zheng

    2016-06-25

    A novel heteropolysaccharide from Grifola frondosa mycelia was extracted and purified using DEAE Sephadex A-50 and Sephadex G-200 chromatography. Fourier transform infrared (FT-IR) spectroscopy and nuclear magnetic resonance ((1)H NMR and (13)C NMR) spectroscopy were used to decipher the structure of the purified G. frondosa polysaccharide (GFP1). Chemical and spectral analysis revealed that GFP1, with an average molecular weight of 40.5kDa, possessed a 1,6-β-d-glucan backbone with a single 1,3-α-d-fucopyranosyl side-branching unit. Enterovirus 71 (EV71) is the causative pathogen of hand-foot-and-mouth disease. GFP1 was tested for its anti-EV71 activity in cultured cells, which showed that EV71 viral replication was blocked and viral VP1 protein expression and genomic RNA synthesis were suppressed. Moreover, GFP1 exhibited apoptotic and other activities by suppressing the EV71-induced caspase-3 cleavage and IκBα down regulation. Our results demonstrate that the novel G. frondosa polysaccharide has antiviral activity, which could be valuable as a potentially new anti-EV71 therapeutic compound. Copyright © 2016. Published by Elsevier Ltd.

  13. Microbial dynamics and enzyme activities in tropical Andosols depending on land use and nutrient inputs

    Science.gov (United States)

    Mganga, Kevin; Razavi, Bahar; Kuzyakov, Yakov

    2015-04-01

    Microbial decomposition of soil organic matter is mediated by enzymes and is a key source of terrestrial CO2 emissions. Microbial and enzyme activities are necessary to understand soil biochemical functioning and identify changes in soil quality. However, little is known about land use and nutrients availability effects on enzyme activities and microbial processes, especially in tropical soils of Africa. This study was conducted to examine how microbial and enzyme activities differ between different land uses and nutrient availability. As Andosols of Mt. Kilimanjaro are limited by nutrient concentrations, we hypothesize that N and P additions will stimulate enzyme activity. N and P were added to soil samples (0-20 cm) representing common land use types in East Africa: (1) savannah, (2) maize fields, (3) lower montane forest, (4) coffee plantation, (5) grasslands and (6) traditional Chagga homegardens. Total CO2 efflux from soil, microbial biomass and activities of β-glucosidase, cellobiohydrolase, chitinase and phosphatase involved in C, N and P cycling, respectively was monitored for 60 days. Total CO2 production, microbial biomass and enzyme activities varied in the order forest soils > grassland soils > arable soils. Increased β-glucosidase and cellobiohydrolase activities after N addition of grassland soils suggest that microorganisms increased N uptake and utilization to produce C-acquiring enzymes. Low N concentration in all soils inhibited chitinase activity. Depending on land use, N and P addition had an inhibitory or neutral effect on phosphatase activity. We attribute this to the high P retention of Andosols and low impact of N and P on the labile P fractions. Enhanced CO2 production after P addition suggests that increased P availability could stimulate soil organic matter biodegradation in Andosols. In conclusion, land use and nutrients influenced soil enzyme activities and microbial dynamics and demonstrated the decline in soil quality after landuse

  14. An anti-HIV-1 compound that increases steady-state expression of apoplipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G.

    Science.gov (United States)

    Ejima, Tomohiko; Hirota, Mayuko; Mizukami, Tamio; Otsuka, Masami; Fujita, Mikako

    2011-10-01

    Human apoplipoprotein B mRNA-editing enzyme-catalytic polypeptide-like (APOBEC) 3G (A3G) is an antiviral protein that blocks HIV-1 replication. However, the antiviral activity of A3G is overcome by the HIV-1 protein Vif. This inhibitory function of Vif is related to its ability to degrade A3G in the proteasome. This finding prompted us to examine the activities of 4-(dimethylamino)-2,6-bis[(N-(2-[(2-nitrophenyl)dithio]ethyl)amino)methyl]pyridine (SN-2) and SN-3. We found that 5 µM SN-2 increases the expression of A3G to a level much higher than that observed in the absence of Vif, without affecting the level of Vif expression. The proteasome inhibitor MG-132 increased the level of both A3G and Vif expression. These results demonstrate that A3G is ubiquitinated and degraded in the proteasome by a factor other than Vif, and that SN-2 selectively inhibits these processes. Furthermore, 5 µM SN-2 significantly inhibited the MAGI cell infectivity of wild-type HIV-1. These findings may contribute to the development of a novel anti-HIV-1 drug.

  15. A comparison of maximal bioenergetic enzyme activities obtained with commonly used homogenization techniques.

    Science.gov (United States)

    Grace, M; Fletcher, L; Powers, S K; Hughes, M; Coombes, J

    1996-12-01

    Homogenization of tissue for analysis of bioenergetic enzyme activities is a common practice in studies examining metabolic properties of skeletal muscle adaptation to disease, aging, inactivity or exercise. While numerous homogenization techniques are in use today, limited information exists concerning the efficacy of specific homogenization protocols. Therefore, the purpose of this study was to compare the efficacy of four commonly used approaches to homogenizing skeletal muscle for analysis of bioenergetic enzyme activity. The maximal enzyme activity (Vmax) of citrate synthase (CS) and lactate dehydrogenase (LDH) were measured from homogenous muscle samples (N = 48 per homogenization technique) and used as indicators to determine which protocol had the highest efficacy. The homogenization techniques were: (1) glass-on-glass pestle; (2) a combination of a mechanical blender and a teflon pestle (Potter-Elvehjem); (3) a combination of the mechanical blender and a biological detergent; and (4) the combined use of a mechanical blender and a sonicator. The glass-on-glass pestle homogenization protocol produced significantly higher (P pestle homogenization protocol is the technique of choice for studying bioenergetic enzyme activity in skeletal muscle.

  16. Co-ordinate activation of lipogenic enzymes in hepatocellular carcinoma.

    Science.gov (United States)

    Yahagi, Naoya; Shimano, Hitoshi; Hasegawa, Kiyoshi; Ohashi, Kenichi; Matsuzaka, Takashi; Najima, Yuho; Sekiya, Motohiro; Tomita, Sachiko; Okazaki, Hiroaki; Tamura, Yoshiaki; Iizuka, Yoko; Ohashi, Ken; Nagai, Ryozo; Ishibashi, Shun; Kadowaki, Takashi; Makuuchi, Masatoshi; Ohnishi, Shin; Osuga, Jun-ichi; Yamada, Nobuhiro

    2005-06-01

    Hepatocellular carcinoma is a very common neoplastic disease in countries where hepatitis viruses B and/or C are prevalent. Small hepatocellular carcinoma lesions detected by ultrasonography at an early stage are often hyperechoic because they are composed of well-differentiated cancer cells that are rich in triglyceride droplets. The triglyceride content of hepatocytes depends in part on the rate of lipogenesis. Key lipogenic enzymes, such as fatty acid synthase, are co-ordinately regulated at the transcriptional level. We therefore examined the mRNA expression of lipogenic enzymes in human hepatocellular carcinoma samples from 10 patients who had undergone surgical resection. All of the samples exhibited marked elevation of expression of mRNA for lipogenic enzymes, such as fatty acid synthase, acetyl-CoA carboxylase and ATP citrate lyase, compared with surrounding non-cancerous liver tissue. In contrast, the changes in mRNA expression of SREBP-1, a transcription factor that regulates a battery of lipogenic enzymes, did not show a consistent trend. In some cases where SREBP-1 was elevated, the main contributing isoform was SREBP-1c rather than SREBP-1a. Thus, lipogenic enzymes are markedly induced in hepatocellular carcinomas, and in some cases SREBP-1c is involved in this activation.

  17. RNAi and Antiviral Defense in the Honey Bee

    Science.gov (United States)

    Brutscher, Laura M.; Flenniken, Michelle L.

    2015-01-01

    Honey bees play an important agricultural and ecological role as pollinators of numerous agricultural crops and other plant species. Therefore, investigating the factors associated with high annual losses of honey bee colonies in the US is an important and active area of research. Pathogen incidence and abundance correlate with Colony Collapse Disorder- (CCD-) affected colonies in the US and colony losses in the US and in some European countries. Honey bees are readily infected by single-stranded positive sense RNA viruses. Largely dependent on the host immune response, virus infections can either remain asymptomatic or result in deformities, paralysis, or death of adults or larvae. RNA interference (RNAi) is an important antiviral defense mechanism in insects, including honey bees. Herein, we review the role of RNAi in honey bee antiviral defense and highlight some parallels between insect and mammalian immune systems. A more thorough understanding of the role of pathogens on honey bee health and the immune mechanisms bees utilize to combat infectious agents may lead to the development of strategies that enhance honey bee health and result in the discovery of additional mechanisms of immunity in metazoans. PMID:26798663

  18. RNAi and Antiviral Defense in the Honey Bee

    Directory of Open Access Journals (Sweden)

    Laura M. Brutscher

    2015-01-01

    Full Text Available Honey bees play an important agricultural and ecological role as pollinators of numerous agricultural crops and other plant species. Therefore, investigating the factors associated with high annual losses of honey bee colonies in the US is an important and active area of research. Pathogen incidence and abundance correlate with Colony Collapse Disorder- (CCD- affected colonies in the US and colony losses in the US and in some European countries. Honey bees are readily infected by single-stranded positive sense RNA viruses. Largely dependent on the host immune response, virus infections can either remain asymptomatic or result in deformities, paralysis, or death of adults or larvae. RNA interference (RNAi is an important antiviral defense mechanism in insects, including honey bees. Herein, we review the role of RNAi in honey bee antiviral defense and highlight some parallels between insect and mammalian immune systems. A more thorough understanding of the role of pathogens on honey bee health and the immune mechanisms bees utilize to combat infectious agents may lead to the development of strategies that enhance honey bee health and result in the discovery of additional mechanisms of immunity in metazoans.

  19. Effects of electrokinetic treatment of a heavy metal contaminated soil on soil enzyme activities

    International Nuclear Information System (INIS)

    Cang Long; Zhou Dongmei; Wang Quanying; Wu Danya

    2009-01-01

    There is a growing concern on the potential application of a direct current (DC) electric field to soil for removing contaminants, but little is known about its impact on soil enzyme activities. This study investigated the change of enzyme activities of a heavy metal contaminated soil before and after electrokinetic (EK) treatments at lab-scale and the mechanisms of EK treatment to affect soil enzyme activities were explored. After treatments with 1-3 V cm -1 of voltage gradient for 420 h, soil pH, electrical conductivity (EC), soil organic carbon, dissolved organic carbon (DOC), soil heavy metal concentration and enzyme activities were analyzed. The results showed that the average removal efficiencies of soil copper were about 65% and 83% without and with pH control of catholyte, respectively, and all the removal efficiencies of cadmium were above 90%. The soil invertase and catalase activities increased and the highest invertase activity was as 170 times as the initial one. The activities of soil urease and acidic phosphatase were lower than the initial ones. Bivariate correlation analyses indicated that the soil invertase and acidic phosphatase activities were significantly correlated with soil pH, EC, and DOC at P < 0.05, but the soil urease activities had no correlation with the soil properties. On the other hand, the effects of DC electric current on solution invertase and catalase enzyme protein activities indicated that it had negative effect on solution catalase activity and little effect on solution invertase activity. From the change of invertase and catalase activities in soil and solution, the conclusion can be drawn that the dominant effect mechanism is the change of soil properties by EK treatments.

  20. Effects of electrokinetic treatment of a heavy metal contaminated soil on soil enzyme activities

    Energy Technology Data Exchange (ETDEWEB)

    Cang Long [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Zhou Dongmei, E-mail: dmzhou@issas.ac.cn [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Wang Quanying; Wu Danya [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China)

    2009-12-30

    There is a growing concern on the potential application of a direct current (DC) electric field to soil for removing contaminants, but little is known about its impact on soil enzyme activities. This study investigated the change of enzyme activities of a heavy metal contaminated soil before and after electrokinetic (EK) treatments at lab-scale and the mechanisms of EK treatment to affect soil enzyme activities were explored. After treatments with 1-3 V cm{sup -1} of voltage gradient for 420 h, soil pH, electrical conductivity (EC), soil organic carbon, dissolved organic carbon (DOC), soil heavy metal concentration and enzyme activities were analyzed. The results showed that the average removal efficiencies of soil copper were about 65% and 83% without and with pH control of catholyte, respectively, and all the removal efficiencies of cadmium were above 90%. The soil invertase and catalase activities increased and the highest invertase activity was as 170 times as the initial one. The activities of soil urease and acidic phosphatase were lower than the initial ones. Bivariate correlation analyses indicated that the soil invertase and acidic phosphatase activities were significantly correlated with soil pH, EC, and DOC at P < 0.05, but the soil urease activities had no correlation with the soil properties. On the other hand, the effects of DC electric current on solution invertase and catalase enzyme protein activities indicated that it had negative effect on solution catalase activity and little effect on solution invertase activity. From the change of invertase and catalase activities in soil and solution, the conclusion can be drawn that the dominant effect mechanism is the change of soil properties by EK treatments.

  1. Digestive enzymes in Rhinolophus euryale (Rhinolophidae, Chiroptera are active also during hibernation

    Directory of Open Access Journals (Sweden)

    Maxinová Edita

    2017-11-01

    Full Text Available During the winter, bats use hibernation as a means of surviving the period of low prey offer. However, the Mediterranean horseshoe bat (Rhinolophus euryale arouses from torpor quite frequently. Based on the actual climatic conditions, it can profit from occasional foraging oportunities, when they occur. We analysed faeces collected on four nights during the period from November 2012 to February 2013 from the Domica-Baradla cave system (Slovakia and Hungary. In mid-November, the largest proportion of faecal contents were from Lepidoptera. Later on, the proportion of non-consumptive mass in the faeces increased and prey remnants disappeared. We analysed the activity of digestive enzymes (amylase, chitobiase, endochitinase and glukosaminidase in faeces. The activity of these enzymes was detected in fresh faeces throughout the whole winter. The faecal activity of the chitinases was relatively stable during the monitored period, whilst the activity of amylase was highest during late November and December. Some level of active digestive enzymes during the winter could be an adaptation to occasional winter foraging.

  2. Effects of misonidazole, irradiation and hyperthermia on lysosomal enzyme activity in mouse tumours

    International Nuclear Information System (INIS)

    Barratt, G.M.; Wills, E.D.

    1981-01-01

    Male C3H mice bearing transplanted tumours were treated with hyperthermia, gamma radiation and the radiosensitising drug misonidazole. The activity of tumour lysosomal acid phosphatase and β-glucuronidase was determined using quantitative cytochemical techniques which measure both lysosomal membrane permeability and enzyme activity. Misonidazole had no effect on the membrane permeability or enzyme activity of tumour lysosomes 1 hr after injection; but 25 hr after the drug treatment the permeability of the lysosomal membrane to the substrate was increased to 1.7 times control. Increases in the lysosomal enzyme activity and membrane permeability were observed 1 hr after combined treatment with misonidazole and irradiation, although neither the drug nor irradiation given alone affected the lysosomes 1 hr after treatment. Twenty-five hours after treatment of tumours with misonidazole given 25 minutes before irradiation of tumours, permeability of the lysosomal membrane had increased to 2.3 times the control. The effects of the irradiation and the radio-sensitisers were thus synergistic. Hyperthermic treatment of tumours increased and misonidazole decreased the lysosomal membrane permeability and enzyme activity measured immediately after exposure. Thus misonidazole and irradiation act synergistically to cause increased lysosomal activity but misonidazole depresses the effect of hyperthermia on lysosomes. (author)

  3. Antiviral Effect of Sub Fraction Cassia alata Leaves Extract to Dengue Virus Serotype-2 strain New Guinea C in Human Cell Line Huh-7 it-1

    Science.gov (United States)

    Angelina, Marissa; Hanafi, Muhammad; Suyatna, Franciscus D.; Mirawati S., T.; Ratnasari, Shirley; Ernawati Dewi, Beti

    2017-12-01

    Dengue virus (DENV) is one of the most common viral infections found Indonesia and tropical regions, and no specific antiviral for DENV. Indonesia has several of herbal medicine that were not explored of their potency as antiviral DENV. This study was done to evaluate the activity and toxicity of 4 derived fractions: Hexane (CA1), ethyl acetate (CA2), buthanol (CA3 ) and water (CA4) of Cassia alata leaf extract (CA) as an antiviral drug to DENV. The DENV was treated with various concentration of extract and added to Huh-7 it-1. The decrease of virus titer was determined by Focus assay. The toxicity of extract was measured by MTT assay. In our previous study, we found that CA on Huh-7 cells showed IC50, CC50 and SI values of <10 μg/mL, 323.45 μg/mL, and more than 32.3, respectively. For the fractions, CA3 showed best antiviral activity among other, with IC50, CC50 and SI of <10 μg/mL, 645.8 μg/mL, and more than 64.5, respectively. CA and CA3 were proven to possess antiviral activity that is potent when tested against DENV-2. Future study was needed to explore the inhibition mechanism and compound of CA that have potency as antiviral drug to DENV.

  4. Milk enzyme activities and subclinical mastitis among women in Guinea-Bissau

    DEFF Research Database (Denmark)

    Rasmussen, Lill Brith Wium; Hartvig, Ditte Luise; Kæstel, Pernille

    2008-01-01

    research as indicators of SCM, udder health, and milk quality. Study Design: To investigate if milk enzyme activities and the inflammatory interleukin 8 (IL-8) level are increased in women with SCM, we measured sodium, potassium, NAGase, LDH, AcP, AP, and IL-8 in breastmilk samples collected at 2 months......Background: Subclinical mastititis (SCM) is a condition with raised milk concentration of sodium and milk immune factors. The milk enzymes N-acetyl-β-D-glucosaminidase (NAGase), lactate dehydrogenase (LDH), acid phosphatase (AcP), and alkaline phosphatase (AP) have attracted attention in dairy...... in univariate linear regression (p enzymes and IL-8). Conclusions: A positive association between the Na/K ratio and the breastmilk enzymes NAGase, LDH, AcP, and AP was found. Breastmilk enzymes have not previously been investigated in relation to SCM in women, and further...

  5. Mesoporous silica-encapsulated gold nanoparticles as artificial enzymes for self-activated cascade catalysis.

    Science.gov (United States)

    Lin, Youhui; Li, Zhenhua; Chen, Zhaowei; Ren, Jinsong; Qu, Xiaogang

    2013-04-01

    A significant challenge in chemistry is to create synthetic structures that mimic the complexity and function of natural systems. Here, a self-activated, enzyme-mimetic catalytic cascade has been realized by utilizing expanded mesoporous silica-encapsulated gold nanoparticles (EMSN-AuNPs) as both glucose oxidase- and peroxidase-like artificial enzymes. Specifically, EMSN helps the formation of a high degree of very small and well-dispersed AuNPs, which exhibit an extraordinarily stability and dual enzyme-like activities. Inspired by these unique and attractive properties, we further piece them together into a self-organized artificial cascade reaction, which is usually completed by the oxidase-peroxidase coupled enzyme system. Our finding may pave the way to use matrix as the structural component for the design and development of biomimetic catalysts and to apply enzyme mimics for realizing higher functions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Determination of lytic enzyme activities of indigenous Trichoderma isolates from Pakistan.

    Science.gov (United States)

    Asad, Saeed Ahmad; Tabassum, Ayesha; Hameed, Abdul; Hassan, Fayyaz Ul; Afzal, Aftab; Khan, Sabaz Ali; Ahmed, Rafiq; Shahzad, Muhammad

    2015-01-01

    This study investigated lytic enzyme activities in three indigenous Trichoderma strains namely, Trichoderma asperellum, Trichoderma harzianum and Trichoderma sp. Native Trichoderma strains and a virulent strain of Rhizoctonia solani isolated from infected bean plants were also included in the study. Enzyme activities were determined by measuring sugar reduction by dinitrosalicylic acid (DNS) method using suitable substrates. The antagonists were cultured in minimal salt medium with the following modifications: medium A (1 g of glucose), medium B (0.5 g of glucose + 0.5 g of deactivated R. solani mycelia), medium C (1.0 g of deactivated respective antagonist mycelium) and medium D (1 g of deactivated R. solani mycelia). T asperellum showed presence of higher amounts of chitinases, β-1, 3-glucanases and xylanases in extracellular protein extracts from medium D as compared to medium A. While, the higher activities of glucosidases and endoglucanses were shown in medium D extracts by T. harzianum. β-glucosidase activities were lower compared with other enzymes; however, activities of the extracts of medium D were significantly different. T. asperellum exhibited maximum inhibition (97.7%). On the other hand, Trichoderma sp. did not show any effect on mycelia growth of R. solani on crude extract.

  7. Determination of lytic enzyme activities of indigenous Trichoderma isolates from Pakistan

    Science.gov (United States)

    Asad, Saeed Ahmad; Tabassum, Ayesha; Hameed, Abdul; Hassan, Fayyaz ul; Afzal, Aftab; Khan, Sabaz Ali; Ahmed, Rafiq; Shahzad, Muhammad

    2015-01-01

    Abstract This study investigated lytic enzyme activities in three indigenous Trichoderma strains namely, Trichoderma asperellum, Trichoderma harzianum and Trichoderma sp. Native Trichoderma strains and a virulent strain of Rhizoctonia solani isolated from infected bean plants were also included in the study. Enzyme activities were determined by measuring sugar reduction by dinitrosalicylic acid (DNS) method using suitable substrates. The antagonists were cultured in minimal salt medium with the following modifications: medium A (1 g of glucose), medium B (0.5 g of glucose + 0.5 g of deactivated R. solani mycelia), medium C (1.0 g of deactivated respective antagonist mycelium) and medium D (1 g of deactivated R. solani mycelia). T asperellum showed presence of higher amounts of chitinases, β-1, 3-glucanases and xylanases in extracellular protein extracts from medium D as compared to medium A. While, the higher activities of glucosidases and endoglucanses were shown in medium D extracts by T. harzianum. β-glucosidase activities were lower compared with other enzymes; however, activities of the extracts of medium D were significantly different. T. asperellum exhibited maximum inhibition (97.7%). On the other hand, Trichoderma sp. did not show any effect on mycelia growth of R. solani on crude extract. PMID:26691463

  8. Glycosylation of dengue virus glycoproteins and their interactions with carbohydrate receptors: possible targets for antiviral therapy.

    Science.gov (United States)

    Idris, Fakhriedzwan; Muharram, Siti Hanna; Diah, Suwarni

    2016-07-01

    Dengue virus, an RNA virus belonging to the genus Flavivirus, affects 50 million individuals annually, and approximately 500,000-1,000,000 of these infections lead to dengue hemorrhagic fever or dengue shock syndrome. With no licensed vaccine or specific antiviral treatments available to prevent dengue infection, dengue is considered a major public health problem in subtropical and tropical regions. The virus, like other enveloped viruses, uses the host's cellular enzymes to synthesize its structural (C, E, and prM/M) and nonstructural proteins (NS1-5) and, subsequently, to glycosylate these proteins to produce complete and functional glycoproteins. The structural glycoproteins, specifically the E protein, are known to interact with the host's carbohydrate receptors through the viral proteins' N-glycosylation sites and thus mediate the viral invasion of cells. This review focuses on the involvement of dengue glycoproteins in the course of infection and the virus' exploitation of the host's glycans, especially the interactions between host receptors and carbohydrate moieties. We also discuss the recent developments in antiviral therapies that target these processes and interactions, focusing specifically on the use of carbohydrate-binding agents derived from plants, commonly known as lectins, to inhibit the progression of infection.

  9. Responses of absolute and specific enzyme activity to consecutive application of composted sewage sludge in a Fluventic Ustochrept.

    Directory of Open Access Journals (Sweden)

    Xiao Liu

    Full Text Available Composted sewage sludge (CS is considered a rich source of soil nutrients and significantly affects the physical, chemical, and biological characteristics of soil, but its effect on specific enzyme activity in soil is disregarded. The present experiment examined the absolute and specific enzyme activity of the enzymes involved in carbon, nitrogen, and phosphorus cycles, the diversity of soil microbial functions, and soil community composition in a Fluventic Ustochrept under a maize-wheat rotation system in North China during 2012-2015. Application of CS led to increase in MBC and in its ratio to both total organic carbon (TOC and microbial biomass nitrogen (MBN. Absolute enzyme activity, except that of phosphatase, increased in CS-treated soils, whereas specific activity of all the enzymes declined, especially at the highest dose of CS (45 t ha-1. The diversity of soil microbial community also increased in CS-treated soils, whereas its functional diversity declined at higher doses of CS owing to the lowered specific enzyme activity. These changes indicate that CS application induced the domination of microorganisms that are not metabolically active and those that use resources more efficiently, namely fungi. Redundancy analysis showed that fundamental alterations in soil enzyme activity depend on soil pH. Soil specific enzyme activity is affected more than absolute enzyme activity by changes in soil properties, especially soil microbial activity and composition of soil microflora (as judged by the following ratios: MBC/TOC, MBC/MBN, and TOC/LOC, that is labile organic carbon through the Pearson Correlation Coefficient. Specific enzyme activity is thus a more accurate parameter than absolute enzyme activity for monitoring the effect of adding CS on the activities and structure of soil microbial community.

  10. Regulatory proteins (inhibitors or activators) affect estimates of Msub(r) of enzymes and receptors by radiation inactivation

    International Nuclear Information System (INIS)

    Potier, M.; Giroux, S.

    1985-01-01

    The radiation-inactivation method allows the determination of the Msub(r) of enzymes and receptors by monitoring the decay of biological activity as a function of absorbed dose. The presence of regulatory or effector proteins (inhibitors or activators) associated with an enzyme or receptor, or released in the preparation after tissue homogenization, may affect the decay of biological activity. How the activity is affected, however, will depend on the type of inhibition (competitive or non-competitive), the inhibitor or activator concentration, the dissociation constant of the enzyme-effector system, and the effector Msub(r) relative to that of the enzyme. Since little is known on how effector proteins influence radiation inactivation of enzymes and receptors, we have considered a theoretical model in an effort to provide a framework for the interpretation of experimentally obtained data. Our model predicts that competitive and non-competitive inhibitors of enzymes could be distinguished by analysing irradiated samples with various substrate concentrations. Inhibitors will decrease whereas activators will increase the apparent target size of enzymes or receptors. (author)

  11. Differences in forage-acquisition and fungal enzyme activity contribute to niche segregation in Panamanian leaf-cutting ants

    DEFF Research Database (Denmark)

    Kooij, Pepijn Wilhelmus; Liberti, Joanito; Giampoudakis, Konstantinos

    2014-01-01

    activities of twelve fungus garden decomposition enzymes, belonging to the amylases, cellulases, hemicellulases, pectinases and proteinases, and show that average enzyme activity per unit of fungal mass in Atta gardens is lower than in Acromyrmex gardens. Expression profiles of fungal enzymes in Atta also...... for decomposition enzymes....

  12. A function-based screen for seeking RubisCO active clones from metagenomes: novel enzymes influencing RubisCO activity.

    Science.gov (United States)

    Böhnke, Stefanie; Perner, Mirjam

    2015-03-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) is a key enzyme of the Calvin cycle, which is responsible for most of Earth's primary production. Although research on RubisCO genes and enzymes in plants, cyanobacteria and bacteria has been ongoing for years, still little is understood about its regulation and activation in bacteria. Even more so, hardly any information exists about the function of metagenomic RubisCOs and the role of the enzymes encoded on the flanking DNA owing to the lack of available function-based screens for seeking active RubisCOs from the environment. Here we present the first solely activity-based approach for identifying RubisCO active fosmid clones from a metagenomic library. We constructed a metagenomic library from hydrothermal vent fluids and screened 1056 fosmid clones. Twelve clones exhibited RubisCO activity and the metagenomic fragments resembled genes from Thiomicrospira crunogena. One of these clones was further analyzed. It contained a 35.2 kb metagenomic insert carrying the RubisCO gene cluster and flanking DNA regions. Knockouts of twelve genes and two intergenic regions on this metagenomic fragment demonstrated that the RubisCO activity was significantly impaired and was attributed to deletions in genes encoding putative transcriptional regulators and those believed to be vital for RubisCO activation. Our new technique revealed a novel link between a poorly characterized gene and RubisCO activity. This screen opens the door to directly investigating RubisCO genes and respective enzymes from environmental samples.

  13. Determination of the activity signature of key carbohydrate metabolism enzymes in phenolic-rich grapevine tissues

    DEFF Research Database (Denmark)

    Covington, Elizabeth Dunn; Roitsch, Thomas Georg; Dermastia, Marina

    2016-01-01

    Physiological studies in plants often require enzyme extraction from tissues containing high concentrations of phenols and polyphenols. Unless removed or neutralized, such compounds may hinder extraction, inactivate enzymes, and interfere with enzyme detection. The following protocol for activity...... assays for enzymes of primary carbohydrate metabolism, while based on our recently published one for quantitative measurement of activities using coupled spectrophotometric assays in a 96-well format, is tailored to the complexities of phenolic- and anthocyanin-rich extracts from grapevine leaf...

  14. Assessment of digestive enzymes activity during the fry development of the endangered Caspian brown trout Salmo caspius.

    Science.gov (United States)

    Zamani, A; Hajimoradloo, A; Madani, R; Farhangi, M

    2009-09-01

    The study of digestive enzymes activity at Salmo caspius fry showed that enzymes were available at the moment of mouth opening on the first day post hatching (dph) and the activity of enzymes showed no significant difference from the hatching day 28 dph. An increased activity was seen between 32 and 43 dph and this activity was significantly higher than the activity during the first 28 days. In the primary stages after yolk sac resorption (43-58 dph), enzymes activity showed an increased profile, however none of them showed a significant difference between 43 and 58 dph.

  15. Identification of DreI as an antiviral factor regulated by RLR signaling pathway.

    Directory of Open Access Journals (Sweden)

    Shun Li

    Full Text Available BACKGROUND: Retinoic acid-inducible gene I (RIG-I-like receptors (RLRs had been demonstrated to prime interferon (IFN response against viral infection via the conserved RLR signaling in fish, and a novel fish-specific gene, the grass carp reovirus (GCRV-induced gene 2 (Gig2, had been suggested to play important role in host antiviral response. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we cloned and characterized zebrafish Gig2 homolog (named Danio rerio Gig2-I, DreI, and revealed its antiviral role and expressional regulation signaling pathway. RT-PCR, Western blot and promoter activity assay indicate that DreI can be induced by poly I:C, spring viremia of carp virus (SVCV and recombinant IFN (rIFN, showing that DreI is a typical ISG. Using the pivotal signaling molecules of RLR pathway, including RIG-I, MDA5 and IRF3 from crucian carp, it is found that DreI expression is regulated by RLR cascade and IRF3 plays an important role in this regulation. Furthermore, promoter mutation assay confirms that the IFN-stimulated regulatory elements (ISRE in the 5' flanking region of DreI is essential for its induction. Finally, overexpression of DreI leads to establish a strong antiviral state against SVCV and Rana grylio virus (RGV infection in EPC (Epithelioma papulosum cyprinid cells. CONCLUSIONS/SIGNIFICANCE: These data indicate that DreI is an antiviral protein, which is regulated by RLR signaling pathway.

  16. [Effects of altitudes on soil microbial biomass and enzyme activity in alpine-gorge regions.

    Science.gov (United States)

    Cao, Rui; Wu, Fu Zhong; Yang, Wan Qin; Xu, Zhen Feng; Tani, Bo; Wang, Bin; Li, Jun; Chang, Chen Hui

    2016-04-22

    In order to understand the variations of soil microbial biomass and soil enzyme activities with the change of altitude, a field incubation was conducted in dry valley, ecotone between dry valley and mountain forest, subalpine coniferous forest, alpine forest and alpine meadow from 1563 m to 3994 m of altitude in the alpine-gorge region of western Sichuan. The microbial biomass carbon and nitrogen, and the activities of invertase, urease and acid phosphorus were measured in both soil organic layer and mineral soil layer. Both the soil microbial biomass and soil enzyme activities showed the similar tendency in soil organic layer. They increased from 2158 m to 3028 m, then decreased to the lowest value at 3593 m, and thereafter increased until 3994 m in the alpine-gorge region. In contrast, the soil microbial biomass and soil enzyme activities in mineral soil layer showed the trends as, the subalpine forest at 3028 m > alpine meadow at 3994 m > montane forest ecotone at 2158 m > alpine forest at 3593 m > dry valley at 1563 m. Regardless of altitudes, soil microbial biomass and soil enzyme activities were significantly higher in soil organic layer than in mineral soil layer. The soil microbial biomass was significantly positively correlated with the activities of the measured soil enzymes. Moreover, both the soil microbial biomass and soil enzyme activities were significantly positively correlated with soil water content, organic carbon, and total nitrogen. The activity of soil invertase was significantly positively correlated with soil phosphorus content, and the soil acid phosphatase was so with soil phosphorus content and soil temperature. In brief, changes in vegetation and other environmental factors resulting from altitude change might have strong effects on soil biochemical properties in the alpine-gorge region.

  17. Water extract of Pueraria lobata Ohwi has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines

    Directory of Open Access Journals (Sweden)

    Tzeng-Jih Lin

    2013-12-01

    Full Text Available Human respiratory syncytial virus (HRSV infects all age groups and causes bronchiolitis, pneumonia, and acute respiratory distress syndrome with a significant mortality rate. To date, only ribavirin has been used to manage HRSV infection. However, ribavirin is expensive with an only modest effect. Furthermore, ribavirin has several side effects, which means it has limited clinical benefit. Pueraria lobata Ohwi (P. lobata is a common ingredient of Ge-Gen-Tang (Kakkon-to and Sheng-Ma-Ge-Gen-Tang (Shoma-kakkon-to, which are prescriptions of Chinese traditional medicine proven to have antiviral activity against HRSV. Therefore, it was hypothesized that P. lobata might be effective against HRSV. To find a cost-effective therapeutic modality, both human upper (HEp-2 and lower (A549 respiratory tract cell lines were used to test the hypothesis that P. lobata could inhibit HRSV-induced plaque formation. Results showed that the water extract of P. lobata was effective (p < 0.0001 against HRSV-induced plaque formation. P. lobata was more effective when given prior to viral inoculation (p < 0.0001 by inhibiting viral attachment (p < 0.0001 and penetration (p < 0.0001. However, supplementation with P. lobata could not stimulate interferon secretion after HRSV infection. In conclusion, P. lobata has antiviral activity against HRSV-induced plaque formation in airway mucosa mainly by inhibiting viral attachment and internalization. Further identification of effective constituents could contribute to the prevention of HRSV infection.

  18. Carbohydrate-active enzymes in Trichoderma harzianum: a bioinformatic analysis bioprospecting for key enzymes for the biofuels industry.

    Science.gov (United States)

    Ferreira Filho, Jaire Alves; Horta, Maria Augusta Crivelente; Beloti, Lilian Luzia; Dos Santos, Clelton Aparecido; de Souza, Anete Pereira

    2017-10-12

    Trichoderma harzianum is used in biotechnology applications due to its ability to produce powerful enzymes for the conversion of lignocellulosic substrates into soluble sugars. Active enzymes involved in carbohydrate metabolism are defined as carbohydrate-active enzymes (CAZymes), and the most abundant family in the CAZy database is the glycoside hydrolases. The enzymes of this family play a fundamental role in the decomposition of plant biomass. In this study, the CAZymes of T. harzianum were identified and classified using bioinformatic approaches after which the expression profiles of all annotated CAZymes were assessed via RNA-Seq, and a phylogenetic analysis was performed. A total of 430 CAZymes (3.7% of the total proteins for this organism) were annotated in T. harzianum, including 259 glycoside hydrolases (GHs), 101 glycosyl transferases (GTs), 6 polysaccharide lyases (PLs), 22 carbohydrate esterases (CEs), 42 auxiliary activities (AAs) and 46 carbohydrate-binding modules (CBMs). Among the identified T. harzianum CAZymes, 47% were predicted to harbor a signal peptide sequence and were therefore classified as secreted proteins. The GH families were the CAZyme class with the greatest number of expressed genes, including GH18 (23 genes), GH3 (17 genes), GH16 (16 genes), GH2 (13 genes) and GH5 (12 genes). A phylogenetic analysis of the proteins in the AA9/GH61, CE5 and GH55 families showed high functional variation among the proteins. Identifying the main proteins used by T. harzianum for biomass degradation can ensure new advances in the biofuel production field. Herein, we annotated and characterized the expression levels of all of the CAZymes from T. harzianum, which may contribute to future studies focusing on the functional and structural characterization of the identified proteins.

  19. Induction of antioxidant enzyme activity and lipid peroxidation level in ion-beam-bombarded rice seeds

    Science.gov (United States)

    Semsang, Nuananong; Yu, LiangDeng

    2013-07-01

    Low-energy ion beam bombardment has been used to mutate a wide variety of plant species. To explore the indirect effects of low-energy ion beam on biological damage due to the free radical production in plant cells, the increase in antioxidant enzyme activities and lipid peroxidation level was investigated in ion-bombarded rice seeds. Local rice seeds were bombarded with nitrogen or argon ion beams at energies of 29-60 keV and ion fluences of 1 × 1016 ions cm-2. The activities of the antioxidant enzymes; superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione S-transferase (GST) and lipid peroxidation level were assayed in the germinated rice seeds after ion bombardment. The results showed most of the enzyme activities and lipid peroxidation levels in both the argon and nitrogen bombarded samples were higher than those in the natural control. N-ion bombardment could induce higher levels of antioxidant enzyme activities in the rice samples than the Ar-ion bombardment. Additional effects due to the vacuum condition were found to affect activities of some antioxidant enzymes and lipid peroxidation level. This study demonstrates that ion beam bombardment and vacuum condition could induce the antioxidant enzyme activity and lipid peroxidation level which might be due to free radical production in the bombarded rice seeds.

  20. Evaluation of Macerating Pectinase Enzyme Activity under Various Temperature, pH and Ethanol Regimes

    Directory of Open Access Journals (Sweden)

    Andrew G. Reynolds

    2018-02-01

    Full Text Available The polygalacturonase (PGU, hemicellulase (mannanase and protease enzyme activities in commercial macerating, pectinase-enzyme preparations commonly used by wineries in Ontario (Scottzyme Color X and Color Pro were measured under various simulated process conditions (temperature, pH, and ethanol concentration. Treatments included three temperatures (15, 20 and 30 °C; pH = 3.0, 3.5, 4.0 and 5.0; ethanol = 0%, four pH levels (3.0, 3.5, 4.0 and 5.0; temperature = 15, 20, 30 and 50 °C; ethanol = 0%, and four ethanol concentrations ((2.5, 5, 7.5 and 10%; temperature = 20 °C and pH = 3.5. Polygalacturonase enzyme activity in Color X increased linearly with temperature at all pH levels, and increased with pH at all temperature regimes. Polygalacturonase activity decreased with increasing ethanol. Color X mannanase activity increased with temperatures between 15 and 40 °C, and decreased with increased pH between 3.0 and 5.0. Response of mannanase to ethanol was cubic with a sharp decrease between 8 and 10% ethanol. Protease activity increased linearly with temperatures between 20 and 40 °C. These data suggest that the PGU, mannanase and protease components in these enzyme products provide sufficient activities within the ranges of pH, temperature, and ethanol common during the initial stages of red wine fermentations, although low must temperatures (<20 °C and presence of ethanol would likely lead to sub-optimal enzyme activities.

  1. Hydrolytic and ligninolytic enzyme activities in the Pb contaminated soil inoculated with litter-decomposing fungi.

    Science.gov (United States)

    Kähkönen, Mika A; Lankinen, Pauliina; Hatakka, Annele

    2008-06-01

    The impact of Pb contamination was tested to five hydrolytic (beta-glucosidase, beta-xylosidase, beta-cellobiosidase, alpha-glucosidase and sulphatase) and two ligninolytic (manganese peroxidase, MnP and laccase) enzyme activities in the humus layer in the forest soil. The ability of eight selected litter-degrading fungi to grow and produce extracellular enzymes in the heavily Pb (40 g Pb of kg ww soil(-1)) contaminated and non-contaminated soil in the non-sterile conditions was also studied. The Pb content in the test soil was close to that of the shooting range at Hälvälä (37 g Pb of kg ww soil(-1)) in Southern Finland. The fungi were Agaricus bisporus, Agrocybe praecox, Gymnopus peronatus, Gymnopilus sapineus, Mycena galericulata, Gymnopilus luteofolius, Stropharia aeruginosa and Stropharia rugosoannulata. The Pb contamination (40 g Pb of kg ww soil(-1)) was deleterious to all five studied hydrolytic enzyme activities after five weeks of incubation. All five hydrolytic enzyme activities were significantly higher in the soil than in the extract of the soil indicating that a considerable part of enzymes were particle bound in the soils. Hydrolytic enzyme activities were higher in the non-contaminated soil than in the Pb contaminated soil. Fungal inocula increased the hydrolytic enzyme activities beta-cellobiosidase and beta-glucosidase in non-contaminated soils. All five hydrolytic enzyme activities were similar with fungi and without fungi in the Pb contaminated soil. This was in line that Pb contamination (40 g Pb of kg ww soil(-1)) depressed the growth of all fungi compared to those grown without Pb in the soil. Laccase and MnP activities were low in both Pb contaminated and non-contaminated soil cultures. MnP activities were higher in soil cultures containing Pb than without Pb. Our results showed that Pb in the shooting ranges decreased fungal growth and microbial functioning in the soil.

  2. Quantitative enzyme activity determination with zeptomole sensitivity by microfluidic gradient-gel zymography.

    Science.gov (United States)

    Hughes, Alex J; Herr, Amy E

    2010-05-01

    We describe a sensitive zymography technique that utilizes an automated microfluidic platform to report enzyme molecular weight, amount, and activity (including k(cat) and K(m)) from dilute protein mixtures. Calf intestinal alkaline phosphatase (CIP) is examined in detail as a model enzyme system, and the method is also demonstrated for horseradish peroxidase (HRP). The 40 min assay has a detection limit of 5 zmol ( approximately 3 000 molecules) of CIP. Two-step pore-limit electrophoresis with enzyme assay (PLENZ) is conducted in a single, straight microchannel housing a polyacrylamide (PA) pore-size gradient gel. In the first step, pore limit electrophoresis (PLE) sizes and pseudoimmobilizes resolved proteins. In the second step, electrophoresis transports both charged and neutral substrates into the PLE channel to the entrapped proteins. Arrival of substrate at the resolved enzyme band generates fluorescent product that reveals enzyme molecular weight against a fluorescent protein ladder. Additionally, the PLENZ zymography assay reports the kinetic properties of CIP in a fully quantitative manner. In contrast to covalent enzyme immobilization, physical pseudoimmobilization of CIP in the PA gel does not significantly reduce its maximum substrate turnover rate. However, an 11-fold increase in the Michaelis constant (over the free solution value) is observed, consistent with diffusional limitations on substrate access to the enzyme active site. PLENZ offers a robust platform for rapid and multiplexed functional analysis of heterogeneous protein samples in drug discovery, clinical diagnostics, and biocatalyst engineering.

  3. High-Throughput Analysis of Enzyme Activities

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Guoxin [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    High-throughput screening (HTS) techniques have been applied to many research fields nowadays. Robot microarray printing technique and automation microtiter handling technique allows HTS performing in both heterogeneous and homogeneous formats, with minimal sample required for each assay element. In this dissertation, new HTS techniques for enzyme activity analysis were developed. First, patterns of immobilized enzyme on nylon screen were detected by multiplexed capillary system. The imaging resolution is limited by the outer diameter of the capillaries. In order to get finer images, capillaries with smaller outer diameters can be used to form the imaging probe. Application of capillary electrophoresis allows separation of the product from the substrate in the reaction mixture, so that the product doesn't have to have different optical properties with the substrate. UV absorption detection allows almost universal detection for organic molecules. Thus, no modifications of either the substrate or the product molecules are necessary. This technique has the potential to be used in screening of local distribution variations of specific bio-molecules in a tissue or in screening of multiple immobilized catalysts. Another high-throughput screening technique is developed by directly monitoring the light intensity of the immobilized-catalyst surface using a scientific charge-coupled device (CCD). Briefly, the surface of enzyme microarray is focused onto a scientific CCD using an objective lens. By carefully choosing the detection wavelength, generation of product on an enzyme spot can be seen by the CCD. Analyzing the light intensity change over time on an enzyme spot can give information of reaction rate. The same microarray can be used for many times. Thus, high-throughput kinetic studies of hundreds of catalytic reactions are made possible. At last, we studied the fluorescence emission spectra of ADP and obtained the detection limits for ADP under three different

  4. Effect of Cereal Type and Enzyme Addition on Performance, Pancreatic Enzyme Activity, Intestinal Microflora and Gut Morphology of Broilers

    Directory of Open Access Journals (Sweden)

    Kalantar M

    2016-06-01

    Full Text Available The effects of grain and carbohydrase enzyme supplementation were investigated on digestive physiology of chickens. A total of 625 one-day-old chicks (Ross 308 were randomly assigned to five treatments in a completely randomized design. Treatments included two different types of grains (wheat, and barley with or without a multi-carbohydrase supplement. A corn-based diet was also considered to serve as a control. Feeding barley-based diet with multi-carbohydrase led to higher feed intake (P < 0.01 than those fed corn- and wheat-based diets. Birds fed on barley and wheat diets had lower weight gain despite a higher feed conversion ratio (P < 0.01. Total count and number of different type of bacteria including Gram-negative, E. coli, and Clostridia increased after feeding wheat and barley but the number of Lactobacilli and Bifidobacteria decreased (P < 0.01. Feeding barley and wheat diets reduced villus height in different parts of the small intestine when compared to those fed on a corn diet. However, enzyme supplementation of barley and wheat diets improved weight gain and feed conversion ratio and resulted in reduced number of E. coli and Clostridia and increased number of Lactobacilli and Bifidobacteria, and also restored the negative effects on intestinal villi height (P < 0.01. The activities of pancreatic α-amylase and lipase were (P < 0.01 increased in chickens fed wheat and barley diets when compared to the control fed on a corn diet. Enzyme supplementation reduced the activities of pancreatic α-amylase and lipase (P < 0.01. In conclusion, various dietary non-starch polysaccharides without enzyme supplementation have an adverse effect on digesta viscosity, ileal microflora, villi morphology, and pancreatic enzyme activity.

  5. Increased activities of mitochondrial enzymes in white adipose tissue in trained rats

    DEFF Research Database (Denmark)

    Stallknecht, B; Vinten, J; Ploug, T

    1991-01-01

    of 8-12 rats were swim trained for 10 wk or served as either sedentary, sham swim-trained, or cold-stressed controls. White adipose tissue was removed, and the activities of the respiratory chain enzyme cytochrome-c oxidase (CCO) and of the enzyme malate dehydrogenase (MDH), which participates...... 0.05). In female rats the CCO activity expressed per milligram protein was increased 4.5-fold in the trained compared with the sedentary control rats (P less than 0.01). Neither cold stress nor sham swim training increased CCO or MDH activities in white adipose tissue (P greater than 0...

  6. Systems-Biology Approaches to Discover Anti-Viral Effectors of the Human Innate Immune Response

    Directory of Open Access Journals (Sweden)

    Andreas F.R. Sommer

    2011-07-01

    Full Text Available Virus infections elicit an immediate innate response involving antiviral factors. The activities of some of these factors are, in turn, blocked by viral countermeasures. The ensuing battle between the host and the viruses is crucial for determining whether the virus establishes a foothold and/or induces adaptive immune responses. A comprehensive systems-level understanding of the repertoire of anti-viral effectors in the context of these immediate virus-host responses would provide significant advantages in devising novel strategies to interfere with the initial establishment of infections. Recent efforts to identify cellular factors in a comprehensive and unbiased manner, using genome-wide siRNA screens and other systems biology “omics” methodologies, have revealed several potential anti-viral effectors for viruses like Human immunodeficiency virus type 1 (HIV-1, Hepatitis C virus (HCV, West Nile virus (WNV, and influenza virus. This review describes the discovery of novel viral restriction factors and discusses how the integration of different methods in systems biology can be used to more comprehensively identify the intimate interactions of viruses and the cellular innate resistance.

  7. Properties of latent and thiol-activated rat hepatic 3-hydroxy-3-methylglutaryl-coenzyme A reductase and regulation of enzyme activity.

    Science.gov (United States)

    Dotan, I; Shechter, I

    1983-10-15

    The effect of the thiols glutathione (GSH), dithiothreitol (DTT), and dithioerythritol (DTE) on the conversion of an inactive, latent form (El) of rat liver 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase, EC 1.1.1.34) to a catalyticaly active form (Ea) is examined. Latent hepatic microsomal HMG-CoA reductase is activated to a similar degree of activation by DTT and DTE and to a lower extent by GSH. All three thiols affect both Km and Vmax values of the enzyme toward HMG-CoA and NADPH. Studies of the effect of DTT on the affinity binding of HMG-CoA reductase to agarose-hexane-HMG-CoA (AG-HMG-CoA) resin shows that thiols are necessary for the binding of the enzyme to the resin. Removal of DTT from AG-HMG-CoA-bound soluble Ea (active enzyme) does not cause dissociation of the enzyme from the resin at low salt concentrations. Substitution of DTT by NADPH does not promote binding of soluble El (latent enzyme) to AG-HMG-CoA. The enzymatic activity of Ea in the presence of DTT and GSH indicates that these thiols compete for the same binding site on the enzyme. Diethylene glycol disulfide (ESSE) and glutathione disulfide (GSSG) inhibit the activity of Ea. ESSE is more effective for the inhibition of Ea than GSSG, causing a higher degree of maximal inhibition and affecting the enzymatic activity at lower concentrations. A method is described for the rapid conversion of soluble purified Ea to El using gel-filtration chromatography on Bio-Gel P-4 columns. These combined results point to the importance of the thiol/disulfide ratio for the modulation of hepatic HMG-CoA reductase activity.

  8. Virtual Biochemistry – pH effect on enzyme activity

    Directory of Open Access Journals (Sweden)

    D.N. Heidrich

    2011-04-01

    Full Text Available Protocols of laboratory experiments, followed by teacher's explanation, not always clearly translate to the student the dynamics to beadopted for the implementation of the proposed practice. One of these cases is related to the study of the effect of pH on enzyme activity. For better help the understanding of the technical procedure, a hypermedia was built based on a protocol adopted at the Department of Biochemistry, UFSC. The hypermedia shows how theeffect of variations in pH can be observed  in vitro. Taking as example salivary amylase and the consumption of starch (substrate by means of iodine staining, a set of pH buffers was tested to identify the best pH for this enzyme  activity. This hypermedia as introductory tool for such practice was tested on aNutrition course classroom. Students agree that the hypermedia provided a better understanding of the proposed activities. Teachers also notice a smallerreagents consumption and reduction of the time spent by the students in the achievement of the experiment.

  9. Antiviral Ability of Kalanchoe gracilis Leaf Extract against Enterovirus 71 and Coxsackievirus A16

    Directory of Open Access Journals (Sweden)

    Ching-Ying Wang

    2012-01-01

    Full Text Available Pandemic infection or reemergence of Enterovirus 71 (EV71 and coxsackievirus A16 (CVA16 occurs in tropical and subtropical regions, being associated with hand-foot-and-mouth disease, herpangina, aseptic meningitis, brain stem encephalitis, pulmonary edema, and paralysis. However, effective therapeutic drugs against EV71 and CVA16 are rare. Kalanchoe gracilis (L. DC is used for the treatment of injuries, pain, and inflammation. This study investigated antiviral effects of K. gracilis leaf extract on EV71 and CVA16 replications. HPLC analysis with a C-18 reverse phase column showed fingerprint profiles of K. gracilis leaf extract had 15 chromatographic peaks. UV/vis absorption spectra revealed peaks 5, 12, and 15 as ferulic acid, quercetin, and kaempferol, respectively. K. gracilis leaf extract showed little cytotoxicity, but exhibited concentration-dependent antiviral activities including cytopathic effect, plaque, and virus yield reductions. K. gracilis leaf extract was shown to be more potent in antiviral activity than ferulic acid, quercetin, and kaempferol, significantly inhibiting in vitro replication of EV71 (IC50=35.88 μg/mL and CVA16 (IC50=42.91 μg/mL. Moreover, K. gracilis leaf extract is a safe antienteroviral agent with the inactivation of viral 2A protease and reduction of IL-6 and RANTES expressions.

  10. Antiviral Ability of Kalanchoe gracilis Leaf Extract against Enterovirus 71 and Coxsackievirus A16

    Science.gov (United States)

    Wang, Ching-Ying; Huang, Shun-Chueh; Zhang, Yongjun; Lai, Zhen-Rung; Kung, Szu-Hao; Chang, Yuan-Shiun; Lin, Cheng-Wen

    2012-01-01

    Pandemic infection or reemergence of Enterovirus 71 (EV71) and coxsackievirus A16 (CVA16) occurs in tropical and subtropical regions, being associated with hand-foot-and-mouth disease, herpangina, aseptic meningitis, brain stem encephalitis, pulmonary edema, and paralysis. However, effective therapeutic drugs against EV71 and CVA16 are rare. Kalanchoe gracilis (L.) DC is used for the treatment of injuries, pain, and inflammation. This study investigated antiviral effects of K. gracilis leaf extract on EV71 and CVA16 replications. HPLC analysis with a C-18 reverse phase column showed fingerprint profiles of K. gracilis leaf extract had 15 chromatographic peaks. UV/vis absorption spectra revealed peaks 5, 12, and 15 as ferulic acid, quercetin, and kaempferol, respectively. K. gracilis leaf extract showed little cytotoxicity, but exhibited concentration-dependent antiviral activities including cytopathic effect, plaque, and virus yield reductions. K. gracilis leaf extract was shown to be more potent in antiviral activity than ferulic acid, quercetin, and kaempferol, significantly inhibiting in vitro replication of EV71 (IC50 = 35.88 μg/mL) and CVA16 (IC50 = 42.91 μg/mL). Moreover, K. gracilis leaf extract is a safe antienteroviral agent with the inactivation of viral 2A protease and reduction of IL-6 and RANTES expressions. PMID:22666293

  11. AGO/RISC-mediated antiviral RNA silencing in a plant in vitro system.

    Science.gov (United States)

    Schuck, Jana; Gursinsky, Torsten; Pantaleo, Vitantonio; Burgyán, Jozsef; Behrens, Sven-Erik

    2013-05-01

    AGO/RISC-mediated antiviral RNA silencing, an important component of the plant's immune response against RNA virus infections, was recapitulated in vitro. Cytoplasmic extracts of tobacco protoplasts were applied that supported Tombusvirus RNA replication, as well as the formation of RNA-induced silencing complexes (RISC) that could be functionally reconstituted with various plant ARGONAUTE (AGO) proteins. For example, when RISC containing AGO1, 2, 3 or 5 were programmed with exogenous siRNAs that specifically targeted the viral RNA, endonucleolytic cleavages occurred and viral replication was inhibited. Antiviral RNA silencing was disabled by the viral silencing suppressor p19 when this was present early during RISC formation. Notably, with replicating viral RNA, only (+)RNA molecules were accessible to RISC, whereas (-)RNA replication intermediates were not. The vulnerability of viral RNAs to RISC activity also depended on the RNA structure of the target sequence. This was most evident when we characterized viral siRNAs (vsiRNAs) that were particularly effective in silencing with AGO1- or AGO2/RISC. These vsiRNAs targeted similar sites, suggesting that accessible parts of the viral (+)RNA may be collectively attacked by different AGO/RISC. The in vitro system was, hence, established as a valuable tool to define and characterize individual molecular determinants of antiviral RNA silencing.

  12. A petunia ethylene-responsive element binding factor, PhERF2, plays an important role in antiviral RNA silencing.

    Science.gov (United States)

    Sun, Daoyang; Nandety, Raja Sekhar; Zhang, Yanlong; Reid, Michael S; Niu, Lixin; Jiang, Cai-Zhong

    2016-05-01

    Virus-induced RNA silencing is involved in plant antiviral defense and requires key enzyme components, including RNA-dependent RNA polymerases (RDRs), Dicer-like RNase III enzymes (DCLs), and Argonaute proteins (AGOs). However, the transcriptional regulation of these critical components is largely unknown. In petunia (Petunia hybrida), an ethylene-responsive element binding factor, PhERF2, is induced by Tobacco rattle virus (TRV) infection. Inclusion of a PhERF2 fragment in a TRV silencing construct containing reporter fragments of phytoene desaturase (PDS) or chalcone synthase (CHS) substantially impaired silencing efficiency of both the PDS and CHS reporters. Silencing was also impaired in PhERF2- RNAi lines, where TRV-PhPDS infection did not show the expected silencing phenotype (photobleaching). In contrast, photobleaching in response to infiltration with the TRV-PhPDS construct was enhanced in plants overexpressing PhERF2 Transcript abundance of the RNA silencing-related genes RDR2, RDR6, DCL2, and AGO2 was lower in PhERF2-silenced plants but higher in PhERF2-overexpressing plants. Moreover, PhERF2-silenced lines showed higher susceptibility to Cucumber mosaic virus (CMV) than wild-type (WT) plants, while plants overexpressing PhERF2 exhibited increased resistance. Interestingly, growth and development of PhERF2-RNAi lines were substantially slower, whereas the overexpressing lines were more vigorous than the controls. Taken together, our results indicate that PhERF2 functions as a positive regulator in antiviral RNA silencing. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  13. Predicting novel substrates for enzymes with minimal experimental effort with active learning.

    Science.gov (United States)

    Pertusi, Dante A; Moura, Matthew E; Jeffryes, James G; Prabhu, Siddhant; Walters Biggs, Bradley; Tyo, Keith E J

    2017-11-01

    Enzymatic substrate promiscuity is more ubiquitous than previously thought, with significant consequences for understanding metabolism and its application to biocatalysis. This realization has given rise to the need for efficient characterization of enzyme promiscuity. Enzyme promiscuity is currently characterized with a limited number of human-selected compounds that may not be representative of the enzyme's versatility. While testing large numbers of compounds may be impractical, computational approaches can exploit existing data to determine the most informative substrates to test next, thereby more thoroughly exploring an enzyme's versatility. To demonstrate this, we used existing studies and tested compounds for four different enzymes, developed support vector machine (SVM) models using these datasets, and selected additional compounds for experiments using an active learning approach. SVMs trained on a chemically diverse set of compounds were discovered to achieve maximum accuracies of ~80% using ~33% fewer compounds than datasets based on all compounds tested in existing studies. Active learning-selected compounds for testing resolved apparent conflicts in the existing training data, while adding diversity to the dataset. The application of these algorithms to wide arrays of metabolic enzymes would result in a library of SVMs that can predict high-probability promiscuous enzymatic reactions and could prove a valuable resource for the design of novel metabolic pathways. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  14. Predicting novel substrates for enzymes with minimal experimental effort with active learning

    Energy Technology Data Exchange (ETDEWEB)

    Pertusi, Dante A.; Moura, Matthew E.; Jeffryes, James G.; Prabhu, Siddhant; Walters Biggs, Bradley; Tyo, Keith E. J.

    2017-11-01

    Enzymatic substrate promiscuity is more ubiquitous than previously thought, with significant consequences for understanding metabolism and its application to biocatalysis. This realization has given rise to the need for efficient characterization of enzyme promiscuity. Enzyme promiscuity is currently characterized with a limited number of human-selected compounds that may not be representative of the enzyme's versatility. While testing large numbers of compounds may be impractical, computational approaches can exploit existing data to determine the most informative substrates to test next, thereby more thoroughly exploring an enzyme's versatility. To demonstrate this, we used existing studies and tested compounds for four different enzymes, developed support vector machine (SVM) models using these datasets, and selected additional compounds for experiments using an active learning approach. SVMs trained on a chemically diverse set of compounds were discovered to achieve maximum accuracies of similar to 80% using similar to 33% fewer compounds than datasets based on all compounds tested in existing studies. Active learning-selected compounds for testing resolved apparent conflicts in the existing training data, while adding diversity to the dataset. The application of these algorithms to wide arrays of metabolic enzymes would result in a library of SVMs that can predict high-probability promiscuous enzymatic reactions and could prove a valuable resource for the design of novel metabolic pathways.

  15. Antiviral therapy for prevention of hepatocellular carcinoma in chronic hepatitis C

    DEFF Research Database (Denmark)

    Kimer, Nina; Dahl, Emilie Kristine; Gluud, Lise Lotte

    2012-01-01

    To determine whether antiviral therapy reduces the risk of developing hepatocellular carcinoma (HCC) in chronic hepatitis C.......To determine whether antiviral therapy reduces the risk of developing hepatocellular carcinoma (HCC) in chronic hepatitis C....

  16. Antiviral agents for infectious mononucleosis (glandular fever).

    Science.gov (United States)

    De Paor, Muireann; O'Brien, Kirsty; Fahey, Tom; Smith, Susan M

    2016-12-08

    Infectious mononucleosis (IM) is a clinical syndrome, usually caused by the Epstein Barr virus (EPV), characterised by lymphadenopathy, fever and sore throat. Most cases of symptomatic IM occur in older teenagers or young adults. Usually IM is a benign self-limiting illness and requires only symptomatic treatment. However, occasionally the disease course can be complicated or prolonged and lead to decreased productivity in terms of school or work. Antiviral medications have been used to treat IM, but the use of antivirals for IM is controversial. They may be effective by preventing viral replication which helps to keep the virus inactive. However, there are no guidelines for antivirals in IM. To assess the effects of antiviral therapy for infectious mononucleosis (IM). We searched the Cochrane Central Register of Controlled Trials (CENTRAL, Issue 3, March 2016), which contains the Cochrane Acute Respiratory Infections (ARI) Group's Specialised Register, MEDLINE (1946 to 15 April 2016), Embase (1974 to 15 April 2016), CINAHL (1981 to 15 April 2016), LILACS (1982 to 15 April 2016) and Web of Science (1955 to 15 April 2016). We searched the World Health Organization (WHO) International Clinical Trials Registry Platform and ClinicalTrials.gov for completed and ongoing trials. We included randomised controlled trials (RCTs) comparing antivirals versus placebo or no treatment in IM. We included trials of immunocompetent participants of any age or sex with clinical and laboratory-confirmed diagnosis of IM, who had symptoms for up to 14 days. Our primary outcomes were time to clinical recovery and adverse events and side effects of medication. Secondary outcomes included duration of abnormal clinical examination, complications, viral shedding, health-related quality of life, days missing from school or work and economic outcomes. Two review authors independently assessed studies for inclusion, assessed the included studies' risk of bias and extracted data using a

  17. Divergent Requirement for a DNA Repair Enzyme during Enterovirus Infections.

    Science.gov (United States)

    Maciejewski, Sonia; Nguyen, Joseph H C; Gómez-Herreros, Fernando; Cortés-Ledesma, Felipe; Caldecott, Keith W; Semler, Bert L

    2015-12-29

    Viruses of the Enterovirus genus of picornaviruses, including poliovirus, coxsackievirus B3 (CVB3), and human rhinovirus, commandeer the functions of host cell proteins to aid in the replication of their small viral genomic RNAs during infection. One of these host proteins is a cellular DNA repair enzyme known as 5' tyrosyl-DNA phosphodiesterase 2 (TDP2). TDP2 was previously demonstrated to mediate the cleavage of a unique covalent linkage between a viral protein (VPg) and the 5' end of picornavirus RNAs. Although VPg is absent from actively translating poliovirus mRNAs, the removal of VPg is not required for the in vitro translation and replication of the RNA. However, TDP2 appears to be excluded from replication and encapsidation sites during peak times of poliovirus infection of HeLa cells, suggesting a role for TDP2 during the viral replication cycle. Using a mouse embryonic fibroblast cell line lacking TDP2, we found that TDP2 is differentially required among enteroviruses. Our single-cycle viral growth analysis shows that CVB3 replication has a greater dependency on TDP2 than does poliovirus or human rhinovirus replication. During infection, CVB3 protein accumulation is undetectable (by Western blot analysis) in the absence of TDP2, whereas poliovirus protein accumulation is reduced but still detectable. Using an infectious CVB3 RNA with a reporter, CVB3 RNA could still be replicated in the absence of TDP2 following transfection, albeit at reduced levels. Overall, these results indicate that TDP2 potentiates viral replication during enterovirus infections of cultured cells, making TDP2 a potential target for antiviral development for picornavirus infections. Picornaviruses are one of the most prevalent groups of viruses that infect humans and livestock worldwide. These viruses include the human pathogens belonging to the Enterovirus genus, such as poliovirus, coxsackievirus B3 (CVB3), and human rhinovirus. Diseases caused by enteroviruses pose a major problem

  18. Methodological Considerations and Comparisons of Measurement Results for Extracellular Proteolytic Enzyme Activities in Seawater

    Directory of Open Access Journals (Sweden)

    Yumiko Obayashi

    2017-10-01

    Full Text Available Microbial extracellular hydrolytic enzymes that degrade organic matter in aquatic ecosystems play key roles in the biogeochemical carbon cycle. To provide linkages between hydrolytic enzyme activities and genomic or metabolomic studies in aquatic environments, reliable measurements are required for many samples at one time. Extracellular proteases are one of the most important classes of enzymes in aquatic microbial ecosystems, and protease activities in seawater are commonly measured using fluorogenic model substrates. Here, we examined several concerns for measurements of extracellular protease activities (aminopeptidases, and trypsin-type, and chymotrypsin-type activities in seawater. Using a fluorometric microplate reader with low protein binding, 96-well microplates produced reliable enzymatic activity readings, while use of regular polystyrene microplates produced readings that showed significant underestimation, especially for trypsin-type proteases. From the results of kinetic experiments, this underestimation was thought to be attributable to the adsorption of both enzymes and substrates onto the microplate. We also examined solvent type and concentration in the working solution of oligopeptide-analog fluorogenic substrates using dimethyl sulfoxide (DMSO and 2-methoxyethanol (MTXE. The results showed that both 2% (final concentration of solvent in the mixture of seawater sample and substrate working solution DMSO and 2% MTXE provide similarly reliable data for most of the tested substrates, except for some substrates which did not dissolve completely in these assay conditions. Sample containers are also important to maintain the level of enzyme activity in natural seawater samples. In a small polypropylene containers (e.g., standard 50-mL centrifugal tube, protease activities in seawater sample rapidly decreased, and it caused underestimation of natural activities, especially for trypsin-type and chymotrypsin-type proteases. In

  19. IFITM3 requires an amphipathic helix for antiviral activity.

    Science.gov (United States)

    Chesarino, Nicholas M; Compton, Alex A; McMichael, Temet M; Kenney, Adam D; Zhang, Lizhi; Soewarna, Victoria; Davis, Matthew; Schwartz, Olivier; Yount, Jacob S

    2017-10-01

    Interferon-induced transmembrane protein 3 (IFITM3) is a cellular factor that blocks virus fusion with cell membranes. IFITM3 has been suggested to alter membrane curvature and fluidity, though its exact mechanism of action is unclear. Using a bioinformatic approach, we predict IFITM3 secondary structures and identify a highly conserved, short amphipathic helix within a hydrophobic region of IFITM3 previously thought to be a transmembrane domain. Consistent with the known ability of amphipathic helices to alter membrane properties, we show that this helix and its amphipathicity are required for the IFITM3-dependent inhibition of influenza virus, Zika virus, vesicular stomatitis virus, Ebola virus, and human immunodeficiency virus infections. The homologous amphipathic helix within IFITM1 is also required for the inhibition of infection, indicating that IFITM proteins possess a conserved mechanism of antiviral action. We further demonstrate that the amphipathic helix of IFITM3 is required to block influenza virus hemagglutinin-mediated membrane fusion. Overall, our results provide evidence that IFITM proteins utilize an amphipathic helix for inhibiting virus fusion. © 2017 The Authors.

  20. Induction of antioxidant enzyme activity and lipid peroxidation level in ion-beam-bombarded rice seeds

    Energy Technology Data Exchange (ETDEWEB)

    Semsang, Nuananong, E-mail: nsemsang@gmail.com [Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, LiangDeng [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2013-07-15

    Highlights: ► Ion beam bombarded rice seeds in vacuum. ► Studied seed survival from the ion bombardment. ► Determined various antioxidant enzyme activities and lipid peroxidation level. ► Discussed vacuum, ion species and ion energy effects. ► Attributed the changes to free radical formation due to ion bombardment. -- Abstract: Low-energy ion beam bombardment has been used to mutate a wide variety of plant species. To explore the indirect effects of low-energy ion beam on biological damage due to the free radical production in plant cells, the increase in antioxidant enzyme activities and lipid peroxidation level was investigated in ion-bombarded rice seeds. Local rice seeds were bombarded with nitrogen or argon ion beams at energies of 29–60 keV and ion fluences of 1 × 10{sup 16} ions cm{sup −2}. The activities of the antioxidant enzymes; superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione S-transferase (GST) and lipid peroxidation level were assayed in the germinated rice seeds after ion bombardment. The results showed most of the enzyme activities and lipid peroxidation levels in both the argon and nitrogen bombarded samples were higher than those in the natural control. N-ion bombardment could induce higher levels of antioxidant enzyme activities in the rice samples than the Ar-ion bombardment. Additional effects due to the vacuum condition were found to affect activities of some antioxidant enzymes and lipid peroxidation level. This study demonstrates that ion beam bombardment and vacuum condition could induce the antioxidant enzyme activity and lipid peroxidation level which might be due to free radical production in the bombarded rice seeds.