International Nuclear Information System (INIS)
In the model of hidden sector of the Universe, proposed and commented recently, a new non-gauge mediating field transforming as an antisymmetric tensor (of dimension one) plays a crucial role. If it gets definite parity, say, -, it can be split into two three-dimensional fields of spin 1 and parity - and +, respectively, much like the electromagnetic field (of dimension two) is split into its electric and magnetic parts. Then, the parity is preserved by a new weak interaction in the hidden sector. A priori, the parts of the non-gauge mediating field may be either independent or dependent. We discuss a simple natural constraint that may relate them to each other in a relativistically covariant way, reducing their independent polarization degrees of freedom to three. In Appendix, we describe another option, where the mediating field (of dimension one) is gauged by a vector field (of dimension zero). (author)
Theory of Antisymmetric Tensor Fields
Dvoeglazov, V V
2003-01-01
It has long been claimed that the antisymmetric tensor field of the second rank is pure longitudinal after quantization. In my opinion, such a situation is quite unacceptable. I repeat the well-known procedure of the derivation of the set of Proca equations. It is shown that it can be written in various forms. Furthermore, on the basis of the Lagrangian formalism I calculate dynamical invariants (including the Pauli-Lubanski vector of relativistic spin for this field). Even at the classical level the Pauli-Lubanski vector can be equal to zero after applications of well-known constraints. The importance of the normalization is pointed out for the problem of the description of quantized fields of maximal spin 1. The correct quantization procedure permits us to propose a solution of this puzzle in the modern field theory. Finally, the discussion of the connection of the Ogievetskii-Polubarinov-Kalb-Ramond field and the electrodynamic gauge is presented.
Gravitational interaction of fermion antisymmetric tensor fields
International Nuclear Information System (INIS)
The coupling is investigated of classical and quantum antisymmetric tensor fields describing fermions with the gauge gravitational field. It is shown that within the framework of the classical Einstein-Cartan theory the new generalized nonlinear fermion theory can be formulated, which turns out to be the correct microscopic description of the Weyssenhoff spinning fluid. The one-loop gravitational counterterms and the conformal stress tensor and the axial vector current anomalies are obtained. The differences between the antisymmetric tensor fermions and the usual Dirac spinor fields are discussed. (author)
Weinberg's Approach and Antisymmetric Tensor Fields
Dvoeglazov, V V
2002-01-01
We extend the previous series of articles \\cite{HPA} devoted to finding mappings between the Weinberg-Tucker-Hammer formalism and antisymmetric tensor fields. Now we take into account solutions of different parities of the Weinberg-like equations. Thus, the Proca, Duffin-Kemmer and Bargmann-Wigner formalisms are generalized.
Phases of antisymmetric tensor field theories
Quevedo, Fernando; Quevedo, Fernando; Trugenberger, Carlo
1997-01-01
We study the different phases of field theories of compact antisymmetric tensors of rank h-1 in arbitrary space-time dimensions D=d+1. Starting in a `Coulomb' phase, topological defects of dimension d-h-1 ((d-h-1)-branes) may condense leading to a generalized `confinement' phase. If the dual theory is also compact the model may also have a third, generalized `Higgs' phase, driven by the condensation of the dual (h-2)-branes. Developing on the work of Julia and Toulouse for ordered solid-state media, we obtain the low energy effective action for these phases. Each phase has two dual descriptions in terms of antisymmetric tensors of different ranks, which are massless for the Coulomb phase but massive for the Higgs and confinement phases. We illustrate our prescription in detail for compact QED in 4D. Compact QED and O(2) models in 3D, as well as a periodic scalar field in 2D (strings on a circle), are also discussed. In this last case we show how T-duality is maintained if one considers both worldsheet instant...
Relativistic particles with spin and antisymmetric tensor fields
International Nuclear Information System (INIS)
A study is made on antisymmetric tensor fields particularly on second order tensor field as far as his equivalence to other fields and quantization through the path integral are concerned. Also, a particle model is studied which has been recently proposed and reveals to be equivalent to antisymmetric tensor fields of any order. (L.C.J.A.)
Higher rank antisymmetric tensor fields in Klebanov-Strassler geometry
Das, Ashmita; SenGupta, Soumitra
2016-05-01
In string theory, higher rank antisymmetric tensor fields appear as massless excitations of closed strings. To date, there is no experimental support in favor of their existence. In a stringy framework, starting from a warped throatlike Klebanov-Strassler geometry, we show that all the massless higher rank antisymmetric tensor fields are heavily suppressed due to the background fluxes leading to their invisibility in our Universe.
Vortex String Dynamics in an External Antisymmetric Tensor Field
Lee, K; Shin, H J
1999-01-01
We study the Lund-Regge equation that governs the motion of strings in a constant background antisymmetric tensor field by using the duality between the Lund-Regge equation and the complex sine-Gordon equation. Similar to the cases of vortex filament configurations in fluid dynamics, we find various exact solitonic string configurations which are the analogue of the Kelvin wave, the Hasimoto soliton and the smoke ring. In particular, using the duality relation, we obtain a completely new type of configuration which corresponds to the breather of the complex sine-Gordon equation.
$SU(n)$ symmetry breaking by rank three and rank two antisymmetric tensor scalars
Adler, Stephen L
2015-01-01
We study $SU(n)$ symmetry breaking by rank three and rank two antisymmetric tensor fields. Using tensor analysis, we derive branching rules for the adjoint and antisymmetric tensor representations, and explain why for general $SU(n)$ one finds the same $U(1)$ generator mismatch that we noted earlier in special cases. We then compute the masses of the various scalar fields in the branching expansion, in terms of parameters of the general renormalizable potential for the antisymmetric tensor fields.
Anti-symmetric tensor matter fields and non-linear σ-model
International Nuclear Information System (INIS)
The equivalence between rank-2 anti-symmetric tensor fields, considered as gauge potentials, and torsionless non-linear σ-models suggests us to study the possibility of coupling tensorial matter with Yang-Mills fields, thorough the gauging of the isometries of the target space. We show that this coupling is actually possible; however the matter appears no longer as an elementary field, but rather as a composite one, expressed in terms of the bosonic degrees of freedom of the σ-model. A possible phenomenological application is presented that describes the interactions among vector mesons in terms of the geometrical properties of the target manifold. Also, spin-2 meson resonances may naturally be accommodated whenever the σ-model's target manifold is non-symmetric. (author)
Adler, Stephen L.
2016-08-01
We study SU(8) symmetry breaking induced by minimizing the Coleman–Weinberg effective potential for a third rank antisymmetric tensor scalar field in the 56 representation. Instead of breaking {SU}(8)\\supset {SU}(3)× {SU}(5), we find that the stable minimum of the potential breaks the original symmetry according to {SU}(8)\\supset {SU}(3)× {Sp}(4). Using both numerical and analytical methods, we present results for the potential minimum, the corresponding Goldstone boson structure and BEH mechanism, and the group-theoretic classification of the residual states after symmetry breaking.
Adler, Stephen L
2016-01-01
We study $SU(8)$ symmetry breaking induced by minimizing the Coleman-Weinberg effective potential for a third rank antisymmetric tensor scalar field in the 56 representation. Instead of breaking $SU(8) \\supset SU(3) \\times SU(5)$, we find that the stable minimum of the potential breaks the original symmetry according to $SU(8) \\supset SU(3) \\times Sp(4)$. Using both numerical and analytical methods, we present results for the potential minimum, the corresponding Goldstone boson structure and BEH mechanism, and the group-theoretic classification of the residual states after symmetry breaking.
International Nuclear Information System (INIS)
The effective potential of components of the curl of an antisymmetric tensor coupled to gravity in D dimensions is evaluated in a 1/D expansion. For large D, only highest-rank propagators contribute to leading order, while multiloop diagrams are suppressed by phase-space factors. Divergences are regulated by a cut-off LAMBDA, that we interpret as the mass-breaking scale of a larger theory that is finite. As an application we consider the bosonic sector of D=11, N=1 supergravity. If the full theory is finite, then LAMBDA is msub(SUSY): the scale below which the fermion sector decouples. For m9sub(SUSY)>1/akappa2, (kappa2: the D=11 Newton's coupling, a approx.= O(1)) the 11-dimensional symmetric vacuum is unstable under compactification. For m9sub(SUSY)2, it is metastable. To leading order in 1/D, all gauge dependence cancels identically, while ghosts as well as the graviton decouple. (author)
Antisymmetric Tensor Fields, 4-Vector Fields, Indefinite Metrics and Normalization
Dvoeglazov, Valeri V
2007-01-01
On the basis of our recent modifications of the Dirac formalism we generalize the Bargmann-Wigner formalism for higher spins to be compatible with other formalisms for bosons. Relations with dual electrodynamics, with the Ogievetskii-Polubarinov notoph and the Weinberg 2(2J+1) theory are found. Next, we introduce the dual analogues of the Riemann tensor and derive corresponding dynamical equations in the Minkowski space. Relations with the Marques-Spehler chiral gravity theory are discussed. The problem of indefinite metrics, particularly, in quantization of 4-vector fields is clarified.
Antisymmetric tensor Zp gauge symmetries in field theory and string theory
International Nuclear Information System (INIS)
We consider discrete gauge symmetries in D dimensions arising as remnants of broken continuous gauge symmetries carried by general antisymmetric tensor fields, rather than by standard 1-forms. The lagrangian for such a general Zp gauge theory can be described in terms of a r-form gauge field made massive by a (r−1)-form, or other dual realizations, that we also discuss. The theory contains charged topological defects of different dimensionalities, generalizing the familiar charged particles and strings in D=4. We describe realizations in string theory compactifications with torsion cycles, or with background field strength fluxes. We also provide examples of non-abelian discrete groups, for which the group elements are associated with charged objects of different dimensionality
Exact results and duality for Sp(2N) SUSY gauge theories with an antisymmetric tensor
International Nuclear Information System (INIS)
We study supersymmetric Sp(2N) gauge theories with matter in the antisymmetric tensor representation and F fundamentals. For F=6 we solve the theory exactly in terms of confined degrees of freedom and a superpotential. By adding mass terms we obtain the theories with F<6 which we find to exhibit a host of interesting non-perturbative phenomena: quantum-deformed moduli spaces with N constraints, instanton-induced superpotentials and non-equivalent disjoint branches of moduli spaces. We find a simple dual for F=8 and no superpotential. We show how the F=4 and F=2 theories can be modified to break supersymmetry spontaneously and point out that the Sp(6) theory with F=6 may be very interesting for model builders. (orig.)
Adler, Stephen L
2016-01-01
We continue our study of Coleman-Weinberg symmetry breaking induced by a third rank antisymmetric tensor scalar, in the context of the $SU(8)$ model [1] we proposed earlier. We discuss the mechanism for giving the spin $\\frac{3}{2}$ field a mass by the BEH mechanism, and analyze the remaining massless spin $\\frac{1}{2}$ fermions, the global chiral symmetries, and the running couplings after symmetry breaking. We note that the smallest gluon mass matrix eigenvalue has an eigenvector suggestive of $U(1)_{B-L}$, and conjecture that the theory runs to an infrared fixed point at which there is a massless gluon with 3 to -1 ratios in generator components. Assuming this, we discuss a mechanism for producing hierarchies, and for generating the standard model fermions as composites formed from the original $SU(8)$ model fermions, which play the role of "preons". Quarks can emerge 5 preon composites and leptons as 3 preon composites, with consequent stability of the proton against decay to a single lepton plus mesons.
Marino, Eduardo
The electron, discovered by Thomson by the end of the nineteenth century, was the first experimentally observed particle. The Weyl fermion, though theoretically predicted since a long time, was observed in a condensed matter environment in an experiment reported only a few weeks ago. Is there any linking thread connecting the first and the last observed fermion (quasi)particles? The answer is positive. By generalizing the method known as bosonization, the first time in its full complete form, for a spacetime with 3+1 dimensions, we are able to show that both electrons and Weyl fermions can be expressed in terms of the same boson field, namely the Kalb-Ramond anti-symmetric tensor gauge field. The bosonized form of the Weyl chiral currents lead to the angle-dependent magneto-conductance behavior observed in these systems.
Bosonization of Weyl Fermions and Free Electrons
Marino, E C
2015-01-01
The electron, discovered by Thomson by the end of the nineteenth century, was the first experimentally observed particle. The Weyl fermion, though theoretically predicted since a long time, was observed in a condensed matter environment in an experiment reported only a few weeks ago. Is there any linking thread connecting the first and the last observed fermion (quasi)particles? The answer is positive. By generalizing the method known as bosonization, the first time in its full complete form, for a spacetime with 3+1 dimensions, we are able to show that both electrons and Weyl fermions can be expressed in terms of the same boson field, namely the Kalb-Ramond anti-symmetric tensor gauge field. The bosonized form of the Weyl chiral currents lead to the angle-dependent magneto-conductance behavior observed in these systems.
Relatively heavy Higgs boson in more generic gauge mediation
International Nuclear Information System (INIS)
We discuss gauge mediation models where the doublet messengers and Higgs doublets are allowed to mix through a “charged” coupling. The charged coupling replaces messenger parity as a means of suppressing flavor changing neutral currents without introducing any unwanted CP violation. As a result of this mixing between the Higgs doublets and the messengers, relatively large A-terms are generated at the messenger scale. These large A-terms produce a distinct weak scale mass spectrum. Particularly, we show that the lightest Higgs boson mass is enhanced and can be as heavy as 125 GeV for a gluino mass as light as 2 TeV. We also show that the stops are heavier than that predicted by conventional gauge mediation models. It is also shown that these models have a peculiar slepton mass spectrum.
Generalized Dirichlet Normal Ordering in Open Bosonic Strings
Institute of Scientific and Technical Information of China (English)
CAO Zhen-Bin; DUAN Yi-Shi
2009-01-01
Generally, open string boundary conditions play a nontrivial role in string theory. For example, in the presence of an antisymmetric tensor background field, they will lead the spacetime coordinates noncommutative. In this paper, we mainly discuss how to build up a generalized Dirichlet normal ordered product of open bosonic string embedding operators that satisfies both the equations of motion and the generalized Dirichlet boundary conditions at the quantum level in the presence of an antisymmetric background field, as the generalized Neumann case has already been discussed in the literature. Further, we also give a brief cheek of the consistency of the theory under the newly introduced normal ordering.
Bosonic short-range entangled states beyond group cohomology classification
Xu, Cenke; You, Yi-Zhuang
2015-02-01
We explore and construct a class of bosonic short-range entangled (BSRE) states in all 4 k +2 spatial dimensions, which are higher dimensional generalizations of the well-known Kitaev's E8 state in 2 d [Ann. Phys. (N.Y.) 321, 2 (2006), 10.1016/j.aop.2005.10.005; http://online.kitp.ucsb.edu/online/topomat11/kitaev]. These BSRE states share the following properties: (1) their bulk is fully gapped and nondegenerate; (2) their (4 k +1 )d boundary is described by a "self-dual" rank-2 k antisymmetric tensor gauge field, and it is guaranteed to be gapless without assuming any symmetry; (3) their (4 k +1 )d boundary has intrinsic gravitational anomaly once coupled to the gravitational field; (4) their bulk is described by an effective Chern-Simons field theory with rank-(2 k +1 ) antisymmetric tensor fields, whose KI J matrix is identical to that of the E8 state in 2 d ; (5) the existence of these BSRE states leads to various bosonic symmetry protected topological (BSPT) states as their descendants in other dimensions; (6) these BSRE states can be constructed by confining fermionic degrees of freedom from eight copies of (4 k +2 )d SRE states with fermionic 2 k -branes ; (7) after compactifying the (4 k +2 )d BSRE state on a closed 4 k dimensional manifold, depending on the topology of the compact 4 k manifold, the system could reduce to nontrivial 2 d BSRE states.
1994-01-01
Bosonization is a useful technique for studying systems of interacting fermions in low dimensions. It has applications in both particle and condensed matter physics.This book contains reprints of papers on the method as used in these fields. The papers range from the classic work of Tomonaga in the 1950's on one-dimensional electron gases, through the discovery of fermionic solitons in the 1970's, to integrable systems and bosonization on Riemann surfaces. A four-chapter pedagogical introduction by the editor should make the book accessible to graduate students and experienced researchers alik
The 126 GeV Higgs boson mass and naturalness in (deflected) mirage mediation
Hiroyuki Abe; Junichiro Kawamura
2014-01-01
We study the mass of the lightest CP-even Higgs boson in the deflected mirage mediation that is a quite general framework of the mediation of supersymmetry breaking, incorporating the case where all of the modulus-, the anomaly- and the gauge-mediated contributions to the soft supersymmetry breaking parameters become sizable. We evaluate the degree of tuning the so-called mu parameter required for realizing a correct electroweak symmetry breaking and study how to accomplish both the observed ...
Superweak C.P. violation mediated by neutral Higgs bosons
International Nuclear Information System (INIS)
In the framework of the standard SU(2) tensorial product of U(1) model, it is shown that a triplet and a singlet of Higgs bosons give rise to the ΔI=1/2 rule and to superweak CP violation in the non-leptonic sector
The 126 GeV Higgs boson mass and naturalness in (deflected) mirage mediation
Abe, Hiroyuki; Kawamura, Junichiro
2014-07-01
We study the mass of the lightest CP-even Higgs boson in the deflected mirage mediation that is a quite general framework of the mediation of supersymmetry breaking, incorporating the case where all of the modulus-, the anomaly- and the gauge-mediated contributions to the soft supersymmetry breaking parameters become sizable. We evaluate the degree of tuning the so-called μ parameter required for realizing a correct electroweak symmetry breaking and study how to accomplish both the observed Higgs boson mass and the relaxed fine-tuning. We identify the parameter space favored from such a perspective and show the superparticle mass spectrum with some input parameters inside the indicated region. The results here would be useful when we aim to prove the communication between the visible and the hidden sectors in supergravity and superstring models based on the recent observations.
The 126 GeV Higgs boson mass and naturalness in (deflected) mirage mediation
Abe, Hiroyuki
2014-01-01
We study the mass of the lightest CP-even Higgs boson in the deflected mirage mediation that is a quite general framework of the mediation of supersymmetry breaking, incorporating the case where all of the modulus-, the anomaly- and the gauge-mediated contributions to the soft supersymmetry breaking parameters become sizable. We evaluate the degree of tuning the so-called mu parameter required for realizing a correct electroweak symmetry breaking and study how to accomplish both the observed Higgs boson mass and the relaxed fine-tuning. We identify the parameter space favored from such a perspective and show the superparticle mass spectrum with some input parameters inside the indicated region. The results here would be useful when we aim to prove the communication between the visible and the hidden sectors in supergravity and superstring models based on the recent observations.
The ATLAS collaboration
2016-01-01
The High Luminosity Large Hadron Collider is expected to be completed and operational in the second half of 2026, and will necessitate substantial upgrades to the ATLAS inner tracker detector. The impact of increased tracking coverage in the forward direction was investigated in terms of the separation of vector-boson fusion and gluon fusion-mediated Higgs-boson decays to four leptons in association with two jets. For an analysis dominated by statistical uncertainty, with vector-boson fusion production events treated as signal on top of gluon fusion background, the extension of tracking from pseudorapidity $|\\eta| < 2.7$ to $|\\eta| < 4.0$ improved the prospective vector-boson fusion discovery significance by 16%, while the relative uncertainty on the signal strength $\\Delta\\mu/\\mu$ was reduced by 6%.
Compton scattering off massive fundamental bosons of pure spin 1
Delgado-Acosta, E G; Napsuciale, M; Rodríguez, S
2013-01-01
Relativistic particles with spins $J>0$ are described by means of multicomponent wave functions which transform covariantly according to Lorentz-group representations that contain at rest the spin of interest. The symmetry group of space-time provides not one but an infinity of such representations which are equivalent for free particles but yield different electromagnetic couplings upon gauging; thus the challenge is to develop criteria which allow us to select those of them which relate to physically detectable particles. We here take the position that the unitarity of the Compton scattering cross sections in the ultrarelativistic limit, when predicted by a consistent method for a spin-$1$ description, could provide such a criterion. We analyze the properties of massive fundamental spin-$1$ bosons transforming as antisymmetric tensors of second rank, $(1,0)\\oplus(0,1)$. For this purpose, we employ the Poincar\\'e covariant projector method, which provides consistent, causal, and representation specific Lagra...
Datta, A; Datta, Anindya; Huitu, Katri
2003-01-01
We point out that slepton pairs produced via gauge boson fusion in anomaly mediated supersymmetry breaking (AMSB) model have very characteristic and almost clean signal at the Large Hadron Collider. In this letter, we discuss how one lepton associated with missing energy and produced in between two high-$p_T$ and high-mass forward jets can explore quite heavy sleptons in this scenario.
The Protophobic Light Vector Boson as a Mediator to the Dark Sector
Kitahara, Teppei
2016-01-01
Observation of a protophobic 16.7 MeV vector boson has been reported by a $^8$Be nuclear transition experiment. Such a new particle could mediate between the Standard Model and a dark sector which includes the dark matter. In this Letter, we show some simple models which satisfy the thermal relic abundance under the current experimental bounds from the direct and the indirect detections. In a model, it is found that an appropriate self-scattering cross section to solve the small scale structure puzzles can be achieved.
Nambu-Goldstone Boson Hypothesis for Squarks and Sleptons in Pure Gravity Mediation
Yanagida, Tsutomu T; Yokozaki, Norimi
2016-01-01
We point out that a hypothesis of squarks and sleptons being Nambu-Goldstone (NG) bosons is consistent with pure gravity mediation or minimal split supersymmetry (SUSY). As a concrete example, we consider a SUSY $E_7/SU(5) \\times U(1)^3$ non-linear sigma model in the framework of pure gravity mediation. The model accommodates three families of the quark and lepton chiral multiplets as (pseudo) NG multiplets of the Kahler manifold, which may enable us to understand the origin and number of the families. We point out that squarks in the first and second generations are likely to be as light as a few TeV if the observed baryon asymmetry is explained by the thermal leptogenesis; therefore, these colored particles can be discovered at the LHC Run-2 or at the high luminosity LHC.
Scattering of stringy states in compactified closed bosonic string
Maharana, Jnanadeva
2015-07-01
We present scattering of stringy states of closed bosonic string compactified on torus Td. We focus our attention on scattering of moduli and gauge bosons. These states appear when massless excitations such as graviton and antisymmetric tensor field of the uncompactified theory are dimensionally reduced to lower dimension. The toroidally compactified theory is endowed with the T-duality symmetry, O (d, d). Therefore, it is expected that the amplitude for scattering of such states will be T-duality invariant. The formalism of Kawai-Lewellen-Tye is adopted and appropriately tailored to construct the vertex operators of moduli and gauge bosons. It is shown, in our approach, that N-point amplitude is T-duality invariant. We present illustrative examples for the four point amplitude to explicitly demonstrate the economy of our formalism when three spatial dimensions are compactified on T3. It is also shown that if we construct an amplitude with a set of 'initial' backgrounds, the T-duality operation transforms it to an amplitude associated with another set backgrounds. We propose a modified version of KLT approach to construct vertex operators for nonabelian massless gauge bosons which appear in certain compactification schemes.
Scattering of stringy states in compactified closed bosonic string
Directory of Open Access Journals (Sweden)
Jnanadeva Maharana
2015-07-01
Full Text Available We present scattering of stringy states of closed bosonic string compactified on torus Td. We focus our attention on scattering of moduli and gauge bosons. These states appear when massless excitations such as graviton and antisymmetric tensor field of the uncompactified theory are dimensionally reduced to lower dimension. The toroidally compactified theory is endowed with the T-duality symmetry, O(d,d. Therefore, it is expected that the amplitude for scattering of such states will be T-duality invariant. The formalism of Kawai–Lewellen–Tye is adopted and appropriately tailored to construct the vertex operators of moduli and gauge bosons. It is shown, in our approach, that N-point amplitude is T-duality invariant. We present illustrative examples for the four point amplitude to explicitly demonstrate the economy of our formalism when three spatial dimensions are compactified on T3. It is also shown that if we construct an amplitude with a set of ‘initial’ backgrounds, the T-duality operation transforms it to an amplitude associated with another set backgrounds. We propose a modified version of KLT approach to construct vertex operators for nonabelian massless gauge bosons which appear in certain compactification schemes.
A 125 GeV Higgs boson mass and gravitino dark matter in R-invariant direct gauge mediation
International Nuclear Information System (INIS)
We discuss the Standard Model-like Higgs boson mass in the Supersymmetric Standard Model in an R-invariant direct gauge mediation model with the gravitino mass in the O(1) keV range. The gravitino dark matter scenario in this mass range is a good candidate for a slightly warm dark matter. We show that the Higgs boson mass around 125 GeV suggested by the ATLAS and CMS experiments can be easily achieved in R-invariant direct gauge mediation models with the gravitino mass in this range.
Scattering of Stringy States in Compactified Closed Bosonic String
Maharana, Jnanaveda
2014-01-01
We present scattering of stringy states of closed bosonic string compactified on d-dimensional torus. We focus our attention on scattering of moduli and gauge bosons. These states appear when massless excitations such as graviton and antisymmetric tensor field of the uncompactified theory are dimensionally reduced to lower dimension. The toroidally compactified theory is endowed with the T-duality symmetry, O(d,d). Therefore, it is expected that the amplitude for scattering of such states will be $T$-duality invariant. The formalism of Kawai-Llewelen-Tye is adopted and appropriately tailored to construct the vertex operators of moduli and gauge bosons. It is shown, in our approach, that N-point amplitude is T-duality invariant. We present illustrative examples for the four point amplitude to explicitly demonstrate the economy of our formalism when three spatial dimensions are compactified on three dimensional torus. It is also shown that if we construct an amplitude with a set of 'initial' backgrounds, the T-...
Spontaneous Breaking of Lorentz Symmetry with an antisymmetric tensor
Hernaski, Carlos A
2016-01-01
Spontaneous violation of Lorentz symmetry by the vacuum condensation of an antisymmetric $2$-tensor is considered. The coset construction for nonlinear realization of spacetime symmetries is employed to build the most general low-energy effective action for the Goldstone modes interacting with photons. We analyze the model within the context of the Standard-Model Extension and noncommutative QED. Experimental bounds for some parameters of the model are discussed, and we readdress the subtle issues of stability and causality in Lorentz non-invariant scenarios. Besides the two photon polarizations, just one Goldstone mode must be dynamical to set a sensible low-energy effective model, and the enhancement of the stability by accounting interaction terms points to a protection against observational Lorentz violation.
Antisymmetric Tensor Fields, 4-Potentials and Indefinite Metrics
Dvoeglazov, Valeri V.
2004-01-01
Comment: 21 pages, no figures, presented at the 5th Mexican DGFM School ``The Early Universe and Observational Cosmology." Nov. 25-29, 2002, Playa del Carmen, Mexico and the Jornadas de Investigacion UAZ-2002, Zacatecas, Oct. 8-11, 2002
Continuum-Mediated Dark Matter-Baryon Scattering
Katz, Andrey; Sajjad, Aqil
2016-01-01
Many models of dark matter scattering with baryons may be treated either as a simple contact interaction or as the exchange of a light mediator particle. We study an alternative, in which a continuum of light mediator states may be exchanged. This could arise, for instance, from coupling to a sector which is approximately conformal at the relevant momentum transfer scale. In the non-relativistic effective theory of dark matter-baryon scattering, which is useful for parametrizing direct detection signals, the effect of such continuum mediators is to multiply the amplitude by a function of the momentum transfer q, which in the simplest case is just a power law. We develop the basic framework and study two examples: the case where the mediator is a scalar operator coupling to the Higgs portal (which turns out to be highly constrained) and the case of an antisymmetric tensor operator ${\\cal O}_{\\mu \
Energy Technology Data Exchange (ETDEWEB)
Martin, Stephen P. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Wells, James D. [CERN, Geneva (Switzerland)
2012-08-01
We investigate the implications of models that achieve a Standard Model-like Higgs boson of mass near 125 GeV by introducing additional TeV-scale supermultiplets in the vector-like 10+\\bar{10} representation of SU(5), within the context of gauge-mediated supersymmetry breaking. We study the resulting mass spectrum of superpartners, comparing and contrasting to the usual gauge-mediated and CMSSM scenarios, and discuss implications for LHC supersymmetry searches. This approach implies that exotic vector-like fermions t'_{1,2}, b',and \\tau' should be within the reach of the LHC. We discuss the masses, the couplings to electroweak bosons, and the decay branching ratios of the exotic fermions, with and without various unification assumptions for the mass and mixing parameters. We comment on LHC prospects for discovery of the exotic fermion states, both for decays that are prompt and non-prompt on detector-crossing time scales.
Gravitons as Force Mediating Bosons in the Context of Spacetime Curvature
Dallal, Shawqi Al
2016-07-01
In the framework of quantum gravity, gravitons are massless, spin-2 elementary particles. Their spin follows from the nature of the second rank stress energy tensor. In general relativity, matter modifies the curvature of spacetime. This proven fact may appear at first sight difficult to reconcile with the idea of a force mediating particle. Gravitons in string theory are closed loops with no end points to anchor, and therefore they can move freely between branes. This partially explains the weak force of gravity. However, the idea of gravitons as force mediating particles encounters certain difficulties associated with the vast cosmological distances between gravitationally interacting bodies, which might set a limit on the temporal scale for force propagation. The aim of this work is to discuss and reconcile the apparent discrepancies between spacetime curvature as a source of gravity and the graviton as a mediating particle for the gravitational force. To achieve that, we explore the ideas brought about by brane physics and the concept of nonlocality of interacting particles. Keywords: gravitation - graviton - spacetime curvature - nonlocality.
Królikowski, Wojciech
2016-01-01
A hypothetic Hidden Sector of the Universe, consisting of sterile fermions ("sterinos") and sterile mediating bosons ("sterons") of mass dimension 1 (not 2!) - the last described by an antisymmetric tensor field - requires to exist also a scalar isovector and scalar isoscalar in order to be able to construct electroweak invariant coupling (before spontaneously breaking its symmetry). The introduced scalar isoscalar might be a resonant source for the diphoton excess of 750 GeV, suggested recently by experiment.
Continuum-mediated dark matter-baryon scattering
Katz, Andrey; Reece, Matthew; Sajjad, Aqil
2016-06-01
Many models of dark matter scattering with baryons may be treated either as a simple contact interaction or as the exchange of a light mediator particle. We study an alternative, in which a continuum of light mediator states may be exchanged. This could arise, for instance, from coupling to a sector which is approximately conformal at the relevant momentum transfer scale. In the non-relativistic effective theory of dark matter-baryon scattering, which is useful for parametrizing direct detection signals, the effect of such continuum mediators is to multiply the amplitude by a function of the momentum transfer q, which in the simplest case is just a power law. We develop the basic framework and study two examples: the case where the mediator is a scalar operator coupling to the Higgs portal (which turns out to be highly constrained) and the case of an antisymmetric tensor operator Oμν that mixes with the hypercharge field strength and couples to dark matter tensor currents, which has an interesting viable parameter space. We describe the effect of such mediators on the cross sections and recoil energy spectra that could be observed in direct detection.
Interference of composite bosons
Brougham, Thomas; Barnett, Stephen M.; Jex, Igor
2010-01-01
We investigate multi-boson interference. A Hamiltonian is presented that treats pairs of bosons as a single composite boson. This Hamiltonian allows two pairs of bosons to interact as if they were two single composite bosons. We show that this leads to the composite bosons exhibiting novel interference effects such as Hong-Ou-Mandel interference. We then investigate generalizations of the formalism to the case of interference between two general composite bosons. Finally, we show how one can ...
DEFF Research Database (Denmark)
Tichy, Malte C.; Bouvrier, P. Alexander; Mølmer, Klaus
2013-01-01
Composite bosons made of two bosonic constituents exhibit deviations from ideal bosonic behavior due to their substructure. This deviation is reflected by the normalization ratio of the quantum state of N composites. We find a set of saturable, efficiently evaluable bounds for this indicator, which...... quantifies the bosonic behavior of composites via the entanglement of their constituents. We predict an abrupt transition between ordinary and exaggerated bosonic behavior in a condensate of two-boson composites....
Light Front Boson Model Propagation
Institute of Scientific and Technical Information of China (English)
Jorge Henrique Sales; Alfredo Takashi Suzuki
2011-01-01
stract The scope and aim of this work is to describe the two-body interaction mediated by a particle (either the scalar or the gauge boson) within the light-front formulation. To do this, first of all we point out the importance of propagators and Green functions in Quantum Mechanics. Then we project the covariant quantum propagator onto the light front time to get the propagator for scalar particles in these coordinates. This operator propagates the wave function from x+ = 0 to x+ ＞ O. It corresponds to the definition of the time ordering operation in the light front time x+. We calculate the light-front Green's function for 2 interacting bosons propagating forward in x+. We also show how to write down the light front Green's function from the Feynman propagator and finally make a generalization to N bosons.
Zhu, S
2006-01-01
The $O$(MeV) spin-1 U-boson has been proposed to mediate the interaction among electron-positron and $O$(MeV) dark matter, in order to account for the 511 keV $\\gamma$-ray observation by SPI/INTEGRAL. In this paper the observability of such kind of U-boson at BESIII is investigated through the processes $e^+e^- \\to U \\gamma$ and $e^+e^- \\to J/\\Psi \\to e^+e^- U$. We find that BESIII and high luminosity B-factories have the comparable capacity to detect such U-boson. If U-boson decays mainly into dark matter, i.e. invisibly, BESIII can measure the coupling among U-boson and electron-positron $g_{eR}$ (see text) down to $O(10^{-5})$, and cover large parameter space which can account for 511 keV $\\gamma$-ray observation. On the other hand, provided that U decays mainly into electron-positron, BESIII can detect $g_{eR}$ down to $O(10^{-3})$, and it is hard to explore 511 keV $\\gamma$-ray measurement allowed parameter space due to the irreducible QED backgrounds.
Veltman, Martinus J. G.
1986-01-01
Reports recent findings related to the particle Higgs boson and examines its possible contribution to the standard mode of elementary processes. Critically explores the strengths and uncertainties of the Higgs boson and proposed Higgs field. (ML)
Higgs boson : production and decays into bosons
Escalier, Marc; The ATLAS collaboration
2016-01-01
The results on the Higgs boson with decay channels into bosons from the ATLAS and CMS experiments at LHC Run 1 and early Run 2 are reviewed in the context of the Standard Model. : observation of a signal, measurement of mass, width, spin, cross-sections, search for decay channels and production modes, Higgs couplings to various particles.
Higgs constraints from vector boson fusion and scattering
International Nuclear Information System (INIS)
We present results on 4-lepton + 2-jet production, the partonic processes most commonly described as vector boson pair production in the Vector Boson Fusion (VBF) mode. That final state contains diagrams that are mediated by Higgs boson exchange. We focus particularly on the high-mass behaviour of the Higgs boson mediated diagrams, which unlike on-shell production, gives information about the Higgs couplings without assumptions on the Higgs boson total width. We assess the sensitivity of the high-mass region to Higgs coupling strengths, considering all vector boson pair channels, W- W+, W± W±, W± Z and ZZ. Because of the small background, the most promising mode is W+ W+ which has sensitivity to Higgs couplings because of Higgs boson exchange in the t-channel. Furthermore, using the Caola-Melnikov (CM) method, the off-shell couplings can be interpreted as bounds on the Higgs boson total width. We estimate the bound that can be obtained with current data, as well as the bounds that could be obtained at √s=13 TeV in the VBF channel for data samples of 100 and 300 fb-1. The CM method has already been successfully applied in the gluon fusion (GGF) production channel. The VBF production channel gives important complementary information, because both production and decay of the Higgs boson occur already at tree graph level
Bosonic behavior of entangled fermions
DEFF Research Database (Denmark)
C. Tichy, Malte; Alexander Bouvrie, Peter; Mølmer, Klaus
2012-01-01
Two bound, entangled fermions form a composite boson, which can be treated as an elementary boson as long as the Pauli principle does not affect the behavior of many such composite bosons. The departure of ideal bosonic behavior is quantified by the normalization ratio of multi-composite-boson st......Two bound, entangled fermions form a composite boson, which can be treated as an elementary boson as long as the Pauli principle does not affect the behavior of many such composite bosons. The departure of ideal bosonic behavior is quantified by the normalization ratio of multi...
Taratuta, Rostislav
2015-01-01
The main purpose of this paper is to introduce the new bosonic mechanism and newtreatment of dark energy. The bosonic mechanism focuses on obtaining masses by gauge bosonswithout assuming the existence of Higgs boson. The hypothesis on dark energy as the energy ofa postulated dark field was made and a combined gravitational-dark field was introduced. This fieldis the key to a specified approach and allows addressing the fundamental starting points of the mechanism.i. Complex scalar field is i...
Liew, T. C. H.; Glazov, M. M.; Kavokin, K. V.; Shelykh, I. A.; Kaliteevski, M A; Kavokin, A.V.
2012-01-01
We propose a concept of a quantum cascade laser based on transitions of bosonic quasiparticles (excitons and exciton-polaritons) in a parabolic potential trap in a semiconductor microcavity. This laser would emit terahertz radiation due to bosonic stimulation of excitonic transitions. Dynamics of a bosonic cascade is strongly different from the dynamics of a conventional fermionic cascade laser. We show that populations of excitonic ladders are parity-dependent and quantized if the laser oper...
2008-01-01
Quantum physicists think they know the answer. Probabilistic calculations reveal than the data provided by previous experiments has been miscalculated and that the Higgs boson has in fact been discovered. Weird! The Higgs boson is the only particle predicted by the Standard Model that hasn't been discovered yet.
Pimenta, Jean Jûnio Mendes; Natti, Érica Regina Takano; Natti, Paulo Laerte
2013-01-01
The Higgs boson was predicted in 1964 by British physicist Peter Higgs. The Higgs is the key to explain the origin of the mass of other elementary particles of Nature. However, only with the coming into operation of the LHC, in 2008, there were technological conditions to search for the Higgs boson. Recently, a major international effort conducted at CERN, by means of ATLAS and CMS experiments, has enabled the observation of a new bosonic particle in the region of 125 GeVs. In this paper, by means of known mechanisms of symmetry breaking that occur in the BCS theory of superconductivity and in the theory of nuclear pairing, we discuss the Higgs mechanism in the Standard Model. Finally, we present the current state of research looking for the Higgs boson and the alternative theories and extensions of the Standard Model for the elementary particle physics. Keywords: Higgs boson, BCS theory, nuclear pairing, Higgs mechanism, Standard Model.
Kellerstein, M; Verbaarschot, J J M
2016-01-01
The behavior of quenched Dirac spectra of two-dimensional lattice QCD is consistent with spontaneous chiral symmetry breaking which is forbidden according to the Coleman-Mermin-Wagner theorem. One possible resolution of this paradox is that, because of the bosonic determinant in the partially quenched partition function, the conditions of this theorem are violated allowing for spontaneous symmetry breaking in two dimensions or less. This goes back to work by Niedermaier and Seiler on nonamenable symmetries of the hyperbolic spin chain and earlier work by two of the auhtors on bosonic partition functions at nonzero chemical potential. In this talk we discuss chiral symmetry breaking for the bosonic partition function of QCD at nonzero isospin chemical potential and a bosonic random matrix theory at imaginary chemical potential and compare the results with the fermionic counterpart. In both cases the chiral symmetry group of the bosonic partition function is noncompact.
U boson at the BES III detector
International Nuclear Information System (INIS)
The O(MeV) spin-1 U boson has been proposed to mediate the interaction among electron-positron and O(MeV) dark matter, in order to account for the 511 keV γ-ray observation by SPI/INTEGRAL. In this paper the observability of such a kind of U boson at BESIII is investigated through the processes e+e-→Uγ and e+e-→J/Ψ→e+e-U. We find that BESIII and high luminosity B factories have a comparable capacity to detect such a U boson. If the U boson decays mainly into dark matter, i.e. invisibly, BESIII can measure the coupling between the U boson and an electron-positron pair geR (see text) down to O(10-5), and cover large parameter space which can account for 511 keV γ-ray observation. On the other hand, provided that U decays mainly into the electron-positron, BESIII can detect geR down to O(10-3), and it is hard to explore the 511 keV γ-ray measurement allowed parameter space due to the irreducible QED backgrounds
Pimenta, Jean Jûnio Mendes; Belussi, Lucas Francisco Bosso; Natti, Érica Regina Takano; Natti, Paulo Laerte
2013-01-01
The Higgs boson was predicted in 1964 by British physicist Peter Higgs. The Higgs is the key to explain the origin of the mass of other elementary particles of Nature. However, only with the coming into operation of the LHC, in 2008, there were technological conditions to search for the Higgs boson. Recently, a major international effort conducted at CERN, by means of ATLAS and CMS experiments, has enabled the observation of a new bosonic particle in the region of 125 GeVs. In this paper, by ...
Photoproduction of leptophobic bosons
Fanelli, Cristiano
2016-01-01
We propose a search for photoproduction of leptophobic bosons that couple to quarks at the GlueX experiment at Jefferson Lab. We study in detail a new gauge boson that couples to baryon number $B$, and estimate that $\\gamma p \\to p B$ will provide the best sensitivity for $B$ masses above 0.5 GeV. This search will also provide sensitivity to other proposed dark-sector states that couple to quarks. Finally, our results motivate a similar search for $B$ boson electroproduction at the CLAS experiment.
Arkhipov, Alex
2011-01-01
We motivate and prove a version of the birthday paradox for $k$ identical bosons in $n$ possible modes. If the bosons are in the uniform mixed state, also called the maximally mixed quantum state, then we need $k \\sim \\sqrt{n}$ bosons to expect two in the same state, which is smaller by a factor of $\\sqrt{2}$ than in the case of distinguishable objects (boltzmannons). While the core result is elementary, we generalize the hypothesis and strengthen the conclusion in several ways. One side result is that boltzmannons with a randomly chosen multinomial distribution have the same birthday statistics as bosons. This last result is interesting as a quantum proof of a classical probability theorem; we also give a classical proof.
Barkhofen, Sonja; Bartley, Tim J.; Sansoni, Linda; Kruse, Regina; Hamilton, Craig S.; Jex, Igor; Silberhorn, Christine
2016-01-01
Sampling the distribution of bosons that have undergone a random unitary evolution is strongly believed to be a computationally hard problem. Key to outperforming classical simulations of this task is to increase both the number of input photons and the size of the network. We propose driven boson sampling, in which photons are input within the network itself, as a means to approach this goal. When using heralded single-photon sources based on parametric down-conversion, this approach offers ...
Stefania Pandolfi
2016-01-01
CERN celebrated the fourth anniversary of the historical Higgs boson announcement with special pizzas. 400 pizzas were served on Higgs pizza day in Restaurant 1 at CERN to celebrate the fourth anniversary of the announcement of the discovery of the Higgs Boson (Image: Maximilien Brice/ CERN) What do the Higgs boson and a pizza have in common? Pierluigi Paolucci, INFN and CMS collaboration member, together with INFN president Fernando Ferroni found out the answer one day in Naples: the pizza in front of them looked exactly like a Higgs boson event display. A special recipe was then created in collaboration with the chef of the historic “Ettore” pizzeria in the St. Lucia area of Naples, and two pizzas were designed to resemble two Higgs boson decay channel event displays. The “Higgs Boson Pizza Day” was held on Monday, 4 July 2016, on the fourth anniversary of the announcement of the discovery of the Higgs boso...
Cinzia De Melis
2016-01-01
Four years after the historic announcement of the Higgs boson discovery at CERN, a collaboration between INFN and CERN has declared 4 July 2016 as “Higgs Boson Pizza Day”. The idea was born in Naples, by Pierluigi Paolucci and INFN president Fernando Ferroni, who inspired the chef of the historic “Ettore” pizzeria in St. Lucia to create the Higgs boson pizza in time for the opening of a Art&Science exhibition on 15 September 2015 in Naples. The animation shows the culinary creation of a Higgs boson in form of a vegetarian and ham&salami pizza. Ham&Salami: A two asparagus (proton-proton) collision produces a spicy Higgs boson (chorizo) decaying into two high-energy salami (photon) clusters and a lot of charged (sliced ham) and neutral (olive) particles that are detected in the pizza (detector) entirely covered with mozzarella sensors. A two asparagus (proton-proton) collision produces a juicy Higgs boson (cherry tomato) decaying into four high-energy (charged) peppers producing a tasty sign...
Bosonic behavior of entangled fermions
International Nuclear Information System (INIS)
Two bound, entangled fermions form a composite boson, which can be treated as an elementary boson as long as the Pauli principle remains irrelevant. The bosonic character of the composite is intimately linked to the entanglement of the fermions: Large entanglement implies good bosonic properties. The deviation from perfect bosonic behavior manifests itself in the statistical properties of the composites and in their collective interference. As a consequence, the counting statistics exhibited by composites allow one to infer the form of the two-fermion wave-function. Bosonic behavior can thus be used as a probe for the underlying structure of composite particles without directly accessing their constituents.
Liebling, Steven L
2012-01-01
The idea of stable, localized bundles of energy has strong appeal as a model for particles. In the 1950s John Wheeler envisioned such bundles as smooth configurations of electromagnetic energy that he called {\\em geons}, but none were found. Instead, particle-like solutions were found in the late 1960s with the addition of a scalar field, and these were given the name {\\em boson stars}. Since then, boson stars find use in a wide variety of models as sources of dark matter, as black hole mimickers, in simple models of binary systems, and as a tool in finding black holes in higher dimensions with only a single killing vector. We discuss important varieties of boson stars, their dynamic properties, and some of their uses, concentrating on recent efforts.
Directory of Open Access Journals (Sweden)
Steven L. Liebling
2012-05-01
Full Text Available The idea of stable, localized bundles of energy has strong appeal as a model for particles. In the 1950s, John Wheeler envisioned such bundles as smooth configurations of electromagnetic energy that he called geons, but none were found. Instead, particle-like solutions were found in the late 1960s with the addition of a scalar field, and these were given the name boson stars. Since then, boson stars find use in a wide variety of models as sources of dark matter, as black hole mimickers, in simple models of binary systems, and as a tool in finding black holes in higher dimensions with only a single Killing vector. We discuss important varieties of boson stars, their dynamic properties, and some of their uses, concentrating on recent efforts.
Tsekov, R
2016-01-01
Thermodynamically, bosons and fermions differ by their statistics only. A general entropy functional is proposed by superposition of entropic terms, typical for different quantum gases. The statistical properties of the corresponding Janus particles are derived by variation of the weight of the boson/fermion fraction. It is shown that di-bosons and anti-fermions separate in gas and liquid phases, while three-phase equilibrium appears for poly-boson/fermion Janus particles.
International Nuclear Information System (INIS)
We study the phenomenology of Higgs bosons close to 126 GeV within the scale invariant unconstrained Next-to-Minimal Supersymmetric Standard Model (NMSSM), focusing on the regions of parameter space favoured by low fine-tuning considerations, namely stop masses of order 400 GeV to 1 TeV and an effective μ parameter between 100–200 GeV, with large (but perturbative) λ and low tanβ=2–4. We perform scans over the above parameter space, focusing on the observable Higgs cross sections into γγ, WW, ZZ, bb, ττ final states, and study the correlations between these observables. We show that the γγ signal strength may be enhanced up to a factor of about two not only due to the effect of singlet–doublet mixing, which occurs more often when the 126 GeV Higgs boson is the next-to-lightest CP-even one, but also due to light stops (and to a lesser extent light chargino and charged Higgs loops). There may be also smaller enhancements in the Higgs decay channels into WW, ZZ, correlated with the γγ enhancement. However there is no such correlation observed involving the Higgs decay channels into bb, ττ. The requirement of having perturbative couplings up to the GUT scale favours the interpretation of the 126 GeV Higgs boson as being the second lightest NMSSM CP-even state, which can decay into pairs of lighter neutralinos, CP-even or CP-odd Higgs bosons, leading to characteristic signatures of the NMSSM. In a non-negligible part of the parameter range the increase in the γγ rate is due to the superposition of rates from nearly degenerate Higgs bosons. Resolving these Higgs bosons would rule out the Standard Model, and provide evidence for the NMSSM
Anomalous gauge boson interactions
International Nuclear Information System (INIS)
We discuss the direct measurement of the trilinear vector boson couplings in present and future collider experiments. The major goals of such experiments will be the confirmation of the Standard Model (SM) predictions and the search for signals of new physics. We review our current theoretical understanding of anomalous trilinear gauge-boson self interactions. If the energy scale of the new physics is ∼ 1 TeV, these low energy anomalous couplings are expected to be no larger than Ο(10-2). Constraints from high precision measurements at LEP and low energy charged and neutral current processes are critically reviewed
International Nuclear Information System (INIS)
This is the summary report of the Higgs Boson Working Group. We discuss a variety of search techniques for a Higgs boson which is lighter than the Z. The processes K → πH, η prime → ηH,Υ → Hγ and e+e- → ZH are examined with particular attention paid to theoretical uncertainties in the calculations. We also briefly examine new features of Higgs phenomenology in a model which contains Higgs triplets as well as the usual doublet of scalar fields. 33 refs., 6 figs., 1 tab
Nonexotic Neutral Gauge Bosons
Appelquist, Thomas; Dobrescu, Bogdan A.; Hopper, Adam R.
2002-01-01
We study theoretical and experimental constraints on electroweak theories including a new color-singlet and electrically-neutral gauge boson. We first note that the electric charges of the observed fermions imply that any such Z' boson may be described by a gauge theory in which the Abelian gauge groups are the usual hypercharge along with another U(1) component in a kinetic-diagonal basis. Assuming that the observed quarks and leptons have generation-independent U(1) charges, and that no new...
International Nuclear Information System (INIS)
This paper is the summary report of the Higgs Boson Working Group. The authors discuss a variety of search techniques for a Higgs boson which is lighter than the Z. The processes K → πH, η' → ηH, Υ → Hγ and e+e- → ZH are examined with particular attention paid to theoretical uncertainties in the calculations. The authors also briefly examine new features of Higgs phenomenology in a model which contains Higgs triplets as well as the usual doublet of scalar fields
Bosonic variables in nuclear matters
International Nuclear Information System (INIS)
It is shown that the boson theoretical interpretation of nuclear forces nessecitates the introduction of bosonic variables within the state function of nuclear matter. In this framework the 2-boson exchange plays a decisive role and calls for the introduction of special selfenergy diagrams. This generalized scheme is discussed with the help of a solvable field theoretical model. (orig.)
Flavour-changing neutral currents in models with extra ' boson
Indian Academy of Sciences (India)
S Sahoo; L Maharana
2004-09-01
New neutral gauge bosons ' are the features of many models addressing the physics beyond the standard model. Together with the existence of new neutral gauge bosons, models based on extended gauge groups (rank > 4) often predict new charged fermions also. A mixing of the known fermions with new states, with exotic weak-isospin assignments (left-handed singlets and right-handed doublets) will induce tree-level flavour-changing neutral interactions mediated by exchange, while if the mixing is only with new states with ordinary weak-isospin assignments, the flavour-changing neutral currents are mainly due to the exchange of the new neutral gauge boson '. We review flavour-changing neutral currents in models with extra ' boson. Then we discuss some flavour-changing processes forbidden in the standard model and new contributions to standard model processes.
Intermediate mass Higgs boson(s)
International Nuclear Information System (INIS)
Finding and understanding the spectrum of scalar bosons is the central problem of particle physics today. Considerable work has been done to learn how to study Standard Model heavy and obese Higgs bosons; simulations including the problems induced by standard model backgrounds are underway, and some results are reported elsewhere in these proceedings. The mass region MH Z/2 will be covered at SLC and LEP. LEPII will be able to extend this range to about 85 GeV. Above MH > 2MZ the search is easy for a Standard Model H degree at the SSC, though not so simple for the neutral scalars of a supersymmetric theory. The intermediate region, MZ/2 ≤ MH ≤ 2MZ is one of the most difficult mass regions to study, and it is the subject of this report. The authors concentrate on a neutral Standard Model scalar to be specific. The lightest scalar of a supersymmetric theory behaves very much like a Standard Model scalar for most ranges of parameters, so the results generally apply to that case as well, and for any form the scalar spectrum might take our results indicate how the analysis might go. Ultimately, to fully understand spontaneous symmetry breaking and the origin of mass, it will be necessary to find any intermediate mass scalar and to know in what mass ranges no scalars exist. Their analysis is only in progress, and their results reported here must be regarded as tentative
Jora, Renata
2009-01-01
We propose an electroweak model based on the identification of the Higgs with the dilaton. We show that it is possible in this context to have a massless Higgs boson at tree and one loop levels without contradicting the main experimental and theoretical constraints.
AUTHOR|(CDS)2077480; Müller, Katharina; Anderson, Jonathan
In this thesis several measurements of the $Z$ boson production cross section in the LHCb detector are presented. After an introduction with the description of the underlying theory; the detector and the properties of the collisions the machine provided to us in LHC run I in Chapter 1, in Chapter 2 the details of the $Z$ reconstruction in the $Z\\rightarrow\\mu^+\\mu^-$ final state is discussed. In Chapter 3 jets are added to the $Z$ bosons. Several aspects of jet reconstruction are presented and a cross section measurement for the associated production of $Z$ bosons with jets at $\\sqrt{s}=7$ TeV is presented for two transverse momentum thresholds of the jets. In Chapter 4 the capability of the LHCb detector to reconstruct charmed mesons is used to establish a $ZD^{0}$ and a $ZD^{+}$ signal and to measure the total cross section. In Chapter 5 the cross section of inclusive $Z$ boson production is measured at a low statistics sample of $3.3~\\text{pb}^{-1}$ at $\\sqrt{s}=2.76$ TeV.
Fermion-fermion and boson-boson amplitudes: surprising similarities
Dvoeglazov, Valeri V
2007-01-01
Amplitudes for fermion-fermion, boson-boson and fermion-boson interactions are calculated in the second order of perturbation theory in the Lobachevsky space. An essential ingredient of the model is the Weinberg's 2(2j+1)-component formalism for describing a particle of spin j. The boson-boson amplitude is then compared with the two-fermion amplitude obtained long ago by Skachkov on the basis of the Hamiltonian formulation of quantum field theory on the mass hyperboloid, p_0^2 - p^2=M^2, proposed by Kadyshevsky. The parametrization of the amplitudes by means of the momentum transfer in the Lobachevsky space leads to same spin structures in the expressions of T-matrices for the fermion case and the boson case. However, certain differences are found. Possible physical applications are discussed.
Coexistence of CP eigenstates in Higgs boson decay
Oshimo, Noriyuki
2012-01-01
The supersymmetric extension of the standard model contains an intrinsic sourceof CP violation mediated by the charginos. As an effect, both CP-even and CP-odd final states could be observed in the Higgs boson decay into two photons whose evidences were reported recently.
Spring, Justin B; Humphreys, Peter C; Kolthammer, W Steven; Jin, Xian-Min; Barbieri, Marco; Datta, Animesh; Thomas-Peter, Nicholas; Langford, Nathan K; Kundys, Dmytro; Gates, James C; Smith, Brian J; Smith, Peter G R; Walmsley, Ian A
2013-01-01
While universal quantum computers ideally solve problems such as factoring integers exponentially more efficiently than classical machines, the formidable challenges in building such devices motivate the demonstration of simpler, problem-specific algorithms that still promise a quantum speedup. We construct a quantum boson sampling machine (QBSM) to sample the output distribution resulting from the nonclassical interference of photons in an integrated photonic circuit, a problem thought to be exponentially hard to solve classically. Unlike universal quantum computation, boson sampling merely requires indistinguishable photons, linear state evolution, and detectors. We benchmark our QBSM with three and four photons and analyze sources of sampling inaccuracy. Our studies pave the way to larger devices that could offer the first definitive quantum-enhanced computation.
Interacting boson approximation
International Nuclear Information System (INIS)
Lectures notes on the Interacting Boson Approximation are given. Topics include: angular momentum tensors; properties of T/sub i//sup (n)/ matrices; T/sub i//sup (n)/ matrices as Clebsch-Gordan coefficients; construction of higher rank tensors; normalization: trace of products of two s-rank tensors; completeness relation; algebra of U(N); eigenvalue of the quadratic Casimir operator for U(3); general result for U(N); angular momentum content of U(3) representation; p-Boson model; Hamiltonian; quadrupole transitions; S,P Boson model; expectation value of dipole operator; S-D model: U(6); quadratic Casimir operator; an O(5) subgroup; an O(6) subgroup; properties of O(5) representations; quadratic Casimir operator; quadratic Casimir operator for U(6); decomposition via SU(5) chain; a special O(3) decomposition of SU(3); useful identities; a useful property of D/sub αβγ/(α,β,γ = 4-8) as coupling coefficients; explicit construction of T/sub x//sup (2)/ and d/sub αβγ/; D-coefficients; eigenstates of T3; and summary of T = 2 states
Boson stars with nonminimal coupling
Marunovic, Anja
2015-01-01
Boson stars coupled to Einstein's general relativity possess some features similar to gravastars, such as the anisotropy in principal pressures and relatively large compactness ($\\mu_{max} = 0.32$). However, no matter how large the self-interaction is, the ordinary boson star cannot obtain arbitrarily large compression and as such does not represent a good black hole mimicker. When the boson star is nonminimally coupled to gravity, the resulting configurations resemble more the dark energy stars then the ordinary boson stars, with compactness significantly larger then that in ordinary boson stars (if matter is not constrained with the energy conditions). The gravitationally bound system of a boson star and a global monopole represents a good black hole mimicker.
Boson star at finite temperature
Latifah, S; Mart, T
2014-01-01
By using a simple thermodynamical method we confirm the finding of Chavanis and Harko that stable Bose-Einstein condensate stars can form. However, by using a thermodynamically consistent boson equation of state, we obtain a less massive Bose-Einstein condensate star compared to the one predicted by Chavanis and Harko. We also obtain that the maximum mass of a boson star is insensitive to the change of matter temperature. However, the mass of boson star with relatively large radius depends significantly on the temperature of the boson matter.
Bosonization and Lie Group Structure
Ha, Yuan K
2015-01-01
We introduce a concise quantum operator formula for bosonization in which the Lie group structure appears in a natural way. The connection between fermions and bosons is found to be exactly the connection between Lie group elements and the group parameters. Bosonization is an extraordinary way of expressing the equation of motion of a complex fermion field in terms of a real scalar boson in two dimensions. All the properties of the fermion field theory are known to be preserved under this remarkable transformation with substantial simplification and elucidation of the original theory, much like Lie groups can be studied by their Lie algebras.
Groups of automorphisms of the canonical commutation and anticommutation relations
International Nuclear Information System (INIS)
Observables of supersymmetric quantum mechanics are coded by taking the antisymmetric tensor product with anticommuting parameters. Next we define superunitary transformations, which mix bosonic and fermionic degrees of freedom, in order to construct automorphisms of the canonical (anti-) commutation relations. Conversely, every automorphism of the C(A)CR is implemented by an essentially unique superunitary transformation. 12 refs. (Author)
Moss, Ian G
2015-01-01
The discovery of the Standard Model Higgs boson opens up a range of speculative cosmological scenarios, from the formation of structure in the early universe immediately after the big bang, to relics from the electroweak phase transition one nanosecond after the big bang, on to the end of the present-day universe through vacuum decay. Higgs physics is wide-ranging, and gives an impetus to go beyond the Standard Models of particle physics and cosmology to explore the physics of ultra-high energies and quantum gravity.
Energy Technology Data Exchange (ETDEWEB)
Hartmann, Betti [School of Engineering and Science, Jacobs University, Postfach 750 561, D-28725 Bremen (Germany); Kleihaus, Burkhard; Kunz, Jutta [Institut fuer Physik, Universitaet Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); Schaffer, Isabell, E-mail: i.schaffer@jacobs-university.de [School of Engineering and Science, Jacobs University, Postfach 750 561, D-28725 Bremen (Germany)
2012-07-24
We consider compact boson stars that arise for a V-shaped scalar field potential. They represent a one parameter family of solutions of the scaled Einstein-Gordon equations. We analyze the physical properties of these solutions and determine their domain of existence. Along their physically relevant branch emerging from the compact Q-ball solution, their mass increases with increasing radius. Employing arguments from catastrophe theory we argue that this branch is stable, until the maximal value of the mass is reached. There the mass and size are on the order of magnitude of the Schwarzschild limit, and thus the spiraling respectively oscillating behaviour, well known for compact stars, sets in.
Lykken, Joseph D.
1996-01-01
A broad class of supersymmetric extensions of the standard model predict a Z' vector boson whose mass is naturally in the range 250 GeV < M_Z' < 2 TeV. To avoid unacceptably large mixing with the Z, one requires either a discrete tuning of the U(1)' charges or a leptophobic Z'. Both cases are likely to arise as the low energy limits of heterotic string compactifications, but a survey of existing realistic string models provides no acceptable examples. A broken U(1)' leads to additional D-term...
Deformation quantization of bosonic strings
International Nuclear Information System (INIS)
Deformation quantization of bosonic strings is considered. We show that the light-cone gauge is the most convenient classical description to perform the quantization of bosonic strings in the deformation quantization formalism. Similar to the field theory case, the oscillator variables greatly facilitates the analysis. The mass spectrum, propagators and the Virasoro algebra are finally described within this deformation quantization scheme. (author)
Hierarchy in Sampling Gaussian-correlated Bosons
Huh, Joonsuk
2016-01-01
Boson Sampling represents a class of physical processes potentially intractable for classical devices to simulate. The Gaussian extension of Boson Sampling remains a computationally hard problem, where the input state is a product of uncorrelated Gaussian modes. Besides, motivated by molecular spectroscopy, Vibronic Boson Sampling involves operations that can generate Gaussian correlation among different Boson modes. Therefore, Gaussian Boson Sampling is a special case of Vibronic Boson Sampling. However, this does not necessarily mean that Vibronic Boson Sampling is more complex than Gaussian Boson Sampling. Here we develop a hierarchical structure to show how the initial correlation in Vibronic Boson Sampling can be absorbed in Gaussian Boson Sampling with ancillary modes and in a scattershot fashion. Since every Gaussian state is associated with a thermal state, our result implies that every sampling problem in molecular vibronic transitions, at any temperature, can be simulated by Gaussian Boson Sampling ...
A Minimally Symmetric Higgs Boson
Low, Ian
2014-01-01
Models addressing the naturalness of a light Higgs boson typically employ symmetries, either bosonic or fermionic, to stabilize the Higgs mass. We consider a setup with the minimal amount of symmetries: four shift symmetries acting on the four components of the Higgs doublet, subject to the constraints of linearly realized SU(2)xU(1) electroweak symmetry. Up to terms that explicitly violate the shift symmetries, the effective lagrangian can be derived, irrespective of the spontaneously broken group G in the ultraviolet, and is universal in all models where the Higgs arises as a pseudo-Nambu-Goldstone boson (PNGB). Very high energy scatterings of vector bosons could provide smoking gun signals of a minimally symmetric Higgs boson.
Bosonization and quantum hydrodynamics
Indian Academy of Sciences (India)
Girish S Setlur
2006-03-01
It is shown that it is possible to bosonize fermions in any number of dimensions using the hydrodynamic variables, namely the velocity potential and density. The slow part of the Fermi field is defined irrespective of dimensionality and the commutators of this field with currents and densities are exponentiated using the velocity potential as conjugate to the density. An action in terms of these canonical bosonic variables is proposed that reproduces the correct current and density correlations. This formalism in one dimension is shown to be equivalent to the Tomonaga-Luttinger approach as it leads to the same propagator and exponents. We compute the one-particle properties of a spinless homogeneous Fermi system in two spatial dimensions with long-range gauge interactions and highlight the metal-insulator transition in the system. A general formula for the generating function of density correlations is derived that is valid beyond the random phase approximation. Finally, we write down a formula for the annihilation operator in momentum space directly in terms of number conserving products of Fermi fields.
Brunet, S
2014-01-01
ATLAS Higgs poster targeted to general public, explaining the Brout-Englert-Higgs mechanism and why it is important. It also explains the role of the Higgs Boson, how we look for it, the journey of the discovery and what comes after the discovery. Also available in French (http://cds.cern.ch/record/1697501). Don’t hesitate to use it in your institute’s corridors and in your outreach events! The poster is in A0 format. You can click on the image to download the high-quality .pdf version and print it at your favorite printshop. For any questions or comments you can contact atlas-outreach-coordination@cern.ch.
International Nuclear Information System (INIS)
The discovery of the Z boson 7 years ago verified a key prediction of the unified theory of electromagnetic and weak forces. Today an experimental program is beginning at two electron-positron colliders to study the properties of the Z particle in great detail. The data accumulated will subject the unified theory to more rigorous tests and will probe with great sensitivity for new physics not encompassed by the existing standard model of the elementary particles and forces. Questions under study include the number of quark and lepton families, the mass of the still undiscovered top quark, and the search for the still unknown fifth force of nature required by the theory to generate the masses of the elementary particles. 48 refs., 3 figs., 1 tab
He, Hong-Jian
1998-08-01
We review the recent progress in studying the anomalous electroweak quartic gauge boson couplings (QGBCs) at the LHC and the next generation high energy e±e- linear colliders (LCs). The main focus is put onto the strong electroweak symmetry breaking scenario in which the non-decoupling guarantees sizable new physics effects for the QGBCs. After commenting upon the current low energy indirect bounds and summarizing the theoretical patterns of QGBCs predicted by the typical resonance/non-resonance models, we review our systematic model-independent analysis on bounding them via WW-fusion and WWZ/ZZZ-production. The interplay of the two production mechanisms and the important role of the beam-polarization at the LCs are emphasized. The same physics may be similarly and better studied at a multi-TeV muon collider with high luminosity.
International Nuclear Information System (INIS)
This is a pedagogical introduction to the general technique of bosonization of one-dimensional systems starting from scratch and assuming very little besides basic quantum mechanics and second quantization. The formalism is developed in a self-contained fashion and applied to the spinless and spin-1/2 Luttinger models, working out both single and two particle correlation functions. The implications of these results for the specific cases of the (anisotropic) Heisenberg and the Hubbard models are discussed. Although everything in these notes can be found in the published literature, detailed and explicit calculations of most of the results are given, which may prove useful to beginning graduate students or researchers in this area. (author)
International Nuclear Information System (INIS)
It was 20 years ago this month that particle physicists caught their first glimpse of the W boson. Now they have measured its mass so precisely that the Standard Model is facing an unprecedented challenge. (U.K.)
Spectroscopy of family gauge bosons
International Nuclear Information System (INIS)
Spectroscopy of family gauge bosons is investigated based on a U(3) family gauge boson model proposed by Sumino. In his model, the family gauge bosons are in mass eigenstates in a diagonal basis of the charged lepton mass matrix. Therefore, the family numbers are defined by (e1,e2,e3)=(e,μ,τ), while the assignment for quark sector are free. For possible family-number assignments (q1,q2,q3), under a constraint from K0–K¯0 mixing, we investigate possibilities of new physics, e.g. production of the lightest family gauge boson at the LHC, μ−N→e−N, rare K and B decays, and so on.
Is geometry bosonic or fermionic?
Hughes, Taylor L
2011-01-01
It is generally assumed that the gravitational field is bosonic. Here we show that a simple propagating torsional theory can give rise to localized geometric structures that can consistently be quantized as fermions under exchange. To demonstrate this, we show that the model can be formally mapped onto the Skyrme model of baryons, and we use well-known results from Skyrme theory. This begs the question: {\\it Is geometry bosonic or fermionic (or both)?}
From Bosonic Strings to Fermions
Sidharth, B. G.
2006-01-01
Early string theory described Bosonic particles at the real life Compton scale. Later developments to include Fermions initiated by Ramond and others have lead through Quantum Super Strings to M-theory operating at the as yet experimentally unattainable Planck scale. We describe an alternative route from Bosonic Strings to Fermions, by directly invoking a non commutative geometry, an approach which is closer to experiment.
Neutrino emissivity from Goldstone boson decay in magnetized neutron matter
Bedaque, Paulo; Sen, Srimoyee
2013-01-01
Neutron matter at densities somewhat above nuclear densities is believed to be superfluid due to the condensation of neutron pairs in the 3 P2 channel. This condensate breaks rotational symmetry spontaneously and leads to the existence of Goldstone bosons (angulons). We show that the coupling to magnetic fields mediated by the magnetic moment of the neutron makes angulons massive and capable of decaying into a neutrino-antineutrino pair. We compute the rate for this process and argue they bec...
Analytic boosted boson discrimination
Larkoski, Andrew J.; Moult, Ian; Neill, Duff
2016-05-01
Observables which discriminate boosted topologies from massive QCD jets are of great importance for the success of the jet substructure program at the Large Hadron Collider. Such observables, while both widely and successfully used, have been studied almost exclusively with Monte Carlo simulations. In this paper we present the first all-orders factorization theorem for a two-prong discriminant based on a jet shape variable, D 2, valid for both signal and background jets. Our factorization theorem simultaneously describes the production of both collinear and soft subjets, and we introduce a novel zero-bin procedure to correctly describe the transition region between these limits. By proving an all orders factorization theorem, we enable a systematically improvable description, and allow for precision comparisons between data, Monte Carlo, and first principles QCD calculations for jet substructure observables. Using our factorization theorem, we present numerical results for the discrimination of a boosted Z boson from massive QCD background jets. We compare our results with Monte Carlo predictions which allows for a detailed understanding of the extent to which these generators accurately describe the formation of two-prong QCD jets, and informs their usage in substructure analyses. Our calculation also provides considerable insight into the discrimination power and calculability of jet substructure observables in general.
Excited Weak Bosons and Dark Matter
Fritzsch, Harald
2016-01-01
The weak bosons are bound states of new constituents, the haplons. The p-wave excitations are studied. The state with the lowest mass is identified with the boson, which has been discovered at the LHC. Specific properties of the excited bosons are discussed, in particular their decays into weak bosons and photons. Recently a two photon signal has been observed, which might come from the decay of a neutral heavy boson with a mass of about 0.75 TeV. This particle could be the excited weak tensor boson. The stable fermion, consisting of three haplons, provides the dark matter in our universe.
Spin models and boson sampling
Garcia Ripoll, Juan Jose; Peropadre, Borja; Aspuru-Guzik, Alan
Aaronson & Arkhipov showed that predicting the measurement statistics of random linear optics circuits (i.e. boson sampling) is a classically hard problem for highly non-classical input states. A typical boson-sampling circuit requires N single photon emitters and M photodetectors, and it is a natural idea to rely on few-level systems for both tasks. Indeed, we show that 2M two-level emitters at the input and output ports of a general M-port interferometer interact via an XY-model with collective dissipation and a large number of dark states that could be used for quantum information storage. More important is the fact that, when we neglect dissipation, the resulting long-range XY spin-spin interaction is equivalent to boson sampling under the same conditions that make boson sampling efficient. This allows efficient implementations of boson sampling using quantum simulators & quantum computers. We acknowledge support from Spanish Mineco Project FIS2012-33022, CAM Research Network QUITEMAD+ and EU FP7 FET-Open Project PROMISCE.
A Z' Boson and the Higgs Boson Mass
Chanowitz, Michael S.
2008-01-01
The Standard Model fit prefers values of the Higgs boson mass that are below the 114 GeV direct lower limit from LEP II. The discrepancy is acute if the 3.2 sigma disagreement for the effective weak interaction mixing angle from the two most precise measurements is attributed to underestimated systematic error. In that case the data suggests new physics to raise the predicted value of the Higgs mass. One of the simplest possibilities is a Z' boson, which would generically increase the predict...
Inclusion of g boson in the microscopic sdgIBM and the g boson effect
International Nuclear Information System (INIS)
The inclusion of g boson in the microscopic sdgIBM is presented. The collectivity of g boson, the relationship between g boson properties and the strengths of the effective nucleon-nucleon interaction, and the influence of g boson on the sdIBM are discussed in detail
Energy Technology Data Exchange (ETDEWEB)
Hartmann, Betti, E-mail: b.hartmann@jacobs-university.de [School of Engineering and Science, Jacobs University Bremen, 28759 Bremen (Germany); Riedel, Jürgen, E-mail: j.riedel@jacobs-university.de [School of Engineering and Science, Jacobs University Bremen, 28759 Bremen (Germany); Faculty of Physics, University Oldenburg, 26111 Oldenburg (Germany); Suciu, Raluca, E-mail: r.suciu@jacobs-university.de [School of Engineering and Science, Jacobs University Bremen, 28759 Bremen (Germany)
2013-11-04
We construct boson stars in (4+1)-dimensional Gauss–Bonnet gravity. We study the properties of the solutions in dependence on the coupling constants and investigate in detail their properties. While the “thick wall” limit is independent of the value of the Gauss–Bonnet coupling, we find that the spiraling behaviour characteristic for boson stars in standard Einstein gravity disappears for large enough values of the Gauss–Bonnet coupling. Our results show that in this case the scalar field can not have arbitrarily high values of the scalar field at the center of the boson star and that it is hence impossible to reach the “thin wall” limit. Moreover, for large enough Gauss–Bonnet coupling we find a unique relation between the mass and the radius (qualitatively similar to those of neutron stars) which is not present in the Einstein gravity limit.
Higgs boson production at the LHC
Peters, Krisztian; The ATLAS collaboration
2015-01-01
After the discovery at the LHC, the main goal of the Higgs boson measurements at ATLAS and CMS is to fully elucidate the nature of this new particle. In this contribution we will discuss the Higgs boson production and decay properties at the LHC and the main analyses which build the fundation for the current Higgs boson property measurements. Inclusive rates as well as differential measurements in the main bosonic and fermionic channels, and searches for rarer decay modes will be presented.
An introduction to boson-sampling
Gard, Bryan T; Motes, Keith R.; Olson, Jonathan P.; Rohde, Peter P.; Dowling, Jonathan P.
2014-01-01
Boson-sampling is a simplified model for quantum computing that may hold the key to implementing the first ever post-classical quantum computer. Boson-sampling is a non-universal quantum computer that is significantly more straightforward to build than any universal quantum computer proposed so far. We begin this chapter by motivating boson-sampling and discussing the history of linear optics quantum computing. We then summarize the boson-sampling formalism, discuss what a sampling problem is...
Bosonic Coherent Motions in the Universe
Kim, Jihn E; Tsujikawa, Shinji
2014-01-01
We mini-review the role of fundamental spin-0 bosons as bosonic coherent motion (BCM) in the Universe. The fundamental spin-0 bosons have the potential to account for the baryon number generation, cold dark matter (CDM) via BCM, dark energy, and inflation. Among these, here we focus on the CDM possibility because it can be experimentally tested with the current experimental techniques. We also comment briefly on the panoply of the other roles of spin-0 bosons.
Vectorial versus axial goldstone bosons
International Nuclear Information System (INIS)
The Yukawa interactions of fermions with Goldstone bosons are given in closed form for an arbitrary renormalizable field theory to all orders of perturbation theory or for a general effective Lagrangian. Although the diagonal couplings are always pseudoscalar there is an important difference between spontaneously broken vector and axial-vector global symmetries. Compared to the axial case, the diagonal douplings of 'vectorial' Goldstone bosons to charged fermions are suppressed by mixing angles or appear only via radiative corrections involving gauge fields. This general result may be relevant for the problem of flavour symmetry breaking in composite models. (Author)
Boson stars in the centre of galaxies?
Schunck, Franz E
2008-01-01
We investigate the possible gravitational redshift values for boson stars with a self-interaction, studying a wide range of possible masses. We find a limiting value of z_lim \\simeq 0.687 for stable boson star configurations. We can exclude the direct observation of boson stars. X-ray spectroscopy is perhaps the most interesting possibility.
A generalization of boson normal ordering
International Nuclear Information System (INIS)
In this Letter we define generalizations of boson normal ordering. These are based on the number of contractions whose vertices are next to each other in the linear representation of the boson operator function. Our main motivation is to shed further light onto the combinatorics arising from algebraic and Fock space properties of boson operators
Introduction to the physics of Higgs bosons
Energy Technology Data Exchange (ETDEWEB)
Dawson, S.
1994-11-01
A basic introduction to the physics of the Standard Model Higgs boson is given. We discuss Higgs boson production in e{sup +}e{sup {minus}} and hadronic collisions and survey search techniques at future accelerators. The Higgs bosons of the minimal SUSY model are briefly considered. Indirect limits from triviality arguments, vacuum stability and precision measurements at LEP are also presented.
Charged Higgs Bosons in the LHCHXSWG
Heinemeyer, S
2014-01-01
Searches for charged Higgs bosons are an integral part of current and future investigations at the LHC. The LHC Higgs Cross Section Working Group (LHCHXSWG) was created to provide cross sections, branching ratios, analysis strategies etc. for Higgs boson searches at the LHC. We briefly review progress and results for charged Higgs bosons in and for the LHCHXSWG.
Introduction to the physics of Higgs bosons
International Nuclear Information System (INIS)
A basic introduction to the physics of the Standard Model Higgs boson is given. We discuss Higgs boson production in e+e- and hadronic collisions and survey search techniques at future accelerators. The Higgs bosons of the minimal SUSY model are briefly considered. Indirect limits from triviality arguments, vacuum stability and precision measurements at LEP are also presented
Twisted bosonization in two dimensional noncommutative spacetime
Haque, Asrarul
2012-01-01
We study the twisted bosonization of massive Thirring model to relate to sine-Gordon model in Moyal spacetime using twisted commutation relations. We obtain the relevant twisted bosonization rules. We show that there exists dual rela- tionship between twisted bosonic and fermionic operators. The strong-weak duality is also observed to be preserved as its commutative counterpart.
Evidence of Higgs Boson Production through Vector Boson Fusion
AUTHOR|(INSPIRE)INSPIRE-00333580
The discovery of the Higgs boson in 2012 provided confirmation of the proposed mechanism for preserving the electroweak $SU(2) \\times U(1)$ gauge symmetry of the Standard Model of particle physics. It also heralded in a new era of precision Higgs physics. This thesis presents a measurement of the rate at which the Higgs boson is produced by vector boson fusion in the \\wwlnln decay channel. With gauge boson couplings in both the production and decay vertices, a VBF measurement in this channel is a powerful probe of the $VVH$ vertex strength. Using $4.5$~fb$^{-1}$ and $20.3$~fb$^{-1}$ of $pp$ collision data collected at respective center-of-mass energies of 7 and $8 \\tev$ in the ATLAS detector, measurements of the statistical significance and the signal strength are carried out in the Higgs mass range $100 \\leq m_H \\leq 200 \\gev$. These measurements are enhanced with a boosted decision tree that exploits the correlations between eight kinematic inputs in order to separate signal and background processes. At the...
International Nuclear Information System (INIS)
The scattering of electroweak gauge bosons is closely connected to the electroweak gauge symmetry and its spontaneous breaking through the Brout-Englert-Higgs mechanism. Since it contains triple and quartic gauge boson vertices, the measurement of this scattering process allows to probe the self-interactions of weak bosons. The contribution of the Higgs boson to the weak boson scattering amplitude ensures unitarity of the scattering matrix. Therefore, the scattering of massive electroweak gauge bosons is sensitive to deviations from the Standard Model prescription of the electroweak interaction and of the properties of the Higgs boson. At the Large Hadron Collider (LHC), the scattering of massive electroweak gauge bosons is accessible through the measurement of purely electroweak production of two jets and two gauge bosons. No such process has been observed before. Being the channel with the least amount of background from QCD-mediated production of the same final state, the most promising channel for the first measurement of a process containing massive electroweak gauge boson scattering is the one with two like-charge W bosons and two jets in the final state. This thesis presents the first measurement of electroweak production of two jets and two identically charged W bosons, which yields the first observation of a process with contributions from quartic gauge interactions of massive electroweak gauge bosons. An overview of the most important issues in Monte Carlo simulation of vector boson scattering processes with current Monte Carlo generators is given in this work. The measurement of the final state of two jets and two leptonically decaying same-charge W bosons is conducted based on proton-proton collision data with a center-of-mass energy of √(s)=8 TeV, taken in 2012 with the ATLAS experiment at the LHC. The cross section of electroweak production of two jets and two like-charge W bosons is measured with a significance of 3.6 standard deviations to be
Bosonic interactions with a domain wall
Morris, J R
2016-01-01
We consider here the interaction of scalar bosons with a topological domain wall. Not only is there a continuum of scattering states, but there is also an interesting "quasi-discretuum" of positive energy bosonic bound states, describing bosons entrapped within the wall's core. The full spectrum of the scattering and bound state energies and eigenstates is obtainable from a Schr\\"odinger-type of equation with a P\\"oschl-Teller potential. We also consider the presence of a boson gas within the wall and high energy boson emission.
Excited Weak Bosons and Dark Matter
Fritzsch, Harald
2016-01-01
The weak bosons are bound states of new constituents, the haplons. The p-wave excitations are studied. The state with the lowest mass is identified with the boson, which has been discovered at the LHC. Specific properties of the excited bosons are discussed, in particular their decays into weak bosons and photons. Recently a two photon signal has been observed, which might come from the decay of a neutral heavy boson with a mass of about 0.75 TeV. This particle could be the excited weak tenso...
Gravitational Stability of Boson Stars
Kusmartsev, Fjodor V; Schunck, Franz E
1991-01-01
We investigate the stability of general-relativistic boson stars by classifying singularities of differential mappings and compare it with the results of perturbation theory. Depending on the particle number, the star has the following regimes of behavior: stable, metastable, pulsation, and collapse.
A search for a new gauge boson A'
Energy Technology Data Exchange (ETDEWEB)
Jensen, Eric L. [William and Mary College
2013-08-01
In the Standard Model, gauge bosons mediate the strong, weak, and electromagnetic forces. New forces could have escaped detection only if their mediators are either heavier than order(TeV) or weakly coupled to charged matter. New vector bosons with small coupling {alpha}' arise naturally from a small kinetic mixing with the photon and have received considerable attention as an explanation of various dark matter related anomalies. Such particles can be produced in electron-nucleus fixed-target scattering and then decay to e{sup +}e{sup -} pairs. New light vector bosons and their associated forces are a common feature of Standard Model extensions, but existing constraints are remarkably sparse. The APEX experiment will search for a new vector boson A' with coupling {alpha}'/{alpha}{sub fs} > 6 × 10{sup -8} to electrons in the mass range 65MeV < mass A' < 550MeV. The experiment will study e{sup +}e{sup -} production off an electron beam incident on a high-Z target in Hall A at Jefferson Lab. The e{sup -} and e{sup +} will be detected in the High Resolution Spectrometers (HRSs). The invariant mass spectrum of the e{sup +}e{sup -} pairs will be scanned for a narrow resonance corresponding to the mass of the A'. A test run for the APEX experiment was held in the summer of 2010. Using the test run data, an A' search was performed in the mass range 175-250 MeV. The search found no evidence for an A' --> e{sup +}e{sup -} reaction, and set an upper limit of {alpha}'/{alpha}{sub fs} ~ 10{sup -6}.
The sensitivity of the Higgs boson branching ratios to the W boson width
Murray, William
2016-07-01
The Higgs boson branching ratio into vector bosons is sensitive to the decay widths of those vector bosons because they are produced with at least one boson significantly off-shell. Γ (H → VV) is approximately proportional to the product of the Higgs boson coupling and the vector boson width. ΓZ is well measured, but ΓW gives an uncertainty on Γ (H → WW) which is not negligible. The ratio of branching ratios, BR (H → WW) / BR (H → ZZ) measured by a combination of ATLAS and CMS at LHC is used herein to extract a width for the W boson of ΓW =1.8-0.3+0.4 GeV by assuming Standard Model couplings of the Higgs bosons. This dependence of the branching ratio on ΓW is not discussed in most Higgs boson coupling analyses.
The sensitivity of the Higgs boson branching ratios to the W boson width
Murray, William
2016-01-01
The Higgs boson branching ratio into vector bosons is sensitive to the decay widths of those vector bosons because they are produced with at least one boson significantly off-shell. Gamma(H to V V ) is approximately proportional to the product of the Higgs boson coupling and the vector boson width. Gamma Z is well known, but Gamma W gives an uncertainty on Gamma(H to W W ) which is not negligible. The ratio of branching ratios, BR(H to W W )/BR(H to ZZ) measured by a combination of ATLAS and CMS at LHC is used herein to extract a width for the W boson of Gamma W = 1.8+0.4-0.3 GeV by assuming Standard Model couplings of the Higgs bosons. This dependence of the branching ratio on Gamma W is not discussed in most Higgs boson coupling analyses.
Prospects for the search for Higgs bosons with vector boson fusion processes at the LHC
Rottlaender, Iris
2007-01-01
The search for the Higgs boson is one of the main physics goals of the Large Hadron Collider (LHC) and its two multi-purpose experiments, ATLAS and CMS. Vector boson fusion is the second largest production process for a standard model Higgs boson at the LHC and offers excellent means for background suppression. This paper gives an overview of the prospects of Higgs boson searches using vector boson fusion at the LHC. For a standard model Higgs boson, the decay channels H->tautau, H->WW and H-...
Investigations of interactions mediated by neutral currents
International Nuclear Information System (INIS)
The report is devoted to four-fermion interactions mediated by the neutral currents. The results from the second phase of LEP are presented, when the production of two massive bosons was possible with the increased energy of the e+e- collisions. It enabled for a direct test of nonabelian structure of the electroweak theory. The results concern the four-fermion production of the pairs of the ZZ bosons, single Z and Zγ* production as well as search for anomalous gauge bosons couplings. The large part of the report is devoted to experimental techniques, physics analyses and discussion of results. (author)
Introduction to bosonic string theory
International Nuclear Information System (INIS)
This is an introductory set of five lectures on bosonic string theory. The first one deals with the classical theory of bosonic strings. The second and third lectures cover quantization. Three basic quantization methods are sketched: the old covariant formalism, the light-cone gauge quantization, where the spectrum is derived and the Polyakov path integral formalism and in particular the partition function at one loop. Finally, the last lecture covers interactions, low energy effective action, the general idea of compactification and in particular toroidal compactification. The notes are based on books by Green, Schwarz and Witten, Polchinski, Lust and Theissen and Kaku and review papers by D'Hocker and Phong and O. Alvarez. (author)
A general approach to bosonization
Indian Academy of Sciences (India)
Girish S Setulur; V Meera
2007-10-01
We summarize recent developments in the ﬁeld of higher dimensional bosonization made by Setlur and collaborators and propose a general formula for the ﬁeld operator in terms of currents and densities in one dimension using a new ingredient known as a `singular complex number'. Using this formalism, we compute the Green function of the homogeneous electron gas in one spatial dimension with short-range interaction leading to the Luttinger liquid and also with long-range interactions that lead to a Wigner crystal whose momentum distribution computed recently exhibits essential singularities. We generalize the formalism to ﬁnite temperature by combining with the author's hydrodynamic approach. The one-particle Green function of this system with essential singularities cannot be easily computed using the traditional approach to bosonization which involves the introduction of momentum cutoffs, hence the more general approach of the present formalism is proposed as a suitable alternative.
Barbieri, Riccardo; Kannike, Kristjan; Sala, Filippo; Tesi, Andrea
2013-01-01
Now that one has been found, the search for signs of more scalars is a primary task of current and future experiments. In the motivated hypothesis that the extra Higgs bosons of the next-to-minimal supersymmetric Standard Model (NMSSM) be the lightest new particles around, we outline a possible overall strategy to search for signs of the CP-even states. This work complements Ref. arXiv:1304.3670.
International Nuclear Information System (INIS)
The 4 of July 2012, the CERN physicists announced the discovery of the Higgs boson, a particle which existence is essential to the understanding of our world. The paper relates this day which will remain in the history of the physics of particles, and gives some details of the results of the CMS and Atlas experiments on the CERN Large Hadron Collider (LHC). Results from the Fermilab's Tevatron accelerator are also mentioned
Bosonic colored group field theory
Energy Technology Data Exchange (ETDEWEB)
Ben Geloun, Joseph [Universite Paris XI, Laboratoire de Physique Theorique, Orsay Cedex (France); University of Abomey-Calavi, Cotonou (BJ). International Chair in Mathematical Physics and Applications (ICMPA-UNESCO Chair); Universite Cheikh Anta Diop, Departement de Mathematiques et Informatique, Faculte des Sciences et Techniques, Dakar (Senegal); Magnen, Jacques [Ecole Polytechnique, Centre de Physique Theorique, Palaiseau Cedex (France); Rivasseau, Vincent [Universite Paris XI, Laboratoire de Physique Theorique, Orsay Cedex (France)
2010-12-15
Bosonic colored group field theory is considered. Focusing first on dimension four, namely the colored Ooguri group field model, the main properties of Feynman graphs are studied. This leads to a theorem on optimal perturbative bounds of Feynman amplitudes in the ''ultraspin'' (large spin) limit. The results are generalized in any dimension. Finally, integrating out two colors we write a new representation, which could be useful for the constructive analysis of this type of models. (orig.)
Electroweak boson production at LHCb
Directory of Open Access Journals (Sweden)
Wallace Ronan
2013-11-01
Full Text Available Measurements of W and Z boson production provide important tests of the Standard Model as well as being inputs for determining the parton density functions of the proton. W and Z production cross-sections, and their ratios, have been measured using the LHCb detector and are reported here. Datasets of up to 1 fb−1 at √s = 7 TeV are used.
Domains of bosonic functional integrals
International Nuclear Information System (INIS)
We propose a mathematical framework for bosonic Euclidean quantum field functional integrals based on the theory of integration on the dual algebraic vector space of classical field sources. We present a generalization of the Minlos-Dao Xing theorem and apply it to determine exactly the domain of integration associated to the functional integral representation of the two-dimensional quantum electrodynamics Schwinger generating functional. (author)
Collider Signatures of Goldstone Bosons
Cheung, Kingman; Yuan, Tzu-Chiang
2014-01-01
Recently Weinberg suggested that Goldstone bosons arising from the spontaneous breakdown of some global hidden symmetries can interact weakly in the early Universe and account for a fraction of the effective number of neutrino species N_{eff}, which has been reported persistently 2\\sigma away from its expected value of three. In this work, we study in some details a number of experimental constraints on this interesting idea based on the simplest possibility of a global U(1), as studied by Weinberg. We work out the decay branching ratios of the associated light scalar field \\sigma and suggest a possible collider signature at the Large Hadron Collider (LHC). In some corners of the parameter space, the scalar field \\sigma can decay into a pair of pions with a branching ratio of order 10% while the rest is mostly a pair of Goldstone bosons. The collider signature would be gluon fusion into the standard model Higgs boson gg -> H followed by H -> \\sigma \\sigma -> (\\pi\\pi) (\\alpha\\alpha) where \\alpha is the Goldsto...
Distinguishing a SM-like MSSM Higgs boson from SM Higgs boson at muon collider
Indian Academy of Sciences (India)
Jai Kumar Singhal; Sardar Singh; Ashok K Nagawat
2007-06-01
We explore the possibility of distinguishing the SM-like MSSM Higgs boson from the SM Higgs boson via Higgs boson pair production at future muon collider. We study the behavior of the production cross-section in SM and MSSM with Higgs boson mass for various MSSM parameters tan and A. We observe that at fixed CM energy, in the SM, the total cross-section increases with the increase in Higgs boson mass whereas this trend is reversed for the MSSM. The changes that occur for the MSSM in comparison to the SM predictions are quantified in terms of the relative percentage deviation in cross-section. The observed deviations in cross-section for different choices of Higgs boson masses suggest that the measurements of the cross-section could possibly distinguish the SM-like MSSM Higgs boson from the SM Higgs boson.
CMS standard model Higgs boson results
Directory of Open Access Journals (Sweden)
Garcia-Abia Pablo
2013-11-01
Full Text Available In July 2012 CMS announced the discovery of a new boson with properties resembling those of the long-sought Higgs boson. The analysis of the proton-proton collision data recorded by the CMS detector at the LHC, corresponding to integrated luminosities of 5.1 fb−1 at √s = 7 TeV and 19.6 fb−1 at √s = 8 TeV, confirm the Higgs-like nature of the new boson, with a signal strength associated with vector bosons and fermions consistent with the expectations for a standard model (SM Higgs boson, and spin-parity clearly favouring the scalar nature of the new boson. In this note I review the updated results of the CMS experiment.
An Introduction to Boson-Sampling
Gard, Bryan T.; Motes, Keith R.; Olson, Jonathan P.; Rohde, Peter P.; Dowling, Jonathan P.
2015-06-01
Boson-sampling is a simplified model for quantum computing that may hold the key to implementing the first ever post-classical quantum computer. Boson-sampling is a non-universal quantum computer that is significantly more straightforward to build than any universal quantum computer proposed so far. We begin this chapter by motivating boson-sampling and discussing the history of linear optics quantum computing. We then summarize the boson-sampling formalism, discuss what a sampling problem is, explain why boson-sampling is easier than linear optics quantum computing, and discuss the Extended Church-Turing thesis. Next, sampling with other classes of quantum optical states is analyzed. Finally, we discuss the feasibility of building a boson-sampling device using existing technology.
A semiclassical approach for the Higgs boson
Fariborz, Amir H; Schechter, Joseph
2014-01-01
Starting from the equations of motion of the fields involved in a theory with spontaneous symmetry breaking and by making simple assumptions regarding their behavior we derive simple tree level relations between the mass of the Higgs boson in the theory and the masses of the gauge bosons corresponding to the broken generators. We show that these mass relations have a clear meaning if both the scalars and the gauge bosons are composite states made of two fermions.
Probing anomalous gauge boson couplings at LEP
International Nuclear Information System (INIS)
We bound anomalous gauge boson couplings using LEP data for the Z → bar ∫∫ partial widths. We use an effective field theory formalism to compute the one-loop corrections resulting from non-standard model three and four gauge boson vertices. We find that measurements at LEP constrain the three gauge boson couplings at a level comparable to that obtainable at LEPII
Fermionic subspaces of the bosonic string
Energy Technology Data Exchange (ETDEWEB)
Chattaraputi, Auttakit [Department of Physics, University of Chulalongkorn, Bangkok 10330 (Thailand); Englert, Francois [Service de Physique Theorique, Universite Libre de Bruxelles, Campus Plaine, CP 225, Boulevard du Triomphe, B-1050 Bruxelles (Belgium); Houart, Laurent [Service de Physique Theorique et Mathematique, Universite Libre de Bruxelles, Campus Plaine CP 231, Boulevard du Triomphe, B-1050 Brussells (Belgium); Taormina, Anne [Department of Mathematical Sciences, University of Durham, South Road, DH1 3LE Durham (United Kingdom)
2003-06-21
A universal symmetric truncation of the bosonic string Hilbert space yields all known closed fermionic string theories in ten dimensions, their D-branes and their open descendants. We highlight the crucial role played by group theory and two-dimensional conformal field theory in the construction and emphasize the predictive power of the truncation. Such circumstantial evidence points towards the existence of a mechanism which generates spacetime fermions out of bosons dynamically within the framework of bosonic string theory.
Fermionic Subspaces of the Bosonic String
Chattaraputi, A; Houart, L; Taormina, A; Chattaraputi, Auttakit; Englert, Francois; Houart, Laurent; Taormina, Anne
2003-01-01
A universal symmetric truncation of the bosonic string Hilbert space yields all known closed fermionic string theories in ten dimensions, their D-branes and their open descendants. We highlight the crucial role played by group theory and two-dimensional conformal field theory in the construction and emphasize the predictive power of the truncation. Such circumstantial evidence points towards the existence of a mechanism which generates space-time fermions out of bosons dynamically within the framework of bosonic string theory.
Fermionic Subspaces of the Bosonic String
Chattaraputi, A.; Englert, F.; Houart, L.; Taormina, A.
A universal symmetric truncation of the bosonic string Hilbert space yields all known closed fermionic string theories in ten dimensions, their D-branes and their open descendants. We highlight the crucial role played by group theory and two-dimensional conformal field theory in the construction and emphasize the predictive power of the truncation. Such circumstantial evidence points towards the existence of a mechanism which generates space-time fermions out of bosons dynamically within the framework of bosonic string theory.
Testing the Higgs Boson Coupling to Gluons
Langenegger, Urs; Strebel, Ivo
2015-01-01
We study the possibility to separate in gluon fusion loop-induced Higgs boson production from point-like production. The Higgs boson is reconstructed in the Hgg final state at very large transverse momentum. Using the Higgs boson yields (normalized to the overall rate) and the shape of the Higgs boson pt distribution the two hypotheses can be separated with 2 standard deviations with an integrated luminosity of about 500 fb^-1. The largest experimental uncertainty affecting this estimate is the background event yield. The theoretical uncertainties from missing top mass effects are large, but can be decreased with dedicated calculations.
Mele, S
2004-01-01
The high-energy and high-luminosity data-taking campaigns of the LEP e+e- collider provided the four collaborations, ALEPH, DELPHI, L3 and OPAL, with about 50 000 W-boson pairs and about a thousand singly-produced W bosons. This unique data sample has an unprecedented reach in probing some aspects of the Standard Model of the electroweak interactions, and this article reviews several achievements in the understanding of W-boson physics at LEP. The measurements of the cross sections for W-boson production are discussed, together with their implication on the existence of the coupling between Z and W bosons. The precision measurements of the magnitude of triple gauge-boson couplings are presented. The observation of the longitudinal helicity component of the W-boson spin, related to the mechanism of electroweak symmetry breaking, is described together with the techniques used to probe the CP and CPT symmetries in the W-boson system. A discussion on the intricacies of the measurement of the mass of the W boson, ...
Rotating Boson Stars and Q-Balls
Kleihaus, B; List, M; Kleihaus, Burkhard; Kunz, Jutta; List, Meike
2005-01-01
We consider axially symmetric, rotating boson stars. Their flat space limits represent spinning Q-balls. We discuss their properties and determine their domain of existence. Q-balls and boson stars are stationary solutions and exist only in a limited frequency range. The coupling to gravity gives rise to a spiral-like frequency dependence of the boson stars. We address the flat space limit and the limit of strong gravitational coupling. For comparison we also determine the properties of spherically symmetric Q-balls and boson stars.
The Higgs boson mass and SUSY spectra in 10D SYM theory with magnetized extra dimensions
Directory of Open Access Journals (Sweden)
Hiroyuki Abe
2014-11-01
Full Text Available We study the Higgs boson mass and the spectrum of supersymmetric (SUSY particles in the well-motivated particle physics model derived from a ten-dimensional supersymmetric Yang–Mills theory compactified on three factorizable tori with magnetic fluxes. This model was proposed in a previous work, where the flavor structures of the standard model including the realistic Yukawa hierarchies are obtained from non-hierarchical input parameters on the magnetized background. Assuming moduli- and anomaly-mediated contributions dominate the soft SUSY breaking terms, we study the precise SUSY spectra and analyze the Higgs boson mass in this mode, which are compared with the latest experimental data.
Search for WIMP dark matter produced in association with a Z boson with the ATLAS detector
Basalaev, Artem; The ATLAS collaboration
2016-01-01
The search for weakly interacting dark matter particle (WIMP) candidates produced in association with a Z boson is presented. Events with large missing transverse momentum and consistent with the decay of a Z boson into oppositely charged electron or muon pairs were selected in analysis. Background estimates and corresponding systematic uncertainties are shown. The limits on the mass scale of the contact interaction as a function of the dark matter particle mass and the limits on the coupling and scalar particle mediator mass for 8 TeV proton-proton collisions data are presented. Prospects for analysis using 13 TeV proton-proton collisions data are discussed.
Mass generation via the Higgs boson and the quark condensate of the QCD vacuum
Schumacher, Martin
2015-01-01
The Higgs boson, recently discovered with a mass of 125.09$\\pm$0.24 GeV is known to mediate the masses of elementary particles, but only 2% of the mass of the nucleon. Extending a previous investigation [1] and including the strange-quark sector, hadron masses are derived from the quark condensate of the QCD vacuum and from the effects of the Higgs boson. These calculations include the $\\pi$ meson, the nucleon and the scalar mesons $\\sigma(600)$, $\\kappa(800)$, $a_0(980)$ $f_0(980)$ and $f_0(...
Signature of Large Extra Dimensions from Z boson pair production at the CERN Large Hadron Collider
Gao, Jun; Li, Chong Sheng; Gao, Xiangdong; Zhang, Jia Jun
2009-01-01
We study the Z boson pair production mediated by the Kaluza-Klein (KK) graviton in large extra dimensions (LED) at the CERN Large Hadron Collider (LHC). We use the partial wave unitarity to discuss the constraints on the process energy scale in order to give a self-consistent calculation. We find that the LED contributions can enhance the Z boson pair production cross sections significantly when the fundamental scale $M_S$ of the large extra dimensions is up to several TeV. We also show that ...
Singlet neighbors of the Higgs boson
Batell, Brian; McKeen, David; Pospelov, Maxim
2012-10-01
The newly discovered resonance at 125 GeV has properties consistent with the Standard Model (SM) Higgs particle, although some production and/or decay channels currently exhibit O(1) deviations. We consider scenarios with a new scalar singlet field with couplings to electrically charged vector-like matter, focusing particularly on the case when the singlet mass lies within a narrow few GeV window around the Higgs mass. Such a `singlet neighbor' presents novel mechanisms for modifying the observed properties of the Higgs boson. For instance, even a small amount of the Higgs-singlet mixing can lead to a significant enhancement of the apparent diphoton rate. Alternatively, the Higgs may decay into the nearby singlet, along with a very light, very soft mediator particle, in which case there can be O(1) enhancement to the apparent diphoton rate even for TeV-scale charged vector-like matter. We also explore models in which vector-like fermions mix with the SM leptons, causing the simultaneous enhancement of γγ and suppression of tau overline{tau } Higgs branching ratios. Our scenario can be tested with the accumulating LHC data by probing for the di-resonance structure of the 125 GeV diphoton signal, as well as the relative shift in the resonance location between the diphoton and four-lepton modes.
Bosonic Matrix Theory and Matrix Dbranes
Chaudhuri, S
2002-01-01
We develop new tools for an in-depth investigation of our recent proposal for Matrix Theory. We construct the anomaly-free and finite planar continuum limit of the ground state with SO(2^{13}) symmetry matching with the tadpole and tachyon free IR stable high temperature ground state of the open and closed bosonic string. The correspondence between large N limits and spacetime effective actions is demonstrated more generally for an arbitrary D25brane ground state which might include brane-antibrane pairs or NS-branes and which need not have an action formulation. Closure of the finite N matrix Lorentz algebra nevertheless requires that such a ground state is simultaneously charged under all even rank antisymmetric matrix potentials. Additional invariance under the gauge symmetry mediated by the one-form matrix potential requires a ground state charged under the full spectrum of antisymmetric (p+1)-form matrix potentials with p taking any integer value less than 26. Matrix Dbrane democracy has a beautiful larg...
Landau-Yang theorem and decays of a Z' boson into two Z bosons.
Keung, Wai-Yee; Low, Ian; Shu, Jing
2008-08-29
We study the decay of a Z' boson into two Z bosons by extending the Landau-Yang theorem to a parent particle decaying into two Z bosons. For a spin-1 parent the theorem predicts that (1) there are only two possible couplings and (2) the normalized differential cross section depends on kinematics only through a phase shift in the azimuthal angle between the two decay planes of the Z boson. When the parent is a Z' the two possible couplings are anomaly induced and CP violating, respectively. At the CERN Large Hadron Collider their effects could be disentangled when both Z bosons decay leptonically. PMID:18851602
On Nonlinear Bosonic Coherent States
Genovese, Marco; Rasetti, Mario
2009-01-01
Nonlinear coherent states are an interesting resource for quantum technologies. Here we investigate some critical features of the single-boson nonlinear coherent states, which are theoretically constructed as eigenstates of the annihilation operator and experimentally realized as stationary states of a trapped laser-driven ion. We show that the coherence and the minimum-uncertainty properties of such states are broken for values of the Lamb-Dicke parameter corresponding to the roots of the Laguerre polynomials, which enter their explicit expression. The case of the multiboson nonlinear coherent states is also discussed.
Buchmüller, O L; Thompson, J C
2002-01-01
the status of the measurement of the W boson mass at LEP-2 is reviewed. Properties of the W such as branching ration into quarks and leptons and couplings to other neutral gauge bosons are reported. 4-fermion production cross-sections in e sup + e sup - collisions are also presented. (authors)
Analysis of boson cascade laser characteristics
Ivanov, K. A.; Kaliteevskaya, N. A.; Gubaidullin, A. R.; Kaliteevski, M. A.
2015-11-01
The dependence of the level population on pumping in a boson cascade laser has been theoretically studied. Analytical expressions for the population of various cascade levels and the terahertz mode below and above the pumping threshold are obtained. Formulas for the pumping threshold and external quantum efficiency of the boson cascade laser are derived.
Jalilian-Marian, Jamal
1994-01-01
We study radiative decay modes of the Z-boson into heavy quark bound states. We find that the widths for these decays are extremely small. We conclude that these decays will not be detectable for the time being unless there is a significant increase in the number of Z-bosons produced at the electron- positron colliders.
Diffractive Higgs Boson photoproduction in peripheral collisions
International Nuclear Information System (INIS)
An alternative process is proposed for the diffractive Higgs boson production inspired in the Durham model, exploring it through the photon-proton interaction. In this sense, we estimate the production cross section of the Higgs boson, comparing some sets of parton distributions in the proton and confronting this results with those from other processes. (author)
Goldstone Bosons as Fractional Cosmic Neutrinos
Weinberg, Steven
2013-01-01
It is suggested that Goldstone bosons may be masquerading as fractional cosmic neutrinos, contributing about 0.39 to what is reported as the effective number of neutrino types in the era before recombination. The broken symmetry associated with these Goldstone bosons is further speculated to be the conservation of the particles of dark matter.
Electroweak gauge boson polarisation at the LHC
Stirling, W J
2012-01-01
We study the polarisation of gauge bosons produced at the LHC. Polarisation effects for W bosons manifest themselves in the angular distributions of the lepton and in the distributions of lepton transverse momentum and missing transverse energy. The distributions also depend on the selection cuts, with kinematic effects competing with polarisation effects. The polarisation is discussed for a range of different processes producing W bosons: W+jets, W from top (single and pair) production, W pair production and W production in association with a Z or Higgs boson. The relative contributions of the different polarisation states varies from process to process, reflecting the dynamics of the underlying hard-scattering process. We also present results for the polarisation of the Z boson produced in association with QCD jets at the LHC, and comment on the differences between W and Z production.
The Boson peak in supercooled water.
Kumar, Pradeep; Wikfeldt, K Thor; Schlesinger, Daniel; Pettersson, Lars G M; Stanley, H Eugene
2013-01-01
We perform extensive molecular dynamics simulations of the TIP4P/2005 model of water to investigate the origin of the Boson peak reported in experiments on supercooled water in nanoconfined pores, and in hydration water around proteins. We find that the onset of the Boson peak in supercooled bulk water coincides with the crossover to a predominantly low-density-like liquid below the Widom line TW. The frequency and onset temperature of the Boson peak in our simulations of bulk water agree well with the results from experiments on nanoconfined water. Our results suggest that the Boson peak in water is not an exclusive effect of confinement. We further find that, similar to other glass-forming liquids, the vibrational modes corresponding to the Boson peak are spatially extended and are related to transverse phonons found in the parent crystal, here ice Ih. PMID:23771033
Search for new heavy charged gauge bosons
Energy Technology Data Exchange (ETDEWEB)
Magass, Carsten Martin [RWTH Aachen Univ. (Germany)
2007-11-02
Additional gauge bosons are introduced in many theoretical extensions to the Standard Model. A search for a new heavy charged gauge boson W' decaying into an electron and a neutrino is presented. The data used in this analysis was taken with the D0 detector at the Fermilab proton-antiproton collider at a center-of-mass energy of 1.96 TeV and corresponds to an integrated luminosity of about 1 fb^{-1}. Since no significant excess is observed in the data, an upper limit is set on the production cross section times branching fraction σ_{W'}xBr (W' → ev). Using this limit, a W' boson with mass below ~1 TeV can be excluded at the 95% confidence level assuming that the new boson has the same couplings to fermions as the Standard Model W boson.
Search for new heavy charged gauge bosons
Energy Technology Data Exchange (ETDEWEB)
Magass, Carsten Martin; /RWTH Aachen U.
2007-11-01
Additional gauge bosons are introduced in many theoretical extensions to the Standard Model. A search for a new heavy charged gauge boson W{prime} decaying into an electron and a neutrino is presented. The data used in this analysis was taken with the D0 detector at the Fermilab proton-antiproton collider at a center-of-mass energy of 1.96 TeV and corresponds to an integrated luminosity of about 1 fb{sup -1}. Since no significant excess is observed in the data, an upper limit is set on the production cross section times branching fraction {sigma}{sub W{prime}}xBr (W{prime} {yields} e{nu}). Using this limit, a W{prime} boson with mass below {approx}1 TeV can be excluded at the 95% confidence level assuming that the new boson has the same couplings to fermions as the Standard Model W boson.
Orbital dynamics of binary boson star systems
International Nuclear Information System (INIS)
We extend our previous studies of head-on collisions of boson stars by considering orbiting binary boson stars. We concentrate on equal-mass binaries and study the dynamical behavior of boson/boson and boson/antiboson pairs. We examine the gravitational wave output of these binaries and compare with other compact binaries. Such a comparison lets us probe the apparent simplicity observed in gravitational waves produced by black hole binary systems. In our system of interest however, there is an additional internal freedom which plays a significant role in the system's dynamics, namely, the phase of each star. Our evolutions show rather simple behavior at early times, but large differences occur at late times for the various initial configurations
Various Models Mimicking the SM Higgs Boson
Chang, Jung; Tseng, Po-Yan; Yuan, Tzu-Chiang; 10.1142/S0217751X1230030X
2012-01-01
This review is based on the talk presented at the SUSY 2012 (Beijing). The new particle around 125 GeV observed at the Large Hadron Collider (LHC) is almost consistent with the standard model Higgs boson, except that the diphoton decay mode may be excessive. We summarize a number of possibilities. While at the LHC the dominant production mechanism for the Higgs boson of the standard model and some other extensions is via the gluon fusion process, the alternative vector-boson fusion is more sensitive to electroweak symmetry breaking. Using the well known dijet-tagging technique to single out the vector-boson fusion mechanism, we investigate potential of vector-boson fusion to discriminate a number of models suggested to give an enhanced inclusive diphoton production rate.
Boson Sampling for Molecular Vibronic Spectra
Huh, Joonsuk; Peropadre, Borja; McClean, Jarrod R; Aspuru-Guzik, Alán
2014-01-01
Quantum computers are expected to be more efficient in performing certain computations than any classical machine. Unfortunately, the technological challenges associated with building a full-scale quantum computer have not yet allowed the experimental verification of such an expectation. Recently, boson sampling has emerged as a problem that is suspected to be intractable on any classical computer, but efficiently implementable with a linear quantum optical setup. Therefore, boson sampling may offer an experimentally realizable challenge to the Extended Church-Turing thesis and this remarkable possibility motivated much of the interest around boson sampling, at least in relation to complexity-theoretic questions. In this work, we show that the successful development of a boson sampling apparatus would not only answer such inquiries, but also yield a practical tool for difficult molecular computations. Specifically, we show that a boson sampling device with a modified input state can be used to generate molecu...
International Nuclear Information System (INIS)
A Higgs boson is a particle whose existence is predicted in a class of quantum field theories in which a symmetry under a Lie group of transformations of the fields is spontaneously broken by an asymmetric vacuum state. It is a quantum of certain excitations of the order parameter. Such spontaneous symmetry breaking was first proposed as a feature of theories of elementary particles in 1960, but it has a much longer history in the contest of condensed matter theory: in ferromagnetism as early as 1928, in superfluidity and also in superconductivity. It was Nambu who in 1960 first proposed relativistic models inspired by BCS theory as a means of generating fermion masses in elementary particle physics but the hadronic models he proposed lacked the local gauge invariance of their prototype. The connection between spontaneous symmetry and Goldstone bosons in relativistic theories were formally proved in 1962 but the experimental evidence against the existence of such particles in the real world cast a doubt on the viability of Nambu's ideas. Between 1962 and 1964 a debate developed in the literature about whether the Goldstone theorem could be evaded. The resolution of this difficulty finally came in 1964, when Higgs realized that theories with a local gauge invariance fail to satisfy one of the axioms on which the 1962 proof of the Goldstone theorem depends. By the end of July 1964, Higgs had also written down the simplest field-theoretic model that is now known as the Higgs model. (A.C.)
Csorgo, T
2013-01-01
One of the highlights of 2012 in physics is related to two papers, published by the ATLAS and the CMS Collaborations, that announced the discovery of at least one new particle in pp collisions at CERN LHC. At least one of the properties of this new particle is found to be similar to that of the Higgs boson, the last and most difficult to find building block from the Standard Model of particle physics. Physics teachers are frequently approached by their media-educated students, who inquire about the properties of the Higgs boson, but physics teachers are rarely trained to teach this elusive aspect of particle physics in elementary, middle or junior high schools. In this paper I describe a card-game, that can be considered as a hands-on and easily accessible tool that allows interested teachers, students and also motivated lay-persons to play with the properties of the newly found Higgs-like particle. This new particle was detected through its decays to directly observable, final state particles. Many of these ...
Stephanie McClellan
2013-01-01
Before embarking on a successful career as a musician, Alan Parsons started out as a sound engineer - earning his first credit on The Beatles’ Abbey Road. Over the years, he has worked and collaborated with various artists, but 30 September 2013 marks a unique collaboration. For CERN’s ‘Bosons & More’ party, Alan Parsons Live Project will be sharing the stage with the Orchestre de la Suisse Romande. Having already visited CERN in 2011, Alan Parsons provides an insight into his views on science and his upcoming performance at the ‘Bosons & More’ event. Alan Parsons during his visit to CERN in August 2011. Since visiting CERN in 2011, how have your feelings towards the Organization developed? I was thrilled to hear about the recent discovery and how years of work had paid off. Together with my wife, Lisa, and my band, we were very privileged to come to CERN a couple of years ago, hav...
Fundamental fermion interactions via vector bosons of unified SU(2 x SU(4 gauge fields
Directory of Open Access Journals (Sweden)
Eckart eMarsch
2016-02-01
Full Text Available Employing the fermion unification model based on the intrinsic SU(8 symmetry of a generalized Dirac equation, we discuss the fundamental interactions under the SU(8=SU(2$otimes$SU(4 symmetry group. The physics involved can describe all fermions, the leptons (electron and neutrino, and the coloured up and down quarks of the first generation in the standard model (SM by a complex SU(8 octet of Dirac spinor fields. The fermion interactions are found to be mediated by the unified SU(4 and SU(2 vector gauge boson fields, which include the photon, the gluons, and the bosons $Z$ and $W$ as well known from the SM, but also comprise new ones, namely three coloured $X$ bosons carrying a fractional hypercharge of $pm4/3$ and transmuting leptons into quarks and vice versa. The full covariant derivative of the model is derived and discussed. The Higgs mechanism gives mass to the $Z$ and $W$ bosons, but also permits one to derive the mass of the coloured $X$ boson, for which depending on the choice of the values of the coupling constant, the estimates are 35~GeV or 156~GeV, values that are well within reach of the LHC. The scalar Higgs field can also lend masses to the fermions and fix their physical values for given appropriate coupling constants to that field.
Searching for GeV-scale new Gauge Bosons in QGP thermal dilepton production
Davis, Jonathan H
2013-01-01
In this paper we propose to use the measurement of the thermal Quark-Gluon Plasma (QGP) dilepton spectra in the Intermediate Mass Region (IMR) of heavy-ion collisions, as a new method to search for GeV-scale dark gauge bosons (gamma' or Z'). Such light mediators are a common feature of light (i.e. low mass) dark matter scenarios, which have been invoked to explain puzzling signals in dark matter indirect and direct detection experiments. First we show that a light gamma' or Z' will generate a resonant enhancement of the dilepton spectrum produced thermally by the QGP, at an energy corresponding to the dark gauge boson mass. Secondly, using data from the PHENIX experiment, we are able to set an upper limit on the combined coupling of this new gauge boson to quarks and leptons (independently of their vectorial or axial nature) chi_q chi_e < 10^(-3) at the 95% confidence level for a gauge boson mass in the range 1.5 - 2.5 GeV. This result complements previous searches for new light gauge bosons and probes a n...
Probing Electroweak Gauge Boson Scattering with the ATLAS Detector at the Large Hadron Collider
Anger, Philipp; Lammers, Sabine
Electroweak gauge bosons as central components of the Standard Model of particle physics are well understood theoretically and have been studied with high precision at past and present collider experiments. The electroweak theory predicts the existence of a scattering process of these particles consisting of contributions from triple and quartic bosonic couplings as well as Higgs boson mediated interactions. These contributions are not separable in a gauge invariant way and are only unitarized in the case of a Higgs boson as it is described by the Standard Model. The process is tied to the electroweak symmetry breaking which introduces the longitudinal modes for the massive electroweak gauge bosons. A study of this interaction is also a direct verification of the local gauge symmetry as one of the fundamental axioms of the Standard Model. With the start of the Large Hadron Collider and after collecting proton-proton collision data with an integrated luminosity of $20.3\\;\\mathrm{fb}^{-1}$ at a center-of-mass e...
Higgs boson research in e+e- collisions
International Nuclear Information System (INIS)
This lesson is about the experimental results obtained in 1990, at LEP concerning Higgs boson research. The main topics studied are: Higgs boson research of minimal Standard Model, then beyond the minimal model, the charged Higgs boson research in 2-doublets model, and finally, neutral Higgs boson research in a specific 2-doublets model, the minimal supersymmetric standard model
Christensen, Neil; Su, Shufang
2012-01-01
The recent results on Higgs boson searches from LHC experiments provide significant guidance in exploring the Minimal Supersymmetric (SUSY) Standard Model (MSSM) Higgs sector. If we accept the existence of a SM-like Higgs boson in the mass window of 123 GeV-127 GeV as indicated by the observed gamma,gamma events, there are two distinct mass regions (in mA) left in the MSSM Higgs sector: (a) the lighter CP-even Higgs boson being SM-like and the non-SM-like Higgs bosons all heavy and nearly degenerate above 300 GeV (an extended decoupling region); (b) the heavier CP-even Higgs boson being SM-like and the neutral non-SM-like Higgs bosons all nearly degenerate around 100 GeV (a small non-decoupling region). On the other hand, due to the strong correlation between the Higgs decays to W+W- and to gamma,gamma predicted in the MSSM, the apparent absence of a W+W- final state signal is in direct conflict with the gamma,gamma peak. If the deficit in the W+W- channel persists, it would imply that the SM-like Higgs boson...
Composite Weak Bosons at the Large Hadronic Collider
Fritzsch, Harald
2016-01-01
In a composite model of the weak bosons the p-wave bosons are studied. The state with the lowest mass is identified with the boson, which has been discovered at the LHC. Specific properties of the excited bosons are discussed, in particular their decays into weak bosons and photons. Recently a two photon signal has been observed, which might come from the decay of a neutral heavy boson with a mass of about 0.75 TeV. This particle could be an excited weak tensor boson.
Search for a Higgs Boson Decaying to Weak Boson Pairs at LEP
Achard, P; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo-Llatas, M; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J A; De Asmundis, R; Déglon, P L; Debreczeni, J; Degré, A; Dehmelt, K; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Dionisi, C; Dittmar, M; Doria, A; Dova, M T; Duchesneau, D; Duda, M; Echenard, B; Eline, A; El-Hage, A; El-Mamouni, H; Engler, A; Eppling, F J; Extermann, P; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, M; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisher, W; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hakobyan, R S; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Hu, Y; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Käfer, D; Kaur, M; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, E W; Klimentov, A; König, A C; Kopal, M; Koutsenko, V F; Kräber, M H; Krämer, R W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Levtchenko, M; Levchenko, P M; Li, C; Likhoded, S; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Luci, C; Luminari, L; Lustermann, W; Ma Wen Gan; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Nisati, A; Nowak, H; Ofierzynski, R A; Organtini, G; Palomares, C; Paolucci, P; Paramatti, R; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Pothier, J; Prokofiev, D O; Prokofev, D; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Roe, B P; Romero, L; Rosca, A; Rosier-Lees, S; Roth, S; Rosenbleck, C; Roux, B; Rubio, J A; Ruggiero, G; Rykaczewski, H; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Sanders, M P; Schäfer, C; Shchegelskii, V; Schopper, Herwig Franz; Schotanus, D J; Sciacca, C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Son, D; Souga, C; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Sushkov, S; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tarjan, P; Tauscher, Ludwig; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Ulbricht, J; Valente, E; Van de Walle, R T; Vásquez, R; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wang, X L; Wang, Z M; Weber, M; Wienemann, P; Wilkens, H; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhao, J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zichichi, A; Zimmermann, B; Zöller, M
2003-01-01
A Higgs particle produced in association with a Z boson and decaying into weak boson pairs is searched for in 336.4 1/pb of data collected by the L3 experiment at LEP at centre-of-mass energies from 200 to 209 GeV. Limits on the branching fraction of the Higgs boson decay into two weak bosons as a function of the Higgs mass are derived. These results are combined with the L3 search for a Higgs boson decaying to photon pairs. A Higgs produced with a Standard Model e+e- --> Zh cross section and decaying only into electroweak boson pairs is excluded at 95% CL for a mass below 107 GeV.
Bosonic string theory with dust
International Nuclear Information System (INIS)
We study a modified bosonic string theory that has a pressureless ‘dust’ field on the string worldsheet. The dust is a real scalar field with unit gradient which breaks conformal invariance. Hamiltonian analysis reveals a time reparametrization constraint linear in the dust field momentum and a spatial diffeomorphism constraint. This feature provides a natural ‘dust time’ gauge in analogy with the parametrized particle. In this gauge we give a Fock quantization of the theory, which is complete and self-consistent in d < 26. The Hamiltonian of the theory is not a constraint; as a consequence the Hilbert space and mass spectrum are characterized by an additional parameter, and includes the usual string spectrum as a special case. The other sectors provide new particle spectra, some of which do not have tachyons. (paper)
Leptogenesis and neutral gauge bosons
Heeck, Julian
2016-01-01
We consider low-scale leptogenesis via right-handed neutrinos $N$ coupled to a $Z'$ boson, with gauged $U(1)_{B-L}$ as a simple realization. Keeping the neutrinos sufficiently out of equilibrium puts strong bounds on the $Z'$ coupling strength and mass, our focus being on light $Z'$ and $N$, testable in the near future by SHiP, HPS, Belle II, and at the LHC. We show that leptogenesis could be robustly falsified in a large region of parameter space by the double observation of $Z'$ and $N$, e.g. in the channel $pp\\to Z' \\to NN$ with displaced $N$-decay vertex, and by several experiments searching for light $Z'$, according to the mass of $N$.
Bentivegna, Marco; Spagnolo, Nicolò; Sciarrino, Fabio
2016-04-01
Is it possible to assess the correct functioning of a quantum device which eludes efficient computation of the expected results? The BosonSampling protocol is one of the best candidates to experimentally demonstrate the superior computational power of quantum mechanics, but the problem of its results certification requires the development of new methodologies, when the size of the problem becomes too large for a complete classical simulation. A recent work (Walschaers et al 2016 New J. Phys. 18 032001) has provided a significant step forward in this direction, by developing a statistical test to identify particle types in a many-body interference pattern. This tool can be applied in a general scenario to assess and investigate multi-particle coherent dynamics.
Vector Boson Scattering at ATLAS
Ozcan, V E
2009-01-01
While the Higgs model is the best studied scenario of electroweak symmetry breaking, there is no fundamental reason for the physics responsible for the symmetry breaking to be weakly-coupled. Many alternatives exist, predicting highly model-dependent signatures. By measuring the cross-section for the W and Z scattering at the LHC, it will be possible to obtain model-independent evidence for strong symmetry breaking or to constrain these various models. ATLAS Collaboration has recently performed a realistic simulation of this process and its backgrounds, which takes into account the detector effects and has developed new jet-analysis techniques for identifying vector bosons within the immense QCD backgrounds expected at the LHC. These techniques and the prospects for measuring the scattering signal will be presented.
Weak gauge boson radiation in parton showers
International Nuclear Information System (INIS)
The emission of W and Z gauge bosons off quarks is included in a traditional QCD + QED shower. The unitarity of the shower algorithm links the real radiation of the weak gauge bosons to the negative weak virtual corrections. The shower evolution process leads to a competition between QCD, QED and weak radiation, and allows for W and Z boson production inside jets. Various effects on LHC physics are studied, both at low and high transverse momenta, and effects at higher-energy hadron colliders are outlined
Masses of Higgs bosons in supersymmetric theories
International Nuclear Information System (INIS)
A simple method for Higgs boson mass calculation in the MSSM and in its minimal extension, the so-called next-to-minimal supersymmetric standard model (NMSSM), is suggested. The approach is based on the hierarchic structure of the mass matrix. Such matrices are obtained within the framework of MSSM and NMSSM. The simple analytical expression for Higgs boson spectrum in both these models are obtained. It was shown that the mass of the lightest Higgs boson in the NMSSM can be essentially lighter than its upper bound
Improved effective vector boson approximation revisited
Bernreuther, Werner
2015-01-01
We reexamine the improved effective vector boson approximation which is based on two-vector-boson luminosities $\\mathrm{\\mathbf{L}}_{\\rm pol}$ for the computation of weak gauge-boson hard scattering subprocesses $V_1 V_2\\to {\\cal W}$ in high-energy hadron-hadron or $e^-e^+$ collisions. We calculate these luminosities for the nine combinations of the transverse and longitudinal polarizations of $V_1$ and $V_2$. The quality of this approach is investigated for the reactions $e^-e^+ \\to W^- W^+ \
Bosonic thermoelectric transport and breakdown of universality
International Nuclear Information System (INIS)
We discuss the general principles of transport in normal phase atomic gases, comparing Bose and Fermi systems. Our study shows that two-dimensional bosonic transport is non-universal with respect to different dissipation mechanisms. Near the superfluid transition temperature Tc, a striking similarity between the fermionic and bosonic transport emerges because super-conducting (fluid) fluctuation transport for Fermi gases is dominated by the bosonic, Cooper pair component. As in fluctuation theory, one finds that the Seebeck coefficient changes sign at Tc and the Lorenz number approaches zero at Tc. Our findings appear quantitatively consistent with recent Bose gas experiments. (paper)
An enigma called the Higgs boson
International Nuclear Information System (INIS)
The search for the Higgs boson, the missing pillar of the currently prevailing theory of weak and electromagnetic interactions, is a prime goal of the Large Hadron Collider (LHC) experiment. We review the circumstances, based on which our expectation of the existence of the Higgs boson has grown, how it is expected to be seen at the LHC, and where we stand in the drop of the presently available data. Moreover, we touch upon the fact that the very existence of the Higgs boson as an elementary particle provides a strong hint on possible new laws of physics. (author)
Mapping the genuine bosonic quartic couplings
Eboli, O J P
2016-01-01
The larger center-of-mass energy of the Large Hadron Collider Run 2 opens up the possibility of a more detailed study of the quartic vertices of the electroweak gauge bosons. Our goal in this work is to classify all operators possessing quartic interactions among the electroweak gauge bosons that do not exhibit triple gauge-boson vertices associated to them. We obtain all relevant operators in the non-linear and linear realizations of the $SU(2)_L \\otimes U(1)_Y$ gauge symmetry.
A light Higgs Boson would invite Supersymmmetry
Ellis, Jonathan Richard; Ellis, John; Ross, Douglas
2001-01-01
If the Higgs boson weighs about 115 GeV, the effective potential of the Standard Model becomes unstable above a scale of about 10^6 GeV. This instability may be rectified only by new bosonic particles such as stop squarks. However, avoiding the instability requires fine-tuning of the model couplings, in particular if the theory is not to become non-perturbative before the Planck scale. Such fine-tuning is automatic in a supersymmetric model, but is lost if there are no Higgsinos. A light Higgs boson would be prima facie evidence for supersymmetry in the top-quark and Higgs sectors.
The Goldstone boson equivalence theorem with fermions
Durand, Loyal; Riesselmann, Kurt
1995-01-01
The calculation of the leading electroweak corrections to physical transition matrix elements in powers of $M_H^2/v^2$ can be greatly simplified in the limit $M_H^2\\gg M_W^2,\\, M_Z^2$ through the use of the Goldstone boson equivalence theorem. This theorem allows the vector bosons $W^\\pm$ and $Z$ to be replaced by the associated scalar Goldstone bosons $w^\\pm$, $z$ which appear in the symmetry breaking sector of the Standard Model in the limit of vanishing gauge couplings. In the present pape...
Searches for heavy Higgs bosons decaying to light Higgs bosons with a mass of 125 GeV
Lane, Rebecca
2015-01-01
Searches for Higgs bosons decaying to a pair of Higgs bosons (hh or hA) or for a Higgs boson decaying to Zh/ZA are presented. Different analyses involving Higgs boson decays into bottom-quarks, tau pairs, and diphotons will be summarized in this talk.
Search for nonminimal neutral Higgs bosons from Z-boson decays
International Nuclear Information System (INIS)
Using the Mark II detector at the SLAC Linear Collider, we search for decays of the Z boson to a pair of nonminimal Higgs bosons (Z→Hs0Hp0), where one of them is relatively light (approx-lt 10 GeV). We find no evidence for these decays and we obtain limits on the ZHs0Hp0 coupling as a function of the Higgs-boson masses
Research on Higgs bosons by positron-electron collisions
International Nuclear Information System (INIS)
The experimental results obtained at LEP concerning Higgs bosons research are discussed. The existence of the Higgs bosons, from the Standard Model principles, is reviewed. The investigations on charged and neutral Higgs bosons are discussed taking into account a two-doublets model. The investigations show: that the Higgs bosons cannot be found between zero and 41 GeV, and that the Higgs boson mass is approximately 40 GeV
The ATLAS collaboration
2016-01-01
A search for dark matter pair production in association with a Higgs boson decaying to a pair of bottom quarks is presented, using 3.2 \\ifb\\ of $pp$ collisions at a centre-of-mass energy of 13 TeV collected by the ATLAS detector at the LHC. The decay of the Higgs boson is reconstructed as a high-momentum $b\\bar{b}$ system with either a pair of small-radius jets, or a single large-radius jet with substructure. The observed data are found to be consistent with the expected backgrounds. Results are interpreted using a simplified model with a $Z'$ gauge boson mediating the interaction between dark matter and the Standard Model as well as a two-Higgs-doublet model containing an additional $Z'$ boson which decays to a Standard Model Higgs boson and a new pseudoscalar Higgs boson, the latter decaying into a pair of dark matter particles.
Aaboud, Morad; ATLAS Collaboration; Abbott, Brad; Abdallah, Jalal; Abdinov, Ovsat; Abeloos, Baptiste; Aben, Rosemarie; AbouZeid, Ossama; Abraham, Nicola; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Agricola, Johannes; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Ali, Babar; Aliev, Malik; Alimonti, Gianluca; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allen, Benjamin William; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Alstaty, Mahmoud; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antel, Claire; Antonelli, Mario; Antonov, Alexey; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Armitage, Lewis James; Arnaez, Olivier; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Artz, Sebastian; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Baca, Matthew John; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Baines, John; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisits, Martin-Stefan; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska-Blenessy, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barranco Navarro, Laura; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Bechtle, Philip; Beck, Hans~Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bedognetti, Matteo; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, Andrew Stuart; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Belyaev, Nikita; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez, Jose; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Beringer, Jürg; Berlendis, Simon; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertram, Iain Alexander; Bertsche, Carolyn; Bertsche, David; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Bielski, Rafal; Biesuz, Nicolo Vladi; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Bjergaard, David Martin; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blanco, Jacobo Ezequiel; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Blunier, Sylvain; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Boerner, Daniela; Bogaerts, Joannes Andreas; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bokan, Petar; Bold, Tomasz; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Bortfeldt, Jonathan; Bortoletto, Daniela; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Bossio Sola, Jonathan David; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Boutle, Sarah Kate; Boveia, Antonio; Boyd, James; Boyko, Igor; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Broughton, James; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Bruni, Lucrezia Stella; Brunt, Benjamin; Bruschi, Marco; Bruscino, Nello; Bryant, Patrick; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Budagov, Ioulian; Buehrer, Felix; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burghgrave, Blake; Burka, Klaudia; Burke, Stephen; Burmeister, Ingo; Burr, Jonathan Thomas Peter; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Caloba, Luiz; Calvente Lopez, Sergio; Calvet, David; Calvet, Samuel; Calvet, Thomas Philippe; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Camincher, Clement; Campana, Simone; Campanelli, Mario; Camplani, Alessandra; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Carbone, Ryne Michael; Cardarelli, Roberto; Cardillo, Fabio; Carli, Ina; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Casper, David William; Castaneda-Miranda, Elizabeth; Castelijn, Remco; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavallaro, Emanuele; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerda Alberich, Leonor; Cerio, Benjamin; Cerqueira, Augusto Santiago; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Stephen Kam-wah; Chan, Yat Long; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chatterjee, Avishek; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Che, Siinn; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Shenjian; Chen, Shion; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Huajie; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chomont, Arthur Rene; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocca, Claudia; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Michael; Clark, Philip James; Clarke, Robert; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Colasurdo, Luca; Cole, Brian; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consorti, Valerio; Constantinescu, Serban; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cormier, Kyle James Read; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Crawley, Samuel Joseph; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cúth, Jakub; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; D'amen, Gabriele; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dado, Tomas; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey Rogers; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Dann, Nicholas Stuart; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Merlin; Davison, Peter; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Maria, Antonio; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Dehghanian, Nooshin; Deigaard, Ingrid; Del Gaudio, Michela; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Denysiuk, Denys; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Dette, Karola; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Clemente, William Kennedy; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; do Vale, Maria Aline Barros; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Du, Yanyan; Duarte-Campderros, Jorge; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Duffield, Emily Marie; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dumancic, Mirta; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dutta, Baishali; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Edwards, Nicholas Charles; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellajosyula, Venugopal; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Ennis, Joseph Stanford; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Federica; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farina, Christian; Farina, Edoardo Maria; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fawcett, William James; Fayard, Louis; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fletcher, Gareth Thomas; Fletcher, Rob Roy MacGregor; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Forcolin, Giulio Tiziano; Formica, Andrea; Forti, Alessandra; Foster, Andrew Geoffrey; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; Fressard-Batraneanu, Silvia; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Louis Guillaume; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gascon Bravo, Alberto; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Gecse, Zoltan; Gee, Norman; Geich-Gimbel, Christoph; Geisen, Marc; Geisler, Manuel Patrice; Gemme, Claudia; Genest, Marie-Hélène; Geng, Cong; Gentile, Simonetta; Gentsos, Christos; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghasemi, Sara; Ghazlane, Hamid; Ghneimat, Mazuza; Giacobbe, Benedetto; Giagu, Stefano; Giannetti, Paola; Gibbard, Bruce; Gibson, Stephen; Gignac, Matthew; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuli, Francesco; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Giulia; Gonella, Laura; Gongadze, Alexi; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goudet, Christophe Raymond; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Graber, Lars; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Grafström, Per; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gravila, Paul Mircea; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Grevtsov, Kirill; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Groh, Sabrina; Grohs, Johannes Philipp; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guan, Wen; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Yicheng; Gupta, Ruchi; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Hadef, Asma; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Haney, Bijan; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hartmann, Nikolai Marcel; Hasegawa, Makoto; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Jochen Jens; Heinrich, Lukas; Heinz, Christian; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Henkelmann, Steffen; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hinman, Rachel Reisner; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohn, David; Holmes, Tova Ray; Homann, Michael; Hong, Tae Min; Hooberman, Benjamin Henry; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Qipeng; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Huo, Peng; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuriy; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Ishijima, Naoki; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ito, Fumiaki; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jain, Vivek; Jakobi, Katharina Bianca; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansky, Roland; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanneau, Fabien; Jeanty, Laura; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Hai; Jiang, Yi; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Johansson, Per; Johns, Kenneth; Johnson, William Joseph; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Sarah; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Jovicevic, Jelena; Ju, Xiangyang; Juste Rozas, Aurelio; Köhler, Markus Konrad; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kajomovitz, Enrique; Kalderon, Charles William; Kaluza, Adam; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneti, Steven; Kanjir, Luka; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kasahara, Kota; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawade, Kentoro; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khader, Mazin; Khalil-zada, Farkhad; Khanov, Alexander; Kharlamov, Alexey; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Knapik, Joanna; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Koi, Tatsumi; Kolanoski, Hermann; Kolb, Mathis; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotwal, Ashutosh; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Kowalewska, Anna Bozena; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozakai, Chihiro; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuechler, Jan Thomas; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lammers, Sabine; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Lazzaroni, Massimo; Le, Brian; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Quilleuc, Eloi; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Lerner, Giuseppe; Leroy, Claude; Lesage, Arthur; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Dave; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Qi; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Lindquist, Brian Edward; Lionti, Anthony Eric; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Hao; Liu, Hongbin; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanlin; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina Maria; Loch, Peter; Lockman, William; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loew, Kevin Michael; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Longo, Luigi; Looper, Kristina Anne; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lopez Solis, Alvaro; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Haonan; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luedtke, Christian; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Luzi, Pierre Marc; Lynn, David; Lysak, Roman; Lytken, Else; Lyubushkin, Vladimir; Ma, Hong; Ma, Lian Liang; Ma, Yanhui; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Maneira, José; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manousos, Athanasios; Mansoulie, Bruno; Mansour, Jason Dhia; Mantifel, Rodger; Mantoani, Matteo; Manzoni, Stefano; Mapelli, Livio; Marceca, Gino; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti-Garcia, Salvador; Martin, Brian; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martinez Outschoorn, Verena; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marx, Marilyn; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazza, Simone Michele; Mc Fadden, Neil Christopher; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McClymont, Laurie; McDonald, Emily; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melini, Davide; Mellado Garcia, Bruce Rafael; Melo, Matej; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Miano, Fabrizio; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mistry, Khilesh; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Molander, Simon; Moles-Valls, Regina; Monden, Ryutaro; Mondragon, Matthew Craig; Mönig, Klaus; Monk, James; Monnier, Emmanuel; Montalbano, Alyssa; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Stefanie; Mori, Daniel; Mori, Tatsuya; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Mortensen, Simon Stark; Morvaj, Ljiljana; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Munoz Sanchez, Francisca Javiela; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Muškinja, Miha; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nagai, Koichi; Nagai, Ryo; Nagano, Kunihiro; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naryshkin, Iouri; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nguyen Manh, Tuan; Nickerson, Richard; Nicolaidou, Rosy; Nielsen, Jason; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Norjoharuddeen, Nurfikri; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nurse, Emily; Nuti, Francesco; O'grady, Fionnbarr; O'Neil, Dugan; O'Rourke, Abigail Alexandra; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Oleiro Seabra, Luis Filipe; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onogi, Kouta; Onyisi, Peter; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Pacheco Rodriguez, Laura; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palazzo, Serena; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Panagiotopoulou, Evgenia; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Adam Jackson; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pascuzzi, Vincent; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penwell, John; Peralva, Bernardo; Perego, Marta Maria; Perepelitsa, Dennis; Perez Codina, Estel; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrov, Mariyan; Petrucci, Fabrizio; Pettersson, Nora Emilia; Peyaud, Alan; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pin, Arnaud Willy J; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pires, Sylvestre; Pirumov, Hayk; Pitt, Michael; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pozo Astigarraga, Mikel Eukeni; Pralavorio, Pascal; Pranko, Aliaksandr; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Puddu, Daniele; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Raine, John Andrew; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Ratti, Maria Giulia; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Ravinovich, Ilia; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Reale, Marilea; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reisin, Hernan; Rembser, Christoph; Ren, Huan; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rimoldi, Marco; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Rizzi, Chiara; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodina, Yulia; Rodriguez Perez, Andrea; Rodriguez Rodriguez, Daniel; Roe, Shaun; Rogan, Christopher Sean; Røhne, Ole; Röhrig, Rainer; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosenthal, Oliver; Rosien, Nils-Arne; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryu, Soo; Ryzhov, Andrey; Rzehorz, Gerhard Ferdinand; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saha, Puja; Sahinsoy, Merve; Saimpert, Matthias; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Salazar Loyola, Javier Esteban; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sánchez, Javier; Sanchez Martinez, Victoria; Sanchez Pineda, Arturo; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sandhoff, Marisa; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sasaki, Yuichi; Sato, Koji; Sauvage, Gilles; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schachtner, Balthasar Maria; Schaefer, Douglas; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schier, Sheena; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt-Sommerfeld, Korbinian Ralf; Schmieden, Kristof; Schmitt, Christian; Schmitt, Stefan; Schmitz, Simon; Schneider, Basil; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schott, Matthias; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schuh, Natascha; Schulte, Alexandra; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schwegler, Philipp; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shaikh, Nabila Wahab; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyed Ruhollah; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sickles, Anne Marie; Sidebo, Per Edvin; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Simon, Manuel; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Sivoklokov, Serguei; Sjölin, Jörgen; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Slovak, Radim; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smiesko, Juraj; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans Sanchez, Carlos; Solar, Michael; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Son, Hyungsuk; Song, Hong Ye; Sood, Alexander; Sopczak, Andre; Sopko, Vit; Sorin, Veronica; Sosa, David; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spanò, Francesco; Sperlich, Dennis; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; St Denis, Richard Dante; Stabile, Alberto; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Giordon; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Stärz, Steffen; Staszewski, Rafal; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Suchek, Stanislav; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Shuji; Tannenwald, Benjamin Bordy; Tapia Araya, Sebastian; Tapprogge, Stefan; Tarem, Shlomit; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Aaron; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira-Dias, Pedro; Temming, Kim Katrin; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Baojia(Tony); Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Trofymov, Artur; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tseng, Jeffrey; Tsiareshka, Pavel; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsui, Ka Ming; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turgeman, Daniel; Turra, Ruggero; Turvey, Andrew John; Tuts, Michael; Tyndel, Mike; Ucchielli, Giulia; Ueda, Ikuo; Ughetto, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valdes Santurio, Eduardo; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vasquez, Jared Gregory; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloce, Laurelle Maria; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigani, Luigi; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vittori, Camilla; Vivarelli, Iacopo; Vlachos, Sotirios; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wallangen, Veronica; Wang, Chao; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Tingting; Wang, Wenxiao; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Watkins, Peter; Watson, Alan; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Michael David; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Whallon, Nikola Lazar; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilk, Fabian; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winston, Oliver James; Winter, Benedict Tobias; Wittgen, Matthias; Wittkowski, Josephine; Wolter, Marcin Wladyslaw; Wolters, Helmut; Worm, Steven D; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yang, Zongchang; Yao, Weiming; Yap, Yee Chinn; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yuen, Stephanie P; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zakharchuk, Nataliia; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zeng, Jian Cong; Zeng, Qi; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Guangyi; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Rui; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Mingliang; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zwalinski, Lukasz
2016-01-01
A search for dark matter pair production in association with a Higgs boson decaying to a pair of bottom quarks is presented, using 3.2 $fb^{-1}$ of $pp$ collisions at a centre-of-mass energy of 13 TeV collected by the ATLAS detector at the LHC. The decay of the Higgs boson is reconstructed as a high-momentum $b\\bar{b}$ system with either a pair of small-radius jets, or a single large-radius jet with substructure. The observed data are found to be consistent with the expected backgrounds. Results are interpreted using a simplified model with a $Z'$ gauge boson mediating the interaction between dark matter and the Standard Model as well as a two-Higgs-doublet model containing an additional $Z'$ boson which decays to a Standard Model Higgs boson and a new pseudoscalar Higgs boson, the latter decaying into a pair of dark matter particles.
Physics of the intermediate vector bosons
International Nuclear Information System (INIS)
The conversion of the CERN 450 GeV proton synchrotron (SPS) into a proton-antiproton collider was originally proposed in 1976 as a fast and relatively cheap way to produce and detect the weak intermediate Vector Bosons (IVB), W* and Z, by achieving hadronic collisions at an energy large enough to provide observable rates. The properties of such particles had been predicted already in the 60's in the framework of the so-called Standard Model of the unified electroweak theory developed; however, the interest in this theory arose only some years later, following the proof of renormalizability and the first experimental observation of neutrino interactions mediated by Z-exchange. In particular, the experiment obtained a measurement of the weak mixing angle, which allowed a quantitative prediction of the IVB mass values. The CERN Collider project was approved in 1978 and the first bar pp collisions at a total center-of-mass energy (√s) of 546 GeV were observed in 1981. The decay W → eν was first observed among data collected at the end of 1982, and the decay Z → e+e- and Z → μ+μ- were observed a few months later. At present, following two more data-taking runs in 1984 and 1985 at a slightly increased center-of-mass energy (√s = 630 GeV), samples of ∼250 W → eν and ∼30 Z → e+e- events are available from each of the two major experiments (UA1 and UA2), making possible a quantitative comparison of IVB properties with the predictions of the Standard Model. In this article the authors first describe the Standard Model of the unified electroweak theory, and the authors use the theoretical framework to derive the IVB mass values and their decay properties
Weak boson production via vector-boson fusion rate at NLO matched with Powheg
International Nuclear Information System (INIS)
The production of weak vector-bosons in association with two jets is an important background to Higgs-boson searches in vector-Boson fusion (VBF) at the LHC. In order to make reliable predictions, the combination of fixed-order NLO-calculations and parton-showers is indispensable. We present the implementation of the weak boson production via VBF in the Powheg-Box. This is a first step to interface Vbfnlo, a fully flexible Monte Carlo program, with the Powheg-Box.
Landau-Yang Theorem and Decays of a Z' Boson into Two Z Bosons
Keung, Wai-Yee; Low, Ian; Shu, Jing
2008-01-01
We study the decay of a Z' boson into two Z bosons by extending the Landau-Yang theorem to a parent particle decaying into two Z bosons. For a spin-1 parent the theorem predicts: 1) there are only two possible couplings and 2) the normalized differential cross-section depends on kinematics only through a phase shift in the azimuthal angle between the two decay planes of the Z boson. When the parent is a Z' the two possible couplings are anomaly-induced and CP-violating, respectively. At the L...
CMS Collaboration
2016-01-01
large missing transverse energy. The data correspond to an integrated luminosity of 2.3 fb$^{-1}$. Results are presented in terms of limits on the dark matter production in association with jets and vector bosons using simplified models, and on the decay of the standard model Higgs boson to invisible particles. Vector and axial-vector mediators with masses up to 1.3 TeV are excluded at a $90\\%$ confidence level. The expected and observed upper limits on the invisible branching fraction of the standard model Higgs boson are found to be 0.84 and 0.85, respectively, at a $95\\%$ confidence level.
International Nuclear Information System (INIS)
Experimentalists and theorists are still celebrating the Nobel-worthy discovery of the Higgs boson that was announced in July 2012 at CERN’s Large Hadron Collider. Now they are working on the profound implications of that discovery
Bosonic superconformal Toda model and dressing transformation
International Nuclear Information System (INIS)
The authors show the dressing transformations of the basic field and the classical chiral operators in the Bosonic Superconformal Toda model. After quantization, The related quantum algebra is obtained
Acquiring a taste for the Higgs boson
Caroline Duc
2012-01-01
Before CERN's scientists had even announced the discovery of the Higgs boson, others were already attributing some interesting characteristics to it: flavoursome, sparkling and liquid... The artisan brewery Hopfenstark in Quebec launched its new "Higgs boson" beer in November 2010. Ever since, it has been intriguing enthusiasts with its unique taste explosion. The boson was a source of inspiration for brewer Frédéric Cormier, the Hopfenstark brewery's owner, who is a big fan of science programmes. "I returned from a trip to Europe in 2010 with the idea for a new beer that would be unlike any other," he explains. "I was always reading and hearing about CERN's particle accelerator in the media, so I did some research on the famous Higgs boson and decided to give my new creation the same name." For Frédéric Cormier, it's important that the names of his beers refle...
A Historical Profile of the Higgs Boson
Energy Technology Data Exchange (ETDEWEB)
Ellis, John; Gaillard, Mary K.; Nanopoulos, Dimitri V.
2012-01-31
The Higgs boson was postulated in 1964, and phenomenological studies of its possible production and decays started in the early 1970s, followed by studies of its possible productionin e{sup +} e{sup -}, {anti p}p and pp collisions, in particular. Until recently, the most sensitive searches for the Higgs boson were at LEP between 1989 and 2000, which have been complemented bysearches at the Fermilab Tevatron. The LHC has recently entered the hunt, excluding a Higgs boson over a large range of masses and revealing a tantalizing hint in the range 119 to125 GeV, and there are good prospects that the existence or otherwise of the Higgs boson will soon be established. One of the most attractive possibilities is that the Higgs bosonis accompanied by supersymmetry, though composite options have yet to be excluded. This article reviews some of the key historical developments in Higgs physics over the past half-century.
Quantum geometry of bosonic strings - revisited
International Nuclear Information System (INIS)
We review the original paper by A.M. Polyakov (Quantum Geometry of Bosonic Strings) with corrections and improvements the concepts exposed there and following as closely as possible to the original A.M. Polyakov's paper. (author)
Boson representation of the asymmetric rotator
International Nuclear Information System (INIS)
The yrast states, as well as the wobbling frequency are analyzed using alternatively the Holstein-Primakoff and Dyson boson expansions. Both the prolate and oblate shapes are treated using Oz as quantization axis. (author)
Microscopic boson approach to nuclear collective motion
International Nuclear Information System (INIS)
A quantum mechanical approach to the maximally decoupled nuclear collective motion is proposed. The essential idea is to transcribe the original shell-model Hamiltonian in terms of boson operators, then to isolate the collective one-boson eigenstates of the mapped Hamiltonian and to perform a canonical transformation which eliminates (up to the two-body terms) the coupling between the collective and noncollective bosons. Unphysical states arising due to the violtion of the Pauli principle in the boson space are identified and removed within a suitable approximation. The method is applied to study the low-lying collective states of nuclei which are successfully described by the exactly solvable multilevel pairing Hamiltonian (Sn, Ni, Pb). 75 refs.; 8 figs
The pomeron in closed bosonic string theory
Fazio, A R
2010-01-01
We review the features of the pomeron in the S-matrix theory and in quantum field theory. We extend those general properties to the pomeron of closed bosonic string theory in a Minkowskian background. We compute the couplings of the pomeron to the lowest mass levels of closed bosonic string states in flat space. We recognize the deviation from the linearity of the Regge trajectories in a five dimensional anti De Sitter background.
Fermion boson metamorphosis in field theory
International Nuclear Information System (INIS)
In two-dimensional field theories many features are especially transparent if the Fermi fields are represented by non-local expressions of the Bose fields. Such a procedure is known as boson representation. Bilinear quantities appear in the Lagrangian of a fermion theory transform, however, as simple local expressions of the bosons so that the resulting theory may be written as a theory of bosons. Conversely, a theory of bosons may be transformed into an equivalent theory of fermions. Together they provide a basis for generating many interesting equivalences between theories of different types. In the present work a consistent scheme for constructing a canonical Fermi field in terms of a real scalar field is developed and such a procedure is valid and consistent with the tenets of quantum field theory is verified. A boson formulation offers a unifying theme in understanding the structure of many theories. This is illustrated by the boson formulation of a multifermion theory with chiral and internal symmetries. The nature of dynamical generation of mass when the theory undergoes boson transmutation and the preservation of continuous chiral symmetry in the massive case are examined. The dynamics of the system depends to a great extent on the specific number of fermions and different models of the same system can have very different properties. Many unusual symmetries of the fermion theory, such as hidden symmetry, duality and triality symmetries, are only manifest in the boson formulation. The underlying connections between some models with U(N) internal symmetry and another class of fermion models built with Majorana fermions which have O(2N) internal symmetry are uncovered
Vector-boson-induced neutrino mass
International Nuclear Information System (INIS)
One-loop radiative Majorana neutrino masses through the exchange of scalars have been considered for many years. We show for the first time how such a one-loop mass is also possible through the exchange of vector gauge bosons. It is based on a simple variation of a recently proposed SU(2)N extension of the Standard Model, where a vector boson is a candidate for the dark matter of the Universe.
Study of single W bosons at JLC
Energy Technology Data Exchange (ETDEWEB)
Arogancia, Dennis C.; Sanchez, Allister Levi C.; Magallanes, Jingle B.; Gooc, Hermogenes C.; Bacala, Angelina M. [Mindanao State Univ., Dept. of Physics, Iligan (Philippines); Fujii, Keisuke; Miyamoto, Akiya [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)
2001-06-01
Single W bosons are studied through computer simulation using the process e{sup +}e{sup -} {yields} e{sup +}{nu}{sub e}W{sup -} where it decays into two hadronic jets. This study focuses of the measurement of W boson mass with and without beamstrahlung and initial state radiation (ISR) effects. The JLC Study Framework (JSF) is employed for this purpose. The center-of-mass energy is set at 500 GeV. (author)
Higgs bosons in the simplest SUSY models
Nevzorov, R. B.; Ter-Martirosyan, K. A.; Trusov, M.A.
2001-01-01
Nowadays in the MSSM the moderate values of $\\tan\\beta$ are almost excluded by LEP II lower bound on the lightest Higgs boson mass. In the Next-to-Minimal Supersymmetric Standard Model the theoretical upper bound on it increases and reaches maximal value in the strong Yukawa coupling limit when all solutions of renormalization group equations are concentrated near the quasi-fixed point. For calculation of Higgs boson spectrum the perturbation theory method can be applied. We investigate the p...
Unconventional quantum phases of lattice bosonic mixtures
Buonsante, P.; Giampaolo, S. M.; Illuminati, F.; Penna, V; Vezzani, A.
2008-01-01
We consider strongly interacting boson-boson mixtures on one-dimensional lattices and, by adopting a qualitative mean-field approach, investigate their quantum phases as the interspecies repulsion is increased. In particular, we analyze the low-energy "quantum emulsion" metastable states occurring at large values of the interspecies interaction, which are expected to prevent the system from reaching its true ground state. We argue a significant decrease in the visibility of the time-of-flight...
Deformed Bosons: Combinatorics of Normal Ordering
Blasiak, P; Penson, K A; Solomon, A I
2004-01-01
We solve the normal ordering problem for (A* A)^n where A* (resp. A) are one mode deformed bosonic creation (resp. annihilation) operators satisfying [A,A*]=[N+1]-[N]. The solution generalizes results known for canonical and q-bosons. It involves combinatorial polynomials in the number operator N for which the generating functions and explicit expressions are found. Simple deformations provide examples of the method.
Electroweak Precision Data and New Gauge Bosons
Erler, Jens
2009-01-01
I review constraints on the Standard Model (SM) Higgs boson from high energy electroweak (EW) precision data. The same data set also strongly limits various mixing effects of hypothetical extra neutral gauge bosons (Z') with the ordinary Z. I also discuss low energy precision measurements which are sensitive to other aspects of Z' physics, such as the direct exchange amplitude and the flavor or CP violating sectors.
Precision Probes of a Leptophobic Z' Boson
Buckley, Matthew R.; Ramsey-Musolf, Michael J.
2012-01-01
Extensions of the Standard Model that contain leptophobic Z' gauge bosons are theoretically interesting but difficult to probe directly in high-energy hadron colliders. However, precision measurements of Standard Model neutral current processes can provide powerful indirect tests. We demonstrate that parity-violating deep inelastic scattering of polarized electrons off of deuterium offer a unique probe leptophobic Z' bosons with axial quark couplings and masses above 100 GeV. In addition to c...
Microscopic foundation of the interacting boson model
International Nuclear Information System (INIS)
A microscopic foundation of the interacting boson model is described. The importance of monopole and quadrupole pairs of nucleons is emphasized. Those pairs are mapped onto the s and d bosons. It is shown that this mapping provides a good approximation in vibrational and transitional nuclei. In appendix, it is shown that the monopole pair of electrons plays possibly an important role in metal clusters. (orig.)
Vector bosons in the expanding universe
International Nuclear Information System (INIS)
We exactly solve the relativistic wave equation for vector bosons in the expanding universe and show that the current of the vector bosons in this background is rapidly oscillating in early time. Additionally, we derive the solutions of the Proca equation from the solutions of the Duffin-Kemmer-Petiau (DKP) equations in the same background and obtain the massless-particle, photon, solutions by taking the m2→0 limit of these solutions. (orig.)
SU(N) Irreducible Schwinger Bosons
Mathur, Manu; Raychowdhury, Indrakshi; Anishetty, Ramesh
2010-01-01
We construct SU(N) irreducible Schwinger bosons satisfying certain U(N-1) constraints which implement the symmetries of SU(N) Young tableaues. As a result all SU(N) irreducible representations are simple monomials of $(N-1)$ types of SU(N) irreducible Schwinger bosons. Further, we show that these representations are free of multiplicity problems. Thus all SU(N) representations are made as simple as SU(2).
Supersymmetry search via gauge boson fusion
Indian Academy of Sciences (India)
Anindya Datta
2003-02-01
We propose a novel method for the search of supersymmetry, especially for the electroweak gauginos at the large hadron collider (LHC). Gauge boson fusion technique was shown to be useful for heavy and intermediate mass Higgs bosons. In this article, we have shown that this method can also be applied to ﬁnd the signals of EW gauginos in supersymmetric theories where the canonical search strategies for these particles fail.
Goncalves, Dorival; Kuttimalai, Silvan; Maierhöfer, Philipp
2016-01-01
Higgs boson production in association with a $Z$-boson at the LHC is analysed, both in the Standard Model and in Simplified Model extensions for Dark Matter. We focus on $H\\rightarrow$invisibles searches and show that loop-induced components for both the signal and background present phenomenologically relevant contributions to the $\\mathcal{BR}(H\\rightarrow\\textit{inv})$ limits. In addition, the constraining power of this channel to Simplified Models for Dark Matter with scalar and pseudo-scalar mediators $\\phi$ and $A$ is discussed and compared with non-collider constraints. We find that with $100~fb^{-1}$ of LHC data, this channel provides competitive constraints to the non-collider bounds, for most of the parameter space we consider, bounding the universal Standard Model fermion-mediator strength at $g_v < 1$ for moderate masses in the range of ${100~\\text{GeV}
Higgs Bosons in Warped Space, from the Bulk to the Brane
Frank, Mariana; Pourtolami, Nima; Toharia, Manuel
2013-01-01
In the context of warped extra-dimensional models with all fields propagating in the bulk, we address the phenomenology of a bulk scalar Higgs boson, and calculate its production cross section at the LHC as well as its tree-level effects on mediating flavor changing neutral currents. We perform the calculations based on two different approaches. First, we compute our predictions analytically by considering all the degrees of freedom emerging from the dimensional reduction (the infinite tower ...
Neutral Supersymmetric Higgs Boson Searches
Energy Technology Data Exchange (ETDEWEB)
Robinson, Stephen Luke; /Imperial Coll., London
2009-09-01
In some Supersymmetric extensions of the Standard Model, including the Minimal Supersymmetric Standard Model (MSSM), the coupling of Higgs bosons to b-quarks is enhanced. This enhancement makes the associated production of the Higgs with b-quarks an interesting search channel for the Higgs and Supersymmetry at D0. The identification of b-quarks, both online and offline, is essential to this search effort. This thesis describes the author's involvement in the development of both types of b-tagging and in the application of these techniques to the MSSM Higgs search. Work was carried out on the Level-3 trigger b-tagging algorithms. The impact parameter (IP) b-tagger was retuned and the effects of increased instantaneous luminosity on the tagger were studied. An extension of the IP-tagger to use the z-tracking information was developed. A new b-tagger using secondary vertices was developed and commissioned. A tool was developed to allow the use of large multi-run samples for trigger studies involving b-quarks. Offline, a neural network (NN) b-tagger was trained combining the existing offline lifetime based b-tagging tools. The efficiency and fake rate of the NN b-tagger were measured in data and MC. This b-tagger was internally reviewed and certified by the Collaboration and now provides the official b-tagging for all analyses using the Run IIa dataset at D0. A search was performed for neutral MSSM Higgs bosons decaying to a b{bar b} pair and produced in association with one or more b-quarks. Limits are set on the cross-section times the branching ratio for such a process. The limits were interpreted in various MSSM scenarios. This analysis uses the NN b-tagger and was the first to use this tool. The analysis also relies on triggers using the Level-3 IP b-tagging tool described previously. A likelihood discriminant was used to improve the analysis and a neural network was developed to cross-check this technique. The result of the analysis has been submitted to PRL
Neutral Supersymmetric Higgs Boson Searches
Energy Technology Data Exchange (ETDEWEB)
Robinson, Stephen Luke [Imperial College, London (United Kingdom)
2008-07-01
In some Supersymmetric extensions of the Standard Model, including the Minimal Supersymmetric Standard Model (MSSM), the coupling of Higgs bosons to b-quarks is enhanced. This enhancement makes the associated production of the Higgs with b-quarks an interesting search channel for the Higgs and Supersymmetry at D0. The identification of b-quarks, both online and offline, is essential to this search effort. This thesis describes the author's involvement in the development of both types of b-tagging and in the application of these techniques to the MSSM Higgs search. Work was carried out on the Level-3 trigger b-tagging algorithms. The impact parameter (IP) b-tagger was retuned and the effects of increased instantaneous luminosity on the tagger were studied. An extension of the IP-tagger to use the z-tracking information was developed. A new b-tagger using secondary vertices was developed and commissioned. A tool was developed to allow the use of large multi-run samples for trigger studies involving b-quarks. Offline, a neural network (NN) b-tagger was trained combining the existing offline lifetime based b-tagging tools. The efficiency and fake rate of the NN b-tagger were measured in data and MC. This b-tagger was internally reviewed and certified by the Collaboration and now provides the official b-tagging for all analyses using the Run IIa dataset at D0. A search was performed for neutral MSSM Higgs bosons decaying to a b{bar b} pair and produced in association with one or more b-quarks. Limits are set on the cross-section times the branching ratio for such a process. The limits were interpreted in various MSSM scenarios. This analysis uses the NN b-tagger and was the first to use this tool. The analysis also relies on triggers using the Level-3 IP b-tagging tool described previously. A likelihood discriminant was used to improve the analysis and a neural network was developed to cross-check this technique. The result of the analysis has been submitted to PRL
Search for the Standard Model Higgs Boson in associated production with w boson at the Tevatron
Energy Technology Data Exchange (ETDEWEB)
Chun, Xu; /Michigan U.
2009-11-01
A search for the Standard Model Higgs boson in proton-antiproton collisions with center-of-mass energy 1.96 TeV at the Tevatron is presented in this dissertation. The process of interest is the associated production of W boson and Higgs boson, with the W boson decaying leptonically and the Higgs boson decaying into a pair of bottom quarks. The dataset in the analysis is accumulated by the D0 detector from April 2002 to April 2008 and corresponding to an integrated luminosity of 2.7 fb{sup -1}. The events are reconstructed and selected following the criteria of an isolated lepton, missing transverse energy and two jets. The D0 Neural Network b-jet identification algorithm is further used to discriminate b jets from light jets. A multivariate analysis combining Matrix Element and Neural Network methods is explored to improve the Higgs boson signal significance. No evidence of the Higgs boson is observed in this analysis. In consequence, an observed (expected) limit on the ratio of {sigma} (p{bar p} {yields} WH) x Br (H {yields} b{bar b}) to the Standard Model prediction is set to be 6.7 (6.4) at 95% C.L. for the Higgs boson with a mass of 115 GeV.
(Super)rare decays of an extra Z' boson via Higgs boson emission
Kozlov, G. A.
1999-01-01
The phenomenological model of an extra U(1) neutral gauge Z' boson coupled to heavy quarks is presented. In particular, we discuss the probability for a light $Z_{2}$ mass eigenstate decay into a bound state composed of heavy quarks via Higgs boson emission.
Search for the Standard Model Higgs Boson in associated production with w boson at the Tevatron
Energy Technology Data Exchange (ETDEWEB)
Chun, Xu [Univ. of Michigan, Ann Arbor, MI (United States)
2009-11-01
A search for the Standard Model Higgs boson in proton-antiproton collisions with center-of-mass energy 1.96 TeV at the Tevatron is presented in this dissertation. The process of interest is the associated production of W boson and Higgs boson, with the W boson decaying leptonically and the Higgs boson decaying into a pair of bottom quarks. The dataset in the analysis is accumulated by the D0 detector from April 2002 to April 2008 and corresponding to an integrated luminosity of 2.7 fb^{-1}. The events are reconstructed and selected following the criteria of an isolated lepton, missing transverse energy and two jets. The D0 Neural Network b-jet identification algorithm is further used to discriminate b jets from light jets. A multivariate analysis combining Matrix Element and Neural Network methods is explored to improve the Higgs boson signal significance. No evidence of the Higgs boson is observed in this analysis. In consequence, an observed (expected) limit on the ratio of σ (p$\\bar{p}$ → WH) x Br (H → b$\\bar{b}$) to the Standard Model prediction is set to be 6.7 (6.4) at 95% C.L. for the Higgs boson with a mass of 115 GeV.
Bosonization and even Grassmann variables
International Nuclear Information System (INIS)
They test a new approach to bosonization in relativistic field theories and many-body systems, based on the use of fermionic composites as integration variables in the Berezin integral defining the partition function of the system. The method appears promising since at zeroth order it correctly describes the propagators of the composites, which can be evaluated in a number of significant cases. Still to be established is a general procedure for deriving the free action of the composites starting from the one of the constituents. To shed light on this problem and to explore further features of the method they study a simplified version of the BCS model. In this simple case the action of the composites can indeed be obtained: whether this result can be generalized it remains however to be seen. Yet an interesting property of the wave operators appearing in the free actions of bilinear composites already emerges from the simple problem they have treated: here the wave operators do not describe any time evolution, even though they generate the right propagators. This outcome relates to the basic properties of the integrals over the even elements of a Grassmann algebra where the composites live, which entails that the propagators are no longer the inverse of the wave operators
Focus point supersymmetry in extended gauge mediation
Energy Technology Data Exchange (ETDEWEB)
Ding, Ran [School of Physics, Nankai University,Tianjin 300071 (China); Li, Tianjun [State Key Laboratory of Theoretical Physics and Kavli Institute for Theoretical Physics (KITPC),Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); School of Physical Electronics, University of Electronic Science and Technology of China,Chengdu 610054 (China); Staub, Florian [Bethe Center for Theoretical Physics & Physikalisches Institut der Universität Bonn,Nußallee 12, 53115 Bonn (Germany); Zhu, Bin [School of Physics, Nankai University,Tianjin 300071 (China)
2014-03-27
We propose a small extension of the minimal gauge mediation through the combination of extended gauge mediation and conformal sequestering. We show that the focus point supersymmetry can be realized naturally, and the fine tuning is significantly reduced compared to the minimal gauge mediation and extended gauge mediation without focus point. The Higgs boson mass is around 125 GeV, the gauginos remain light, and the gluino is likely to be detected at the next run of the LHC. However, the multi-TeV squarks is out of the reach of the LHC. The numerical calculation for fine-tuning shows that this model remains natural.
Focus point supersymmetry in extended gauge mediation
International Nuclear Information System (INIS)
We propose a small extension of the minimal gauge mediation through the combination of extended gauge mediation and conformal sequestering. We show that the focus point supersymmetry can be realized naturally, and the fine tuning is significantly reduced compared to the minimal gauge mediation and extended gauge mediation without focus point. The Higgs boson mass is around 125 GeV, the gauginos remain light, and the gluino is likely to be detected at the next run of the LHC. However, the multi-TeV squarks is out of the reach of the LHC. The numerical calculation for fine-tuning shows that this model remains natural
Search for an Invisibly Decaying Higgs Boson Produced via Vector Boson Fusion
AUTHOR|(SzGeCERN)661801
This thesis presents the first search of an invisibly decaying Higgs boson produced via Vector Boson Fusion on ATLAS. The dataset used for the analysis corresponds to 20.3fb$^{-1}$ of proton-proton collisions at $\\sqrt{s} = 8$ TeV recorded at the Large Hadron Collider in 2011 and 2012. An upper bound limit is set at 95% confidence level on the invisible branching fraction of the Higgs Boson. A limit of 28% is observed (34% expected) and interpreted using the Higgs portal model to set a limit on the dark matter-nucleon cross section. The unique jet final state created by Vector Boson Fusion provides a stronger signal to background ratio than other invisibly decaying Higgs channels. The Vector Boson Fusion analysis presented resulted in the strongest constraint on dark matter production set by a hadron collider.
Boson mapping and the microscopic collective nuclear Hamiltonian
International Nuclear Information System (INIS)
Starting with the mapping of the quadrupole collective states in the fermion space onto the boson space, the fermion nuclear problem is transformed into the boson one. The boson images of the bifermion operators and of the fermion Hamiltonian are found. Recurrence relations are used to obtain approximately the norm matrix which appears in the boson-fermion mapping. The resulting boson Hamiltonian contains terms which go beyond the ordinary SU(6) symmetry Hamiltonian of the interacting boson model. Calculations, however, suggest that on the phenomenological level the differences between the mapped Hamiltonian and the SU(6) Hamiltonian are not too important. 18 refs.; 2 figs
Gumpert, Christian; The ATLAS collaboration
2016-01-01
The production of single Z bosons with two jets at high invariant mass has been studied by the ATLAS collaboration in detail using data corresponding to 20.3 /fb at a centre-of-mass energy of 8 TeV. Integrated and differential cross sections are measured in many different phase space regions with varying degree of sensitivity to the electroweak production in vector boson fusion. The cross section for the electroweak production has been extracted for both integrated and for the first time differential distributions. The results have also been used to derive limits on anomalous triple gauge couplings. Vector-boson scattering processes provide a unique way to probe the mechanism of electroweak symmetry breaking. Similar physics can be probed by studying the production of three gauge bosons. The results can also be used for a model-independent search for new physics at the TeV scale via anomalous quartic gauge couplings. The ATLAS collaboration has studied vector boson scattering in final states with two gauge bo...
Antonella Del Rosso
2012-01-01
A long-sought particle finally found. On Wednesday 4 July, enthusiasm spread from CERN to the worldwide media. But a question legitimately arises: why is this particle attracting so much interest? In other words, how is it different from all the others? (And, by the way, what is a boson?). CERN, 4 July 2012: a long-sought particle finally found. Strictly speaking, we cannot even call it the “Higgs” boson yet. Only after careful checking of its properties will physicists be able to say if the new boson corresponds to the particle that theorists predicted in 1964. However, the experimental data we have so far already tells us, unambiguously, that this new particle is different from all the other elementary particles we know. “Every particle is either a boson or a fermion,” explains John Ellis, former CERN theorist and currently professor at King's College in London. “All known particles spin like small tops, with the known bosons tha...
Interaction between bosonic dark matter and stars
Brito, Richard; Cardoso, Vitor; Macedo, Caio F. B.; Okawa, Hirotada; Palenzuela, Carlos
2016-02-01
We provide a detailed analysis of how bosonic dark matter "condensates" interact with compact stars, extending significantly the results of a recent Letter [1]. We focus on bosonic fields with mass mB , such as axions, axion-like candidates and hidden photons. Self-gravitating bosonic fields generically form "breathing" configurations, where both the spacetime geometry and the field oscillate, and can interact and cluster at the center of stars. We construct stellar configurations formed by a perfect fluid and a bosonic condensate, and which may describe the late stages of dark matter accretion onto stars, in dark-matter-rich environments. These composite stars oscillate at a frequency which is a multiple of f =2.5 ×1014(mBc2/eV ) Hz . Using perturbative analysis and numerical relativity techniques, we show that these stars are generically stable, and we provide criteria for instability. Our results also indicate that the growth of the dark matter core is halted close to the Chandrasekhar limit. We thus dispel a myth concerning dark matter accretion by stars: dark matter accretion does not necessarily lead to the destruction of the star, nor to collapse to a black hole. Finally, we argue that stars with long-lived bosonic cores may also develop in other theories with effective mass couplings, such as (massless) scalar-tensor theories.
Ratio method of measuring W boson mass
Energy Technology Data Exchange (ETDEWEB)
Guo, Feng [Stony Brook Univ., NY (United States)
2010-08-01
This dissertation describes an alternative method of measuring the W boson mass in DØ experiment. Instead of extracting M_{W} from the fitting of W → ev fast Monte Carlo simulations to W → ev data as in the standard method, we make the direct fit of transverse mass between W → ev data and Z → ee data. One of the two electrons from Z boson is treated as a neutrino in the calculation of transverse mass. In ratio method, the best fitted scale factor corresponds to the ratio of W and Z boson mass (M_{W}/M_{Z}). Given the precisely measured Z boson mass, W mass is directly fitted from W → ev and Z → ee data. This dissertation demonstrates that ratio method is a plausible method of measuring the W boson mass. With the 1 fb^{-1} DØ Run IIa dataset, ratio method gives M_{W} = 80435 ± 43(stat) ± 26(sys) MeV.
ATLAS measurements of vector boson production
Debenedetti, Chiara; The ATLAS collaboration
2016-01-01
Vector boson production in pp collisions at 7, 8 and 13 TeV has been extensively studied by ATLAS. Recent results include the precision measurements of the transverse momentum of the Z/gamma* boson production, sensitive to soft resummation effects, hard jet emissions and electroweak corrections. A precise measurement of the angular coefficients of the Zboson production tests the underlying QCD dynamics of the DrellYan process. A first measurement of the inclusive W and Z cross section at a cms energy of 13TeV has been derived. The Production of jets in association with a vector boson is an important process to study QCD in a multiscale environment. Cross sections, differential in several kinematics variables, have been measured with the ATLAS detector and compared to stateoftheart QCD calculations and Monte Carlo simulations. First measurements of vector boson + jets production have been performed at cms energies of 13TeV. An overview of these results is given.
Scattering problem for four-boson system
International Nuclear Information System (INIS)
The s-wave phase shift of boson-triboson scattering has been obtained by solving the Faddeev-Osborn equation in the exact approach based on rigorous Faddeev theory. The Schmidt expansion theorem is used to express the 3+1- and 2+2-subamplitudes at energies in the continuous spectrum region as an infinite series of separable terms. Employing the pole term decomposition for these subamplitudes expressed in terms of the Schmidt expansion we can define, in conformity with the Faddeev residue prescription, respective four-nucleon amplitudes that describe elastic/rearrangement, partial breakup and full breakup scattering processes. Acquired simultaneous equations of these amplitudes take the form of multichannel two-particle Lippmann-Schwinger type, which we call Faddeev-Osborn equation. Assuming as an s-wave spin-independent, rank one separable potential of the Yamaguchi type for the two-particle interaction, are derived the Faddeev-Osborn equation for the boson-triboson elastic scattering. To treat singularities appeared in our equation, the numerical calculation is performed in the framework of the complex-valued analysis by introducing contour rotation method. The boson-triboson elastic scattering amplitude for L=0 state of a four-boson system is obtained numerically in the incident boson laboratory energy region of 0.01-24.0 Mev, including only 1=0 state for the 3+1-subamplitude. The results of the phase shift obtained from the amplitudes are plotted as dots in Fig. 1. (author)
Ratio method of measuring $w$ boson mass
Energy Technology Data Exchange (ETDEWEB)
Guo, Feng; /SUNY, Stony Brook
2010-08-01
This dissertation describes an alternative method of measuring the W boson mass in D0 experiment. Instead of extracting M{sub W} from the fitting of W {yields} e{nu} fast Monte Carlo simulations to W {yields} e{nu} data as in the standard method, we make the direct fit of transverse mass between W {yields} e{nu} data and Z {yields} ee data. One of the two electrons from Z boson is treated as a neutrino in the calculation of transverse mass. In ratio method, the best fitted scale factor corresponds to the ratio of W and Z boson mass (M{sub W}/M{sub Z}). Given the precisely measured Z boson mass, W mass is directly fitted from W {yields} e{nu} and Z {yields} ee data. This dissertation demonstrates that ratio method is a plausible method of measuring the W boson mass. With the 1 fb{sup -1} D0 Run IIa dataset, ratio method gives M{sub W} = 80435 {+-} 43(stat) {+-} 26(sys) MeV.
Charged Q-balls and boson stars and dynamics of charged test particles
Brihaye, Yves; Hartmann, Betti
2014-01-01
We construct electrically charged Q-balls and boson stars in a model with a scalar self-interaction potential resulting from gauge mediated supersymmetry breaking. We discuss the properties of these solutions in detail and emphasize the differences to the uncharged case. We observe that $Q$-balls can only be constructed up to a maximal value of the charge of the scalar field, while for boson stars the interplay between the attractive gravitational force and the repulsive electromagnetic force determines their behaviour. We also study the motion of charged, massive test particles in the space-time of boson stars. We find that in contrast to charged black holes the motion of charged test particles in charged boson star space-times is planar, but that the presence of the scalar field plays a crucial r\\^ole for the qualitative features of the trajectories. Applications of this test particle motion can be made in the study of extreme-mass ratio inspirals (EMRIs) as well as astrophysical plasmas relevant e.g. in th...
Correlations in charged bosons systems
International Nuclear Information System (INIS)
The two and three-dimensional charge Bose gas have been studied. In the bidimensional case two different types of interaction were considered: l/r and l n(r). The method of self-consistent-field was applied to these systems, which takes into account the short range correlations between the bosons through a local-field correction. By using self-consistent numerical calculations, the structure factor S(k→) was determined. The pair-correlation function, the ground-state energy, the pressure of the gas and the spectrum of elementary excitations were obtained from S (k→). The screening density induced by a fixed charged impurity was calculated. In the high-density limit our calculations reproduce the results given by Bogoliubov's perturbation theory. In the intermediate-density region, corresponding to the strongly coupled systems, the results are in very good agreement with calculations based on HNC approximation as well as Monte Carlo method. The results are compared in several situations with RPA results showing that the self-consistent method is much more accurate. The two-dimensional systems showed to be more correlated than the three-dimensional systems showed to be more correlated than the three-dimensional one; the gas with interaction l/r is also more correlated than the logarithmic one at high densities, but it begins to be less correlated than this one in the low-density region. The thermodynamic functions of the two and three-dimensional systems at finite temperatures near absolute zero are calculated based upon the gas excitation spectra at zero temperature. (author)
Orbital optical lattices with bosons
Kock, T.; Hippler, C.; Ewerbeck, A.; Hemmerich, A.
2016-02-01
This article provides a synopsis of our recent experimental work exploring Bose-Einstein condensation in metastable higher Bloch bands of optical lattices. Bipartite lattice geometries have allowed us to implement appropriate band structures, which meet three basic requirements: the existence of metastable excited states sufficiently protected from collisional band relaxation, a mechanism to excite the atoms initially prepared in the lowest band with moderate entropy increase, and the possibility of cross-dimensional tunneling dynamics, necessary to establish coherence along all lattice axes. A variety of bands can be selectively populated and a subsequent thermalization process leads to the formation of a condensate in the lowest energy state of the chosen band. As examples the 2nd, 4th and 7th bands in a bipartite square lattice are discussed. The geometry of the 2nd and 7th bands can be tuned such that two inequivalent energetically degenerate energy minima arise at the X ±-points at the edge of the 1st Brillouin zone. In this case even a small interaction energy is sufficient to lock the phase between the two condensation points such that a complex-valued chiral superfluid order parameter can emerge, which breaks time reversal symmetry. In the 4th band a condensate can be formed at the Γ-point in the center of the 1st Brillouin zone, which can be used to explore topologically protected band touching points. The new techniques to access orbital degrees of freedom in higher bands greatly extend the class of many-body scenarios that can be explored with bosons in optical lattices.
Feshbach resonances and weakly bound molecular states of boson-boson and boson-fermion NaK pairs
Viel, Alexandra; Simoni, Andrea
2016-01-01
We study theoretically magnetically induced Feshbach resonances and near-threshold bound states in isotopic NaK pairs. Our calculations accurately reproduce Feshbach spectroscopy data on Na$^{40}$K and explain the origin of the observed multiplets in the p-wave [Phys. Rev. A 85, 051602(R) (2012)]. We apply the model to predict scattering and bound state threshold properties of the boson-boson Na$^{39}$K and Na$^{41}$K systems. We find that the Na$^{39}$K isotopic pair presents broad magnetic ...
Hexadecapole degree of freedom in the interacting boson model
International Nuclear Information System (INIS)
The hexadecapole degree of freedom in the interacting boson models with sd and sdg bosons is reviewed with the aim of providing experimental signatures that distinguish between the two models. (orig.)
Bosonic Dp-branes at finite temperature in TFD approach
Abdalla, M. C. B.; Gadelha, A. L.; Vancea, I. V.
2004-02-01
A general formulation of Thermo Field Dynamics using transformation generators that form the SU(1, 1) group, is presented and applied to the closed bosonic string and for bosonic Dp-brane with an external field.
Bosonic Dp-branes at finite temperature in TFD approach
Energy Technology Data Exchange (ETDEWEB)
Abdalla, M.C.B.; Gadelha, A.L.; Vancea, I.V
2004-02-01
A general formulation of Thermo Field Dynamics using transformation generators that form the SU(1, 1) group, is presented and applied to the closed bosonic string and for bosonic D{sub p}-brane with an external field.
Bosonic Dp-branes at finite temperature in TFD approach
International Nuclear Information System (INIS)
A general formulation of Thermo Field Dynamics using transformation generators that form the SU(1, 1) group, is presented and applied to the closed bosonic string and for bosonic Dp-brane with an external field
Higgs bosons in the standard model, the MSSM and beyond
Indian Academy of Sciences (India)
John F Gunion
2004-02-01
I summarize the basic theory and selected phenomenology for the Higgs boson(s) of the standard model, the minimal supersymmetric model and some extensions thereof, including the next-to-minimal supersymmetric model.
Integrability and Quantum Phase Transitions in Interacting Boson Models
Dukelsky, J; García-Ramos, J E; Pittel, S
2003-01-01
The exact solution of the boson pairing hamiltonian given by Richardson in the sixties is used to study the phenomena of level crossings and quantum phase transitions in the integrable regions of the sd and sdg interacting boson models.
Search for a Higgs Boson Produced in Association with a W Boson at ATLAS
Ruckert, Benjamin
The Large Hadron Collider at CERN is the most modern proton-proton collider and data taking will start in 2009, with a centre-of-mass energy of 7 TeV. The ATLAS detector, which is one of two multi-purpose detectors at the Large Hadron Collider, is able to detect a Standard Model Higgs boson if it exists. This is one of the main tasks of the ATLAS experiment. This thesis deals with a Standard Model Higgs boson produced in association with a W boson. The Monte Carlo study is based on physics events generated at the nominal centre-of-mass energy of the Large Hadron Collider of 14 TeV. Large parts of this analysis have been done using the global Grid infrastructure of the Large Hadron Collider experiments. A mass range of the Higgs boson of mH = 130 - 190 GeV has been taken into account. In this mass range, the Higgs boson dominantly decays into a pair of W bosons, leading to initially three W bosons: WH -> WWW. Two orthogonal analysis channels have been investigated in detailed studies of the background properti...
Light gauge boson in rare $K$ decay
Chen, Chuan-Hung
2016-01-01
The inconsistent conclusions for a light gauge boson $X$ production in the $K^- \\to \\pi^- X$ exist in the literature. It is found that the process can be generated by the tree-level $W$-boson annihilation and loop-induced $s\\to dX$. We find that it strongly depends on the $SU(3)$ limit or the unique gauge coupling to the quarks, whether the $K^-\\to \\pi^- X$ decay, which is from the $W$-boson annihilation, is suppressed by $m^2_X \\epsilon_X \\cdot p_K$; however, no such suppression is found via the loop-induced $s\\to d X$. The constraints on the relevant couplings are studied.
Abbiendi, G; Åkesson, P F; Alexander, G; Allison, J; Amaral, P; Anagnostou, G; Anderson, K J; Arcelli, S; Asai, S; Axen, D A; Azuelos, Georges; Bailey, I; Barberio, E; Barillari, T; Barlow, R J; Batley, J Richard; Bechtle, P; Behnke, T; Bell, K W; Bell, P J; Bella, G; Bellerive, A; Benelli, G; Bethke, Siegfried; Biebel, O; Boeriu, O; Bock, P; Boutemeur, M; Braibant, S; Brigliadori, L; Brown, R M; Büsser, K; Burckhart, H J; Campana, S; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Ciocca, C; Couchman, J; Csilling, Akos; Cuffiani, M; Dado, S; de Roeck, A; De Wolf, E A; Desch, Klaus; Dienes, B; Donkers, M; Dubbert, J; Duchovni, E; Duckeck, G; Duerdoth, I P; Etzion, E; Fabbri, Franco Luigi; Feld, L; Ferrari, P; Fiedler, F; Fleck, I; Ford, M; Frey, A; Gagnon, P; Gary, J W; Gaycken, G; Geich-Gimbel, C; Giacomelli, G; Giacomelli, P; Giunta, M; Goldberg, J; Gross, E; Grunhaus, Jacob; Gruwé, M; Günther, P O; Sen-Gupta, A; Hajdu, C; Hamann, M; Hanson, G G; Harel, A; Hauschild, M; Hawkes, C M; Hawkings, R; Hemingway, Richard J; Herten, G; Heuer, R D; Hill, J C; Hoffman, K; Horváth, D; Igo-Kemenes, P; Ishii, K; Jeremie, H; Jovanovic, P; Junk, T R; Kanaya, N; Kanzaki, J; Karlen, Dean A; Kawagoe, K; Kawamoto, T; Keeler, Richard K; Kellogg, R G; Kennedy, B W; Klein, K; Klier, A; Kluth, S; Kobayashi, T; Kobel, M; Komamiya, S; Kramer, T; Krieger, P; Von Krogh, J; Krüger, K; Kühl, T; Kupper, M; Lafferty, G D; Landsman, Hagar Yaël; Lanske, D; Layter, J G; Lellouch, D; Letts, J; Levinson, L; Lillich, J; Lloyd, S L; Loebinger, F K; Lü, J; Ludwig, A; Ludwig, J; Mader, W; Marcellini, S; Martin, A J; Masetti, G; Mashimo, T; Mättig, P; McKenna, J A; McPherson, R A; Meijers, F; Menges, W; Merritt, F S; Mes, H; Michelini, Aldo; Mihara, S; Mikenberg, G; Miller, D J; Moed, S; Mohr, W; Mori, T; Mutter, A; Nagai, K; Nakamura, I; Nanjo, H; Neal, H A; Nisius, R; O'Neale, S W; Oh, A; Okpara, A N; Oreglia, M J; Orito, S; Pahl, C; Pásztor, G; Pater, J R; Pilcher, J E; Pinfold, J L; Plane, D E; Poli, B; Pooth, O; Przybycien, M B; Quadt, A; Rabbertz, K; Rembser, C; Renkel, P; Roney, J M; Rosati, S; Rozen, Y; Runge, K; Sachs, K; Saeki, T; Sarkisyan-Grinbaum, E; Schaile, A D; Schaile, O; Scharff-Hansen, P; Schieck, J; Schörner-Sadenius, T; Schröder, M; Schumacher, M; Scott, W G; Seuster, R; Shears, T G; Shen, B C; Sherwood, P; Skuja, A; Smith, A M; Sobie, R J; Söldner-Rembold, S; Spanó, F; Stahl, A; Strom, D; Ströhmer, R; Tarem, S; Tasevsky, M; Teuscher, R; Thomson, M A; Torrence, E; Toya, D; Tran, P; Trigger, I; Trócsányi, Z L; Tsur, E; Turner-Watson, M F; Ueda, I; Ujvári, B; Vollmer, C F; Vannerem, P; Vertesi, R; Verzocchi, M; Voss, H; Vossebeld, Joost Herman; Waller, D; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wengler, T; Wermes, N; Wetterling, D; Wilson, G W; Wilson, J A; Wolf, G; Wyatt, T R; Yamashita, S; Zer-Zion, D; Zivkovic, L
2004-01-01
Elements of the spin density matrix for W bosons in e+e- -> W+W- -> qqln events are measured from data recorded by the OPAL detector at LEP. This information is used calculate polarised differential cross-sections and to search for CP-violating effects. Results are presented for W bosons produced in e+e- collisions with centre-of-mass energies between 183 GeV and 209 GeV. The average fraction of W bosons that are longitudinally polarised is found to be (23.9 +- 2.1 +- 1.1)% compared to a Standard Model prediction of (23.9 +- 0.1)%. All results are consistent with CP conservation.
Efficient experimental validation of photonic boson sampling
Spagnolo, N; Bentivegna, M; Brod, D J; Crespi, A; Flamini, F; Giacomini, S; Milani, G; Ramponi, R; Mataloni, P; Osellame, R; Galvao, E F; Sciarrino, F
2013-01-01
A boson sampling device is a specialised quantum computer that solves a problem which is strongly believed to be computationally hard for classical computers. Recently a number of small-scale implementations have been reported, all based on multi-photon interference in multimode interferometers. In the hard-to-simulate regime, even validating the device's functioning may pose a problem. In a recent criticism of boson sampling experiments, Gogolin et al. argued that the output would be effectively indistinguishable from the trivial, uniform distribution. Here we report new boson sampling experiments on larger photonic chips, and analyse the data using a scalable statistical test recently proposed by Aaronson and Arkhipov. We show the test successfully validates small experimental data samples against the hypothesis that they are uniformly distributed. We also show how to discriminate data arising from either indistinguishable or distinguishable photons. Our results pave the way towards demonstrating the quantu...