WorldWideScience

Sample records for antilambda particles

  1. Measurement of the Longitudinal Spin Transfer to Lambda and Anti-Lambda Hyperons in Polarised Muon DIS

    CERN Document Server

    Alekseev, M.; Alexandrov, Yu.; Alexeev, G.D.; Amoroso, A.; Austregesilo, A.; Badelek, B.; Balestra, F.; Ball, J.; Barth, J.; Baum, G.; Bedfer, Y.; Bernhard, J.; Bertini, R.; Bettinelli, M.; Birsa, R.; Bisplinghoff, J.; Bordalo, P.; Bradamante, F.; Bravar, A.; Bressan, A.; Brona, G.; Burtin, E.; Bussa, M.P.; Chapiro, A.; Chiosso, M.; Chung, S.U.; Cicuttin, A.; Colantoni, M.; Crespo, M.L.; Dalla Torre, S.; Dafni, T.; Das, S.; Dasgupta, S.S.; Denisov, O.Yu.; Dhara, L.; Diaz, V.; Dinkelbach, A.M.; Donskov, S.V.; Doshita, N.; Duic, V.; Dunnweber, W.; Efremov, A.; Eversheim, P.D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Finger, M.; Finger, M.Jr.; Fischer, H.; Franco, C.; Friedrich, J.M.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O.P.; Gazda, R.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gobbo, B.; Goertz, S.; Grabmuller, S.; Grajek, O.A.; Grasso, A.; Grube, B.; Gushterski, R.; Guskov, A.; Haas, F.; von Harrach, D.; Hasegawa, T.; Heckmann, J.; Heinsius, F.H.; Hermann, M.; Hermann, R.; Herrmann, F.; Hess, C.; Hinterberger, F.; Horikawa, N.; Hoppner, Ch.; d'Hose, N.; Ilgner, C.; Ishimoto, S.; Ivanov, O.; Ivanshin, Yu.; Iven, B.; Iwata, T.; Jahn, R.; Jasinski, P.; Jegou, G.; Joosten, R.; Kabuss, E.; Kang, D.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu.A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koblitz, S.; Koivuniemi, J.H.; Kolosov, V.N.; Komissarov, E.V.; Kondo, K.; Konigsmann, K.; Konopka, R.; Konorov, I.; Konstantinov, V.F.; Korzenev, A.; Kotzinian, A.M.; Kouznetsov, O.; Kowalik, K.; Kramer, M.; Kral, A.; Kroumchtein, Z.V.; Kuhn, R.; Kunne, F.; Kurek, K.; Le Goff, J.M.; Lednev, A.A.; Lehmann, A.; Levorato, S.; Lichtenstadt, J.; Liska, T.; Maggiora, A.; Maggiora, M.; Magnon, A.; Mallot, G.K.; Mann, A.; Marchand, C.; Marroncle, J.; Martin, A.; Marzec, J.; Massmann, F.; Matsuda, T.; Maximov, A.N.; Meyer, W.; Michigami, T.; Mikhailov, Yu.V.; Moinester, M.A.; Mutter, A.; Nagaytsev, A.; Nagel, T.; Nassalski, J.; Negrini, S.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V.I.; Olshevsky, A.G.; Ostrick, M.; Padee, A.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Pawlukiewicz-Kaminska, B.; Perevalova, E.; Pesaro, G.; Peshekhonov, D.V.; Piragino, G.; Platchkov, S.; Pochodzalla, J.; Polak, J.; Polyakov, V.A.; Pontecorvo, G.; Pretz, J.; Quintans, C.; Rajotte, J.F.; Ramos, S.; Rapatsky, V.; Reicherz, G.; Reggiani, D.; Richter, A.; Robinet, F.; Rocco, E.; Rondio, E.; Ryabchikov, D.I.; Samoylenko, V.D.; Sandacz, A.; Santos, H.; Sapozhnikov, M.G.; Sarkar, S.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schmitt, L.; Schroder, W.; Shevchenko, O.Yu.; Siebert, H.W.; Silva, L.; Sinha, L.; Sissakian, A.N.; Slunecka, M.; Smirnov, G.I.; Sosio, S.; Sozzi, F.; Srnka, A.; Stolarski, M.; Sulc, M.; Sulej, R.; Takekawa, S.; Tessaro, S.; Tessarotto, F.; Teufel, A.; Tkatchev, L.G.; Venugopal, G.; Virius, M.; Vlassov, N.V.; Vossen, A.; Weitzel, Q.; Windmolders, R.; Wislicki, W.; Wollny, H.; Zaremba, K.; Zemlyanichkina, E.; Ziembicki, M.; Zhao, J.; Zhuravlev, N.; Zvyagin, A.

    2009-01-01

    The longitudinal polarisation transfer from muons to lambda and anti-lambda hyperons, D_LL, has been studied in deep inelastic scattering off an unpolarised isoscalar target at the COMPASS experiment at CERN. The spin transfers to lambda and anti-lambda produced in the current fragmentation region exhibit different behaviours as a function of x and xF . The measured x and xF dependences of D^lambda_LL are compatible with zero, while D^anti-lambda_LL tends to increase with xF, reaching values of 0.4 - 0.5. The resulting average values are D^lambda_LL = -0.012 +- 0.047 +- 0.024 and D^anti-lambda_LL = 0.249 +- 0.056 +- 0.049. These results are discussed in the frame of recent model calculations.

  2. Spin Correlations of Lambda anti-Lambda Pairs as a Probe of Quark-Antiquark Pair Production

    CERN Document Server

    Ellis, John

    2012-01-01

    The polarizations of Lambda and anti-Lambda are thought to retain memories of the spins of their parent s quarks and antiquarks, and are readily measurable via the angular distributions of their daughter protons and antiprotons. Correlations between the spins of Lambda and anti-Lambda produced at low relative momenta may therefore be used to probe the spin states of s anti-s pairs produced during hadronization. We consider the possibilities that they are produced in a 3P_0 state, as might result from fluctuations in the magnitude of , a 1S_0 state, as might result from chiral fluctuations, or a 3S_1 or other spin state, as might result from production by a quark-antiquark or gluon pair. We provide templates for the p anti-p angular correlations that would be expected in each of these cases, and discuss how they might be used to distinguish s anti-s production mechanisms in pp and heavy-ion collisions.

  3. Inclusive distributions of diffractively produced neutral kaons, lambdas, and antilambdas, and upper limits on Λ/sub c/+ production in high energy γ p interactions

    International Nuclear Information System (INIS)

    Bhadra, S.

    1985-01-01

    The author has used a large acceptance spectrometer in a tagged photon beam to study the interactions of real photons with protons in a hydrogen target. In particular, this thesis presents distributions of neutral kaons, lambdas, and antilambdas from diffractive dissociation where the kinematic regions of the target and projectile fragments are clearly distinguished by using events with clean recoiling protons. This data extends the neutral strange particle production rate measurements to higher overall centre-of-mass energies than previous photoproduction experiments. Comparison to pion-induced reactions supports the hypothesis that the photon behaves primarily as a hardon. Finally, upper limits have been set on the Λ/sub c/ + cross section times the branching ratio for decay modes leading to neutral strange particles for a diffractive dissociation process

  4. Experimental determination of the complete spin structure for anti-proton + proton -> anti-\\Lambda + \\Lambda at anti-proton beam momentum of 1.637 GeV/c

    CERN Document Server

    Paschke, K.D.; Berdoz, A.; Franklin, G.B.; Khaustov, P.; Meyer, C.A.; Bradtke, C.; Gehring, R.; Goertz, S.; Harmsen, J.; Meier, A.; Meyer, W.; Radtke, E.; Reicherz, G.; Dutz, H.; Pluckthun, M.; Schoch, B.; Dennert, H.; Eyrich, W.; Hauffe, J.; Metzger, A.; Moosburger, M.; Stinzing, F.; Wirth, St.; Fischer, H.; Franz, J.; Heinsius, F.H.; Kriegler, E.; Schmitt, H.; Bunker, B.; Hertzog, D.; Jones, T.; Tayloe, R.; Broders, R.; Geyer, R.; Kilian, K.; Oelert, W.; Rohrich, K.; Sachs, K.; Sefzick, T.; Bassalleck, B.; Eilerts, S.; Fields, D.E.; Kingsberry, P.; Lowe, J.; Stotzer, R.; Johansson, T.; Pomp, S.; Wirth, St.

    2006-01-01

    The reaction anti-proton + proton -> anti-\\Lambda + \\Lambda -> anti-proton + \\pi^+ + proton + \\pi^- has been measured with high statistics at anti-proton beam momentum of 1.637 GeV/c. The use of a transversely-polarized frozen-spin target combined with the self-analyzing property of \\Lambda/anti-\\Lambda decay allows access to unprecedented information on the spin structure of the interaction. The most general spin-scattering matrix can be written in terms of eleven real parameters for each bin of scattering angle, each of these parameters is determined with reasonable precision. From these results all conceivable spin-correlations are determined with inherent self-consistency. Good agreement is found with the few previously existing measurements of spin observables in anti-proton + proton -> anti-\\Lambda + \\Lambda near this energy. Existing theoretical models do not give good predictions for those spin-observables that had not been previously measured.

  5. Strange particle correlations measured by the Star experiment in ultra-relativistic heavy ion collisions a RHIC; Etude des correlations de particules etranges mesurees par l'experience STAR dans les collisions d'ions lourds ultra-relativistes au RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Renault, G

    2004-09-01

    Non-identical correlation functions allow to study the space-time evolution of the source of particles formed in ultra-relativistic heavy ion collisions. The STAR experiment is dedicated to probe the formation of a new state of nuclear matter called Quark Gluon Plasma. The proton - lambda correlation function is supposed to be more sensitive to bigger source sizes than the proton - proton because of the absence of the final state Coulomb interaction. In this thesis, proton - lambda, anti-proton - anti-lambda, anti-proton - lambda and proton - anti-lambda correlation functions are studied in Au+Au collisions at {radical}S{sub NN} = 200 GeV using an analytical model. The proton - lambda and anti-proton - anti-lambda correlation functions exhibit the same behavior as in previous measurements. The anti-proton - lambda and proton - anti-lambda correlation functions, measured for the first time, show a very strong signal corresponding to the baryon - anti-baryon annihilation channel. Parameterizing the correlation functions has allowed to characterize final state interactions. (author)

  6. Despina Hatzifotiadou: ALICE Master Class 4 - Demonstration of the software for the 2nd part of the exercise - invariant mass spectra - background subtraction and calculation of number of Kaons, Lambdas, antiLambdas.

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    This is the 4th of 4 short online videos. It contains a demonstration of the software for the 2nd part of the exercise, related to invariant mass spectra - background subtraction and calculation of number of Kaons, Lambdas, antiLambdas. More details and related links on this indico event page. In more detail: What is Physics Master Classes Students after morning lectures, run programmes in the afternoon to do measurements. These tutorials are about how to use the software required to do these measurements. Background info and examples  Looking for strange particles with ALICE http://aliceinfo.cern.ch/Public/MasterCL/MasterClassWebpage.html Introduction to first part of the exercise : what are strange particles, V0 decays, invariant mass. Demonstration of the software for the 1st part of the exercise - visual identification of V0s Introduction to second part of the exercise : strangeness enhancement; centrality of lead-lead collisions; explanation of efficiency, yield, background etc Demonstr...

  7. Correlation Measurement of $\\Lambda^{0}$$\\overline{\\Lambda}$$^{0}$ $\\Lambda^{0}$$\\Lambda^{0}$ and $\\overline{\\Lambda}$$^{0}$$\\overline{\\Lambda}$$^{0}$ with the ATLAS Detector at $\\sqrt{s}$=7 TeV

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00357007

    This thesis summaries the measurements of correlations between Lambda0-anti-Lambda0, Lambda0-Lambda0 and anti-Lambda0-anti-Lambda0 hyperon pairs produced inclusively at the LHC, which are useful for a better understanding of the quark-antiquark pair production and jet fragmentation and hadronization processes. The analysis is based on hyperon pairs selected using the muon and minimum bias samples collected at the ATLAS experiment from proton-proton collisions at a center-of-mass energy of 7 TeV in 2010. Excess Lambda0-anti-Lambda0 are observed near the production threshold and are identified to be originated from the parton system in the string model in the Monte Carlo sample, decaying either directly or through heavy strange resonances such as Sigma0 and Sigma∗(1385). Dynamical correlations have been explored through a correlation function defined as the ratio of two-particle to single-particle densities. Positive correlation is observed for Lambda0-anti-Lambda0 and anticorrelation is observed for Lambda0-...

  8. Fermi-Dirac Correlations in $\\Lambda$ Pairs in Hadronic Z Decays

    CERN Document Server

    Barate, R; Ghez, P; Goy, C; Lees, J P; Martin, F; Merle, E; Minard, M N; Pietrzyk, B; Alemany, R; Bravo, S; Casado, M P; Chmeissani, M; Crespo, J M; Fernández, E; Fernández-Bosman, M; Garrido, L; Graugès-Pous, E; Juste, A; Martínez, M; Merino, G; Miquel, R; Mir, L M; Pacheco, A; Riu, I; Ruiz, H; Colaleo, A; Creanza, D; De Palma, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Boix, G; Buchmüller, O L; Cattaneo, M; Cerutti, F; Ciulli, V; Dissertori, G; Drevermann, H; Forty, Roger W; Frank, M; Greening, T C; Halley, A W; Hansen, J B; Harvey, J; Janot, P; Jost, B; Lehraus, Ivan; Leroy, O; Mato, P; Minten, Adolf G; Moutoussi, A; Ranjard, F; Rolandi, Luigi; Schlatter, W D; Schmitt, M; Schneider, O; Spagnolo, P; Tejessy, W; Teubert, F; Tournefier, E; Wright, A E; Ajaltouni, Ziad J; Badaud, F; Chazelle, G; Deschamps, O; Falvard, A; Ferdi, C; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Blondel, A; Bonneaud, G R; Brient, J C; Rougé, A; Rumpf, M; Swynghedauw, M; Verderi, M; Videau, H L; Focardi, E; Parrini, G; Zachariadou, K; Corden, M; Georgiopoulos, C H; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Lynch, J G; Negus, P; O'Shea, V; Raine, C; Teixeira-Dias, P; Thompson, A S; Cavanaugh, R J; Dhamotharan, S; Geweniger, C; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Martin, E B; Marinelli, N; Sciabà, A; Sedgbeer, J K; Thomson, E; Williams, M D; Ghete, V M; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Bowdery, C K; Buck, P G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Robertson, N A; Williams, M I; Giehl, I; Jakobs, K; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Wachsmuth, H W; Zeitnitz, C; Aubert, Jean-Jacques; Bonissent, A; Carr, J; Coyle, P; Payre, P; Rousseau, D; Aleppo, M; Antonelli, M; Ragusa, F; Büscher, V; Dietl, H; Ganis, G; Hüttmann, K; Lütjens, G; Mannert, C; Männer, W; Moser, H G; Schael, S; Settles, Ronald; Seywerd, H C J; Stenzel, H; Wiedenmann, W; Wolf, G; Azzurri, P; Boucrot, J; Callot, O; Chen, S; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacholkowska, A; Le Diberder, F R; Lefrançois, J; Lutz, A M; Schune, M H; Veillet, J J; Videau, I; Zerwas, D; Bagliesi, G; Boccali, T; Bozzi, C; Calderini, G; Dell'Orso, R; Ferrante, I; Foà, L; Giassi, A; Gregorio, A; Ligabue, F; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Rizzo, G; Sanguinetti, G; Sguazzoni, G; Tenchini, Roberto; Venturi, A; Verdini, P G; Blair, G A; Cowan, G D; Green, M G; Medcalf, T; Strong, J A; Botterill, David R; Clifft, R W; Edgecock, T R; Norton, P R; Thompson, J C; Tomalin, I R; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Konstantinidis, N P; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Cartwright, S L; Combley, F; Lehto, M H; Thompson, L F; Affholderbach, K; Böhrer, A; Brandt, S; Grupen, Claus; Hess, J; Misiejuk, A; Prange, G; Sieler, U; Giannini, G; Gobbo, B; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Elmer, P; Ferguson, D P S; Gao, Y; González, S; Hayes, O J; Hu, H; Jin, S; Kile, J; McNamara, P A; Nielsen, J; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, J; Von Wimmersperg-Töller, J H; Wu Sau Lan; Wu, X; Zobernig, G

    2000-01-01

    Two-particle correlations of Lambda Lambda and Anti-Lambda Anti-Lambda pairshave been studied in multihadronic Z decays recorded with the ALEPH detector at LEP in the years from 1992 to 1995. The correlations were measured as a function of the four-momentum difference Q of the pair. A depletion of events is observed in the region Q 2 GeV the fraction of pairs with spin one is consistent with the value of 0.75 expected for a statistical spin mixture, whilst for Q < 2 GeV this fraction is found to be lower. For Lambda Anti-Lambda pairs, where no Fermi-Dirac correlations are expected, the spin one fraction is measured to be consistent with 0.75 over the entire analysed Q range.

  9. Measurement of the forward-backward asymmetry in Λ0b and Λ¯0b baryon production in pp¯ collisions at √s = 1.96 TeV

    Czech Academy of Sciences Publication Activity Database

    Abazov, V. M.; Abbott, B.; Acharya, B.S.; Kupčo, Alexander; Lokajíček, Miloš

    2015-01-01

    Roč. 91, č. 7 (2015), "072008-1"-"072008-7" ISSN 1550-7998 Institutional support: RVO:68378271 Keywords : Batavia TEVATRON Coll * anti-p p * scattering * Lambda/b0 * hadroproduction * Antilambda/b0 * hadroproduction * rapidity dependence * DZERO Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 4.643, year: 2014

  10. WA97 results on strangeness production in lead lead collisions at 158 A GeV/c

    Czech Academy of Sciences Publication Activity Database

    Andersen, E.; Andrighetto, A.; Antinori, F.; Böhm, Jan; Píška, Karel; Staroba, Pavel; Šťastný, Jan; Vaníčková, Marcela; Závada, Petr

    1996-01-01

    Roč. 610, - (1996), 165c-174c ISSN 0375-9474 R&D Projects: GA ČR GA202/95/0217 Keywords : hyperon * antihyperon production * yield (Lambda Antilambda) * yield (Omega- Xi-) * mass spectrum * CERN SPS * 158 GeV/c/nucleon Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.825, year: 1996

  11. The design and performance of the FNAL high-energy polarized-beam facility

    Energy Technology Data Exchange (ETDEWEB)

    Grosnick, D P; Hill, D A; Laghai, M R; Lopiano, D; Ohashi, Y; Shima, T; Spinka, H; Stanek, R W; Underwood, D G; Yokosawa, A [Argonne National Lab. (USA); Lehar, F; Lesquen, A de; Rossum, L van [CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Dept. de Physique des Particules Elementaires; Carey, D C; Coleman, R N; Cossairt, J D; Read, A L; Schailey, R [Fermi National Accelerator Lab., Batavia, IL (USA); Derevschikov, A A; Matulenko, Yu A; Meschanin, A P; Nurushev, S B; Rzaev, R A; Solovyanov, V L; Vasiliev, A N [Institut Fiziki Vysokikh Ehnergij, Serpukhov (USSR); Akchurin, N; Onel, Y [Iowa Univ., Iowa City (USA). Dept. of Physics and Astronomy; Imai, K; Makino, S; Masaike, A; Miyake, K; Nagamine, T; Tamura, N; Yoshida, T [Kyoto Univ. (Japan). Dept. of Physics; Takashima, R [Kyoto Univ. of Education, Fushimi (Japan); Takeutchi, F [Kyoto Sangyo Univ. (Japan); Maki, T [University of Occupational and Environmental; FNAL-E581/704 Collaboration

    1990-05-10

    A new polarized-proton and -antiproton beam with 185 GeV/c momentum has been built at Fermilab. The design uses the parity-nonconserving decays of lambda and antilambda hyperons to produce polarized protons and antiprotons, respectively, a beam-transport system that minimizes depolarization effects, and a set of twelve dipole magnets that rotate the beam-particle spin direction. A beam-tagging system determines the momentum and polarization of individual beam particles. This allows a selection of particles in definite intervals of momentum and polarization. Measurements performed by two different polarimeters showed that the beam is polarized and the determination of polarization by beam-particle tagging is verified. A new measurement of the analyzing power of large-x{sub F} {pi}{sup 0} production may lead to another beam polarimeter.

  12. The design and performance of the FNAL high-energy polarized beam facility

    International Nuclear Information System (INIS)

    Tanaka, Nobuyuki.

    1989-01-01

    We describe a new polarized-proton and -antiproton beam with 185-GeV/c momentum in the Fermilab MP beam line which is currently operational. The design uses the parity-conserving decay of lambda and antilambda hyperons to produce polarized protons and antiprotons, respectively. A beam-transport system minimizes depolarization effects and uses a set of 12 dipole magnets that rotate the beam-particle spin direction. A beam-tagging system determines the momentum and polarization of individual beam particles, allowing a selection of particles in definite intervals at momentum and polarization. We measured polarization of the beam by using two types of polarimeters, which verified the determination of polarization by a beam-particle tagging system. Two of these processes are the inverse-Primakoff effect and the Coulomb-nuclear interference (CNI) in elastic proton-proton scattering. Another experiment measured the π 0 production asymmetry of large-x F values; this process may now be used as an on-line beam polarimeter. 9 refs., 9 figs

  13. Strangeness Production at low $Q^2$ in Deep-Inelastic ep Scattering at HERA

    CERN Document Server

    Aaron, F.D.; Andreev, V.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Bacchetta, A.; Backovic, S.; Baghdasaryan, A.; Barrelet, E.; Bartel, W.; Beckingham, M.; Begzsuren, K.; Behnke, O.; Belousov, A.; Berger, N.; Bizot, J.C.; Boenig, M.-O.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J.G.; Coughlan, J.A.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Daum, K.; Deak, M.; de Boer, Y.; Delcourt, B.; Del Degan, M.; Delvax, J.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dossanov, A.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkiewicz, A.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Ghazaryan, Samvel; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Grell, B.R.; Grindhammer, G.; Habib, S.; Haidt, D.; Hansson, M.; Helebrant, C.; Henderson, R.C.W.; Hennekemper, E.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Jacquet, M.; Janssen, M.E.; Janssen, X.; Jemanov, V.; Jonsson, L.; Jung, Andreas Werner; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knutsson, A.; Kogler, R.; Korbel, V.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Kutak, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Li, G.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, Ll.; Martyn, H.-U.; Maxfield, S.J.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, Matthias Ulrich; Mudrinic, M.; Muller, K.; Murin, P.; Nankov, K.; Naroska, B.; Naumann, Th.; Newman, Paul R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G.D.; Pejchal, O.; Peng, H.; Perez, E.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Placakyte, R.; Polifka, R.; Povh, B.; Preda, T.; Radescu, V.; Rahmat, A.J.; Raicevic, N.; Raspiareza, A.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Ruiz Tabasco, J.E.; Rurikova, Z.; Rusakov, S.; Salek, D.; Salvaire, F.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R.N.; Sheviakov, I.; Shtarkov, L.N.; Shushkevich, S.; Sloan, T.; Smiljanic, Ivan; Smirnov, P.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, Arnd E.; Staykova, Z.; Steder, M.; Stella, B.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P.D.; Toll, T.; Tomasz, F.; Tran, T.H.; Traynor, D.; Trinh, T.N.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; Wegener, D.; Wessels, M.; Wissing, Ch.; Wunsch, E.; Yeganov, V.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y.C.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2009-01-01

    The production of neutral strange hadrons is investigated using deep-inelastic scattering events measured with the H1 detector at HERA. The measurements are made in the phase space defined by the negative four-momentum transfer squared of the photon 2 < Q^2 < 100 GeV^2 and the inelasticity 0.1 < y < 0.6. The K_s and Lambda production cross sections and their ratios are determined. K_s production is compared to the production of charged particles in the same region of phase space. The Lambda - anti-Lambda asymmetry is also measured and found to be consistent with zero. Predictions of leading order Monte Carlo programs are compared to the data.

  14. Exploring antihyperons potentials in nuclei by antiproton-nucleon reactions

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Lorente, Alicia [Helmholtz Institut Mainz (Germany); Collaboration: PANDA-Collaboration

    2015-07-01

    The exclusive production of hyperon-Antihyperon pairs close to their production threshold in antiproton-nucleus collisions offers a unique and hitherto unexplored opportunity to study the behaviour of Antihyperons in nuclei. For the first time we analyse these reactions in a microscopic transport model using the Giessen Boltzmann-Uehling-Uhlenbeck Transportmodel (GiBUU). We find a substantial sensitivity of transverse momentum correlations of coincident AntiLambda-Lambda-pairs to the assumed depth of the AntiLambda potential. Rather than diminishing this effect, secondary scattering effects which are more pronounced at deeper AntiLambda potentials enhance this sensitivity. Because of the high cross section for this process and the simplicity of this method our results pave the way for experimental studies at the FAIR facility.

  15. Observation of an antimatter hypernucleus.

    Science.gov (United States)

    Abelev, B I; Aggarwal, M M; Ahammed, Z; Alakhverdyants, A V; Alekseev, I; Anderson, B D; Arkhipkin, D; Averichev, G S; Balewski, J; Barnby, L S; Baumgart, S; Beavis, D R; Bellwied, R; Betancourt, M J; Betts, R R; Bhasin, A; Bhati, A K; Bichsel, H; Bielcik, J; Bielcikova, J; Biritz, B; Bland, L C; Bonner, B E; Bouchet, J; Braidot, E; Brandin, A V; Bridgeman, A; Bruna, E; Bueltmann, S; Bunzarov, I; Burton, T P; Cai, X Z; Caines, H; Calderon, M; Catu, O; Cebra, D; Cendejas, R; Cervantes, M C; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, J Y; Cheng, J; Cherney, M; Chikanian, A; Choi, K E; Christie, W; Chung, P; Clarke, R F; Codrington, M J M; Corliss, R; Cramer, J G; Crawford, H J; Das, D; Dash, S; Davila Leyva, A; De Silva, L C; Debbe, R R; Dedovich, T G; DePhillips, M; Derevschikov, A A; Derradi de Souza, R; Didenko, L; Djawotho, P; Dogra, S M; Dong, X; Drachenberg, J L; Draper, J E; Dunlop, J C; Dutta Mazumdar, M R; Efimov, L G; Elhalhuli, E; Elnimr, M; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Eun, L; Evdokimov, O; Fachini, P; Fatemi, R; Fedorisin, J; Fersch, R G; Filip, P; Finch, E; Fine, V; Fisyak, Y; Gagliardi, C A; Gangadharan, D R; Ganti, M S; Garcia-Solis, E J; Geromitsos, A; Geurts, F; Ghazikhanian, V; Ghosh, P; Gorbunov, Y N; Gordon, A; Grebenyuk, O; Grosnick, D; Grube, B; Guertin, S M; Gupta, A; Gupta, N; Guryn, W; Haag, B; Hamed, A; Han, L-X; Harris, J W; Hays-Wehle, J P; Heinz, M; Heppelmann, S; Hirsch, A; Hjort, E; Hoffman, A M; Hoffmann, G W; Hofman, D J; Hollis, R S; Huang, B; Huang, H Z; Humanic, T J; Huo, L; Igo, G; Iordanova, A; Jacobs, P; Jacobs, W W; Jakl, P; Jena, C; Jin, F; Jones, C L; Jones, P G; Joseph, J; Judd, E G; Kabana, S; Kajimoto, K; Kang, K; Kapitan, J; Kauder, K; Keane, D; Kechechyan, A; Kettler, D; Kikola, D P; Kiryluk, J; Kisiel, A; Klein, S R; Knospe, A G; Kocoloski, A; Koetke, D D; Kollegger, T; Konzer, J; Kopytine, M; Koralt, I; Koroleva, L; Korsch, W; Kotchenda, L; Kouchpil, V; Kravtsov, P; Krueger, K; Krus, M; Kumar, L; Kurnadi, P; Lamont, M A C; Landgraf, J M; LaPointe, S; Lauret, J; Lebedev, A; Lednicky, R; Lee, C-H; Lee, J H; Leight, W; Levine, M J; Li, C; Li, L; Li, N; Li, W; Li, X; Li, Y; Li, Z; Lin, G; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, H; Liu, J; Ljubicic, T; Llope, W J; Longacre, R S; Love, W A; Lu, Y; Luo, X; Ma, G L; Ma, Y G; Mahapatra, D P; Majka, R; Mal, O I; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Masui, H; Matis, H S; Matulenko, Yu A; McDonald, D; McShane, T S; Meschanin, A; Milner, R; Minaev, N G; Mioduszewski, S; Mischke, A; Mitrovski, M K; Mohanty, B; Mondal, M M; Morozov, B; Morozov, D A; Munhoz, M G; Nandi, B K; Nattrass, C; Nayak, T K; Nelson, J M; Netrakanti, P K; Ng, M J; Nogach, L V; Nurushev, S B; Odyniec, G; Ogawa, A; Okada, H; Okorokov, V; Olson, D; Pachr, M; Page, B S; Pal, S K; Pandit, Y; Panebratsev, Y; Pawlak, T; Peitzmann, T; Perevoztchikov, V; Perkins, C; Peryt, W; Phatak, S C; Pile, P; Planinic, M; Ploskon, M A; Pluta, J; Plyku, D; Poljak, N; Poskanzer, A M; Potukuchi, B V K S; Powell, C B; Prindle, D; Pruneau, C; Pruthi, N K; Pujahari, P R; Putschke, J; Qiu, H; Raniwala, R; Raniwala, S; Ray, R L; Redwine, R; Reed, R; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Sahoo, R; Sakai, S; Sakrejda, I; Sakuma, T; Salur, S; Sandweiss, J; Sangaline, E; Schambach, J; Scharenberg, R P; Schmitz, N; Schuster, T R; Seele, J; Seger, J; Selyuzhenkov, I; Seyboth, P; Shahaliev, E; Shao, M; Sharma, M; Shi, S S; Sichtermann, E P; Simon, F; Singaraju, R N; Skoby, M J; Smirnov, N; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stanislaus, T D S; Staszak, D; Stevens, J R; Stock, R; Strikhanov, M; Stringfellow, B; Suaide, A A P; Suarez, M C; Subba, N L; Sumbera, M; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Svirida, D N; Symons, T J M; Szanto de Toledo, A; Takahashi, J; Tang, A H; Tang, Z; Tarini, L H; Tarnowsky, T; Thein, D; Thomas, J H; Tian, J; Timmins, A R; Timoshenko, S; Tlusty, D; Tokarev, M; Trainor, T A; Tram, V N; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Van Buren, G; van Leeuwen, M; van Nieuwenhuizen, G; Vanfossen, J A; Varma, R; Vasconcelos, G M S; Vasiliev, A N; Videbaek, F; Viyogi, Y P; Vokal, S; Voloshin, S A; Wada, M; Walker, M; Wang, F; Wang, G; Wang, H; Wang, J S; Wang, Q; Wang, X L; Wang, Y; Webb, G; Webb, J C; Westfall, G D; Whitten, C; Wieman, H; Wingfield, E; Wissink, S W; Witt, R; Wu, Y; Xie, W; Xu, H; Xu, N; Xu, Q H; Xu, W; Xu, Y; Xu, Z; Xue, L; Yang, Y; Yepes, P; Yip, K; Yoo, I-K; Yue, Q; Zawisza, M; Zbroszczyk, H; Zhan, W; Zhang, J; Zhang, S; Zhang, W M; Zhang, X P; Zhang, Y; Zhang, Z P; Zhao, J; Zhong, C; Zhou, J; Zhou, W; Zhu, X; Zhu, Y H; Zoulkarneev, R; Zoulkarneeva, Y

    2010-04-02

    Nuclear collisions recreate conditions in the universe microseconds after the Big Bang. Only a very small fraction of the emitted fragments are light nuclei, but these states are of fundamental interest. We report the observation of antihypertritons--comprising an antiproton, an antineutron, and an antilambda hyperon--produced by colliding gold nuclei at high energy. Our analysis yields 70 +/- 17 antihypertritons ((Lambda)(3)-H) and 157 +/- 30 hypertritons (Lambda3H). The measured yields of Lambda3H ((Lambda)(3)-H) and 3He (3He) are similar, suggesting an equilibrium in coordinate and momentum space populations of up, down, and strange quarks and antiquarks, unlike the pattern observed at lower collision energies. The production and properties of antinuclei, and of nuclei containing strange quarks, have implications spanning nuclear and particle physics, astrophysics, and cosmology.

  16. Antibaryon production in AU+AU collisions at the AGS

    International Nuclear Information System (INIS)

    Heintzelman, G.A.; Back, B. B.; Betts, R. R.; Chang, J.; Chang, W. C.; Chi, C. Y.; Gillitzer, A.; Henning, W. F.; Hofman, D. J.; Nanal, V.; Wuosmaa, A. H.

    1999-01-01

    Experiment E917 at the Brookhaven AGS has made a measurement of near-mid-rapidity antibaryon production in both the antiproton and antilambda channel. Results on dN/dy and inverse slope parameters are shown. A preliminary measurement of the ratio bar Λ/bar p is also presented

  17. Lambda-antilambda decay asymmetries and CP violation

    International Nuclear Information System (INIS)

    Hertzog, D.W.; Barnes, P.D.; Birien, P.

    1988-01-01

    The exclusive reaction /bar p/p → /bar Lambda/Λ is an interesting laboratory in which to study both spin physics and fundamental symmetries. The PS185 collaboration at LEAR has been exploiting this fact for the last few years in an ongoing program of hyperon-antihyperon production. The motivation for this study will be outlined and the experimental technique will be described. Spin physics aspects such as the measurements of the outgoing hyperon polarization and preliminary determinations of spin correlation coefficients will be presented. Fundamental symmetry checks such as lifetime differences between Λ and /bar Lambda/ (CPT) and decay properties (CP) will be discussed. A future experiment which is quite sensitive to CP violation in a hyperon-antihyperon system will be mentioned. 15 refs., 4 figs

  18. Recent results from TASSO

    International Nuclear Information System (INIS)

    Foster, B.

    1982-03-01

    Results are presented on the inclusive production of π 0 , K 0 and antiK 0 and lambda and antilambda in e + e - annihilation. These results, together with those on inclusive charged hadron production are used to obtain information on fragmentation mechanisms and the production of heavy quark flavours in e + e - annihilation. (author)

  19. Milla Baldo Ceolin (1924-2011)

    CERN Multimedia

    2012-01-01

    At the end of November the particle physics community lost one of its most inquisitive, enthusiastic and active members when Milla Baldo Ceolin, emeritus professor at the University of Padua, passed away after several months of disabling illness.   After graduating from Padua in 1952, Milla began her scientific career in research with balloon-borne nuclear emulsions exposed to cosmic rays in the high atmosphere. Using a pion beam from the Bevatron at Berkeley, in 1958 Milla and D J Prowse discovered the first antihyperon: the antilambda. At the beginning of the 1960s she decided to change detection technique and began experiments with bubble chambers at Argonne, CERN and the Institute for Theoretcial and Experimental Physics (ITEP) in Moscow to investigate selection rules and conservation laws in the kaon system with higher statistics. In the meantime, her group in Padua grew steadily, working in international collaborations. The main field of her investigations changed to neutrino physics ...

  20. $\\Lambda$ and $\\bar{\\Lambda}$ Production in Central Pb-Pb Collisions at 40, 80, and 158 A$\\cdot$GeV

    CERN Document Server

    Anticic, T; Collins, J; Dokshitzer, Y; Görlich, L; Grindhammer, G; Gustafson, G; Jönsson, L B; Jun, H; Kwiecinski, J; Levin, E; Lipatov, A V; Lönnblad, L; Lublinsk, M; Maul, M; Milcewicz, I; Miu, G; Nowak, G; Sjöstrand, Torbjörn; Stasto, A M; Timneanu, N; Turnau, J; Zotov, N P

    2003-01-01

    Production of Lambda and Antilambda hyperons was measured in central Pb-Pb collisions at 40, 80, and 158 A$\\cdot$GeV beam energy on a fixed target. Transverse mass spectra and rapidity distributions are given for all three energies. The $\\Lambda/\\pi$ ratio at mid-rapidity and in full phase space shows a pronounced maximum between the highest AGS and 40 A$\\cdot$GeV SPS energies, whereas the $\\bar{\\Lambda}/\\pi$ ratio exhibits a monotonic increase.

  1. Heavy Hyperon-Antihyperon Production

    CERN Document Server

    Oelert, W.; Jarczyk, Lucjan; Kilian, K.; Moskal, P.; Winter, P.

    2005-01-01

    Based on the experience from the production of anti-Lambda Lambda and anti-Sigma Sigma pairs at LEAR (experiment PS185) it is suggested to continue the investigations towards the heavier antihyperon--hyperon pairs anti-Xi Xi and anti-Omega Omega in view of: (1) the production dynamics of the heavier antihyperon--hyperon out of the anti-p p annihilation (2) a comparison of the (3s 3anti-s quark system) anti-Omega Omega to the (3 (anti-s s)) 3 phi meson production, where both systems have similar masses (3.345 and 3.057, respectively) and identical valence quark content. A systematic study of the antihyperon--hyperon production with increasing strangeness content is interesting for the following reasons: The anti-Omega Omega production is the creation of two spin 3/2 objects out of the two spin 1/2 anti-p p particles. Results of the PS185 experiments prove a clear dominance of the spin triplet anti-s s dissociation. In the Omega anti-Omega the three s-quarks (three anti-s quarks) are aligned to spin 3/2 each. I...

  2. Particle size distribution control of Pt particles used for particle gun

    Science.gov (United States)

    Ichiji, M.; Akiba, H.; Nagao, H.; Hirasawa, I.

    2017-07-01

    The purpose of this study is particle size distribution (PSD) control of submicron sized Pt particles used for particle gun. In this report, simple reaction crystallization is conducted by mixing H2PtCl6 and ascorbic acid. Without the additive, obtained Pt particles have broad PSD and reproducibility of experiment is low. With seeding, Pt particles have narrow PSD and reproducibility improved. Additionally, mean particle diameter of 100-700 nm is controlled by changing seeding amount. Obtained particles are successfully characterized as Pt by XRD results. Moreover, XRD spectra indicate that obtained particles are polycrystals. These experimental results suggest that seeding consumed nucleation, as most nuclei attached on the seed surface. This mechanism virtually restricted nucleation to have narrow PSD can be obtained.

  3. $\\Lambda$ and $\\Sigma^{0}$ Pair Production in Two-Photon Collisions at LEP

    CERN Document Server

    Achard, P.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Anderhub, H.; Andreev, Valery P.; Anselmo, F.; Arefev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, G.; Baksay, L.; Baldew, S.V.; Banerjee, S.; Banerjee, Sw.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bottai, S.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.; Casaus, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Chamizo, M.; Chang, Y.H.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; de la Cruz, B.; Cucciarelli, S.; van Dalen, J.A.; de Asmundis, R.; Deglon, P.; Debreczeni, J.; Degre, A.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; Dionisi, C.; Dittmar, M.; Doria, A.; Dova, M.T.; Duchesneau, D.; Echenard, B.; Eline, A.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Ewers, A.; Extermann, P.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisher, W.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Iouri; Ganguli, S.N.; Garcia-Abia, Pablo; Gataullin, M.; Gentile, S.; Giagu, S.; Gong, Z.F.; Grenier, Gerald Jean; Grimm, O.; Gruenewald, M.W.; Guida, M.; van Gulik, R.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hakobyan, R.S.; Hatzifotiadou, D.; Hebbeker, T.; Herve, Alain; Hirschfelder, J.; Hofer, H.; Hohlmann, M.; Holzner, G.; Hou, S.R.; Hu, Y.; Jin, B.N.; Jones, Lawrence W.; de Jong, P.; Josa-Mutuberria, I.; Kafer, D.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, J.K.; Kirkby, Jasper; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopal, M.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Krenz, W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Le Goff, J.M.; Leiste, R.; Levtchenko, M.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Lubelsmeyer, K.; Luci, C.; Luminari, L.; Lustermann, W.; Ma, W.G.; Malgeri, L.; Malinin, A.; Mana, C.; Mangeol, D.; Mans, J.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Muanza, G.S.; Muijs, A.J.M.; Musicar, B.; Musy, M.; Nagy, S.; Natale, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Niessen, T.; Nisati, A.; Kluge, Hannelies; Ofierzynski, R.; Organtini, G.; Palomares, C.; Pandoulas, D.; Paolucci, P.; Paramatti, R.; Passaleva, G.; Patricelli, S.; Paul, Thomas Cantzon; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.; Pioppi, M.; Piroue, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Pothier, J.; Prokofev, D.O.; Prokofiev, D.; Quartieri, J.; Rahal-Callot, G.; Rahaman, M.A.; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, Keith; Roe, B.P.; Romero, L.; Rosca, A.; Rosier-Lees, S.; Roth, Stefan; Rosenbleck, C.; Roux, B.; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Sakharov, A.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Sanders, M.P.; Schafer, C.; Schegelsky, V.; Schmidt-Kaerst, S.; Schmitz, D.; Schopper, H.; Schotanus, D.J.; Schwering, G.; Sciacca, C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Siedenburg, T.; Son, D.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Sushkov, S.; Suter, H.; Swain, J.D.; Szillasi, Z.; Tang, X.W.; Tarjan, P.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, Charles; Ting, Samuel C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Tung, K.L.; Ulbricht, J.; Valente, E.; Van de Walle, R.T.; Veszpremi, V.; Vesztergombi, G.; Vetlitsky, I.; Vicinanza, D.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobev, I.; Vorobyov, A.A.; Wadhwa, M.; Wallraff, W.; Wang, X.L.; Wang, Z.M.; Weber, M.; Wienemann, P.; Wilkens, H.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yamamoto, J.; Yang, B.Z.; Yang, C.G.; Yang, H.J.; Yang, M.; Yeh, S.C.; Zalite, A.; Zalite, Yu.; Zhang, Z.P.; Zhao, J.; Zhu, G.Y.; Zhu, R.Y.; Zhuang, H.L.; Zichichi, A.; Zilizi, G.; Zimmermann, B.; Zoller, M.

    2002-01-01

    Strange baryon pair production in two-photon collisions is studied with the L3 detector at LEP. The analysis is based on data collected at e+e- centre-of-mass energies from 91 GeV to 208 GeV, corresponding to an integrated luminosity of 844 pb-1. The processes gamma gamma -> Lambda Anti-lambda and gamma gamma -> Sigma0 Anti-sigma0 are identified. Their cross sections as a function of the gamma gamma centre-of-mass energy are measured and results are compared to predictions of the quark-diquark model.

  4. PENTACLE: Parallelized particle-particle particle-tree code for planet formation

    Science.gov (United States)

    Iwasawa, Masaki; Oshino, Shoichi; Fujii, Michiko S.; Hori, Yasunori

    2017-10-01

    We have newly developed a parallelized particle-particle particle-tree code for planet formation, PENTACLE, which is a parallelized hybrid N-body integrator executed on a CPU-based (super)computer. PENTACLE uses a fourth-order Hermite algorithm to calculate gravitational interactions between particles within a cut-off radius and a Barnes-Hut tree method for gravity from particles beyond. It also implements an open-source library designed for full automatic parallelization of particle simulations, FDPS (Framework for Developing Particle Simulator), to parallelize a Barnes-Hut tree algorithm for a memory-distributed supercomputer. These allow us to handle 1-10 million particles in a high-resolution N-body simulation on CPU clusters for collisional dynamics, including physical collisions in a planetesimal disc. In this paper, we show the performance and the accuracy of PENTACLE in terms of \\tilde{R}_cut and a time-step Δt. It turns out that the accuracy of a hybrid N-body simulation is controlled through Δ t / \\tilde{R}_cut and Δ t / \\tilde{R}_cut ˜ 0.1 is necessary to simulate accurately the accretion process of a planet for ≥106 yr. For all those interested in large-scale particle simulations, PENTACLE, customized for planet formation, will be freely available from https://github.com/PENTACLE-Team/PENTACLE under the MIT licence.

  5. Particle-two particle interaction in configuration space

    International Nuclear Information System (INIS)

    Kuzmichev, V.E.

    1982-07-01

    The problem if three indentical particles with zero-range two-particle interaction is considered. An explicit expression for the effective potential between one particle and the remaining two-particle system is obtained in the coordinate representation. It is shown that for arbitrary energies, at small and, for zero energy, at large distances rho between the one particle and centre of mass of the other two particles the diagonal matrix element of the effective potential is attractive and proportional to 1/rho 2 . This property of the effective potenial explains both the Thomas singularity and the Efimov effect. In the case of zero total energy of the system the general form of the solution of the three-particle integral equation is found in configuration space. (orig.)

  6. Fermilab | Science | Particle Physics | Benefits of Particle Physics

    Science.gov (United States)

    Photos and videos Latest news For the media Particle Physics Neutrinos Fermilab and the LHC Dark matter initiatives Research and development Key discoveries Benefits of particle physics Particle Accelerators society Particle Physics 101 Science of matter, energy, space and time How particle physics discovery

  7. Particle Pollution

    Science.gov (United States)

    ... Your Health Particle Pollution Public Health Issues Particle Pollution Recommend on Facebook Tweet Share Compartir Particle pollution — ... see them in the air. Where does particle pollution come from? Particle pollution can come from two ...

  8. Effective particle magnetic moment of multi-core particles

    Energy Technology Data Exchange (ETDEWEB)

    Ahrentorp, Fredrik; Astalan, Andrea; Blomgren, Jakob; Jonasson, Christian [Acreo Swedish ICT AB, Arvid Hedvalls backe 4, SE-411 33 Göteborg (Sweden); Wetterskog, Erik; Svedlindh, Peter [Department of Engineering Sciences, Uppsala University, Box 534, SE-751 21 Uppsala (Sweden); Lak, Aidin; Ludwig, Frank [Institute of Electrical Measurement and Fundamental Electrical Engineering, TU Braunschweig, D‐38106 Braunschweig Germany (Germany); IJzendoorn, Leo J. van [Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Westphal, Fritz; Grüttner, Cordula [Micromod Partikeltechnologie GmbH, D ‐18119 Rostock (Germany); Gehrke, Nicole [nanoPET Pharma GmbH, D ‐10115 Berlin Germany (Germany); Gustafsson, Stefan; Olsson, Eva [Department of Applied Physics, Chalmers University of Technology, SE-412 96 Göteborg (Sweden); Johansson, Christer, E-mail: christer.johansson@acreo.se [Acreo Swedish ICT AB, Arvid Hedvalls backe 4, SE-411 33 Göteborg (Sweden)

    2015-04-15

    In this study we investigate the magnetic behavior of magnetic multi-core particles and the differences in the magnetic properties of multi-core and single-core nanoparticles and correlate the results with the nanostructure of the different particles as determined from transmission electron microscopy (TEM). We also investigate how the effective particle magnetic moment is coupled to the individual moments of the single-domain nanocrystals by using different measurement techniques: DC magnetometry, AC susceptometry, dynamic light scattering and TEM. We have studied two magnetic multi-core particle systems – BNF Starch from Micromod with a median particle diameter of 100 nm and FeraSpin R from nanoPET with a median particle diameter of 70 nm – and one single-core particle system – SHP25 from Ocean NanoTech with a median particle core diameter of 25 nm.

  9. Effective particle magnetic moment of multi-core particles

    International Nuclear Information System (INIS)

    Ahrentorp, Fredrik; Astalan, Andrea; Blomgren, Jakob; Jonasson, Christian; Wetterskog, Erik; Svedlindh, Peter; Lak, Aidin; Ludwig, Frank; IJzendoorn, Leo J. van; Westphal, Fritz; Grüttner, Cordula; Gehrke, Nicole; Gustafsson, Stefan; Olsson, Eva; Johansson, Christer

    2015-01-01

    In this study we investigate the magnetic behavior of magnetic multi-core particles and the differences in the magnetic properties of multi-core and single-core nanoparticles and correlate the results with the nanostructure of the different particles as determined from transmission electron microscopy (TEM). We also investigate how the effective particle magnetic moment is coupled to the individual moments of the single-domain nanocrystals by using different measurement techniques: DC magnetometry, AC susceptometry, dynamic light scattering and TEM. We have studied two magnetic multi-core particle systems – BNF Starch from Micromod with a median particle diameter of 100 nm and FeraSpin R from nanoPET with a median particle diameter of 70 nm – and one single-core particle system – SHP25 from Ocean NanoTech with a median particle core diameter of 25 nm

  10. Effective particle magnetic moment of multi-core particles

    Science.gov (United States)

    Ahrentorp, Fredrik; Astalan, Andrea; Blomgren, Jakob; Jonasson, Christian; Wetterskog, Erik; Svedlindh, Peter; Lak, Aidin; Ludwig, Frank; van IJzendoorn, Leo J.; Westphal, Fritz; Grüttner, Cordula; Gehrke, Nicole; Gustafsson, Stefan; Olsson, Eva; Johansson, Christer

    2015-04-01

    In this study we investigate the magnetic behavior of magnetic multi-core particles and the differences in the magnetic properties of multi-core and single-core nanoparticles and correlate the results with the nanostructure of the different particles as determined from transmission electron microscopy (TEM). We also investigate how the effective particle magnetic moment is coupled to the individual moments of the single-domain nanocrystals by using different measurement techniques: DC magnetometry, AC susceptometry, dynamic light scattering and TEM. We have studied two magnetic multi-core particle systems - BNF Starch from Micromod with a median particle diameter of 100 nm and FeraSpin R from nanoPET with a median particle diameter of 70 nm - and one single-core particle system - SHP25 from Ocean NanoTech with a median particle core diameter of 25 nm.

  11. Four-particle scattering with three-particle interactions

    International Nuclear Information System (INIS)

    Adhikari, S.K.

    1979-01-01

    The four-particle scattering formalism proposed independently by Alessandrini, by Mitra et al., by Rosenberg, and by Takahashi and Mishima is extended to include a possible three-particle interaction. The kernel of the new equations we get contain both two- and three-body connected parts and gets four-body connected after one iteration. On the other hand, the kernel of the original equations in the absence of three-particle interactions does not have a two-body connected part. We also write scattering equations for the transition operators connecting the two-body fragmentation channels. They are generalization of the Sloan equations in the presence of three-particle interactions. We indicate how to include approximately the effect of a weak three-particle interaction in a practical four-particle scattering calculation

  12. Big Bang Day: 5 Particles - 3. The Anti-particle

    CERN Multimedia

    Franck Close

    2008-01-01

    Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". 3. The Anti-particle. It appears to be the stuff of science fiction. Associated with every elementary particle is an antiparticle which has the same mass and opposite charge. Should the two meet and combine, the result is annihilation - and a flash of light. Thanks to mysterious processes that occurred after the Big Bang there are a vastly greater number of particles than anti-particles. So how could their elusive existence be proved? At CERN particle physicists are crashing together subatomic particles at incredibly high speeds to create antimatter, which they hope will finally reveal what happened at the precise moment of the Big Bang to create the repertoire of elementary particles and antiparticles in existence today.

  13. Big Bang Day: 5 Particles - 5. The Next Particle

    CERN Multimedia

    Franck Close

    2008-01-01

    Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". 5. The Next Particle The "sparticle" - a super symmetric partner to all the known particles could be the answer to uniting all the known particles and their interactions under one grand theoretical pattern of activity. But how do researchers know where to look for such phenomena and how do they know if they find them? Simon Singh reviews the next particle that physicists would like to find if the current particle theories are to ring true.

  14. Classical relativistic constituent particles and composite-particle scattering

    International Nuclear Information System (INIS)

    King, M.J.

    1984-01-01

    A nonlocal Lagrangian formalism is developed to describe a classical many-particle system. The nonstandard Lagrangian is a function of a single parameter s which is not, in general, associated with the physical clock. The particles are constrained to be constituents of composite systems, which in turn can decompose into asymptotic composite states representing free observable particles. To demonstrate this, explicit models of composite-composite particle scattering are constructed. Space-time conservation laws are not imposed separately on the system, but follow upon requiring the constituents to ''pair up'' into free composites at s = +infinity,-infinity. One model is characterized by the appearance of an ''external'' zero-mass composite particle which participates in the scattering process without affecting the space-time conservation laws of the two-composite system. Initial conditions on the two incoming composite particles and the zero-mass participant determine the scattering angle and the final states of the two outgoing composite particles. Although the formalism is classical, the model displays some features usually associated with quantum field theory, such as particle scattering by means of constituent exchange, creation and annihilation of particles, and restriction of values of angular momentum

  15. Interaction of Multiple Particles with a Solidification Front: From Compacted Particle Layer to Particle Trapping.

    Science.gov (United States)

    Saint-Michel, Brice; Georgelin, Marc; Deville, Sylvain; Pocheau, Alain

    2017-06-13

    The interaction of solidification fronts with objects such as particles, droplets, cells, or bubbles is a phenomenon with many natural and technological occurrences. For an object facing the front, it may yield various fates, from trapping to rejection, with large implications regarding the solidification pattern. However, whereas most situations involve multiple particles interacting with each other and the front, attention has focused almost exclusively on the interaction of a single, isolated object with the front. Here we address experimentally the interaction of multiple particles with a solidification front by performing solidification experiments of a monodisperse particle suspension in a Hele-Shaw cell with precise control of growth conditions and real-time visualization. We evidence the growth of a particle layer ahead of the front at a close-packing volume fraction, and we document its steady-state value at various solidification velocities. We then extend single-particle models to the situation of multiple particles by taking into account the additional force induced on an entering particle by viscous friction in the compacted particle layer. By a force balance model this provides an indirect measure of the repelling mean thermomolecular pressure over a particle entering the front. The presence of multiple particles is found to increase it following a reduction of the thickness of the thin liquid film that separates particles and front. We anticipate the findings reported here to provide a relevant basis to understand many complex solidification situations in geophysics, engineering, biology, or food engineering, where multiple objects interact with the front and control the resulting solidification patterns.

  16. Polarization particle drift and quasi-particle invariants

    International Nuclear Information System (INIS)

    Sosenko, P.P.

    1995-01-01

    The second-order approximation in quasi-particle description of magnetized plasmas is studied. Reduced particle and guiding-centre velocities are derived taking account of the second-order renormalization and polarization drift modified owing to finite-Larmor-radius effects. The second-order adiabatic invariant of quasi-particle motion is found. Global adiabatic invariants for the magnetized plasma are revealed, and their possible role in energy exchange between particles and fields, nonlinear mode cascades and global plasma stability is shown. 49 refs

  17. Enhanced stopping of macro-particles in particle-in-cell simulations

    International Nuclear Information System (INIS)

    May, J.; Tonge, J.; Ellis, I.; Mori, W. B.; Fiuza, F.; Fonseca, R. A.; Silva, L. O.; Ren, C.

    2014-01-01

    We derive an equation for energy transfer from relativistic charged particles to a cold background plasma appropriate for finite-size particles that are used in particle-in-cell simulation codes. Expressions for one-, two-, and three-dimensional particles are presented, with special attention given to the two-dimensional case. This energy transfer is due to the electric field of the wake set up in the background plasma by the relativistic particle. The enhanced stopping is dependent on the q 2 /m, where q is the charge and m is the mass of the relativistic particle, and therefore simulation macro-particles with large charge but identical q/m will stop more rapidly. The stopping power also depends on the effective particle shape of the macro-particle. These conclusions are verified in particle-in-cell simulations. We present 2D simulations of test particles, relaxation of high-energy tails, and integrated fast ignition simulations showing that the enhanced drag on macro-particles may adversely affect the results of these simulations in a wide range of high-energy density plasma scenarios. We also describe a particle splitting algorithm which can potentially overcome this problem and show its effect in controlling the stopping of macro-particles

  18. Elementary particles and particle interactions

    International Nuclear Information System (INIS)

    Bethge, K.; Schroeder, U.E.

    1986-01-01

    This book is a textbook for an introductory course of elementary particle physics. After a general introduction the symmetry principles governing the interactions of elementary particles are discussed. Then the phenomenology of the electroweak and strong interactions are described together with a short introduction to the Weinberg-Salam theory respectively to quantum chromodynamics. Finally a short outlook is given to grand unification with special regards to SU(5) and cosmology in the framework of the current understanding of the fundamental principles of nature. In the appendix is a table of particle properties and physical constants. (HSI) [de

  19. Rare particles

    International Nuclear Information System (INIS)

    Kutschera, W.

    1984-01-01

    The use of Accelerator Mass Spectrometry (AMS) to search for hypothetical particles and known particles of rare processes is discussed. The hypothetical particles considered include fractionally charged particles, anomalously heavy isotopes, and superheavy elements. The known particles produced in rare processes discussed include doubly-charged negative ions, counting neutrino-produced atoms in detectors for solar neutrino detection, and the spontaneous emission of 14 C from 223 Ra. 35 references

  20. Entanglement between particle partitions in itinerant many-particle states

    NARCIS (Netherlands)

    Haque, M.; Zozulya, O.S.; Schoutens, K.

    2009-01-01

    We review 'particle-partitioning entanglement' for itinerant many-particle systems. This is defined as the entanglement between two subsets of particles making up the system. We identify generic features and mechanisms of particle entanglement that are valid over whole classes of itinerant quantum

  1. Review of particle properties. Particle Data Group

    International Nuclear Information System (INIS)

    1978-04-01

    This review of the properties of leptons, mesons, and baryons is an updating of Review of Particle Properties, Particle Data Group [Rev. Mod. Phys. 48 (1976) No. 2, Part II; and Supplement, Phys. Lett. 68B (1977) 1]. Data are evaluated, listed, averaged, and summarized in tables. Numerous tables, figures, and formulae of interest to particle physicists are also included. A data booklet is available

  2. Particle therapy

    Energy Technology Data Exchange (ETDEWEB)

    Raju, M.R.

    1993-09-01

    Particle therapy has a long history. The experimentation with particles for their therapeutic application got started soon after they were produced in the laboratory. Physicists played a major role in proposing the potential applications in radiotherapy as well as in the development of particle therapy. A brief review of the current status of particle radiotherapy with some historical perspective is presented and specific contributions made by physicists will be pointed out wherever appropriate. The rationale of using particles in cancer treatment is to reduce the treatment volume to the target volume by using precise dose distributions in three dimensions by using particles such as protons and to improve the differential effects on tumors compared to normal tissues by using high-LET radiations such as neutrons. Pions and heavy ions combine the above two characteristics.

  3. Particle therapy

    International Nuclear Information System (INIS)

    Raju, M.R.

    1993-01-01

    Particle therapy has a long history. The experimentation with particles for their therapeutic application got started soon after they were produced in the laboratory. Physicists played a major role in proposing the potential applications in radiotherapy as well as in the development of particle therapy. A brief review of the current status of particle radiotherapy with some historical perspective is presented and specific contributions made by physicists will be pointed out wherever appropriate. The rationale of using particles in cancer treatment is to reduce the treatment volume to the target volume by using precise dose distributions in three dimensions by using particles such as protons and to improve the differential effects on tumors compared to normal tissues by using high-LET radiations such as neutrons. Pions and heavy ions combine the above two characteristics

  4. Single-particle characterization of ice-nucleating particles and ice particle residuals sampled by three different techniques

    Science.gov (United States)

    Worringen, A.; Kandler, K.; Benker, N.; Dirsch, T.; Mertes, S.; Schenk, L.; Kästner, U.; Frank, F.; Nillius, B.; Bundke, U.; Rose, D.; Curtius, J.; Kupiszewski, P.; Weingartner, E.; Vochezer, P.; Schneider, J.; Schmidt, S.; Weinbruch, S.; Ebert, M.

    2015-04-01

    In the present work, three different techniques to separate ice-nucleating particles (INPs) as well as ice particle residuals (IPRs) from non-ice-active particles are compared. The Ice Selective Inlet (ISI) and the Ice Counterflow Virtual Impactor (Ice-CVI) sample ice particles from mixed-phase clouds and allow after evaporation in the instrument for the analysis of the residuals. The Fast Ice Nucleus Chamber (FINCH) coupled with the Ice Nuclei Pumped Counterflow Virtual Impactor (IN-PCVI) provides ice-activating conditions to aerosol particles and extracts the activated particles for analysis. The instruments were run during a joint field campaign which took place in January and February 2013 at the High Alpine Research Station Jungfraujoch (Switzerland). INPs and IPRs were analyzed offline by scanning electron microscopy and energy-dispersive X-ray microanalysis to determine their size, chemical composition and mixing state. Online analysis of the size and chemical composition of INP activated in FINCH was performed by laser ablation mass spectrometry. With all three INP/IPR separation techniques high abundances (median 20-70%) of instrumental contamination artifacts were observed (ISI: Si-O spheres, probably calibration aerosol; Ice-CVI: Al-O particles; FINCH + IN-PCVI: steel particles). After removal of the instrumental contamination particles, silicates, Ca-rich particles, carbonaceous material and metal oxides were the major INP/IPR particle types obtained by all three techniques. In addition, considerable amounts (median abundance mostly a few percent) of soluble material (e.g., sea salt, sulfates) were observed. As these soluble particles are often not expected to act as INP/IPR, we consider them as potential measurement artifacts. Minor types of INP/IPR include soot and Pb-bearing particles. The Pb-bearing particles are mainly present as an internal mixture with other particle types. Most samples showed a maximum of the INP/IPR size distribution at 200

  5. Particle physics

    International Nuclear Information System (INIS)

    Kamal, Anwar

    2014-01-01

    Provides step-by-step derivations. Contains numerous tables and diagrams. Supports learning and teaching with numerous worked examples, questions and problems with answers. Sketches also the historical development of the subject. This textbook teaches particle physics very didactically. It supports learning and teaching with numerous worked examples, questions and problems with answers. Numerous tables and diagrams lead to a better understanding of the explanations. The content of the book covers all important topics of particle physics: Elementary particles are classified from the point of view of the four fundamental interactions. The nomenclature used in particle physics is explained. The discoveries and properties of known elementary particles and resonances are given. The particles considered are positrons, muon, pions, anti-protons, strange particles, neutrino and hadrons. The conservation laws governing the interactions of elementary particles are given. The concepts of parity, spin, charge conjugation, time reversal and gauge invariance are explained. The quark theory is introduced to explain the hadron structure and strong interactions. The solar neutrino problem is considered. Weak interactions are classified into various types, and the selection rules are stated. Non-conservation of parity and the universality of the weak interactions are discussed. Neutral and charged currents, discovery of W and Z bosons and the early universe form important topics of the electroweak interactions. The principles of high energy accelerators including colliders are elaborately explained. Additionally, in the book detectors used in nuclear and particle physics are described. This book is on the upper undergraduate level.

  6. 3D Lagrangian Model of Particle Saltation in an Open Channel Flow with Emphasis on Particle-Particle Collisions

    Science.gov (United States)

    Moreno, P. A.; Bombardelli, F. A.

    2012-12-01

    Particles laying motionless at the bed of rivers, lakes and estuaries can be put into motion when the shear stress exerted by the flow on the particles exceeds the critical shear stress. When these particles start their motion they can either remain suspended by long periods of time (suspended load) or move close to the bed (bed load). Particles are transported as bed load in three different modes: Sliding, rolling and saltation. Saltation is usually described as the bouncing motion of sediment particles in a layer a few particle diameters thick. The amount of particles and the bed-load mode in which they move depend on the particle size and density, and the flow intensity, usually quantified by the shear velocity. The bottom shear stress in natural streams will most likely be large enough to set saltation as the most important bed-load transport mechanism among all three modes. Thus, studying the saltation process is crucial for the overall understanding of bed-load transport. Particularly, numerical simulations of this process have been providing important insight regarding the relative importance of the physical mechanisms involved in it. Several processes occur when particles are saltating near the bed: i) Particles collide with the bed, ii) they "fly" between collisions with the bed, as a result of their interaction with the fluid flow, iii) and they collide among themselves. These processes can be simulated using a three-dimensional Eulerian-Lagrangian model. In order to mimic these processes we have experimented with an averaged turbulent flow field represented by the logarithmic law of the wall, and with a more involved approach in which a computed turbulent velocity field for a flat plate was used as a surrogate of the three-dimensional turbulent conditions present close to stream beds. Since flat-plate and open-channel boundary layers are essentially different, a dynamic similarity analysis was performed showing that the highly-resolved three

  7. Simultaneous measurement of particle and fluid velocities in particle-laden flows

    International Nuclear Information System (INIS)

    Jin, D. X.; Lee, D. Y.

    2009-01-01

    For the velocity measurement in a particle-laden fluid flow, the fluid velocity and the inherently dispersed particle velocity can be analyzed by using PIV and PTV, respectively. Since the PIV result statistically represents the average displacement of all the particles in a PIV image, it is inevitable that the PIV result includes the influence of the dispersed particles' displacement if a single CCD camera is used to simultaneously measure the fluid velocity and the dispersed particle velocity. The influence of dispersed particles should be excluded before the PIV analysis in order to evaluate the fluid velocity accurately. In this study, the optimum replacement brightness of dispersed particles to minimize the false influence of dispersed particles on the PIV analysis was theoretically derived. Simulation results show that the modification of dispersed particle brightness can significantly reduce the PIV error caused by the dispersed particles. This modification method was also verified in the analysis of an actual experimental case of the particle-laden fluid flow in a triangular grooved channel

  8. Numerical Study of Particle Interaction in Gas-Particle and Liquid-Particle Flows: Part II Particle Response

    Directory of Open Access Journals (Sweden)

    K. Mohanarangam

    2009-09-01

    Full Text Available In this paper the numerical model, which was presented in the first paper (Mohanarangam & Tu; 2009 of this series of study, is employed to study the different particle responses under the influence of two carrier phases namely the gas and the liquid. The numerical model takes into consideration the turbulent behaviour of both the carrier and the dispersed phases, with additional equations to take into account the combined fluid particle behaviour, thereby effecting a two-way coupling. The first paper in this series showed the distinct difference in particulate response both at the mean as well as at the turbulent level for two varied carrier phases. In this paper further investigation has been carried out over a broad range of particle Stokes number to further understand their behaviour in turbulent environments. In order to carry out this prognostic study, the backward facing step geometry of Fessler and Eaton (1999 has been adopted, while the inlet conditions for the carrier as well as the particle phases correspond to that of the experiments of Founti and Klipfel (1998. It is observed that at the mean velocity level the particulate velocities increased with a subsequent increase in the Stokes number for both the GP (Gas-Particle as well as the LP (Liquid-Particle flow. It was also observed that across the Stokes number there was a steady increase in the particulate turbulence for the GP flows with successive increase in Stokes number. However, for the LP flows, the magnitude of the increase in the particulate turbulence across the increasing of Stokes number is not as characteristic as the GP flow. Across the same sections for LP flows the majority of the trend shows a decrease after which they remain more or less a constant.

  9. Particle detection

    International Nuclear Information System (INIS)

    Charpak, G.

    2000-01-01

    In this article G.Charpak presents the principles on which particle detection is based. Particle accelerators are becoming more and more powerful and require new detectors able to track the right particle in a huge flux of particles. The gigantic size of detectors in high energy physics is often due to the necessity of getting a long enough trajectory in a magnetic field in order to deduce from the curvature an accurate account of impulses in the reaction. (A.C.)

  10. Analysis of particle kinematics in spheronization via particle image velocimetry.

    Science.gov (United States)

    Koester, Martin; Thommes, Markus

    2013-02-01

    Spheronization is a wide spread technique in pellet production for many pharmaceutical applications. Pellets produced by spheronization are characterized by a particularly spherical shape and narrow size distribution. The particle kinematic during spheronization is currently not well-understood. Therefore, particle image velocimetry (PIV) was implemented in the spheronization process to visualize the particle movement and to identify flow patterns, in order to explain the influence of various process parameters. The spheronization process of a common formulation was recorded with a high-speed camera, and the images were processed using particle image velocimetry software. A crosscorrelation approach was chosen to determine the particle velocity at the surface of the pellet bulk. Formulation and process parameters were varied systematically, and their influence on the particle velocity was investigated. The particle stream shows a torus-like shape with a twisted rope-like motion. It is remarkable that the overall particle velocity is approximately 10-fold lower than the tip speed of the friction plate. The velocity of the particle stream can be correlated to the water content of the pellets and the load of the spheronizer, while the rotation speed was not relevant. In conclusion, PIV was successfully applied to the spheronization process, and new insights into the particle velocity were obtained. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Auroral particles

    International Nuclear Information System (INIS)

    Evans, D.S.

    1987-01-01

    The problems concerning the aurora posed prior to the war are now either solved in principle or were restated in a more fundamental form. The pre-war hypothesis concerning the nature of the auroral particles and their energies was fully confirmed, with the exception that helium and oxygen ions were identified as participating in the auroral particle precipitation in addition to the protons. The nature of the near-Earth energization processes affecting auroral particles was clarified. Charged particle trajectories in various electric field geometries were modeled. The physical problems have now moved from determining the nature and geometry of the electric fields, which accelerate charged particles near the Earth, to accounting for the existence of these electric fields as a natural consequence of the solar wind's interaction with Earth. Ultimately the reward in continuing the work in auroral and magnetospheric particle dynamics will be a deeper understanding of the subtleties of classical electricity and magnetism as applied to situations not blessed with well-defined and invariant geometries

  12. Thermodynamics of phase-separating nanoalloys: Single particles and particle assemblies

    Science.gov (United States)

    Fèvre, Mathieu; Le Bouar, Yann; Finel, Alphonse

    2018-05-01

    The aim of this paper is to investigate the consequences of finite-size effects on the thermodynamics of nanoparticle assemblies and isolated particles. We consider a binary phase-separating alloy with a negligible atomic size mismatch, and equilibrium states are computed using off-lattice Monte Carlo simulations in several thermodynamic ensembles. First, a semi-grand-canonical ensemble is used to describe infinite assemblies of particles with the same size. When decreasing the particle size, we obtain a significant decrease of the solid/liquid transition temperatures as well as a growing asymmetry of the solid-state miscibility gap related to surface segregation effects. Second, a canonical ensemble is used to analyze the thermodynamic equilibrium of finite monodisperse particle assemblies. Using a general thermodynamic formulation, we show that a particle assembly may split into two subassemblies of identical particles. Moreover, if the overall average canonical concentration belongs to a discrete spectrum, the subassembly concentrations are equal to the semi-grand-canonical equilibrium ones. We also show that the equilibrium of a particle assembly with a prescribed size distribution combines a size effect and the fact that a given particle size assembly can adopt two configurations. Finally, we have considered the thermodynamics of an isolated particle to analyze whether a phase separation can be defined within a particle. When studying rather large nanoparticles, we found that the region in which a two-phase domain can be identified inside a particle is well below the bulk phase diagram, but the concentration of the homogeneous core remains very close to the bulk solubility limit.

  13. Single-particle characterization of ice-nucleating particles and ice particles residuals sampled by three different techniques

    Science.gov (United States)

    Kandler, Konrad; Worringen, Annette; Benker, Nathalie; Dirsch, Thomas; Mertes, Stephan; Schenk, Ludwig; Kästner, Udo; Frank, Fabian; Nillius, Björn; Bundke, Ulrich; Rose, Diana; Curtius, Joachim; Kupiszewski, Piotr; Weingartner, Ernest; Vochezer, Paul; Schneider, Johannes; Schmidt, Susan; Weinbruch, Stephan; Ebert, Martin

    2015-04-01

    During January/February 2013, at the High Alpine Research Station Jungfraujoch a measurement campaign was carried out, which was centered on atmospheric ice-nucleating particles (INP) and ice particle residuals (IPR). Three different techniques for separation of INP and IPR from the non-ice-active particles are compared. The Ice Selective Inlet (ISI) and the Ice Counterflow Virtual Impactor (Ice-CVI) sample ice particles from mixed phase clouds and allow for the analysis of the residuals. The combination of the Fast Ice Nucleus Chamber (FINCH) and the Ice Nuclei Pumped Counterflow Virtual Impactor (IN-PCVI) provides ice-activating conditions to aerosol particles and extracts the activated INP for analysis. Collected particles were analyzed by scanning electron microscopy and energy-dispersive X-ray microanalysis to determine size, chemical composition and mixing state. All INP/IPR-separating techniques had considerable abundances (median 20 - 70 %) of instrumental contamination artifacts (ISI: Si-O spheres, probably calibration aerosol; Ice-CVI: Al-O particles; FINCH+IN-PCVI: steel particles). Also, potential sampling artifacts (e.g., pure soluble material) occurred with a median abundance of separated by all three techniques. Soot was a minor contributor. Lead was detected in less than 10 % of the particles, of which the majority were internal mixtures with other particle types. Sea-salt and sulfates were identified by all three methods as INP/IPR. Most samples showed a maximum of the INP/IPR size distribution at 400 nm geometric diameter. In a few cases, a second super-micron maximum was identified. Soot/carbonaceous material and metal oxides were present mainly in the submicron range. ISI and FINCH yielded silicates and Ca-rich particles mainly with diameters above 1 µm, while the Ice-CVI also separated many submicron IPR. As strictly parallel sampling could not be performed, a part of the discrepancies between the different techniques may result from

  14. Online single particle analysis of ice particle residuals from mountain-top mixed-phase clouds using laboratory derived particle type assignment

    Science.gov (United States)

    Schmidt, Susan; Schneider, Johannes; Klimach, Thomas; Mertes, Stephan; Schenk, Ludwig Paul; Kupiszewski, Piotr; Curtius, Joachim; Borrmann, Stephan

    2017-01-01

    In situ single particle analysis of ice particle residuals (IPRs) and out-of-cloud aerosol particles was conducted by means of laser ablation mass spectrometry during the intensive INUIT-JFJ/CLACE campaign at the high alpine research station Jungfraujoch (3580 m a.s.l.) in January-February 2013. During the 4-week campaign more than 70 000 out-of-cloud aerosol particles and 595 IPRs were analyzed covering a particle size diameter range from 100 nm to 3 µm. The IPRs were sampled during 273 h while the station was covered by mixed-phase clouds at ambient temperatures between -27 and -6 °C. The identification of particle types is based on laboratory studies of different types of biological, mineral and anthropogenic aerosol particles. The outcome of these laboratory studies was characteristic marker peaks for each investigated particle type. These marker peaks were applied to the field data. In the sampled IPRs we identified a larger number fraction of primary aerosol particles, like soil dust (13 ± 5 %) and minerals (11 ± 5 %), in comparison to out-of-cloud aerosol particles (2.4 ± 0.4 and 0.4 ± 0.1 %, respectively). Additionally, anthropogenic aerosol particles, such as particles from industrial emissions and lead-containing particles, were found to be more abundant in the IPRs than in the out-of-cloud aerosol. In the out-of-cloud aerosol we identified a large fraction of aged particles (31 ± 5 %), including organic material and secondary inorganics, whereas this particle type was much less abundant (2.7 ± 1.3 %) in the IPRs. In a selected subset of the data where a direct comparison between out-of-cloud aerosol particles and IPRs in air masses with similar origin was possible, a pronounced enhancement of biological particles was found in the IPRs.

  15. Violation of Particle Anti-particle Symmetry

    CERN Multimedia

    CERN. Geneva

    2001-01-01

    Symmetry is a fundamental concept which can be found in the whole range of human activities e. g. from arts to science. The beauty of a statues is often related to its symmetric form. In physics, all the laws are related to some sort of symmetry. Equally important is a small breakdown ofsymmetry. Even for the case of a statue, its beauty might be enhanced by introducing small distortions. In this course, we investigate the role symmetry in the world of elementary particles. Some symmetries found there are very similar to those which can be seen in our daily life, while others are more exotic and related to the quantum nature of the elementary particles. Our particular focus ismade on symmetry and its violation between the matter and anti-matter, known as CP violation. It is experimentally well established that particleand anti-particle behave a tiny bit differently in the world of elementary particles. We discuss how this would be explained and how we can extendour knowledge. Evolution of our universe is stro...

  16. Accurate particle speed prediction by improved particle speed measurement and 3-dimensional particle size and shape characterization technique

    DEFF Research Database (Denmark)

    Cernuschi, Federico; Rothleitner, Christian; Clausen, Sønnik

    2017-01-01

    Accurate particle mass and velocity measurement is needed for interpreting test results in erosion tests of materials and coatings. The impact and damage of a surface is influenced by the kinetic energy of a particle, i.e. particle mass and velocity. Particle mass is usually determined with optic...

  17. Alumina particle degradation during solid particle impact on glass

    NARCIS (Netherlands)

    Slikkerveer, P.J.; Veld, in 't H.; Verspui, M.A.; With, de G.; Reefman, D.

    2000-01-01

    Particle degradation limits the reuse of powders in industrial powder-blast processes. In this paper the degradation behavior of Al2O3 powder is studied during erosion of glass substrates. Three techniques were used on original and multiply used powders: particle size measurements, single particle

  18. Particle-gamma and particle-particle correlations in nuclear reactions using Monte Carlo Hauser-Feshback model

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Toshihiko [Los Alamos National Laboratory; Talou, Patrick [Los Alamos National Laboratory; Watanabe, Takehito [Los Alamos National Laboratory; Chadwick, Mark [Los Alamos National Laboratory

    2010-01-01

    Monte Carlo simulations for particle and {gamma}-ray emissions from an excited nucleus based on the Hauser-Feshbach statistical theory are performed to obtain correlated information between emitted particles and {gamma}-rays. We calculate neutron induced reactions on {sup 51}V to demonstrate unique advantages of the Monte Carlo method. which are the correlated {gamma}-rays in the neutron radiative capture reaction, the neutron and {gamma}-ray correlation, and the particle-particle correlations at higher energies. It is shown that properties in nuclear reactions that are difficult to study with a deterministic method can be obtained with the Monte Carlo simulations.

  19. Colloids exposed to random potential energy landscapes: From particle number density to particle-potential and particle-particle interactions

    International Nuclear Information System (INIS)

    Bewerunge, Jörg; Capellmann, Ronja F.; Platten, Florian; Egelhaaf, Stefan U.; Sengupta, Ankush; Sengupta, Surajit

    2016-01-01

    Colloidal particles were exposed to a random potential energy landscape that has been created optically via a speckle pattern. The mean particle density as well as the potential roughness, i.e., the disorder strength, were varied. The local probability density of the particles as well as its main characteristics were determined. For the first time, the disorder-averaged pair density correlation function g (1) (r) and an analogue of the Edwards-Anderson order parameter g (2) (r), which quantifies the correlation of the mean local density among disorder realisations, were measured experimentally and shown to be consistent with replica liquid state theory results.

  20. Magnetic particles

    Science.gov (United States)

    Chang, Manchium (Inventor); Colvin, Michael S. (Inventor)

    1989-01-01

    Magnetic polymer particles are formed by swelling porous, polymer particles and impregnating the particles with an aqueous solution of precursor magnetic metal salt such as an equimolar mixture of ferrous chloride and ferric chloride. On addition of a basic reagent such as dilute sodium hydroxide, the metal salts are converted to crystals of magnetite which are uniformly contained througout the pores of the polymer particle. The magnetite content can be increased and neutral buoyancy achieved by repetition of the impregnaton and neutralization steps to adjust the magnetite content to a desired level.

  1. Study of neutral particle behavior and particle confinement in JT-60U

    International Nuclear Information System (INIS)

    Takenaga, Hidenobu; Shimizu, Katsuhiro; Asakura, Nobuyuki; Shimada, Michiya; Kikuchi, Mitsuru; Tsuji-Iio, Shunji; Uchino, Kiichiro; Muraoka, Katsunori.

    1995-07-01

    In order to understand the particle confinement properties in JT-60U, the particle confinement time was estimated through analyses of the neutral particle behavior. First, the neutral particle transport simulation code DEGAS using a Monte-Carlo technique was combined with the simple divertor code for calculating the edge plasma parameters, and was developed to calculate under the experimental conditions in JT-60U. Then, the charged particle source in the main plasma due to the ionization of the neutral particles was evaluated from the analyses of the neutral particle penetration to the main plasma based on results of the simulation code and measurements of D α emission intensities. Finally, the particle confinement time was estimated from the analysis of particle balance. The analyses were performed systematically for the L-mode plasma and H-mode plasma of JT-60U, and a data base of the particle confinement time was obtained. The dependence of the particle confinement time on the plasma parameters and the relationship between the properties of the particle confinement and the energy confinement were examined. (author)

  2. Particle hygroscopicity during atmospheric new particle formation events: implications for the chemical species contributing to particle growth

    Directory of Open Access Journals (Sweden)

    Z. Wu

    2013-07-01

    Full Text Available This study examines the hygroscopicity of newly formed particles (diameters range 25–45 nm during two atmospheric new particle formation (NPF events in the German mid-level mountains during the Hill Cap Cloud Thuringia 2010 (HCCT-2010 field experiment. At the end of the NPF event involving clear particle growth, we measured an unusually high soluble particle fraction of 58.5% at 45 nm particle size. The particle growth rate contributed through sulfuric acid condensation only accounts for around 6.5% of the observed growth rate. Estimations showed that sulfuric acid condensation explained, however, only around 10% of that soluble particle fraction. Therefore, the formation of additional water-soluble matter appears imperative to explain the missing soluble fraction. Although direct evidence is missing, we consider water-soluble organics as candidates for this mechanism. For the case with clear growth process, the particle growth rate was determined by two alternative methods based on tracking the mode diameter of the nucleation mode. The mean particle growth rate obtained from the inter-site data comparison using Lagrangian consideration is 3.8 (± 2.6 nm h−1. During the same period, the growth rate calculated based on one site data is 5.0 nm h−1 using log-normal distribution function method. In light of the fact that considerable uncertainties could be involved in both methods, we consider both estimated growth rates consistent.

  3. Correcting for particle size effects on plasma actuator particle image velocimetry measurements

    Science.gov (United States)

    Masati, A.; Sedwick, R. J.

    2018-01-01

    Particle image velocimetry (PIV) is often used to characterize plasma actuator flow, but particle charging effects are rarely taken into account. A parametric study was conducted to determine the effects of particle size on the velocity results of plasma actuator PIV experiments. Results showed that smaller particles more closely match air flow velocities than larger particles. The measurement uncertainty was quantified by deconvolving the particle image diameter from the correlation diameter. The true air velocity was calculated by linearly extrapolating to the zero-size particle diameter.

  4. Measurements of the $\\Xi^0$ Lifetime and the $\\overline{\\Xi^0}/\\Xi^0$ Flux Ratio in a Neutral Beam

    CERN Document Server

    Batley, J Richard; Lazzeroni, C; Munday, D J; Patel, M; Slater, M W; Wotton, S A; Arcidiacono, R; Bocquet, G; Ceccucci, A; Cundy, Donald C; Doble, N; Falaleev, V; Gatignon, L; Gonidec, A; Grafström, P; Kubischta, Werner; Mikulec, I; Norton, A; Panzer-Steindel, B; Rubin, P; Wahl, H; Goudzovski, E; Khristov, P Z; Kekelidze, V D; Litov, L; Madigozhin, D T; Molokanova, N A; Potrebenikov, Yu K; Stoynev, S; Zinchenko, A I; Monnier, E; Swallow, E; Winston, R; Sacco, R; Walker, A; Baldini, W; Dalpiaz, P; Frabetti, P L; Gianoli, A; Martini, M; Petrucci, F; Savrié, M; Scarpa, M; Bizzeti, A; Calvetti, M; Collazuol, G; Iacopini, E; Lenti, M; Ruggiero, G; Veltri, M; Behler, M; Eppard, K; Eppard, M; Hirstius, A; Kleinknecht, K; Koch, U; Marouelli, P; Masetti, L; Moosbrugger, U; Morales-Morales, C; Peters, A; Wanke, R; Winhart, A; Dabrowski, A; Fonseca-Martin, T; Velasco, M; Anzivino, Giuseppina; Cenci, P; Imbergamo, E; Lamanna, G; Lubrano, P; Michetti, A; Nappi, A; Pepé, M; Petrucci, M C; Piccini, M; Valdata, M; Cerri, C; Costantini, F; Fantechi, R; Fiorini, L; Giudici, S; Mannelli, I; Pierazzini, G M; Sozzi, M; Cheshkov, C; Chèze, J B; De Beer, M; Debu, P; Gouge, G; Marel, Gérard; Mazzucato, E; Peyaud, B; Vallage, B; Holder, M; Maier, A; Ziolkowski, M; Biino, C; Cartiglia, N; Clemencic, M; Goy-Lopez, S; Marchetto, F; Menichetti, E; Pastrone, N; Wislicki, W; Dibon, Heinz; Jeitler, Manfred; Markytan, Manfred; Neuhofer, G; Widhalm, L

    2007-01-01

    A total of 235 698 Xi0 -> Lambda pi0 and 21 527 anti-Xi0 -> anti-Lambda pi0 decays were selected from data obtained by the NA48/1 experiment at CERN. From this sample, the lifetime of the Xi0 hyperon was measured to be (3.065 +- 0.012(stat) +- 0.014(syst)) x 10^-10 s. This result is about two standard deviations above the world average and an order of magnitude more precise than the previous best measurement. With the same data sample, we have measured the ratio of anti-Xi0 and Xi0 fluxes in proton collisions at 400 GeV/c on a beryllium target.

  5. Measurement of time-like baryon electro-magnetic form factors in BESIII

    Energy Technology Data Exchange (ETDEWEB)

    Morales Morales, Cristina; Dbeyssi, Alaa [Helmholtz-Institut Mainz (Germany); Ahmed, Samer Ali Nasher; Lin, Dexu; Rosner, Christoph; Wang, Yadi [Helmholtz-Institut Mainz (Germany); Institut fuer Kernphysik, Johannes Gutenberg-Universitaet Mainz (Germany); Maas, Frank [Helmholtz-Institut Mainz (Germany); Institut fuer Kernphysik, Johannes Gutenberg-Universitaet Mainz (Germany); PRISMA Cluster of Excellence, Johannes Gutenberg-Universitaet Mainz (Germany); Collaboration: BESIII-Collaboration

    2016-07-01

    BEPCII is a symmetric electron-positron collider located in Beijing running at center-of-mass energies between 2.0 and 4.6 GeV. This energy range allows BESIII experiment to measure baryon form factors both from direct electron-positron annihilation and from initial state radiation processes. We present results on direct electron-positron annihilation into proton anti-proton and preliminary results on direct electron-positron annihilation into lambda anti-lambda based on data collected by BESIII in 2011 and 2012. Finally, expectations on the measurement of nucleon and hyperon electro-magnetic form factors from the BESIII high luminosity energy scan in 2015 and from initial state radiation processes at different center-of-mass energies are also shown.

  6. Effects of Initial Particle Distribution on an Energetic Dispersal of Particles

    Science.gov (United States)

    Rollin, Bertrand; Ouellet, Frederick; Koneru, Rahul; Garno, Joshua; Durant, Bradford

    2017-11-01

    Accurate predictions of the late time solid particle cloud distribution ensuing an explosive dispersal of particles is an extremely challenging problem for compressible multiphase flow simulations. The source of this difficulty is twofold: (i) The complex sequence of events taking place. Indeed, as the blast wave crosses the surrounding layer of particles, compaction occurs shortly before particles disperse radially at high speed. Then, during the dispersion phase, complex multiphase interactions occurs between particles and detonation products. (ii) Precise characterization of the explosive and particle distribution is virtually impossible. In this numerical experiment, we focus on the sensitivity of late time particle cloud distributions relative to carefully designed initial distributions, assuming the explosive is well described. Using point particle simulations, we study the case of a bed of glass particles surrounding an explosive. Constraining our simulations to relatively low initial volume fractions to prevent reaching of the close packing limit, we seek to describe qualitatively and quantitatively the late time dependency of a solid particle cloud on its distribution before the energy release of an explosive. This work was supported by the U.S. DoE, NNSA, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

  7. Strange particles

    International Nuclear Information System (INIS)

    Chinowsky, W.

    1989-01-01

    Work done in the mid 1950s at Brookhaven National Laboratory on strange particles is described. Experiments were done on the Cosmotron. The author describes his own and others' work on neutral kaons, lambda and theta particles and points out the theoretical gap between predictions and experimental findings. By the end of the decade, the theory of strange particles was better understood. (UK)

  8. Particle and particle systems characterization small-angle scattering (SAS) applications

    CERN Document Server

    Gille, Wilfried

    2016-01-01

    Small-angle scattering (SAS) is the premier technique for the characterization of disordered nanoscale particle ensembles. SAS is produced by the particle as a whole and does not depend in any way on the internal crystal structure of the particle. Since the first applications of X-ray scattering in the 1930s, SAS has developed into a standard method in the field of materials science. SAS is a non-destructive method and can be directly applied for solid and liquid samples. Particle and Particle Systems Characterization: Small-Angle Scattering (SAS) Applications is geared to any scientist who might want to apply SAS to study tightly packed particle ensembles using elements of stochastic geometry. After completing the book, the reader should be able to demonstrate detailed knowledge of the application of SAS for the characterization of physical and chemical materials.

  9. Particle accelerator

    International Nuclear Information System (INIS)

    Ress, R.I.

    1976-01-01

    Charged particles are entrained in a predetermined direction, independent of their polarity, in a circular orbit by a magnetic field rotating at high speed about an axis in a closed cylindrical or toroidal vessel. The field may be generated by a cylindrical laser structure, whose beam is polygonally reflected from the walls of an excited cavity centered on the axis, or by high-frequency energization of a set of electromagnets perpendicular to the axis. In the latter case, a separate magnetostatic axial field limits the orbital radius of the particles. These rotating and stationary magnetic fields may be generated centrally or by individual magnets peripherally spaced along its circular orbit. Chemical or nuclear reactions can be induced by collisions between the orbiting particles and an injected reactant, or by diverting high-speed particles from one doughnut into the path of counterrotating particles in an adjoining doughnut

  10. Particle transport in 3He-rich events: wave-particle interactions and particle anisotropy measurements

    Directory of Open Access Journals (Sweden)

    B. T. Tsurutani

    2002-04-01

    Full Text Available Energetic particles and MHD waves are studied using simultaneous ISEE-3 data to investigate particle propagation and scattering between the source near the Sun and 1 AU. 3 He-rich events are of particular interest because they are typically low intensity "scatter-free" events. The largest solar proton events are of interest because they have been postulated to generate their own waves through beam instabilities. For 3 He-rich events, simultaneous interplanetary magnetic spectra are measured. The intensity of the interplanetary "fossil" turbulence through which the particles have traversed is found to be at the "quiet" to "intermediate" level of IMF activity. Pitch angle scattering rates and the corresponding particle mean free paths lW - P are calculated using the measured wave intensities, polarizations, and k directions. The values of lW - P are found to be ~ 5 times less than the value of lHe , the latter derived from He intensity and anisotropy time profiles. It is demonstrated by computer simulation that scattering rates through a 90° pitch angle are lower than that of other pitch angles, and that this is a possible explanation for the discrepancy between the lW - P and lHe values. At this time the scattering mechanism(s is unknown. We suggest a means where a direct comparison between the two l values could be made. Computer simulations indicate that although scattering through 90° is lower, it still occurs. Possibilities are either large pitch angle scattering through resonant interactions, or particle mirroring off of field compression regions. The largest solar proton events are analyzed to investigate the possibilities of local wave generation at 1 AU. In accordance with the results of a previous calculation (Gary et al., 1985 of beam stability, proton beams at 1 AU are found to be marginally stable. No evidence for substantial wave amplitude was found. Locally generated waves, if present, were less than 10-3 nT 2 Hz-1 at the leading

  11. Particle transport in 3He-rich events: wave-particle interactions and particle anisotropy measurements

    Directory of Open Access Journals (Sweden)

    T. Hada

    Full Text Available Energetic particles and MHD waves are studied using simultaneous ISEE-3 data to investigate particle propagation and scattering between the source near the Sun and 1 AU. 3 He-rich events are of particular interest because they are typically low intensity "scatter-free" events. The largest solar proton events are of interest because they have been postulated to generate their own waves through beam instabilities. For 3 He-rich events, simultaneous interplanetary magnetic spectra are measured. The intensity of the interplanetary "fossil" turbulence through which the particles have traversed is found to be at the "quiet" to "intermediate" level of IMF activity. Pitch angle scattering rates and the corresponding particle mean free paths lW - P are calculated using the measured wave intensities, polarizations, and k directions. The values of lW - P are found to be ~ 5 times less than the value of lHe , the latter derived from He intensity and anisotropy time profiles. It is demonstrated by computer simulation that scattering rates through a 90° pitch angle are lower than that of other pitch angles, and that this is a possible explanation for the discrepancy between the lW - P and lHe values. At this time the scattering mechanism(s is unknown. We suggest a means where a direct comparison between the two l values could be made. Computer simulations indicate that although scattering through 90° is lower, it still occurs. Possibilities are either large pitch angle scattering through resonant interactions, or particle mirroring off of field compression regions. The largest solar proton events are analyzed to investigate the possibilities of local wave generation at 1 AU. In accordance with the results of a previous calculation (Gary et al., 1985 of beam stability, proton beams at 1 AU are found to be marginally stable. No evidence for substantial wave amplitude was found. Locally generated waves, if present, were less than 10-3 nT 2 Hz-1 at the leading

  12. Numerical investigation of compaction of deformable particles with bonded-particle model

    Directory of Open Access Journals (Sweden)

    Dosta Maksym

    2017-01-01

    Full Text Available In this contribution, a novel approach developed for the microscale modelling of particles which undergo large deformations is presented. The proposed method is based on the bonded-particle model (BPM and multi-stage strategy to adjust material and model parameters. By the BPM, modelled objects are represented as agglomerates which consist of smaller ideally spherical particles and are connected with cylindrical solid bonds. Each bond is considered as a separate object and in each time step the forces and moments acting in them are calculated. The developed approach has been applied to simulate the compaction of elastomeric rubber particles as single particles or in a random packing. To describe the complex mechanical behaviour of the particles, the solid bonds were modelled as ideally elastic beams. The functional parameters of solid bonds as well as material parameters of bonds and primary particles were estimated based on the experimental data for rubber spheres. Obtained results for acting force and for particle deformations during uniaxial compression are in good agreement with experimental data at higher strains.

  13. Effect of particle-particle shearing on the bioleaching of sulfide minerals.

    Science.gov (United States)

    Chong, N; Karamanev, D G; Margaritis, A

    2002-11-05

    The biological leaching of sulfide minerals, used for the production of gold, copper, zinc, cobalt, and other metals, is very often carried out in slurry bioreactors, where the shearing between sulfide particles is intensive. In order to be able to improve the efficiency of the bioleaching, it is of significant importance to know the effect of particle shearing on the rate of leaching. The recently proposed concept of ore immobilization allowed us to study the effect of particle shearing on the rate of sulfide (pyrite) leaching by Thiobacillus ferrooxidans. Using this concept, we designed two very similar bioreactors, the main difference between which was the presence and absence of particle-particle shearing. It was shown that when the oxygen mass transfer was not the rate-limiting step, the rate of bioleaching in the frictionless bioreactor was 2.5 times higher than that in a bioreactor with particle friction (shearing). The concentration of free suspended cells in the frictionless bioreactor was by orders of magnitude lower than that in the frictional bioreactor, which showed that particle friction strongly reduces the microbial attachment to sulfide surface, which, in turn, reduces the rate of bioleaching. Surprisingly, it was found that formation of a layer of insoluble iron salts on the surface of sulfide particles is much slower under shearless conditions than in the presence of particle-particle shearing. This was explained by the effect of particle friction on liquid-solid mass transfer rate. The results of this study show that reduction of the particle friction during bioleaching of sulfide minerals can bring important advantages not only by increasing significantly the bioleaching rate, but also by increasing the rate of gas-liquid oxygen mass transfer, reducing the formation of iron precipitates and reducing the energy consumption. One of the efficient methods for reduction of particle friction is ore immobilization in a porous matrix. Copyright 2002

  14. Is an elementary particle really: (i) a particle? (ii) elementary?

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Is an elementary particle really: (i) a particle? (ii) elementary? Over centuries, naïve notions about this have turned out incorrect. Particles are not really pointlike. The word elementary is not necessarily well-defined. Notes:

  15. Fermilab | Science | Particle Physics

    Science.gov (United States)

    Photos and videos Latest news For the media Particle Physics Neutrinos Fermilab and the LHC Dark matter initiatives Research and development Key discoveries Benefits of particle physics Particle Accelerators society Particle Physics 101 Science of matter, energy, space and time How particle physics discovery

  16. Effects of Particles Collision on Separating Gas–Particle Two-Phase Turbulent Flows

    KAUST Repository

    Sihao, L. V.

    2013-10-10

    A second-order moment two-phase turbulence model incorporating a particle temperature model based on the kinetic theory of granular flow is applied to investigate the effects of particles collision on separating gas–particle two-phase turbulent flows. In this model, the anisotropy of gas and solid phase two-phase Reynolds stresses and their correlation of velocity fluctuation are fully considered using a presented Reynolds stress model and the transport equation of two-phase stress correlation. Experimental measurements (Xu and Zhou in ASME-FED Summer Meeting, San Francisco, Paper FEDSM99-7909, 1999) are used to validate this model, source codes and prediction results. It showed that the particles collision leads to decrease in the intensity of gas and particle vortices and takes a larger effect on particle turbulent fluctuations. The time-averaged velocity, the fluctuation velocity of gas and particle phase considering particles colli-sion are in good agreement with experimental measurements. Particle kinetic energy is always smaller than gas phase due to energy dissipation from particle collision. Moreover, axial– axial and radial–radial fluctuation velocity correlations have stronger anisotropic behaviors. © King Fahd University of Petroleum and Minerals 2013

  17. Elementary particles. 2

    International Nuclear Information System (INIS)

    Ranft, G.; Ranft, J.

    1977-01-01

    In this part the subject is covered under the following headings, methods for producing high-energy particles; interaction of high-energy particles with matter; methods for the detection of high-energy particles; symmetry properties and conservation laws; quantum number and selection rules; theorem of scattering behaviour at asymptotically high energies; statistical methods in elementary particle physics; interaction of high-energy particles with nuclei; relations of high-energy physics to other branches of science and its response to engineering. Intended as information on high-energy physics for graduate students and research workers familiar with the fundamentals of classical and quantum physics

  18. Systems and methods for separating particles utilizing engineered acoustic contrast capture particles

    Science.gov (United States)

    Kaduchak, Gregory; Ward, Michael D.

    2018-03-06

    An apparatus for separating particles from a medium includes a capillary defining a flow path therein that is in fluid communication with a medium source. The medium source includes engineered acoustic contrast capture particle having a predetermined acoustic contrast. The apparatus includes a vibration generator that is operable to produce at least one acoustic field within the flow path. The acoustic field produces a force potential minima for positive acoustic contrast particles and a force potential minima for negative acoustic contrast particles in the flow path and drives the engineered acoustic contrast capture particles to either the force potential minima for positive acoustic contrast particles or the force potential minima for negative acoustic contrast particles.

  19. Particle adhesion and removal

    CERN Document Server

    Mittal, K L

    2015-01-01

    The book provides a comprehensive and easily accessible reference source covering all important aspects of particle adhesion and removal.  The core objective is to cover both fundamental and applied aspects of particle adhesion and removal with emphasis on recent developments.  Among the topics to be covered include: 1. Fundamentals of surface forces in particle adhesion and removal.2. Mechanisms of particle adhesion and removal.3. Experimental methods (e.g. AFM, SFA,SFM,IFM, etc.) to understand  particle-particle and particle-substrate interactions.4. Mechanics of adhesion of micro- and  n

  20. Seasonal and particle size-dependent variations in gas/particle partitioning of PCDD/Fs

    International Nuclear Information System (INIS)

    Lee, Se-Jin; Ale, Debaki; Chang, Yoon-Seok; Oh, Jeong-Eun; Shin, Sun Kyoung

    2008-01-01

    This study monitored particle size-dependent variations in atmospheric polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Two gas/particle partitioning models, the subcooled liquid vapor pressure (P L 0 ) and the octanol-air partition coefficient (K OA ) model, were applied to each particle sizes. The regression coefficients of each fraction against the gas/particle partition coefficient (K P ) were similar for separated particles within the same sample set but differed for particles collected during different periods. Gas/particle partitioning calculated from the integral of fractions was similar to that of size-segregated particles and previously measured bulk values. Despite the different behaviors and production mechanisms of atmospheric particles of different sizes, PCDD/F partitioning of each size range was controlled by meteorological conditions such as atmospheric temperature, O 3 and UV, which reflects no source related with certain particle size ranges but mixed urban sources within this city. Our observations emphasize that when assessing environmental and health effects, the movement of PCDD/Fs in air should be considered in conjunction with particle size in addition to the bulk aerosol. - Gas/particle partitioning of atmospheric PCDD/Fs for different particle sizes reflects the impacts of emitters of different size ranges

  1. Dusty-Plasma Particle Accelerator

    Science.gov (United States)

    Foster, John E.

    2005-01-01

    A dusty-plasma apparatus is being investigated as means of accelerating nanometer- and micrometer-sized particles. Applications for the dusty-plasma particle accelerators fall into two classes: Simulation of a variety of rapidly moving dust particles and micrometeoroids in outer-space environments that include micrometeoroid streams, comet tails, planetary rings, and nebulae and Deposition or implantation of nanoparticles on substrates for diverse industrial purposes that could include hardening, increasing thermal insulation, altering optical properties, and/or increasing permittivities of substrate materials. Relative to prior apparatuses used for similar applications, dusty-plasma particle accelerators offer such potential advantages as smaller size, lower cost, less complexity, and increased particle flux densities. A dusty-plasma particle accelerator exploits the fact that an isolated particle immersed in plasma acquires a net electric charge that depends on the relative mobilities of electrons and ions. Typically, a particle that is immersed in a low-temperature, partially ionized gas, wherein the average kinetic energy of electrons exceeds that of ions, causes the particle to become negatively charged. The particle can then be accelerated by applying an appropriate electric field. A dusty-plasma particle accelerator (see figure) includes a plasma source such as a radio-frequency induction discharge apparatus containing (1) a shallow cup with a biasable electrode to hold the particles to be accelerated and (2) a holder for the substrate on which the particles are to impinge. Depending on the specific design, a pair of electrostatic-acceleration grids between the substrate and discharge plasma can be used to both collimate and further accelerate particles exiting the particle holder. Once exposed to the discharge plasma, the particles in the cup quickly acquire a negative charge. Application of a negative voltage pulse to the biasable electrode results in the

  2. Investigating the settling dynamics of cohesive silt particles with particle-resolving simulations

    Science.gov (United States)

    Sun, Rui; Xiao, Heng; Sun, Honglei

    2018-01-01

    The settling of cohesive sediment is ubiquitous in aquatic environments, and the study of the settling process is important for both engineering and environmental reasons. In the settling process, the silt particles show behaviors that are different from non-cohesive particles due to the influence of inter-particle cohesive force. For instance, the flocs formed in the settling process of cohesive silt can loosen the packing, and thus the structural densities of cohesive silt beds are much smaller than that of non-cohesive sand beds. While there is a consensus that cohesive behaviors depend on the characteristics of sediment particles (e.g., Bond number, particle size distribution), little is known about the exact influence of these characteristics on the cohesive behaviors. In addition, since the cohesive behaviors of the silt are caused by the inter-particle cohesive forces, the motions of and the contacts among silt particles should be resolved to study these cohesive behaviors in the settling process. However, studies of the cohesive behaviors of silt particles in the settling process based on particle-resolving approach are still lacking. In the present work, three-dimensional settling process is investigated numerically by using CFD-DEM (Computational Fluid Dynamics-Discrete Element Method). The inter-particle collision force, the van der Waals force, and the fluid-particle interaction forces are considered. The numerical model is used to simulate the hindered settling process of silt based on the experimental setup in the literature. The results obtained in the simulations, including the structural densities of the beds, the characteristic lines, and the particle terminal velocity, are in good agreement with the experimental observations in the literature. To the authors' knowledge, this is the first time that the influences of non-dimensional Bond number and particle polydispersity on the structural densities of silt beds have been investigated separately

  3. Linear particle accelerator

    International Nuclear Information System (INIS)

    Richards, J.A.

    1977-01-01

    A linear particle accelerator which provides a pulsed beam of charged particles of uniform energy is described. The accelerator is in the form of an evacuated dielectric tube, inside of which a particle source is located at one end of the tube, with a target or window located at the other end of the dielectric tube. Along the length of the tube are externally located pairs of metal plates, each insulated from each other in an insulated housing. Each of the plates of a pair are connected to an electrical source of voltage of opposed polarity, with the polarity of the voltage of the plates oriented so that the plate of a pair, nearer to the particle source, is of the opposed polarity to the charge of the particle emitted by the source. Thus, a first plate about the tube located nearest the particle source, attracts a particle which as it passes through the tube past the first plate is then repelled by the reverse polarity of the second plate of the pair to continue moving towards the target

  4. Effects of aerodynamic particle interaction in turbulent non-dilute particle-laden flow

    DEFF Research Database (Denmark)

    Salewski, Mirko; Fuchs, Laszlo

    2008-01-01

    Aerodynamic four-way coupling models are necessary to handle two-phase flows with a dispersed phase in regimes in which the particles are neither dilute enough to neglect particle interaction nor dense enough to bring the mixture to equilibrium. We include an aerodynamic particle interaction model...... levels in the flow then decrease. The impact of the stochastic particle description on the four-way coupling model is shown to be relatively small. If particles are also allowed to break up according to a wave breakup model, the particles become polydisperse. An ad hoc model for handling polydisperse...

  5. Particle cosmology

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    The understanding of the Universe at the largest and smallest scales traditionally has been the subject of cosmology and particle physics, respectively. Studying the evolution of the Universe connects today's large scales with the tiny scales in the very early Universe and provides the link between the physics of particles and of the cosmos. This series of five lectures aims at a modern and critical presentation of the basic ideas, methods, models and observations in today's particle cosmology.

  6. Multi-particle Anderson Localisation: Induction on the Number of Particles

    International Nuclear Information System (INIS)

    Chulaevsky, Victor; Suhov, Yuri

    2009-01-01

    This paper is a follow-up of our recent papers Chulaevsky and Suhov (Commun Math Phys 283:479-489, 2008) and Chulaevsky and Suhov (Commun Math Phys in press, 2009) covering the two-particle Anderson model. Here we establish the phenomenon of Anderson localisation for a quantum N-particle system on a lattice with short-range interaction and in presence of an IID external potential with sufficiently regular marginal cumulative distribution function (CDF). Our main method is an adaptation of the multi-scale analysis (MSA; cf. Froehlich and Spencer, Commun Math Phys 88:151-184, 1983; Froehlich et al., Commun Math Phys 101:21-46, 1985; von Dreifus and Klein, Commun Math Phys 124:285-299, 1989) to multi-particle systems, in combination with an induction on the number of particles, as was proposed in our earlier manuscript (Chulaevsky and Suhov 2007). Recently, Aizenman and Warzel (2008) proved spectral and dynamical localisation for N-particle lattice systems with a short-range interaction, using an extension of the Fractional-Moment Method (FMM) developed earlier for single-particle models in Aizenman and Molchanov (Commun Math Phys 157:245-278, 1993) and Aizenman et al. (Commun Math Phys 224:219-253, 2001) (see also references therein) which is also combined with an induction on the number of particles

  7. Effective particle magnetic moment of multi-core particles

    NARCIS (Netherlands)

    Ahrentorp, F.; Astalan, A.; Blomgren, J.; Jonasson, C.; Wetterskog, E.; Svedlindh, P.; Lak, A.; Ludwig, F.; Van IJzendoorn, L.J.; Westphal, F.; Grüttner, C.; Gehrke, N.; Gustafsson, S.; Olsson, E.; Johansson, C.

    2015-01-01

    In this study we investigate the magnetic behavior of magnetic multi-core particles and the differences in the magnetic properties of multi-core and single-core nanoparticles and correlate the results with the nanostructure of the different particles as determined from transmission electron

  8. Numerical analysis of microstructure formation of magnetic particles and nonmagnetic particles in MR fluids

    International Nuclear Information System (INIS)

    Ido, Y; Yamaguchi, T; Inagaki, T

    2009-01-01

    Microstructure formation of magnetic particles and nonmagnetic particles in MR fluids is investigated using the particle method simulation. Nonmagnetic sphere particles are rearranged in the field direction due to the chain-like cluster formation of magnetic particles. In the contrast, the nonmagnetic spherocylinder particles are not sufficiently rearranged in the field direction by using the cluster formation of sphere magnetic particles.

  9. Particle-wall tribology of slippery hydrogel particle suspensions.

    Science.gov (United States)

    Shewan, Heather M; Stokes, Jason R; Cloitre, Michel

    2017-03-08

    Slip is an important phenomenon that occurs during the flow of yield stress fluids like soft materials and pastes. Densely packed suspensions of hydrogel microparticles are used to show that slip is governed by the tribological interactions occurring between the samples and shearing surfaces. Both attractive/repulsive interactions between the dispersed particles and surface, as well as the viscoelasticity of the suspension, are found to play key roles in slip occurring within rheometric flows. We specifically discover that for two completely different sets of microgels, the sliding stress at which slip occurs scales with both the modulus of the particles and the bulk suspension modulus. This suggests that hysteresis losses within the viscoelastic particles contribute to friction forces and thus slip at the particle-surface tribo-contact. It is also found that slip during large amplitude oscillatory shear and steady shear flows share the same generic features.

  10. A hybrid charged-particle guide for studying (n, charged particle) reactions

    International Nuclear Information System (INIS)

    Haight, R.C.; White, R.M.; Zinkle, S.J.

    1983-01-01

    Charged-particle transport systems consisting of magnetic quadrupole lenses have been employed in recent years in the study of (n, charged particle) reactions. A new transport system was completed at the laboratory that is based both on magnetic lenses as well as electrostatic fields. The magnetic focusing of the charged-particle guide is provided by six magnetic quadrupole lenses arranged in a CDCCDC sequence (in the vertical plane). The electrostatic field is produced by a wire at high voltage which stretches the length of the guide and is physically at the centre of the magnetic axis. The magnetic lenses are used for charged particles above 5 MeV; the electrostatic guide is used for lower energies. This hybrid system possesses the excellent focusing and background rejection properties of other magnetic systems. For low energy charged-particles, the electrostatic transport avoids the narrow band-passes in charged-particle energy which are a problem with purely magnetic transport systems. This system is installed at the LLNL Cyclograaff facility for the study of (n, charged particle) reactions at neutron energies up to 35 MeV. (Auth.)

  11. Direct observation of the decay of beauty particles into charm particles

    International Nuclear Information System (INIS)

    Albanese, J.P.; Alpe, V.; Aoki, S.; Arnold, R.; Baroni, G.; Barth, M.; Bartley, J.H.; Bertrand, D.; Bertrand-Coremans, G.; Bisi, V.; Breslin, A.C.; Carboni, G.; Chesi, E.; Chiba, K.; Cook, G.S.; Coupland, M.; Crosetti, G.; Davis, D.H.; Dell'Uomo, S.; Di Liberto, S.; Bonnelly, W.; Duff, B.G.; Esten, M.J.; Gamba, D.; Gerke, C.; Hazama, M.; Heymann, F.F.; Hoshino, K.; Imrie, D.C.; Isokane, Y.; Kazuno, M.; Kodama, Y.; Lush, G.J.; Maeda, Y.; Marzari-Chiesa, A.; Mazzoni, M.A.; Meddi, F.; Miyanishi, M.; Montwill, A.; Muciaccia, M.T.; Musset, P.; Nakamura, M.; Nakazawa, K.; Natali, S.; Niu, K.; Niwa, K.; Nuzzo, S.; Ohashi, M.; Piuz, F.; Poulard, G.; Ramello, L.; Riccati, L.; Romano, G.; Roosen, R.; Rosa, G.; Ruggieri, F.; Sato, Y.; Sasaki, H.; Sgarbi, C.; Shibuya, H.; Simone, S.; Sletten, H.; Tasaka, S.; Tesuka, I.; Tomita, Y.; Tovee, D.N.; Trent, P.; Tsuneoka, Y.; Ushida, N.; Yamakawa, O.; Yanagisawa, Y.; Aichi Women's Coll., Nisshin-Cho; Bari Univ.; Istituto Nazionale di Fisica Nucleare, Bari; Birkbeck Coll., London; Interuniversity Inst. for High Energies, Brussels; European Organization for Nuclear Research, Geneva; University Coll., Dublin; Gifu Univ.; University Coll., London; Nagoya Univ.; Nagoya Inst. of Tech.; Rome Univ.; Istituto Nazionale di Fisica Nucleare, Rome; Toho Univ., Funabashi, Chiba; Istituto Nazionale di Fisica Nucleare, Turin; Turin Univ.; Utsunomiya Univ.; Yokohama National Univ.

    1985-01-01

    The associated production of a pair of beauty particles B - and anti B 0 by a 350 GeV π - interaction has been observed in an emulsion target inserted in an array of silicon microstrip detectors. Both beauty particles decay into charm particles, both of which are also observed to decay in the emulsion. Two negative muons were identified and their momenta measured in a large muon spectrometer. One muon has a psub(T) of 1.9 GeV/c and is associated with a beauty particle decay. The other, with a psub(T) of 0.45 GeV/c is associated with a charm particle decay. The flight times of the two beauty particles are respectively (0.8+-0.1).10 -13 s and (5sub(-1) +2 ).10 -13 s. Alternative interpretations of this event have negligible probability. (orig.)

  12. Fluidization of spherocylindrical particles

    Science.gov (United States)

    Mahajan, Vinay V.; Nijssen, Tim M. J.; Fitzgerald, Barry W.; Hofman, Jeroen; Kuipers, Hans; Padding, Johan T.

    2017-06-01

    Multiphase (gas-solid) flows are encountered in numerous industrial applications such as pharmaceutical, food, agricultural processing and energy generation. A coupled computational fluid dynamics (CFD) and discrete element method (DEM) approach is a popular way to study such flows at a particle scale. However, most of these studies deal with spherical particles while in reality, the particles are rarely spherical. The particle shape can have significant effect on hydrodynamics in a fluidized bed. Moreover, most studies in literature use inaccurate drag laws because accurate laws are not readily available. The drag force acting on a non-spherical particle can vary considerably with particle shape, orientation with the flow, Reynolds number and packing fraction. In this work, the CFD-DEM approach is extended to model a laboratory scale fluidized bed of spherocylinder (rod-like) particles. These rod-like particles can be classified as Geldart D particles and have an aspect ratio of 4. Experiments are performed to study the particle flow behavior in a quasi-2D fluidized bed. Numerically obtained results for pressure drop and bed height are compared with experiments. The capability of CFD-DEM approach to efficiently describe the global bed dynamics for fluidized bed of rod-like particles is demonstrated.

  13. Light scattering by cosmic particles

    NARCIS (Netherlands)

    Hovenier, J.W.; Min, M.

    2008-01-01

    We define cosmic particles as particles outside the Earth. Two types of cosmic particles can be distinguished, namely liquid and solid particles. The solid particles are often called grains or cosmic dust particles. Cosmic particles occur in a great variety of astronomical objects and environments.

  14. Compact particle accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Elizondo-Decanini, Juan M.

    2017-08-29

    A compact particle accelerator having an input portion configured to receive power to produce particles for acceleration, where the input portion includes a switch, is provided. In a general embodiment, a vacuum tube receives particles produced from the input portion at a first end, and a plurality of wafer stacks are positioned serially along the vacuum tube. Each of the plurality of wafer stacks include a dielectric and metal-oxide pair, wherein each of the plurality of wafer stacks further accelerate the particles in the vacuum tube. A beam shaper coupled to a second end of the vacuum tube shapes the particles accelerated by the plurality of wafer stacks into a beam and an output portion outputs the beam.

  15. Particle Image Velocimetry Applications of Fluorescent Dye-Doped Particles

    OpenAIRE

    Petrosky, Brian Joseph

    2015-01-01

    Laser flare can often be a major issue in particle image velocimetry (PIV) involving solid boundaries in a flow or a gas-liquid interface. The use of fluorescent light from dye-doped particles has been demonstrated in water applications, but reproducing the technique in an airflow is more difficult due to particle size constraints and safety concerns. The following thesis is formatted in a hybrid manuscript style, including a full paper presenting the applications of fluorescent Kiton R...

  16. Fermilab | Particle Physics Division

    Science.gov (United States)

    Diversity Education Safety Sustainability and Environment Contact Science Science Particle Physics Neutrinos Scientific Computing Research & Development Key Discoveries Benefits of Particle Physics Particle Superconducting Test Accelerator LHC and Future Accelerators Accelerators for Science and Society Particle Physics

  17. Computational Modelling of Gas-Particle Flows with Different Particle Morphology in the Human Nasal Cavity

    Directory of Open Access Journals (Sweden)

    Kiao Inthavong

    2009-01-01

    Full Text Available This paper summarises current studies related to numerical gas-particle flows in the human nasal cavity. Of interest are the numerical modelling requirements to consider the effects of particle morphology for a variety of particle shapes and sizes such as very small particles sizes (nanoparticles, elongated shapes (asbestos fibres, rough shapes (pollen, and porous light density particles (drug particles are considered. It was shown that important physical phenomena needed to be addressed for different particle characteristics. This included the Brownian diffusion for submicron particles. Computational results for the nasal capture efficiency for nano-particles and various breathing rates in the laminar regime were found to correlate well with the ratio of particle diffusivity to the breathing rate. For micron particles, particle inertia is the most significant property and the need to use sufficient drag laws is important. Drag correlations for fibrous and rough surfaced particles were investigated to enable particle tracking. Based on the simulated results, semi-empirical correlations for particle deposition were fitted in terms of Peclet number and inertial parameter for nanoparticles and micron particles respectively.

  18. Particle Swarm Optimization

    Science.gov (United States)

    Venter, Gerhard; Sobieszczanski-Sobieski Jaroslaw

    2002-01-01

    The purpose of this paper is to show how the search algorithm known as particle swarm optimization performs. Here, particle swarm optimization is applied to structural design problems, but the method has a much wider range of possible applications. The paper's new contributions are improvements to the particle swarm optimization algorithm and conclusions and recommendations as to the utility of the algorithm, Results of numerical experiments for both continuous and discrete applications are presented in the paper. The results indicate that the particle swarm optimization algorithm does locate the constrained minimum design in continuous applications with very good precision, albeit at a much higher computational cost than that of a typical gradient based optimizer. However, the true potential of particle swarm optimization is primarily in applications with discrete and/or discontinuous functions and variables. Additionally, particle swarm optimization has the potential of efficient computation with very large numbers of concurrently operating processors.

  19. Interphasial energy transfer and particle dissipation in particle-laden wall turbulence

    NARCIS (Netherlands)

    Zhao, L.; Andersson, H.I.; Gillissen, J.J.J.

    2013-01-01

    Transfer of mechanical energy between solid spherical particles and a Newtonian carrier fluid has been explored in two-way coupled direct numerical simulations of turbulent channel flow. The inertial particles have been treated as individual point particles in a Lagrangian framework and their

  20. Magnetic particle tracking for nonspherical particles in a cylindrical fluidized bed

    NARCIS (Netherlands)

    Buist, K.A.; Jayaprakash, P.; Kuipers, J.A.M.; Deen, N.G.; Padding, J.T.

    2017-01-01

    In granular flow operations, often particles are nonspherical. This has inspired a vast amount of research in understanding the behavior of these particles. Various models are being developed to study the hydrodynamics involving nonspherical particles. Experiments however are often limited to obtain

  1. Particle creation and particle number in an expanding universe

    International Nuclear Information System (INIS)

    Parker, Leonard

    2012-01-01

    I describe the logical basis of the method that I developed in 1962 and 1963 to define a quantum operator corresponding to the observable particle number of a quantized free scalar field in a spatially-flat isotropically expanding (and/or contracting) universe. This work also showed for the first time that particles were created from the vacuum by the curved spacetime of an expanding spatially-flat Friedmann–Lemaître–Robertson–Walker (FLRW) universe. The same process is responsible for creating the nearly scale-invariant spectrum of quantized perturbations of the inflaton scalar field during the inflationary stage of the expansion of the universe. I explain how the method that I used to obtain the observable particle number operator involved adiabatic invariance of the particle number (hence, the name adiabatic regularization) and the quantum theory of measurement of particle number in an expanding universe. I also show how I was led in a surprising way, to the discovery in 1964 that there would be no particle creation by these spatially-flat FLRW universes for free fields of any integer or half-integer spin satisfying field equations that are invariant under conformal transformations of the metric. The methods I used to define adiabatic regularization for particle number were based on generally-covariant concepts like adiabatic invariance and measurement that were fundamental and determined results that were unique to each given adiabatic order. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical in honour of Stuart Dowker's 75th birthday devoted to ‘Applications of zeta functions and other spectral functions in mathematics and physics’. (paper)

  2. Direct observation of the decay of beauty particles into charm particles

    Energy Technology Data Exchange (ETDEWEB)

    Albanese, J P; Alpe, V; Aoki, S; Arnold, R; Baroni, G; Barth, M; Bartley, J H; Bertrand, D; Bertrand-Coremans, G; Bisi, V [Aichi Univ. of Education, Kariya (Japan); Aichi Women' s Coll, Nisshin-Cho [Japan; Bari Univ. (Italy). Ist. di Fisica; Istituto Nazionale di Fisica Nucleare, Bari (Italy); Birkbeck Coll, London [UK; Interuniversity Inst. for High Energies, Brussels (Belgium); European Organization for Nuclear Research, Geneva (Switzerland); University Coll., Dublin (Ireland); Gifu Univ. (Japan). Faculty of Education; University Coll., London (UK); Nagoya Univ. (Japan). Dept. of Physics; Nagoya Inst. of Tech. (Japan); Rome Univ. (Italy). Ist. di Fisica; Istituto Nazionale di Fisica Nucleare, Rome (Italy); Toho Univ., Funabashi, Chiba (Japan). Faculty of Science; Istituto Nazionale di Fisica Nucleare, Turin (Italy); Turin Univ. (Italy). Ist. di Fisica; Utsunomiya Univ. (Japan). Faculty of Education; Yokohama National Univ. (Japan). Faculty of Education

    1985-08-08

    The associated production of a pair of beauty particles B/sup -/ and anti B/sup 0/ by a 350 GeV ..pi../sup -/ interaction has been observed in an emulsion target inserted in an array of silicon microstrip detectors. Both beauty particles decay into charm particles, both of which are also observed to decay in the emulsion. Two negative muons were identified and their momenta measured in a large muon spectrometer. One muon has a psub(T) of 1.9 GeV/c and is associated with a beauty particle decay. The other, with a psub(T) of 0.45 GeV/c is associated with a charm particle decay. The flight times of the two beauty particles are respectively (0.8 +- 0.1).10/sup -13/s and (5sub(-1)/sup +2/).10/sup -13/s. Alternative interpretations of this event have negligible probability.

  3. The relations of particles

    International Nuclear Information System (INIS)

    Okun, L.B.

    1991-01-01

    This book presents papers on elementary particle physics, relations between various particles, and the connections between particle physics with other branches of physics. The papers include: Contemporary status and prospects of high-energy physics; Particle physics prospects; and High energy physics

  4. Detailed SEM-EPMA investigation of high specific radioactivity particles (hot particles)

    International Nuclear Information System (INIS)

    Burin, K.; Tsacheva, Ts.; Mandjoukov, I.; Mandjoukova, B.

    1993-01-01

    Scanning electron microscope (SEM) images and electron probe microanalysis (EPMA) spectra of a group of hot particles collected in Bulgaria after the Chernobyl accident have been obtained. A technique for hot particle localization is described. The object is irradiated for two days with a β source and the resulting autoradiographs show particles location precisely. High resolution x-ray spectrum of each particle has been obtained using EPMA. The distribution of chemical elements is visualized by colour dot maps representing the regions of interest of the spectrum. It is concluded that apart from reactor fuel the investigated hot particles come from either construction materials or materials used for the covering of the damaged reactor. 7 figs., 2 ref

  5. Atomic Particle Detection

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Hal

    1970-01-01

    This booklet tells how scientists observe the particles and electromagnetic radiation that emerges from an atomic nucleus. The equipment used falls into two general categories: counters which count each particle as it passes by, and track detectors, which make a photographic record of the particle's track.

  6. Statistical examination of particle in a turbulent, non-dilute particle suspension flow experimental measurements

    International Nuclear Information System (INIS)

    Souza, R.C.; Jones, B.G.

    1986-01-01

    An experimental study of particles suspended in fully developed turbulent water flow in a vertical pipe was done. Three series of experiments were conducted to investigate the statistical behaviour of particles in nondilute turbulent suspension flow, for two particle densities and particle sizes, and for several particle volume loadings ranging from 0 to 1 percent. The mean free fall velocity of the particles was determined at these various particle volume loadings, and the phenomenon of cluster formation was observed. The precise volume loading which gives the maximum relative settling velocity was observed to depend on particle density and size. (E.G.) [pt

  7. Computational Fluid-Particle Dynamics for the Flame Synthesis of Alumina Particles

    DEFF Research Database (Denmark)

    Johannessen, Tue; Pratsinis, Sotirie E.; Livbjerg, Hans

    2000-01-01

    A mathematical model for the dynamics of particle growth during synthesis of ultra fine particles in diffusion flames is presented. The model includes the kinetics of particle coalescence and coagulation, and when combined with a calculation of the temperature, velocity and gas composition distri...

  8. Elementary particles and cosmology

    International Nuclear Information System (INIS)

    Audouze, J.; Paty, M.

    2000-01-01

    The universe is the most efficient laboratory of particle physics and the understanding of cosmological processes implies the knowledge of how elementary particles interact. This article recalls the mutual influences between on the one hand: astrophysics and cosmology and on the other hand: nuclear physics and particle physics. The big-bang theory relies on nuclear physics to explain the successive stages of nucleo-synthesis and the study of solar neutrinos has led to discover new aspects of this particle: it is likely that neutrinos undergo oscillations from one neutrino type to another. In some universe events such as the bursting of a super-nova, particles are released with a kinetic energy that would be impossible to reach on earth with a particle accelerator. These events are become common points of interest between astrophysicists and particle physicists and have promoted a deeper cooperation between astrophysics and elementary particle physics. (A.C.)

  9. Particle Image Velocimetry

    DEFF Research Database (Denmark)

    Zhang, Chen; Vasilevskis, Sandijs; Kozlowski, Bartosz

    Particle image velocimetry (PIV) is a non-intrusive, whole filed optical method providing instantaneous velocity information in fluids. The flow is seeded with tracer particles. The particles are illuminated in the target area with a light sheet at least twice within a short time interval....... The camera images the target area and captures each light pulse in separate image frames. The displacement of the particle between the light pulses can be used to determine the velocity vectors. This guideline introduces the principle of the PIV system and the system configuration. The measurement procedure...

  10. Washing of gel particles in wet chemical manufacture of reactor fuel particles

    International Nuclear Information System (INIS)

    Ringel, H.

    1980-07-01

    In the manufacture of HTR fuel particles and particles of fertile material by wet chemical methods, the ammonium nitrate formed during the precipitation reaction must be washed out of the gel particles. This washing process has been investigated theoretically and experimentally. A counter-current washer has been developed which in particular takes account of the aspects of refabrication - such as compact construction and minimum waste. A counter-current washing column of 17 mm internal diameter and 640 mm length gives to gel particle throughput of 0.65 1/h. The volume ratio of wash water to gel particles is 5, and the residual nitrate concentration in the particles is 7 x 10 -3 mols of NO - 3 /1. (orig.) [de

  11. Method for fluidizing and coating ultrafine particles, device for fluidizing and coating ultrafine particles

    Science.gov (United States)

    Li, Jie; Liu, Yung Y

    2015-01-20

    The invention provides a method for dispersing particles within a reaction field, the method comprising confining the particles to the reaction field using a standing wave. The invention also provides a system for coating particles, the system comprising a reaction zone; a means for producing fluidized particles within the reaction zone; a fluid to produce a standing wave within the reaction zone; and a means for introducing coating moieties to the reaction zone. The invention also provides a method for coating particles, the method comprising fluidizing the particles, subjecting the particles to a standing wave; and contacting the subjected particles with a coating moiety.

  12. Particle-nuclear intersections

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    With the traditional distinctions between particle and nuclear physics becoming increasing blurred, the Fifth Conference on the Intersections of Particle and Nuclear Physics, held from May 31 to June 6 in St. Petersburg, Florida, brought together particle and nuclear physicists to discuss common research efforts and to define and plan a united approach

  13. Interactive Terascale Particle Visualization

    Science.gov (United States)

    Ellsworth, David; Green, Bryan; Moran, Patrick

    2004-01-01

    This paper describes the methods used to produce an interactive visualization of a 2 TB computational fluid dynamics (CFD) data set using particle tracing (streaklines). We use the method introduced by Bruckschen et al. [2001] that pre-computes a large number of particles, stores them on disk using a space-filling curve ordering that minimizes seeks, and then retrieves and displays the particles according to the user's command. We describe how the particle computation can be performed using a PC cluster, how the algorithm can be adapted to work with a multi-block curvilinear mesh, and how the out-of-core visualization can be scaled to 296 billion particles while still achieving interactive performance on PG hardware. Compared to the earlier work, our data set size and total number of particles are an order of magnitude larger. We also describe a new compression technique that allows the lossless compression of the particles by 41% and speeds the particle retrieval by about 30%.

  14. Slowing of charged particles by particle methods

    International Nuclear Information System (INIS)

    Mercier, B.

    1985-03-01

    We review some facts about particle methods for solving linear hyperbolic equations. We show how one gets an evaluation of integral quantities like: ∫ u(x,t) zeta(x,t) dxdt where u denotes the solution and zeta an arbitrary weight function. Then, we apply the method to the equation describing charged particle transport in a plasma with emphasis on the evaluation of energy deposition on ions and electrons [fr

  15. Small particles big effect? - Investigating ice nucleation abilities of soot particles

    Science.gov (United States)

    Mahrt, Fabian; David, Robert O.; Lohmann, Ulrike; Stopford, Chris; Wu, Zhijun; Kanji, Zamin A.

    2017-04-01

    Atmospheric soot particles are primary particles produced by incomplete combustion of biomass and/or fossil fuels. Thus soot mainly originates from anthropogenic emissions, stemming from combustion related processes in transport vehicles, industrial and residential uses. Such soot particles are generally complex mixtures of black carbon (BC) and organic matter (OM) (Bond et al., 2013; Petzold et al., 2013), depending on the sources and the interaction of the primary particles with other atmospheric matter and/or gases BC absorbs solar radiation having a warming effect on global climate. It can also act as a heterogeneous ice nucleating particle (INP) and thus impact cloud-radiation interactions, potentially cooling the climate (Lohmann, 2002). Previous studies, however, have shown conflicting results concerning the ice nucleation ability of soot, limiting the ability to predict its effects on Earth's radiation budget. Here we present a laboratory study where we systematically investigate the ice nucleation behavior of different soot particles. Commercial soot samples are used, including an amorphous, industrial carbon frequently used in coatings and coloring (FW 200, Orion Engineered Carbons) and a fullerene soot (572497 ALDRICH), e.g. used as catalyst. In addition, we use soot generated from a propane flame Combustion Aerosol Standard Generator (miniCAST, JING AG), as a proxy for atmospheric soot particles. The ice nucleation ability of these soot types is tested on size-selected particles for a wide temperature range from 253 K to 218 K, using the Horizontal Ice Nucleation Chamber (HINC), a Continuous Flow Diffusion Chamber (CFDC) (Kanji and Abbatt, 2009). Ice nucleation results from these soot surrogates will be compared to chemically more complex real world samples, collected on filters. Filters will be collected during the 2016/2017 winter haze periods in Beijing, China and represent atmospheric soot particles with sources from both industrial and residential

  16. Experimental characterization of solid particle transport by slug flow using Particle Image Velocimetry

    International Nuclear Information System (INIS)

    Goharzadeh, A; Rodgers, P

    2009-01-01

    This paper presents an experimental study of gas-liquid slug flow on solid particle transport inside a horizontal pipe with two types of experiments conducted. The influence of slug length on solid particle transportation is characterized using high speed photography. Using combined Particle Image Velocimetry (PIV) with Refractive Index Matching (RIM) and fluorescent tracers (two-phase oil-air loop) the velocity distribution inside the slug body is measured. Combining these experimental analyses, an insight is provided into the physical mechanism of solid particle transportation due to slug flow. It was observed that the slug body significantly influences solid particle mobility. The physical mechanism of solid particle transportation was found to be discontinuous. The inactive region (in terms of solid particle transport) upstream of the slug nose was quantified as a function of gas-liquid composition and solid particle size. Measured velocity distributions showed a significant drop in velocity magnitude immediately upstream of the slug nose and therefore the critical velocity for solid particle lifting is reached further upstream.

  17. Particle levitation and laboratory scattering

    International Nuclear Information System (INIS)

    Reid, Jonathan P.

    2009-01-01

    Measurements of light scattering from aerosol particles can provide a non-intrusive in situ method for characterising particle size distributions, composition, refractive index, phase and morphology. When coupled with techniques for isolating single particles, considerable information on the evolution of the properties of a single particle can be gained during changes in environmental conditions or chemical processing. Electrostatic, acoustic and optical techniques have been developed over many decades for capturing and levitating single particles. In this review, we will focus on studies of particles in the Mie size regime and consider the complimentarity of electrostatic and optical techniques for levitating particles and elastic and inelastic light scattering methods for characterising particles. In particular, we will review the specific advantages of establishing a single-beam gradient force optical trap (optical tweezers) for manipulating single particles or arrays of particles. Recent developments in characterising the nature of the optical trap, in applying elastic and inelastic light scattering measurements for characterising trapped particles, and in manipulating particles will be considered.

  18. Quantum entanglement of identical particles

    International Nuclear Information System (INIS)

    Shi Yu

    2003-01-01

    We consider entanglement in a system with a fixed number of identical particles. Since any operation should be symmetrized over all the identical particles and there is the precondition that the spatial wave functions overlap, the meaning of identical-particle entanglement is fundamentally different from that of distinguishable particles. The identical-particle counterpart of the Schmidt basis is shown to be the single-particle basis in which the one-particle reduced density matrix is diagonal. But it does not play a special role in the issue of entanglement, which depends on the single-particle basis chosen. The nonfactorization due to (anti)symmetrization is naturally excluded by using the (anti)symmetrized basis or, equivalently, the particle number representation. The natural degrees of freedom in quantifying the identical-particle entanglement in a chosen single-particle basis are occupation numbers of different single-particle basis states. The entanglement between effectively distinguishable spins is shown to be a special case of the occupation-number entanglement

  19. Particle-assisted wetting

    International Nuclear Information System (INIS)

    Xu Hui; Yan Feng; Tierno, Pietro; Marczewski, Dawid; Goedel, Werner A

    2005-01-01

    Wetting of a solid surface by a liquid is dramatically impeded if either the solid or the liquid is decorated by particles. Here it is shown that in the case of contact between two liquids the opposite effect may occur; mixtures of a hydrophobic liquid and suitable particles form wetting layers on a water surface though the liquid alone is non-wetting. In these wetting layers, the particles adsorb to, and partially penetrate through, the liquid/air and/or the liquid/water interface. This formation of wetting layers can be explained by the reduction in total interfacial energy due to the replacement of part of the fluid/fluid interfaces by the particles. It is most prominent if the contact angles at the fluid/fluid/particle contact lines are close to 90 0

  20. Dual-frequency magnetic particle imaging of the Brownian particle contribution

    Energy Technology Data Exchange (ETDEWEB)

    Viereck, Thilo, E-mail: t.viereck@tu-bs.de; Kuhlmann, Christian; Draack, Sebastian; Schilling, Meinhard; Ludwig, Frank

    2017-04-01

    Magnetic particle imaging (MPI) is an emerging medical imaging modality based on the non-linear response of magnetic nanoparticles to an exciting magnetic field. MPI has been recognized as a fast imaging technique with high spatial resolution in the mm range. For some applications of MPI, especially in the field of functional imaging, the determination of the particle mobility (Brownian rotation) is of great interest, as it enables binding detection in MPI. It also enables quantitative imaging in the presence of Brownian-dominated particles, which is otherwise implausible. Discrimination of different particle responses in MPI is possible via the joint reconstruction approach. In this contribution, we propose a dual-frequency acquisition scheme to enhance sensitivity and contrast in the detection of different particle mobilities compared to a standard single-frequency MPI protocol. The method takes advantage of the fact, that the magnetization response of the tracer is strongly frequency-dependent, i.e. for low excitation frequencies a stronger Brownian contribution is observed.

  1. Identified particle yield associated with a high-$p_T$ trigger particle at the LHC

    CERN Document Server

    Veldhoen, Misha; van Leeuwen, Marco

    Identified particle production ratios are important observables, used to constrain models of particle production in heavy-ion collisions. Measurements of the inclusive particle ratio in central heavy-ion collisions showed an increase of the baryon-to-meson ratio compared to proton-proton collisions at intermediate pT, the so-called baryon anomaly. One possible explanation of the baryon anomaly is that partons from the thermalized deconfined QCD matter hadronize in a different way compared to hadrons produced in a vacuum jet. In this work we extend on previous measurements by measuring particle ratios in the yield associated with a high-pT trigger particle. These measurements can potentially further constrain the models of particle production since they are sensitive to the difference between particles from a jet and particles that are produced in the bulk. We start by developing a particle identification method that uses both the specific energy loss of a particle and the time of flight. From there, we presen...

  2. Effect of heavy particles in low-energy light-particle processes

    International Nuclear Information System (INIS)

    Chan, L.H.; Hagiwara, T.; Ovrut, B.

    1979-01-01

    The ''decoupling theorem'' of Appelquist and Carazzone is found not always to be applicable to light-scalar-particle processes in spontaneously broken theories. If the Higgs scalar is considered to be light, then Higgs-scalar processes see the effect of heavy fermions and heavy vector gauge bosons at the one-loop level. If there is more than one scalar multiplet in a spontaneously broken gauge theory, the effect of a heavy Higgs particle in light-scalar-particle processes is significant at the tree level. In the latter case, such an effect can be absorbed completely into an effective phi 4 coupling constant, lambda/sub eff/, of the light particle provided that lambda/sub eff/ is positive definite

  3. Merging for Particle-Mesh Complex Particle Kinetic Modeling of the Multiple Plasma Beams

    Science.gov (United States)

    Lipatov, Alexander S.

    2011-01-01

    We suggest a merging procedure for the Particle-Mesh Complex Particle Kinetic (PMCPK) method in case of inter-penetrating flow (multiple plasma beams). We examine the standard particle-in-cell (PIC) and the PMCPK methods in the case of particle acceleration by shock surfing for a wide range of the control numerical parameters. The plasma dynamics is described by a hybrid (particle-ion-fluid-electron) model. Note that one may need a mesh if modeling with the computation of an electromagnetic field. Our calculations use specified, time-independent electromagnetic fields for the shock, rather than self-consistently generated fields. While a particle-mesh method is a well-verified approach, the CPK method seems to be a good approach for multiscale modeling that includes multiple regions with various particle/fluid plasma behavior. However, the CPK method is still in need of a verification for studying the basic plasma phenomena: particle heating and acceleration by collisionless shocks, magnetic field reconnection, beam dynamics, etc.

  4. An incompressible two-dimensional multiphase particle-in-cell model for dense particle flows

    Energy Technology Data Exchange (ETDEWEB)

    Snider, D.M. [SAIC, Albuquerque, NM (United States); O`Rourke, P.J. [Los Alamos National Lab., NM (United States); Andrews, M.J. [Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering

    1997-06-01

    A two-dimensional, incompressible, multiphase particle-in-cell (MP-PIC) method is presented for dense particle flows. The numerical technique solves the governing equations of the fluid phase using a continuum model and those of the particle phase using a Lagrangian model. Difficulties associated with calculating interparticle interactions for dense particle flows with volume fractions above 5% have been eliminated by mapping particle properties to a Eulerian grid and then mapping back computed stress tensors to particle positions. This approach utilizes the best of Eulerian/Eulerian continuum models and Eulerian/Lagrangian discrete models. The solution scheme allows for distributions of types, sizes, and density of particles, with no numerical diffusion from the Lagrangian particle calculations. The computational method is implicit with respect to pressure, velocity, and volume fraction in the continuum solution thus avoiding courant limits on computational time advancement. MP-PIC simulations are compared with one-dimensional problems that have analytical solutions and with two-dimensional problems for which there are experimental data.

  5. Effects of Particles Collision on Separating Gas–Particle Two-Phase Turbulent Flows

    KAUST Repository

    Sihao, L. V.; Yang, Weihua; Li, Xiangli; Li, Guohui

    2013-01-01

    A second-order moment two-phase turbulence model incorporating a particle temperature model based on the kinetic theory of granular flow is applied to investigate the effects of particles collision on separating gas–particle two-phase turbulent

  6. Structures in elementary particles. An electromagnetic elementary-particle model

    International Nuclear Information System (INIS)

    Meyer, Carl-Friedrich

    2015-01-01

    A picture of matter is developed, which is suited to develope and to explain the experimentally determined properties of the elementary particles and the basing structures starting from few known physical conditions in a simple and understandable way. It explains illustratively the spin and the structure of the stable particles, symmetry properties resulting from the half-integerness of the spin, the nature of the electric charge and the third-integerness of the charges in hadrons resulting from this, the stability and the indivisibility f the proton, the conditions for the formation and stability of the particles, and the causes for the limited lifetime of unstable particles like the free neutron. It opens also the view on the cause for the quantization of all for us known processes in the range of the microcosm and creates so an illustrative picture of the matter surrounding us.

  7. Elementary particles

    International Nuclear Information System (INIS)

    Prasad, R.

    1984-01-01

    Two previous monographs report on investigations into the extent to which a unified field theory can satisfactorily describe physical reality. The first, Unified field Theory, showed that the paths within a non-Riemannian space are governed by eigenvalue equations. The second, Fundamental Constants, show that the field tensors satisfy sets of differential equations with solutions which represent the evolution of the fields along the paths of the space. The results from the first two monographs are used in this one to make progress on the theory of elementary particles. The five chapters are as follows - Quantum mechanics, gravitation and electromagnetism are aspects of the Unified theory; the fields inside the particle; the quadratic and linear theories; the calculation of the eigenvalues and elementary particles as stable configurations of interacting fields. It is shown that it is possible to construct an internal structure theory for elementary particles. The theory lies within the framework of Einstein's programme-to identify physical reality with a specified geometrical structure. (U.K.)

  8. Particle Image Velocimetry Applications Using Fluorescent Dye-Doped Particles

    Science.gov (United States)

    Petrosky, Brian J.; Maisto, Pietro; Lowe, K. Todd; Andre, Matthieu A.; Bardet, Philippe M.; Tiemsin, Patsy I.; Wohl, Christopher J.; Danehy, Paul M.

    2015-01-01

    Polystyrene latex sphere particles are widely used to seed flows for velocimetry techniques such as Particle Image Velocimetry (PIV) and Laser Doppler Velocimetry (LDV). These particles may be doped with fluorescent dyes such that signals spectrally shifted from the incident laser wavelength may be detected via Laser Induced Fluorescence (LIF). An attractive application of the LIF signal is achieving velocimetry in the presence of strong interference from laser scatter, opening up new research possibilities very near solid surfaces or at liquid/gas interfaces. Additionally, LIF signals can be used to tag different fluid streams to study mixing. While fluorescence-based PIV has been performed by many researchers for particles dispersed in water flows, the current work is among the first in applying the technique to micron-scale particles dispersed in a gas. A key requirement for such an application is addressing potential health hazards from fluorescent dyes; successful doping of Kiton Red 620 (KR620) has enabled the use of this relatively safe dye for fluorescence PIV for the first time. In this paper, basic applications proving the concept of PIV using the LIF signal from KR620-doped particles are exhibited for a free jet and a twophase flow apparatus. Results indicate that while the fluorescence PIV techniques are roughly 2 orders of magnitude weaker than Mie scattering, they provide a viable method for obtaining data in flow regions previously inaccessible via standard PIV. These techniques have the potential to also complement Mie scattering signals, for example in multi-stream and/or multi-phase experiments.

  9. Monosodium titanate particle characterization

    International Nuclear Information System (INIS)

    Chandler, G.T.; Hobbs, D.T.

    1993-01-01

    A characterization study was performed on monosodium titanate (MST) particles to determine the effect of high shear forces expected from the In-Tank Precipitation (ITP) process pumps on the particle size distribution. The particles were characterized using particle size analysis and scanning electron microscopy (SEM). No significant changes in particle size distributions were observed between as-received MST and after 2--4 hours of shearing. Both as-received and sheared MST particles contained a large percentage of porosity with pore sizes on the order of 500 to 2,000 Angstroms. Because of the large percentage of porosity, the overall surface area of the MST is dominated by the internal surfaces. The uranium and plutonium species present in the waste solution will have access to both interior and exterior surfaces. Therefore, uranium and plutonium loading should not be a strong function of MST particle size

  10. Particle Tracking and Deposition from CFD Simulations using a Viscoelastic Particle Model

    NARCIS (Netherlands)

    Losurdo, M.

    2009-01-01

    In the present dissertation the mathematical modelling of particle deposition is studied and the solution algorithms for particle tracking, deposition and deposit growth are developed. Particle deposition is modelled according to mechanical impact and contact mechanics taking into account the

  11. SIMULATION OF TRANSLATIONAL - ROTATIONAL MOTION OF WOOD PARTICLES DURING THE PROCESS OF PARTICLE ORIENTATION

    Directory of Open Access Journals (Sweden)

    Sergey PLOTNIKOV

    2014-09-01

    Full Text Available The simulation from the motion of flat particle revealed that the fall depends on the height of the drop, the thickness and density of the particles and does not depend on its length and width. The drop in air is about 20% longer than in vacuum. During orientation from angular particles the velocity of rotating particles with a length of 150mm is reduced by 18%, for particles with a length of 75mm by 12%. This reduction increases linearly with decreasing density of particles. A velocity field acting on the particle in the fall and rotation was presented. The results of the study prove the possibility to reduce the scatter of the particles during the mat's formation, that in turns can increase the board’s bending strength.

  12. Burnout of pulverized biomass particles in large scale boiler - Single particle model approach

    Energy Technology Data Exchange (ETDEWEB)

    Saastamoinen, Jaakko; Aho, Martti; Moilanen, Antero [VTT Technical Research Centre of Finland, Box 1603, 40101 Jyvaeskylae (Finland); Soerensen, Lasse Holst [ReaTech/ReAddit, Frederiksborgsveij 399, Niels Bohr, DK-4000 Roskilde (Denmark); Clausen, Soennik [Risoe National Laboratory, DK-4000 Roskilde (Denmark); Berg, Mogens [ENERGI E2 A/S, A.C. Meyers Vaenge 9, DK-2450 Copenhagen SV (Denmark)

    2010-05-15

    Burning of coal and biomass particles are studied and compared by measurements in an entrained flow reactor and by modelling. The results are applied to study the burning of pulverized biomass in a large scale utility boiler originally planned for coal. A simplified single particle approach, where the particle combustion model is coupled with one-dimensional equation of motion of the particle, is applied for the calculation of the burnout in the boiler. The particle size of biomass can be much larger than that of coal to reach complete burnout due to lower density and greater reactivity. The burner location and the trajectories of the particles might be optimised to maximise the residence time and burnout. (author)

  13. Long range correlations, leading particle spectrum and correlations with leading particles

    International Nuclear Information System (INIS)

    Ilgenfritz, E.M.

    1976-05-01

    The unitary cluster emission model by de Groot and Ruijgrok is discussed as an approach to understand the leading particle behaviour. Consequences of the model concerning co--rrelations between leading particles and produced particles in the central region are considered. No satisfactory agreement was found. Production of leading clusters is argued for being an essential feature of these correlations. (author)

  14. Laser and Particle Guiding Micro-Elements for Particle Accelerators

    CERN Document Server

    Plettner, Tomas; Spencer, James; Wisdom, Jeffrey

    2005-01-01

    Laser driven particle accelerators based on the current generation of lasers will require sub-micron control of the laser field as well as precise beam guiding. Hence the fabrication techniques that allow integrating both elements into an accelerator-on-chip format become critical for the success of such particle accelerators. Micromachining technology for silicon has been shown to be one such feasible technology in PAC2003 but with a variety of complications on the laser side. Fortunately, in recent years the fabrication of transparent ceramics has become an interesting technology that could be applied for laser-particle accelerators in several ways. We discuss this area, its advantages such as the range of materials it provides and various ways to implement it followed by some different test examples that have been considered. One important goal of this approach is an integrated system that could avoid the necessity of having to inject either laser or particle pulses into these structures.

  15. Optimizing parameter of particle damping based on Leidenfrost effect of particle flows

    Science.gov (United States)

    Lei, Xiaofei; Wu, Chengjun; Chen, Peng

    2018-05-01

    Particle damping (PD) has strongly nonlinearity. With sufficiently vigorous vibration conditions, it always plays excellent damping performance and the particles which are filled into cavity are on Leidenfrost state considered in particle flow theory. For investigating the interesting phenomenon, the damping effect of PD on this state is discussed by the developed numerical model which is established based on principle of gas and solid. Furtherly, the numerical model is reformed and applied to study the relationship of Leidenfrost velocity with characteristic parameters of PD such as particle density, diameter, mass packing ratio and diameter-length ratio. The results indicate that particle density and mass packing ratio can drastically improve the damping performance as opposed as particle diameter and diameter-length ratio, mass packing ratio and diameter-length ratio can low the excited intensity for Leidenfrost state. For discussing the application of the phenomenon in engineering, bound optimization by quadratic approximation (BOBYQA) method is employed to optimize mass packing ratio of PD for minimize maximum amplitude (MMA) and minimize total vibration level (MTVL). It is noted that the particle damping can drastically reduce the vibrating amplitude for MMA as Leidenfrost velocity equal to the vibrating velocity relative to maximum vibration amplitude. For MTVL, larger mass packing ratio is best option because particles at relatively wide frequency range is adjacent to Leidenfrost state.

  16. [Ultrafine particle number concentration and size distribution of vehicle exhaust ultrafine particles].

    Science.gov (United States)

    Lu, Ye-qiang; Chen, Qiu-fang; Sun, Zai; Cai, Zhi-liang; Yang, Wen-jun

    2014-09-01

    Ultrafine particle (UFP) number concentrations obtained from three different vehicles were measured using fast mobility particle sizer (FMPS) and automobile exhaust gas analyzer. UFP number concentration and size distribution were studied at different idle driving speeds. The results showed that at a low idle speed of 800 rmin-1 , the emission particle number concentration was the lowest and showed a increasing trend with the increase of idle speed. The majority of exhaust particles were in Nuclear mode and Aitken mode. The peak sizes were dominated by 10 nm and 50 nm. Particle number concentration showed a significantly sharp increase during the vehicle acceleration process, and was then kept stable when the speed was stable. In the range of 0. 4 m axial distance from the end of the exhaust pipe, the particle number concentration decayed rapidly after dilution, but it was not obvious in the range of 0. 4-1 m. The number concentration was larger than the background concentration. Concentration of exhaust emissions such as CO, HC and NO showed a reducing trend with the increase of idle speed,which was in contrast to the emission trend of particle number concentration.

  17. Particle theory and cosmology

    International Nuclear Information System (INIS)

    Gaisser, T.K.; Shafi, Q.; Barr, S.M.; Seckel, D.; Rusjan, E.; Fletcher, R.S.

    1991-01-01

    This report discusses research of professor at Bartol research institute in the following general areas: particle phenomenology and non-accelerator physics; particle physics and cosmology; theories with higher symmetry; and particle astrophysics and cosmology

  18. spinning self-dual particles

    International Nuclear Information System (INIS)

    Gamboa, J.; Rivelles, V.O.

    1989-01-01

    Self-dual particles in two-dimensions are presented. They were obtained from chiral boson particle by square root technique. The propagator of spinning self-dual particle is calculated using the BFV formalism. (M.C.K.)

  19. Improved nano-particle tracking analysis

    International Nuclear Information System (INIS)

    Walker, John G

    2012-01-01

    Nano-particle tracking is a method to estimate a particle size distribution by tracking the movements of individual particles, using multiple images of particles moving under Brownian motion. A novel method to recover a particle size distribution from nano-particle tracking data is described. Unlike a simple histogram-based method, the method described is able to account for the finite number of steps in each particle track and consequently for the measurement uncertainty in the step-length data. Computer simulation and experimental results are presented to demonstrate the performance of the approach compared with the current method. (paper)

  20. Review of particle properties

    Energy Technology Data Exchange (ETDEWEB)

    Yost, G P; Barnett, R M; Hinchliffe, I; Lynch, G R; Rittenberg, A; Ross, R R; Suzuki, M; Trippe, T G; Wohl, C G; Armstrong, B

    1988-04-14

    This review of the properties of gauge bosons, leptons, mesons, and baryons is an updating of the Review of Particle Properties, Particle Data Group (Phys. Lett. 170B (1986)). Data are evaluated, listed, averaged, and summarized in tables. We continue the more orderly set of particle names implemented in the 1986 edition. Numerous tables, figures, and formulae of interest to particle physicists are also included. A data booklet is available.

  1. Magnetic particle movement program to calculate particle paths in flow and magnetic fields

    International Nuclear Information System (INIS)

    Inaba, Toru; Sakazume, Taku; Yamashita, Yoshihiro; Matsuoka, Shinya

    2014-01-01

    We developed an analysis program for predicting the movement of magnetic particles in flow and magnetic fields. This magnetic particle movement simulation was applied to a capturing process in a flow cell and a magnetic separation process in a small vessel of an in-vitro diagnostic system. The distributions of captured magnetic particles on a wall were calculated and compared with experimentally obtained distributions. The calculations involved evaluating not only the drag, pressure gradient, gravity, and magnetic force in a flow field but also the friction force between the particle and the wall, and the calculated particle distributions were in good agreement with the experimental distributions. Friction force was simply modeled as static and kinetic friction forces. The coefficients of friction were determined by comparing the calculated and measured results. This simulation method for solving multiphysics problems is very effective at predicting the movements of magnetic particles and is an excellent tool for studying the design and application of devices. - Highlights: ●We developed magnetic particles movement program in flow and magnetic fields. ●Friction force on wall is simply modeled as static and kinetic friction force. ●This program was applied for capturing and separation of an in-vitro diagnostic system. ●Predicted particle distributions on wall were agreed with experimental ones. ●This method is very effective at predicting movements of magnetic particles

  2. Modelling and simulation of particle-particle interaction in a magnetophoretic bio-separation chip

    Science.gov (United States)

    Alam, Manjurul; Golozar, Matin; Darabi, Jeff

    2018-04-01

    A Lagrangian particle trajectory model is developed to predict the interaction between cell-bead particle complexes and to track their trajectories in a magnetophoretic bio-separation chip. Magnetic flux gradients are simulated in the OpenFOAM CFD software and imported into MATLAB to obtain the trapping lengths and trajectories of the particles. A connector vector is introduced to calculate the interaction force between cell-bead complexes as they flow through a microfluidic device. The interaction force calculations are performed for cases where the connector vector is parallel, perpendicular, and at an angle of 45° with the applied magnetic field. The trajectories of the particles are simulated by solving a system of eight ordinary differential equations using a fourth order Runge-Kutta method. The model is then used to study the effects of geometric positions and angles of the connector vector between the particles as well as the cell size, number of beads per cell, and flow rate on the interaction force and trajectories of the particles. The results show that the interaction forces may be attractive or repulsive, depending on the orientation of the connector vector distance between the particle complexes and the applied magnetic field. When the interaction force is attractive, the particles are observed to merge and trap sooner than a single particle, whereas a repulsive interaction force has little or no effect on the trapping length.

  3. Particle physics in your pocket!

    CERN Multimedia

    Anaïs Schaeffer

    2012-01-01

    CERN physicists, take out your smartphones! Two new particle physics applications for Android phones have been developed by a physicist from the University of Bern: “Particle Properties” and “Particle Physics Booklet 2010”.   “When I'm on shift, I enjoy looking at the online event displays,” says Igor Kreslo from the Laboratory for High Energy Physics at the University of Bern, the physicist who has developed the two particle physics applications for Android. “Sometimes very beautiful events appear, with many different particles. I like to discuss these displays with my students, just to develop their ability to identify particles. We try to find out which particle is which and how it might decay… I think that's the best way to teach students the phenomenology of particle physics.” When scientists study particle physics, they require some vital information, such as the decay branching ...

  4. Initiator Systems Effect on Particle Coagulation and Particle Size Distribution in One-Step Emulsion Polymerization of Styrene

    Directory of Open Access Journals (Sweden)

    Baijun Liu

    2016-02-01

    Full Text Available Particle coagulation is a facile approach to produce large-scale polymer latex particles. This approach has been widely used in academic and industrial research owing to its higher polymerization rate and one-step polymerization process. Our work was motivated to control the extent (or time of particle coagulation. Depending on reaction parameters, particle coagulation is also able to produce narrowly dispersed latex particles. In this study, a series of experiments were performed to investigate the role of the initiator system in determining particle coagulation and particle size distribution. Under the optimal initiation conditions, such as cationic initiator systems or higher reaction temperature, the time of particle coagulation would be advanced to particle nucleation period, leading to the narrowly dispersed polymer latex particles. By using a combination of the Smoluchowski equation and the electrostatic stability theory, the relationship between the particle size distribution and particle coagulation was established: the earlier the particle coagulation, the narrower the particle size distribution, while the larger the extent of particle coagulation, the larger the average particle size. Combined with the results of previous studies, a systematic method controlling the particle size distribution in the presence of particle coagulation was developed.

  5. Decomposition of Atmospheric Aerosol Phase Function by Particle Size and Morphology via Single Particle Scattering Measurements

    Science.gov (United States)

    Aptowicz, K. B.; Pan, Y.; Martin, S.; Fernandez, E.; Chang, R.; Pinnick, R. G.

    2013-12-01

    We report upon an experimental approach that provides insight into how particle size and shape affect the scattering phase function of atmospheric aerosol particles. Central to our approach is the design of an apparatus that measures the forward and backward scattering hemispheres (scattering patterns) of individual atmospheric aerosol particles in the coarse mode range. The size and shape of each particle is discerned from the corresponding scattering pattern. In particular, autocorrelation analysis is used to differentiate between spherical and non-spherical particles, the calculated asphericity factor is used to characterize the morphology of non-spherical particles, and the integrated irradiance is used for particle sizing. We found the fraction of spherical particles decays exponentially with particle size, decreasing from 11% for particles on the order of 1 micrometer to less than 1% for particles over 5 micrometer. The average phase functions of subpopulations of particles, grouped by size and morphology, are determined by averaging their corresponding scattering patterns. The phase functions of spherical and non-spherical atmospheric particles are shown to diverge with increasing size. In addition, the phase function of non-spherical particles is found to vary little as a function of the asphericity factor.

  6. Particle separations by electrophoretic techniques

    International Nuclear Information System (INIS)

    Ballou, N.E.; Petersen, S.L.; Ducatte, G.R.; Remcho, V.T.

    1996-03-01

    A new method for particle separations based on capillary electrophoresis has been developed and characterized. It uniquely separates particles according to their chemical nature. Separations have been demonstrated with chemically modified latex particles and with inorganic oxide and silicate particles. Separations have been shown both experimentally and theoretically to be essentially independent of particle size in the range of about 0.2 μm to 10 μm. The method has been applied to separations of U0 2 particles from environmental particulate material. For this, an integrated method was developed for capillary electrophoretic separation, collection of separated fractions, and determinations of U0 2 and environmental particles in each fraction. Experimental runs with the integrated method on mixtures of UO 2 particles and environmental particulate material demonstrated enrichment factors of 20 for UO 2 particles in respect to environmental particles in the U0 2 containing fractions. This enrichment factor reduces the costs and time for processing particulate samples by the lexan process by a factor of about 20

  7. Particle capture by turbulent recirculation zones measured using long-time Lagrangian particle tracking

    Energy Technology Data Exchange (ETDEWEB)

    Siu, Y.W. [Hong Kong Securities Institute, Department of Professional Education and Training, Central (China); Taylor, A.M.K.P. [Imperial College London, Department of Mechanical Engineering, London (United Kingdom)

    2011-07-15

    We have measured the trajectories of particles into, and around, the recirculation zone formed in water flowing through a sudden pipe expansion with radius ratio 1:3.7, at Reynolds numbers between 5,960 and 41,700 over a range of particle Stokes number (here defined as St=(T{sub f})/({tau} p), where T{sub f} is an appropriate mean or turbulent timescale of the fluid flow and a particle relaxation time, {tau}{sub p},) between 6.2 and 51 and drift parameter between 0.3 and 2.8. The particles were thus weakly inertial but nevertheless heavy with a diameter about an order of magnitude larger than the Kolmogorov scale. Trajectories of particles, released individually into the flow, were taken in a Lagrangian framework by a three-dimensional particle tracking velocimeter using a single 25 Hz framing rate intensified CCD camera. Trajectories are quantified by the axial distribution of the locations of particle axial velocity component reversal and the probability distributions of trajectory angle and curvature. The effect of increasing the drift parameter was to reduce the tendency for particles to enter the recirculation zone. For centreline release, the proportion of particles entering the recirculation zone and acquiring a negative velocity decreased from about 80% to none and from about 66% to none, respectively, as the drift parameter increased from 0.3 to 2.8. Almost half of the particles experienced a relatively large change of direction corresponding to a radius of curvature of their trajectory comparable to, or smaller than, the radius of the downstream pipe. This was due to the interaction between these particles and eddies of this size in the downstream pipe and provides experimental evidence that particles are swept by large eddies into the recirculation zone over 1.0 < Z{sup *} < 2.5, where Z{sup *} is axial distance from the expansion plane normalized by the downstream pipe diameter, which was well upstream of the reattachment point at the wall (Z

  8. Charge neutrality of fine particle (dusty) plasmas and fine particle cloud under gravity

    Energy Technology Data Exchange (ETDEWEB)

    Totsuji, Hiroo, E-mail: totsuji-09@t.okadai.jp

    2017-03-11

    The enhancement of the charge neutrality due to the existence of fine particles is shown to occur generally under microgravity and in one-dimensional structures under gravity. As an application of the latter, the size and position of fine particle clouds relative to surrounding plasmas are determined under gravity. - Highlights: • In fine particle (dusty) plasmas, the charge neutrality is much enhanced by the existence of fine particles. • The enhancement of charge neutrality generally occurs under microgravity and gravity. • Structure of fine particle clouds under gravity is determined by applying the enhanced charge neutrality.

  9. Methods for forming particles

    Science.gov (United States)

    Fox, Robert V.; Zhang, Fengyan; Rodriguez, Rene G.; Pak, Joshua J.; Sun, Chivin

    2016-06-21

    Single source precursors or pre-copolymers of single source precursors are subjected to microwave radiation to form particles of a I-III-VI.sub.2 material. Such particles may be formed in a wurtzite phase and may be converted to a chalcopyrite phase by, for example, exposure to heat. The particles in the wurtzite phase may have a substantially hexagonal shape that enables stacking into ordered layers. The particles in the wurtzite phase may be mixed with particles in the chalcopyrite phase (i.e., chalcopyrite nanoparticles) that may fill voids within the ordered layers of the particles in the wurtzite phase thus produce films with good coverage. In some embodiments, the methods are used to form layers of semiconductor materials comprising a I-III-VI.sub.2 material. Devices such as, for example, thin-film solar cells may be fabricated using such methods.

  10. Review of particle properties

    International Nuclear Information System (INIS)

    Montanet, L.; Gieselmann, K. Technical Associate; Barnett, R.M.; Groom, D.E.; Trippe, T.G.; Wohl, C.G.; Armstrong, B. Technical Associate; Wagman, G.S. Technical Associate; Murayama, H.; Stone, J.; Hernandez, J.J.; Porter, F.C.; Morrison, R.J.; Manohar, A.; Aguilar-Benitez, M.; Caso, C.; Lantero, P. Technical Associate; Crawford, R.L.; Roos, M.; Toernqvist, N.A.; Hayes, K.G.; Hoehler, G.

    1994-01-01

    This biennial review summarizes much of Particle Physics. Using data from previous editions, plus 2300 new measurements from 700 papers, we list evaluate, and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons. We also summarize searches for hypothetical particles such as Higgs bosons, heavy neutrinos, monopoles, and supersymmetric particles. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as the Standard Model, particle detectors, probability, and statistics. A booklet is available containing the Summary Tables and abbreviated versions of some of the other sections of this full Review

  11. Identification and quantification of particle growth channels during new particle formation

    Directory of Open Access Journals (Sweden)

    M. R. Pennington

    2013-10-01

    Full Text Available Atmospheric new particle formation (NPF is a key source of ambient ultrafine particles that may contribute substantially to the global production of cloud condensation nuclei (CCN. While NPF is driven by atmospheric nucleation, its impact on CCN concentration depends strongly on atmospheric growth mechanisms since the growth rate must exceed the loss rate due to scavenging in order for the particles to reach the CCN size range. In this work, chemical composition measurements of 20 nm diameter particles during NPF in Hyytiälä, Finland, in March–April 2011 permit identification and quantitative assessment of important growth channels. In this work we show the following: (A sulfuric acid, a key species associated with atmospheric nucleation, accounts for less than half of particle mass growth during this time period; (B the sulfate content of a growing particle during NPF is quantitatively explained by condensation of gas-phase sulfuric acid molecules (i.e., sulfuric acid uptake is collision-limited; (C sulfuric acid condensation substantially impacts the chemical composition of preexisting nanoparticles before new particles have grown to a size sufficient to be measured; (D ammonium and sulfate concentrations are highly correlated, indicating that ammonia uptake is driven by sulfuric acid uptake; (E sulfate neutralization by ammonium does not reach the predicted thermodynamic end point, suggesting that a barrier exists for ammonia uptake; (F carbonaceous matter accounts for more than half of the particle mass growth, and its oxygen-to-carbon ratio (~ 0.5 is characteristic of freshly formed secondary organic aerosol; and (G differences in the overall growth rate from one formation event to another are caused by variations in the growth rates of all major chemical species, not just one individual species.

  12. Beyond the God particle

    CERN Document Server

    Lederman, Leon M

    2013-01-01

    On July 4, 2012, the long-sought Higgs Boson--aka "the God Particle"--was discovered at the world's largest particle accelerator, the LHC, in Geneva, Switzerland. On March 14, 2013, physicists at CERN confirmed it. This elusive subatomic particle forms a field that permeates the entire universe, creating the masses of the elementary particles that are the basic building blocks of everything in the known world--from viruses to elephants, from atoms to quasars.

  13. Considerations of particle vaporization and analyte diffusion in single-particle inductively coupled plasma-mass spectrometry

    International Nuclear Information System (INIS)

    Ho, Koon-Sing; Lui, Kwok-On; Lee, Kin-Ho; Chan, Wing-Tat

    2013-01-01

    The intensity of individual gold nanoparticles with nominal diameters of 80, 100, 150, and 200 nm was measured using single-particle inductively coupled plasma-mass spectrometry (ICP-MS). Since the particles are not perfectly monodisperse, a distribution of ICP-MS intensity was obtained for each nominal diameter. The distribution of particle mass was determined from the transmission electron microscopy (TEM) image of the particles. The distribution of ICP-MS intensity and the distribution of particle mass for each nominal diameter were correlated to give a calibration curve. The calibration curves are linear, but the slope decreases as the nominal diameter increases. The reduced slope is probably due to a smaller degree of vaporization of the large particles. In addition to the degree of particle vaporization, the rate of analyte diffusion in the ICP is an important factor that determines the measured ICP-MS intensity. Simulated ICP-MS intensity versus particle size was calculated using a simple computer program that accounts for the vaporization rate of the gold nanoparticles and the diffusion rate and degree of ionization of the gold atoms. The curvature of the simulated calibration curves changes with sampling depth because the effects of particle vaporization and analyte diffusion on the ICP-MS intensity are dependent on the residence time of the particle in the ICP. Calibration curves of four hypothetical particles representing the four combinations of high and low boiling points (2000 and 4000 K) and high and low analyte diffusion rates (atomic masses of 10 and 200 Da) were calculated to further illustrate the relative effects of particle vaporization and analyte diffusion. The simulated calibration curves show that the sensitivity of single-particle ICP-MS is smaller than that of the ICP-MS measurement of continuous flow of standard solutions by a factor of 2 or more. Calibration using continuous flow of standard solution is semi-quantitative at best. An

  14. Chemical compositions of subway particles in Seoul, Korea determined by a quantitative single particle analysis.

    Science.gov (United States)

    Kang, Sunni; Hwang, HeeJin; Park, YooMyung; Kim, HyeKyoung; Ro, Chul-Un

    2008-12-15

    A novel single particle analytical technique, low-Z particle electron probe X-ray microanalysis, was applied to characterize seasonal subway samples collected at a subway station in Seoul, Korea. For all 8 samples collected twice in each season, 4 major types of subway particles, based on their chemical compositions, are significantly encountered: Fe-containing; soil-derived; carbonaceous; and secondary nitrate and/or sulfate particles. Fe-containing particles are generated indoors from wear processes at rail-wheel-brake interfaces while the others may be introduced mostly from the outdoor urban atmosphere. Fe-containing particles are the most frequently encountered with relative abundances in the range of 61-79%. In this study, it is shown that Fe-containing subway particles almost always exist either as partially or fully oxidized forms in underground subway microenvironments. Their relative abundances of Fe-containing particles increase as particle sizes decrease. Relative abundances of Fe-containing particles are higher in morning samples than in afternoon samples because of heavier train traffic in the morning. In the summertime samples, Fe-containing particles are the most abundantly encountered, whereas soil-derived and nitrate/sulfate particles are the least encountered, indicating the air-exchange between indoor and outdoor environments is limited in the summer, owing to the air-conditioning in the subway system. In our work, it was observed that the relative abundances of the particles of outdoor origin vary somewhat among seasonal samples to a lesser degree, reflecting that indoor emission sources predominate.

  15. Recommendations, requirements, and radioactive particles

    International Nuclear Information System (INIS)

    Bell, J.M.

    1991-01-01

    Hot particles consisting of activated metal debris and fuel fragments have received increased attention in the last five years. This increased attention resulted from the increased use of more sensitive whole body friskers at nuclear power plants, the relatively high local skin doses associated with the particles, and skin dose limits that were established before hot particles, and skin dose limits that were established before hot particles became a problem and before radiobiological effects data for the particles became available. The skin dose distribution and biological effects associated with hot particles differ from those associated with more uniform skin contamination and differences exist in the scientific community as to which effects should be protected against by a limit on exposures from particles. The NRC staff recognized the need for provisions in the Federal regulations specific to hot particle exposures and requested guidance from the National Council on Radiation Protection and Measurements (NCRP). NCRP Report No. 106 was provided to the NRC early in 1990. The International Commission on Radiological Protection (ICRP) is also developing recommendations for limits on exposures from hot particles. The NRC is supporting research on hot particle effects and will likely develop a rule for hot particle exposures

  16. Magnetic characteristics of ultrafine Fe particles reduced from uniform iron oxide particles

    Science.gov (United States)

    Bridger, K.; Watts, J.; Tadros, M.; Xiao, Gang; Liou, S. H.; Chien, C. L.

    1987-04-01

    Uniform, cubic 0.05-μm iron oxide particles were formed by forced hydrolysis of ferric perchlorate. These particles were reduced to α-Fe by heating in hydrogen at temperatures between 300 and 500 °C. The effect of reduction temperature and various prereduction treatments on the microstructure of the iron particles will be discussed. Complete reduction to α-Fe was established by 57Fe Mössbauer spectroscopy and x-ray diffraction. Magnetic measurements on epoxy and polyurethane films containing these particles with various mass fractions gave coercivities as high as 1000 Oe. The relationship between the magnetic measurements and the microstructure will be discussed. Na2SiO3 is found to be the best coating material for the process of reducing iron oxide particles to iron.

  17. Lecture II. Charmed particle spectroscopy

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The discussion of charmed particle spectroscopy covers the particle properties and interrelations from a charmed quark composition point of view including SU(4)-symmetry generalities, mesons, baryons, charmed particle masses, and decays of charmed particles. 6 references

  18. Three Dimensional Characterization of Typical Urban and Desert Particles: Implications to Particle Optics

    Science.gov (United States)

    Goel, V.; Mishra, S.; Ahlawat, A. S.; Sharma, C.; Kotnala, R. K.

    2017-12-01

    Aerosol particles are generally considered as chemically homogeneous spheres in the retrieval techniques of ground and space borne observations which is not accurate approach and can lead to erroneous observations. For better simulation of optical and radiative properties of aerosols, a good knowledge of aerosol's morphology, chemical composition and internal structure is essential. Till date, many studies have reported the morphology and chemical composition of particles but very few of them provide internal structure and spatial distribution of different chemical species within the particle. The research on the effect of particle internal structure and its contribution to particle optics is extremely limited. In present work, we characterize the PM10 particles collected form typical arid (the Thar Desert, Rajasthan, India) and typical urban (New Delhi, India) environment using microscopic techniques. The particles were milled several times to investigate their internal structure. The EDS (Energy Dispersive X-ray Spectroscopy) spectra were recorded after each milling to check the variation in the chemical composition. In arid environment, Fe, Ca, C, Al, and Mg rich shell was observed over a Si rich particle whereas in urban environment, shell of Hg, Ag, C and N was observed over a Cu rich particle. Based on the observations, different model shapes [homogenous sphere and spheroid; heterogeneous sphere and spheroid; core shell] have been considered for assessing the associated uncertainties with the routine modeling of optical properties where volume equivalent homogeneous sphere approximation is considered. The details will be discussed during presentation.

  19. Behaviour of non-spherical particles in the TSI aerodynamic particle sizer

    International Nuclear Information System (INIS)

    Marshall, I.A.

    1991-02-01

    The TSI Aerodynamic Particle Sizer (APS33B) is a real-time monitor which is capable of measuring aerosols in terms of this most relevant size parameter for the assessment of occupational risk. The influence of particle shape on APS33B performance has been investigated using a range of monodisperse, regular-shaped and non-porous solid particles in the size range from about 6 to 14 μm aerodynamic diameter. (author)

  20. Steering particles by breaking symmetries

    Science.gov (United States)

    Bet, Bram; Samin, Sela; Georgiev, Rumen; Burak Eral, Huseyin; van Roij, René

    2018-06-01

    We derive general equations of motions for highly-confined particles that perform quasi-two-dimensional motion in Hele-Shaw channels, which we solve analytically, aiming to derive design principles for self-steering particles. Based on symmetry properties of a particle, its equations of motion can be simplified, where we retrieve an earlier-known equation of motion for the orientation of dimer particles consisting of disks (Uspal et al 2013 Nat. Commun. 4), but now in full generality. Subsequently, these solutions are compared with particle trajectories that are obtained numerically. For mirror-symmetric particles, excellent agreement between the analytical and numerical solutions is found. For particles lacking mirror symmetry, the analytic solutions provide means to classify the motion based on particle geometry, while we find that taking the side-wall interactions into account is important to accurately describe the trajectories.

  1. Fundamentals of gas particle flow

    CERN Document Server

    Rudinger, G

    1980-01-01

    Fundamentals of Gas-Particle Flow is an edited, updated, and expanded version of a number of lectures presented on the "Gas-Solid Suspensions” course organized by the von Karman Institute for Fluid Dynamics. Materials presented in this book are mostly analytical in nature, but some experimental techniques are included. The book focuses on relaxation processes, including the viscous drag of single particles, drag in gas-particles flow, gas-particle heat transfer, equilibrium, and frozen flow. It also discusses the dynamics of single particles, such as particles in an arbitrary flow, in a r

  2. Particle measurement systems and methods

    Science.gov (United States)

    Steele, Paul T [Livermore, CA

    2011-10-04

    A system according to one embodiment includes a light source for generating light fringes; a sampling mechanism for directing a particle through the light fringes; and at least one light detector for detecting light scattered by the particle as the particle passes through the light fringes. A method according to one embodiment includes generating light fringes using a light source; directing a particle through the light fringes; and detecting light scattered by the particle as the particle passes through the light fringes using at least one light detector.

  3. DEM Particle Fracture Model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Boning [Univ. of Colorado, Boulder, CO (United States); Herbold, Eric B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Homel, Michael A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Regueiro, Richard A. [Univ. of Colorado, Boulder, CO (United States)

    2015-12-01

    An adaptive particle fracture model in poly-ellipsoidal Discrete Element Method is developed. The poly-ellipsoidal particle will break into several sub-poly-ellipsoids by Hoek-Brown fracture criterion based on continuum stress and the maximum tensile stress in contacts. Also Weibull theory is introduced to consider the statistics and size effects on particle strength. Finally, high strain-rate split Hopkinson pressure bar experiment of silica sand is simulated using this newly developed model. Comparisons with experiments show that our particle fracture model can capture the mechanical behavior of this experiment very well, both in stress-strain response and particle size redistribution. The effects of density and packings o the samples are also studied in numerical examples.

  4. A multi-parametric particle-pairing algorithm for particle tracking in single and multiphase flows

    International Nuclear Information System (INIS)

    Cardwell, Nicholas D; Vlachos, Pavlos P; Thole, Karen A

    2011-01-01

    Multiphase flows (MPFs) offer a rich area of fundamental study with many practical applications. Examples of such flows range from the ingestion of foreign particulates in gas turbines to transport of particles within the human body. Experimental investigation of MPFs, however, is challenging, and requires techniques that simultaneously resolve both the carrier and discrete phases present in the flowfield. This paper presents a new multi-parametric particle-pairing algorithm for particle tracking velocimetry (MP3-PTV) in MPFs. MP3-PTV improves upon previous particle tracking algorithms by employing a novel variable pair-matching algorithm which utilizes displacement preconditioning in combination with estimated particle size and intensity to more effectively and accurately match particle pairs between successive images. To improve the method's efficiency, a new particle identification and segmentation routine was also developed. Validation of the new method was initially performed on two artificial data sets: a traditional single-phase flow published by the Visualization Society of Japan (VSJ) and an in-house generated MPF data set having a bi-modal distribution of particles diameters. Metrics of the measurement yield, reliability and overall tracking efficiency were used for method comparison. On the VSJ data set, the newly presented segmentation routine delivered a twofold improvement in identifying particles when compared to other published methods. For the simulated MPF data set, measurement efficiency of the carrier phases improved from 9% to 41% for MP3-PTV as compared to a traditional hybrid PTV. When employed on experimental data of a gas–solid flow, the MP3-PTV effectively identified the two particle populations and reported a vector efficiency and velocity measurement error comparable to measurements for the single-phase flow images. Simultaneous measurement of the dispersed particle and the carrier flowfield velocities allowed for the calculation of

  5. The influences of ambient particle composition and size on particle infiltration in Los Angeles, CA, residences.

    Science.gov (United States)

    Sarnat, Stefanie Ebelt; Coull, Brent A; Ruiz, Pablo A; Koutrakis, Petros; Suh, Helen H

    2006-02-01

    Particle infiltration is a key determinant of the indoor concentrations of ambient particles. Few studies have examined the influence of particle composition on infiltration, particularly in areas with high concentrations of volatile particles, such as ammonium nitrate (NH4NO3). A comprehensive indoor monitoring study was conducted in 17 Los Angeles-area homes. As part of this study, indoor/outdoor concentration ratios during overnight (nonindoor source) periods were used to estimate the fraction of ambient particles remaining airborne indoors, or the particle infiltration factor (FINF), for fine particles (PM2.5), its nonvolatile (i.e., black carbon [BC]) and volatile (i.e., nitrate [NO3-]) components, and particle sizes ranging between 0.02 and 10 microm. FINF was highest for BC (median = 0.84) and lowest for NO3- (median = 0.18). The low FINF for NO3- was likely because of volatilization of NO3- particles once indoors, in addition to depositional losses upon building entry. The FINF for PM2.5 (median = 0.48) fell between those for BC and NO3-, reflecting the contributions of both particle components to PM25. FINF varied with particle size, air-exchange rate, and outdoor NO3- concentrations. The FINF for particles between 0.7 and 2 microm in size was considerably lower during periods of high as compared with low outdoor NO3- concentrations, suggesting that outdoor NO3- particles were of this size. This study demonstrates that infiltration of PM2.5 varies by particle component and is lowest for volatile species, such as NH4NO3. Our results suggest that volatile particle components may influence the ability for outdoor PM concentrations to represent indoor and, thus, personal exposures to particles of ambient origin, because volatilization of these particles causes the composition of PM2.5 to differ indoors and outdoors. Consequently, particle composition likely influences observed epidemiologic relationships based on outdoor PM concentrations, especially in areas

  6. The Particle Distribution in Liquid Metal with Ceramic Particles Mould Filling Process

    Science.gov (United States)

    Dong, Qi; Xing, Shu-ming

    2017-09-01

    Adding ceramic particles in the plate hammer is an effective method to increase the wear resistance of the hammer. The liquid phase method is based on the “with the flow of mixed liquid forging composite preparation of ZTA ceramic particle reinforced high chromium cast iron hammer. Preparation method for this system is using CFD simulation analysis the particles distribution of flow mixing and filling process. Taking the 30% volume fraction of ZTA ceramic composite of high chromium cast iron hammer as example, by changing the speed of liquid metal viscosity to control and make reasonable predictions of particles distribution before solidification.

  7. Interference of two-particle states in elementary particle physics and in astronomy

    International Nuclear Information System (INIS)

    Kopylov, G.I.; Podgoretskij, M.I.

    1975-01-01

    Comparison is given of two versions of an experiment for observing of the interference of two-particle states of identical particles: time - space and momentum - energy versions. Both versions are considered in detail and make it possible to measure dimensions of particle souces. An interesting symmetry has been found. Expressions for the phase of interfering states in both versions of the experiment are obtained by mutual replacement of particle sources on their detector. An imaginary experiment is suggested which makes it possible to follow how these mutually exclusive versions of the experiment turn one into another

  8. Measuring momentum for charged particle tomography

    Science.gov (United States)

    Morris, Christopher; Fraser, Andrew Mcleod; Schultz, Larry Joe; Borozdin, Konstantin N.; Klimenko, Alexei Vasilievich; Sossong, Michael James; Blanpied, Gary

    2010-11-23

    Methods, apparatus and systems for detecting charged particles and obtaining tomography of a volume by measuring charged particles including measuring the momentum of a charged particle passing through a charged particle detector. Sets of position sensitive detectors measure scattering of the charged particle. The position sensitive detectors having sufficient mass to cause the charged particle passing through the position sensitive detectors to scatter in the position sensitive detectors. A controller can be adapted and arranged to receive scattering measurements of the charged particle from the charged particle detector, determine at least one trajectory of the charged particle from the measured scattering; and determine at least one momentum measurement of the charged particle from the at least one trajectory. The charged particle can be a cosmic ray-produced charged particle, such as a cosmic ray-produced muon. The position sensitive detectors can be drift cells, such as gas-filled drift tubes.

  9. Single-particle Analyses of Compositions, Morphology, and Viscosity of Aerosol Particles Collected During GoAmazon2014

    Science.gov (United States)

    Adachi, K.; Gong, Z.; Bateman, A. P.; Martin, S. T.; Cirino, G. G.; Artaxo, P.; Sedlacek, A. J., III; Buseck, P. R.

    2014-12-01

    Single-particle analysis using transmission electron microscopy (TEM) shows composition and morphology of individual aerosol particles collected during the GoAmazon2014 campaign. These TEM results indicate aerosol types and mixing states, both of which are important for evaluating particle optical properties and cloud condensation nuclei activity. The samples were collected at the T3 site, which is located in the Amazon forest with influences from the urban pollution plume from Manaus. Samples were also collected from the T0 site, which is in the middle of the jungle with minimal to no influences of anthropogenic sources. The aerosol particles mainly originated from 1) anthropogenic pollution (e.g., nanosphere soot, sulfate), 2) biogenic emissions (e.g., primary biogenic particles, organic aerosols), and 3) long-range transport (e.g., sea salts). We found that the biogenic organic aerosol particles contain homogeneously distributed potassium. Particle viscosity is important for evaluating gas-particle interactions and atmospheric chemistry for the particles. Viscosity can be estimated from the rebounding behavior at controlled relative humidities, i.e., highly viscous particles display less rebound on a plate than low-viscosity particles. We collected 1) aerosol particles from a plate (non-rebounded), 2) those that had rebounded from the plate and were then captured onto an adjacent sampling plate, and 3) particles from ambient air using a separate impactor sampler. Preliminary results show that more than 90% of non-rebounded particles consisted of nanosphere soot with or without coatings. The coatings mostly consisted of organic matter. Although rebounded particles also contain nanosphere soot (number fraction 64-69%), they were mostly internally mixed with sulfate, organic matter, or their mixtures. TEM tilted images suggested that the rebounded particles were less deformed on the substrate, whereas the non-rebounded particles were more deformed, which could

  10. LHCb unveils new particles

    CERN Multimedia

    Stefania Pandolfi

    2016-01-01

    The LHCb collaboration announces the observation of four “exotic” particles from its analysis of the LHC data.   The LHCb experimental cavern. On 28 June, the LHCb collaboration reported the observation of three new "exotic" particles and confirmation of the existence of a fourth one in data from the LHC. These particles each appear to be formed by four quarks (the fundamental constituents of the matter inside all the atoms of the universe): two quarks and two antiquarks (that is, a tetraquark). Due to their non-standard quark content, the newly observed particles have been included in the broad category of so-called exotic particles, although their exact theoretical interpretation is still under study.            The quark model, proposed by Murray Gell-Mann and George Zweig in 1964, is considered to be the most valid scheme for the classification of hadrons (all the composite particles) that has been fou...

  11. A microstructure-composition map of a ternary liquid/liquid/particle system with partially-wetting particles.

    Science.gov (United States)

    Yang, Junyi; Roell, David; Echavarria, Martin; Velankar, Sachin S

    2017-11-22

    We examine the effect of composition on the morphology of a ternary mixture comprising two molten polymeric liquid phases (polyisobutylene and polyethylene oxide) and micron-scale spherical silica particles. The silica particles were treated with silanes to make them partially wetted by both polymers. Particle loadings up to 30 vol% are examined while varying the fluid phase ratios across a wide range. Numerous effects of particle addition are catalogued, stabilization of Pickering emulsions and of interfacially-jammed co-continuous microstructures, meniscus-bridging of particles, particle-induced coalescence of the dispersed phase, and significant shifts in the phase inversion composition. Many of the effects are asymmetric, for example particle-induced coalescence is more severe and drop sizes are larger when polyisobutylene is the continuous phase, and particles promote phase continuity of the polyethylene oxide. These asymmetries are likely attributable to a slight preferential wettability of the particles towards the polyethylene oxide. A state map is constructed which classifies the various microstructures within a triangular composition diagram. Comparisons are made between this diagram vs. a previous one constructed for the case when particles are fully-wetted by polyethylene oxide.

  12. Particle supply and recovery device

    International Nuclear Information System (INIS)

    Yamada, Kimio; Okazaki, Takashi.

    1988-01-01

    This invention concerns a particle supply and recovery device suitable to the supply of fuels and exhaustion of reaction products in a tokamak device. The divertor chamber is divided into an inner side and an outer side, in which only the outer side is constituted as a tightly closed structure. Particles are supplied from the inside of main plasmas and exhausted from the outer side of the divertor chamber. In the divertor equilibrium arrangement, particles escaping from the main plasmas are conveyed mainly passing through the outer side scrape-off layer to the divertor chamber. The particle density is higher at the outer side and lower at the inner side of the scrape-off layer. By making the outer side as a tightly closed structure, the pressure is increased and the particle exhaustion efficiency is improved. Since the particle density is low in the inner scrape-layer, the particle supply efficiency to the main plasma is increased by supplying the particles from the inside. Further, particles ionized in the inner scrape-off layer are returned to the main plasma chamber and then supplied again since the inner divertor chamber is not closed. Accordingly, the particle supply efficiency can further be improved. (K.M.)

  13. Studies of particle drying using non-invasive Raman spectrometry and particle size analysis.

    Science.gov (United States)

    Hamilton, Peter; Littlejohn, David; Nordon, Alison; Sefcik, Jan; Slavin, Paul; Dallin, Paul; Andrews, John

    2011-05-21

    The evaporation of methanol from needle-shaped particles of cellobiose octaacetate (COA) has been studied directly in a jacketed vacuum drier using in situ measurements by Raman spectrometry. A design of experiments (DoE) approach was used to investigate the effects of three parameters (method of agitation, % solvent loss on drying and jacket temperature), with the intention of minimising the drying time and extent of particle attrition. Drying curves based on Raman signals for methanol and COA in the spectra of the wet particles indicated the end of drying and revealed three stages in the drying process that could be used to monitor the progress of solvent removal in real time. Off-line particle size measurements based on laser diffraction were made to obtain information on the extent of attrition, to compare with the trends revealed by the Raman drying curves. The study demonstrated that non-invasive Raman spectrometry can be used to study the progress of drying during agitation of particles in a vacuum drier, allowing optimisation of operating conditions to minimise attrition and reduce drying times. Although a correlation between particle size and off-line Raman measurements of COA was demonstrated, it was not possible to derive equivalent information from the in situ Raman spectra owing to the greater effects of particle motion or bulk density variations of the particles in the drier.

  14. Particle Correlations at LEP

    CERN Document Server

    Kress, Thomas

    2002-01-01

    Particle correlations are extensively studied to obtain information about the dynamics of hadron production. From 1989 to 2000 the four LEP collaborations recorded more than 16 million hadronic Z0 decays and several thousand W+W- events. In Z0 decays, two-particle correlations were analysed in detail to study Bose-Einstein and Fermi-Dirac correlations for various particle species. In fully-hadronic W+W- decays, particle correlations were used to study whether the two W bosons decay independently. A review of selected results is presented.

  15. Labeling suspended aerosol particles with short-lived radionuclides for determination of particle deposition

    International Nuclear Information System (INIS)

    Smith, M.F.; Bryant, S.; Welch, S.; Digenis, G.A.

    1984-01-01

    Radiotracer techniques were developed to examine parameters that characterize pressurized aerosols designed to deliver insoluble particles suspended in the aerosol formulation. Microaggregated bovine serum albumin microspheres that were to be suspended were labeled with iodine-131 (t1/2 . 8 d). This iodination procedure (greater than 80% effective) is also applicable to iodine-123, which possesses superior characteristics for external imaging and further in vivo studies. This report shows that for pressurized aerosols containing suspended particles, each metered dose is approximately equal (not including the priming doses and the emptying doses). Increase in the delivery of the albumin particles out of the canister was best achieved by pretreating the valve assembly with a solution of 2% (w/v) bovine serum albumin in phosphate buffer. Use of a cascade impactor delineated the particle size distribution of the micropheres, with the majority of particles ranging in size from 2 to 8 microns. The data disclosed here indicate that the techniques developed with short-lived radionuclides can be used to quantitate each metered dose, characterize the particle size distribution profile of the aerosol contents, and determine the extent of deposition of the particles in the aerosol canister and all of its components

  16. Radioactive particles in the environment: sources, particle characterization and analytical techniques

    International Nuclear Information System (INIS)

    2011-08-01

    Over the years, radioactive particles have been released to the environment from nuclear weapons testing and nuclear fuel cycle operations. However, measurements of environmental radioactivity and any associated assessments are often based on the average bulk mass or surface concentration, assuming that radionuclides are homogeneously distributed as simple ionic species. It has generally not been recognised that radioactive particles present in the environment often contain a significant fraction of the bulk sample activity, leading to sample heterogeneity problems and false and/or erratic measurement data. Moreover, the inherent differences in the transport and bioavailability of particle bound radionuclides compared with those existing as molecules or ions have largely been ignored in dose assessments. To date, most studies regarding radionuclide behaviour in the soil-plant system have dealt with soluble forms of radionuclides. When radionuclides are deposited in a less mobile form, or in case of a superposition of different physico-chemical forms, the behaviour of radionuclides becomes much more complicated and extra efforts are required to provide information about environmental status and behaviour of radioactive particles. There are currently no documents or international guides covering this aspect of environmental impact assessments. To fill this gap, between 2001 and 2008 the IAEA performed a Coordinated Research Programme (CRP- G4.10.03) on the 'Radiochemical, Chemical and Physical Characterization of Radioactive Particles in the Environment' with the objective of development, adoption and application of standardized analytical techniques for the comprehensive study of radioactive particles. The CRP was in line with the IAEA project intended to assist the Member States in building capacity for improving environmental assessments and for management of sites contaminated with radioactive particles. This IAEA-TECDOC presents the findings and achievements of

  17. Particle physics and cosmology

    International Nuclear Information System (INIS)

    Schramm, D.N.; Turner, M.S.

    1982-06-01

    work is described in these areas: cosmological baryon production; cosmological production of free quarks and other exotic particle species; the quark-hadron transition in the early universe; astrophysical and cosmological constraints on particle properties; massive neutrinos; phase transitions in the early universe; and astrophysical implications of an axion-like particle

  18. Taking account of the recoil effect under a light particle scattering on two heavy particles

    International Nuclear Information System (INIS)

    Peresypkin, V.V.

    1978-01-01

    Proceeding from the Faddeev equations the derivation of the Bruekner formula describing a light particle scattering by a system of two fixed force centers is presented. Using the zero-range two-particle potential and assuming the ratio of the incident particle mass to the heavy particle mass to be a small perturbation parameter the correction to the Bruekner formula is obtained taking into account the heavy particle recoil

  19. PART 2: LARGE PARTICLE MODELLING Simulation of particle filtration processes in deformable media

    Directory of Open Access Journals (Sweden)

    Gernot Boiger

    2008-06-01

    Full Text Available In filtration processes it is necessary to consider both, the interaction of thefluid with the solid parts as well as the effect of particles carried in the fluidand accumulated on the solid. While part 1 of this paper deals with themodelling of fluid structure interaction effects, the accumulation of dirtparticles will be addressed in this paper. A closer look is taken on theimplementation of a spherical, LAGRANGIAN particle model suitable forsmall and large particles. As dirt accumulates in the fluid stream, it interactswith the surrounding filter fibre structure and over time causes modificationsof the filter characteristics. The calculation of particle force interactioneffects is necessary for an adequate simulation of this situation. A detailedDiscrete Phase Lagrange Model was developed to take into account thetwo-way coupling of the fluid and accumulated particles. The simulation oflarge particles and the fluid-structure interaction is realised in a single finitevolume flow solver on the basis of the OpenSource software OpenFoam.

  20. Hardened over-coating fuel particle and manufacture of nuclear fuel using its fuel particle

    International Nuclear Information System (INIS)

    Yoshimuda, Hideharu.

    1990-01-01

    Coated-fuel particles comprise a coating layer formed by coating ceramics such as silicon carbide or zirconium carbide and carbons, etc. to a fuel core made of nuclear fuel materials. The fuel core generally includes oxide particles such as uranium, thorium and plutonium, having 400 to 600 μm of average grain size. The average grain size of the coated-fuel particle is usually from 800 to 900 μm. The thickness of the coating layer is usually from 150 to 250 μm. Matrix material comprising a powdery graphite and a thermosetting resin such as phenol resin, etc. is overcoated to the surface of the coated-fuel particle and hardened under heating to form a hardened overcoating layer to the coated-fuel particle. If such coated-fuel particles are used, cracks, etc. are less caused to the coating layer of the coated-fuel particles upon production, thereby enabling to prevent the damages to the coating layer. (T.M.)

  1. Method of stripping solid particles

    International Nuclear Information System (INIS)

    1980-01-01

    A method of stripping loaded solid particles is specified in which uniform batches of the loaded particles are passed successively upwardly through an elution column in the form of discrete plugs, the particles of which do not intermingle substantially with the particles of the vertically adjacent plug(s), and are contacted therein with eluant liquid flowed downwardly, strong eluate being withdrawn from the lower region of the column, the loaded particles being supplied as a slurry in a carrier liquid, and successive batches of loaded particles being isolated as measured batches and being separated from their carrier liquid before being contacted with strong eluate and slurried with the strong eluate into the lower region of the column. An example describes the stripping of ion exchange resin particles loaded with complex uranium ions. (author)

  2. The Particle Number Emission Characteristics of the Diesel Engine with a Catalytic Diesel Particle Filter

    Directory of Open Access Journals (Sweden)

    Li Jia Qiang

    2016-01-01

    Full Text Available Due to their adverse health effects and their abundance in urban areas, diesel exhaust ultrafine particles caused by the aftertreatment devices have been of great concern in the past years. An experiment of particles number emissions was carried out on a high-pressure, common rail diesel engine with catalytic diesel particle filter (CDPF to investigate the impact of CDPF on the number emission characteristics of particles. The results indicated that the conversion rates of CDPF is over 97%. The size distributions of particles are bimodal lognormal distributions downstream CDPF at 1400 r/min and 2300 r/min. CDPF has a lower conversion rates on the nucleation mode particles. The geometric number mean diameters of particles downstream CDPF is smaller than that upstream CDPF.

  3. Effect of particle-size dynamics on properties of dense spongy-particle systems: Approach towards equilibrium

    Science.gov (United States)

    Zakhari, Monica E. A.; Anderson, Patrick D.; Hütter, Markus

    2017-07-01

    Open-porous deformable particles, often envisaged as sponges, are ubiquitous in biological and industrial systems (e.g., casein micelles in dairy products and microgels in cosmetics). The rich behavior of these suspensions is owing to the elasticity of the supporting network of the particle, and the viscosity of permeating solvent. Therefore, the rate-dependent size change of these particles depends on their structure, i.e., the permeability. This work aims at investigating the effect of the particle-size dynamics and the underlying particle structure, i.e., the particle permeability, on the transient and long-time behavior of suspensions of spongy particles in the absence of applied deformation, using the dynamic two-scale model developed by Hütter et al. [Farad. Discuss. 158, 407 (2012), 10.1039/c2fd20025b]. In the high-density limit, the transient behavior is found to be accelerated by the particle-size dynamics, even at average size changes as small as 1 % . The accelerated dynamics is evidenced by (i) the higher short-time diffusion coefficient as compared to elastic-particle systems and (ii) the accelerated formation of the stable fcc crystal structure. Furthermore, after long times, the particle-size dynamics of spongy particles is shown to result in lower stationary values of the energy and normal stresses as compared to elastic-particle systems. This dependence of the long-time behavior of these systems on the permeability, that essentially is a transport coefficient and hence must not affect the equilibrium properties, confirms that full equilibration has not been reached.

  4. Amorphous silicon ionizing particle detectors

    Science.gov (United States)

    Street, Robert A.; Mendez, Victor P.; Kaplan, Selig N.

    1988-01-01

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation.

  5. Review of particle properties

    International Nuclear Information System (INIS)

    Hikasa, K.; Hagiwara, K.; Kawabata, S.; Barnett, R.M.; Groom, D.E.; Trippe, T.G.; Wohl, C.G.; Yost, G.P.; Armstrong, B. Technical Associate; Wagman, G.S. Technical Associate; Stone, J.; Porter, F.C.; Morrison, R.J.; Cutkosky, R.E.; Montanet, L.; Gieselmann, K. Technical Associate; Aguilar-Benitez, M.; Caso, C.; Crawford, R.L.; Roos, M.; Toernqvist, N.A.; Hayes, K.G.; Hoehler, G.; Manley, D.M.

    1992-01-01

    In this Review, we list, evaluate, and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons. We also summarize searches for hypothetical particles such as Higgs bosons, the top quark, heavy neutrinos, monopoles, and supersymmetric particles. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as the Standard Model, particle detectors, probability, and statistics. A booklet is available containing the Summary Tables and abbreviated versions of some other sections of this full Review

  6. Viscous properties of ferrofluids containing both micrometer-size magnetic particles and fine needle-like particles

    Energy Technology Data Exchange (ETDEWEB)

    Ido, Yasushi, E-mail: ido.yasushi@nitech.ac.jp [Department of Electric and Mechanical Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya (Japan); Nishida, Hitoshi [Department of Electrical and Control Systems Engineering, National Institute of Technology, Toyama College, 13 Hongo-cho, Toyama (Japan); Iwamoto, Yuhiro [Department of Electric and Mechanical Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya (Japan); Yokoyama, Hiroki [KYB Corporation, 2-4-1 Hamamatsu-cho, Minato-ku, Tokyo (Japan)

    2017-06-01

    Ferrofluids containing both micrometer-size spherical magnetic particles and nanometer-size needle-like nonmagnetic hematite particles were newly produced. Average length of long axis of the needle-like nonmagnetic particles was 194 nm and the aspect ratio was 8.3. Shear stress and viscosity were measured using the rheometer with the additional equipment for viscosity measurements in the presence of magnetic field. When the total volume fraction of particles in the fluid is constant (0.30), there is the specific mixing ratio of the particles to increase viscosity of the fluid drastically in the absence of magnetic field due to the percolation phenomenon. The fluid of the specific mixing ratio shows solid-like behavior even in the absence of magnetic field. Mixing the needle-like nonmagnetic particles causes strong yield stress and strong viscous force in the presence of magnetic field. - Highlights: • Viscous properties of new magnetic functional fluids were studied experimentally. • The new fluids contain spherical magnetic particles and needle-like particles. • Percolation occurs in the fluid of specific mixing ratio of particles without field. • The fluid of the specific mixing ratio behaves like solid without field. • Mixing needle-like particles causes strong yield stress of the fluid in the field.

  7. Numerical investigation of the effect of particle concentration on particle measurement by digital holography

    Science.gov (United States)

    Zhao, Huafeng; Zhou, Binwu; Wu, Xuecheng; Wu, Yingchun; Gao, Xiang; Gréhan, Gérard; Cen, Kefa

    2014-04-01

    Digital holography plays a key role in particle field measurement, and appears to be a strong contender as the next-generation technology for diagnostics of 3D particle field. However, various recording parameters, such as the recording distance, the particle size, the wavelength, the size of the CCD chip, the pixel size and the particle concentration, will affect the results of the reconstruction, and may even determine the success or failure of a measurement. This paper presents a numerical investigation on the effect of particle concentration, the volume depth to evaluate the capability of digital holographic microscopy. Standard particles holograms with all known recording parameters are numerically generated by using a common procedure based on Lorenz-Mie scattering theory. Reconstruction of those holograms are then performed by a wavelet-transform based method. Results show that the reconstruction efficiency decreases quickly until particle concentration reaches 50×104 (mm-3), and decreases linearly with the increase of particle concentration from 50 × 104 (mm-3) to 860 × 104 (mm-3) in the same volume. The first half of the line waves larger than the second half. It also indicates that the increase of concentration leads the rise in average diameter error and z position error of particles. Besides, the volume depth also plays a key role in reconstruction.

  8. Charged particle detector

    International Nuclear Information System (INIS)

    Hagen, R.D.

    1975-01-01

    A device for detecting the emission of charged particles from a specimen is described. The specimen is placed within an accumulator means which statically accumulates any charged particles emitted from the specimen. The accumulator means is pivotally positioned between a first capacitor plate having a positive electrical charge and a second capacitor plate having a negative electrical charge. The accumulator means is attracted to one capacitor plate and repelled from the other capacitor plate by an amount proportional to the amount and intensity of charged particles emitted by the specimen. (auth)

  9. Particles near threshold

    International Nuclear Information System (INIS)

    Bhattacharya, T.; Willenbrock, S.

    1993-01-01

    We propose returning to the definition of the width of a particle in terms of the pole in the particle's propagator. Away from thresholds, this definition of width is equivalent to the standard perturbative definition, up to next-to-leading order; however, near a threshold, the two definitions differ significantly. The width as defined by the pole position provides more information in the threshold region than the standard perturbative definition and, in contrast with the perturbative definition, does not vanish when a two-particle s-wave threshold is approached from below

  10. Spheronization process particle kinematics determined by discrete element simulations and particle image velocimentry measurements.

    Science.gov (United States)

    Koester, Martin; García, R Edwin; Thommes, Markus

    2014-12-30

    Spheronization is an important pharmaceutical manufacturing technique to produce spherical agglomerates of 0.5-2mm diameter. These pellets have a narrow size distribution and a spherical shape. During the spheronization process, the extruded cylindrical strands break in short cylinders and evolve from a cylindrical to a spherical state by deformation and attrition/agglomeration mechanisms. Using the discrete element method, an integrated modeling-experimental framework is presented, that captures the particle motion during the spheronization process. Simulations were directly compared and validated against particle image velocimetry (PIV) experiments with monodisperse spherical and dry γ-Al2O3 particles. demonstrate a characteristic torus like flow pattern, with particle velocities about three times slower than the rotation speed of the friction plate. Five characteristic zones controlling the spheronization process are identified: Zone I, where particles undergo shear forces that favors attrition and contributes material to the agglomeration process; Zone II, where the static wall contributes to the mass exchange between particles; Zone III, where gravitational forces combined with particle motion induce particles to collide with the moving plate and re-enter Zone I; Zone IV, where a subpopulation of particles are ejected into the air when in contact with the friction plate structure; and Zone V where the low poloidal velocity favors a stagnant particle population and is entirely controlled by the batch size. These new insights in to the particle motion are leading to deeper process understanding, e.g., the effect of load and rotation speed to the pellet formation kinetics. This could be beneficial for the optimization of a manufacturing process as well as for the development of new formulations. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Probabilistic Teleportation of an Unknown One-Particle State by a Three-Particle General W State

    International Nuclear Information System (INIS)

    Xiu Xiaoming; Dong Li; Gao Yajun

    2007-01-01

    Two schemes for teleporting an unknown one-particle state are proposed when a general W state is utilized as quantum channel. In the first scheme, after the sender (Alice) makes a Bell-state measurement on her particles, the recipient (Bob) performs a Von Neumann measurement and introduces an auxiliary particle, and carries out a unitary transformation on his particle and the auxiliary particle, and performs a Von Neumann measurement on the auxiliary particle to confirm whether the teleportation succeeds or not. In the second scheme, the recipient (Bob) does not need to perform the first Von Neumann measurement or introduce the auxiliary particle, which is necessary in the first scheme. It is shown that the maximal probabilities of successful teleportation of the two schemes are identical if the recipient (Bob) performs an appropriate unitary transformation and adopts a proper particle on which he recovers the quantum information of state to be teleported.

  12. Probabilistic Teleportation of an Unknown One-Particle State by a Three-Particle General W State

    Institute of Scientific and Technical Information of China (English)

    XIU Xiao-Ming; DONG Li; GAO Ya-Jun

    2007-01-01

    Two schemes for teleporting an unknown one-particle state are proposed when a general W state is utilized as quantum channel.In the first scheme,after the sender (Alice) makes a Bell-state measurement on her particles,the recipient (Bob) performs a Von Neumann measurement and introduces an auxiliary particle,and carries out a unitary transformation on his particle and the auxiliary particle,and performs a Von Neumann measurement on the auxiliary particle to confirm whether the teleportation succeeds or not.In the second scheme,the recipient (Bob) does not need to perform the first Von Neumann measurement or introduce the auxiliary particle,which is necessary in the first scheme.It is shown that the maximal probabilities of successful teleportation of the two schemes are identical if the recipient (Bob) performs an appropriate unitary transformation and adopts a proper particle on which he recovers the quantum information of state to be teleported.

  13. Experimental investigation on particle-wall interactions

    International Nuclear Information System (INIS)

    Zeisel, H.; Dorfner, V.

    1988-01-01

    There is still a lack in the knowledge about many physical processes in two-phase flows and therefore their mathematical description for the modelling of two-phase flows by computer simulations still needs some improvement. One required information is the physical procedure of the momentum transfer between the phases themselves, such as particle-particle or particle-fluid interactions, and between the phases and the flow boundaries, such as particle-wall or fluid-wall interactions. The interaction between the two phases can be either a 'long-range' interference or a direct contact between both. For the particle-fluid two-phase flow system the interaction can be devided in particle-fluid, particle-particle and particle-boundary interactions. In this investigation the attention is drawn to the special case of a particle-wall interaction and its 'long-range' interference effect between the wall and a small particle which approaches the wall in normal direction. (orig./GL)

  14. Cavitation inception on micro-particles: a self propelled particle accelerator

    NARCIS (Netherlands)

    Arora, M.; Ohl, C.D.; Morch, Knud Aage; Gutkowski, Witold; Kowalewski, Tomasz A.

    2004-01-01

    Corrugated, hydrophilic particles with diameters between 30 �m and 150 �m are found to cause cavitation inception at their surfaces when they are exposed to a short, intensive tensile stress wave. The growth of cavity and its interaction with the original nucleating particle is recorded by means of

  15. Effect of Finite Particle Size on Convergence of Point Particle Models in Euler-Lagrange Multiphase Dispersed Flow

    Science.gov (United States)

    Nili, Samaun; Park, Chanyoung; Haftka, Raphael T.; Kim, Nam H.; Balachandar, S.

    2017-11-01

    Point particle methods are extensively used in simulating Euler-Lagrange multiphase dispersed flow. When particles are much smaller than the Eulerian grid the point particle model is on firm theoretical ground. However, this standard approach of evaluating the gas-particle coupling at the particle center fails to converge as the Eulerian grid is reduced below particle size. We present an approach to model the interaction between particles and fluid for finite size particles that permits convergence. We use the generalized Faxen form to compute the force on a particle and compare the results against traditional point particle method. We apportion the different force components on the particle to fluid cells based on the fraction of particle volume or surface in the cell. The application is to a one-dimensional model of shock propagation through a particle-laden field at moderate volume fraction, where the convergence is achieved for a well-formulated force model and back coupling for finite size particles. Comparison with 3D direct fully resolved numerical simulations will be used to check if the approach also improves accuracy compared to the point particle model. Work supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

  16. Iterative Dipole Moment Method for the Dielectrophoretic Particle-Particle Interaction in a DC Electric Field

    Directory of Open Access Journals (Sweden)

    Qing Zhang

    2018-01-01

    Full Text Available Electric force is the most popular technique for bioparticle transportation and manipulation in microfluidic systems. In this paper, the iterative dipole moment (IDM method was used to calculate the dielectrophoretic (DEP forces of particle-particle interactions in a two-dimensional DC electric field, and the Lagrangian method was used to solve the transportation of particles. It was found that the DEP properties and whether the connection line between initial positions of particles perpendicular or parallel to the electric field greatly affect the chain patterns. In addition, the dependence of the DEP particle interaction upon the particle diameters, initial particle positions, and the DEP properties have been studied in detail. The conclusions are advantageous in elelctrokinetic microfluidic systems where it may be desirable to control, manipulate, and assemble bioparticles.

  17. Numerical Study of Particle Interaction in Gas-Particle and Liquid-Particle Flows: Part I Analysis and Validation

    Directory of Open Access Journals (Sweden)

    K. Mohanarangam

    2009-09-01

    Full Text Available A detailed study into the turbulent behaviour of dilute particulate flow under the influence of two carrier phases namely gas and liquid has been carried out behind a sudden expansion geometry. The major endeavour of the study is to ascertain the response of the particles within the carrier (gas or liquid phase. The main aim prompting the current study is the density difference between the carrier and the dispersed phases. While the ratio is quite high in terms of the dispersed phase for the gas-particle flows, the ratio is far more less in terms of the liquid-particle flows. Numerical simulations were carried out for both these classes of flows using an Eulerian two-fluid model with RNG based k-emodel as the turbulent closure. An additional kinetic energy equation to better represent the combined fluid-particle behaviour is also employed in the current set of simulations. In the first part of this two part series, experimental results of Fessler and Eaton (1995 for Gas-Particle (GP flow and that of Founti and Klipfel (1998 for Liquid-Particle (LP flow have been compared and analysed. This forms the basis of the current study which aims to look at the particulate behaviour under the influence of two carrier phases. Further numerical simulations were carried out to test whether the current numerical formulation can used to simulate these varied type of flows and the same were validated against the experimental data of both GP as well LP flow. Qualitative results have been obtained for both these classes of flows with their respective experimental data both at the mean as well as at the turbulence level for carrier as well as the dispersed phases.

  18. Rice Starch Particle Interactions at Air/Aqueous Interfaces—Effect of Particle Hydrophobicity and Solution Ionic Strength

    Science.gov (United States)

    McNamee, Cathy E.; Sato, Yu; Wiege, Berthold; Furikado, Ippei; Marefati, Ali; Nylander, Tommy; Kappl, Michael; Rayner, Marilyn

    2018-01-01

    Starch particles modified by esterification with dicarboxylic acids to give octenyl succinic anhydride (OSA) starch is an approved food additive that can be used to stabilize oil in water emulsions used in foods and drinks. However, the effects of the OSA modification of the starch particle on the interfacial interactions are not fully understood. Here, we directly measured the packing of films of rice starch granules, i.e., the natural particle found inside the plant, at air/aqueous interfaces, and the interaction forces in that system as a function of the particle hydrophobicity and ionic strength, in order to gain insight on how starch particles can stabilize emulsions. This was achieved by using a combined Langmuir trough and optical microscope system, and the Monolayer Interaction Particle Apparatus. Native rice starch particles were seen to form large aggregates at air/water interfaces, causing films with large voids to be formed at the interface. The OSA modification of the rice starches particles decreased this aggregation. Increasing the degree of modification improved the particle packing within the film of particles at the air/water interface, due to the introduction of inter-particle electrostatic interactions within the film. The introduction of salt to the water phase caused the particles to aggregate and form holes within the film, due to the screening of the charged groups on the starch particles by the salt. The presence of these holes in the film decreased the stiffness of the films. The effect of the OSA modification was concluded to decrease the aggregation of the particles at an air/water interface. The presence of salts, however, caused the particles to aggregate, thereby reducing the strength of the interfacial film. PMID:29868551

  19. Non-isochronous spiral orbit particle accelerator and fixed frequency closed orbit particle accelerator

    International Nuclear Information System (INIS)

    Fujisawa, Takashi; Hattori, Toshiyuki

    2006-01-01

    One of the present inventions provides a spiral orbit charged particle accelerator in which the magnetic field increases as the radius increases more rapidly than an isochronous magnetic field distribution, and the distribution of fixed-frequency accelerating RF voltage is formed so that a harmonic number changes in integer for every particle revolution. The other invention realizes to make the closed orbit charged particle accelerator having a fixed frequency amplitude modulator that is able to modulate amplitude of the RF voltage so that a harmonic number decreases in integer in an every particle revolution. (author)

  20. Burnout of pulverized biomass particles in large scale boiler – Single particle model approach

    DEFF Research Database (Denmark)

    Saastamoinen, Jaakko; Aho, Martti; Moilanen, Antero

    2010-01-01

    the particle combustion model is coupled with one-dimensional equation of motion of the particle, is applied for the calculation of the burnout in the boiler. The particle size of biomass can be much larger than that of coal to reach complete burnout due to lower density and greater reactivity. The burner...... location and the trajectories of the particles might be optimised to maximise the residence time and burnout....

  1. Stable particles

    International Nuclear Information System (INIS)

    Samios, N.P.

    1993-01-01

    I have been asked to review the subject of stable particles, essentially the particles that eventually comprised the meson and baryon octets. with a few more additions -- with an emphasis on the contributions made by experiments utilizing the bubble chamber technique. In this activity, much work had been done by the photographic emulsion technique and cloud chambers-exposed to cosmic rays as well as accelerator based beams. In fact, many if not most of the stable particles were found by these latter two techniques, however, the forte of the bubble chamber (coupled with the newer and more powerful accelerators) was to verify, and reinforce with large statistics, the existence of these states, to find some of the more difficult ones, mainly neutrals and further to elucidate their properties, i.e., spin, parity, lifetimes, decay parameters, etc

  2. Apparatus for blending small particles

    International Nuclear Information System (INIS)

    Bradley, R.A.; Reese, C.R.; Sease, J.D.

    1975-01-01

    An apparatus is described for blending small particles and uniformly loading the blended particles in a receptacle. Measured volumes of various particles are simultaneously fed into a funnel to accomplish radial blending and then directed onto the apex of a conical splitter which collects the blended particles in a multiplicity of equal subvolumes. Thereafter the apparatus sequentially discharges the subvolumes for loading in a receptacle. A system for blending nuclear fuel particles and loading them into fuel rod molds is described in a preferred embodiment

  3. Particle correlations at ALICE

    Energy Technology Data Exchange (ETDEWEB)

    Erazmus, B.; Lednicky, R.; Lyuboshitz, V.; Martin, L.; Mikhailov, K.; Pluta, J.; Sinyukov, Yu.; Stavinsky, A.; Werner, K

    1998-12-31

    The ability of the ALICE detector for determination of the space-time characteristics of particle production in heavy-ion collisions at LHC from measurements of the correlation functions of identical and non-identical particles at small relative velocities is discussed. The possibility to use the correlations of non-identical particles for a direct determination of the delays in emission of various particle species at time scales as small as 10{sup -23} s is demonstrated. The influence of the multi-boson effects on pion multiplicities, single-pion spectra and two-pion correlation functions is discussed. (author) 63 refs.

  4. Modern particle physics

    CERN Document Server

    AUTHOR|(CDS)2079874

    2013-01-01

    Unique in its coverage of all aspects of modern particle physics, this textbook provides a clear connection between the theory and recent experimental results, including the discovery of the Higgs boson at CERN. It provides a comprehensive and self-contained description of the Standard Model of particle physics suitable for upper-level undergraduate students and graduate students studying experimental particle physics. Physical theory is introduced in a straightforward manner with full mathematical derivations throughout. Fully-worked examples enable students to link the mathematical theory to results from modern particle physics experiments. End-of-chapter exercises, graded by difficulty, provide students with a deeper understanding of the subject. Online resources available at www.cambridge.org/MPP feature password-protected fully-worked solutions to problems for instructors, numerical solutions and hints to the problems for students and PowerPoint slides and JPEGs of figures from the book

  5. Single particle detecting telescope system

    International Nuclear Information System (INIS)

    Yamamoto, I.; Tomiyama, T.; Iga, Y.; Komatsubara, T.; Kanada, M.; Yamashita, Y.; Wada, T.; Furukawa, S.

    1981-01-01

    We constructed the single particle detecting telescope system for detecting a fractionally charged particle. The telescope consists of position detecting counters, wall-less multi-cell chambers, single detecting circuits and microcomputer system as data I/0 processor. Especially, a frequency of double particle is compared the case of the single particle detecting with the case of an ordinary measurement

  6. New particle searches and discoveries

    International Nuclear Information System (INIS)

    Trippe, T.G.; Barbaro-Galtieri, A.; Horne, C.P.; Kelly, R.L.; Rittenberg, A.; Rosenfeld, A.H.; Yost, G.P.; Armstrong, B.; Bricman, C.; Hemingway, R.J.; Losty, M.J.; Roos, M.

    1977-01-01

    This supplement to the 1976 edition of 'Review of particle properties', Particle Data Group [Rev. Mod. Phys. 48, No. 2, Part II (1976)], contains tabulations of experimental data bearing on the 'new particles' and related topics; categories covered include charmed particles, psi's and their decay products, and heavy leptons. Errata to the previous edition are also given. (Auth.)

  7. Aging fingerprints in combustion particles

    Science.gov (United States)

    Zelenay, V.; Mooser, R.; Tritscher, T.; Křepelová, A.; Heringa, M. F.; Chirico, R.; Prévôt, A. S. H.; Weingartner, E.; Baltensperger, U.; Dommen, J.; Watts, B.; Raabe, J.; Huthwelker, T.; Ammann, M.

    2011-05-01

    Soot particles can significantly influence the Earth's climate by absorbing and scattering solar radiation as well as by acting as cloud condensation nuclei. However, despite their environmental (as well as economic and political) importance, the way these properties are affected by atmospheric processing is still a subject of discussion. In this work, soot particles emitted from two different cars, a EURO 2 transporter, a EURO 3 passenger vehicle, and a wood stove were investigated on a single-particle basis. The emitted exhaust, including the particulate and the gas phase, was processed in a smog chamber with artificial solar radiation. Single particle specimens of both unprocessed and aged soot were characterized using x-ray absorption spectroscopy and scanning electron microscopy. Comparison of the spectra from the unprocessed and aged soot particles revealed changes in the carbon functional group content, such as that of carboxylic carbon, which can be ascribed to both the condensation of secondary organic compounds on the soot particles and oxidation of primary soot particles upon photochemical aging. Changes in the morphology and size of the single soot particles were also observed upon aging. Furthermore, we show that the soot particles take up water in humid environments and that their water uptake capacity increases with photochemical aging.

  8. Real-time analysis of insoluble particles in glacial ice using single-particle mass spectrometry

    Science.gov (United States)

    Osman, Matthew; Zawadowicz, Maria A.; Das, Sarah B.; Cziczo, Daniel J.

    2017-11-01

    Insoluble aerosol particles trapped in glacial ice provide insight into past climates, but analysis requires information on climatically relevant particle properties, such as size, abundance, and internal mixing. We present a new analytical method using a time-of-flight single-particle mass spectrometer (SPMS) to determine the composition and size of insoluble particles in glacial ice over an aerodynamic size range of ˜ 0.2-3.0 µm diameter. Using samples from two Greenland ice cores, we developed a procedure to nebulize insoluble particles suspended in melted ice, evaporate condensed liquid from those particles, and transport them to the SPMS for analysis. We further determined size-dependent extraction and instrument transmission efficiencies to investigate the feasibility of determining particle-class-specific mass concentrations. We find SPMS can be used to provide constraints on the aerodynamic size, composition, and relative abundance of most insoluble particulate classes in ice core samples. We describe the importance of post-aqueous processing to particles, a process which occurs due to nebulization of aerosols from an aqueous suspension of originally soluble and insoluble aerosol components. This study represents an initial attempt to use SPMS as an emerging technique for the study of insoluble particulates in ice cores.

  9. Synthesis method of asymmetric gold particles.

    Science.gov (United States)

    Jun, Bong-Hyun; Murata, Michael; Hahm, Eunil; Lee, Luke P

    2017-06-07

    Asymmetric particles can exhibit unique properties. However, reported synthesis methods for asymmetric particles hinder their application because these methods have a limited scale and lack the ability to afford particles of varied shapes. Herein, we report a novel synthetic method which has the potential to produce large quantities of asymmetric particles. Asymmetric rose-shaped gold particles were fabricated as a proof of concept experiment. First, silica nanoparticles (NPs) were bound to a hydrophobic micro-sized polymer containing 2-chlorotritylchloride linkers (2-CTC resin). Then, half-planar gold particles with rose-shaped and polyhedral structures were prepared on the silica particles on the 2-CTC resin. Particle size was controlled by the concentration of the gold source. The asymmetric particles were easily cleaved from the resin without aggregation. We confirmed that gold was grown on the silica NPs. This facile method for synthesizing asymmetric particles has great potential for materials science.

  10. Improved identification of primary biological aerosol particles using single-particle mass spectrometry

    Directory of Open Access Journals (Sweden)

    M. A. Zawadowicz

    2017-06-01

    Full Text Available Measurements of primary biological aerosol particles (PBAP, especially at altitudes relevant to cloud formation, are scarce. Single-particle mass spectrometry (SPMS has been used to probe aerosol chemical composition from ground and aircraft for over 20 years. Here we develop a method for identifying bioaerosols (PBAP and particles containing fragments of PBAP as part of an internal mixture using SPMS. We show that identification of bioaerosol using SPMS is complicated because phosphorus-bearing mineral dust and phosphorus-rich combustion by-products such as fly ash produce mass spectra with peaks similar to those typically used as markers for bioaerosol. We have developed a methodology to differentiate and identify bioaerosol using machine learning statistical techniques applied to mass spectra of known particle types. This improved method provides far fewer false positives compared to approaches reported in the literature. The new method was then applied to two sets of ambient data collected at Storm Peak Laboratory and a forested site in Central Valley, California to show that 0.04–2 % of particles in the 200–3000 nm aerodynamic diameter range were identified as bioaerosol. In addition, 36–56 % of particles identified as biological also contained spectral features consistent with mineral dust, suggesting internal dust–biological mixtures.

  11. Chemical equilibrium between particles and complex particles in quantum many-body system at very low temperature

    International Nuclear Information System (INIS)

    Matsumoto, Atsushi

    2004-01-01

    The equilibrium state at very low temperature and phase state at 0 K between the particle 1 and particle 2 and the particle 12, which particle 1 bond with particle 2, of infinite uniform system was investigated. Boson and fermion are thought as particle and three kinds of reactions are considered. On the case of boson + boson ? boson, the system is all molecules or atoms when ΔE≠0 and T=0, and the density is not determined under Tc when ΔE=0. On the case of boson + fermion ? fermion, molecules and atoms are able to exist together at T=0. On fermion + fermion ? boson, molecule is formed and condensed. The chemical equilibrium between particles and complex particles and three cases of equilibrium are explained. (S.Y.)

  12. Particle therapy for noncancer diseases

    Energy Technology Data Exchange (ETDEWEB)

    Bert, Christoph; Engenhart-Cabillic, Rita; Durante, Marco [GSI Helmholtzzentrum fuer Schwerionenforschung, Biophysics Department, Planckstrasse 1, 64291 Darmstadt (Germany); Philipps-University Marburg, Center for Radiology, Department of Radiation Therapy, Baldinger Strasse, 35043 Marburg (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, Biophysics Department, Planckstrasse 1, 64291 Darmstadt (Germany); Technische Universitaet Darmstadt, Institut fuer Festkoerperphysik, Hochschulstrasse 3, 64289 Darmstadt (Germany) and Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe University, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main (Germany)

    2012-04-15

    Radiation therapy using high-energy charged particles is generally acknowledged as a powerful new technique in cancer treatment. However, particle therapy in oncology is still controversial, specifically because it is unclear whether the putative clinical advantages justify the high additional costs. However, particle therapy can find important applications in the management of noncancer diseases, especially in radiosurgery. Extension to other diseases and targets (both cranial and extracranial) may widen the applications of the technique and decrease the cost/benefit ratio of the accelerator facilities. Future challenges in this field include the use of different particles and energies, motion management in particle body radiotherapy and extension to new targets currently treated by catheter ablation (atrial fibrillation and renal denervation) or stereotactic radiation therapy (trigeminal neuralgia, epilepsy, and macular degeneration). Particle body radiosurgery could be a future key application of accelerator-based particle therapy facilities in 10 years from today.

  13. Superparamagnetic relaxation of weakly interacting particles

    DEFF Research Database (Denmark)

    Mørup, Steen; Tronc, Elisabeth

    1994-01-01

    The influence of particle interactions on the superparamagnetic relaxation time has been studied by Mossbauer spectroscopy in samples of maghemite (gamma-Fe2O3) particles with different particle sizes and particle separations. It is found that the relaxation time decreases with decreasing particl...

  14. Teaching particle physics

    CERN Document Server

    Hanley, P

    2000-01-01

    Particle physics attracts many students who hear of news from CERN or elsewhere in the media. This article examines which current A-level syllabuses include which bits of particle physics and surveys the many different types of resource available to teachers and students. (0 refs).

  15. Dark matter and particle physics

    International Nuclear Information System (INIS)

    Peskin, Michael E.

    2007-01-01

    Astrophysicists now know that 80% of the matter in the universe is 'dark matter', composed of neutral and weakly interacting elementary particles that are not part of the Standard Model of particle physics. I will summarize the evidence for dark matter. I will explain why I expect dark matter particles to be produced at the CERN LHC. We will then need to characterize the new weakly interacting particles and demonstrate that they the same particles that are found in the cosmos. I will describe how this might be done. (author)

  16. Review of particle properties

    International Nuclear Information System (INIS)

    Trippe, T.G.; Barbaro-Galtieri, A.; Kelly, R.L.; Rittenberg, A.; Rosenfeld, A.H.; Yost, G.P.; Barash-Schmidt, N.; Bricman, C.; Hemingway, R.J.; Losty, M.J.; Roos, M.; Chaloupka, V.; Armstrong, B.

    1976-01-01

    This review of the properties of leptons, mesons, and baryons is an updating of Review of Particle Properties, Particle Data Group [Phys. Letters 50B, No.1 (1974), and Supplement, Rev. Mod. Phys. 47 (1975) 535]. Data are evaluated, listed, averaged, and summarized in tables. Numerous tables, figures, and formulae of interest to particle physicists are also included. A data booklet is available

  17. New particle searches

    International Nuclear Information System (INIS)

    Derrick, M.

    1985-01-01

    The Standard Model is a remarkable result of decades of work in particle physics, but it is clearly an incomplete representation of the world. Exploring possibilities beyond the Standard Model is a major preoccupation of both theorists and experimentalists. Despite the many suggestions that are extant about the missing links within the Standard Model as well as extensions beyond it, no hard experimental evidence exists. In particular, in more than five years of experimentation both at PETRA and PEP no new particles have been found that would indicate new physics. Several reasons are possible for these negative results: the particles may be too heavy; the experiments may not be looking in the proper way; the cross sections may be too small or finally the particles may not exist. A continuing PEP program, at high luminosity will ensure that the second and third reason continue to be addressed. The higher energy e + e - storage rings such as TRISTAN and LEP will extend the mass limits. High mass particles can also be produced at the CERN collider and soon with the Tevatron collider. A concise summary of the mass limits from the PETRA experiments has been given in a recent Mark J publication. The results shown provide a convenient yardstick against which to measure future search experiments

  18. Biophysical analysis of HTLV-1 particles reveals novel insights into particle morphology and Gag stochiometry

    Directory of Open Access Journals (Sweden)

    Fogarty Keir H

    2010-09-01

    Full Text Available Abstract Background Human T-lymphotropic virus type 1 (HTLV-1 is an important human retrovirus that is a cause of adult T-cell leukemia/lymphoma. While an important human pathogen, the details regarding virus replication cycle, including the nature of HTLV-1 particles, remain largely unknown due to the difficulties in propagating the virus in tissue culture. In this study, we created a codon-optimized HTLV-1 Gag fused to an EYFP reporter as a model system to quantitatively analyze HTLV-1 particles released from producer cells. Results The codon-optimized Gag led to a dramatic and highly robust level of Gag expression as well as virus-like particle (VLP production. The robust level of particle production overcomes previous technical difficulties with authentic particles and allowed for detailed analysis of particle architecture using two novel methodologies. We quantitatively measured the diameter and morphology of HTLV-1 VLPs in their native, hydrated state using cryo-transmission electron microscopy (cryo-TEM. Furthermore, we were able to determine HTLV-1 Gag stoichiometry as well as particle size with the novel biophysical technique of fluorescence fluctuation spectroscopy (FFS. The average HTLV-1 particle diameter determined by cryo-TEM and FFS was 71 ± 20 nm and 75 ± 4 nm, respectively. These values are significantly smaller than previous estimates made of HTLV-1 particles by negative staining TEM. Furthermore, cryo-TEM reveals that the majority of HTLV-1 VLPs lacks an ordered structure of the Gag lattice, suggesting that the HTLV-1 Gag shell is very likely to be organized differently compared to that observed with HIV-1 Gag in immature particles. This conclusion is supported by our observation that the average copy number of HTLV-1 Gag per particle is estimated to be 510 based on FFS, which is significantly lower than that found for HIV-1 immature virions. Conclusions In summary, our studies represent the first quantitative biophysical

  19. Health effects of exhaust particles

    Energy Technology Data Exchange (ETDEWEB)

    Pihlava, T.; Uuppo, M.; Niemi, S.

    2013-11-01

    This report introduces general information about diesel particles and their health effects. The purpose of this report is to introduce particulate matter pollution and present some recent studies made regarding the health effects of particulate matter. The aim is not to go very deeply into the science, but instead to keep the text understandable for the average layman. Particulate matter is a complex mixture of extremely small particles and liquid droplets. These small particles are made up of a number of components that include for example acids, such as nitrates and sulphates, as well as organic chemicals, metals and dust particles from the soil. Particulate matter comes from several sources, such as transportation emissions, industrial emissions, forest fires, cigarette smoke, volcanic ash and climate variations. Particles are divided into coarse particles with diameters less than 10 ..m, fine particles with diameters smaller than 2.5 ..m and ultra-fine particles with diameters less than 0.1 ..m. The particulate matter in diesel exhaust gas is a highly complex mixture of organic, inorganic, solid, volatile and partly volatile compounds. Many of these particles do not form until they reach the air. Many carcinogenic compounds have been found in diesel exhaust gas and it is considered carcinogenic to humans. Particulate matter can cause several health effects, such as premature death in persons with heart or lung disease, cancer, nonfatal heart attacks, irregular heartbeat, aggravated asthma, decreased lung function and an increase in respiratory symptoms, such as irritation of the airways, coughing or difficulty breathing. It is estimated that in Finland about 1300 people die prematurely due to particles and the economic loss in the EU due to the health effects of particles can be calculated in the billions. Ultra-fine particles are considered to be the most harmful to human health. Ultrafine particles usually make the most of their quantity and surface area

  20. Particles in water properties and processes

    CERN Document Server

    Gregory, John

    2005-01-01

    INTRODUCTION Particles in the Aquatic Environment Colloidal Aspects PARTICLE SIZE AND RELATED PROPERTIES Particle Size and Shape Particle Size Distributions Particle Transport Light Scattering and Turbidity Measurement of Particle Size SURFACE CHARGE Origin of Surface Charge The Electrical Double Layer Electrokinetic Phenomena COLLOID INTERACTIONS AND COLLOID STABILITY Colloid Interactions - General Concepts van der Waals Interaction Electrical Double Layer Interaction Combined Interaction - DLVO Theory Non-DLVO Interactions AGGREGATION KINETICS Collision Frequency - Smoluchow

  1. Evaluation of Microflow Digital Imaging Particle Analysis for Sub-Visible Particles Formulated with an Opaque Vaccine Adjuvant.

    Directory of Open Access Journals (Sweden)

    Grant E Frahm

    Full Text Available Microflow digital imaging (MDI has become a widely accepted method for assessing sub-visible particles in pharmaceutical formulations however, to date; no data have been presented on the utility of this methodology when formulations include opaque vaccine adjuvants. This study evaluates the ability of MDI to assess sub-visible particles under these conditions. A Fluid Imaging Technologies Inc. FlowCAM® instrument was used to assess a number of sub-visible particle types in solution with increasing concentrations of AddaVax™, a nanoscale squalene-based adjuvant. With the objective (10X used and the limitations of the sensor resolution, the instrument was incapable of distinguishing between sub-visible particles and AddaVax™ droplets at particle sizes less than 5 μm. The instrument was capable of imaging all particle types assessed (polystyrene beads, borosilicate glass, cellulose, polyethylene protein aggregate mimics, and lysozyme protein aggregates at sizes greater than 5 μm in concentrations of AddaVax™ up to 50% (vol:vol. Reduced edge gradients and a decrease in measured particle sizes were noted as adjuvant concentrations increased. No significant changes in particle counts were observed for polystyrene particle standards and lysozyme protein aggregates, however significant reductions in particle counts were observed for borosilicate (80% of original and cellulose (92% of original particles. This reduction in particle counts may be due to the opaque adjuvant masking translucent particles present in borosilicate and cellulose samples. Although the results suggest that the utility of MDI for assessing sub-visible particles in high concentrations of adjuvant may be highly dependent on particle morphology, we believe that further investigation of this methodology to assess sub-visible particles in challenging formulations is warranted.

  2. Solar energetic particle anisotropies and insights into particle transport

    Energy Technology Data Exchange (ETDEWEB)

    Leske, R. A., E-mail: ral@srl.caltech.edu; Cummings, A. C.; Cohen, C. M. S.; Mewaldt, R. A.; Labrador, A. W.; Stone, E. C. [California Institute of Technology, Pasadena, CA 91125 (United States); Wiedenbeck, M. E. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Christian, E. R.; Rosenvinge, T. T. von [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2016-03-25

    As solar energetic particles (SEPs) travel through interplanetary space, their pitch-angle distributions are shaped by the competing effects of magnetic focusing and scattering. Measurements of SEP anisotropies can therefore reveal information about interplanetary conditions such as magnetic field strength, topology, and turbulence levels at remote locations from the observer. Onboard each of the two STEREO spacecraft, the Low Energy Telescope (LET) measures pitch-angle distributions for protons and heavier ions up to iron at energies of about 2-12 MeV/nucleon. Anisotropies observed using LET include bidirectional flows within interplanetary coronal mass ejections, sunward-flowing particles when STEREO was magnetically connected to the back side of a shock, and loss-cone distributions in which particles with large pitch angles underwent magnetic mirroring at an interplanetary field enhancement that was too weak to reflect particles with the smallest pitch angles. Unusual oscillations in the width of a beamed distribution at the onset of the 23 July 2012 SEP event were also observed and remain puzzling. We report LET anisotropy observations at both STEREO spacecraft and discuss their implications for SEP transport, focusing exclusively on the extreme event of 23 July 2012 in which a large variety of anisotropies were present at various times during the event.

  3. Solar energetic particle anisotropies and insights into particle transport

    Science.gov (United States)

    Leske, R. A.; Cummings, A. C.; Cohen, C. M. S.; Mewaldt, R. A.; Labrador, A. W.; Stone, E. C.; Wiedenbeck, M. E.; Christian, E. R.; Rosenvinge, T. T. von

    2016-03-01

    As solar energetic particles (SEPs) travel through interplanetary space, their pitch-angle distributions are shaped by the competing effects of magnetic focusing and scattering. Measurements of SEP anisotropies can therefore reveal information about interplanetary conditions such as magnetic field strength, topology, and turbulence levels at remote locations from the observer. Onboard each of the two STEREO spacecraft, the Low Energy Telescope (LET) measures pitch-angle distributions for protons and heavier ions up to iron at energies of about 2-12 MeV/nucleon. Anisotropies observed using LET include bidirectional flows within interplanetary coronal mass ejections, sunward-flowing particles when STEREO was magnetically connected to the back side of a shock, and loss-cone distributions in which particles with large pitch angles underwent magnetic mirroring at an interplanetary field enhancement that was too weak to reflect particles with the smallest pitch angles. Unusual oscillations in the width of a beamed distribution at the onset of the 23 July 2012 SEP event were also observed and remain puzzling. We report LET anisotropy observations at both STEREO spacecraft and discuss their implications for SEP transport, focusing exclusively on the extreme event of 23 July 2012 in which a large variety of anisotropies were present at various times during the event.

  4. Hydrodynamic Capture and Release of Passively Driven Particles by Active Particles Under Hele-Shaw Flows

    Science.gov (United States)

    Mishler, Grant; Tsang, Alan Cheng Hou; Pak, On Shun

    2018-03-01

    The transport of active and passive particles plays central roles in diverse biological phenomena and engineering applications. In this paper, we present a theoretical investigation of a system consisting of an active particle and a passive particle in a confined micro-fluidic flow. The introduction of an external flow is found to induce the capture of the passive particle by the active particle via long-range hydrodynamic interactions among the particles. This hydrodynamic capture mechanism relies on an attracting stable equilibrium configuration formed by the particles, which occurs when the external flow intensity exceeds a certain threshold. We evaluate this threshold by studying the stability of the equilibrium configurations analytically and numerically. Furthermore, we study the dynamics of typical capture and non-capture events and characterize the basins of attraction of the equilibrium configurations. Our findings reveal a critical dependence of the hydrodynamic capture mechanism on the external flow intensity. Through adjusting the external flow intensity across the stability threshold, we demonstrate that the active particle can capture and release the passive particle in a controllable manner. Such a capture-and-release mechanism is desirable for biomedical applications such as the capture and release of therapeutic payloads by synthetic micro-swimmers in targeted drug delivery.

  5. Rotational particle separator: A new method for separating fine particles and mist from gases

    NARCIS (Netherlands)

    Brouwers, J.J.H.

    1996-01-01

    An account is given of the patented technique of the rotational particle separator for separating solid and liquid particles of diameter 0.1 µm and larger from gases. Attention is focused on the working principle, fluid mechanical constraints, particle design, separation performance, power

  6. Astro-particle-physics

    International Nuclear Information System (INIS)

    Salam, A.

    1985-09-01

    Opening remarks at the Fourth Marcel Grossman Meeting, 17-21 June 1985, in Rome, Italy, are reported. The meeting was concerned with the symbiosis of cosmology and particle physics. Numerous connections between work in particle physics and cosmology, in both experimental and theoretical areas, are pointed out

  7. Particle physics instrumentation

    International Nuclear Information System (INIS)

    Riegler, W.

    2011-01-01

    This report summarizes a series of three lectures aimed at giving an overview of basic particle detection principles, the interaction of particles with matter, the application of these principles in modern detector systems, as well techniques to read out detector signals in high-rate experiments. (author)

  8. INTERACTING MANY-PARTICLE SYSTEMS OF DIFFERENT PARTICLE TYPES CONVERGE TO A SORTED STATE

    DEFF Research Database (Denmark)

    Kokkendorff, Simon Lyngby; Starke, Jens; Hummel, N.

    2010-01-01

    We consider a model class of interacting many-particle systems consisting of different types of particles defined by a gradient flow. The corresponding potential expresses attractive and repulsive interactions between particles of the same type and different types, respectively. The introduced...... system converges by self-organized pattern formation to a sorted state where particles of the same type share a common position and those of different types are separated from each other. This is proved in the sense that we show that the property of being sorted is asymptotically stable and all other...... states are unstable. The models are motivated from physics, chemistry, and biology, and the principal investigations can be useful for many systems with interacting particles or agents. The models match particularly well a system in neuroscience, namely the axonal pathfinding and sorting in the olfactory...

  9. Zwitters: Particles between quantum and classical

    International Nuclear Information System (INIS)

    Wetterich, C.

    2012-01-01

    We describe both quantum particles and classical particles in terms of a classical statistical ensemble, with a probability distribution in phase space. By use of a wave function in phase space both can be treated in the same quantum formalism. Quantum particles are characterized by a specific choice of observables and time evolution of the probability density. Then interference and tunneling are found within classical statistics. Zwitters are (effective) one-particle states for which the time evolution interpolates between quantum and classical particles. Experimental bounds on a small parameter can test quantum mechanics. -- Highlights: ► Quantum particles can be described within classical statistics. ► Classical particles are formulated in quantum formalism. ► Zwitters interpolate between classical and quantum particles. ► Zwitters allow for quantitative tests of quantum mechanics. ► Zwitters could be effective one-particle descriptions of droplets.

  10. Design of sustained release fine particles using two-step mechanical powder processing: particle shape modification of drug crystals and dry particle coating with polymer nanoparticle agglomerate.

    Science.gov (United States)

    Kondo, Keita; Ito, Natsuki; Niwa, Toshiyuki; Danjo, Kazumi

    2013-09-10

    We attempted to prepare sustained release fine particles using a two-step mechanical powder processing method; particle-shape modification and dry particle coating. First, particle shape of bulk drug was modified by mechanical treatment to yield drug crystals suitable for the coating process. Drug crystals became more rounded with increasing rotation speed, which demonstrates that powerful mechanical stress yields spherical drug crystals with narrow size distribution. This process is the result of destruction, granulation and refinement of drug crystals. Second, the modified drug particles and polymer coating powder were mechanically treated to prepare composite particles. Polymer nanoparticle agglomerate obtained by drying poly(meth)acrylate aqueous dispersion was used as a coating powder. The porous nanoparticle agglomerate has superior coating performance, because it is completely deagglomerated under mechanical stress to form fine fragments that act as guest particles. As a result, spherical drug crystals treated with porous agglomerate were effectively coated by poly(meth)acrylate powder, showing sustained release after curing. From these findings, particle-shape modification of drug crystals and dry particle coating with nanoparticle agglomerate using a mechanical powder processor is expected as an innovative technique for preparing controlled-release coated particles having high drug content and size smaller than 100 μm. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Single-particle characterization of 'Asian Dust' certified reference materials using low-Z particle electron probe X-ray microanalysis

    International Nuclear Information System (INIS)

    Hwang, Hee Jin; Ro, Chul-Un

    2006-01-01

    In order to clearly elucidate whether Asian Dust particles experience chemical modification during long-range transport, it is necessary to characterize soil particles where Asian Dust particles originate. If chemical compositions of source soil particles are well characterized, then chemical compositions of Asian Dust particles collected outside source regions can be compared with those of source soil particles in order to find out the occurrence of chemical modification. Asian Dust particles are chemically and morphologically heterogeneous, and thus the average composition and the average aerodynamic diameter (obtainable by bulk analysis) are not much relevant if the chemical modifications of the particles must be followed. The major elemental composition and abundance of the particle types that are potential subjects of chemical modification can only be obtained using single-particle analysis. A single particle analytical technique, named low-Z particle electron probe X-ray microanalysis (low-Z particle EPMA), was applied to characterize two certified reference materials (CRMs) for Asian Dust particles, which were collected from a loess plateau area and a desert of China. The CRMs were defined by bulk analyses to provide certified concentrations for 13 chemical elements. Using the low-Z particle EPMA technique, the concentrations of major chemical species such as aluminosilicates, SiO 2 , CaCO 3 , and carbonaceous species were obtained. Elemental concentrations obtained by the low-Z particle EPMA are close to the certified values, with considering that the single particle and bulk analyses employ very different approaches. There are still some discrepancies between those concentration values, resulting from analyses of particles with different sizes, different sample amounts analyzed, and uncertainties involved in the single particle analysis

  12. Particle detectors

    CERN Document Server

    Hilke, Hans Jürgen; Joram, Christian; CERN. Geneva

    1991-01-01

    Lecture 5: Detector characteristics: ALEPH Experiment cut through the devices and events - Discuss the principles of the main techniques applied to particle detection ( including front-end electronics), the construction and performance of some of the devices presently in operartion and a few ideas on the future performance. Lecture 4-pt. b Following the Scintillators. Lecture 4-pt. a : Scintillators - Used for: -Timing (TOF, Trigger) - Energy Measurement (Calorimeters) - Tracking (Fibres) Basic scintillation processes- Inorganic Scintillators - Organic Scintil - Discuss the principles of the main techniques applied to particle detection ( including front-end electronics), the construction and performance of some of the devices presently in operation and a fiew ideas on future developpement session 3 - part. b Following Calorimeters lecture 3-pt. a Calorimeters - determine energy E by total absorption of charged or neutral particles - fraction of E is transformed into measurable quantities - try to acheive sig...

  13. Proton: the particle.

    Science.gov (United States)

    Suit, Herman

    2013-11-01

    The purpose of this article is to review briefly the nature of protons: creation at the Big Bang, abundance, physical characteristics, internal components, and life span. Several particle discoveries by proton as the experimental tool are considered. Protons play important roles in science, medicine, and industry. This article was prompted by my experience in the curative treatment of cancer patients by protons and my interest in the nature of protons as particles. The latter has been stimulated by many discussions with particle physicists and reading related books and journals. Protons in our universe number ≈10(80). Protons were created at 10(-6) -1 second after the Big Bang at ≈1.37 × 10(10) years beforethe present. Proton life span has been experimentally determined to be ≥10(34) years; that is, the age of the universe is 10(-24)th of the minimum life span of a proton. The abundance of the elements is hydrogen, ≈74%; helium, ≈24%; and heavier atoms, ≈2%. Accordingly, protons are the dominant baryonic subatomic particle in the universe because ≈87% are protons. They are in each atom in our universe and thus involved in virtually every activity of matter in the visible universe, including life on our planet. Protons were discovered in 1919. In 1968, they were determined to be composed of even smaller particles, principally quarks and gluons. Protons have been the experimental tool in the discoveries of quarks (charm, bottom, and top), bosons (W(+), W(-), Z(0), and Higgs), antiprotons, and antineutrons. Industrial applications of protons are numerous and important. Additionally, protons are well appreciated in medicine for their role in radiation oncology and in magnetic resonance imaging. Protons are the dominant baryonic subatomic particle in the visible universe, comprising ≈87% of the particle mass. They are present in each atom of our universe and thus a participant in every activity involving matter. Copyright © 2013 Elsevier Inc. All

  14. Proton: The Particle

    Energy Technology Data Exchange (ETDEWEB)

    Suit, Herman

    2013-11-01

    The purpose of this article is to review briefly the nature of protons: creation at the Big Bang, abundance, physical characteristics, internal components, and life span. Several particle discoveries by proton as the experimental tool are considered. Protons play important roles in science, medicine, and industry. This article was prompted by my experience in the curative treatment of cancer patients by protons and my interest in the nature of protons as particles. The latter has been stimulated by many discussions with particle physicists and reading related books and journals. Protons in our universe number ≈10{sup 80}. Protons were created at 10{sup −6} –1 second after the Big Bang at ≈1.37 × 10{sup 10} years beforethe present. Proton life span has been experimentally determined to be ≥10{sup 34} years; that is, the age of the universe is 10{sup −24}th of the minimum life span of a proton. The abundance of the elements is hydrogen, ≈74%; helium, ≈24%; and heavier atoms, ≈2%. Accordingly, protons are the dominant baryonic subatomic particle in the universe because ≈87% are protons. They are in each atom in our universe and thus involved in virtually every activity of matter in the visible universe, including life on our planet. Protons were discovered in 1919. In 1968, they were determined to be composed of even smaller particles, principally quarks and gluons. Protons have been the experimental tool in the discoveries of quarks (charm, bottom, and top), bosons (W{sup +}, W{sup −}, Z{sup 0}, and Higgs), antiprotons, and antineutrons. Industrial applications of protons are numerous and important. Additionally, protons are well appreciated in medicine for their role in radiation oncology and in magnetic resonance imaging. Protons are the dominant baryonic subatomic particle in the visible universe, comprising ≈87% of the particle mass. They are present in each atom of our universe and thus a participant in every activity involving matter.

  15. Mixing state of particles with secondary species by single particle aerosol mass spectrometer in an atmospheric pollution event

    Science.gov (United States)

    Xu, Lingling; Chen, Jinsheng

    2016-04-01

    Single particle aerosol mass spectrometer (SPAMS) was used to characterize size distribution, chemical composition, and mixing state of particles in an atmospheric pollution event during 20 Oct. - 5 Nov., 2015 in Xiamen, Southeast China. A total of 533,012 particle mass spectra were obtained and clustered into six groups, comprising of industry metal (4.5%), dust particles (2.6%), carbonaceous species (70.7%), K-Rich particles (20.7%), seasalt (0.6%) and other particles (0.9%). Carbonaceous species were further divided into EC (70.6%), OC (28.5%), and mixed ECOC (0.9%). There were 61.7%, 58.3%, 4.0%, and 14.6% of particles internally mixed with sulfate, nitrate, ammonium and C2H3O, respectively, indicating that these particles had undergone significant aging processing. Sulfate was preferentially mixed with carbonaceous particles, while nitrate tended to mix with metal-containing and dust particles. Compared to clear days, the fractions of EC-, metal- and dust particles remarkably increased, while the fraction of OC-containing particles decreased in pollution days. The mixing state of particles, excepted for OC-containing particles with secondary species was much stronger in pollution days than that in clear days, which revealed the significant influence of secondary particles in atmospheric pollution. The different activity of OC-containing particles might be related to their much smaller aerodynamic diameter. These results could improve our understanding of aerosol characteristics and could be helpful to further investigate the atmospheric process of particles.

  16. Review of particle properties

    International Nuclear Information System (INIS)

    Bricman, C.; Dionisi, C.; Hemingway, R.J.; Mazzucato, M.; Montanet, L.; Barash-Schmidt, N.; Crawford, R.C.; Roos, M.; Barbaro-Galtieri, A.; Horne, C.P.; Kelly, R.L.; Losty, M.J.; Rittenberg, A.; Trippe, T.G.; Yost, G.P.; Armstrong, B.

    1978-01-01

    This review of the properties of leptons, mesons, and baryons is an updating of Review of Particle Properties, Particle Data Group [Rev. Mod. Phys. 48 (1976) No. 2, Part II; and Supplement, Phys. Lett. 68B (1977) 1]. Data are evaluated, listed, averaged, and summarized in tables. Numerous tables, figures, and formulae of interest to particle physicists are also included. A data booklet is available. (Auth.)

  17. Extended particle-based simulation for magnetic-aligned compaction of hard magnetic particles

    Energy Technology Data Exchange (ETDEWEB)

    Soda, Rikio; Takagi, Kenta; Ozaki, Kimihiro, E-mail: r-soda@aist.go.jp

    2015-12-15

    In order to understand the magnetic-aligned compaction process, we develop a three-dimensional (3D) discrete element method for simulating the motion of hard magnetic particles subjected to strong compression and magnetic fields. The proposed simulation model also considers the exact magnetic force involved via the calculation of the magnetic moment. First, to validate the simulation model, single-action compaction in the absence of a magnetic field was calculated. The calculated compaction curves are in good quantitative agreement with experimental ones. Based on this simulation model, the alignment behavior of Nd–Fe–B particles during compression under the application of a static magnetic field. The developed simulation model enables the visualization of particle behavior including the misorientation of the magnetization easy axis, which provided the quantitative relationships between applied pressure and particle misorientation. - Highlights: • A practical 3D DEM simulation technique for magnetic-aligned compaction was developed. • An extended simulation model was introduced for hard magnetic particles. • Magnetic-aligned compaction was simulated using the developed simulation model.

  18. Electron microscopy of atmospheric particles

    Science.gov (United States)

    Huang, Po-Fu

    Electron microscopy coupled with energy dispersive spectrometry (EM/EDS) is a powerful tool for single particle analysis. However, the accuracy with which atmospheric particle compositions can be quantitatively determined by EDS is often hampered by substrate-particle interactions, volatilization losses in the low pressure microscope chamber, electron beam irradiation and use of inaccurate quantitation factors. A pseudo-analytical solution was derived to calculate the temperature rise due to the dissipation of the electron energy on a particle-substrate system. Evaporative mass loss for a spherical cap-shaped sulfuric acid particle resting on a thin film supported by a TEM grid during electron beam impingement has been studied. Measured volatilization rates were found to be in very good agreement with theoretical predictions. The method proposed can also be used to estimate the vapor pressure of a species by measuring the decay of X-ray intensities. Several types of substrates were studied. We found that silver-coated silicon monoxide substrates give carbon detection limits comparable to commercially available substrates. An advantage of these substrates is that the high thermal conductivity of the silver reduces heating due to electron beam impingement. In addition, exposure of sulfuric acid samples to ammonia overnight substantially reduces sulfur loss in the electron beam. Use of size-dependent k-factors determined from particles of known compositions shows promise for improving the accuracy of atmospheric particle compositions measured by EM/EDS. Knowledge accumulated during the course of this thesis has been used to analyze atmospheric particles (Minneapolis, MN) selected by the TDMA and collected by an aerodynamic focusing impactor. 'Less' hygroscopic particles, which do not grow to any measurable extent when humidified to ~90% relative humidity, included chain agglomerates, spheres, flakes, and irregular shapes. Carbon was the predominant element detected in

  19. Particle acceleration in modified shocks

    Energy Technology Data Exchange (ETDEWEB)

    Drury, L.O' C. (Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany, F.R.)); Axford, W.I. (Max-Planck-Institut fuer Aeronomie, Katlenburg-Lindau (Germany, F.R.)); Summers, D. (Memorial Univ. of Newfoundland, St. John' s (Canada))

    1982-03-01

    Efficient particle acceleration in shocks must modify the shock structure with consequent changes in the particle acceleration. This effect is studied and analytic solutions are found describing the diffusive acceleration of particles with momentum independent diffusion coefficients in hyperbolic tangent type velocity transitions. If the input particle spectrum is a delta function, the shock smoothing replaces the truncated power-law downstream particle spectrum by a more complicated form, but one which has a power-law tail at high momenta. For a cold plasma this solution can be made completely self-consistent. Some problems associated with momentum dependent diffusion coefficients are discussed.

  20. Particle acceleration in modified shocks

    International Nuclear Information System (INIS)

    Drury, L.O'C.; Axford, W.I.; Summers, D.

    1982-01-01

    Efficient particle acceleration in shocks must modify the shock structure with consequent changes in the particle acceleration. This effect is studied and analytic solutions are found describing the diffusive acceleration of particles with momentum independent diffusion coefficients in hyperbolic tangent type velocity transitions. If the input particle spectrum is a delta function, the shock smoothing replaces the truncated power-law downstream particle spectrum by a more complicated form, but one which has a power-law tail at high momenta. For a cold plasma this solution can be made completely self-consistent. Some problems associated with momentum dependent diffusion coefficients are discussed. (author)

  1. Particle deposition in ventilation ducts

    Energy Technology Data Exchange (ETDEWEB)

    Sippola, Mark Raymond [Univ. of California, Berkeley, CA (United States)

    2002-09-01

    Exposure to airborne particles is detrimental to human health and indoor exposures dominate total exposures for most people. The accidental or intentional release of aerosolized chemical and biological agents within or near a building can lead to exposures of building occupants to hazardous agents and costly building remediation. Particle deposition in heating, ventilation and air-conditioning (HVAC) systems may significantly influence exposures to particles indoors, diminish HVAC performance and lead to secondary pollutant release within buildings. This dissertation advances the understanding of particle behavior in HVAC systems and the fates of indoor particles by means of experiments and modeling. Laboratory experiments were conducted to quantify particle deposition rates in horizontal ventilation ducts using real HVAC materials. Particle deposition experiments were conducted in steel and internally insulated ducts at air speeds typically found in ventilation ducts, 2-9 m/s. Behaviors of monodisperse particles with diameters in the size range 1-16 μm were investigated. Deposition rates were measured in straight ducts with a fully developed turbulent flow profile, straight ducts with a developing turbulent flow profile, in duct bends and at S-connector pieces located at duct junctions. In straight ducts with fully developed turbulence, experiments showed deposition rates to be highest at duct floors, intermediate at duct walls, and lowest at duct ceilings. Deposition rates to a given surface increased with an increase in particle size or air speed. Deposition was much higher in internally insulated ducts than in uninsulated steel ducts. In most cases, deposition in straight ducts with developing turbulence, in duct bends and at S-connectors at duct junctions was higher than in straight ducts with fully developed turbulence. Measured deposition rates were generally higher than predicted by published models. A model incorporating empirical equations based on the

  2. Particle interaction of lubricated or unlubricated binary mixtures according to their particle size and densification mechanism.

    Science.gov (United States)

    Di Martino, Piera; Joiris, Etienne; Martelli, Sante

    2004-09-01

    The aim of this study is to assess an experimental approach for technological development of a direct compression formulation. A simple formula was considered composed by an active ingredient, a diluent and a lubricant. The active ingredient and diluent were selected as an example according to their typical densification mechanism: the nitrofurantoine, a fragmenting material, and the cellulose microcrystalline (Vivapur), which is a typical visco-elastic material, equally displaying good bind and disintegrant properties. For each ingredient, samples of different particle size distribution were selected. Initially, tabletability of pure materials was studied by a rotary press without magnesium stearate. Vivapur tabletability decreases with increase in particle size. The addition of magnesium stearate as lubricant decreases tabletability of Vivapur of greater particle size, while it kept unmodified that of Vivapur of lower particle size. Differences in tabletability can be related to differences in particle-particle interactions; for Vivapur of higher particle size (Vivapur 200, 102 and 101), the lower surface area develops lower surface available for bonds, while for Vivapur of lower particle size (99 and 105) the greater surface area allows high particle proximity favouring particle cohesivity. Nitrofurantoine shows great differences in compression behaviour according to its particle size distribution. Large crystals show poorer tabletability than fine crystals, further decreased by lubricant addition. The large crystals poor tabletability is due to their poor compactibility, in spite of high compressibility and plastic intrinsic deformability; in fact, in spite of the high densification tendency, the nature of the involved bonds is very weak. Nitrofurantoine samples were then mixed with Vivapurs in different proportions. Compression behaviour of binary mixes (tabletability and compressibility) was then evaluated according to diluents proportion in the mixes. The

  3. Plasma particle accelerators

    International Nuclear Information System (INIS)

    Dawson, J.M.

    1988-01-01

    The Superconducting Supercollider (SSC) will require an 87-kilometer accelerator ring to boost particles to 40 TeV. The SSC's size is due in part to the fact that its operating principle is the same one that has dominated accelerator design for 50 years: it guides particles by means of magnetic fields and propels them by strong electric fields. If one were to build an equally powerful but smaller accelerator, one would need to increase the strength of the guiding and propelling fields. Actually, however, conventional technology may not be able to provide significant increases in field strength. There are two reasons. First, the forces from magnetic fields are becoming greater than the structural forces that hold a magnetic material together; the magnets that produce these fields would themselves be torn apart. Second, the energy from electric fields is reaching the energies that bind electrons to atoms; it would tear electrons from nuclei in the accelerator's support structures. It is the electric field problem that plasma accelerators can overcome. Plasma particle accelerators are based on the principle that particles can be accelerated by the electric fields generated within a plasma. Because the plasma has already been ionized, plasma particle accelerators are not susceptible to electron dissociation. They can in theory sustain accelerating fields thousands of times stronger that conventional technologies. So far two methods for creating plasma waves for accelerators have been proposed and tested: the wakefield and the beat wave. Although promising electric fields have been produced, more research is necessary to determine whether plasma particle accelerators can compete with the existing accelerators. 7 figs

  4. Two-particle versus three-particle interactions in single ionization of helium by ion impact

    International Nuclear Information System (INIS)

    Schulz, M; Moshammer, R; Fischer, D; Ullrich, J

    2004-01-01

    We have performed kinematically complete experiments on single ionization of He by 100 MeV amu -1 C 6+ and 3.6 MeV amu -1 Au 24,53+ impact. By analysing doubly differential cross sections (DDCS) as a function of the momenta of all two-particle sub-systems we studied the importance of two-particle interactions. Furthermore, presenting the squared momenta of all three collision fragments simultaneously in a Dalitz plot, we evaluated the role of three-particle interactions. Finally, both for the DDCS and the Dalitz plots the corresponding correlation function was analysed. While the absolute cross sections confirm that ionization predominantly leads to a momentum exchange between the electron and the recoil-ion, the correlation function reveals strong correlations between the particles of any two-particle sub-system. Three-particle correlations, which are not accounted for by perturbative calculations, are quite significant as well, at least for certain kinematic conditions

  5. Hygroscopicity and chemical composition of Antarctic sub-micrometre aerosol particles and observations of new particle formation

    Directory of Open Access Journals (Sweden)

    E. Asmi

    2010-05-01

    Full Text Available The Antarctic near-coastal sub-micrometre aerosol particle features in summer were characterised based on measured data on aerosol hygroscopicity, size distributions, volatility and chemical ion and organic carbon mass concentrations. Hysplit model was used to calculate the history of the air masses to predict the particle origin. Additional measurements of meteorological parameters were utilised. The hygroscopic properties of particles mostly resembled those of marine aerosols. The measurements took place at 130 km from the Southern Ocean, which was the most significant factor affecting the particle properties. This is explained by the lack of additional sources on the continent of Antarctica. The Southern Ocean was thus a likely source of the particles and nucleating and condensing vapours. The particles were very hygroscopic (HGF 1.75 at 90 nm and very volatile. Most of the sub-100 nm particle volume volatilised below 100 °C. Based on chemical data, particle hygroscopic and volatile properties were explained by a large fraction of non-neutralised sulphuric acid together with organic material. The hygroscopic growth factors assessed from chemical data were similar to measured. Hygroscopicity was higher in dry continental air masses compared with the moist marine air masses. This was explained by the aging of the marine organic species and lower methanesulphonic acid volume fraction together with the changes in the inorganic aerosol chemistry as the aerosol had travelled long time over the continental Antarctica. Special focus was directed in detailed examination of the observed new particle formation events. Indications of the preference of negative over positive ions in nucleation could be detected. However, in a detailed case study, the neutral particles dominated the particle formation process. Freshly nucleated particles had the smallest hygroscopic growth factors, which increased subsequent to particle aging.

  6. Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes

    KAUST Repository

    Li, Yiyang; El Gabaly, Farid; Ferguson, Todd R.; Smith, Raymond B.; Bartelt, Norman C.; Sugar, Joshua D.; Fenton, Kyle R.; Cogswell, Daniel A.; Kilcoyne, A. L. David; Tyliszczak, Tolek; Bazant, Martin Z.; Chueh, William C.

    2014-01-01

    ©2014 Macmillan Publishers Limited. All rights reserved. Many battery electrodes contain ensembles of nanoparticles that phase-separate on (de)intercalation. In such electrodes, the fraction of actively intercalating particles directly impacts cycle life: a vanishing population concentrates the current in a small number of particles, leading to current hotspots. Reports of the active particle population in the phase-separating electrode lithium iron phosphate (LiFePO 4; LFP) vary widely, ranging from near 0% (particle-by-particle) to 100% (concurrent intercalation). Using synchrotron-based X-ray microscopy, we probed the individual state-of-charge for over 3,000 LFP particles. We observed that the active population depends strongly on the cycling current, exhibiting particle-by-particle-like behaviour at low rates and increasingly concurrent behaviour at high rates, consistent with our phase-field porous electrode simulations. Contrary to intuition, the current density, or current per active internal surface area, is nearly invariant with the global electrode cycling rate. Rather, the electrode accommodates higher current by increasing the active particle population. This behaviour results from thermodynamic transformation barriers in LFP, and such a phenomenon probably extends to other phase-separating battery materials. We propose that modifying the transformation barrier and exchange current density can increase the active population and thus the current homogeneity. This could introduce new paradigms to enhance the cycle life of phase-separating battery electrodes.

  7. Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes.

    Science.gov (United States)

    Li, Yiyang; El Gabaly, Farid; Ferguson, Todd R; Smith, Raymond B; Bartelt, Norman C; Sugar, Joshua D; Fenton, Kyle R; Cogswell, Daniel A; Kilcoyne, A L David; Tyliszczak, Tolek; Bazant, Martin Z; Chueh, William C

    2014-12-01

    Many battery electrodes contain ensembles of nanoparticles that phase-separate on (de)intercalation. In such electrodes, the fraction of actively intercalating particles directly impacts cycle life: a vanishing population concentrates the current in a small number of particles, leading to current hotspots. Reports of the active particle population in the phase-separating electrode lithium iron phosphate (LiFePO4; LFP) vary widely, ranging from near 0% (particle-by-particle) to 100% (concurrent intercalation). Using synchrotron-based X-ray microscopy, we probed the individual state-of-charge for over 3,000 LFP particles. We observed that the active population depends strongly on the cycling current, exhibiting particle-by-particle-like behaviour at low rates and increasingly concurrent behaviour at high rates, consistent with our phase-field porous electrode simulations. Contrary to intuition, the current density, or current per active internal surface area, is nearly invariant with the global electrode cycling rate. Rather, the electrode accommodates higher current by increasing the active particle population. This behaviour results from thermodynamic transformation barriers in LFP, and such a phenomenon probably extends to other phase-separating battery materials. We propose that modifying the transformation barrier and exchange current density can increase the active population and thus the current homogeneity. This could introduce new paradigms to enhance the cycle life of phase-separating battery electrodes.

  8. Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes

    KAUST Repository

    Li, Yiyang

    2014-09-14

    ©2014 Macmillan Publishers Limited. All rights reserved. Many battery electrodes contain ensembles of nanoparticles that phase-separate on (de)intercalation. In such electrodes, the fraction of actively intercalating particles directly impacts cycle life: a vanishing population concentrates the current in a small number of particles, leading to current hotspots. Reports of the active particle population in the phase-separating electrode lithium iron phosphate (LiFePO 4; LFP) vary widely, ranging from near 0% (particle-by-particle) to 100% (concurrent intercalation). Using synchrotron-based X-ray microscopy, we probed the individual state-of-charge for over 3,000 LFP particles. We observed that the active population depends strongly on the cycling current, exhibiting particle-by-particle-like behaviour at low rates and increasingly concurrent behaviour at high rates, consistent with our phase-field porous electrode simulations. Contrary to intuition, the current density, or current per active internal surface area, is nearly invariant with the global electrode cycling rate. Rather, the electrode accommodates higher current by increasing the active particle population. This behaviour results from thermodynamic transformation barriers in LFP, and such a phenomenon probably extends to other phase-separating battery materials. We propose that modifying the transformation barrier and exchange current density can increase the active population and thus the current homogeneity. This could introduce new paradigms to enhance the cycle life of phase-separating battery electrodes.

  9. Statistics of particle time-temperature histories.

    Energy Technology Data Exchange (ETDEWEB)

    Hewson, John C.; Lignell, David O.; Sun, Guangyuan

    2014-10-01

    Particles in non - isothermal turbulent flow are subject to a stochastic environment tha t produces a distribution of particle time - temperature histories. This distribution is a function of the dispersion of the non - isothermal (continuous) gas phase and the distribution of particles relative to that gas phase. In this work we extend the one - dimensional turbulence (ODT) model to predict the joint dispersion of a dispersed particle phase and a continuous phase. The ODT model predicts the turbulent evolution of continuous scalar fields with a model for the cascade of fluctuations to smaller sc ales (the 'triplet map') at a rate that is a function of the fully resolved one - dimens ional velocity field . Stochastic triplet maps also drive Lagrangian particle dispersion with finite Stokes number s including inertial and eddy trajectory - crossing effect s included. Two distinct approaches to this coupling between triplet maps and particle dispersion are developed and implemented along with a hybrid approach. An 'instantaneous' particle displacement model matches the tracer particle limit and provide s an accurate description of particle dispersion. A 'continuous' particle displacement m odel translates triplet maps into a continuous velocity field to which particles respond. Particles can alter the turbulence, and modifications to the stochastic rate expr ession are developed for two - way coupling between particles and the continuous phase. Each aspect of model development is evaluated in canonical flows (homogeneous turbulence, free - shear flows and wall - bounded flows) for which quality measurements are ava ilable. ODT simulations of non - isothermal flows provide statistics for particle heating. These simulations show the significance of accurately predicting the joint statistics of particle and fluid dispersion . Inhomogeneous turbulence coupled with the in fluence of the mean flow fields on particles of varying properties

  10. Music of elementary particles

    International Nuclear Information System (INIS)

    Sternheimer, J.

    1983-01-01

    This Note offers a new point of view on particle masses. It is shown that they are distributed following a musical scale, the chromatic tempered scale -for stable particles- subdivided into microintervals including unstable particles. A theoretical explanation, based on causality, allows one also to calculate their global distribution along the mass scale, in agreement with experiment, and indicating the existence of ''musical'' laws in the vibratory organisation of matter [fr

  11. Spinning self-dual particles

    International Nuclear Information System (INIS)

    Gamboa, J.; Rivelles, V.O.

    1989-02-01

    We study spinning self-dual particles in two dimensions. They are obtained from the chiral bosonic particle through the square root technique. We show that the resulting field theory can be either fermionic or bosonic and that the associated self-dual field reveals its Lorentz tensor structure which remains hidden in the usual formulations. We also calculate the spinning self-dual particle propagators using the BFV formalism. (author) [pt

  12. Laboratory evaluation of a gasifier particle sampling system using model compounds of different particle morphology

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Patrik T.; Malik, Azhar; Pagels, Joakim; Lindskog, Magnus; Rissler, Jenny; Gudmundsson, Anders; Bohgard, Mats; Sanati, Mehri [Lund University, Division of Ergonomics and Aerosol Technology, P.O. Box 118, Lund (Sweden)

    2011-07-15

    The objective of this work was to design and evaluate an experimental setup to be used for field studies of particle formation in biomass gasification processes. The setup includes a high-temperature dilution probe and a denuder to separate solid particles from condensable volatile material. The efficiency of the setup to remove volatile material from the sampled stream and the influence from condensation on particles with different morphologies is presented. In order to study the sampling setup model, aerosols were created with a nebulizer to produce compact and solid KCl particles and a diffusion flame burner to produce agglomerated and irregular soot particles. The nebulizer and soot generator was followed by an evaporation-condensation section where volatile material, dioctylsebacete (DOS), was added to the system as a tar model compound. The model aerosol particles were heated to 200 C to create a system containing both solid particles and volatile organic material in gas phase. The heated aerosol particles were sampled and diluted at the same temperature with the dilution probe. Downstream the probe, the DOS was adsorbed in the denuder. This was achieved by slowly decreasing the temperature of the diluted sample towards ambient level in the denuder. Thereby the supersaturation of organic vapors was reduced which decreased the probability for tar condensation and nucleation of new particles. Both the generation system and the sampling technique gave reproducible results. A DOS collection efficiency of >99% was achieved if the denuder inlet concentration was diluted to less than 1-6 mg/m{sup 3} depending on the denuder flow rate. Concentrations higher than that lead to significant impact on the resulting KCl size distribution. The choice of model compounds was done to study the effect from the particle morphology on the achieved particle characteristics after the sampling setup. When similar amounts of volatile material condensed on soot agglomerates and

  13. Virtual particle-antiparticle pair formation by a scalar particle bound in an external Coulomb field

    International Nuclear Information System (INIS)

    Darewych, J.W.; Horbatsch, M.; Lev, B.I.; Shapoval, D.V.

    1995-01-01

    A Hamiltonian variational Fock-space method is used to describe scalar massive particles in an external Coulomb field with strength f=Zα. The use of an ansatz that includes a three-particle state in addition to a single-particle state built on the field-free vacuum enables one to highlight the role played by particle-antiparticle pair formation. Comparison is made with the Klein-Gordon equation in the Feshbach-Villars representation and it is shown explicitly how the virtual pair contribution corrects an O(f 5 ) deficiency present in the energy spectrum of the naive Schroedinger-type single-particle equation. ((orig.))

  14. Turbulent diffusion of small particles

    International Nuclear Information System (INIS)

    Margolin, L.G.

    1977-11-01

    The diffusion of small, spherical, rigid particles suspended in an incompressible turbulent fluid, but not interacting with each other, was studied. As a stochastic process, the turbulent fluid velocity field is assumed to be homogeneous, isotropic and stationary. Assuming the Stokes regime, a particle of equation of motion is used which includes only the effects of Stokes drag and a virtual mass force and an exact solution is found for the particle velocity correlation function, for all times and initial conditions, in terms of a fluid velocity correlation function measured along the motion of the particle. This shows that for times larger than a certain time scale, the particle velocity correlation becomes stationary. The effect of small shears in the fluid velocity was considered, under the additional restrictions of a certain high frequency regime for the turbulence. The shears convected past the particle much faster than the growth of the boundary layer. New force terms due to the presence of such shears are calculated and incorporated into the equation of motion. A perturbation solution to this equation is constructed, and the resultant particle velocity correlation function and diffusion coefficient are calculated. To lowest order, the particle diffusivity is found to be unaltered by the presence of small mean flow shears. The last model treated is one in which particles traverse a turbulent fluid with a large mean velocity. Among other restrictions, linearized form drag is assumed. The diffusion coefficient for such particles was calculated, and found to be much smaller than the passive scalar diffusion coefficient. This agrees within 5 percent with the experimental results of Snyder and Lumley

  15. Diesel particles - a health hazard

    Energy Technology Data Exchange (ETDEWEB)

    Ege, C.

    2004-08-15

    To all appearances, small particles belong to the pollutants presenting the biggest health hazards. Particles come especially from diesel-powered vehicles. According to researchers, particles cause thousands of early deaths each year in the big cities in Denmark alone, and up to 1,250 of these deaths could be prevented by fitting particle filters on diesel-powered vehicles. That is more than deaths caused by traffic accidents. Especially the elderly are affected. In addition, the small particles seem to aggravate asthma incidences, including the many children with asthma. What makes the small particles so very dangerous is that they can enter the smallest of vessels of the lungs. There is a solution within sight to this grave health hazard. The solution is called particle filters, but they will not come automatically. It requires initiatives in the form of legislation, green taxes and subsidies. The EU is introducing stricter regulations regarding particle emission from heavy vehicles from 2006, though only for new vehicles. It will therefore take many years to abate the problem this way. In the present pamphlet, the Danish Ecological Council offers a number of specific proposals on how to further the introduction of filters on diesel vehicles. The Danish government has taken a small step in the right direction by establishing a subsidy scheme for particle filters. Yet the amount allocated is too small and, because it is not followed up by setting taxes on polluting vehicles, it will have little effect. (au)

  16. Performance of PC-based charged particle multi-channel spectrometer utilising particle identification

    International Nuclear Information System (INIS)

    Palla, G.; Sziklai, J.; Trajber, Cs.

    1993-12-01

    A collaterally expandable charged particle spectrometer based on PC control and particle identification is described. A typical system configuration consisting of two channels are used to test the system performance. (author) 7 refs.; 5 figs

  17. Particle effects on fish gills

    DEFF Research Database (Denmark)

    Lu, Cao; Kania, Per W.; Buchmann, Kurt

    2018-01-01

    Particles composed of inorganic, organic and/or biological materials occur in both natural water bodies and aquaculture facilities. They are expected to affect fish health through a direct chemical, mechanical and biological interaction with gills during ventilation but the nature of the reactions...... and the relative importance of mechanical versus chemical and biological stimulation are unknown. The present work presents an immune gene expression method for evaluation of gill disturbance and sets a baseline for the mechanical influence on fish gills of chemically inert spherical particles. The method may...... be applied to investigate particle impact at different combinations of temperature, fish size, water quality and particle composition. Spherical polystyrene particles (diameters 0.2 μm, 1 μm, 20 μm, 40 μm and 90 μm) were adopted as the particle model and the rainbow trout (Oncorhynchus mykiss) fingerlings...

  18. Dispersal of sticky particles

    Science.gov (United States)

    Reddy, Ramana; Kumar, Sanjeev

    2007-12-01

    In this paper, we show through simulations that when sticky particles are broken continually, particles are dispersed into fine dust only if they are present in a narrow range of volume fractions. The upper limit of this range is 0.20 in the 2D and 0.10 in the 3D space. An increase in the dimensionality of space reduces the upper limit nearly by a factor of two. This scaling holds for dispersal of particles in hyperdimensional space of dimensions up to ten, the maximum dimension studied in this work. The maximum values of volume fractions obtained are significantly lower than those required for close packing and random packing of discs in 2D and spheres in 3D space. These values are also smaller than those required for critical phenomena of cluster percolation. The results obtained are attributed to merger cascades of sticky particles, triggered by breakup events. A simple theory that incorporates this cascade is developed to quantitatively explain the observed scaling of the upper limit with the dimensionality of space. The theory also captures the dynamics of the dispersal process in the corresponding range of particle volume fractions. The theory suggests that cascades of order one and two predominantly decide the upper limit for complete dispersal of particles.

  19. Negative numbers and antimatter particles

    International Nuclear Information System (INIS)

    Tsan, Ung Chan

    2012-01-01

    Dirac's equation states that an electron implies the existence of an antielectron with the same mass (more generally same arithmetic properties) and opposite charge (more generally opposite algebraic properties). Subsequent observation of antielectron validated this concept. This statement can be extended to all matter particles; observation of antiproton, antineutron, antideuton … is in complete agreement with this view. Recently antihypertriton was observed and 38 atoms of antihydrogen were trapped. This opens the path for use in precise testing of nature's fundamental symmetries. The symmetric properties of a matter particle and its mirror antimatter particle seem to be well established. Interactions operate on matter particles and antimatter particles as well. Conservation of matter parallels addition operating on positive and negative numbers. Without antimatter particles, interactions of the Standard Model (electromagnetism, strong interaction and weak interaction) cannot have the structure of group. Antimatter particles are characterized by negative baryonic number A or/and negative leptonic number L. Materialization and annihilation obey conservation of A and L (associated to all known interactions), explaining why from pure energy (A = 0, L = 0) one can only obtain a pair of matter particle antimatter particle — electron antielectron, proton and antiproton — via materialization where the mass of a pair of particle antiparticle gives back to pure energy with annihilation. These two mechanisms cannot change the difference in the number of matter particles and antimatter particles. Thus from pure energy only a perfectly symmetric (in number) universe could be generated as proposed by Dirac but observation showed that our universe is not symmetric, it is a matter universe which is nevertheless neutral. Fall of reflection symmetries shattered the prejudice that there is no way to define in an absolute way right and left or matter and antimatter

  20. Subway particles are more genotoxic than street particles and induce oxidative stress in cultured human lung cells.

    Science.gov (United States)

    Karlsson, Hanna L; Nilsson, Lennart; Möller, Lennart

    2005-01-01

    Epidemiological studies have shown an association between airborne particles and a wide range of adverse health effects. The mechanisms behind these effects include oxidative stress and inflammation. Even though traffic gives rise to high levels of particles in the urban air, people are exposed to even higher levels in the subway. However, there is a lack of knowledge regarding how particles from different urban subenvironments differ in toxicity. The main aim of the present study was to compare the ability of particles from a subway station and a nearby very busy urban street, respectively, to damage DNA and to induce oxidative stress. Cultured human lung cells (A549) were exposed to particles, DNA damage was analyzed using single cell gel electrophoresis (the comet assay), and the ability to induce oxidative stress was measured as 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) formation in lung cell DNA. We found that the subway particles were approximately eight times more genotoxic and four times more likely to cause oxidative stress in the lung cells. When the particles, water extracts from the particles, or particles treated with the metal chelator deferoxamine mesylate were incubated with 2'-deoxyguanosine (dG) and 8-oxodG was analyzed, we found that the oxidative capacity of the subway particles was due to redox active solid metals. Furthermore, analysis of the atomic composition showed that the subway particles to a dominating degree (atomic %) consisted of iron, mainly in the form of magnetite (Fe3O4). By using electron microscopy, the interaction between the particles and the lung cells was shown. The in vitro reactivity of the subway particles in combination with the high particle levels in subway systems give cause of concern due to the high number of people that are exposed to subway particles on a daily basis. To what extent the subway particles cause health effects in humans needs to be further evaluated.

  1. Box-particle intensity filter

    OpenAIRE

    Schikora, Marek; Gning, Amadou; Mihaylova, Lyudmila; Cremers, Daniel; Koch, Wofgang; Streit, Roy

    2012-01-01

    This paper develops a novel approach for multi-target tracking, called box-particle intensity filter (box-iFilter). The approach is able to cope with unknown clutter, false alarms and estimates the unknown number of targets. Furthermore, it is capable of dealing with three sources of uncertainty: stochastic, set-theoretic and data association uncertainty. The box-iFilter reduces the number of particles significantly, which improves the runtime considerably. The low particle number enables thi...

  2. Music of elementary particles

    Energy Technology Data Exchange (ETDEWEB)

    Sternheimer, J.

    1983-12-12

    This note offers a new point of view on particle masses. It is shown that they are distributed following a musical scale, the chromatic tempered scale -for stable particles- subdivided into microintervals including unstable particles. A theoretical explanation, based on causality, allows one also to calculate their global distribution along the mass scale, in agreement with experiment, and indicating the existence of ''musical'' laws in the vibratory organisation of matter.

  3. Single particle measurements and two particle interferometry results from CERN experiment NA44

    International Nuclear Information System (INIS)

    Simon-Gillo, J.

    1994-01-01

    CERN experiment NA44 is optimized for the study of identified single and multiple particle distributions to p T = 0 near mid-rapidity. We measure π +- , K +- , p, bar p, d and bar d, in p + A and A + A collisions at 450 and 20OGeV/u, respectively. Two-particle intensity interferometry results from π + π + , K + K + , and K - K - measurements and single particle distributions are presented

  4. Apolipoprotein B-containing lipoprotein particle assembly: Lipid capacity of the nascent lipoprotein particle

    Energy Technology Data Exchange (ETDEWEB)

    Manchekar, Medha; Forte, Trudy M.; Datta, Geeta; Richardson, Paul E.; Segrest, Jere P.; Dashti, Nassrin

    2003-12-01

    We previously proposed that the N-terminal 1000 residue {beta}{alpha}{sub 1} domain of apolipoprotein B (apoB) forms a bulk lipid pocket homologous to that of lamprey lipovitellin (LV). In support of this ''lipid pocket'' hypothesis, apoB:1000 (residues 1-1000) was shown to be secreted by a stable transformant of McA-RH7777 cells as a monodisperse particle with HDL{sub 3} density and Stokes diameter of 112 {angstrom}. In contrast, apoB:931 (residues 1-931), missing only 69 residues of the sequence homologous to LV, was secreted as a particle considerably more dense than HDL with Stokes diameter of 110 {angstrom}. The purpose of the present study was to determine the stoichiometry of the lipid component of the apoB:931 and apoB:1000 particles. This was accomplished by metabolic labeling of cells with either [{sup 14}C]oleic acid or [{sup 3}H]glycerol followed by immunoprecipitation (IP) or nondenaturing gradient gel electrophoresis (NDGGE) of secreted lipoproteins and by immunoaffinity chromatography of secreted unlabeled lipoproteins. The [{sup 3}H]-labeled apoB:1000-containing particles, isolated by NDGGE, contained 50 phospholipids (PL) and 11 triacylglycerols (TAG) molecules per particle. In contrast, apoB:931-containing particles contained only a few molecules of PL and were devoid of TAG. The unlabeled apoB:1000-containing particles isolated by immunoaffinity chromatography and analyzed for lipid mass, contained 56 PL, 8 TAG, and 7 cholesteryl ester molecules per particle. The surface:core lipid ratio of apoB:1000-containing particles was approximately 4:1 and was not affected by incubation of cells with oleate. Although small amounts of microsomal triglyceride transfer protein (MTP) were associated with apoB:1000-containing particles, it never approached a 1:1 molar ratio of MTP to apoB. These results support a model in which: (1) the first 1000 amino acid residues of apoB are competent to complete the ''lipid pocket

  5. Selection Of Suitable Particle Size And Particle Ratio For Japanese Cucumber Cucumis Sativus L. Plants

    Directory of Open Access Journals (Sweden)

    Galahitigama GAH

    2015-08-01

    Full Text Available This study was conducted to select the best particle size of coco peat for cucumber nurseries as well as best particle ratio for optimum plant growth and development of cucumber. The experiment was carried out in International Foodstuff Company and Faculty of Agriculture University of Ruhuna Sri Lanka during 2015 to 2016. Under experiment one three types of different particle sizes were used namely fine amp88040.5mm T2 medium 3mm-0.5mm T3 and coarse 4mm T4 with normal coco peat T1 as treatments. Complete Randomized Design CRD used as experimental design with five replicates. Germination percentage number of leaves per seedling seedling height in frequent day intervals was taken as growth parameters. Analysis of variance procedure was applied to analyze the data at 5 probability level. The results revealed that medium size particle media sieve size 0.5mm -3mm of coco peat was the best particle size for cucumber nursery practice when considered the physical and chemical properties of medium particles of coco peat. In the experiment of selecting of suitable particle ratio for cucumber plants the compressed mixture of coco peat particles that contain 70 ww unsieved coco peat 20 ww coarse particles and 10 ww coconut husk chips 5 12mm has given best results for growth performances compared to other treatments and cucumber grown in this mixture has shown maximum growth and yield performances.

  6. Surface functionalized hollow silica particles and composites

    KAUST Repository

    Rodionov, Valentin

    2017-05-26

    Composition comprising hollow spherical silica particles having outside particle walls and inside particle walls, wherein the particles have an average particle size of about 10 nm to about 500 nm and an average wall thickness of about 10 nm to about 50 nm; and wherein the particles are functionalized with at least one organic functional group on the outside particle wall, on the inside particle wall, or on both the outside and inside particle walls, wherein the organic functional group is in a reacted or unreacted form. The organic functional group can be epoxy. The particles can be mixed with polymer precursor or a polymer material such as epoxy to form a prepreg or a nanocomposite. Lightweight but strong materials can be formed. Low loadings of hollow particles can be used.

  7. Surface functionalized hollow silica particles and composites

    KAUST Repository

    Rodionov, Valentin; Khanh, Vu Bao

    2017-01-01

    Composition comprising hollow spherical silica particles having outside particle walls and inside particle walls, wherein the particles have an average particle size of about 10 nm to about 500 nm and an average wall thickness of about 10 nm to about 50 nm; and wherein the particles are functionalized with at least one organic functional group on the outside particle wall, on the inside particle wall, or on both the outside and inside particle walls, wherein the organic functional group is in a reacted or unreacted form. The organic functional group can be epoxy. The particles can be mixed with polymer precursor or a polymer material such as epoxy to form a prepreg or a nanocomposite. Lightweight but strong materials can be formed. Low loadings of hollow particles can be used.

  8. Random packing of digitized particles

    NARCIS (Netherlands)

    Korte, de A.C.J.; Brouwers, H.J.H.

    2013-01-01

    The random packing of regularly and irregularly shaped particles has been studied extensively. Within this paper, packing is studied from the perspective of digitized particles. These digitized particles are developed for and used in cellular automata systems, which are employed for the simple

  9. Random packing of digitized particles

    NARCIS (Netherlands)

    de Korte, A.C.J.; Brouwers, Jos

    2012-01-01

    The random packing of regularly and irregularly shaped particles has been studied extensively. Within this paper, packing is studied from the perspective of digitized particles. These digitized particles are developed for and used in cellular automata systems, which are employed for the simple

  10. Optical Particle Characterization in Flows

    Science.gov (United States)

    Tropea, Cameron

    2011-01-01

    Particle characterization in dispersed multiphase flows is important in quantifying transport processes both in fundamental and applied research: Examples include atomization and spray processes, cavitation and bubbly flows, and solid particle transport in gas and liquid carrier phases. Optical techniques of particle characterization are preferred owing to their nonintrusiveness, and they can yield information about size, velocity, composition, and to some extent the shape of individual particles. This review focuses on recent advances for measuring size, temperature, and the composition of particles, including several planar methods, various imaging techniques, laser-induced fluorescence, and the more recent use of femtosecond pulsed light sources. It emphasizes the main sources of uncertainty, the achievable accuracy, and the outlook for improvement of specific techniques and for specific applications. Some remarks are also directed toward the computational tools used to design and investigate the performance of optical particle diagnostic instruments.

  11. Charged particle accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Ress, T I; Nolde, G V

    1974-11-25

    A charged particle accelerator is described. It is made of an enclosure arranged for channeling a stream of charged particles along a predetermined path, and propelling means juxtaposed to the enclosure for generating a magnetic field moving in a predetermined direction with respect to each point of the path, the magnetic flux vector of that field being transverse to that path at every point, which gives the particles, along said path, a velocity connected to that of the mobile field by a predetermined relation. This can be applied to the fast production of chemical compounds, to the emission of neutrons and of thermal energy, and to the production of mechanical energy for propelling space ships.

  12. Charged particle accelerator

    International Nuclear Information System (INIS)

    Ress, T.I.; Nolde, G.V.

    1974-01-01

    A charged particle accelerator is described. It is made of an enclosure arranged for channeling a stream of charged particles along a predetermined path, and propelling means juxtaposed to said enclosure for generating therein a magnetic field moving in a predetermined direction with respect to each point of said path, the magnetic flux vector of that field being transverse to that path at every point, which gives the particles, along said path, a velocity connected to that of the mobile field by a predetermined relation. This can be applied to the fast production of chemical compounds, to the emission of neutrons and of thermal energy, and to the production of mechanical energy for propelling space ships [fr

  13. Aerosols from biomass combustion. Particle formation, relevance on air quality, and measures for particle reduction

    International Nuclear Information System (INIS)

    Nussbaumer, Thomas

    2005-01-01

    Biomass combustion is a relevant source of particle emissions. In Switzerland, wood combustion contributes with 2% to the energy supply but with more than 4% to Particulate Matter smaller 10 microns (PM 10) in the ambient air. In areas with high density of residential wood heating (e.g. in the south of Chile), wood particles are the dominant source of PM 10 resulting in heavy local smog situations. Since combustion particles are regarded as health relevant and since immission limit values on PM 10 are widely exceeded, measures for particle reduction from biomass combustion are of high priority. With respect to aerosols from biomass combustion, two sources of particles are distinguished: 1. an incomplete combustion can lead to soot and organic matter contained in the particles, 2. ash constituents in the fuel lead to the formation of inorganic fly ash particles mainly consisting of salts such as chlorides and oxides. The theory of aerosol formation from fuel constituents is described and two hypotheses to reduce inorganic particles from biomass combustion are proposed: 1. a reduced oxygen content in the solid fuel conversion zone (glow bed in a fixed bed combustion) is assumed to reduce the particle mass concentration due to three mechanisms: a) reduced oxidation of fuel constituents to compounds with higher volatility, b) reduced local temperature for solid fuel conversion, c) a reduced entrainmed of fuel constituents 2. a reduced total excess air can reduce the particle number due to enhanced coagulation. The proposed low-particle concept has been implemented for an automatic furnace for wood pellets in the size range from 100 kW to 500 kW. Furthermore, the furnace design was optimised to enable a part load operation without increased emissions of carbon monoxide (CO) and particles. In a 100 kW prototype furnace the low-particle conditions resulted in particle emissions between 6 mg/m n 3 to 11 mg/m n 3 at 13 vol.-% O2 and CO emissions below 70 mg/m n 3 in the

  14. Particle Pusher for the Investigation of Wave-Particle Interactions in the Magnetic Centrifugal Mass Filter (MCMF)

    Science.gov (United States)

    Kulp-McDowall, Taylor; Ochs, Ian; Fisch, Nathaniel

    2016-10-01

    A particle pusher was constructed in MATLAB using a fourth order Runge-Kutta algorithm to investigate the wave-particle interactions within theoretical models of the MCMF. The model simplified to a radial electric field and a magnetic field focused in the z direction. Studies on an average velocity calculation were conducted in order to test the program's behavior in the large radius limit. The results verified that the particle pusher was behaving correctly. Waves were then simulated on the rotating particles with a periodic divergenceless perturbation in the Bz component of the magnetic field. Preliminary runs indicate an agreement of the particle's motion with analytical predictions-ie. cyclic contractions of the doubly rotating particle's gyroradius.The next stage of the project involves the implementation of particle collisions and turbulence within the particle pusher in order to increase its accuracy and applicability. This will allow for a further investigation of the alpha channeling electrode replacement thesis first proposed by Abraham Fetterman in 2011. Made possible by Grants from the Princeton Environmental Institute (PEI) and the Program for Plasma Science and Technology (PPST).

  15. Quasi-particles at finite temperatures

    International Nuclear Information System (INIS)

    Narnhofer, H.; Thirring, W.; Requardt, M.

    1983-01-01

    We study the consequences of the KMS-condition on the properties of quasi-particles, assuming their existence. We establish: (i) If the correlation functions decay sufficiently, we can create them by quasi-free field operators. (ii) There are many age-operators T conjugate to H. For special forms of the dispersion law epsilon(k) of the quasi-particles there is a T commuting with the; (iii) There are many age-operators T conjugate to H. For special forms of the dispersion law epsilon(k) of the quasi-particles there is a T commuting with the number of quasi-particles and its time-monotonicity describes how the quasi-particles travel to infinity. (orig.)

  16. On-chip photonic particle sensor

    Science.gov (United States)

    Singh, Robin; Ma, Danhao; Agarwal, Anu; Anthony, Brian

    2018-02-01

    We propose an on-chip photonic particle sensor design that can perform particle sizing and counting for various environmental applications. The sensor is based on micro photonic ring resonators that are able to detect the presence of the free space particles through the interaction with their evanescent electric field tail. The sensor can characterize a wide range of the particle size ranging from a few nano meters to micron ( 1 micron). The photonic platform offers high sensitivity, compactness, fast response of the device. Further, FDTD simulations are performed to analyze different particle-light interactions. Such a compact and portable platform, packaged with integrated photonic circuit provides a useful sensing modality in space shuttle and environmental applications.

  17. Scintillation Detectors for Charged Particles and Photons

    CERN Document Server

    Lecoq, P

    2011-01-01

    Scintillation Detectors for Charged Particles and Photons in 'Charged Particle Detectors - Particle Detectors and Detector Systems', part of 'Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms: Numerical Data and Functional Relationships in Science and Technology, Volume 21B1: Detectors for Particles and Radiation. Part 1: Principles and Methods'. This document is part of Part 1 'Principles and Methods' of Subvolume B 'Detectors for Particles and Radiation' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Subsection '3.1.1 Scintillation Detectors for Charged Particles and Photons' of Section '3.1 Charged Particle Detectors' of Chapter '3 Particle Detectors and Detector Systems' with the content: 3.1.1 Scintillation Detectors for Charged Particles and Photons 3.1.1.1 Basic detector principles and scintillator requirements 3.1.1.1.1 Interaction of ionizing radiation with scintillator material 3.1.1.1.2 Important scint...

  18. Exploration of probability distribution of velocities of saltating sand particles based on the stochastic particle-bed collisions

    International Nuclear Information System (INIS)

    Zheng Xiaojing; Xie Li; Zhou Youhe

    2005-01-01

    The wind-blown sand saltating movement is mainly categorized into two mechanical processes, that is, the interaction between the moving sand particles and the wind in the saltation layer, and the collisions of incident particles with sand bed, and the latter produces a lift-off velocity of a sand particle moving into saltation. In this Letter a methodology of phenomenological analysis is presented to get probability density (distribution) function (pdf) of the lift-off velocity of sand particles from sand bed based on the stochastic particle-bed collision. After the sand particles are dealt with by uniform circular disks and a 2D collision between an incident particle and the granular bed is employed, we get the analytical formulas of lift-off velocity of ejected and rebound particles in saltation, which are functions of some random parameters such as angle and magnitude of incident velocity of the impacting particles, impact and contact angles between the collision particles, and creeping velocity of sand particles, etc. By introducing the probability density functions (pdf's) of these parameters in communion with all possible patterns of sand bed and all possible particle-bed collisions, and using the essential arithmetic of multi-dimension random variables' pdf, the pdf's of lift-off velocities are deduced out and expressed by the pdf's of the random parameters in the collisions. The numerical results of the distributions of lift-off velocities display that they agree well with experimental ones

  19. Tailoring particle size and morphology of colloidal Ag particles via chemical precipitation for Ag-BSCCO composites

    International Nuclear Information System (INIS)

    Medendorp, N.W. Jr.; Bowman, K.J.; Trumble, K.P.

    1996-01-01

    The chemical precipitation of silver particles is an effective method for tailoring the particle size and morphology. This article investigates a chemical precipitation method for producing silver colloids, and how processing parameters affected particle size, morphology and adherence. Decreasing the silver nitrate concentration during precipitation with sodium borohydride decreased the colloidal silver particle size. Decreasing the addition rate of the reducing agent produced faceted particles. Reversing the reactant addition order also changed the particle size and the morphology. Precipitated colloids demonstrated a difference between the growth-dominated and the equilibrium structures. Co-dispersing Bi-based superconducting platelets during precipitation allowed Ag colloids to preferentially nucleate on the platelets and to remain adhered even after the additional processing. (orig.)

  20. Pharmaceutical Particle Engineering via Spray Drying

    Science.gov (United States)

    2007-01-01

    This review covers recent developments in the area of particle engineering via spray drying. The last decade has seen a shift from empirical formulation efforts to an engineering approach based on a better understanding of particle formation in the spray drying process. Microparticles with nanoscale substructures can now be designed and their functionality has contributed significantly to stability and efficacy of the particulate dosage form. The review provides concepts and a theoretical framework for particle design calculations. It reviews experimental research into parameters that influence particle formation. A classification based on dimensionless numbers is presented that can be used to estimate how excipient properties in combination with process parameters influence the morphology of the engineered particles. A wide range of pharmaceutical application examples—low density particles, composite particles, microencapsulation, and glass stabilization—is discussed, with specific emphasis on the underlying particle formation mechanisms and design concepts. PMID:18040761

  1. Particle acceleration by electromagnetic pulses

    International Nuclear Information System (INIS)

    Lai, H.M.

    1982-01-01

    Particle interaction with plane electromagnetic pulses is studied. It is shown that particle acceleration by a wavy pulse, depending on the shape of the pulse, may not be small. Further, a diffusive-type particle acceleration by multiple weak pulses is described and discussed. (author)

  2. Particle size determination

    International Nuclear Information System (INIS)

    Burr, K.J.

    1979-01-01

    A specification is given for an apparatus to provide a completely automatic testing cycle to determine the proportion of particles of less than a predetermined size in one of a number of fluid suspensions. Monitoring of the particle concentration during part of the process can be carried out by an x-ray source and detector. (U.K.)

  3. Elementary particle theory

    CERN Document Server

    Stefanovich, Eugene

    2018-01-01

    This book introduces notation, terminology, and basic ideas of relativistic quantum theories. The discussion proceeds systematically from the principle of relativity and postulates of quantum logics to the construction of Poincaré invariant few-particle models of interaction and scattering. It is the first of three volumes formulating a consistent relativistic quantum theory of interacting charged particles.

  4. Low energy particle composition

    International Nuclear Information System (INIS)

    Gloeckler, G.

    1975-01-01

    More than 50 papers presented at this Conference dealt with the composition of low energy particles. The topics can be divided roughly into two broad categories. The first is the study of the energy spectra and composition of the steady or 'quiet-time' particle flux, whose origin is at this time unknown. The second category includes the study of particles and photons which are associated with solar flares or active regions on the sun. (orig.) [de

  5. Patchy particles made by colloidal fusion

    Science.gov (United States)

    Gong, Zhe; Hueckel, Theodore; Yi, Gi-Ra; Sacanna, Stefano

    2017-10-01

    Patches on the surfaces of colloidal particles provide directional information that enables the self-assembly of the particles into higher-order structures. Although computational tools can make quantitative predictions and can generate design rules that link the patch motif of a particle to its internal microstructure and to the emergent properties of the self-assembled materials, the experimental realization of model systems of particles with surface patches (or `patchy' particles) remains a challenge. Synthetic patchy colloidal particles are often poor geometric approximations of the digital building blocks used in simulations and can only rarely be manufactured in sufficiently high yields to be routinely used as experimental model systems. Here we introduce a method, which we refer to as colloidal fusion, for fabricating functional patchy particles in a tunable and scalable manner. Using coordination dynamics and wetting forces, we engineer hybrid liquid-solid clusters that evolve into particles with a range of patchy surface morphologies on addition of a plasticizer. We are able to predict and control the evolutionary pathway by considering surface-energy minimization, leading to two main branches of product: first, spherical particles with liquid surface patches, capable of forming curable bonds with neighbouring particles to assemble robust supracolloidal structures; and second, particles with a faceted liquid compartment, which can be cured and purified to yield colloidal polyhedra. These findings outline a scalable strategy for the synthesis of patchy particles, first by designing their surface patterns by computer simulation, and then by recreating them in the laboratory with high fidelity.

  6. Mechanism of travelling-wave transport of particles

    International Nuclear Information System (INIS)

    Kawamoto, Hiroyuki; Seki, Kyogo; Kuromiya, Naoyuki

    2006-01-01

    Numerical and experimental investigations have been carried out on transport of particles in an electrostatic travelling field. A three-dimensional hard-sphere model of the distinct element method was developed to simulate the dynamics of particles. Forces applied to particles in the model were the Coulomb force, the dielectrophoresis force on polarized dipole particles in a non-uniform field, the image force, gravity and the air drag. Friction and repulsion between particle-particle and particle-conveyer were included in the model to replace initial conditions after mechanical contacts. Two kinds of experiments were performed to confirm the model. One was the measurement of charge of particles that is indispensable to determine the Coulomb force. Charge distribution was measured from the locus of free-fallen particles in a parallel electrostatic field. The averaged charge of the bulk particle was confirmed by measurement with a Faraday cage. The other experiment was measurements of the differential dynamics of particles on a conveyer consisting of parallel electrodes to which a four-phase travelling electrostatic wave was applied. Calculated results agreed with measurements, and the following characteristics were clarified. (1) The Coulomb force is the predominant force to drive particles compared with the other kinds of forces, (2) the direction of particle transport did not always coincide with that of the travelling wave but changed partially. It depended on the frequency of the travelling wave, the particle diameter and the electric field, (3) although some particles overtook the travelling wave at a very low frequency, the motion of particles was almost synchronized with the wave at the low frequency and (4) the transport of some particles was delayed to the wave at medium frequency; the majority of particles were transported backwards at high frequency and particles were not transported but only vibrated at very high frequency

  7. Rain scavenging of radioactive particles

    International Nuclear Information System (INIS)

    Williams, A.L.

    1975-01-01

    An assessment is made of the rainout of airborne radioactive particles from a nuclear detonation with emphasis on the microphysical removal processes. For submicron particles the scavenging processes examined are Brownian and turbulent diffusion to cloud droplets. For particles larger than 1 μm radius, nucleation scavenging is examined. For various particle size and radioactivity distributions, it is found that from 27 to 99 percent of the radioactivity is attached to cloud droplets and subject to rapid removal by rain. (U.S.)

  8. Coated particles for lithium battery cathodes

    Science.gov (United States)

    Singh, Mohit; Eitouni, Hany Basam; Pratt, Russell Clayton; Mullin, Scott Allen; Wang, Xiao-Liang

    2017-07-18

    Particles of cathodic materials are coated with polymer to prevent direct contact between the particles and the surrounding electrolyte. The polymers are held in place either by a) growing the polymers from initiators covalently bound to the particle, b) attachment of the already-formed polymers by covalently linking to functional groups attached to the particle, or c) electrostatic interactions resulting from incorporation of cationic or anionic groups in the polymer chain. Carbon or ceramic coatings may first be formed on the surfaces of the particles before the particles are coated with polymer. The polymer coating is both electronically and ionically conductive.

  9. Crushing strength of HTGR fuel particles

    International Nuclear Information System (INIS)

    Lackey, W.J.; Stinton, D.P.; Davis, L.E.; Beatty, R.L.

    1976-01-01

    The whole-particle crushing strengths of High-Temperature Gas-Cooled Reactor fertile and fissile coated particles were measured and correlated with fabrication procedures. The crushing strength of Biso-coated fertile particles was increased by the following factors: (1) increasing the outer coating thickness by 10 μm increased strengths by 0.3 lb (1.3 N) for annealed particles and by 0.5 lb (2.2 N) for unannealed particles. (2) An 1800 0 C postcoating anneal increased strengths by 1 lb (4.4 N) for particles with thick outer coatings and by 2 lb (8.9 N) for particles having thin coatings. (3) Increasing the inner coating density by 0.1 g/cm 3 increased strength by 0.6 lb (2.7 N). The crushing strength of Triso-coated fissile particles was proportional to the thickness of the SiC coatings, and strength decreased on annealing by about 0.2 lb (0.9 N) when a porous plate was used to distribute the coating gas and by about 1.5 lb (6.7 N) when a conical gas distributor was used. The strengths of fertile and fissile coated particles as well as uncoated kernels appear adequate to allow fuel fabrication without excessive particle damage

  10. General particle transport equation. Final report

    International Nuclear Information System (INIS)

    Lafi, A.Y.; Reyes, J.N. Jr.

    1994-12-01

    The general objectives of this research are as follows: (1) To develop fundamental models for fluid particle coalescence and breakage rates for incorporation into statistically based (Population Balance Approach or Monte Carlo Approach) two-phase thermal hydraulics codes. (2) To develop fundamental models for flow structure transitions based on stability theory and fluid particle interaction rates. This report details the derivation of the mass, momentum and energy conservation equations for a distribution of spherical, chemically non-reacting fluid particles of variable size and velocity. To study the effects of fluid particle interactions on interfacial transfer and flow structure requires detailed particulate flow conservation equations. The equations are derived using a particle continuity equation analogous to Boltzmann's transport equation. When coupled with the appropriate closure equations, the conservation equations can be used to model nonequilibrium, two-phase, dispersed, fluid flow behavior. Unlike the Eulerian volume and time averaged conservation equations, the statistically averaged conservation equations contain additional terms that take into account the change due to fluid particle interfacial acceleration and fluid particle dynamics. Two types of particle dynamics are considered; coalescence and breakage. Therefore, the rate of change due to particle dynamics will consider the gain and loss involved in these processes and implement phenomenological models for fluid particle breakage and coalescence

  11. Turbulent resuspension of small nondeformable particles

    International Nuclear Information System (INIS)

    Lazaridis, M.; Drossinos, Y.

    1998-01-01

    An energy-balance resuspension model is modified and applied to the resuspension of a monolayer of nondeformable spherical particles. The particle-surface adhesive force is calculated from a microscopic model based on the Lennard-Jones intermolecular potential. Pairwise additivity of intermolecular interactions is assumed and elastic flattening of the particles is neglected. From the resulting particle-surface interaction potential the natural frequency of vibration of a particle on a surface and the depth of the potential well are calculated. The particle resuspension rate is calculated using the results of a previously developed energy-balance model, where the influence of fluid flow on the bound particle motion is recognized. The effect of surface roughness is included by introducing an effective particle radius that results in log-normally distributed adhesive forces. The predictions of the model are compared with experimental results for the resuspension of Al 2 O 3 particles from stainless steel surfaces. Particle resuspension due to turbulent fluid flow is important in the interaction of the atmosphere with various surfaces and in numerous industrial processes. For example, in the nuclear industry, fission-product aerosols released during a postulated severe accident in a Light Water Reactor may deposit and resuspend repeatedly in the vessel circuit and containment

  12. Single particle distributions, ch.2

    International Nuclear Information System (INIS)

    Blokzijl, R.

    1977-01-01

    A survey of inclusive single particle distributions is given for various particles. A comparison of particle cross-sections measured in K - p experiments at different center of mass energies shows that some of these cross-sections remain almost constant over a wide range of incoming K - momenta

  13. Ratchet Transport of Chiral Particles Caused by the Transversal Asymmetry: Current Reversals and Particle Separation

    Science.gov (United States)

    Liu, Jian-li; Lu, Shi-cai; Ai, Bao-quan

    2018-06-01

    Due to the chirality of active particles, the transversal asymmetry can induce the the longitudinal directed transport. The transport of chiral active particles in a periodic channel is investigated in the presence of two types of the transversal asymmetry, the transverse force and the transverse rigid half-circle obstacles. For all cases, the counterclockwise and clockwise particles move to the opposite directions. For the case of the only transverse force, the chiral active particles can reverse their directions when increasing the transverse force. When the transverse rigid half-circle obstacles are introduced, the transport behavior of particles becomes more complex and multiple current reversals occur. The direction of the transport is determined by the competition between two types of the transversal asymmetry. For a given chirality, by suitably tailoring parameters, particles with different self-propulsion speed can move in different directions and can be separated.

  14. Particle size, magnetic field, and blood velocity effects on particle retention in magnetic drug targeting.

    Science.gov (United States)

    Cherry, Erica M; Maxim, Peter G; Eaton, John K

    2010-01-01

    A physics-based model of a general magnetic drug targeting (MDT) system was developed with the goal of realizing the practical limitations of MDT when electromagnets are the source of the magnetic field. The simulation tracks magnetic particles subject to gravity, drag force, magnetic force, and hydrodynamic lift in specified flow fields and external magnetic field distributions. A model problem was analyzed to determine the effect of drug particle size, blood flow velocity, and magnetic field gradient strength on efficiency in holding particles stationary in a laminar Poiseuille flow modeling blood flow in a medium-sized artery. It was found that particle retention rate increased with increasing particle diameter and magnetic field gradient strength and decreased with increasing bulk flow velocity. The results suggest that MDT systems with electromagnets are unsuitable for use in small arteries because it is difficult to control particles smaller than about 20 microm in diameter.

  15. Micrometer-scale 3-D shape characterization of eight cements: Particle shape and cement chemistry, and the effect of particle shape on laser diffraction particle size measurement

    International Nuclear Information System (INIS)

    Erdogan, S.T.; Nie, X.; Stutzman, P.E.; Garboczi, E.J.

    2010-01-01

    Eight different portland cements were imaged on a synchrotron beam line at Brookhaven National Laboratory using X-ray microcomputed tomography at a voxel size of about 1 μm per cubic voxel edge. The particles ranged in size roughly between 10 μm and 100 μm. The shape and size of individual particles were computationally analyzed using spherical harmonic analysis. The particle shape difference between cements was small but significant, as judged by several different quantitative shape measures, including the particle length, width, and thickness distributions. It was found that the average shape of cement particles was closely correlated with the volume fraction of C 3 S (alite) and C 2 S (belite) making up the cement powder. It is shown that the non-spherical particle shape of the cements strongly influence laser diffraction results, at least in the sieve size range of 20 μm to 38 μm. Since laser diffraction particle size measurement is being increasingly used by the cement industry, while cement chemistry is always a main factor in cement production, these results could have important implications for how this kind of particle size measurement should be understood and used in the cement industry.

  16. Spin analysis of supersymmetric particles

    International Nuclear Information System (INIS)

    Choi, S.Y.; Martyn, H.U.

    2006-12-01

    The spin of supersymmetric particles can be determined at e + e - colliders unambiguously. This is demonstrated for a characteristic set of non-colored supersymmetric particles -- smuons, selectrons, and charginos/neutralinos. The analysis is based on the threshold behavior of the excitation curves for pair production in e + e - collisions, the angular distribution in the production process and decay angular distributions. In the first step we present the observables in the helicity formalism for the supersymmetric particles. Subsequently we confront the results with corresponding analyses of Kaluza-Klein particles in theories of universal extra space dimensions which behave distinctly different from supersymmetric theories. It is shown in the third step that a set of observables can be designed which signal the spin of supersymmetric particles unambiguously without any model assumptions. Finally in the fourth step it is demonstrated that the determination of the spin of supersymmetric particles can be performed experimentally in practice at an e + e - collider. (orig.)

  17. Laser guidance of mesoscale particles

    Science.gov (United States)

    Underdown, Frank Hartman, Jr.

    Mesoscale particles are guided and trapped in hollow optical fibers using radiation pressure forces. Laser light from a 0.4W, 780nm diode laser is guided in a low- loss fiber mode and used to generate the guidance forces. Laser scattering and absorption forces propels particles along the fiber and polarization gradient forces attract them to the fiber's axial center. Using two counter propagating laser beams, inside the fiber, particles can be trapped in three dimensions. Measuring the spring constant of the trap gives the gradient force. This dissertation describes Rayleigh and Mie scattering models for calculating guidance forces. Calculated forces as a function of particle size and composition (i.e. dielectric, semiconductor, and metals) will be presented. For example, under typical experimental conditions 100nm Au particles are guided by a 2 × 10-14 N propulsive force in a water filled fiber. In comparison, the measured force, obtained from the particle's velocity and Stokes' law, is 7.98 × 10-14 N.

  18. Physical Origin of Elementary Particle Masses

    OpenAIRE

    Hansson, Johan

    2014-01-01

    In contemporary particle physics, the masses of fundamental particles are incalculable constants, being supplied by experimental values. Inspired by observation of the empirical particle mass spectrum, and their corresponding physical interaction couplings, we propose that the masses of elementary particles arise solely due to the self-interaction of the fields associated with the charges of a particle. A first application of this idea is seen to yield correct order of magnitude predictions f...

  19. Accelerators of atomic particles

    International Nuclear Information System (INIS)

    Sarancev, V.

    1975-01-01

    A brief survey is presented of accelerators and methods of accelerating elementary particles. The principle of collective accelerating of elementary particles is clarified and the problems are discussed of its realization. (B.S.)

  20. Charge interaction between particle-laden fluid interfaces.

    Science.gov (United States)

    Xu, Hui; Kirkwood, John; Lask, Mauricio; Fuller, Gerald

    2010-03-02

    Experiments are described where two oil/water interfaces laden with charged particles move at close proximity relative to one another. The particles on one of the interfaces were observed to be attracted toward the point of closest approach, forming a denser particle monolayer, while the particles on the opposite interface were repelled away from this point, forming a particle depletion zone. Such particle attraction/repulsion was observed even if one of the interfaces was free of particles. This phenomenon can be explained by the electrostatic interaction between the two interfaces, which causes surface charges (charged particles and ions) to redistribute in order to satisfy surface electric equipotential at each interface. In a forced particle oscillation experiment, we demonstrated the control of charged particle positions on the interface by manipulating charge interaction between interfaces.

  1. Photocatalytic/Magnetic Composite Particles

    Science.gov (United States)

    Wu, Chang-Yu; Goswami, Yogi; Garretson, Charles; Andino, Jean; Mazyck, David

    2007-01-01

    Photocatalytic/magnetic composite particles have been invented as improved means of exploiting established methods of photocatalysis for removal of chemical and biological pollutants from air and water. The photocatalytic components of the composite particles are formulated for high levels of photocatalytic activity, while the magnetic components make it possible to control the movements of the particles through the application of magnetic fields. The combination of photocatalytic and magnetic properties can be exploited in designing improved air- and water treatment reactors.

  2. Condensed elementary particle matter

    International Nuclear Information System (INIS)

    Kajantie, K.

    1996-01-01

    Quark matter is a special case of condensed elementary particle matter, matter governed by the laws of particle physics. The talk discusses how far one can get in the study of particle matter by reducing the problem to computations based on the action. As an example the computation of the phase diagram of electroweak matter is presented. It is quite possible that ultimately an antireductionist attitude will prevail: experiments will reveal unpredicted phenomena not obviously reducible to the study of the action. (orig.)

  3. Relating particles and texture perception

    NARCIS (Netherlands)

    Engelen, L.; Wijk, de R.A.; Bilt, van der A.; Prinz, J.F.; Janssen, A.M.; Bosman, F.

    2005-01-01

    Practically all foods contain particles. It has been suggested that the presence of particles in food may affect the perception of sensory attributes. In the present study we investigated the effect of size and type (hardness and shape) of particles added to a CMC based vanilla custard dessert. The

  4. Selective encapsulation by Janus particles

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wei, E-mail: wel208@mrl.ucsb.edu [Materials Research Laboratory, University of California, Santa Barbara, California 93106 (United States); Ruth, Donovan; Gunton, James D. [Department of Physics, Lehigh University, Bethlehem, Pennsylvania 18015 (United States); Rickman, Jeffrey M. [Department of Physics, Lehigh University, Bethlehem, Pennsylvania 18015 (United States); Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015 (United States)

    2015-06-28

    We employ Monte Carlo simulation to examine encapsulation in a system comprising Janus oblate spheroids and isotropic spheres. More specifically, the impact of variations in temperature, particle size, inter-particle interaction range, and strength is examined for a system in which the spheroids act as the encapsulating agents and the spheres as the encapsulated guests. In this picture, particle interactions are described by a quasi-square-well patch model. This study highlights the environmental adaptation and selectivity of the encapsulation system to changes in temperature and guest particle size, respectively. Moreover, we identify an important range in parameter space where encapsulation is favored, as summarized by an encapsulation map. Finally, we discuss the generalization of our results to systems having a wide range of particle geometries.

  5. Separating particles from a liquid

    International Nuclear Information System (INIS)

    Leslie, C.M.; Watson, J.H.P.; Williams, J.A.

    1980-01-01

    An apparatus for separating particles suspended in a liquid from the liquid, is described, in which a flow of the liquid is passed through a filter bed of ferromagnetic bodies which acts as a coarse filter to trap the larger particles in the flow. The filter bed is arranged within a truncated core between the poles of an electromagnet. To cleanse the bed and flush out the trapped particles a wash liquid is passed through the bed and the electromagnet is energised to levitate the bed to allow the wash liquid to remove the particles. The liquid flow from the coarse filter can be passed to a high gradient magnetic separator at which remaining small particles in the flow are filtered magnetically. (U.K.)

  6. Particle Engulfment and Pushing

    Science.gov (United States)

    2001-01-01

    As a liquefied metal solidifies, particles dispersed in the liquid are either pushed ahead of or engulfed by the moving solidification front. Similar effects can be seen when the ground freezes and pushes large particles out of the soil. The Particle Engulfment and Pushing (PEP) experiment, conducted aboard the fourth U.S. Microgravity Payload (USMP-4) mission in 1997, used a glass and plastic beads suspended in a transparent liquid. The liquid was then frozen, trapping or pushing the particles as the solidifying front moved. This simulated the formation of advanced alloys and composite materials. Such studies help scientists to understand how to improve the processes for making advanced materials on Earth. The principal investigator is Dr. Doru Stefanescu of the University of Alabama. This image is from a video downlink.

  7. Optimization of particle trapping and patterning via photovoltaic tweezers: role of light modulation and particle size

    International Nuclear Information System (INIS)

    Matarrubia, J; García-Cabañes, A; Plaza, J L; Agulló-López, F; Carrascosa, M

    2014-01-01

    The role of light modulation m and particle size on the morphology and spatial resolution of nano-particle patterns obtained by photovoltaic tweezers on Fe : LiNbO 3 has been investigated. The impact of m when using spherical as well as non-spherical (anisotropic) nano-particles deposited on the sample surface has been elucidated. Light modulation is a key parameter determining the particle profile contrast that is optimum for spherical particles and high-m values (m ∼ 1). The minimum particle periodicities reachable are also investigated obtaining periodic patterns up to 3.5 µm. This is a value at least one order of magnitude shorter than those obtained in previous reported experiments. Results are successfully explained and discussed in light of the previous reported models for photorefraction including nonlinear carrier transport and dielectrophoretic trapping. From the results, a number of rules for particle patterning optimization are derived. (paper)

  8. Repetitive heterocoagulation of oppositely charged particles for enhancement of magnetic nanoparticle loading into monodisperse silica particles.

    Science.gov (United States)

    Matsumoto, Hideki; Nagao, Daisuke; Konno, Mikio

    2010-03-16

    Oppositely charged particles were repetitively heterocoagulated to fabricate highly monodisperse magnetic silica particles with high loading of magnetic nanoparticles. Positively charged magnetic nanoparticles prepared by surface modification with N-trimethoxysilylpropyl-N,N,N-trimethylammonium chloride (TSA) were used to heterocoagulate with silica particles under basic conditions to give rise to negative silica surface charge and prevent the oxidation of the magnetic nanoparticles. The resultant particles of silica core homogeneously coated with the magnetic nanoparticles were further coated with thin silica layer with sodium silicate in order to enhance colloidal stability and avoid desorption of the magnetic nanoparticles from the silica cores. Five repetitions of the heterocoagulation and the silica coating could increase saturation magnetization of the magnetic silica particles to 27.7 emu/g, keeping the coefficient of variation of particle sizes (C(V)) less than 6.5%. Highly homogeneous loading of the magnetic component was confirmed by measuring Fe-to-Si atomic ratios of individual particles with energy dispersive X-ray spectroscopy.

  9. Quantifying the motion of magnetic particles in excised tissue: Effect of particle properties and applied magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Kulkarni, Sandip, E-mail: sandip.d.kulkarni@gmail.com [Fischell Department of Bioengineering, University of Maryland at College Park, MD 20742 (United States); Ramaswamy, Bharath; Horton, Emily; Gangapuram, Sruthi [Fischell Department of Bioengineering, University of Maryland at College Park, MD 20742 (United States); Nacev, Alek [Weinberg Medical Physics, LLC (United States); Depireux, Didier [The Institute for Systems Research, University of Maryland at College Park, MD 20742 (United States); Otomagnetics, LLC (United States); Shimoji, Mika [Fischell Department of Bioengineering, University of Maryland at College Park, MD 20742 (United States); Otomagnetics, LLC (United States); Shapiro, Benjamin [Fischell Department of Bioengineering, University of Maryland at College Park, MD 20742 (United States); The Institute for Systems Research, University of Maryland at College Park, MD 20742 (United States); Otomagnetics, LLC (United States)

    2015-11-01

    This article presents a method to investigate how magnetic particle characteristics affect their motion inside tissues under the influence of an applied magnetic field. Particles are placed on top of freshly excised tissue samples, a calibrated magnetic field is applied by a magnet underneath each tissue sample, and we image and quantify particle penetration depth by quantitative metrics to assess how particle sizes, their surface coatings, and tissue resistance affect particle motion. Using this method, we tested available fluorescent particles from Chemicell of four sizes (100 nm, 300 nm, 500 nm, and 1 μm diameter) with four different coatings (starch, chitosan, lipid, and PEG/P) and quantified their motion through freshly excised rat liver, kidney, and brain tissues. In broad terms, we found that the applied magnetic field moved chitosan particles most effectively through all three tissue types (as compared to starch, lipid, and PEG/P coated particles). However, the relationship between particle properties and their resulting motion was found to be complex. Hence, it will likely require substantial further study to elucidate the nuances of transport mechanisms and to select and engineer optimal particle properties to enable the most effective transport through various tissue types under applied magnetic fields.

  10. Magnetic particle inspection

    Science.gov (United States)

    Sastri, Sankar

    1990-01-01

    The purpose of this experiment is to familiarize the student with magnetic particle inspection and relate it to classification of various defects. Magnetic particle inspection is a method of detecting the presence of cracks, laps, tears, inclusions, and similar discontinuities in ferromagnetic materials such as iron and steel. This method will most clearly show defects that are perpendicular to the magnetic field. The Magnaglo method uses a liquid which is sprayed on the workpiece to be inspected, and the part is magnetized at the same time. The workpiece is then viewed under a black light, and the presence of discontinuity is shown by the formation of a bright indication formed by the magnetic particles over the discontinuity. The equipment and experimental procedures are described.

  11. Ignition of Aluminum Particles and Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, A L; Boiko, V M

    2010-04-07

    Here we review experimental data and models of the ignition of aluminum (Al) particles and clouds in explosion fields. The review considers: (i) ignition temperatures measured for single Al particles in torch experiments; (ii) thermal explosion models of the ignition of single Al particles; and (iii) the unsteady ignition Al particles clouds in reflected shock environments. These are used to develop an empirical ignition model appropriate for numerical simulations of Al particle combustion in shock dispersed fuel explosions.

  12. A numerical study of fluidization behavior of Geldart A particles using a discrete particle model

    NARCIS (Netherlands)

    Ye, M.; van der Hoef, Martin Anton; Kuipers, J.A.M.

    2004-01-01

    This paper reports on a numerical study of fluidization behavior of Geldart A particles by use of a 2D soft-sphere discrete particle model (DPM). Some typical features, including the homogeneous expansion, gross particle circulation in the absence of bubbles, and fast bubbles, can be clearly

  13. Low-enriched fuel particle performance review

    International Nuclear Information System (INIS)

    Homan, F.; Nabielek, H.; Yang, L.

    1978-08-01

    The available data on low-enriched uranium (LEU) fuel particles were reviewed under the United States-Federal Republic of Germany Agreement. The most influential factors controlling the irradiation performance of LEU fuel particles were found to be plutonium transport, fission product transport, fuel particle mechanical performance, and fuel particle chemical performance

  14. Hot particles

    International Nuclear Information System (INIS)

    Merwin, S.E.; Moeller, M.P.

    1989-01-01

    Nuclear Regulatory Commission (NRC) licensees are required to assess the dose to skin from a hot particle contamination event at a depth of skin of7mg/cm 2 over an area of 1 cm 2 and compare the value to the current dose limit for the skin. Although the resulting number is interesting from a comparative standpoint and can be used to predict local skin reactions, comparison of the number to existing limits based on uniform exposures is inappropriate. Most incidents that can be classified as overexposures based on this interpretation of dose actually have no effect on the health of the worker. As a result, resources are expended to reduce the likelihood that an overexposure event will occur when they could be directed toward eliminating the cause of the problem or enhancing existing programs such as contamination control. Furthermore, from a risk standpoint, this practice is not ALARA because some workers receive whole body doses in order to minimize the occurrence of hot particle skin contaminations. In this paper the authors suggest an alternative approach to controlling hot particle exposures

  15. Parallel computing of a digital hologram and particle searching for microdigital-holographic particle-tracking velocimetry

    International Nuclear Information System (INIS)

    Satake, Shin-ichi; Kanamori, Hiroyuki; Kunugi, Tomoaki; Sato, Kazuho; Ito, Tomoyoshi; Yamamoto, Keisuke

    2007-01-01

    We have developed a parallel algorithm for microdigital-holographic particle-tracking velocimetry. The algorithm is used in (1) numerical reconstruction of a particle image computer using a digital hologram, and (2) searching for particles. The numerical reconstruction from the digital hologram makes use of the Fresnel diffraction equation and the FFT (fast Fourier transform),whereas the particle search algorithm looks for local maximum graduation in a reconstruction field represented by a 3D matrix. To achieve high performance computing for both calculations (reconstruction and particle search), two memory partitions are allocated to the 3D matrix. In this matrix, the reconstruction part consists of horizontally placed 2D memory partitions on the x-y plane for the FFT, whereas, the particle search part consists of vertically placed 2D memory partitions set along the z axes.Consequently, the scalability can be obtained for the proportion of processor elements,where the benchmarks are carried out for parallel computation by a SGI Altix machine

  16. Measuring the 3D motion of particles in microchannel acoustophoresis using astigmatism particle tracking velocimetry

    DEFF Research Database (Denmark)

    Augustsson, P.; Barnkob, Rune; Bruus, Henrik

    2012-01-01

    We introduce full three-dimensional tracking of particles in an acoustophoresis microchannel using Astigmatism Particle Tracking Velocimetry (APTV) [1]. For the first time the interaction between acoustic streaming and the primary acoustic radiation force in microchannel acoustophoresis are exami...... relative to the influence from the acoustic radiation force. The current study opens the route to optimized acoustophoretic system design and operation to enable manipulation of small biological components such as spores, bacteria and viruses.......We introduce full three-dimensional tracking of particles in an acoustophoresis microchannel using Astigmatism Particle Tracking Velocimetry (APTV) [1]. For the first time the interaction between acoustic streaming and the primary acoustic radiation force in microchannel acoustophoresis...... are examined in three dimensions. We have quantified the velocity of particles driven by the primary acoustic radiation force and acoustic streaming, respectively, using 0.5-μm and 5-μm particles. Increased ultrasound frequency and lowered viscosity of the medium reduced the influence of acoustic streaming...

  17. A theoretical perspective on particle acceleration by interplanetary shocks and the Solar Energetic Particle problem

    Energy Technology Data Exchange (ETDEWEB)

    Verkhoglyadova, Olga P. [Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, AL35899 (United States); Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA91109 (United States); Zank, Gary P.; Li, Gang [Department of Space Science, UAH, Huntsville, AL35899 (United States); Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, AL35899 (United States)

    2015-02-12

    Understanding the physics of Solar Energetic Particle (SEP) events is of importance to the general question of particle energization throughout the cosmos as well as playing a role in the technologically critical impact of space weather on society. The largest, and often most damaging, events are the so-called gradual SEP events, generally associated with shock waves driven by coronal mass ejections (CMEs). We review the current state of knowledge about particle acceleration at evolving interplanetary shocks with application to SEP events that occur in the inner heliosphere. Starting with a brief outline of recent theoretical progress in the field, we focus on current observational evidence that challenges conventional models of SEP events, including complex particle energy spectra, the blurring of the distinction between gradual and impulsive events, and the difference inherent in particle acceleration at quasi-parallel and quasi-perpendicular shocks. We also review the important problem of the seed particle population and its injection into particle acceleration at a shock. We begin by discussing the properties and characteristics of non-relativistic interplanetary shocks, from their formation close to the Sun to subsequent evolution through the inner heliosphere. The association of gradual SEP events with shocks is discussed. Several approaches to the energization of particles have been proposed, including shock drift acceleration, diffusive shock acceleration (DSA), acceleration by large-scale compression regions, acceleration by random velocity fluctuations (sometimes known as the “pump mechanism”), and others. We review these various mechanisms briefly and focus on the DSA mechanism. Much of our emphasis will be on our current understanding of the parallel and perpendicular diffusion coefficients for energetic particles and models of plasma turbulence in the vicinity of the shock. Because of its importance both to the DSA mechanism itself and to the

  18. Search of isolated photons by CELLO detector at PETRA

    International Nuclear Information System (INIS)

    Ros Martinez, E.

    1984-03-01

    The CELLO detector at PETRA has been used to search for isolated photons at 22 GeV beam energy. The aim is to study reactions such as e + e - → γνantiν or e + e - → γlambda anti-lambda, where lambda is the photino, the hypothetical supersymmetric partner of the photon. The absence of such a signal should allow the determination of an upper limit to the number of neutrino generations, and of a lower limit to the mass of the scalar electron. The luminosity integrated until now is still insufficient to set up such limits but techniques which will be used when high luminosity becomes available have been developed. In particular a high level of cosmic ray rejection is achieved using the granularity and improved time resolution of the CELLO lead-liquid argon electromagnetic calorimeter [fr

  19. Low-enriched fuel particle performance review

    International Nuclear Information System (INIS)

    Homan, F.; Nabielek, H.; Yang, L.

    1978-08-01

    The available data on low-enriched (LEU) fuel particles were reviewed under the United States-Federal Republic of Germany Agreement. The most influential factors controlling the irradiation performance of LEU fuel particles were found to be plutonium transport, fission product transport, fuel particle mechanical performance and fuel particle chemical performande. (orig.) [de

  20. High-energy nuclear optics of polarized particles

    CERN Document Server

    Baryshevsky, Vladimir G

    2012-01-01

    The various phenomena caused by refraction and diffraction of polarized elementary particles in matter have opened up a new research area in the particle physics: nuclear optics of polarized particles. Effects similar to the well-known optical phenomena such as birefringence and Faraday effects, exist also in particle physics, though the particle wavelength is much less than the distance between atoms of matter. Current knowledge of the quasi-optical effects, which exist for all particles in any wavelength range (and energies from low to extremely high), will enable us to investigate different properties of interacting particles (nuclei) in a new aspect. This pioneering book will provide detailed accounts of quasi-optical phenomena in the particle polarization, and will interest physicists and professionals in experimental particle physics.

  1. arXiv Particle Physics Instrumentation

    CERN Document Server

    Wingerter-Seez, I.

    This reports summarizes the three lectures on particle physics instrumentation given during the AEPSHEP school in November 2014 at Puri-India. The lectures were intended to give an overview of the interaction of particles with matter and basic particle detection principles in the context of large detector systems like the Large Hadron Collider.

  2. Particle deformation during stirred media milling

    Science.gov (United States)

    Hamey, Rhye Garrett

    Production of high aspect ratio metal flakes is an important part of the paint and coating industry. The United States Army also uses high aspect ratio metal flakes of a specific dimension in obscurant clouds to attenuate infrared radiation. The most common method for their production is by milling a metal powder. Ductile metal particles are initially flattened in the process increasing the aspect ratio. As the process continues, coldwelding of metal flakes can take place increasing the particle size and decreasing the aspect ratio. Extended milling times may also result in fracture leading to a further decrease in the particle size and aspect ratio. Both the coldwelding of the particles and the breakage of the particles are ultimately detrimental to the materials performance. This study utilized characterization techniques, such as, light scattering and image analysis to determine the change in particle size as a function of milling time and parameters. This study proved that a fundamental relationship between the milling parameters and particle deformation could be established by using Hertz's theory to calculate the stress acting on the aluminum particles. The study also demonstrated a method by which milling efficiency could be calculated, based on the amount of energy required to cause particle deformation. The study found that the particle deformation process could be an energy efficient process at short milling times with milling efficiency as high as 80%. Finally, statistical design of experiment was used to obtain a model that related particle deformation to milling parameters, such as, rotation rate and milling media size.

  3. Collisions of droplets on spherical particles

    Science.gov (United States)

    Charalampous, Georgios; Hardalupas, Yannis

    2017-10-01

    Head-on collisions between droplets and spherical particles are examined for water droplets in the diameter range between 170 μm and 280 μm and spherical particles in the diameter range between 500 μm and 2000 μm. The droplet velocities range between 6 m/s and 11 m/s, while the spherical particles are fixed in space. The Weber and Ohnesorge numbers and ratio of droplet to particle diameter were between 92 deposition and splashing regimes, a regime is observed in the intermediate region, where the droplet forms a stable crown, which does not breakup but propagates along the particle surface and passes around the particle. This regime is prevalent when the droplets collide on small particles. The characteristics of the collision at the onset of rim instability are also described in terms of the location of the film on the particle surface and the orientation and length of the ejected crown. Proper orthogonal decomposition identified that the first 2 modes are enough to capture the overall morphology of the crown at the splashing threshold.

  4. Suspending Zeolite Particles In Tanks

    International Nuclear Information System (INIS)

    Poirier, M.R.

    1999-01-01

    The Savannah River Site (SRS) is in the process of removing waste (sludge and salt cake) from million gallon waste tanks. The current practice for removing waste from the tanks is adding water, agitating the tanks with long shaft vertical centrifugal pumps, and pumping the sludge/salt solution from the tank to downstream treatment processes. This practice has left sludge heels (tilde 30,000 gallons) in the bottom of the tanks. SRS is evaluating shrouded axial impeller mixers for removing the sludge heels in the waste tanks. The authors conducted a test program to determine mixer requirements for suspending sludge heels using the shrouded axial impeller mixers. The tests were performed with zeolite in scaled tanks which have diameters of 1.5, 6.0, and 18.75 feet. The mixer speeds required to suspend zeolite particles were measured at each scale. The data were analyzed with various scaling methods to compare their ability to describe the suspension of insoluble solids with the mixers and to apply the data to a full-scale waste tank. The impact of changes in particle properties and operating parameters was also evaluated. The conclusions of the work are: Scaling of the suspension of fast settling zeolite particles was best described by the constant power per unit volume method. Increasing the zeolite particle concentration increased the required mixer power needed to suspend the particles. Decreasing the zeolite particle size from 0.7 mm 0.3 mm decreased the required mixer power needed to suspend the particles. Increasing the number of mixers in the tank decreased the required mixer power needed to suspend the particles. A velocity of 1.6 ft/sec two inches above the tank bottom is needed to suspend zeolite particles

  5. Particle Dark Matter (1/4)

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    I review the phenomenology of particle dark matter, including the process of thermal freeze-out in the early universe, and the direct and indirect detection of WIMPs. I also describe some of the most popular particle candidates for dark matter and summarize the current status of the quest to discover dark matter's particle identity.

  6. Neutron particle injection device

    International Nuclear Information System (INIS)

    Hashimoto, Kiyoshi.

    1997-01-01

    Plasma particles are used as target particles for converting ions to neutral particles by a charge exchange reaction in a neutralization cell, and a neutralization cell is disposed in adjacent with drawing electrodes. In addition, a magnetic field generation means is disposed additionally for generating magnetic rays substantially in parallel with the drawing electrode at the downmost stream in the progressing direction of the ions. The intensity of electric fields between the drawing electrode at the downmost stream and the nearest electrode, among electrodes present at the upstream, is made smaller than the intensity of electric fields between other electrodes. Since magnetic rays substantially in parallel with the drawing electrode at the downmost stream in the progressing direction of the ions are generated, the ions are prevented from being accelerated in the direction reverse to the progressing direction thereby further enhancing the neutralization efficiency of the neutralizing cell. Then, there can be provided effects that the constitution of the electrode of NBI (Neutral particle Beam Injector) can be simplified and the power source for preventing acceleration of neutral particles can be saved. (N.H.)

  7. Particle Emissions from Domestic Gas Cookers

    DEFF Research Database (Denmark)

    Glarborg, Peter; Livbjerg, Hans; Wagner, Ayten Yilmaz

    2010-01-01

    The authors experimentally studied the formation of submicron particles from a domestic gas cooker in a compartment free from external particle sources. The effects of fuel (methane, natural gas, odorant-free natural gas), primary aeration, flow rate, and fuel sulphur content on particle emissions...... of the emitted particles were found to have a mean value of about 7 nm for partially premixed flames, increasing to ∼10 nm for nonpremixed flames. The quantity of primary air had a strong impact on the particle emissions, showing a minimum at a primary aeration level of 60-65%. Presence of sulphur in small...... quantities may enhance particle formation under some conditions, but results were not conclusive....

  8. Trajectory calculation of a trapped particle in electro-dynamic balance for study of chemical reaction of aerosol particles

    International Nuclear Information System (INIS)

    Okuma, Miho; Itou, Takahiro; Harano, Azuchi; Takarada, Takayuki; James, Davis E

    2013-01-01

    Electrodynamic balance (EDB) is a powerful tool for investigating the chemical reactions between a fine particle and gaseous species. But the EDB device alone is inadequate to match the rapid weight change of a fine particle caused by chemical reactions, because it takes a few seconds to set a fine particle at null point. The particle trajectory calculation for the trapped particle added to the EDB is thus a very useful tool for the measurement of the transient response of a particle weight change with no need to adjust the applied DC voltage to set the null point. The purpose of this study is to develop the trajectory calculation method to track the particle oscillation pattern in the EDB and examine the possibility for kinetic studies on the reaction of a single aerosol particle with gaseous species. The results demonstrated the feasibility of applying particle trajectory calculation to realize the research purpose.

  9. Surgical smoke and ultrafine particles

    Directory of Open Access Journals (Sweden)

    Nowak Dennis

    2008-12-01

    Full Text Available Abstract Background Electrocautery, laser tissue ablation, and ultrasonic scalpel tissue dissection all generate a 'surgical smoke' containing ultrafine ( Methods To measure the amount of generated particulates in 'surgical smoke' during different surgical procedures and to quantify the particle number concentration for operation room personnel a condensation particle counter (CPC, model 3007, TSI Inc. was applied. Results Electro-cauterization and argon plasma tissue coagulation induced the production of very high number concentration (> 100000 cm-3 of particles in the diameter range of 10 nm to 1 μm. The peak concentration was confined to the immediate local surrounding of the production side. In the presence of a very efficient air conditioning system the increment and decrement of ultrafine particle occurrence was a matter of seconds, with accumulation of lower particle number concentrations in the operation room for only a few minutes. Conclusion Our investigation showed a short term very high exposure to ultrafine particles for surgeons and close assisting operating personnel – alternating with longer periods of low exposure.

  10. On the absorbing force of magnetic fields acting on magnetic particle under magnetic particle examination

    International Nuclear Information System (INIS)

    Maeda, N.

    1988-01-01

    During the magnetic particle examination, magnetic particles near defects are deposited by an absorbing force of magnetic fields acting on the magnetic particles. Therefore, a quantitative determination of this absorbing force is a theoretical and experimental basis for solving various problems associated with magnetic particle examinations. The absorbing force is formulated based on a magnetic dipole model, and a measuring method of the absorbing force using magnetic fields formed around linear current is proposed. Measurements according to this method produced appropriate results, verifying the validation of the concept and the measuring method

  11. Cosmology and particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Steigman, G [California Univ., Santa Barbara (USA). Inst. for Theoretical Physics; Bartol Research Foundation, Newark, Delaware (USA))

    1982-01-29

    The cosmic connections between physics on the very largest and very smallest scales are reviewed with an emphasis on the symbiotic relation between elementary particle physics and cosmology. After a review of the early Universe as a cosmic accelerator, various cosmological and astrophysical constraints on models of particle physics are outlined. To illustrate this approach to particle physics via cosmology, reference is made to several areas of current research: baryon non-conservation and baryon asymmetry; free quarks, heavy hadrons and other exotic relics; primordial nucleosynthesis and neutrino masses.

  12. Particle physics and cosmology

    International Nuclear Information System (INIS)

    Srednicki, M.

    1990-01-01

    At least eighty percent of the mass of the universe consists of some material which, unlike ordinary matter, neither emits nor absorbs light. This book collects key papers related to the discovery of this astonishing fact and its profound implications for astrophysics, cosmology, and the physics of elementary particles. The book focusses on the likely possibility that the dark matter is composed of an as yet undiscovered elementary particle, and examines the boundaries of our present knowledge of the properties such a particle must possess. (author). refs.; figs.; tabs

  13. Particle Physics Education Sites

    Science.gov (United States)

    back to home page Particle Physics Education Sites quick reference Education and Information - National Laboratory Education Programs - Women and Minorities in Physics - Other Physics Sites - Physics Alliance - Accelerators at National Laboratories icon Particle Physics Education and Information sites: top

  14. Experimental Study on Effects of Particle Shape and Operating Conditions on Combustion Characteristics of Single Biomass Particles

    DEFF Research Database (Denmark)

    Momeni, M.; Yin, Chungen; Kær, Søren Knudsen

    2013-01-01

    An experimental study is performed to investigate the ignition, devolatilization, and burnout of single biomass particles of various shapes and sizes under process conditions that are similar to those in an industrial combustor. A chargecoupled device (CCD) camera is used to record the whole...... combustion process. For the particles with similar volume (mass), cylindrical particles are found to lose mass faster than spherical particles and the burnout time is shortened by increasing the particle aspect ratio (surface area). The conversion times of cylindrical particles with almost the same surface...... area/volume ratio are very close to each other. The ignition, devolatilization, and burnout times of cylindrical particles are also affected by the oxidizer temperature and oxygen concentration, in which the oxygen concentration is found to have a more pronounced effect on the conversion times at lower...

  15. A method for the separation of non-ferrous metal containing particles from a particle stream

    NARCIS (Netherlands)

    Van der Weijden, R.D.; Rem, P.C.

    2004-01-01

    The invention relates to a method for the recovery of non-ferrous metal-comprising particles from a particle stream. According to the invention, the particle stream is put onto a conveyor belt in the form of a monolayer such that with the aid of a liquid, at least the non-ferrous metal comprising

  16. Particles in flows

    CERN Document Server

    Galdi, Giovanni; Nečasová, Šárka

    2017-01-01

    This book aims to face particles in flows from many different, but essentially interconnected sides and points of view. Thus the selection of authors and topics represented in the chapters, ranges from deep mathematical analysis of the associated models, through the techniques of their numerical solution, towards real applications and physical implications. The scope and structure of the book as well as the selection of authors was motivated by the very successful summer course and workshop "Particles in Flows'' that was held in Prague in the August of 2014. This meeting revealed the need for a book dealing with this specific and challenging multidisciplinary subject, i.e. particles in industrial, environmental and biomedical flows and the combination of fluid mechanics, solid body mechanics with various aspects of specific applications.

  17. Tensile flow stress of ceramic particle-reinforced metal in the presence of particle cracking

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, R. [Ecole Polytechnique Federale de Lausanne (EPFL), Laboratory for Mechanical Metallurgy, CH-1015 Lausanne (Switzerland); Rossoll, A. [Ecole Polytechnique Federale de Lausanne (EPFL), Laboratory for Mechanical Metallurgy, CH-1015 Lausanne (Switzerland)], E-mail: andreas.rossoll@epfl.ch; Weber, L. [Ecole Polytechnique Federale de Lausanne (EPFL), Laboratory for Mechanical Metallurgy, CH-1015 Lausanne (Switzerland); Bourke, M.A.M. [Los Alamos National Laboratory (LANL), LANSCE-12, P.O. Box 1663, MS H805, Los Alamos, NM 87545 (United States); Dunand, D.C. [Northwestern University, Department of Materials Science and Engineering, Evanston, IL 60208 (United States); Mortensen, A. [Ecole Polytechnique Federale de Lausanne (EPFL), Laboratory for Mechanical Metallurgy, CH-1015 Lausanne (Switzerland)

    2008-10-15

    A simplified model is proposed to quantify the effect of damage in the form of particle cracking on the elastic and plastic behaviour of particle-reinforced metal matrix composites under uniaxial tensile loading: cracked particles are simply replaced, in a mean-field model, with as much matrix. Pure aluminium reinforced with 44 vol.% alumina particles, tested in tension and unloaded at periodic plastic deformations, is analysed by neutron diffraction during each reloading elastic step, at 30%, 50%, 70% and 90% of the tensile flow stress. The data give the evolution of the elastic matrix strains in the composite and also measure the progress of internal damage by particle cracking. The test gives (i) the evolution of the in situ matrix flow stress, and (ii) the evolution of load partitioning during elastic deformation with increasing composite damage. Predictions of the present model compare favourably with relevant results in the literature, and with results from the present neutron diffraction experiments.

  18. Tensile flow stress of ceramic particle-reinforced metal in the presence of particle cracking

    International Nuclear Information System (INIS)

    Mueller, R.; Rossoll, A.; Weber, L.; Bourke, M.A.M.; Dunand, D.C.; Mortensen, A.

    2008-01-01

    A simplified model is proposed to quantify the effect of damage in the form of particle cracking on the elastic and plastic behaviour of particle-reinforced metal matrix composites under uniaxial tensile loading: cracked particles are simply replaced, in a mean-field model, with as much matrix. Pure aluminium reinforced with 44 vol.% alumina particles, tested in tension and unloaded at periodic plastic deformations, is analysed by neutron diffraction during each reloading elastic step, at 30%, 50%, 70% and 90% of the tensile flow stress. The data give the evolution of the elastic matrix strains in the composite and also measure the progress of internal damage by particle cracking. The test gives (i) the evolution of the in situ matrix flow stress, and (ii) the evolution of load partitioning during elastic deformation with increasing composite damage. Predictions of the present model compare favourably with relevant results in the literature, and with results from the present neutron diffraction experiments

  19. Fractal aggregation and breakup of fine particles

    Directory of Open Access Journals (Sweden)

    Li Bingru

    2016-01-01

    Full Text Available Breakup may exert a controlling influence on particle size distributions and particles either are fractured or are eroded particle-by-particle through shear. The shear-induced breakage of fine particles in turbulent conditions is investigated using Taylor-expansion moment method. Their equations have been derived in continuous form in terms of the number density function with particle volume. It suitable for future implementation in computational fluid dynamics modeling.

  20. Particle Emissions from Biomass Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Szpila, Aneta; Bohgard, Mats [Lund Inst. of Technology (Sweden). Div. of Ergonomics and Aerosol Technology; Strand, Michael; Lillieblad, Lena; Sanati, Mehri [Vaexjoe Univ. (Sweden). Div. of Bioenergy Technology; Pagels, Joakim; Rissler, Jenny; Swietlicki, Erik; Gharibi, Arash [Lund Univ. (Sweden). Div. of Nuclear Physics

    2003-05-01

    We have shown that high concentrations of fine particles of the order of 2-7x10{sup -7} particles per cm{sup 3} are being formed in all the combustion units studied. There was a higher difference between the units in terms of particle mass concentrations. While the largest differences was found for gas-phase constituents (CO and THC) and polyaromatic hydrocarbons. In 5 out of 7 studied units, multi-cyclones were the only measure for flue-gas separation. The multicyclones had negligible effect on the particle number concentration and a small effect on the mass of particles smaller than 5 {mu}m. The separation efficiency was much higher for the electrostatic precipitators. The boiler load had a dramatic influence on the coarse mode concentration during combustion of forest residue. PM0.8-6 increased from below 5 mg/m{sup 3} to above 50 mg/m{sup 3} even at a moderate change in boiler load from medium to high. A similar but less pronounced trend was found during combustion of dry wood. PM0.8-PM6 increased from 12 to 23 mg/m{sup 3} when the load was changed from low to high. When increasing the load, the primary airflow taken through the grate is increased; this itself may lead to a higher potential of the air stream to carry coarse particles away from the combustion zone. Measurements with APS-instrument with higher time-resolution showed a corresponding increase in coarse mode number concentration with load. Additional factor influencing observed higher concentration of coarse mode during combustion of forest residues, could be relatively high ash content in this type of fuel (2.2 %) in comparison to dry wood (0.3 %) and pellets (0.5 %). With increasing load we also found a decrease in PM1 during combustion of forest residue. Whether this is caused by scavenging of volatilized material by the high coarse mode concentration or a result of a different amount of volatilized material available for formation of fine particles needs to be shown in future studies. The

  1. Higgs Particle: The Origin of Mass

    Science.gov (United States)

    Okada, Yasuhiro

    2007-11-01

    The Higgs particle is a new elementary particle predicted in the Standard Model of the elementary particle physics. It plays a special role in the theory of mass generation of quarks, leptons, and gauge bosons. In this article, theoretical issues on the Higgs mechanism are first discussed, and then experimental prospects on the Higgs particle study at the future collider experiments, LHC and ILC, are reviewed. The Higgs coupling determination is an essential step to establish the mass generation mechanism, which could lead to a deeper understanding of particle physics.

  2. Higgs particle. The origin of mass

    International Nuclear Information System (INIS)

    Okada, Yasuhiro

    2007-01-01

    The Higgs particle is a new elementary particle predicted in the Standard Model of the elementary particle physics. It plays a special role in the theory of mass generation of quarks, leptons, and gauge bosons. In this article, theoretical issues on the Higgs mechanism are first discussed, and then experimental prospects on the Higgs particle study at the future collider experiments. LHC and ILC, are reviewed. The Higgs coupling determination is an essential step to establish the mass generation mechanism, which could lead to a deeper understanding of particle physics. (author)

  3. Discrete element method modeling of the triboelectric charging of polyethylene particles: Can particle size distribution and segregation reduce the charging?

    International Nuclear Information System (INIS)

    Konopka, Ladislav; Kosek, Juraj

    2015-01-01

    Polyethylene particles of various sizes are present in industrial gas-dispersion reactors and downstream processing units. The contact of the particles with a device wall as well as the mutual particle collisions cause electrons on the particle surface to redistribute in the system. The undesirable triboelectric charging results in several operational problems and safety risks in industrial systems, for example in the fluidized-bed polymerization reactor. We studied the charging of polyethylene particles caused by the particle-particle interactions in gas. Our model employs the Discrete Element Method (DEM) describing the particle dynamics and incorporates the ‘Trapped Electron Approach’ as the physical basis for the considered charging mechanism. The model predicts the particle charge distribution for systems with various particle size distributions and various level of segregation. Simulation results are in a qualitative agreement with experimental observations of similar particulate systems specifically in two aspects: 1) Big particles tend to gain positive charge and small particles the negative one. 2) The wider the particle size distribution is, the more pronounced is the charging process. Our results suggest that not only the size distribution, but also the effect of the spatial segregation of the polyethylene particles significantly influence the resulting charge distribution ‘generated’ in the system. The level of particle segregation as well as the particle size distribution of polyethylene particles can be in practice adjusted by the choice of supported catalysts, by the conditions in the fluidized-bed polymerization reactor and by the fluid dynamics. We also attempt to predict how the reactor temperature affects the triboelectric charging of particles. (paper)

  4. What's Next for Particle Physics?

    Science.gov (United States)

    White, Martin

    2017-10-01

    Following the discovery of the Higgs boson in 2012, particle physics has entered its most exciting and crucial period for over 50 years. In this book, I first summarise our current understanding of particle physics, and why this knowledge is almost certainly incomplete. We will then see that the Large Hadron Collider provides the means to search for the next theory of particle physics by performing precise measurements of the Higgs boson, and by looking directly for particles that can solve current cosmic mysteries such as the nature of dark matter. Finally, I will anticipate the next decade of particle physics by placing the Large Hadron Collider within the wider context of other experiments. The results expected over the next ten years promise to transform our understanding of what the Universe is made of and how it came to be.

  5. Method to detect biological particles

    International Nuclear Information System (INIS)

    Giaever, I.

    1976-01-01

    A medical-diagnostic method to detect immunological as well as other specific reactions is described. According to the invention, first reactive particles (e.g. antibodies) are adsorbed on the surface of a solid, non-reactive substrate. The coated substrate is subjected to a solution which one assumes to contain the second biological particles (e.g. antigens) which are specific to the first and form complexes with these. A preferential radioactive labelling (e.g. with iodine 125) of the second biological particle is then directly or indirectly carried out. Clearage follows labelling in order to separate the second biological particles from the first ones. A specific splitting agent can selectively break the bond of both types of particle. The splitting agent solution is finally separated off and its content is investigated for the presence of labelling. (VJ) [de

  6. Optimation of particle size and composition in fabrication of granite particle composite floortiles

    International Nuclear Information System (INIS)

    Budiarto; Parikin; Mohammad-Dani

    2004-01-01

    Granite particle composite floortile materials, that have epoxy matrix, may be utilized as water resist and ductile materials. The utility of composite materials for industrial households is, however, very important and very promising indeed. Starting from powdering the granite refuges into particles of 100, 140 and 200 in mesh, the powder was mixed by epoxy containing versamid hardener and stirred till highly homogenized. Specimens were mould in glass frame and dried in ambient temperature for 48 hours. The specimens were prepared into certain dimensions, conformed to testing needs: hardness, density, compression and bending. The hardness and density data show clearly the value change of particulate composition (34, 40, 50 and 70) and matrix (66, 60, 50 and 30) as well. From bending and compression tests, the optimum grain size (μm) and composition (%) of granite particles reveal between the number of 120-123 and 55-61 respectively. The accurate point of the values can be determined by using differential method. As conclusion, for the better mechanical properties of granite particles composite floortiles, the grains should be 121 in μm and 57% composition of granite particles

  7. Research on bimodal particle extinction coefficient during Brownian coagulation and condensation for the entire particle size regime

    International Nuclear Information System (INIS)

    Tang Hong; Lin Jianzhong

    2011-01-01

    The extinction coefficient of atmospheric aerosol particles influences the earth’s radiation balance directly or indirectly, and it can be determined by the scattering and absorption characteristics of aerosol particles. The problem of estimating the change of extinction coefficient due to time evolution of bimodal particle size distribution is studied, and two improved methods for calculating the Brownian coagulation coefficient and the condensation growth rate are proposed, respectively. Through the improved method based on Otto kernel, the Brownian coagulation coefficient can be expressed simply in powers of particle volume for the entire particle size regime based on the fitted polynomials of the mean enhancement function. Meanwhile, the improved method based on Fuchs–Sutugin kernel is developed to obtain the condensation growth rate for the entire particle size regime. And then, the change of the overall extinction coefficient of bimodal distributions undergoing Brownian coagulation and condensation can be estimated comprehensively for the entire particle size regime. Simulation experiments indicate that the extinction coefficients obtained with the improved methods coincide fairly well with the true values, which provide a simple, reliable, and general method to estimate the change of extinction coefficient for the entire particle size regime during the bimodal particle dynamic processes.

  8. Use of GSR particle analysis program on an analytical SEM to identify sources of emission of airborne particles

    International Nuclear Information System (INIS)

    Chan, Y.C.; Trumper, J.; Bostrom, T.

    2002-01-01

    Full text: High concentrations of airborne particles, in particular PM 10 (particulate matter 10 , but has been little used in Australia for airborne particulates. Two sets of 15 mm PM 10 samples were collected in March and April 2000 from two sites in Brisbane, one within a suburb and one next to an arterial road. The particles were collected directly onto double-sided carbon tapes with a cascade impactor attached to a high-volume PM 10 sampler. The carbon tapes were analysed in a JEOL 840 SEM equipped with a Be-window energy-dispersive X-ray detector and Moran Scientific microanalysis system. An automated Gun Shot Residue (GSR) program was used together with backscattered electron imaging to characterise and analyse individual particulates. About 6,000 particles in total were analysed for each set of impactor samples. Due to limitations of useful pixel size, only particles larger than about 0.5 μm could be analysed. The size, shape and estimated elemental composition (from Na to Pb) of the particles were subjected to non-hierarchical cluster analysis and the characteristics of the clusters were related to their possible sources of emission. Both samples resulted in similar particle clusters. The particles could be classified into three main categories non-spherical (58% of the total number of analysed particles, shape factor >1 1), spherical (15%) and 'carbonaceous' (27%, ie with unexplained % of elemental mass >75%). Non-spherical particles were mainly sea salt and soil particles, and a small amount of iron, lead and mineral dust. The spherical particles were mainly sea salt particles and flyash, and a small amount of iron, lead and secondary sulphate dust. The carbonaceous particles included carbon material mixed with secondary aerosols, roadside dust, sea salt or industrial dust. The arterial road sample also contained more roadside dust and less secondary aerosols than the suburb sample. Current limitations with this method are the minimum particle size

  9. Ionization particle detector

    International Nuclear Information System (INIS)

    Ried, L.

    1982-01-01

    A new device is claimed for detecting particles in a gas. The invention comprises a low cost, easy to assemble, and highly accurate particle detector using a single ionization chamber to contain a reference region and a sensing region. The chamber is designed with the radioactive source near one electrode and the second electrode located at a distance less than the distance of maximum ionization from the radioactive source

  10. Study on effective particle diameters and coolability of particulate beds packed with irregular multi-size particles

    Energy Technology Data Exchange (ETDEWEB)

    Thakre, S.; Ma, W.; Kudinov, P.; Bechta, S. [Royal Institute of Technology, KTH. Div. of Nuclear Power Safety, Stockholm (Sweden)

    2013-08-15

    One of the key questions in severe accident research is the coolability of the debris bed, i.e., whether decay heat can be completely removed by the coolant flow into the debris bed. Extensive experimental and analytical work has been done to substantiate the coolability research. Most of the available experimental data is related to the beds packed with single size (mostly spherical) particles, and less data is available for multi-size/irregular-shape particles. There are several analytical models available, which rely on the mean particle diameter and porosity of the bed in their predictions. Two different types of particles were used to investigate coolability of particulate beds at VTT, Finland. The first type is irregular-shape Aluminum Oxide gravel particles whose sizes vary from 0.25 mm to 10 mm, which were employed in the STYX experiment programme (2001-2008). The second type is spherical beads of Zirconium silicate whose sizes vary between 0.8 mm to 1 mm, which were used in the COOLOCE tests (Takasuo et al., 2012) to study the effect of multi-dimensional flooding on coolability. In the present work, the two types of particles are used in the POMECO-FL and POMECO-HT test facility to obtain their effective particle diameters and dryout heat flux of the beds, respectively. The main idea is to check how the heaters' orientations (vertical in COOLOCE vs. horizontal in POMECO-HT) and diameters (6 mm in COOLOCE vs. 3 mm in POMECO-HT) affect the coolability (dryout heat flux) of the test beds. The tests carried out on the POMECO-FL facility using a bed packed with aluminum oxide gravel particles show the effective particle diameter of the gravel particles is 0.65 mm, by which the frictional pressure gradient can be predicted by the Ergun equation. After the water superficial velocity is higher than 0.0025 m/s, the pressure gradient is underestimated. The effective particle diameter of the zirconium particles is found as 0.8 mm. The dryout heat flux is measured on

  11. Study on effective particle diameters and coolability of particulate beds packed with irregular multi-size particles

    International Nuclear Information System (INIS)

    Thakre, S.; Ma, W.; Kudinov, P.; Bechta, S.

    2013-08-01

    One of the key questions in severe accident research is the coolability of the debris bed, i.e., whether decay heat can be completely removed by the coolant flow into the debris bed. Extensive experimental and analytical work has been done to substantiate the coolability research. Most of the available experimental data is related to the beds packed with single size (mostly spherical) particles, and less data is available for multi-size/irregular-shape particles. There are several analytical models available, which rely on the mean particle diameter and porosity of the bed in their predictions. Two different types of particles were used to investigate coolability of particulate beds at VTT, Finland. The first type is irregular-shape Aluminum Oxide gravel particles whose sizes vary from 0.25 mm to 10 mm, which were employed in the STYX experiment programme (2001-2008). The second type is spherical beads of Zirconium silicate whose sizes vary between 0.8 mm to 1 mm, which were used in the COOLOCE tests (Takasuo et al., 2012) to study the effect of multi-dimensional flooding on coolability. In the present work, the two types of particles are used in the POMECO-FL and POMECO-HT test facility to obtain their effective particle diameters and dryout heat flux of the beds, respectively. The main idea is to check how the heaters' orientations (vertical in COOLOCE vs. horizontal in POMECO-HT) and diameters (6 mm in COOLOCE vs. 3 mm in POMECO-HT) affect the coolability (dryout heat flux) of the test beds. The tests carried out on the POMECO-FL facility using a bed packed with aluminum oxide gravel particles show the effective particle diameter of the gravel particles is 0.65 mm, by which the frictional pressure gradient can be predicted by the Ergun equation. After the water superficial velocity is higher than 0.0025 m/s, the pressure gradient is underestimated. The effective particle diameter of the zirconium particles is found as 0.8 mm. The dryout heat flux is measured on

  12. Transient Liquid Phase Behavior of Sn-Coated Cu Particles and Chip Bonding using Paste Containing the Particles

    Directory of Open Access Journals (Sweden)

    Hwang Jun Ho

    2017-06-01

    Full Text Available Sn-coated Cu particles were prepared as a filler material for transient liquid phase (TLP bonding. The thickness of Sn coating was controlled by controlling the number of plating cycles. The Sn-coated Cu particles best suited for TLP bonding were fabricated by Sn plating thrice, and the particles showed a pronounced endothermic peak at 232°C. The heating of the particles for just 10 s at 250°C destroyed the initial core-shell structure and encouraged the formation of Cu-Sn intermetallic compounds. Further, die bonding was also successfully performed at 250°C under a slight bonding pressure of around 0.1 MPa using a paste containing the particles. The bonding time of 30 s facilitated the bonding of Sn-coated Cu particles to the Au surface and also increased the probability of network formation between particles.

  13. Particles, contacts, bulk behavior

    NARCIS (Netherlands)

    Luding, Stefan; Tomas, J.

    2014-01-01

    Granular matter consists of discrete “particles”. These can be separate sand-grains, agglomerates (made of many primary particles), or solid materials like rock, composites, or metal-alloys—all with particulate inhomogeneous, possibly anisotropic micro-structure. Particles can be as small as

  14. Lagrangian multi-particle statistics

    DEFF Research Database (Denmark)

    Lüthi, Beat; Berg, Jacob; Ott, Søren

    2007-01-01

    Combined measurements of the Lagrangian evolution of particle constellations and the coarse-grained velocity derivative tensor. partial derivative(u) over tilde (i) /partial derivative x(j) are presented. The data are obtained from three-dimensional particle tracking measurements in a quasi isotr...

  15. Visual interrogation of gyrokinetic particle simulations

    International Nuclear Information System (INIS)

    Jones, Chad; Ma, K-L; Sanderson, Allen; Myers, Lee Roy Jr

    2007-01-01

    Gyrokinetic particle simulations are critical to the study of anomalous energy transport associated with plasma microturbulence in magnetic confinement fusion experiments. The simulations are conducted on massively parallel computers and produce large quantities of particles, variables, and time steps, thus presenting a formidable challenge to data analysis tasks. We present two new visualization techniques for scientists to improve their understanding of the time-varying, multivariate particle data. One technique allows scientists to examine correlations in multivariate particle data with tightly coupled views of the data in both physical space and variable space, and to visually identify and track features of interest. The second technique, built into SCIRun, allows scientists to perform range-based queries over a series of time slices and visualize the resulting particles using glyphs. The ability to navigate the multiple dimensions of the particle data, as well as query individual or a collection of particles, enables scientists to not only validate their simulations but also discover new phenomena in their data

  16. Energetic Particles Dynamics in Mercury's Magnetosphere

    Science.gov (United States)

    Walsh, Brian M.; Ryou, A.S.; Sibeck, D. G.; Alexeev, I. I.

    2013-01-01

    We investigate the drift paths of energetic particles in Mercury's magnetosphere by tracing their motion through a model magnetic field. Test particle simulations solving the full Lorentz force show a quasi-trapped energetic particle population that gradient and curvature drift around the planet via "Shabansky" orbits, passing though high latitudes in the compressed dayside by equatorial latitudes on the nightside. Due to their large gyroradii, energetic H+ and Na+ ions will typically collide with the planet or the magnetopause and will not be able to complete a full drift orbit. These simulations provide direct comparison for recent spacecraft measurements from MESSENGER. Mercury's offset dipole results in an asymmetric loss cone and therefore an asymmetry in particle precipitation with more particles precipitating in the southern hemisphere. Since the planet lacks an atmosphere, precipitating particles will collide directly with the surface of the planet. The incident charged particles can kick up neutrals from the surface and have implications for the formation of the exosphere and weathering of the surface

  17. Traffic of indistinguishable particles in complex networks

    International Nuclear Information System (INIS)

    Qing-Kuan, Meng; Jian-Yang, Zhu

    2009-01-01

    In this paper, we apply a simple walk mechanism to the study of the traffic of many indistinguishable particles in complex networks. The network with particles stands for a particle system, and every vertex in the network stands for a quantum state with the corresponding energy determined by the vertex degree. Although the particles are indistinguishable, the quantum states can be distinguished. When the many indistinguishable particles walk randomly in the system for a long enough time and the system reaches dynamic equilibrium, we find that under different restrictive conditions the particle distributions satisfy different forms, including the Bose–Einstein distribution, the Fermi–Dirac distribution and the non-Fermi distribution (as we temporarily call it). As for the Bose–Einstein distribution, we find that only if the particle density is larger than zero, with increasing particle density, do more and more particles condense in the lowest energy level. While the particle density is very low, the particle distribution transforms from the quantum statistical form to the classically statistical form, i.e., transforms from the Bose distribution or the Fermi distribution to the Boltzmann distribution. The numerical results fit well with the analytical predictions

  18. Relativistic ''potential model'' for N-particle systems

    International Nuclear Information System (INIS)

    Noyes, H.P.

    1986-08-01

    Neither quantum field theory nor S-Matrix theory have a well defined procedure for going over to an approximation that can be reliably used in non-relativistic models for nuclear physics. We meet the problem here by constructing a finite particle number relativistic scattering theory for (scalar) particles and mesons using integral equations of the Faddeev-Yakubovsky type. Restricted to N particles and one meson, we can go from the relativistic theory to a ''potential theory'' in the integral equation formulation by using boundary states which do not contain the meson asymptotically. The meson-particle input amplitudes contain a pole at the particle mass, and the particle-particle input amplitudes are null. This gives unique definition (numerically calculable) to the particle-particle off-shell amplitude, and hence to the covariant ''scattering potential'' (but not to the noninvariant concept of ''potential energy''). As we have commented before, if we take these scattering amplitudes as iput for relativistic Faddeev equations, the results are identical to those obtained from the same model starting from three particles and one meson. In this paper we explore how far we can extend this relativistic ''potential model'' to higher numbers of particles and mesons. 10 refs

  19. Search for Hidden Particles

    CERN Multimedia

    Solovev, V

    The SHiP Experiment is a new general-purpose fixed target facility at the SPS to search for hidden particles as predicted by a very large number of recently elaborated models of Hidden Sectors which are capable of accommodating dark matter, neutrino oscillations, and the origin of the full baryon asymmetry in the Universe. Specifically, the experiment is aimed at searching for very weakly interacting long lived particles including Heavy Neutral Leptons - right-handed partners of the active neutrinos; light supersymmetric particles - sgoldstinos, etc.; scalar, axion and vector portals to the hidden sector. The high intensity of the SPS and in particular the large production of charm mesons with the 400 GeV beam allow accessing a wide variety of light long-lived exotic particles of such models and of SUSY. Moreover, the facility is ideally suited to study the interactions of tau neutrinos.

  20. Movement of heavy particles in tornadoes

    Science.gov (United States)

    Ingel, L. Kh.

    2017-07-01

    The horizontal movement of inertial particles in the intensive vortices, where the centrifugal force can be substantially higher than the gravity, is studied analytically. A similar problem was studied earlier for small (Stokes) particles at low Reynolds number, which allow one to be limited to the linear resistance law. It is shown that the previous results to a great extent can be extrapolated to the case of considerably heavier particles (e.g., water droplets with a diameter up to 1 mm at Reynolds numbers up to 103). The nonlinear nature of the resistance, i.e., its dependence on the particle velocity relative to the medium, should be taken into account for such particles. Some general laws are established for particle dynamics. In particular, their tangential velocity is close to the velocity of the medium, while the radial velocity is substantially lower (it is close on the order of magnitude to the geometric mean of the particle tangential velocity and the difference between the latter and the tangential velocity of the medium). The limits of applicability of the results are found, i.e., the restrictions to the size and mass/density of particles.

  1. Direct numerical simulation of fluid-particle heat transfer in fixed random arrays of non-spherical particles

    NARCIS (Netherlands)

    Tavassoli Estahbanati, H.; Peters, E.A.J.F.; Kuipers, J.A.M.

    2015-01-01

    Direct numerical simulations are conducted to characterize the fluid-particle heat transfer coefficient in fixed random arrays of non-spherical particles. The objective of this study is to examine the applicability of well-known heat transfer correlations, that are proposed for spherical particles,

  2. Puzzle of the particles and the universe. The inner life of the elementary particles IX d

    International Nuclear Information System (INIS)

    Geitner, Uwe W.

    2013-01-01

    The series The Inner Life of the Elementary Particles attempts to develop the elementary particles along of a genealogical tree, which begins before the ''big bang''. The simple presentation without mathematics opens also for the interested layman a plastic understanding. Volume IX discusses the known puzzles of particle physics and cosmology and offers for many of them explanation models. Explanation approaches are among others the ''DNA'' of the elementary particles and the interpretation of the quanta and the spin.

  3. DETACHMENT OF BACTERIOPHAGE FROM ITS CARRIER PARTICLES.

    Science.gov (United States)

    Hetler, D M; Bronfenbrenner, J

    1931-05-20

    The active substance (phage) present in the lytic broth filtrate is distributed through the medium in the form of particles. These particles vary in size within broad limits. The average size of these particles as calculated on the basis of the rate of diffusion approximates 4.4 mmicro in radius. Fractionation by means of ultrafiltration permits partial separation of particles of different sizes. Under conditions of experiments here reported the particles varied in the radius size from 0.6 mmicro to 11.4 mmicro. The active agent apparently is not intimately identified with these particles. It is merely carried by them by adsorption, and under suitable experimental conditions it can be detached from the larger particles and redistributed on smaller particles of the medium.

  4. Article coated with flash bonded superhydrophobic particles

    Science.gov (United States)

    Simpson, John T [Clinton, TN; Blue, Craig A [Knoxville, TN; Kiggans, Jr., James O [Oak Ridge, TN

    2010-07-13

    A method of making article having a superhydrophobic surface includes: providing a solid body defining at least one surface; applying to the surface a plurality of diatomaceous earth particles and/or particles characterized by particle sizes ranging from at least 100 nm to about 10 .mu.m, the particles being further characterized by a plurality of nanopores, wherein at least some of the nanopores provide flow through porosity, the particles being further characterized by a plurality of spaced apart nanostructured features that include a contiguous, protrusive material; flash bonding the particles to the surface so that the particles are adherently bonded to the surface; and applying a hydrophobic coating layer to the surface and the particles so that the hydrophobic coating layer conforms to the nanostructured features.

  5. Dynamics of neutral and charged aerosol particles

    Energy Technology Data Exchange (ETDEWEB)

    Leppae, J.

    2012-07-01

    Atmospheric aerosol particles have various climate effects and adverse health effects, which both depend on the size and number concentration of the particles. Freshly-formed particles are not large enough to impact neither health nor climate and they are most susceptible to removal by collisions with larger pre-existing particles. Consequently, the knowledge of both the formation and the growth rate of particles are crucially important when assessing the health and climate effects of atmospheric new particle formation. The purpose of this thesis is to increase our knowledge of the dynamics of neutral and charged aerosol particles with a specific interest towards the particle growth rate and processes affecting the aerosol charging state. A new model, Ion-UHMA, which simulates the dynamics of neutral and charged particles, was developed for this purpose. Simple analytical formulae that can be used to estimate the growth rate due to various processes were derived and used to study the effects of charged particles on the growth rate. It was found that the growth rate of a freshly-formed particle population due to condensation and coagulation could be significantly increased when a considerable fraction of the particles are charged. Finally, recent data-analysis methods that have been applied to the aerosol charging states obtained from the measurements were modified for a charge asymmetric framework. The methods were then tested on data obtained from aerosol dynamics simulations. The methods were found to be able to provide reasonable estimates on the growth rate and proportion of particles formed via ion-induced nucleation, provided that the growth rate is high enough and that the charged particles do not grow much more rapidly than the neutral ones. A simple procedure for estimating whether the methods are suitable for analysing data obtained in specific conditions was provided. In this thesis, the dynamics of neutral and charged aerosol particles were studied in

  6. Modeling of particle agglomeration in nanofluids

    International Nuclear Information System (INIS)

    Krishna, K. Hari; Neti, S.; Oztekin, A.; Mohapatra, S.

    2015-01-01

    Agglomeration strongly influences the stability or shelf life of nanofluid. The present computational and experimental study investigates the rate of agglomeration quantitatively. Agglomeration in nanofluids is attributed to the net effect of various inter-particle interaction forces. For the nanofluid considered here, a net inter-particle force depends on the particle size, volume fraction, pH, and electrolyte concentration. A solution of the discretized and coupled population balance equations can yield particle sizes as a function of time. Nanofluid prepared here consists of alumina nanoparticles with the average particle size of 150 nm dispersed in de-ionized water. As the pH of the colloid was moved towards the isoelectric point of alumina nanofluids, the rate of increase of average particle size increased with time due to lower net positive charge on particles. The rate at which the average particle size is increased is predicted and measured for different electrolyte concentration and volume fraction. The higher rate of agglomeration is attributed to the decrease in the electrostatic double layer repulsion forces. The rate of agglomeration decreases due to increase in the size of nano-particle clusters thus approaching zero rate of agglomeration when all the clusters are nearly uniform in size. Predicted rates of agglomeration agree adequate enough with the measured values; validating the mathematical model and numerical approach is employed

  7. Experimental techniques in nuclear and particle physics

    CERN Document Server

    Tavernier, Stefaan

    2009-01-01

    The book is based on a course in nuclear and particle physics that the author has taught over many years to physics students, students in nuclear engineering and students in biomedical engineering. It provides the basic understanding that any student or researcher using such instruments and techniques should have about the subject. After an introduction to the structure of matter at the subatomic scale, it covers the experimental aspects of nuclear and particle physics. Ideally complementing a theoretically-oriented textbook on nuclear physics and/or particle physics, it introduces the reader to the different techniques used in nuclear and particle physics to accelerate particles and to measurement techniques (detectors) in nuclear and particle physics. The main subjects treated are: interactions of subatomic particles in matter; particle accelerators; basics of different types of detectors; and nuclear electronics. The book will be of interest to undergraduates, graduates and researchers in both particle and...

  8. Particle growth kinetics over the Amazon rainforest

    Science.gov (United States)

    Pinterich, T.; Andreae, M. O.; Artaxo, P.; Kuang, C.; Longo, K.; Machado, L.; Manzi, A. O.; Martin, S. T.; Mei, F.; Pöhlker, C.; Pöhlker, M. L.; Poeschl, U.; Shilling, J. E.; Shiraiwa, M.; Tomlinson, J. M.; Zaveri, R. A.; Wang, J.

    2016-12-01

    Aerosol particles larger than 100 nm play a key role in global climate by acting as cloud condensation nuclei (CCN). Most of these particles, originated from new particle formation or directly emitted into the atmospheric, are initially too small to serve as CCN. These small particles grow to CCN size mainly through condensation of secondary species. In one extreme, the growth is dictated by kinetic condensation of very low-volatility compounds, favoring the growth of the smallest particles; in the other extreme, the process is driven by Raoult's law-based equilibrium partitioning of semi-volatile organic compound, favoring the growth of larger particles. These two mechanisms can lead to very different production rates of CCN. The growth of particles depends on a number of parameters, including the volatility of condensing species, particle phase, and diffusivity inside the particles, and this process is not well understood in part due to lack of ambient data. Here we examine atmospheric particle growth using high-resolution size distributions measured onboard the DOE G-1 aircraft during GoAmazon campaign, which took place from January 2014 to December 2015 near Manaus, Brazil, a city surrounded by natural forest for over 1000 km in every direction. City plumes are clearly identified by the strong enhancement of nucleation and Aitken mode particle concentrations over the clean background. As the plume traveled downwind, particle growth was observed, and is attributed to condensation of secondary species and coagulation (Fig.1). Observed aerosol growth is modeled using MOSAIC (Model for Simulating Aerosol Interactions and Chemistry), which dynamically partitions multiple compounds to all particle size bins by taking into account compound volatility, gas-phase diffusion, interfacial mass accommodation, particle-phase diffusion, and particle-phase reaction. The results from both wet and dry seasons will be discussed.

  9. Simulation of halo particles with Simpsons

    International Nuclear Information System (INIS)

    Machida, Shinji

    2003-01-01

    Recent code improvements and some simulation results of halo particles with Simpsons will be presented. We tried to identify resonance behavior of halo particles by looking at tune evolution of individual macro particle

  10. Simulation of halo particles with Simpsons

    Science.gov (United States)

    Machida, Shinji

    2003-12-01

    Recent code improvements and some simulation results of halo particles with Simpsons will be presented. We tried to identify resonance behavior of halo particles by looking at tune evolution of individual macro particle.

  11. Toward automated analysis of particle holograms

    Science.gov (United States)

    Caulfield, H. J.

    1987-01-01

    A preliminary study of approaches for extracting and analyzing data from particle holograms is discussed. It concludes that: (1) for thin spherical particles, out-of-focus methods are optimum; (2) for thin nonspherical particles, out-of-focus methods are useful but must be supplemented by in-focus methods; (3) a complex method of projection and back projection can remove out-of-focus data for deep particles.

  12. Visualization of particle in cell simulation

    International Nuclear Information System (INIS)

    Chen Ming; Cheng Yinhui

    2003-01-01

    This paper is trying to provide a new technique of the visualization for the Particle In Cell simulation, which takes effect by using the MATLAB external interface, so the real-time obsevation of particles came easier and more efficient. With this method, state of the particles, considered as 'particle cloud' can be found in the image produced automatically and their movement can be predicted. (authors)

  13. Morphological Evolution of Block Copolymer Particles: Effect of Solvent Evaporation Rate on Particle Shape and Morphology.

    Science.gov (United States)

    Shin, Jae Man; Kim, YongJoo; Yun, Hongseok; Yi, Gi-Ra; Kim, Bumjoon J

    2017-02-28

    Shape and morphology of polymeric particles are of great importance in controlling their optical properties or self-assembly into unusual superstructures. Confinement of block copolymers (BCPs) in evaporative emulsions affords particles with diverse structures, including prolate ellipsoids, onion-like spheres, oblate ellipsoids, and others. Herein, we report that the evaporation rate of solvent from emulsions encapsulating symmetric polystyrene-b-polybutadiene (PS-b-PB) determines the shape and internal nanostructure of micron-sized BCP particles. A distinct morphological transition from the ellipsoids with striped lamellae to the onion-like spheres was observed with decreasing evaporation rate. Experiments and dissipative particle dynamics (DPD) simulations showed that the evaporation rate affected the organization of BCPs at the particle surface, which determined the final shape and internal nanostructure of the particles. Differences in the solvent diffusion rates in PS and PB at rapid evaporation rates induced alignment of both domains perpendicular to the particle surface, resulting in ellipsoids with axial lamellar stripes. Slower evaporation rates provided sufficient time for BCP organization into onion-like structures with PB as the outermost layer, owing to the preferential interaction of PB with the surroundings. BCP molecular weight was found to influence the critical evaporation rate corresponding to the morphological transition from ellipsoid to onion-like particles, as well as the ellipsoid aspect ratio. DPD simulations produced morphologies similar to those obtained from experiments and thus elucidated the mechanism and driving forces responsible for the evaporation-induced assembly of BCPs into particles with well-defined shapes and morphologies.

  14. Method for producing ceramic particles and agglomerates

    Science.gov (United States)

    Phillips, Jonathan; Gleiman, Seth S.; Chen, Chun-Ku

    2001-01-01

    A method for generating spherical and irregularly shaped dense particles of ceramic oxides having a controlled particle size and particle size distribution. An aerosol containing precursor particles of oxide ceramics is directed into a plasma. As the particles flow through the hot zone of the plasma, they melt, collide, and join to form larger particles. If these larger particles remain in the hot zone, they continue melting and acquire a spherical shape that is retained after they exit the hot zone, cool down, and solidify. If they exit the hot zone before melting completely, their irregular shape persists and agglomerates are produced. The size and size distribution of the dense product particles can be controlled by adjusting several parameters, the most important in the case of powder precursors appears to be the density of powder in the aerosol stream that enters the plasma hot zone. This suggests that particle collision rate is responsible for determining ultimate size of the resulting sphere or agglomerate. Other parameters, particularly the gas flow rates and the microwave power, are also adjusted to control the particle size distribution.

  15. When is a particle

    International Nuclear Information System (INIS)

    Drell, S.D.

    1978-01-01

    The concept of elementary constituents or ultimate building blocks of nature in recent years is reviewed. The quark hypothesis, neutrinos, color, hard collisions, psi and other recent resonances, flavor, quantum chromodynamics, the tau particle, and particle structure are among the ideas considered. 22 references

  16. Microchip Coulter particle counter

    DEFF Research Database (Denmark)

    Larsen, Ulrik Darling; Blankenstein, Gert; Branebjerg, J.

    1997-01-01

    This paper presents a micro device employing the Coulter principle for counting and sizing of living cells and particles in liquid suspension. The microchip Coulter particle counter (μCPC) has been employed in a planar silicon structure covered with glass, which enables detailed observation during...

  17. Scattering of light by nonspherical particles

    International Nuclear Information System (INIS)

    Coulson, K.L.

    1985-12-01

    Methods of computing scattering by non-spherical particles are reviewed for the Mie theory, the Rayleigh-Gans approximation, the geometric optics method, the extended boundary condition method, the anamalous diffraction, the suppression of resonances, the statistical approach, the expansion of vector wave equations in spheroidal coordinates, and the semi-emperical theory of Pollack and Cuzzi. The results of computations for nonspherical particles are compared for prolate and oblate spheroids, homogeneous sphere with holes, rough particles made of stacked cylinders, irregular particles of various shapes, and particles of carbonaceous smokes. Conclusions are presented in the context of nuclear winter

  18. Filtration of submicrometer particles by pelagic tunicates.

    Science.gov (United States)

    Sutherland, Kelly R; Madin, Laurence P; Stocker, Roman

    2010-08-24

    Salps are common in oceanic waters and have higher per-individual filtration rates than any other zooplankton filter feeder. Although salps are centimeters in length, feeding via particle capture occurs on a fine, mucous mesh (fiber diameter d approximately 0.1 microm) at low velocity (U = 1.6 +/- 0.6 cmxs(-1), mean +/- SD) and is thus a low Reynolds-number (Re approximately 10(-3)) process. In contrast to the current view that particle encounter is dictated by simple sieving of particles larger than the mesh spacing, a low-Re mathematical model of encounter rates by the salp feeding apparatus for realistic oceanic particle-size distributions shows that submicron particles, due to their higher abundances, are encountered at higher rates (particles per time) than larger particles. Data from feeding experiments with 0.5-, 1-, and 3-microm diameter polystyrene spheres corroborate these findings. Although particles larger than 1 microm (e.g., flagellates, small diatoms) represent a larger carbon pool, smaller particles in the 0.1- to 1-microm range (e.g., bacteria, Prochlorococcus) may be more quickly digestible because they present more surface area, and we find that particles smaller than the mesh size (1.4 microm) can fully satisfy salp energetic needs. Furthermore, by packaging submicrometer particles into rapidly sinking fecal pellets, pelagic tunicates can substantially change particle-size spectra and increase downward fluxes in the ocean.

  19. Sources for charged particles

    International Nuclear Information System (INIS)

    Arianer, J.

    1997-01-01

    This document is a basic course on charged particle sources for post-graduate students and thematic schools on large facilities and accelerator physics. A simple but precise description of the creation and the emission of charged particles is presented. This course relies on every year upgraded reference documents. Following relevant topics are considered: electronic emission processes, technological and practical considerations on electron guns, positron sources, production of neutral atoms, ionization, plasma and discharge, different types of positive and negative ion sources, polarized particle sources, materials for the construction of ion sources, low energy beam production and transport. (N.T.)

  20. Particle analysis on concentrated particle suspensions by transmission fluctuation spectrometry with band-pass filters: part 2. Experimental results

    International Nuclear Information System (INIS)

    Xu, Yamin; Shen, Jianqi; Cai, Xiaoshu; Riebel, Ulrich

    2010-01-01

    Transmission fluctuation spectrometry (TFS), as a new method of online and real-time particle analysis developed in recent years, can measure the particle size distribution and particle concentration simultaneously. In the preceding paper, high concentration effects on the TFS using band-pass filters were investigated by numerical simulation, and empirical expressions to correct the effects were obtained. This paper presents a study on the TFS measurements in which the particle concentration varies in a very wide dynamic range. Finally, reasonable results on both the particle size distribution and particle concentration are obtained by introducing empirical corrections into the inversion algorithm

  1. A study on the particle penetration in RMS Right Single Quotation Marks particle transport system

    International Nuclear Information System (INIS)

    Son, S. M.; Oh, S. H.; Choi, C. R.

    2014-01-01

    In nuclear facilities, a radiation monitoring system (RMS) monitors the exhaust gas containing the radioactive material. Samples of exhaust gas are collected in the downstream region of air cleaning units (ACUs) in order to examine radioactive materials. It is possible to predict an amount of radioactive material by analyzing the corrected samples. Representation of the collected samples should be assured in order to accurately sense and measure of radioactive materials. The radius of curvature is mainly 5 times of tube diameter. Sometimes, a booster fan is additionally added to enhance particle penetration rate... In this study, particle penetrations are calculated to evaluate particle penetration rate with various design parameters (tube lengths, tube declined angles, radius of curvatures, etc). The particle penetration rates have been calculated for several elements in the particle transport system. In general, the horizontal length of tube and the number of bending tube have a big impact on the penetration rate in the particle transport system. If the sampling location is far from the radiation monitoring system, additional installation of booster fans could be considered in case of large diameter tubes, but is not recommended in case of small diameter tube. In order to enhance particle penetration rate, the following works are recommended by priority. 1) to reduce the interval between sampling location and radiation monitoring system 2) to reduce the number of the bending tube

  2. Particle physics and cosmology

    International Nuclear Information System (INIS)

    Kolb, E.W.

    1986-10-01

    This series of lectures is about the role of particle physics in physical processes that occurred in the very early stages of the bug gang. Of particular interest is the role of particle physics in determining the evolution of the early Universe, and the effect of particle physics on the present structure of the Universe. The use of the big bang as a laboratory for placing limits on new particle physics theories will also be discussed. Section 1 reviews the standard cosmology, including primordial nucleosynthesis. Section 2 reviews the decoupling of weakly interacting particles in the early Universe, and discusses neutrino cosmology and the resulting limits that may be placed on the mass and lifetime of massive neutrinos. Section 3 discusses the evolution of the vacuum through phase transitions in the early Universe and the formation of topological defects in the transitions. Section 4 covers recent work on the generation of the baryon asymmetry by baryon-number violating reactions in Grand Unified Theories, and mentions some recent work on baryon number violation effects at the electroweak transition. Section 5 is devoted to theories of cosmic inflation. Finally, Section 6 is a discussion of the role of extra spatial dimensions in the evolution of the early Universe. 78 refs., 32 figs., 6 tabs

  3. God particle and origin of mass

    International Nuclear Information System (INIS)

    He Hongjian; Kuang Yuping

    2014-01-01

    The new Higgs boson discovered at the CERN LHC could be the God particle expected from the standard model. This revolutionary discovery opens up a new era of exploring the origin of masses for all elementary particles in the universe. It becomes a turning point of the particle physics in 21 th century. This article presents the following: (1) Scientific importance of searching and testing the God particle(s); (2) The history of studying the origin of mass, and why Newton mechanics and Einstein relativity could not resolve the origin of mass; (3) The mysterious vacuum and the mechanism of spontaneous symmetry breaking; (4) How the God particle was invented and how the LHC might have discovered it; (5) The perspective of seeking the origin of mass and new physics laws. (authors)

  4. Particle physics

    CERN Document Server

    Martin, Brian R

    2017-01-01

    An accessible and carefully structured introduction to Particle Physics, including important coverage of the Higgs Boson and recent progress in neutrino physics. Fourth edition of this successful title in the Manchester Physics series. Includes information on recent key discoveries including : An account of the discovery of exotic hadrons, beyond the simple quark model; Expanded treatments of neutrino physics and CP violation in B-decays; An updated account of ‘physics beyond the standard model’, including the interaction of particle physics with cosmology; Additional problems in all chapters, with solutions to selected problems available on the book’s website; Advanced material appears in optional starred sections.

  5. Particle transport in porous media

    Science.gov (United States)

    Corapcioglu, M. Yavuz; Hunt, James R.

    The migration and capture of particles (such as colloidal materials and microorganisms) through porous media occur in fields as diversified as water and wastewater treatment, well drilling, and various liquid-solid separation processes. In liquid waste disposal projects, suspended solids can cause the injection well to become clogged, and groundwater quality can be endangered by suspended clay and silt particles because of migration to the formation adjacent to the well bore. In addition to reducing the permeability of the soil, mobile particles can carry groundwater contaminants adsorbed onto their surfaces. Furthermore, as in the case of contamination from septic tanks, the particles themselves may be pathogens, i.e., bacteria and viruses.

  6. Study of particle swarm optimization particle trajectories

    CSIR Research Space (South Africa)

    Van den Bergh, F

    2006-01-01

    Full Text Available . These theoretical studies concentrate mainly on simplified PSO systems. This paper overviews current theoretical studies, and extend these studies to investigate particle trajectories for general swarms to include the influence of the inertia term. The paper also...

  7. Numerical investigation of the influence of particle-particle and particle-wall collisions in turbulent wall-bounded flows at high mass loadings

    International Nuclear Information System (INIS)

    Alletto, Michael

    2014-01-01

    The present work deals with the simulation of turbulent particle-laden flows at high mass loadings. In order to achieve this goal, the fluid flow is described by means of the eddy-resolving concept known as Large-Eddy Simulation (LES) and the particles are described in a Lagrangian frame of reference. Special emphasis is placed on the interparticle collisions and the impact of solid particles on rough walls. Both mechanisms are shown to be crucial for the correct description of the particle dynamics in wall-bounded flows. In order to distinguish the present methodology from the variety of methods available in the literature to treat turbulent flows laden with solid particles, the thesis starts with an overview of different simulation techniques to calculate this class of flows. In this overview special care is taken to underline the parameter space, where the different simulation methods are valid. After that, the governing equations and the boundary conditions applied for the continuous phase of the Euler-Lagrange approach used in the present thesis are given. In the subsequent section the governing equations for the solid particles and their interaction with smooth and rough walls are discussed. Here a new wall roughness model for the particles which incorporates an amplitude parameter used in technical applications such as the mean roughness height or the root-mean-squared roughness is presented. After that, the coupling mechanisms between the phases and the algorithmic realization are discussed. Furthermore, a new agglomeration model capable to treat interparticle collisions with friction is presented. However, the agglomeration model is not evaluated in such a detail as the interparticle collisions and the particle-wall collisions. The reason is that it does not represent a central aspect of this thesis. The numerical methods for the continuous and the disperse phase are presented in the subsequent section. The efficient algorithm to detect the interparticle

  8. Numerical investigation of the influence of particle-particle and particle-wall collisions in turbulent wall-bounded flows at high mass loadings

    Energy Technology Data Exchange (ETDEWEB)

    Alletto, Michael

    2014-05-16

    The present work deals with the simulation of turbulent particle-laden flows at high mass loadings. In order to achieve this goal, the fluid flow is described by means of the eddy-resolving concept known as Large-Eddy Simulation (LES) and the particles are described in a Lagrangian frame of reference. Special emphasis is placed on the interparticle collisions and the impact of solid particles on rough walls. Both mechanisms are shown to be crucial for the correct description of the particle dynamics in wall-bounded flows. In order to distinguish the present methodology from the variety of methods available in the literature to treat turbulent flows laden with solid particles, the thesis starts with an overview of different simulation techniques to calculate this class of flows. In this overview special care is taken to underline the parameter space, where the different simulation methods are valid. After that, the governing equations and the boundary conditions applied for the continuous phase of the Euler-Lagrange approach used in the present thesis are given. In the subsequent section the governing equations for the solid particles and their interaction with smooth and rough walls are discussed. Here a new wall roughness model for the particles which incorporates an amplitude parameter used in technical applications such as the mean roughness height or the root-mean-squared roughness is presented. After that, the coupling mechanisms between the phases and the algorithmic realization are discussed. Furthermore, a new agglomeration model capable to treat interparticle collisions with friction is presented. However, the agglomeration model is not evaluated in such a detail as the interparticle collisions and the particle-wall collisions. The reason is that it does not represent a central aspect of this thesis. The numerical methods for the continuous and the disperse phase are presented in the subsequent section. The efficient algorithm to detect the interparticle

  9. Visualizing Ebolavirus Particles Using Single-Particle Interferometric Reflectance Imaging Sensor (SP-IRIS).

    Science.gov (United States)

    Carter, Erik P; Seymour, Elif Ç; Scherr, Steven M; Daaboul, George G; Freedman, David S; Selim Ünlü, M; Connor, John H

    2017-01-01

    This chapter describes an approach for the label-free imaging and quantification of intact Ebola virus (EBOV) and EBOV viruslike particles (VLPs) using a light microscopy technique. In this technique, individual virus particles are captured onto a silicon chip that has been printed with spots of virus-specific capture antibodies. These captured virions are then detected using an optical approach called interference reflectance imaging. This approach allows for the detection of each virus particle that is captured on an antibody spot and can resolve the filamentous structure of EBOV VLPs without the need for electron microscopy. Capture of VLPs and virions can be done from a variety of sample types ranging from tissue culture medium to blood. The technique also allows automated quantitative analysis of the number of virions captured. This can be used to identify the virus concentration in an unknown sample. In addition, this technique offers the opportunity to easily image virions captured from native solutions without the need for additional labeling approaches while offering a means of assessing the range of particle sizes and morphologies in a quantitative manner.

  10. Learning Particle Physics with DIY Play Dough Model

    Science.gov (United States)

    Thunyaniti, T.; Toedtanya, K.; Wuttiprom, S.

    2017-09-01

    The scientists once believed an atom was the smallest particle, nothing was smaller than this tiny particle. Later, they discovered an atom which consists of protons, neutrons and electrons, and they believed that these particles cannot be broken into the smaller particles. According to advanced technology, the scientists have discovered these particles are consisted of a smaller particles. The new particles are called quarks leptons and bosons which we called fundamental particle. Atomic structure cannot be observed directly, so it is complicated for studying these particles. To help the students get more understanding of its properties, so the researcher develops the learning pattern of fundamental particles from Play Dough Model for high school to graduate students. Four step of learning are 1) to introduces the concept of the fundamental particles discovery 2) to play the Happy Families game by using fundamental particles cards 3) to design and make their particle in a way that reflects its properties 4) to represents their particles from Play Dough Model. After doing activities, the students had more conceptual understanding and better memorability on fundamental particles. In addition, the students gained collaborative working experience among their friends also.

  11. Electrodeposition of nickel particles and their characterization

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, G. T. [Centro de Investigacion en Quimica Aplicada, Laboratorio de Microscopia. Blvd. Enrique Reyna No. 140, Saltillo 25253, Coahuila (Mexico); Zavala, G.; Videa, M. [ITESM, Campus Monterrey, Depto. de Fisica, Av. Garza Sada 2501 Sur, Monterrey 64849, N. L. (Mexico)], e-mail: gtadeo@ciqa.mx

    2009-07-01

    Electrodeposition of nickel particles on ITO substrates is achieved by current pulse reduction. A comparison between potential pulse and current pulse experiments presents differences in particle size and particle size distribution. The latter shows smaller particle size dispersion than what is found with potential pulses. Characterization of the particles carried out by Atomic Force Microscopy shows particles with average sizes between 100 to 300 nm. Magnetic characterization by Magnetic Force Microscopy and SQUID shows that particles of {approx} 300 nm were ferromagnetic with a coercive field of 200 Oe and a saturation magnetization of 40 x 10{sup -6} emu at 300 K. (Author)

  12. Single particle dynamics

    International Nuclear Information System (INIS)

    Siemens, P.J.; Jensen, A.S.

    1985-01-01

    It is shown that the opening of the 3-quasiparticle continuum at 3Δ sets the energy scale for the enhancement of the effective mass near the Fermi surface of nuclei. The authors argue that the spreading width of single-particle states due to coupling with low-lying collective modes is qualitatively different from the two-body collision mechanism, and contributes little to the single-particle lifetime in the sense of the optical model. (orig.)

  13. Shape evolution of a melting nonspherical particle

    Science.gov (United States)

    Kintea, Daniel M.; Hauk, Tobias; Roisman, Ilia V.; Tropea, Cameron

    2015-09-01

    In this study melting of irregular ice crystals was observed in an acoustic levitator. The evolution of the particle shape is captured using a high-speed video system. Several typical phenomena have been discovered: change of the particle shape, appearance of a capillary flow of the melted liquid on the particle surface leading to liquid collection at the particle midsection (where the interface curvature is smallest), and appearance of sharp cusps at the particle tips. No such phenomena can be observed during melting of spherical particles. An approximate theoretical model is developed which accounts for the main physical phenomena associated with melting of an irregular particle. The agreement between the theoretical predictions for the melting time, for the evolution of the particle shape, and the corresponding experimental data is rather good.

  14. Wave-Particle Dualism in Action

    Science.gov (United States)

    Schleich, Wolfgang P.

    The wave-particle dualism, that is the wave nature of particles and the particle nature of light together with the uncertainty relation of Werner Heisenberg and the principle of complementarity formulated by Niels Bohr represent pillars of quantum theory. We provide an introduction into these fascinating yet strange aspects of the microscopic world and summarize key experiments confirming these concepts so alien to our daily life.

  15. Requirements and specifications for a particle database

    International Nuclear Information System (INIS)

    2015-01-01

    One of the tasks of WPEC Subgroup 38 (SG38) is to design a database structure for storing the particle information needed for nuclear reaction databases and transport codes. Since the same particle may appear many times in a reaction database (produced by many different reactions on different targets), one of the long-term goals for SG38 is to move towards a central database of particle information to reduce redundancy and ensure consistency among evaluations. The database structure must be general enough to describe all relevant particles and their properties, including mass, charge, spin and parity, half-life, decay properties, and so on. Furthermore, it must be broad enough to handle not only excited nuclear states but also excited atomic states that can de-excite through atomic relaxation. Databases built with this hierarchy will serve as central repositories for particle information that can be linked to from codes and other databases. It is hoped that the final product is general enough for use in other projects besides SG38. While this is called a 'particle database', the definition of a particle (as described in Section 2) is very broad. The database must describe nucleons, nuclei, excited nuclear states (and possibly atomic states) in addition to fundamental particles like photons, electrons, muons, etc. Under this definition the list of possible particles becomes quite large. To help organize them the database will need a way of grouping related particles (e.g., all the isotopes of an element, or all the excited levels of an isotope) together into particle 'groups'. The database will also need a way to classify particles that belong to the same 'family' (such as 'leptons', 'baryons', etc.). Each family of particles may have special requirements as to what properties are required. One important function of the particle database will be to provide an easy way for codes and external databases to look up any particle stored inside. In order to make access as

  16. Interaction and deformation of viscoelastic particles: Nonadhesive particles

    International Nuclear Information System (INIS)

    Attard, Phil

    2001-01-01

    A viscoelastic theory is formulated for the deformation of particles that interact with finite-ranged surface forces. The theory generalizes the static approach based upon classic continuum elasticity theory to account for time-dependent effects, and goes beyond contact theories such as Hertz and that given by Johnson, Kendall, and Roberts by including realistic surface interactions. Common devices used to measure load and deformation are modeled and the theory takes into account the driving velocity of the apparatus and the relaxation time of the material. Nonadhesive particles are modeled by an electric double layer repulsion. Triangular, step, and sinusoidal trajectories are analyzed in a unified treatment of loading and unloading. The load-deformation and the load-contact area curves are shown to be velocity dependent and hysteretic

  17. Inverse problem for particle size distributions of atmospheric aerosols using stochastic particle swarm optimization

    International Nuclear Information System (INIS)

    Yuan Yuan; Yi Hongliang; Shuai Yong; Wang Fuqiang; Tan Heping

    2010-01-01

    As a part of resolving optical properties in atmosphere radiative transfer calculations, this paper focuses on obtaining aerosol optical thicknesses (AOTs) in the visible and near infrared wave band through indirect method by gleaning the values of aerosol particle size distribution parameters. Although various inverse techniques have been applied to obtain values for these parameters, we choose a stochastic particle swarm optimization (SPSO) algorithm to perform an inverse calculation. Computational performances of different inverse methods are investigated and the influence of swarm size on the inverse problem of computation particles is examined. Next, computational efficiencies of various particle size distributions and the influences of the measured errors on computational accuracy are compared. Finally, we recover particle size distributions for atmospheric aerosols over Beijing using the measured AOT data (at wavelengths λ=0.400, 0.690, 0.870, and 1.020 μm) obtained from AERONET at different times and then calculate other AOT values for this band based on the inverse results. With calculations agreeing with measured data, the SPSO algorithm shows good practicability.

  18. The search for fractional charge elemental particles and very massive particles in bulk matter

    International Nuclear Information System (INIS)

    Perl, M.

    2000-01-01

    The authors describe their ongoing work on, and future plans for, searches in bulk matter for fractional charge elementary particles and very massive elementary particles. Their primary interest is in searching for such particles that may have been produced in the early universe and may be found in the more primeval matter available in the solar system: meteorites, material from the moon's surface, and certain types of ancient terrestrial rocks. In the future the authors are interested in examining material brought back by sample return probes from asteroids. The authors will describe their experimental methods that are based on new modifications of the Millikan liquid drop technique and modern technology: micromachining, CCD cameras, and desktop computers. Extensions of the experimental methods and technology allow searches for very massive charged particles in primeval matter; particles with masses greater than 1,013 GeV. In the first such searches carried out on earth there will be uncertainties in the mass search range. Therefore the authors will also discuss the advantages of eventually carrying out such searches directly on an asteroid

  19. Test-particle motion in Einstein's unified field theory. III. Magnetic monopoles and charged particles

    International Nuclear Information System (INIS)

    Johnson, C.R.

    1986-01-01

    In a previous paper (paper I), we developed a method for finding the exact equations of structure and motion of multipole test particles in Einstein's unified field theory: the theory of the nonsymmetric field. In that paper we also applied the method and found in Einstein's unified field theory the equations of structure and motion of neutral pole-dipole test particles possessing no electromagnetic multipole moments. In a second paper (paper II), we applied the method and found in Einstein's unified field theory the exact equations of structure and motion of charged test particles possessing no magnetic monopole moments. In the present paper (paper III), we apply the method and find in Einstein's unified field theory the exact equations of structure and motion of charged test particles possessing magnetic monopole moments. It follows from the form of these equations of structure and motion that in general in Einstein's unified field theory a test particle possessing a magnetic monopole moment in a background electromagnetic field must also possess spin

  20. Research in particle theory

    International Nuclear Information System (INIS)

    Mansouri, F.; Suranyi, P; Wijewardhana, L.C.R.

    1991-10-01

    In the test particle approximation, the scattering amplitude for two-particle scattering in (2+1)-dimensional Chern-Simons-Witten gravity and supergravity was computed and compared to the corresponding metric solutions. The formalism was then extended to the exact gauge theoretic treatment of the two-particle scattering problem and compared to 't Hooft's results from the metric approach. We have studied dynamical symmetry breaking in 2+1 dimensional field theories. We have analyzed strong Extended Technicolor (ETC) models where the ETC coupling is close to a critical value. There are effective scalar fields in each of the theories. We have worked our how such scalar particles can be produced and how they decay. The φ 4 field theory was investigated in the Schrodinger representation. The critical behavior was extracted in an arbitrary number of dimensions in second order of a systematic truncation approximation. The correlation exponent agrees with known values within a few percent

  1. Real-Time Penetrating Particle Analyzer (PAN)

    Science.gov (United States)

    Wu, X.; Ambrosi, G.; Bertucci, B.

    2018-02-01

    The PAN can measure penetrating particles with great precision to study energetic particles, solar activities, and the origin and propagation of cosmic rays. The real-time monitoring of penetrating particles is crucial for deep space human travel.

  2. Online Particle Physics Information - Education Sites

    Science.gov (United States)

    SLAC Online Particle Physics Information Particle Data Group Particle Physics Education Sites General Sites Background Knowledge Physics Lessons & Activities Astronomy Lessons & Activities Ask -A-Scientist Experiments, Demos and Fun Physics History & Diversity Art in Physics General Sites

  3. What is a truly neutral particle?

    International Nuclear Information System (INIS)

    Tsan, Ung Chan

    2004-01-01

    An electrically charged particle is necessarily different from its antiparticle while an electrically neutral particle is either identical with or different from its antiparticle. A truly neutral particle is a particle identical to its antiparticle, which means that all its algebraic intrinsic properties are equal to zero since particle and antiparticle have all their algebraic intrinsic properties opposite. We propose two complementary methods to recognize the true nature of any electrically neutral particle. On the one hand, any non-null algebraic intrinsic property of a particle (properties such as Q, magnetic moment already known from classical physics, or quantum numbers such as baryonic number A, lepton number L or flavors, which are meaningful only in the quantum world) reveals that it is distinct from its antiparticle. On the other hand, any particle decaying through a self-conjugate channel or/and through both two conjugate channels is a truly neutral particle implying then that all algebraic intrinsic properties, known or yet unknown, of this particle are null. According to these methods, the neutrino, like any fermion, cannot be its own antiparticle, so neutrinoless double beta decay cannot take place in nature. We point out the internal contradiction required by the existence of hypothetical neutrinoless double beta decay. We suggest that persistent failure to find experimental evidence for this decay mechanism despite huge efforts dedicated to this aim is consistent with the physics of this process. The immediate consequence would be that limits of neutrino mass deduced from neutrinoless double beta decay cannot be used as constraints in contrast with mass limits deduced from the behavior of the end-point in simple beta spectra. (author)

  4. Hadron and photon production of J particles and the origin of J particles

    International Nuclear Information System (INIS)

    Ting, S.C.C.

    1975-01-01

    Discovery of the J particles (psi-3105 and psi-3695) is detailed. A few experiments on the production of J particles are described, emphasizing photoproduction of J's by photons and hadrons. Finally, current theoretical attempts at explaining their origin are outlined. (29 figures) (U.S.)

  5. Discrete particle noise in particle-in-cell simulations of plasma microturbulence

    International Nuclear Information System (INIS)

    Nevins, W.M.; Hammett, G.W.; Dimits, A.M.; Dorland, W.; Shumaker, D.E.

    2005-01-01

    Recent gyrokinetic simulations of electron temperature gradient (ETG) turbulence with the global particle-in-cell (PIC) code GTC [Z. Lin et al., Proceedings of the 20th Fusion Energy Conference, Vilamoura, Portugal, 2004 (IAEA, Vienna, 2005)] yielded different results from earlier flux-tube continuum code simulations [F. Jenko and W. Dorland, Phys. Rev. Lett. 89, 225001 (2002)] despite similar plasma parameters. Differences between the simulation results were attributed to insufficient phase-space resolution and novel physics associated with global simulation models. The results of the global PIC code are reproduced here using the flux-tube PIC code PG3EQ [A. M. Dimits et al., Phys. Rev. Lett. 77, 71 (1996)], thereby eliminating global effects as the cause of the discrepancy. The late-time decay of the ETG turbulence and the steady-state heat transport observed in these PIC simulations are shown to result from discrete particle noise. Discrete particle noise is a numerical artifact, so both these PG3EQ simulations and, by inference, the GTC simulations that they reproduced have little to say about steady-state ETG turbulence and the associated anomalous heat transport. In the course of this work several diagnostics are developed to retrospectively test whether a particular PIC simulation is dominated by discrete particle noise

  6. Distribution of lead in single atmospheric particles

    Science.gov (United States)

    Murphy, D. M.; Hudson, P. K.; Cziczo, D. J.; Gallavardin, S.; Froyd, K. D.; Johnston, M. V.; Middlebrook, A. M.; Reinard, M. S.; Thomson, D. S.; Thornberry, T.; Wexler, A. S.

    2007-06-01

    Three independent single particle mass spectrometers measured Pb in individual aerosol particles. These data provide unprecedented sensitivity and statistical significance for the measurement of Pb in single particles. This paper explores the reasons for the frequency of Pb in fine particles now that most gasoline is unleaded. Trace amounts of Pb were found in 5 to 25% of 250 to 3000 nm diameter particles sampled by both aircraft and surface instruments in the eastern and western United States. Over 5% of particles at a mountain site in Switzerland contained Pb. Particles smaller than 100 nm with high Pb content were also observed by an instrument that was only operated in urban areas. Lead was found on all types of particles, including Pb present on biomass burning particles from remote fires. Less common particles with high Pb contents contributed a majority of the total amount of Pb. Single particles with high Pb content often also contained alkali metals, Zn, Cu, Sn, As, and Sb. The association of Pb with Zn and other metals is also found in IMPROVE network filter data from surface sites. Sources of airborne Pb in the United States are reviewed for consistency with these data. The frequent appearance of trace Pb is consistent with widespread emissions of fine Pb particles from combustion sources followed by coagulation with larger particles during long-range transport. Industrial sources that directly emit Pb-rich particles also contribute to the observations. Clean regions of the western United States show some transport of Pb from Asia but most Pb over the United States comes from North American sources. Resuspension of Pb from soil contaminated by the years of leaded gasoline was not directly apparent.

  7. Distribution of lead in single atmospheric particles

    Directory of Open Access Journals (Sweden)

    D. M. Murphy

    2007-06-01

    Full Text Available Three independent single particle mass spectrometers measured Pb in individual aerosol particles. These data provide unprecedented sensitivity and statistical significance for the measurement of Pb in single particles. This paper explores the reasons for the frequency of Pb in fine particles now that most gasoline is unleaded. Trace amounts of Pb were found in 5 to 25% of 250 to 3000 nm diameter particles sampled by both aircraft and surface instruments in the eastern and western United States. Over 5% of particles at a mountain site in Switzerland contained Pb. Particles smaller than 100 nm with high Pb content were also observed by an instrument that was only operated in urban areas. Lead was found on all types of particles, including Pb present on biomass burning particles from remote fires. Less common particles with high Pb contents contributed a majority of the total amount of Pb. Single particles with high Pb content often also contained alkali metals, Zn, Cu, Sn, As, and Sb. The association of Pb with Zn and other metals is also found in IMPROVE network filter data from surface sites. Sources of airborne Pb in the United States are reviewed for consistency with these data. The frequent appearance of trace Pb is consistent with widespread emissions of fine Pb particles from combustion sources followed by coagulation with larger particles during long-range transport. Industrial sources that directly emit Pb-rich particles also contribute to the observations. Clean regions of the western United States show some transport of Pb from Asia but most Pb over the United States comes from North American sources. Resuspension of Pb from soil contaminated by the years of leaded gasoline was not directly apparent.

  8. Cavitational micro-particles: plasma formation mechanisms

    International Nuclear Information System (INIS)

    Bica, Ioan

    2005-01-01

    Cavitational micro-particles are a class to which the micro-spheres, the micro-tubes and the octopus-shaped micro-particles belong. The cavitational micro-particles (micro-spheres, micro-tubes and octopus-shaped micro-particles) at an environmental pressure. The micro-spheres, the micro-tubes and the ligaments of the octopus-shaped micro-particles are produced in the argon plasma and are formed of vapors with low values of the molar concentration in comparison with the molar density of the gas and vapor mixture, the first one on the unstable and the last two on the stable movement of the vapors. The ligaments of the octopus-shaped micro-particles are open at the top for well-chosen values of the sub-cooling of the vapor and gas cylinders. The nitrogen in the air favors the formation of pores in the wall of the micro-spheres. In this paper we present the cavitational micro-particles, their production in the plasma and some mechanisms for their formation in the plasma. (author)

  9. On the mass spectrum of particles

    International Nuclear Information System (INIS)

    Sajo, Istvan

    1983-01-01

    An eigenvalue formula of general validity was developed with correct mathematical methods from measured data of the stationary mass and self-energy of stationary particles; this is able to generate universally the mass of particles belonging to any class or group, i.e. to produce the spectra of particles with a stationary mass surpassing that of the electron. The author shows that this eigenvalue formula can be produced as the produc t of several partial formulae which, separately, are not more complicated than that developed by Balmer from data measured on the spectrum of the hydrogen atom. The validity of the first version of the formulae was checked for many particles discovered subsequently. The results are published in detail in the present paper, together with the method of development of the universal eigenvalue formula generating the mass spectrum of elementary particles. The formulae describing the discrete energy levels of the particles can be extended by considering the theory of special relativity, also to the mass of moving particles proportional with their inertia. (author)

  10. Viscosity of particle laden films

    Directory of Open Access Journals (Sweden)

    Timounay Yousra

    2017-01-01

    Full Text Available We perform retraction experiments on soap films where large particles bridge the two interfaces. Local velocities are measured by PIV during the unstationnary regime. The velocity variation in time and space can be described by a continuous fluid model from which effective viscosity (shear and dilatational of particulate films is measured. The 2D effective viscosity of particulate films η2D increases with particle surface fraction ϕ: at low ϕ, it tends to the interfacial dilatational viscosity of the liquid/air interfaces and it diverges at the critical particle surface fraction ϕc ≃ 0.84. Experimental data agree with classical viscosity laws of hard spheres suspensions adapted to the 2D geometry, assuming viscous dissipation resulting from the squeeze of the liquid/air interfaces between the particles. Finally, we show that the observed viscous dissipation in particulate films has to be considered to describe the edge velocity during a retraction experiment at large particle coverage.

  11. Viscosity of particle laden films

    Science.gov (United States)

    Timounay, Yousra; Rouyer, Florence

    2017-06-01

    We perform retraction experiments on soap films where large particles bridge the two interfaces. Local velocities are measured by PIV during the unstationnary regime. The velocity variation in time and space can be described by a continuous fluid model from which effective viscosity (shear and dilatational) of particulate films is measured. The 2D effective viscosity of particulate films η2D increases with particle surface fraction ϕ: at low ϕ, it tends to the interfacial dilatational viscosity of the liquid/air interfaces and it diverges at the critical particle surface fraction ϕc ≃ 0.84. Experimental data agree with classical viscosity laws of hard spheres suspensions adapted to the 2D geometry, assuming viscous dissipation resulting from the squeeze of the liquid/air interfaces between the particles. Finally, we show that the observed viscous dissipation in particulate films has to be considered to describe the edge velocity during a retraction experiment at large particle coverage.

  12. Particle platforms for cancer immunotherapy

    Directory of Open Access Journals (Sweden)

    Serda RE

    2013-04-01

    Full Text Available Rita Elena Serda Department of Nanomedicine, The Methodist Hospital Research Institute, Houston, TX, USA Abstract: Elevated understanding and respect for the relevance of the immune system in cancer development and therapy has led to increased development of immunotherapeutic regimens that target existing cancer cells and provide long-term immune surveillance and protection from cancer recurrence. This review discusses using particles as immune adjuvants to create vaccines and to augment the anticancer effects of conventional chemotherapeutics. Several particle prototypes are presented, including liposomes, polymer nanoparticles, and porous silicon microparticles, the latter existing as either single- or multiparticle platforms. The benefits of using particles include immune-cell targeting, codelivery of antigens and immunomodulatory agents, and sustained release of the therapeutic payload. Nanotherapeutic-based activation of the immune system is dependent on both intrinsic particle characteristics and on the immunomodulatory cargo, which may include danger signals known as pathogen-associated molecular patterns and cytokines for effector-cell activation. Keywords: adjuvant, particle, immunotherapy, dendritic cell, cancer, vaccine

  13. Particle cosmology comes of age

    International Nuclear Information System (INIS)

    Turner, M.S.

    1988-01-01

    The application of modern ideas in particle physics to astrophysical and cosmological settings is a continuation of a fruitful tradition in astrophysics which began with the application of atomic physics, and then nuclear physics. In the past decade particle cosmology and particle astrophysics have been recognized as 'legitimate activities' by both particle physicists and astrophysicists and astronomers. During this time there has been a high level of theoretical activity producing much speculation about the earliest history of the Universe, as well as important and interesting astrophysical and cosmological constraints to particle physics theories. This period of intense theoretical activity has produced a number of ideas most worthy of careful consideration and scrutiny, and even more importantly, amenable to experimental/observational test. Among the ideas which are likely to be tested in the next decade are: the cosmological bound to the number of neutrino flavors, inflation, relic WIMPs as the dark matter, and MSW neutrino oscillations as a solution to the solar neutrino problems. (orig.)

  14. Research in elementary particle physics

    International Nuclear Information System (INIS)

    Bland, R.W.; Greensite, J.

    1992-01-01

    Task A of this contract supports research in elementary particle physics using cryogenic particle detectors. We have developed superconducting aluminum tunnel-junction detectors sensitive to a variety of particle signals, and with potential application to a number of particle-physics problems. We have extended our range of technologies through a collaboration with Simon Labov, on niobium tri-layer junctions, and Jean-Paul Maneval, on high-T c superconducting bolometers. We have new data on response to low-energy X-rays and to alpha-particle signals from large-volume detectors. The theoretical work under this contract (Task B) is a continued investigation of nonperturbative aspects of quantum gravity. A Monte Carlo calculation is proposed for Euclidian quantum gravity, based on the ''fifth-time action'' stabilization procedure. Results from the last year include a set of seven papers, summarized below, addressing various aspects of nonperturbative quantum gravity and QCD. Among the issues- addressed is the so-called ''problem of time'' in canonical quantum gravity

  15. Particle creation during vacuum decay

    International Nuclear Information System (INIS)

    Rubakov, V.A.

    1984-01-01

    The hamiltonian approach is developed with regard to the problem of particle creation during the tunneling process, leading to the decay of the false vacuum in quantum field theory. It is shown that, to the lowest order in (h/2π), the particle creation is described by the euclidean Schroedinger equation in an external field of a bounce. A technique for solving this equation is developed in an analogy to the Bogoliubov transformation technique, in the theory of particle creation in the presence of classical background fields. The technique is illustrated by two examples, namely, the particle creation during homogeneous vacuum decay and during the tunneling process leading to the materialization of the thin-wall bubble of a new vacuum in the metastable one. The curious phenomenon of intensive particle annihilation during vacuum decay is discussed and explicitly illustrated within the former example. The non-unitary extension of the Bogoliubov u, v transformations is described in the appendix. (orig.)

  16. Particle cosmology comes of age

    International Nuclear Information System (INIS)

    Turner, M.S.

    1987-12-01

    The application of modern ideas in particle physics to astrophysical and cosmological settings is a continuation of a fruitful tradition in astrophysics which began with the application of atomic physics, and then nuclear physics. In the past decade particle cosmology and particle astrophysics have been recognized as 'legitimate activities' by both particle physicists and astrophysicists and astronomers. During this time there has been a high level of theoretical activity producing much speculation about the earliest history of the Universe, as well as important and interesting astrophysical and cosmological constraints to particle physics theories. This period of intense theoretical activity has produced a number of ideas most worthy of careful consideration and scrutiny, and even more importantly, amenable to experimental/observational test. Among the ideas which are likely to be tested in the next decade are: the cosmological bound to the number of neutrino flavors, inflation, relic WIMPs as the dark matter, and MSW neutrino oscillations as a solution to the solar neutrino problems. 94 refs

  17. Particle Astrophysics of Neutrinos

    Indian Academy of Sciences (India)

    Amol Dighe

    Energy spectra of neutrino sources. ASPERA. Page 4. Some unique features of neutrinos. The second most abundant particles in the universe. Cosmic microwave background photons: 400 / cm3. Cosmic background neutrinos: 330 / cm3. The lightest massive particles. A million times lighter than the electron. No direct mass ...

  18. Particle Analysis in Forensic Science.

    Science.gov (United States)

    Bisbing, R E; Schneck, W M

    2006-07-01

    Microscopic trace evidence includes particles from many sources such as biologicals, soil, building materials, metals, explosives, gunshot residues, and cosmetics. The particles are identified by morphological analysis, microscopy, and chemical analysis. Their identity is confirmed by comparison with reference materials or other comparison samples. The probative value of particles of forensic interest depends on their nature and the circumstances of their presence. Copyright © 2006 Central Police University.

  19. Mass spectra features of biomass burning boiler and coal burning boiler emitted particles by single particle aerosol mass spectrometer.

    Science.gov (United States)

    Xu, Jiao; Li, Mei; Shi, Guoliang; Wang, Haiting; Ma, Xian; Wu, Jianhui; Shi, Xurong; Feng, Yinchang

    2017-11-15

    In this study, single particle mass spectra signatures of both coal burning boiler and biomass burning boiler emitted particles were studied. Particle samples were suspended in clean Resuspension Chamber, and analyzed by ELPI and SPAMS simultaneously. The size distribution of BBB (biomass burning boiler sample) and CBB (coal burning boiler sample) are different, as BBB peaks at smaller size, and CBB peaks at larger size. Mass spectra signatures of two samples were studied by analyzing the average mass spectrum of each particle cluster extracted by ART-2a in different size ranges. In conclusion, BBB sample mostly consists of OC and EC containing particles, and a small fraction of K-rich particles in the size range of 0.2-0.5μm. In 0.5-1.0μm, BBB sample consists of EC, OC, K-rich and Al_Silicate containing particles; CBB sample consists of EC, ECOC containing particles, while Al_Silicate (including Al_Ca_Ti_Silicate, Al_Ti_Silicate, Al_Silicate) containing particles got higher fractions as size increase. The similarity of single particle mass spectrum signatures between two samples were studied by analyzing the dot product, results indicated that part of the single particle mass spectra of two samples in the same size range are similar, which bring challenge to the future source apportionment activity by using single particle aerosol mass spectrometer. Results of this study will provide physicochemical information of important sources which contribute to particle pollution, and will support source apportionment activities. Copyright © 2017. Published by Elsevier B.V.

  20. Extended two-particle Green close-quote s functions and optical potentials for two particle scattering by by many-body targets

    International Nuclear Information System (INIS)

    Brand, J.; Cederbaum, L.S.

    1996-01-01

    An extension of the fermionic particle-particle propagator is presented that possesses similar algebraic properties to the single-particle Green close-quote s function. In particular, this extended two-particle Green close-quote s function satisfies Dyson close-quote s equation and its self energy has the same analytic structure as the self energy of the single-particle Green close-quote s function. For the case of a system interacting with one-particle potentials only, the two-particle self energy takes on a particularly simple form, just like the common self energy does. The new two-particle self energy also serves as a well behaved optical potential for the elastic scattering of a two-particle projectile by a many-body target. Due to its analytic structure, the two-particle self energy avoids divergences that appear with effective potentials derived by other means. Copyright copyright 1996 Academic Press, Inc

  1. Introduction to particle and astroparticle physics multimessenger astronomy and its particle physics foundations

    CERN Document Server

    De Angelis, Alessandro

    2018-01-01

    This book introduces particle physics, astrophysics and cosmology. Starting from an experimental perspective, it provides a unified view of these fields that reflects the very rapid advances being made. This new edition has a number of improvements and has been updated to describe the recent discovery of gravitational waves and astrophysical neutrinos, which started the new era of multimessenger astrophysics; it also includes new results on the Higgs particle. Astroparticle and particle physics share a common problem: we still don’t have a description of the main ingredients of the Universe from the point of view of its energy budget. Addressing these fascinating issues, and offering a balanced introduction to particle and astroparticle physics that requires only a basic understanding of quantum and classical physics, this book is a valuable resource, particularly for advanced undergraduate students and for those embarking on graduate courses. It includes exercises that offer readers practical insights. It ...

  2. Cosmology and particle physics

    International Nuclear Information System (INIS)

    Barrow, J.D.

    1982-01-01

    A brief overview is given of recent work that integrates cosmology and particle physics. The observational data regarding the abundance of matter and radiation in the Universe is described. The manner in which the cosmological survival density of stable massive particles can be calculated is discussed along with the process of cosmological nucleosynthesis. Several applications of these general arguments are given with reference to the survival density of nucleons, neutrinos and unconfined fractionally charge particles. The use of nucleosynthesis to limit the number of lepton generations is described together with the implications of a small neutrino mass for the origin of galaxies and clusters. (Auth.)

  3. History of Particle Physics

    Science.gov (United States)

    back to history page Back Particle Physics Timeline For over two thousand years people have thought the Standard Model. We invite you to explore this history of particle physics with a focus on the : Quantum Theory 1964 - Present: The Modern View (the Standard Model) back to history page Back Sections of

  4. Light particles in turbulence

    NARCIS (Netherlands)

    Nagendra Prakash, Vivek

    2013-01-01

    This thesis deals with the broad topic of particles in turbulence, which has applications in a diverse number of fields. A vast majority of fluid flows found in nature and in the industry are turbulent and contain dispersed elements. In this thesis, I have focused on light particles (air bubbles in

  5. Effect of indirect non-thermal plasma on particle size distribution and composition of diesel engine particles

    Science.gov (United States)

    Linbo, GU; Yixi, CAI; Yunxi, SHI; Jing, WANG; Xiaoyu, PU; Jing, TIAN; Runlin, FAN

    2017-11-01

    To explore the effect of the gas source flow rate on the actual diesel exhaust particulate matter (PM), a test bench for diesel engine exhaust purification was constructed, using indirect non-thermal plasma technology. The effects of different gas source flow rates on the quantity concentration, composition, and apparent activation energy of PM were investigated, using an engine exhaust particle sizer and a thermo-gravimetric analyzer. The results show that when the gas source flow rate was large, not only the maximum peak quantity concentrations of particles had a large drop, but also the peak quantity concentrations shifted to smaller particle sizes from 100 nm to 80 nm. When the gas source flow rate was 10 L min-1, the total quantity concentration greatly decreased where the removal rate of particles was 79.2%, and the variation of the different mode particle proportion was obvious. Non-thermal plasma (NTP) improved the oxidation ability of volatile matter as well as that of solid carbon. However, the NTP gas source rate had little effects on oxidation activity of volatile matter, while it strongly influenced the oxidation activity of solid carbon. Considering the quantity concentration and oxidation activity of particles, a gas source flow rate of 10 L min-1 was more appropriate for the purification of particles.

  6. What's A Pixel Particle Sensor Chip?

    CERN Multimedia

    2008-01-01

    ATLAS particle physics experiment aided with collaboration ON Semiconductor was recently honored by the European Council for Nuclear Research (CERN), with an Industrial Award recognizing the company's contribution in supplying complex "Pixel Particle Sensor" chips for use in CERN's ATLAS particle physics experiment.

  7. SLAC Library - Online Particle Physics Information

    Science.gov (United States)

    Online Particle Physics Information Compiled by Revised: April, 201 7 This annotated list provides a highly selective set of online resources that are useful to the particle physics community. It & Reports Particle Physics Journals & Reviews Online Journals and Tables of Contents Journal

  8. High-temperature LDV seed particle development

    Science.gov (United States)

    Frish, Michael B.; Pierce, Vicky G.

    1989-05-01

    The feasibility of developing a method for making monodisperse, unagglomerated spherical particles greater than 50 nm in diameter was demonstrated. Carbonaceous particles were made by pyrolyzing ethylene with a pulsed CO2 laser, thereby creating a non-equilibrium mixture of carbon, hydrogen, hydrocarbon vapors, and unpyrolyzed ethylene. Via a complex series of reactions, the carbon and hydrocarbon vapors quickly condensed into the spherical particles. By cooling and dispersing them in a supersonic expansion immediately after their creation, the hot newly-formed spheres were prevented from colliding and coalescing, thus preventing the problem of agglomeration which as plagued other investigators studying laser-simulated particle formation. The cold particles could be left suspended in the residual gases indefinitely without agglomerating. Their uniform sizes and unagglomerated nature were visualized by collecting the particles on filters that were subsequently examined using electron microscopy. It was found the mean particle size can be coarsely controlled by varying the initial ethylene pressure, and can be finely controlled by varying the fluence (energy/unit area) with which the laser irradiates the gas. The motivating application for this research was to manufacture particles that could be used as laser Doppler velocimetry (LDV) seeds in high-temperature high-speed flows. Though the particles made in this program will not evaporate until heated to about 3000 K, and thus could serve as LDV seeds in some applications, they are not ideal when the hot atmosphere is also oxidizing. In that situation, ceramic materials would be preferable. Research performed elsewhere has demonstrated that selected ceramic materials can be manufactured by laser pyrolysis of appropriate supply gases. It is anticipated that, when the same gases are used in conjunction with the rapid cooling technique, unagglomerated spherical ceramic particles can be made with little difficulty. Such

  9. Matter and Interactions: a particle physics perspective

    OpenAIRE

    Organtini, Giovanni

    2011-01-01

    In classical mechanics matter and fields are completely separated. Matter interacts with fields. For particle physicists this is not the case. Both matter and fields are represented by particles. Fundamental interactions are mediated by particles exchanged between matter particles. In this paper we explain why particle physicists believe in such a picture, introducing the technique of Feynman diagrams starting from very basic and popular analogies with classical mechanics, making the physics ...

  10. Higgs Particle: The Origin of Mass

    OpenAIRE

    Okada, Yasuhiro

    2007-01-01

    The Higgs particle is a new elementary particle predicted in the Standard Model of the elementary particle physics. It plays a special role in the theory of mass generation of quarks, leptons, and gauge bosons. In this article, theoretical issues on the Higgs mechanism are first discussed, and then experimental prospects on the Higgs particle study at the future collider experiments, LHC and ILC, are reviewed. The Higgs coupling determination is an essential step to establish the mass generat...

  11. Searches for new particles at LEP

    International Nuclear Information System (INIS)

    Jimack, M.P.

    1991-01-01

    A review of searches for new particles at LEP is presented, including top b' quark searches; L ± , L 0 searches; searches for SUSY particles, the minimal standard mode Higgs boson; search for the h 0 (A 0 ); search for the H ± ; composite systems. No evidence for new physics has been seen, and mass limits are placed on new quarks and leptons, supersymmetric particles, Higgs particles and composite objects. (R.P.) 27 refs., 14 figs., 7 tabs

  12. Galileo symmetries in polymer particle representation

    International Nuclear Information System (INIS)

    Chiou, D-W

    2007-01-01

    To illustrate the conceptual problems for the low-energy symmetries in the continuum of spacetime emerging from the discrete quantum geometry, Galileo symmetries are investigated in the polymer particle representation of a non-relativistic particle as a simple toy model. The complete Galileo transformations (translation, rotation and Galileo boost) are naturally defined in the polymer particle Hilbert space and Galileo symmetries are recovered with highly suppressed deviations in the low-energy regime from the underlying polymer particle description

  13. The dynamics of a charged particle

    OpenAIRE

    Rohrlich, Fritz

    2008-01-01

    Using physical arguments, I derive the physically correct equations of motion for a classical charged particle from the Lorentz-Abraham-Dirac equations (LAD) which are well known to be physically incorrect. Since a charged particle can classically not be a point particle because of the Coulomb field divergence, my derivation accounts for that by imposing a basic condition on the external force. That condition ensures that the particle's finite size charge distribution looks like a point charg...

  14. Cosmology and particle physics

    International Nuclear Information System (INIS)

    Salati, P.

    1986-01-01

    If the hot Big Bang model is correct, the very early universe provides us with a good laboratory to test our ideas on particle physics. The temperature and the density at that time are so high that each known particle must exist in chemical and in thermal equilibrium with the others. When the universe cools, the particles freeze out, leaving us today with a cosmic background. Such a kind of relic is of great interest because we can probe the Big Bang Model by studying the fossilized gas of a known particle. Conversely we can use that model to derive information about a hypothetical particle. Basically the freezing of a gas occurs a temperature T o and may be thermal or chemical. Studying the decoupling of a stable neutrino brings information on its mass: if the mass M ν lies in the forbidden range, the neutrino has to be unstable and its lifetime is constrained by cosmology. As for the G.U.T. Monopole, cosmology tells us that its present mass density is either to big or to small (1 monopole/observable universe) owing to a predicted flux far from the Parker Limit. Finally, the super red-giant star life time constrains the axion or the Higgs to be more massive than .2 MeV [fr

  15. Particle trapping and hopping in an optofluidic fishnet

    Science.gov (United States)

    Shi, Y. Z.; Xiong, S.; Zhang, Y.; Chin, L. K.; Wu, J. H.; Chen, T. N.; Liu, A. Q.

    2017-08-01

    Particle jumping between optical potentials has attracted much attention owing to its extensive involvement in many physical and biological experiments. In some circumstances, particle jumping indicates escaping from the optical trap, which is an issue people are trying to avoid. Nevertheless, particle jumping can facilitate the individual trap in each laser spot in the optical lattice and enable sorting and delivery of nanoparticles. Particle hopping has not been seen in fluid because Fluidic drag force dramatically reduce the dwell time of particle or break the potential well. Here, we observe particle hopping in the microchannel by three reasons, e.g., particle collision or aggregation, light disturbing by pretrapped particle and fake trapping position. We show that commonly ignored particle influence to the light could create a new isolated trapping position, where particle hops to the adjacent potential well. The hopping happens in an optofluidic fishnet which is comprised of discrete hotspots enabling 2D patterning of particles in the flow stream for the first time. We also achieve a 2D patterning of cryptosporidium in the microchannel. Our observed particle hopping in the flow stream completes the family of particle kinetics in potential wells and inspires new interests in the particle disturbed optical trapping. The 2D patterning of particles benefits the parallel study of biological samples in the flow stream and have potential on cell sorting and drug delivery.

  16. Amorphous silicon based particle detectors

    OpenAIRE

    Wyrsch, N.; Franco, A.; Riesen, Y.; Despeisse, M.; Dunand, S.; Powolny, F.; Jarron, P.; Ballif, C.

    2012-01-01

    Radiation hard monolithic particle sensors can be fabricated by a vertical integration of amorphous silicon particle sensors on top of CMOS readout chip. Two types of such particle sensors are presented here using either thick diodes or microchannel plates. The first type based on amorphous silicon diodes exhibits high spatial resolution due to the short lateral carrier collection. Combination of an amorphous silicon thick diode with microstrip detector geometries permits to achieve micromete...

  17. Health Benefits of Particle Filtration

    OpenAIRE

    Fisk, William J.

    2013-01-01

    The evidence of health benefits of particle filtration in homes and commercial buildings is reviewed. Prior reviews of papers published before 2000 are summarized. The results of 16 more recent intervention studies are compiled and analyzed. Also reviewed are four studies that modeled health benefits of using filtration to reduce indoor exposures to particles from outdoors. Prior reviews generally concluded that particle filtration is, at best, a source of small improvements in allergy and as...

  18. CCN activation experiments with adipic acid: effect of particle phase and adipic acid coatings on soluble and insoluble particles

    Directory of Open Access Journals (Sweden)

    S. S. Hings

    2008-07-01

    Full Text Available Slightly soluble atmospherically relevant organic compounds may influence particle CCN activity and therefore cloud formation. Adipic acid is a frequently employed surrogate for such slightly soluble organic materials. The 11 published experimental studies on the CCN activity of adipic acid particles are not consistent with each other nor do they, in most cases, agree with the Köhler theory. The CCN activity of adipic acid aerosol particles was studied over a significantly wider range of conditions than in any previous single study. The work spans the conditions of the previous studies and also provides alternate methods for producing "wet" (deliquesced solution droplets and dry adipic acid particles without the need to produce them by atomization of aqueous solutions. The experiments suggest that the scatter in the previously published CCN measurements is most likely due to the difficulty of producing uncontaminated adipic acid particles by atomization of solutions and possibly also due to uncertainties in the calibration of the instruments. The CCN activation of the small (dm<150 nm initially dry particles is subject to a deliquescence barrier, while for the larger particles the activation follows the Köhler curve. Wet adipic acid particles follow the Köhler curve over the full range of particle diameters studied. In addition, the effect of adipic acid coatings on the CCN activity of both soluble and insoluble particles has also been studied. When a water-soluble core is coated by adipic acid, the CCN-hindering effect of particle phase is eliminated. An adipic acid coating on hydrophobic soot yields a CCN active particle. If the soot particle is relatively small (dcore≤102 nm, the CCN activity of the coated particles approaches the deliquescence line of adipic acid, suggesting that the total size of the particle determines CCN activation and the soot core acts as a scaffold.

  19. Υ(1S)→γ+noninteracting particles

    International Nuclear Information System (INIS)

    Balest, R.; Cho, K.; Ford, T.; Johnson, D.R.; Lingel, K.; Lohner, M.; Rankin, P.; Smith, J.G.; Alexander, J.P.; Bebek, C.; Berkelman, K.; Bloom, K.; Browder, T.E.; Cassel, D.G.; Cho, H.A.; Coffman, D.M.; Crowcroft, D.S.; Drell, P.S.; Dumas, D.; Ehrlich, R.; Gaidarev, P.; Galik, R.S.; Garcia-Sciveres, M.; Geiser, B.; Gittelman, B.; Gray, S.W.; Hartill, D.L.; Heltsley, B.K.; Henderson, S.; Jones, C.D.; Jones, S.L.; Kandaswamy, J.; Katayama, N.; Kim, P.C.; Kreinick, D.L.; Ludwig, G.S.; Masui, J.; Mevissen, J.; Mistry, N.B.; Ng, C.R.; Nordberg, E.; Patterson, J.R.; Peterson, D.; Riley, D.; Salman, S.; Sapper, M.; Wuerthwein, F.; Urish, M.M.; Avery, P.; Freyberger, A.; Rodriguez, J.; Yang, S.; Yelton, J.; Cinabro, D.; Liu, T.; Saulnier, M.; Wilson, R.; Yamamoto, H.; Bergfeld, T.; Eisenstein, B.I.; Gollin, G.; Ong, B.; Palmer, M.; Selen, M.; Thaler, J.J.; Edwards, K.W.; Ogg, M.; Bellerive, A.; Britton, D.I.; Hyatt, E.R.F.; MacFarlane, D.B.; Patel, P.M.; Spaan, B.; Sadoff, A.J.; Ammar, R.; Baringer, P.; Bean, A.; Besson, D.; Coppage, D.; Copty, N.; Davis, R.; Hancock, N.; Kelly, M.; Kotov, S.; Kravchenko, I.; Kwak, N.; Lam, H.; Kubota, Y.; Lattery, M.; Momayezi, M.; Nelson, J.K.; Patton, S.; Poling, R.; Savinov, V.; Schrenk, S.; Wang, R.; Alam, M.S.; Kim, I.J.; Ling, Z.; Mahmood, A.H.; O'Neill, J.J.; Severini, H.; Sun, C.R.; Wappler, F.; Crawford, G.; Daubenmier, C.M.; Fulton, R.; Fujino, D.; Gan, K.K.; Honscheid, K.; Kagan, H.; Kass, R.; Lee, J.; Malchow, R.; Sung, M.; White, C.; Zoeller, M.M.; Butler, F.; Fu, X.; Nemati, B.; Ross, W.R.; Skubic, P.; Wood, M.; Bishai, M.; Fast, J.; Gerndt, E.; McIlwain, R.L.; Miao, T.; Miller, D.H.; Modesitt, M.; Payne, D.; Shibata, E.I.; Shipsey, I.P.J.; Wang, P.N.; Battle, M.; Ernst, J.; Gibbons, L.; Kwon, Y.; Roberts, S.; Thorndike, E.H.; Wang, C.H.; Dominick, J.; Lambrecht, M.; Sanghera, S.; Shelkov, V.; Skwarnicki, T.; Stroynowski, R.; Volobouev, I.; Wei, G.; Zadorozhny, P.; Artuso, M.; Gao, M.; Goldberg, M.; He, D.

    1995-01-01

    We consider the decay of Υ(1S) particles produced at CESR into a photon which is observed by the CLEO detector plus particles which are not seen. These could be real particles which fall outside of our acceptance, or particles which are noninteracting. We report the results of our search fo the process Υ(1S)→γ+''unseen'' for photon energies >1 GeV, obtaining limits for the case where ''unseen'' is either a single particle or a particle-antiparticle pair. Our upper limits represent the highest sensitivity measurements for such decays to date

  20. Diffusion of finite-sized hard-core interacting particles in a one-dimensional box: Tagged particle dynamics.

    Science.gov (United States)

    Lizana, L; Ambjörnsson, T

    2009-11-01

    We solve a nonequilibrium statistical-mechanics problem exactly, namely, the single-file dynamics of N hard-core interacting particles (the particles cannot pass each other) of size Delta diffusing in a one-dimensional system of finite length L with reflecting boundaries at the ends. We obtain an exact expression for the conditional probability density function rhoT(yT,t|yT,0) that a tagged particle T (T=1,...,N) is at position yT at time t given that it at time t=0 was at position yT,0. Using a Bethe ansatz we obtain the N -particle probability density function and, by integrating out the coordinates (and averaging over initial positions) of all particles but particle T , we arrive at an exact expression for rhoT(yT,t|yT,0) in terms of Jacobi polynomials or hypergeometric functions. Going beyond previous studies, we consider the asymptotic limit of large N , maintaining L finite, using a nonstandard asymptotic technique. We derive an exact expression for rhoT(yT,t|yT,0) for a tagged particle located roughly in the middle of the system, from which we find that there are three time regimes of interest for finite-sized systems: (A) for times much smaller than the collision time tparticle concentration and D is the diffusion constant for each particle, the tagged particle undergoes a normal diffusion; (B) for times much larger than the collision time t >taucoll but times smaller than the equilibrium time ttaue , rhoT(yT,t|yT,0) approaches a polynomial-type equilibrium probability density function. Notably, only regimes (A) and (B) are found in the previously considered infinite systems.

  1. Experimental techniques in nuclear and particle physics

    International Nuclear Information System (INIS)

    Tavernier, Stefaan

    2010-01-01

    The book is based on a course in nuclear and particle physics that the author has taught over many years to physics students, students in nuclear engineering and students in biomedical engineering. It provides the basic understanding that any student or researcher using such instruments and techniques should have about the subject. After an introduction to the structure of matter at the subatomic scale, it covers the experimental aspects of nuclear and particle physics. Ideally complementing a theoretically-oriented textbook on nuclear physics and/or particle physics, it introduces the reader to the different techniques used in nuclear and particle physics to accelerate particles and to measurement techniques (detectors) in nuclear and particle physics. The main subjects treated are: interactions of subatomic particles in matter; particle accelerators; basics of different types of detectors; and nuclear electronics. The book will be of interest to undergraduates, graduates and researchers in both particle and nuclear physics. For the physicists it is a good introduction to all experimental aspects of nuclear and particle physics. Nuclear engineers will appreciate the nuclear measurement techniques, while biomedical engineers can learn about measuring ionising radiation, the use of accelerators for radiotherapy. What's more, worked examples, end-of-chapter exercises, and appendices with key constants, properties and relationships supplement the textual material. (orig.)

  2. Superconducting lead particles produced by chemical techniques

    Science.gov (United States)

    Fariss, T. L.; Nixon, W. E.; Bucelot, T. J.; Deaver, B. S., Jr.; Mitchell, J. W.

    1982-09-01

    The superconductivity of extremely small lead particles has been studied as a function of size, surface condition, and connectivity using chemical techniques to produce particles of well-controlled size and shape suspended in insulating media. Approximately monodisperse suspensions of equiaxed, rod, and lath-shaped particles of lead halides and other lead compounds suspended in gelatin, polyacrylamide, polyvinylpyrrolidone, polyvinyl alcohol, methyl cellulose, and hydroxyethyl cellulose have been produced. These particles have been reduced to pseudomorphs of lead in the liquid phase or the suspensions have been coated on substrates and dried before reduction. Reducing solutions containing aminoiminomethanesulfinic acid are effective with particles of lead halides, lead phosphate, lead sulfate, and lead tartrate. Suspensions of smaller discrete lead particles have also been produced by direct reduction of solutions of soluble lead salts containing suitable polymers, chelating, and stabilizing agents. Dispersions with mean particle dimensions between 3 nm and 5 μm, and a narrow size-frequency distribution, have been produced. The superconductivity of the particles has been characterized by measurements of the magnetization as a function of temperature and magnetic field. The larger particles have a transition temperature of 7.2 K, the same as bulk lead; however, for particles of characteristic dimensions less than 20 nm, the transition temperature is lower by ˜0.1 K.

  3. Superconducting lead particles produced by chemical techniques

    International Nuclear Information System (INIS)

    Fariss, T.L.; Nixon, W.E.; Bucelot, T.J.; Deaver, B.S. Jr.; Mitchell, J.W.

    1982-01-01

    The superconductivity of extremely small lead particles has been studied as a function of size, surface condition, and connectivity using chemical techniques to produce particles of well-controlled size and shape suspended in insulating media. Approximately monodisperse suspensions of equiaxed, rod, and lath-shaped particles of lead halides and other lead compounds suspended in gelatin, polyacrylamide, polyvinylpyrrolidone, polyvinyl alcohol, methyl cellulose, and hydroxyethyl cellulose have been produced. These particles have been reduced to pseudomorphs of lead in the liquid phase or the suspensions have been coated on substrates and dried before reduction. Reducing solutions containing aminoiminomethanesulfinic acid are effective with particles of lead halides, lead phosphate, lead sulfate, and lead tartrate. Suspensions of smaller discrete lead particles have also been produced by direct reduction of solutions of soluble lead salts containing suitable polymers, chelating, and stabilizing agents. Dispersions with mean particle dimensions between 3 nm and 5 μm, and a narrow size-frequency distribution, have been produced. The superconductivity of the particles has been characterized by measurements of the magnetization as a function of temperature and magnetic field. The larger particles have a transition temperature of 7.2 K, the same as bulk lead; however, for particles of characteristic dimensions less than 20 nm, the transition temperature is lower by approx.0.1 K

  4. Soft template synthesis of yolk/silica shell particles.

    Science.gov (United States)

    Wu, Xue-Jun; Xu, Dongsheng

    2010-04-06

    Yolk/shell particles possess a unique structure that is composed of hollow shells that encapsulate other particles but with an interstitial space between them. These structures are different from core/shell particles in that the core particles are freely movable in the shell. Yolk/shell particles combine the properties of each component, and can find potential applications in catalysis, lithium ion batteries, and biosensors. In this Research News article, a soft-template-assisted method for the preparation of yolk/silica shell particles is presented. The demonstrated method is simple and general, and can produce hollow silica spheres incorporated with different particles independent of their diameters, geometry, and composition. Furthermore, yolk/mesoporous silica shell particles and multishelled particles are also prepared through optimization of the experimental conditions. Finally, potential applications of these particles are discussed.

  5. Theory of electrostatics and electrokinetics of soft particles

    Directory of Open Access Journals (Sweden)

    Hiroyuki Ohshima

    2009-01-01

    Full Text Available We investigate theoretically the electrostatics and electrokinetics of a soft particle, i.e. a hard particle covered with an ion-penetrable surface layer of polyelectrolytes. The electric properties of soft particles in an electrolyte solution, which differ from those of hard particles, are essentially determined by the Donnan potential in the surface layer. In particular, the Donnan potential plays an essential role in the electrostatics and electrokinetics of soft particles. Furthermore, the concept of zeta potential, which is important in the electrokinetics of hard particles, loses its physical meaning in the electrokinetics of soft particles. In this review, we discuss the potential distribution around a soft particle, the electrostatic interaction between two soft particles, and the motion of a soft particle in an electric field.

  6. Better track leads to new particles

    CERN Multimedia

    2006-01-01

    "Dutch researcher Thijs Cornelissen developed an algorithm to reconstruct the particle tracks and that is being used in a European research institute for particle physics. His method provides greater insights into the origine of particles that arise as a result of collisions." (1/2 page)

  7. Core-shell particles at fluid interfaces

    NARCIS (Netherlands)

    Buchcic, C.

    2016-01-01

    There is a growing interest in the use of particles as stabilizers for foams and emulsions. Applying hard particles for stabilization of fluid interface is referred to as Pickering stabilization. By using hard particles instead of surfactants and polymers, fluid interfaces can be effectively

  8. The effect of particle size on the morphology and thermodynamics of diblock copolymer/tethered-particle membranes

    International Nuclear Information System (INIS)

    Zhang, Bo; Edwards, Brian J.

    2015-01-01

    A combination of self-consistent field theory and density functional theory was used to examine the effect of particle size on the stable, 3-dimensional equilibrium morphologies formed by diblock copolymers with a tethered nanoparticle attached either between the two blocks or at the end of one of the blocks. Particle size was varied between one and four tenths of the radius of gyration of the diblock polymer chain for neutral particles as well as those either favoring or disfavoring segments of the copolymer blocks. Phase diagrams were constructed and analyzed in terms of thermodynamic diagrams to understand the physics associated with the molecular-level self-assembly processes. Typical morphologies were observed, such as lamellar, spheroidal, cylindrical, gyroidal, and perforated lamellar, with the primary concentration region of the tethered particles being influenced heavily by particle size and tethering location, strength of the particle-segment energetic interactions, chain length, and copolymer radius of gyration. The effect of the simulation box size on the observed morphology and system thermodynamics was also investigated, indicating possible effects of confinement upon the system self-assembly processes

  9. The effect of particle size on the morphology and thermodynamics of diblock copolymer/tethered-particle membranes.

    Science.gov (United States)

    Zhang, Bo; Edwards, Brian J

    2015-06-07

    A combination of self-consistent field theory and density functional theory was used to examine the effect of particle size on the stable, 3-dimensional equilibrium morphologies formed by diblock copolymers with a tethered nanoparticle attached either between the two blocks or at the end of one of the blocks. Particle size was varied between one and four tenths of the radius of gyration of the diblock polymer chain for neutral particles as well as those either favoring or disfavoring segments of the copolymer blocks. Phase diagrams were constructed and analyzed in terms of thermodynamic diagrams to understand the physics associated with the molecular-level self-assembly processes. Typical morphologies were observed, such as lamellar, spheroidal, cylindrical, gyroidal, and perforated lamellar, with the primary concentration region of the tethered particles being influenced heavily by particle size and tethering location, strength of the particle-segment energetic interactions, chain length, and copolymer radius of gyration. The effect of the simulation box size on the observed morphology and system thermodynamics was also investigated, indicating possible effects of confinement upon the system self-assembly processes.

  10. Study on the fragmentation of granite due to the impact of single particle and double particles

    Directory of Open Access Journals (Sweden)

    Yuchun Kuang

    2016-09-01

    Full Text Available Particle Impact Drilling (PID is a novel method to improve the rate of penetration (ROP. In order to further improve the performance of PID, an investigation into the effect of single and double particles: (1 diameter; (2 initial velocity; (3 distance; and (4 angle of incidence was undertaken to investigate their effects on broken volume and penetration depth into hard brittle rock. For this purpose, the laboratory experiment of single particle impact rock was employed. Meanwhile, based on the LS-DYNA, a new finite element (FE simulation of the PID, including single and double particles impact rock, has been presented. The 3-dimensional (3D, aix-symmetric, dynamic-explicit, Lagrangian model has been considered in this simulation. And the Elastic and Holmquist Johnson Cook (HJC material behaviors have been used for particles and rocks, respectively. The FE simulation results of single particle impacting rock are good agreement with experimental data. Furthermore, in this article the optimal impact parameters, including diameter, initial velocity, distance and the angle of incidence, are obtained in PID.

  11. Are consistent equal-weight particle filters possible?

    Science.gov (United States)

    van Leeuwen, P. J.

    2017-12-01

    Particle filters are fully nonlinear data-assimilation methods that could potentially change the way we do data-assimilation in highly nonlinear high-dimensional geophysical systems. However, the standard particle filter in which the observations come in by changing the relative weights of the particles is degenerate. This means that one particle obtains weight one, and all other particles obtain a very small weight, effectively meaning that the ensemble of particles reduces to that one particle. For over 10 years now scientists have searched for solutions to this problem. One obvious solution seems to be localisation, in which each part of the state only sees a limited number of observations. However, for a realistic localisation radius based on physical arguments, the number of observations is typically too large, and the filter is still degenerate. Another route taken is trying to find proposal densities that lead to more similar particle weights. There is a simple proof, however, that shows that there is an optimum, the so-called optimal proposal density, and that optimum will lead to a degenerate filter. On the other hand, it is easy to come up with a counter example of a particle filter that is not degenerate in high-dimensional systems. Furthermore, several particle filters have been developed recently that claim to have equal or equivalent weights. In this presentation I will show how to construct a particle filter that is never degenerate in high-dimensional systems, and how that is still consistent with the proof that one cannot do better than the optimal proposal density. Furthermore, it will be shown how equal- and equivalent-weights particle filters fit within this framework. This insight will then lead to new ways to generate particle filters that are non-degenerate, opening up the field of nonlinear filtering in high-dimensional systems.

  12. Composite magnetic particles

    International Nuclear Information System (INIS)

    Davies, G.E.; Janata, J.

    1981-01-01

    This patent claim on behalf of I.C.I. Ltd., relates to the preparation and use of composite magnetic particles, comprising a low density core, and having a magnetic coating over at least a proportion of the surface. The density of such particles can be chosen to suit a range of applications, e.g. in affinity chromatography, in radioimmunoassay, in the transport of the associated component, such as a drug or enzyme, to a specific site in a living organism. (U.K.)

  13. Hygroscopic properties of Diesel engine soot particles

    Energy Technology Data Exchange (ETDEWEB)

    Weingartner, E.; Baltensperger, U. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Burtscher, H. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-11-01

    The hygroscopic properties of combustion particles, freshly emitted from a Diesel engine were investigated. It was found that these particles start to grow by water condensation at a relative humidity (RH)>80%. The hygroscopicity of these particles was enhanced when the sulfur content of the fuel was increased or when the particles were artificially aged (i.e. particles were subjected to an ozone or UV pre-treatment). (author) 2 figs., 5 refs.

  14. Current fluctuations of interacting active Brownian particles

    OpenAIRE

    Pre, Trevor Grand; Limmer, David T.

    2018-01-01

    We derive the distribution function for particle currents for a system of interacting active Brownian particles in the long time limit using large deviation theory and a weighted many body expansion. We find the distribution is non-Gaussian, except in the limit of passive particles. The non-Gaussian fluctuations can be understood from the effective potential the particles experience when conditioned on a given current. This potential suppresses fluctuations of the particle's orientation, and ...

  15. Four different animated sub-particles as the origins of the life and creator of different angular momentums of elementary particles

    Science.gov (United States)

    Gholibeigian, Hassan; Gholibeigian, Zeinab

    2015-04-01

    Understanding the internal structure of the proton is crucial challenge for QCD, and one important aspect of this is to understand how the spin of the nucleon is build-up from the angular momentum of its quarks and gluons. In this way, what's the origin of differences between angular momentums of fundamental particles? It may be from their substructures. It seems there are four sub-particles of mater, plant, animal and human in substructure of each fundamental particle (string) as the origins of life and cause of differences between spins of those elementary particles. Material's sub-particle always is on and active. When the environmental conditions became ready for creation of each field of the plant, animal and human, sub-particles of their elementary particles became on and active and then, those elementary particles participated in processes of creation in their own field. God, as the main source of information, has been communicated with their sub-particles and transfers a package (bit) of information and laws (plus standard ethics for human sub-particles) to each of them for process and selection (mutation) of the next step of motion and interaction of their fundamental particles with each other in each Plank's time. This is causality for particles' motion in quantum area.

  16. Silica particles and method of preparation thereof

    NARCIS (Netherlands)

    2015-01-01

    The invention is in the field of silica products. More in particular, the invention is in the field of amorphous silica particles. The invention is directed to amorphous silica particles and related products including clusters of said silica particles, a suspension of said silica particles, and an

  17. Experimental study on inter-particle acoustic forces.

    Science.gov (United States)

    Garcia-Sabaté, Anna; Castro, Angélica; Hoyos, Mauricio; González-Cinca, Ricard

    2014-03-01

    A method for the experimental measurement of inter-particle forces (secondary Bjerknes force) generated by the action of an acoustic field in a resonator micro-channel is presented. The acoustic radiation force created by an ultrasonic standing wave moves suspended particles towards the pressure nodes and the acoustic pressure induces particle volume oscillations. Once particles are in the levitation plane, transverse and secondary Bjerknes forces become important. Experiments were carried out in a resonator filled with a suspension composed of water and latex particles of different size (5-15 μm) at different concentrations. Ultrasound was generated by means of a 2.5 MHz nominal frequency transducer. For the first time the acoustic force generated by oscillating particles acting on other particles has been measured, and the critical interaction distance in various cases has been determined. Inter-particle forces on the order of 10(-14) N have been measured by using this method.

  18. Properties of supersymmetric particles and processes

    International Nuclear Information System (INIS)

    Barnett, R.M.

    1986-01-01

    The motivations for experimental searches for supersymmetric particles are discussed. The role of R-parity in these searches is described. The production and decay characteristics of each class of supersymmetric particles are investigated in the context of both e+e- and hadron machines. There is a detailed presentation of a sample calculation of a supersymmetric process. Emphasis is given to the signatures for detection of supersymmetric particles and processes. The current limits for supersymmetric particles are given. 125 refs., 50 figs

  19. Studies of many-particle correlations in proton-nucleus interactions using distributions of rapidity-gaps between particles

    International Nuclear Information System (INIS)

    Mangotra, L.K.; Otterlund, I.; Stenlund, E.

    1985-01-01

    Many-particle correlations in proton-Emulsion interactions at 400 GeV have been investigated using distributions of rapidity-gaps between particles. We have defined the normalized semi-inclusive rapidity-gap correlation function which is shown to have advantages over the normalized two- particle correlation function. Small, but significant, deviations from zero-correlations are observed in the data

  20. Mass spectrometer provided with an optical system for separating neutron particles against charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Reeher, J R; Story, M S; Smith, R D

    1977-03-03

    This invention concerns a mass spectrometer with an ion focusing optical system that efficiently separates the charged and neutral particles. It concerns an apparatus that can be used in ionisation areas operating at relatively high pressure (> 10/sup -2/ Torr). The invention relates more particularly to a mass spectrometer with an inlet device for the samples to be identified, a sample ionisation system for forming charged and neutral particles, a mass analyser and an optical system for focusing the ions formed in the mass analyser. The optics include several conducting components of which at least one has sides formed of grids, in the direction of the axis, towards the analyser the optics forming a potential well along the axis. The selected charged particles are focused in the analyser and the remaining particles can escape by the openings in the conducting grids.

  1. Lunar Regolith Particle Shape Analysis

    Science.gov (United States)

    Kiekhaefer, Rebecca; Hardy, Sandra; Rickman, Douglas; Edmunson, Jennifer

    2013-01-01

    Future engineering of structures and equipment on the lunar surface requires significant understanding of particle characteristics of the lunar regolith. Nearly all sediment characteristics are influenced by particle shape; therefore a method of quantifying particle shape is useful both in lunar and terrestrial applications. We have created a method to quantify particle shape, specifically for lunar regolith, using image processing. Photomicrographs of thin sections of lunar core material were obtained under reflected light. Three photomicrographs were analyzed using ImageJ and MATLAB. From the image analysis measurements for area, perimeter, Feret diameter, orthogonal Feret diameter, Heywood factor, aspect ratio, sieve diameter, and sieve number were recorded. Probability distribution functions were created from the measurements of Heywood factor and aspect ratio.

  2. Particle identification by silicon detectors

    International Nuclear Information System (INIS)

    Santos, Denison de Souza

    1997-01-01

    A method is developed for the evaluation of the energy loss, dE/dx, of a charged particle traversing a silicon strip detector. The method is applied to the DELPHI microvertex detector leading to diagrams of dE/dx versus momentum for different particles. The specific case of pions and protons is treated and the most probable value of dE/dx and the width of the dE/dx distribution for those particles in the momentum range of 0.2 GeV/c to 1.5 GeV/c, are obtained. The resolution found is 13.4 % for particles with momentum higher than 2 GeV/c and the separation power is 2.9 for 1.0 GeV/c pions and protons. (author)

  3. Insight into particle production mechanisms from angular correlations of identified particles in pp collisions measured by ALICE

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Two-particle angular correlations are a robust tool which provide access to the underlying physics phenomena of particle production in collisions of both protons and heavy ions by studying distributions of particles in pseudorapidity and azimuthal angle difference. The correlation measurement is sensitive to several phenomena, including mini-jets, elliptic flow, Bose-Einstein correlations, resonance decays, conservation laws, which can be separated by selections of momentum, particle type and by analysing the shapes of the correlation structures. In this talk, we report measurements of the correlations of identified particles and their antiparticles (for pions, kaons, protons, and lambdas) at low transverse momenta in pp collisions at sqrt(s) = 7 TeV, recently submitted for publication by the ALICE Collaboration [arXiv:1612.08975]. The analysis reveals differences in particle production between baryons and mesons. The correlation functions for mesons exhibit the expected peak dominated by effects of mini-jet...

  4. New particle data

    CERN Multimedia

    2002-01-01

    The 2002 edition of the Review of Particle Physics has been published. It appears in the July 1st edition of Physical Review D with the reference: K. Hagiwara et al., Physical Review D66, 010001 (2002). The printing of the Particle Physics Booklets is planned to be finished at the end of August, so copies are expected to arrive at CERN for distribution by mid-September. The full data are available at the Berkeley site, as well as at various other mirrors around the world. As for copies of the full Review, for which CERN is responsible for the distribution outside the Americas, the Far East and Australasia, the quantity has been reduced by 60% compared to the 2000 edition. It will thus no longer be possible for all individuals to have their personal copy. Priority will be given to ensure that copies are sent to all groups and institutes engaged in particle physics research.

  5. Particle accelerator physics

    CERN Document Server

    Wiedemann, Helmut

    2015-01-01

    This book by Helmut Wiedemann is a well-established, classic text, providing an in-depth and comprehensive introduction to the field of high-energy particle acceleration and beam dynamics. The present 4th edition has been significantly revised, updated and expanded. The newly conceived Part I is an elementary introduction to the subject matter for undergraduate students. Part II gathers the basic tools in preparation of a more advanced treatment, summarizing the essentials of electrostatics and electrodynamics as well as of particle dynamics in electromagnetic fields. Part III is an extensive primer in beam dynamics, followed, in Part IV, by an introduction and description of the main beam parameters and including a new chapter on beam emittance and lattice design. Part V is devoted to the treatment of perturbations in beam dynamics. Part VI then discusses the details of charged particle acceleration. Parts VII and VIII introduce the more advanced topics of coupled beam dynamics and describe very intense bea...

  6. The particle zoo

    CERN Document Server

    AUTHOR|(CDS)2079223

    2016-01-01

    What is everything really made of? If we split matter down into smaller and infinitesimally smaller pieces, where do we arrive? At the Particle Zoo - the extraordinary subatomic world of antimatter, neutrinos, strange-flavoured quarks and yetis, gravitons, ghosts and glueballs, mindboggling eleven-dimensional strings and the elusive Higgs boson itself. Be guided around this strangest of zoos by Gavin Hesketh, experimental particle physicist at humanity's greatest experiment, the Large Hadron Collider. Concisely and with a rare clarity, he demystifies how we are uncovering the inner workings of the universe and heading towards the next scientific revolution. Why are atoms so small? How did the Higgs boson save the universe? And is there a theory of everything? The Particle Zoo answers these and many other profound questions, and explains the big ideas of Quantum Physics, String Theory, The Big Bang and Dark Matter...and, ultimately, what we know about the true, fundamental nature of reality.

  7. 'Hot' particles in the atmosphere (Vilnius, 1986)

    International Nuclear Information System (INIS)

    Lujanas, V.; Shpirkauskaite, N.

    1992-01-01

    After the Chernobyl accident in the atmosphere above Vilnius the alpha-and beta- 'hot' particles were discovered. The amount of particles and their size were measured by the alpha-radiography. After the exposition of nuclear plates the 'auroras' of the beta hot particles were of the size 0.37-22.2 μm. The change in time of the beta- 'hot' particles amount in the ground level air from the 25th of April to the 9th of May, 1986 was given. The amount of this particles deposited in the adult man respiratory tract was calculated. The energy of the discovered 8 'hot' alpha-particles ranged from 4.2 to 6.6 MeV. All the samples in which alpha- 'hot' particles found were taken in anticyclone conditions. (author). 1 tab., 1 ref

  8. r-particle irreducible kernels, asymptotic completeness and analyticity properties of several particle collision amplitudes

    International Nuclear Information System (INIS)

    Bros, J.

    1984-01-01

    An account is given of the present status of many-particle structure analysis in the general framework of massive quantum field theory. Two main questions are discussed, namely: i) the equivalence between the asymptotic completeness of a field and the r-particle irreducibility of associated Bether-Salpeter type kernels; ii) the derivation of extended analyticity properties of the Green functions and multiparticle collision amplitudes around the corresponding physical regions. Substantial results concerning the 3→3 particle processes are described. An analogous multiparticle version of these results yields a partial understanding of the general case

  9. Sodium caseinate stabilized zein colloidal particles.

    Science.gov (United States)

    Patel, Ashok R; Bouwens, Elisabeth C M; Velikov, Krassimir P

    2010-12-08

    The present work deals with the preparation and stabilization of zein colloidal particles using sodium caseinate as electrosteric stabilizer. Colloidal particles with well-defined size range (120-150 nm) and negative surface potential (-29 to -47 mV) were obtained using a simple antisolvent precipitation method. Due to the presence of caseinate, the stabilized colloidal particles showed a shift of isoelectric point (IEP) from 6.0 to around pH 5.0 and thus prevent the aggregation of zein near its native IEP (pH 6.2). The particles also showed good stability to varying ionic strength (15 mM-1.5 M NaCl). Furthermore, stabilized particles retained the property of redispersibility after drying. In vitro protein hydrolysis study confirmed that the presence of caseinate did not alter the digestibility of zein. Such colloidal particles could potentially serve as all-natural delivery systems for bioactive molecules in food, pharmaceutical, and agricultural formulations.

  10. "Strong interaction" for particle physics laboratories

    CERN Multimedia

    2003-01-01

    A new Web site pooling the communications resources of particle physics centres all over the world has just been launched. The official launching of the new particle physics website Interactions.org during the Lepton-Proton 2003 Conference at the American laboratory Fermilab was accompanied by music and a flurry of balloons. On the initiative of Fermilab, the site was created by a collaboration of communication teams from over fifteen of the world's particle physics laboratories, including KEK, SLAC, INFN, JINR and, of course, CERN, who pooled their efforts to develop the new tool. The spectacular launching of the new particle physics website Interactions.org at Fermilab on 12 August 2003. A real gateway to particle physics, the site not only contains all the latest news from the laboratories but also offers images, graphics and a video/animation link. In addition, it provides information about scientific policies, links to the universities, a very useful detailed glossary of particle physics and astrophysic...

  11. An introduction to particle dark matter

    CERN Document Server

    Profumo, Stefano

    2017-01-01

    What is the dark matter that fills the Universe and binds together galaxies? How was it produced? What are its interactions and particle properties?The paradigm of dark matter is one of the key developments at the interface of cosmology and elementary particle physics. It is also one of the foundations of the standard cosmological model. This book presents the state of the art in building and testing particle models for dark matter. Each chapter gives an analysis of questions, research directions, and methods within the field. More than 200 problems are included to challenge and stimulate the reader's knowledge and provide guidance in the practical implementation of the numerous 'tools of the trade' presented. Appendices summarize the basics of cosmology and particle physics needed for any quantitative understanding of particle models for dark matter.This interdisciplinary textbook is essential reading for anyone interested in the microscopic nature of dark matter as it manifests itself in particle physics ex...

  12. The hygroscopicity of indoor aerosol particles

    International Nuclear Information System (INIS)

    Wei, L.

    1993-07-01

    A system to study the hygroscopic growth of particle was developed by combining a Tandem Differential Mobility Analyzer (TDMA) with a wetted wall reactor. This system is capable of mimicking the conditions in human respiratory tract, and measuring the particle size change due to the hygroscopic growth. The performance of the system was tested with three kinds of particles of known composition, NaCl, (NH 4 ) 2 SO 4 , and (NH 4 )HS0 4 particles. The hygroscopicity of a variety of common indoor aerosol particles was studied including combustion aerosols (cigarette smoking, cooking, incenses and candles) and consumer spray products such as glass cleaner, general purpose cleaner, hair spray, furniture polish spray, disinfectant, and insect killer. Experiments indicate that most of the indoor aerosols show some hygroscopic growth and only a few materials do not. The magnitude of hygroscopic growth ranges from 20% to 300% depending on the particle size and fraction of water soluble components

  13. Single-particle dispersion in compressible turbulence

    Science.gov (United States)

    Zhang, Qingqing; Xiao, Zuoli

    2018-04-01

    Single-particle dispersion statistics in compressible box turbulence are studied using direct numerical simulation. Focus is placed on the detailed discussion of effects of the particle Stokes number and turbulent Mach number, as well as the forcing type. When solenoidal forcing is adopted, it is found that the single-particle dispersion undergoes a transition from the ballistic regime at short times to the diffusive regime at long times, in agreement with Taylor's particle dispersion argument. The strongest dispersion of heavy particles is announced when the Stokes number is of order 1, which is similar to the scenario in incompressible turbulence. The dispersion tends to be suppressed as the Mach number increases. When hybrid solenoidal and compressive forcing at a ratio of 1/2 is employed, the flow field shows apparent anisotropic property, characterized by the appearance of large shock wave structures. Accordingly, the single-particle dispersion shows extremely different behavior from the solenoidal forcing case.

  14. Soft particles at a fluid interface

    Science.gov (United States)

    Mehrabian, Hadi; Harting, Jens; Snoeijer, Jacco H.

    2015-11-01

    Particles added to a fluid interface can be used as a surface stabilizer in the food, oil and cosmetic industries. As an alternative to rigid particles, it is promising to consider highly deformable particles that can adapt their conformation at the interface. In this study, we compute the shapes of soft elastic particles using molecular dynamics simulations of a cross-linked polymer gel, complemented by continuum calculations based on the linear elasticity. It is shown that the particle shape is not only affected by the Young's modulus of the particle, but also strongly depends on whether the gel is partially or completely wetting the fluid interface. We find that the molecular simulations for the partially wetting case are very accurately described by the continuum theory. By contrast, when the gel is completely wetting the fluid interface the linear theory breaks down and we reveal that molecular details have a strong influence on the equilibrium shape.

  15. States of light positive particles in metals

    International Nuclear Information System (INIS)

    Klamt, A.G.

    1987-01-01

    The states of light positively charged particles in metals are treated in tight-binding approximation. The polaron states of the particles are investigated. The 'molecular crystal model' and an interstitial model' are treated. Moreover, the particle-lattice coupling of excited particles is treated for fcc and bcc lattices. (BHO)

  16. An alternative method for determining particle-size distribution of forest road aggregate and soil with large-sized particles

    Science.gov (United States)

    Hakjun Rhee; Randy B. Foltz; James L. Fridley; Finn Krogstad; Deborah S. Page-Dumroese

    2014-01-01

    Measurement of particle-size distribution (PSD) of soil with large-sized particles (e.g., 25.4 mm diameter) requires a large sample and numerous particle-size analyses (PSAs). A new method is needed that would reduce time, effort, and cost for PSAs of the soil and aggregate material with large-sized particles. We evaluated a nested method for sampling and PSA by...

  17. Aspects of experimental particle physics

    International Nuclear Information System (INIS)

    McCubbin, N.A.

    1986-11-01

    The paper contains three lectures on Experimental Particle Physics which were given at the 16th British Universities Summer School for Theoretical and Elementary Particle Physics, Durham, 1986. The first lecture briefly reviews the physics which underpins all particle detectors, and the second lecture describes how this physics influences a modern detector. The last lecture is concerned with the topics of beams and computers, and includes the physics of stochastic cooling and the Halting theorem. (U.K.)

  18. Dispersion of Bed Load Particles

    OpenAIRE

    SAWAI, Kenji

    1987-01-01

    The motion of bed load particles is so irregular that they disperse remarkably with time.In this study, some flume tests using painted tracer particles were carried out, in which thedispersive property of tracers changed variously with sediment feed rate.In analysing this process, a stochastic simulation model is proposed where it is discussedabout the degree of exposure of individual particle near the bed surface and about the variationof its pick up rate. The exponential distribution of ste...

  19. Quark matter or new particles?

    Science.gov (United States)

    Michel, F. Curtis

    1988-01-01

    It has been argued that compression of nuclear matter to somewhat higher densities may lead to the formation of stable quark matter. A plausible alternative, which leads to radically new astrophysical scenarios, is that the stability of quark matter simply represents the stability of new particles compounded of quarks. A specific example is the SU(3)-symmetric version of the alpha particle, composed of spin-zero pairs of each of the baryon octet (an 'octet' particle).

  20. Uptake of small particles by tree canopies

    International Nuclear Information System (INIS)

    Belot, Y.; Camus, H.; Gauthier, D.; Caput, C.

    1992-01-01

    Most of the deposition data that are available to assess the radiological consequences of an accident have been acquired for low-growing vegetation and are inadapted to forest areas. Consequently, a programme was undertaken to study the deposition of particles on components of different trees and extrapolate the experimental data so obtained to large-scale canopies. The experiments were performed in a wind tunnel allowing canopy components to be exposed to a flow of suspended fluorescent particles of reasonably uniform size. Emphasis was put on particles in the 0.3-1.2 μm subrange, because most of the radioactive particles sampled at long distance from sources are comprised in this size interval. The uptake rates were determined for bare and leaf bearing twigs of several evergreen species (Picea abies, Pinus sylvestris and Quercus ilex), as a function of wind speed and particle size. The deposition rates obtained for the tree components were then used as input to a model that describes the uptake of particles by a large-scale canopy under specified conditions of weather and canopy structure. The model accounts for the diffusion of particles between different strata of the canopy, as well as deposition of particles on the canopy components. It calculates the rates of particle deposition to the horizontal surface of the canopy, and the repartition of the deposited particles within the canopy. Increases in wind speed cause increased deposition, but the effect is less important that it would have been for larger particles. The deposition is relatively insensitive to the size of particles within the subrange considered in this study. 13 refs., 2 figs., 1 tab

  1. Two beautiful new particles

    CERN Multimedia

    Antonella Del Rosso

    2012-01-01

    In beautiful agreement with the Standard Model, two new excited states (see below) of the Λb beauty particle have just been observed by the LHCb Collaboration. Similarly to protons and neutrons, Λb is composed of three quarks. In the Λb’s case, these are up, down and… beauty.   Although discovering new particles is increasingly looking like a routine exercise for the LHC experiments (see previous features), it is far from being an obvious performance, particularly when the mass of the particles is high. Created in the high-energy proton-proton collisions produced by the LHC, these new excited states of the Λb particle have been found to have a mass of, respectively, 5912 MeV/c2 and 5920 MeV/c2. In other words, they are over five times heavier than the proton or the neutron. Physicists only declare a discovery when data significantly show the relevant signal. In order to do that, they often have to analyse large samples of data. To ...

  2. Exotic Long-lived Particles

    DEFF Research Database (Denmark)

    Jørgensen, Morten Dam

    A search for hadronising long-lived massive particles at the Large Hadron Collider is conducted with the ATLAS detector. No excess events are found. Based on statistical analysis, upper limits on the production cross section are observed to be between 0.01 pb and 0.006 pb for colour octet particles...... (gluinos) with masses ranging from 300 GeV/c2 to 1400 GeV/c2, and 0.01 pb to 0.004 pb for colour triplet particles (stops and sbottoms) with masses ranging from 200 GeV/c2 to 900 GeV/c2. In the context of Supersymmetry with decoupled sfermion and sboson sectors (Split-SUSY), this gives a lower limit...... on the gluino mass of 989 GeV/c2, and 683 GeV/c2 for the stop mass and 618 GeV/c2 for the sbottom mass. In addition, a new method is presented that improves the speed (b ) estimation for long-lived particles in the ATLAS tile calorimeter with a factor of 7 improvement in resolution at low-b and a factor of 2...

  3. The influence of final state interaction on two-particle correlations in multiple production of particles and resonances

    International Nuclear Information System (INIS)

    Lednicky, R.; Lyuboshitz, V.L.

    1996-01-01

    The structure of pair correlations of interacting particles moving with nearby velocities is analysed. A general formalism of the two-particle space-time density matrix, taking into account the space-time coherence of the production process, is developed. The influence of strong final state interaction on two-particle correlations in the case of the production of a system resonance + particle is investigated in detail. It is shown that in the limit of small distances between the resonance and particle production points the effect of final state interaction is enhanced due to logarithmic singularity of the triangle diagram. Numerical estimates indicate that, in this limit, the effect of strong final state interaction becomes important even for two-pion correlations. (author)

  4. Particle acceleration at a reconnecting magnetic separator

    Science.gov (United States)

    Threlfall, J.; Neukirch, T.; Parnell, C. E.; Eradat Oskoui, S.

    2015-02-01

    Context. While the exact acceleration mechanism of energetic particles during solar flares is (as yet) unknown, magnetic reconnection plays a key role both in the release of stored magnetic energy of the solar corona and the magnetic restructuring during a flare. Recent work has shown that special field lines, called separators, are common sites of reconnection in 3D numerical experiments. To date, 3D separator reconnection sites have received little attention as particle accelerators. Aims: We investigate the effectiveness of separator reconnection as a particle acceleration mechanism for electrons and protons. Methods: We study the particle acceleration using a relativistic guiding-centre particle code in a time-dependent kinematic model of magnetic reconnection at a separator. Results: The effect upon particle behaviour of initial position, pitch angle, and initial kinetic energy are examined in detail, both for specific (single) particle examples and for large distributions of initial conditions. The separator reconnection model contains several free parameters, and we study the effect of changing these parameters upon particle acceleration, in particular in view of the final particle energy ranges that agree with observed energy spectra.

  5. Automatic size analysis of coated fuel particles

    International Nuclear Information System (INIS)

    Wallisch, K.; Koss, P.

    1977-01-01

    The determination of the diameter, coating thickness, and sphericity of coated fuel particles by conventional methods is very time consuming. Therefore, statistical data can only be obtained with limited accuracy. An alternative method is described that avoids these disadvantages by utilizing a fast optical data-collecting system of high accuracy. This system allows the determination of the diameter of particles in the range between 100 and 1500 μm, with an accuracy of better than +-2 μm and with a rate of 100 particles per second. The density and thickness of coating layers can be determined by comparing the data obtained before and after coating, taking into account the relative increase of weight. A special device allows the automatic determination of the sphericity of single particles as well as the distribution in a batch. This device measures 50 to 100 different diameters of each particle per second. An on-line computer stores the measured data and calculates all parameters required, e.g., number of particles measured, particle diameter, standard deviation, diameter limiting values, average particle volume, average particle surface area, and the distribution of sphericity in absolute and percent form

  6. Charging of mesospheric aerosol particles: the role of photodetachment and photoionization from meteoric smoke and ice particles

    Directory of Open Access Journals (Sweden)

    M. Rapp

    2009-06-01

    Full Text Available Time constants for photodetachment, photoemission, and electron capture are considered for two classes of mesospheric aerosol particles, i.e., meteor smoke particles (MSPs and pure water ice particles. Assuming that MSPs consist of metal oxides like Fe2O3 or SiO, we find that during daytime conditions photodetachment by solar photons is up to 4 orders of magnitude faster than electron attachment such that MSPs cannot be negatively charged in the presence of sunlight. Rather, even photoemission can compete with electron capture unless the electron density becomes very large (>>1000 cm−3 such that MSPs should either be positively charged or neutral in the case of large electron densities. For pure water ice particles, however, both photodetachment and photoemission are negligible due to the wavelength characteristics of its absorption cross section and because the flux of solar photons has already dropped significantly at such short wavelengths. This means that water ice particles should normally be negatively charged. Hence, our results can readily explain the repeated observation of the coexistence of positive and negative aerosol particles in the polar summer mesopause, i.e., small MSPs should be positively charged and ice particles should be negatively charged. These results have further important implications for our understanding of the nucleation of mesospheric ice particles as well as for the interpretation of incoherent scatter radar observations of MSPs.

  7. Radiance and particle fluence

    International Nuclear Information System (INIS)

    Papiez, L.; Battista, J.J.

    1994-01-01

    The International Commission on Radiological Units and Measurements (ICRU) has defined fluence in terms of the number of the radiation particles crossing a small sampling sphere. A second definition has been proposed in which the length of track segments contained within any sampling volume are used to calculate the incident fluence. This approach is often used in Monte Carlo simulations of individual particle tracks, allowing the fluence to be scored in small volumes of any shape. In this paper we stress that the second definition generalizes the classical (ICRU) concept of fluence. We also identify the assumptions inherent in the two definitions of fluence and prove their equivalence for the case of straight-line particle trajectories. (author)

  8. Precision wood particle feedstocks

    Science.gov (United States)

    Dooley, James H; Lanning, David N

    2013-07-30

    Wood particles having fibers aligned in a grain, wherein: the wood particles are characterized by a length dimension (L) aligned substantially parallel to the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L; the L.times.H dimensions define two side surfaces characterized by substantially intact longitudinally arrayed fibers; the W.times.H dimensions define two cross-grain end surfaces characterized individually as aligned either normal to the grain or oblique to the grain; the L.times.W dimensions define two substantially parallel top and bottom surfaces; and, a majority of the W.times.H surfaces in the mixture of wood particles have end checking.

  9. Cosmic censorship and test particles

    International Nuclear Information System (INIS)

    Needham, T.

    1980-01-01

    In this paper one unambiguous prediction of cosmic censorship is put to the test, namely that it should be impossible to destroy a black hole (i.e. eliminate its horizon) by injecting test particles into it. Several authors have treated this problem and have not found their conclusions in contradiction with the prediction. Here we prove that if a general charged spinning particle (with parameters very much smaller than the respective hole parameters) is injected in an arbitrary manner into an extreme Kerr-Newman black hole, then cosmic censorship is upheld. As a by-product of the analysis a natural proof is given of the Christodoulou-Ruffini conditions on the injection of a spinless particle which yield a reversible black-hole transformation. Finally we consider the injection of particles with parameters that are not small compared with those of the hole, for which cosmic censorship is apparently violated. By assuming the validity of cosmic censorship we are led to a few conjectures concerning the extent of the particle's interaction with the hole while approaching it

  10. Repulsive four-body interactions of α particles and quasistable nuclear α -particle condensates in heavy self-conjugate nuclei

    Science.gov (United States)

    Bai, Dong; Ren, Zhongzhou

    2018-05-01

    We study the effects of repulsive four-body interactions of α particles on nuclear α -particle condensates in heavy self-conjugate nuclei using a semianalytic approach, and find that the repulsive four-body interactions could decrease the critical number of α particles, beyond which quasistable α -particle condensate states can no longer exist, even if these four-body interactions make only tiny contributions to the total energy of the Hoyle-like state of 16O. Explicitly, we study eight benchmark parameter sets, and find that the critical number Ncr decreases by |Δ Ncr|˜1 -4 from Ncr˜11 with vanishing four-body interactions. We also discuss the effects of four-body interactions on energies and radii of α -particle condensates. Our study can be useful for future experiments to study α -particle condensates in heavy self-conjugate nuclei. Also, the experimental determination of Ncr will eventually help establish a better understanding on the α -particle interactions, especially the four-body interactions.

  11. Plasma wall particle balance in Tore Supra

    International Nuclear Information System (INIS)

    Grisolia, C.; Ghendrih, P.; Pegourie, B.; Grosman, A.

    1992-01-01

    A comprehensive study of the particle balance between the carbon wall and the plasma is presented. One finds that the effective particle content of the wall which governs the plasma equilibrium density departs from the deposited number of particles. This effect is dominant for the fully desaturated wall. A scaling law of the plasma density in terms of the wall effective particle content has been obtained. Moreover, the experimental data allows to estimate the plasma particle confinement time. Values ranging from 0.2 s to 0.5 s are found depending on the density. An analytical functional dependence of the particle confinement time is obtained

  12. Cancer-treating composition containing inductively-heatable particles

    International Nuclear Information System (INIS)

    Gordon, R.T.

    1978-01-01

    A cancer-treating composition including minute particles suspended in an aqueous solution in dosage form is described. This makes it possible to introduce into the interior of the cells of living tissue minute particles, with magnetic properties, which are inductively heated when subjected to a high frequency alternating electromagnetic field. Incorporating specific radioisotopes or tumor-specific antibodies bound to the particles increases selectivity and affinity of cancer cells for the particles. The particles may be used to deliver a chemotherapeutic agent primarily to the interior of the cancer cells by encapsulating the chemotherapeutic agent within the particles for release when the high frequency alternating electromagnetic field is applied. (author)

  13. Single Particle Entropy in Heated Nuclei

    International Nuclear Information System (INIS)

    Guttormsen, M.; Chankova, R.; Hjorth-Jensen, M.; Rekstad, J.; Siem, S.; Sunde, A. C.; Syed, N. U. H.; Agvaanluvsan, U.; Schiller, A.; Voinov, A.

    2006-01-01

    The thermal motion of single particles represents the largest contribution to level density (or entropy) in atomic nuclei. The concept of single particle entropy is presented and shown to be an approximate extensive (additive) quantity for mid-shell nuclei. A few applications of single particle entropy are demonstrated

  14. Intense particle beam and multiple applications

    International Nuclear Information System (INIS)

    Ueda, M.; Machida, M.

    1988-01-01

    The Multiple Application Intense Particle Beam project is an experiment in which an injector of high energy neutral or ionized particles will be used to diagnose high density and high temperature plasmas. The acceleration of the particles will be carried out feeding a diode with a high voltage pulse produced by a Marx generator. Other apllications of intense particle beam generated by this injector that could be explored in the future include: heating and stabilization of compact toroids, treatment of metallic surfaces and ion implantation. (author) [pt

  15. Investigation and visualization of internal flow through particle aggregates and microbial flocs using particle image velocimetry.

    Science.gov (United States)

    Xiao, Feng; Lam, Kit Ming; Li, Xiao-yan

    2013-05-01

    An advanced particle-tracking and flow-visualization technology, particle image velocimetry (PIV), was utilized to investigate the hydrodynamic properties of large aggregates in water. The laser-based PIV system was used together with a settling column to capture the streamlines around two types of aggregates: latex particle aggregates and activated sludge (AS) flocs. Both types of the aggregates were highly porous and fractal with fractal dimensions of 2.13±0.31 for the latex particle aggregates (1210-2144 μm) and 1.78±0.24 for the AS flocs (1265-3737 μm). The results show that PIV is a powerful flow visualization technique capable of determining flow field details at the micrometer scale around and through settling aggregates and flocs. The PIV streamlines provided direct experimental proof of internal flow through the aggregate interiors. According to the PIV images, fluid collection efficiency ranged from 0.052 to 0.174 for the latex particle aggregates and from 0.008 to 0.126 for AS flocs. AS flocs are apparently less permeable than the particle aggregates, probably due to the extracellular polymeric substances (EPSs) produced by bacteria clogging the pores within the flocs. The internal permeation of fractal aggregates and bio-flocs would enhance flocculation between particles and material transport into the aggregates. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Small Particles Intact Capture Experiment (SPICE)

    Science.gov (United States)

    Nishioka, Ken-Ji; Carle, G. C.; Bunch, T. E.; Mendez, David J.; Ryder, J. T.

    1994-01-01

    The Small Particles Intact Capture Experiment (SPICE) will develop technologies and engineering techniques necessary to capture nearly intact, uncontaminated cosmic and interplanetary dust particles (IDP's). Successful capture of such particles will benefit the exobiology and planetary science communities by providing particulate samples that may have survived unaltered since the formation of the solar system. Characterization of these particles may contribute fundamental data to our knowledge of how these particles could have formed into our planet Earth and, perhaps, contributed to the beginnings of life. The term 'uncontaminated' means that captured cosmic and IDP particles are free of organic contamination from the capture process and the term 'nearly intact capture' means that their chemical and elemental components are not materially altered during capture. The key to capturing cosmic and IDP particles that are organic-contamination free and nearly intact is the capture medium. Initial screening of capture media included organic foams, multiple thin foil layers, and aerogel (a silica gel); but, with the exception of aerogel, the requirements of no contamination or nearly intact capture were not met. To ensure no contamination of particles in the capture process, high-purity aerogel was chosen. High-purity aerogel results in high clarity (visual clearness), a useful quality in detection and recovery of embedded captured particles from the aerogel. P. Tsou at the Jet Propulsion Laboratory (JPL) originally described the use of aerogel for this purpose and reported laboratory test results. He has flown aerogel as a 'GAS-can Lid' payload on STS-47 and is evaluating the results. The Timeband Capture Cell Experiment (TICCE), a Eureca 1 experiment, is also flying aerogel and is scheduled for recovery in late April.

  17. Plasma physics via particle simulation

    International Nuclear Information System (INIS)

    Birdsall, C.K.

    1981-01-01

    Plasmas are studied by following the motion of many particles in applied and self fields, analytically, experimentally and computationally. Plasmas for magnetic fusion energy devices are very hot, nearly collisionless and magnetized, with scale lengths of many ion gyroradii and Debye lengths. The analytic studies of such plasmas are very difficult as the plasma is nonuniform, anisotropic and nonlinear. The experimental studies have become very expensive in time and money, as the size, density and temperature approach fusion reactor values. Computational studies using many particles and/or fluids have complemented both theories and experiments for many years and have progressed to fully three dimensional electromagnetic models, albeit with hours of running times on the fastest largest computers. Particle simulation methods are presented in some detail, showing particle advance from acceleration to velocity to position, followed by calculation of the fields from charge and current densities and then further particle advance, and so on. Limitations due to the time stepping and use of a spatial grid are given, to avoid inaccuracies and instabilities. Examples are given for an electrostatic program in one dimension of an orbit averaging program, and for a three dimensional electromagnetic program. Applications of particle simulations of plasmas in magnetic and inertial fusion devices continue to grow, as well as to plasmas and beams in peripheral devices, such as sources, accelerators, and converters. (orig.)

  18. Shock Interaction with Random Spherical Particle Beds

    Science.gov (United States)

    Neal, Chris; Mehta, Yash; Salari, Kambiz; Jackson, Thomas L.; Balachandar, S. "Bala"; Thakur, Siddharth

    2016-11-01

    In this talk we present results on fully resolved simulations of shock interaction with randomly distributed bed of particles. Multiple simulations were carried out by varying the number of particles to isolate the effect of volume fraction. Major focus of these simulations was to understand 1) the effect of the shockwave and volume fraction on the forces experienced by the particles, 2) the effect of particles on the shock wave, and 3) fluid mediated particle-particle interactions. Peak drag force for particles at different volume fractions show a downward trend as the depth of the bed increased. This can be attributed to dissipation of energy as the shockwave travels through the bed of particles. One of the fascinating observations from these simulations was the fluctuations in different quantities due to presence of multiple particles and their random distribution. These are large simulations with hundreds of particles resulting in large amount of data. We present statistical analysis of the data and make relevant observations. Average pressure in the computational domain is computed to characterize the strengths of the reflected and transmitted waves. We also present flow field contour plots to support our observations. U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

  19. Irradiation behaviors of coated fuel particles, (4)

    International Nuclear Information System (INIS)

    Fukuda, Kousaku; Kashimura, Satoru; Ogawa, Toru; Ikawa, Katsuichi; Iwamoto, Kazumi; Ishimoto, Kiyoshi

    1981-09-01

    Loose coated fuel particles prepared in confirmity to a preliminary design for the multi-purpose VHTR in fiscal 1972 - 1974 were irradiated by 73F - 12A capsule in JMTR. Main purpose for this irradiation experiment was to examine irradiation stability of the candidate TRISO coated fuel particles for the VHTR. Also the coated particles possessing low-density kernel (90%TD), highly anisotropic OLTI-PyC and ZrC coating layer were loaded with the candidate particles in this capsule. The coated particles were irradiated up to 1.5 x 10 21 n/cm 2 of fast neutron fluence (E > 0.18 MeV) and 3.2% FIMA of burnup. In the post irradiation examination it was observed that among three kinds of TRISO particles exposed to irradiation corresponding to the normal operating condition of the VHTR ones possessing poor characteristics of the coating layers did not show a good stability. The particles irradiated under abnormally high temperature condition (> 1800 0 C) revealed 6.7% of max. EOL failure fraction (95% confidence limit). Most of these particles were failed by the ameoba effect. Furthermore, among four kinds of the TRISO particles exposed to irradiation corresponding to the transient condition of the VHTR (--1500 0 C) the two showed a good stability, while the particles possessing highly anisotropic OLTI-PyC or poorly characteristic coating layers were not so good. (author)

  20. Introduction to particle physics

    International Nuclear Information System (INIS)

    Zitoun, R.

    2000-01-01

    This book proposes an introduction to particle physics that requires only a high-school level mathematical knowledge. Elementary particles (leptons, quarks, bosons) are presented according to a modern view taking into account of their symmetries and interactions. The author shows how physicists have elaborated the standard model and what are its implications in cosmology. (J.S.)