A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction
Park, B.G.; Wunderlich, Joerg; Martí, X.; Holý, V.; Kurosaki, Y.; Yamada, M.; Yamamoto, H.; Nishide, A.; Hayakawa, J.; Takahashi, H.; Shick, Alexander; Jungwirth, Tomáš
2011-01-01
Roč. 10, č. 5 (2011), s. 347-351. ISSN 1476-1122 R&D Projects: GA AV ČR KAN400100652; GA MŠk LC510; GA MŠk(CZ) 7E08087 EU Projects: European Commission(XE) 214499 - NAMASTE; European Commission(XE) 215368 - SemiSpinNet Grant ostatní: AVČR(CZ) Premium Academiae; 7 FP ERC Advanced Grant 0MSPIN(XE) 268066 Institutional research plan: CEZ:AV0Z10100521; CEZ:AV0Z10100520 Keywords : spintronic s * antiferromagnets Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 32.841, year: 2011
Zhao, Nan; Honert, Jan; Schmid, Berhard; Isoya, Junichi; Markham, Mathew; Twitchen, Daniel; Jelezko, Fedor; Liu, Ren-Bao; Fedder, Helmut; Wrachtrup, Jörg
2012-01-01
Sensing single nuclear spins is a central challenge in magnetic resonance based imaging techniques. Although different methods and especially diamond defect based sensing and imaging techniques in principle have shown sufficient sensitivity, signals from single nuclear spins are usually too weak to be distinguished from background noise. Here, we present the detection and identification of remote single C-13 nuclear spins embedded in nuclear spin baths surrounding a single electron spins of a...
Nuclear spin polarized atomic probes (alkali atoms) can be used to investigate the microscopic properties of solid surfaces. NMR and relaxation studies are discussed for nuclear spin polarized alkali atoms chemisorbed on hot metal surfaces. The use of nuclear spin-polarized radioactive nuclei, which allows the extension of this method to cold surfaces, is mentioned briefly. (orig.)
Dynamic nuclear spin polarization
Polarized neutron scattering from dynamic polarized targets has been applied to various hydrogenous materials at different laboratories. In situ structures of macromolecular components have been determined by nuclear spin contrast variation with an unprecedented precision. The experiments of selective nuclear spin depolarisation not only opened a new dimension to structural studies but also revealed phenomena related to propagation of nuclear spin polarization and the interplay of nuclear polarisation with the electronic spin system. The observation of electron spin label dependent nuclear spin polarisation domains by NMR and polarized neutron scattering opens a way to generalize the method of nuclear spin contrast variation and most importantly it avoids precontrasting by specific deuteration. It also likely might tell us more about the mechanism of dynamic nuclear spin polarisation. (author) 4 figs., refs
Dynamic nuclear spin polarization
Stuhrmann, H.B. [GKSS-Forschungszentrum Geesthacht GmbH (Germany)
1996-11-01
Polarized neutron scattering from dynamic polarized targets has been applied to various hydrogenous materials at different laboratories. In situ structures of macromolecular components have been determined by nuclear spin contrast variation with an unprecedented precision. The experiments of selective nuclear spin depolarisation not only opened a new dimension to structural studies but also revealed phenomena related to propagation of nuclear spin polarization and the interplay of nuclear polarisation with the electronic spin system. The observation of electron spin label dependent nuclear spin polarisation domains by NMR and polarized neutron scattering opens a way to generalize the method of nuclear spin contrast variation and most importantly it avoids precontrasting by specific deuteration. It also likely might tell us more about the mechanism of dynamic nuclear spin polarisation. (author) 4 figs., refs.
This booklet gives examples of 'nuclear spin off', from research programmes carried out for the UKAEA, under the following headings; non destructive testing; tribology; environmental protection; flow measurement; material sciences; mechanical engineering; marine services; biochemical technology; electronic instrumentation. (U.K.)
Nuclear spin effect in metallic spin valve
Danon, J.; Nazarov, Yu.V.
2006-01-01
We study electronic transport through a ferromagnet normal-metal ferromagnet system and we investigate the effect of hyperfine interaction between electrons and nuclei in the normal-metal part. A switching of the magnetization directions of the ferromagnets causes nuclear spins to precess. We show that the effect of this precession on the current through the system is large enough to be observed in experiment.
Müller, Norbert; Jerschow, Alexej
2006-01-01
NMR images were obtained from the proton spin noise signals of a water-containing phantom, which was placed in the highly tuned, low-noise resonant circuit of a cryogenically cooled NMR probe in the presence of systematically varied magnetic field gradients. The spatially resolved proton spin density was obtained from the raw signal by a modified projection–reconstruction protocol. Although spin noise imaging is inherently less sensitive than conventional magnetic resonance imaging, it afford...
Measurements of nuclear spin dynamics by spin-noise spectroscopy
We exploit the potential of the spin noise spectroscopy (SNS) for studies of nuclear spin dynamics in n-GaAs. The SNS experiments were performed on bulk n-type GaAs layers embedded into a high-finesse microcavity at negative detuning. In our experiments, nuclear spin polarisation initially prepared by optical pumping is monitored in real time via a shift of the peak position in the electron spin noise spectrum. We demonstrate that this shift is a direct measure of the Overhauser field acting on the electron spin. The dynamics of nuclear spin is shown to be strongly dependent on the electron concentration
Measurements of nuclear spin dynamics by spin-noise spectroscopy
Ryzhov, I. I.; Poltavtsev, S. V.; Kozlov, G. G.; Zapasskii, V. S. [Spin Optics Laboratory, St. Petersburg State University, 1 Ul' anovskaya, Peterhof, St. Petersburg 198504 (Russian Federation); Kavokin, K. V.; Glazov, M. M. [Spin Optics Laboratory, St. Petersburg State University, 1 Ul' anovskaya, Peterhof, St. Petersburg 198504 (Russian Federation); Ioffe Institute, Russian Academy of Sciences, 26 Polytechnicheskaya, St.-Petersburg 194021 (Russian Federation); Vladimirova, M.; Scalbert, D.; Cronenberger, S. [Laboratoire Charles Coulomb UMR 5221 CNRS/Université de Montpellier, Place Eugene Bataillon, 34095 Montpellier Cedex 05 (France); Kavokin, A. V. [Spin Optics Laboratory, St. Petersburg State University, 1 Ul' anovskaya, Peterhof, St. Petersburg 198504 (Russian Federation); School of Physics and Astronomy, University of Southampton, SO17 1NJ Southampton (United Kingdom); Lemaître, A.; Bloch, J. [Laboratoire de Photonique et de Nanostructures, UPR CNRS, Route de Nozay, 91460 Marcoussis (France)
2015-06-15
We exploit the potential of the spin noise spectroscopy (SNS) for studies of nuclear spin dynamics in n-GaAs. The SNS experiments were performed on bulk n-type GaAs layers embedded into a high-finesse microcavity at negative detuning. In our experiments, nuclear spin polarisation initially prepared by optical pumping is monitored in real time via a shift of the peak position in the electron spin noise spectrum. We demonstrate that this shift is a direct measure of the Overhauser field acting on the electron spin. The dynamics of nuclear spin is shown to be strongly dependent on the electron concentration.
Electron spin decoherence in nuclear spin baths and dynamical decoupling
We introduce the quantum theory of the electron spin decoherence in a nuclear spin bath and the dynamical decoupling approach for protecting the electron spin coherence. These theories are applied to various solid-state systems, such as radical spins in molecular crystals and NV centers in diamond.
High-spin nuclear spectroscopy
Diamond, R.M.
1986-07-01
High-spin spectroscopy is the study of the changes in nuclear structure, properties, and behavior with increasing angular momentum. It involves the complex interplay between collective and single-particle motion, between shape and deformation changes, particle alignments, and changes in the pairing correlations. A review of progress in theory, experimentation, and instrumentation in this field is given. (DWL)
Imaging techniques of computerised axial tomography, positron emission tomography and imaging by nuclear magnetic resonance, and their application in medicine for diagnostic purposes are described. These techniques are compared, and their relative merits and limitations are mentioned. (M.G.B.)
Nuclear Spin Noise and STM Noise Spectroscopy
Balatsky, A. V.; Fransson, J.; Mozyrsky, D.; Manassen, Yishay
2006-01-01
We consider fluctuations of the electronic spin due to coupling to nuclear spin. Noise spectroscopy of an electronic spin can be revealed in the Scanning Tunnelling Microscope (STM). We argue that the noise spectroscopy of electronic spin can reveal the nuclear spin dynamics due to hyperfine coupling. Tunnelling current develops satellites of the main lines at Larmor frequency and at zero frequency due to hyperfine coupling. We also address the role of the rf field that is at or near the reso...
Nuclear Spin Dynamics in Parabolic Quantum Wells
Tifrea, I.; Flatte, Michael E.
2003-01-01
We present a detailed analytical and numerical analysis of the nuclear spin dynamics in parabolic quantum wells. The shallow potential of parabolic quantum wells permits substantial modification of the electronic wave function in small electric fields. The nuclear spin relaxation via the hyperfine interaction depends on the electronic local density of states, therefore the local nuclear relaxation time depends sensitively on the electric field. For an inhomogeneous nuclear magnetization, such...
Nuclear spin noise in NMR revisited
Ferrand, Guillaume; Huber, Gaspard; Luong, Michel; Desvaux, Hervé
2015-09-01
The theoretical shapes of nuclear spin-noise spectra in NMR are derived by considering a receiver circuit with finite preamplifier input impedance and a transmission line between the preamplifier and the probe. Using this model, it becomes possible to reproduce all observed experimental features: variation of the NMR resonance linewidth as a function of the transmission line phase, nuclear spin-noise signals appearing as a "bump" or as a "dip" superimposed on the average electronic noise level even for a spin system and probe at the same temperature, pure in-phase Lorentzian spin-noise signals exhibiting non-vanishing frequency shifts. Extensive comparisons to experimental measurements validate the model predictions, and define the conditions for obtaining pure in-phase Lorentzian-shape nuclear spin noise with a vanishing frequency shift, in other words, the conditions for simultaneously obtaining the spin-noise and frequency-shift tuning optima.
Nuclear spin noise in NMR revisited
Ferrand, Guillaume; Luong, Michel; Desvaux, Hervé
2015-01-01
The theoretical shapes of nuclear spin-noise spectra in NMR are derived by considering a receiver circuit with finite, preamplifier input impedance and a transmission line between the preamplifier and the probe. Using this model, it becomes possible to reproduce all observed experimental features: variation of the NMR resonance linewidth as a function of the transmission line phase, nuclear spin-noise signals appearing as a "bump" or as a "dip" superimposed on the average electronic noise level even for a spin system and probe at the same temperature, pure in-phase Lorentzian spin-noise signals exhibiting non-vanishing frequency shifts. Extensive comparison to experimental measurements validate the model predictions, and define the conditions for obtaining pure in-phase Lorentzian-shape nuclear spin noise with a vanishing frequency shift, in other words, the conditions for simultaneously obtaining the Spin-Noise and Frequency-Shift Tuning Optima.
Nuclear spin noise in NMR revisited
Ferrand, Guillaume; Luong, Michel [Laboratoire d’Ingénierie des Systèmes Accélérateurs et des Hyperfréquences, SACM, CEA, Université Paris-Saclay, CEA/Saclay, F-91191 Gif-sur-Yvette (France); Huber, Gaspard; Desvaux, Hervé, E-mail: herve.desvaux@cea.fr [Laboratoire Structure et Dynamique par Résonance Magnétique, NIMBE, CEA, CNRS, Université Paris-Saclay, CEA/Saclay, F-91191 Gif-sur-Yvette (France)
2015-09-07
The theoretical shapes of nuclear spin-noise spectra in NMR are derived by considering a receiver circuit with finite preamplifier input impedance and a transmission line between the preamplifier and the probe. Using this model, it becomes possible to reproduce all observed experimental features: variation of the NMR resonance linewidth as a function of the transmission line phase, nuclear spin-noise signals appearing as a “bump” or as a “dip” superimposed on the average electronic noise level even for a spin system and probe at the same temperature, pure in-phase Lorentzian spin-noise signals exhibiting non-vanishing frequency shifts. Extensive comparisons to experimental measurements validate the model predictions, and define the conditions for obtaining pure in-phase Lorentzian-shape nuclear spin noise with a vanishing frequency shift, in other words, the conditions for simultaneously obtaining the spin-noise and frequency-shift tuning optima.
Nuclear spin noise in NMR revisited
The theoretical shapes of nuclear spin-noise spectra in NMR are derived by considering a receiver circuit with finite preamplifier input impedance and a transmission line between the preamplifier and the probe. Using this model, it becomes possible to reproduce all observed experimental features: variation of the NMR resonance linewidth as a function of the transmission line phase, nuclear spin-noise signals appearing as a “bump” or as a “dip” superimposed on the average electronic noise level even for a spin system and probe at the same temperature, pure in-phase Lorentzian spin-noise signals exhibiting non-vanishing frequency shifts. Extensive comparisons to experimental measurements validate the model predictions, and define the conditions for obtaining pure in-phase Lorentzian-shape nuclear spin noise with a vanishing frequency shift, in other words, the conditions for simultaneously obtaining the spin-noise and frequency-shift tuning optima
Detecting and polarizing nuclear spins in diamond
Scheuer, Jochen; McGuinness, Liam; Naydenov, Boris; Jelezko, Fedor [Institut fuer Quantenoptik, Universitaet Ulm, Ulm (Germany); London, Paz; Fischer, Ran [Department of Physics, Technion, Israel Institute of Technology, Haifa (Israel); Cai, Jianming; Schwarz, Ilai; Plenio, Martin B. [Institut fuer Theoretische Physik, Universitaet Ulm, Ulm (Germany); Retzker, Alex [Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem (Israel); Katagiri, Masayuki [Graduate School of Library, Information and Media Studies, University of Tsukuba, 1-2 Kasuga, Tsukuba, Ibaraki (Japan); National Institute for Materials Science, Tsukuba, Ibaraki (Japan); Teraji, Tokuyuki; Koizumi, Satoshi [National Institute for Materials Science, Tsukuba, Ibaraki (Japan); Isoya, Junichi [Graduate School of Library, Information and Media Studies, University of Tsukuba, 1-2 Kasuga, Tsukuba, Ibaraki (Japan)
2013-07-01
Control and measurement of nuclear spins is essential for medicine, chemistry and physics, but the sensitivity of conventional measurement schemes is limited due to low thermal polarization of nuclei under ambient conditions. We use an electron-nuclear double resonance technique, known as Hartmann-Hahn double resonance, to demonstrate experimentally polarization of single and multiple nuclear spins in a room temperature solid. By transferring polarization from an optically cooled electron spin associated with the nitrogen-vacancy (NV) defect, to carbon nuclei we are able to control spin bath dynamics. This work opens new possibilities for different fields of science, from control over decoherence and use of mesoscopic ensemble of nuclear spins as qubits to enhancement of contrast in magnetic resonance imaging.
Detecting and polarizing nuclear spins in diamond
Control and measurement of nuclear spins is essential for medicine, chemistry and physics, but the sensitivity of conventional measurement schemes is limited due to low thermal polarization of nuclei under ambient conditions. We use an electron-nuclear double resonance technique, known as Hartmann-Hahn double resonance, to demonstrate experimentally polarization of single and multiple nuclear spins in a room temperature solid. By transferring polarization from an optically cooled electron spin associated with the nitrogen-vacancy (NV) defect, to carbon nuclei we are able to control spin bath dynamics. This work opens new possibilities for different fields of science, from control over decoherence and use of mesoscopic ensemble of nuclear spins as qubits to enhancement of contrast in magnetic resonance imaging.
Spin excitations in di-nuclear systems
The spin excitations of products from two-body reactions have two sources: transfer of orbital motion into intrinsic spins via tangential friction and thermal excitations of di-nuclear spin modes. The relative importance of these two mechanisms is discussed for deep inelastic scattering, quasi-fission and spontaneous fission processes. The results of simple model calculations are compared to measured γ-multiplicities in 238U induced quasi-fission reactions and it is concluded that the spin-excitation are only partially equilibrated during the interaction. 11 refs., 5 figs
Nuclear Spin Effect in a Metallic Spin Valve
Danon, J.; Nazarov, Y.V.
2006-01-01
We study electronic transport through a ferromagnet normal-metal ferromagnet system and we investigate the effect of hyperfine interaction between electrons and nuclei in the normal-metal part. A switching of the magnetization directions of the ferromagnets causes nuclear spins to precess. We show t
Hyperdeformed nuclear states at very high spins
The stability of rotating nuclei against fission is investigated within the deformation valley through compact and creviced shapes and the liquid-drop model including the nuclear proximity energy. In this fission path, a scission barrier stands at large deformations and still exists at very high spins. The macroscopic deformation energy profile is relatively flat till β ≅ 0.7 at intermediate angular momenta and shell effects can generate superdeformed states. At higher spins the potential pocket is pushed at the foot of the scission barrier by the centrifugal forces and hyperdeformed nuclear states take place. The main characteristics of these predicted hyperdeformed nuclei such as spin, deformation, moment of inertia, quadrupole moment and excitation energy are given in the whole nuclear mass range. (authors). 30 refs., 13 figs
Nonergodic dynamics of nuclear spin 1/2 with equal constants of spin-spin interaction
Rudavets, M G
2002-01-01
The exact solution of the nuclear spins polarization evolution in the system with the similar q-constant spin-spin interaction (SSI) between all spin pairs is obtained in the case when only one (the first) spin was polarized at the initial time moment. It is shown that polarization of the first spin P sub 1 (t) has the form of periodical pulsations in the time with the 4 pi/g period. The P sub 1 (t) function changes in each period from the initial value P(0) = 1 up to 1/3 value during the time period of the t approx = 4 pi/Ng order, when the spins number is N >= 1 and remains in the P sub 1 (t) 1/3 state practically during the whole period. The simple classical model within the frames of the average field theory explains the physical cause of the nonergodic dynamics of the considered system
Nuclear spin magnetic resonance force microscopy using slice modulation
We report a Boltzmann polarization nuclear spins detection of cycle adiabatic inversion based on resonance slice thickness modulation. The nano-scale localized spin scanning NMRFM is applied using spins locked and anti-locked in the cycling frame. We also create a number of polarization spins among 1012 observing the spin relaxation and dipole-dipole interaction at gradient field 1520 T/m. The changes of nuclear spin signal intensity and relaxation time could be evidence for the nuclear collective excitation and predictions of nuclear spin collective excitation energy
Isobaric-spin relationships between nuclear spectra
French, J.B.
1961-01-01
The simple fact that a one-body energy describes the interaction of a nucleon with a closed neutron subshell is used to establish sets of equations connecting the spectra of nuclei which are related by isobaric-spin when described by means of the nuclear shell model. Certain formal questions about i
Nuclear spin circular dichroism in fullerenes
Straka, Michal
Brno : Masaryk University Press, 2015 - (Sklenář, V.). s. 153 ISBN 978-80-210-7890-1. [EUROMAR 2015. 05.07.2015-10.07.2015, Praha] R&D Projects: GA ČR(CZ) GA14-03564S Institutional support: RVO:61388963 Keywords : nuclear spin circular dichroism * fullerenes Subject RIV: CF - Physical ; Theoretical Chemistry
Nuclear spin quantum computing with trapped ions
Wang, Kunling; Feng, Mang; Mintert, Florian; Wunderlich, Christof
2011-01-01
Quantum computing with qubits encoded in nuclear spins of trapped ions is studied with particular attention to the Yb$^+$ ion. For this purpose we consider the Paschen-Back regime (strong magnetic field) and employ a high-field approximation in this treatment. An efficient scheme is proposed to carry out gate operations on an array of trapped ions, and the feasibility of generating the required high magnetic field is discussed.
Hydrodynamic approach to coherent nuclear spin transport
Greenbaum, D.; Kindermann, M.; Ramanathan, C.; Cory, D. G.
2004-01-01
We develop a linear response formalism for nuclear spin diffusion in a dipolar coupled solid. The theory applies to the high-temperature, long-wavelength regime studied in the recent experiments of Boutis et al. [Phys. Rev. Lett. 92, 137201 (2004)], which provided direct measurement of interspin energy diffusion in such a system. A systematic expansion of Kubo's formula in the flip-flop term of the Hamiltonian is used to calculate the diffusion coefficients. We show that this approach is equi...
Nuclear spin echo model based on Floquet-Lyapunov theory
The method of nuclear spin-echo amplitude calculation based on the density matrix technique is improved. The Floquet-Lyapunov theorem for a system of the ordinary differential equations with coefficients periodically dependent on time is used to find the solution of the Schroedinger equation for the time-evolution operator which describes behavior of a nuclear spin in the presence of a radiofrequency pulsed magnetic field. NQR spin echo for the case of nuclear spin I = 1 and NMR spin echo for I = 1/2 are considered as the simplest illustrations of the approach. The appearance of multiple spin echoes is predicted in the case of strong radiofrequency field.
Sensing single remote nuclear spins in nitrogen-vacancy centers
Honert, Jan; Zhao, Nan; Schmid, Bernhard; Klas, Michael; Fedder, Helmut; Wrachtrup, Joerg [3. Physikalisches Institut, University Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart (Germany); Isoya, Junichi [Graduate School of Library, Information and Media Studies, University of Tsukuba, 1-2 Kasuga, Tsukuba, Ibaraki 305-8550 (Japan); Markham, Matthew; Twitchen, Daniel [Element Six Ltd, Ascot SL5 8BP, Berks (United Kingdom); Jelezko, Fedor [Institut fuer Quantenoptik, Universitaet Ulm, 89081 Ulm (Germany); Liu, Ren-Bao [Department of Physics and Centre for Quantum Coherence, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong (China)
2013-07-01
The detection of single nuclear spins would be useful for fields ranging from basic science to quantum information technology. In addition, the ability to address weakly coupled nuclear spins in the solid state expands the number of addressable qubits surrounding the detector spin significantly. Here, we present the detection and identification of single and remote {sup 13}C nuclear spins embedded in nuclear spin baths surrounding a single electron spin of a nitrogen-vacancy centre in diamond. We are able to amplify and detect the weak magnetic field noise (∝10 nT) from a single nuclear spin located about 3 nm from the centre using dynamical decoupling control, and achieve a detectable hyperfine coupling strength as weak as ∝300 Hz. We also confirm the quantum nature of the coupling present the first steps and results towards manipulating those spins.
Nuclear spin polarization and relaxation probed by spin phase transition peak
Watanabe, S.; Hirayama, Y. [Graduate School of Science, Department of Physics, Tohoku University, Sendai (Japan); ERATO Nuclear Spin Electronics Project, Sendai (Japan); Fauzi, M.H. [Graduate School of Science, Department of Physics, Tohoku University, Sendai (Japan); Kumada, N. [NTT Basic Research Laboratories, NTT Corporation, Atsugi (Japan)
2010-10-15
We perform resistively-detected nuclear-spin relaxation measurements by using the spin phase transition (SPT) peak in the fractional quantum Hall system at the filling factor {nu} = 2/3. We investigate nuclear spin relaxation for several electronic systems under a spatially inhomogeneous nuclear spin polarization. When Skyrmions are introduced in the ground state, the position of the SPT peak shifts to higher magnetic feld. This result indicates that Skyrmions relax nuclear spins polarized anti-parallel to the external magnetic feld more effectively than those parallel to the magnetic feld. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Nuclear spin states and quantum logical operations
Full text: To build a really functional quantum computer, researchers need to develop logical controllers known as 'gates' to control the state of q-bits. In this work , equal quantum logical operations are examined with the emphasis on 1-, 2-, and 3-q-bit gates.1-q-bit quantum logical operations result in Boolean 'NOT'; the 'NOT' and '√NOT' operations are described from the classical and quantum perspective. For the 'NOT' operation to be performed, there must be a means to switch the state of q-bits from to and vice versa. For this purpose either a light or radio pulse of a certain frequency can be used. If the nucleus has the spin-down state, the spin will absorb a portion of energy from electromagnetic current and switch into the spin-up state, and the radio pulse will force it to switch into state. An operation thus described from purely classical perspective is clearly understood. However, operations not analogous to the classical type may also be performed. If the above mentioned radio pulses are only half the frequency required to cause a state switch in the nuclear spin, the nuclear spin will enter the quantum superposition state of the ground state (↓) and excited states (↑). A recurring radio pulse will then result in an operation equivalent to 'NOT', for which reason the described operation is called '√NOT'. Such an operation allows for the state of quantum superposition in quantum computing, which enables parallel processing of several numbers. The work also treats the principles of 2-q-bit logical operations of the controlled 'NOT' type (CNOT), 2-q-bit (SWAP), and the 3-q-bit 'TAFFOLI' gate. (author)
Evolution of nuclear shapes at high spins
The dynamic electric quadrupole (E2) moments are a direct reflection of the collective aspects of the nuclear wave functions. For this, Doppler-shift lifetime measurements have been done utilizing primarily the recoil-distance technique. The nuclei with neutron number N approx. 90 possess many interesting properties. These nuclei have very shallow minima in their potential energy surfaces, and thus, are very susceptible to deformation driving influences. It is the evolution of nuclear shapes as a function of spin or rotational frequency for these nuclei that has commanded much interest in the lifetime measurements discussed here. There is growing evidence that many deformed nuclei which have prolate shapes in their ground states conform to triaxial or oblate shapes at higher spins. Since the E2 matrix elements along the yrast line are sensitive indicators of deformation changes, measurements of lifetimes of these states to provide the matrix elements has become the major avenue for tracing the evolving shape of a nucleus at high spin. Of the several nuclei we have studied with N approx. 90, those to be discussed here are /sup 160,161/Yb and 158Er. In addition, the preliminary, but interesting and surprising results from our recent investigation of the N = 98 nucleus, 172W are briefly discussed. 14 refs., 5 figs
Dynamical cooling of nuclear spins in double quantum dots
Electrons trapped in quantum dots can exhibit quantum-coherent spin dynamics over long timescales. These timescales are limited by the coupling of electron spins to the disordered nuclear spin background, which is a major source of noise and dephasing in such systems. We propose a scheme for controlling and suppressing fluctuations of nuclear spin polarization in double quantum dots, which uses nuclear spin pumping in the spin-blockade regime. We show that nuclear spin polarization fluctuations can be suppressed when electronic levels in the two dots are properly positioned near resonance. The proposed mechanism is analogous to that of optical Doppler cooling. The Overhauser shift due to fluctuations of nuclear polarization brings electron levels in and out of resonance, creating internal feedback to suppress fluctuations. Estimates indicate that a better than 10-fold reduction of fluctuations is possible.
Nuclear spin pair coherence in diamond for atomic scale magnetometry
Zhao, Nan; Hu, Jian-Liang; Ho, Sai-Wah; Wen, Tsz-Kai; Liu, R. B.
2010-01-01
The nitrogen-vacancy (NV) centre, as a promising candidate solid state system of quantum information processing, its electron spin coherence is influenced by the magnetic field fluctuations due to the local environment. In pure diamonds, the environment consists of hundreds of C-13 nuclear spins randomly spreading in several nanometers range forming a spin bath. Controlling and prolonging the electron spin coherence under the influence of spin bath are challenging tasks for the quantum inform...
International Conference on Spin Observables of Nuclear Probes
Goodman, Charles; Walker, George; Spin Observables of Nuclear Probes
1988-01-01
The proceedings of the "International Conference on Spin Observables of Nuclear Probes" are presented in this volume. This conference was held in Telluride, Colorado, March 14 -17, 1988, and was the fourth in the Telluride series of nuclear physics conferences. A continuing theme in the Telluride conference series has been the complementarity of various intermediate-energy projectiles for elucidating the nucleon-nucleon interaction and nuclear structure. Earlier conferences have contributed significantly to an understanding of spin currents in nuclei, in particular the distribution of Gamow-Teller strength using charge-exchange reactions. The previous conference on "Antinucleon and Nucleon Nucleus Interactions" compared nuclear information from tra tional probes to recent results from antinucleon reactions. The 1988 conference on Spin Observables of Nuclear Probes, put special emphasis on spin observables and brought together experts using spin information to probe nuclear structure. Spin observabl...
Atomic-scale magnetometry of distant nuclear spin clusters via nitrogen-vacancy spin in diamond.
Zhao, Nan; Hu, Jian-Liang; Ho, Sai-Wah; Wan, Jones T K; Liu, R B
2011-04-01
The detection of single nuclear spins is an important goal in magnetic resonance spectroscopy. Optically detected magnetic resonance can detect single nuclear spins that are strongly coupled to an electron spin, but the detection of distant nuclear spins that are only weakly coupled to the electron spin has not been considered feasible. Here, using the nitrogen-vacancy centre in diamond as a model system, we numerically demonstrate that it is possible to detect two or more distant nuclear spins that are weakly coupled to a centre electron spin if these nuclear spins are strongly bonded to each other in a cluster. This cluster will stand out from other nuclear spins by virtue of characteristic oscillations imprinted onto the electron spin decoherence profile, which become pronounced under dynamical decoupling control. Under many-pulse dynamical decoupling, the centre electron spin coherence can be used to measure nuclear magnetic resonances of single molecules. This atomic-scale magnetometry should improve the performance of magnetic resonance spectroscopy for applications in chemical, biological, medical and materials research, and could also have applications in solid-state quantum computing. PMID:21358646
Nuclear spin polarized H and D by means of spin-exchange optical pumping
Stenger, Jörn; Grosshauser, Carsten; Kilian, Wolfgang; Nagengast, Wolfgang; Ranzenberger, Bernd; Rith, Klaus; Schmidt, Frank
1998-01-01
Optically pumped spin-exchange sources for polarized hydrogen and deuterium atoms have been demonstrated to yield high atomic flow and high electron spin polarization. For maximum nuclear polarization the source has to be operated in spin temperature equilibrium, which has already been demonstrated for hydrogen. In spin temperature equilibrium the nuclear spin polarization PI equals the electron spin polarization PS for hydrogen and is even larger than PS for deuterium. We discuss the general properties of spin temperature equilibrium for a sample of deuterium atoms. One result are the equations PI=4PS/(3+PS2) and Pzz=PSṡPI, where Pzz is the nuclear tensor polarization. Furthermore we demonstrate that the deuterium atoms from our source are in spin temperature equilibrium within the experimental accuracy.
Nuclear magnetometry studies of spin dynamics in quantum Hall systems
Fauzi, M. H.; Watanabe, S.; Hirayama, Y.
2014-12-01
We performed a nuclear magnetometry study on quantum Hall ferromagnet with a bilayer total filling factor of νtot=2 . We found not only a rapid nuclear relaxation but also a sudden change in the nuclear-spin polarization distribution after a one-second interaction with a canted antiferromagnetic phase. We discuss the possibility of observing cooperative phenomena coming from nuclear-spin ensemble triggered by hyperfine interaction in quantum Hall system.
Squeezing and entangling nuclear spins in helium 3
Reinaudi, Gael; Sinatra, Alice; Dantan, Aurelien Romain;
2007-01-01
We present a realistic model for transferring the squeezing or the entanglement of optical field modes to the collective ground state nuclear spin of 3He using metastability exchange collisions. We discuss in detail the requirements for obtaining good quantum state transfer efficiency and study the...... possibility to readout the nuclear spin state optically....
Spin Squeezing of Atomic Ensembles via Nuclear-Electronic Spin Entanglement
Fernholz, Thomas; Krauter, Hanna; Jensen, K.;
2008-01-01
We demonstrate spin squeezing in a room temperature ensemble of ≈1012 cesium atoms using their internal structure, where the necessary entanglement is created between nuclear and electronic spins of each individual atom. This state provides improvement in measurement sensitivity beyond the standard...... quantum limit for quantum memory experiments and applications in quantum metrology and is thus a complementary alternative to spin squeezing obtained via interatom entanglement. Squeezing of the collective spin is verified by quantum state tomography....
Wang, Y.; Harmon, N. J.; Sahin-Tiras, K.; Wohlgenannt, M.; Flatté, M. E.
2014-01-01
We describe a new regime for low-field magnetoresistance in organic semiconductors, in which the spin-relaxing effects of localized nuclear spins and electronic spins interfere. The regime is studied by the controlled addition of localized electronic spins to a material that exhibits substantial room-temperature magnetoresistance ($\\sim 20$\\%). Although initially the magnetoresistance is suppressed by the doping, at intermediate doping there is a regime where the magnetoresistance is insensit...
Nuclear spin relaxation in systems of magnetic spheres
A new approach to the NMR relaxation theory for a system of magnetic spheres (sufficiently big spherical molecules) is presented. In this paper the NMR spin-lattice relaxation time T1 and spin-spin relaxation time T2 are calculated for nuclear spins I→j, taking into account intermolecular dipole-dipole interactions between the spins I→j, and spins S→k in the magnetic spheres. By an expansion of the dipole-dipole interaction in a series of spherical harmonics, it is possible to separate spatial variables of the interacting spins in a laboratory frame. A simultaneous effect of isotropic rotational and translation diffusion of the spins and relaxation rate of spins S→k is also taken into account
Pump dynamics of nuclear spins in GaAs nanostructures
Photons carry angular momentum, which must be transferred to the material when they are absorbed. This conservation law can be used to polarize the spins of charge carriers in semiconductors by irradiating the material with circularly polarized light. Part of the electrons' spin polarization is transferred via Fermi contact hyperfine interaction to the nuclear spins of the material. This can be used to increase the sensitivity of nuclear magnetic resonance by many orders of magnitude or to reduce decoherence in spin-based quantum computers working on the basis of semiconductor nanostructures. We explore the dynamics of the optical pumping process when a cw laser beam is applied to a GaAs/AlGaAs heterostructure in the presence of a magnetic field. We resonantly create electron-hole pairs in single quantum wells and measure the build-up of the nuclear spin polarization as a function of time through the effect of the average hyperfine interaction on the electron spins (the 'nuclear field'). This feedback of the nuclear spin polarization on the electron spins results in a nonlinear dynamics of the coupled electron-nuclear spin system. We model these dynamics and compare the result with experimental data.
Optical manipulation of a multilevel nuclear spin in ZnO: Master equation and experiment
Buß, J. H.; Rudolph, J.; Wassner, T. A.; Eickhoff, M.; Hägele, D.
2016-04-01
We demonstrate the dynamics and optical control of a large quantum mechanical solid state spin system consisting of a donor electron spin strongly coupled to the 9/2 nuclear spin of 115In in the semiconductor ZnO. Comparison of electron spin dynamics observed by time-resolved pump-probe spectroscopy with density matrix theory reveals nuclear spin pumping via optically oriented electron spins, coherent spin-spin interaction, and quantization effects of the ten nuclear spin levels. Modulation of the optical electron spin orientation at frequencies above 1 MHz gives evidence for fast optical manipulation of the nuclear spin state.
Sensitive Magnetic Control of Ensemble Nuclear Spin Hyperpolarisation in Diamond
Wang, Hai-Jing; Avalos, Claudia E; Seltzer, Scott J; Budker, Dmitry; Pines, Alexander; Bajaj, Vikram S
2012-01-01
Dynamic nuclear polarisation, which transfers the spin polarisation of electrons to nuclei, is routinely applied to enhance the sensitivity of nuclear magnetic resonance; it is also critical in spintronics, particularly when spin hyperpolarisation can be produced and controlled optically or electrically. Here we show the complete polarisation of nuclei located near the optically-polarised nitrogen-vacancy (NV) centre in diamond. When approaching the ground-state level anti-crossing condition of the NV electron spins, 13C nuclei in the first-shell are polarised in a pattern that depends sensitively and sharply upon the magnetic field. Based on the anisotropy of the hyperfine coupling and of the optical polarisation mechanism, we predict and observe a complete reversal of the nuclear spin polarisation with a few-mT change in the magnetic field. The demonstrated sensitive magnetic control of nuclear polarisation at room temperature will be useful for sensitivity-enhanced NMR, nuclear-based spintronics, and quant...
Decoupling a hole spin qubit from the nuclear spins.
Prechtel, Jonathan H; Kuhlmann, Andreas V; Houel, Julien; Ludwig, Arne; Valentin, Sascha R; Wieck, Andreas D; Warburton, Richard J
2016-09-01
A huge effort is underway to develop semiconductor nanostructures as low-noise hosts for qubits. The main source of dephasing of an electron spin qubit in a GaAs-based system is the nuclear spin bath. A hole spin may circumvent the nuclear spin noise. In principle, the nuclear spins can be switched off for a pure heavy-hole spin. In practice, it is unknown to what extent this ideal limit can be achieved. A major hindrance is that p-type devices are often far too noisy. We investigate here a single hole spin in an InGaAs quantum dot embedded in a new generation of low-noise p-type device. We measure the hole Zeeman energy in a transverse magnetic field with 10 neV resolution by dark-state spectroscopy as we create a large transverse nuclear spin polarization. The hole hyperfine interaction is highly anisotropic: the transverse coupling is energies; equivalently dephasing times up to a microsecond. The combination of large and strong optical dipole makes the single hole spin in a GaAs-based device an attractive quantum platform. PMID:27454044
Qubit protection in nuclear-spin quantum dot memory
Nuclear spins in semiconductor nanostructures are excellent candidates for storing quantum information. While they are largely decoupled from their environment and have long intrinsic lifetimes, the hyperfine interaction with electron spins allows one to access ensembles of nuclear spins in a controlled way. In particular, the quantum state of an electron spin can be coherently mapped onto the nuclear spins constituting a quantum dot, thus giving rise to a collective quantum memory. Nevertheless, memory lifetimes are limited, e.g., by dipole-dipole interactions among the nuclei. In the talk we demonstrate that the presence of the electron can substantially reduce the decoherence of this collective memory. The hyperfine-induced dynamic Stark shift energetically isolates the storage states from the rest of the Hilbert space and protects them against nuclear spin flips and spin diffusion. We show that our scheme is robust against the deleterious effects of inhomogeneous Knight shift and we also analyze the case when the nuclear spins are not perfectly polarized
Effect of nuclear spins on the electron spin dynamics in negatively charged InP quantum dots
Ignatiev, I. V.; Verbin, S. Yu.; Gerlovin, I. Ya.; Maruyama, W.; Pal, B.; Masumoto, Y.
2005-01-01
Kinetics of polarized photoluminescence of the negatively charged InP quantum dots in weak magnetic field is studied experimentally. Effect of both the nuclear spin fluctuations and the dynamical nuclear polarization on the electron spin orientation is observed.
Single-shot readout of a single nuclear spin.
Neumann, Philipp; Beck, Johannes; Steiner, Matthias; Rempp, Florian; Fedder, Helmut; Hemmer, Philip R; Wrachtrup, Jörg; Jelezko, Fedor
2010-07-30
Projective measurement of single electron and nuclear spins has evolved from a gedanken experiment to a problem relevant for applications in atomic-scale technologies like quantum computing. Although several approaches allow for detection of a spin of single atoms and molecules, multiple repetitions of the experiment that are usually required for achieving a detectable signal obscure the intrinsic quantum nature of the spin's behavior. We demonstrated single-shot, projective measurement of a single nuclear spin in diamond using a quantum nondemolition measurement scheme, which allows real-time observation of an individual nuclear spin's state in a room-temperature solid. Such an ideal measurement is crucial for realization of, for example, quantum error correction protocols in a quantum register. PMID:20595582
Nuclear Spin Conversion in CH4: A Multichannel Relaxation Mechanism.
Cacciani, Patrice; Cosléou, Jean; Khelkhal, Mohamed; Čermák, Peter; Puzzarini, Cristina
2016-01-21
Experiments on nuclear spin interconversion of ortho, para, and meta nuclear spin isomers of the methane molecule have been undertaken in gas phase and cryomatrices. Only the latter environment has led to the observation of the nuclear spin conversion. In this study, a quantitative explanation is given for the first time by considering the coupling of three relaxation paths: meta ⇔ para, meta ⇔ ortho, and ortho ⇔ para. The global evolution of the three populations of spin isomers is thus described by two characteristic times, which have been calculated using the best values of the energy levels for the vibrational ground state, of the intramolecular magnetic interactions, and of the collisional relaxation rates, and for different pressure and temperature conditions. Such calculations also provide an indication for the proper choice of reliable scenarios for experimental separation of the spin isomers of methane. PMID:26681482
Spin-Orbit Interaction of Nuclear Shell Structure
Wang, Xiaobin; Wang, Zhengda; Wang, Xiaochun; Zhang, Xiaodong
2012-01-01
Single particle spin-orbit interaction energy problem in nuclear shell structure is solved through negative harmonic oscillator in the self-similar-structure shell model (SSM) [4] and considering quarks' contributions on single particle spin and orbit momentum. The paper demonstrates that single particle motion in normal nuclei is described better by SSM negative harmonic oscillator than conventional shell model positive harmonic oscillator[1][2][3]. The proposed theoretical formula for spin ...
Quantum computation with nuclear spins in quantum dots
Christ, H.
2008-01-24
The role of nuclear spins for quantum information processing in quantum dots is theoretically investigated in this thesis. Building on the established fact that the most strongly coupled environment for the potential electron spin quantum bit are the surrounding lattice nuclear spins interacting via the hyperfine interaction, we turn this vice into a virtue by designing schemes for harnessing this strong coupling. In this perspective, the ensemble of nuclear spins can be considered an asset, suitable for an active role in quantum information processing due to its intrinsic long coherence times. We present experimentally feasible protocols for the polarization, i.e. initialization, of the nuclear spins and a quantitative solution to our derived master equation. The polarization limiting destructive interference effects, caused by the collective nature of the nuclear coupling to the electron spin, are studied in detail. Efficient ways of mitigating these constraints are presented, demonstrating that highly polarized nuclear ensembles in quantum dots are feasible. At high, but not perfect, polarization of the nuclei the evolution of an electron spin in contact with the spin bath can be efficiently studied by means of a truncation of the Hilbert space. It is shown that the electron spin can function as a mediator of universal quantum gates for collective nuclear spin qubits, yielding a promising architecture for quantum information processing. Furthermore, we show that at high polarization the hyperfine interaction of electron and nuclear spins resembles the celebrated Jaynes-Cummings model of quantum optics. This result opens the door for transfer of knowledge from the mature field of quantum computation with atoms and photons. Additionally, tailored specifically for the quantum dot environment, we propose a novel scheme for the generation of highly squeezed collective nuclear states. Finally we demonstrate that even an unprepared completely mixed nuclear spin
Quantum computation with nuclear spins in quantum dots
The role of nuclear spins for quantum information processing in quantum dots is theoretically investigated in this thesis. Building on the established fact that the most strongly coupled environment for the potential electron spin quantum bit are the surrounding lattice nuclear spins interacting via the hyperfine interaction, we turn this vice into a virtue by designing schemes for harnessing this strong coupling. In this perspective, the ensemble of nuclear spins can be considered an asset, suitable for an active role in quantum information processing due to its intrinsic long coherence times. We present experimentally feasible protocols for the polarization, i.e. initialization, of the nuclear spins and a quantitative solution to our derived master equation. The polarization limiting destructive interference effects, caused by the collective nature of the nuclear coupling to the electron spin, are studied in detail. Efficient ways of mitigating these constraints are presented, demonstrating that highly polarized nuclear ensembles in quantum dots are feasible. At high, but not perfect, polarization of the nuclei the evolution of an electron spin in contact with the spin bath can be efficiently studied by means of a truncation of the Hilbert space. It is shown that the electron spin can function as a mediator of universal quantum gates for collective nuclear spin qubits, yielding a promising architecture for quantum information processing. Furthermore, we show that at high polarization the hyperfine interaction of electron and nuclear spins resembles the celebrated Jaynes-Cummings model of quantum optics. This result opens the door for transfer of knowledge from the mature field of quantum computation with atoms and photons. Additionally, tailored specifically for the quantum dot environment, we propose a novel scheme for the generation of highly squeezed collective nuclear states. Finally we demonstrate that even an unprepared completely mixed nuclear spin
Distinction of Nuclear Spin States with the Scanning Tunneling Microscope
Natterer, Fabian Donat; Patthey, François; Brune, Harald
2013-01-01
We demonstrate rotational excitation spectroscopy with the scanning tunneling microscope for physisorbed hydrogen and its isotopes hydrogen-deuterid and deuterium. The observed excitation energies are very close to the gas phase values and show the expected scaling with moment of inertia. Since these energies are characteristic for the molecular nuclear spin states we are able to identify the para and ortho species of hydrogen and deuterium, respectively. We thereby demonstrate nuclear spin s...
Nuclear Spins in a Nanoscale Device for Quantum Information Processing
Ozdemir, S K; Imoto, N; Miranowicz, A; Ota, T; Yusa, G
2006-01-01
Coherent oscillations between any two levels from four nuclear spin states of I=3/2 have been demonstrated in a nanometre-scale NMR semiconductor device, where nuclear spins are all-electrically controlled. Using this device, we discuss quantum logic operations on two fictitious qubits of the I=3/2 system, and propose a quantum state tomography scheme based on the measurement of longitudinal magnetization, $M_z$.
Nuclear data for the high-spin community
The Isotopes Project at Berkeley is developing the Evaluated High-Spin Data File, a subset of the Evaluated Nuclear Structure Data File (ENSDF). The following products were under development at the time of the conference: eighth edition of the Table of Isotopes, electronic table of isotopes, data bases, nuclear charts, nuclear wallet cards, nuclear CD-ROM, FAX data services, on-line data services
Nuclear Effects on the Spin-Dependent Structure Functions
We address the question how the spin-dependent nucleon structure function g1(x,Q2) gets modified when the nucleon is bound inside a nucleus. We analyze the influence of nuclear interactions using the Δ - π model, known to describe well the unpolarized effect, and the free polarized parton distributions. The results for the neutron in 3He and proton in 3H,7Li and 19F are presented, showing significant changes in the parton spin distributions and in their moments. Scattering processes off polarized 7Li are suggested which could justify these theoretical calculations and shed more light on both nuclear spin structure and short distance QCD. (author)
Analysis of the transient response of nuclear spins in GaAs with/without nuclear magnetic resonance
Rasly, Mahmoud; Lin, Zhichao; Yamamoto, Masafumi; Uemura, Tetsuya
2016-05-01
As an alternative to studying the steady-state responses of nuclear spins in solid state systems, working within a transient-state framework can reveal interesting phenomena. The response of nuclear spins in GaAs to a changing magnetic field was analyzed based on the time evolution of nuclear spin temperature. Simulation results well reproduced our experimental results for the transient oblique Hanle signals observed in an all-electrical spin injection device. The analysis showed that the so called dynamic nuclear polarization can be treated as a cooling tool for the nuclear spins: It works as a provider to exchange spin angular momentum between polarized electron spins and nuclear spins through the hyperfine interaction, leading to an increase in the nuclear polarization. In addition, a time-delay of the nuclear spin temperature with a fast sweep of the external magnetic field produces a possible transient state for the nuclear spin polarization. On the other hand, the nuclear magnetic resonance acts as a heating tool for a nuclear spin system. This causes the nuclear spin temperature to jump to infinity: i.e., the average nuclear spins along with the nuclear field vanish at resonant fields of 75As, 69Ga and 71Ga, showing an interesting step-dip structure in the oblique Hanle signals. These analyses provide a quantitative understanding of nuclear spin dynamics in semiconductors for application in future computation processing.
Nuclear-spin observation of noise spectra in semiconductors
Sasaki, Susumu; Nishimori, Masashi; Kawanago, Takashi [Department of Materials Science, Niigata University, Niigata 950-2181 (Japan); Yuge, Tatsuro [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Hirayama, Yoshiro [Department of Physics, Tohoku University, Sendai 980-8578, Japan and JST-ERATO Nuclear Spin Electronics Project, Sendai 980-8578 (Japan)
2013-12-04
We propose a systematic method of obtaining the spectra of noises that cause the decoherence of spins in solids. Based on this method, we experimentally show that this method can be applied to nuclear spins in semiconductors. We clarify that the spectral intensity must be derived from the long-time tail of the multiple-echo decay. To obtain higher-frequency noise, the inversion-pulse interval must be as short as possible, which required us to employ the alternating-phase Carr-Purcell sequence instead of the widely used Carr-Purcell Meiboom-Gill. For {sup 75}As nuclear spin in variously-doped GaAs, we observed a Lorentzian spectrum, instead of the commonly observed 1/f spectrum. This indicates that the nuclear spins are indeed in a coherently-controlled state.
Calculation of nuclear spin-spin coupling constants using frozen density embedding
We present a method for a subsystem-based calculation of indirect nuclear spin-spin coupling tensors within the framework of current-spin-density-functional theory. Our approach is based on the frozen-density embedding scheme within density-functional theory and extends a previously reported subsystem-based approach for the calculation of nuclear magnetic resonance shielding tensors to magnetic fields which couple not only to orbital but also spin degrees of freedom. This leads to a formulation in which the electron density, the induced paramagnetic current, and the induced spin-magnetization density are calculated separately for the individual subsystems. This is particularly useful for the inclusion of environmental effects in the calculation of nuclear spin-spin coupling constants. Neglecting the induced paramagnetic current and spin-magnetization density in the environment due to the magnetic moments of the coupled nuclei leads to a very efficient method in which the computationally expensive response calculation has to be performed only for the subsystem of interest. We show that this approach leads to very good results for the calculation of solvent-induced shifts of nuclear spin-spin coupling constants in hydrogen-bonded systems. Also for systems with stronger interactions, frozen-density embedding performs remarkably well, given the approximate nature of currently available functionals for the non-additive kinetic energy. As an example we show results for methylmercury halides which exhibit an exceptionally large shift of the one-bond coupling constants between 199Hg and 13C upon coordination of dimethylsulfoxide solvent molecules
Calculation of nuclear spin-spin coupling constants using frozen density embedding
Götz, Andreas W., E-mail: agoetz@sdsc.edu [San Diego Supercomputer Center, University of California San Diego, 9500 Gilman Dr MC 0505, La Jolla, California 92093-0505 (United States); Autschbach, Jochen [Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000 (United States); Visscher, Lucas, E-mail: visscher@chem.vu.nl [Amsterdam Center for Multiscale Modeling (ACMM), VU University Amsterdam, Theoretical Chemistry, De Boelelaan 1083, 1081 HV Amsterdam (Netherlands)
2014-03-14
We present a method for a subsystem-based calculation of indirect nuclear spin-spin coupling tensors within the framework of current-spin-density-functional theory. Our approach is based on the frozen-density embedding scheme within density-functional theory and extends a previously reported subsystem-based approach for the calculation of nuclear magnetic resonance shielding tensors to magnetic fields which couple not only to orbital but also spin degrees of freedom. This leads to a formulation in which the electron density, the induced paramagnetic current, and the induced spin-magnetization density are calculated separately for the individual subsystems. This is particularly useful for the inclusion of environmental effects in the calculation of nuclear spin-spin coupling constants. Neglecting the induced paramagnetic current and spin-magnetization density in the environment due to the magnetic moments of the coupled nuclei leads to a very efficient method in which the computationally expensive response calculation has to be performed only for the subsystem of interest. We show that this approach leads to very good results for the calculation of solvent-induced shifts of nuclear spin-spin coupling constants in hydrogen-bonded systems. Also for systems with stronger interactions, frozen-density embedding performs remarkably well, given the approximate nature of currently available functionals for the non-additive kinetic energy. As an example we show results for methylmercury halides which exhibit an exceptionally large shift of the one-bond coupling constants between {sup 199}Hg and {sup 13}C upon coordination of dimethylsulfoxide solvent molecules.
Calculation of nuclear spin-spin coupling constants using frozen density embedding
Götz, Andreas W.; Autschbach, Jochen; Visscher, Lucas
2014-03-01
We present a method for a subsystem-based calculation of indirect nuclear spin-spin coupling tensors within the framework of current-spin-density-functional theory. Our approach is based on the frozen-density embedding scheme within density-functional theory and extends a previously reported subsystem-based approach for the calculation of nuclear magnetic resonance shielding tensors to magnetic fields which couple not only to orbital but also spin degrees of freedom. This leads to a formulation in which the electron density, the induced paramagnetic current, and the induced spin-magnetization density are calculated separately for the individual subsystems. This is particularly useful for the inclusion of environmental effects in the calculation of nuclear spin-spin coupling constants. Neglecting the induced paramagnetic current and spin-magnetization density in the environment due to the magnetic moments of the coupled nuclei leads to a very efficient method in which the computationally expensive response calculation has to be performed only for the subsystem of interest. We show that this approach leads to very good results for the calculation of solvent-induced shifts of nuclear spin-spin coupling constants in hydrogen-bonded systems. Also for systems with stronger interactions, frozen-density embedding performs remarkably well, given the approximate nature of currently available functionals for the non-additive kinetic energy. As an example we show results for methylmercury halides which exhibit an exceptionally large shift of the one-bond coupling constants between 199Hg and 13C upon coordination of dimethylsulfoxide solvent molecules.
Spin constraints on nuclear energy density functionals
Robledo, L. M.; Bernard, R. N.; Bertsch, G. F.
2013-01-01
The Gallagher-Moszkowski rule in the spectroscopy of odd-odd nuclei imposes a new spin constraint on the energy functionals for self-consistent mean field theory. The commonly used parameterization of the effective three-body interaction in the Gogny and Skyrme families of energy functionals is ill-suited to satisfy the spin constraint. In particular, the Gogny parameterization of the three-body interaction has the opposite spin dependence to that required by the observed spectra. The two-bod...
Spin density matrices for nuclear density functionals with parity violations
Barrett, B R
2010-01-01
The spin density matrix (SDM) used in atomic and molecular physics is revisited for nuclear physics, in the context of the radial density functional theory. The vector part of the SDM defines a "hedgehog" situation, which exists only if nuclear states contain some amount of parity violation.
Bowers, C. Russell; Weitekamp, Daniel P.
1986-01-01
A method of obtaining very large nuclear-spin polarizations is proposed and illustrated by density-operator calculations. The prediction is that chemical reaction and rf irradiation can convert the scalar parahydrogen state into polarization of order unity on the nuclear spins of the products of molecular-hydrogen addition reactions. A means of extending the resultant sensitivity enhancement to other spins is proposed in which the transfer of order occurs through population differences not as...
Nuclear Level Density at High Spin and Excitation Energy
A.N. Behkami; Z. Kargar
2001-01-01
The intensive studies of equilibrium processes in heavy-ion reaction have produced a need for information on nuclear level densities at high energies and spins. The Fermi gas level density is often used in investigation of heavy-ion reaction studies. Some papers have claimed that nuclear level densities might deviate substantially from the Fermi gas predications at excitations related to heavy-ion reactions. The formulae of calculation of the nuclear level density based on the theory of superconductivity are presented, special attention is paid to the dependence of the level density on the angular momentum. The spin-dependent nuclear level density is evaluated using the pairing interaction. The resulting level density for an average spin of 52h is evaluated for 155Er and compared with experimental data. Excellent agreement between experiment and theory is obtained.``
Statistical nuclear properties (level densities, spin distributions)
A general overview is given on the phenomenological methods used to describe the level densities in nuclei. Two well-known two-parameter formulas of level densities, the Back-Shifted Fermi Gas (BSFG) model and the Constant Temperature (CT) model, were used. A common ingredient of both is the spin distribution function, which contains in Ericsons's parametrization the spin-cutoff parameter σ. A realistic description of the parameters of both spin distribution function and the two level density models has been obtained by fitting the experimental data of 310 nuclei between 18F and 251Cf, consisting of the complete level schemes at low excitation energies and the s-wave neutron resonance spacings at the neutron binding energy. We determine a simple formula for the spin-cutoff parameter as a function of mass number and excitation energy. Also, an even-odd spin staggering in the spin distribution of the even-even nuclei was observed, and described with a simple formula. Using this newly defined spin distribution function, an empirical set of parameters of the BSFG and CT models was determined by fitting both the low-energy levels and the neutron resonance spacings. For these parameters, simple formulas were proposed that involve only quantities available from the mass tables, and allow reasonable estimations of the level density parameters for nuclei far from stability. Both the BSFG and CT models describe equally well the level densities at energies up to at least the neutron binding energy. Finally, we discuss recent experimental evidence that the CT model is the more correct description of the nuclei in the low-excitation energy (pairing) regime.
Nuclear spin conversion of methane in solid parahydrogen.
Miyamoto, Yuki; Fushitani, Mizuho; Ando, Daisuke; Momose, Takamasa
2008-03-21
The nuclear spin conversion of CH(4) and CD(4) isolated in solid parahydrogen was investigated by high resolution Fourier transform infrared spectroscopy. From the analysis of the temporal changes of rovibrational absorption spectra, the nuclear spin conversion rates associated with the rotational relaxation from the J=1 state to the J=0 state for both species were determined at temperatures between 1 and 6 K. The conversion rate of CD(4) was found to be 2-100 times faster than that of CH(4) in this temperature range. The faster conversion in CD(4) is attributed to the quadrupole interaction of D atoms in CD(4), while the conversion in CH(4) takes place mainly through the nuclear spin-nuclear spin interaction. The conversion rates depend on crystal temperature strongly above 3.5 K for CH(4) and above 2 K for CD(4), while the rates were almost constant below these temperatures. The temperature dependence indicates that the one-phonon process is dominant at low temperatures, while two-phonon processes become important at higher temperatures as a cause of the nuclear spin conversion. PMID:18361586
Kirpekar, Sheela; Jensen, Hans Jørgen Aagaard; Oddershede, Jens
Using the quadratic response function at the ab initio SCF level of approximation we have calculated the relativistic corrections from the spin-orbit Hamiltonian, HSO, to the indirect nuclear spin-spin coupling constants of XH4 (X = C, Si, Ge, and Sn). We find that the spin-orbit contributions to...
Combustion resistance of the 129Xe hyperpolarized nuclear spin state.
Stupic, Karl F; Six, Joseph S; Olsen, Michael D; Pavlovskaya, Galina E; Meersmann, Thomas
2013-01-01
Using a methane-xenon mixture for spin exchange optical pumping, MRI of combustion was enabled. The (129)Xe hyperpolarized nuclear spin state was found to sufficiently survive the complete passage through the harsh environment of the reaction zone. A velocity profile (V(z)(z)) of a flame was recorded to demonstrate the feasibility of MRI velocimetry of transport processes in combustors. PMID:23165418
Engelsberg, M.; Albino O. de Aguiar, J.
1985-04-01
The results of measurements on the magnetic field and temperature dependences of the 19F nuclear-spin lattice relaxation time T1 in KNiF3 for TKNiF3. Some similarities in the behavior of both systems suggest that a common mechanism may be responsible for spin-lattice relaxation in either case. We discuss the possibility that this mechanism may involve a diffusive mode below TN with a central peak in the relevant magnetic-ion spin correlation function.
Theoretical aspects of Magic Angle Spinning - Dynamic Nuclear Polarization.
Mentink-Vigier, Frederic; Akbey, Ümit; Oschkinat, Hartmut; Vega, Shimon; Feintuch, Akiva
2015-09-01
Magic Angle Spinning (MAS) combined with Dynamic Nuclear Polarization (DNP) has been proven in recent years to be a very powerful method for increasing solid-state NMR signals. Since the advent of biradicals such as TOTAPOL to increase the nuclear polarization new classes of radicals, with larger molecular weight and/or different spin properties have been developed. These have led to unprecedented signal gain, with varying results for different experimental parameters, in particular the microwave irradiation strength, the static field, and the spinning frequency. Recently it has been demonstrated that sample spinning imposes DNP enhancement processes that differ from the active DNP mechanism in static samples as upon sample spinning the DNP enhancements are the results of energy level anticrossings occurring periodically during each rotor cycle. In this work we present experimental results with regards to the MAS frequency dependence of the DNP enhancement profiles of four nitroxide-based radicals at two different sets of temperature, 110 and 160K. In fact, different magnitudes of reduction in enhancement are observed with increasing spinning frequency. Our simulation code for calculating MAS-DNP powder enhancements of small model spin systems has been improved to extend our studies of the influence of the interaction and relaxation parameters on powder enhancements. To achieve a better understanding we simulated the spin dynamics of a single three-spin system {ea-eb-n} during its steady state rotor periods and used the Landau-Zener formula to characterize the influence of the different anti-crossings on the polarizations of the system and their necessary action for reaching steady state conditions together with spin relaxation processes. Based on these model calculations we demonstrate that the maximum steady state nuclear polarization cannot become larger than the maximum polarization difference between the two electrons during the steady state rotor cycle. This
Single shot NMR on single, dark nuclear spins
Waldherr, G; Steiner, M; Neumann, P; Gali, A; Jelezko, F; Wrachtrup, J
2010-01-01
The electron and nuclear spins associated with the nitrogen-vacancy (NV) center in diamond are supposed to be building blocks for quantum computing devices and nanometer scale magnetometry operating under ambient conditions. For every such building block precise knowledge of the involved quantum states is crucial. Especially for solid state systems the corresponding hilbert space can be large. Here, we experimentally show that under usual operating conditions the NV color center exists in an equilibrium of two charge states (i.e. 70% in the usually used negative (NV-) and 30% in the neutral one (NV0)). Projective quantum non-demolition measurement of the nitrogen nuclear spin enables the detection even of the additional, optically inactive state. It turns out that the nuclear spin can be coherently driven also in NV0. However, its T1 ~ 90 ms and T2 ~ 6micro-s times are much shorter than in NV-, supposedly because of the dynamic Jahn-Teller effect.
Tilted Foils Nuclear Spin Polarization at REX-ISOLDE
Törnqvist, Hans Toshihide
2013-08-08
This thesis will explain and summarize my work and involvement in experiments aimed at producing nuclear spin polarization of post-accelerated beams of ions with the tilted-foils technique at the REX-ISOLDE linear accelerator at CERN. Polarizing the nuclear spin of radioactive beams in particular may provide access to observables which may be difficult to obtain otherwise. Currently, the techniques commonly employed for nuclear spin polarization are restricted to specific nuclides and experimental measurement techniques. Tilted foils polarization may provide a new tool to extend the range of nuclides that can be polarized and the types of experiments that can be performed. The experiments rely not only on the production but also on the method to measure the degree of attained polarization. Two methods will be treated, based on particle scattering in Coulomb excitation that may be utilized for stable beams, and the $\\beta$-NMR that requires $\\beta$-decaying nuclei. The experimental setups and measurements will...
Nuclear Tuning and Detuning of the Electron Spin Resonance in a Quantum Dot
Danon, Jeroen; Nazarov, Yuli V.
2007-01-01
We study nuclear spin dynamics in a quantum dot close to the conditions of electron spin resonance. We show that at small frequency mismatch the nuclear field detunes the resonance. Remarkably, at larger frequency mismatch its effect is opposite: The nuclear system is bistable, and in one of the stable states the field accurately tunes the electron spin splitting to resonance. In this state the nuclear field fluctuations are strongly suppressed and nuclear spin relaxation is accelerated.
Coherent manipulation of nuclear spins in the breakdown regime of integer quantum Hall states
Kawamura, Minoru; Takahashi, Hiroyuki; Hashimoto, Yoshiaki; Katsumoto, Shingo; Machida, Tomoki
2008-01-01
We demonstrate a new method for electrical manipulation of nuclear spins utilizing dynamic nuclear polarization induced by quantum Hall effect breakdown. Nuclear spins are polarized and detected through the hyperfine interaction between a nuclear spin system and a two-dimensional electron system located at an interface of GaAs/AlGaAs single heterostructure. Coherent oscillations between the nuclear-spin quantum states are observed by measuring the longitudinal voltage of the conductor.
Danon, J.; Nazarov, Y. V.
2008-01-01
We study nuclear spin dynamics in a quantum dot close to the conditions of electron spin resonance. We show that at a small frequency mismatch, the nuclear field detunes the resonance. Remarkably, at larger frequency mismatch, its effect is opposite: The nuclear system is bistable, and in one of the stable states, the field accurately tunes the electron spin splitting to resonance. In this state, the nuclear field fluctuations are strongly suppressed, and nuclear spin relaxation is accelerated.
Thermodynamics of Rh nuclear spins calculated by exact diagonalization
Lefmann, K.; Ipsen, J.; Rasmussen, F.B.
We have employed the method of exact diagonalization to obtain the full-energy spectrum of a cluster of 16 Rh nuclear spins, having dipolar and RK interactions between first and second nearest neighbours only. We have used this to calculate the nuclear spin entropy, and our results at both positive...... and negative temperatures follow the second-order high-temperature series expansions for \\T\\ > 3 nK. Our findings do not agree with the measurements of the former Rh experiment in Helsinki, where a deviation is seen at much higher temperatures. (C) 2000 Elsevier Science B.V. All rights reserved....
Thermodynamics of Rh nuclear spins calculated by exact diagonalization
Lefmann, K.; Ipsen, J.; Rasmussen, F.B.; Rasmussen, Finn Berg
We have employed the method of exact diagonalization to obtain the full-energy spectrum of a cluster of 16 Rh nuclear spins, having dipolar and RK interactions between first and second nearest neighbours only. We have used this to calculate the nuclear spin entropy, and our results at both positive...... and negative temperatures follow the second-order high-temperature series expansions for |T| > 3 nK. Our findings do not agree with the measurements of the former Rh experiment in Helsinki, where a deviation is seen at much higher temperatures. © 2000 Elsevier Science B.V. All rights reserved....
Investigation of solid surfaces by nuclear spin polarized alkali atoms
Nuclear spin polarized alkali atom beams are used to investigate metal surfaces. The surface diffusion of the alkali atoms on the surface results in a randomly fluctuating electric field gradient. The relaxation is measured in dependence of the surface temperature. Using an additional external RF field, also NMR measurement can be performed. Besides some fluctuating components of the EFG which cause the relaxation process, there is also a static part of the EFG. This results in an energy splitting of the nuclear spin states and can be detected by the NMR experiments. (Auth.)
Generating highly polarized nuclear spins in solution using dynamic nuclear polarization
Wolber, J.; Ellner, F.; Fridlund, B.;
2004-01-01
A method to generate strongly polarized nuclear spins in solution has been developed, using Dynamic Nuclear Polarization (DNP) at a temperature of 1.2K, and at a field of 3.354T, corresponding to an electron spin resonance frequency of 94GHz. Trityl radicals are used to directly polarize 13C and...... other low-γ nuclei. Subsequent to the DNP process, the solid sample is dissolved rapidly with a warm solvent to create a solution of molecules with highly polarized nuclear spins. Two main applications are proposed: high-resolution liquid state NMR with enhanced sensitivity, and the use of the...
Hu, H; Hu, Huping; Wu, Maoxin
2002-01-01
We postulate that consciousness is connected to quantum mechanical spin since said spin is embedded in the microscopic structure of spacetime and may be more fundamental than spacetime itself. Thus, we theorize that consciousness is connected with the fabric of spacetime through spin. That is, spin is the "pixel" and "antenna" of mind. The unity of mind is achieved by non-local means within the pre-spacetime domain interfaced with spacetime. Human mind is possible because of the particular structures and dynamics of our brain postulated working as follows: The unpaired electronic spins of highly lipid-soluble and rapidly diffusing oxygen molecules extract information from the dynamical neural membranes and communicate said information through strong spin-spin couplings to the nuclear spin ensemble in the membranes for consciousness-related quantum statistical processing which survives decoherence. In turn, the dynamics of the nuclear spin ensemble has effects through spin chemistry on the classical neural act...
Experiments with Exotic Spin-Oriented Nuclear Beams and Examples of Nuclear Moment Measurements
Balabanski, D. L.; Neyens, G.; Borremans, D.; Coulier, N.; Daugas, J. M.; Teughels, S.; Georgiev, G.; Lewitowicz, M.; de Oliveira Santos, F.; Penionzhkevich, Yu. E.
2002-04-01
An overview of a series of recent experiments aimed at the determination of the moments of exotic nuclei is presented. The spin-orientation: spin-alignment and spin-polarization of the nuclear ensemble, which is produced in fragmentation reactions, is of utmost importance for these studies. The discussion emphasizes on the open problems related to the production and the preservation of the orientation during the experiments. Pros and contras for experiments at both, intermediate and high energies are considered. Examples from nuclear moment measurements, which were performed using the LISE-III spectrometer at GANIL, are provided. The spin-alignment and the spin-polarization of the nuclear ensemble were studied by the β-LMR, β-NMR and TDPAD experimental techniques. The experimental results are discussed in the framework of the kinematical model of the fragmentation reaction.
Quantum computation with nuclear spins in quantum dots
Christ, Henning
2008-01-01
In this thesis we present protocols for the polarization of nuclear spins in a quantum dot via the hyperfine interaction with a conduction band electron and give a quantitative solution to the master equation we derive. The collective interference effects limiting the polarization are studied in detail, and ways of mitigating them are proposed. At high polarization levels the electron-nuclear interaction is approximated with simple and practical (quantum optical) models, suggesting the possib...
Nuclear spin--rotation interaction in the hydrogen molecular ion
Babb, James F.
1995-01-01
The nuclear spin--rotation interaction in the hyperfine structure of the hydrogen molecular ion is investigated. The interaction constants are determined and are found to differ in sign and magnitude compared to another theory, but they are in agreement with some values derived from experiment.
Chekhovich, E. A.; Hopkinson, M.; Skolnick, M. S.; Tartakovskii, A. I.
2015-01-01
Interaction with nuclear spins leads to decoherence and information loss in solid-state electron-spin qubits. One particular, ineradicable source of electron decoherence arises from decoherence of the nuclear spin bath, driven by nuclear-nuclear dipolar interactions. Owing to its many-body nature nuclear decoherence is difficult to predict, especially for an important class of strained nanostructures where nuclear quadrupolar effects have a significant but largely unknown impact. Here, we rep...
Long-term Dynamics of the Electron-nuclear Spin System of a Semiconductor Quantum Dot
Merkulov, I. A.; Alvarez, G; Yakovlev, D. R.; Schulthess, T. C.
2009-01-01
A quasi-classical theoretical description of polarization and relaxation of nuclear spins in a quantum dot with one resident electron is developed for arbitrary mechanisms of electron spin polarization. The dependence of the electron-nuclear spin dynamics on the correlation time $\\tau_c$ of electron spin precession, with frequency $\\Omega$, in the nuclear hyperfine field is analyzed. It is demonstrated that the highest nuclear polarization is achieved for a correlation time close to the perio...
Hanle effect in (In,Ga)As quantum dots: Role of nuclear spin fluctuations
Kuznetsova, M. S.; Flisinski, K.; Gerlovin, I. Ya.; Ignatiev, I. V.; Kavokin, K. V.; Verbin, S. Yu.; Yakovlev, D. R.; Reuter, D; Wieck, A. D.; Bayer, M.
2013-01-01
The role of nuclear spin fluctuations in the dynamic polarization of nuclear spins by electrons is investigated in (In,Ga)As quantum dots. The photoluminescence polarization under circularly polarized optical pumping in transverse magnetic fields (Hanle effect) is studied. A weak additional magnetic field parallel to the optical axis is used to control the efficiency of nuclear spin cooling and the sign of nuclear spin temperature. The shape of the Hanle curve is drastically modified with cha...
Dzhioev, R. I.; Korenev, V. L.
2007-01-01
Nuclear quadrupole interaction extends the limits imposed by hyperfine interaction on the spin coherence of the electron and nuclei in a quantum dot. The strain-induced nuclear quadrupole interaction suppresses the nuclear spin flip and makes possible the zero-field dynamic nuclear polarization in self-organized InP/InGaP quantum dots. The direction of the effective nuclear magnetic field is fixed in space, thus quenching the magnetic depolarization of the electron spin in the quantum dot. Th...
Calculations of the indirect nuclear spin-spin coupling constants of PbH_{4}
Kirpekar, Sheela; Sauer, Stephan P. A.
1999-01-01
approximation and the second-order polarization propagator approximation with coupled-cluster singles and doubles amplitudes. The effects of nuclear motion were investigated by calculating the coupling constants as a function of the totally symmetric stretching coordinate. We find that the Fermi contact term......We report ab initio calculations of the indirect nuclear spin-spin coupling constants of PbH4 using a basis set which was specially optimized for correlated calculations of spin-spin coupling constants. All nonrelativistic contributions and the most important part of the spin-orbit correction were...
Spin echo and nuclear orientation study of metallic glasses
Hyperfine fields on Co nuclei in amorphous as-quenched and heat-treated Co75Fe5B20 samples were studied by conventional NMR and by very low temperature nuclear orientation techniques. The 59Co spin echo measurement at 1.4 K yielded broad spectra between 130 - 260 MHz, with narrow maxima at 145.5 MHz and 155.1 MHz for as-quenched sample and with a broad maximum at 227 MHz for heat-treated sample well below the recrystallization point. The 60Co nuclear orientation measurements gave the mean value of the hyperfine field 15 T nearly independent of the sample heat-treatment. The spin-lattice relaxation was studied by pulse NMR and also by nuclear orientation thermal cycling technique. (Auth.)
Principles of nuclear magnetic resonance and its application to study structure of atoms and molecules are briefly described. A recent technique of imaging using NMR holds promise for the internal examination of the human body. The advantages of using NMR for medical applications are indicated. (A.K.)
Chow, Colin M; Ross, Aaron M; Kim, Danny; Gammon, Daniel; Bracker, Allan S; Sham, L J; Steel, Duncan G
2016-08-12
We demonstrate the extension of coherence between all four two-electron spin ground states of an InAs quantum dot molecule (QDM) via nonlocal suppression of nuclear spin fluctuations in two vertically stacked quantum dots (QDs), while optically addressing only the top QD transitions. Long coherence times are revealed through dark-state spectroscopy as resulting from nuclear spin locking mediated by the exchange interaction between the QDs. Line shape analysis provides the first measurement of the quieting of the Overhauser field distribution correlating with reduced nuclear spin fluctuations. PMID:27563998
Chow, Colin M.; Ross, Aaron M.; Kim, Danny; Gammon, Daniel; Bracker, Allan S.; Sham, L. J.; Steel, Duncan G.
2016-08-01
We demonstrate the extension of coherence between all four two-electron spin ground states of an InAs quantum dot molecule (QDM) via nonlocal suppression of nuclear spin fluctuations in two vertically stacked quantum dots (QDs), while optically addressing only the top QD transitions. Long coherence times are revealed through dark-state spectroscopy as resulting from nuclear spin locking mediated by the exchange interaction between the QDs. Line shape analysis provides the first measurement of the quieting of the Overhauser field distribution correlating with reduced nuclear spin fluctuations.
Chekhovich, E. A.; Hopkinson, M.; Skolnick, M. S.; Tartakovskii, A. I.
2015-01-01
Interaction with nuclear spins leads to decoherence and information loss in solid-state electron-spin qubits. One particular, ineradicable source of electron decoherence arises from decoherence of the nuclear spin bath, driven by nuclear–nuclear dipolar interactions. Owing to its many-body nature nuclear decoherence is difficult to predict, especially for an important class of strained nanostructures where nuclear quadrupolar effects have a significant but largely unknown impact. Here, we rep...
Tilted Foils Nuclear Spin Polarization and Measurement with Coulomb Excitation
Törnqvist, Hans; Kowalska, M; Wenander, F
2012-01-01
Developing new experimental tools is essential to expand the possibilities of probing the structure of atomic nuclei. The better the currently known properties of nuclei can be manipulated, the more information can be extracted from data collected in nuclear reaction experiments. One property that has been controlled for many years is the nuclear spin, but this has only been viable for a certain set of isotopes with restrictions on for example specific atomic excitation schemes or half-lives. This thesis will provide details on an evaluation project using thin tilted foils after the REX-ISOLDE linac at the CERN-ISOLDE experimental facility, to polarize the spin of nuclei in-flight. The nuclear polarization is then measured with a technique based on Coulomb excitation, which is a flexible and readily available experimental method at ISOLDE with the MINIBALL spectrometer. The tilted foils technique may be beneficial to polarize the nuclear spin of short-lived radioactive beams that can be difficult by other mea...
Nuclear spin relaxation due to random motion of vortex bundles
The dependence of nuclear-spin-relaxation rate T1 on NMR resonant frequency for a layered superconducting sample has been analyzed theoretically. In the considered arrangement the Zeeman field has been applied in the plane of superconducting layers while the relaxation was due to interactions between the spin systems and moving flux bundles, created by the transport current flowing along superconducting layers. It has been found that the functional form of a dependence of spin-relaxation rate on the Zeeman field has two components, a Lorentzian and an oscillatory one. The characteristic rolloff frequency of the Lorentzian component depends on the pinning properties of the sample. The period of oscillations of the oscillatory component is of the order of the inverse of interaction time of flowing flux bundles with a probe nucleus. copyright 1996 The American Physical Society
Nuclear spin response studies in inelastic polarized proton scattering
Spin-flip probabilities S/sub nn/ have been measured for inelastic proton scattering at incident proton energies around 300 MeV from a number of nuclei. At low excitation energies S/sub nn/ is below the free value. For excitation energies above about 30 MeV for momentum transfers between about 0.35 fm/sup /minus/1/ and 0.65 fm/sup / minus/1/ S/sub nn/ exceeds free values significantly. These results suggest that the relative ΔS = 1(ΔS = 0 + ΔS = 1) nuclear spin response approaches about 90% in the region of the enhancement. Comparison of the data with slab response calculations are presented. Decomposition of the measured cross sections into σ(ΔS = 0) and σ(ΔS = 1) permit extraction of nonspin-flip and spin-flip dipole and quadrupole strengths. 29 refs., 11 figs
Nuclear structure of 216Ra at high spin
High-spin states of 216Ra (Z = 88, N = 128) have been investigated through 209Bi(10B, 3n) reaction at an incident beam energy of 55 MeV and 209Bi(11B, 4n) reaction at incident beam energies ranging from 65 to 78 MeV. Based on γγ coincidence data, the level scheme for 216Ra has been considerably extended up to ∼ 33 h spin and 7.2 MeV excitation energy in the present experiment with placement of 28 new γ-transitions over what has been reported earlier. Tentative spin-parity assignments are done for the newly proposed levels on the basis of the DCa ratios corresponding to strong gates. Empirical shell model calculations were carried out to provide an understanding of the underlying nuclear structure. (author)
Nuclear structure of 216Ra at high spin
S Muralithar; G Rodrigues; R P Singh; R K Bhowmik; P Mukherjee; B Sethi; I Mukherjee
2012-09-01
High-spin states of 216Ra ( = 88, = 128) have been investigated through 209Bi(10B, 3n) reaction at an incident beam energy of 55 MeV and 209Bi(11B, 4n) reaction at incident beam energies ranging from 65 to 78 MeV. Based on coincidence data, the level scheme for 216Ra has been considerably extended up to $∼ 33\\hbar$ spin and 7.2 MeV excitation energy in the present experiment with placement of 28 new -transitions over what has been reported earlier. Tentative spin-parity assignments are done for the newly proposed levels on the basis of the DCO ratios corresponding to strong gates. Empirical shell model calculations were carried out to provide an understanding of the underlying nuclear structure.
Robust quantum-network memory using decoherence-protected subspaces of nuclear spins
Reiserer, Andreas; Kalb, Norbert; Blok, Machiel S.; van Bemmelen, Koen J. M.; Twitchen, Daniel J.; Markham, Matthew; Taminiau, Tim H.; Hanson, Ronald
2016-01-01
The realization of a network of quantum registers is an outstanding challenge in quantum science and technology. We experimentally investigate a network node that consists of a single nitrogen-vacancy (NV) center electronic spin hyperfine-coupled to nearby nuclear spins. We demonstrate individual control and readout of five nuclear spin qubits within one node. We then characterize the storage of quantum superpositions in individual nuclear spins under repeated application of a probabilistic o...
Electrical polarization of nuclear spins in a breakdown regime of quantum Hall effect
Kawamura, M.; Takahashi, H; Sugihara, K; Masubuchi, S.; Hamaya, K.; Machida, T.
2006-01-01
We have developed a method for electrical polarization of nuclear spins in quantum Hall systems. In a breakdown regime of odd-integer quantum Hall effect (QHE), excitation of electrons to the upper Landau subband with opposite spin polarity dynamically polarizes nuclear spins through the hyperfine interaction. The polarized nuclear spins in turn accelerate the QHE breakdown, leading to hysteretic voltage-current characteristics of the quantum Hall conductor.
Zhang, J; Suter, D; Peng, Xinhua; Suter, Dieter; Zhang, Jingfu
2005-01-01
The speed of perfect state transfer (PST) can be increased by the three- spin interactions in the spin XY chain. By decomposing the evolution of the spin XY chain with three- spin interactions into a series of single- spin rotations and the J- coupling evolutions between the neighboring spins, we simulate such a chain and implement the stepped-up PST using a nuclear magnetic resonance (NMR) quantum computer.
Nuclear spin relaxation in liquids theory, experiments, and applications
Kowalewski, Jozef
2006-01-01
Nuclear magnetic resonance (NMR) is widely used across many fields because of the rich data it produces, and some of the most valuable data come from the study of nuclear spin relaxation in solution. While described to varying degrees in all major NMR books, spin relaxation is often perceived as a difficult, if not obscure, topic, and an accessible, cohesive treatment has been nearly impossible to find.Collecting relaxation theory, experimental techniques, and illustrative applications into a single volume, this book clarifies the nature of the phenomenon, shows how to study it, and explains why such studies are worthwhile. Coverage ranges from basic to rigorous theory and from simple to sophisticated experimental methods, and the level of detail is somewhat greater than most other NMR texts. Topics include cross-relaxation, multispin phenomena, relaxation studies of molecular dynamics and structure, and special topics such as relaxation in systems with quadrupolar nuclei and paramagnetic systems.Avoiding ove...
Estimation of optical chemical shift in nuclear spin optical rotation
Highlights: • Analytical theory of nuclear spin optical rotation (NSOR) is further developed. • Derive formula of NSOR ratio R between different nuclei in a same molecule. • Calculated results of R agree with the experiments. • Analyze influence factors on R and chemical distinction by NSOR. - Abstract: A recently proposed optical chemical shift in nuclear spin optical rotation (NSOR) is studied by theoretical comparison of NSOR magnitude between chemically non-equivalent or different element nuclei in the same molecule. Theoretical expressions of the ratio R between their NSOR magnitudes are derived by using a known semi-empirical formula of NSOR. Taking methanol, tri-ethyl-phosphite and 2-methyl-benzothiazole as examples, the ratios R are calculated and the results approximately agree with the experiments. Based on those, the important influence factors on R and chemical distinction by NSOR are discussed
Radiative pion capture, a probe for nuclear spin densities
Successes and failures of trying to interpret recent data on the (π-,γ) reaction in light nuclei in the framework of the shell model are reviewed. The potential of radiative pion capture as a probe for nuclear spin densities is underlined, using M2 and M1 states as detailed examples. After reporting on the few examples available in heavier than 1p shell nuclei, we conclude with brief reference to inflight capture and an outlook on future experimental possibilities. (author)
Nuclear spin circular dichroism in fullerenes: a computational study
Straka, Michal; Štěpánek, Petr; Coriani, S.; Vaara, J.
2014-01-01
Roč. 50, č. 96 (2014), s. 15228-15231. ISSN 1359-7345 R&D Projects: GA ČR(CZ) GA14-03564S Grant ostatní: GA MŠk(CZ) ED3.2.00/08.0144 Institutional support: RVO:61388963 Keywords : nuclear spin circular dichroism * fullerenes * C60 * C70 * density functional calculations * magnetic circular dichroism Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 6.834, year: 2014
Long lived quantum memory with nuclear atomic spins
We propose store non-classical states of light into the macroscopic collective nuclear spin (1018 atoms) of a 3He vapor, using metastability exchange collisions. We show that these collisions currently used to transfer orientation from the metastable state 23S1 to the ground state state of 3He, may conserve quantum correlations and give a possible experimental scheme to perfectly map a squeezed vacuum field state onto a nuclear spin state, which should allow for extremely long storage times (hours). In addition to the apparent interest for quantum information, the scheme offers the intriguing possibility to create a long-lived non classical state for spins. During a metastability exchange collision an atom in the ground state state and an atom in the metastable triplet state 23S exchange their electronic spin variables. The ground state atom is then brought into the metastable state and vice-versa. A laser transition is accessible from the metastable state so that the metastable atoms are coupled with light. This, together with metastability exchange collisions, provides an effective coupling between ground state atoms and light. In our scheme, a coherent field and a squeezed vacuum field excite a Raman transition between Zeeman sublevels of the metastable state, after the system is prepared in the fully polarized state by preliminary optical pumping. According to the intensity of the coherent field, which acts as a control parameter, the squeezing of the field can be selectively transferred either to metastable or to ground state atoms. Once it is encoded in the purely nuclear spin of the ground state of 3He, which is 20 eV apart from the nearest excited state and interacts very little with the environment, the quantum state can survive for times as long as several hours. By lighting up only the coherent field in the same configuration as for the 'writing' phase, the nuclear spin memory can be 'read' after a long delay, the squeezing being transferred back to the
Resistive detection of nuclear spins in a single quantum dot under Kondo effect regime
Kawamura, Minoru; Gottwald, Daniel; Ono, Keiji; Machida, Tomoki; Kono, Kimitoshi
2013-01-01
We study dynamic polarization and resistive detection of nuclear spins in a semiconductor quantum dot (QD) under the Kondo effect regime. We find that the differential conductance spectra of the QD exhibit hysteresis under the Kondo effect regime in magnetic fields. Relevance of nuclear spins to the hysteresis is confirmed by the detection of nuclear magnetic resonance signals by monitoring the differential conductance. We attribute the origin of the hysteresis to the dynamic nuclear spin pol...
The effect of orbital instabilities is investigated for spin-symmetry breaking perturbations, namely the Fermi-contact (FC) and spin-dipole (SD) contributions to the indirect nuclear spin-spin coupling constants. For the CO and N2 molecules the FC and SD contributions have been calculated and orbital-stability analyses for various interatomic distances have been carried out. This includes calculations at the Hartree-Fock self-consistent field (HF-SCF), coupled-cluster (CC) singles and doubles (CCSD), CC3, CCSD(T), CCSDT-4, CC singles, doubles, and triples (CCSDT) levels, and for the first time also at the CC singles, doubles, triples, and quadruples (CCSDTQ) level of theory. For calculations with relaxation of the reference orbitals in the presence of the perturbation, unphysical results are obtained over a wide range of the potential curve. This is due to a triplet instability of the Hartree-Fock reference determinant which leads to a pronounced pole in the FC and SD contributions. The effect of orbital instabilities in the relaxed methods is most dramatic for perturbative approaches like CCSD(T), while it is less pronounced for methods of the classical CC hierarchy. CC calculations without relaxation of the orbitals, i.e., so-called 'unrelaxed' calculations, do not show any of these effects
Surface effects and the spin-isospin nuclear response function
The response of the nuclear many body system to a spin-isospin dependent probe is investigated in the random phase approximation with the objective of studying the mechanism for the near equality of the transverse and longitudinal components of the spin response function observed in recent proton scattering experiments. We examine in particular the angular momentum dependence of R/sub L//R/sub T/ as a means to investigate the spatial origin of the various contributions to this ratio. The physical picture which emerges from our work suggests that two effects conjure themselves in producing R/sub L/--R/sub T/. At the nuclear surface probed by the proton beam, the smaller nuclear density reduces the effect of the difference between the longitudinal and transverse components of the particle-hole interaction. More importantly however, transverse-longitudinal mixing is also predominant at the nuclear surface producing altogether calculated values for R/sub L//sub X/R/sub T/ within the error bars of the experimental data
129Xe EDM Search Experiment Using Active Nuclear Spin Maser
Sato, Tomoya; Ichikawa, Yuichi; Ohtomo, Yuichi; Sakamoto, Yu; Kojima, Shuichiro; Suzuki, Takahiro; Shirai, Hazuki; Chikamori, Masatoshi; Hikota, Eri; Miyatake, Hirokazu; Nanao, Tsubasa; Suzuki, Kunifumi; Tsuchiya, Masato; Inoue, Takeshi; Furukawa, Takeshi; Yoshimi, Akihiro; Bidinosti, Christopher P.; Ino, Takashi; Ueno, Hideki; Matsuo, Yukari; Fukuyama, Takeshi; Asahi, Koichiro
An active nuclear spin maser, which enables a precision measurement of spin precession frequency, is employed in the experimental search for permanent electric dipole moment (EDM) in the diamagnetic atom 129Xe. In order to eliminate systematic errors which limit the sensitivity of the experiment to an EDM, the following tactics are adopted: (i) 3He comagnetometry for the cancellation of long-term drifts in the external magnetic fields and (ii) double-cell geometry for the mitigation of frequency shifts due to interaction of 129Xe spin with polarized Rb atoms. In the present work, the design for the double-cell has been changed and a magnetic shield-coil system to provide a highly homogeneous magnetic field has been newly introduced. Thanks to increased polarization and longer 3He spin relaxation time, the dual-species maser of 129Xe and 3He in a double-cell geometry operated successfully. Our experiment is now at the stage of assembling these separate technical elements in order to start the measurement of 129Xe EDM in the 10-28 ecm region.
Solid effect in magic angle spinning dynamic nuclear polarization
Corzilius, Björn; Smith, Albert A.; Griffin, Robert G.
2012-08-01
For over five decades, the solid effect (SE) has been heavily utilized as a mechanism for performing dynamic nuclear polarization (DNP). Nevertheless, it has not found widespread application in contemporary, high magnetic field DNP experiments because SE enhancements display an ω _0 ^{ - 2} field dependence. In particular, for nominally forbidden zero and double quantum SE transitions to be partially allowed, it is necessary for mixing of adjacent nuclear spin states to occur, and this leads to the observed field dependence. However, recently we have improved our instrumentation and report here an enhancement of ɛ = 91 obtained with the organic radical trityl (OX063) in magic angle spinning experiments performed at 5 T and 80 K. This is a factor of 6-7 higher than previous values in the literature under similar conditions. Because the solid effect depends strongly on the microwave field strength, we attribute this large enhancement to larger microwave field strengths inside the sample volume, achieved with more efficient coupling of the gyrotron to the sample chamber. In addition, we develop a theoretical model to explain the dependence of the buildup rate of enhanced nuclear polarization and the steady-state enhancement on the microwave power. Buildup times and enhancements were measured as a function of 1H concentration for both trityl and Gd-DOTA. Comparison of the results indicates that for trityl the initial polarization step is the slower, rate-determining step. However, for Gd-DOTA the spread of nuclear polarization via homonuclear 1H spin diffusion is rate-limiting. Finally, we discuss the applicability of the solid effect at fields > 5 T and the requirements to address the unfavorable field dependence of the solid effect.
Nuclear Spin Maser at Highly Stabilized Low Magnetic Field and Search for Atomic EDM
A nuclear spin maser is operated at a low static field through an active feedback scheme based on an optical nuclear spin detection and succeeding spin control by a transverse field application. The frequency stability of this optical-coupling spin maser is improved by installation of a low-noise current source for a solenoid magnet producing a static magnetic field in the maser operation. Experimental devices for application of the maser to EDM experiment are being developed.
Voltage induced conversion of helical to uniform nuclear spin polarization in a quantum wire
Kornich, Viktoriia; Stano, Peter; Zyuzin, Alexander A.; Loss, Daniel
2015-01-01
We study the effect of bias voltage on the nuclear spin polarization of a ballistic wire, which contains electrons and nuclei interacting via hyperfine interaction. In equilibrium, the localized nuclear spins are helically polarized due to the electron-mediated Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction. Focusing here on non-equilibrium, we find that an applied bias voltage induces a uniform polarization, from both helically polarized and unpolarized spins available for spin flips. Once...
Danon, J.; Nazarov, Y.V.
2008-01-01
We study nuclear spin dynamics in a quantum dot close to the conditions of electron spin resonance. We show that at a small frequency mismatch, the nuclear field detunes the resonance. Remarkably, at larger frequency mismatch, its effect is opposite: The nuclear system is bistable, and in one of the
LaForest, S.; de Sousa, Rogério
2015-08-01
Superconducting quantum interference devices (SQUIDs) and other superconducting circuits are limited by intrinsic flux noise with spectral density 1 /fα with α nuclear spins under several different assumptions. The noise power is shown to be dominated by surface electron spins near the wire edges, with bulk lattice nuclear spins contributing ˜5 % of the noise power in aluminum and niobium wires. We consider the role of electron spin phase transitions, showing that the spin-spin correlation length (describing, e.g., the average size of ferromagnetic spin clusters) greatly impacts the scaling of flux noise with wire geometry. Remarkably, the flux-noise power is exactly equal to zero when the spins are polarized along the flux-vector direction, forming what we call a poloidal state. Flux noise is nonzero for other spin textures, but gets reduced in the presence of correlated ferromagnetic fluctuations between the top and bottom wire surfaces, where the flux vectors are antiparallel. This demonstrates that engineering spin textures and/or intersurface correlation provides a method to reduce flux noise in superconducting devices.
Chamel, Nicolas; Goriely, Stéphane
2010-01-01
Self-consistent mean-field methods based on phenomenological Skyrme effective interactions are known to exhibit spurious spin and spin-isospin instabilities both at zero and finite temperatures when applied to homogeneous nuclear matter at the densities encountered in neutron stars and in supernova cores. The origin of these instabilities is revisited in the framework of the nuclear energy density functional theory, and a simple prescription is proposed to remove them. The stability of severa...
Persistent optical nuclear spin narrowing in a singly charged InAs quantum dot
W. Yao; Sun, B.; Xu, X.; Bracker, AS; Gammon, D.; Sham, LJ; Steel, D.
2012-01-01
We review the investigation of the hole-assisted dynamical nuclear spin polarization mechanism in a singly charged InAs quantum dot. Using coherent dark state spectroscopy, we measure the locking of the Overhauser field to a value determined only by the laser frequencies. Importantly, we review data that the locking effect can suppress nuclear spin fluctuations. We determine the onset time of the nuclear spin narrowing effect and its persistence absent laser interactions by directly measuring...
Rao, K. Rama Koteswara; Suter, Dieter
2016-08-01
The nitrogen-vacancy (NV) center in diamond has attractive properties for a number of quantum technologies that rely on the spin angular momentum of the electron and the nuclei adjacent to the center. The nucleus with the strongest interaction is the 13C nuclear spin of the first shell. Using this degree of freedom effectively hinges on precise data on the hyperfine interaction between the electronic and the nuclear spin. Here, we present detailed experimental data on this interaction, together with an analysis that yields all parameters of the hyperfine tensor, as well as its orientation with respect to the atomic structure of the center.
Quantum information processing with electronic and nuclear spins in semiconductors
Klimov, Paul Victor
Traditional electronic and communication devices operate by processing binary information encoded as bits. Such digital devices have led to the most advanced technologies that we encounter in our everyday lives and they influence virtually every aspect of our society. Nonetheless, there exists a much richer way to encode and process information. By encoding information in quantum mechanical states as qubits, phenomena such as coherence and entanglement can be harnessed to execute tasks that are intractable to digital devices. Under this paradigm, it should be possible to realize quantum computers, quantum communication networks and quantum sensors that outperform their classical counterparts. The electronic spin states of color-center defects in the semiconductor silicon carbide have recently emerged as promising qubit candidates. They have long-lived quantum coherence up to room temperature, they can be controlled with mature magnetic resonance techniques, and they have a built-in optical interface operating near the telecommunication bands. In this thesis I will present two of our contributions to this field. The first is the electric-field control of electron spin qubits. This development lays foundation for quantum electronics that operate via electrical gating, much like traditional electronics. The second is the universal control and entanglement of electron and nuclear spin qubits in an ensemble under ambient conditions. This development lays foundation for quantum devices that have a built-in redundancy and can operate in real-world conditions. Both developments represent important steps towards practical quantum devices in an electronic grade material.
Hu Xin; Liu Dong-Qi; Pan Xin-Yu
2011-01-01
A collapse and revival shape of Rabi oscillations in an electron spin of a single nitrogen-vacancy centre has been observed in diamond at room temperature.Because of hyperfine interaction between the host 14N nuclear spin and the nitrogen-vacancy centre electron spin,different orientations of the 14N nuclear spins lead to a triplet splitting of the transition between ground state (ms =0) and excited state (ms =1).The manipulation of the single electron spin of nitrogen-vacancy centre is achieved by using a combination of selective microwave excitation and optical pumping at 532 nm.Microwaves can excite three transitions equally to induce three independent nutations and the shape of Rabi oscillations is a combination of the three nutations.
Nuclear spin decoherence of neutral 31P donors in silicon: Effect of environmental 29Si nuclei
Petersen, Evan S.; Tyryshkin, A. M.; Morton, J. J. L.; Abe, E.; Tojo, S.; Itoh, K. M.; Thewalt, M. L. W.; Lyon, S. A.
2016-04-01
Spectral diffusion arising from 29Si nuclear spin flip-flops, known to be a primary source of electron spin decoherence in silicon, is also predicted to limit the coherence times of neutral donor nuclear spins in silicon. Here, the impact of this mechanism on 31P nuclear spin coherence is measured as a function of 29Si concentration using X -band pulsed electron nuclear double resonance. The 31P nuclear spin echo decays show that decoherence is controlled by 29Si flip-flops resulting in both fast (exponential) and slow (nonexponential) spectral diffusion processes. The decay times span a range from 100 ms in crystals containing 50% 29Si to 3 s in crystals containing 1% 29Si. These nuclear spin echo decay times for neutral donors are orders of magnitude longer than those reported for ionized donors in natural silicon. The electron spin of the neutral donors "protects" the donor nuclear spins by suppressing 29Si flip-flops within a "frozen core," as a result of the detuning of the 29Si spins caused by their hyperfine coupling to the electron spin.
Radioactive nuclear beams and the North American IsoSpin Laboratory (ISL) initiative
Radioactive nuclear beams (RNBs) offer exciting new research opportunities in fields as diverse as nuclear structure, nuclear reactions, astrophysics atomic, materials, and applied science. Their realization in new accelerator complexes also offers important technical challenges. Some of the nuclear physics possibilities afforded by RNBs, with emphasis on low spin nuclear structure, are discussed, accompanied by an outline of the ISL initiative and its status
Solid state nuclear magnetic resonance: investigating the spins of nuclear related materials
The author reviews his successive research works: his research thesis work on the Multiple Quantum Magic Angle Spinning (MQMAS) which is a quadric-polar nucleus multi-quanta correlation spectroscopy method, the modelling of NMR spectra of disordered materials, the application to materials of interest for the nuclear industry (notably the glasses used for nuclear waste containment). He presents the various research projects in which he is involved: storing glasses, nuclear magnetic resonance in paramagnetism, solid hydrogen storing matrices, methodological and instrument developments in high magnetic field and high resolution solid NMR, long range distance measurement by solid state Tritium NMR (observing the structure and dynamics of biological complex systems at work)
Symmetry effects during nuclear-spin hyperpolarization induced by spin isomers
Hydrogenation reactions conducted with molecular hydrogen enriched in its nuclear singlet state (i.e., enriched in parahydrogen) can lead to strongly enhanced absorption and emission signals in the NMR (nuclear magnetic resonance) spectra of reaction intermediates or products if they are recorded during or shortly after the reaction. This hyperpolarization phenomenon has been termed PHIP (parahydrogen induced polarization) and is recurrently used to study reaction mechanisms and kinetics of catalytic hydrogenations. A similar effect has been observed with hydrogen enriched in its nuclear triplet state (enriched in orthohydrogen). In this thesis, it is shown both theoretically and experimentally that not only enriched hydrogen samples (ortho- or parahydrogen) but also hydrogen without isomer enrichment (thermal hydrogen) is able to induce NMR hyperpolarization. This new twist to the PHIP phenomenon is utilized for of a sensitive method to measure spin-isomer ratios in hydrogen gas samples. Both line shape of PHIP signals and relaxation of hyperpolarized spin systems depend on the external magnetic field. Because some of the recent PHIP research is aimed at contrast enhancement in MRI (magnetic resonance imaging), line shape and relaxation studies were conducted, which are particularly useful for the advancement of MRI diagnostics. Like hydrogen, other molecules with C2 symmetry are also composed of ortho- and para-isomers. Consequently, the concept of nuclear-spin hyperpolarization was extended to reactions with 2H2 molecules (i.e., deuterations) and 17O2 molecules (peroxidations). Experimental studies conducted with samples enriched in orthodeuterium show signal patterns similar to PHIP. These patterns and their signal enhancements were investigated depending on particular experimental conditions such as conducting the reaction in a high magnetic field (PASADENA) or in a low magnetic field (ALTADENA) before recording the NMR spectrum. The new method was termed ODIP
Three-body Effect on Equation of State of Spin-polarized Nuclear Matter
ZuoWei
2003-01-01
The equation of state (EOS) of spin-polarized nuclear matter has been investigated within the spin-dependent; Brueckner-Hartree-Fock framework by adopting the realistic nucleon-nucleon interaction supplemented with a microscopic three-body force. The three-body force effects have been studied and stressed with a special attention. The calculated results are given in Fig.1. It is seen that; in the Brueckner-Hartree-Fock framework the predicted energy per particle of spin-polarized nuclear matter versus the neutron and proton spin-polarization parameters fulfills a quadratic law in the whole range of spin-polarization. The related physical quantities such as spin the Landau parameters Go in spin channel and G′0 in spin-isospin channel, have been also calculated.
Large-scale cluster state generation with nuclear spins in diamonds
The cluster state is an indispensable resource for one-way quantum computing (1WQC). We propose a practical scheme for constructing cluster states among nuclear spins in nitrogen-vacancy defect centres (NV centres) in different diamonds. The entanglement of nuclear spins within an NV centre is made by hyperfine coupling via electron spin, and the entanglement between remote NV centres is accomplished using the parity projection of emitted photons. We discus the possibility to build large-scale nuclear-spin cluster states with diamonds. (general)
Coherent manipulation of an NV center and one carbon nuclear spin
Scharfenberger, Burkhard; Nemoto, Kae [National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430 (Japan); Munro, William J. [NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198 (Japan)
2014-12-04
We study a three-qubit system formed by the NV center’s electronic and nuclear spin plus an adjacent spin 1/2 carbon {sup 13}C. Specifically, we propose a manipulation scheme utilizing the hyperfine coupling of the effective S=1 degree of freedom of the vacancy electrons to the two adjacent nuclear spins to achieve accurate coherent control of all three qubits.
High-fidelity readout and control of a nuclear spin qubit in silicon.
Pla, Jarryd J; Tan, Kuan Y; Dehollain, Juan P; Lim, Wee H; Morton, John J L; Zwanenburg, Floris A; Jamieson, David N; Dzurak, Andrew S; Morello, Andrea
2013-04-18
Detection of nuclear spin precession is critical for a wide range of scientific techniques that have applications in diverse fields including analytical chemistry, materials science, medicine and biology. Fundamentally, it is possible because of the extreme isolation of nuclear spins from their environment. This isolation also makes single nuclear spins desirable for quantum-information processing, as shown by pioneering studies on nitrogen-vacancy centres in diamond. The nuclear spin of a (31)P donor in silicon is very promising as a quantum bit: bulk measurements indicate that it has excellent coherence times and silicon is the dominant material in the microelectronics industry. Here we demonstrate electrical detection and coherent manipulation of a single (31)P nuclear spin qubit with sufficiently high fidelities for fault-tolerant quantum computing. By integrating single-shot readout of the electron spin with on-chip electron spin resonance, we demonstrate quantum non-demolition and electrical single-shot readout of the nuclear spin with a readout fidelity higher than 99.8 percent-the highest so far reported for any solid-state qubit. The single nuclear spin is then operated as a qubit by applying coherent radio-frequency pulses. For an ionized (31)P donor, we find a nuclear spin coherence time of 60 milliseconds and a one-qubit gate control fidelity exceeding 98 percent. These results demonstrate that the dominant technology of modern electronics can be adapted to host a complete electrical measurement and control platform for nuclear-spin-based quantum-information processing. PMID:23598342
A 3D-printed high power nuclear spin polarizer.
Nikolaou, Panayiotis; Coffey, Aaron M; Walkup, Laura L; Gust, Brogan M; LaPierre, Cristen D; Koehnemann, Edward; Barlow, Michael J; Rosen, Matthew S; Goodson, Boyd M; Chekmenev, Eduard Y
2014-01-29
Three-dimensional printing with high-temperature plastic is used to enable spin exchange optical pumping (SEOP) and hyperpolarization of xenon-129 gas. The use of 3D printed structures increases the simplicity of integration of the following key components with a variable temperature SEOP probe: (i) in situ NMR circuit operating at 84 kHz (Larmor frequencies of (129)Xe and (1)H nuclear spins), (ii) thermoelectric temperature control, (v) retroreflection optics, and (vi) optomechanical alignment system. The rapid prototyping endowed by 3D printing dramatically reduces production time and expenses while allowing reproducibility and integration of "off-the-shelf" components and enables the concept of printing on demand. The utility of this SEOP setup is demonstrated here to obtain near-unity (129)Xe polarization values in a 0.5 L optical pumping cell, including ∼74 ± 7% at 1000 Torr xenon partial pressure, a record value at such high Xe density. Values for the (129)Xe polarization exponential build-up rate [(3.63 ± 0.15) × 10(-2) min(-1)] and in-cell (129)Xe spin-lattice relaxation time (T1 = 2.19 ± 0.06 h) for 1000 Torr Xe were in excellent agreement with the ratio of the gas-phase polarizations for (129)Xe and Rb (PRb ∼ 96%). Hyperpolarization-enhanced (129)Xe gas imaging was demonstrated with a spherical phantom following automated gas transfer from the polarizer. Taken together, these results support the development of a wide range of chemical, biochemical, material science, and biomedical applications. PMID:24400919
Stable three-axis nuclear-spin gyroscope in diamond
Ajoy, Ashok; Cappellaro, Paola
2012-12-01
Gyroscopes find wide applications in everyday life from navigation and inertial sensing to rotation sensors in hand-held devices and automobiles. Current devices, based on either atomic or solid-state systems, impose a choice between long-time stability and high sensitivity in a miniaturized system. Here, we introduce a quantum sensor that overcomes these limitations by providing a sensitive and stable three-axis gyroscope in the solid state. We achieve high sensitivity by exploiting the long coherence time of the 14N nuclear spin associated with the nitrogen-vacancy center in diamond, combined with the efficient polarization and measurement of its electronic spin. Although the gyroscope is based on a simple Ramsey interferometry scheme, we use coherent control of the quantum sensor to improve its coherence time and robustness against long-time drifts. Such a sensor can achieve a sensitivity of η˜0.5(mdegs-1)/Hzmm3 while offering enhanced stability in a small footprint. In addition, we exploit the four axes of delocalization of the nitrogen-vacancy center to measure not only the rate of rotation, but also its direction, thus obtaining a compact three-axis gyroscope.
Nuclear spin scissors – new type of collective motion
The coupled dynamics of the orbital and spin scissors modes is studied with the help of the Wigner Function Moments method on the basis of Time Dependent Hartree-Fock equations in the harmonic oscillator model including spin orbit potential plus quadrupole- quadrupole and spin-spin residual interactions. The relation between our results and the recent experimental data is discussed.
Exotic nuclear shapes and configurations that can be studied at high spin using radioactive in beams
The variety of new research possibilities afforded by the culmination of the two frontier areas of nuclear structure: high spin and studies far from nuclear stability (utilizing intense radioactive ion beams) are discussed. Topics presented include: new regions of exotic nuclear shape (e.g. superdeformation, hyperdeformation, and reflection-asymmetric shapes); the population of and consequences of populating exotic nuclear configurations; and complete spectroscopy (i.e. the overlap of state of the art low- and high-spin studies in the same nucleus). Likewise, the various beams needed for proton- and neutron-rich high spin studies also are discussed
Pumping dynamics of nuclear spins in GaAs quantum wells
Mocek, Raphael W; Cascio, Giovanni; Suter, Dieter
2016-01-01
Irradiating a semiconductor with circularly polarized light creates spin-polarized charge carriers. If the material contains atoms with non-zero nuclear spin, they interact with the electron spins via the hyperfine coupling. Here, we consider GaAs/AlGaAs quantum wells, where the conduction-band electron spins interact with three different types of nuclear spins. The hyperfine interaction drives a transfer of spin polarization to the nuclear spins, which therefore acquire a polarization that is comparable to that of the electron spins. In this paper, we analyze the dynamics of the optical pumping process in the presence of an external magnetic field while irradiating a single quantum well with a circularly polarized laser. We measure the time dependence of the photoluminescence polarization to monitor the buildup of the nuclear spin polarization and thus the average hyperfine interaction acting on the electron spins. We present a simple model that adequately describes the dynamics of this process and is in goo...
Onur, A. R.; de Jong, J. P.; O'Shea, D.; Reuter, D.; Wieck, A. D.; van der Wal, C. H.
2016-04-01
We experimentally demonstrate how coherent population trapping (CPT) for donor-bound electron spins in GaAs results in autonomous feedback that prepares stabilized states for the spin polarization of nuclei around the electrons. CPT was realized by excitation with two lasers to a bound-exciton state. Transmission studies of the spectral CPT feature on an ensemble of electrons directly reveal the statistical distribution of prepared nuclear-spin states. Tuning the laser driving from blue to red detuned drives a transition from one to two stable states. Our results have importance for ongoing research on schemes for dynamic nuclear-spin polarization, the central spin problem, and control of spin coherence.
Decoherence protection for nuclear spin quantum memory in a quantum dot
We reconsider the possibility of storing quantum information in an ensemble of nuclear spins constituting a semiconductor quantum dot. The nuclear magnetic moments are collectively interacting with an excess electron of the quantum dot through inhomogeneous hyperfine coupling. We present a configuration in which the collective nuclear spin states used as the qubit basis are energetically separated from the remaining states, thus protecting the quantum memory from various sources of decoherence
Schuetz, M. J. A.; Kessler, E. M.; Vandersypen, L. M. K.; Cirac, J. I.; Giedke, G.
2014-01-01
We theoretically study the nuclear spin dynamics driven by electron transport and hyperfine interaction in an electrically-defined double quantum dot (DQD) in the Pauli-blockade regime. We derive a master-equation-based framework and show that the coupled electron-nuclear system displays an instability towards the buildup of large nuclear spin polarization gradients in the two quantum dots. In the presence of such inhomogeneous magnetic fields, a quantum interference effect in the collective ...
Influence of spin polarizability on liquid gas phase transition in the nuclear matter
Rezaei, Z; Bordbar, G H
2015-01-01
In this paper, we investigate the liquid gas phase transition for the spin polarized nuclear matter. Applying the lowest order constrained variational (LOCV) method, and using two microscopic potentials, $AV_{18}$ and $UV_{14}$+TNI, we calculate the free energy, equation of state, order parameter, entropy, heat capacity and compressibility to derive the critical properties of spin polarized nuclear matter. Our results indicate that for the spin polarized nuclear matter, the second order phase transition takes place at lower temperatures with respect to the unpolarized one. It is also shown that the critical temperature of our spin polarized nuclear matter with a specific value of spin polarization parameter is in good agreement with the experimental result.
Monte Carlo simulation of nuclear spin relaxation in disordered system
Full text: Nuclear spin relaxation is a very useful technique for obtaining information about diffusion in solids. The present work is motivated by relaxation experiments on H diffusing in disordered systems such as metallic glasses or quasicrystalline materials. A theory of the spectral density functions of the magnetic dipolar interactions between diffusing spins is required in order to relate the experimental data to diffusional parameters. In simple ordered systems, the spectral density functions are well understood and a simple BPP (exponential correlation function) model is often used to interpret the data. Diffusion in disordered systems involves a distribution of activation energies and the simple extension of the BPP model that has been used traditionally is of doubtful validity. A more rigorously based BPP model has been developed, and this model has recently been applied to H diffusion in a metal quasicrystal. The improved BPP model still, however, involves approximations and the accuracy of the parameters deduced from it is not clear. The present work involves a Monte Carlo simulation of diffusion in disordered systems and the calculation of the spectral density functions and relaxation rates. The simulations use two algorithms (discrete time and continuous time) for the time-development of the system, and correctly incorporate the Fermi-Dirac distribution for equilibrium occupation of sites, as required by the principle of detailed balance and only single site occupancy of sites. The results are compared with the BPP models for some site- and barrier-energy distributions arising from the structural disorder of the system. The improved BPP model is found to give reasonable values for the diffusion and disorder parameters. Quantitative estimates of the errors involved are determined
Qubit Control Limited by Spin-Lattice Relaxation in a Nuclear Spin-Free Iron(III) Complex.
Zadrozny, Joseph M; Freedman, Danna E
2015-12-21
High-spin transition metal complexes are of interest as candidates for quantum information processing owing to the tunability of the pairs of MS levels for use as quantum bits (qubits). Thus, the design of high-spin systems that afford qubits with stable superposition states is of primary importance. Nuclear spins are a potent instigator of superposition instability; thus, we probed the Ph4P(+) salt of the nuclear spin-free complex [Fe(C5O5)3](3-) (1) to see if long-lived superpositions were possible in such a system. Continuous-wave and pulsed electron paramagnetic resonance (EPR) spectroscopic measurements reveal a strong EPR transition at X-band that can be utilized as a qubit. However, at 5 K the coherent lifetime, T2, for this resonance is 721(3) ns and decreases rapidly with increasing temperature. Simultaneously, the spin-lattice relaxation time is extremely short, 11.33(1) μs, at 5 K, and also rapidly decreases with increasing temperature. The coincidence of these two temperature-dependent data sets suggests that T2 in 1 is strongly limited by the short T1. Importantly, these results highlight the need for new design parameters in pursuit of high-spin species with appreciable coherence times. PMID:26650962
Boundary between the thermal and statistical polarization regimes in a nuclear spin ensemble
Herzog, B. E.; Cadeddu, D.; Xue, F.; Peddibhotla, P.; Poggio, M.
2014-07-01
As the number of spins in an ensemble is reduced, the statistical fluctuations in its polarization eventually exceed the mean thermal polarization. This transition has now been surpassed in a number of recent nuclear magnetic resonance experiments, which achieve nanometer-scale detection volumes. Here, we measure nanometer-scale ensembles of nuclear spins in a KPF6 sample using magnetic resonance force microscopy. In particular, we investigate the transition between regimes dominated by thermal and statistical nuclear polarization. The ratio between the two types of polarization provides a measure of the number of spins in the detected ensemble.
The origin of nuclear spin and its effect durning intermediate energy heavy ion collisions
We use the heavy-ion phase-space exploration (HIPSE) model to discuss the origin of the nuclear spin and its effect in Intermediate energy nuclear reaction. It is found that the spin of projectile depends on the impact parameter of the reaction system heavily, while on the violence lightly by contrast. Some interesting multifragmentation phenomena related to the spin are shown, especially those of phase transition. At the same time, the role of excited energy for multifragmentation is also invested. We find the later plays a more robust role durning the nuclear disintegration. (authors)
Theoretical studies on nuclear spin selective quantum dynamics of non-linear molecules
In this thesis the wave packet dynamics of nuclear spin isomers of polyatomic molecules after interaction with static and time-dependent magnetic fields and moderate intense nonresonant laser pulses is investigated. In particular, the process of inducing (internal) molecular rotation as well as alignment of molecules by manipulating their rotational or rotational-torsional degrees of freedom is studied. In the first part of the thesis all theoretical concepts for identifying nuclear spin isomers and for describing their quantum dynamics will be discussed. Especially the symmetrization postulate and themolecular symmetry group will be introduced and illustrated for some examples of molecules. These concepts will be extended to the case of identifying nuclear spin isomers in the presence of an external field. In the second part it is shown for nitromethane that magnetic fields are able to induce unidirectional rotations in opposite directions for different nuclear spin isomers of molecules containing methyl groups if the dipolar interaction is included. Additionally, it is demonstrated that different nuclear spin isomers of a chemical compound may show different alignment after the interaction with a moderate intense laser pulse. As shown for the rigid symmetric top propadien and the rigid asymmetric tops ethene and analogues, distinct pairs of nuclear spin isomers show at certain points in time a complementary behavior: while one isomer is showing alignment the partner isomer is showing anti-alignment. Moreover, it is illustrated that not every nuclear spin isomer can be aligned equally efficient. The alignment of non-rigid molecules is considered as well. As an example for a molecule with feasible torsion in the electronic ground state, the alignment of diboron tetrafluoride is investigated. It becomes apparent that not only rotational but also the torsional dynamics of the molecules is nuclear spin selective; different nuclear spin isomers have at distinct points
Quantum state transfer between an optomechanical cavity and a diamond nuclear spin ensemble
Feng, Zhi-Bo; Wang, Hong-Ling; Yan, Run-Ying
2016-08-01
We explore an efficient scheme for transferring quantum state between an optomechanical cavity and nuclear spins of nitrogen-vacancy centers in diamond, where quantum information can be efficiently stored (retrieved) into (from) the nuclear spin ensemble assisted by a mechanical resonator in a dispersive regime. Our scheme works for a broad range of cavity frequencies and might have potential applications in employing the nuclear spin ensemble as a memory in quantum information processing. The feasibility of our protocol is analyzed using currently available parameters.
Boundary between the thermal and statistical polarization regimes in a nuclear spin ensemble
As the number of spins in an ensemble is reduced, the statistical fluctuations in its polarization eventually exceed the mean thermal polarization. This transition has now been surpassed in a number of recent nuclear magnetic resonance experiments, which achieve nanometer-scale detection volumes. Here, we measure nanometer-scale ensembles of nuclear spins in a KPF6 sample using magnetic resonance force microscopy. In particular, we investigate the transition between regimes dominated by thermal and statistical nuclear polarization. The ratio between the two types of polarization provides a measure of the number of spins in the detected ensemble.
Photoinduced nuclear spin conversion of methyl groups of single molecules
A methyl group is an outstanding quantum system due to its special symmetry properties. The threefold rotation around one of its bond is isomorphic to the group of even permutations of the remaining protons, a property which imposes severe quantum restrictions on the system, for instance a strict correlation of rotational states with nuclear spin states. The resulting long lifetimes of the rotational tunneling states of the methyl group can be exploited for applying certain high resolution optical techniques, like hole burning or single molecule spectroscopy to optically switch the methyl group from one tunneling state to another therebye changing the nuclear spin of the protons. One goal of the thesis was to perform this switching in single methyl groups. To this end the methyl group was attached to a chromophoric system, in the present case terrylene, which is well suited for single molecule spectroscopy as well as for hole burning. Experiments were performed with the bare terrylene molecule in a hexadecane lattice which served as a reference system, with alphamethyl terrylene and betamethyl terrylene, both embedded in hexadecane, too. A single molecular probe is a highly sensitive detector for dynamic lattice instabilities. Already the bare terrylene probe showed a wealth of interesting local dynamic effects of the hexadecane lattice which could be well acounted for by the assumption of two nearly degenerate sites with rather different optical and thermal properties, all of which could be determined in a quantitative fashion. As to the methylated terrylene systems, the experiments verified that for betamethyl terrylene it is indeed possible to measure rotational tunneling events in single methyl groups. However, the spectral patterns obtained was much more complicated than expected pointing to the presence of three spectroscopically different methyl groups. In order to achieve a definite assignement, molecular mechanics simulations of the terrylene probes in the
Spatially resolved 19F and 7Li spin-lattice relaxation rates are measured for LiF single crystals after irradiation with two kinds of swift heavy ions (12C of 133 MeV and 208Pb of 1.78 GeV incident energy). Like in earlier studies on 130Xe and 238U irradiated LiF crystals, we found a strong enhancement of the nuclear spin-lattice relaxation rate within the ion penetration depth and a slight-but still significant-enhancement beyond. By evaluating the nuclear relaxation rate enhancement within the ion range after irradiation with different projectiles, a universal relationship between the spin-lattice relaxation rate and the dose is deduced. The results of accompanying X-band electron paramagnetic resonance relaxation measurements and optical absorption spectroscopy are included in a physical interpretation of this relationship. Also the reason for the enhanced relaxation rate beyond the ion range is further discussed.
Jiang, Li; Zhang, Guo-Feng
2016-08-01
The effects of nuclear field and spin-orbit interaction on dense coding and swap operation are studied in detail for both the antiferromagnetic (AFM) and ferromagnetic (FM) coupling cases. The conditions for a valid dense coding and under which swap operation is feasible are given.
Positioning nuclear spins in interacting clusters for quantum technologies and bioimaging
Wang, Zhen-Yu; Haase, Jan F.; Casanova, Jorge; Plenio, Martin B.
2016-05-01
We propose a method to measure the hyperfine vectors between a nitrogen-vacancy (NV) center and an environment of interacting nuclear spins. Our protocol enables the generation of tunable electron-nuclear coupling Hamiltonians while suppressing unwanted internuclear interactions. In this manner, each nucleus can be addressed and controlled individually, thereby permitting the reconstruction of the individual hyperfine vectors. With this ability the three-dimensional (3D) structure of spin ensembles and spins in biomolecules can be identified without the necessity of varying the direction of applied magnetic fields. We demonstrate examples including the complete reconstruction of an interacting spin cluster in diamond and 3D imaging of all the nuclear spins in a biomolecule.
Noise-resilient Quantum Computing with a Nitrogen-Vacancy Center and Nuclear Spins
Casanova, J.; Wang, Z. -Y.; Plenio, M. B.
2016-01-01
Selective control of qubits in a quantum register for the purposes of quantum information processing represents a critical challenge for dense spin ensembles in solid state systems. Here we present a protocol that achieves a complete set of selective single and two-qubit gates on nuclear spins in such an ensemble in diamond facilitated by a nearby NV center. The protocol suppresses internuclear interactions as well as unwanted coupling between the NV center and other spins of the ensemble to ...
Nuclear magnetic moments and the spin-orbit current in the relativistic mean field theory
The Dirac magnetic moments in the relativistic mean field theory are affected not only by the effective mass, but also by the spin-orbit current related to the spin-orbit force through the continuity equation. Previous arguments on the cancellation of the effective-mass effect in nuclear matter are not simply applied to finite nuclei to obtain the Schmidt values. Effects of the spin-orbit current on (e, e') response functions are also mentioned. (orig.)
Interaction of the nuclear spin with the degenerate vibration of a molecule
The contributions of the nuclear motion and the spin-orbit coupling to the total interaction of the proton spin in H+3 and the deuteron spin in D+3 with the circularly polarized degenerate bending vibration are calculated. Their values are found to be Cnucl = -33.645 kHz, Cso = -19.251 kHz for the proton in the H+3 and Cnucl = -2.550 kHz, Cso = -0.794 kHz for the deuteron in the D+3. Within the framework of the model of the rigid nonvibrating molecule, the estimates of similar contributions to the total interaction of the nuclear spin with the rotation of a molecule are Cnucl = 64.610 kHz, Cso = -0.006 kHz for the H+3 and Cnucl = 4.961 kHz, Cso = -0.0001 kHz for D+3. The physical reasons for the opposite signs of the constants Cnucl for the nuclear spin-vibration interaction and spin-rotation interaction, as well as the cause of the abrupt increase of the spin-orbit contribution Cso to interaction of the nuclear spin with the circularly polarized bending vibration in comparison to the similar contribution to the nuclear spin-rotation interaction, are discussed. The results obtained in this paper may be used as a starting point for experimentally studying the interaction of the nuclear spin with the circularly polarized bending vibration of a molecule. 16 refs., 2 figs., 1 tab
Cho, Herman M.; Washton, Nancy M.; Mueller, Karl T.; Sears, Jr., Jesse A.; Townsend, Mark R.; Ewing, James R.
2016-06-14
A magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) probe is described that includes double containment enclosures configured to seal and contain hazardous samples for analysis. The probe is of a modular design that ensures containment of hazardous samples during sample analysis while preserving spin speeds for superior NMR performance and convenience of operation.
The determination of the in situ structure by nuclear spin contrast variation
Stuhrmann, H.B. [GKSS Forschungszentrum, Geesthacht (Germany); Nierhaus, K.H. [Max-Planch-Institut fuer Molekulare Genetik, Berlin (Germany)
1994-12-31
Polarized neutron scattering from polarized nuclear spins in hydrogenous substances opens a new way of contrast variation. The enhanced contrast due to proton spin polarization was used for the in situ structure determination of tRNA of the functional complex of the E.coli ribosome.
Enevoldsen, Thomas; Oddershede, Jens; Sauer, Stephan P. A.
1998-01-01
We present correlated calculations of the indirect nuclear spin-spin coupling constants of HD, HF, H2O, CH4, C2H2, BH, AlH, CO and N2 at the level of the second-order polarization propagator approximation (SOPPA) and the second-order polarization propagator approximation with coupled......-cluster singles and doubles amplitudes - SOPPA(CCSD). Attention is given to the effect of the so-called W 4 term, which has not been included in previous SOPPA spin-spin coupling constant studies of these molecules. Large sets of Gaussian basis functions, optimized for the calculation of indirect nuclear spin...
Nuclear structure effects in high-energy bremsstrahlung from spin-0 and spin-1/2 nuclei
Jakubassa-Amundsen, Doris [University of Munich (Germany)
2014-07-01
Bremsstrahlung from relativistic spin-polarized electrons colliding with inert nuclei is calculated by taking into account the nuclear form factors and the kinematical recoil. For the spin-1/2 nuclei additional contributions from the anomalous magnetic moment and the dynamical recoil are considered. Electron bremsstrahlung is described with the help of semirelativistic wavefunctions while nuclear bremsstrahlung, when present, is treated within the Born approximation. The triply differential bremsstrahlung cross section is integrated over the electron scattering angle to study the polarization correlations between the beam electron and the emitted photon. Results are shown for 20-120 MeV electrons colliding with protons, 19F, 64Zn and 89Y. It is also attempted to explain the background in electron spectra from nuclear excitation in terms of bremsstrahlung. As an example the 180 degree spectrum from exciting the giant M2 resonance in 90Zr by 42.7 MeV electrons is analyzed.
Ding, Shangwu; McDowell, Charles A.; Ye, Chaohui; Zhan, Mingsheng; Zhu, Xiwen; Gao, Kelin; Sun, Xianping; Mao, Xi-An; Liu, Maili
2001-01-01
Magic-angle spinning (MAS) solid state nuclear magnetic resonance (NMR) spectroscopy is shown to be a promising technique for implementing quantum computing. The theory underlying the principles of quantum computing with nuclear spin systems undergoing MAS is formulated in the framework of formalized quantum Floquet theory. The procedures for realizing state labeling, state transformation and coherence selection in Floquet space are given. It suggests that by this method, the largest number o...
Graphical abstract: The performance of the SOPPA(CC2) method for the calculation of indirect nuclear carbon-carbon spin-spin coupling constants is tested on 197 coupling constants in 41 carbocycles. Research highlights: → Benchmarking of SOPPA(CC2) for carbon-carbon coupling constants in carbocycles. → SOPPA(CC2) scales as SOPPA. → SOPPA(CC2) performs well for indirect carbon-carbon coupling constants. → SOPPA(CC2) gives mean absolute errors of 1.11 Hz relative to experimental values. → SOPPA(CC2) performs better than SOPPA for couplings across more than one bond. - Abstract: We investigate the performance of the newly implemented SOPPA(CC2) method for the calculation of indirect carbon-carbon spin-spin coupling constants. SOPPA(CC2) scales as SOPPA, but has previously been shown to improve the accuracy of spin-spin coupling constants relative to CCSD. We compare the results of SOPPA(CC2) with SOPPA, SOPPA(CCSD), and available experimental values for a wide range of saturated carbocycles (in total 41 carbocycles and 197 coupling constants). It follows that SOPPA(CC2) performs better than SOPPA for couplings across more than one bond, while the two methods performs equally well for the one-bond couplings relatively to SOPPA(CCSD).
Search for electric dipole moment in 129Xe atom using active nuclear spin maser
Ichikawa, Y.; Chikamori, M.; Ohtomo, Y.; Hikota, E.; Sakamoto, Y.; Suzuki, T.; Bidinosti, C. P.; Inoue, T.; Furukawa, T.; Yoshimi, A.; Suzuki, K.; Nanao, T.; Miyatake, H.; Tsuchiya, M.; Yoshida, N.; Shirai, H.; Ino, T.; Ueno, H.; Matsuo, Y.; Fukuyama, T.; Asahi, K.
2014-03-01
An experimental search for an electric dipole moment in the diamagnetic atom 129Xe is in progress through the precision measurement of spin precession frequency using an active nuclear spin maser. A 3He comagnetometer has been incorporated into the active spin maser system in order to cancel out the long-term drifts in the external magnetic field. Also, a double-cell geometry has been adopted in order to suppress the frequency shifts due to interaction with polarized Rb atoms. The first EDM measurement with the 129Xe active spin maser and the 3He comagnetometer has been conducted.
Search for electric dipole moment in 129Xe atom using active nuclear spin maser
Ichikawa Y.
2014-03-01
Full Text Available An experimental search for an electric dipole moment in the diamagnetic atom 129Xe is in progress through the precision measurement of spin precession frequency using an active nuclear spin maser. A 3He comagnetometer has been incorporated into the active spin maser system in order to cancel out the long-term drifts in the external magnetic field. Also, a double-cell geometry has been adopted in order to suppress the frequency shifts due to interaction with polarized Rb atoms. The first EDM measurement with the 129Xe active spin maser and the 3He comagnetometer has been conducted.
Nuclear surface properties and spin-orbit potential in modified derivative scalar couplings
With the use of modified derivative scalar coupling (MDSC) model, the nuclear surface properties and the spin-orbit potential in semi-infinite nuclear matter have been investigated in the framework of relativistic Thomas-Fermi and Hartree approaches. The results show that the spin-orbit potential has been improved by the tensor coupling. However, the surface tension and the surface thickness are still to small. The effects of σ-meson mass on the surface properties and the spin-orbit potential have also been discussed
Berec, V.
2016-02-01
We study the coupling and control adaptation of a hybrid electron-nuclear spin system using the laser mediated proton beam in MeV energy regime. The asymmetric control mechanism is based on exact optimization of both: the measure of exchange interaction and anisotropy of the hyperfine interaction induced in the resonance with optimal channeled protons (CP) superfocused field, allowing manipulation over arbitrary localized spatial centers while addressing only the electron spin. Using highly precise and coherent proton channeling regime we have obtained efficient pulse shaping separator technique aimed for spatio-temporal engineering of quantum states, introducing a method for control of nuclear spins, which are coupled via anisotropic hyperfine interactions in isolated electron spin manifold, without radio wave (RW) pulses. The presented method can be efficiently implemented in synchronized spin networks with the purpose to facilitate preservation and efficient transfer of experimentally observed quantum particle states, contributing to the overall background noise reduction.
Adelnia, Fatemeh; Lascialfari, Alessandro [Dipartimento di Fisica, Università degli Studi di Milano and INSTM, Milano (Italy); Dipartimento di Fisica, Università degli Studi di Pavia and INSTM, Pavia (Italy); Mariani, Manuel [Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna (Italy); Ammannato, Luca; Caneschi, Andrea; Rovai, Donella [Dipartimento di Chimica, Università degli Studi di Firenze and INSTM, Firenze (Italy); Winpenny, Richard; Timco, Grigore [School of Chemistry, The University of Manchester, Manchester (United Kingdom); Corti, Maurizio, E-mail: maurizio.corti@unipv.it; Borsa, Ferdinando [Dipartimento di Fisica, Università degli Studi di Pavia and INSTM, Pavia (Italy)
2015-05-07
We present the room temperature proton nuclear magnetic resonance (NMR) nuclear spin-lattice relaxation rate (NSLR) results in two 1D spin chains: the Heisenberg antiferromagnetic (AFM) Eu(hfac){sub 3}NITEt and the magnetically frustrated Gd(hfac){sub 3}NITEt. The NSLR as a function of external magnetic field can be interpreted very well in terms of high temperature spin dynamics dominated by a long time persistence of the decay of the two-spin correlation function due to the conservation of the total spin value for isotropic Heisenberg chains. The high temperature spin dynamics are also investigated in Heisenberg AFM molecular rings. In both Cr{sub 8} closed ring and in Cr{sub 7}Cd and Cr{sub 8}Zn open rings, i.e., model systems for a finite spin segment, an enhancement of the low frequency spectral density is found consistent with spin diffusion but the high cut-off frequency due to intermolecular anisotropic interactions prevents a detailed analysis of the spin diffusion regime.
Multitudes of Stable States in a Periodically Driven Electron-Nuclear Spin System in a Quantum Dot
Korenev, V. L.
2010-01-01
The periodical modulation of circularly polarized light with a frequency close to the electron spin resonance frequency induces a sharp change of the single electron spin orientation. Hyperfine interaction provides a feedback, thus fixing the precession frequency of the electron spin in the external and the Overhauser field near the modulation frequency. The nuclear polarization is bidirectional and the electron-nuclear spin system (ENSS) possesses a few stable states. A similar frequency-loc...
Quadrupolar effects on nuclear spins of neutral arsenic donors in silicon
Franke, David P.; Pflüger, Moritz P. D.; Mortemousque, Pierre-André; Itoh, Kohei M.; Brandt, Martin S.
2016-04-01
We present electrically detected electron nuclear double resonance measurements of the nuclear spins of ionized and neutral arsenic donors in strained silicon. In addition to a reduction of the hyperfine coupling, we find significant quadrupole interactions of the nuclear spin of the neutral donors of the order of 10 kHz. By comparing these to the quadrupole shifts due to crystal fields measured for the ionized donors, we identify the effect of the additional electron on the electric field gradient at the nucleus. This extra component is expected to be caused by the coupling to electric field gradients created due to changes in the electron wave function under strain.
Nuclear spin dynamics in solid 3He at ultralow temperatures
In this thesis the experimental study of the spin dynamics of solid 3He is described. By means of magnetization measurements above 3 mK a Curie-Weiss behaviour was found with θW∼2.1 mK and by this an order parameter of J=θWkB/∼-0.5 KkB was observed, while in the range of 1 to 3 mK a pure Curie behaviour was found. By means of NMR measurements the values of τ1(6 mK)=240 ms±12 ms and τ1(1 mK)∼ 40 ms were determined, while spin-echo measurements yielded the spin-spin relaxation time τ2(6 mK)=4540 μs±140 μs. Furthermore neutron scattering studies were performed. (HSI)
Nuclear and hadronic reaction mechanisms producing spin asymmetry
Ken-Ichi Kubo
2001-08-01
We brieﬂy review concept of the quark recombination (QRC) model and a general success of the model. To solve the existing problem, so called anomalous spin observables, in the high energy hyperon spin phenomena, we propose a mechanism; the primarily produced quarks, which are predominantly and quarks, act as the leading partons to form the hyperons. Extension of the quark recombination concept with this mechanism is successful in providing a good account of the anomalous spin observables. Another kind of anomaly, the non-zero analysing power and spin depolarization in the hyperon productions, are also discussed and well understood by the presently proposed mechanism. Recently, a further difﬁculty was observed in an exclusive K+ production and we will indicate a possible diagram for resolving it.
Spin-orbit interaction in relativistic nuclear structure models
Ebran, J.-P.; Mutschler, A.; Khan, E.; Vretenar, D.
2016-08-01
Relativistic self-consistent mean-field (SCMF) models naturally account for the coupling of the nucleon spin to its orbital motion, whereas nonrelativistic SCMF methods necessitate a phenomenological ansatz for the effective spin-orbit potential. Recent experimental studies aim to explore the isospin properties of the effective spin-orbit interaction in nuclei. SCMF models are very useful in the interpretation of the corresponding data; however, standard relativistic mean-field and nonrelativistic Hartree-Fock models use effective spin-orbit potentials with different isovector properties, mainly because exchange contributions are not treated explicitly in the former. The impact of exchange terms on the effective spin-orbit potential in relativistic mean-field models is analyzed, and it is shown that it leads to an isovector structure similar to the one used in standard nonrelativistic Hartree-Fock models. Data on the isospin dependence of spin-orbit splittings in spherical nuclei could be used to constrain the isovector-scalar channel of relativistic mean-field models. The reproduction of the empirical kink in the isotope shifts of even Pb nuclei by relativistic effective interactions points to the occurrence of pseudospin symmetry in the single-neutron spectra in these nuclei.
Spin-orbit interaction in relativistic nuclear structure models
Ebran, J -P; Khan, E; Vretenar, D
2016-01-01
Relativistic self-consistent mean-field (SCMF) models naturally account for the coupling of the nucleon spin to its orbital motion, whereas non-relativistic SCMF methods necessitate a phenomenological ansatz for the effective spin-orbit potential. Recent experimental studies aim to explore the isospin properties of the effective spin-orbit interaction in nuclei. SCMF models are very useful in the interpretation of the corresponding data, however standard relativistic mean-field and non-relativistic Hartree-Fock models use effective spin-orbit potentials with different isovector properties, mainly because exchange contributions are not treated explicitly in the former. The impact of exchange terms on the effective spin-orbit potential in relativistic mean-field models is analysed, and it is shown that it leads to an isovector structure similar to the one used in standard non-relativistic Hartree-Fock. Data on the isospin dependence of spin-orbit splittings in spherical nuclei could be used to constrain the iso...
Dynamical nuclear spin polarization and the Zamboni effect in gated double quantum dots
Ramon, Guy; Hu, Xuedong
2006-01-01
A dynamical nuclear polarization scheme is studied in gated double dots. We demonstrate that a small polarization ($\\sim 0.5%$) is sufficient to enhance the singlet decay time by two orders of magnitude. This enhancement is attributed to an equilibration process between the nuclear reservoirs in the two dots accompanied by reduced fluctuations in the Overhauser fields, that are mediated by the electron-nuclear spin hyperfine interaction.
Coherent manipulation of an ensemble of nuclear spins in diamond for high precision rotation sensing
Jaskula, Jean-Christophe; Saha, Kasturi; Ajoy, Ashok; Cappellaro, Paola
2016-05-01
Gyroscopes find wide applications in everyday life from navigation and inertial sensing to rotation sensors in hand-held devices and automobiles. Current devices, based on either atomic or solid-state systems, impose a choice between long-time stability and high sensitivity in a miniaturized system. We are building a solid-state spin gyroscope associated with the Nitrogen-Vacancy (NV) centers in diamond take advantage of the efficient optical initialization and measurement offered by the NV electronic spin and the stability and long coherence time of the nuclear spin, which is preserved even at high defect density. In addition, we also investigate electro-magnetic noise monitoring and feedback schemes based on the coupling between the NV electronic and nuclear spin to achieve higher stability.
We develop a theoretical description of Dynamic Nuclear Polarization (DNP) in solids under Magic Angle Spinning (MAS) to describe the magnetic field dependence of the DNP effect. The treatment is based on an efficient scheme for numerical solution of the Liouville-von Neumann equation, which explicitly takes into account the variation of magnetic interactions during the sample spinning. The dependence of the cross-effect MAS-DNP on various parameters, such as the hyperfine interaction, electron-electron dipolar interaction, microwave field strength, and electron spin relaxation rates, is analyzed. Electron spin relaxation rates are determined by electron paramagnetic resonance measurements, and calculations are compared to experimental data. Our results suggest that the observed nuclear magnetic resonance signal enhancements provided by MAS-DNP can be explained by discriminating between “bulk” and “core” nuclei and by taking into account the slow DNP build-up rate for the bulk nuclei
Thurber, Kent R., E-mail: thurberk@niddk.nih.gov; Tycko, Robert [Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520 (United States)
2014-05-14
We report solid state {sup 13}C and {sup 1}H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, {sup 1}H and cross-polarized {sup 13}C NMR signals from {sup 15}N,{sup 13}C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T{sub 1e} is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations.
We report solid state 13C and 1H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, 1H and cross-polarized 13C NMR signals from 15N,13C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T1e is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations
Mechanism for nuclear and electron spin excitation by radio frequency current
Müllegger, Stefan; Rauls, Eva; Gerstmann, Uwe; Tebi, Stefano; Serrano, Giulia; Wiespointner-Baumgarthuber, Stefan; Schmidt, Wolf Gero; Koch, Reinhold
2015-12-01
Recent radio frequency scanning tunneling spectroscopy (rf-STS) experiments have demonstrated nuclear and electron spin excitations up to ±12 ℏ in a single molecular spin quantum dot (qudot). Despite the profound experimental evidence, the observed independence of the well-established dipole selection rules is not described by existing theory of magnetic resonance—pointing to a new excitation mechanism. Here we solve the puzzle of the underlying mechanism by discussing the relevant mechanistic steps. At the heart of the mechanism, periodic transient charging and electric polarization due to the rf-modulated tunneling process cause a periodic asymmetric deformation of the adsorbed qudot, enabling efficient spin transitions via spin-phonon-like coupling. The mechanism has general relevance for a broad variety of different spin qudots exhibiting internal mechanical degrees of freedom (organic molecules, doped semiconductor qudots, nanocrystals, etc.).
Studies on Entanglement in Nuclear and Electron Spin Systems for Quantum Computing
Rahimi, Robabeh
2006-01-01
In this work, we have been working on the concept of quantum entanglement. At first, we studied the theory of entanglement in its characterization and measurement, introducing a new scheme for detection of entanglement. The new approach links molecular-spin entities involving nuclear spins to quantum computing as more appropriate physical systems of interest. Then, we continued with the realization of entanglement in experiments. NMR has been the first choice due to its well approved advantag...
Probing the Nuclear Spin-Lattice Relaxation Time at the Nanoscale
Wagenaar, J. J. T.; Haan, A. M. J. den; Voogd, J.M.; Bossoni, L.; de Jong, T. A.; De Wit, M.; Bastiaans, K. M.; Thoen, D. J.; Endo, A; Klapwijk, T. M.; Zaanen, J.; Oosterkamp, T. H.
2016-01-01
Nuclear spin-lattice relaxation times are measured on copper using magnetic resonance force microscopy performed at temperatures down to 42 mK. The low temperature is verified by comparison with the Korringa relation. Measuring spin-lattice relaxation times locally at very low temperatures opens up the possibility to measure the magnetic properties of inhomogeneous electron systems realized in oxide interfaces, topological insulators and other strongly correlated electron systems such as high...
Probing the Nuclear Spin-Lattice Relaxation Time at the Nanoscale
Wagenaar, J. J. T.; den Haan, A. M. J.; de Voogd, J. M.; Bossoni, L.; de Jong, T. A.; de Wit, M.; Bastiaans, K. M.; Thoen, D. J.; Endo, A.; Klapwijk, T. M.; Zaanen, J.; Oosterkamp, T. H.
2016-07-01
Nuclear spin-lattice relaxation times are measured on copper using magnetic-resonance force microscopy performed at temperatures down to 42 mK. The low temperature is verified by comparison with the Korringa relation. Measuring spin-lattice relaxation times locally at very low temperatures opens up the possibility to measure the magnetic properties of inhomogeneous electron systems realized in oxide interfaces, topological insulators, and other strongly correlated electron systems such as high-Tc superconductors.
Solid-state nuclear-spin quantum computer based on magnetic resonance force microscopy
We propose a nuclear-spin quantum computer based on magnetic resonance force microscopy (MRFM). It is shown that an MRFM single-electron spin measurement provides three essential requirements for quantum computation in solids: (a) preparation of the ground state, (b) one- and two-qubit quantum logic gates, and (c) a measurement of the final state. The proposed quantum computer can operate at temperatures up to 1 K. (c) 2000 The American Physical Society
Solid-State Nuclear Spin Quantum Computer Based on Magnetic Resonance Force Microscopy
Berman, G P; Hammel, P C; Tsifrinovich, V I
1999-01-01
We propose a nuclear spin quantum computer based on magnetic resonance force microscopy (MRFM). It is shown that an MRFM single-electron spin measurement provides three essential requirements for quantum computation in solids: (a) preparation of the ground state, (b) one- and two- qubit quantum logic gates, and (c) a measurement of the final state. The proposed quantum computer can operate at temperatures up to 1K.
The MONSTER solves nuclear structure problems at low and high spins
A microscopic, particle-number and spin conserving nuclear structure model is discussed. Within a unique theory the model can describe excitation energies, moments, transitions and spectroscopic factors at low and high spins of odd-mass and doubly-even nuclei in all mass regions. With a realistic two-body Hamiltonian extracted via a G-matric description from nucleon-nucleon scattering data. The model is here applied to nuclei in the A=130 region
Origin of the finite nuclear spin and its effect in intermediate energy heavy ion collisions
The heavy-ion phase-space exploration (HIPSE) model is used to discuss the origin of the nuclear spin in intermediate energy heavy-ion collision (HIC). The spin of maximal projectile-like fragment is found to depend strongly on impact parameter of a reaction system,while it relates weakly to the collision violence. Some interesting multi-fragmentation phenomena related to the spin are shown. We also found that the excitation energy in the de-excitation stage plays a robust role at the de-excitation stage in HIC. (authors)
Search for electric dipole moment in 129Xe atom using active nuclear spin maser
Ichikawa Y.; Chikamori M.; Ohtomo Y.; Hikota E.; Sakamoto Y.; Suzuki T; Bidinosti C.P.; Inoue T; Furukawa T; Yoshimi A.; Suzuki K.; Nanao T.; Miyatake H.; Tsuchiya M.; Yoshida N
2014-01-01
An experimental search for an electric dipole moment in the diamagnetic atom 129Xe is in progress through the precision measurement of spin precession frequency using an active nuclear spin maser. A 3He comagnetometer has been incorporated into the active spin maser system in order to cancel out the long-term drifts in the external magnetic field. Also, a double-cell geometry has been adopted in order to suppress the frequency shifts due to interaction with polarized Rb atoms. The first EDM m...
Hu, Huping; Wu, Maoxin
2004-01-01
A novel theory of consciousness is proposed in this paper. We postulate that consciousness is intrinsically connected to quantum spin since the latter is the origin of quantum effects in both Bohm and Hestenes quantum formulism and a fundamental quantum process associated with the structure of space-time. That is, spin is the “mind-pixel.” The unity of mind is achieved by entanglement of the mind-pixels. Applying these ideas to the particular structures and dynamics of the brain, we theorize ...
High-fidelity transfer and storage of photon states in a single nuclear spin
Yang, Sen; Wang, Ya; Rao, D. D. Bhaktavatsala; Hien Tran, Thai; Momenzadeh, Ali S.; Markham, M.; Twitchen, D. J.; Wang, Ping; Yang, Wen; Stöhr, Rainer; Neumann, Philipp; Kosaka, Hideo; Wrachtrup, Jörg
2016-08-01
Long-distance quantum communication requires photons and quantum nodes that comprise qubits for interaction with light and good memory capabilities, as well as processing qubits for the storage and manipulation of photons. Owing to the unavoidable photon losses, robust quantum communication over lossy transmission channels requires quantum repeater networks. A necessary and highly demanding prerequisite for these networks is the existence of quantum memories with long coherence times to reliably store the incident photon states. Here we demonstrate the high-fidelity (∼98%) coherent transfer of a photon polarization state to a single solid-state nuclear spin that has a coherence time of over 10 s. The storage process is achieved by coherently transferring the polarization state of a photon to an entangled electron–nuclear spin state of a nitrogen–vacancy centre in diamond. The nuclear spin-based optical quantum memory demonstrated here paves the way towards an absorption-based quantum repeater network.
Σ-nuclear spin-orbit coupling from two-pion exchange
Using SU(3) chiral perturbation theory we calculate the density-dependent complex-valued spin-orbit coupling strength UΣls(kf)+iWΣls(kf) of a Σ hyperon in the nuclear medium. The leading long-range ΣN interaction arises from iterated one-pion exchange with a Λ or a Σ hyperon in the intermediate state. We find from this unique long-range dynamics a sizable ''wrong-sign'' spin-orbit coupling strength of UΣls(kf0)≅-20 MeV fm2 at normal nuclear matter density ρ0=0.16 fm-3. The strong ΣN→ΛN conversion process contributes at the same time an imaginary part of WΣls(kf0)≅-12 MeV fm2. When combined with estimates of the short-range contribution the total Σ-nuclear spin-orbit coupling becomes rather weak
Direct comparison of nuclear-spin-gyroscope schemes
Dong, Haifeng
2016-01-01
We demonstrate that NMR gyroscope and comagnetometer SERF gyroscope can be described with a common model, which explains the compensation and enhancement effects in the same way. The error models and the advantage/disadvantage of two kinds of atomic spin gyroscope are also discussed.
Nuclear orientation of radioactive nuclei the spin program
Dupák, Jan; Finger, M.; Finger jr., M.; Janata, A.; Kracíková, T. I.; Lebedev, N. A.; Nováková, D.; Ota, J.; Rotter, M.; Slunečka, M.; Slunečková, V.; Virus, M.; Yushkevich, Y. V.
2000-01-01
Roč. 50, Supp. S1 (2000), s. 253-268. ISSN 0011-4626. [Symmetry and Spin. Praha, 05.09.1999-12.09.1999] R&D Projects: GA AV ČR KSK1067601 Institutional research plan: CEZ:AV0Z2065902 Subject RIV: JR - Other Machinery Impact factor: 0.298, year: 2000
Kim, Y H; Kaur, N; Atkins, B M; Dalal, N S; Takano, Y
2009-12-11
At a quantum critical point (QCP)--a zero-temperature singularity in which a line of continuous phase transition terminates--quantum fluctuations diverge in space and time, leading to exotic phenomena that can be observed at nonzero temperatures. Using a quantum antiferromagnet, we present calorimetric evidence that nuclear spins frozen in a high-temperature nonequilibrium state by temperature quenching are annealed by quantum fluctuations near the QCP. This phenomenon, with readily detectable heat release from the nuclear spins as they are annealed, serves as an excellent marker of a quantum critical region around the QCP and provides a probe of the dynamics of the divergent quantum fluctuations. PMID:20366226
Effect of nuclear spin symmetry in cold and ultracold reactions: D + para/ortho-H$_2$
Simbotin, I.; Côté, R
2015-01-01
We report results for reaction and vibrational quenching of the collision D with para-H$_2$($v,j=0$) and ortho-H$_2$($v,j=1$) at cold and ultracold temperatures. We investigate the effect of nuclear spin symmetry for barrier dominated processes ($0\\le v\\le 4$) and for one barrierless case ($v=5$). We find resonant structures for energies in the range corresponding to 0.01--10 K, which depend on the nuclear spin of H$_2$, arising from contributions of specific partial waves. We discuss the imp...
Effect of nuclear spin symmetry in cold and ultracold reactions: D + para/ortho-H$_2$
Simbotin, I
2015-01-01
We report results for reaction and vibrational quenching of the collision D with para-H$_2$($v,j=0$) and ortho-H$_2$($v,j=1$) at cold and ultracold temperatures. We investigate the effect of nuclear spin symmetry for barrier dominated processes ($0\\le v\\le 4$) and for one barrierless case ($v=5$). We find resonant structures for energies in the range corresponding to 0.01--10 K, which depend on the nuclear spin of H$_2$, arising from contributions of specific partial waves. We discuss the implications on the results in this benchmark system for ultracold chemistry.
Clevenson, Hannah; Chen, Edward H.; Dolde, Florian; Teale, Carson; Englund, Dirk; Braje, Danielle
2016-08-01
We report on detailed studies of electronic and nuclear spin states in the diamond-nitrogen-vacancy (NV) center under weak transverse magnetic fields. We numerically predict and experimentally verify a previously unobserved NV hyperfine level anticrossing (LAC) occurring at bias fields of tens of gauss—two orders of magnitude lower than previously reported LACs at ˜500 and ˜1000 G axial magnetic fields. We then discuss how the NV ground-state Hamiltonian can be manipulated in this regime to tailor the NV's sensitivity to environmental factors and to map into the nuclear spin state.
Wu, Yaotang; Ackerman, Jerome L; Kim, Hyun-Man; Rey, Christian; Barroug, Allal; Glimcher, Melvin J
2002-03-01
Studies of the apatitic crystals of bone and enamel by a variety of spectroscopic techniques have established clearly that their chemical composition, short-range order, and physical chemical reactivity are distinctly different from those of pure hydroxyapatite. Moreover, these characteristics change with aging and maturation of the bone and enamel crystals. Phosphorus-31 solid state nuclear magnetic resonance (NMR) spin-spin relaxation studies were carried out on bovine bone and dental enamel crystals of different ages and the data were compared with those obtained from pure and carbonated hydroxyapatites. By measuring the 31P Hahn spin echo amplitude as a function of echo time, Van Vleck second moments (expansion coefficients describing the homonuclear dipolar line shape) were obtained and analyzed in terms of the number density of phosphorus nuclei. 31P magnetization prepared by a 90 degree pulse or by proton-phosphorus cross-polarization (CP) yielded different second moments and experienced different degrees of proton spin-spin coupling, suggesting that these two preparation methods sample different regions, possibly the interior and the surface, respectively, of bone mineral crystals. Distinct differences were found between the biological apatites and the synthetic hydroxyapatites and as a function of the age and maturity of the biological apatites. The data provide evidence that a significant fraction of the protonated phosphates (HPO4(-2)) are located on the surfaces of the biological crystals, and the concentration of unprotonated phosphates (PO4(-3)) within the apatitic lattice is elevated with respect to the surface. The total concentration of the surface HPO4(-2) groups is higher in the younger, less mature biological crystals. PMID:11874238
Canadian experience with spin-offs from nuclear technology
The innovation process introduced into AECL's research laboratories is described, with its achievements in increased commercial and spin-off businesses. In particular, the role of the champion or entrepreneur is emphasized in the manner in which he/she interacts within a dedicated team to pursue each opportunity. Examples are provided of several commercial and business development opportunities resulting from the background research programs
Relativistic Force Field: Parametrization of (13)C-(1)H Nuclear Spin-Spin Coupling Constants.
Kutateladze, Andrei G; Mukhina, Olga A
2015-11-01
Previously, we reported a reliable DU8 method for natural bond orbital (NBO)-aided parametric scaling of Fermi contacts to achieve fast and accurate prediction of proton-proton spin-spin coupling constants (SSCC) in (1)H NMR. As sophisticated NMR experiments for precise measurements of carbon-proton SSCCs are becoming more user-friendly and broadly utilized by the organic chemistry community to guide and inform the process of structure determination of complex organic compounds, we have now developed a fast and accurate method for computing (13)C-(1)H SSCCs. Fermi contacts computed with the DU8 basis set are scaled using selected NBO parameters in conjunction with empirical scaling coefficients. The method is optimized for inexpensive B3LYP/6-31G(d) geometries. The parametric scaling is based on a carefully selected training set of 274 ((3)J), 193 ((2)J), and 143 ((1)J) experimental (13)C-(1)H spin-spin coupling constants reported in the literature. The DU8 basis set, optimized for computing Fermi contacts, which by design had evolved from optimization of a collection of inexpensive 3-21G*, 4-21G, and 6-31G(d) bases, offers very short computational (wall) times even for relatively large organic molecules containing 15-20 carbon atoms. The most informative SSCCs for structure determination, i.e., (3)J, were computed with an accuracy of 0.41 Hz (rmsd). The new unified approach for computing (1)H-(1)H and (13)C-(1)H SSCCs is termed "DU8c". PMID:26414291
NMR Investigation of Optical Polarization of Nuclear Spins in GaAs
Paravastu, Anant; Hayes, Sophia; Schwickert, Birgit; Reimer, Jeffrey; Dinh, Long; Balooch, Mehdi
2003-03-01
Light-induced nuclear spin alignments have been measured in GaAs as a function of photon energy, irradiation time, and sample temperature using NMR spectroscopy at 9.4 Tesla and 10 to 50 K. Significant optical enhancements were observed at a range of photon energies, starting just below the band gap and persisting through 100 meV above the gap. Irradiation above the band gap resulted in thermally activated NMR signal enhancements while sub band gap irradiation did not. Short and long irradiation time dependencies revealed insights into the nature of cross relaxation between electronic nuclear spins, contradicting mechanisms based on either localized electron-nuclear contact at defect sites or cross relaxation between nuclei and free electrons. We propose that the presence of a mobile or delocalized enabling electronic species characterized by a long electron-nuclear correlation time, such as an exciton, is necessary in any mechanism which explains the data.
Thermal mixing in multiple-pulse nuclear quadrupole resonance spin-locking
We report on an experimental and theoretical nuclear quadrupole resonance (NQR) multiple-pulse spin-locking study of the thermal mixing process in solids containing nuclei of two different sorts, I>1/2 and S = 1/2, coupled by dipole-dipole interactions and influenced by an external magnetic field. Two coupled equations for the inverse spin temperatures of both the spin systems describing the mutual spin-lattice relaxation and the thermal mixing were obtained using the method of the nonequilibrium state operator. It is shown that the relaxation process is realized with non-exponential time dependence described by a sum of two exponents. The calculated relaxation time versus the multiple-pulse field parameters agrees well with the obtained experimental data in 1,4-dichloro-2-nitrobenzene. The calculated magnetization relaxation time versus the strength of the applied magnetic field agrees well with the obtained experimental data
The improvement of spin-offs from national nuclear R and D activities in Korea
The objectives of this study were to identify the influencing factors and suggest guidelines for improving the technological effectiveness of spin-offs concerning the national nuclear R and D programmes in Korea. In order to find the influencing factors on the technological effectiveness of the spin-off process, this study described the conceptual model which was composed of the technological effectiveness and three-group influencing factors such as donor, recipient and common factors. To validate the conceptual model, data were collected from twelve cases through in-depth interviews and well-prepared questionnaires, and the Spearman's correlation coefficient was employed. Finally, the influencing factors at each stage of the spin-off process were integrated to draw up a schematic framework and evaluate the implications for the improvement of technological effectiveness of spin-offs. (author)
Coherent transfer of nuclear spin polarization in field-cycling NMR experiments
Pravdivtsev, Andrey N.; Yurkovskaya, Alexandra V.; Ivanov, Konstantin L., E-mail: ivanov@tomo.nsc.ru [International Tomography Center, Siberian Branch of the Russian Academy of Science, Institutskaya 3a, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Pirogova 2, Novosibirsk 630090 (Russian Federation); Vieth, Hans-Martin [Institut für Experimental Physik, Freie Universität Berlin, Arnimallee 14, Berlin 14195 (Germany)
2013-12-28
Coherent polarization transfer effects in a coupled spin network have been studied over a wide field range. The transfer mechanism is based on exciting zero-quantum coherences between the nuclear spin states by means of non-adiabatic field jump from high to low magnetic field. Subsequent evolution of these coherences enables conversion of spin order in the system, which is monitored after field jump back to high field. Such processes are most efficient when the spin system passes through an avoided level crossing during the field variation. The polarization transfer effects have been demonstrated for N-acetyl histidine, which has five scalar coupled protons; the initial spin order has been prepared by applying RF-pulses at high magnetic field. The observed oscillatory transfer kinetics is taken as a clear indication of a coherent mechanism; level crossing effects have also been demonstrated. The experimental data are in very good agreement with the theoretical model of coherent polarization transfer. The method suggested is also valid for other types of initial polarization in the spin system, most notably, for spin hyperpolarization.
Jacobsen, H.J.; Skibsted, J.; Kristensen, Martin;
2001-01-01
Magic-angle spinning nuclear magnetic resonance spectra of 31P and 29Si have been achieved for a thin silica film doped with only 1.8% 31P and deposited by plasma enhanced chemical vapor deposition on a pure silicon wafer. The observation of a symmetric 31P chemical shift tensor is consistent...
Extended s± scenario for the nuclear spin-lattice relaxation rate in superconducting pnictides
Parker, D.; Dolgov, O.V.; Korshunov, M.M.; Golubov, A.A.; Mazin, I.I.
2008-01-01
Recently, several measurements of the nuclear spin-lattice relaxation rate T_{1}^{-1} in the superconducting Fe pnictides have been reported. These measurements generally show no coherence peak below Tc and indicate a low-temperature power-law behavior, the characteristics commonly t
What can we learn from spin depolarization measurements in damped nuclear reactions
The angular momentum transfer into fragment spins has been studied in the damped nuclear reactions Ar+Bi at 255 MeV and 295 MeV and Ni+Pb at 435 MeV by measuring the fission fragment angular distribution of the heavy reaction product in coincidence with the light one. The data are compared with various theoretical models
Fauzi, M. H. [Tohoku University, Sendai (Japan); Watanabe, S. [ERATO Nuclear Electronic Project, Sendai (Japan); Kumada, N. [NTT Corporation, Atsugi (Japan); Hirayama, Y. [Tohoku University, Sendai (Japan); ERATO Nuclear Electronic Project, Sendai (Japan)
2012-05-15
We developed a sensitive spectroscopic tool to probe resistively as low as a few percent of an ensemble of nuclear spin polarizations in a GaAs quantum well. We take advantage of the spin phase- transition (SPT) peak of the filling fraction ν = 2/3 quantum Hall effect at which the electronic systems are energetically degenerate. The non-zero nuclear spin polarization incorporated in the system would be perceived as an effective magnetic field B{sub N} that modifies the Zeeman energy exclusively. It would result in a change in the overall shape of the peak including the peak's position, width, and amplitude. The alteration of the shape of the overall peak provide essential information on the microscopic characteristics of nuclear spin polarization and its relation to the domain formations which was not well investigated in the previous reports.
Nuclear structure of 94,95Mo at high spins
The high-spin level structures of 94,95Mo (N=52,53) have been investigated via the 65Cu(36S, αp2n)94Mo and 65Cu(36S, αpn)95Mo reactions at 142 MeV. The level schemes have been extended up to spin J∼19ℎ and excitation energies Ex∼12 MeV. Spherical shell-model calculations have been performed and compared with the experimental energy levels. The level structure of 94Mo exhibits a single-particle nature and the higher-angular-momentum states are dominated by the excitation of a g9/2 neutron across the N=50 shell gap. The level sequences observed in 95Mo have been interpreted on the basis of the spherical shell model and weak coupling of a d5/2 or a g7/2 neutron to the 94Mo core. copyright 1998 The American Physical Society
Nuclear spin relaxation in high-Tc superconductors
The project was to investigate the electronic states of thallium-containing high-Tc superconductors applying the NMR techniques, the main goal being to find answers to the following questions not yet resolved: 1) What is the valence of the Tl ions in these materials? 2) What anisotropy is there at the various lattice sites? 3) Can metal-type behaviour signs be found? 4) How strong are antiferromagnetic correlations? 5) How does the structure of the flux line lattice look like in the superconducting state? The experiments revealed precise information on both the valence and the anisotropy of interactions, from which the symmetry of the Tl positions could be derived. It was possible to directly observe in the NMR experiment the exchange of Ca and Tl atoms, and from the resulting defect line together with the corresponding knight shift and spin-lattice relaxation, metal-type behaviour was concluded to occur in the superconductors. A comparative analysis of the spin-lattice relaxation at various lattice sites allowed to establish a correlation between antiferromagnetic fluctuations and metal-type charge carriers, and to describe the influence on the critical temperature. (orig./MM)
Domínguez, F. D.; González, C. E.; Segnorile, H. H.; Zamar, R. C.
2016-02-01
We study the quantum adiabatic decoherence of a multispin array, coupled with an environment of harmonic phonons, in the framework of the theory of open quantum systems. We follow the basic formal guidelines of the well-known spin-boson model, since in this framework it is possible to derive the time dependence of the reduced density matrix in the adiabatic time scale, without resorting to coarse-graining procedures. However, instead of considering a set of uncoupled spins interacting individually with the boson field, the observed system in our model is a network of weakly interacting spin pairs; the bath corresponds to lattice phonons, and the system-environment interaction is generated by the variation of the dipole-dipole energy due to correlated shifts of the spin positions, produced by the phonons. We discuss the conditions that the model must meet in order to fit within the adiabatic regime. By identifying the coupling of the dipole-dipole spin interaction with the low-frequency acoustic modes as the source of decoherence, we calculate the decoherence function of the reduced spin density matrix in closed way, and estimate the decoherence rate of a typical element of the reduced density matrix in one- and three-dimensional models of the spin array. Using realistic values for the various parameters of the model we conclude that the dipole-phonon mechanism can be particularly efficient to degrade multispin coherences, when the number of active spins involved in a given coherence is high. The model provides insight into the microscopic irreversible spin dynamics involved in the buildup of quasiequilibrium states and in the coherence leakage during refocusing experiments in nuclear magnetic resonance of crystalline solids.
Advances and applications of dynamic-angle spinning nuclear magnetic resonance
Baltisberger, J.H.
1993-06-01
This dissertation describes nuclear magnetic resonance experiments and theory which have been developed to study quadrupolar nuclei (those nuclei with spin greater than one-half) in the solid state. Primarily, the technique of dynamic-angle spinning (DAS) is extensively reviewed and expanded upon in this thesis. Specifically, the improvement in both the resolution (two-dimensional pure-absorptive phase methods and DAS angle choice) and sensitivity (pulse-sequence development), along with effective spinning speed enhancement (again through choice of DAS conditions or alternative multiple pulse schemes) of dynamic-angle spinning experiment was realized with both theory and experimental examples. The application of DAS to new types of nuclei (specifically the {sup 87}Rb and {sup 85}Rb nuclear spins) and materials (specifically amorphous solids) has also greatly expanded the possibilities of the use of DAS to study a larger range of materials. This dissertation is meant to demonstrate both recent advances and applications of the DAS technique, and by no means represents a comprehensive study of any particular chemical problem.
Advances and applications of dynamic-angle spinning nuclear magnetic resonance
This dissertation describes nuclear magnetic resonance experiments and theory which have been developed to study quadrupolar nuclei (those nuclei with spin greater than one-half) in the solid state. Primarily, the technique of dynamic-angle spinning (DAS) is extensively reviewed and expanded upon in this thesis. Specifically, the improvement in both the resolution (two-dimensional pure-absorptive phase methods and DAS angle choice) and sensitivity (pulse-sequence development), along with effective spinning speed enhancement (again through choice of DAS conditions or alternative multiple pulse schemes) of dynamic-angle spinning experiment was realized with both theory and experimental examples. The application of DAS to new types of nuclei (specifically the 87Rb and 85Rb nuclear spins) and materials (specifically amorphous solids) has also greatly expanded the possibilities of the use of DAS to study a larger range of materials. This dissertation is meant to demonstrate both recent advances and applications of the DAS technique, and by no means represents a comprehensive study of any particular chemical problem
Nuclear relaxation study of the spin dynamics in a one-dimensional Heisenberg system, TMMC
Changes in the nuclear relaxation time as a function of the magnetic field intensity in TMMC are very different wether the field direction is parallel or perpendicular to the direction of the exchange chains (vector c). In parallel field, the relaxation probability increases as the field decreases. The process of spin diffusion in a one-dimensional system is well illustrated by the changes experimentally observed. In perpendicular field, the relaxation probability is constant as far as H0>2kG, it clearly decreases for H0<2kG; that is interpreted from the hypothesis of a new one-dimensional spin diffusion interrupted after a certain cut time. A sharp increase in the cut frequency at low fields explains the concomitant decay of the nuclear relaxation probability in perpendicular field. Two contributions are such given to the study of high temperature spin dynamics in one-dimensional Heisenberg systems. First, the diffusive behavior theoretically predicted for two-spin correlation functions was experimentally verified. Secondly, new experimental results show that four-spin correlation functions must also have a behavior of diffusive type at very low frequencies
Schmid, K.W.; Gruemmer, F.; Faessler, A.
1984-01-01
In the first part of the present series of two papers we discussed several nuclear structure models all working in configuration spaces consisting of spin- and number-projected quasiparticle determinants. In the present paper a particular version of the numerically simplest of these models is presented. This model approximates the nuclear wave functions by linear combinations of the angular momentum- and particle number-projected Hartree-Fock-Bogoliubov vacuum and the equally spin- and number-projected two quasiparticle excitations with respect to it. The model allows the use of realistic two body interactions and rather large model spaces. It can hence be applied to a large number of nuclear structure problems in various mass regions. First applications have been performed for the nuclei /sup 20/Ne, /sup 22/Ne, /sup 46/Ti, and /sup 164/Er. In all these cases the results are very encouraging.
Resonance-inclined optical nuclear spin polarization of liquids in diamond structures
Chen, Qiong; Jelezko, Fedor; Retzker, Alex; Plenio, Martin B
2015-01-01
Dynamic nuclear polarization (DNP) of molecules in a solution at room temperature has potential to revolutionize nuclear magnetic resonance spectroscopy and imaging. The prevalent methods for achieving DNP in solutions are typically most effective in the regime of small interaction correlation times between the electron and nuclear spins, limiting the size of accessible molecules. To solve this limitation, we design a mechanism for DNP in the liquid phase that is applicable for large interaction correlation times. Importantly, while this mechanism makes use of a resonance condition similar to solid-state DNP, the polarization transfer is robust to a relatively large detuning from the resonance due to molecular motion. We combine this scheme with optically polarized nitrogen vacancy (NV) center spins in nanodiamonds to design a setup that employs optical pumping and is therefore not limited by room temperature electron thermal polarisation. We illustrate numerically the effectiveness of the model in a flow cel...
Spatial gradient of dynamic nuclear spin polarization induced by breakdown of quantum Hall effect
Kawamura, Minoru; Kono, Kimitoshi; Hashimoto, Yoshiaki; Katsumoto, Shingo; Machida, Tomoki
2010-01-01
We studied spatial distribution of dynamic nuclear polarization (DNP) in a Hall-bar device in a breakdown regime of the quantum Hall effect (QHE). We detected nuclear magnetic resonance (NMR) signals from the polarized nuclear spins by measuring the Hall voltage $V_{xy}$ using three pairs of voltage probes attached to the conducting channel of the Hall bar. We find that the amplitude of the NMR signal depends on the position of the Hall voltage probes and that the largest NMR signal is obtain...
Active nuclear spin maser oscillation with double cell
Hikota E.
2014-03-01
Full Text Available Uncertainty in the frequency precision of the planned experiment to search for a 129Xe atomic electric dipole moment is dominated by drifts in the frequency shift due to contact interaction of 129Xe with polarized Rb valence electrons. In order to suppress the frequency shift, a double-cell geometry has been adopted for the confinement of 129Xe gas. A new process has been identified to take part in the optical detection of spin precession. The parameters controlling the oscillation of the maser in this new double-cell arrangement were optimized. As a result, the frequency shift has been reduced by a factor of 10 or more from the former single-cell geometry.
Nuclear Spin Relaxation and Molecular Interactions of a Novel Triazolium-Based Ionic Liquid
Allen, Jesse J; Schneider, Yanika; Kail, Brian W; Luebke, David R; Nulwala, Hunaid; Damodaran, Krishnan
2013-04-11
Nuclear spin relaxation, small-angle X-ray scattering (SAXS), and electrospray ionization mass spectrometry (ESI-MS) techniques are used to determine supramolecular arrangement of 3-methyl-1-octyl-4-phenyl-1H-triazol-1,2,3-ium bis(trifluoromethanesulfonyl)imide [OMPhTz][Tf{sub 2}N], an example of a triazolium-based ionic liquid. The results obtained showed first-order thermodynamic dependence for nuclear spin relaxation of the anion. First-order relaxation dependence is interpreted as through-bond dipolar relaxation. Greater than first-order dependence was found in the aliphatic protons, aromatic carbons (including nearest neighbors), and carbons at the end of the aliphatic tail. Greater than first order thermodynamic dependence of spin relaxation rates is interpreted as relaxation resulting from at least one mechanism additional to through-bond dipolar relaxation. In rigid portions of the cation, an additional spin relaxation mechanism is attributed to anisotropic effects, while greater than first order thermodynamic dependence of the octyl side chain’s spin relaxation rates is attributed to cation–cation interactions. Little interaction between the anion and the cation was observed by spin relaxation studies or by ESI-MS. No extended supramolecular structure was observed in this study, which was further supported by MS and SAXS. nuclear Overhauser enhancement (NOE) factors are used in conjunction with spin–lattice relaxation time (T{sub 1}) measurements to calculate rotational correlation times for C–H bonds (the time it takes for the vector represented by the bond between the two atoms to rotate by one radian). The rotational correlation times are used to represent segmental reorientation dynamics of the cation. A combination of techniques is used to determine the segmental interactions and dynamics of this example of a triazolium-based ionic liquid.
Microscopic control of $^{29}$Si nuclear spins near phosphorus donors in silicon
Järvinen, J; Ahokas, J; Sheludyakov, S; Vainio, O; Lehtonen, L; Vasiliev, S; Fujii, Y; Mitsudo, S; Mizusaki, T; Gwak, M; Lee, SangGap; Lee, Soonchil; Vlasenko, L
2014-01-01
Dynamic nuclear polarization of $^{29}$Si nuclei in resolved lattice sites near the phosphorus donors in natural silicon of has been created using the Overhauser and solid effects. Polarization has been observed as a pattern of well separated holes and peaks in the electron spin resonance line of the donor. The Overhauser effect in ESR hole burning experiments was used to manipulate the polarization of $^{29}$Si spins at ultra low (100-500 mK) temperatures and in high magnetic field of 4.6 T. Extremely narrow holes of 15 mG width were created after several seconds of pumping.
Wylie, Benjamin J. [Columbia University, Department of Chemistry (United States); Dzikovski, Boris G. [Cornell University, National Biomedical Center for Advanced ESR Technology, Department of Chemistry and Chemical Biology (United States); Pawsey, Shane; Caporini, Marc; Rosay, Melanie [Bruker BioSpin Corporation (United States); Freed, Jack H. [Cornell University, National Biomedical Center for Advanced ESR Technology, Department of Chemistry and Chemical Biology (United States); McDermott, Ann E., E-mail: aem5@columbia.edu [Columbia University, Department of Chemistry (United States)
2015-04-15
We demonstrate that dynamic nuclear polarization of membrane proteins in lipid bilayers may be achieved using a novel polarizing agent: pairs of spin labels covalently bound to a protein of interest interacting at an intermolecular interaction surface. For gramicidin A, nitroxide tags attached to the N-terminal intermolecular interface region become proximal only when bimolecular channels forms in the membrane. We obtained signal enhancements of sixfold for the dimeric protein. The enhancement effect was comparable to that of a doubly tagged sample of gramicidin C, with intramolecular spin pairs. This approach could be a powerful and selective means for signal enhancement in membrane proteins, and for recognizing intermolecular interfaces.
Interaction of incident nuclear particle beam with J = 1/2 (neutrons) spin and (J = 1/2) protons with the target substance is considered. It is shown that neutron polarization at the target exit and neutron transparency (G) of the target depend significantly on incident wave amplitude level and physical parameter values which characterize the target, such as target temperature, resonator mirror reflection factor, number of spins interacting with the field, etc. Under interaction of neutrons with a target resonator which features a high mirror reflection factor and low losses for absorption which is not related to magnetic dipole absorption, a bistable response of neutron polarization and G manifests itself. 1 ref
We demonstrate that dynamic nuclear polarization of membrane proteins in lipid bilayers may be achieved using a novel polarizing agent: pairs of spin labels covalently bound to a protein of interest interacting at an intermolecular interaction surface. For gramicidin A, nitroxide tags attached to the N-terminal intermolecular interface region become proximal only when bimolecular channels forms in the membrane. We obtained signal enhancements of sixfold for the dimeric protein. The enhancement effect was comparable to that of a doubly tagged sample of gramicidin C, with intramolecular spin pairs. This approach could be a powerful and selective means for signal enhancement in membrane proteins, and for recognizing intermolecular interfaces
Isovector spin observables in nuclear charge reactions at LAMPF
LAMPF has undertaken a major development program to upgrade facilities for nuclear charge-exchange studies at intermediate energies. The major components of this upgrade are a medium-resolution spectrometer and neutron time-of-flight system for good resolution (δ E < 1 MeV) charge-exchange perograms in (n,p) and (p,n) respectively. Major emphasis is placed on polarization phenomena using polarized beams and analyzing the polarization of the outgoing particle
Analytical theory of the nuclear-spin-induced optical rotation in liquids
Graphical abstract: The nuclear-spin-induced optical rotation (NSOR) in liquids is attributed to the influence from the intra- and intermolecular hyperfine interaction on molecular antisymmetric polarizability. Highlights: → Derive theoretical expression for nuclear spin optical rotation (NSOR) in fluids. → Calculated results for water agree with the experiment. → Predict magnitudes of NSOR for 1H in three liquid hydrocarbons. → Infer the ratio of intra-/inter-molecular induced antisymmetric polarizabilities. - Abstract: Based on the thought on the antisymmetric polarizability induced by nuclear magnetic moments and theory of the Faraday effect, an analytical theoretical expression is derived for the nuclear-spin-induced optical rotation (NSOR) of diamagnetic saturated molecules in a circular cylinder. That consists of two parts, φ(I) and φ(B), induced by the intramolecular and intermolecular hyperfine interaction, respectively. By using them and the Verdet constants, NSOR for 1H in water, hexane, cyclohexane and methyl-alcohol in liquid and H2 gas have been calculated. The calculated NSOR for water agrees with the experiment and for three hydrocarbons predicts the same order of magnitude as water. For the samples studied except H2 gas, φ(I) and φ(B) are comparable in magnitude.
Waeber, A. M.; Hopkinson, M.; Farrer, I.; Ritchie, D. A.; Nilsson, J.; Stevenson, R. M.; Bennett, A. J.; Shields, A. J.; Burkard, G.; Tartakovskii, A. I.; Skolnick, M. S.; Chekhovich, E. A.
2016-07-01
One of the key challenges in spectroscopy is the inhomogeneous broadening that masks the homogeneous spectral lineshape and the underlying coherent dynamics. Techniques such as four-wave mixing and spectral hole-burning are used in optical spectroscopy, and spin-echo in nuclear magnetic resonance (NMR). However, the high-power pulses used in spin-echo and other sequences often create spurious dynamics obscuring the subtle spin correlations important for quantum technologies. Here we develop NMR techniques to probe the correlation times of the fluctuations in a nuclear spin bath of individual quantum dots, using frequency-comb excitation, allowing for the homogeneous NMR lineshapes to be measured without high-power pulses. We find nuclear spin correlation times exceeding one second in self-assembled InGaAs quantum dots--four orders of magnitude longer than in strain-free III-V semiconductors. This observed freezing of the nuclear spin fluctuations suggests ways of designing quantum dot spin qubits with a well-understood, highly stable nuclear spin bath.
High-pressure magic angle spinning nuclear magnetic resonance.
Hoyt, David W; Turcu, Romulus V F; Sears, Jesse A; Rosso, Kevin M; Burton, Sarah D; Felmy, Andrew R; Hu, Jian Zhi
2011-10-01
A high-pressure magic angle spinning (MAS) NMR capability, consisting of a reusable high-pressure MAS rotor, a high-pressure rotor loading/reaction chamber for in situ sealing and re-opening of the high-pressure MAS rotor, and a MAS probe with a localized RF coil for background signal suppression, is reported. The unusual technical challenges associated with development of a reusable high-pressure MAS rotor are addressed in part by modifying standard ceramics for the rotor sleeve by abrading the internal surface at both ends of the cylinder. In this way, not only is the advantage of ceramic cylinders for withstanding very high-pressure utilized, but also plastic bushings can be glued tightly in place so that other removable plastic sealing mechanisms/components and O-rings can be mounted to create the desired high-pressure seal. Using this strategy, sealed internal pressures exceeding 150 bars have been achieved and sustained under ambient external pressure with minimal loss of pressure for 72 h. As an application example, in situ(13)C MAS NMR studies of mineral carbonation reaction intermediates and final products of forsterite (Mg(2)SiO(4)) reacted with supercritical CO(2) and H(2)O at 150 bar and 50°C are reported, with relevance to geological sequestration of carbon dioxide. PMID:21862372
High-pressure Magic Angle Spinning Nuclear Magnetic Resonance
A high-pressure magic angle spinning (MAS) NMR capability, consisting of a reusable high-pressure MAS rotor, a high-pressure loading/reaction chamber for in situ sealing and re-opening of the high-pressure MAS rotor, and a MAS probe with a localized RF coil for background signal suppression, is reported. The unusual technical challenges associated with development of a reusable high-pressure MAS rotor are addressed in part by modifying standard ceramics for the rotor sleeve to include micro-groves at the internal surface at both ends of the cylinder. In this way, not only is the advantage of ceramic cylinders for withstanding very high-pressure utilized, but also plastic bushings can be glued tightly in place so that other plastic sealing mechanisms/components and O-rings can be mounted to create the desired high-pressure seal. Using this strategy, sealed internal pressures exceeding 150 bars have been achieved and sustained under ambient external pressure with minimal penetration loss of pressure for 72 hours. As an application example, in situ 13C MAS NMR studies of mineral carbonation reaction intermediates and final products of forsterite (Mg2SiO4) reacted with supercritical CO2 and H2O at 150 bar and 50 C are reported, with relevance to geological sequestration of carbon dioxide.
Influence of paramagnetic centers on the nuclear spin lattice relaxation in NQR experiments
We investigated the influence of paramagnetic centers on the nuclear spin relaxation in NQR experiments. 35Cl NQR spectra, spin-lattice relaxation times in laboratory and rotating frames T1 and T1e and spin-spin relaxation time T2 in NaClO3 have been measured at 77 Κ. for a large range of PI concentration. Paramagnetic centers were developed by g-irradiation with doses of 0.2, 1, 3, 5, 10, 20 and 50 Mrad. Nonirradiated NaClO3 sample has been also studied. The amount and origin of PI were controlled by ESR measurements. NQR frequency and line width in nonirradiated sample at 77 Κ. were found to be 30.63245 MHz and 1.2 khz, respectively. Line width shows linear dependence on the dose of irradiation in the whole range of irradiation, while larger doses result in a deviation of line shift from the linear law. These frequency and line width variations result from the distortion of electric field gradient; a static broadening may be also caused by the dipole-dipole interaction between the unpaired magnetic moments of the paramagnetic centers and the magnetic moments of the resonant nuclei. The value of spin-spin relaxation time T2=0.8 ms does not vary with irradiation within the accuracy of the experiment. Spin-lattice relaxation time T1 Shows no visible changes up to 3 Mrad. By fitting the M(t) decay with a stretched exponent given by the expression Mo [1 - Bexp(-(t/T1 )α)], we found the parameter a around 0.83 [1]. However, further irradiation reduces both T1 and a. These changes are attributed to the influence of paramagnetic centers and may be explained in the frames of the theory of relaxation via paramagnetic centers in the absence of spin diffusion. Measurements of T1e show that magnetization decay is two-exponential for the delay between pulses > 50 ms and becomes close to one-exponential when reduce the delay s. Analysis of one-exponential decay with a stretched exponent shows visible dependence of T1e and a on the dose of irradiation which are attributed to
We study theoretically the full counting statistics of electron transport through a quantum dot weakly coupled to two ferromagnetic leads, in which an effective nuclear-spin magnetic field originating from the configuration of nuclear spins is considered. We demonstrate that the quantum coherence between the two singly-occupied eigenstates and the spin polarization of two ferromagnetic leads play an important role in the formation of super-Poissonian noise. In particular, the orientation and magnitude of the effective field have a significant influence on the variations of the values of high-order cumulants, and the variations of the skewness and kurtosis values are more sensitive to the orientation and magnitude of the effective field than the shot noise. Thus, the high-order cumulants of transport current can be used to qualitatively extract information on the orientation and magnitude of the effective nuclear-spin magnetic field in a single quantum dot. - Highlights: • The effective nuclear-spin magnetic field gives rise to the off-diagonal elements of the reduced density matrix of single QD. • The off-diagonal elements of reduced density matrix of the QD have a significant impact on the high-order current cumulants. • The high-order current cumulants are sensitive to the orientation and magnitude of the effective nuclear-spin magnetic field. • The FCS can be used to detect the orientation and magnitude of the effective nuclear-spin magnetic field in a single QD
Ding, S; Ye, C; Zhan, M S; Zhu, X; Gao, K; Sun, X; Mao, X A; Liu, M; Ding, Shangwu; Dowell, Charles A. Mc; Ye, Chaohui; Zhan, Mingsheng; Zhu, Xiwen; Gao, Kelin; Sun, Xianping; Mao, Xi-An; Liu, Maili
2001-01-01
Magic-angle spinning (MAS) solid state nuclear magnetic resonance (NMR) spectroscopy is shown to be a promising technique for implementing quantum computing. The theory underlying the principles of quantum computing with nuclear spin systems undergoing MAS is formulated in the framework of formalized quantum Floquet theory. The procedures for realizing state labeling, state transformation and coherence selection in Floquet space are given. It suggests that by this method, the largest number of qubits can easily surpass that achievable with other techniques. Unlike other modalities proposed for quantum computing, this method enables one to adjust the dimension of the working state space, meaning the number of qubits can be readily varied. The universality of quantum computing in Floquet space with solid state NMR is discussed and a demonstrative experimental implementation of Grover's search is given.
Moessbauer transition dynamics in conditions of strong excitation of nuclear spins
Sadykov, E.K.; Isavnin, A.G.; Skvortsov, A.I
1997-05-15
The state of the art Moessbauer spectroscopy has made unquestionable advance possible in the solid microstructure study. Apart from that application of the Moessbauer effect, another domain of investigations has been outlined since the outset, in the sixties, wherein the properties of gamma-radiation interaction with resonant nuclei in a recoilless mode are stressed. There were these recoilless processes that enabled to distinguish the gamma-radiation of natural width, and greatly encouraged the arising of traditional optics problems in the gamma range. The subject of interest in this article deals as well with the Moessbauer gamma optics. Essentially it is a gamma-ray (Moessbauer) susceptibility of the excited, non-equilibrium state of the nuclear spin system. We analyze the Moessbauer transitions in the strong coherent excitation of nuclear spins regime and the possibilities to deliberately vary the polarization, spectral and/or temporal properties of gamma-radiation propagating through a time-modulated medium.
We describe new techniques for determining spins and parities of neutron resonances which have resulted in large improvements over previous methods. These advances have made it possible, for the first time, to obtain reduced-neutron- and total-radiation-width distributions separately for resonances of different spin and parity in odd-A target nuclides. Using these new as well as previous data, we show that neutron distributions sometimes are significantly different from the Porter-Thomas distribution assumed by the nuclear statistical model. Furthermore, we show that the radiation-width distributions often are substantially different than predicted by the nuclear statistical model using standard level densities and photon strength functions. These differences could have significant impact on astrophysical reaction rates calculated using the statistical model.
Spin assignments of nuclear levels above the neutron binding energy in $^{88}$Sr
Neutron resonances reveal nuclear levels in the highly excited region of the nucleus around the neutron binding energy. Nuclear level density models are therefore usually calibrated to the number of observed levels in neutron-induced reactions. The gamma-ray cascade from the decay of the highly excited compound nucleus state to the ground state show dierences dependent on the initial spin. This results in a dierence in the multiplicity distribution which can be exploited. We propose to use the 4${\\pi}$ total absorption calorimeter (TAC) at the n TOF facility to determine the spins of resonances formed by neutrons incident on a metallic $^{87}$Sr sample by measuring the gamma multiplicity distributions for the resolved resonances. In addition we would like to use the available enriched $^{87}$Sr target for cross section measurements with the C$\\scriptscriptstyle{6}$D$\\scriptscriptstyle{6}$ detector setup.
Research on high spin structures of N=79 isotones in A=135 nuclear region
The progress of research on the high spin states at N=79 isotopes 135Ba, 137Ce and 139Nd in A=135 neutron-deficient region by the research group of Tsinghua University has been reviewed. The experiments were carried out by using in-beam γ-ray spectroscopy technology and heavy ion nuclear reactions 130Te(9Be, 4n), 124Sn(18O, 5n) and 128Te(16O, 5n) at China Institute of Atomic Energy (CIAE). The high spin level schemes of these nuclei have been expanded. The results indicate that the lower spin states of these nuclei originated from νh11/2-1 hole state coupling with the neighboring even-even nucleus cores. All the deformation parameters γ values of these three isotones are larger than 30 degree, which indicates that they have triaxial deformation with oblate side. The prolate-oblate transition in Ba, Ce and Nd isotopic chains indeed happens between N=77 and N=79. Through systematical comparison with the neighboring isotones, the configurations for some middle spin state levels have been assigned. At the high spin states, one oblate band in 137Ce and three ones in 139Nd with γ≅-60 degree were discovered. The origination and structural character of these oblate bands have been discussed. (authors)
Electron-Mediated Nuclear-Spin Interactions Between Distant NV Centers
Bermudez A.; Jelezko F.; Plenio M.B.; Retzker A.
2011-01-01
We propose a scheme enabling controlled quantum coherent interactions between separated nitrogen-vacancy centers in diamond in the presence of strong magnetic fluctuations. The proposed scheme couples nuclear qubits employing the magnetic dipole-dipole interaction between the electron spins and, crucially, benefits from the suppression of the effect of environmental magnetic field fluctuations thanks to a strong microwave driving. This scheme provides a basic building block for a full-scale q...
Microwave field distribution in a magic angle spinning dynamic nuclear polarization NMR probe
Nanni, Emilio A.; Barnes, Alexander B.; Matsuki, Yoh; Woskov, Paul P.; Corzilius, Björn; Griffin, Robert G.; Temkin, Richard J.
2011-01-01
We present a calculation of the microwave field distribution in a magic angle spinning (MAS) probe utilized in dynamic nuclear polarization (DNP) experiments. The microwave magnetic field (B[subscript 1S]) profile was obtained from simulations performed with the High Frequency Structure Simulator (HFSS) software suite, using a model that includes the launching antenna, the outer Kel-F stator housing coated with Ag, the RF coil, and the 4 mm diameter sapphire rotor containing the sample. The p...
High fidelity transfer and storage of photon states in a single nuclear spin
Yang, Sen; Wang, Ya; Rao, D. D. Bhaktavatsala; Tran, Thai Hien; Momenzadeh, S. Ali; Nagy, Roland; Markham, M.; Twitchen, D. J.; Ping WANG; Yang, Wen; Stoehr, Rainer; Neumann, Philipp; Kosaka, Hideo; Wrachtrup, Joerg
2015-01-01
Building a quantum repeater network for long distance quantum communication requires photons and quantum registers that comprise qubits for interaction with light, good memory capabilities and processing qubits for storage and manipulation of photons. Here we demonstrate a key step, the coherent transfer of a photon in a single solid-state nuclear spin qubit with an average fidelity of 98% and storage over 10 seconds. The storage process is achieved by coherently transferring a photon to an e...
Sensing and atomic-scale structure analysis of single nuclear spin clusters in diamond
Shi, Fazhan; Kong, Xi; Wang, Pengfei; Kong, Fei; Zhao, Nan; Liu, Ren-Bao; Du, Jiangfeng
2013-01-01
Single-molecule nuclear magnetic resonance (NMR) is a crown-jewel challenge in the field of magnetic resonance spectroscopy and has important applications in chemical analysis and in quantum computing. Recently, it becomes possible to tackle this grand challenge thanks to experimental advances in preserving quantum coherence of nitrogen-vacancy (NV) center spins in diamond as a sensitive probe and theoretical proposals on atomic-scale magnetometry via dynamical decoupling control. Through dec...
Contrast generation in the nuclear-spin tomography by pulsed ultrasound
In the framework of this thesis a combined method of ultrasound and nuclear-spin tomography is presented. Via ultrasound pulses by the sound-radiation force in liquids and tissue phantoms motions are generated, which depend on ther viscoelastic properties. This motions are made visible by a motion-sensitive tomograph sequence in the phase image of the tomograph in form of a phase change. The first measurements on simple phantoms and liquids are presented.
Emerging Magneto-Optic Spectroscopy: Nuclear Spin-Induced Circular Dichroism in Fullerenes
Štěpánek, Petr; Vaara, J.; Coriani, S.; Straka, Michal
Opole: -, 2014. P11. [MMNB 2014. Polish-Taiwanese Conference. From Molecular Modeling to Nano- and Biotechnology. 04.09.2014-06.09.2014, Opole] R&D Projects: GA ČR(CZ) GA14-03564S; GA ČR GA13-03978S Institutional support: RVO:61388963 Keywords : nuclear spin circular dichroism * fullerene * nuclei-specific signal Subject RIV: CF - Physical ; Theoretical Chemistry
Zhou, Z.; Sayer, B G; Hughes, D. W.; Stark, R E; Epand, R M
1999-01-01
A sample preparation method using spherical glass ampoules has been used to achieve 1.5-Hz resolution in 1H magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectra of aqueous multilamellar dispersions of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), serving to differentiate between slowly exchanging interlamellar and bulk water and to reveal new molecular-level information about hydration phenomena in these model biolo...
Hoffman, Brian M.
2003-01-01
This perspective discusses the ways that advanced paramagnetic resonance techniques, namely electron-nuclear double resonance (ENDOR) and electron spin-echo envelope modulation (ESEEM) spectroscopies, can help us understand how metal ions function in biological systems.
Ignition conditions for inertial confinement fusion targets with a nuclear spin-polarized DT fuel
Temporal, Mauro; Brandon, V.; Canaud, B.; Didelez, J.P.; Ramis Abril, Rafael
2012-01-01
The nuclear fusion cross-section is modified when the spins of the interacting nuclei are polarized. In the case of deuterium?tritium it has been theoretically predicted that the nuclear fusion cross-section could be increased by a factor d = 1.5 if all the nuclei were polarized. In inertial confinement fusion this would result in a modification of the required ignition conditions. Using numerical simulations it is found that the required hot-spot temperature and areal density can both be red...
Controlling nuclear spin exchange via optical Feshbach resonances in ${}^{171}$Yb
Reichenbach, Iris; Julienne, Paul S.; Deutsch, Ivan H.
2009-01-01
Nuclear spin exchange occurs in ultracold collisions of fermionic alkaline-earth-like atoms due to a difference between s- and p-wave phase shifts. We study the use of an optical Feshbach resonance, excited on the ${}^1S_0 \\to {}^3P_1$ intercombination line of ${}^{171}$Yb, to affect a large modification of the s-wave scattering phase shift, and thereby optically mediate nuclear exchange forces. We perform a full multichannel calculation of the photoassociation resonances and wave functions a...
Pion-nucleus inelastic scattering: Reaction contributions and nuclear spin determinations
Formulas for pion-nucleus inelastic scattering are presented in a form that may suggest experiments to isolate various contributions to the reaction, including S-wave, P-wave spin and nonspin flip, and effects of nucleon Fermi motion. Adopting a form of the distorted wave impulse appoximation, we obtain an expression for inelastic cross sections that clearly separate the pion laboratory energy (E), three-momentum transfer (q), and scattering angle (theta) dependences. The result is similar to the separation of longitudinal and transverse form factors in inelastic electron scattering. By varying the energy of the incident pion, but working at fixed q, one can determine whether a given nuclear excitation has natural or unnatural parity. By working at fixed theta, and varying E and thus q, one can isolate different reaction contributions: spin, scalar, and ''convection current.'' We also discuss the potential usefulness of studying the energy dependence of angle-integrated differential cross sections at fixed energy loss. The predictions of our formulas are in good agreement with recent data on natural and unnatural parity excitations in 12C(π,π')12C*. Thus, this approach may be useful in analyzing future data in which the final nuclear spin is uncertain. Future experiments with selective q, E, and theta variations to separate nuclear structure from reaction-mechanism uncertainties are suggested
Quantum cognition: The possibility of processing with nuclear spins in the brain
Fisher, Matthew P. A.
2015-11-01
The possibility that quantum processing with nuclear spins might be operative in the brain is explored. Phosphorus is identified as the unique biological element with a nuclear spin that can serve as a qubit for such putative quantum processing-a neural qubit-while the phosphate ion is the only possible qubit-transporter. We identify the "Posner molecule", Ca9(PO4)6, as the unique molecule that can protect the neural qubits on very long times and thereby serve as a (working) quantum-memory. A central requirement for quantum-processing is quantum entanglement. It is argued that the enzyme catalyzed chemical reaction which breaks a pyrophosphate ion into two phosphate ions can quantum entangle pairs of qubits. Posner molecules, formed by binding such phosphate pairs with extracellular calcium ions, will inherit the nuclear spin entanglement. A mechanism for transporting Posner molecules into presynaptic neurons during vesicle endocytosis is proposed. Quantum measurements can occur when a pair of Posner molecules chemically bind and subsequently melt, releasing a shower of intra-cellular calcium ions that can trigger further neurotransmitter release and enhance the probability of post-synaptic neuron firing. Multiple entangled Posner molecules, triggering non-local quantum correlations of neuron firing rates, would provide the key mechanism for neural quantum processing. Implications, both in vitro and in vivo, are briefly mentioned.
Luo Jun; Sun Xian-Ping; Zeng Xi-Zhi; Zhan Ming-Sheng
2007-01-01
Nuclear-spin states of gaseous-state Cs atoms in the ground state are optically manipulated using a Ti:sapphire laser in a magnetic field of 1.516 T, in which optical coupling of the nuclear-spin states is achieved through hyperfine interactions between electrons and nuclei. The steady-state population distribution in the hyperfine Zeeman sublevels of the ground state is detected by using a tunable diode laser. Furthermore, the state population transfer among the of Cs in the ground state due to stochastic collisions between Cs atoms and buffer-gas molecules, is studied at different of the hyperfine interaction can strongly cause the state population transfer and spin-state interchange among the hyperfine Zeeman sublevels. The calculated results maybe explain the steady-state population in hyperfine Zeeman sublevels in terms of rates of optical-pumping, electron-spin flip, nuclear spin flip, and electron-nuclear spin flip-flop transitions among the hyperfine Zeeman sublevels of the ground state of Cs atoms. This method may be applied to the nuclear-spin-based solid-state quantum computation.
Rotor Design for High Pressure Magic Angle Spinning Nuclear Magnetic Resonance
High pressure magic angle spinning (MAS) nuclear magnetic resonance (NMR) with a sample spinning rate exceeding 2.1 kHz and pressure greater than 165 bar has never been realized. In this work, a new sample cell design is reported, suitable for constructing cells of different sizes. Using a 7.5 mm high pressure MAS rotor as an example, internal pressure as high as 200 bar at a sample spinning rate of 6 kHz is achieved. The new high pressure MAS rotor is re-usable and compatible with most commercial NMR set-ups, exhibiting low 1H and 13C NMR background and offering maximal NMR sensitivity. As an example of its many possible applications, this new capability is applied to determine reaction products associated with the carbonation reaction of a natural mineral, antigorite ((Mg,Fe2+)3Si2O5(OH)4), in contact with liquid water in water-saturated supercritical CO2 (scCO2) at 150 bar and 50 deg C. This mineral is relevant to the deep geologic disposal of CO2, but its iron content results in too many sample spinning sidebands at low spinning rate. Hence, this chemical system is a good case study to demonstrate the utility of the higher sample spinning rates that can be achieved by our new rotor design. We expect this new capability will be useful for exploring solid-state, including interfacial, chemistry at new levels of high-pressure in a wide variety of fields.
Progress of the 129Xe EDM search using active feedback nuclear spin maser
Sato, Tomoya; Ichikawa, Yuichi; Ohtomo, Yuichi; Sakamoto, Yu; Kojima, Shuichiro; Funayama, Chikako; Suzuki, Takahiro; Chikamori, Masatoshi; Hikota, Eri; Tsuchiya, Masato; Furukawa, Takeshi; Yoshimi, Akihiro; Bidinosti, Christopher; Ino, Takashi; Ueno, Hideki; Matsuo, Yukari; Fukuyama, Takeshi; Asahi, Koichiro
2014-09-01
A permanent electric dipole moment (EDM) of a particle is an extremely sensitive probe for physics beyond the Standard Model. The objective of the present study is to search for the 129Xe EDM at a level of 10-28 ecm, beyond the current upper limit. In this experiment, an active-feedback nuclear spin maser is employed to achieve a precision measurement. Systematic instability sets a limit on the precision in our study. Co-magnetometry using 3He spin maser was incorporated into the maser system to eliminate the frequency drift caused by magnetic field fluctuations. Moreover, a double-cell geometry with linearly polarized laser was introduced to reduce frequency drifts arising from contact interactions with polarized Rb atoms. Having integrated these improvements, the 3He/129Xe dual spin maser was successfully operated. In the presentation, recent progress will be reported, including an analysis of spin maser frequencies, a study of electrode designs, and an estimation of possible systematic uncertainties.
Sensing of single nuclear spins in random thermal motion with proximate nitrogen-vacancy centers
Bruderer, M.; Fernández-Acebal, P.; Aurich, R.; Plenio, M. B.
2016-03-01
Nitrogen-vacancy (NV) centers in diamond have emerged as valuable tools for sensing and polarizing spins. Motivated by potential applications in chemistry, biology, and medicine, we show that NV-based sensors are capable of detecting single spin targets even if they undergo diffusive motion in an ambient thermal environment. Focusing on experimentally relevant diffusion regimes, we derive an effective model for the NV-target interaction, where parameters entering the model are obtained from numerical simulations of the target motion. The practicality of our approach is demonstrated by analyzing two realistic experimental scenarios: (i) time-resolved sensing of a fluorine nuclear spin bound to an N-heterocyclic carbene-ruthenium (NHC-Ru) catalyst that is immobilized on the diamond surface and (ii) detection of an electron spin label by an NV center in a nanodiamond, both attached to a vibrating chemokine receptor in thermal motion. We find in particular that the detachment of a fluorine target from the NHC-Ru carrier molecule can be monitored with a time resolution of a few seconds.