Graphene antidot lattice waveguides
Pedersen, Jesper Goor; Gunst, Tue; Markussen, Troels;
2012-01-01
We introduce graphene antidot lattice waveguides: nanostructured graphene where a region of pristine graphene is sandwiched between regions of graphene antidot lattices. The band gaps in the surrounding antidot lattices enable localized states to emerge in the central waveguide region. We model...... the waveguides via a position-dependent mass term in the Dirac approximation of graphene and arrive at analytical results for the dispersion relation and spinor eigenstates of the localized waveguide modes. To include atomistic details we also use a tight-binding model, which is in excellent agreement...... with the analytical results. The waveguides resemble graphene nanoribbons, but without the particular properties of ribbons that emerge due to the details of the edge. We show that electrons can be guided through kinks without additional resistance and that transport through the waveguides is robust against...
Graphene on graphene antidot lattices
Gregersen, Søren Schou; Pedersen, Jesper Goor; Power, Stephen;
2015-01-01
Graphene bilayer systems are known to exhibit a band gap when the layer symmetry is broken by applying a perpendicular electric field. The resulting band structure resembles that of a conventional semiconductor with a parabolic dispersion. Here, we introduce a bilayer graphene heterostructure......, where single-layer graphene is placed on top of another layer of graphene with a regular lattice of antidots. We dub this class of graphene systems GOAL: graphene on graphene antidot lattice. By varying the structure geometry, band-structure engineering can be performed to obtain linearly dispersing...
Screening in graphene antidot lattices
Schultz, Marco Haller; Jauho, A. P.; Pedersen, T. G.
2011-01-01
We compute the dynamical polarization function for a graphene antidot lattice in the random-phase approximation. The computed polarization functions display a much more complicated structure than what is found for pristine graphene (even when evaluated beyond the Dirac-cone approximation...... the plasmon dispersion law and find an approximate square-root dependence with a suppressed plasmon frequency as compared to doped graphene. The plasmon dispersion is nearly isotropic and the developed approximation schemes agree well with the full calculation....
Electronic transport in disordered graphene antidot lattice devices
Power, Stephen; Jauho, Antti-Pekka
2014-01-01
transistor or waveguiding devices. The desired properties have been predicted for atomically precise systems, but fabrication methods will introduce significant levels of disorder in the shape, position and edge configurations of individual antidots. We calculate the electronic transport properties of a wide...... range of finite graphene antidot devices to determine the effect of such disorders on their performance. Modest geometric disorder is seen to have a detrimental effect on devices containing small, tightly packed antidots, which have optimal performance in pristine lattices. Larger antidots display a...... range of effects which strongly depend on their edge geometry. Antidot systems with armchair edges are seen to have a far more robust transport gap than those composed from zigzag or mixed edge antidots. The role of disorder in waveguide geometries is slightly different and can enhance performance by...
Electronic properties of graphene antidot lattices
Fürst, Joachim Alexander; Pedersen, Jesper Goor; Flindt, C.;
2009-01-01
Graphene antidot lattices constitute a novel class of nano-engineered graphene devices with controllable electronic and optical properties. An antidot lattice consists of a periodic array of holes that causes a band gap to open up around the Fermi level, turning graphene from a semimetal...... into a semiconductor. We calculate the electronic band structure of graphene antidot lattices using three numerical approaches with different levels of computational complexity, efficiency and accuracy. Fast finite-element solutions of the Dirac equation capture qualitative features of the band structure, while full...
Optical properties of graphene antidot lattices
Pedersen, Thomas Garm; Flindt, Christian; Pedersen, Jesper Goor;
2008-01-01
Undoped graphene is semimetallic and thus not suitable for many electronic and optoelectronic applications requiring gapped semiconductor materials. However, a periodic array of holes (antidot lattice) renders graphene semiconducting with a controllable band gap. Using atomistic modeling, we...
Ballistic Transport in Graphene Antidot Lattices.
Sandner, Andreas; Preis, Tobias; Schell, Christian; Giudici, Paula; Watanabe, Kenji; Taniguchi, Takashi; Weiss, Dieter; Eroms, Jonathan
2015-12-01
The bulk carrier mobility in graphene was shown to be enhanced in graphene-boron nitride heterostructures. However, nanopatterning graphene can add extra damage and drastically degrade the intrinsic properties by edge disorder. Here we show that graphene embedded into a heterostructure with hexagonal boron nitride (hBN) on both sides is protected during a nanopatterning step. In this way, we can prepare graphene-based antidot lattices where the high mobility is preserved. We report magnetotransport experiments in those antidot lattices with lattice periods down to 50 nm. We observe pronounced commensurability features stemming from ballistic orbits around one or several antidots. Due to the short lattice period in our samples, we can also explore the boundary between the classical and the quantum transport regime, as the Fermi wavelength of the electrons approaches the smallest length scale of the artificial potential. PMID:26598218
Thermoelectric properties of finite graphene antidot lattices
Gunst, Tue; Markussen, Troels; Jauho, Antti-Pekka;
2011-01-01
We present calculations of the electronic and thermal transport properties of graphene antidot lattices with a finite length along the transport direction. The calculations are based on the π-tight-binding model and the Brenner potential. We show that both electronic and thermal transport...
Thermoelectric properties of finite graphene antidot lattices
Gunst, Tue; Markussen, Troels; Jauho, Antti-Pekka; Brandbyge, Mads
2011-01-01
We present calculations of the electronic and thermal transport properties of graphene antidot lattices with a finite length along the transport direction. The calculations are based on the π-tight-binding model and the Brenner potential. We show that both electronic and thermal transport properties converge fast toward the bulk limit with increasing length of the lattice: only a few repetitions (≃6) of the fundamental unit cell are required to recover the electronic band gap of the infinite ...
Spin qubits in antidot lattices
Pedersen, Jesper Goor; Flindt, Christian; Mortensen, Niels Asger;
2008-01-01
We suggest and study designed defects in an otherwise periodic potential modulation of a two-dimensional electron gas as an alternative approach to electron spin based quantum information processing in the solid-state using conventional gate-defined quantum dots. We calculate the band structure and...... electron transport between distant defect states in the lattice, and for a tunnel coupling of neighboring defect states with corresponding electrostatically controllable exchange coupling between different electron spins....
Electronic properties of disordered graphene antidot lattices
Shengjun Yuan; Rolda´n, Rafael; Jauho, Antti-Pekka;
2013-01-01
Regular nanoscale perforations in graphene (graphene antidot lattices, GALs) are known to lead to a gap in the energy spectrum, thereby paving a possible way towards many applications. This theoretical prediction relies on a perfect placement of identical perforations, a situation not likely...... for solving the time-dependent Schro¨dinger equation in a tight-binding representation of the graphene sheet [Yuan et al., Phys. Rev. B 82, 115448 (2010)], which allows us to consider GALs consisting of 6400 × 6400 carbon atoms. The central conclusion for all kinds of disorder is that the gaps found...
Screening and collective modes in disordered graphene antidot lattices
Yuan, Shengjun; Jin, Fengping; Roldan, Rafael;
2013-01-01
The excitation spectrum and the collective modes of graphene antidot lattices (GALs) are studied in the context of a π-band tight-binding model. The dynamical polarizability and dielectric function are calculated within the random-phase approximation. The effect of different kinds of disorder, su...
Clar sextets in square graphene antidot lattices
Petersen, Rene; Pedersen, Thomas Garm; Jauho, Antti-Pekka
2011-01-01
A periodic array of holes transforms graphene from a semimetal into a semiconductor with a band gap tuneable by varying the parameters of the lattice. In earlier work only hexagonal lattices have been treated. Using atomistic models we here investigate the size of the band gap of a square lattice...
Electronic transport in disordered graphene antidot lattice devices
Power, Stephen; Jauho, Antti-Pekka
2014-01-01
Nanostructuring of graphene is in part motivated by the requirement to open a gap in the electronic band structure. In particular, a periodically perforated graphene sheet in the form of an antidot lattice may have such a gap. Such systems have been investigated with a view towards application in transistor or waveguiding devices. The desired properties have been predicted for atomically precise systems, but fabrication methods will introduce significant levels of disorder in the shape, posit...
Electron-phonon coupling in graphene antidot lattices: An indication of polaronic behavior
Vukmirović, N.; Stojanović, V.M.; Vanević, M.
2010-01-01
We study graphene antidot lattices—superlattices of perforations (antidots) in a graphene sheet—using a model that accounts for the phonon modulation of the π-electron hopping integrals. We calculate the phonon spectra of selected antidot lattices using two different semiempirical methods. Based on
Skyrmion-like bubbles and stripes in a thin ferromagnetic film with lattice of antidots
Marchenko, A.I., E-mail: marchalexx@gmail.com; Krivoruchko, V.N., E-mail: krivoruc@gmail.com
2015-03-01
We study the fundamental magnetic states of thin nanostructured (lattice of antidots) ferromagnetic film with quality factor less than unity. It was found that the analog of the skyrmions magnetic bubble lattice could be formed in such ferromagnetic film. These topological excitations are stable and confined due to the antidot lattice, unlike magnetic bubbles in continuous film. Some other magnetic structures similar to those observed in a films with strong uniaxial anisotropy perpendicular to the film plane were also found in the film at different magnitude of external magnetic field. - Highlights: • Magnetic states of film with antidot lattice and small quality factor are discussed. • Skyrmions are found in film with antidot lattice and small quality factor. • Skyrmions are stable and confined due to the antidot lattice.
Gräfe, Joachim; Weigand, Markus; Träger, Nick; Schütz, Gisela; Goering, Eberhard J.; Skripnik, Maxim; Nowak, Ulrich; Haering, Felix; Ziemann, Paul; Wiedwald, Ulf
2016-03-01
While the magnetic properties of nanoscaled antidot lattices in in-plane magnetized materials have widely been investigated, much less is known about the microscopic effect of hexagonal antidot lattice patterning on materials with perpendicular magnetic anisotropy. By using a combination of first-order reversal curve measurements, magnetic x-ray microscopy, and micromagnetic simulations we elucidate the microscopic origins of the switching field distributions that arise from the introduction of antidot lattices into out-of-plane magnetized GdFe thin films. Depending on the geometric parameters of the antidot lattice we find two regimes with different magnetization reversal processes. For small antidots, the reversal process is dominated by the exchange interaction and domain wall pinning at the antidots drives up the coercivity of the system. On the other hand, for large antidots the dipolar interaction is dominating which leads to fragmentation of the system into very small domains that can be envisaged as a basis for a bit patterned media.
We use a dual gated device structure to introduce a gate-tuneable periodic potential in a GaAs/AlGaAs two dimensional electron gas (2DEG). Using only a suitable choice of gate voltages we can controllably alter the potential landscape of the bare 2DEG, inducing either a periodic array of antidots or quantum dots. Antidots are artificial scattering centers, and therefore allow for a study of electron dynamics. In particular, we show that the thermovoltage of an antidot lattice is particularly sensitive to the relative positions of the Fermi level and the antidot potential. A quantum dot lattice, on the other hand, provides the opportunity to study correlated electron physics. We find that its current-voltage characteristics display a voltage threshold, as well as a power law scaling, indicative of collective Coulomb blockade in a disordered background
Goswami, Srijit; Aamir, Mohammed Ali; Shamim, Saquib; Ghosh, Arindam [Department of Physics, Indian Institute of Science, Bangalore 560 012 (India); Siegert, Christoph; Farrer, Ian; Ritchie, David A. [Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Pepper, Michael [Department of Electrical and Electronic Engineering, University College, London WC1E 7JE (United Kingdom)
2013-12-04
We use a dual gated device structure to introduce a gate-tuneable periodic potential in a GaAs/AlGaAs two dimensional electron gas (2DEG). Using only a suitable choice of gate voltages we can controllably alter the potential landscape of the bare 2DEG, inducing either a periodic array of antidots or quantum dots. Antidots are artificial scattering centers, and therefore allow for a study of electron dynamics. In particular, we show that the thermovoltage of an antidot lattice is particularly sensitive to the relative positions of the Fermi level and the antidot potential. A quantum dot lattice, on the other hand, provides the opportunity to study correlated electron physics. We find that its current-voltage characteristics display a voltage threshold, as well as a power law scaling, indicative of collective Coulomb blockade in a disordered background.
Anisotropic magneto-resistance in Ni80Fe20 antidot arrays with different lattice configurations
Highlights: • Detailed study of the magnetisation processes in antidot lattices. • Combined magnetic (MFM), magneto-transport (AMR) and numerical investigations. • Accounting for the experimentally observed differences in AMR signal amplitude in longitudinal and transverse configurations through numerical simulations. - Abstract: Ni80Fe20 antidot arrays having different lattice geometrical properties and irregularities were prepared via electron beam lithography and self-assembling of polystyrene nanospheres. All the samples were experimentally characterised by magnetic force microscopy and room-temperature magneto-resistance measurements in different configurations. The analysis, supported by micromagnetic simulations, has been focused on the effect of lattice geometry on the magneto-resistance behaviour of these systems. The detailed investigation through micromagnetic simulations of the magnetic domain configuration as a function of the applied field allows a complete understanding of the qualitative and quantitative difference of anisotropic magneto-resistance properties that have been measured in samples with different lattice geometries and in different measurement configurations
The Brillouin light scattering technique has been exploited to study the angle-resolved spin wave band diagrams of squared Permalloy antidot lattice. Frequency dispersion of spin waves has been measured for a set of fixed wave vector magnitudes, while varying the wave vector in-plane orientation with respect to the applied magnetic field. The magnonic band gap between the two most dispersive modes exhibits a minimum value at an angular position, which exclusively depends on the product between the selected wave vector magnitude and the lattice constant of the array. The experimental data are in very good agreement with predictions obtained by dynamical matrix method calculations. The presented results are relevant for magnonic devices where the antidot lattice, acting as a diffraction grating, is exploited to achieve multidirectional spin wave emission
Gubbiotti, G.; Tacchi, S. [Istituto Officina dei Materiali del Consiglio Nazionale delle Ricerche (IOM-CNR), Sede di Perugia, c/o Dipartimento di Fisica e Geologia, Via A. Pascoli, I-06123 Perugia (Italy); Montoncello, F.; Giovannini, L. [Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Via G. Saragat 1, I-44122 Ferrara (Italy); Madami, M.; Carlotti, G. [Dipartimento di Fisica e Geologia, Università di Perugia, Via A. Pascoli, I-06123 Perugia (Italy); Ding, J.; Adeyeye, A. O. [Information Storage Materials Laboratory, Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore)
2015-06-29
The Brillouin light scattering technique has been exploited to study the angle-resolved spin wave band diagrams of squared Permalloy antidot lattice. Frequency dispersion of spin waves has been measured for a set of fixed wave vector magnitudes, while varying the wave vector in-plane orientation with respect to the applied magnetic field. The magnonic band gap between the two most dispersive modes exhibits a minimum value at an angular position, which exclusively depends on the product between the selected wave vector magnitude and the lattice constant of the array. The experimental data are in very good agreement with predictions obtained by dynamical matrix method calculations. The presented results are relevant for magnonic devices where the antidot lattice, acting as a diffraction grating, is exploited to achieve multidirectional spin wave emission.
The low frequency voltage noise and complex AC voltage response to weakly modulated magnetic fields have been studied in a superconducting Pb film with a square lattice of antidots. The temperature was close to Tc and the DC magnetic field was changed between ±1.5 H1 with H1=9.2 Oe corresponding to one vortex per antidot. A narrow band noise near f∼0.55 Hz has been observed which shows different dependences on the magnetic field in 4- and 5-point probe configurations. In the latter configuration one probes the correlation between the noise voltages in the two parts of the sample. We also measured the resistance when, in addition to the DC field, a small AC field with frequency f<177 Hz was applied. The data showed that the complex magnetoresistance response becomes nonlinear below 1/3 of the first matching field
Superconducting Pb(x)/Au(25 nm) bilayers (x = 50, 100 nm) patterned with antidot lattices exhibit various matching field anomalies depending on experimental conditions. Magnetization peaks at applied fields H = n[20 Oe] (n = integer) resemble superconducting wire network data; cusps are also observed, consistent with predictions of 'giant' vortices in low-kappa films. Sharp 'staircase' anomalies spaced by 1-3 Oe are observed in AC magnetization, possibly a result of depinning of intermediate state domains, or macroscopic quantum tunneling between reproducible states of different quantized flux.
We present new photovoltage oscillation in a pure two dimensional electron gas (2DEG) and in the presence of circular or semicircular antidot lattices. Results were interpreted as EMPs-like photovoltage oscillations. We observed and explained the photovoltage oscillation amplitude enhancement in the presence of an antidot lattice with regard to the pure 2DEG. The microwave frequency excitation range is 139 – 350 GHz. The cyclotron and magnetoplasmon resonances take place in the magnetic field range 0.4 – 0.8 T. This original experimental condition allows edge magnetoplasmons EMPs interference like observation at low magnetic field, typically B < Bc where Bc is the magnetic field at which the cyclotron resonance takes place. The different oscillation periods observed and their microwave frequency dependence were discussed. For 139 and 158 GHz microwave excitation frequencies, a unique EMPs-like interference period was found in the presence of antidots whereas two periods were extracted for 295 or 350 GHz. An explanation of this effect is given taking account of strong electron interaction with antidot at low magnetic field. Indeed, electrons involved in EMPs like phenomenon interact strongly with antidots when electron cyclotron orbits are larger than or comparable to the antidot diameter
Farmer, B.; Bhat, V. S.; Sklenar, J.; Teipel, E.; Woods, J.; Ketterson, J. B.; Hastings, J. T.; De Long, L. E.
2015-05-01
The static and dynamic magnetic responses of patterned ferromagnetic thin films are uniquely altered in the case of aperiodic patterns that retain long-range order (e.g., quasicrystals). We have fabricated permalloy wire networks based on periodic square antidot lattices (ADLs) distorted according to an aperiodic Fibonacci sequence applied to two lattice translations, d1 = 1618 nm and d2 = 1000 nm. The wire segment thickness is fixed at t = 25 nm, and the width W varies from 80 to 510 nm. We measured the DC magnetization between room temperature and 5 K. Room-temperature, narrow-band (9.7 GHz) ferromagnetic resonance (FMR) spectra were acquired for various directions of applied magnetic field. The DC magnetization curves exhibited pronounced step anomalies and plateaus that signal flux closure states. Although the Fibonacci distortion breaks the fourfold symmetry of a finite periodic square ADL, the FMR data exhibit fourfold rotational symmetry with respect to the applied DC magnetic field direction.
Microdimensional triangular magnetic antidot lattice arrays were prepared by varying the speed of substrate rotation. The pre-deposition patterning has been performed using photolithography technique followed by a post-deposition lift-off. Surface morphology taken by atomic force microscopy depicted that the growth mechanism of the grains changes from chain like formation to island structures due to the substrate rotation. Study of magnetization reversal via magneto optic Kerr effect based microscopy revealed reduction of uniaxial anisotropy and increase in domain size with substrate rotation. The relaxation measured under constant magnetic field becomes faster with rotation of the substrate during deposition. The nature of relaxation for the non-rotating sample can be described by a double exponential decay. However, the relaxation for the sample with substrate rotation is well described either by a double exponential or a Fatuzzo-Labrune like single exponential decay, which increases in applied field
Theoretical study on electronic properties of MoS2 antidot lattices
Motivated by the state of the art method for etching hexagonal array holes in molybdenum disulfide (MoS2), the electronic properties of MoS2 antidot lattices (MoS2ALs) with zigzag edge were studied with first-principles calculations. Monolayer MoS2ALs are semiconducting and the band gaps converge to constant values as the supercell area increases, which can be attributed to the edge effect. Multilayer MoS2ALs and chemical adsorbed MoS2ALs by F atoms show metallic behavior, while the structure adsorbed with H atoms remains to be semiconducting with a tiny bandgap. Our results show that forming periodically repeating structures in MoS2 can develop a promising technique for engineering nano materials and offer new opportunities for designing MoS2-based nanoscale electronic devices and chemical sensors.
Hofstadter butterflies and magnetically induced band-gap quenching in graphene antidot lattices
Pedersen, Jesper Goor; Pedersen, Thomas Garm
2013-01-01
We study graphene antidot lattices (GALs) in magnetic fields. Using a tight-binding model and a recursive Green's function technique that we extend to deal with periodic structures, we calculate Hofstadter butterflies of GALs. We compare the results to those obtained in a simpler gapped graphene...... model. A crucial difference emerges in the behavior of the lowest Landau level, which in a gapped graphene model is independent of magnetic field. In stark contrast to this picture, we find that in GALs the band gap can be completely closed by applying a magnetic field. While our numerical simulations...... can only be performed on structures much smaller than can be experimentally realized, we find that the critical magnetic field for which the gap closes can be directly related to the ratio between the cyclotron radius and the neck width of the GAL. In this way, we obtain a simple scaling law for...
Jungfleisch, Matthias B.; Zhang, Wei; Jiang, Wanjun; Sklenar, Joseph; Pearson, John E.; Ketterson, John B.; Hoffmann, Axel
2016-01-01
The understanding of spin dynamics in laterally confined structures on sub-micron length scales has become a significant aspect of the development of novel magnetic storage technologies. Numerous ferromagnetic resonance measurements, optical characterization by Kerr microscopy and Brillouin light scattering spectroscopy and x-ray studies were carried out to detect the dynamics in patterned magnetic antidot lattices. Here, we investigate Oersted-field driven spin dynamics in rectangular Ni80Fe20/Pt antidot lattices with different lattice parameters by electrical means. When the system is driven to resonance, a dc voltage across the length of the sample is detected that changes its sign upon field reversal, which is in agreement with a rectification mechanism based on the inverse spin Hall effect. Furthermore, we show that the voltage output scales linearly with the applied microwave drive in the investigated range of powers. Our findings have direct implications on the development of engineered magnonics applications and devices.
Pal, S.; Das, K.; Barman, A., E-mail: abarman@ybose.res.in [Thematic Unit of Excellence on Nanodevice Technology and Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 098 (India); Klos, J. W.; Gruszecki, P.; Krawczyk, M., E-mail: krawczyk@amu.edu.pl [Faculty of Physics, A. Mickiewicz University in Poznan, Umultowska 85, 61-614 Poznań (Poland); Hellwig, O. [San Jose Research Center, HGST, a Western Digital Company, 3403 Yerba Buena Rd., San Jose, California 95135 (United States)
2014-10-20
We present an all-optical time-resolved measurement of spin wave (SW) dynamics in a series of antidot lattices based on [Co(0.75 nm)/Pd(0.9 nm)]{sub 8} multilayer (ML) systems with perpendicular magnetic anisotropy. The spectra depend significantly on the areal density of the antidots. The observed SW modes are qualitatively reproduced by the plane wave method. The interesting results found in our measurements and calculations at small lattice constants can be attributed to the increase of areal density of the shells with modified magnetic properties probably due to distortion of the regular ML structure by the Ga ion bombardment and to increased coupling between localized modes. We propose and discuss the possible mechanisms for this coupling including exchange interaction, tunnelling, and dipolar interactions.
Clar Sextet Analysis of Triangular, Rectangular, and Honeycomb Graphene Antidot Lattices
Petersen, Rene; Pedersen, Thomas Garm; Jauho, Antti-Pekka
2011-01-01
triangular, and the honeycomb lattice. It is found that the lattice geometry plays a crucial role for size of the band gap the triangular arrangement displays always a shable gap, while for the other types only particular hole separations lead to a large gap. This observation is explained using, Clear sextet...
The understanding of spin dynamics in laterally confined structures on sub-micron length scales has become a significant aspect of the development of novel magnetic storage technologies. Numerous ferromagnetic resonance measurements, optical characterization by Kerr microscopy and Brillouin light scattering spectroscopy, and x-ray studies were carried out to detect the dynamics in patterned magnetic antidot lattices. Here, we investigate Oersted-field driven spin dynamics in rectangular Ni80Fe20/Pt antidot lattices with different lattice parameters by electrical means and compare them to micromagnetic simulations. When the system is driven to resonance, a dc voltage across the length of the sample is detected that changes its sign upon field reversal, which is in agreement with a rectification mechanism based on the inverse spin Hall effect. Furthermore, we show that the voltage output scales linearly with the applied microwave drive in the investigated range of powers. Our findings have direct implications on the development of engineered magnonics applications and devices
Jungfleisch, Matthias B.; Zhang, Wei; Ding, Junjia; Jiang, Wanjun; Sklenar, Joseph; Pearson, John E.; Ketterson, John B.; Hoffmann, Axel
2016-02-01
The understanding of spin dynamics in laterally confined structures on sub-micron length scales has become a significant aspect of the development of novel magnetic storage technologies. Numerous ferromagnetic resonance measurements, optical characterization by Kerr microscopy and Brillouin light scattering spectroscopy, and x-ray studies were carried out to detect the dynamics in patterned magnetic antidot lattices. Here, we investigate Oersted-field driven spin dynamics in rectangular Ni80Fe20/Pt antidot lattices with different lattice parameters by electrical means and compare them to micromagnetic simulations. When the system is driven to resonance, a dc voltage across the length of the sample is detected that changes its sign upon field reversal, which is in agreement with a rectification mechanism based on the inverse spin Hall effect. Furthermore, we show that the voltage output scales linearly with the applied microwave drive in the investigated range of powers. Our findings have direct implications on the development of engineered magnonics applications and devices.
Jungfleisch, Matthias B., E-mail: jungfleisch@anl.gov; Zhang, Wei; Ding, Junjia; Jiang, Wanjun; Pearson, John E.; Hoffmann, Axel [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Sklenar, Joseph [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208 (United States); Ketterson, John B. [Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208 (United States)
2016-02-01
The understanding of spin dynamics in laterally confined structures on sub-micron length scales has become a significant aspect of the development of novel magnetic storage technologies. Numerous ferromagnetic resonance measurements, optical characterization by Kerr microscopy and Brillouin light scattering spectroscopy, and x-ray studies were carried out to detect the dynamics in patterned magnetic antidot lattices. Here, we investigate Oersted-field driven spin dynamics in rectangular Ni{sub 80}Fe{sub 20}/Pt antidot lattices with different lattice parameters by electrical means and compare them to micromagnetic simulations. When the system is driven to resonance, a dc voltage across the length of the sample is detected that changes its sign upon field reversal, which is in agreement with a rectification mechanism based on the inverse spin Hall effect. Furthermore, we show that the voltage output scales linearly with the applied microwave drive in the investigated range of powers. Our findings have direct implications on the development of engineered magnonics applications and devices.
Vijay Kumar Agrawal
2015-01-01
Full Text Available Aluminum phosphide (ALP poisoning is one of the major causes of suicidal deaths. Toxicity by ALP is caused by the liberation of phosphine gas, which rapidly causes cell hypoxia due to inhibition of oxidative phosphorylation, leading to circulatory failure. Treatment of ALP toxicity is mainly supportive as there is no specific antidote. We recently managed 7 cases of ALP poisoning with severe hemodynamic effects. Patients were treated with supportive measures including gastric lavage with diluted potassium permanganate, coconut oil and sodium-bicarbonate first person account should be avoided in a scientific paper. Intravenous magnesium sulfate, proper hemodynamic monitoring and vasopressors. Four out of 7 survived thus suggesting a role of such supportive measures in the absence of specific antidote for ALP poisoning.
Magnetic Property in Large Array Niobium Antidot Thin Films
Tinghui, Chen; Hsiang-Hsi, Kung; Wei-Li, Lee; Institute of Physics, Academia Sinica, Taipei, Taiwan Team
2014-03-01
In a superconducting ring, the total flux inside the ring is required to be an integer number of the flux quanta. Therefore, a supercurrent current can appear within the ring in order to satisfy this quantization rule, which gives rise to certain magnetic response. By using a special monolayer polymer/nanosphere hybrid we developed previously, we fabricated a series of superconducting niobium antidot thin films with different antidot diameters. The antidots form well-ordered triangular lattice with a lattice spacing about 200 nm and extend over an area larger than 1 cm2, which enables magnetic detections simply by a SQUID magnetometer. We observed magnetization oscillation with external magnetic field due to the supercurrent screening effect, where different features for large and small antidot thin films were found. Detailed size and temperature dependencies of the magnetization in niobium antidot nanostructures will be presented.
Density functional study of graphene antidot lattices: Roles of geometrical relaxation and spin
Fürst, Joachim Alexander; Pedersen, Thomas Garm; Brandbyge, Mads;
2009-01-01
thereof. We find from DFT that all structures investigated have band gaps ranging from 0.2 to 1.5 eV. Band gap sizes and general trends are well captured by DFTB with band gaps agreeing within about 0.2 eV even for very small structures. A combination of the two methods is found to offer a good trade...
Quantum Hall effect in bilayer system with array of antidots
Pagnossin, I. R.; Gusev, G. M.; Sotomayor, N. M.; Seabra, A. C.; Quivy, A. A.; Lamas, T. E.; Portal, J. C.
2007-04-01
We have studied the Quantum Hall effect in a bilayer system modulated by gate-controlled antidot lattice potential. The Hall resistance shows plateaus which are quantized to anomalous multiplies of h/e2. We suggest that this complex behavior is due to the nature of the edge-states in double quantum well (DQW) structures coupled to an array of antidots: these plateaus may be originated from the coexistence of normal and counter-rotating edge-states in different layers.
Transport in graphene antidot barriers and tunneling devices
Pedersen, Thomas Garm; Pedersen, Jesper Goor
2012-01-01
Periodic arrays of antidots, i.e. nanoscale perforations, in graphene enable tight confinement of carriers and efficient transport barriers. Such barriers evade the Klein tunneling mechanism by being of the mass rather than electrostatic type. While all graphene antidot lattices (GALs) may support directional barriers, we show, however, that a full transport gap exists only for certain orientations of the GAL. Moreover, we assess the applicability of gapped graphene and the Dirac continuum ap...
Singh, Satinderpal; Prakash, Atish; Kaur, Shamsherjit; Ming, Long Chiau; Mani, Vasudevan; Majeed, Abu Bakar Abdul
2016-08-01
Organophosphate pesticides are used in agriculture where they are associated with numerous cases of intentional and accidental misuse. These toxicants are potent inhibitors of cholinesterases leading to a massive build-up of acetylcholine which induces an array of deleterious effects, including convulsions, oxidative damage and neurobehavioral deficits. Antidotal therapies with atropine and oxime yield a remarkable survival rate, but fail to prevent neuronal damage and behavioral problems. It has been indicated that multifunction drug therapy with potassium channel openers, calcium channel antagonists and antioxidants (either single-agent therapy or combination therapy) may have the potential to prevent cell death and/or slow down the processes of secondary neuronal damage. The aim of the present study, therefore, was to make a relative assessment of the potential effects of nicorandil (2 mg/kg), clinidipine (10 mg/kg), and grape seed proanthocyanidin (GSPE) extract (200 mg/kg) individually against subacute chlorpyrifos induced toxicity. The test drugs were administered to Wistar rats 2 h after exposure to Chlorpyrifos (CPF). Different behavioral studies and biochemical estimation has been carried in the study. The results showed that chronic administration of CPF significantly impaired learning and memory, along with motor coordination, and produced a marked increase in oxidative stress along with significantly reduced acetylcholine esterase (AChE) activity. Treatment with nicorandil, clinidipine and GSPE was shown to significantly improve memory performance, attenuate oxidative damage and enhance AChE activity in rats. The present study also suggests that a combination of nicorandil, clinidipine, and GSPE has a better neuroprotective effect against subacute CPF induced neurotoxicity than if applied individually. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1017-1026, 2016. PMID:25864908
Magnetic properties engineering of nanopatterned cobalt antidot arrays
Kaidatzis, Andreas; del Real, Rafael P.; Alvaro, Raquel; Palma, Juan Luis; Anguita, José; Niarchos, Dimitrios; Vázquez, Manuel; Escrig, Juan; García-Martín, José Miguel
2016-05-01
We report on the study of arrays of 60 nm wide cobalt antidots, nanopatterned using focused ion beam milling. Square and hexagonal symmetry arrays have been studied, with varying antidot densities and lattice constant from 150 up to 300 nm. We find a strong increase of the arrays’ magnetic coercivity with respect to the unpatterned film, which is monotonic as the antidot density increases. Additionally, there is a strong influence of the array symmetry to the in-plane magnetic anisotropy: square arrays exhibit fourfold symmetry and hexagonal arrays exhibit sixfold symmetry. The above findings are corroborated by magnetic imaging and micromagnetic modeling, which show the magnetic structure of the arrays to depend strongly on the array morphology.
Resonant tunneling diode based on band gap engineered graphene antidot structures
Palla, Penchalaiah; Ethiraj, Anita S.; Raina, J. P.
2016-04-01
The present work demonstrates the operation and performance of double barrier Graphene Antidot Resonant Tunnel Diode (DBGA-RTD). Non-Equilibrium Green's Function (NEGF) frame work with tight-binding Hamiltonian and 2-D Poisson equations were solved self-consistently for device study. The interesting feature in this device is that it is an all graphene RTD with band gap engineered graphene antidot tunnel barriers. Another interesting new finding is that it shows negative differential resistance (NDR), which involves the resonant tunneling in the graphene quantum well through both the electron and hole bound states. The Graphene Antidot Lattice (GAL) barriers in this device efficiently improved the Peak to Valley Ratio to approximately 20 even at room temperature. A new fitting model is developed for the number of antidots and their corresponding effective barrier width, which will help in determining effective barrier width of any size of actual antidot geometry.
Deforming nanoporous metal: Role of lattice coherency
Nanoporous metals prepared by alloy corrosion may assume the form of monolithic, millimeter-sized bodies containing around 1015 nanoscale ligaments per cubic millimeter. Here, we report on the fabrication and mechanical behavior of macroscopic, crack-free nanoporous gold samples which exhibit excellent ductility in compression tests. Their yield stress is significantly lower than that expected based on scaling laws or on previous nanoindentation experiments. Electron backscatter diffraction imaging reveals a polycrystalline microstructure with grains larger than 10 μm which acquire a subdomain structure during plastic flow, but remain otherwise intact. We highlight the action of lattice dislocations which can travel over distances much larger than the ligament size. This results in a collective deformation of the many ligaments in each grain. Remarkably, the dislocation cores are partly located in the pore channels. The results suggest a critical view of the conversion between indentation hardness and yield stress in previous work.
Bird, Alexander
2010-01-01
This paper explores the question: can fundamental dispositions (which have no distinct causal basis) suffer from finks and antidotes? I use my response to shed light on the question: can the fundamental laws of physics be ceteris paribus laws?
Ballistic transport in graphene antidot lattices
Sandner, Andreas; Preis, Tobias; Schell, Christian; Giudici, Paula; Watanabe, Kenji; Taniguchi, Takashi; Weiss, Dieter; Eroms, Jonathan
2015-01-01
Graphene samples can have a very high carrier mobility if influences from the substrate and the environment are minimized. Embedding a graphene sheet into a heterostructure with hexagonal boron nitride (hBN) on both sides was shown to be a particularly efficient way of achieving a high bulk mobility. Nanopatterning graphene can add extra damage and drastically reduce sample mobility by edge disorder. Preparing etched graphene nanostructures on top of an hBN substrate instead of SiO2 is no rem...
Magnetoconductance of a hybrid quantum ring: Effects of antidot potentials
Kim, Nammee; Park, Dae-Han; Kim, Heesang
2016-05-01
The electronic structures and two-terminal magnetoconductance of a hybrid quantum ring are studied. The backscattering due to energy-resonance is considered in the conductance calculation. The hybrid magnetic-electric quantum ring is fabricated by applying an antidot electrostatic potential in the middle of a magnetic quantum dot. Electrons are both magnetically and electrically confined in the plane. The antidot potential repelling electrons from the center of the dot plays a critical role in the energy spectra and magnetoconductance. The angular momentum transition in the energy dispersion and the magnetoconductance behavior are investigated in consideration of the antidot potential variation. Results are shown using a comparison of the results of the conventional magnetic quantum dot.
Alexander BIRD
2010-01-01
Full Text Available This paper explores the question: can fundamental dispositions (which have no distinct causal basis suffer from finks and antidotes? I use my response to shed light on the question: can the fundamental laws of physics be ceteris paribus laws?
The dilemma of approving antidotes.
Steffen, Christian
2007-04-20
Clinical trials with antidotes are difficult to perform for a variety of practical, ethical, and financial reasons. As acute poisoning is a rare event, the commercial interest in basic and clinical research is low. Poisoned patients are usually not available for normal clinical trial procedures and, if they are, they cannot give informed consent. This situation results in a dilemma: antidotes are essential drugs. A resolution of the Council of Europe requests to guarantee the optimal availability of antidotes and the improvement of their use. As comprehensive data on the efficacy of antidotes are often missing, a marketing authorisation under exceptional circumstances according to Article 14(8) of Regulation (EC) No. 276/2004, will often be the only way to get an approval, as: (1) the indications for which the product in question is intended are encountered so rarely that the applicant cannot reasonably be expected to provide comprehensive evidence ("orphan drug"), (2) in the present state of scientific knowledge, comprehensive information cannot be provided, or (3) it would be contrary to generally accepted principles of medical ethics to collect such data. Typically, data on antidotes are obtained from a patchwork of studies with animals, human tissue and a few observations from human poisoning corroborated with data from clinical observations and biochemistry. Generalisations from chemical and mechanistic similarities between groups of poisons are usual, but often lack scientific evidence. Current standards of good clinical practice can rarely be observed. Therefore, public funding and other financial support are necessary incentives to initiate trials in this important area. PMID:17207900
Rodríguez-Suárez, R.L., E-mail: rrodriguez@fis.puc.cl [Facultad de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860 Casilla 306, Santiago (Chile); Palma, J.L.; Burgos, E.O. [Departamento de Física, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Michea, S. [Facultad de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860 Casilla 306, Santiago (Chile); Departamento de Física, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Escrig, J.; Denardin, J.C. [Departamento de Física, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Aliaga, C. [Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Santiago (Chile)
2014-01-15
The magnetic properties of Ni{sub 80}Fe{sub 20} antidot arrays with hole diameters of 18 and 70 nm fabricated by a template-assisted method were investigated using the ferromagnetic resonance technique. Tuning the antidot arrays by changing the hole diameter enables control on the angular dependence of the ferromagnetic resonance field. The scanning electron microscope images reveal a quite regular hexagonal arrangement of the pores, however the angular dependence of the resonance field do not exhibit the six-fold symmetry expected for this symmetry. Micromagnetic simulations performed on a perfect hexagonal lattice, when compared with those made on our real system taken from the scanning microscope images, reveal that the presence of defects in the antidot lattice affects the ferromagnetic resonance field symmetry. - Highlights: • We use the FMR technique to investigate the magnetic properties of Py antidots. • We studied the effect of pore diameter on FMR angular measurement. • FMR field does not exhibit the six-fold symmetry. • For all angular positions there are two resonance modes always present. • Micromagnetic simulations agree with the experimental results with defects.
The magnetic properties of Ni80Fe20 antidot arrays with hole diameters of 18 and 70 nm fabricated by a template-assisted method were investigated using the ferromagnetic resonance technique. Tuning the antidot arrays by changing the hole diameter enables control on the angular dependence of the ferromagnetic resonance field. The scanning electron microscope images reveal a quite regular hexagonal arrangement of the pores, however the angular dependence of the resonance field do not exhibit the six-fold symmetry expected for this symmetry. Micromagnetic simulations performed on a perfect hexagonal lattice, when compared with those made on our real system taken from the scanning microscope images, reveal that the presence of defects in the antidot lattice affects the ferromagnetic resonance field symmetry. - Highlights: • We use the FMR technique to investigate the magnetic properties of Py antidots. • We studied the effect of pore diameter on FMR angular measurement. • FMR field does not exhibit the six-fold symmetry. • For all angular positions there are two resonance modes always present. • Micromagnetic simulations agree with the experimental results with defects
Magnetic properties of Co antidot arrays with different hole sizes fabricated by a template-assisted method have been studied by means of first-order reversal curves (FORCs) and micromagnetic simulations. Hysteresis curves show a significant increase of the coercivity of the antidot arrays, as compared with their parent continuous film, which depends on the hole size introduced in the Co thin film. This effect is related to the reversibility of the magnetic domains during magnetization reversal, since due to the appearance of pores, domains may become trapped between them. On the other hand, micromagnetic simulations performed on a perfect hexagonal lattice, when compared with those made on our disordered system taken from the scanning microscope images, reveal that the presence of defects in the antidot lattice affects its magnetic properties. Finally, FORCs show that there is greater interaction attributed to domain–domain interaction. (paper)
Magnetic modulation of the tunnelling between defect states in antidot superlattices.
Movilla, J L; Planelles, J
2012-07-11
We show theoretically that the tunnelling between properly designed defects in periodic antidot lattices can be strongly modulated by applied magnetic fields. Further, transport channels made up of linear arrangements of tunnel-coupled defects can accommodate Aharonov-Bohm cages, suggesting a magnetic control of the transport through the system. Evidence supporting an unusual robustness of the caging effect against electron-electron interactions is also provided. PMID:22713775
Collagen telopeptides (cross-linking sites) play a role in collagen gel lattice contraction
Woodley, D. T.; Yamauchi, M.; Wynn, K. C.; Mechanic, G.; Briggaman, R. A.
1991-01-01
provide evidence that collagen telopeptide sites play a role in collagen gel lattice contraction.
New Direction Treatment in Antidote Treatment of OPC Intoxications
The toxic effect of organophosphorus compounds (OPC) is based on inhibition of acetylcholinesterase (AChE), enzyme which plays an important physiological role in the cholinergic nervous system. The drug therapy on intoxication with OPC included mainly combination of cholinesterase reactivators and cholinolytics. There is no single AChE reactivator having the ability to sufficiently reactivate inhibited enzyme due to the high variability of chemical structure of the inhibitors. The classic oximes have antidote effect against intoxication with sarin, Vx and tabun, but are not effective against soman. HI-6 (Bulgarian ampoule form Toxidin) has an effect against sarin, soman and Vx, and to a lesser degree against tabun. In order to improve the treatment of poisoning with highly toxic OPC, in ours laboratory we synthesized a variety of mono- and dioximes. We use different numbers of pyridinium or heterocyclic rings, different length and shape of the connecting chain between pyridinium or pyridinium-heterocyclic rings; different number and position of the oxime groups at the pyridinium rings and others. The investigations of some authors and our research showed that the compounds which present a combination between HI-6 and TMB-4 have a better antidote activity against tabun intoxications. The important finding of this study is that we synthesized complex compounds, reactivators of cholinesterase activity (including HI-6) with AMP / ATP and polycarboxilats, which have prolonged action in organism compared with original oximes. Pharmacokinetic studies showed that they are eliminated more slowly. The antidotal efficacy of these compounds after soman poisoning in rats was similar like that of the original oximes. The same tendency showed and the other pharmacological (blood pressure, EKG, breathing, neuromuscular transmission), and biochemical (ChE) investigations. (author)
Graphene based dots and antidots: a comparative study from first principles.
Cui, X Y; Li, L; Zheng, R K; Liu, Z W; Stampfl, C; Ringer, S P
2013-02-01
Graphene based quantum dots and antidots are two nanostructures of primary importance for their fundamental physics and technological applications, particularly in the emerging field of graphene-based nanoelectronics and nanospintronics. Herein, based on first principles density functional theory calculations, we report a comparative study on the electronic structure of these two structurally complementary entities, where the bandgap opening, edge magnetism and the role of hydrogenation are investigated. Our results show the diversity of electronic structures of various dots and antidots, whose properties are sensitive to the edge detailed geometry (including size and shape and edge type). Hydrogen passivation plays an essential roal in affecting the related properties, in particular, it leads to larger bandgap values and suppress the edge magnetism. The frontier orbital analysis is employed to rationalize and compare the complicated nature of dots and antidots. Based on the specific geometrical consideration and the total energy competition of the ground antiferromagnetic and the ferromagnetic states, some magnetic structures (the unpassivated 42-atom-antidot and 54-atom-dot) are proposed to be useful as magnetic switches. PMID:23646613
Anisotropy engineering using exchange bias on antidot templates
F. J. T. Goncalves
2015-06-01
Full Text Available We explore an emerging device concept based on exchange bias used in conjunction with an antidot geometry to fine tune ferromagnetic resonances. Planar cavity ferromagnetic resonance is used to study the microwave response of NiO/NiFe bilayers with antidot structuring. A large frequency asymmetry with respect to an applied magnetic field is found across a broad field range whose underlying cause is linked to the distribution of magnetic poles at the antidot surfaces. This distribution is found to be particularly sensitive to the effects of exchange bias, and robust in regards to the quality of the antidot geometry. The template based antidot geometry we study offers advantages for practical device construction, and we show that it is suitable for broadband absorption and filtering applications, allowing tunable anisotropies via interface engineering.
Low-Temperature Magnetic Properties of Co Antidot Array
LIU Qing-Fang; JIANG Chang-Jun; FAN Xiao-Long; WANG Jian-Bo; XUE De-Sheng
2006-01-01
Cobalt antidot arrays with different thicknesses are fabricated by rf magnetron sputtering onto porous alumina substrates. Scanning electron microscopy and grazing incidence x-ray diffraction are employed to characterize the morphology and crystal structure of the antidot array, respectively. The temperature dependence of magnetic properties shows that in the temperature range 5K-300K, coercivity and squareness increase firstly, reach their maximum values, then decrease. The anomalous temperature dependences of coercivity and squareness are discussed by considering the pinning effect of the antidot and the magnetocrystalline anisotropy.
Thermodynamic properties of a quantum Hall anti-dot interferometer
Levy Schreier, Sarah; Stern, Ady; Rosenow, Bernd; Halperin, Bertrand I.
2016-02-01
We study quantum Hall interferometers in which the interference loop encircles a quantum anti-dot. We base our study on thermodynamic considerations, which we believe reflect the essential aspects of interference transport phenomena. We find that similar to the more conventional Fabry-Perot quantum Hall interferometers, in which the interference loop forms a quantum dot, the anti-dot interferometer is affected by the electro-static Coulomb interaction between the edge modes defining the loop. We show that in the Aharonov-Bohm regime, in which effects of fractional statistics should be visible, is easier to access in interferometers based on anti-dots than in those based on dots. We discuss the relevance of our results to recent measurements on anti-dots interferometers.
Thermodynamic properties of a quantum Hall anti-dot interferometer
Schreier, Sarah Levy; Stern, Ady; Rosenow, Bernd; Halperin, Bertrand I.
2015-01-01
We study quantum Hall interferometers in which the interference loop encircles a quantum anti-dot. We base our study on thermodynamic considerations, which we believe reflect the essential aspects of interference transport phenomena. We find that similar to the more conventional Fabry-Perot quantum Hall interferometers, in which the interference loop forms a quantum dot, the anti-dot interferometer is affected by the electro-static Coulomb interaction between the edge modes defining the loop....
The Role of Lattice Vibrations in Adatom Diffusion at Metal Stepped Surfaces
Diffusion of a single atom on metal surfaces remains a subject of continuing interest in the surface science community because of the important role it plays in several technologically important phenomena such as thin-film and eptaxial growth, catalysis and chemical reactions. Except for a few studies, most of theoretical works, ranging from molecular dynamic simulations to first principle electronic structure calculations, are devoted to determination of the characteristics of the diffusion processes and the energy barriers, neglecting the contribution of lattice vibrations in adatom diffusion. However, in a series of theoretical works on self-diffusion on the flat surfaces of Cu(100), Ag(100) and Ni(100), Ulrike et al.[1-3], showed that the vibrational contributions are important and should be included in any complete description of the temperature dependence of the diffusion coefficient. In this work, it is our aim to examine the role of lattice vibrations in adatom diffusion at stepped surfaces of Cu(100) and Ni(100) within the framework of transition state theory. Ehrlich-Shwoebel energy barriers for an adatom diffusing over a step-edge are calculated through the inclusion of vibrational internal energy. Local vibrational density of states, main ingredient to the vibrational thermodynamic functions, are calculated in the harmonic approximation, using real space Green's function method with the force constants derived from interaction potentials based on the embedded atom method. We emphasize the sensitivity of the local vibrational density of states to the local atomic environment. We, furthermore, discuss the contribution of thermodynamic functions calculated from local vibrational density of states to the prefactors in diffusion coefficient
The Copernican Revolution as Story: an Antidote for Scientific Illiteracy
Wallace, P. M.
2005-08-01
``When a white-robed scientist, momentarily looking away from his microscope or cyclotron [or telescope], makes some pronouncement for the general public, he may not be understood but at least he is certain to be believed.'' The truth of this opening sentence of Anthony Standen's 1950 book Science is a Sacred Cow, as clear today as it was then, is the motivation for a new astronomy course at Berry College near Atlanta, GA, USA. To non-scientists, science is known by its products, not by what it is: a human progress. For this illiteracy an antidote is offered: the history of astronomy. In this course the story of the Copernican Revolution is told, for within this story the true nature of science can be found in its fullness. For example, Aristotle's uniform circular motion is used to emphasize the role of assumptions, and the occasional value of wrong ideas is evident in Tycho's theory and in Kepler's universe of perfect solids. Tycho's observations of Mars and Kepler's analysis illustrate the interplay of observation, theory, and technology. As a final example, the indirectness and often-unintentional nature of scientific advance can be seen in the work of Copernicus. The roles of personality and the intersections of science and society are themes throughout the course, as are the merging of disparate fields and the power of strong theories. There are other themes (e.g., coherence, the role of mathematics), but the emphasis is on the science and much of the work is quantitative. There is a laboratory component that features observations and experiments, and in order to bring the narrative to life the class spends two weeks in Poland, the Czech Republic, and Italy, touring sites that are relevant to the story of the Copernican Revolution.
Creativity: Performativity's Poison or Its Antidote?
Munday, Ian
2014-01-01
A common move in the study of creativity and performativity is to present the former as an antidote to the latter. Might we, therefore, see work on creativity in education as heralding an era of post-performativity? In this paper I argue that the portrayal of performativity in the literature on creativity presents an overly simplistic (vulgar?)…
Sodium dimercaptopropane sulfonate as antidote against non-metallic pesticides
Zhi-kang CHEN; Zhong-qiu LU
2004-01-01
@@ INTRODUCTION With the advent of World War II, dimercaptol was first developed in England as an effective antidote against arsenical agents. In 1950' s, scientists from the Soviet Union developed a water-soluble compound, sodium dimercaptopropane sulfonate (Na-DMPS) named as Unithiol (or Unitiol), which was able to chelate heavy metals and metalloids.
The thermodynamic and spectral properties of a two-dimensional electron gas with an antidot in a strong magnetic field, rc≤r0, where rc is the cyclotron radius and r0 is the antidot effective radius, are studied via a solvable model with the antidot confinement potential U∼1/r2. The edge states localized at the antidot boundary result in an Aharonov-Bohm-type oscillatory dependence of the magnetization as a function of the magnetic field flux through the antidot. These oscillations are superimposed on the de Haas--van Alphen oscillations. In the strong-field limit, ℎωc∼εF, where ωc is the cyclotron frequency and εF is the Fermi energy, the amplitude of the Aharonov-Bohm-type oscillations of the magnetization due to the contribution of the lowest edge state is ∼μBkFrc (μB is the Bohr magneton and kF is the Fermi wave vector). When the magnetic field is decreased, higher edge states can contribute to the magnetization, leading to the appearance of a beating pattern in the Aharonov-Bohm oscillations. The role of temperature in suppressing the oscillatory contribution due to higher edge states is analyzed. Rapid oscillations of the magnetization as a function of the Aharonov-Bohm flux, occurring on a scale of a small fraction of the flux quantum hc/e, are demonstrated. The appearance of a manifold of non- equidistant frequencies in the magneto-optical-absorption spectrum, due to transitions between electronic edge states localized near the antidot boundary, is predicted
Chubb, Scott R
2005-01-01
As opposed to the conventional, approximate theory of electrical conduction in solids, which is based on energy band, quasi-particle states in infinite lattices, a rigorous theory exists that can be used to explain transport phenomena, in finite lattices, at reduced temperature, through the effects of a broken gauge symmetry: The loss of translational invariance with respect to Galilean transformations that maintain particle-particle separation. Implications of this result in areas related to...
Observation of Novel Low-Field FMR modes in Permalloy Antidot Arrays
de Long, Lance; Bhat, Vinayak; Farmer, Barry; Woods, Justin; Hastings, Todd; Sklenar, Joseph; Ketterson, John
2013-03-01
Permalloy films of thickness 23 nm were patterned with square arrays of square antidots (AD) with feature size D = 120 nm, and lattice constants d = 200, 300, 500 and 700 nm (total sample area = 2 mm x 2mm), using electron beam lithography. Our broad-band (frequencies f = 10 MHz-15 GHz) and narrow-band (9.7 GHz) FMR measurements of even dilute (D/d <<1) AD lattices (ADL) reveal remarkably reproducible absorption spectra in the low-frequency, hysteretic regime in which disordered domain wall (DW) patterns and unsaturated magnetization textures are expected for unpatterned films, but in the present case are strongly affected by the periodic ADL. Other modes in the saturated regime exhibit strong dependence on the angle between the applied DC field H and the ADL axes, as confirmed by our micromagnetic simulations. Novel modes are observed at DC fields above that of the uniform mode, which simulations indicate are localized at AD edges. Other novel modes are observed for DC fields below that of the uniform mode, which simulated power and phase maps indicate are confined to ADL interstices oriented parallel to H. These results show even dilute AD concentrations can effect strong control of DW evolution. Research at Kentucky is supported by U.S. DoE Grant DE-FG02-97ER45653 and NSF Grant EPS-0814194.
Role of paramagnetic ions and water proton spin-lattice relaxation time in biological systems
This paper summarizes the observations of different studies concerning the influence of paramagnetic ions on spin-lattice relaxation times in magnetic resonance imaging. Based on findings that manganese ion content in cancer tissues is decreased in comparison to normal tissues, the results of different papers analysing the influence of tissue manganese concentration on spinlattice relaxation times are collected and compared. Neither the comparison between different organs, different animals nor the comparison between different tissues (normal and malignant) showed correlations of practical consequences between manganese concentrations and spin-lattice relaxation times. These results are consistent with those from studies with copper and iron ions in living systems. (orig.)
Strengthening positive interpersonal relationships at work: An antidote for burnout
CORALIA SULEA
2014-05-01
Full Text Available Burnout is an important phenomenon for organizations and employees associated with negative outcomes. Key organizational areas, like fairness and workplace community, are responsible for employee burnout. This editorial argues for the importance of workplace community and presents the mechanisms through which dysfunctional relationships at work may contribute to burnout, as well as the processes that explain how healthy interpersonal relationships can be an antidote for burnout.
Photostability of antidotal oxime HI-6, impact on drug development.
Bogan, Reinhard; Worek, Franz; Koller, Marianne; Klaubert, Bernd
2012-01-01
HI-6 exhibits superior efficacy in the therapy of intoxication by different highly toxic organophosphorus nerve agents. Therefore HI-6 is a promising candidate for the development of new antidotes against nerve agents. For ethical and safety reasons antidotes containing HI-6 should get marketing authorization. Active pharmaceutical ingredients of medicinal products have to fulfil regulatory conditions in terms of purity and stability. Photostability is an essential parameter in this testing strategy. HI-6 was tested under conditions of ICH Q1B 'Photostability testing of new drug substances and products'. The data showed a marked degradation of HI-6 after exposure to daylight. The mechanism of degradation could be detected as photoisomerism. The light burden dependent rate of photoisomerism was followed quantitatively. Based on these quantitative results on the amount of light induced isomeric product a pharmacological qualification was made. A standardized in vitro test showed a decreased ability of light exposed HI-6 to reactivate sarin- and paraoxon-inhibited human acetylcholinesterase. These results have an impact on the further development of antidotes containing HI-6, as light protection will probably be necessary during handling, packaging, storage and application. PMID:22359386
Selection of an aptamer antidote to the anticoagulant drug bivalirudin.
Jennifer A Martin
Full Text Available Adverse drug reactions, including severe patient bleeding, may occur following the administration of anticoagulant drugs. Bivalirudin is a synthetic anticoagulant drug sometimes employed as a substitute for heparin, a commonly used anticoagulant that can cause a condition called heparin-induced thrombocytopenia (HIT. Although bivalrudin has the advantage of not causing HIT, a major concern is lack of an antidote for this drug. In contrast, medical professionals can quickly reverse the effects of heparin using protamine. This report details the selection of an aptamer to bivalirudin that functions as an antidote in buffer. This was accomplished by immobilizing the drug on a monolithic column to partition binding sequences from nonbinding sequences using a low-pressure chromatography system and salt gradient elution. The elution profile of binding sequences was compared to that of a blank column (no drug, and fractions with a chromatographic difference were analyzed via real-time PCR (polymerase chain reaction and used for further selection. Sequences were identified by 454 sequencing and demonstrated low micromolar dissociation constants through fluorescence anisotropy after only two rounds of selection. One aptamer, JPB5, displayed a dose-dependent reduction of the clotting time in buffer, with a 20 µM aptamer achieving a nearly complete antidote effect. This work is expected to result in a superior safety profile for bivalirudin, resulting in enhanced patient care.
Nanometer Scale Hard/Soft Bilayer Magnetic Antidots.
Béron, Fanny; Kaidatzis, Andreas; Velo, Murilo F; Arzuza, Luis C C; Palmero, Ester M; Del Real, Rafael P; Niarchos, Dimitrios; Pirota, Kleber R; García-Martín, José Miguel
2016-12-01
The effect of arrays of nanometer scale pores on the magnetic properties of thin films has been analyzed. Particularly, we investigated the influence of the out-of-plane magnetization component created by the nanopores on the in-plane magnetic behavior of patterned hard/soft magnetic thin films in antidot morphology. Its influence on the coupling in Co/Py bilayers of few tens of nanometer thick is compared for disordered and ordered antidots of 35-nm diameter. The combination of magneto-optical Kerr effect (MOKE) and first-order reversal curve (FORC) technique allows probing the effects of the induced perpendicular magnetization component on the bilayer magnetic behavior, while magnetic force microscopy (MFM) is used to image it. We found that ordered antidots yield a stronger out-of-plane component than disordered ones, influencing in a similar manner the hard layer global in-plane magnetic behavior if with a thin or without soft layer. However, its influence changes with a thicker soft layer, which may be an indication of a weaker coupling. PMID:26873261
The fate of acetochlor herbicide was investigated in corn (Zea mays L.) in nutrition solution culture experiments with and without R-25788 antidote. The antidote was found to slightly stimulate the absorption but to retard the translocation of acetochlor labelled with sup(14)C in the carbonyl group. The degradation of the herbicide and the formation of the acetochlor GSH conjugate were faster in the antidote treated plants than in the untreated controls. (author)
Coffee as an Antidote to Knowledge Stickiness
Blackman, Deborah; Phillips, Diane
2011-01-01
This paper considers the concept of space and its role in both knowledge creation and overcoming knowledge stickiness. Aristotelian concepts of "freedom to" and "freedom from" are used to reconceptualise space. Informal and formal spaces, concepts and places are discussed as both specific locations and as gaps providing space for knowledge…
The role of diffusion measurements in the study of crystal lattice defects
Measurements of atomic mobility in solids are frequently of direct interest to those concerned with the design, development and utilization of materials in engineering. Increasing attention, however, is currently devoted to an under standing of such properties in terms of the occurrence and nature of point and line defects in the crystals. This paper reviews some recent diffusion studies conducted at C.R,N.L. that provide, in addition to data of interest in nuclear technology, a means of gaining some insight into the more fundamental nature of the lattice defects occurring in the materials. The systems discussed are (i) self diffusion in the high temperature phase of pure zirconium (ii) solute diffusion in lead and (iii) interdiffusion of aluminum and zirconium The unusual and at present incompletely understood results described in (i) are briefly reviewed. Evidence is given to suggest that diffusion occurs either through a dense dislocation network produced as a result of a martensitic phase transformation, or, alternatively, by excess vacancies introduced into the crystal by impurities. In (ii) the extraordinarily rapid diffusion of noble metal solutes in high purity lead single crystals will be discussed n terms of the state of solution of the solute atoms. It will be shown that their diffusion behaviour can be understood by assuming that a fraction fi of the dissolved solute atoms occupy interstitial sites, The measured diffusion coefficient Dm is related to the interstitial diffusion coefficient by Dm = fi Di. In (iii) the formation and rapid growth of single intermetallic compound ZrAl3 in the diffusion zone formed between pure zirconium and pure aluminum is described and the diffusion mechanism is interpreted in terms of the structure of the compound lattice. The results indicate that ZrAl3 forms a defect lattice, leading to the relatively rapid migration of aluminum atoms. (author)
The Role of Diffusion Measurements in the Study of Crystal Lattice Defects
Measurements of atomic mobility in solids are frequently of direct interest to those concerned with the design, development and utilization of materials in engineering. Increasing attention, however, is currently devoted to an understanding of such properties in terms of the occurrence and nature of point and line defects in the crystals. This paper reviews some recent diffusion studies conducted at CRNL that provide, in addition to data of interest in nuclear technology, a means of gaining some insight into the more fundamental nature of the lattice defects occurring in the materials. The systems discussed are (i) self diffusion in the high temperature phase of pure zirconium, (ii) solute diffusion in lead, and (iii) interdiffusion of aluminium and zirconium. The unusual and at present incompletely understood results described in (i) are briefly reviewed. Evidence is given to suggest that diffusion occurs either through a dense dislocation network produced as a result of a martensitic phase transformation, or, alternatively, by excess vacancies introduced into the crystal by impurities. In (ii) the extraordinarily rapid diffusion of noble metal solutes in high-purity lead single crystals will be discussed in terms of the state of solution of the solute atoms. It will be shown that their diffusion behaviour can be understood by assuming that a fraction fi of the dissolved solute atoms occupy interstitial sites. The measured diffusion coefficient Dm is related to the interstitial diffusion coefficient by Dm = fiDi. In (iii) the formation and rapid growth of a single intermetallic compound ZrAl3 in the diffusion zone formed between pure zirconium and pure aluminium is described and the diffusion mechanism is interpreted in terms of the structure of the compound lattice. The results indicate that ZrAl3 forms a defect lattice, leading to the relatively rapid migration of aluminium atoms. (author)
Ravichandran, S.; Bagchi, Biman
1996-01-01
We have carried out a computer ``experiment'' of orientational relaxation in a spatially random and orientationally disordered dipolar lattice (RDL), generated by quenching only the translational motion of a dense liquid. In the high polarity limit, the orientational relaxation of the RDL is dramatically different from that of the parent liquid, the former exhibits a very slow, nonexponential long time decay of the orientational correlation functions and markedly non-Debye dielectric relaxation. These results clearly demonstrate the importance of spatial density fluctuations in orientational relaxation.
Do gastric contents modify antidotal efficacy of oral activated charcoal?
Olkkola, K T; Neuvonen, P J
1984-01-01
The effect of food on the antidotal efficacy of activated charcoal was studied in six healthy volunteers, who ingested aspirin 1000 mg, mexiletine 200 mg and tolfenamic acid 400 mg in a randomized cross-over study. Activated charcoal 25 g, suspended in water, was administered 5 min or 60 min after the drugs were taken on an empty stomach or after a standard meal. The serum concentrations and the cumulative excretion into urine of the drugs were followed for 48 h. When the drugs were taken on ...
Flavor Physics in the LHC era: the role of the lattice
Laiho, Jack; Van de Water, Ruth
2012-01-01
We discuss the present status of global fits to the CKM unitary triangle using the latest experimental and theoretical constraints. For the required nonperturbative weak matrix elements, we use three-flavor lattice QCD averages from www.latticeaverages.org; these have been updated from Ref. [1] to reflect all available lattice calculations as of the "End of 2011". Because of the greater than 3 sigma disagreement between the extraction of |Vub| from inclusive and exclusive semileptonic b -> u l nu (l = e,mu) decays, particular emphasis is given to a clean fit in which we remove the information from these decays. Given current theoretical and experimental inputs, we observe an approximately 3 sigma tension in the CKM unitarity triangle that may indicate the presence of new physics in the quark-flavor sector. Using a model-independent parameterization of new-physics effects, we test the compatibility of the data with scenarios in which the new physics is in kaon mixing, in B-mixing, or in B -> tau nu decay. We f...
Role of structural factors in formation of chiral magnetic soliton lattice in Cr1/3NbS2
The sign and strength of magnetic interactions not only between nearest neighbors, but also for longer-range neighbors in the Cr1/3NbS2 intercalation compound have been calculated on the basis of structural data. It has been found that left-handed spin helices in Cr1/3NbS2 are formed from strength-dominant at low temperatures antiferromagnetic (AFM) interactions between triangular planes of Cr3+ ions through the plane of just one of two crystallographically equivalent diagonals of side faces of embedded into each other trigonal prisms building up the crystal lattice of magnetic Cr3+ ions. These helices are oriented along the c axis and packed into two-dimensional triangular lattices in planes perpendicular to these helices directions and lay one upon each other with a displacement. The competition of the above AFM helices with weaker inter-helix AFM interactions could promote the emergence of a long-period helical spin structure. One can assume that in this case, the role of Dzyaloshinskii-Moriya interaction consists of final ordering and stabilization of chiral spin helices into a chiral magnetic soliton lattice. The possibility of emergence of solitons in M1/3NbX2 and M1/3TaX2 (M = Cr, V, Ti, Rh, Ni, Co, Fe, and Mn; X = S and Se) intercalate compounds has been examined. Two important factors caused by the crystal structure (predominant chiral magnetic helices and their competition with weaker inter-helix interactions not destructing the system quasi-one-dimensional character) can be used for the crystal chemistry search of solitons.
Lee, Deok-Sun; Sadjadi, Zeinab; Rieger, Heiko
2014-07-01
Recently, anomalous scaling properties of front broadening during spontaneous imbibition of water in Vycor glass, a nanoporous medium, were reported: the mean height and the width of the propagating front increase with time t both proportional to t(1/2). Here, we propose a simple lattice imbibition model and elucidate quantitatively how the correlation range of the hydrostatic pressure and the disorder strength of the pore radii affect the scaling properties of the imbibition front. We introduce an effective tension of liquid across neighboring pores, which depends on the aspect ratio of each pore, and show that it leads to a dynamical crossover: both the mean height and the roughness grow faster in the presence of tension in the intermediate-time regime but eventually saturate in the long-time regime. The universality class of the long-time behavior is discussed by examining the associated scaling exponents and their relation to directed percolation. PMID:25122378
基于概念格模型的角色提取%Roles Acquisition Based on Concept Lattice Model
韩道军; 侯彦娥; 贾培艳
2012-01-01
角色工程研究基于角色的访问控制模型(RBAC)中角色的提取与优化,但在应用的场景中忽视了复杂信息系统(CIS)这一重要对象.RBAC是CIS中的重要访问控制模型,但由于现有的角色及其权限之间的关系由人工指定,导致成本较高.针对此问题,将角色工程引入至CIS中,使用概念格模型和主谓宾需求获取方法,通过数据变换,从系统的需求中直接提取分层角色及其权限关系,以降低成本.最后,通过实验验证了本方法的有效性.%Role engineering focuses on the role mining and optimizing of Role-Based Access Control(RBAC),but it o-mits the scenario of complex information system(CIS) among those applications. The popular model for access control in CIS is RBAC, where relations between roles are assumed to have been built by humans beforehand. However, building these relations is time-consuming,even for experts. We introduced the role engineering into CIS, exploited concept lattice model and subject-predicate-object method to generate roles and their corresponding hierarchical relations from the requirement information acquired from domains,and the costing is lower. In the end,our experimental results show that our algorithm is effective.
Characterization and Magnetic Properties of Iron-Based Alloy Antidot Arrays
LIU Qing-Fang; JIANG Chang-Jun; WANG Jian-Bo; FAN Xiao-Long; XUE De-Sheng
2007-01-01
Fe29Co71 and Fe19Ni8 antidot arrays, with different dimensions, are prepared with the rf magnetron sputtering method onto the porous alumina substrate. The size and shape of antidot arrays are characterized by scanning electron microscopy. The glancing angle x-ray diffraction patterns of Fe29Co71 and Fe1gNis1 antidot arrays indicate the bcc and fcc structures, respectively. The coercivities of both the alloys show abnormal thickness dependence, which are discussed qualitatively by considering the pinning and the thickness effect to the films.
Comparisons of antidotal efficacy of chelating drugs upon acute toxicity of Ni(II) in rats
Horak, E.; Sunderman, F.W. Jr.; Sarkar, B.
1976-05-01
Six chelating drugs were administered to rats by im injection at equimolar dosages in order to compare their relative effectiveness in prevention of death after a single parenteral injection of NiCl/sub 2/. Triethylenetetramine and d-penicillamine were the most effective antidotes for acute Ni(II)-toxicity. In order of decreasing antidotal effectiveness, diglycyl-L-histidine-N-methylamide, sodium diethyldithiocarbamate and calcium disodium versenate significantly reduced the acute mortality of rats following ip injection of Ni(II). ..cap alpha..-Lipoic acid was not effective as an antidote for acute Ni(II)-toxicity.
Pedersen, Jesper Goor; Zhang, Lei; Gilbert, M.J.;
2010-01-01
We explore exchange coupling of a pair of spins in a double dot and in an optical lattice, using the frequency of exchanges in a bosonic path integral, evaluated using Monte Carlo simulation. The algorithm gives insights into the role of correlation through visualization of two-particle probability...
Vortices trapped in the damaged surroundings of antidots in Nb films - Depinning transition
The depinning transition of Vortex Matter in the presence of antidots in superconducting Nb films has been investigated. The antidots were fabricated using two different techniques, resulting in samples with arrays of diverse pinning efficiency. At low temperatures and fields, the spatial arrangement of Vortex Matter is governed by the presence of the antidots. Keeping the temperature fixed, an increase of the field induces a depinning transition. As the temperature approaches Tc, the depinning frontier exhibits a characteristic kink at the temperature Tk, above which the phase boundary exhibits a different regime. The lower-temperature regime is adequately described by a power-law expression, whose exponent n was observed to be inversely proportional to the pinning capability of the antidot, a feature that qualifies this parameter as a figure of merit to quantify the pinning strength of the defect.
Vortices trapped in the damaged surroundings of antidots in Nb films - Depinning transition
Nunes-Kapp, J.S. [Grupo de Supercondutividade e Magnetismo, Departamento de Fisica, Universidade Federal de Sao Carlos, Sao Carlos, SP (Brazil); Faculdade de Tecnologia SENAI ' Antonio Adolpho Lobbe' , Sao Carlos, SP (Brazil); Zadorosny, R.; Oliveira, A.A.M. [Grupo de Supercondutividade e Magnetismo, Departamento de Fisica, Universidade Federal de Sao Carlos, Sao Carlos, SP (Brazil); Vaz, A.R.; Moshkalev, S.A. [Centro de Componentes Semicondutores, UNICAMP, Campinas, SP (Brazil); Lepienski, M. [Departamento de Fisica, Universidade Federal do Parana, Curitiba, PR (Brazil); Ortiz, W.A., E-mail: wortiz@df.ufscar.b [Grupo de Supercondutividade e Magnetismo, Departamento de Fisica, Universidade Federal de Sao Carlos, Sao Carlos, SP (Brazil)
2010-10-01
The depinning transition of Vortex Matter in the presence of antidots in superconducting Nb films has been investigated. The antidots were fabricated using two different techniques, resulting in samples with arrays of diverse pinning efficiency. At low temperatures and fields, the spatial arrangement of Vortex Matter is governed by the presence of the antidots. Keeping the temperature fixed, an increase of the field induces a depinning transition. As the temperature approaches T{sub c}, the depinning frontier exhibits a characteristic kink at the temperature T{sub k}, above which the phase boundary exhibits a different regime. The lower-temperature regime is adequately described by a power-law expression, whose exponent n was observed to be inversely proportional to the pinning capability of the antidot, a feature that qualifies this parameter as a figure of merit to quantify the pinning strength of the defect.
A micromagnetic study of the hysteretic behavior of antidot Fe films
Torres Bruna, J.M. [Instituto de Ciencia de Materiales de Aragon (CSIC-Universidad de Zaragoza), Plaza de San Francisco s/n, 50009 Zaragoza (Spain); Bartolome, J. [Instituto de Ciencia de Materiales de Aragon (CSIC-Universidad de Zaragoza), Plaza de San Francisco s/n, 50009 Zaragoza (Spain); Garcia Vinuesa, L.M. [Instituto de Ciencia de Materiales de Aragon (CSIC-Universidad de Zaragoza), Plaza de San Francisco s/n, 50009 Zaragoza (Spain); Garcia Sanchez, F. [Instituto de Ciencia de Materiales de Madrid, CSIC Cantoblanco, 28049 Madrid (Spain); Gonzalez, J.M. [Unidad Asociada ICMM-IMA, Sor Juana Ines de la Cruz s/n, 28049 Madrid P.O. Box 155, 28230 Las Rozas, Madrid (Spain); Chubykalo-Fesenko, O.A. [Instituto de Ciencia de Materiales de Madrid, CSIC Cantoblanco, 28049 Madrid (Spain)]. E-mail: oksana@icmm.csic.es
2005-04-15
We report on the results of a micromagnetic study of the magnetization reversal process taking place in square arrays of antidots lithographed in Fe thin films. Our study focuses on the influence on the reversal process of the antidot diameter and the distance between adjacent antidots. It is shown that the minimization of the dipolar energy term of the total system energy originates inhomogeneous moment distributions at the antidot surfaces, and that these structures and their coupling rule the reversal process. We also show that the variation of the interantidot distance in the range of a few units of the exchange length allows varying the coercive force value by a factor of four approximately.
Reprint of : Thermodynamic properties of a quantum Hall anti-dot interferometer
Levy Schreier, Sarah; Stern, Ady; Rosenow, Bernd; Halperin, Bertrand I.
2016-08-01
We study quantum Hall interferometers in which the interference loop encircles a quantum anti-dot. We base our study on thermodynamic considerations, which we believe reflect the essential aspects of interference transport phenomena. We find that similar to the more conventional Fabry-Perot quantum Hall interferometers, in which the interference loop forms a quantum dot, the anti-dot interferometer is affected by the electro-static Coulomb interaction between the edge modes defining the loop. We show that in the Aharonov-Bohm regime, in which effects of fractional statistics should be visible, is easier to access in interferometers based on anti-dots than in those based on dots. We discuss the relevance of our results to recent measurements on anti-dots interferometers.
Nitrocobinamide, a New Cyanide Antidote That Can Be Administered by Intramuscular Injection
Chan, Adriano; Jiang, Jingjing; Fridman, Alla; Guo, Ling T.; Shelton, G. Diane; Liu, Ming-Tao; Green, Carol; Haushalter, Kristofer J.; Patel, Hemal H.; Lee, Jangwoen; Yoon, David; Burney, Tanya; Mukai, David; Sari B. Mahon; Brenner, Matthew
2015-01-01
Currently available cyanide antidotes must be given by intravenous injection over 5–10 min, making them illsuited for treating many people in the field, as could occur in a major fire, an industrial accident, or a terrorist attack. These scenarios call for a drug that can be given quickly, e.g., by intramuscular injection. We have shown that aquohydroxocobinamide is a potent cyanide antidote in animal models of cyanide poisoning, but it is unstable in solution and poorly absorbed after intram...
Magnetic characteristics of CoPd and FePd antidot arrays on nanoperforated Al2O3 templates
Maximenko, A.; Fedotova, J.; Marszałek, M.; Zarzycki, A.; Zabila, Y.
2016-02-01
Hard magnetic antidot arrays show promising results in context of designing of percolated perpendicular media. In this work the technology of magnetic FePd and CoPd antidot arrays fabrication is presented and correlation between surface morphology, structure and magnetic properties is discussed. CoPd and FePd antidot arrays were fabricated by deposition of Co/Pd and Fe/Pd multilayers (MLs) on porous anodic aluminum oxide templates with bowl-shape cell structure with inclined intercellular regions. FePd ordered L10 structure was obtained by successive vacuum annealing at elevated temperatures (530 °C) and confirmed by XRD analysis. Systematic analysis of magnetization curves evidenced perpendicular magnetic anisotropy of CoPd antidot arrays, while FePd antidot arrays revealed isotropic magnetic anisotropy with increased out-of-plane magnetic contribution. MFM images of antidots showed more complicated contrast, with alternating magnetic dots oriented parallel and antiparallel to tip magnetization moment.
Klotz, C; Garreau de Loubresse, N; Ruiz, F; Beisson, J
1997-01-01
Within the superfamily of "EF-hand Ca2+-modulated proteins," centrins constitute a family of cytoskeletal proteins that are highly conserved from lower eukaryotes to man. Their cytoskeletal specialization is manifest in their capacity to form filamentous contractile arrays of various shapes and functions and by their association with microtubule organizing centres (MTOCs). While the latter property has been conserved throughout the evolution of eukaryotes, centrin-based contractile structures are only found in protists where they form arrays of widely diverse organization and function. In the ciliate Paramecium tetraurelia, three centrin genes have been characterized, which may be part of a larger centrin gene family [Madeddu et al., 1996: Eur J. Biochem. 238:121-128]. The products of these genes were originally identified as components of the infraciliary lattice, a contractile cytoskeletal network [Garreau de Loubresse et al., 1991: Biol. Cell 71:217-225]. We show here that centrins are localized not only in this lattice but also in basal bodies and in the cord, a filamentous structure associated with the oral apparatus. We demonstrate that in the infraciliary lattice, but not in basal bodies, centrins are associated with high-molecular-weight proteins (ca. 350 kD). Their role in the biogenesis of the infraciliary lattice is documented by cytological and biochemical properties of the mutant "démaillé" (dem1) characterized by altered centrin-associated proteins and abnormal organization and dynamics of the infraciliary lattice. PMID:9331221
Quaternary and tertiary aldoxime antidotes for organophosphate exposure in a zebrafish model system
The zebrafish is rapidly becoming an important model system for screening of new therapeutics. Here we evaluated the zebrafish as a potential pharmacological model for screening novel oxime antidotes to organophosphate (OP)-inhibited acetylcholinesterase (AChE). The ki values determined for chlorpyrifos oxon (CPO) and dichlorvos (DDVP) showed that CPO was a more potent inhibitor of both human and zebrafish AChE, but overall zebrafish AChE was less sensitive to OP inhibition. In contrast, aldoxime antidotes, the quaternary ammonium 2-PAM and tertiary amine RS-194B, showed generally similar overall reactivation kinetics, kr, in both zebrafish and human AChE. However, differences between the Kox and k2 constants suggest that zebrafish AChE associates more tightly with oximes, but has a slower maximal reactivation rate than human AChE. Homology modeling suggests that these kinetic differences result from divergences in the amino acids lining the entrance to the active site gorge. Although 2-PAM had the more favorable in vitro reactivation kinetics, RS-194B was more effective antidote in vivo. In intact zebrafish embryos, antidotal treatment with RS-194B rescued embryos from OP toxicity, whereas 2-PAM had no effect. Dechorionation of the embryos prior to antidotal treatment allowed both 2-PAM and RS-194B to rescue zebrafish embryos from OP toxicity. Interestingly, RS-194B and 2-PAM alone increased cholinergic motor activity in dechorionated embryos possibly due to the reversible inhibition kinetics, Ki and αKi, of the oximes. Together these results demonstrate that the zebrafish at various developmental stages provides an excellent model for investigating membrane penetrant antidotes to OP exposure. - Highlights: • Zebrafish AChE shares significant structural similarities with human AChE. • OP-inhibited zebrafish and human AChE exhibit similar reactivation kinetics. • The zebrafish chorion is permeable to BBB penetrant and not charged aldoximes. • Zebrafish are
Lattice Expansion of (Ga,Mn)As: The Role of Substitutional Mn and of the Compensating Defects
J. Masek; Maca, F.
2005-01-01
We apply the density-functional technique to determine the lattice constant of GaAs supercells containing Mn_Ga, Mn_int, and As_Ga impurities, and use a linear interpolation to describe the dependence of the lattice constant a of Ga_{1-x}Mn_xAs on the concentrations of these impurities. The results of the supercell calculations confirm that Mn_Ga does not contribute to the lattice expansion. The increase of a is due to both Mn_int and As_Ga, that are both created in the as-grown (Ga,Mn)As in ...
Antidotal Efficacy of Antioxidants against Cyanide Poisoning in vitro.
R. Bhattacharya
1999-01-01
Full Text Available Cyanide is a potent homicidal, genocidal and chemical warfare agent. Besides, its known inhibitory effects on various enzyme Systems, its other pronounced toxic effects include lipid peroxidation (LPx, particularly in the central nervous system or neuronal cells in vitro. The present study assessed the cytotoxicity of potassium cyanide (KCN in two non-neuronal mammalian cell cultures, viz., human embryonic lung epithelium (L-132 and baby hamster kidney (BHK-21 cells. In addition, the cytoprotective potential of two antioxidant agents, namely, curcumin (CMN and N-acetylcysteine (NAC against KCN (2 and 4 mM in vitro was evaluated. In both the cell lines, KCN reduced cell viability as indicated by trypan blue dye exclusion, leakage of cytosolic lactate dehydrogenase and neutral red uptake. Protein content was unaffected in L-132 cells while cellular respiration determined by MTT assay was impaired in both the cells. A dose-dependent glutathione mediated LPx was observed in BHK-21 cells alone. The above cytotoxic changes produced by KCN were more effectively minimised by NAC as compared to CMN. Efficacy of CMN and NAC have therapeutic implications as adjuncts to existing cyanide antidotes.
Cyanide is a well-known toxic terrorism agent and is a major cause of mortality and morbidity in smoke inhalation victims. Terrorist attacks could start enclosed-space fires with cyanide-poisoned victims, even if cyanide itself was not utilized. Cyanide poisoning cannot be emergent confirmed by laboratory analysis and treatment with safe and efficacious antidotes must be administered empirically. Hydroxocobalamin has been recently approved by the US FDA and is a safe and efficacious antidote. Its efficacy is comparable to that of other, more toxic, cyanide antidotes. Its mechanism of action involves both direct cyanide chelation (forming non-toxic cyanocobalamin which is excreted in the urine) and nitric oxide scavenging. Adverse effects are usually limited to transient dark red-brown discoloration of urine, skin, sclera, and mucous membranes. Antidotal doses have not caused allergic reactions in cyanide-poisoned patients and only minor and easily-treated allergic reactions occurred in 2 of 136 normal volunteers. Transient, asymptomatic hypertension and reflex bradycardia have occurred in some normal volunteers, but not in seriously ill smoke inhalation victims not having significant cyanide poisoning. Hydroxocobalamin is a safe and efficacious antidote and can be empirically administered in pre-hospital or emergency department settings. It is therefore suitable for inclusion in national or multinational medication stockpiles and is already included in some national programs in the European Union.(author)
An in vivo zebrafish screen identifies organophosphate antidotes with diverse mechanisms of action.
Jin, Shan; Sarkar, Kumar S; Jin, Youngnam N; Liu, Yan; Kokel, David; Van Ham, Tjakko J; Roberts, Lee D; Gerszten, Robert E; Macrae, Calum A; Peterson, Randall T
2013-01-01
Organophosphates are a class of highly toxic chemicals that includes many pesticides and chemical weapons. Exposure to organophosphates, either through accidents or acts of terrorism, poses a significant risk to human health and safety. Existing antidotes, in use for over 50 years, have modest efficacy and undesirable toxicities. Therefore, discovering new organophosphate antidotes is a high priority. Early life stage zebrafish exposed to organophosphates exhibit several phenotypes that parallel the human response to organophosphates, including behavioral deficits, paralysis, and eventual death. Here, we have developed a high-throughput zebrafish screen in a 96-well plate format to find new antidotes that counteract organophosphate-induced lethality. In a pilot screen of 1200 known drugs, we identified 16 compounds that suppress organophosphate toxicity in zebrafish. Several in vitro assays coupled with liquid chromatography/tandem mass spectrometry-based metabolite profiling enabled determination of mechanisms of action for several of the antidotes, including reversible acetylcholinesterase inhibition, cholinergic receptor antagonism, and inhibition of bioactivation. Therefore, the in vivo screen is capable of discovering organophosphate antidotes that intervene in distinct pathways. These findings suggest that zebrafish screens might be a broadly applicable approach for discovering compounds that counteract the toxic effects of accidental or malicious poisonous exposures. PMID:22960781
Hazardous materials paradigms call for definitive treatment of chemical victims to begin in the 'warm zone' during decontamination. This delay may result in lethal outcomes, particularly in the case of multiple victims, where rescue may be delayed due to insufficient numbers of rescue teams. It is virtually impossible for rescuers in full protective gear to establish intravenous lines. In recent years, significant advances have been made in intraosseous (IO) infusion devices. An IO device developed in our institution, the EZ-IO, is very easily placed by rescuers in typical work uniforms. IO placement takes longer while in protective gear, but is feasible. The IO is equivalent to an intravenous line, allowing more rapid administration of antidotes in the event of chemical mass casualties. Antidotes not amenable to intramuscular administration and even those often given IM may be more effective given IO. IO administration has the following possible advantages over intravenous or intramuscular antidote administration: 1. Drugs administered IO reach the vascular system virtually instantaneously. 2. IO administration may be performed in protective clothing and could theoretically be employed while awaiting rescue. 3. IO administration may be preferred over intravenous administration in the warm zone. In summary, IO administration of antidotes should be further evaluated for use in chemical disasters. The ease and speed of placement, ready access to the vascular tree, and potential for earlier intervention make it a potentially ideal means of vascular access and antidotal administration in the mass casualty situation. (author)
Davies, C. S., E-mail: csd203@exeter.ac.uk; Kruglyak, V. V. [School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom); Sadovnikov, A. V.; Nikitov, S. A. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation); Kotel' nikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Moscow 125009 (Russian Federation); Grishin, S. V.; Sharaevskii, Yu. P. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation)
2015-10-19
We have used Brillouin Light Scattering and micromagnetic simulations to demonstrate a point-like source of spin waves created by the inherently nonuniform internal magnetic field in the vicinity of an isolated antidot formed in a continuous film of yttrium-iron-garnet. The field nonuniformity ensures that only well-defined regions near the antidot respond in resonance to a continuous excitation of the entire sample with a harmonic microwave field. The resonantly excited parts of the sample then served as reconfigurable sources of spin waves propagating (across the considered sample) in the form of caustic beams. Our findings are relevant to further development of magnonic circuits, in which point-like spin wave stimuli could be required, and as a building block for interpretation of spin wave behavior in magnonic crystals formed by antidot arrays.
On the role of nano-size SiC on lattice strain and grain size of Al/SiC nanocomposite
In the present study high energy ball mill was implemented to produce aluminum (Al) matrix composite powders reinforced with silicon carbide (SiC). To clarify the role of particle size of SiC on lattice strain and grain size of Al two series of SiC with micron and nano-size were selected. Aluminum and SiC powders were mixed mechanically and milled at different times (2, 5, 10 h) to achieve Al-2.5 vol%SiC and Al-5 vol%SiC composite powders. The produced composites were investigated using X-ray diffraction pattern (XRD) to elucidate the role of particle size, secondary phase content and milling time on grain size and lattice strain of Al matrix. The results showed that an increase in milling time caused to reduce the grain size unlike the lattice strain of Al matrix. At the same condition a faster grain refinement for Al/SiC nanocomposites were observed with respect to Al/SiC composites.
Monitoring the Effects and Antidotes of the Non-vitamin K Oral Anticoagulants
Rahmat, Nur A; Lip, Gregory Y H
2015-01-01
In the last decade, we have witnessed the emergence of the oral non-vitamin K oral anticoagulants (NOACs), which have numerous advantages compared with the vitamin K antagonists, particularly their lack of need for monitoring; as a result their use is increasing. Nonetheless, the NOACs face two...... major challenges: the need for reliable laboratory assays to assess their anticoagulation effect, and the lack of approved antidotes to reverse their action. This article provides an overview of monitoring the anticoagulant effect of NOACs and their potential specific antidotes in development....
dc and ac magnetic properties of thin-walled Nb cylinders with and without a row of antidots.
Tsindlekht, M I; Genkin, V M; Felner, I; Zeides, F; Katz, N; Gazi, Š; Chromik, Š; Dobrovolskiy, O V; Sachser, R; Huth, M
2016-06-01
dc and ac magnetic properties of two thin-walled superconducting Nb cylinders with a rectangular cross-section are reported. Magnetization curves and the ac response were studied on as-prepared and patterned samples in magnetic fields parallel to the cylinder axis. A row of micron-sized antidots (holes) was made in the film along the cylinder axis. Avalanche-like jumps of the magnetization are observed for both samples at low temperatures for magnetic fields not only above H c1, but in fields lower than H c1 in the vortex-free region. The positions of the jumps are not reproducible and they change from one experiment to another, resembling vortex lattice instabilities usually observed for magnetic fields larger than H c1. At temperatures above [Formula: see text] and [Formula: see text] the magnetization curves become smooth for the patterned and the as-prepared samples, respectively. The magnetization curve of a reference planar Nb film in the parallel field geometry does not exhibit jumps in the entire range of accessible temperatures. The ac response was measured in constant and swept dc magnetic field modes. Experiment shows that ac losses at low magnetic fields in a swept field mode are smaller for the patterned sample. For both samples the shapes of the field dependences of losses and the amplitude of the third harmonic are the same in constant and swept field near H c3. This similarity does not exist at low fields in a swept mode. PMID:27143621
The so-called doubling problem in the lattice description of fermions led to a proof that under certain circumstances chiral gauge theories cannot be defined on the lattice. This is called the no-go theorem. It implies that if Γ/sub/A is defined on a lattice then its infrared limit, which should correspond to the quantum description of the classical action for the slowly varying fields on lattice scale, is inevitably a vector like theory. In particular, if not circumvented, the no-go theorem implies that there is no lattice formulation of the Standard Weinberg-Salam theory or SU(5) GUT, even though the fermions belong to anomaly-free representations of the gauge group. This talk aims to explain one possible attempt at bypassing the no-go theorem. 20 refs
Prehospital diagnosis of massive ethylene glycol poisoning and use of an early antidote.
Amathieu, Roland; Merouani, Medhi; Borron, Stephen W; Lapostolle, Frédéric; Smail, Nadia; Adnet, Frédéric
2006-08-01
We report the case of a patient suspected of voluntary massive poisoning by ethylene glycol. Prehospital diagnosis was established by portable blood analyser and an early antidote with 4 MP treatment initiated in out-of-hospital setting. Use of portable blood analyser in prehospital care should be considered in case of suspected massive poisoning by ethylene glycol. PMID:16808995
We consider the problem of correlated percolation on a Husimi cactus, which allows finite loops of size l, to investigate the effects of loop formation on percolation properties. In particular, we calculate how the percolation threshold and the percolation probability depend on l and the loop activity n. We calculate the contribution and its dependence on l and n from finite and infinite clusters to all densities. We show that macroscopic loops are formed immediately after percolation, and we calculate their density dependence on l and n. We compare the results on Husimi cactus with those on a Bethe lattice. We finally establish that the Husimi cactus turns into a Bethe lattice as l→∞. (author)
Quaternary and tertiary aldoxime antidotes for organophosphate exposure in a zebrafish model system
Schmidt, Hayden R. [Department of Biology, Whittier College, Whittier, CA 90608 (United States); Radić, Zoran; Taylor, Palmer [Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093-0650 (United States); Fradinger, Erica A., E-mail: efrading@whittier.edu [Department of Biology, Whittier College, Whittier, CA 90608 (United States)
2015-04-15
The zebrafish is rapidly becoming an important model system for screening of new therapeutics. Here we evaluated the zebrafish as a potential pharmacological model for screening novel oxime antidotes to organophosphate (OP)-inhibited acetylcholinesterase (AChE). The k{sub i} values determined for chlorpyrifos oxon (CPO) and dichlorvos (DDVP) showed that CPO was a more potent inhibitor of both human and zebrafish AChE, but overall zebrafish AChE was less sensitive to OP inhibition. In contrast, aldoxime antidotes, the quaternary ammonium 2-PAM and tertiary amine RS-194B, showed generally similar overall reactivation kinetics, k{sub r}, in both zebrafish and human AChE. However, differences between the K{sub ox} and k{sub 2} constants suggest that zebrafish AChE associates more tightly with oximes, but has a slower maximal reactivation rate than human AChE. Homology modeling suggests that these kinetic differences result from divergences in the amino acids lining the entrance to the active site gorge. Although 2-PAM had the more favorable in vitro reactivation kinetics, RS-194B was more effective antidote in vivo. In intact zebrafish embryos, antidotal treatment with RS-194B rescued embryos from OP toxicity, whereas 2-PAM had no effect. Dechorionation of the embryos prior to antidotal treatment allowed both 2-PAM and RS-194B to rescue zebrafish embryos from OP toxicity. Interestingly, RS-194B and 2-PAM alone increased cholinergic motor activity in dechorionated embryos possibly due to the reversible inhibition kinetics, K{sub i} and αK{sub i}, of the oximes. Together these results demonstrate that the zebrafish at various developmental stages provides an excellent model for investigating membrane penetrant antidotes to OP exposure. - Highlights: • Zebrafish AChE shares significant structural similarities with human AChE. • OP-inhibited zebrafish and human AChE exhibit similar reactivation kinetics. • The zebrafish chorion is permeable to BBB penetrant and not
A definition of lattice BRS invariance is given. The requirement of lattice BRS invariance successfully replaces that of local gauge invariance as a principle for selecting allowed actions. This replacement also works to any finite order in perturbation theory, but, on the nonperturbative level one encounters an obstacle reflecting the existence of an even number of solutions to the gauge fixing problem. The problem of latticizing the classical action for open bosonic strings discovered by Witten is discussed and a possible direction for dealing with it is pointed out. 3 refs
An All-Hazards Approach to Antidotal Therapy in Cyanide Poisoning
In recent years in the USA, increased emphasis has been placed on utilizing an 'all-hazards approach' in the development and testing of disaster plans. Disaster plans developed in this way should prepare the community to deal with a wide variety of natural and man-made emergencies, both anticipated and unanticipated in etiology. The basic approach in each disaster remains the same, with adaptation as necessary to deal with specific threats. Such an approach 'enables communities to be prepared to manage any number or type of emergencies. It facilitates prevention, preparation, response, and recovery, based on the broad scope of what could happen within and beyond the community.' (JCAHO) An all-hazards approach appears to have merit as well in the selection of antidotes for mass casualty use. Using cyanide as an example, we examine several criteria which permit a disaster preparedness entity to choose among available cyanide antidotes to permit the broadest application possible in the context of a cyanide-related chemical emergency. These criteria include: source of exposure, efficacy, safety (in the presence and absence of poisoning), safety in adults and children, ease of administration, conditions for storage and maintenance, stock rotation, and cost. The greatest limitation to the all-hazards approach in antidote selection is geographic availability. Because of the high cost of regulatory approval and historical protectionism / preferences by governments, certain regions may have little or no choice in the selection of antidotes. Hydroxocobalamin appears to best meet the requirements of an 'all-hazards' antidote for cyanide.(author)
V.V. Kulish
2015-06-01
Full Text Available The paper investigates the antiferromagnetic vector distribution in an antiferromagnetic film with a system of antidots. A static distribution of the antiferromagnetic vector is written and a method – based on the minimization of the antiferromagnet energy – that allows reducing the number of boundary conditions required for finding the constants of this distribution is proposed. Equations for the distribution constants are obtained for the both cases of minimizing the antiferromagnet energy by one and by two distribution constants that enter the expression for the antiferromagnet energy. The method is illustrated on a system of one isolated antidot. For such system, one additional condition – for the case when two boundary conditions on the surface of the antidot are given – and two additional conditions – for the case when one boundary condition on the surface of the antidot is given – on the distribution constants are written.
Non-perturbative phenomena are essential to understanding quantum chromodynamics (QCD), the theory of the strong interactions. The particles observed are mesons and baryons, but the fundamental fields are quarks and gluons. Most properties of the hadrons are inaccessible in perturbation theory. Aside from their mere existence, the most blatant example is the mass spectrum. The lack of an accurate, reasonably precise, calculation of the mass spectrum is a major piece of unfinished business for theoretical particle physics. In addition, a wide variety of other non-perturbative calculations in QCD are necessary to interpret ongoing experiments. For example, it is impossible to extract the Cabibbo-Kobayashi-Maskawa angles without knowing matrix elements of operators in the K, D and B mesons. Furthermore, non-perturbative analyses of quarkonia can determine the strong coupling constant with uncertainties already comparable to perturbative analyses of high-energy data. These lectures cover lattice field theory, the only general, systematic approach that can address quantitatively the non-perturbative questions raised above. Sects. 2--8 explain how to formulate quantum field theory on a lattice and why lattice field theory is theoretically well-founded. Sect. 9 sketches some analytic calculations in scalar lattice field theory. They serve as an example of how lattice field theory can contribute to particle physics without necessarily using computers. Sect. 10 turns to the most powerful tool in lattice field theory: large-scale Monte Carlo integration of the functional integral. Instead of discussing algorithms in gory detail, the general themes of computational field theory are discussed. The methods needed for spectroscopy, weak matrix elements, and the strong coupling constant are reviewed. 52 refs., 7 figs., 1 tab
Role of structural factors in formation of chiral magnetic soliton lattice in Cr{sub 1/3}NbS₂
Volkova, L. M.; Marinin, D. V. [Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok (Russian Federation)
2014-10-07
The sign and strength of magnetic interactions not only between nearest neighbors, but also for longer-range neighbors in the Cr{sub 1/3}NbS₂ intercalation compound have been calculated on the basis of structural data. It has been found that left-handed spin helices in Cr{sub 1/3}NbS₂ are formed from strength-dominant at low temperatures antiferromagnetic (AFM) interactions between triangular planes of Cr³⁺ ions through the plane of just one of two crystallographically equivalent diagonals of side faces of embedded into each other trigonal prisms building up the crystal lattice of magnetic Cr³⁺ ions. These helices are oriented along the c axis and packed into two-dimensional triangular lattices in planes perpendicular to these helices directions and lay one upon each other with a displacement. The competition of the above AFM helices with weaker inter-helix AFM interactions could promote the emergence of a long-period helical spin structure. One can assume that in this case, the role of Dzyaloshinskii-Moriya interaction consists of final ordering and stabilization of chiral spin helices into a chiral magnetic soliton lattice. The possibility of emergence of solitons in M{sub 1/3}NbX{sub 2} and M{sub 1/3}TaX₂ (M = Cr, V, Ti, Rh, Ni, Co, Fe, and Mn; X = S and Se) intercalate compounds has been examined. Two important factors caused by the crystal structure (predominant chiral magnetic helices and their competition with weaker inter-helix interactions not destructing the system quasi-one-dimensional character) can be used for the crystal chemistry search of solitons.
Magnetic properties of Fe{sub 20} Ni{sub 80} antidots: Pore size and array disorder
Palma, J.L., E-mail: juan.palma.s@usach.cl [Departamento de Física, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Gallardo, C. [Departamento de Física, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Spinu, L.; Vargas, J.M. [Advanced Material Research Institute (AMRI) and Department of Physics, University of New Orleans, New Orleans, LA 70148 (United States); Dorneles, L.S. [Departamento de Fisica, Universidade Federal de Santa Maria UFSM, Av. Roraima 1000, Camobi, Santa Maria, RS 97105-900 (Brazil); Denardin, J.C.; Escrig, J. [Departamento de Física, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Avda. Ecuador 3493, 917-0124 Santiago (Chile)
2013-10-15
Magnetic properties of nanoscale Fe{sub 20}Ni{sub 80} antidot arrays with different hole sizes prepared on top of nanoporous alumina membranes have been studied by means of magnetometry and micromagnetic simulations. The results show a significant increase of the coercivity as well as a reduction of the remanence of the antidot arrays, as compared with their parent continuous film, which depends on the hole size introduced in the Fe{sub 20}Ni{sub 80} thin film. When the external field is applied parallel to the antidots, the reversal of magnetization is achieved by free-core vortex propagation, whereas when the external field is applied perpendicular to the antidots, the reversal occurs through a process other than the coherent rotation (a maze-like pattern). Besides, in-plane hysteresis loops varying the angle show that the degree of disorder in the sample breaks the expected hexagonal symmetry. - Highlights: • Magnetic properties are strongly influenced by the pore diameter of the samples. • Coercive fields for antidots are higher than the values for the continuous film. • Disorder breaks the hexagonal symmetry of the sample. • Each hole acts as a vortex nucleation point. • Antidots have unique properties that allow them to be used in applications.
The finite-element method enables us to convert the operator differential equations of a quantum field theory into operator difference equations. These difference equations are consistent with the requirements of quantum mechanics and they do not exhibit fermion doubling, a problem that frequently plagues lattice treatments of fermions. Guage invariance can also be incorporated into the difference equations. On a finite lattice the operator difference equations can be solved in closed form. For the case of the Schwinger model the anomaly is computed and results in excellent agreement are obtained with the known continuum value
dc and ac magnetic properties of thin-walled Nb cylinders with and without a row of antidots
Tsindlekht, M. I.; Genkin, V. M.; Felner, I.; Zeides, F.; Katz, N.; Gazi, Š.; Chromik, Š.; Dobrovolskiy, O. V.; Sachser, R.; Huth, M.
2016-06-01
dc and ac magnetic properties of two thin-walled superconducting Nb cylinders with a rectangular cross-section are reported. Magnetization curves and the ac response were studied on as-prepared and patterned samples in magnetic fields parallel to the cylinder axis. A row of micron-sized antidots (holes) was made in the film along the cylinder axis. Avalanche-like jumps of the magnetization are observed for both samples at low temperatures for magnetic fields not only above H c1, but in fields lower than H c1 in the vortex-free region. The positions of the jumps are not reproducible and they change from one experiment to another, resembling vortex lattice instabilities usually observed for magnetic fields larger than H c1. At temperatures above 0.66{{T}\\text{c}} and 0.78{{T}\\text{c}} the magnetization curves become smooth for the patterned and the as-prepared samples, respectively. The magnetization curve of a reference planar Nb film in the parallel field geometry does not exhibit jumps in the entire range of accessible temperatures. The ac response was measured in constant and swept dc magnetic field modes. Experiment shows that ac losses at low magnetic fields in a swept field mode are smaller for the patterned sample. For both samples the shapes of the field dependences of losses and the amplitude of the third harmonic are the same in constant and swept field near H c3. This similarity does not exist at low fields in a swept mode.
Spin Waves in a Ferromagnetic Film with a Periodic System of Antidots
V.V. Kulish
2015-03-01
Full Text Available In the paper, spin waves in a thin film (composed of a uniaxial ferromagnet with a two-dimensional periodical system of antidots are studied. The film ferromagnet is considered to have the “easy axis” type. To describe such waves, the magnetostatic approximation with account for the magnetic dipole-dipole interaction, the exchange interaction and the anisotropy effects is used. For such waves, an equation for the magnetic potential is derived; for the case of remote antidots, the dispersion relation and the transverse wavenumber spectrum are found. For the case of a film thin compared to the exchange length and for the case of a film bounded by a high-conductivity metal, the longitudinal wavenumber spectrum and the frequency spectrum of such spin waves are also obtained.
Quantum Hall effect in semiconductor systems with quantum dots and antidots
The integer quantum Hall effect in systems of semiconductor quantum dots and antidots is studied theoretically as a factor of temperature. It is established that the conditions for carrier localization in quantum-dot systems favor the observation of the quantum Hall effect at higher temperatures than in quantum-well systems. The obtained numerical results show that the fundamental plateau corresponding to the transition between the ground and first excited Landau levels can be retained up to a temperature of T ∼ 50 K, which is an order of magnitude higher than in the case of quantum wells. Implementation of the quantum Hall effect at such temperatures requires quantum-dot systems with controllable characteristics, including the optimal size and concentration and moderate geometrical and composition fluctuations. In addition, ordered arrangement is desirable, hence quantum antidots are preferable
Marshall, John M
2011-01-01
Insects carry out essential ecological functions, such as pollination, but also cause extensive damage to agricultural crops, and transmit human diseases such as malaria and dengue fever. Advances in insect transgenesis are making it increasingly feasible to engineer genes conferring desirable phenotypes, and gene drive systems are required to spread these genes into wild populations. Medea provides one solution, being able to spread into a population from very low initial frequencies through the action of a maternally-expressed toxin linked to a zygotically-expressed antidote. Several other toxin-antidote combinations are imaginable that distort the offspring ratio in favor of a desired transgene, or drive the population towards an all-male crash. We explore two such systems--Semele, which is capable of spreading a desired transgene into an isolated population in a confined manner; and Merea, which is capable of inducing a local population crash when located on the Z chromosome of a Lepidopteron pest. PMID:21876382
Consolidarea relațiilor interpersonale pozitive la locul de muncă: antidot pentru burnout
CORALIA SULEA
2014-05-01
Full Text Available Burnout is an important phenomenon for organizations and employees associated with negative outcomes. Key organizational areas, like fairness and workplace community, are responsible for employee burnout. This editorial argues for the importance of workplace community and presents the mechanisms through which dysfunctional relationships at work may contribute to burnout, as well as the processes that explain how healthy interpersonal relationships can be an antidote for burnout.
Signatures of fractional Hall quasiparticles in moments of current through an antidot
Braggio, A.; Magnoli, N; M. Merlo; Sassetti, M.
2006-01-01
The statistics of tunneling current in a fractional quantum Hall sample with an antidot is studied in the chiral Luttinger liquid picture of edge states. A comparison between Fano factor and skewness is proposed in order to clearly distinguish the charge of the carriers in both the thermal and the shot limit. In addition, we address effects on current moments of non-universal exponents in single-quasiparticle propagators. Positive correlations, result of propagators behaviour, are obtained in...
Resonance Patterns of an Antidot Cluster: From Classical to Quantum Ballistics
Kirczenow, George; Johnson, Brad L.; Kelly, P. J.; Gould, C.; Sachrajda, A. S.; Feng, Y.; Delage, A.
1997-01-01
We explain the experimentally observed Aharonov-Bohm (AB) resonance patterns of an antidot cluster by means of quantum and classical simulations and Feynman path integral theory. We demonstrate that the observed behavior of the AB period signals the crossover from a low B regime which can be understood in terms of electrons following classical orbits to an inherently quantum high B regime where this classical picture and semiclassical theories based on it do not apply.
An effective method to probe local magnetostatic properties in a nanometric FePd antidot array
Beron, F; Pirota, K R; Knobel, M [Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas, Rua Sergio Buarque de Holanda, 777, Cidade Universitaria ' Zeferino Vaz' , Campinas 13083-859, SP (Brazil); Vega, V; Prida, V M; Fernandez, A; Hernando, B, E-mail: fberon@ifi.unicamp.br [Depto. Fisica, Universidad de Oviedo, Calvo Sotelo s/n, 33007 Oviedo, Asturias (Spain)
2011-01-15
A simple method to quantitatively characterize the local magnetic behaviour of a patterned nanostructure, like a ferromagnetic thin film of antidot arrays, is proposed. The first-order reversal curve (FORC) analysis, coupled with simulations using physically meaningful hysterons, allows us to obtain a quantitative and physically related description of the interaction field and each magnetization reversal process. The hysterons system is built from previously known hypotheses on the magnetic behaviour of the sample. This method was successfully applied to a highly hexagonal ordered FePd antidot array with nanometric dimensions. We achieved a complete characterization of the two different magnetization reversal mechanisms in function of the in-plane applied field angle. For a narrow range of high fields, the magnetization initiates rotating reversibly around the pores, while at lower fields, domain walls are nucleated and propagated. This in-plane magnetization reversal mechanism, partly reversible and partly irreversible, is the only angularly dependent one. While going away from the easy axis, its reversible proportion increases, as well as its switching field distribution. Finally, the results indicate that the high surface roughness between adjacent holes of the antidot thin film induces a parallel interaction field. The proposed method demonstrates its ability also to be applied to characterizing patterned nanostructures with rather complex magnetization reversal processes.
A 3D lattice Boltzmann model is developed and used to calculate the water and gas permeabilities of model cement pastes at different degrees of water saturation. In addition to permeable micron-sized capillary pores and impermeable solid inclusions, the lattice Boltzmann model comprises weakly-permeable nano-porous calcium silicate hydrate (C-S-H). The multi-scale problem is addressed by using an effective media approach based on the idea of partial bounce-back. The model cement paste microstructures are generated with the platform µic. The critical parameters, C-S-H density and capillary porosity, are taken from 1H nuclear magnetic resonance relaxation analysis. The distribution of water and air is defined according to the Kelvin–Laplace law. It is found that when the capillary porosity is completely saturated with a fluid (either water or gas), the calculated intrinsic permeability is in good agreement with measurements of gas permeability on dried samples (10−17–10−16 m2). However, as the water saturation is reduced, the calculated apparent water permeability decreases and spans the full range of experimentally measured values (10−16–10−22 m2). It is concluded that the degree of capillary water saturation is the major cause for variation in experimental permeability measurements. It is further concluded that the role of the weakly-permeable C-S-H, omitted in earlier modelling studies, is critical for determining the permeability at low capillary saturation. (paper)
Global Financial Regulations:An Antidote to Economic Predicament
BIN; ZHANG
2014-01-01
Due to the lack of public order in the international financial arena, asset bubbles and resource misallocations persisted over a long period of time and resulted in global financial crisis in 2008. Global financial rules, which can take on a role like that of WTO in the international trade, are urgently needed for global economic recovery. They will balance the pressure of economic restructuring between large and small countries, and push forward some countries’ domestic reforms which may hardly be implemented due to domestic politics.
Smith, Anthony S. G.; Rawlings, Douglas E
1998-01-01
The stabilization of a test plasmid by the proteic, poison-antidote plasmid addiction system (pas) of plasmid pTF-FC2 was host strain dependent, with a 100-fold increase in stability in Escherichia coli CSH50, a 2.5-fold increase in E. coli JM105, and no detectable stabilization in E. coli strains JM107 and JM109. The lethality of the PasB toxin was far higher in the E. coli strains in which the pas was most effective. Models for the way in which poison-antidote systems stabilize plasmids req...
Tummala, Ramyashree; Kavtaradze, Ana; Gupta, Anjan; Ghosh, Raktim Kumar
2016-07-01
The Vitamin K antagonist warfarin was the only oral anticoagulant available for decades for the treatment of thrombosis and prevention of thromboembolism until Direct Oral Anticoagulants (DOACs); a group of new oral anticoagulants got approved in the last few years. Direct thrombin inhibitor: dabigatran and factor Xa inhibitors: apixaban, rivaroxaban, and edoxaban directly inhibit the coagulation cascade. DOACs have many advantages over warfarin. However, the biggest drawback of DOACs has been the lack of specific antidotes to reverse the anticoagulant effect in emergency situations. Activated charcoal, hemodialysis, and activated Prothrombin Complex Concentrate (PCC) were amongst the nonspecific agents used in a DOAC associated bleeding but with limited success. Idarucizumab, the first novel antidote against direct thrombin inhibitor dabigatran was approved by US FDA in October 2015. It comprehensively reversed dabigatran-induced anticoagulation in a phase I study. A phase III trial on Idarucizumab also complete reversal of anticoagulant effect of dabigatran. Andexanet alfa (PRT064445), a specific reversal agent against factor Xa inhibitors, showed a complete reversal of anticoagulant activity of apixaban and rivaroxaban within minutes after administration without adverse effects in two recently completed parallel phase III trials ANNEXA-A and ANNEXA-R respectively. It is currently being studied in ANNEXA-4, a phase IV study. Aripazine (PER-977), the third reversal agent, has shown promising activity against dabigatran, apixaban, rivaroxaban, as well as subcutaneous fondaparinux and LMWH. This review article summarizes pharmacological characteristics of these novel antidotes, coagulation's tests affected, available clinical and preclinical data, and the need for phase III and IV studies. PMID:27082776
Antidotal Efficacy of a New Combination in Treatment of Subacute T-2 Toxin Poisoning in Rats
Trichothecene mycotoxin, T-2 toxin is a natural metabolite of Fusarium fungi. T-2 toxin possesses several properties (significant persistence in the environment, cheap manufacture, difficult detection and absence of a specific antidote) that make it a very dangerous potential chemical warfare agent. In our previous experiments, nonsteroidal anti-inflammatory drug (NSAID) nimesulide (NIM), as a selective COX-2 inhibitor, and zeolite absorbent (Min-a-zel Plus, MINplus) administered separately showed a good protective effects against general toxicity induced by T-2 toxin (T2). The aim of this study was to evaluate the antidotal potential of the combination of these two antidotes. T2 was given in a dose of 0.15 mg/kg sc (0.1 LD50), 5 times per week, 4 weeks to adult Wistar rats. Protected animals were given NIM (20 mg/kg im) or/and MINplus (40 mg/kg po) each time immediately after T2. Mortality, general condition, body weight gain, food and water consumption and gut alterations of the animals were registered on a daily basis during 4 weeks. Treatment with NIM or/and MINplus significantly reduced mortality of the rats treated only with T2. Body weight gain, food and water consumption were significantly decreased in T2-treated animals compared to control ones (p < 0.001), what was not the case in the protected rats. In the groups treated with NIM and MINplus gut alterations were significantly less severe than those observed in animals receiving T2 alone (p less than 0.001). These results imply that combined treatment with nimesulide and zeolite absorbent affords a significant protection against subacute T-2 toxin poisoning in rats.(author)
Cyclotron resonance in two-dimensional electron system with self-organized antidots
Suchalkin, S D; Zundel, M; Nachtwei, G; Klitzing, K V; Eberl, K
2001-01-01
The data on the experimental study on the cyclotron resonance in the two-dimensional electron system with the random scattering potential, conditioned by the massif of the AlInAs self-organized quantum islands, formed in the AlGaAs/GaAs heterotransition plane, are presented. The sharp narrowing of the cyclotron resonance with increase in the magnetic field, explained by the charge scattering peculiarities in the given potential is established. The obtained results suggest the strongly correlated electron state in the strong magnetic fields by the carriers concentrations lesser than the antidots concentrations
SNAKE BITE, SNAKE VENOM, ANTI-VENOM AND HERBAL ANTIDOTE – A REVIEW
Paul Rita; Datta K. Animesh; Mandal Aninda; Ghosh K Benoy; Halder Sandip
2011-01-01
The mortality associated with snake bites is a serious public health problem as the estimated death incidence per year is about 1,25,000 globally. In India about 35,000 to 50,000 people reportedly die of snake bite; although, unreported cases may be even more in rural areas. Considering the socio-medical problem due to snake bite, a review is being conducted on snake bite (management aspects), snake venom (nature and its utility), anti-venom and herbal antidote to provide adequate information...
8102 and 7601 as antidotes for acute uranyl nitrate intoxication in rats
The effect of phenolic chelating agents, 8102 and 7601, as antidotes for acute uranyl nitrate (100-500 mg/kg) intoxication was examined. The results show that after intraperitoneal injection of 50 mg of uranyl nitrate per kg, all the control rats died at 3rd and 4th days and exhibited acute renal tubular necrosis and protein casts. 8102 and 7601 could promote the animals survival and reduce the histologic lesion of kidneys in rats intoxicated with uranyl nitrate (100-350 mg/kg). 8102 is more effective than 7601
Role of the lattice dynamics in La2-xBaxCuO4 superconductor based on DFT method
A Tavana
2010-09-01
Full Text Available Electron-phonon coupling parameters are calculated for La2-x BaxCuO4 cuprate superconductor in a wide range of dopings, from undoped to overdoped compounds. In this study we aim to study the quality of such calculations based on DFT method so, the results of σ GGA+U electronic structure calculations are also investigated. The obtained value for electron-phonon coupling is in the same order of previous calculations but, the value obtained for the Hubbard U parameter shows that, such methods are poor in the estimation of electronic correlations to decide about the role of phonons in these compounds based on their results. Moreover, existence of several structural phase transitions with temperature and doping, lead to larger error in these calculations. Based on the calculated phonon dispersions, structural phase transitions can be resulted which shows the ability of DFT in the study of structural properties and the weakness of the strongly correlations in this properties.
Kenneth Wilson and Lattice QCD
Ukawa, Akira
2015-09-01
We discuss the physics and computation of lattice QCD, a space-time lattice formulation of quantum chromodynamics, and Kenneth Wilson's seminal role in its development. We start with the fundamental issue of confinement of quarks in the theory of the strong interactions, and discuss how lattice QCD provides a framework for understanding this phenomenon. A conceptual issue with lattice QCD is a conflict of space-time lattice with chiral symmetry of quarks. We discuss how this problem is resolved. Since lattice QCD is a non-linear quantum dynamical system with infinite degrees of freedom, quantities which are analytically calculable are limited. On the other hand, it provides an ideal case of massively parallel numerical computations. We review the long and distinguished history of parallel-architecture supercomputers designed and built for lattice QCD. We discuss algorithmic developments, in particular the difficulties posed by the fermionic nature of quarks, and their resolution. The triad of efforts toward better understanding of physics, better algorithms, and more powerful supercomputers have produced major breakthroughs in our understanding of the strong interactions. We review the salient results of this effort in understanding the hadron spectrum, the Cabibbo-Kobayashi-Maskawa matrix elements and CP violation, and quark-gluon plasma at high temperatures. We conclude with a brief summary and a future perspective.
LATTICE: an interactive lattice computer code
LATTICE is a computer code which enables an interactive user to calculate the functions of a synchrotron lattice. This program satisfies the requirements at LBL for a simple interactive lattice program by borrowing ideas from both TRANSPORT and SYNCH. A fitting routine is included
Zhu, Xiaolong; Wang, Weihua; Yan, Wei;
2014-01-01
Nanostructured graphene on SiO2 substrates paves the way for enhanced light–matter interactions and explorations of strong plasmon–phonon hybridization in the mid-infrared regime. Unprecedented large-area graphene nanodot and antidot optical arrays are fabricated by nanosphere lithography, with...
Kinyon, Michael
2012-01-01
Categorical skew lattices are a variety of skew lattices on which the natural partial order is especially well behaved. While most skew lattices of interest are categorical, not all are. They are characterized by a countable family of forbidden subalgebras. We also consider the subclass of strictly categorical skew lattices.
Managing Workplace Incivility: The Role of Conflict Management Styles--Antecedent or Antidote?
Trudel, Jeannie; Reio, Thomas G., Jr.
2011-01-01
The workforce of the 21st century is dealing with rapid changes and increased competition across industries. Such changes place stress on management and workers alike, increasing the potential for workplace conflict and deviant workplace behaviors, including incivility. The importance of effective conflict management in the workplace has been…
Liu, Yang; Du, Juanjuan; Yan, Ming; Lau, Mo Yin; Hu, Jay; Han, Hui; Yang, Otto O.; Liang, Sheng; Wei, Wei; Wang, Hui; Li, Jianmin; Zhu, Xinyuan; Shi, Linqi; Chen, Wei; Ji, Cheng; Lu, Yunfeng
2013-03-01
Organisms have sophisticated subcellular compartments containing enzymes that function in tandem. These confined compartments ensure effective chemical transformation and transport of molecules, and the elimination of toxic metabolic wastes. Creating functional enzyme complexes that are confined in a similar way remains challenging. Here we show that two or more enzymes with complementary functions can be assembled and encapsulated within a thin polymer shell to form enzyme nanocomplexes. These nanocomplexes exhibit improved catalytic efficiency and enhanced stability when compared with free enzymes. Furthermore, the co-localized enzymes display complementary functions, whereby toxic intermediates generated by one enzyme can be promptly eliminated by another enzyme. We show that nanocomplexes containing alcohol oxidase and catalase could reduce blood alcohol levels in intoxicated mice, offering an alternative antidote and prophylactic for alcohol intoxication.
Two new species of Curcuma (Zingiberaceae) used as cobra-bite antidotes
Arunrat CHAVEERACH; Runglawan SUDMOON; Tawatchai TANEE; Piya MOKKAMUL; Nison SATTAYASAI; Jintana SATTAYASAI
2008-01-01
Two new species of Curcuma, C. sattayasaii A. Chaveerach & R. Sudmoon and C. zedoaroides A. Chaveerach & T. Tanee with rhizomes traditionally used for many decades as cobra-bite antidotes are described and illustrated. Curcuma sattayasaii is similar to C. longa L., but differs in rhizome horizontally branching on ground;coma bracts pinkish-white or pinkish-pale green;corolla pale yellow with orange tip;labellum pale orange with an orange central band;anther crest very short, broadly ovate, wider than long. Curcuma zedoaroides is similar to C. zedoaria (Christm.) Roscoe, but differs in rhizome branching pattern;the protruding secondary rhizomes curved down;blades oblong to oblong-lanceolate;peduncle glabrous;fertile and coma bracts glabrous;corolla lobes pale yellow to white, lateral lobe ovate, dorsal lobe broadly ovate. The new taxa have been found in a village of Khon Kaen Province, Northeastern Thailand.
Zhou, Yungang; Yang, Ping; Zu, Haoyue; Gao, Fei; Zu, Xiaotao
2013-04-24
MoS2-based nanostructures, including atomic defect, nanohole, nanodot and antidot, are characterized with spin-polarized density functional theory. The S-vacancy defect is more likely to form than the Mo-vacancy defect due to the formation of Mo-Mo metallic bonds. Among different shaped nanoholes and nanodots, triangle ones associated with ferromagnetic characteristic are the most energetically favorable, and exhibit unexpected large spin moment that is scaled linearly with edged length.
Reactor lattice transport calculations
The present lecture is a continuation of the lecture on Introduction to the Neutron Transport Phenomena. It comprises three aspects of lattice calculations. First the idea of a reactor lattice is introduced. Then the main definitions used in reactor lattice analysis are given, and finally two basic methods applied for solution of the transport equations are defined. Several remarks on secondary results from lattice transport calculations are added. (author)
Sober Topological Molecular Lattices
张德学; 李永明
2003-01-01
A topological molecular lattice (TML) is a pair (L, T), where L is a completely distributive lattice and r is a subframe of L. There is an obvious forgetful functor from the category TML of TML's to the category Loc of locales. In this note,it is showed that this forgetful functor has a right adjoint. Then, by this adjunction,a special kind of topological molecular lattices called sober topological molecular lattices is introduced and investigated.
Querying Relational Concept Lattices
Azmeh, Zeina; Huchard, Marianne; Napoli, Amedeo; Rouane Hacene, Amine Mohamed; Valtchev, Petko
2011-01-01
Relational Concept Analysis (RCA) constructs conceptual abstractions from objects described by both own properties and inter-object links, while dealing with several sorts of objects. RCA produces lattices for each category of objects and those lattices are connected via relational attributes that are abstractions of the initial links. Navigating such interrelated lattice family in order to find concepts of interest is not a trivial task due to the potentially large size of the lattices and t...
Allgardsson, Anders; Berg, Lotta; Akfur, Christine; Hörnberg, Andreas; Linusson, Anna; Ekström, Fredrik J.
2016-01-01
Organophosphorus nerve agents interfere with cholinergic signaling by covalently binding to the active site of the enzyme acetylcholinesterase (AChE). This inhibition causes an accumulation of the neurotransmitter acetylcholine, potentially leading to overstimulation of the nervous system and death. Current treatments include the use of antidotes that promote the release of functional AChE by an unknown reactivation mechanism. We have used diffusion trap cryocrystallography and density functional theory (DFT) calculations to determine and analyze prereaction conformers of the nerve agent antidote HI-6 in complex with Mus musculus AChE covalently inhibited by the nerve agent sarin. These analyses reveal previously unknown conformations of the system and suggest that the cleavage of the covalent enzyme–sarin bond is preceded by a conformational change in the sarin adduct itself. Together with data from the reactivation kinetics, this alternate conformation suggests a key interaction between Glu202 and the O-isopropyl moiety of sarin. Moreover, solvent kinetic isotope effect experiments using deuterium oxide reveal that the reactivation mechanism features an isotope-sensitive step. These findings provide insights into the reactivation mechanism and provide a starting point for the development of improved antidotes. The work also illustrates how DFT calculations can guide the interpretation, analysis, and validation of crystallographic data for challenging reactive systems with complex conformational dynamics. PMID:27140636
Allgardsson, Anders; Berg, Lotta; Akfur, Christine; Hörnberg, Andreas; Worek, Franz; Linusson, Anna; Ekström, Fredrik J
2016-05-17
Organophosphorus nerve agents interfere with cholinergic signaling by covalently binding to the active site of the enzyme acetylcholinesterase (AChE). This inhibition causes an accumulation of the neurotransmitter acetylcholine, potentially leading to overstimulation of the nervous system and death. Current treatments include the use of antidotes that promote the release of functional AChE by an unknown reactivation mechanism. We have used diffusion trap cryocrystallography and density functional theory (DFT) calculations to determine and analyze prereaction conformers of the nerve agent antidote HI-6 in complex with Mus musculus AChE covalently inhibited by the nerve agent sarin. These analyses reveal previously unknown conformations of the system and suggest that the cleavage of the covalent enzyme-sarin bond is preceded by a conformational change in the sarin adduct itself. Together with data from the reactivation kinetics, this alternate conformation suggests a key interaction between Glu202 and the O-isopropyl moiety of sarin. Moreover, solvent kinetic isotope effect experiments using deuterium oxide reveal that the reactivation mechanism features an isotope-sensitive step. These findings provide insights into the reactivation mechanism and provide a starting point for the development of improved antidotes. The work also illustrates how DFT calculations can guide the interpretation, analysis, and validation of crystallographic data for challenging reactive systems with complex conformational dynamics. PMID:27140636
Marichal, Jean-Luc
2007-01-01
We define the concept of weighted lattice polynomial functions as lattice polynomial functions constructed from both variables and parameters. We provide equivalent forms of these functions in an arbitrary bounded distributive lattice. We also show that these functions include the class of discrete Sugeno integrals and that they are characterized by a median based decomposition formula.
Zakrzewski, W J
2004-01-01
We consider some lattices and look at discrete Laplacians on these lattices. In particular we look at solutions of the equation $\\triangle(1)\\phi = \\triangle(2)Z$ where $\\triangle(1)$ and $\\triangle(2)$ are two such laplacians on the same lattice. We discuss solutions of this equation in some special cases.
Dynamical Gauge Fields on Optical Lattices: A Lattice Gauge Theorist Point of View
Meurice, Yannick
2011-01-01
Dynamical gauge fields are essential to capture the short and large distance behavior of gauge theories (confinement, mass gap, chiral symmetry breaking, asymptotic freedom). I propose two possible strategies to use optical lattices to mimic simulations performed in lattice gauge theory. I discuss how new developments in optical lattices could be used to generate local invariance and link composite operators with adjoint quantum numbers that could play a role similar to the link variables used in lattice gauge theory. This is a slightly expanded version of a poster presented at the KITP Conference: Frontiers of Ultracold Atoms and Molecules (Oct 11-15, 2010) that I plan to turn into a more comprehensive tutorial that could be used by members of the optical lattice and lattice gauge theory communities. Suggestions are welcome.
Memory load as a cognitive antidote to performance decrements in data entry.
Chapman, Mary J; Healy, Alice F; Kole, James A
2016-10-01
In two experiments, subjects trained in data entry, typing one 4-digit number at a time. At training, subjects either typed the numbers immediately after they appeared (immediate) or typed the previous number from memory while viewing the next number (delayed). In Experiment 2 stimulus presentation time was limited and either nothing or a space (gap) was inserted between the second and third digits. In both experiments after training, all subjects completed a test with no gap and typed numbers immediately. Training with a memory load improved speed across training blocks (Experiment 1) and eliminated the decline in accuracy across training blocks (Experiment 2), thus serving as a cognitive antidote to performance decrements. An analysis of each keystroke revealed different underlying processes and strategies for the two training conditions, including when encoding took place. Chunking (in which the first and last two digits are treated separately) was more evident in the immediate than in the delayed condition and was exaggerated with a gap, even at test when there was no gap. These results suggest that such two-digit chunking is due to stimulus encoding and motor planning processes as well as memory, and those processes transferred from training to testing. PMID:26390366
In the last few years lattice gauge theory has become the primary tool for the study of nonperturbative phenomena in gauge theories. The lattice serves as an ultraviolet cutoff, rendering the theory well defined and amenable to numerical and analytical work. Of course, as with any cutoff, at the end of a calculation one must consider the limit of vanishing lattice spacing in order to draw conclusions on the physical continuum limit theory. The lattice has the advantage over other regulators that it is not tied to the Feynman expansion. This opens the possibility of other approximation schemes than conventional perturbation theory. Thus Wilson used a high temperature expansion to demonstrate confinement in the strong coupling limit. Monte Carlo simulations have dominated the research in lattice gauge theory for the last four years, giving first principle calculations of nonperturbative parameters characterizing the continuum limit. Some of the recent results with lattice calculations are reviewed
Lattice theory for nonspecialists
These lectures were delivered as part of the academic training programme at the NIKHEF-H. These lectures were intended primarily for experimentalists, and theorists not specializing in lattice methods. The goal was to present the essential spirit behind the lattice approach and consequently the author has concentrated mostly on issues of principle rather than on presenting a large amount of detail. In particular, the author emphasizes the deep theoretical infra-structure that has made lattice studies meaningful. At the same time, he has avoided the use of heavy formalisms as they tend to obscure the basic issues for people trying to approach this subject for the first time. The essential ideas are illustrated with elementary soluble examples not involving complicated mathematics. The following subjects are discussed: three ways of solving the harmonic oscillator problem; latticization; gauge fields on a lattice; QCD observables; how to solve lattice theories. (Auth.)
Spight, Marshall
2008-01-01
Relational lattice is a formal mathematical model for Relational algebra. It reduces the set of six classic relational algebra operators to two: natural join and inner union. We continue to investigate Relational lattice properties with emphasis onto axiomatic definition. New results include additional axioms, equational definition for set difference (more generally anti-join), and case study demonstrating application of the relational lattice theory for query transformations.
kunz, Milan
2006-01-01
Ferrers graphs and tables of partitions are treated as vectors. Matrix operations are used for simple proofs of identities concerning partitions. Interpreting partitions as vectors gives a possibility to generalize partitions on negative numbers. Partitions are then tabulated into lattices and some properties of these lattices are studied. There appears a new identity counting Ferrers graphs packed consecutively into isoscele form. The lattices form the base for tabulating combinatorial ident...
Lattice degeneracies of fermions
We present a detailed description of the minimal degeneracies of geometric (Kaehler) fermions on all the lattices of maximal symmetries in n = 1, ..., 4 dimensions. We also determine the isolated orbits of the maximal symmetry groups, which are related to the minimal numbers of ''naive'' fermions on the reciprocals of these lattices. It turns out that on the self-reciprocal lattices the minimal numbers of naive fermions are equal to the minimal numbers of degrees of freedom of geometric fermions. The description we give relies on the close connection of the maximal lattice symmetry groups with (affine) Weyl groups of root systems of (semi-) simple Lie algebras. (orig.)
Shindler, A. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2007-07-15
I review the theoretical foundations, properties as well as the simulation results obtained so far of a variant of the Wilson lattice QCD formulation: Wilson twisted mass lattice QCD. Emphasis is put on the discretization errors and on the effects of these discretization errors on the phase structure for Wilson-like fermions in the chiral limit. The possibility to use in lattice simulations different lattice actions for sea and valence quarks to ease the renormalization patterns of phenomenologically relevant local operators, is also discussed. (orig.)
dc and ac magnetic properties of thin-walled Nb cylinders with and without a row of antidots
Tsindlekht, M. I.; Genkin, V. M.; Felner, I.; Zeides, F.; Katz, N.; Gazi, S.; Chromik, S.; Dobrovolskiy, O. V.; Sachser, R.; Huth, M.
2015-01-01
dc and ac magnetic properties of two thin-walled superconducting Nb cylinders with a rectangular cross-section are reported. Magnetization curves and the ac response were studied on as-prepared and patterned samples in magnetic fields parallel to the cylinder axis. A row of micron-sized antidots (holes) was made in the film along the cylinder axis. Avalanche-like jumps of the magnetization are observed for both samples at low temperatures for magnetic fields not only above $H_{c1}$, but in fi...
Entropy favours open colloidal lattices
Mao, Xiaoming; Chen, Qian; Granick, Steve
2013-03-01
Burgeoning experimental and simulation activity seeks to understand the existence of self-assembled colloidal structures that are not close-packed. Here we describe an analytical theory based on lattice dynamics and supported by experiments that reveals the fundamental role entropy can play in stabilizing open lattices. The entropy we consider is associated with the rotational and vibrational modes unique to colloids interacting through extended attractive patches. The theory makes predictions of the implied temperature, pressure and patch-size dependence of the phase diagram of open and close-packed structures. More generally, it provides guidance for the conditions at which targeted patchy colloidal assemblies in two and three dimensions are stable, thus overcoming the difficulty in exploring by experiment or simulation the full range of conceivable parameters.
Counting Hexagonal Lattice Animals
Mohammed, Mohamud
2002-01-01
We describe Maple packages for the automatic generation of generating functions(and series expansions) for counting lattice animals(fixed polyominoes), in the two-dimensional hexagonal lattice, of bounded but arbitrary width. Our Maple packages(complete with source code) are easy-to-use and available from my website.
Epelbaum E.
2010-04-01
Full Text Available We review recent progress on nuclear lattice simulations using chiral eﬀective ﬁeld theory. We discuss lattice results for dilute neutron matter at next-to-leading order, three-body forces at next-to-next-toleading order, isospin-breaking and Coulomb eﬀects, and the binding energy of light nuclei.
Active Optical Lattice Filters
Gary Evans; MacFarlane, Duncan L.; Govind Kannan; Jian Tong; Issa Panahi; Vishnupriya Govindan; L. Roberts Hunt
2005-01-01
Optical lattice filter structures including gains are introduced and analyzed. The photonic realization of the active, adaptive lattice filter is described. The algorithms which map between gains space and filter coefficients space are presented and studied. The sensitivities of filter parameters with respect to gains are derived and calculated. An example which is relevant to adaptive signal processing is also provided.
Flat Band Quastiperiodic Lattices
Bodyfelt, Joshua; Flach, Sergej; Danieli, Carlo
2014-03-01
Translationally invariant lattices with flat bands (FB) in their band structure possess irreducible compact localized flat band states, which can be understood through local rotation to a Fano structure. We present extension of these quasi-1D FB structures under incommensurate lattices, reporting on the FB effects to the Metal-Insulator Transition.
Motahareh Soltani
2016-08-01
Full Text Available Objectives: Aluminium phosphide (AlP is a fumigant pesticide which protects stored grains from insects and rodents. When it comes into contact with moisture, AlP releases phosphine (PH3, a highly toxic gas. No efficient antidote has been found for AlP poisoning so far and most people who are poisoned do not survive. Boric acid is a Lewis acid with an empty p orbital which accepts electrons. This study aimed to investigate the neutralisation of PH3 gas with boric acid. Methods: This study was carried out at the Baharlou Hospital, Tehran University of Medical Sciences, Tehran, Iran, between December 2013 and February 2014. The volume of released gas, rate of gas evolution and changes in pH were measured during reactions of AlP tablets with water, acidified water, saturated boric acid solution, acidified saturated boric acid solution, activated charcoal and acidified activated charcoal. Infrared spectroscopy was used to study the resulting probable adduct between PH3 and boric acid. Results: Activated charcoal significantly reduced the volume of released gas (P <0.01. Although boric acid did not significantly reduce the volume of released gas, it significantly reduced the rate of gas evolution (P <0.01. A gaseous adduct was formed in the reaction between pure AlP and boric acid. Conclusion: These findings indicate that boric acid may be an efficient and non-toxic antidote for PH3 poisoning.
The post-Chernobyl 137Cs contamination caused gut uptake of this nuclide by ruminants, pigs and laying hens. The application of several clay minerals, stable caesium as well as hexacyanoferrate and related compounds has shown to be effective in reducing the gut uptake. The aim of this study was focused on a possibility of the suppression of gut uptake of 13'7Cs from the contaminated feed mixture to broiler chicken and/or increasing the rate of excretion of 137Cs from tissues of broiler chicken by a special food additive (RADECONT, i.e. 98% of clinoptilolite + 2% of FeHCF, made by BIOPOR, CZ). The antidote material RADECONT was added to the feed mixture 2 hours after application of artificially contaminated feed (5kBq of 137Cs per chicken). The dose of the material was 0.5g per kg body weight and it was repeated daily. The control chickens were given137Cs but not antidote in the feed. Lower radiocaesium activities in breast and leg muscles (statistically significant, P137Cs administration. The biological half-lives of 137Cs in the controls treated animals were similar. Application of RADECONT decreased the uptake of radiocaesium in tissues (by up to 20% in muscles) but did not enhance the excretion rate of 137Cs. (author)
Courant, E.D.; Garren, A.A.
1985-10-01
A realistic, distributed interaction region (IR) lattice has been designed that includes new components discussed in the June 1985 lattice workshop. Unlike the test lattices, the lattice presented here includes utility straights and the mechanism for crossing the beams in the experimental straights. Moreover, both the phase trombones and the dispersion suppressors contain the same bending as the normal cells. Vertically separated beams and 6 Tesla, 1-in-1 magnets are assumed. Since the cells are 200 meters long, and have 60 degree phase advance, this lattice has been named RLD1, in analogy with the corresponding test lattice, TLD1. The quadrupole gradient is 136 tesla/meter in the cells, and has similar values in other quadrupoles except in those in the IR`s, where the maximum gradient is 245 tesla/meter. RLD1 has distributed IR`s; however, clustered realistic lattices can easily be assembled from the same components, as was recently done in a version that utilizes the same type of experimental and utility straights as those of RLD1.
Lattice defects in lithium tantalate
Lithium tantalate single crystals are used for piezoelectric devices. The lattice defects of this structure and their possible role on piezoelectric performances are investigated. Synthetic crystals are grown by a Czochralski process. To get homogeneous material it is necessary to start from a non-equimolar mixture of Li2O and Ta2O5 powders leading to a congruent melt. The resulting crystals are non-stoichiometric with an atomic ratio [Li]/[Li + Ta] ∼ 48%, and this induces a first kind of lattice defects: the point defects associated to this non-stoichiometry. When cooled down from high temperature, LiTaO3 suffers a second-order phase transition from a paraelectric phase R3-barc to a ferroelectric phase R3c which is the stable phase at room temperature. A second kind of lattice defects (ferroelectric domains) is generally nucleated at the transition. These defects constitute a poison for piezoelectric applications because the polarization vector c is reversed. One can in principle prevent their occurrence by a poling process (cooling under a static electric field). Dislocations and twins are other as-grown lattice defects; they can also be introduced by the usual machining processes (sawing, grinding ...). Furthermore because of the very high values of the piezoelectric constants, the stress field of the dislocations can induce ferroelectric domains around them, even at room temperature, and such domains cannot be removed by poling. The experimental techniques used are infrared spectroscopy and differential scanning calorimetry for the characterization of point defects and non-stoichiometry; chemical etching and transmission electron microscopy for the characterization of dislocations and twins. As-grown defects are studied and the ones introduced by machining; these latter ones are simulated by scratching and by plastic deformation under confining pressure. A few constant strain rate tests are also performed in the temperature range 20 to 700 0C. The subsequent
Lattice gauge theory is now ten years old. Apart from the theoretical insight the lattice formulation gives, it is very well suited for computer simulations, as its inventor advocated already some five years ago at this school. Since three years this approach has extracted useful information out of lattice gauge theory and spurred many interesting questions. In the first lecture, I will assume there are no experts in the audience and explain some basic facts in quarkless quantumchromodynamics on a lattice (QCD). Then, in the second lecture, we shall review tests for the consistency of the numerical results so far obtained. The third lecture shall deal with a more esoteric subject: that of large N reduced models. The list of references is by no means meant to be exhaustive; for that the reader is referred to ref. 27
Lattice supersymmetric ward identities
SUSY Ward identities for the N=1 SU(2) SUSY Yang-Mills theory are studied on the lattice in a non-perturbative numerical approach. As a result a determination of the subtracted gluino mass is obtained
The architecture and capabilities of the computers currently in use for large-scale lattice QCD calculations are described and compared. Based on this present experience, possible future directions are discussed
The structure of a new coumarin type compound isolated from the entitled species was elucidated by the full spectral analysis consisting of FTIR, 1H NMR, DQF COSY, 13C NMR, DEPT, EIMS (HR-EIMS), HMQC and HMBC. The antidote activities of the fresh juice and the ethanolic extract of the plant, and the isolated compound alternamin were also determined
Vector Lattice Vortex Solitons
WANG Jian-Dong; YE Fang-Wei; DONG Liang-Wei; LI Yong-Ping
2005-01-01
@@ Two-dimensional vector vortex solitons in harmonic optical lattices are investigated. The stability properties of such solitons are closely connected to the lattice depth Vo. For small Vo, vector vortex solitons with the total zero-angular momentum are more stable than those with the total nonzero-angular momentum, while for large Vo, this case is inversed. If Vo is large enough, both the types of such solitons are stable.
Full text: We sketch the general concepts of the lattice regularisation in quantum field theory, which enables Monte Carlo simulations and non-perturbative numerical measurements of observables in particle physics. We then address the status of lattice QCD with 2+1 flavours of dynamical quarks, where hadron masses can now be evaluated from the first principles of QCD close to the percent level. (author)
Bietenholz, Wolfgang [Universidad Nacional Autonoma de Mexico (UNAM) (Mexico)
2011-07-01
Full text: We sketch the general concepts of the lattice regularisation in quantum field theory, which enables Monte Carlo simulations and non-perturbative numerical measurements of observables in particle physics. We then address the status of lattice QCD with 2+1 flavours of dynamical quarks, where hadron masses can now be evaluated from the first principles of QCD close to the percent level. (author)
Automated Lattice Perturbation Theory
Monahan, Christopher
2014-11-01
I review recent developments in automated lattice perturbation theory. Starting with an overview of lattice perturbation theory, I focus on the three automation packages currently "on the market": HiPPy/HPsrc, Pastor and PhySyCAl. I highlight some recent applications of these methods, particularly in B physics. In the final section I briefly discuss the related, but distinct, approach of numerical stochastic perturbation theory.
Lattice Operators and Topologies
Eva Cogan
2009-01-01
Working within a complete (not necessarily atomic) Boolean algebra, we use a sublattice to define a topology on that algebra. Our operators generalize complement on a lattice which in turn abstracts the set theoretic operator. Less restricted than those of Banaschewski and Samuel, the operators exhibit some surprising behaviors. We consider properties of such lattices and their interrelations. Many of these properties are abstractions and generalizations of topological spaces. The approach is...
Bergner, Georg
2016-01-01
We discuss the motivations, difficulties and progress in the study of supersymmetric lattice gauge theories focusing in particular on ${\\cal N}=1$ and ${\\cal N}=4$ super Yang-Mills in four dimensions. Brief reviews of the corresponding lattice formalisms are given and current results are presented and discussed. We conclude with a summary of the main aspects of current work and prospects for the future.
Lattice calculation of nonleptonic charm decays
The decays of charmed mesons into two body nonleptonic final states are investigated. Weak interaction amplitudes of interest in these decays are extracted from lattice four-point correlation functions using a effective weak Hamiltonian including effects to order Gf in the weak interactions yet containing effects to all orders in the strong interactions. The lattice calculation allows a quantitative examination of non-spectator processes in charm decays helping to elucidate the role of effects such as color coherence, final state interactions and the importance of the so called weak annihilation process. For D → Kπ, we find that the non-spectator weak annihilation diagram is not small, and we interpret this as evidence for large final state interactions. Moreover, there is indications of a resonance in the isospin 1/2 channel to which the weak annihilation process contributes exclusively. Findings from the lattice calculation are compared to results from the continuum vacuum saturation approximation and amplitudes are examined within the framework of the 1/N expansion. Factorization and the vacuum saturation approximation are tested for lattice amplitudes by comparing amplitudes extracted from lattice four-point functions with the same amplitude extracted from products of two-point and three-point lattice correlation functions arising out of factorization and vacuum saturation
Lattice supersymmetry and string phenomenology
Giedt, Joel
2003-01-01
I discuss the usefulness of lattice supersymmetry in relation to string phenomenology. I suggest how lattice results might be incorporated into string phenomenology. I outline difficulties and describe some constructions that contain an exact lattice version of supersymmetry, thereby reducing fine-tuning of the regulator. I mention some problems that occur for these lattices.
Poplas-Sušić Tonka
2010-01-01
Full Text Available Introduction. Data on emergency interventions in poisonings are scarce. Objective. To determine the effectiveness of antidote therapy in acute poisoning-related emergency medical services (EMS interventions. Methods. A prospective observational study included all poisoning-related intervention cases over 3 years (1999-2001 in the Celje region, Slovenia, covering 125,000 inhabitants. Data were recorded on an EMS form. Results. Psychoactive agents were present in 56.5% out of 244 poisoning-related EMS interventions. Prescription drugs were a cause of intoxication in 93 (39.2% cases alone or in combination with alcohol or illegal drugs. More than one fifth of poisonings were due to the use of illegal drugs in 52 (21.9% cases, 43 (18.1% out of them heroin related. At the time of EMS arrival, more patients who ingested illegal drugs were in coma or comatose than the rest. 24 (45.3% vs. 32 (17.3% of poisoned patients were in coma (p<0.001. Glasgow Coma Scale (GCS at the first contact was lower in patients who ingested illegal drugs than in the remaining patients (9.0 vs. 11.6, p=0.001. In 23.2% of the cases, an antidote was administered. In 29 (12.2% naloxone and in 16 (6.7% flumazenil was administered. Mean GCS after intervention was higher in all cases but significantly higher in illegal drug cases, 13.4 vs. 12.2 (p=0.001, with a mean positive change in GCS of 4.5 vs. 0.6 (p<0.001. In illegal drug users, mean change after antidote administration was 8.2 vs. 0.5 without antidote administration (p<0.001. Conclusion. High rate of successful antidote use during the intervention indicated the importance of good EMS protocols and the presence of a skilled doctor in the EMS team.
Invisibility in non-Hermitian tight-binding lattices
Reflectionless defects in Hermitian tight-binding lattices, synthesized by the intertwining operator technique of supersymmetric quantum mechanics, are generally not invisible and time-of-flight measurements could reveal the existence of the defects. Here it is shown that, in a certain class of non-Hermitian tight-binding lattices with complex hopping amplitudes, defects in the lattice can appear fully invisible to an outside observer. The synthesized non-Hermitian lattices with invisible defects possess a real-valued energy spectrum; however, they lack parity-time (PT) symmetry, which does not play any role in the present work.
Connecting Structure Functions on the Lattice with Phenomenology
We examine the extraction of moments of parton distributions from lattice data, focusing in particular on the chiral extrapolation as a function of the quark mass. Inclusion of the correct chiral behavior of the spin-averaged isovector distribution resolves a long-standing discrepancy between the lattice moments and experiment. We extract the x-dependence of the valence u-d distribution from the lowest few lattice moments, and discuss the implications for the quark mass dependence of meson masses lying on the a2 Regge trajectory. The role of chiral symmetry in spin-dependent distributions, and in particular the lattice axial vector charge, gA, is discussed
Progress in lattice field theory algorithms
I present a summary of recent algorithmic developments for lattice field theories. In particular I give a pedagogical introduction to the new Multicanonical algorithm, and discuss the relation between the Hybrid Overrelaxation and Hybrid Monte Carlo algorithms. I also attempt to clarify the role of the dynamical critical exponent z and its connection with 'computational cost'. (orig.)
Goswami, Soumik; Haldar, Chandana
2015-12-01
The sun rays brings along the ultraviolet radiations (UVRs) which prove deleterious for living organisms. The UVR is a known mutagen and is the prime cause of skin carcinomas. UVR causes acute oxidative stress and this in turn deteriorates other physiological functions. Inflammatory conditions and elevation of pro-inflammatory molecules are also associated with UVR mediated cellular damages. The inflammatory conditions can secondarily trigger the generation of free radicals and this act cumulatively in further deterioration of tissue homeostasis. Photoimmunologists have also related UVR to the suppression of not only cutaneous but also systemic immunity by different mechanisms. Some researchers have proposed the use of various plant products as antioxidants against UVR induced oxidative imbalances but Melatonin is gaining rapid interest as a product that can be utilized to delineate the pathological effects of UVR since it is an established antioxidant. Besides the antioxidative nature, the capacity of melatonin to attenuate apoptosis and more importantly the efficacy of its metabolites to further aid in the detoxification of free radicals have made it a key player to be utilized against UVR mediated aggravated conditions. However, there is need for further extensive investigation to speculate melatonin as an antidote to UVR. Although too early to prescribe melatonin as a clinical remedy, the hormone can be integrated into dermal formulations or oral supplements to prevent the ever increasing incidences of skin cancers due to the prevalence of the UVR on the surface of the earth. The present review focuses and substantiates the work by different photo-biologists demonstrating the protective effects of melatonin and its metabolites against solar UVR - Melatonin as a possible antidote to UV radiation induced cutaneous damages and immune-suppression: an overview. J Photochem Photobiol B. PMID:26496791
Digital lattice gauge theories
Zohar, Erez; Reznik, Benni; Cirac, J Ignacio
2016-01-01
We propose a general scheme for a digital construction of lattice gauge theories with dynamical fermions. In this method, the four-body interactions arising in models with $2+1$ dimensions and higher, are obtained stroboscopically, through a sequence of two-body interactions with ancillary degrees of freedom. This yields stronger interactions than the ones obtained through pertubative methods, as typically done in previous proposals, and removes an important bottleneck in the road towards experimental realizations. The scheme applies to generic gauge theories with Lie or finite symmetry groups, both Abelian and non-Abelian. As a concrete example, we present the construction of a digital quantum simulator for a $\\mathbb{Z}_{3}$ lattice gauge theory with dynamical fermionic matter in $2+1$ dimensions, using ultracold atoms in optical lattices, involving three atomic species, representing the matter, gauge and auxiliary degrees of freedom, that are separated in three different layers. By moving the ancilla atoms...
Catterall, Simon; Kaplan, David B.; Unsal, Mithat
2009-03-31
We provide an introduction to recent lattice formulations of supersymmetric theories which are invariant under one or more real supersymmetries at nonzero lattice spacing. These include the especially interesting case of N = 4 SYM in four dimensions. We discuss approaches based both on twisted supersymmetry and orbifold-deconstruction techniques and show their equivalence in the case of gauge theories. The presence of an exact supersymmetry reduces and in some cases eliminates the need for fine tuning to achieve a continuum limit invariant under the full supersymmetry of the target theory. We discuss open problems.
Light Localization and Magneto-Optic Enhancement in Ni Antidot Arrays.
Rollinger, Markus; Thielen, Philip; Melander, Emil; Östman, Erik; Kapaklis, Vassilios; Obry, Björn; Cinchetti, Mirko; García-Martín, Antonio; Aeschlimann, Martin; Papaioannou, Evangelos Th
2016-04-13
We reveal an explicit strategy to design the magneto-optic response of a magneto-plasmonic crystal by correlating near- and far-fields effects. We use photoemission electron microscopy to map the spatial distribution of the electric near-field on a nanopatterned magnetic surface that supports plasmon polaritons. By using different photon energies and polarization states of the incident light we reveal that the electric near-field is either concentrated in spots forming a hexagonal lattice with the same symmetry as the Ni nanopattern or in stripes oriented along the Γ-K direction of the lattice and perpendicular to the polarization direction. We show that the polarization-dependent near-field enhancement on the patterned surface is directly correlated to both the excitation of surface plasmon polaritons on the patterned surface as well as the enhancement of the polar magneto-optical Kerr effect. We obtain a relationship between the size of the enhanced magneto-optical behavior and the polarization and wavelength of optical excitation. The engineering of the magneto-optic response based on the plasmon-induced modification of the optical properties introduces the concept of a magneto-plasmonic meta-structure. PMID:27018661
Lattice W-algebras and logarithmic CFTs
This paper is part of an effort to gain further understanding of 2D logarithmic conformal field theories (LCFTs) by exploring their lattice regularizations. While all work so far has dealt with the Virasoro algebra (or the product Vir⊗ Vir-bar ), the best known (although maybe not the most relevant physically) LCFTs in the continuum are characterized by a W-algebra symmetry, whose presence is powerful, but whose role as a ‘symmetry’ remains mysterious. We explore here the origin of this symmetry in the underlying lattice models. We consider Uqsℓ(2) XXZ spin chains for q a root of unity, and argue that the centralizer of the ‘small’ quantum group U-bar qsℓ(2) goes over the W-algebra in the continuum limit. We justify this identification by representation theoretic arguments, and give, in particular, lattice versions of the W-algebra generators. In the case q=i, which corresponds to symplectic fermions at central charge c=−2, we provide a full analysis of the scaling limit of the lattice Virasoro and W generators, and show in details how the corresponding continuum Virasoro and W-algebras are obtained. Striking similarities between the lattice W algebra and the Onsager algebra are observed in this case. (paper)
Optimality and uniqueness of the Leech lattice among lattices
Cohn, Henry; Kumar, Abhinav
2004-01-01
We prove that the Leech lattice is the unique densest lattice in R^24. The proof combines human reasoning with computer verification of the properties of certain explicit polynomials. We furthermore prove that no sphere packing in R^24 can exceed the Leech lattice's density by a factor of more than 1+1.65*10^(-30), and we give a new proof that E_8 is the unique densest lattice in R^8.
Singh, Kevin; Geiger, Zachary; Senaratne, Ruwan; Rajagopal, Shankari; Fujiwara, Kurt; Weld, David; Weld Group Team
2015-05-01
Quasiperiodicity is intimately involved in quantum phenomena from localization to the quantum Hall effect. Recent experimental investigation of quasiperiodic quantum effects in photonic and electronic systems have revealed intriguing connections to topological phenomena. However, such experiments have been limited by the absence of techniques for creating tunable quasiperiodic structures. We propose a new type of quasiperiodic optical lattice, constructed by intersecting a Gaussian beam with a 2D square lattice at an angle with an irrational tangent. The resulting potential, a generalization of the Fibonacci lattice, is a physical realization of the mathematical ``cut-and-project'' construction which underlies all quasiperiodic structures. Calculation of the energies and wavefunctions of atoms loaded into the proposed quasiperiodic lattice demonstrate a fractal energy spectrum and the existence of edge states. We acknowledge support from the ONR (award N00014-14-1-0805), the ARO and the PECASE program (award W911NF-14-1-0154), the AFOSR (award FA9550-12-1-0305), and the Alfred P. Sloan foundation (grant BR2013-110).
Bursa, Francis; Kroyter, Michael
2010-01-01
String field theory is a candidate for a full non-perturbative definition of string theory. We aim to define string field theory on a space-time lattice to investigate its behaviour at the quantum level. Specifically, we look at string field theory in a one dimensional linear dilaton background. We report the first results of our simulations.
Mickelsson, J
1996-01-01
A calculation of the chiral anomaly on a finite lattice without fermion doubling is presented . The lattice gauge field is defined in the spirit of noncommutative geometry. Standard formulas for the continuum anomaly are obtained as a limit.
Poplas-Sušić Tonka; Klemenc-Ketis Zalika; Komericki-Grzinić Marija; Kersnik Janko
2010-01-01
Introduction. Data on emergency interventions in poisonings are scarce. Objective. To determine the effectiveness of antidote therapy in acute poisoning-related emergency medical services (EMS) interventions. Methods. A prospective observational study included all poisoning-related intervention cases over 3 years (1999-2001) in the Celje region, Slovenia, covering 125,000 inhabitants. Data were recorded on an EMS form. Results. Psychoactive agents were present in 56.5% out of 244 poisoning-re...
Borsanyi, Sz; Kampert, K H; Katz, S D; Kawanai, T; Kovacs, T G; Mages, S W; Pasztor, A; Pittler, F; Redondo, J; Ringwald, A; Szabo, K K
2016-01-01
We present a full result for the equation of state (EoS) in 2+1+1 (up/down, strange and charm quarks are present) flavour lattice QCD. We extend this analysis and give the equation of state in 2+1+1+1 flavour QCD. In order to describe the evolution of the universe from temperatures several hundreds of GeV to several tens of MeV we also include the known effects of the electroweak theory and give the effective degree of freedoms. As another application of lattice QCD we calculate the topological susceptibility (chi) up to the few GeV temperature region. These two results, EoS and chi, can be used to predict the dark matter axion's mass in the post-inflation scenario and/or give the relationship between the axion's mass and the universal axionic angle, which acts as a initial condition of our universe.
A set of eight test lattices for the SSC have been devised for such purposes as the investigation of the dependences of chromatic properties and dynamic aperture on the type, field, physical aperture and errors of the magnets, on the sextupole correction scheme, on the tunes and on the cell phase advances. They are distinguished from realistic lattices in that certain features of the latter are missing - most notably the crossing magnets that bring the two counter-rotating proton beams into collision at the interaction points, and the utility insertions, which are the sites for the injection, beam abort, and radiofrequency systems. Furthermore the placement of magnets in the cells is simplified. 7 refs., 9 figs., 2 tabs
Lattices of dielectric resonators
Trubin, Alexander
2016-01-01
This book provides the analytical theory of complex systems composed of a large number of high-Q dielectric resonators. Spherical and cylindrical dielectric resonators with inferior and also whispering gallery oscillations allocated in various lattices are considered. A new approach to S-matrix parameter calculations based on perturbation theory of Maxwell equations, developed for a number of high-Q dielectric bodies, is introduced. All physical relationships are obtained in analytical form and are suitable for further computations. Essential attention is given to a new unified formalism of the description of scattering processes. The general scattering task for coupled eigen oscillations of the whole system of dielectric resonators is described. The equations for the expansion coefficients are explained in an applicable way. The temporal Green functions for the dielectric resonator are presented. The scattering process of short pulses in dielectric filter structures, dielectric antennas and lattices of d...
Hsu, Hsiao-Ping; Nadler, Walder; Grassberger, Peter
2005-07-01
The scaling behavior of randomly branched polymers in a good solvent is studied in two to nine dimensions, modeled by lattice animals on simple hypercubic lattices. For the simulations, we use a biased sequential sampling algorithm with re-sampling, similar to the pruned-enriched Rosenbluth method (PERM) used extensively for linear polymers. We obtain high statistics of animals with up to several thousand sites in all dimension 2⩽d⩽9. The partition sum (number of different animals) and gyration radii are estimated. In all dimensions we verify the Parisi-Sourlas prediction, and we verify all exactly known critical exponents in dimensions 2, 3, 4, and ⩾8. In addition, we present the hitherto most precise estimates for growth constants in d⩾3. For clusters with one site attached to an attractive surface, we verify the superuniversality of the cross-over exponent at the adsorption transition predicted by Janssen and Lyssy.
Jipsen, Peter
1992-01-01
The study of lattice varieties is a field that has experienced rapid growth in the last 30 years, but many of the interesting and deep results discovered in that period have so far only appeared in research papers. The aim of this monograph is to present the main results about modular and nonmodular varieties, equational bases and the amalgamation property in a uniform way. The first chapter covers preliminaries that make the material accessible to anyone who has had an introductory course in universal algebra. Each subsequent chapter begins with a short historical introduction which sites the original references and then presents the results with complete proofs (in nearly all cases). Numerous diagrams illustrate the beauty of lattice theory and aid in the visualization of many proofs. An extensive index and bibliography also make the monograph a useful reference work.
This review concentrates on progress in lattice QCD during the last two years and, particularly, its impact on phenomenology. The two main technical developments have been successful implementations of lattice actions with exact chiral symmetry, and results from simulations with two light dynamical flavours which provide quantitative estimates of quenching effects for some quantities. Results are presented for the hadron spectrum, quark masses, heavy-quark decays and structure functions. Theoretical progress is encouraging renewed attempts to compute non-leptonic kaon decays. Although computing power continues to be a limitation, projects are underway to build multi-teraflops machines over the next three years, which will be around ten times more cost-effective than those of today. (author)
The goal of the lectures on lattice QCD (LQCD) is to provide an overview of both the technical issues and the progress made so far in obtaining phenomenologically useful numbers. The lectures consist of three parts. The author's charter is to provide an introduction to LQCD and outline the scope of LQCD calculations. In the second set of lectures, Guido Martinelli will discuss the progress they have made so far in obtaining results, and their impact on Standard Model phenomenology. Finally, Martin Luescher will discuss the topical subjects of chiral symmetry, improved formulation of lattice QCD, and the impact these improvements will have on the quality of results expected from the next generation of simulations
Gupta, R.
1998-12-31
The goal of the lectures on lattice QCD (LQCD) is to provide an overview of both the technical issues and the progress made so far in obtaining phenomenologically useful numbers. The lectures consist of three parts. The author`s charter is to provide an introduction to LQCD and outline the scope of LQCD calculations. In the second set of lectures, Guido Martinelli will discuss the progress they have made so far in obtaining results, and their impact on Standard Model phenomenology. Finally, Martin Luescher will discuss the topical subjects of chiral symmetry, improved formulation of lattice QCD, and the impact these improvements will have on the quality of results expected from the next generation of simulations.
The panel was attended by prominent physicists from most of the well-known laboratories in the field of light-water lattices, who exchanged the latest information on the status of work in their countries and discussed both the theoretical and the experimental aspects of the subjects. The supporting papers covered most problems, including criticality, resonance absorption, thermal utilization, spectrum calculations and the physics of plutonium bearing systems. Refs, figs and tabs
One of the major recent developments in particle theory has been the use of very high performance computers to obtain approximate numerical solutions of quantum field theories by formulating them on a finite space-time lattice. The great virtue of this new technique is that it avoids the straitjacket of perturbation theory and can thus attack new, but very fundamental problems, such as the calculation of hadron masses in quark-gluon field theory (quantum chromodynamics - QCD)
Digital lattice gauge theories
Zohar, Erez(Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, D-85748, Garching, Germany); Farace, Alessandro; Reznik, Benni; Cirac, J Ignacio
2016-01-01
We propose a general scheme for a digital construction of lattice gauge theories with dynamical fermions. In this method, the four-body interactions arising in models with $2+1$ dimensions and higher, are obtained stroboscopically, through a sequence of two-body interactions with ancillary degrees of freedom. This yields stronger interactions than the ones obtained through pertubative methods, as typically done in previous proposals, and removes an important bottleneck in the road towards exp...
Lattice Vibrations in Chlorobenzenes:
Reynolds, P. A.; Kjems, Jørgen; White, J. W.
1974-01-01
Lattice vibrational dispersion curves for the ``intermolecular'' modes in the triclinic, one molecule per unit cell β phase of p‐C6D4Cl2 and p‐C6H4Cl2 have been obtained by inelastic neutron scattering. The deuterated sample was investigated at 295 and at 90°K and a linear extrapolation to 0°K was...
Homomorphisms on Lattices of Measures
Norris Sookoo
2009-01-01
Full Text Available Problem statement: Homomorphisms on lattices of measures defined on the quotient spaces of the integers were considered. These measures were defined in terms of Sharma-Kaushik partitions. The homomorphisms were studied in terms of their relationship with the underlying Sharma-Kaushik partitions. Approach: We defined certain mappings between lattices of Sharma-Kaushik partitions and showed that they are homomorphisms. These homomorphisms were mirrored in homorphisms between related lattices of measures. Results: We obtained the structure of certain homomorphisms of measures. Conclusion: Further information about homomorphisms between lattices of measures of the type considered here can be obtained by investigating the underlying lattices of Sharma-Kaushik partitions.
Crystallographic Lattice Boltzmann Method
Namburi, Manjusha; Krithivasan, Siddharth; Ansumali, Santosh
2016-01-01
Current approaches to Direct Numerical Simulation (DNS) are computationally quite expensive for most realistic scientific and engineering applications of Fluid Dynamics such as automobiles or atmospheric flows. The Lattice Boltzmann Method (LBM), with its simplified kinetic descriptions, has emerged as an important tool for simulating hydrodynamics. In a heterogeneous computing environment, it is often preferred due to its flexibility and better parallel scaling. However, direct simulation of realistic applications, without the use of turbulence models, remains a distant dream even with highly efficient methods such as LBM. In LBM, a fictitious lattice with suitable isotropy in the velocity space is considered to recover Navier-Stokes hydrodynamics in macroscopic limit. The same lattice is mapped onto a cartesian grid for spatial discretization of the kinetic equation. In this paper, we present an inverted argument of the LBM, by making spatial discretization as the central theme. We argue that the optimal spatial discretization for LBM is a Body Centered Cubic (BCC) arrangement of grid points. We illustrate an order-of-magnitude gain in efficiency for LBM and thus a significant progress towards feasibility of DNS for realistic flows. PMID:27251098
Adamatzky, Andrew
2015-01-01
The book gives a comprehensive overview of the state-of-the-art research and engineering in theory and application of Lattice Automata in design and control of autonomous Robots. Automata and robots share the same notional meaning. Automata (originated from the latinization of the Greek word “αυτόματον”) as self-operating autonomous machines invented from ancient years can be easily considered the first steps of robotic-like efforts. Automata are mathematical models of Robots and also they are integral parts of robotic control systems. A Lattice Automaton is a regular array or a collective of finite state machines, or automata. The Automata update their states by the same rules depending on states of their immediate neighbours. In the context of this book, Lattice Automata are used in developing modular reconfigurable robotic systems, path planning and map exploration for robots, as robot controllers, synchronisation of robot collectives, robot vision, parallel robotic actuators. All chapters are...
Crystallographic Lattice Boltzmann Method
Namburi, Manjusha; Krithivasan, Siddharth; Ansumali, Santosh
2016-06-01
Current approaches to Direct Numerical Simulation (DNS) are computationally quite expensive for most realistic scientific and engineering applications of Fluid Dynamics such as automobiles or atmospheric flows. The Lattice Boltzmann Method (LBM), with its simplified kinetic descriptions, has emerged as an important tool for simulating hydrodynamics. In a heterogeneous computing environment, it is often preferred due to its flexibility and better parallel scaling. However, direct simulation of realistic applications, without the use of turbulence models, remains a distant dream even with highly efficient methods such as LBM. In LBM, a fictitious lattice with suitable isotropy in the velocity space is considered to recover Navier-Stokes hydrodynamics in macroscopic limit. The same lattice is mapped onto a cartesian grid for spatial discretization of the kinetic equation. In this paper, we present an inverted argument of the LBM, by making spatial discretization as the central theme. We argue that the optimal spatial discretization for LBM is a Body Centered Cubic (BCC) arrangement of grid points. We illustrate an order-of-magnitude gain in efficiency for LBM and thus a significant progress towards feasibility of DNS for realistic flows.
We present a unified framework to describe lattice gauge theories by means of tensor networks: this framework is efficient as it exploits the high local symmetry content native to these systems by describing only the gauge invariant subspace. Compared to a standard tensor network description, the gauge invariant model allows one to increase real and imaginary time evolution up to a factor that is square of the dimension of the link variable. The gauge invariant tensor network description is based on the quantum link formulation, a compact and intuitive formulation for gauge theories on the lattice, which is alternative to and can be combined with the global symmetric tensor network description. We present some paradigmatic examples that show how this architecture might be used to describe the physics of condensed matter and high-energy physics systems. Finally, we present a cellular automata analysis which estimates the gauge invariant Hilbert space dimension as a function of the number of lattice sites that might guide the search for effective simplified models of complex theories. (paper)
Dielectric lattice gauge theory
Dielectric lattice gauge theory models are introduced. They involve variables PHI(b)epsilong that are attached to the links b = (x+esub(μ),x) of the lattice and take their values in the linear space g which consists of real linear combinations of matrices in the gauge group G. The polar decomposition PHI(b)=U(b)osub(μ)(x) specifies an ordinary lattice gauge field U(b) and a kind of dielectric field epsilonsub(ij)proportionalosub(i)osub(j)sup(*)deltasub(ij). A gauge invariant positive semidefinite kinetic term for the PHI-field is found, and it is shown how to incorporate Wilson fermions in a way which preserves Osterwalder Schrader positivity. Theories with G = SU(2) and without matter fields are studied in some detail. It is proved that confinement holds, in the sense that Wilson loop expectation values show an area law decay, if the Euclidean action has certain qualitative features which imply that PHI = 0 (i.e. dielectric field identical 0) is the unique maximum of the action. (orig.)
Online Determination of Graphene Lattice Orientation Through Lateral Forces
Zhang, Yu; Yu, Fanhua; Li, Guangyong; Liu, Lianqing; Liu, Guangjie; Zhang, Zhiyong; Wang, Yuechao; Wejinya, Uchechukwu C.; Xi, Ning
2016-08-01
Rapid progress in graphene engineering has called for a simple and effective method to determine the lattice orientation on graphene before tailoring graphene to the desired edge structures and shapes. In this work, a wavelet transform-based frequency identification method is developed to distinguish the lattice orientation of graphene. The lattice orientation is determined through the different distribution of the frequency power spectrum just from a single scan line. This method is proven both theoretically and experimentally to be useful and controllable. The results at the atomic scale show that the frequencies vary with the lattice orientation of graphene. Thus, an adjusted angle to the desired lattice orientation (zigzag or armchair) can easily be calculated based on the frequency obtained from the single scan line. Ultimately, these results will play a critical role in wafer-size graphene engineering and in the manufacturing of graphene-based nanodevices.
Online Determination of Graphene Lattice Orientation Through Lateral Forces.
Zhang, Yu; Yu, Fanhua; Li, Guangyong; Liu, Lianqing; Liu, Guangjie; Zhang, Zhiyong; Wang, Yuechao; Wejinya, Uchechukwu C; Xi, Ning
2016-12-01
Rapid progress in graphene engineering has called for a simple and effective method to determine the lattice orientation on graphene before tailoring graphene to the desired edge structures and shapes. In this work, a wavelet transform-based frequency identification method is developed to distinguish the lattice orientation of graphene. The lattice orientation is determined through the different distribution of the frequency power spectrum just from a single scan line. This method is proven both theoretically and experimentally to be useful and controllable. The results at the atomic scale show that the frequencies vary with the lattice orientation of graphene. Thus, an adjusted angle to the desired lattice orientation (zigzag or armchair) can easily be calculated based on the frequency obtained from the single scan line. Ultimately, these results will play a critical role in wafer-size graphene engineering and in the manufacturing of graphene-based nanodevices. PMID:27484859
Toward lattice fractional vector calculus
Tarasov, Vasily E.
2014-09-01
An analog of fractional vector calculus for physical lattice models is suggested. We use an approach based on the models of three-dimensional lattices with long-range inter-particle interactions. The lattice analogs of fractional partial derivatives are represented by kernels of lattice long-range interactions, where the Fourier series transformations of these kernels have a power-law form with respect to wave vector components. In the continuum limit, these lattice partial derivatives give derivatives of non-integer order with respect to coordinates. In the three-dimensional description of the non-local continuum, the fractional differential operators have the form of fractional partial derivatives of the Riesz type. As examples of the applications of the suggested lattice fractional vector calculus, we give lattice models with long-range interactions for the fractional Maxwell equations of non-local continuous media and for the fractional generalization of the Mindlin and Aifantis continuum models of gradient elasticity.
A Mechanical Lattice Aid for Crystallography Teaching.
Amezcua-Lopez, J.; Cordero-Borboa, A. E.
1988-01-01
Introduces a 3-dimensional mechanical lattice with adjustable telescoping mechanisms. Discusses the crystalline state, the 14 Bravais lattices, operational principles of the mechanical lattice, construction methods, and demonstrations in classroom. Provides lattice diagrams, schemes of the lattice, and various pictures of the lattice. (YP)
Ivanova, Juliana; Gluhcheva, Yordanka G; Kamenova, Kalina; Arpadjan, Sonja; Mitewa, Mariana
2012-10-01
In this study, the ability of the chelating agent monensic acid (administered as the tetraethylammonium salt) to reduce the cadmium (Cd) concentration in the kidneys, liver, heart, lungs, spleen and testes of Cd-intoxicated mice was investigated. Chelation therapy with the tetraethylammonium salt of monensic acid led to a significant decrease of the Cd concentration in all of the organs of the Cd-treated mice. This effect varied from 50% in the kidneys to 90% in the hearts of the sacrificed animals (compared to the Cd-treated controls). No redistribution of the toxic metal ions to the brain of the animals as a result of the detoxification with the chelating agent was observed. The detoxification of the animals with the antibiotic salt did not perturb the endogenous levels of copper (Cu) or zinc (Zn). The tetraethylammonium salt of monensic acid significantly ameliorated the Cd-induced total iron (Fe) depletion in the liver and spleen of Cd-treated mice. It also restored to control levels the values of transferrin-bound Fe and the total iron binding capacity (TIBC) of the plasma. These results imply that the tetraethylammonium salt of monensic acid could be an efficient antidote in cases of Cd-intoxication. PMID:22677540
Albuquerque, E.X.
1994-03-16
There are several major motivators behind this work. We need to understand OP intoxication sufficiently to provide insight and direction for development of improved antidotal therapy. The persistent environmental use of chemical insecticides, which some feel is necessary for optimal agricultural production but others challenge vehemently, requires that we understand the toxicological consequences of such use. Also, OPs have such a powerful effect or, vital functions, it could be immensely beneficial to understand in great detail the physiological mechanisms that are targeted by OPs. Such information could benefit medical treatments of diseases and pathologies other than those directly caused by OPs. Finally, we hope to present the material in a manner that will be instructive to a broad spectrum of professionals in pharmacology and toxicology. Where it is appropriate, we may draw heavily from other topical reviews. In all cases, we will provide citations to original work and/or well-referenced RA I, Lab Animals, Rats, Frogs, Compounds, Nerve Agents, Organophosphorous, BD, CD Agents, XCSM, Neurotransmitters, Receptors, Ion Channel, Oximes.
Collapsing lattice animals and lattice trees in two dimensions
Hsu, Hsiao-Ping; Grassberger, Peter
2005-01-01
We present high statistics simulations of weighted lattice bond animals and lattice trees on the square lattice, with fugacities for each non-bonded contact and for each bond between two neighbouring monomers. The simulations are performed using a newly developed sequential sampling method with resampling, very similar to the pruned-enriched Rosenbluth method (PERM) used for linear chain polymers. We determine with high precision the line of second order transitions from an extended to a coll...
Lattice p-Form Electromagnetism and Chain Field Theory
Derek K. Wise
2005-01-01
Since Wilson's work on lattice gauge theory in the 1970s, discrete versions of field theories have played a vital role in fundamental physics. But there is recent interest in certain higher dimensional analogues of gauge theory, such as p-form electromagnetism, including the Kalb-Ramond field in string theory, and its nonabelian generalizations. It is desirable to discretize such `higher gauge theories' in a way analogous to lattice gauge theory, but with the fundamental geometric structures ...
Sortable elements and Cambrian lattices
Reading, Nathan
2005-01-01
We show that the Coxeter-sortable elements in a finite Coxeter group W are the minimal congruence-class representatives of a lattice congruence of the weak order on W. We identify this congruence as the Cambrian congruence on W, so that the Cambrian lattice is the weak order on Coxeter-sortable elements. These results exhibit W-Catalan combinatorics arising in the context of the lattice theory of the weak order on W.
Rasmussen, S. [Los Alamos National Lab., NM (United States)]|[Santa Fe Institute, NM (United States); Smith, J.R. [Santa Fe Institute, NM (United States)]|[Massachusetts Media Lab., Cambridge, MA (United States). Physics and Media Group
1995-05-01
We present a new style of molecular dynamics and self-assembly simulation, the Lattice Polymer Automaton (LPA). In the LPA all interactions, including electromagnetic forces, are decomposed and communicated via propagating particles, {open_quotes}photons.{close_quotes} The monomer-monomer bondforces, the molecular excluded volume forces, the longer range intermolecular forces, and the polymer-solvent interactions may all be modeled with propagating particles. The LPA approach differs significantly from both of the standard approaches, Monte Carlo lattice methods and Molecular Dynamics simulations. On the one hand, the LPA provides more realism than Monte Carlo methods, because it produces a time series of configurations of a single molecule, rather than a set of causally unrelated samples from a distribution of configurations. The LPA can therefore be used directly to study dynamical properties; one can in fact watch polymers move in real time. On the other hand, the LPA is fully discrete, and therefore much simpler than traditional Molecular Dynamics models, which are continuous and operate on much shorter time scales. Due to this simplicity it is possible to simulate longer real time periods, which should enable the study of molecular self-organization on workstations supercomputers are not needed.
Syer, D; Syer, D; Tremaine, S
1995-01-01
We describe a technique for solving the combined collisionless Boltzmann and Poisson equations in a discretised, or lattice, phase space. The time and the positions and velocities of `particles' take on integer values, and the forces are rounded to the nearest integer. The equations of motion are symplectic. In the limit of high resolution, the lattice equations become the usual integro-differential equations of stellar dynamics. The technique complements other tools for solving those equations approximately, such as N-body simulation, or techniques based on phase-space grids. Equilibria are found in a variety of shapes and sizes. They are true equilibria in the sense that they do not evolve with time, even slowly, unlike existing N-body approximations to stellar systems, which are subject to two-body relaxation. They can also be `tailor-made' in the sense that the mass distribution is constrained to be close to some pre-specified function. Their principal limitation is the amount of memory required to store ...
Sparse and composite coherent lattices
A method is described that yields a series of (D+1)-element wave-vector sets giving rise to (D=2 or 3)-dimensional coherent sparse lattices of any desired Bravais symmetry and primitive cell shape, but of increasing period relative to the excitation wavelength. By applying lattice symmetry operations to any of these sets, composite lattices of N>D+1 waves are constructed, having increased spatial frequency content but unchanged crystal group symmetry and periodicity. Optical lattices of widely spaced excitation maxima of diffraction-limited confinement and controllable polarization can thereby be created, possibly useful for quantum optics, lithography, or multifocal microscopy
Kazuhiko Kuroki
2008-01-01
Full Text Available We investigate the possibility of realizing unconventional superconductivity in doped band insulators on the square and honeycomb lattices. The latter lattice is found to be a good candidate due to the disconnectivity of the Fermi surface. We propose applying the theory to the superconductivity in doped layered nitride β-MNCl (M= Hf, Zr. Finally, we compare two groups of superconductors with disconnected Fermi surface, β-MNCl and the iron pnictides, which have high critical temperature Tc, despite some faults against superconductivity are present.
Convection-diffusion lattice Boltzmann scheme for irregular lattices
Sman, van der R.G.M.; Ernst, M.H.
2000-01-01
In this paper, a lattice Boltzmann (LB) scheme for convection diffusion on irregular lattices is presented, which is free of any interpolation or coarse graining step. The scheme is derived using the axioma that the velocity moments of the equilibrium distribution equal those of the Maxwell-Boltzman
Elimination of spurious lattice fermion solutions and noncompact lattice QCD
Lee, T.D.
1997-09-22
It is well known that the Dirac equation on a discrete hyper-cubic lattice in D dimension has 2{sup D} degenerate solutions. The usual method of removing these spurious solutions encounters difficulties with chiral symmetry when the lattice spacing l {ne} 0, as exemplified by the persistent problem of the pion mass. On the other hand, we recall that in any crystal in nature, all the electrons do move in a lattice and satisfy the Dirac equation; yet there is not a single physical result that has ever been entangled with a spurious fermion solution. Therefore it should not be difficult to eliminate these unphysical elements. On a discrete lattice, particle hop from point to point, whereas in a real crystal the lattice structure in embedded in a continuum and electrons move continuously from lattice cell to lattice cell. In a discrete system, the lattice functions are defined only on individual points (or links as in the case of gauge fields). However, in a crystal the electron state vector is represented by the Bloch wave functions which are continuous functions in {rvec {gamma}}, and herein lies one of the essential differences.
Full text: Lattice-resolution scanning transmission electron microscopy (STEM) contrast, derived from coherent or incoherent scattering mechanisms, is finding application over a diverse range of problems on the atomic scale, particularly with the availability of coherent FEGs. Fundamental for the understanding of such contrast is the propagation within a crystal of a focused coherent probe formed by a collapsing spherical wave. Current Bloch wave descriptions construct the total wave function from a coherent superposition of Bloch states excited from a series of incident plane waves that span the full range of transverse momentum components in the focused probe. However this implementation of boundary conditions using phase-linked plane waves may be misleading in that the possibility of exciting antisymmetric states which provides the cross-talk between adjacent columns of atoms - appears at first sight to be excluded. We match the total probe wave function to a crystal wave function which incorporates all transverse momenta in the incident probe. This revised implementation of boundary conditions leads to a simple formula for excitation amplitude which enables the probe position dependent excitation of both symmetric and antisymmetric Bloch states to be predicted. Shortcomings of previous models for incoherent contrast are that interference between waves associated with mixed dynamic form factors for incoherent contrast is not addressed, and that an intensity contribution from dechannelled electrons is not taken into account. This simple revision of boundary conditions leads to a rigorous formulation for (i) coherent and (n) incoherent lattice resolution STEM contrast. The former (i) does not require principles of reciprocity to be invoked, and the latter (n) follows from a simple generalization of the theory of channelling contrast for ADF, BSE and ALCHEMI for an incident plane wave. Phase associated with products of transition amplitudes that occur in mixed
Lattice Boltzmann Model for Compressible Fluid on a Square Lattice
SUN Cheng-Hai
2000-01-01
A two-level four-direction lattice Boltzmann model is formulated on a square lattice to simulate compressible flows with a high Mach number. The particle velocities are adaptive to the mean velocity and internal energy. Therefore, the mean flow can have a high Mach number. Due to the simple form of the equilibrium distribution, the 4th order velocity tensors are not involved in the calculations. Unlike the standard lattice Boltzmann model, o special treatment is need for the homogeneity of 4th order velocity tensors on square lattices. The Navier-Stokes equations were derived by the Chapman-Enskog method from the BGK Boltzmann equation. The model can be easily extended to three-dimensional cubic lattices. Two-dimensional shock-wave propagation was simulated
Entangling gates in even Euclidean lattices such as Leech lattice
Planat, Michel
2010-01-01
We point out a organic relationship between real entangling n-qubit gates of quantum computation and the group of automorphisms of even Euclidean lattices of the corresponding dimension 2n. The type of entanglement that is found in the gates/generators of Aut() depends on the lattice. In particular, we investigate Zn lattices, Barnes-Wall lattices D4, E8, 16 (associated to n = 2, 3 and 4 qubits), and the Leech lattices h24 and 24 (associated to a 3-qubit/qutrit system). Balanced tripartite entanglement is found to be a basic feature of Aut(), a nding that bears out our recent work related to the Weyl group of E8 [1, 2].
Neutrinoless double beta decay from lattice QCD
Nicholson, Amy; Chang, Chia Cheng; Clark, M A; Joo, Balint; Kurth, Thorsten; Rinaldi, Enrico; Tiburzi, Brian; Vranas, Pavlos; Walker-Loud, Andre
2016-01-01
While the discovery of non-zero neutrino masses is one of the most important accomplishments by physicists in the past century, it is still unknown how and in what form these masses arise. Lepton number-violating neutrinoless double beta decay is a natural consequence of Majorana neutrinos and many BSM theories, and many experimental efforts are involved in the search for these processes. Understanding how neutrinoless double beta decay would manifest in nuclear environments is key for understanding any observed signals. In these proceedings we present an overview of a set of one- and two-body matrix elements relevant for experimental searches for neutrinoless double beta decay, describe the role of lattice QCD calculations, and present preliminary lattice QCD results.
Lattice Location of Transition Metals in Semiconductors
2002-01-01
%IS366 %title\\\\ \\\\Transition metals (TMs) in semiconductors have been the subject of considerable research for nearly 40 years. This is due both to their role as important model impurities for deep centers in semiconductors, and to their technological impact as widespread contaminants in Si processing, where the miniaturization of devices requires to keep their sheet concentration below 10$^{10}$ cm$^{-2}$. As a consequence of the low TM solubility, conventional ion beam methods for direct lattice location have failed completely in identifying the lattice sites of isolated transition metals. Although electron paramagnetic resonance (EPR) has yielded valuable information on a variety of TM centers, it has been unable to detect certain defects considered by theory, e.g., isolated interstitial or substitutional Cu in Si. The proposed identity of other EPR centers such as substitutional Fe in Si, still needs confirmation by additional experimental methods. As a consequence, the knowledge on the structural propert...
Logarithmic Conformal Field Theory: a Lattice Approach
Gainutdinov, A M; Read, N; Saleur, H; Vasseur, R
2013-01-01
Logarithmic Conformal Field Theories (LCFT) play a key role, for instance, in the description of critical geometrical problems (percolation, self avoiding walks, etc.), or of critical points in several classes of disordered systems (transition between plateaus in the integer and spin quantum Hall effects). Much progress in their understanding has been obtained by studying algebraic features of their lattice regularizations. For reasons which are not entirely understood, the non semi-simple associative algebras underlying these lattice models - such as the Temperley-Lieb algebra or the blob algebra - indeed exhibit, in finite size, properties that are in full correspondence with those of their continuum limits. This applies to the structure of indecomposable modules, but also to fusion rules, and provides an `experimental' way of measuring couplings, such as the `number b' quantifying the logarithmic coupling of the stress energy tensor with its partner. Most results obtained so far have concerned boundary LCF...
The organophosphates (ORPs) or war fare agents toxicity results from inhibition of acetylcholinesterase (AchE). phosphylation of the active serin of AchE leads to accumulation of acetylcholine in synaptic clefts leading to generalized cholinergic over-stimulation. Standard treatment of ORP poisoning includes a muscarinic antagonist such as Atropine, and acetylcholinesterase reactivator (oxime). Presently, oximes like abidoxime and pralidoxime are approved as antidotes against ORP poisoning but are considered to be rather ineffective against certain ORP. Like Soman. In this study, the protective effect of Varthemia persica DC extract on acetylcholinesterase was examined in rats. Animals in weight range of 200-225 g were divided in 8 groups. The negative control group received only 0.4 ml normal saline, reference group, received ethylparaoxone in dose of 50 percent of LD50, positive control group, received ethylparaoxone (50% LD50) and one minute later 50 mol of pralidoxime. Test group 1: received ethylparaoxone and one minute later single dose of methanolic extract of Varthemia persica (250 mg/kg), Test Group 2: daily received methanolic extract of V.persica (250 mg/kg) in six days and one minute after last dose of extract, ethylparaoxone (50% LD50) were injected, Test Group 3: received ethylparaoxone (50% LD50) and then six doses of methanolic extract of V.persica (250 mg/kg) in six continuous days. Test Group 4: received ethylparaoxone and then single dose of dichloromethane extract of V.persica (250 mg/kg). Test Group 5: received ethylparaoxone and one minute later single high dose of methanolic extract of V.persica (1000 mg/kg). Then blood withdrawn and acetylcholinesterase activity was measured according to modified Ellman's method. Only in groups which received extract of V. persica before and after injection of ethylparaoxone, the mean of acetylcholinesterase activity was significantly different with reference group (p 0.05) but no significant difference with
Pandeya S
2016-02-01
Full Text Available Tramadol overdose has been one of the most frequent causes of drug poisoning in the recent years, especially in young adult males. In the current work, the in-vitro study on adsorption kinetics and the effect of pH on antidotal effect of activated charcoal (AC in tramadol hydrochloride intoxication were carried out. For adsorption study tramadol hydrochloride solutions of various concentrations were prepared in both simulated gastric fluid (SGF and simulated intestinal fluid (SIF and analyzed by UV spectrophotometer. For kinetics study tramadol hydrochloride and charcoal in ratio 1:5 was kept in 6 different flasks and sonicated for 5, 10, 15, 20, 25 and 30 minutes and analyzed spectrophotometrically. The data were plotted among two most commonly used adsorption isotherm, Langmuir isotherm and Freundlich isotherm and their coefficient of determination (R2 was compared to get the best adsorption isotherm equation. The kinetics study was done in both SGF and SIF. The result showed that AC 50 gm can adsorb 4802.692 mg tramadol hydrochloride at gastric environment and 8064.516 mg tramadol hydrochloride at intestinal environment. The R2 value in the current study is found to be more in SIF (0.986 than in SGF (0.985. In accordance to the value of R2, the pseudo second order kinetics model fit best for this study with R2 value of 0.9997 in SGF and 0.9994 in SIF. From the current study it can be concluded that 50g AC has the capacity to adsorb sufficient amount of tramadol hydrochloride and the kinetics followed during the adsorption was pseudo-second order.
Antonijević Biljana
2011-01-01
Full Text Available Introduction/Aim. In acute organophosphate poisoning the issue of special concern is the appearance of muscle fasciculations and convulsions that cannot be adequately antagonised by the use of atropine and oxime therapy. The aim of this study was to examine atidotal effect of obidoxime or HI-6 combinations with memantine in mice poisoned with soman, dichlorvos or heptenophos. Methods. Male Albino mice were pretreated intravenously (iv with increasing doses of oximes and/or memantine (10 mg/kg at various times before poisoning with 1.3 LD-50 of soman, dichlorvos or heptenophos, in order to determine the median effective dose and the efficacy half-time. In a separate experiment, cerebral extravasation of Evans blue dye (40 mg/kg iv was examined after application of memantine (10 mg/kg iv, midazolam (2.5 mg/kg intraperitonealy - ip and ketamine (20 mg/kg ip 5 minutes before soman (1 LD-50 subcutaneously - sc. Results. Coadministration of memantine induced a significant decrease in median effective dose in null time of both HI-6 (7.96 vs 1.79 mmoL/kg in soman poisoning and obidoxime (16.80 vs 2.75 mmoL/kg in dichlorvos poisoning; 21.56 vs 6.63 mmoL/kg in heptenophos poisoning. Memantine and midazolam succeded to counteract the soman-induced proconvulsive activity. Conclusion. Memantine potentiated the antidotal effect of HI-6 against a lethal dose of soman, as well as the ability of obidoxime to antagonize the toxic effects of dichlorvos and heptenophos probably partly due to its anticonvulsive properties.
We introduce a new framework for constructing black hole solutions that are holographically dual to strongly coupled field theories with explicitly broken translation invariance. Using a classical gravitational theory with a continuous global symmetry leads to constructions that involve solving ODEs instead of PDEs. We study in detail D=4 Einstein-Maxwell theory coupled to a complex scalar field with a simple mass term. We construct black holes dual to metallic phases which exhibit a Drude-type peak in the optical conductivity, but there is no evidence of an intermediate scaling that has been reported in other holographic lattice constructions. We also construct black holes dual to insulating phases which exhibit a suppression of spectral weight at low frequencies. We show that the model also admits a novel AdS3×ℝ solution
Excitonic surface lattice resonances
Humphrey, A. D.; Gentile, M. J.; Barnes, W. L.
2016-08-01
Electromagnetic resonances are important in controlling light at the nanoscale. The most studied such resonance is the surface plasmon resonance that is associated with metallic nanostructures. Here we explore an alternative resonance, the surface exciton-polariton resonance, one based on excitonic molecular materials. Our study is based on analytical and numerical modelling. We show that periodic arrays of suitable molecular nanoparticles may support surface lattice resonances that arise as a result of coherent interactions between the particles. Our results demonstrate that excitonic molecular materials are an interesting alternative to metals for nanophotonics; they offer the prospect of both fabrication based on supramolecular chemistry and optical functionality arising from the way the properties of such materials may be controlled with light.
A group theoretical analysis of modes of vibrations in hexagonal close-packed lattices has been made. The results have been used to classify the phonons at some special points in the Brillouin zone and factorized the secular determinant. Dispersion relations for phonons in magnesium along the two symmetry directions [0001] and [0110] have been measured (at room temperature) more accurately than reported earlier. The measurements have been made using a triple-axis spectrometer and a ''window filter'' spectrometer, both operated in the ''constant-Q'' mode. The results are compared with calculations based on three- and four-neighbour axially symmetric models. It is observed that the four-neighbour model gives a reasonably good description of the data. Even better agreement is obtained with a four-neighbour tensor force model. The force constants derived from the experiment have been used to compute the frequency distribution. (author)
Foerst, M.; Tobey, R. I.; Bromberger, H.; Wilkins, S. B.; Khanna, V.; Caviglia, A. D.; Chuang, Y. -D.; Lee, W. S.; Schlotter, W. F.; Turner, J. J.; Minitti, M. P.; Krupin, O.; Xu, Z. J.; Wen, J. S.; Gu, G. D.; Dhesi, S. S.; Cavalleri, A.; Hill, J. P.
2014-01-01
We report femtosecond resonant soft x-ray diffraction measurements of the dynamics of the charge order and of the crystal lattice in nonsuperconducting, stripe-ordered La1.875Ba0.125CuO4. Excitation of the in-plane Cu-O stretching phonon with a midinfrared pulse has been previously shown to induce a
Nuclear Physics and Lattice QCD
Savage, Martin J.
2005-01-01
Lattice QCD is progressing toward being able to impact our understanding of nuclei and nuclear processes. I discuss areas of nuclear physics that are becoming possible to explore with lattice QCD, the techniques that are currently available and the status of numerical explorations.
Lattice gauge theory: Present status
Lattice gauge theory is our primary tool for the study of non- perturbative phenomena in hadronic physics. In addition to giving quantitative information on confinement, the approach is yielding first principles calculations of hadronic spectra and matrix elements. After years of confusion, there has been significant recent progress in understanding issues of chiral symmetry on the lattice
An Introduction to Lattice QCD
Pène, O
1995-01-01
Lattice QCD is the only non-perturbative method based uniquely on the first principles of QCD. After a very simple introduction to the principles of lattice QCD, I discuss its present limitations and the type of processes it can deal with. Then I present some striking results in the light and heavy quarks sectors. Finally I try to guess the prospects.
Network coding with modular lattices
Kendziorra, Andreas
2010-01-01
In [1], K\\"otter and Kschischang presented a new model for error correcting codes in network coding. The alphabet in this model is the subspace lattice of a given vector space, a code is a subset of this lattice and the used metric on this alphabet is the map d: (U, V) \\longmapsto dim(U + V) - dim(U \\bigcap V). In this paper we generalize this model to arbitrary modular lattices, i.e. we consider codes, which are subsets of modular lattices. The used metric in this general case is the map d: (x, y) \\longmapsto h(x \\bigvee y) - h(x \\bigwedge y), where h is the height function of the lattice. We apply this model to submodule lattices. Moreover, we show a method to compute the size of spheres in certain modular lattices and present a sphere packing bound, a sphere covering bound, and a singleton bound for codes, which are subsets of modular lattices. [1] R. K\\"otter, F.R. Kschischang: Coding for errors and erasures in random network coding, IEEE Trans. Inf. Theory, Vol. 54, No. 8, 2008
Computing the writhe on lattices
Given a polygonal closed curve on a lattice or space group, we describe a method for computing the writhe of the curve as the average of weighted projected writhing numbers of the polygon in a few directions. These directions are determined by the lattice geometry, the weights are determined by areas of regions on the unit 2-sphere, and the regions are formed by the tangent indicatrix to the polygonal curve. We give a new formula for the writhe of polygons on the face centred cubic lattice and prove that the writhe of polygons on the body centred cubic lattice, the hexagonal simple lattice, and the diamond space group is always a rational number, and discuss applications to ring polymers
Lattice Induced Transparency in Metasurfaces
Manjappa, Manukumara; Singh, Ranjan
2016-01-01
Lattice modes are intrinsic to the periodic structures and their occurrence can be easily tuned and controlled by changing the lattice constant of the structural array. Previous studies have revealed excitation of sharp absorption resonances due to lattice mode coupling with the plasmonic resonances. Here, we report the first experimental observation of a lattice induced transparency (LIT) by coupling the first order lattice mode (FOLM) to the structural resonance of a metamaterial resonator at terahertz frequencies. The observed sharp transparency is a result of the destructive interference between the bright mode and the FOLM mediated dark mode. As the FOLM is swept across the metamaterial resonance, the transparency band undergoes large change in its bandwidth and resonance position. Besides controlling the transparency behaviour, LIT also shows a huge enhancement in the Q-factor and record high group delay of 28 ps, which could be pivotal in ultrasensitive sensing and slow light device applications.
Building a Consonance Between Religion and Science: an Antidote for the Seeming Conflict
Omomia O. Austin
2014-05-01
Full Text Available It is commonly argued by a school of thought that there is no relationship between religion and science. This extreme position has led to a lasting conflict, which has pitched religion against science and science against religion. The attempt in this paper is to articulate the fact that there can be an enduring consonance between religion and science. No doubt, the conflict and debate on the subject of religion and science has taken the front burner in both religious and philosophical discusses. Some scholars have argued that science has no role in religious or theological domain, while others contest that all religious concerns and considerations must be exposed to empirical investigations, and, proven by the dynamics of our intellect or reason. This paper, therefore, attempts to examine how religion and science complement each other. The author applied philosophical, sociological and historical methodology in his research. It is recommended that there is the need for dialogue between religion and science.
Nonlinear theory of dust lattice mode coupling in dust crystals
Kourakis, I; Kourakis, Ioannis; Shukla, Padma Kant
2004-01-01
Quasi-crystals formed by charged mesoscopic dust grains (dust lattices), observed since hardly a decade ago, are an exciting paradigm of a nonlinear chain. In laboratory discharge experiments, these quasi-lattices are formed spontaneously in the sheath region near a negative electrode, usually at a levitated horizontal equilibrium configuration where gravity is balanced by an electric field. It is long known (and experimentally confirmed) that dust-lattices support linear oscillations, in the longitudinal (acoustic mode) as well as in the transverse, in plane (acoustic-) or off-plane (optic-like mode) directions. Either due to the (typically Yukawa type) electrostatic inter-grain interaction forces or to the (intrinsically nonlinear) sheath environment, nonlinearity is expected to play an important role in the dynamics of these lattices. Furthermore, the coupling between the different modes may induce coupled nonlinear modes. Despite this evidence, the elucidation of the nonlinear mechanisms governing dust cr...
Lattice design of FELI accelerator system
FELI is constructing an S-band linac accelerator system for generating wide range FEL (Free Electron Laser). The accelerator system has for lasing sections, almost isochronous offsetting lattices, and returning lattices. This paper describes the lattice design. (author)
The lattice dimension of a tree
Ovchinnikov, Sergei
2004-01-01
The lattice dimension of a graph G is the minimal dimension of a cubic lattice in which G can be isometrically embedded. We prove that the lattice dimension of a tree with n leaves is $\\lceil n/2 \\rceil$.
Lattice gas cellular automata and lattice Boltzmann models an introduction
Wolf-Gladrow, Dieter A
2000-01-01
Lattice-gas cellular automata (LGCA) and lattice Boltzmann models (LBM) are relatively new and promising methods for the numerical solution of nonlinear partial differential equations. The book provides an introduction for graduate students and researchers. Working knowledge of calculus is required and experience in PDEs and fluid dynamics is recommended. Some peculiarities of cellular automata are outlined in Chapter 2. The properties of various LGCA and special coding techniques are discussed in Chapter 3. Concepts from statistical mechanics (Chapter 4) provide the necessary theoretical background for LGCA and LBM. The properties of lattice Boltzmann models and a method for their construction are presented in Chapter 5.
$EE_8$-lattices and dihedral groups
Griess Jr., Robert L.; lam, Ching Hung
2008-01-01
We classify integral rootless lattices which are sums of pairs of $EE_8$-lattices (lattices isometric to $\\sqrt 2$ times the $E_8$-lattice) and which define dihedral groups of orders less than or equal to 12. Most of these may be seen in the Leech lattice. Our classification may help understand Miyamoto involutions on lattice type vertex operator algebras and give a context for the dihedral groups which occur in the Glauberman-Norton moonshine theory.
Toward lattice fractional vector calculus
An analog of fractional vector calculus for physical lattice models is suggested. We use an approach based on the models of three-dimensional lattices with long-range inter-particle interactions. The lattice analogs of fractional partial derivatives are represented by kernels of lattice long-range interactions, where the Fourier series transformations of these kernels have a power-law form with respect to wave vector components. In the continuum limit, these lattice partial derivatives give derivatives of non-integer order with respect to coordinates. In the three-dimensional description of the non-local continuum, the fractional differential operators have the form of fractional partial derivatives of the Riesz type. As examples of the applications of the suggested lattice fractional vector calculus, we give lattice models with long-range interactions for the fractional Maxwell equations of non-local continuous media and for the fractional generalization of the Mindlin and Aifantis continuum models of gradient elasticity. (papers)
Introduction to lattice gauge theory
The lattice formulation of Quantum Field Theory (QFT) can be exploited in many ways. We can derive the lattice Feynman rules and carry out weak coupling perturbation expansions. The lattice then serves as a manifestly gauge invariant regularization scheme, albeit one that is more complicated than standard continuum schemes. Strong coupling expansions: these give us useful qualitative information, but unfortunately no hard numbers. The lattice theory is amenable to numerical simulations by which one calculates the long distance properties of a strongly interacting theory from first principles. The observables are measured as a function of the bare coupling g and a gauge invariant cut-off ≅ 1/α, where α is the lattice spacing. The continuum (physical) behavior is recovered in the limit α → 0, at which point the lattice artifacts go to zero. This is the more powerful use of lattice formulation, so in these lectures the author focuses on setting up the theory for the purpose of numerical simulations to get hard numbers. The numerical techniques used in Lattice Gauge Theories have their roots in statistical mechanics, so it is important to develop an intuition for the interconnection between quantum mechanics and statistical mechanics. This will be the emphasis of the first lecture. In the second lecture, the author reviews the essential ingredients of formulating QCD on the lattice and discusses scaling and the continuum limit. In the last lecture the author summarizes the status of some of the main results. He also mentions the bottlenecks and possible directions for research. 88 refs
Pion structure from the lattice
In this thesis, we have discussed several aspects of the pion structure that are accessible with lattice QCD. In our introduction, we briefly mentioned QCD phenomenology for the pion that is obtained from experiments, namely the electromagnetic form factor connected to the charge radius, and the parton distribution functions (PDFs) which provide probabilities of finding a parton with a certain momentum fraction. These are embedded in the more general framework of generalised parton distributions (GPDs) which from the basis of this work. Special attention was paid to Mellin moments of GPDs that are parametrised in generalised form factors relevant for lattice calculations. The two subsequent Chapters were devoted to an introduction to lattice QCD and the lattice techniques we used. Here we started from the QCD Lagrangian and the path integral, to then explain our lattice gauge and fermion action, both going back to Wilson. For the latter we used the clover improved version for our dynamical two flavour simulations. We then gave details of the calculation of two- and three-point functions on the lattice, as well as the operators involved and how the matrix elements are extracted from the lattice data by building suitable ratios. The pion form factor was used for an exhaustive explanation of our methods to analyse the data. We investigated the momentum dependence of the form factor and its extrapolation to physical pion masses. We also payed attention to the lattice artifacts appearing in any lattice simulation. We also tried to estimate the size of finite volume corrections. We applied the established methods to the analysis of higher moments of the forward distributions and the second moment of the non-forward case. Finally, we gave an outlook on the densities of polarised quarks in the pion. (orig.)