WorldWideScience

Sample records for antibiotic-resistant gram negative

  1. Antibiotic-Resistant Gram Negative Bacilli in Meals Delivered at a General Hospital, Italy

    Directory of Open Access Journals (Sweden)

    Maria Rosa Anna Plano

    2009-01-01

    Full Text Available This study aimed at detecting the presence of antibiotic-resistant Gram-negatives in samples of meals delivered at the University General Hospital of Palermo, Italy. Antibiotic resistant Gram negatives were isolated in July—September 2007 ffrom cold dishes and food contact surfaces and utensils. Bacterial strains were submitted to susceptibility test and subtyped by random amplification of polymorphic DNA (RAPD. Forty-six of 55 (83.6% food samples and 14 of 17 (82.3% environmental swabs were culture positive for Gram negative bacilli resistant to at least one group of antibacterial drugs. A total of 134 antibiotic resistant strains, 51 fermenters and 83 non-fermenters, were recovered. Fermenters and non-fermenters showed frequencies as high as 97.8% of resistance to two or more groups of antibiotics and non fermenters were 28.9% resistant to more than three groups. Molecular typing detected 34 different profiles among the fermenters and 68 among the non-fermenters. Antibiotic resistance was very common among both fermenters and non-fermenters. However, the wide heterogeneity of RAPD patterns seems to support a prominent role of cross-contamination rather than a clonal expansion of a few resistant isolates. A contribution of commensal Gram negatives colonizing foods to a common bacterial resistance pool should not been overlooked.

  2. Antibiotic-resistant gram negative bacilli in meals delivered at a general hospital, Italy.

    Science.gov (United States)

    Plano, Maria Rosa Anna; Di Noto, Anna Maria; Firenze, Alberto; Sciortino, Sonia; Mammina, Caterina

    2009-01-01

    This study aimed at detecting the presence of antibiotic-resistant Gram-negatives in samples of meals delivered at the University General Hospital of Palermo, Italy. Antibiotic resistant Gram negatives were isolated in July-September 2007 ffrom cold dishes and food contact surfaces and utensils. Bacterial strains were submitted to susceptibility test and subtyped by random amplification of polymorphic DNA (RAPD). Forty-six of 55 (83.6%) food samples and 14 of 17 (82.3%) environmental swabs were culture positive for Gram negative bacilli resistant to at least one group of antibacterial drugs. A total of 134 antibiotic resistant strains, 51 fermenters and 83 non-fermenters, were recovered. Fermenters and non-fermenters showed frequencies as high as 97.8% of resistance to two or more groups of antibiotics and non fermenters were 28.9% resistant to more than three groups. Molecular typing detected 34 different profiles among the fermenters and 68 among the non-fermenters. Antibiotic resistance was very common among both fermenters and non-fermenters. However, the wide heterogeneity of RAPD patterns seems to support a prominent role of cross-contamination rather than a clonal expansion of a few resistant isolates. A contribution of commensal Gram negatives colonizing foods to a common bacterial resistance pool should not been overlooked.

  3. Resistant gram-negative bacilli and antibiotic consumption in zarqa, jordan

    International Nuclear Information System (INIS)

    Bataineh, H.A.; Alrashed, K.M.

    2007-01-01

    To investigate the prevalence of antibiotic resistance among gram-negative bacteria in relation to antibiotic use in Prince Hashem Hospital (PHH), Jordan. One hundred consecutive gram-negative bacterial isolates from different sites were collected from patients admitted to the ICU at PHH. The susceptibilities of the strains to 12 antibiotics were performed and interpreted. The quantities and the numbers of the patients discharged on antibiotics and the quantities consumed were obtained from the hospital pharmacy records. The most common isolate was P. aeruginosa (n=21) The most common site of isolation was the respiratory tract (65%), The highest susceptibility was to piperacillin/ tazobactam(78%), and the lowest was to cefuroxime(34%). The aminoglycosides gentamicin and amikacin were active against 71% and 73% of the isolates respectively, Ciprofloxacin was active against 75% of the isolates. The most frequently used antibiotics were the third-generation cephalosporins ceftriaxone and ceftazidime, followed by imipenem and amikacin. Antibiotic resistance surveillance programs associated with registration of antibiotic consumption are necessary to promote optimal use of antibiotics. Rational prescribing of antibiotics should be encouraged through educational programs, surveillance and audit. Proper infection control measures should be practiced to prevent horizontal transfer of drug-resistant organisms. (author)

  4. Trojan Horse Antibiotics-A Novel Way to Circumvent Gram-Negative Bacterial Resistance?

    Science.gov (United States)

    Tillotson, Glenn S

    2016-01-01

    Antibiotic resistance has been emerged as a major global health problem. In particular, gram-negative species pose a significant clinical challenge as bacteria develop or acquire more resistance mechanisms. Often, these bacteria possess multiple resistance mechanisms, thus nullifying most of the major classes of drugs. Novel approaches to this issue are urgently required. However, the challenges of developing new agents are immense. Introducing novel agents is fraught with hurdles, thus adapting known antibiotic classes by altering their chemical structure could be a way forward. A chemical addition to existing antibiotics known as a siderophore could be a solution to the gram-negative resistance issue. Siderophore molecules rely on the bacterial innate need for iron ions and thus can utilize a Trojan Horse approach to gain access to the bacterial cell. The current approaches to using this potential method are reviewed.

  5. Integrating rapid diagnostics and antimicrobial stewardship improves outcomes in patients with antibiotic-resistant Gram-negative bacteremia.

    Science.gov (United States)

    Perez, Katherine K; Olsen, Randall J; Musick, William L; Cernoch, Patricia L; Davis, James R; Peterson, Leif E; Musser, James M

    2014-09-01

    An intervention for Gram-negative bloodstream infections that integrated mass spectrometry technology for rapid diagnosis with antimicrobial stewardship oversight significantly improved patient outcomes and reduced hospital costs. As antibiotic resistance rates continue to grow at an alarming speed, the current study was undertaken to assess the impact of this intervention in a challenging patient population with bloodstream infections caused by antibiotic-resistant Gram-negative bacteria. A total of 153 patients with antibiotic-resistant Gram-negative bacteremia hospitalized prior to the study intervention were compared to 112 patients treated post-implementation. Outcomes assessed included time to optimal antibiotic therapy, time to active treatment when inactive, hospital and intensive care unit length of stay, all-cause 30-day mortality, and total hospital expenditures. Integrating rapid diagnostics with antimicrobial stewardship improved time to optimal antibiotic therapy (80.9 h in the pre-intervention period versus 23.2 h in the intervention period, P Gram-negatives. The intervention decreased hospital and intensive care unit length of stay, total hospital costs, and reduced all-cause 30-day mortality. Copyright © 2014. Published by Elsevier Ltd.

  6. Drug-resistant gram-negative uropathogens: A review.

    Science.gov (United States)

    Khoshnood, Saeed; Heidary, Mohsen; Mirnejad, Reza; Bahramian, Aghil; Sedighi, Mansour; Mirzaei, Habibollah

    2017-10-01

    Urinary tract infection(UTI) caused by Gram-negative bacteria is the second most common infectious presentation in community medical practice. Approximately 150 million people are diagnosed with UTI each year worldwide. Drug resistance in Gram-negative uropathogens is a major global concern which can lead to poor clinical outcomes including treatment failure, development of bacteremia, requirement for intravenous therapy, hospitalization, and extended length of hospital stay. The mechanisms of drug resistance in these bacteria are important due to they are often not identified by routine susceptibility tests and have an exceptional potential for outbreaks. Treatment of UTIs depends on the access to effective drugs, which is now threatened by antibiotic resistant Gram-negative uropathogens. Although several effective antibiotics with activity against highly resistant Gram-negatives are available, there is not a unique antibiotic with activity against the high variety of resistance. Therefore, antimicrobial susceptibility tests, correlation between clinicians and laboratories, development of more rapid diagnostic methods, and continuous monitoring of drug resistance are urgent priorities. In this review, we will discuss about the current global status of drug-resistant Gram-negative uropathogens and their mechanisms of drug resistance to provide new insights into their treatment options. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Silver enhances antibiotic activity against gram-negative bacteria.

    Science.gov (United States)

    Morones-Ramirez, J Ruben; Winkler, Jonathan A; Spina, Catherine S; Collins, James J

    2013-06-19

    A declining pipeline of clinically useful antibiotics has made it imperative to develop more effective antimicrobial therapies, particularly against difficult-to-treat Gram-negative pathogens. Silver has been used as an antimicrobial since antiquity, yet its mechanism of action remains unclear. We show that silver disrupts multiple bacterial cellular processes, including disulfide bond formation, metabolism, and iron homeostasis. These changes lead to increased production of reactive oxygen species and increased membrane permeability of Gram-negative bacteria that can potentiate the activity of a broad range of antibiotics against Gram-negative bacteria in different metabolic states, as well as restore antibiotic susceptibility to a resistant bacterial strain. We show both in vitro and in a mouse model of urinary tract infection that the ability of silver to induce oxidative stress can be harnessed to potentiate antibiotic activity. Additionally, we demonstrate in vitro and in two different mouse models of peritonitis that silver sensitizes Gram-negative bacteria to the Gram-positive-specific antibiotic vancomycin, thereby expanding the antibacterial spectrum of this drug. Finally, we used silver and antibiotic combinations in vitro to eradicate bacterial persister cells, and show both in vitro and in a mouse biofilm infection model that silver can enhance antibacterial action against bacteria that produce biofilms. This work shows that silver can be used to enhance the action of existing antibiotics against Gram-negative bacteria, thus strengthening the antibiotic arsenal for fighting bacterial infections.

  8. An unusual class of anthracyclines potentiate Gram-positive antibiotics in intrinsically resistant Gram-negative bacteria

    Science.gov (United States)

    Cox, Georgina; Koteva, Kalinka; Wright, Gerard D.

    2014-01-01

    Objectives An orthogonal approach taken towards novel antibacterial drug discovery involves the identification of small molecules that potentiate or enhance the activity of existing antibacterial agents. This study aimed to identify natural-product rifampicin adjuvants in the intrinsically resistant organism Escherichia coli. Methods E. coli BW25113 was screened against 1120 actinomycete fermentation extracts in the presence of subinhibitory (2 mg/L) concentrations of rifampicin. The active molecule exhibiting the greatest rifampicin potentiation was isolated using activity-guided methods and identified using mass and NMR spectroscopy. Susceptibility testing and biochemical assays were used to determine the mechanism of antibiotic potentiation. Results The anthracycline Antibiotic 301A1 was isolated from the fermentation broth of a strain of Streptomyces (WAC450); the molecule was shown to be highly synergistic with rifampicin (fractional inhibitory concentration index = 0.156) and moderately synergistic with linezolid (FIC index = 0.25) in both E. coli and Acinetobacter baumannii. Activity was associated with inhibition of efflux and the synergistic phenotype was lost when tested against E. coli harbouring mutations within the rpoB gene. Structure–activity relationship studies revealed that other anthracyclines do not synergize with rifampicin and removal of the sugar moiety of Antibiotic 301A1 abolishes activity. Conclusions Screening only a subsection of our natural product library identified a small-molecule antibiotic adjuvant capable of sensitizing Gram-negative bacteria to antibiotics to which they are ordinarily intrinsically resistant. This result demonstrates the great potential of this approach in expanding antibiotic effectiveness in the face of the growing challenge of resistance in Gram-negatives. PMID:24627312

  9. In vitro activity of XF-73, a novel antibacterial agent, against antibiotic-sensitive and -resistant Gram-positive and Gram-negative bacterial species.

    Science.gov (United States)

    Farrell, David J; Robbins, Marion; Rhys-Williams, William; Love, William G

    2010-06-01

    The antibacterial activity of XF-73, a dicationic porphyrin drug, was investigated against a range of Gram-positive and Gram-negative bacteria with known antibiotic resistance profiles, including resistance to cell wall synthesis, protein synthesis, and DNA and RNA synthesis inhibitors as well as cell membrane-active antibiotics. Antibiotic-sensitive strains for each of the bacterial species tested were also included for comparison purposes. XF-73 was active [minimum inhibitory concentration (MIC) 0.25-4 mg/L] against all of the Gram-positive bacteria tested, irrespective of the antibiotic resistance profile of the isolates, suggesting that the mechanism of action of XF-73 is unique compared with the major antibiotic classes. Gram-negative activity was lower (MIC 1 mg/L to > 64 mg/L). Minimum bactericidal concentration data confirmed that the activity of XF-73 was bactericidal. Time-kill kinetics against healthcare-associated and community-associated meticillin-resistant Staphylococcus aureus isolates demonstrated that XF-73 was rapidly bactericidal, with > 5 log(10) kill obtained after 15 min at 2 x MIC, the earliest time point sampled. The post-antibiotic effect (PAE) for XF-73 under conditions where the PAE for vancomycin was 5.4 h. XF-73 represents a novel broad-spectrum Gram-positive antibacterial drug with potentially beneficial characteristics for the treatment and prevention of Gram-positive bacterial infections. 2010. Published by Elsevier B.V.

  10. An unusual class of anthracyclines potentiate Gram-positive antibiotics in intrinsically resistant Gram-negative bacteria.

    Science.gov (United States)

    Cox, Georgina; Koteva, Kalinka; Wright, Gerard D

    2014-07-01

    An orthogonal approach taken towards novel antibacterial drug discovery involves the identification of small molecules that potentiate or enhance the activity of existing antibacterial agents. This study aimed to identify natural-product rifampicin adjuvants in the intrinsically resistant organism Escherichia coli. E. coli BW25113 was screened against 1120 actinomycete fermentation extracts in the presence of subinhibitory (2 mg/L) concentrations of rifampicin. The active molecule exhibiting the greatest rifampicin potentiation was isolated using activity-guided methods and identified using mass and NMR spectroscopy. Susceptibility testing and biochemical assays were used to determine the mechanism of antibiotic potentiation. The anthracycline Antibiotic 301A(1) was isolated from the fermentation broth of a strain of Streptomyces (WAC450); the molecule was shown to be highly synergistic with rifampicin (fractional inhibitory concentration index = 0.156) and moderately synergistic with linezolid (FIC index = 0.25) in both E. coli and Acinetobacter baumannii. Activity was associated with inhibition of efflux and the synergistic phenotype was lost when tested against E. coli harbouring mutations within the rpoB gene. Structure-activity relationship studies revealed that other anthracyclines do not synergize with rifampicin and removal of the sugar moiety of Antibiotic 301A(1) abolishes activity. Screening only a subsection of our natural product library identified a small-molecule antibiotic adjuvant capable of sensitizing Gram-negative bacteria to antibiotics to which they are ordinarily intrinsically resistant. This result demonstrates the great potential of this approach in expanding antibiotic effectiveness in the face of the growing challenge of resistance in Gram-negatives. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Renew or die: The molecular mechanisms of peptidoglycan recycling and antibiotic resistance in Gram-negative pathogens.

    Science.gov (United States)

    Domínguez-Gil, Teresa; Molina, Rafael; Alcorlo, Martín; Hermoso, Juan A

    2016-09-01

    Antimicrobial resistance is one of the most serious health threats. Cell-wall remodeling processes are tightly regulated to warrant bacterial survival and in some cases are directly linked to antibiotic resistance. Remodeling produces cell-wall fragments that are recycled but can also act as messengers for bacterial communication, as effector molecules in immune response and as signaling molecules triggering antibiotic resistance. This review is intended to provide state-of-the-art information about the molecular mechanisms governing this process and gather structural information of the different macromolecular machineries involved in peptidoglycan recycling in Gram-negative bacteria. The growing body of literature on the 3D structures of the corresponding macromolecules reveals an extraordinary complexity. Considering the increasing incidence and widespread emergence of Gram-negative multidrug-resistant pathogens in clinics, structural information on the main actors of the recycling process paves the way for designing novel antibiotics disrupting cellular communication in the recycling-resistance pathway. Copyright © 2016. Published by Elsevier Ltd.

  12. Low antibiotic resistance among anaerobic Gram-negative bacteria in periodontitis 5 years following metronidazole therapy.

    Science.gov (United States)

    Dahlen, G; Preus, H R

    2017-02-01

    The objective of this study was to assess antibiotic susceptibility among predominant Gram-negative anaerobic bacteria isolated from periodontitis patients who 5 years prior had been subject to mechanical therapy with or without adjunctive metronidazole. One pooled sample was taken from the 5 deepest sites of each of 161 patients that completed the 5 year follow-up after therapy. The samples were analyzed by culture. A total number of 85 anaerobic strains were isolated from the predominant subgingival flora of 65/161 patient samples, identified, and tested for antibiotic susceptibility by MIC determination. E-tests against metronidazole, penicillin, amoxicillin, amoxicillin + clavulanic acid and clindamycin were employed. The 73/85 strains were Gram-negative rods (21 Porphyromonas spp., 22 Prevotella/Bacteroides spp., 23 Fusobacterium/Filifactor spp., 3 Campylobacter spp. and 4 Tannerella forsythia). These were all isolated from the treated patients irrespective of therapy procedures (+/-metronidazole) 5 years prior. Three strains (Bifidobacterium spp., Propionibacterium propionicum, Parvimonas micra) showed MIC values for metronidazole over the European Committee on Antimicrobial Susceptibility Testing break point of >4 μg/mL. All Porphyromonas and Tannerella strains were highly susceptible. Metronidazole resistant Gram-negative strains were not found, while a few showed resistance against beta-lactam antibiotics. In this population of 161 patients who had been subject to mechanical periodontal therapy with or without adjunct metronidazole 5 years prior, no cultivable antibiotic resistant anaerobes were found in the predominant subgingival microbiota. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Will new antimicrobials overcome resistance among Gram-negatives?

    Science.gov (United States)

    Bassetti, Matteo; Ginocchio, Francesca; Mikulska, Małgorzata; Taramasso, Lucia; Giacobbe, Daniele Roberto

    2011-10-01

    The spread of resistance among Gram-positive and Gram-negative bacteria represents a growing challenge for the development of new antimicrobials. The pace of antibiotic drug development has slowed during the last decade and, especially for Gram-negatives, clinicians are facing a dramatic shortage in the availability of therapeutic options to face the emergency of the resistance problem throughout the world. In this alarming scenario, although there is a shortage of compounds reaching the market in the near future, antibiotic discovery remains one of the keys to successfully stem and maybe overcome the tide of resistance. Analogs of already known compounds and new agents belonging to completely new classes of antimicrobials are in early stages of development. Novel and promising anti-Gram-negative antimicrobials belong both to old (cephalosporins, carbapenems, β-lactamase inhibitors, monobactams, aminoglycosides, polymyxin analogues and tetracycline) and completely new antibacterial classes (boron-containing antibacterial protein synthesis inhibitors, bis-indoles, outer membrane synthesis inhibitors, antibiotics targeting novel sites of the 50S ribosomal subunit and antimicrobial peptides). However, all of these compounds are still far from being introduced into clinical practice. Therefore, infection control policies and optimization in the use of already existing molecules are still the most effective approaches to reduce the spread of resistance and preserve the activity of antimicrobials.

  14. Prevalence of antibiotic-resistant Gram-negative bacteria associated with the red-eared slider (Trachemys scripta elegans).

    Science.gov (United States)

    Liu, Dandan; Wilson, Cailin; Hearlson, Jodie; Singleton, Jennifer; Thomas, R Brent; Crupper, Scott S

    2013-09-01

    Free-ranging Red-eared Sliders (Trachemys scripta elegans) were captured from farm ponds located in the Flint Hills of Kansas and a zoo pond in Emporia, Kansas, USA, to evaluate their enteric bacterial flora and associated antibiotic resistance. Bacteria obtained from cloacal swabs were composed of six different Gram-negative genera. Although antibiotic resistance was present in turtles captured from both locations, 40 and 49% of bacteria demonstrated multiple antibiotic resistance to four of the antibiotics tested from the zoo captured and Flint Hills ponds turtles, respectively. These data illustrate environmental antibiotic resistance is widespread in the bacterial flora obtained from Red-eared Sliders in east central Kansas.

  15. Inhaled Antibiotics for Gram-Negative Respiratory Infections

    Science.gov (United States)

    Fraidenburg, Dustin R.; Scardina, Tonya

    2016-01-01

    SUMMARY Gram-negative organisms comprise a large portion of the pathogens responsible for lower respiratory tract infections, especially those that are nosocomially acquired, and the rate of antibiotic resistance among these organisms continues to rise. Systemically administered antibiotics used to treat these infections often have poor penetration into the lung parenchyma and narrow therapeutic windows between efficacy and toxicity. The use of inhaled antibiotics allows for maximization of target site concentrations and optimization of pharmacokinetic/pharmacodynamic indices while minimizing systemic exposure and toxicity. This review is a comprehensive discussion of formulation and drug delivery aspects, in vitro and microbiological considerations, pharmacokinetics, and clinical outcomes with inhaled antibiotics as they apply to disease states other than cystic fibrosis. In reviewing the literature surrounding the use of inhaled antibiotics, we also highlight the complexities related to this route of administration and the shortcomings in the available evidence. The lack of novel anti-Gram-negative antibiotics in the developmental pipeline will encourage the innovative use of our existing agents, and the inhaled route is one that deserves to be further studied and adopted in the clinical arena. PMID:27226088

  16. Plasmid-Mediated Antibiotic Resistance and Virulence in Gram-negatives: the Klebsiella pneumoniae Paradigm.

    Science.gov (United States)

    Ramirez, Maria S; Traglia, German M; Lin, David L; Tran, Tung; Tolmasky, Marcelo E

    Plasmids harbor genes coding for specific functions including virulence factors and antibiotic resistance that permit bacteria to survive the hostile environment found in the host and resist treatment. Together with other genetic elements such as integrons and transposons, and using a variety of mechanisms, plasmids participate in the dissemination of these traits resulting in the virtual elimination of barriers among different kinds of bacteria. In this article we review the current information about physiology and role in virulence and antibiotic resistance of plasmids from the gram-negative opportunistic pathogen Klebsiella pneumoniae . This bacterium has acquired multidrug resistance and is the causative agent of serious communityand hospital-acquired infections. It is also included in the recently defined ESKAPE group of bacteria that cause most of US hospital infections.

  17. Extended spectrum β-lactamases, carbapenemases and mobile genetic elements responsible for antibiotics resistance in Gram-negative bacteria.

    Science.gov (United States)

    El Salabi, Allaaeddin; Walsh, Timothey R; Chouchani, Chedly

    2013-05-01

    Infectious diseases due to Gram-negative bacteria are a leading cause of morbidity and mortality worldwide. Antimicrobial agents represent one major therapeutic tools implicated to treat these infections. The misuse of antimicrobial agents has resulted in the emergence of resistant strains of Gram-negatives in particular Enterobacteriaceae and non-fermenters; they have an effect not only on a human but on the public health when bacteria use the resistance mechanisms to spread in the hospital environment and to the community outside the hospitals by means of mobile genetic elements. Gram-negative bacteria have become increasingly resistant to antimicrobial agents. They have developed several mechanisms by which they can withstand to antimicrobials, these mechanisms include the production of Extended-spectrum β-lactamases (ESBLs) and carbapenemases, furthermore, Gram-negative bacteria are now capable of spreading such resistance between members of the family Enterobacteriaceae and non-fermenters using mobile genetic elements as vehicles for such resistance mechanisms rendering antibiotics useless. Therefore, addressing the issue of mechanisms of antimicrobial resistance is considered one of most urgent priorities. This review will help to illustrate different resistance mechanisms; ESBLs, carbapenemases encoded by genes carried by mobile genetic elements, which are used by Gram-negative bacteria to escape antimicrobial effect.

  18. High resistance rate against 15 different antibiotics in aerobic gram-negative bacteria isolates of cardiology intensive care unit patients

    Directory of Open Access Journals (Sweden)

    Küçükates E

    2002-01-01

    Full Text Available Aerobic gram negative bacteria were isolated and examined microbiologically from various clinical samples of 602 patients hospitalized between January 1997 and December 2000 in surgical and coronary intensive care units (ICUs. A total of 827 isolates were obtained from 602 patients. The majority of microorganisms were isolated from the respiratory tract (50.3% and blood (39.9%. Pseudomonas spp. were the most frequently isolated gram negative species (32.7%, followed by Acinetobacter spp. (24.0% and Klebsiella pneumoniae (19.4%. High resistance rates to all antibiotics studied were observed. Imipenem and meropenem were the most effective antibiotics against gram negatives.

  19. [Identification of anaerobic gram-negative bacilli isolated from various clinical specimens and determination of antibiotic resistance profiles with E-test methods].

    Science.gov (United States)

    Demir, Cengiz; Keşli, Recep

    2018-01-01

    The aim of this study was to identify gram-negative anaerobic bacilli isolated from various clinical specimens that were obtained from patients with suspected anaerobic infections and to determine the antibiotic resistance profiles by using the antibiotic concentration gradient method. The study was performed in Afyon Kocatepe University Ahmet Necdet Sezer Research and Practice Hospital, Medical Microbiology Laboratory between 1 November 2014 and 30 October 2015. Two hundred and seventyeight clinical specimens accepted for anaerobic culture were enrolled in the study. All the samples were cultivated anaerobically by using Schaedler agar with 5% defibrinated sheep blood and Schaedler broth. The isolated anaerobic gram-negative bacilli were identified by using both the conventional methods and automated identification system (VITEK 2, bioMerieux, France). Antibiotic susceptibility tests were performed with antibiotic concentration gradient method (E-test, bioMerieux, France); against penicillin G, clindamycin, cefoxitin, metronidazole, moxifloxacin, imipenem, meropenem, ertapenem and doripenem for each isolate. Of the 28 isolated anaerobic gram-negative bacilli; 14 were identified as Bacteroides fragilis group, 9 were Prevotella spp., and 5 were Fusobacterium spp. The highest resistance rate was found against penicillin (78.5%) and resistance rates against clindamycin and cefoxitin were found as 17.8% and 21.4%, respectively. No resistance was found against metronidazole, moxifloxacin, imipenem, meropenem, ertapenem and doripenem. As a result, isolation and identification of anaerobic bacteria are difficult, time-consuming and more expensive when compared with the cost of aerobic culture. The rate of anaerobic bacteria isolation may be increased by obtaining the appropriate clinical specimen and appropriate transportation of these specimens. We believe that the data obtained from the study in our center may offer benefits for the follow up and treatment of infections

  20. Evaluation of an expanded microarray for detecting antibiotic resistance genes in a broad range of gram-negative bacterial pathogens.

    Science.gov (United States)

    Card, Roderick; Zhang, Jiancheng; Das, Priya; Cook, Charlotte; Woodford, Neil; Anjum, Muna F

    2013-01-01

    A microarray capable of detecting genes for resistance to 75 clinically relevant antibiotics encompassing 19 different antimicrobial classes was tested on 132 Gram-negative bacteria. Microarray-positive results correlated >91% with antimicrobial resistance phenotypes, assessed using British Society for Antimicrobial Chemotherapy clinical breakpoints; the overall test specificity was >83%. Microarray-positive results without a corresponding resistance phenotype matched 94% with PCR results, indicating accurate detection of genes present in the respective bacteria by microarray when expression was low or absent and, hence, undetectable by susceptibility testing. The low sensitivity and negative predictive values of the microarray results for identifying resistance to some antimicrobial resistance classes are likely due to the limited number of resistance genes present on the current microarray for those antimicrobial agents or to mutation-based resistance mechanisms. With regular updates, this microarray can be used for clinical diagnostics to help accurate therapeutic options to be taken following infection with multiple-antibiotic-resistant Gram-negative bacteria and prevent treatment failure.

  1. Curative Treatment of Severe Gram-Negative Bacterial Infections by a New Class of Antibiotics Targeting LpxC.

    Science.gov (United States)

    Lemaître, Nadine; Liang, Xiaofei; Najeeb, Javaria; Lee, Chul-Jin; Titecat, Marie; Leteurtre, Emmanuelle; Simonet, Michel; Toone, Eric J; Zhou, Pei; Sebbane, Florent

    2017-07-25

    The infectious diseases caused by multidrug-resistant bacteria pose serious threats to humankind. It has been suggested that an antibiotic targeting LpxC of the lipid A biosynthetic pathway in Gram-negative bacteria is a promising strategy for curing Gram-negative bacterial infections. However, experimental proof of this concept is lacking. Here, we describe our discovery and characterization of a biphenylacetylene-based inhibitor of LpxC, an essential enzyme in the biosynthesis of the lipid A component of the outer membrane of Gram-negative bacteria. The compound LPC-069 has no known adverse effects in mice and is effective in vitro against a broad panel of Gram-negative clinical isolates, including several multiresistant and extremely drug-resistant strains involved in nosocomial infections. Furthermore, LPC-069 is curative in a murine model of one of the most severe human diseases, bubonic plague, which is caused by the Gram-negative bacterium Yersinia pestis Our results demonstrate the safety and efficacy of LpxC inhibitors as a new class of antibiotic against fatal infections caused by extremely virulent pathogens. The present findings also highlight the potential of LpxC inhibitors for clinical development as therapeutics for infections caused by multidrug-resistant bacteria. IMPORTANCE The rapid spread of antimicrobial resistance among Gram-negative bacilli highlights the urgent need for new antibiotics. Here, we describe a new class of antibiotics lacking cross-resistance with conventional antibiotics. The compounds inhibit LpxC, a key enzyme in the lipid A biosynthetic pathway in Gram-negative bacteria, and are active in vitro against a broad panel of clinical isolates of Gram-negative bacilli involved in nosocomial and community infections. The present study also constitutes the first demonstration of the curative treatment of bubonic plague by a novel, broad-spectrum antibiotic targeting LpxC. Hence, the data highlight the therapeutic potential of Lpx

  2. Curative Treatment of Severe Gram-Negative Bacterial Infections by a New Class of Antibiotics Targeting LpxC

    Energy Technology Data Exchange (ETDEWEB)

    Lemaître, Nadine; Liang, Xiaofei; Najeeb, Javaria; Lee, Chul-Jin; Titecat, Marie; Leteurtre, Emmanuelle; Simonet, Michel; Toone, Eric J.; Zhou, Pei; Sebbane, Florent; Nacy, Carol A.

    2017-07-25

    ABSTRACT

    The infectious diseases caused by multidrug-resistant bacteria pose serious threats to humankind. It has been suggested that an antibiotic targeting LpxC of the lipid A biosynthetic pathway in Gram-negative bacteria is a promising strategy for curing Gram-negative bacterial infections. However, experimental proof of this concept is lacking. Here, we describe our discovery and characterization of a biphenylacetylene-based inhibitor of LpxC, an essential enzyme in the biosynthesis of the lipid A component of the outer membrane of Gram-negative bacteria. The compound LPC-069 has no known adverse effects in mice and is effectivein vitroagainst a broad panel of Gram-negative clinical isolates, including several multiresistant and extremely drug-resistant strains involved in nosocomial infections. Furthermore, LPC-069 is curative in a murine model of one of the most severe human diseases, bubonic plague, which is caused by the Gram-negative bacteriumYersinia pestis. Our results demonstrate the safety and efficacy of LpxC inhibitors as a new class of antibiotic against fatal infections caused by extremely virulent pathogens. The present findings also highlight the potential of LpxC inhibitors for clinical development as therapeutics for infections caused by multidrug-resistant bacteria.

    IMPORTANCEThe rapid spread of antimicrobial resistance among Gram-negative bacilli highlights the urgent need for new antibiotics. Here, we describe a new class of antibiotics lacking cross-resistance with conventional antibiotics. The compounds inhibit LpxC, a key enzyme in the lipid A biosynthetic pathway in Gram-negative bacteria, and are activein vitroagainst a broad panel of clinical isolates of Gram-negative bacilli involved in nosocomial and community infections. The present study also constitutes the first demonstration of the curative treatment of bubonic plague by a novel, broad

  3. Potential strategies for the eradication of multidrug-resistant Gram-negative bacterial infections.

    Science.gov (United States)

    Huwaitat, Rawan; McCloskey, Alice P; Gilmore, Brendan F; Laverty, Garry

    2016-07-01

    Antimicrobial resistance is one of the leading threats to society. The increasing burden of multidrug-resistant Gram-negative infection is particularly concerning as such bacteria are demonstrating resistance to nearly all currently licensed therapies. Various strategies have been hypothesized to treat multidrug-resistant Gram-negative infections including: targeting the Gram-negative outer membrane; neutralization of lipopolysaccharide; inhibition of bacterial efflux pumps and prevention of protein folding. Silver and silver nanoparticles, fusogenic liposomes and nanotubes are potential strategies for extending the activity of licensed, Gram-positive selective, antibiotics to Gram-negatives. This may serve as a strategy to fill the current void in pharmaceutical development in the short term. This review outlines the most promising strategies that could be implemented to solve the threat of multidrug-resistant Gram-negative infections.

  4. Rationalizing the permeation of polar antibiotics into Gram-negative bacteria

    International Nuclear Information System (INIS)

    Scorciapino, Mariano Andrea; Acosta-Gutierrez, Silvia; Benkerrou, Dehbia; D’Agostino, Tommaso; Malloci, Giuliano; Samanta, Susruta; Bodrenko, Igor; Ceccarelli, Matteo

    2017-01-01

    The increasing level of antibiotic resistance in Gram-negative bacteria, together with the lack of new potential drug scaffolds in the pipeline, make the problem of infectious diseases a global challenge for modern medicine. The main reason that Gram-negative bacteria are particularly challenging is the presence of an outer cell-protecting membrane, which is not present in Gram-positive species. Such an asymmetric bilayer is a highly effective barrier for polar molecules. Several protein systems are expressed in the outer membrane to control the internal concentration of both nutrients and noxious species, in particular: (i) water-filled channels that modulate the permeation of polar molecules and ions according to concentration gradients, and (ii) efflux pumps to actively expel toxic compounds. Thus, besides expressing specific enzymes for drugs degradation, Gram-negative bacteria can also resist by modulating the influx and efflux of antibiotics, keeping the internal concentration low. However, there are no direct and robust experimental methods capable of measuring the permeability of small molecules, thus severely limiting our knowledge of the molecular mechanisms that ultimately control the permeation of antibiotics through the outer membrane. This is the innovation gap to be filled for Gram-negative bacteria. This review is focused on the permeation of small molecules through porins, considered the main path for the entry of polar antibiotics into Gram-negative bacteria. A fundamental understanding of how these proteins are able to filter small molecules is a prerequisite to design/optimize antibacterials with improved permeation. The level of sophistication of modern molecular modeling algorithms and the advances in new computer hardware has made the simulation of such complex processes possible at the molecular level. In this work we aim to share our experience and perspectives in the context of a multidisciplinary extended collaboration within the IMI

  5. Rationalizing the permeation of polar antibiotics into Gram-negative bacteria

    Science.gov (United States)

    Scorciapino, Mariano Andrea; Acosta-Gutierrez, Silvia; Benkerrou, Dehbia; D'Agostino, Tommaso; Malloci, Giuliano; Samanta, Susruta; Bodrenko, Igor; Ceccarelli, Matteo

    2017-03-01

    The increasing level of antibiotic resistance in Gram-negative bacteria, together with the lack of new potential drug scaffolds in the pipeline, make the problem of infectious diseases a global challenge for modern medicine. The main reason that Gram-negative bacteria are particularly challenging is the presence of an outer cell-protecting membrane, which is not present in Gram-positive species. Such an asymmetric bilayer is a highly effective barrier for polar molecules. Several protein systems are expressed in the outer membrane to control the internal concentration of both nutrients and noxious species, in particular: (i) water-filled channels that modulate the permeation of polar molecules and ions according to concentration gradients, and (ii) efflux pumps to actively expel toxic compounds. Thus, besides expressing specific enzymes for drugs degradation, Gram-negative bacteria can also resist by modulating the influx and efflux of antibiotics, keeping the internal concentration low. However, there are no direct and robust experimental methods capable of measuring the permeability of small molecules, thus severely limiting our knowledge of the molecular mechanisms that ultimately control the permeation of antibiotics through the outer membrane. This is the innovation gap to be filled for Gram-negative bacteria. This review is focused on the permeation of small molecules through porins, considered the main path for the entry of polar antibiotics into Gram-negative bacteria. A fundamental understanding of how these proteins are able to filter small molecules is a prerequisite to design/optimize antibacterials with improved permeation. The level of sophistication of modern molecular modeling algorithms and the advances in new computer hardware has made the simulation of such complex processes possible at the molecular level. In this work we aim to share our experience and perspectives in the context of a multidisciplinary extended collaboration within the IMI

  6. Antiseptic and antibiotic resistance in Gram-negative bacteria causing urinary tract infection.

    Science.gov (United States)

    Stickler, D J; Thomas, B

    1980-01-01

    A collection of 802 isolates of Gram-negative bacteria causing urinary tract infections was made from general practice, antenatal clinics, and local hospitals. The organisms were tested for their sensitivity to chlorhexidine, cetrimide, glutaraldehyde, phenyl mercuric nitrate, a phenolic formulation, and a proprietary antiseptic containing a mixture of picloxydine, octyl phenoxy polyethoxyethanol, and benzalkonium chloride. Escherichia coli, the major species isolated, proved to be uniformly sensitive to these agents. Approximately 10% of the total number of isolates, however, exhibited a degree of resistance to the cationic agents. These resistant organisms were members of the genera Proteus, Providencia, and Pseudomonas; they were also generally resistant to five, six, or seven antibiotics. It is proposed therefore that an antiseptic policy which involves the intensive use of cationic antiseptics might lead to the selection of a flora of notoriously drug-resistant species. PMID:6769972

  7. Motuporamine Derivatives as Antimicrobial Agents and Antibiotic Enhancers against Resistant Gram-Negative Bacteria.

    Science.gov (United States)

    Borselli, Diane; Blanchet, Marine; Bolla, Jean-Michel; Muth, Aaron; Skruber, Kristen; Phanstiel, Otto; Brunel, Jean Michel

    2017-02-01

    Dihydromotuporamine C and its derivatives were evaluated for their in vitro antimicrobial activities and antibiotic enhancement properties against Gram-negative bacteria and clinical isolates. The mechanism of action of one of these derivatives, MOTU-N44, was investigated against Enterobacter aerogenes by using fluorescent dyes to evaluate outer-membrane depolarization and permeabilization. Its efficiency correlated with inhibition of dye transport, thus suggesting that these molecules inhibit drug transporters by de-energization of the efflux pump rather than by direct interaction of the molecule with the pump. This suggests that depowering the efflux pump provides another strategy to address antibiotic resistance. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  8. [Antimicrobial therapy in severe infections with multidrug-resistant Gram-negative bacterias].

    Science.gov (United States)

    Duszyńska, Wiesława

    2010-01-01

    Multidrug-resistant Gram-negative bacteria pose a serious and rapidly emerging threat to patients in healthcare settings, and are especially prevalent and problematic in intensive therapy units. Recently, the emergence of pandrug-resistance in Gram-negative bacteria poses additional concerns. This review examines the clinical impact and epidemiology of multidrug-resistant Gram-negative bacteria as a cause of increased morbidity and mortality among ITU patients. Beta-lactamases, cephalosporinases and carbapenemases play the most important role in resistance to antibiotics. Despite the tendency to increased resistance, carbapenems administered by continuous infusion remain the most effective drugs in severe sepsis. Drug concentration monitoring, albeit rarely used in practice, is necessary to ensure an effective therapeutic effect.

  9. Antibiotic Resistance of Gram Negatives isolates from loggerhead sea turtles (Caretta caretta) in the central Mediterranean Sea.

    Science.gov (United States)

    Foti, M; Giacopello, C; Bottari, Teresa; Fisichella, V; Rinaldo, D; Mammina, C

    2009-09-01

    Previous studies on fish and marine mammals support the hypothesis that marine species harbor antibiotic resistance and therefore may serve as reservoirs for antibiotic-resistance genetic determinants. The aim of this study was to assess the resistance to antimicrobial agents of Gram negative strains isolated from loggerhead sea turtles (Carettacaretta). Oral and cloacal swabs from 19 live-stranded loggerhead sea turtles, with hooks fixed into the gut, were analyzed. The antimicrobial resistance of the isolates to 31 antibiotics was assessed using the disk-diffusion method. Conventional biochemical tests identified Citrobacter spp., Proteus spp., Enterobacter spp., Escherichia spp., Providencia spp., Morganella spp., Pantoea spp., Pseudomonas spp. and Shewanella spp. Highest prevalences of resistance was detected to carbenicillin (100%), cephalothin (92.6%), oxytetracycline (81.3%) and amoxicillin (77.8%). The isolates showing resistance to the widest range of antibiotics were identified as Citrobacterfreundii, Proteusvulgaris, Providenciarettgeri and Pseudomonasaeruginosa. In this study, antibiotic resistant bacteria reflect marine contamination by polluted effluents and C.caretta is considered a bioindicator which can be used as a monitor for pollution.

  10. Resistance to oral antibiotics in 4569 Gram-negative rods isolated from urinary tract infection in children.

    Science.gov (United States)

    Calzi, Anna; Grignolo, Sara; Caviglia, Ilaria; Calevo, Maria Grazia; Losurdo, Giuseppe; Piaggio, Giorgio; Bandettini, Roberto; Castagnola, Elio

    2016-09-01

    To investigate antibiotic resistance among pathogens isolated from urines in a tertiary care children's hospital in Italy. Retrospective analysis of prospectively collected data on antibiotic susceptibility of Gram-negatives isolated from urines at the Istituto Giannina Gaslini, Genoa - Italy from 2007 to 2014. Antibiotic susceptibility was evaluated. By means of CLSI criteria from 2007 to 2010, while from 2011 EUCAST criteria were adopted. Data on susceptibility to amoxicillin-clavulanate, co-trimoxazole, cefuroxime, nitrofurantoin, fosfomycin and ciprofloxacin were evaluated for Escherichia coli, while for other Enterobacteriaceae data were collected for amoxicillin-clavulanate, co-trimoxazole and ciprofloxacin and for ciprofloxacin against Pseudomonas aeruginosa. Univariate and multivariable analyses were performed for risk factors associated with resistance. A total of 4596 Gram-negative strains were observed in 3364 patients. A significant increase in the proportion of resistant strains was observed for E.coli against amoxicillin-clavulanate, cefuroxime and ciprofloxacin and for others Enterobacteriaceae against co-trimoxazole and ciprofloxacin. Resistance to nitrofurantoin and fosfomycin was very infrequent in E.coli. Logistic regression analysis showed that repeated episode of urinary tract infections was a risk factor for E.coli resistance to amoxicillin-clavulanate, co-trimoxazole and cefuroxime, while admission in one of the Units usually managing children with urinary tract malformations was significantly associated to resistance to amoxicillin-clavulanate and cefuroxime. In conclusion the present study shows an increase in antibiotic resistance in pediatric bacteria isolated from urines in children, especially in presence of repeated episodes and/or urinary tract malformations. This resistance is worrisome for beta-lactams and cotrimoxazole, and start to increase also for fluoroquinolones while nitrofurantoin and fosfomycin still could represent useful

  11. Combating multidrug-resistant Gram-negative bacterial infections.

    Science.gov (United States)

    Xu, Ze-Qi; Flavin, Michael T; Flavin, John

    2014-02-01

    Multidrug-resistant (MDR) bacterial infections, especially those caused by Gram-negative pathogens, have emerged as one of the world's greatest health threats. The development of novel antibiotics to treat MDR Gram-negative bacteria has, however, stagnated over the last half century. This review provides an overview of recent R&D activities in the search for novel antibiotics against MDR Gram-negatives. It provides emphasis in three key areas. First, the article looks at new analogs of existing antibiotic molecules such as β-lactams, tetracyclines, and aminoglycoside as well as agents against novel bacterial targets such as aminoacyl-tRNA synthetase and peptide deformylase. Second, it also examines alternative strategies to conventional approaches including cationic antimicrobial peptides, siderophores, efflux pump inhibitors, therapeutic antibodies, and renewed interest in abandoned treatments or those with limited indications. Third, the authors aim to provide an update on the current clinical development status for each drug candidate. The traditional analog approach is insufficient to meet the formidable challenge brought forth by MDR superbugs. With the disappointing results of the genomics approach for delivering novel targets and drug candidates, alternative strategies to permeate the bacterial cell membrane, enhance influx, disrupt efflux, and target specific pathogens via therapeutic antibodies are attractive and promising. Coupled with incentivized business models, governmental policies, and a clarified regulatory pathway, it is hoped that the antibiotic pipeline will be filled with an effective armamentarium to safeguard global health.

  12. Widespread Fosfomycin Resistance in Gram-Negative Bacteria Attributable to the Chromosomal fosA Gene

    Directory of Open Access Journals (Sweden)

    Ryota Ito

    2017-08-01

    Full Text Available Fosfomycin is a decades-old antibiotic which is being revisited because of its perceived activity against many extensively drug-resistant Gram-negative pathogens. FosA proteins are Mn2+ and K+-dependent glutathione S-transferases which confer fosfomycin resistance in Gram-negative bacteria by conjugation of glutathione to the antibiotic. Plasmid-borne fosA variants have been reported in fosfomycin-resistant Escherichia coli strains. However, the prevalence and distribution of fosA in other Gram-negative bacteria are not known. We systematically surveyed the presence of fosA in Gram-negative bacteria in over 18,000 published genomes from 18 Gram-negative species and investigated their contribution to fosfomycin resistance. We show that FosA homologues are present in the majority of genomes in some species (e.g., Klebsiella spp., Enterobacter spp., Serratia marcescens, and Pseudomonas aeruginosa, whereas they are largely absent in others (e.g., E. coli, Acinetobacter baumannii, and Burkholderia cepacia. FosA proteins in different bacterial pathogens are highly divergent, but key amino acid residues in the active site are conserved. Chromosomal fosA genes conferred high-level fosfomycin resistance when expressed in E. coli, and deletion of chromosomal fosA in S. marcescens eliminated fosfomycin resistance. Our results indicate that FosA is encoded by clinically relevant Gram-negative species and contributes to intrinsic fosfomycin resistance.

  13. Antibiotic Resistance Patterns of Common Gram-negative ...

    African Journals Online (AJOL)

    Background: The resistance of bacteria causing urinary tract infection (UTI) to commonly prescribed antibiotics is increasing both in developing and developed countries. Resistance has emerged even to more potent antimicrobial agents. This study was undertaken to determine the current antibiotic resistance pattern ...

  14. Multidrug resistance in enteric and other gram-negative bacteria.

    Science.gov (United States)

    George, A M

    1996-05-15

    In Gram-negative bacteria, multidrug resistance is a term that is used to describe mechanisms of resistance by chromosomal genes that are activated by induction or mutation caused by the stress of exposure to antibiotics in natural and clinical environments. Unlike plasmid-borne resistance genes, there is no alteration or degradation of drugs or need for genetic transfer. Exposure to a single drug leads to cross-resistance to many other structurally and functionally unrelated drugs. The only mechanism identified for multidrug resistance in bacteria is drug efflux by membrane transporters, even though many of these transporters remain to be identified. The enteric bacteria exhibit mostly complex multidrug resistance systems which are often regulated by operons or regulons. The purpose of this review is to survey molecular mechanisms of multidrug resistance in enteric and other Gram-negative bacteria, and to speculate on the origins and natural physiological functions of the genes involved.

  15. Beta-lactam resistance in the gram negatives: increasing complexity of conditional, composite and multiply resistant phenotypes.

    Science.gov (United States)

    Iredell, Jon; Thomas, Lee; Espedido, Björn

    2006-12-01

    The greatest impact of microbiology data on clinical care is in the critically ill. Unfortunately, this is also the area in which microbiology laboratories are most often non-contributive. Attempts to move to rapid, culture-independent diagnostics are driven by the need to expedite urgent results. This is difficult in Gram-negative infection because of the complexity of the antibiotic resistance phenotype. Here, we discuss resistance to modern beta-lactams as a case in point. Recent outbreaks of transmissible carbapenem resistance among Gram-negative enteric pathogens in Sydney and Melbourne serve to illustrate the pitfalls of traditional phenotypical approaches. A better understanding of the epidemiology and mosaic nature of antibiotic resistance elements in the microflora is needed for us to move forward.

  16. A Trojan-Horse Strategy Including a Bacterial Suicide Action for the Efficient Use of a Specific Gram-Positive Antibiotic on Gram-Negative Bacteria.

    Science.gov (United States)

    Schalk, Isabelle J

    2018-05-10

    In the alarming context of rising bacterial antibiotic resistance, there is an urgent need to discover new antibiotics or increase and/or enlarge the activity of those currently in use. The need for new antibiotics is even more urgent in the case of Gram-negative bacteria, such as Acinetobacter, Pseudomonas, and Enterobacteria, which have become resistant to many antibiotics and have an outer membrane with very low permeability to drugs. Vectorization of antibiotics using siderophores may be a solution to bypass such a bacterial wall: the drugs use the iron transporters of the outer membrane as gates to enter bacteria in a Trojan-horse strategy. Designing siderophore-antibiotics that can cross outer membranes has become almost routine, but their transport across the inner membrane is still a limiting step, as well as a strategy that allows dissociation of the antibiotic from the siderophore once inside the bacteria. Liu et al. ( J. Med. Chem. 2018 , DOI: 10.1021/acs.jmedchem.8b00218 ) report the synthesis of a siderophore-cephalosporin compound and demonstrate that β-lactams, such as cephalosporins, can serve as β-lactamase-triggered releasable linkers to allow intracellular delivery of Gram-positive antibiotics to Gram-negative bacteria.

  17. Multidrug-resistant Gram-negative bacteria: a product of globalization.

    Science.gov (United States)

    Hawkey, P M

    2015-04-01

    Global trade and mobility of people has increased rapidly over the last 20 years. This has had profound consequences for the evolution and the movement of antibiotic resistance genes. There is increasing exposure of populations all around the world to resistant bacteria arising in the emerging economies. Arguably the most important development of the last two decades in the field of antibiotic resistance is the emergence and spread of extended-spectrum β-lactamases (ESBLs) of the CTX-M group. A consequence of the very high rates of ESBL production among Enterobacteriaceae in Asian countries is that there is a substantial use of carbapenem antibiotics, resulting in the emergence of plasmid-mediated resistance to carbapenems. This article reviews the emergence and spread of multidrug-resistant Gram-negative bacteria, focuses on three particular carbapenemases--imipenem carbapenemases, Klebsiella pneumoniae carbapenemase, and New Delhi metallo-β-lactamase--and highlights the importance of control of antibiotic use. Copyright © 2015. Published by Elsevier Ltd.

  18. Carbapenem-Resistant Non-Glucose-Fermenting Gram-Negative Bacilli: the Missing Piece to the Puzzle

    Science.gov (United States)

    Gniadek, Thomas J.; Carroll, Karen C.

    2016-01-01

    The non-glucose-fermenting Gram-negative bacilli Pseudomonas aeruginosa and Acinetobacter baumannii are increasingly acquiring carbapenem resistance. Given their intrinsic antibiotic resistance, this can cause extremely difficult-to-treat infections. Additionally, resistance gene transfer can occur between Gram-negative species, regardless of their ability to ferment glucose. Thus, the acquisition of carbapenemase genes by these organisms increases the risk of carbapenemase spread in general. Ultimately, infection control practitioners and clinical microbiologists need to work together to determine the risk carried by carbapenem-resistant non-glucose-fermenting Gram-negative bacilli (CR-NF) in their institution and what methods should be considered for surveillance and detection of CR-NF. PMID:26912753

  19. Antimicrobial resistance pattern of Gramnegative bacilli isolated of Vali-Asr Hospital wards in Arak

    Directory of Open Access Journals (Sweden)

    Farshid Didgar

    2014-11-01

    Full Text Available Background: Infectious diseases are of the most important causes of mortality all around the world particular in developing countries. Recently, the most important thing that has worried medical society is antibiotic resistance. Multi-resistant gram_negative rods are important pathogens in hospitals, causing high rate of mortality.The main goal of this study was to investigate the antimicrobial resistance patterns among common gram-negative bacilli isolated from patients of Vali-Asr Hospital. Material and Methods: This is a cross-sectional descriptive study conducted between the years 2010-2012 in Vali-Asr hospital in Arak. In this study 1120 specimen were examined. Bacterial strains were isolated by conventional methods from various clinical samples of patients including: blood, urine, wound, sputum, CSF, andetc.All isolates were examined for antimicrobial resistance using disc diffusion method. Results: In this study 737 specimen were positive cultures. A total of 332 isolates of Gram-negative bacilli were identified. The most frequent gram negative bacteria were isolated from urine, wound, blood, respiratory secretion and catheter. The most frequent pathogens were E.coli followed by k.pneumonia, entrobacter, p.oaeruginosa, Acinetobacter spp, citrobacter and proteus. High rate of resistance to third generation of cephalospoins & carbapenems observed amang isolates of Acintobacter spp.Prodution of extended spectrum beralactamases (ESBLS was found in 51.4% of all Gram negative bacteria. Conclusion: Antibiotic resistance, particularly multi-drug resistance is frequent among microorganisms of ValiAsr Hospital. Resistance in our country, like other countries have been shown to be increased, so it is highly recommended to prohibit unnecessary prescription of antibiotics.

  20. Curative Treatment of Severe Gram-Negative Bacterial Infections by a New Class of Antibiotics Targeting LpxC

    Directory of Open Access Journals (Sweden)

    Nadine Lemaître

    2017-07-01

    Full Text Available The infectious diseases caused by multidrug-resistant bacteria pose serious threats to humankind. It has been suggested that an antibiotic targeting LpxC of the lipid A biosynthetic pathway in Gram-negative bacteria is a promising strategy for curing Gram-negative bacterial infections. However, experimental proof of this concept is lacking. Here, we describe our discovery and characterization of a biphenylacetylene-based inhibitor of LpxC, an essential enzyme in the biosynthesis of the lipid A component of the outer membrane of Gram-negative bacteria. The compound LPC-069 has no known adverse effects in mice and is effective in vitro against a broad panel of Gram-negative clinical isolates, including several multiresistant and extremely drug-resistant strains involved in nosocomial infections. Furthermore, LPC-069 is curative in a murine model of one of the most severe human diseases, bubonic plague, which is caused by the Gram-negative bacterium Yersinia pestis. Our results demonstrate the safety and efficacy of LpxC inhibitors as a new class of antibiotic against fatal infections caused by extremely virulent pathogens. The present findings also highlight the potential of LpxC inhibitors for clinical development as therapeutics for infections caused by multidrug-resistant bacteria.

  1. Community-acquired multidrug-resistant Gram-negative bacterial infective endocarditis.

    Science.gov (United States)

    Naha, Sowjanya; Naha, Kushal; Acharya, Vasudev; Hande, H Manjunath; Vivek, G

    2014-08-05

    We describe two cases of bacterial endocarditis secondary to multidrug-resistant Gram-negative organisms. In both cases, the diagnosis was made in accordance with the modified Duke's criteria and confirmed by histopathological analysis. Furthermore, in both instances there were no identifiable sources of bacteraemia and no history of contact with hospital or other medical services prior to the onset of symptoms. The patients were managed in similar fashion with prolonged broad-spectrum antibiotic therapy and surgical intervention and made complete recoveries. These cases highlight Gram-negative organisms as potential agents for endocarditis, as well as expose the dissemination of such multidrug-resistant bacteria into the community. The application of an integrated medical and surgical approach and therapeutic dilemmas encountered in managing these cases are described. 2014 BMJ Publishing Group Ltd.

  2. Effectiveness of oral antibiotics for definitive therapy of Gram-negative bloodstream infections.

    Science.gov (United States)

    Kutob, Leila F; Justo, Julie Ann; Bookstaver, P Brandon; Kohn, Joseph; Albrecht, Helmut; Al-Hasan, Majdi N

    2016-11-01

    There is paucity of data evaluating intravenous-to-oral antibiotic switch options for Gram-negative bloodstream infections (BSIs). This retrospective cohort study examined the effectiveness of oral antibiotics for definitive treatment of Gram-negative BSI. Patients with Gram-negative BSI hospitalised for antibiotics were included in this study. The cohort was stratified into three groups based on bioavailability of oral antibiotics prescribed (high, ≥95%; moderate, 75-94%; and low, antibiotics were prescribed to 106, 179 and 77 patients, respectively, for definitive therapy of Gram-negative BSI. Mean patient age was 63 years, 217 (59.9%) were women and 254 (70.2%) had a urinary source of infection. Treatment failure rates were 2%, 12% and 14% in patients receiving oral antibiotics with high, moderate and low bioavailability, respectively (P = 0.02). Risk of treatment failure in the multivariate Cox model was higher in patients receiving antibiotics with moderate [adjusted hazard ratio (aHR) = 5.9, 95% CI 1.6-38.5; P = 0.005] and low bioavailability (aHR = 7.7, 95% CI 1.9-51.5; P = 0.003) compared with those receiving oral antimicrobial agents with high bioavailability. These data demonstrate the effectiveness of oral antibiotics with high bioavailability for definitive therapy of Gram-negative BSI. Risk of treatment failure increases as bioavailability of the oral regimen declines. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  3. The Growing Threat of Multidrug-Resistant Gram-Negative Infections in Patients with Hematologic Malignancies

    Science.gov (United States)

    Baker, Thomas M.; Satlin, Michael J.

    2016-01-01

    Prolonged neutropenia and chemotherapy-induced mucositis render patients with hematologic malignancies highly vulnerable to Gram-negative bacteremia. Unfortunately, multidrug-resistant (MDR) Gram-negative bacteria are increasingly encountered globally, and current guidelines for empirical antibiotic coverage in these patients may not adequately treat these bacteria. This expansion of resistance, coupled with traditional culturing techniques requiring 2-4 days for bacterial identification and antimicrobial susceptibility results, have grave implications for these immunocompromised hosts. This review characterizes the epidemiology, risk factors, resistance mechanisms, recommended treatments, and outcomes of the MDR Gram-negative bacteria that commonly cause infections in patients with hematologic malignancies. We also examine infection prevention strategies in hematology patients, such as infection control practices, antimicrobial stewardship, and targeted decolonization. Finally, we assess strategies to improve outcomes of infected patients, including gastrointestinal screening to guide empirical antibiotic therapy, new rapid diagnostic tools for expeditious identification of MDR pathogens, and use of two new antimicrobial agents, ceftolozane/tazobactam and ceftazidime/avibactam. PMID:27339405

  4. Doripenem: an expected arrival in the treatment of infections caused by multidrug-resistant Gram-negative pathogens.

    Science.gov (United States)

    Poulakou, Garyphallia; Giamarellou, Helen

    2008-05-01

    Potent new drugs against multidrug-resistant Gram-negative bacteria, namely Pseudomonas aeruginosa and Acinetobacter spp. and pan-drug-resistant Klebsiella pneumoniae, which constitute an increasing medical threat, are almost absent from the future pharmaceutical pipeline. This drug evaluation focuses on the position of doripenem, a novel forthcoming carbapenem. Mechanisms of resistance and new drugs with anti-Gram-negative activity are also briefly reviewed. Literature search was performed for new carbapenems, new antibiotics, doripenem, metallo-beta-lactamase inhibitors, multidrug-resistant pathogens, antipseudomonal antibiotics and multidrug-resistant epidemiology. Doripenem possesses a broad spectrum of activity against Gram-negative bacteria, similar to that of meropenem, while retaining the spectrum of imipenem against Gram-positive pathogens. Against P. aeruginosa, doripenem exhibits rapid bactericidal activity with 2 - 4-fold lower MIC values, compared to meropenem. Exploitation of pharmacokinetic/pharmacodynamic applications could offer a treatment opportunity against strains exhibiting borderline resistance to doripenem. Stability against numerous beta-lactamases, low adverse event potential and more potent in vitro antibacterial activity against P. aeruginosa and A. baumanni compared to the existing carbapenems, are its principal features.

  5. ANTIBIOTIC RESISTANCE SPECTRUM OF NON FERMENTING GRAM NEGATIVE BACILLI ISOLATED IN THE ORTHOPEDIC TRAUMATOLOGY CLINIC OF "SF. SPIRIDON" CLINICAL EMERGENCY HOSPITAL IAŞI.

    Science.gov (United States)

    Tucaliuc, D; Alexa, O; Tuchiluş, Cristina Gabriela; Ursu, Ramona Gabriela; Tucaliuc, Elena Simona; Jelihovsky, I; Iancu, Luminiţa Smaranda

    2015-01-01

    The retro-prospective analysis of antibiotic sensitivity of non-fermenting gram negative bacilli strains circulating in the Orthopedics-Traumatology Clinic from "Sf. Spiridon" Emergency Clinical Hospital in view of determining the trend of the resistance phenomenon and indicating the most useful treatment for the infections caused by these strains. The retrospective component was conducted from 01.01.2003 to 31.12.2012, and the result of the diffusimetric antibiograms was taken from the hospital's informatics system; the prospective component of the study involved the collection of pathological products from the patients admitted during January-December 2013, who showed clinical suspicion of infection, in compliance with the general collection norms for the products destined for the bacteriological exam. From the total 167 strains of Pseudomonas aeruginosa isolated and identified from the patients, 48 (28.74%) were sensitive to at least one antibiotic from each tested class, 29 (17.39%) were resistant to a single antibiotic and the rest of 90 (53.89%) showed multiple resistance. We noticed a statistically significant difference between the number of strains sensitive to at least one antibiotic from each tested class and those with multiple resistance (p < 0.05). For the strains of Acinetobacter baumanii combined resistance was identified for 121 (87.04%), out of which 55 (39.56%) were resistant to two classes of antibiotics and the other (47.48%) to all three classes. The most frequently met was the association of resistance to quinolones and aminoglycosides, namely for a number of 49 strains (35.25%); only 3.59% of them were simultaneously sensitive to the three classes of antibiotics. The already high percentages and the rising trends of antibiotic resistance of non-fermenting gram-negative bacteria described in this study confirm the continuous decrease of the efficiency of antimicrobial agents and underline the necessity of a global strategy which aims at all

  6. Antibacterial and antibiotic resistance modifying activity of the extracts from Allanblackia gabonensis, Combretum molle and Gladiolus quartinianus against Gram-negative bacteria including multi-drug resistant phenotypes.

    Science.gov (United States)

    Fankam, Aimé G; Kuiate, Jules R; Kuete, Victor

    2015-06-30

    Bacterial resistance to antibiotics is becoming a serious problem worldwide. The discovery of new and effective antimicrobials and/or resistance modulators is necessary to tackle the spread of resistance or to reverse the multi-drug resistance. We investigated the antibacterial and antibiotic-resistance modifying activities of the methanol extracts from Allanblackia gabonensis, Gladiolus quartinianus and Combretum molle against 29 Gram-negative bacteria including multi-drug resistant (MDR) phenotypes. The broth microdilution method was used to determine the minimal inhibitory concentrations (MIC) and minimal bactericidal concentrations (MBC) of the samples meanwhile the standard phytochemical methods were used for the preliminary phytochemical screening of the plant extracts. Phytochemical analysis showed the presence of alkaloids, flavonoids, phenols and tannins in all studied extracts. Other chemical classes of secondary metabolites were selectively presents. Extracts from A. gabonensis and C. molle displayed a broad spectrum of activity with MICs varying from 16 to 1024 μg/mL against about 72.41% of the tested bacteria. The extract from the fruits of A. gabonensis had the best activity, with MIC values below 100 μg/mL on 37.9% of tested bacteria. Percentages of antibiotic-modulating effects ranging from 67 to 100% were observed against tested MDR bacteria when combining the leaves extract from C. molle (at MIC/2 and MIC/4) with chloramphenicol, kanamycin, streptomycin and tetracycline. The overall results of the present study provide information for the possible use of the studied plant, especially Allanblackia gabonensis and Combretum molle in the control of Gram-negative bacterial infections including MDR species as antibacterials as well as resistance modulators.

  7. Antimicrobial-resistant Gram-negative bacteria in febrile neutropenic patients with cancer: current epidemiology and clinical impact.

    Science.gov (United States)

    Trecarichi, Enrico M; Tumbarello, Mario

    2014-04-01

    In the recent years, several studies involving cancer patients have demonstrated a clear trend in the epidemiology of bacterial infections showing a shift in the prevalence from Gram-positive to Gram-negative bacteria and the extensive emergence of antimicrobial-resistant strains among Gram-negatives isolated from the blood. The aim of this systematic review was to examine the recent trends in epidemiology and antimicrobial resistance in Gram-negatives recovered from neutropenic cancer patients, with particular emphasis on the impact of antimicrobial resistance on the clinical outcome of severe infections caused by such microorganisms. Overall, from 2007 to date, the rate of Gram-negative bacteria recovery ranged from 24.7 to 75.8% (mean 51.3%) in cancer patient cohorts. Escherichia coli represented the most common species (mean frequency of isolation 32.1%) among the Gram-negatives, followed by Pseudomonas aeruginosa (mean frequency of isolation 20.1%). An increasing frequency of Acinetobacter spp. and Stenotrophomonas maltophilia was also reported. Increased rates of multidrug-resistant Gram-negative strains have been highlighted among Enterobacteriaceae and nonfermenting Gram-negative rods, despite discontinuation of fluoroquinolone-based antibacterial prophylaxis for neutropenic patients. In addition, antimicrobial resistance and/or the inadequacy of empirical antibiotic treatment have been frequently linked to a worse outcome in cancer patients with bloodstream infections caused by Gram-negative isolates. Sound knowledge of the local distribution of pathogens and their susceptibility patterns and prompt initiation of effective antimicrobial treatment for severe infections caused by Gram-negative bacteria are essential in cancer patients.

  8. Cefepime restriction improves gram-negative overall resistance patterns in neonatal intensive care unit

    Directory of Open Access Journals (Sweden)

    Orlei Ribeiro de Araujo

    Full Text Available Antibiotic restriction can be useful in maintaining bacterial susceptibility. The objective of this study was verify if restriction of cefepime, the most frequently used cephalosporin in our neonatal intensive care unit (NICU, would ameliorate broad-spectrum susceptibility of Gram-negative isolates. Nine hundred and ninety-five premature and term newborns were divided into 3 cohorts, according to the prevalence of cefepime use in the unit: Group 1 (n=396 comprised patients admitted from January 2002 to December 2003, period in which cefepime was the most used broad-spectrum antibiotic. Patients in Group 2 (n=349 were admitted when piperacillin/tazobactam replaced cefepime (January to December 2004 and in Group 3 (n=250 when cefepime was reintroduced (January to September 2005. Meropenem was the alternative third-line antibiotic for all groups. Multiresistance was defined as resistance to 2 or more unrelated antibiotics, including necessarily a third or fourth generation cephalosporin, piperacillin/tazobactam or meropenem. Statistics involved Kruskal-Wallis, Mann-Whitney and logrank tests, Kaplan-Meier analysis. Groups were comparable in length of stay, time of mechanical ventilation, gestational age and birth weight. Ninety-eight Gram-negative isolates were analyzed. Patients were more likely to remain free of multiresistant isolates by Kaplan-Meier analysis in Group 2 when compared to Group 1 (p=0.017 and Group 3 (p=0.003. There was also a significant difference in meropenem resistance rates. Cefepime has a greater propensity to select multiresistant Gram-negative pathogens than piperacillin/tazobactam and should not be used extensively in neonatal intensive care.

  9. Distribution of multi-resistant Gram-negative versus Gram-positive bacteria in the hospital inanimate environment.

    Science.gov (United States)

    Lemmen, S W; Häfner, H; Zolldann, D; Stanzel, S; Lütticken, R

    2004-03-01

    We prospectively studied the difference in detection rates of multi-resistant Gram-positive and multi-resistant Gram-negative bacteria in the inanimate environment of patients harbouring these organisms. Up to 20 different locations around 190 patients were surveyed. Fifty-four patients were infected or colonized with methicillin-resistant Staphylococcus aureus (MRSA) or vancomycin-resistant enterococci (VRE) and 136 with multi-resistant Gram-negative bacteria. The environmental detection rate for MRSA or VRE was 24.7% (174/705 samples) compared with 4.9% (89/1827 samples) for multi-resistant Gram-negative bacteria (PGram-positive bacteria were isolated more frequently than Gram-negatives from the hands of patients (PGram-positive and Gram-negative isolates. Our results suggest that the inanimate environment serves as a secondary source for MRSA and VRE, but less so for Gram-negative bacteria. Thus, strict contact isolation in a single room with complete barrier precautions is recommended for MRSA or VRE; however, for multi-resistant Gram-negative bacteria, contact isolation with barrier precautions for close contact but without a single room seems sufficient. This benefits not only the patients, but also the hospital by removing some of the strain placed on already over-stretched resources.

  10. A study of gram-negative bacterial resistance to Aminoglycosides

    Directory of Open Access Journals (Sweden)

    Maleknejad P

    1993-05-01

    Full Text Available From hygienic and economical point of view, drug therapy and prophylaxy in infectious diseases are of great importance. After the world war II, a reduction in the efficacy of sulfonamide in the treatment of shigellosis was observed and later on it led to a survey on drug resistance and the way of its transmission. The aim of this survey, during which 100 cases of gram-negative bacteria were identified, is to study the drug resistance of this bacteria against five types of aminoglycosides by antibiotic sensitivity test (disc-diffusion. Out of 100 strains, 47% were resistant to gentamycin, 70% to kanamycin, 82% to streptomycin, 53% to tobramycin, and 8% to amikacin

  11. Metallo- β-lactamases among Multidrug Resistant (MDR Gram Negative Bacteria Isolated from Clinical Specimens during 2009 in Sanandaj, Kurdistan Province

    Directory of Open Access Journals (Sweden)

    Himen Salimizand

    2012-08-01

    Full Text Available Background: Today, there are numerous reports about emerging multi drug resistant gram negative bacteria all around the world, especially in ICUs. Rarely, Metallo-β-lactamase (MBL enzymes are responsible for these cases. Study of MBLs for diagnosing and preventing distribution of the origin of infection are critical issues. In addition, we would like to compare the efficacy of Iranian and foreign- made antibiotic disks. Materials and Methods: During 2009 all entered clinical specimens to the laboratory tested for detecting gram negative bacteria. Isolated bacteria were tested by Kirby-Bauer method to antibiotic susceptibility test by Iranian and foreign (MAST disks. For gram negative carbapenem resistant isolates, PCR technique used to detect VIM, GIM, and SIM variants of MBLs.Results: During one year, 17890 clinical specimens referred Besat laboratory. The most specimen was Urine (8172 followed by blood culture (5190 that in which 1110 gram negative and positives isolated. Out of which, 778 (70% of isolates were gram negatives. MDR gram negatives were 157 (20.2%. Imipenem and meropenem were the most efficient antibiotics (all susceptible and ceftriaxone was the least (19 % susceptible. E. coli was the most prevalent isolate. 79 Gram negative isolates (10.1% were resistant to Iranian-made discs but all susceptible for foreign ones. All 79 isolates were tested by PCR for MBL genes, that, all were negative. Besides, Iranian imipenem and cefepime disks have had distinguishable difference in susceptibility of isolates.Conclusion: Fortunately, none of gram negative isolates were MBL producer, which revealed no colonization of MBL producing bacteria. Iranian-made disks appear efficient except for imipenem and cefepime.

  12. The Impact of Efflux Pump Inhibitors on the Activity of Selected Non-Antibiotic Medicinal Products against Gram-Negative Bacteria

    Directory of Open Access Journals (Sweden)

    Agnieszka E. Laudy

    2017-01-01

    Full Text Available The potential role of non-antibiotic medicinal products in the treatment of multidrug-resistant Gram-negative bacteria has recently been investigated. It is highly likely that the presence of efflux pumps may be one of the reasons for the weak activity of non-antibiotics, as in the case of some non-steroidal anti-inflammatory drugs (NSAIDs, against Gram-negative rods. The activity of eight drugs of potential non-antibiotic activity, active substance standards, and relevant medicinal products were analysed with and without of efflux pump inhibitors against 180 strains of five Gram-negative rod species by minimum inhibitory concentration (MIC value determination in the presence of 1 mM MgSO4. Furthermore, the influence of non-antibiotics on the susceptibility of clinical strains to quinolones with or without PAβN (Phe-Arg-β-naphthylamide was investigated. The impacts of PAβN on the susceptibility of bacteria to non-antibiotics suggests that amitriptyline, alendronate, nicergoline, and ticlopidine are substrates of efflux pumps in Gram-negative rods. Amitriptyline/Amitriptylinum showed the highest direct antibacterial activity, with MICs ranging 100–800 mg/L against all studied species. Significant decreases in the MIC values of other active substances (acyclovir, atorvastatin, and famotidine tested with pump inhibitors were not observed. The investigated non-antibiotic medicinal products did not alter the MICs of quinolones in the absence and in the presence of PAβN to the studied clinical strains of five groups of species.

  13. Breaking barriers: expansion of the use of endolysins as novel antibacterials against Gram-negative bacteria.

    Science.gov (United States)

    Briers, Yves; Lavigne, Rob

    2015-01-01

    The emergence and spread of antibiotic-resistant bacteria drives the search for novel classes of antibiotics to replenish our armamentarium against bacterial infections. This is particularly critical for Gram-negative pathogens, which are intrinsically resistant to many existing classes of antibiotics due to the presence of a protective outer membrane. In addition, the antibiotics development pipeline is mainly oriented to Gram-positive pathogens such as methicillin-resistant Staphylococcus aureus. A promising novel class of antibacterials is endolysins. These enzymes encoded by bacterial viruses hydrolyze the peptidoglycan layer with high efficiency, resulting in abrupt osmotic lysis and cell death. Their potential as novel antibacterials to treat Gram-positive bacteria has been extensively demonstrated; however, the Gram-negative outer membrane has presented a formidable barrier for the use of endolysins against Gram-negatives until recently. This review reports on the most recent advances in the development of endolysins to kill Gram-negative species with a special focus on endolysin-engineered Artilysins(®).

  14. Detection and Antibiotic Susceptibility Pattern of Biofilm Producing Gram Positive and Gram Negative Bacteria Isolated From a Tertiary Care Hospital of Pakistan

    Directory of Open Access Journals (Sweden)

    Iqbal, M.

    2011-01-01

    Full Text Available Microorganisms adhere to non-living material or living tissue, and form biofilms made up of extracellular polymers/slime. Biofilm-associated microorganisms behave differently from free-floating bacteria with respect to growth rates and ability to resist antimicrobial treatments and therefore pose a public health problem. The objective of this study is to detect the prevalence of biofilm producers among Gram positive and Gram negative bacteria isolated from clinical specimens, and to study their antimicrobial susceptibility pattern. The study was carried out from October 2009 to March 2010, at the Department of Microbiology, Army Medical College/ National University of Sciences and Technology (NUST, Rawalpindi, Pakistan. Clinical specimens were received from various wards of a tertiary care hospital. These were dealt by standard microbiological procedures. Gram positive and Gram negative bacteria isolated were subjected to biofilm detection by congo red agar method (CRA. Antimicrobial susceptibility testing of those isolates, which showed positive results (slime production, was done according to the Kirby-Bauer disc diffusion technique. A total of 150 isolates were tested for the production of biofilm/slime. Among them, 81 isolates showed positive results. From these 81, 51 were Gram positive and 30 were Gram negative. All the 81(54% slime producers showed reduced susceptibility to majority of antibiotics. Bacterial biofilms are an important virulence factor associated with chronic nosocomial infection. Detection of biofilm forming organisms can help in appropriate antibiotic choice.

  15. Trends of 9,416 multidrug-resistant Gram-negative bacteria

    Directory of Open Access Journals (Sweden)

    Viviane Decicera Colombo Oliveira

    2015-06-01

    Full Text Available Summary Objective: a resistance of hospital-acquired bacteria to multiple antibiotics is a major concern worldwide. The objective of this study was to investigate multidrugresistant (MDR bacteria, clinical specimens, origin of specimen and trends, and correlate these with bacterial sensitivity and consumption of antimicrobials. Methods: 9,416 bacteria of nosocomial origin were evaluated in a tertiary hospital, from 1999 to 2008. MDR was defined for Gram-negative bacteria (GNB as resistance to two or more classes/groups of antibiotics. Results: GNB MDR increased by 3.7 times over the study period (p<0.001. Acinetobacter baumannii was the most prevalent (36.2%. Over the study period, there were significant 4.8-fold and 14.6-fold increases for A. baumannii and K. pneumoniae (p<0.001, respectively. Sixty-seven percent of isolates of MDR GNB were isolated in intensive care units. The resistance of A. baumannii to carbapenems increased from 7.4 to 57.5% during the study period and concomitant with an increased consumption. Conclusion: that decade showed prevalence of GNB and a gradual increase in MDR GNB. There was an increase in carbapenem resistance of 50.1% during the study.

  16. Prevalence and Antibiotic Resistance of Gram-Negative Pathogenic Bacteria Species Isolated from Periplaneta americana and Blattella germanica in Varanasi, India.

    Directory of Open Access Journals (Sweden)

    D Leshan Wannigama

    2014-06-01

    Full Text Available Cockroaches are among the medically important pests found within the human habitations that cause serious public health problems. They may harbor a number of pathogenic bacteria on the external surface with antibiotic resistance. Hence, they are regarded as major microbial vectors. This study investigates the prevalence and antibiotic resistance of Gram-negative pathogenic bacteria species isolated from Periplaneta americana and Blattella germanica in Varanasi, India.Totally, 203 adult cockroaches were collected form 44 households and 52 food-handling establishments by trapping. Bacteriological examination of external surfaces of Pe. americana and Bl. germanica were carried out using standard method and antibiotics susceptibility profiles of the isolates were determined using Kirby-Bauer disc diffusion methods.Among the places, we found that 54% had cockroache infestation in households and 77% in food- handling establishments. There was no significant different between the overall bacteria load of the external surface in Pe. americana (64.04% and Bl. germanica (35.96%. However the predominant bacteria on cockroaches were Klebsiella pneumonia, Escherichia coli, Enterobacter aerogenes, and Pseudomonas aeruginosa. However, Kl. pneumoniae and Ps. aeruginosa were the most prevalent, drug-resistant strains were isolated from the cockroaches with 100% resistance to sulfamethoxazole/trimethoprim and ampicillin. For individual strains of bacteria, Escherichia coli was found to have multi-resistance to four antibiotic tested, Citrobacter freundii four, Enterobacter aerogenes and Proteus mirabilis to three.Cockroaches are uniformly distributed in domestic environment, which can be a possible vector for transmission of drug-resistant bacteria and food-borne diseases.

  17. Antibiotic resistance

    Directory of Open Access Journals (Sweden)

    Marianne Frieri

    2017-07-01

    Full Text Available Summary: Antimicrobial resistance in bacterial pathogens is a challenge that is associated with high morbidity and mortality. Multidrug resistance patterns in Gram-positive and -negative bacteria are difficult to treat and may even be untreatable with conventional antibiotics. There is currently a shortage of effective therapies, lack of successful prevention measures, and only a few new antibiotics, which require development of novel treatment options and alternative antimicrobial therapies. Biofilms are involved in multidrug resistance and can present challenges for infection control. Virulence, Staphylococcus aureus, Clostridium difficile infection, vancomycin-resistant enterococci, and control in the Emergency Department are also discussed. Keywords: Antibiotic resistance, Biofilms, Infections, Public health, Emergency Department

  18. Antibiotic susceptibility of Gram-negatives isolated from bacteremia in children with cancer. Implications for empirical therapy of febrile neutropenia.

    Science.gov (United States)

    Castagnola, Elio; Caviglia, Ilaria; Pescetto, Luisa; Bagnasco, Francesca; Haupt, Riccardo; Bandettini, Roberto

    2015-01-01

    Monotherapy is recommended as the first choice for initial empirical therapy of febrile neutropenia, but local epidemiological and antibiotic susceptibility data are now considered pivotal to design a correct management strategy. To evaluate the proportion of Gram-negative rods isolated in bloodstream infections in children with cancer resistant to antibiotics recommended for this indication. The in vitro susceptibility to ceftazidime, piperacillin-tazobactam, meropenem and amikacin of Gram-negatives isolated in bacteremic episodes in children with cancer followed at the Istituto "Giannina Gaslini", Genoa, Italy in the period of 2001-2013 was retrospectively analyzed using the definitions recommended by EUCAST in 2014. Data were analyzed for any single drug and to the combination of amikacin with each β-lactam. The combination was considered effective in absence of concomitant resistance to both drugs, and not evaluated by means of in vitro analysis of antibiotic combinations (e.g., checkerboard). A total of 263 strains were evaluated: 27% were resistant to piperacillin-tazobactam, 23% to ceftazidime, 12% to meropenem and 13% to amikacin. Concomitant resistance to β-lactam and amikacin was detected in 6% of strains for piperacillin-tazobactam, 5% for ceftazidime and 5% for meropenem. During the study period there was a nonsignificant increase in the proportions of strains resistant to β-lactams indicated for monotherapy, and also increase in the resistance to combined therapies. in an era of increasing resistance to antibiotics guideline-recommended monotherapy could be not appropriate for initial empirical therapy of febrile neutropenia. Strict local survey on etiology and antibiotic susceptibility is mandatory for a correct management of this complication in cancer patients.

  19. Combinatorial events of insertion sequences and ICE in Gram-negative bacteria.

    Science.gov (United States)

    Toleman, Mark A; Walsh, Timothy R

    2011-09-01

    The emergence of antibiotic and antimicrobial resistance in Gram-negative bacteria is incremental and linked to genetic elements that function in a so-called 'one-ended transposition' manner, including ISEcp1, ISCR elements and Tn3-like transposons. The power of these elements lies in their inability to consistently recognize one of their own terminal sequences, while recognizing more genetically distant surrogate sequences. This has the effect of mobilizing the DNA sequence found adjacent to their initial location. In general, resistance in Gram-negatives is closely linked to a few one-off events. These include the capture of the class 1 integron by a Tn5090-like transposon; the formation of the 3' conserved segment (3'-CS); and the fusion of the ISCR1 element to the 3'-CS. The structures formed by these rare events have been massively amplified and disseminated in Gram-negative bacteria, but hitherto, are rarely found in Gram-positives. Such events dominate current resistance gene acquisition and are instrumental in the construction of large resistance gene islands on chromosomes and plasmids. Similar combinatorial events appear to have occurred between conjugative plasmids and phages constructing hybrid elements called integrative and conjugative elements or conjugative transposons. These elements are beginning to be closely linked to some of the more powerful resistance mechanisms such as the extended spectrum β-lactamases, metallo- and AmpC type β-lactamases. Antibiotic resistance in Gram-negative bacteria is dominated by unusual combinatorial mistakes of Insertion sequences and gene fusions which have been selected and amplified by antibiotic pressure enabling the formation of extended resistance islands. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  20. A Synthetic Dual Drug Sideromycin Induces Gram-Negative Bacteria To Commit Suicide with a Gram-Positive Antibiotic.

    Science.gov (United States)

    Liu, Rui; Miller, Patricia A; Vakulenko, Sergei B; Stewart, Nichole K; Boggess, William C; Miller, Marvin J

    2018-05-10

    Many antibiotics lack activity against Gram-negative bacteria because they cannot permeate the outer membrane or suffer from efflux and, in the case of β-lactams, are degraded by β-lactamases. Herein, we describe the synthesis and studies of a dual drug conjugate (1) of a siderophore linked to a cephalosporin with an attached oxazolidinone. The cephalosporin component of 1 is rapidly hydrolyzed by purified ADC-1 β-lactamase to release the oxazolidinone. Conjugate 1 is active against clinical isolates of Acinetobacter baumannii as well as strains producing large amounts of ADC-1 β-lactamase. Overall, the results are consistent with siderophore-mediated active uptake, inherent activity of the delivered dual drug, and in the presence of β-lactamases, intracellular release of the oxazolidinone upon cleavage of the cephalosporin to allow the freed oxazolidinone to inactivate its target. The ultimate result demonstrates that Gram-positive oxazolidinone antibiotics can be made to be effective against Gram-negative bacteria by β-lactamase triggered release.

  1. Multiparametric Profiling for Identification of Chemosensitizers against Gram-Negative Bacteria

    Directory of Open Access Journals (Sweden)

    Vincent Lôme

    2018-02-01

    Full Text Available Antibiotic resistance is now a worldwide therapeutic problem. Since the beginning of anti-infectious treatment bacteria have rapidly shown an incredible ability to develop and transfer resistance mechanisms. In the last decades, the design variation of pioneer bioactive molecules has strongly improved their activity and the pharmaceutical companies partly won the race against the clock. Since the 1980s, the new classes of antibiotics that emerged were mainly directed to Gram-positive bacteria. Thus, we are now facing to multidrug-resistant Gram-negative bacteria, with no therapeutic options to deal with them. These bacteria are mainly resistant because of their double membrane that conjointly impairs antibiotic accumulation and extrudes these molecules when entered. The main challenge is to allow antibiotics to cross the impermeable envelope and reach their targets. One promising solution would be to associate, in a combination therapy, a usual antibiotic with a non-antibiotic chemosensitizer. Nevertheless, for effective drug discovery, there is a prominent lack of tools required to understand the rules of permeation and accumulation into Gram-negative bacteria. By the use of a multidrug-resistant enterobacteria, we introduce a high-content screening procedure for chemosensitizers discovery by quantitative assessment of drug accumulation, alteration of barriers, and deduction of their activity profile. We assembled and analyzed a control chemicals library to perform the proof of concept. The analysis was based on real-time monitoring of the efflux alteration and measure of the influx increase in the presence of studied compounds in an automatized bio-assay. Then, synergistic activity of compounds with an antibiotic was studied and kinetic data reduction was performed which led to the calculation of a score for each barrier to be altered.

  2. Retrospective Analysis of Blood Stream Infections and Antibiotic Susceptibility Pattern of Gram Negative Bacteria in a Tertiary Care Cancer Hospital

    Directory of Open Access Journals (Sweden)

    Radha Rani D

    2017-12-01

    Full Text Available Background: Bacterial bloodstream infections are important causes of morbidity and mortality globally. The aim of the present study was to determine the bacterial profile of bloodstream infections and their antibiotic susceptibility pattern among the clinically diagnosed cases of sepsis in cancer patients. Methods: In the present study, etiological and antimicrobial susceptibility profile of blood cultures over a period of 1 year at a tertiary cancer care hospital was done. Blood culture positive isolates were identified using standard microbiological methods and by Fully automated BD Phoenix 100. The antibiotic susceptibility pattern of the organisms was performed by Kirby-Bauer disc diffusion method and MIC (Minimum inhibitory concentration was done by Fully automated BD Phoenix 100. Results: There were 1178 blood culture samples, of which 327 (27.7% were identified to be culture positive. Out of 327 positive cultures, 299 (91.4% showed bacterial growth, Gram negative were 161 (53.8% and Gram positive were 138 (46.1%. Candida species were isolated from 13 (3.97% of positive samples and 15 samples showed contamination. The most common Gram-negative isolate was. Escherichia coli (37.80% and Gram-positive isolate was coagulasenegative staphylococci (52.80%. Escherichia coli showed highest sensitivity to amikacin (83.60% and sensitivity to piperacillin+ tazobactum and cefaperazone+sulbactam was 54.09% and 52.45% respectively. High degree of resistance was found to cephalosporins and levofloxacin. Conclusion: The results indicate high level of antimicrobial resistance among Gram negative bacilli in septicemic patients. The results warrant continuous monitoring of antimicrobial pattern so as to build geographical epidemiological data.

  3. Tigecycline in-vitro susceptibility and antibiotics fitness forgram-negative pathogens

    International Nuclear Information System (INIS)

    Arya, Subhash C.; Agarwal, N.

    2008-01-01

    Objective was to determine the tigecycline in-vitro susceptibility ofnaive gram-negative pathogens from serious infections in Delhi, India. DuringJuly to October 2007 investigations were carried out to determine thetigecycline in vitro susceptibility of 50 consecutive gram-negative pathogensfrom serious infections at the Sant Parmanand Hospital, Delhi, India. Minimumtigecycline inhibitory concentrations were determined employing the E testmethod (AB Biodisk). Twenty-four percent of isolates were found to betigecycline resistant or partly susceptible. Susceptibility of the isolateswere lower than meropenem but similar to piperacillin-tazobactum,amoxicillin-clavulanic acid and amikacin. Tigecycline resistance wasprevalent in the gram-negative isolates from serious infections prior to itsmarketing in India. The choice of any recently marketed antibiotic for apilot treatment against serious gram-negative infections should not beautomatic. In the initial phase of its marketing, it should be evaluated inparallel with the antibiotics with excellent local susceptibility profiles.(author)

  4. A New Take on an Old Remedy: Generating Antibodies against Multidrug-Resistant Gram-Negative Bacteria in a Postantibiotic World.

    Science.gov (United States)

    Motley, Michael P; Fries, Bettina C

    2017-01-01

    With the problem of multidrug-resistant Gram-negative pathogens becoming increasingly dire, new strategies are needed to protect and treat infected patients. Though abandoned in the past, monoclonal antibody therapy against Gram-negative bacteria remains a potential solution and has potential advantages over the broad-spectrum antibiotics they were once replaced by. This Perspective reviews the prospect of utilizing monoclonal antibody therapy against these pathogens, as well as the challenges of doing so and the current therapy targets under investigation.

  5. [Diagnostic and therapeutic management of Gram-negative infections].

    Science.gov (United States)

    Bassetti, Matteo; Repetto, Ernestina

    2008-04-01

    Among Gram negative bacteria, Pseudomonas aeruginosa, the extended spectrum beta-lactamases (ESBL)-producing strains, Acinetobacter spp, in particular the multiresistant Acinetobacter baumannii, and Stenotrophomonas maltophilia are the most implicated micrororganisms in the ever more increasing problem of bacterial resistance. Possible solutions have to be searched, on one hand, in the use of new drugs but, on the other hand, in the re-evaluation of those already available drugs, possibly considering a new role for old drugs such as colistine and fosfomycin. Concerning ESBL-producing strains, the most recent data provided by EARSS report, in Italy, an incidence rate of 10-25 percent. The insurgence of an infection sustained by an ESBL+ve strain is strictly related to some well known risk factors, like the hospital stay itself, the disease severity, the length of stay in ICU, intubation and mechanical ventilation, catheterization, urinary or artery, and the past exposure to antibiotics. The raise in ESBL producing strains is closely related to the increasing use of cephalosporins. In the setting of a Gram negative infection, the combination therapy guarantees a higher coverage by reducing insurgence of possible resistance mechanisms, possibly resulting synergistic, and allowing a de-escalation therapy, although to this latter other problems, such as tolerability, costs and compliance, can be related. Another basic aspect to take into account of, in order to achieve the maximal efficacy of the antibiotic treatment, is the right dosage. In the idea to look for the best approach for the antibiotic treatment of a severe infection in a hospital setting, when a Gram negative aetiology is implicated, it can be possibly presumed that the right way consists in avoiding inappropriate antibiotic therapies, making therapeutic choices based on guidelines resulted from local epidemiological data, initiating the therapy promptly, avoiding excessive use of antibiotics, possibly

  6. Novel pharmacotherapy for the treatment of hospital-acquired and ventilator-associated pneumonia caused by resistant gram-negative bacteria.

    Science.gov (United States)

    Kidd, James M; Kuti, Joseph L; Nicolau, David P

    2018-03-01

    Hospital-acquired and ventilator-associated bacterial pneumonia (HABP/VABP) are among the most prevalent infections in hospitalized patients, particularly those in the intensive care unit. Importantly, the frequency of multidrug resistant (MDR) Gram-negative (GN) bacteria as the bacteriologic cause of HABP/VABP is increasing. These include MDR Pseudomonas aeruginosa, Acinetobacter baumannii, and carbapenem resistant Enterobacteriaceae (CRE). Few antibiotics are currently available when such MDR Gram-negatives are encountered and older agents such as polymyxin B, colistin (polymyxin E), and tigecycline have typically performed poorly in HABP/VABP. Areas covered: In this review, the authors summarize novel antibiotics which have reached phase 3 clinical trials including patients with HABP/VABP. For each agent, the spectrum of activity, pertinent pharmacological characteristics, clinical trial data, and potential utility in the treatment of MDR-GN HABP/VABP is discussed. Expert opinion: Novel antibiotics currently available, and those soon to be, will expand opportunities to treat HABP/VABP caused by MDR-GN organisms and minimize the use of more toxic, less effective drugs. However, with sparse clinical data available, defining the appropriate role for each of the new agents is challenging. In order to maximize the utility of these antibiotics, combination therapy and the role of therapeutic drug monitoring should be investigated.

  7. Antibacterial agents and heavy metal resistance in Gram-negative bacteria isolated from seawater, shrimp and sediment in Iskenderun Bay, Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Matyar, Fatih [Cukurova University, Faculty of Education, Department of Science and Technology Education, 01330 Balcali, Adana (Turkey)], E-mail: fmatyar@cu.edu.tr; Kaya, Aysenur; Dincer, Sadik [Cukurova University, Faculty of Science and Letters, Department of Biology, 01330 Balcali, Adana (Turkey)

    2008-12-15

    The aim of the present study was to determine the level of antibiotic resistance patterns and distribution of heavy metal resistance of bacterial isolates from seawater, sediment and shrimps, and to determine if there is a relationship between antibiotic and heavy metal resistance. We undertook studies in 2007 in the industrially polluted Iskenderun Bay, on the south coast of Turkey. The resistance of 236 Gram-negative bacterial isolates (49 from seawater, 90 from sediment and 97 from shrimp) to 16 different antibiotics, and to 5 heavy metals, was investigated by agar diffusion and agar dilution methods, respectively. A total of 31 species of bacteria were isolated: the most common strains isolated from all samples were Escherichia coli (11.4%), Aeromonas hydrophila (9.7%) and Stenotrophomonas maltophilia (9.3%). There was a high incidence of resistance to ampicillin (93.2%), streptomycin (90.2%) and cefazolin (81.3%), and a low incidence of resistance to imipenem (16.5%), meropenem (13.9%) and cefepime (8.0%). Some 56.8% of all bacteria isolated from seawater, sediment and shrimp were resistant to 7 or more antibiotics. Most isolates showed tolerance to different concentrations of heavy metals, and minimal inhibition concentrations ranged from 12.5 {mu}g/ml to > 3200 {mu}g/ml. The bacteria from seawater, sediment and shrimp showed high resistance to cadmium of 69.4%, 88.9%, and 81.1% respectively, and low resistance to manganese of 2%, 6.7% and 11.3% respectively. The seawater and sediment isolates which were metal resistant also showed a high resistance to three antibiotics: streptomycin, ampicillin and trimethoprim-sulphamethoxazole. In contrast, the shrimp isolates which were metal resistant were resistant to four antibiotics: cefazolin, nitrofurantoin, cefuroxime and ampicillin. Our results show that Iskenderun Bay has a significant proportion of antibiotic and heavy metal resistant Gram-negative bacteria, and these bacteria constitute a potential risk for

  8. Antibacterial agents and heavy metal resistance in Gram-negative bacteria isolated from seawater, shrimp and sediment in Iskenderun Bay, Turkey

    International Nuclear Information System (INIS)

    Matyar, Fatih; Kaya, Aysenur; Dincer, Sadik

    2008-01-01

    The aim of the present study was to determine the level of antibiotic resistance patterns and distribution of heavy metal resistance of bacterial isolates from seawater, sediment and shrimps, and to determine if there is a relationship between antibiotic and heavy metal resistance. We undertook studies in 2007 in the industrially polluted Iskenderun Bay, on the south coast of Turkey. The resistance of 236 Gram-negative bacterial isolates (49 from seawater, 90 from sediment and 97 from shrimp) to 16 different antibiotics, and to 5 heavy metals, was investigated by agar diffusion and agar dilution methods, respectively. A total of 31 species of bacteria were isolated: the most common strains isolated from all samples were Escherichia coli (11.4%), Aeromonas hydrophila (9.7%) and Stenotrophomonas maltophilia (9.3%). There was a high incidence of resistance to ampicillin (93.2%), streptomycin (90.2%) and cefazolin (81.3%), and a low incidence of resistance to imipenem (16.5%), meropenem (13.9%) and cefepime (8.0%). Some 56.8% of all bacteria isolated from seawater, sediment and shrimp were resistant to 7 or more antibiotics. Most isolates showed tolerance to different concentrations of heavy metals, and minimal inhibition concentrations ranged from 12.5 μg/ml to > 3200 μg/ml. The bacteria from seawater, sediment and shrimp showed high resistance to cadmium of 69.4%, 88.9%, and 81.1% respectively, and low resistance to manganese of 2%, 6.7% and 11.3% respectively. The seawater and sediment isolates which were metal resistant also showed a high resistance to three antibiotics: streptomycin, ampicillin and trimethoprim-sulphamethoxazole. In contrast, the shrimp isolates which were metal resistant were resistant to four antibiotics: cefazolin, nitrofurantoin, cefuroxime and ampicillin. Our results show that Iskenderun Bay has a significant proportion of antibiotic and heavy metal resistant Gram-negative bacteria, and these bacteria constitute a potential risk for public

  9. Probing the Penetration of Antimicrobial Polymyxin Lipopeptides into Gram-Negative Bacteria

    Science.gov (United States)

    2015-01-01

    The dry antibiotic development pipeline coupled with the emergence of multidrug resistant Gram-negative ‘superbugs’ has driven the revival of the polymyxin lipopeptide antibiotics. Polymyxin resistance implies a total lack of antibiotics for the treatment of life-threatening infections. The lack of molecular imaging probes that possess native polymyxin-like antibacterial activity is a barrier to understanding the resistance mechanisms and the development of a new generation of polymyxin lipopeptides. Here we report the regioselective modification of the polymyxin B core scaffold at the N-terminus with the dansyl fluorophore to generate an active probe that mimics polymyxin B pharmacologically. Time-lapse laser scanning confocal microscopy imaging of the penetration of probe (1) into Gram-negative bacterial cells revealed that the probe initially accumulates in the outer membrane and subsequently penetrates into the inner membrane and finally the cytoplasm. The implementation of this polymyxin-mimetic probe will advance the development of platforms for the discovery of novel polymyxin lipopeptides with efficacy against polymyxin-resistant strains. PMID:24635310

  10. Intrinsic, adaptive and acquired antimicrobial resistance in Gram-negative bacteria.

    Science.gov (United States)

    Arzanlou, Mohsen; Chai, Wern Chern; Venter, Henrietta

    2017-02-28

    Gram-negative bacteria are responsible for a large proportion of antimicrobial-resistant infections in humans and animals. Among this class of bacteria are also some of the most successful environmental organisms. Part of this success is their adaptability to a variety of different niches, their intrinsic resistance to antimicrobial drugs and their ability to rapidly acquire resistance mechanisms. These mechanisms of resistance are not exclusive and the interplay of several mechanisms causes high levels of resistance. In this review, we explore the molecular mechanisms underlying resistance in Gram-negative organisms and how these different mechanisms enable them to survive many different stress conditions. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  11. Screening of antibiotic susceptibility to β-lactam-induced elongation of Gram-negative bacteria based on dielectrophoresis.

    Science.gov (United States)

    Chung, Cheng-Che; Cheng, I-Fang; Chen, Hung-Mo; Kan, Heng-Chuan; Yang, Wen-Horng; Chang, Hsien-Chang

    2012-04-03

    We demonstrate a rapid antibiotic susceptibility test (AST) based on the changes in dielectrophoretic (DEP) behaviors related to the β-lactam-induced elongation of Gram-negative bacteria (GNB) on a quadruple electrode array (QEA). The minimum inhibitory concentration (MIC) can be determined within 2 h by observing the changes in the positive-DEP frequency (pdf) and cell length of GNB under the cefazolin (CEZ) treatment. Escherichia coli and Klebsiella pneumoniae and the CEZ are used as the sample bacteria and antibiotic respectively. The bacteria became filamentous due to the inhibition of cell wall synthesis and cell division and cell lysis occurred for the higher antibiotic dose. According to the results, the pdfs of wild type bacteria decrease to hundreds of kHz and the cell length is more than 10 μm when the bacterial growth is inhibited by the CEZ treatment. In addition, the growth of wild type bacteria and drug resistant bacteria differ significantly. There is an obvious decrease in the number of wild type bacteria but not in the number of drug resistant bacteria. Thus, the drug resistance of GNB to β-lactam antibiotics can be rapidly assessed. Furthermore, the MIC determined using dielectrophoresis-based AST (d-AST) was consistent with the results of the broth dilution method. Utilizing this approach could reduce the time needed for bacteria growth from days to hours, help physicians to administer appropriate antibiotic dosages, and reduce the possibility of the occurrence of multidrug resistant (MDR) bacteria.

  12. Antibiotic resistance in Burkholderia species.

    Science.gov (United States)

    Rhodes, Katherine A; Schweizer, Herbert P

    2016-09-01

    The genus Burkholderia comprises metabolically diverse and adaptable Gram-negative bacteria, which thrive in often adversarial environments. A few members of the genus are prominent opportunistic pathogens. These include Burkholderia mallei and Burkholderia pseudomallei of the B. pseudomallei complex, which cause glanders and melioidosis, respectively. Burkholderia cenocepacia, Burkholderia multivorans, and Burkholderia vietnamiensis belong to the Burkholderia cepacia complex and affect mostly cystic fibrosis patients. Infections caused by these bacteria are difficult to treat because of significant antibiotic resistance. The first line of defense against antimicrobials in Burkholderia species is the outer membrane penetration barrier. Most Burkholderia contain a modified lipopolysaccharide that causes intrinsic polymyxin resistance. Contributing to reduced drug penetration are restrictive porin proteins. Efflux pumps of the resistance nodulation cell division family are major players in Burkholderia multidrug resistance. Third and fourth generation β-lactam antibiotics are seminal for treatment of Burkholderia infections, but therapeutic efficacy is compromised by expression of several β-lactamases and ceftazidime target mutations. Altered DNA gyrase and dihydrofolate reductase targets cause fluoroquinolone and trimethoprim resistance, respectively. Although antibiotic resistance hampers therapy of Burkholderia infections, the characterization of resistance mechanisms lags behind other non-enteric Gram-negative pathogens, especially ESKAPE bacteria such as Acinetobacter baumannii, Klebsiella pneumoniae and Pseudomonas aeruginosa. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Incidence of carbapenem-resistant gram negatives in Italian transplant recipients: a nationwide surveillance study.

    Science.gov (United States)

    Lanini, Simone; Costa, Alessandro Nanni; Puro, Vincenzo; Procaccio, Francesco; Grossi, Paolo Antonio; Vespasiano, Francesca; Ricci, Andrea; Vesconi, Sergio; Ison, Michael G; Carmeli, Yehuda; Ippolito, Giuseppe

    2015-01-01

    Bacterial infections remain a challenge to solid organ transplantation. Due to the alarming spread of carbapenem-resistant gram negative bacteria, these organisms have been frequently recognized as cause of severe infections in solid organ transplant recipients. Between 15 May and 30 September 2012 we enrolled 887 solid organ transplant recipients in Italy with the aim to describe the epidemiology of gram negative bacteria spreading, to explore potential risk factors and to assess the effect of early isolation of gram negative bacteria on recipients' mortality during the first 90 days after transplantation. During the study period 185 clinical isolates of gram negative bacteria were reported, for an incidence of 2.39 per 1000 recipient-days. Positive cultures for gram negative bacteria occurred early after transplantation (median time 26 days; incidence rate 4.33, 1.67 and 1.14 per 1,000 recipient-days in the first, second and third month after SOT, respectively). Forty-nine of these clinical isolates were due to carbapenem-resistant gram negative bacteria (26.5%; incidence 0.63 per 1000 recipient-days). Carbapenems resistance was particularly frequent among Klebsiella spp. isolates (49.1%). Recipients with longer hospital stay and those who received either heart or lung graft were at the highest risk of testing positive for any gram negative bacteria. Moreover recipients with longer hospital stay, lung recipients and those admitted to hospital for more than 48h before transplantation had the highest probability to have culture(s) positive for carbapenem-resistant gram negative bacteria. Forty-four organ recipients died (0.57 per 1000 recipient-days) during the study period. Recipients with at least one positive culture for carbapenem-resistant gram negative bacteria had a 10.23-fold higher mortality rate than those who did not. The isolation of gram-negative bacteria is most frequent among recipient with hospital stays >48 hours prior to transplant and in those

  14. Incidence of carbapenem-resistant gram negatives in Italian transplant recipients: a nationwide surveillance study.

    Directory of Open Access Journals (Sweden)

    Simone Lanini

    Full Text Available Bacterial infections remain a challenge to solid organ transplantation. Due to the alarming spread of carbapenem-resistant gram negative bacteria, these organisms have been frequently recognized as cause of severe infections in solid organ transplant recipients.Between 15 May and 30 September 2012 we enrolled 887 solid organ transplant recipients in Italy with the aim to describe the epidemiology of gram negative bacteria spreading, to explore potential risk factors and to assess the effect of early isolation of gram negative bacteria on recipients' mortality during the first 90 days after transplantation. During the study period 185 clinical isolates of gram negative bacteria were reported, for an incidence of 2.39 per 1000 recipient-days. Positive cultures for gram negative bacteria occurred early after transplantation (median time 26 days; incidence rate 4.33, 1.67 and 1.14 per 1,000 recipient-days in the first, second and third month after SOT, respectively. Forty-nine of these clinical isolates were due to carbapenem-resistant gram negative bacteria (26.5%; incidence 0.63 per 1000 recipient-days. Carbapenems resistance was particularly frequent among Klebsiella spp. isolates (49.1%. Recipients with longer hospital stay and those who received either heart or lung graft were at the highest risk of testing positive for any gram negative bacteria. Moreover recipients with longer hospital stay, lung recipients and those admitted to hospital for more than 48h before transplantation had the highest probability to have culture(s positive for carbapenem-resistant gram negative bacteria. Forty-four organ recipients died (0.57 per 1000 recipient-days during the study period. Recipients with at least one positive culture for carbapenem-resistant gram negative bacteria had a 10.23-fold higher mortality rate than those who did not.The isolation of gram-negative bacteria is most frequent among recipient with hospital stays >48 hours prior to transplant

  15. Different phenotypic and molecular mechanisms associated with multidrug resistance in Gram-negative clinical isolates from Egypt

    Directory of Open Access Journals (Sweden)

    Helmy OM

    2017-12-01

    Full Text Available Omneya M Helmy, Mona T Kashef Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt Objectives: We set out to investigate the prevalence, different mechanisms, and clonal relatedness of multidrug resistance (MDR among third-generation cephalosporin-resistant Gram-negative clinical isolates from Egypt.Materials and methods: A total of 118 third-generation cephalosporin-resistant Gram-negative clinical isolates were included in this study. Their antimicrobial susceptibility pattern was determined using Kirby–Bauer disk diffusion method. Efflux pump-mediated resistance was tested by the efflux-pump inhibitor-based microplate assay using chlorpromazine. Detection of different aminoglycoside-, β-lactam-, and quinolone-resistance genes was done using polymerase chain reaction. The genetic diversity of MDR isolates was investigated using random amplification of polymorphic DNA.Results: Most of the tested isolates exhibited MDR phenotypes (84.75%. The occurrence of efflux pump-mediated resistance in the different MDR species tested was 40%–66%. Acinetobacter baumannii isolates showed resistance to most of the tested antibiotics, including imipenem. The blaOXA-23-like gene was detected in 69% of the MDR A. baumannii isolates. The MDR phenotype was detected in 65% of Pseudomonas aeruginosa isolates, of which only 23% exhibited efflux pump-mediated resistance. On the contrary, efflux-mediated resistance to piperacillin and gentamicin was recorded in 47.5% of piperacillin-resistant and 25% of gentamicin-resistant MDR Enterobacteriaceae. Moreover, the plasmid-mediated quinolone-resistance genes (aac(6’-Ib-cr, qnrB, and qnrS were detected in 57.6% and 83.33% of quinolone-resistant MDR Escherichia coli and Klebsiella pneumoniae isolates, respectively. The β-lactamase-resistance gene blaSHV-31 was detected for the first time in one MDR K. pneumoniae isolate from an endotracheal tube specimen in Egypt

  16. The target of daptomycin is absent from Escherichia coli and other gram-negative pathogens.

    Science.gov (United States)

    Randall, Christopher P; Mariner, Katherine R; Chopra, Ian; O'Neill, Alex J

    2013-01-01

    Antistaphylococcal agents commonly lack activity against Gram-negative bacteria like Escherichia coli owing to the permeability barrier presented by the outer membrane and/or the action of efflux transporters. When these intrinsic resistance mechanisms are artificially compromised, such agents almost invariably demonstrate antibacterial activity against Gram negatives. Here we show that this is not the case for the antibiotic daptomycin, whose target appears to be absent from E. coli and other Gram-negative pathogens.

  17. Synergistic antibacterial effect of silver and ebselen against multidrug-resistant Gram-negative bacterial infections.

    Science.gov (United States)

    Zou, Lili; Lu, Jun; Wang, Jun; Ren, Xiaoyuan; Zhang, Lanlan; Gao, Yu; Rottenberg, Martin E; Holmgren, Arne

    2017-08-01

    Multidrug-resistant (MDR) Gram-negative bacteria account for a majority of fatal infections, and development of new antibiotic principles and drugs is therefore of outstanding importance. Here, we report that five most clinically difficult-to-treat MDR Gram-negative bacteria are highly sensitive to a synergistic combination of silver and ebselen. In contrast, silver has no synergistic toxicity with ebselen on mammalian cells. The silver and ebselen combination causes a rapid depletion of glutathione and inhibition of the thioredoxin system in bacteria. Silver ions were identified as strong inhibitors of Escherichia coli thioredoxin and thioredoxin reductase, which are required for ribonucleotide reductase and DNA synthesis and defense against oxidative stress. The bactericidal efficacy of silver and ebselen was further verified in the treatment of mild and acute MDR E. coli peritonitis in mice. These results demonstrate that thiol-dependent redox systems in bacteria can be targeted in the design of new antibacterial drugs. The silver and ebselen combination offers a proof of concept in targeting essential bacterial systems and might be developed for novel efficient treatments against MDR Gram-negative bacterial infections. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  18. Studies on tridecaptin B(1), a lipopeptide with activity against multidrug resistant Gram-negative bacteria.

    Science.gov (United States)

    Cochrane, Stephen A; Lohans, Christopher T; van Belkum, Marco J; Bels, Manon A; Vederas, John C

    2015-06-07

    Previously other groups had reported that Paenibacillus polymyxa NRRL B-30507 produces SRCAM 37, a type IIA bacteriocin with antimicrobial activity against Campylobacter jejuni. Genome sequencing and isolation of antimicrobial compounds from this P. polymyxa strain show that the antimicrobial activity is due to polymyxins and tridecaptin B1. The complete structural assignment, synthesis, and antimicrobial profile of tridecaptin B1 is reported, as well as the putative gene cluster responsible for its biosynthesis. This peptide displays strong activity against multidrug resistant Gram-negative bacteria, a finding that is timely to the current problem of antibiotic resistance.

  19. Copper amendment of agricultural soil selects for bacterial antibiotic resistance in the field

    DEFF Research Database (Denmark)

    Berg, J.; Tom-Petersen, A.; Nybroe, O.

    2005-01-01

    -amendment significantly increased the frequency of Cu-resistant isolates. A panel of isolates were characterized by Gram-reaction, amplified ribosomal DNA restriction analysis and resistance profiling against seven antibiotics. More than 95% of the Cu-resistant isolates were Gram-negative. Cu-resistant Gram...

  20. Spread of resistant gram negatives in a Sri Lankan intensive care unit.

    Science.gov (United States)

    Tissera, Kavinda; Liyanapathirana, Veranja; Dissanayake, Nilanthi; Pinto, Vasanthi; Ekanayake, Asela; Tennakoon, Manjula; Adasooriya, Dinuka; Nanayakkara, Dulmini

    2017-07-11

    Infections with multi drug resistant (MDR) organisms are a major problem in intensive care units (ICUs). Proper infection control procedures are mandatory to combat the spread of resistant organisms within ICUs. Well stablished surveillance programmes will enhance the adherence of the staff to infection control protocols. The study was conducted to assess the feasibility of using basic molecular typing methods and routine hospital data for laboratory surveillance of resistance organisms in resource limited settings. A retrospective study was conducted using consecutive Gram negative isolates obtained from an ICU over a six month period. Antibiotic sensitivity patterns and random amplified polymorphic DNA (RAPD) based typing was performed on the given isolates. Of the seventy isolates included in the study, seven were E.coli. All E.coli were MDRs and Extended Spectrum β lactamse (ESBL) producers carrying bla CTX-M . Fourteen isolates were K.pneumoniae, and all were MDRs and ESBL producers. All K.pneumoniae harboured bla SHV while 13 harboured bla CTX-M . The MDR rate among P.aeruginosa was 13% (n=15) while all acinetobacters (n=30) were MDRs. Predominant clusters were identified within all four types of Gram negatives using RAPD and the ICU stay of patients overlapped temporally. We propose that simple surveillance methods like RAPD based typing and basic hospital data can be used to convince hospital staff to adhere to infection control protocols more effectively, in low and middle income countries.

  1. Antibiotic resistance pattern of bacterial isolates in neonatal care unit

    Directory of Open Access Journals (Sweden)

    S Shrestha

    2010-12-01

    Full Text Available INTRODUCTION: Bacterial infections account for a huge proportion of neonatal deaths worldwide. The problem of antibiotic resistance among common bacterial pathogens mainly the gram negative bacteria is emerging globally which is of more serious concern in developing countries like Nepal. METHODS: A one year retrospective hospital based study was carried out to analyze the results of neonatal blood, cerebrospinal fluid, urine, stool and surface cultures and to look into the sensitivity pattern of the commonly used antibiotics. RESULTS: The positive yield of blood, urine, eye swab and CSF cultures were 19.56%, 38.5%, 60% and 0.36% respectively. The most common isolates in the blood culture were coagulase negative Staphylococcus, Acinetobacter, Enterobacter and non-haemolytic Streptococcus. A significant percent of the isolates were resistant to the first line antibiotics. Among the gram negative isolates more than 30% are resistant to cefotaxime and more than 50% are resistant to gentamicin. During the one year period we had Nursery outbreaks of methicillin resistant Staphylococcus aureus and Salmonella infections. With the help of environmental cultures we were able to trace the source and intervene appropriately. CONCLUSIONS: Continuous surveillance for antibiotic susceptibility, rational use of antibiotics and the strategy of antibiotic cycling can provide some answers to the emerging problem of antibiotic resistance.

  2. Antibiotic resistance pattern of bacterial isolates in neonatal care unit.

    Science.gov (United States)

    Shrestha, S; Adhikari, N; Rai, B K; Shreepaili, A

    2010-01-01

    Bacterial infections account for a huge proportion of neonatal deaths worldwide. The problem of antibiotic resistance among common bacterial pathogens mainly the gram negative bacteria is emerging globally which is of more serious concern in developing countries like Nepal. A one year retrospective hospital based study was carried out to analyze the results of neonatal blood, cerebrospinal fluid, urine, stool and surface cultures and to look into the sensitivity pattern of the commonly used antibiotics. The positive yield of blood, urine, eye swab and CSF cultures were 19.56%, 38.5%, 60% and 0.36% respectively. The most common isolates in the blood culture were coagulase negative Staphylococcus, Acinetobacter, Enterobacter and non-haemolytic Streptococcus. A significant percent of the isolates were resistant to the first line antibiotics. Among the gram negative isolates more than 30% are resistant to cefotaxime and more than 50% are resistant to gentamicin. During the one year period we had Nursery outbreaks of methicillin resistant Staphylococcus aureus and Salmonella infections. With the help of environmental cultures we were able to trace the source and intervene appropriately. Continuous surveillance for antibiotic susceptibility, rational use of antibiotics and the strategy of antibiotic cycling can provide some answers to the emerging problem of antibiotic resistance.

  3. [Antimicrobial resistance in gram negative bacteria isolated from intensive care units of Colombian hospitals, WHONET 2003, 2004 and 2005].

    Science.gov (United States)

    Miranda, María Consuelo; Pérez, Federico; Zuluaga, Tania; Olivera, María del Rosario; Correa, Adriana; Reyes, Sandra Lorena; Villegas, Maria Virginia

    2006-09-01

    Surveillance systems play a key role in the detection and control of bacterial resistance. It is necessary to constantly collect information from all institutions because the mechanisms of bacterial resistance can operate in different ways between countries, cities and even in hospitals in the same area. Therefore local information is important in order to learn about bacterial behaviour and design appropriate interventions for each institution. Between January 2003 and December 2004, the Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM) developed a surveillance project in 10 tertiary hospitals in 6 cities of Colombia. Describe the trends of antibiotic resistance among the isolates of Escherichia coli, Klebsiella pneumoniae, Pseudomona aeruginosa, Acinetobacter baumannii and Enterobacter cloacae, five of the most prevalent nosocomial Gram negative pathogens. The susceptibility tests were performed by automated methods in 9 hospitals and by Kirby Bauer in 1 hospital. Antibiotics with known activity against Gram negatives, according to the Clinical Laboratory Standards Institute guidelines, were selected. The laboratories performed internal and external quality controls. During the study period, the information was downloaded monthly from the databases of each microbiology laboratory and sent to CIDEIM where it was centralized in a database using the system WHONET 5.3. The high resistance rates reported especially for A. baumannii, evidenced the presence of multidrug resistant bacteria in both ICUs and wards at every studied institution. The creation of a national surveillance network to improve our capabilities to detect, follow up, and control the antibiotic resistance in Colombia is urgently needed.

  4. Resistance trends in gram-negative bacteria: surveillance results from two Mexican hospitals, 2005–2010

    Directory of Open Access Journals (Sweden)

    Morfin-Otero Rayo

    2012-06-01

    Full Text Available Abstract Background Hospital-acquired infections caused by multiresistant gram-negative bacteria are difficult to treat and cause high rates of morbidity and mortality. The analysis of antimicrobial resistance trends of gram-negative pathogens isolated from hospital-acquired infections is important for the development of antimicrobial stewardship programs. The information obtained from antimicrobial resistant programs from two hospitals from Mexico will be helpful in the selection of empiric therapy for hospital-acquired gram-negative infections. Findings Two thousand one hundred thirty two gram-negative bacteria collected between January 2005 and December 2010 from hospital-acquired infections occurring in two teaching hospitals in Mexico were evaluated. Escherichia coli was the most frequently isolated gram-negative bacteria, with >50% of strains resistant to ciprofloxacin and levofloxacin. Klebsiella spp. showed resistance rates similar to Escherichia coli for ceftazidime (33.1% vs 33.2%, but exhibited lower rates for levofloxacin (18.2% vs 56%. Of the samples collected for the third most common gram-negative bacteria, Pseudomonas aeruginosa, >12.8% were resistant to the carbapenems, imipenem and meropenem. The highest overall resistance was found in Acinetobacter spp. Enterobacter spp. showed high susceptibility to carbapenems. Conclusions E. coli was the most common nosocomial gram-negative bacilli isolated in this study and was found to have the second-highest resistance to fluoroquinolones (>57.9%, after Acinetobacter spp. 81.2%. This finding represents a disturbing development in a common nosocomial and community pathogen.

  5. Phenotypic and Genotypic Detection of Metallo-beta-lactamases among Imipenem-Resistant Gram Negative Isolates

    Directory of Open Access Journals (Sweden)

    Mohammad Mohammadzadeh

    2016-08-01

    Full Text Available Background:   Imipenem-resistant gram negative bacteria, resulting from metallo-beta-lactamase (MBLs-producing strains have been reported to be among the important causes of nosocomial infections and of serious therapeutic problem worldwide. Because of their broad range, potent carbapenemase activity and resistance to inhibitors, these enzymes can confer resistance to almost all beta-lactams. The prevalence of metallo-beta-lactamase among imipenem-resistant Acinetobacter spp., Pseudomonas spp. and Enerobacteriaceae isolates is determined.Methods:   In this descriptive study 864 clinical isolates of Acinetobacter spp., Pseudomonas spp. and Enterobacteriaceae, were initially tested for imipenem susceptibility. The metallo-beta-lactamase production was detected using combined disk diffusion, double disk synergy test, and Hodge test. Then all imipenem resistant isolates were tested by PCR for imp, vim and ndm genes. Results:   Among 864 isolates, 62 (7.17 % were imipenem-resistant. Positive phonetypic test for metallo-beta-lactamase was 40 (64.5%, of which 24 (17.1% and 16 (9.2% isolates were Acinetobacter spp. and Pseudomonas spp., respectively. By PCR method 30 (48.4% of imipenem resistant Acinetobacter, and Pseudomonas isolates were positive for MBL-producing genes. None of the Enterobacteriaceae isolates were positive for metallo-beta-lactamase activity. Conclusion:   The results of this study are indicative of the growing number of nosocomial infections associated with multidrug-resistant gram negative bacteria in this region leading to difficulties in antibiotic therapy. Thereby, using of phenotypic methods can be helpful for management of this problem.

  6. Distribution of Gram Negative Bacteria and Evaluation of Resistance Profiles

    Directory of Open Access Journals (Sweden)

    Serap Pamukcuoglu

    2014-03-01

    Full Text Available Aim: In this study, we aimed to examine the distributon of Gram negative bacteria isolated from urine cultures of out-patients in Afyonkarahisar State Hospital and evaluate the antimicrobial resistance rates of these pathogens. Material and Method: Urine samples of out-patients which were sent to microbiology laboratory between 2012-2013 were retrospectively evaluated. The isolates were identified using conventional methods and/or automated Vitec 2.0 system. Antibiogram sensitivities were determined by Kirby-Bauer disc diffusion method or automated system and interpreted on the basis of Clinical and Laboratory Standards Institute (CSI criteria. Double disc sinergy test (DDST or Vitec 2.0 system was used to detect extended spectrum beta-lactamase (ESBL.When conventional methods could%u2019t be clarified according to their colony morphologies, gram staining patterns, biochemical test; automated system has been used. Results: A total of 671 isolates acquired from urine samples were studied. 427 Escherichia coli (63.6 %, 165 Klebsiella spp. (24.6 %, 22 Pseudomonas spp. (3.3 %, nine Acinetobacter spp. (1.3 %, 41 Proteus spp. (6.1 % and seven Serratia (1.0 % strains were identified among isolates. 97 E.coli (22.8 % and 41 Klebsiella (24.8 % isolates were ESBL positive. Most common bacteria were E.coli, 31.1 % of which were resistant to trimethoprim-sulfamethoxazole, 16 % to ciprofloxacin and 3.6 % to nitrofurantoin. Among Enterobacteriaceae, no resistance aganist carbapenems were detected. Moreover, aminoglicoside sensitivity rate was significantly high in this group. Discussion: Microorganisms that have progressively increasing antimicrobial resistance should be considered in the treatment of urinary tract infections. It is also important to use the most appropriate antibiotics to avoid unnecessary usage of these drugs in order to decrease drug resistance rates and ESBL production which may effect the success of the treatment.

  7. Bacteremia and resistant gram-negative pathogens among under-fives in Tanzania.

    Science.gov (United States)

    Christopher, Alexandra; Mshana, Stephen E; Kidenya, Benson R; Hokororo, Aldofineh; Morona, Domenica

    2013-05-08

    Antibiotic resistance is one of the most serious public health concerns worldwide and is increasing at an alarming rate, making daily treatment decisions more challenging. This study is aimed at identifying local bacterial isolates and their antimicrobial susceptibility patterns to avoid irrational antibiotic use, especially in settings where unguided management occurs and febrile illnesses are predominant. A hospital-based prospective cross-sectional study was conducted from September 2011 to February 2012. Febrile children were serially recruited and demographic and clinical data were collected using a standardized data collection tool. A blood culture was performed and identification of the isolates was undertaken using in-house biochemical tests. Susceptibility to common antibiotics was investigated using the disc diffusion methods. Of the 1081 children admitted during the study period, 317 (29.3%) met the inclusion criteria and were recruited, of whom 195 (61.5%) and 122 (38.5%) were male and female respectively. The median age was 18 months with an interquartile range of 9 to 36 months. Of the 317 children, 251 (79.2%) were below or equal to 36 months of age. The prevalence of bacteremia was 6.6%. A higher prevalence of bacteraemia was observed in children below 36 months than in those ≥ 36 months (7.5% vs. 3.0%, p = 0.001). Predictors of bacteraemia were an axillary temperature of >38.5 °C (OR =7, 95% CI = 2.2 - 14.8, p-value = 0.0001), a positive malaria slide (OR =5, 95% CI = 3.0 - 21.2, p-value = 0.0001) and a high neutrophils' count (OR =21 95% CI = 5.6 - 84, p-value = 0.0001). Escherichia coli and Klebsiella pneumoniae accounted for 7 (33.3%) and 6 (28.6%) of all the isolates respectively. Others gram-negatives bacteria were Citrobacter spp 2 (9.5%), Enterobacter spp 1 (4.25%), Pseudomonas spp 2 (9.5%), Proteus spp 1 (4.25%) and Salmonella spp 1 (4.25%). These isolates were highly resistant to ampicillin (95%), co

  8. Changes in Gram Negative Microorganisms' Resistance Pattern During 4 Years Period in a Referral Teaching Hospital; a Surveillance Study

    Directory of Open Access Journals (Sweden)

    Hossein Khalili

    2012-09-01

    Full Text Available Background and purpose Surveillance studies evaluating antimicrobial susceptibilities are of great value in preventing the spread of resistant pathogens by elucidating the trend of resistance in commonly used antibiotics and as a consequence providing information for prescribing the most appropriate agent. This study is a longitudinal antimicrobial resistance surveillance study designed to evaluate the trend in antimicrobial resistance to gram negative microorganisms from 2007 to 2010. Method:During a four-year period (2007-2010 isolates derived from all patients admitted to infectious diseases ward of Imam Khomeini Hospital, the major referral center for infectious disease in Iran with the highest admission rates, were evaluated. Based on disk diffusion method and zone of inhibition size, the microorganism was regarded as to be sensitive, resistant or has intermediate susceptibility to the antimicrobial agents. Results:The widest spread Gram-negative microorganism in all of isolates taken together in our study was E.coli (30% followed by Stenotrophomonas maltophilia in 28.6% and Enterobacter spp. in 11.9%, respectively. The susceptibility to amikacin, imipenem, piperacillin/tazobactam, and nitrofurantoin was equal or above 50% for all microorganisms over four years. However, the susceptibility to ampicillin, ampicillin/sulbactam, cefotaxim, and ceftriaxone was less than 50% in derived isolates during the study period.Conclusion:In conclusion, the finding of the present study revealed that resistance rate to common antimicrobial agents in Iran is growing and isolates were susceptible mostly to broadspectrum antibiotics including imipenem and piperacillin/tazobactam

  9. Epidemiology and molecular characterization of multidrug-resistant Gram-negative bacteria in Southeast Asia

    Directory of Open Access Journals (Sweden)

    Nuntra Suwantarat

    2016-05-01

    Full Text Available Abstract Background Multidrug-resistant Gram-negative bacteria (MDRGN, including extended-spectrum β-lactamases (ESBLs and multidrug-resistant glucose-nonfermenting Gram-negative bacilli (nonfermenters, have emerged and spread throughout Southeast Asia. Methods We reviewed and summarized current critical knowledge on the epidemiology and molecular characterization of MDRGN in Southeast Asia by PubMed searches for publications prior to 10 March 2016 with the term related to “MDRGN definition” combined with specific Southeast Asian country names (Thailand, Singapore, Malaysia, Vietnam, Indonesia, Philippines, Laos, Cambodia, Myanmar, Brunei. Results There were a total of 175 publications from the following countries: Thailand (77, Singapore (35, Malaysia (32, Vietnam (23, Indonesia (6, Philippines (1, Laos (1, and Brunei (1. We did not find any publications on MDRGN from Myanmar and Cambodia. We did not include publications related to Shigella spp., Salmonella spp., and Vibrio spp. and non-human related studies in our review. English language articles and abstracts were included for analysis. After the abstracts were reviewed, data on MDRGN in Southeast Asia from 54 publications were further reviewed and included in this study. Conclusions MDRGNs are a major contributor of antimicrobial-resistant bacteria in Southeast Asia. The high prevalence of ESBLs has been a major problem since 2005 and is possibly related to the development of carbapenem resistant organisms in this region due to the overuse of carbapenem therapy. Carbapenem–resistant Acinetobacter baumannii is the most common pathogen associated with nosocomial infections in this region followed by carbapenem-resistant Pseudomonas aeruginosa. Although Southeast Asia is not an endemic area for carbapenem-resistant Enterobacteriaceae (CRE, recently, the rate of CRE detection has been increasing. Limited infection control measures, lack of antimicrobial control, such as the presence of

  10. STUDY ON SURGICAL SITE INFECTIONS CAUSED BY ESBL PRODUCING GRAM NEGATIVE BACTERIA

    Directory of Open Access Journals (Sweden)

    Rambabu

    2015-09-01

    Full Text Available Surgical site infections have been a major problem, because of the emergence of drug resistant bacteria, in particular B - lactamase producing bacteria. Extended spectrum beta lactamase producing gram negative organisms pose a great challenge in treatment o f SSI present study is aimed at determining multiple drug resistance in gram negative bacteria & to find out ESBL producers, in correlation with treatment outcome. A total of 120 wound infected cases were studied. Staphylococcus aureus was predominant bact erium - 20.Among gram negative bacteria, Pseudomonas species is predominant (14 followed by Escherichia coli (13 , Klebsiella species (12 , Proteus (9 Citrobacter (4 Providencia (2 & Acinetobacter species (2 . Out of 56 gramnegative bacteria isolated, 20 were i dentified as ESBL producers, which was statistically significant. Delay in wound healing correlated with infection by ESBL producers, which alarms the need of abstinence from antibiotic abuse

  11. Incidence of carbapenem resistant nonfermenting gram negative bacilli from patients with respiratory infections in the intensive care units

    Directory of Open Access Journals (Sweden)

    Gladstone P

    2005-01-01

    Full Text Available Resistance to carbapenems is commonly seen in nonfermenting gram negative bacilli (NFGNB. We document herein the prevalence of carbapenem resistance in NFGNB isolated from patients with respiratory tract infections in the intensive care units (ICUs. A total of 460 NFGNB were isolated from 606 endotracheal aspirate specimens during January through December 2003, of which 56 (12.2% were found to be resistant to imipenem and meropenem. Of these, 24 (42.8% were Pseudomonas aeruginosa , 8 (14.2% were Acinetobacter spp. and 24 (42.8% were other NFGNB. Stringent protocols such as antibiotic policies and resistance surveillance programs are mandatory to curb these bacteria in ICU settings.

  12. The Influence of Efflux Pump Inhibitors on the Activity of Non-Antibiotic NSAIDS against Gram-Negative Rods.

    Directory of Open Access Journals (Sweden)

    Agnieszka E Laudy

    Full Text Available Most patients with bacterial infections suffer from fever and various pains that require complex treatments with antibiotics, antipyretics, and analgaesics. The most common drugs used to relieve these symptoms are non-steroidal anti-inflammatory drugs (NSAIDs, which are not typically considered antibiotics. Here, we investigate the effects of NSAIDs on bacterial susceptibility to antibiotics and the modulation of bacterial efflux pumps.The activity of 12 NSAID active substances, paracetamol (acetaminophen, and eight relevant medicinal products was analyzed with or without pump inhibitors against 89 strains of Gram-negative rods by determining the MICs. Furthermore, the effects of NSAIDs on the susceptibility of clinical strains to antimicrobial agents with or without PAβN (Phe-Arg-β-naphtylamide were measured.The MICs of diclofenac, mefenamic acid, ibuprofen, and naproxen, in the presence of PAβN, were significantly (≥4-fold reduced, decreasing to 25-1600 mg/L, against the majority of the studied strains. In the case of acetylsalicylic acid only for 5 and 7 out of 12 strains of P. mirabilis and E. coli, respectively, a 4-fold increase in susceptibility in the presence of PAβN was observed. The presence of Aspirin resulted in a 4-fold increase in the MIC of ofloxacin against only two strains of E. coli among 48 tested clinical strains, which included species such as E. coli, K. pneumoniae, P. aeruginosa, and S. maltophilia. Besides, the medicinal products containing the following NSAIDs, diclofenac, mefenamic acid, ibuprofen, and naproxen, did not cause the decrease of clinical strains' susceptibility to antibiotics.The effects of PAβN on the susceptibility of bacteria to NSAIDs indicate that some NSAIDs are substrates for efflux pumps in Gram-negative rods. Morever, Aspirin probably induced efflux-mediated resistance to fluoroquinolones in a few E. coli strains.

  13. Third generation cephalosporin resistant Enterobacteriaceae and multidrug resistant gram-negative bacteria causing bacteremia in febrile neutropenia adult cancer patients in Lebanon, broad spectrum antibiotics use as a major risk factor, and correlation with poor prognosis

    Directory of Open Access Journals (Sweden)

    Rima eMoghnieh

    2015-02-01

    Full Text Available Bacteremia remains a major cause of life-threatening complications in patients receiving anticancer chemotherapy. The spectrum and susceptibility profiles of causative microorganisms differ with time and place. Data from Lebanon are scarce. We aim at evaluating the epidemiology of bacteremia in cancer patients in a university hospital in Lebanon, emphasizing antibiotic resistance and risk factors of multi-drug resistant organism (MDRO-associated bacteremia.This is a retrospective study of 75 episodes of bacteremia occurring in febrile neutropenic patients admitted to the hematology-oncology unit at Makassed General Hospital, Lebanon, from October 2009-January 2012.It corresponds to epidemiological data on bacteremia episodes in febrile neutropenic cancer patients including antimicrobial resistance and identification of risk factors associated with third generation cephalosporin resistance (3GCR and MDRO-associated bacteremia. Out of 75 bacteremias, 42.7% were gram-positive (GP, and 57.3% were gram-negative (GN. GP bacteremias were mostly due to methicillin-resistant coagulase negative staphylococci (28% of total bacteremias and 66% of GP bacteremias. Among the GN bacteremias, Escherichia coli (22.7% of total, 39.5% of GN organisms and Klebsiellapneumoniae(13.3% of total, 23.3% of GN organisms were the most important causative agents. GN bacteremia due to 3GC sensitive (3GCS bacteria represented 28% of total bacteremias, while 29% were due to 3GCR bacteria and 9% were due to carbapenem-resistant organisms. There was a significant correlation between bacteremia with MDRO and subsequent intubation, sepsis and mortality. Among potential risk factors, only broad spectrum antibiotic intake >4 days before bacteremia was found to be statistically significant for acquisition of 3GCR bacteria. Using carbapenems or piperacillin/ tazobactam>4 days before bacteremia was significantly associated with the emergence of MDRO (p value<0.05.

  14. Antimicrobial Photodynamic Therapy to Kill Gram-negative Bacteria

    Science.gov (United States)

    Sperandio, Felipe F; Huang, Ying-Ying; Hamblin, Michael R

    2013-01-01

    Antimicrobial photodynamic therapy (PDT) or photodynamic inactivation (PDI) is a new promising strategy to eradicate pathogenic microorganisms such as Gram-positive and Gram-negative bacteria, yeasts and fungi. The search for new approaches that can kill bacteria but do not induce the appearance of undesired drug-resistant strains suggests that PDT may have advantages over traditional antibiotic therapy. PDT is a non-thermal photochemical reaction that involves the simultaneous presence of visible light, oxygen and a dye or photosensitizer (PS). Several PS have been studied for their ability to bind to bacteria and efficiently generate reactive oxygen species (ROS) upon photostimulation. ROS are formed through type I or II mechanisms and may inactivate several classes of microbial cells including Gram-negative bacteria such as Pseudomonas aeruginosa, which are typically characterized by an impermeable outer cell membrane that contains endotoxins and blocks antibiotics, dyes, and detergents, protecting the sensitive inner membrane and cell wall. This review covers significant peer-reviewed articles together with US and World patents that were filed within the past few years and that relate to the eradication of Gram-negative bacteria via PDI or PDT. It is organized mainly according to the nature of the PS involved and includes natural or synthetic food dyes; cationic dyes such as methylene blue and toluidine blue; tetrapyrrole derivatives such as phthalocyanines, chlorins, porphyrins, chlorophyll and bacteriochlorophyll derivatives; functionalized fullerenes; nanoparticles combined with different PS; other formulations designed to target PS to bacteria; photoactive materials and surfaces; conjugates between PS and polycationic polymers or antibodies; and permeabilizing agents such as EDTA, PMNP and CaCl2. The present review also covers the different laboratory animal models normally used to treat Gram-negative bacterial infections with antimicrobial PDT. PMID

  15. Changes in gram negative microorganisms’ resistance pattern during 4 years period in a referral teaching hospital; a surveillance study

    Directory of Open Access Journals (Sweden)

    Khalili Hossein

    2012-09-01

    Full Text Available Abstract Background and purpose Surveillance studies evaluating antimicrobial susceptibilities are of great value in preventing the spread of resistant pathogens by elucidating the trend of resistance in commonly used antibiotics and as a consequence providing information for prescribing the most appropriate agent. This study is a longitudinal antimicrobial resistance surveillance study designed to evaluate the trend in antimicrobial resistance to gram negative microorganisms from 2007 to 2010. Method During a four-year period (2007–2010 isolates derived from all patients admitted to infectious diseases ward of Imam Khomeini Hospital, the major referral center for infectious disease in Iran with the highest admission rates, were evaluated. Based on disk diffusion method and zone of inhibition size, the microorganism was regarded as to be sensitive, resistant or has intermediate susceptibility to the antimicrobial agents. Results The widest spread Gram-negative microorganism in all of isolates taken together in our study was E.coli (30% followed by Stenotrophomonas maltophilia in 28.6% and Enterobacter spp. in 11.9%, respectively. The susceptibility to amikacin, imipenem, piperacillin/tazobactam, and nitrofurantoin was equal or above 50% for all microorganisms over four years. However, the susceptibility to ampicillin, ampicillin/sulbactam, cefotaxim, and ceftriaxone was less than 50% in derived isolates during the study period. Conclusion In conclusion, the finding of the present study revealed that resistance rate to common antimicrobial agents in Iran is growing and isolates were susceptible mostly to broad-spectrum antibiotics including imipenem and piperacillin/tazobactam.

  16. Extended spectrum beta-lactamases in urinary gram-negative bacilli and their susceptibility pattern

    International Nuclear Information System (INIS)

    Mumtaz, S.

    2008-01-01

    Beta-lactamases of gram-negative bacteria are the most important mechanism of resistance against beta lactams. Two types of beta-lactamases can confer resistance against third generation cephalosporins inducible Chromosomal beta -lactamases and extended-spectrum beta-lactamases. The extended-spectrum beta lactamases producing Strains of Enterobacteriaceae have emerged as a major problem in hospitalized as well as community based infections resulting in range of infections from uncomplicated urinary tract infection to life threatening sepsis. The study was conducted at the Microbiology Department of Fauji Foundation Hospital, Rawalpindi over a period of two years (April 2004-March 2006). Multidrug resistance and extended spectrum beta-lactamases production was studied in 111 enteric Gram-negative bacilli isolated from urine of symptomatic patients (1- 70 years) including males and females from indoor and outdoor patients by using double disc diffusion technique. Prevalence of extended-spectrum beta-lactamases production was seen in 71 (61.2%) enteric gram-negative organisms, the most prevalent gram-negative organism was Klebsiella pneumoniae 40 (71.4%) followed by Escherichia coli 27 (62.8%) and Pseudomonas aeruginosa 3 (25%). The extended-spectrum beta-lactamases producers were more prevalent in indoor patients 63 (88.7%) compared to outdoor patients 8 (11.3%), more in females 43 (60.6%) than males, 28 (39.4%). The extended-spectrum beta-lactamases producing gram-negative rods had more antibiotic-resistant profile than non-producers. All enteric gram negative rods should be tested for the production of extended-spectrum beta-lactamases in routine microbiology laboratory. (author)

  17. Antibiotic resistance of microbial contaminations isolated from husbandry animals and foodstuffs

    Directory of Open Access Journals (Sweden)

    Lukáš Hleba

    2014-05-01

    Full Text Available In this paper the antibiotic resistance of microbial contaminations isolated from husbandry animals and foodstuffs were investigated. Microorganisms isolated from animals and foodstuffs were contaminations of selective media as MacConkey agar for Enterobacteriaceae genera and MRS agar for lactobacilli strains. Microorganisms were isolated and puryfied by agar four ways streak plate method. Identification of isolated microorganisms was done by mass-spectrometry method in MALDI-TOF MS Biotyper. For investigation of antibiotic resistance disc diffusion method by EUCAST was used. In this study Gram-negative and Gram-positive bacteria were identified. The most resistant or multi-resistant bacteria as Pseudomonas aeruginosa, Acinetobacter lwoffi, Lysinibacillus sphaericus, Staphylococcus aureus and Staphylococcus epidermis were determined. Other identified microorganisms were resistant to one antibiotic or not at all.

  18. Characterization of carbapenem-resistant Gram-negative bacteria from Tamil Nadu.

    Science.gov (United States)

    Nachimuthu, Ramesh; Subramani, Ramkumar; Maray, Suresh; Gothandam, K M; Sivamangala, Karthikeyan; Manohar, Prasanth; Bozdogan, Bülent

    2016-10-01

    Carbapenem resistance is disseminating worldwide among Gram-negative bacteria. The aim of this study was to identify carbapenem-resistance level and to determine the mechanism of carbapenem resistance among clinical isolates from two centres in Tamil Nadu. In the present study, a total of 93 Gram-negative isolates, which is found to be resistant to carbapenem by disk diffusion test in two centres, were included. All isolates are identified at species level by 16S rRNA sequencing. Minimal inhibitory concentrations (MICs) of isolates for Meropenem were tested by agar dilution method. Presence of blaOXA, blaNDM, blaVIM, blaIMP and blaKPC genes was tested by PCR in all isolates. Amplicons were sequenced for confirmation of the genes. Among 93 isolates, 48 (%52) were Escherichia coli, 10 (%11) Klebsiella pneumoniae, nine (%10) Pseudomonas aeruginosa. Minimal inhibitory concentration results showed that of 93 suspected carbapenem-resistant isolates, 27 had meropenem MICs ≥ 2 μg/ml. The MIC range, MIC50 and MIC90 were 128 μg/ml, 0.12 and 16 μg/ml, respectively. Fig. 1 . Among meropenem-resistant isolates, E. coli were the most common (9/48, 22%), followed by K. pneumoniae (7/9, 77%), P. aeruginosa (6/10, 60%), Acinetobacter baumannii (2/2, 100%), Enterobacter hormaechei (2/3, 67%) and one Providencia rettgeri (1/1, 100%). PCR results showed that 16 of 93 carried blaNDM, three oxa181, and one imp4. Among blaNDM carriers, nine were E. coli, four Klebsiella pneumoniae, two E. hormaechei and one P. rettgeri. Three K. pneumoniae were OXA-181 carriers. The only imp4 carrier was P. aeruginosa. A total of seven carbapenem-resistant isolates were negatives by PCR for the genes studied. All carbapenem-resistance gene-positive isolates had meropenem MICs >2 μg/ml. Our results confirm the dissemination of NDM and emergence of OXA-181 beta-lactamase among Gram-negative bacteria in South India. This study showed the emergence of NDM producer in clinical isolates of E

  19. Mucositis and oral infections secondary to gram negative rods in patients with prolonged neutropenia

    Directory of Open Access Journals (Sweden)

    Mindy M. Sampson

    2017-01-01

    Full Text Available Patients with prolonged neutropenia are at risk for a variety of complications and infections including the development of mucositis and oral ulcers. The changes in oral flora during chemotherapy and its effects on the development of infections of the oral cavity have been studied with inconsistent results. However, there is evidence that supports the colonization of gram negative rods in patients undergoing chemotherapy. In this report, we present two leukemic patients who developed oral ulcers secondary to multi-drug resistant Pseudomonas aeruginosa. It is important to suspect multi-drug resistant gram negative rods in patients with prolonged neutropenia who develop gum infections despite appropriate antibiotic coverage.

  20. Nosocomial bloodstream infections in a Turkish university hospital: study of Gram-negative bacilli and their sensitivity patterns.

    Science.gov (United States)

    Köseoğlu , O; Kocagöz, S; Gür, D; Akova, M

    2001-06-01

    Treatment of nosocomial bacteraemia is usually governed by the surveillance results of the particular unit. Such results are especially important when antimicrobial resistance rates are high. Multiresistant isolates including Gram-negatives producing extended-spectrum beta-lactamases have been frequently reported in tertiary care units in Turkey. In this study, antimicrobial susceptibilities of Gram-negative blood isolates (n=348) were determined by microbroth dilution tests. The results showed carbapenems (meropenem and imipenem) to be uniformly more potent in vitro than any other drug against the Enterobacteriaceae. Quinolone antibiotics were more active in vitro than aminoglycosides against a range of bacteria. Gram-negative bloodstream isolates were highly resistant to many antimicrobial agents in the hospital. In order to prevent hospital infection and antimicrobial resistance, surveillance of aetiological agents must be performed regularly.

  1. Antibiotic Resistant Bacterial Isolates from Captive Green Turtles and In Vitro Sensitivity to Bacteriophages

    Directory of Open Access Journals (Sweden)

    Alessandro Delli Paoli Carini

    2017-01-01

    Full Text Available This study aimed to test multidrug resistant isolates from hospitalised green turtles (Chelonia mydas and their environment in North Queensland, Australia, for in vitro susceptibility to bacteriophages. Seventy-one Gram-negative bacteria were isolated from green turtle eye swabs and water samples. Broth microdilution tests were used to determine antibiotic susceptibility. All isolates were resistant to at least two antibiotics, with 24% being resistant to seven of the eight antibiotics. Highest resistance rates were detected to enrofloxacin (77% and ampicillin (69.2%. More than 50% resistance was also found to amoxicillin/clavulanic acid (62.5%, ceftiofur (53.8%, and erythromycin (53.3%. All the enriched phage filtrate mixtures resulted in the lysis of one or more of the multidrug resistant bacteria, including Vibrio harveyi and V. parahaemolyticus. These results indicate that antibiotic resistance is common in Gram-negative bacteria isolated from hospitalised sea turtles and their marine environment in North Queensland, supporting global concern over the rapid evolution of multidrug resistant genes in the environment. Using virulent bacteriophages as antibiotic alternatives would not only be beneficial to turtle health but also prevent further addition of multidrug resistant genes to coastal waters.

  2. Risk factors for multidrug-resistant Gram-negative infection in burn patients.

    Science.gov (United States)

    Vickers, Mark L; Dulhunty, Joel M; Ballard, Emma; Chapman, Paul; Muller, Michael; Roberts, Jason A; Cotta, Menino O

    2018-05-01

    Infection with multidrug-resistant (MDR) Gram-negative organisms leads to poorer outcomes in the critically ill burn patient. The aim of this study was to identify the risk factors for MDR Gram-negative pathogen infection in critically ill burn patients admitted to a major tertiary referral intensive care unit (ICU) in Australia. A retrospective case-control study of all adult burn patients admitted over a 7-year period was conducted. Twenty-one cases that cultured an MDR Gram-negative organism were matched with 21 controls of similar age, gender, burn size and ICU stay. Multivariable conditional logistic regression was used to individually assess risk factors after adjusting for Acute Burn Severity Index. Adjusted odds ratios (ORs) were reported. P-values negative infection included superficial partial thickness burn size (OR: 1.08; 95% confidence interval (CI): 1.01-1.16; P-value: 0.034), prior meropenem exposure (OR: 10.39; 95% CI: 0.96-112.00; P-value: 0.054), Gram-negative colonization on admission (OR: 9.23; 95% CI: 0.65-130.15; P-value: 0.10) and escharotomy (OR: 2.66; 95% CI: 0.52-13.65; P-value: 0.24). For cases, mean age was 41 (SD: 13) years, mean total body surface area burned was 47% (SD: 18) and mean days in ICU until MDR specimen collection was 17 (SD: 10) days. Prior meropenem exposure, Gram-negative colonization on admission, escharotomy and superficial partial thickness burn size may be potentially important factors for increasing the risk of MDR Gram-negative infection in the critically ill burn patient. © 2017 Royal Australasian College of Surgeons.

  3. Therapeutic Potential of a Scorpion Venom-Derived Antimicrobial Peptide and Its Homologs Against Antibiotic-Resistant Gram-Positive Bacteria

    Directory of Open Access Journals (Sweden)

    Gaomin Liu

    2018-05-01

    Full Text Available The alarming rise in the prevalence of antibiotic resistance among pathogenic bacteria poses a unique challenge for the development of effective therapeutic agents. Antimicrobial peptides (AMPs have attracted a great deal of attention as a possible solution to the increasing problem of antibiotic-resistant bacteria. Marcin-18 was identified from the scorpion Mesobuthus martensii at both DNA and protein levels. The genomic sequence revealed that the marcin-18 coding gene contains a phase-I intron with a GT-AG splice junction located in the DNA region encoding the N-terminal part of signal peptide. The peptide marcin-18 was also isolated from scorpion venom. A protein sequence homology search revealed that marcin-18 shares extremely high sequence identity to the AMPs meucin-18 and megicin-18. In vitro, chemically synthetic marcin-18 and its homologs (meucin-18 and megicin-18 showed highly potent inhibitory activity against Gram-positive bacteria, including some clinical antibiotic-resistant strains. Importantly, in a mouse acute peritonitis model, these peptides significantly decreased the bacterial load in ascites and rescued nearly all mice heavily infected with clinical methicillin-resistant Staphylococcus aureus from lethal bacteremia. Peptides exerted antimicrobial activity via a bactericidal mechanism and killed bacteria through membrane disruption. Taken together, marcin-18 and its homologs have potential for development as therapeutic agents for treating antibiotic-resistant, Gram-positive bacterial infections.

  4. Prevalence of Antimicrobial Resistance Among Gram-Negative Isolates in and Adult Intensive care unit at a Tertiary care Center in Saudi Arabia

    International Nuclear Information System (INIS)

    Al Johani, Sameera

    2010-01-01

    Patients in the ICU have encountered an increasing emergence and spread of antibiotic-resistant pathogens. We examined patterns of antimicrobial susceptibility in gram-negative isolates to commonly used drugs in an adult ICU at a tertiary care hospital in Riyadh, Saudi Arabia.A retrospective study was carried out of gram-negative isolates from the adult ICU of King Fahad National Guard Hospital (KFNGH) between 2004 and 2009. Organisms were identified and tested by an automated identification and susceptibility system, and the antibiotic susceptibility testing was confirmed by the disk diffusion. The most frequently isolated organism was Acinetobacter baumannii, followed by Pseudomonas aeruginosa, Escherichia coli, Klebsiella pnemoniae, Stenotrophomonas maltophilia, and Enterobacter. Antibiotic susceptibility patterns significantly declined in many organisms, especially A baumannii, E coli, S marcescens, and Enterobacter. A baumannii susceptibility was significantly decreased to imipenem (55% to 10%), meropenem (33% to 10%), ciprofloxacin (22% to 10%), and amikacin (12% to 6%). E coli susceptibility was markedly decreased (from 75% to 50% or less) to cefuroxime, ceftazidime, cefotaxime, and cefepime. S marcescens susceptibility was markedly decreased to cefotaxime (100% to 32%), ceftazidime (100% to 35%), and cefepime (100% to 66%). Enterobacter susceptibility was markedly decreased to ceftazidime (34% to 5%), cefotaxime (34% to 6%), and pipracillin-tazobactam (51% to 35%). Respiratory samples were the most frequently indicative of multidrug-resistant pathogens (63%), followed by urinary samples (57%).Antimicrobial resistance is an emerging problem in the KFNGH ICU, justifying new more stringent antibiotic prescription guidelines. Continuous monitoring of antimicrobial susceptibility and strict adherence to infection prevention guidelines are essential to eliminate major outbreaks in the future (Author).

  5. Antibiotic-loaded MoS2 nanosheets to combat bacterial resistance via biofilm inhibition

    Science.gov (United States)

    Zhang, Xu; Zhang, Wentao; Liu, Lizhi; Yang, Mei; Huang, Lunjie; Chen, Kai; Wang, Rong; Yang, Baowei; Zhang, Daohong; Wang, Jianlong

    2017-06-01

    The emergence of antibiotic resistance has resulted in increasing difficulty in treating clinical infections associated with biofilm formation, one of the key processes in turn contributing to enhanced antibiotic resistance. With the rapid development of nanotechnology, a new way to overcome antibiotic resistance has opened up. Based on the many and diverse properties of MoS2 nanosheets that have attracted wide attention, in particular their antibacterial potential, herein, a novel antimicrobial agent to combat resistant gram-positive Staphylococcus aureus and gram-negative Salmonella was prepared using chitosan functionalized MoS2 nanosheets loading tetracycline hydrochloride drugs (abbreviated to CM-TH). The antibacterial and anti-biofilm activities of the CM-TH nanocomposites showed the synergetic effect that the combination of nanomaterials and antibiotics was more efficient than either working alone. In particularly, the minimum inhibitory concentration values generally decreased by a factor of dozens, suggesting that CM-TH may become a possible alternative to traditional antibiotics in disrupting biofilms and overcoming antibiotic resistance in treating medical diseases.

  6. Development and transmission of antimicrobial resistance among Gram-negative bacteria in animals and their public health impact.

    Science.gov (United States)

    Mukerji, Shewli; O'Dea, Mark; Barton, Mary; Kirkwood, Roy; Lee, Terence; Abraham, Sam

    2017-02-28

    Gram-negative bacteria are known to cause severe infections in both humans and animals. Antimicrobial resistance (AMR) in Gram-negative bacteria is a major challenge in the treatment of clinical infections globally due to the propensity of these organisms to rapidly develop resistance against antimicrobials in use. In addition, Gram-negative bacteria possess highly efficient mechanisms through which the AMR can be disseminated between pathogenic and commensal bacteria of the same or different species. These unique traits of Gram-negative bacteria have resulted in evolution of Gram-negative bacterial strains demonstrating resistance to multiple classes of antimicrobials. The evergrowing resistance issue has not only resulted in limitation of treatment options but also led to increased treatment costs and mortality rates in humans and animals. With few or no new antimicrobials in production to combat severe life-threatening infections, AMR has been described as the one of the most severe, long-term threats to human health. Aside from overuse and misuse of antimicrobials in humans, another factor that has exacerbated the emergence of AMR in Gram-negative bacteria is the veterinary use of antimicrobials that belong to the same classes considered to be critically important for treating serious life-threatening infections in humans. Despite the fact that development of AMR dates back to before the introduction of antimicrobials, the recent surge in the resistance towards all available critically important antimicrobials has emerged as a major public health issue. This review thus focuses on discussing the development, transmission and public health impact of AMR in Gram-negative bacteria in animals. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  7. Antibiotic-resistant bacteria in drinking water.

    Science.gov (United States)

    Armstrong, J L; Shigeno, D S; Calomiris, J J; Seidler, R J

    1981-08-01

    We analyzed drinking water from seven communities for multiply antibiotic-resistant (MAR) bacteria (bacteria resistant to two or more antibiotics) and screened the MAR bacterial isolates obtained against five antibiotics by replica plating. Overall, 33.9% of 2,653 standard plate count bacteria from treated drinking waters were MAR. Two different raw water supplies for two communities carried MAR standard plate count bacteria at frequencies of 20.4 and 18.6%, whereas 36.7 and 67.8% of the standard plate count populations from sites within the respective distribution systems were MAR. Isolate identification revealed that MAR gram-positive cocci (Staphylococcus) and MAR gram-negative, nonfermentative rods (Pseudomonas, Alcaligenes, Moraxella-like group M, and Acinetobacter) were more common in drinking waters than in untreated source waters. Site-to-site variations in generic types and differences in the incidences of MAR organisms indicated that shedding of MAR bacteria living in pipelines may have contributed to the MAR populations in tap water. We conclude that the treatment of raw water and its subsequent distribution select for standard plate count bacteria exhibiting the MAR phenotype.

  8. The Antibiotic Resistance Profiles of Bacterial Strains Isolated from Patients with Hospital-Acquired Bloodstream and Urinary Tract Infections

    Directory of Open Access Journals (Sweden)

    Hamed Ghadiri

    2012-01-01

    Full Text Available Treatment of nosocomial infections is becoming difficult due to the increasing trend of antibiotics resistance. Current knowledge on antibiotic resistance pattern is essential for appropriate therapy. We aimed to evaluate antibiotic resistance profiles in nosocomial bloodstream and urinary tract pathogens. A total of 129 blood stream and 300 urinary tract positive samples were obtained from patients referring to Besat hospital over a two-year period (2009 and 2010. Antibiotic sensitivity was ascertained using the Kirby-Bauer disk diffusion technique according to CLSI guidelines. Patient's data such as gender and age were recorded. The ratio of gram-negative to gram-positive bacteria in BSIs was 1.6 : 1. The most prevalent BSI pathogen was Coagulase-Negative Staphylococci (CoNS. The highest resistance rate of CoNS was against penicillin (91.1% followed by ampicillin (75.6%, and the lowest rate was against vancomycin (4.4%. Escherichia coli was the most prevalent pathogen isolated from urinary tract infections (UTIs. Ratio of gram-negative to gram-positive bacteria was 3.2 : 1. The highest resistance rate of E. coli isolates was against nalidixic acid (57.7%. The present study showed that CoNS and E. coli are the most common causative agents of nosocomial BSIs and UTIs, and control of infection needs to be addressed in both antibiotic prescription and general hygiene.

  9. Antibiotic-Resistant Infections and Treatment Challenges in the Immunocompromised Host.

    Science.gov (United States)

    Dumford, Donald M; Skalweit, Marion

    2016-06-01

    This article reviews antibiotic resistance and treatment of bacterial infections in the growing number of patients who are immunocompromised: solid organ transplant recipients, the neutropenic host, and persons with human immunodeficiency virus and AIDS. Specific mechanisms of resistance in both gram-negative and gram-positive bacteria, as well as newer treatment options are addressed elsewhere, and are only briefly discussed in the context of the immunocompromised host. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Antibiotic-induced endotoxin release in patients with gram-negative urosepsis: a double-blind study comparing imipenem and ceftazidime

    NARCIS (Netherlands)

    Prins, J. M.; van Agtmael, M. A.; Kuijper, E. J.; van Deventer, S. J.; Speelman, P.

    1995-01-01

    The clinical significance of differences between antibiotics in endotoxin-liberating potential is unknown. Thirty patients with gram-negative urosepsis were randomized between imipenem and ceftazidime, which have, respectively, a low and a high endotoxin-liberating potential in vitro. In patients

  11. [Continuous surveillance of antimicrobial resistance among nosocomial gram-negative bacilli from intensive care units in China].

    Science.gov (United States)

    Chen, Min-Jun; Wang, Hui

    2003-03-10

    To investigate the change of antimicrobial resistance among nosocomial gram-negative bacilli, especially those of Enterobacteriaceae isolated from intensive care units from 1994 to 2001 in China. E test was made to determine the minimal inhibitory concentrations (MIC) of 10 279 isolates of gram-negative bacilli (including 5 829 strains of bacilli of Enterobacteriaceae) from 32 hospitals in China from 1994 to 2001. The most common pathogens were Pseudomonas aeruginosa; Escherichia coli, Klebsiella spp, Acinetobacter spp. Enterobacter spp, and Stenotrophomonas maltophilia. The most common pathogens in respiratory tract specimens were Pseudomonas aeruginosa (25%), Klebsiella pneumoniae (18%), and Acinetobacter baumanni (11%). The most common pathogens in blood and urine specimens were Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The antibiotic remaining the most active against all of the gram-negative bacilli for 7 years was imipenem (with a susceptibility rate of 87%), followed by cefoperazone/sulbactam (however, with a susceptibility rate decreasing from 86% to 75%), amikacin (75%), ceftazidime (73%), cefepime (72%), and piperacillin/tazobactam (71%). The susceptibility rate of Escherichia coli Klebsiella pneumoniae to imipenem remained 98% with a MIC(90) of 0.5 micro g/ml during the 7 years, much higher than those to amikacin (84%), ceftazidime (83%), cefoperazone/sulbactam (83%), piperacillin/tazobactam (80%), and cefepime (80%). The susceptibility rate of these two species to cefoperazone/sulbactam decreased from 90% in 1996 to 74% in 2001. While the susceptibility to cefotaxime and ceftriaxone decreased from 82% to 57%. The susceptibility rate of Escherichia coli to ciprofloxacin decreased from 54% to 25% and that of Klebsiella pneumoniae to ciprofloxacin decreased from 90% to 75%. The prevalence of extended spectrum beta-lactamases in these two species increased from 11% in 1994 to 34% in 2001. The most active antibiotics against

  12. Detection of emerging antibiotic resistance in bacteria isolated from subclinical mastitis in cattle in West Bengal

    Directory of Open Access Journals (Sweden)

    Arnab Das

    2017-05-01

    Full Text Available Aim: The aim of this work was to detect antibiotic resistance in Gram-negative bacteria isolated from subclinical mastitis in cattle in West Bengal. Materials and Methods: The milk samples were collected from the cattle suffering with subclinical mastitis in West Bengal. The milk samples were inoculated into the nutrient broth and incubated at 37°C. On the next day, the growth was transferred into nutrient agar and MacConkey agar. All the pure cultures obtained from nutrient agar slant were subjected to Gram-staining and standard biochemical tests. All the bacterial isolates were tested in vitro for their sensitivity to different antibiotics commonly used in veterinary practices. All Gram-negative isolates including positive control were subjected to polymerase chain reaction (PCR for detection of blaCTX-M, blaTEM, blaSHV, blaVIM, tetA, tetB, tetC, and tetM genes considered for extended-spectrum β-lactamase (ESBL, metallo-β-lactamase, and tetracycline resistance. Results: In total, 50 Gram-negative organisms (Escherichia coli, Proteus, Pseudomonas, Klebsiella, and Enterobacter were isolated from milk samples of subclinical mastitis infected cattle. Among these Gram-negative isolates, 48% (24/50 were found either ESBL producing or tetracycline resistant. Out of total 50 Gram-negative isolates, blaCTX-M was detected in 18 (36% isolates, and 6 (12% harbored blaTEM genes in PCR. None of the isolates carried blaSHV genes. Further, in this study, 5 (10% isolates harbored tet(A gene, and 8 (16% isolates carried tet(B gene. No tet(C gene was detected from the isolates. Conclusion: This study showed emerging trend of antibiotic-resistant Gram-negative bacteria associated with subclinical mastitis in cattle in West Bengal, India.

  13. Exploring the hidden potential of fosfomycin for the fight against severe Gram-negative infections

    Directory of Open Access Journals (Sweden)

    P V Saiprasad

    2016-01-01

    Full Text Available Gram-negative resistance is a serious global crisis putting the world on the cusp of 'pre-antibiotic era'. This serious crisis has been catalysed by the rapid increase in carbapenem-resistant Enterobacteriaceae (CRE. Spurge in colistin usage to combat CRE infections leads to the reports of (colistin and carbapenem resistant enterobacteriaceae CCRE (resistance to colistin in isolates of CRE infections further jeopardising our last defence. The antibacterial apocalypse imposed by global resistance crisis requires urgent alternative therapeutic options. Interest in the use of fosfomycin renewed recently for serious systemic infections caused by multidrug-resistant Enterobacteriaceae. This review aimed at analysing the recent evidence on intravenous fosfomycin to explore its hidden potential, especially when fosfomycin disodium is going to be available in India. Although a number of promising evidence are coming up for fosfomycin, there are still areas where more work is required to establish intravenous fosfomycin as the last resort antibacterial for severe Gram-negative infections.

  14. Bactérias gram negativas resistentes a antimicrobianos em alimentos Gram-negative bacteria resistant to antibiotics in foods

    Directory of Open Access Journals (Sweden)

    José Cavalcante de Albuquerque Ribeiro Dias

    1985-12-01

    Full Text Available A partir de 154 espécimens de alimentos, representados por hortaliças (alface, leite e merenda escolar, obteve-se o isolamento e identificação de 400 amostras de bacilos Gram negativos. Esta amostragem se distribuiu em 339 enterobactérias (Escherichia, Shigella, Citrobacter, Klebsiella, Enterobacter, Serratia e Proteus e 61 de gêneros afins (Acinetobacter, Flavobacterium, Aeromonas e Pseudomonas. Submetendo-se as culturas aos antimicrobianos: sulfadiazina (Su, estreptomicina (Sm, tetraciclina (Tc, cloranfenicol (Cm, canamicina (Km, ampicilina (Ap, ácido nalidíxico (Nal e gentamicina (Gm, observou-se apenas seis estirpes sensíveis a todas as drogas e sensibilidade absoluta à Gm. A predominância dos modelos Su (27,6% e Su-Ap (39,6% incidiu nas enterobactérias, enquanto que, 18,0% para Ap e 9,8% para Su-Ap foram detectados nos gêneros afins. Para caracterização da resistência foram realizados testes de conjugação e a totalidade das culturas não revelou transferência para o gene que confere resistência ao ácido nalidíxico. Relevantes são as taxas de amostras R+ observadas nos bacilos entéricos, oscilando em torno de 90% (leite e merenda escolar e alface, em torno de 70%From 154 food samples, including vegetables (lettuce, milk and meals served at school it was possible to isolate and identify 400 Gram negative bacilli distributed among 339 enteric bacteria (Escherichia, Shigella, Citrobacter, Klebsiella, Enterobacter, Serratia and Proteus and other 61 non enteric bacilli (Acinetobacter, Flavobacterium, Aeromonas and Pseudomonas. Submitting this cultures to the drugs sulfadiazine (Su, streptomycin (Sm, tetracycline (Tc, chloramphenicol (Cm, kanamycin (Km, ampicillin (Ap, nalidixic acid (Nal and gentamycin (Gm it was observed only six stocks susceptible to all drugs and total sensibility to Gm. Among enteric bacteria the profiles Su (27,6% and Su-Ap (39,6% predominated, while for the non enteric bacilli percentages of 18.0 for

  15. Physico-Chemical-Managed Killing of Penicillin-Resistant Static and Growing Gram-Positive and Gram-Negative Vegetative Bacteria

    Science.gov (United States)

    Richmond, Robert Chaffee (Inventor); Schramm, Jr., Harry F. (Inventor); Defalco, Francis G. (Inventor); Farris, III, Alex F. (Inventor)

    2012-01-01

    Systems and methods for the use of compounds from the Hofmeister series coupled with specific pH and temperature to provide rapid physico-chemical-managed killing of penicillin-resistant static and growing Gram-positive and Gram-negative vegetative bacteria. The systems and methods represent the more general physico-chemical enhancement of susceptibility for a wide range of pathological macromolecular targets to clinical management by establishing the reactivity of those targets to topically applied drugs or anti-toxins.

  16. Potential management of resistant microbial infections with a novel non-antibiotic

    DEFF Research Database (Denmark)

    Dutta, Noton Kumar; Annadurai, Subramanian; Mazumdar, Kaushiki

    2007-01-01

    Diclofenac sodium (Dc), an anti-inflammatory agent, has remarkable inhibitory action both against drug-sensitive and drug-resistant clinical isolates of various Gram-positive and Gram-negative bacteria. The aim of this study was to determine the ability of Dc to protect mice from a virulent...... Salmonella infection. Dc injected at 1.5 microg/g and 3.0 microg/g mouse body weight significantly protected animals from the lethality of Salmonella infection. As was the case for the in vitro interaction, Dc in combination with streptomycin was even more effective. The non-antibiotic drug Dc has potential...... for the management of problematic antibiotic-resistant bacterial infections....

  17. Burdock (Arctium lappa Leaf Extracts Increase the In Vitro Antimicrobial Efficacy of Common Antibiotics on Gram-positive and Gram-negative Bacteria

    Directory of Open Access Journals (Sweden)

    Pirvu Lucia

    2017-04-01

    Full Text Available This work aimed to study the potential effects of four Arctii folium extracts, 5 mg gallic [GAE] acid equivalents per 1 mL sample, on six antibiotics (Ampicillin/AM, Tetracycline/TE, Ciprofloxacin/CIP, Sulfamethoxazole-Trimethoprim/SXT, Chloramphenicol/C and Gentamicin/CN tested on four Gram-positive (Staphylococcus aureus ATCC 6538, Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 29212, and Staphylococcus epidermidis ATCC 12228 and five Gram-negative (Proteus mirabilis ATCC 29245, Escherichia coli ATCC 35218, E. coli ATCC 11229, E. coli ATCC 8739, and Bacillus cereus ATCC 11778 bacteria. Arctii folium extracts were the whole ethanol extract/W and subsequent ethyl acetate/EA, aqueous/AQ, and chloroform/CHL fractions. Chemical qualitative analysis (HPTLC method emphasized five main polyphenol compounds in Arctii folium polar extracts: chlorogenic acid (Rf≈0.52/0.55 and its isomer, 1,5-di-O-caffeoylquinic acid (Rf≈0.90/0.92, plus cynarin (Rf≈0.77, hyperoside (Rf≈0.68/0.64 and isoquercitrin (Rf≈0.69/0.71. Microbiological screening indicated Arctii folium polar extracts (AQ and W efficacy on S. epidermidis ATCC 12228; the MIC values were in the range of common antibiotics, being 32 and 128 μg GAE per mL sample respectively. The unpredictable effects (stimulatory or inhibitory of Arctii folium extracts in combination with typical antibiotics as well as a potential use of the whole ethanol extract/W for restoring the antimicrobial potency of susceptible antibiotics have also been evidenced.

  18. An optimized staining technique for the detection of Gram positive and Gram negative bacteria within tissue.

    Science.gov (United States)

    Becerra, Sandra C; Roy, Daniel C; Sanchez, Carlos J; Christy, Robert J; Burmeister, David M

    2016-04-12

    Bacterial infections are a common clinical problem in both acute and chronic wounds. With growing concerns over antibiotic resistance, treatment of bacterial infections should only occur after positive diagnosis. Currently, diagnosis is delayed due to lengthy culturing methods which may also fail to identify the presence of bacteria. While newer costly bacterial identification methods are being explored, a simple and inexpensive diagnostic tool would aid in immediate and accurate treatments for bacterial infections. Histologically, hematoxylin and eosin (H&E) and Gram stains have been employed, but are far from optimal when analyzing tissue samples due to non-specific staining. The goal of the current study was to develop a modification of the Gram stain that enhances the contrast between bacteria and host tissue. A modified Gram stain was developed and tested as an alternative to Gram stain that improves the contrast between Gram positive bacteria, Gram negative bacteria and host tissue. Initially, clinically relevant strains of Pseudomonas aeruginosa and Staphylococcus aureus were visualized in vitro and in biopsies of infected, porcine burns using routine Gram stain, and immunohistochemistry techniques involving bacterial strain-specific fluorescent antibodies as validation tools. H&E and Gram stain of serial biopsy sections were then compared to a modification of the Gram stain incorporating a counterstain that highlights collagen found in tissue. The modified Gram stain clearly identified both Gram positive and Gram negative bacteria, and when compared to H&E or Gram stain alone provided excellent contrast between bacteria and non-viable burn eschar. Moreover, when applied to surgical biopsies from patients that underwent burn debridement this technique was able to clearly detect bacterial morphology within host tissue. We describe a modification of the Gram stain that provides improved contrast of Gram positive and Gram negative microorganisms within host

  19. Bovine mastitis caused by gram negative bacteria in Mosul

    Directory of Open Access Journals (Sweden)

    S. Y. A. Al-Dabbagh

    2012-01-01

    Full Text Available A total of 90 milk samples were collected from cows with clinical and subclinical mastitis from different areas in Mosul city, in a period from October 2009 to June 2010, for the detection of gram negative bacteriological causative agents. The bacteria were identified using morphological, cultural and biochemical characteristics. thirty tow (35.3% gram negative bacterial isolates were obtained from the total count which included 14 isolates (15.5% for Escherichia coli, 7 isolates (7.7% for Klebsiella spp, 4 isolates (4.4% for Pseudomonas aeruginosa, 3 isolates (3.3% for Enterobacter aerogenes ,2 isolates for Serratia marcescens and one isolates (1.1% for each of Aeromonas hydrophila and Pasteurella multocida. Results of antibiotic sensitivity test indicated that most of these isolates were sensitive to Ciprofloxacin following by Gentamycin and Cotrimoxazole, while most of these organisms were resistant to Ampicillin, the isolates showed different percentages of sensitivity to Doxycycline, Tetracycline, Neomycin and Chloramphenicol.

  20. Gram staining for the treatment of peritonsillar abscess.

    Science.gov (United States)

    Takenaka, Yukinori; Takeda, Kazuya; Yoshii, Tadashi; Hashimoto, Michiko; Inohara, Hidenori

    2012-01-01

    Objective. To examine whether Gram staining can influence the choice of antibiotic for the treatment of peritonsillar abscess. Methods. Between 2005 and 2009, a total of 57 cases of peritonsillar abscess were analyzed with regard to cultured bacteria and Gram staining. Results. Only aerobes were cultured in 16% of cases, and only anaerobes were cultured in 51% of cases. Mixed growth of aerobes and anaerobes was observed in 21% of cases. The cultured bacteria were mainly aerobic Streptococcus, anaerobic Gram-positive cocci, and anaerobic Gram-negative rods. Phagocytosis of bacteria on Gram staining was observed in 9 cases. The bacteria cultured from these cases were aerobic Streptococcus, anaerobic Gram-positive cocci, and anaerobic Gram-negative rods. The sensitivity of Gram staining for the Gram-positive cocci and Gram-negative rods was 90% and 64%, respectively. The specificity of Gram staining for the Gram-positive cocci and Gram-negative rods was 62% and 76%, respectively. Most of the Gram-positive cocci were sensitive to penicillin, but some of anaerobic Gram-negative rods were resistant to penicillin. Conclusion. When Gram staining shows only Gram-positive cocci, penicillin is the treatment of choice. In other cases, antibiotics effective for the penicillin-resistant organisms should be used.

  1. Risk factors for carbapenem resistant bacteraemia and mortality due to gram negative bacteraemia in a developing country

    International Nuclear Information System (INIS)

    Kalam, K.; Kumar, S.; Ali, S.; Baqi, S.; Qamar, F.

    2014-01-01

    Objective: To identify the risk factors for carbapenem resistant bacteraemia and mortality due to gram negative bacteraemia in a developing country. Methods: A prospective cohort study was conducted at the Sindh Institute of Urology and Transplantation (SIUT) from June to October 2012. Hospitalized patients > 15 years of age with gram negative bacteraemia were included and followed for a period of 2 weeks for in hospital mortality. Data was collected and analyzed for 243 subjects. Multivariate analysis was used to determine the risk factors for carbapenem resistant bacteraemia and mortality due to gram negative bacteraemia. Crude and adjusted odds ratio and 95% CI are reported. Results: A total of 729 out of 1535 (47.5%) cultures were positive for gram negative isolates. Out of 243 subjects, 117 (48%) had an MDR isolate. Having an MDR isolate on culture (AOR, 2.33; 95% CI, 1.35 -4.0), having multiple positive cultures (AOR, 1.8; 95% CI, 0.94 -3.4) and stay in ICU >48 hours (AOR, 2.0 ; 95% CI, 1.12 -3.78) were identified as significant risk factors for mortality due to gram negative organisms. Risk factors for carbapenem resistant bacteraemia were age >50 years (AOR, 1.83; 95% CI, 1.0-3.5), septic shock on presentation (AOR 2.53; 95% CI, 1.03 -6.2) , ICU stay of >72 hours (AOR 2.40; 95% CI, 1.14-5.0) and receiving immunosuppressant medications (AOR 2.23; 95% CI, 0.74 - 6.7). Conclusion: There is a high burden of MDR and carbapenem resistant gram negative bacteraemia, with a high mortality rate. (author)

  2. PIRATE project: point-of-care, informatics-based randomised controlled trial for decreasing overuse of antibiotic therapy in Gram-negative bacteraemia.

    Science.gov (United States)

    Huttner, Angela; Albrich, Werner C; Bochud, Pierre-Yves; Gayet-Ageron, Angèle; Rossel, Anne; Dach, Elodie von; Harbarth, Stephan; Kaiser, Laurent

    2017-07-13

    Antibiotic overuse drives antibiotic resistance. The optimal duration of antibiotic therapy for Gram-negative bacteraemia (GNB), a common community and hospital-associated infection, remains unknown and unstudied via randomised controlled trials (RCTs). This investigator-initiated, multicentre, non-inferiority, informatics-based point-of-care RCT will randomly assign adult hospitalised patients receiving microbiologically efficacious antibiotic(s) for GNB to (1) 14 days of antibiotic therapy, (2) 7 days of therapy or (3) an individualised duration determined by clinical response and 75% reduction in peak C reactive protein (CRP) values. The randomisation will occur in equal proportions (1:1:1) on day 5 (±1) of efficacious antibiotic therapy as determined by antibiogram; patients, their physicians and study investigators will be blind to treatment duration allocation until the day of antibiotic discontinuation. Immunosuppressed patients and those with GNB due to complicated infections (endocarditis, osteomyelitis, etc) and/or non-fermenting bacilli ( Acinetobacter spp, Burkholderia spp, Pseudomonas spp) Brucella spp, Fusobacterium spp or polymicrobial growth with Gram-positive organisms will be ineligible. The primary outcome is incidence of clinical failure at day 30; secondary outcomes include clinical failure, all-cause mortality and incidence of Clostridiumdifficile infection in the 90-day study period. An interim safety analysis will be performed after the first 150 patients have been followed for ≤30 days. Given a chosen margin of 10%, the required sample size to determine non-inferiority is roughly 500 patients. Analyses will be performed on both intention-to-treat and per-protocol populations. Ethics approval was obtained from the cantonal ethics committees of all three participating sites. Results of the main trial and each of the secondary endpoints will be submitted for publication in a peer-reviewed journal. This trial is registered at www

  3. Resistance in gram-negative bacilli in a cardiac intensive care unit in India: Risk factors and outcome

    Directory of Open Access Journals (Sweden)

    Pawar Mandakini

    2008-01-01

    Full Text Available The objective of this study was to compare the risk factors and outcome of patients with preexisting resistant gram-negative bacilli (GNB with those who develop sensitive GNB in the cardiac intensive care unit (ICU. Of the 3161 patients ( n = 3,161 admitted to the ICU during the study period, 130 (4.11% developed health care-associated infections (HAIs with GNB and were included in the cohort study. Pseudomonas aeruginosa (37.8% was the most common organism isolated followed by Klebsiella species (24.2%, E. coli (22.0%, Enterobacter species (6.1%, Stenotrophomonas maltophilia (5.7%, Acinetobacter species (1.3%, Serratia marcescens (0.8%, Weeksella virosa (0.4% and Burkholderia cepacia (0.4%. Univariate analysis revealed that the following variables were significantly associated with the antibiotic-resistant GNB: females ( P = 0.018, re-exploration ( P = 0.004, valve surgery ( P = 0.003, duration of central venous catheter ( P < 0.001, duration of mechanical ventilation ( P < 0.001, duration of intra-aortic balloon counter-pulsation ( P = 0.018, duration of urinary catheter ( P < 0.001, total number of antibiotic exposures prior to the development of resistance ( P < 0.001, duration of antibiotic use prior to the development of resistance ( P = 0.014, acute physiology and age chronic health evaluation score (APACHE II, receipt of anti-pseudomonal penicillins (piperacillin-tazobactam ( P = 0.002 and carbapenems ( P < 0.001. On multivariate analysis, valve surgery (adjusted OR = 2.033; 95% CI = 1.052-3.928; P = 0.035, duration of mechanical ventilation (adjusted OR = 1.265; 95% CI = 1.055-1.517; P = 0.011 and total number of antibiotic exposure prior to the development of resistance (adjusted OR = 1.381; 95% CI = 1.030-1.853; P = 0.031 were identified as independent risk factors for HAIs in resistant GNB. The mortality rate in patients with resistant GNB was significantly higher than those with sensitive GNB (13.9% vs. 1.8%; P = 0.03. HAI with

  4. Antibiotic exposure in a low-income country: screening urine samples for presence of antibiotics and antibiotic resistance in coagulase negative staphylococcal contaminants.

    Directory of Open Access Journals (Sweden)

    Anne Mette Lerbech

    Full Text Available Development of antimicrobial resistance has been assigned to excess and misuse of antimicrobial agents. Staphylococci are part of the normal flora but are also potential pathogens that have become essentially resistant to many known antibiotics. Resistances in coagulase negative staphylococci (CoNS are suggested to evolve due to positive selective pressure following antibiotic treatment. This study investigated the presence of the nine most commonly used antimicrobial agents in human urine from outpatients in two hospitals in Ghana in relation to CoNS resistance. Urine and CoNS were sampled (n = 246 and n = 96 respectively from patients in two hospitals in Ghana. CoNS were identified using Gram staining, coagulase test, and MALDI-TOF/MS, and the antimicrobial susceptibility to 12 commonly used antimicrobials was determined by disk diffusion. Moreover an analytical method was developed for the determination of the nine most commonly used antimicrobial agents in Ghana by using solid-phase extraction in combination with HPLC-MS/MS using electron spray ionization. The highest frequency of resistance to CoNS was observed for penicillin V (98%, trimethoprim (67%, and tetracycline (63%. S. haemolyticus was the most common isolate (75%, followed by S. epidermidis (13% and S. hominis (6%. S. haemolyticus was also the species displaying the highest resistance prevalence (82%. 69% of the isolated CoNS were multiple drug resistant (≧ 4 antibiotics and 45% of the CoNS were methicillin resistant. Antimicrobial agents were detected in 64% of the analysed urine samples (n = 121 where the most frequently detected antimicrobials were ciprofloxacin (30%, trimethoprim (27%, and metronidazole (17%. The major findings of this study was that the prevalence of detected antimicrobials in urine was more frequent than the use reported by the patients and the prevalence of resistant S. haemolyticus was more frequent than other resistant CoNS species when antimicrobial

  5. Fighting infections due to multidrug-resistant Gram-positive pathogens.

    Science.gov (United States)

    Cornaglia, G

    2009-03-01

    Growing bacterial resistance in Gram-positive pathogens means that what were once effective and inexpensive treatments for infections caused by these bacteria are now being seriously questioned, including penicillin and macrolides for use against pneumococcal infections and-in hospitals-oxacillin for use against staphylococcal infections. As a whole, multidrug-resistant (MDR) Gram-positive pathogens are rapidly becoming an urgent and sometimes unmanageable clinical problem. Nevertheless, and despite decades of research into the effects of antibiotics, the actual risk posed to human health by antibiotic resistance has been poorly defined; the lack of reliable data concerning the outcomes resulting from antimicrobial resistance stems, in part, from problems with study designs and the methods used in resistence determination. Surprisingly little is known, too, about the actual effectiveness of the many types of intervention aimed at controlling antibiotic resistance. New antibiotics active against MDR Gram-positive pathogens have been recently introduced into clinical practice, and the antibiotic pipeline contains additional compounds at an advanced stage of development, including new glycopeptides, new anti-methicillin-resistant Staphylococcus aureus (MRSA) beta-lactams, and new diaminopyrimidines. Many novel antimicrobial agents are likely to be niche products, endowed with narrow antibacterial spectra and/or targeted at specific clinical problems. Therefore, an important educational goal will be to change the current, long-lasting attitudes of both physicians and customers towards broad-spectrum and multipurpose compounds. Scientific societies, such as the European Society of Clinical Microbiology and Infectious Diseases (ESCMID), must play a leading role in this process.

  6. Effect of extended infusion of meropenem and nebulized amikacin on Gram-negative multidrug-resistant ventilator-associated pneumonia

    Directory of Open Access Journals (Sweden)

    Mona Ahmed Ammar

    2018-01-01

    Conclusions: Adding nebulized amikacin to systemic antibiotics in patients with VAP caused by Gram-negative MDRO may offer efficacy benefits, and the use of extended infusions of meropenem could improve the clinical outcomes in critically ill populations.

  7. [Virulence and its relationship to antibiotic resistance].

    Science.gov (United States)

    Joly-Guillou, M L

    1998-12-01

    PATHOGENIC ISLANDS: Certain DNA blocks inserted into the chromosome of most Gram negative bacteria originated in pathogens found in plants. VIRULENCE-ANTIBIOTIC INTERACTIONS: During the invasive phase, the bacterial cell covers itself with adhesins which facilitate its adherence to tissues. The bacterial cell produces a fibronectin which protects its defense systems. Antibiotics favor bacterial resistance by increasing the expression of surface adhesins and fibronectin production. PENICILLIN RESISTANT PNEUMOCOCCI: Experimental models have demonstrated that mortality in mice and host resistance to pneumococcal infection are related to the type of capsule and not to antibiotic resistance. QUORUM SENSING: The bacterial inoculum regulates the production of virulence factors in vivo via quorum sensing. This regulation can play an important role in Pseudomonas aeruginosa infections. ACINETOBACTER BAUMANNI VIRULENCE: Long poorly understood, factors favoring A. baumanni virulence appear to result from bacterial production of IROMPs in the extracellular growth medium in response to iron depletion during the exponential growth phase.

  8. Molecular epidemiology of carbapenem resistant gram-negative bacilli from infected pediatric population in tertiary - care hospitals in Medellín, Colombia: an increasing problem.

    Science.gov (United States)

    Vanegas, Johanna M; Parra, O Lorena; Jiménez, J Natalia

    2016-09-01

    Gram-negative bacilli are a cause of serious infections in the pediatric population. Carbapenem are the treatment of choice for infections caused by multidrug-resistant Gram-negative bacilli, but the emergence of carbapenem resistance has substantially reduced access to effective antimicrobial regimens. Children are a population vulnerable to bacterial infections and the emergence of resistance can worsen prognosis. The aim of this study is to describe the clinical and molecular characteristics of infections caused by carbapenem-resistant Gram-negative bacilli in pediatric patients from five tertiary-care hospitals in Medellín, Colombia. A cross-sectional study was conducted in five tertiary-care hospitals from June 2012 to June 2014. All pediatric patients infected by carbapenem-resistant Gram-negative bacilli were included. Clinical information for each patient was obtained from medical records. Molecular analyses included PCR for detection of bla VIM, bla IMP bla NDM, bla OXA-48 and bla KPC genes and PFGE and MLST for molecular typing. A total of 59 patients were enrolled, most of them less than 1 year old (40.7 % n = 24), with a previous history of antibiotic use (94.9 %; n = 56) and healthcare-associated infections - predominately urinary tract infections (31.0 %; n = 18). Klebsiella pneumoniae was the most frequent bacteria (47.4 %), followed by Enterobacter cloacae (40.7 %) and Pseudomonas aeruginosa (11.9 %). For K. pneumoniae, KPC was the predominant resistance mechanism (85.7 %; n = 24) and ST14 was the most common clone (39.3 % n = 11), which included strains closely related by PFGE. In contrast, E. cloacae and P. aeruginosa were prevailing non-carbapenemase-producing isolates (only KPC and VIM were detected in 1 and 3 isolates, respectively) and high genetic diversity according to PFGE and MLST was found in the majority of the cases. In recent years, increasing carbapenem-resistant bacilli in children has become in a matter

  9. Trends of Bloodstream Infections in a University Greek Hospital during a Three-Year Period: Incidence of Multidrug-Resistant Bacteria and Seasonality in Gram-negative Predominance.

    Science.gov (United States)

    Kolonitsiou, Fevronia; Papadimitriou-Olivgeris, Matthaios; Spiliopoulou, Anastasia; Stamouli, Vasiliki; Papakostas, Vasileios; Apostolopoulou, Eleni; Panagiotopoulos, Christos; Marangos, Markos; Anastassiou, Evangelos D; Christofidou, Myrto; Spiliopoulou, Iris

    2017-07-06

    The aim of the study was to assess the epidemiology, the incidence of multidrug-resistant bacteria and bloodstream infections' (BSIs) seasonality in a university hospital. This retrospective study was carried out in the University General Hospital of Patras, Greece, during 2011-13 y. Blood cultures from patients with clinical presentation suggestive of bloodstream infection were performed by the BacT/ALERT System. Isolates were identified by Vitek 2 Advanced Expert System. Antibiotic susceptibility testing was performed by the disk diffusion method and E-test. Resistance genes (mecA in staphylococci; vanA/vanB/vanC in enterococci; bla KPC /bla VIM /bla NDM in Klebsiella spp.) were detected by PCR. In total, 4607 (9.7%) blood cultures were positive from 47451 sets sent to Department of Microbiology, representing 1732 BSIs. Gram-negative bacteria (52.3%) were the most commonly isolated, followed by Gram-positive (39.5%), fungi (6.6%) and anaerobes bacteria (1.8%). The highest contamination rate was observed among Gram-positive bacteria (42.3%). Among 330 CNS and 150 Staphylococcus aureus, 281 (85.2%) and 60 (40.0%) were mecA-positive, respectively. From 113 enterococci, eight were vanA, two vanB and two vanC-positives. Of the total 207 carbapenem-resistant Klebsiella pneumoniae (73.4%), 202 carried bla KPC , four bla KPC and bla VIM and one bla VIM . A significant increase in monthly BSIs' incidence was shown (R2: 0.449), which may be attributed to a rise of Gram-positive BSIs (R2: 0.337). Gram-positive BSIs were less frequent in spring (P period. The increasing incidence of BSIs can be attributed to an increase of Gram-positive BSI incidence, even though Gram-negative bacteria remained the predominant ones. Seasonality may play a role in the predominance of Gram-negative's BSI.

  10. Outcome of Transplantation Using Organs From Donors Infected or Colonized With Carbapenem-Resistant Gram-Negative Bacteria.

    Science.gov (United States)

    Mularoni, A; Bertani, A; Vizzini, G; Gona, F; Campanella, M; Spada, M; Gruttadauria, S; Vitulo, P; Conaldi, P; Luca, A; Gridelli, B; Grossi, P

    2015-10-01

    Donor-derived infections due to multidrug-resistant bacteria are a growing problem in solid organ transplantation, and optimal management options are not clear. In a 2-year period, 30/214 (14%) recipients received an organ from 18/170 (10.5%) deceased donors with infection or colonization caused by a carbapenem-resistant gram-negative bacteria that was unknown at the time of transplantation. Among them, 14/30 recipients (47%) received a transplant from a donor with bacteremia or with infection/colonization of the transplanted organ and were considered at high risk of donor-derived infection transmission. The remaining 16/30 (53%) recipients received an organ from a nonbacteremic donor with colonization of a nontransplanted organ and were considered at low risk of infection transmission. Proven transmission occurred in 4 of the 14 high-risk recipients because donor infection was either not recognized, underestimated, or not communicated. These recipients received late, short or inappropriate posttransplant antibiotic therapy. Transmission did not occur in high-risk recipients who received appropriate and prompt antibiotic therapy for at least 7 days. The safe use of organs from donors with multidrug-resistant bacteria requires intra- and inter-institutional communication to allow appropriate management and prompt treatment of recipients in order to avoid transmission of infection. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.

  11. The distribution of carbapenem- and colistin-resistance in Gram-negative bacteria from the Tamil Nadu region in India.

    Science.gov (United States)

    Manohar, Prasanth; Shanthini, Thamaraiselvan; Ayyanar, Ramankannan; Bozdogan, Bulent; Wilson, Aruni; Tamhankar, Ashok J; Nachimuthu, Ramesh; Lopes, Bruno S

    2017-07-01

    The occurrence of carbapenem- and colistin-resistance among Gram-negative bacteria is increasing worldwide. The aim of this study was to understand the distribution of carbapenem- and colistin-resistance in two areas in Tamil Nadu, India. The clinical isolates (n=89) used in this study were collected from two diagnostic centres in Tamil Nadu, India. The bacterial isolates were screened for meropenem- and colistin-resistance. Further, resistance genes blaNDM-1, blaOXA-48-like, blaIMP, blaVIM, blaKPC, mcr-1 and mcr-2 and integrons were studied. The synergistic effect of meropenem in combination with colistin was assessed. A total of 89 bacterial isolates were studied which included Escherichia coli (n=43), Klebsiella pneumoniae (n=18), Pseudomonas aeruginosa (n=10), Enterobacter cloacae (n=6), Acinetobacter baumannii (n=5), Klebsiella oxytoca (n=4), Proteus mirabilis (n=2) and Salmonella paratyphi (n=1). MIC testing showed that 58/89 (65 %) and 29/89 (32 %) isolates were resistant to meropenem and colistin, respectively, whereas 27/89 (30 %) isolates were resistant to both antibiotics. Escherichia coli, K. pneumoniae, K. oxytoca, Pseudomonas aeruginosa, and Enterobacter cloacae isolates were blaNDM-1-positive (n=20). Some strains of Escherichia coli, K. pneumoniae and K. oxytoca were blaOXA-181-positive (n=4). Class 1, 2 and 3 integrons were found in 24, 20 and 3 isolates, respectively. Nine NDM-1-positive Escherichia coli strains could transfer carbapenem resistance via plasmids to susceptible Escherichia coli AB1157. Meropenem and colistin showed synergy in 10/20 (50 %) isolates by 24 h time-kill studies. Our results highlight the distribution of carbapenem- and colistin-resistance in Gram-negative bacteria isolated from the Tamil Nadu region in South India.

  12. Role of Old Antibiotics in the Era of Antibiotic Resistance. Highlighted Nitrofurantoin for the Treatment of Lower Urinary Tract Infections

    Directory of Open Access Journals (Sweden)

    Maria Jose Munoz-Davila

    2014-02-01

    Full Text Available Bacterial infections caused by antibiotic-resistant isolates have become a major health problem in recent years, since they are very difficult to treat, leading to an increase in morbidity and mortality. Nitrofurantoin is a broad-spectrum bactericidal antibiotic that, through a complex mode of action which is not completely understood, affects both Gram-negative and Gram-positive bacteria. Nitrofurantoin has been used successfully for a long time for the prophylaxis and treatment of acute lower urinary tract infections in adults, children and pregnant women, but the increased emergence of antibiotic resistance has made nitrofurantoin a suitable candidate for the treatment of infections caused by multidrug-resistant pathogens. Here, we review the mechanism of action, antimicrobial spectrum, pharmacology and safety profile of nitrofurantoin. We also investigate the therapeutic use of nitrofurantoin, including recent data which highlight its role in the management of community urinary tract infection, especially in cases of multidrug-resistant isolates, in which oral active antimicrobials are limited resources nowadays.

  13. Dual beta-lactam therapy for serious Gram-negative infections: is it time to revisit?

    Science.gov (United States)

    Rahme, Christine; Butterfield, Jill M; Nicasio, Anthony M; Lodise, Thomas P

    2014-12-01

    We are rapidly approaching a crisis in antibiotic resistance, particularly among Gram-negative pathogens. This, coupled with the slow development of novel antimicrobial agents, underscores the exigency of redeploying existing antimicrobial agents in innovative ways. One therapeutic approach that was heavily studied in the 1980s but abandoned over time is dual beta-lactam therapy. This article reviews the evidence for combination beta-lactam therapy. Overall, in vitro, animal and clinical data are positive and suggest that beta-lactam combinations produce a synergistic effect against Gram-negative pathogens that rivals that of beta-lactam-aminoglycoside or beta-lactam-fluoroquinolone combination therapy. Although the precise mechanism of improved activity is not completely understood, it is likely attributable to an enhanced affinity to the diverse penicillin-binding proteins found among Gram negatives. The collective data indicate that dual beta-lactam therapy should be revisited for serious Gram-negative infections, especially in light of the near availability of potent beta-lactamase inhibitors, which neutralize the effect of problematic beta-lactamases. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma

    Science.gov (United States)

    Mai-Prochnow, Anne; Clauson, Maryse; Hong, Jungmi; Murphy, Anthony B.

    2016-12-01

    Cold atmospheric-pressure plasma (CAP) is a relatively new method being investigated for antimicrobial activity. However, the exact mode of action is still being explored. Here we report that CAP efficacy is directly correlated to bacterial cell wall thickness in several species. Biofilms of Gram positive Bacillus subtilis, possessing a 55.4 nm cell wall, showed the highest resistance to CAP, with less than one log10 reduction after 10 min treatment. In contrast, biofilms of Gram negative Pseudomonas aeruginosa, possessing only a 2.4 nm cell wall, were almost completely eradicated using the same treatment conditions. Planktonic cultures of Gram negative Pseudomonas libanensis also had a higher log10 reduction than Gram positive Staphylococcus epidermidis. Mixed species biofilms of P. aeruginosa and S. epidermidis showed a similar trend of Gram positive bacteria being more resistant to CAP treatment. However, when grown in co-culture, Gram negative P. aeruginosa was more resistant to CAP overall than as a mono-species biofilm. Emission spectra indicated OH and O, capable of structural cell wall bond breakage, were present in the plasma. This study indicates that cell wall thickness correlates with CAP inactivation times of bacteria, but cell membranes and biofilm matrix are also likely to play a role.

  15. Frequency of isolation and antibiotic resistance patterns of bacterial isolates from wound infections

    Directory of Open Access Journals (Sweden)

    Stojanović-Radić, Z.

    2016-12-01

    Full Text Available Six hundred and thirteen bacterial strains were isolated from wound swabs and the isolates were identified on the basis of growth on differential and selective media. In order to test the sensitivity of isolated strains to different antibiotics, the disc diffusion method, according to EUCAST protocol v 5.0 was used. The most common species isolated from wound swabs was Staphylococcus epidermidis (18.4%, followed by Staphylococcus aureus, Pseudomonas aeruginosa and Enterococcus faecalis (16.8%, 12.7% and 10.4%, respectively. The maximum resistance of Gram-positive cocci was observed to penicillin and the lowest to linezolid. Gram-negative bacteria showed the highest resistance to tetracyclines, while the same strains demonstrated the highest sensitivity to polypeptide antibiotics. Comparison of the resistance patterns of Gramnegative and Gram-positive bacterial strains showed significant difference in the tetracycline efficiency.

  16. Effect of antibiotic use on antimicrobial antibiotic resistance and late-onset neonatal infections over 25 years in an Australian tertiary neonatal unit.

    Science.gov (United States)

    Carr, David; Barnes, Elizabeth Helen; Gordon, Adrienne; Isaacs, David

    2017-05-01

    Antibiotic resistance is a worldwide problem. We describe 25 years of responsible antibiotic use in a tertiary neonatal unit. Data on neonatal infections and antibiotic use were collected prospectively from 1990 to 2014 at a single tertiary Sydney neonatal intensive care unit attached to a maternity unit. There are approximately 5500 deliveries and 900 nursery admissions per year. The mean annual rate of late-onset sepsis was 1.64 episodes per 100 admissions. The mean number of late-onset sepsis episodes per admission to the neonatal unit decreased by 4.0% per year (95% CI 2.6% to 5.4%; p<0.0001) and occurred particularly in infants born weighing <1500 g. No infants with negative cultures relapsed with sepsis when antibiotics were stopped after 48-72 hours. Antibiotic use decreased with time. The proportion of colonising methicillin-resistant Staphylococcus aureus isolates decreased by 7.4% per year (95% CI 0.2% to 14.1%; p=0.043). The proportion of colonising Gram-negative bacilli isolates resistant to either third-generation cephalosporins or gentamicin increased by 2.9% per year (95% CI 1.0% to 4.9%; p=0.0035). Most were cephalosporin-resistant; gentamicin resistance was rare. An average of one baby per year died from late-onset sepsis, the rate not varying significantly over time. The mortality from episodes of late-onset sepsis was 25 of 332 (7.5%). Stopping antibiotics after 2-3 days if neonatal systemic cultures are negative is safe. However, it does not prevent the emergence of cephalosporin-resistant Gram-negative organisms. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  17. Emergence of trimethoprim-resistant Escherichia coli in healthy persons in the absence of prophylactic or therapeutic antibiotics during travel to Guadalajara, Mexico.

    Science.gov (United States)

    Huang, D B; Jiang, Z D; Ericsson, C D; Adachi, J; Dupont, H L

    2001-01-01

    Thirty-nine healthy US students without diarrheal disease and who had not received prophylactic or therapeutic antibiotics were monitored for emergence of trimethoprim-resistant gram-negative fecal flora for a 3-week period after arrival in Guadalajara, Mexico. During this time period, most students showed no change in total fecal gram-negative bacteria (p > 0.05) but showed an increasing level of trimethoprim (TMP) resistance (p students. These 18 TMP-resistant E. coli were also resistant to ampicillin (44%), azithromycin (11%), chloramphenicol (39%), ciprofloxacin (11%), doxycycline (89%), erythromycin (100%), furazolidone (72%), levofloxacin (17%), trimethoprim-sulfamethoxazole (89%) and trovafloxacin (17%). In the absence of prophylactic and therapeutic antibiotics, increased acquisition of TMP-resistant gram-negative fecal flora in this developing country is probably due to poor sanitary conditions and the recurrent and heavy exposure to antimicrobial-resistant indigenous flora as a result of contaminated food and drink.

  18. The Toll pathway underlies host sexual dimorphism in resistance to both Gram-negative and Gram-positive bacteria in mated Drosophila.

    Science.gov (United States)

    Duneau, David F; Kondolf, Hannah C; Im, Joo Hyun; Ortiz, Gerardo A; Chow, Christopher; Fox, Michael A; Eugénio, Ana T; Revah, J; Buchon, Nicolas; Lazzaro, Brian P

    2017-12-21

    Host sexual dimorphism is being increasingly recognized to generate strong differences in the outcome of infectious disease, but the mechanisms underlying immunological differences between males and females remain poorly characterized. Here, we used Drosophila melanogaster to assess and dissect sexual dimorphism in the innate response to systemic bacterial infection. We demonstrated sexual dimorphism in susceptibility to infection by a broad spectrum of Gram-positive and Gram-negative bacteria. We found that both virgin and mated females are more susceptible than mated males to most, but not all, infections. We investigated in more detail the lower resistance of females to infection with Providencia rettgeri, a Gram-negative bacterium that naturally infects D. melanogaster. We found that females have a higher number of phagocytes than males and that ablation of hemocytes does not eliminate the dimorphism in resistance to P. rettgeri, so the observed dimorphism does not stem from differences in the cellular response. The Imd pathway is critical for the production of antimicrobial peptides in response to Gram-negative bacteria, but mutants for Imd signaling continued to exhibit dimorphism even though both sexes showed strongly reduced resistance. Instead, we found that the Toll pathway is responsible for the dimorphism in resistance. The Toll pathway is dimorphic in genome-wide constitutive gene expression and in induced response to infection. Toll signaling is dimorphic in both constitutive signaling and in induced activation in response to P. rettgeri infection. The dimorphism in pathway activation can be specifically attributed to Persephone-mediated immune stimulation, by which the Toll pathway is triggered in response to pathogen-derived virulence factors. We additionally found that, in absence of Toll signaling, males become more susceptible than females to the Gram-positive Enterococcus faecalis. This reversal in susceptibility between male and female Toll

  19. In Vitro Antibacterial Activity of Several Plant Extracts and Oils against Some Gram-Negative Bacteria

    Directory of Open Access Journals (Sweden)

    Ayman Al-Mariri

    2014-01-01

    Full Text Available Background: Medicinal plants are considered new resources for producing agents that could act as alternatives to antibiotics in the treatment of antibiotic-resistant bacteria. The aim of this study was to evaluate the antibacterial activity of 28 plant extracts and oils against four Gram-negative bacterial species. Methods: Experimental, in vitro, evaluation of the activities of 28 plant extracts and oils as well as some antibiotics against E. coli O157:H7, Yersinia enterocolitica O9, Proteus spp., and Klebsiella pneumoniae was performed. The activity against 15 isolates of each bacterium was determined by disc diffusion method at a concentration of 5%. Microdilution susceptibility assay was used in order to determine the minimal inhibitory concentrations (MICs of the plant extracts, oils, and antibiotics. Results: Among the evaluated herbs, only Origanum syriacum L., Thymus syriacus Boiss., Syzygium aromaticum L., Juniperus foetidissima Wild, Allium sativum L., Myristica fragrans Houtt, and Cinnamomum zeylanicum L. essential oils and Laurus nobilis L. plant extract showed anti-bacterial activity. The MIC50 values of these products against the Gram-negative organisms varied from 1.5 (Proteus spp. and K. pneumoniae( and 6.25 µl/ml (Yersinia enterocolitica O9 to 12.5 µl/ml (E. coli O:157. Conclusion: Among the studied essential oils, O. syriacum L., T. syriacus Boiss., C. zeylanicum L., and S. aromaticum L. essential oils were the most effective. Moreover, Cephalosporin and Ciprofloxacin were the most effective antibiotics against almost all the studied bacteria. Therefore, O. syriacum L., T. syriacus Boiss., C. zeylanicum L., and S. aromaticum L. could act as bactericidal agents against Gram-negative bacteria.

  20. Gram-negative diabetic foot osteomyelitis: risk factors and clinical presentation.

    Science.gov (United States)

    Aragón-Sánchez, Javier; Lipsky, Benjamin A; Lázaro-Martínez, Jose L

    2013-03-01

    Osteomyelitis frequently complicates infections in the feet of patients with diabetes. Gram-positive cocci, especially Staphylococcus aureus, are the most commonly isolated pathogens, but gram-negative bacteria also cause some cases of diabetic foot osteomyelitis (DFO). These gram-negatives require different antibiotic regimens than those commonly directed at gram-positives. There are, however, few data on factors related to their presence and how they influence the clinical picture. We conducted a retrospective study to determine the variables associated with the isolation of gram-negative bacteria from bone samples in cases of DFO and the clinical presentation of these infections. Among 341 cases of DFO, 150 had a gram-negative isolate (alone or combined with a gram-positive isolate) comprising 44.0% of all patients and 50.8% of those with a positive bone culture. Compared with gram-positive infections, wounds with gram-negative organisms more often had a fetid odor, necrotic tissue, signs of soft tissue infection accompanying osteomyelitis, and clinically severe infection. By multivariate analysis, the predictive variables related to an increased likelihood of isolating gram-negatives from bone samples were glycated hemoglobin gram-negatives had a statistically significantly higher prevalence of leukocytosis and higher white blood cell counts than those without gram-negatives. In conclusion, gram-negative organisms were isolated in nearly half of our cases of DFO and were associated with more severe infections, higher white blood cell counts, lower glycated hemoglobin levels, and wounds of traumatic etiology.

  1. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis.

    Science.gov (United States)

    Tacconelli, Evelina; Carrara, Elena; Savoldi, Alessia; Harbarth, Stephan; Mendelson, Marc; Monnet, Dominique L; Pulcini, Céline; Kahlmeter, Gunnar; Kluytmans, Jan; Carmeli, Yehuda; Ouellette, Marc; Outterson, Kevin; Patel, Jean; Cavaleri, Marco; Cox, Edward M; Houchens, Chris R; Grayson, M Lindsay; Hansen, Paul; Singh, Nalini; Theuretzbacher, Ursula; Magrini, Nicola

    2018-03-01

    antibiotics that are active against multidrug-resistant tuberculosis and Gram-negative bacteria. The global strategy should include antibiotic-resistant bacteria responsible for community-acquired infections such as Salmonella spp, Campylobacter spp, N gonorrhoeae, and H pylori. World Health Organization. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Detection of AmpC β lactamases in gram-negative bacteria

    Directory of Open Access Journals (Sweden)

    Gunjan Gupta

    2014-01-01

    Full Text Available Amp C β-lactamases are clinically important cephalosporinases encoded on the chromosomes of many Enterobacteriaceae and a few other organisms, where they mediate resistance to cephalothin, cefazolin, cefoxitin, most penicillins, and β-lactamase inhibitor/β-lactam combinations. The increase in antibiotic resistance among Gram-negative bacteria is a notable example of how bacteria can procure, maintain and express new genetic information that can confer resistance to one or several antibiotics. Detection of organisms producing these enzymes can be difficult, because their presence does not always produce a resistant phenotype on conventional disc diffusion or automated susceptibility testing methods. These enzymes are often associated with potentially fatal laboratory reports of false susceptibility to β-lactams phenotypically. With the world-wide increase in the occurrence, types and rate of dissemination of these enzymes, their early detection is critical. AmpC β-lactamases show tremendous variation in geographic distribution. Thus, their accurate detection and characterization are important from epidemiological, clinical, laboratory, and infection control point of view. This document describes the methods for detection for AmpC β-lactamases, which can be adopted by routine diagnostic laboratories.

  3. High Prevalence of Antimicrobial-resistant Gram-negative Colonization in Hospitalized Cambodian Infants.

    Science.gov (United States)

    Turner, Paul; Pol, Sreymom; Soeng, Sona; Sar, Poda; Neou, Leakhena; Chea, Phal; Day, Nicholas Pj; Cooper, Ben S; Turner, Claudia

    2016-08-01

    Antimicrobial-resistant Gram-negative infections are a significant cause of mortality in young infants. We aimed to determine characteristics of, and risk factors for, colonization and invasive infection caused by 3rd generation cephalosporin (3GC) or carbapenem-resistant organisms in outborn infants admitted to a neonatal unit (NU) in Cambodia. During the first year of operation, patients admitted to the Angkor Hospital for Children NU, Siem Reap, Cambodia, underwent rectal swabbing on admission and twice weekly until discharge. Swabs were taken also from 7 environmental sites. Swabs were cultured to identify 3GC or carbapenem-resistant Acinetobacter sp., Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa. The study included 333 infants with a median age at NU admission of 10 days (range, 0-43). Colonization by ≥1 3GC-resistant organism was detected in 85.9% (286/333). Admission swabs were collected in 289 infants: 61.9% were colonized by a 3GC-resistant organism at the time of admission, and a further 23.2% were colonized during hospitalization, at a median of 4 days [95% confidence interval: 3-5]. Probiotic treatment (hazard ratio: 0.58; 95% confidence interval: 0.35-0.98) was associated with delayed colonization. Colonization by a carbapenem-resistant organism occurred in 25 (7.5%) infants. Six infants had NU-associated K. pneumoniae bacteremia; phenotypically identical colonizing strains were found in 3 infants. Environmental colonization occurred early. Colonization by antimicrobial-resistant Gram-negative organisms occurred early in hospitalized Cambodian infants and was associated with subsequent invasive infection. Trials of potential interventions such as probiotics are needed.

  4. Syzygium jambos Displayed Antibacterial and Antibiotic-Modulating Activities against Resistant Phenotypes

    Directory of Open Access Journals (Sweden)

    Brice E. N. Wamba

    2018-01-01

    Full Text Available The present study was designed to evaluate the antibacterial activities of methanol extracts of bark and leaves of Syzygium jambos, as well as their synergistic effects with selected antibiotics against drug-resistant Gram-positive and Gram-negative bacteria. The crude extracts were subjected to qualitative phytochemical screening; broth microdilution method was used for antibacterial assays. Phytochemical studies indicate that leaves and bark extracts contained polyphenols, anthraquinones, tannins, and steroids. Extract of the leaves was active against all the 26 strains of Staphylococcus aureus and all the 21 strains of Gram-negative bacteria tested, within the minimum inhibitory concentration (MIC range of 32–512 μg/mL. The lowest MIC value of 32 μg/mL was obtained with extract of the leaves against Staphylococcus aureus MRSA9 strain. In Gram-negative bacteria, the lowest MIC value of 64 μg/mL was also obtained against Enterobacter aerogenes EA294 and Klebsiella pneumoniae K24 strains. Against S. aureus strains, antibiotic-modulating activity of extracts at MIC/2 towards more than 70% of the tested strains was obtained when leaves and bark extracts were tested in association with chloramphenicol (CHL. This was also the case when leaves extract was combined with CHL, kanamycin (KAN, tetracycline (TET, and erythromycin (ERY and when bark extract was combined with ciprofloxacin (CIP, TET, and ERY against Gram-negative bacteria. In conclusion, this study demonstrated that Syzygium jambos has antibacterial and antibiotic-modulating activities.

  5. [Development and Evaluation of a New Selective Culture Medium, KBM Anaero RS-GNR, for Detection of Anaerobic Gram Negative Rods].

    Science.gov (United States)

    Narita, Taeko; Kato, Kyohei; Hanaiwa, Hiroki; Harada, Tetsuhiro; Funashima, Yumiko; Akiwa, Makoto; Sekiguchi, Jun-Ichiro; Nagasawa, Zenzo; Umemura, Tsukuru

    2017-03-22

    The laboratory culture methods for isolating drug-resistant pathogens has been the gold standard in medical microbiology, and play pivotal roles in the overall management of infectious diseases. Recently, several reports have emphasized the development of antibiotics-resistance among anaerobic gram-negative rods, especially Genus Bacteroides and Prevotella . Therefore, a selective culture method to detect these pathogens is needed. We developed here the new selective culture medium, termed "KBM Anaero RS-GNR," for detecting anaerobic Gram-negative rods. Growth capability and selectivity of the agar medium were assessed by using the pure culture suspensions of more than 100 bacterial strains as well as the 13 samples experimentally contaminated with these bacterial strains. This new medium, "KBM Anaero RS-GNR," successfully showed the selective isolation of anaerobic Gram-negative rods. Compared with commercially available medium, "PV Brucella HK Agar, " which is also designed to detect anaerobic Gram-negative rods, there was no significant difference of the overall detection efficiency between two media. However, "KBM Anaero RS-GNR" showed superior to selectivity for anaerobic Gram-negative rods, especially from the samples contaminated with Candida species. Thus, the culture method using KBM Anaero RS-GNR is relevant for isolation of anaerobic Gram-negative rods especially from clinical specimens.

  6. Gram-negative prosthetic joint infection: outcome of a debridement, antibiotics and implant retention approach. A large multicentre study.

    Science.gov (United States)

    Rodríguez-Pardo, D; Pigrau, C; Lora-Tamayo, J; Soriano, A; del Toro, M D; Cobo, J; Palomino, J; Euba, G; Riera, M; Sánchez-Somolinos, M; Benito, N; Fernández-Sampedro, M; Sorli, L; Guio, L; Iribarren, J A; Baraia-Etxaburu, J M; Ramos, A; Bahamonde, A; Flores-Sánchez, X; Corona, P S; Ariza, J

    2014-11-01

    We aim to evaluate the epidemiology and outcome of gram-negative prosthetic joint infection (GN-PJI) treated with debridement, antibiotics and implant retention (DAIR), identify factors predictive of failure, and determine the impact of ciprofloxacin use on prognosis. We performed a retrospective, multicentre, observational study of GN-PJI diagnosed from 2003 through to 2010 in 16 Spanish hospitals. We define failure as persistence or reappearance of the inflammatory joint signs during follow-up, leading to unplanned surgery or repeat debridement>30 days from the index surgery related death, or suppressive antimicrobial therapy. Parameters predicting failure were analysed with a Cox regression model. A total of 242 patients (33% men; median age 76 years, interquartile range (IQR) 68-81) with 242 episodes of GN-PJI were studied. The implants included 150 (62%) hip, 85 (35%) knee, five (2%) shoulder and two (1%) elbow prostheses. There were 189 (78%) acute infections. Causative microorganisms were Enterobacteriaceae in 78%, Pseudomonas spp. in 20%, and other gram-negative bacilli in 2%. Overall, 19% of isolates were ciprofloxacin resistant. DAIR was used in 174 (72%) cases, with an overall success rate of 68%, which increased to 79% after a median of 25 months' follow-up in ciprofloxacin-susceptible GN-PJIs treated with ciprofloxacin. Ciprofloxacin treatment exhibited an independent protective effect (adjusted hazard ratio (aHR) 0.23; 95% CI, 0.13-0.40; pInfection © 2014 European Society of Clinical Microbiology and Infectious Diseases.

  7. Cefepime shows good efficacy and no antibiotic resistance in pneumonia caused by Serratia marcescens and Proteus mirabilis - an observational study.

    Science.gov (United States)

    Yayan, Josef; Ghebremedhin, Beniam; Rasche, Kurt

    2016-03-23

    Many antibiotics have no effect on Gram-positive and Gram-negative microbes, which necessitates the prescription of broad-spectrum antimicrobial agents that can lead to increased risk of antibiotic resistance. These pathogens constitute a further threat because they are also resistant to numerous beta-lactam antibiotics, as well as other antibiotic groups. This study retrospectively investigates antimicrobial resistance in hospitalized patients suffering from pneumonia triggered by Gram-negative Serratia marcescens or Proteus mirabilis. The demographic and clinical data analyzed in this study were obtained from the clinical databank of the HELIOS Clinic, Witten/Herdecke University, Wuppertal, Germany, for inpatients presenting with pneumonia triggered by S. marcescens or P. mirabilis from 2004 to 2014. An antibiogram was conducted for the antibiotics utilized as part of the management of patients with pneumonia triggered by these two pathogens. Pneumonia was caused by Gram-negative bacteria in 115 patients during the study period from January 1, 2004, to August 12, 2014. Of these, 43 (37.4 %) hospitalized patients [26 males (60.5 %, 95 % CI 45.9 %-75.1 %) and 17 females (39.5 %, 95 % CI 24.9 %-54.1 %)] with mean age of 66.2 ± 13.4 years had pneumonia triggered by S. marcescens, while 20 (17.4 %) patients [14 males (70 %, 95 % CI 49.9 %-90.1 %) and 6 females (30 %, 95 % CI 9.9 %-50.1 %)] with a mean age of 64.6 ± 12.8 years had pneumonia caused by P. mirabilis. S. marcescens showed an increased antibiotic resistance to ampicillin (100 %), ampicillin-sulbactam (100 %), and cefuroxime (100 %). P. mirabilis had a high resistance to tetracycline (100 %) and ampicillin (55 %). S. marcescens (P < 0.0001) and P. mirabilis (P = 0.0003) demonstrated no resistance to cefepime in these patients with pneumonia. S. marcescens and P. mirabilis were resistant to several commonly used antimicrobial agents, but showed no resistance to

  8. Long-term adherence to a 5 day antibiotic course guideline for treatment of intensive care unit (ICU)-associated Gram-negative infections.

    Science.gov (United States)

    Edgeworth, Jonathan D; Chis Ster, Irina; Wyncoll, Duncan; Shankar-Hari, Manu; McKenzie, Catherine A

    2014-06-01

    To determine long-term adherence to a 5 day antibiotic course guideline for treating intensive care unit (ICU)-acquired Gram-negative bacteria (GNB) infections. Descriptive analysis of patient-level data on all GNB-active antibiotics prescribed from day 3 and all GNB identified in clinical samples in 5350 patients admitted to a 30 bed general ICU between 2002 and 2009. Four thousand five hundred and eleven of 5350 (84%) patients were treated with one or more antibiotics active against GNB commenced from day 3. Gentamicin was the most frequently prescribed antibiotic (92.2 days of therapy/1000 patient-days). Only 6% of courses spanned >6 days of therapy and 89% of antibiotic therapy days were with a single antibiotic active against GNB. There was no significant difference between gentamicin and meropenem in the number of first courses in which a resistant GNB was identified in blood cultures [11/1177 (0.9%) versus 5/351 (1.4%); P = 0.43] or respiratory tract specimens [59/951 (6.2%) versus 17/246 (6.9%); P = 0.68] at the time of starting therapy. This study demonstrates long-term adherence to a 5 day course antibiotic guideline for treatment of ICU-associated GNB infections. This guideline is a potential antibiotic-sparing alternative to currently recommended dual empirical courses extending to ≥7 days. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Emerging Gram negative resistance to last-line antimicrobial agents fosfomycin, colistin and ceftazidime-avibactam - epidemiology, laboratory detection and treatment implications.

    Science.gov (United States)

    Sherry, Norelle; Howden, Benjamin

    2018-04-01

    Multidrug-resistant (MDR) and extensively-drug-resistant (XDR) Gram-negative bacteria have emerged as a major threat to human health globally. This has resulted in the 're-discovery' of some older antimicrobials and development of new agents, however resistance has also rapidly emerged to these agents. Areas covered: Here we describe recent developments in resistance to three of the most important last-line antimicrobials for treatment of MDR and XDR Gram negatives: fosfomycin, colistin and ceftazidime-avibactam. Expert commentary: A key challenge for microbiologists and clinicians using these agents for treating patients with MDR and XDR Gram negative infections is the need to ensure appropriate reference methods are being used to test susceptibility to these agents, especially colistin and fosfomycin. These methods are not available in all laboratories meaning accurate results are either delayed, or potentially inaccurate as non-reference methods are employed. Combination therapy for MDR and XDR Gram negatives is likely to become more common, and future studies should focus on the clinical effects of monotherapy vs combination therapy, as well as validation of synergy testing methods. Effective national and international surveillance systems to detect and respond to resistance to these last line agents are also critical.

  10. Extended-spectrum ß-lactamases in gram negative bacteria

    Directory of Open Access Journals (Sweden)

    Deepti Rawat

    2010-01-01

    Full Text Available Extended-spectrum ß-lactamases (ESBLs are a group of plasmid-mediated, diverse, complex and rapidly evolving enzymes that are posing a major therapeutic challenge today in the treatment of hospitalized and community-based patients. Infections due to ESBL producers range from uncomplicated urinary tract infections to life-threatening sepsis. Derived from the older TEM is derived from Temoniera, a patient from whom the strain was first isolated in Greece. ß-lactamases, these enzymes share the ability to hydrolyze third-generation cephalosporins and aztreonam and yet are inhibited by clavulanic acid. In addition, ESBL-producing organisms exhibit co-resistance to many other classes of antibiotics, resulting in limitation of therapeutic option. Because of inoculum effect and substrate specificity, their detection is also a major challenge. At present, however, organizations such as the Clinical and Laboratory Standards Institute (formerly the National Committee for Clinical Laboratory Standards provide guidelines for the detection of ESBLs in Klebsiella pneumoniae, K. oxytoca, Escherichia coli and Proteus mirabilis. In common to all ESBL-detection methods is the general principle that the activity of extended-spectrum cephalosporins against ESBL-producing organisms will be enhanced by the presence of clavulanic acid. Carbapenems are the treatment of choice for serious infections due to ESBL-producing organisms, yet carbapenem-resistant isolates have recently been reported. ESBLs represent an impressive example of the ability of gram-negative bacteria to develop new antibiotic-resistance mechanisms in the face of the introduction of new antimicrobial agents. Thus there is need for efficient infection-control practices for containment of outbreaks; and intervention strategies, e.g., antibiotic rotation to reduce further selection and spread of these increasingly resistant pathogens.

  11. Prognostic factors and monomicrobial necrotizing fasciitis: gram-positive versus gram-negative pathogens

    Directory of Open Access Journals (Sweden)

    Hsu Wei-Hsiu

    2011-01-01

    Full Text Available Abstract Background Monomicrobial necrotizing fasciitis is rapidly progressive and life-threatening. This study was undertaken to ascertain whether the clinical presentation and outcome for patients with this disease differ for those infected with a gram-positive as compared to gram-negative pathogen. Methods Forty-six patients with monomicrobial necrotizing fasciitis were examined retrospectively from November 2002 to January 2008. All patients received adequate broad-spectrum antibiotic therapy, aggressive resuscitation, prompt radical debridement and adjuvant hyperbaric oxygen therapy. Eleven patients were infected with a gram-positive pathogen (Group 1 and 35 patients with a gram-negative pathogen (Group 2. Results Group 2 was characterized by a higher incidence of hemorrhagic bullae and septic shock, higher APACHE II scores at 24 h post-admission, a higher rate of thrombocytopenia, and a higher prevalence of chronic liver dysfunction. Gouty arthritis was more prevalent in Group 1. For non-survivors, the incidences of chronic liver dysfunction, chronic renal failure and thrombocytopenia were higher in comparison with those for survivors. Lower level of serum albumin was also demonstrated in the non-survivors as compared to those in survivors. Conclusions Pre-existing chronic liver dysfunction, chronic renal failure, thrombocytopenia and hypoalbuminemia, and post-operative dependence on mechanical ventilation represent poor prognostic factors in monomicrobial necrotizing fasciitis. Patients with gram-negative monobacterial necrotizing fasciitis present with more fulminant sepsis.

  12. Antimicrobial Resistance in Gram-Negative Rods Causing Bacteremia in Hematopoietic Stem Cell Transplant Recipients

    DEFF Research Database (Denmark)

    Averbuch, Diana; Tridello, Gloria; Hoek, Jennifer

    2017-01-01

    Background: This intercontinental study aimed to study gram-negative rod (GNR) resistance in hematopoietic stem cell transplantation (HSCT). Methods: GNR bacteremias occurring during 6 months post-HSCT (February 2014-May 2015) were prospectively collected, and analyzed for rates and risk factors...

  13. Synergistic effect of Carum copticum and Mentha piperita essential oils with ciprofloxacin, vancomycin, and gentamicin on Gram-negative and Gram-positive bacteria

    Science.gov (United States)

    Talei, Gholam-Reza; Mohammadi, Mohsen; Bahmani, Mahmoud; Kopaei, Mahmoud Rafieian

    2017-01-01

    Background: Infectious diseases have always been an important health issue in human communities. In the recent years, much research has been conducted on antimicrobial effects of nature-based compounds because of increased prevalence of antibiotic resistance. The present study was conducted to investigate synergistic effect of Carum copticum and Mentha piperita essential oils with ciprofloxacin, vancomycin, and gentamicin on Gram-negative and Gram-positive bacteria. Materials and Methods: In this experimental study, the synergistic effects of C. copticum and M. piperita essential oils with antibiotics on Staphylococcus aureus (ATCC 25923), Enterococcus faecalis (ATCC 29212), Escherichia coli (ATCC 8739), Pseudomonas aeruginosa (ATCC 9027), Staphylococcus epidermidis (ATCC 14990), and Listeria monocytogenes (ATCC 7644) were studied according to broth microdilution and the MIC and fractional inhibitory concentration (FIC) of these two essential oils determined. Results: C. copticum essential oil at 30 μg/ml could inhibit S. aureus, and in combination with vancomycin, decreased MIC from 0.5 to 0.12 μg/ml. Moreover, the FIC was derived 0.24 μg/ml which represents a potent synergistic effect with vancomycin against S. aureus growth. C. copticum essential oil alone or combined with other antibiotics is effective in treating bacterial infections. Conclusions: In addition, C. copticum essential oil can strengthen the activities of certain antibiotics, which makes it possible to use this essential oil, especially in drug resistance or to lower dosage or toxicity of the drugs. PMID:28929050

  14. Trends in antibiotic resistance among major bacterial pathogens isolated from blood cultures tested at a large private laboratory network in India, 2008–2014

    Directory of Open Access Journals (Sweden)

    Sumanth Gandra

    2016-09-01

    Conclusion: Increasing resistance to antibiotics of last-resort, particularly among Gram-negatives, suggests an urgent need for new antibiotics and improved antimicrobial stewardship programs in India.

  15. Emergence of antibiotic-resistant bacteria in patients with Fournier gangrene.

    Science.gov (United States)

    Lin, Wei-Ting; Chao, Chien-Ming; Lin, Hsin-Lan; Hung, Ming-Chran; Lai, Chih-Cheng

    2015-04-01

    This study was conducted to investigate the bacteriology and associated patterns of antibiotic resistance Fournier gangrene. Patients with Fournier's gangrene from 2008 to 2012 were identified from the computerized database in a medical center in southern Taiwan. The medical records of all patients with Fournier's gangrene were reviewed retrospectively. There were 61 microorganisms, including 60 bacteria and one Candida spp, isolated from clinical wound specimens from 32 patients. The most common isolates obtained were Streptococcus spp. (n=12), Peptoniphilus spp. (n=8), Staphylococcus aureus (n=7), Escherichia coli (n=7), and Klebsiella pneumoniae (n=7). Among 21 strains of gram-negative bacilli, five (23.8%) were resistant to fluoroquinolones, and three isolates were resistant to ceftriaxone. Two E. coli strains produced extended-spectrum beta-lactamase. Four of the seven S. aureus isolates were methicillin-resistant. Among 15 anaerobic isolates, nine (60%) were resistant to penicillin, and eight (53.3%) were resistant to clindamycin. Four (26.7%) isolates were resistant to metronidazole. The only independent risk factor associated with mortality was inappropriate initial antibiotic treatment (p=0.021). Antibiotic-resistant bacteria are emerging in the clinical setting of Fournier gangrene. Clinicians should use broad-spectrum antibiotics initially to cover possible antibiotic-resistant bacteria.

  16. Raman Spectroscopy of Xylitol Uptake and Metabolism in Gram-Positive and Gram-Negative Bacteria▿

    Science.gov (United States)

    Palchaudhuri, Sunil; Rehse, Steven J.; Hamasha, Khozima; Syed, Talha; Kurtovic, Eldar; Kurtovic, Emir; Stenger, James

    2011-01-01

    Visible-wavelength Raman spectroscopy was used to investigate the uptake and metabolism of the five-carbon sugar alcohol xylitol by Gram-positive viridans group streptococcus and the two extensively used strains of Gram-negative Escherichia coli, E. coli C and E. coli K-12. E. coli C, but not E. coli K-12, contains a complete xylitol operon, and the viridans group streptococcus contains an incomplete xylitol operon used to metabolize the xylitol. Raman spectra from xylitol-exposed viridans group streptococcus exhibited significant changes that persisted even in progeny grown from the xylitol-exposed mother cells in a xylitol-free medium for 24 h. This behavior was not observed in the E. coli K-12. In both viridans group streptococcus and the E. coli C derivative HF4714, the metabolic intermediates are stably formed to create an anomaly in bacterial normal survival. The uptake of xylitol by Gram-positive and Gram-negative pathogens occurs even in the presence of other high-calorie sugars, and its stable integration within the bacterial cell wall may discontinue bacterial multiplication. This could be a contributing factor for the known efficacy of xylitol when taken as a prophylactic measure to prevent or reduce occurrences of persistent infection. Specifically, these bacteria are causative agents for several important diseases of children such as pneumonia, otitis media, meningitis, and dental caries. If properly explored, such an inexpensive and harmless sugar-alcohol, alone or used in conjunction with fluoride, would pave the way to an alternative preventive therapy for these childhood diseases when the causative pathogens have become resistant to modern medicines such as antibiotics and vaccine immunotherapy. PMID:21037297

  17. Silver resistance in Gram-negative bacteria: a dissection of endogenous and exogenous mechanisms.

    Science.gov (United States)

    Randall, Christopher P; Gupta, Arya; Jackson, Nicole; Busse, David; O'Neill, Alex J

    2015-04-01

    To gain a more detailed understanding of endogenous (mutational) and exogenous (horizontally acquired) resistance to silver in Gram-negative pathogens, with an emphasis on clarifying the genetic bases for resistance. A suite of microbiological and molecular genetic techniques was employed to select and characterize endogenous and exogenous silver resistance in several Gram-negative species. In Escherichia coli, endogenous resistance arose after 6 days of exposure to silver, a consequence of two point mutations that were both necessary and sufficient for the phenotype. These mutations, in ompR and cusS, respectively conferred loss of the OmpC/F porins and derepression of the CusCFBA efflux transporter, both phenotypic changes previously linked to reduced intracellular accumulation of silver. Exogenous resistance involved derepression of the SilCFBA efflux transporter as a consequence of mutation in silS, but was additionally contingent on expression of the periplasmic silver-sequestration protein SilE. Silver resistance could be selected at high frequency (>10(-9)) from Enterobacteriaceae lacking OmpC/F porins or harbouring the sil operon and both endogenous and exogenous resistance were associated with modest fitness costs in vitro. Both endogenous and exogenous silver resistance are dependent on the derepressed expression of closely related efflux transporters and are therefore mechanistically similar phenotypes. The ease with which silver resistance can become selected in some bacterial pathogens in vitro suggests that there would be benefit in improved surveillance for silver-resistant isolates in the clinic, along with greater control over use of silver-containing products, in order to best preserve the clinical utility of silver. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.

  18. Comparative activity of ceftobiprole against Gram-positive and Gram-negative isolates from Europe and the Middle East: the CLASS study.

    Science.gov (United States)

    Rossolini, Gian M; Dryden, Matthew S; Kozlov, Roman S; Quintana, Alvaro; Flamm, Robert K; Läuffer, Jörg M; Lee, Emma; Morrissey, Ian; CLASS Study Group

    2011-01-01

    to assess the in vitro activity of ceftobiprole and comparators against a recent collection of Gram-positive and Gram-negative pathogens, in order to detect potential changes in susceptibility patterns, and to evaluate the Etest assay for ceftobiprole susceptibility testing. contemporary Gram-positive and Gram-negative isolates (excluding extended-spectrum β-lactamase-producing isolates) from across Europe and the Middle East were collected, and their susceptibility to ceftobiprole, vancomycin, teicoplanin, linezolid, ceftazidime and cefepime was assessed using the Etest method. Quality testing [using Etest and broth microdilution (BMD)] was conducted at a central reference laboratory. some 5041 Gram-positive and 4026 Gram-negative isolates were included. Against Gram-positive isolates overall, ceftobiprole had the lowest MIC50 (0.5 mg/L), compared with 1 mg/L for its comparators (vancomycin, teicoplanin and linezolid). Against methicillin-resistant Staphylococcus aureus, all four agents had a similar MIC90 (2 mg/L), but ceftobiprole had a 4-fold better MIC90 (0.5 mg/L) against methicillin-susceptible strains. Only 38 Gram-positive isolates were confirmed as ceftobiprole resistant. Among Gram-negative strains, 86.9%, 91.7% and 95.2% were susceptible to ceftobiprole, ceftazidime and cefepime, respectively. Pseudomonas aeruginosa was less susceptible to all three antimicrobials than any other Gram-negative pathogen. There was generally good agreement between local Etest results and those obtained at the reference laboratory (for ceftobiprole: 86.8% with Gram-negatives; and 94.7% with Gram-positives), as well as between results obtained by BMD and Etest methods (for ceftobiprole: 98.2% with Gram-negatives; and 98.4% with Gram-positives). ceftobiprole exhibits in vitro activity against a wide range of Gram-positive and Gram-negative pathogens, including multidrug-resistant strains. No changes in its known susceptibility profile were identified.

  19. Antibiotic resistance of coagulase-negative staphylococci isolated from artisanal Naples-type salami.

    Science.gov (United States)

    Mauriello, G; Moschetti, G; Villani, F; Blaiotta, G; Coppola, S

    2000-01-01

    In the present paper 42 isolates from Italian salami were specified as Staphylococcus xylosus (30), Staph. capitis (1), Staph. saprophyticus (1), Staph. hominis (1), Staph. simulans (1), Staph. cohnii (1) and as Staph. spp. (7). These strains were coagulase-negative and were examined for resistance/sensitivity against 25 antibiotics including beta-lactams (7), macrolides (3), amynoglicosides (5), glycopeptides, lincosamides (4) and novobiocin, fusidic acid, chloramphenicol, rifampicin, tetracycline, minocycline. More than 64% of the strains were resistant to lincomycin, penicillin G, amoxicillin, fusidic acid and novobiocin. All the strains were multiresistant and displayed at least three resistances. Over 75% had a multiple antibiotic resistance (MAR) index between 0.2 and 0.5.

  20. Colonization of long term care facility patients with MDR-Gram-negatives during an Acinetobacter baumannii outbreak

    Directory of Open Access Journals (Sweden)

    Ines Zollner-Schwetz

    2017-05-01

    Full Text Available Abstract Background We aimed to determine the prevalence of colonization by multidrug-resistant Gram-negative bacteria including ESBL-producing enterobacteriaceae, carbapenem-resistant enterobacteriaceae, Pseudomonas aeruginosa and Acinetobacter baumannii at two wards caring long term for patients with disorder of consciousness at the Geriatric Health Centers Graz, Austria. During our study we detected two A. baumannii outbreaks. Methods In August 2015, we conducted a point-prevalence study. Inguinal and perianal swabs were taken from 38 patients and screened for multidrug-resistant Gram-negative rods using standard procedures. Six months after the initial investigation all patients were sampled again and use of antibiotics during the past 6 months and mortality was registered. Genetic relatedness of bacteria was evaluated by DiversiLab system. Results Fifty percent of patients were colonized by multidrug-resistant Gram-negative isolates. Five patients harboured ESBL-producing enterobacteriaceae. No carbapenem-resistant enterobacteriaceae were detected. 13/38 patients were colonized by A. baumannii isolates (resistant to ciprofloxacin but susceptible to carbapenems. There was a significant difference in the prevalence of colonization by A. baumannii between ward 2 and ward 1 (60% vs. 5.6%, p < 0.001. Two clusters of A. baumannii isolates were identified including one isolate detected on a chair in a patient’s room. Conclusions We detected a high prevalence of two multidrug-resistant A. baumannii strains in patients with disorder of consciousness at a LTCF in Graz, Austria. Our findings strongly suggest nosocomial cross-transmission between patients. An active surveillance strategy is warranted to avoid missing newly emerging pathogens.

  1. Colonization of long term care facility patients with MDR-Gram-negatives during an Acinetobacter baumannii outbreak.

    Science.gov (United States)

    Zollner-Schwetz, Ines; Zechner, Elisabeth; Ullrich, Elisabeth; Luxner, Josefa; Pux, Christian; Pichler, Gerald; Schippinger, Walter; Krause, Robert; Leitner, Eva

    2017-01-01

    We aimed to determine the prevalence of colonization by multidrug-resistant Gram-negative bacteria including ESBL-producing enterobacteriaceae, carbapenem-resistant enterobacteriaceae, Pseudomonas aeruginosa and Acinetobacter baumannii at two wards caring long term for patients with disorder of consciousness at the Geriatric Health Centers Graz, Austria. During our study we detected two A. baumannii outbreaks. In August 2015, we conducted a point-prevalence study. Inguinal and perianal swabs were taken from 38 patients and screened for multidrug-resistant Gram-negative rods using standard procedures. Six months after the initial investigation all patients were sampled again and use of antibiotics during the past 6 months and mortality was registered. Genetic relatedness of bacteria was evaluated by DiversiLab system. Fifty percent of patients were colonized by multidrug-resistant Gram-negative isolates. Five patients harboured ESBL-producing enterobacteriaceae. No carbapenem-resistant enterobacteriaceae were detected. 13/38 patients were colonized by A. baumannii isolates (resistant to ciprofloxacin but susceptible to carbapenems). There was a significant difference in the prevalence of colonization by A. baumannii between ward 2 and ward 1 (60% vs. 5.6%, p  < 0.001). Two clusters of A. baumannii isolates were identified including one isolate detected on a chair in a patient's room. We detected a high prevalence of two multidrug-resistant A. baumannii strains in patients with disorder of consciousness at a LTCF in Graz, Austria. Our findings strongly suggest nosocomial cross-transmission between patients. An active surveillance strategy is warranted to avoid missing newly emerging pathogens.

  2. Intravenous Colistin Use for Multidrug-Resistant Gram-Negative Infections in Pediatric Patients.

    Science.gov (United States)

    Karaaslan, Ayşe; Çağan, Eren; Kadayifci, Eda Kepenekli; Atıcı, Serkan; Akkoç, Gülşen; Yakut, Nurhayat; Demir, Sevliya Öcal; Soysal, Ahmet; Bakır, Mustafa

    2016-11-01

    The emergence of infections due to multidrug-resistant Gram-negative bacilli (MDR-GNB) has led to the resurrection of colistin use. The data on colistin use and drug-related adverse effects in children are scarce. In this study, we aimed to evaluate the clinical efficacy and safety of colistin use in critically ill pediatric patients. This study has a retrospective study design. Sixty-one critically ill children were identified through the department's patient files archive during the period from January 2011 to November 2014. Twenty-nine females and thirty-two males with a mean±standard deviation (SD) age of 61±9 months (range 0-216, median 12 months) received IV colistin due to MDR-GNB infections. Bacteremia (n=23, 37.7%) was the leading diagnosis, followed by pneumonia (n=19, 31%), clinical sepsis (n=7, 11.4%), wound infection (n=6, 9.8%), urinary tract infection (n=5, 8.1%) and meningitis (n=1, 1.6%). All of the isolates were resistant to carbapenems; however, all were susceptible to colistin. The isolated microorganisms in decreasing order of frequency were: Acinetobacter baumanni (n=27, 44.2%), Pseudomonas aeruginosa (n=17, 27.8%), Klebsiella pneumoniae (n=6, 9.8%), K. pneumoniae and Stenotrophomonas maltophilia (n=1, 1.6%), K. pneumoniae and A. baumanni (n=1, 1.6%), K. oxytoca (n=1, 1.6%) and Enterobacter cloacae (n=1, 1.6%). In seven patients, no microorganisms were detected; however, five of these patients were colonized by carbapenem-resistant K. pneumoniae. The mean duration of colistin therapy was 12 days (range 3-45). Colistin was administered concomitantly with one of the following antibiotics: carbapenem (n=50, %82), ampicillin-sulbactam (n=5, 8%), quinolones (n=5, 8%), rifampicin (n=1, 1.6%). Carbapenem was the most frequently used antibiotic. Nephrotoxicity was observed in only 1 patient, and we did not observe neurotoxicity in this study. All the patients received intravenous colistin (colisthimethate) at a dosage of 5 mg/kg daily by dividing it

  3. Intravenous Colistin Use for Multidrug-Resistant Gram-Negative Infections in Pediatric Patients

    Directory of Open Access Journals (Sweden)

    Ayşe Karaaslan

    2016-12-01

    Full Text Available Background: The emergence of infections due to multidrug-resistant Gram-negative bacilli (MDR-GNB has led to the resurrection of colistin use. The data on colistin use and drug-related adverse effects in children are scarce. Aims: In this study, we aimed to evaluate the clinical efficacy and safety of colistin use in critically ill pediatric patients. Study Design: This study has a retrospective study design. Methods: Sixty-one critically ill children were identified through the department’s patient files archive during the period from January 2011 to November 2014. Results: Twenty-nine females and thirty-two males with a mean±standard deviation (SD age of 61±9 months (range 0-216, median 12 months received IV colistin due to MDR-GNB infections. Bacteremia (n=23, 37.7% was the leading diagnosis, followed by pneumonia (n=19, 31%, clinical sepsis (n=7, 11.4%, wound infection (n=6, 9.8%, urinary tract infection (n=5, 8.1% and meningitis (n=1, 1.6%. All of the isolates were resistant to carbapenems; however, all were susceptible to colistin. The isolated microorganisms in decreasing order of frequency were: Acinetobacter baumanni (n=27, 44.2%, Pseudomonas aeruginosa (n=17, 27.8%, Klebsiella pneumoniae (n=6, 9.8%, K. pneumoniae and Stenotrophomonas maltophilia (n=1, 1.6%, K. pneumoniae and A. baumanni (n=1, 1.6%, K. oxytoca (n=1, 1.6% and Enterobacter cloacae (n=1, 1.6%. In seven patients, no microorganisms were detected; however, five of these patients were colonized by carbapenem-resistant K. pneumoniae. The mean duration of colistin therapy was 12 days (range 3-45. Colistin was administered concomitantly with one of the following antibiotics: carbapenem (n=50, %82, ampicillin-sulbactam (n=5, 8%, quinolones (n=5, 8%, rifampicin (n=1, 1.6%. Carbapenem was the most frequently used antibiotic. Nephrotoxicity was observed in only 1 patient, and we did not observe neurotoxicity in this study. All the patients received intravenous colistin

  4. Superbugs in the supermarket? Assessing the rate of contamination with third-generation cephalosporin-resistant gram-negative bacteria in fresh Australian pork and chicken.

    Science.gov (United States)

    McLellan, Jade E; Pitcher, Joshua I; Ballard, Susan A; Grabsch, Elizabeth A; Bell, Jan M; Barton, Mary; Grayson, M Lindsay

    2018-01-01

    Antibiotic misuse in food-producing animals is potentially associated with human acquisition of multidrug-resistant (MDR; resistance to ≥ 3 drug classes) bacteria via the food chain. We aimed to determine if MDR Gram-negative (GNB) organisms are present in fresh Australian chicken and pork products. We sampled raw, chicken drumsticks (CD) and pork ribs (PR) from 30 local supermarkets/butchers across Melbourne on two occasions. Specimens were sub-cultured onto selective media for third-generation cephalosporin-resistant (3GCR) GNBs, with species identification and antibiotic susceptibility determined for all unique colonies. Isolates were assessed by PCR for SHV, TEM, CTX-M, AmpC and carbapenemase genes (encoding IMP, VIM, KPC, OXA-48, NDM). From 120 specimens (60 CD, 60 PR), 112 (93%) grew a 3GCR-GNB ( n  = 164 isolates; 86 CD, 78 PR); common species were Acinetobacter baumannii (37%), Pseudomonas aeruginosa (13%) and Serratia fonticola (12%), but only one E. coli isolate. Fifty-nine (36%) had evidence of 3GCR alone, 93/163 (57%) displayed 3GCR plus resistance to one additional antibiotic class, and 9/163 (6%) were 3GCR plus resistance to two additional classes. Of 158 DNA specimens, all were negative for ESBL/carbapenemase genes, except 23 (15%) which were positive for AmpC, with 22/23 considered to be inherently chromosomal, but the sole E. coli isolate contained a plasmid-mediated CMY-2 AmpC. We found low rates of MDR-GNBs in Australian chicken and pork meat, but potential 3GCR-GNBs are common (93% specimens). Testing programs that only assess for E. coli are likely to severely underestimate the diversity of 3GCR organisms in fresh meat.

  5. [Uncommon non-fermenting Gram-negative rods as pathogens of lower respiratory tract infection].

    Science.gov (United States)

    Juhász, Emese; Iván, Miklós; Pongrácz, Júlia; Kristóf, Katalin

    2018-01-01

    Glucose non-fermenting Gram-negative bacteria are ubiquitous environmental organisms. Most of them are identified as opportunistic, nosocomial pathogens in patients. Uncommon species are identified accurately, mainly due to the introduction of matrix-assisted laser desorption-ionization time of flight mass spectrometry (MALDI-TOF MS) in clinical microbiology practice. Most of these uncommon non-fermenting rods are isolated from lower respiratory tract samples. Their significance in lower respiratory tract infections, such as rules of their testing are not clarified yet. The aim of this study was to review the clinical microbiological features of these bacteria, especially their roles in lower respiratory tract infections and antibiotic treatment options. Lower respiratory tract samples of 3589 patients collected in a four-year period (2013-2016) were analyzed retrospectively at Semmelweis University (Budapest, Hungary). Identification of bacteria was performed by MALDI-TOF MS, the antibiotic susceptibility was tested by disk diffusion method. Stenotrophomonas maltophilia was revealed to be the second, whereas Acinetobacter baumannii the third most common non-fermenting rod in lower respiratory tract samples, behind the most common Pseudomonas aeruginosa. The total number of uncommon non-fermenting Gram-negative isolates was 742. Twenty-three percent of isolates were Achromobacter xylosoxidans. Beside Chryseobacterium, Rhizobium, Delftia, Elizabethkingia, Ralstonia and Ochrobactrum species, and few other uncommon species were identified among our isolates. The accurate identification of this species is obligatory, while most of them show intrinsic resistance to aminoglycosides. Resistance to ceftazidime, cefepime, piperacillin-tazobactam and carbapenems was frequently observed also. Ciprofloxacin, levofloxacin and trimethoprim-sulfamethoxazole were found to be the most effective antibiotic agents. Orv Hetil. 2018; 159(1): 23-30.

  6. Complicated urinary tract infections: practical solutions for the treatment of multiresistant Gram-negative bacteria.

    Science.gov (United States)

    Pallett, Ann; Hand, Kieran

    2010-11-01

    Resistance in Gram-negative bacteria has been increasing, particularly over the last 6 years. This is mainly due to the spread of strains producing extended-spectrum β-lactamases (ESBLs) such as CTX-M enzymes or AmpC β-lactamases. Many of the isolates producing these enzymes are also resistant to trimethoprim, quinolones and aminoglycosides, often due to plasmid co-expression of other resistance mechanisms. CTX-M-producing Escherichia coli often occurs in the community and as E. coli is one of the commonest organisms causing urinary tract infections (UTIs) the choice of agents to treat these infections is diminishing. Novel combinations of antibiotics are being used in the community and broad-spectrum agents such as carbapenems are being used increasingly as empirical treatment for severe infections. Of particular concern therefore are reports in the UK of organisms that produce carbapenemases. As resistance is becoming more widespread, prudent use of antimicrobials is imperative and, as asymptomatic bacteriuria is typically benign in the elderly, antibiotics should not be prescribed without clinical signs of UTI. The use of antibiotics as suppressive therapy or long-term prophylaxis may no longer be defensible.

  7. Resistance pattern of clinical isolates of staphylococcus aureus against five groups of antibiotics

    International Nuclear Information System (INIS)

    Farzana, K.; Hameed, A.

    2006-01-01

    Among the samples received in pathology laboratory, Pakistan institute of Medical Science, Islamabad, 5069 samples had bacterial growth, among these 2580 (51%) samples were Gram-positive cocci and 1688 were Staphylococcus aureus during a period of two years. Out of these Gram-positive cocci 56% were resistant to penicillin group, 27% were resistant to cephalosporin group, 22% were resistant to aminoglycoside group 15% were resistant to quinolone group and 31% were resistant to other antibiotics (cotrimaxazole, erythromycin, aztreonam, vancomycin, nitrofurantion and meropenam). Antibio-grams of Gram-positive cocci were determined against various antibiotics by disc diffusion method. The rate of resistance to most of the antibiotics such as ampicillin, piperacillin, carbenicillin, penicillin, cephradine, cefotaxime, erythromycin, ceclor, ofloxacin, pefloxacin, ciprofloxacin, cotrimexazole (septran), gentamicin, meropenem, ceftazidime, erythromycin, tobramycin, enoxacin was higher when tested against the isolates collected from pus as compared to those from blood and urine. Antibiotic resistant strains were more prevalent in pus samples than other clinical isolates (blood and urine). The randomly selected 155 strains of Staphylococcus aureus when tested against five groups of antibiotics showed resistance rate against ampicillin (92%), cephradine (92%), cephradine (60%), and gentamicin (58%). However intermediate resistance was found in case of vancomicin (38%), in hospitalized and non-hospitalized patients. (author)

  8. Mechanisms of action of systemic antibiotics used in periodontal treatment and mechanisms of bacterial resistance to these drugs

    Directory of Open Access Journals (Sweden)

    Geisla Mary Silva Soares

    2012-06-01

    Full Text Available Antibiotics are important adjuncts in the treatment of infectious diseases, including periodontitis. The most severe criticisms to the indiscriminate use of these drugs are their side effects and, especially, the development of bacterial resistance. The knowledge of the biological mechanisms involved with the antibiotic usage would help the medical and dental communities to overcome these two problems. Therefore, the aim of this manuscript was to review the mechanisms of action of the antibiotics most commonly used in the periodontal treatment (i.e. penicillin, tetracycline, macrolide and metronidazole and the main mechanisms of bacterial resistance to these drugs. Antimicrobial resistance can be classified into three groups: intrinsic, mutational and acquired. Penicillin, tetracycline and erythromycin are broad-spectrum drugs, effective against gram-positive and gram-negative microorganisms. Bacterial resistance to penicillin may occur due to diminished permeability of the bacterial cell to the antibiotic; alteration of the penicillin-binding proteins, or production of β-lactamases. However, a very small proportion of the subgingival microbiota is resistant to penicillins. Bacteria become resistant to tetracyclines or macrolides by limiting their access to the cell, by altering the ribosome in order to prevent effective binding of the drug, or by producing tetracycline/macrolide-inactivating enzymes. Periodontal pathogens may become resistant to these drugs. Finally, metronidazole can be considered a prodrug in the sense that it requires metabolic activation by strict anaerobe microorganisms. Acquired resistance to this drug has rarely been reported. Due to these low rates of resistance and to its high activity against the gram-negative anaerobic bacterial species, metronidazole is a promising drug for treating periodontal infections.

  9. Antimicrobial susceptibility profiles of gram-negative bacteria causing infections collected across India during 2014–2016: Study for monitoring antimicrobial resistance trend report

    Directory of Open Access Journals (Sweden)

    Balaji Veeraraghavan

    2018-01-01

    Full Text Available Background: The emergence of antibiotic resistance among bacterial pathogens in the hospital and community has increased the concern to the health-care providers due to the limited treatment options. Surveillance of antimicrobial resistance (AMR in frequently isolated bacterial pathogens causing severe infections is of great importance. The data generated will be useful for the clinicians to decide empiric therapy on the local epidemiological resistance profile of the antimicrobial agents. This study aims to monitor the distribution of bacterial pathogen and their susceptibility pattern to the commonly used antimicrobial agents. Materials and Methods: This study includes Gram-negative bacilli collected from intra-abdominal, urinary tract and respiratory tract infections during 2014–2016. Isolates were collected from seven hospitals across India. All the study isolates were characterised up to species level, and minimum inhibitory concentration was determined for a wide range of antimicrobials included in the study panel. The test results were interpreted as per standard Clinical Laboratory Standards Institute guidelines. Results: A total of 2731 isolates of gram-negative bacteria were tested during study period. The most frequently isolated pathogens were 44% of Escherichia coli (n = 1205 followed by 25% of Klebsiella pneumoniae (n = 676 and 11% of Pseudomonas aeruginosa (n = 308. Among the antimicrobials tested, carbapenems were the most active, followed by amikacin and piperacillin/tazobactam. The rate of extended-spectrum beta-lactamase (ESBL-positive isolates were ranged from 66%–77% in E. coli to 61%–72% in K. pneumoniae, respectively. Overall, colistin retains its activity in > 90% of the isolates tested and appear promising. Conclusion: Increasing rates of ESBL producers have been noted, which is alarming. Further, carbapenem resistance was also gradually increasing, which needs much attention. Overall, this study data show that

  10. Imipenem-resistant Gram-negative bacterial isolates carried by persons upon medical examination in Korea.

    Science.gov (United States)

    Kim, So Yeon; Shin, Sang Yop; Rhee, Ji-Young; Ko, Kwan Soo

    2017-08-01

    Carbapenem-resistant Gram-negative bacteria (CR-GNB) have emerged and disseminated worldwide, become a great concern worldwide including Korea. The prevalence of fecal carriage of imipenem-resistant Gram-negative bacteria (IR-GNB) in persons in Korea was investigated. Stool samples were collected from 300 persons upon medical examination. Samples were screened for IR-GNB by using MacConkey agar with 2 μl/ml imipenem. Species were identified by 16S rRNA gene sequence analysis, and antimicrobial susceptibility was determined by the broth microdilution method. In total, 82 IR-GNB bacterial isolates were obtained from 79 (26.3%) out of 300 healthy persons. Multilocus sequence typing analysis showed very high diversity among IR P. aeruginosa, S. maltophilia, and E. cloacae isolates, and pulsed-field gel electrophoresis revealed five main pulsotypes of IR P. mirabilis. As for the presence of metallo-β-lactamases (MBLs), only one IMP-25-producing S. marcescens isolate was identified. Although only one carbapenemase-producing isolate was identified, the high colonization rates with IR-GNB isolates in this study is notable because carriers may be a reservoir for the dissemination of resistant pathogens within the community as well as in health care institutions.

  11. Prevalence and antibiotic resistance of coagulase-negative Staphylococci isolated from poultry farms in three regions of Ghana

    DEFF Research Database (Denmark)

    Boamah, Vivian Etsiapa; Agyare, Christian; Odoi, Hayford

    2017-01-01

    The use of antibiotics in animal production has been associated with the development and spread of antibiotic-resistant organisms including commensals. Coagulase-negative Staphylococcus (CoNS) species, which were until recently considered non-pathogenic, have been associated with opportunistic...... usage in both animal production and in humans....... infections and high resistance to several antibiotics. This study sought to determine the prevalence, identity, and phenotypic resistance of coagulase-negative Staphylococcus spp. isolated from some selected poultry farms and farm workers in the Ashanti, Brong Ahafo, and Greater Accra regions of Ghana...

  12. Potential role of non-antibiotics (helper compounds) in the treatment of multidrug-resistant Gram-negative infections

    DEFF Research Database (Denmark)

    Martins, Marta; Dastidar, Sujata G; Fanning, Seamus

    2008-01-01

    that have been shown to be efflux pump inhibitors (EPIs) and which, if used as 'helper compounds' in combination with antibiotics to which the organism is initially resistant, may produce the required cure. Although not all of the EPIs may serve a helper role owing to their toxicity, they may nevertheless...

  13. Prospects and challenges of developing new agents for tough Gram-negatives.

    Science.gov (United States)

    Meyer, Annette L

    2005-10-01

    Historically, the medical profession has been successful in treating most bacterial infections in humans with synthetic second- and third-generation antibiotics. Recently, the prospects for continued success have dimmed with the increase in multidrug-resistant stains of bacteria. Infections caused by the Gram-negative bacteria Pseudomonas aeruginosa and Acinetobacter spp. in particular have increased in frequency and severity, and become progressively more difficult to treat. Contributors to disease severity include chronic infections due to mutator strains, persister cells and biofilms. The worst-case scenario of infections susceptible only to toxic polymixins is now a reality. The need to address the treatment of multidrug-resistant pathogens with innovative combination approaches and/or novel antibacterial agents is occurring in the context of reduced investment in antimicrobial drug discovery by the pharmaceutical industry.

  14. In vitro ciprofloxacin resistance patterns of gram positive bacteria isolated from clinical specimens in a teaching hospital in Saudi Arabia

    International Nuclear Information System (INIS)

    Akhtar, N.; Alzahrani, A.; Obeid, O.El-Treify; Dassal, D.

    2009-01-01

    Over the last few decades the ever-increasing level of bacterial resistance to antimicrobials has been a cause of worldwide concern. Fluoroquinolones, particularly ciprofloxacin has been used indiscriminately for both gram-positive and gram-negative bacterial infections. The increased use of ciprofloxacin has led to a progressive loss of bacterial susceptibility to this antibiotic. Therefore it is necessary to have update knowledge of resistance pattern of bacteria to this antibiotic so that alternate appropriate antibiotics can be used for ciprofloxacin-resistant bacterial infections. Objective: To evaluate the trends of ciprofloxacin resistance pattern in commonly isolated gram positive bacteria over time in a Saudi Arabian teaching hospital. Methods: A retrospective analysis was carried out for ciprofloxacin susceptibility patterns of 5534 isolates of gram-positive bacteria isolated from clinical specimens submitted to microbiology laboratories at King Fahd Hospital of the University (KFHU), Al-Khobar, Saudi Arabia during the period from January 2002 to August 2005. Results: Increase in ciprofloxacin resistance rates with some fluctuations, among these isolates, were observed. For Staphylococcus aureus, it varied from 4.62, 1.83, 7.01 and 3.98%, methicillin resistant Staphylococcus aureus (MRSA) 97.92, 97.75, 87.01 and 88.26%, Streptococcus pyogenes 5.35, 4.47, 14.44 and 3.53% during the years 2002, 2003, 2004 and 2005 respectively. Cirprofloxacin resistance during the years 2002, 2004 and 2005 for other isolates was as follows: Streptococcus pneumoniae, 30.23, 23.02 and 26.47%; enterococcus group D, 43.05, 20.68 and 57.03% and non-enterococcus group D, 62.96, 76.92 and 87.50% respectively. Conclusion: Ciprofloxacin resistance in gram positive bacterial clinical isolates particularly Staphylococcus aureus, methicillin resistant Staphylococcus aureus (MRSA) enterococcus group D, and non-enterococcus group D, has greatly increased and ciprofloxacin no more remains

  15. Study of antibiotic resistance of staph aureus and coagulase negative staphylococci isolated from patient samples

    Directory of Open Access Journals (Sweden)

    M Anvary

    2006-04-01

    Full Text Available Introduction: Drug resistant Staphylococci are the most important agents of nosocomial infections. In this survey, effect of different antibiotics on these bacteria and their drug resistance was investigated. Methods: The study included 500 strains of Staphylococci. Minimum Inhibitory Concentrations of all antibiotics was determined by the broth macro dilution technique and standard methods from the National Committee for Clinical Laboratory Standards. Result : Oxacillin resistance of S. aureus was 14.2% and that of coagulase-negative staphylococci was 53.4%. The activity of different antibiotics is presented in detail. Conclusion: Surveillance of strains resistant to methicillin is necessary.

  16. [Characteristic of clinical strains of gram-negative obligate anaerobes].

    Science.gov (United States)

    Kadzielska, Joanna; Kierzkowska, Marta; Sawicka-Grzelak, Anna; Rokosz, Alicja; Łuczak, Mirosław

    2007-01-01

    The aim of the study was to assess prevalence and antibiotic susceptibility profiles ofGram-negative strictly anaerobic bacteria isolated from clinical specimens taken from hospitalized patients in 2005-2006. Biochemical identification and antibiotic susceptibility were done in an automated system ATB Expression (bioMerieux sa). From 12262 specimens examined 867 strains of obligate anaerobes were isolated. Gram-negative strictly anaerobic bacteria were cultured in number of 138 strains (15,9%). All cultures were performed on Columbia agar and Schaedler agar media (bioMerieux sa) supplemented with 5% sheep blood and incubated at 37 degrees C for 48-120 h in 85% N2, 10% H2, 5% CO2. Most frequently isolated was Bacteroides spp. (41,3%). For this group beta-lactamase activity was evaluated by using nitrocefin disc test (Cefinase BBL, Becton Dickinson and Co., Cockeysville, MD, USA). Production of ESBLs was detected with the use of two disc diffusion methods: the double-disc synergy test (DDST) according to Jarlier et al. and the diagnostic disc (DD) test according to Appleton. ESBLs were produced by 5,3% strains of Bacteroides spp. For all Bacteroides spp. strains MIC values were determined by gradient diffusion method Etest (AB BIODISK, Sweden). ESBLs and MIC were performed on Wilkins-Chalgren solid medium supplemented with 5% sheep blood (Difco Lab., USA) and all plates were incubated at 35 degrees C for 48 hours in 85% N2, 10% H2, 5% CO2. Most Gram-negative obligate anaerobes isolated from clinical specimens are still susceptible to imipenem (100%), metronidazole (99,3%) and beta-lactam antibiotics with beta-lactamase inhibitors: piperacillin/tazobactam (99,3%), ticarcillin/clavulanate (99.3%), amoxicillin/clavulanate (97.8%).

  17. Effects of clinical breakpoint changes in CLSI guidelines 2010/2011 and EUCAST guidelines 2011 on antibiotic susceptibility test reporting of Gram-negative bacilli.

    Science.gov (United States)

    Hombach, Michael; Bloemberg, Guido V; Böttger, Erik C

    2012-03-01

    The aim of this study was to analyse the effects of clinical breakpoint changes in CLSI 2010 and 2011 guidelines and EUCAST 2011 guidelines on antibiotic susceptibility testing (AST) reports. In total, 3713 non-duplicate clinical isolates of Enterobacteriaceae, Pseudomonas aeruginosa, Stenotrophomonas maltophilia and Acinetobacter baumannii were analysed. Inhibition zone diameters were determined for β-lactams, carbapenems, fluoroquinolones, aminoglycosides and trimethoprim/sulfamethoxazole. CLSI 2009-11 and EUCAST 2011 clinical breakpoints were applied. Changes in resistance as defined per the guidelines affected individual species and drug classes differently. The cefepime resistance rate in Escherichia coli and Enterobacter cloacae increased from 2.1% and 1.3% to 8.2% and 6.9%, respectively, applying CLSI 2009-11 versus EUCAST 2011 guidelines. Ertapenem resistance rates in E. cloacae increased from 2.6% with CLSI 2009 to 7.2% for CLSI 2010 and 2011, and to 10.1% when applying EUCAST 2011. Cefepime and meropenem resistance rates in P. aeruginosa increased from 12.2% and 20.6% to 19.8% and 27.7%, respectively, comparing CLSI 2009-11 with EUCAST 2011. Tobramycin and gentamicin resistance rates in A. baumannii increased from 15.9% and 25.4% to 34.9% and 44.4% applying CLSI 2009-11 versus EUCAST 2011. Higher resistance rates reported due to breakpoint changes in CLSI and EUCAST guidelines will result in increasing numbers of Gram-negative bacilli reported as multidrug resistant. AST reports classifying amoxicillin/clavulanic acid, cefepime or carbapenem resistance will lead clinicians to use alternative agents. Upon implementation of the EUCAST guidelines, laboratories should be aware of the implications of modified drug susceptibility testing reports on antibiotic prescription policies.

  18. A resurgence of β-lactamase inhibitor combinations effective against multidrug-resistant Gram-negative pathogens.

    Science.gov (United States)

    Bush, Karen

    2015-11-01

    β-Lactamase inhibitors (BLIs) have played an important role in combatting β-lactam resistance in Gram-negative bacteria, but their effectiveness has diminished with the evolution of diverse and deleterious varieties of β-lactamases. In this review, a new generation of BLIs and inhibitor combinations is presented, describing epidemiological information, pharmacodynamic studies, resistance identification and current clinical status. Novel serine BLIs of major interest include the non-β-lactams of the diazabicyclo[3.2.1]octanone (DBO) series. The DBOs avibactam, relebactam and RG6080 inhibit most class A and class C β-lactamases, with selected inhibition of class D enzymes by avibactam. The novel boronic acid inhibitor RPX7009 has a similar inhibitory profile. All of these inhibitors are being developed in combinations that are targeting primarily carbapenemase-producing Gram-negative pathogens. Two BLI combinations (ceftolozane/tazobactam and ceftazidime/avibactam) were recently approved by the US Food and Drug Administration (FDA) under the designation of a Qualified Infectious Disease Product (QIDP). Other inhibitor combinations that have at least completed phase 1 clinical trials are ceftaroline fosamil/avibactam, aztreonam/avibactam, imipenem/relebactam, meropenem/RPX7009 and cefepime/AAI101. Although effective inhibitor combinations are in development for the treatment of infections caused by Gram-negative bacteria with serine carbapenemases, better options are still necessary for pathogens that produce metallo-β-lactamases (MBLs). The aztreonam/avibactam combination demonstrates inhibitory activity against MBL-producing enteric bacteria owing to the stability of the monobactam to these enzymes, but resistance is still an issue for MBL-producing non-fermentative bacteria. Because all of the inhibitor combinations are being developed as parenteral drugs, an orally bioavailable combination would also be of interest. Copyright © 2015 Elsevier B.V. and the

  19. How to measure the impacts of antibiotic resistance and antibiotic development on empiric therapy: new composite indices.

    Science.gov (United States)

    Hughes, Josie S; Hurford, Amy; Finley, Rita L; Patrick, David M; Wu, Jianhong; Morris, Andrew M

    2016-12-16

    We aimed to construct widely useable summary measures of the net impact of antibiotic resistance on empiric therapy. Summary measures are needed to communicate the importance of resistance, plan and evaluate interventions, and direct policy and investment. As an example, we retrospectively summarised the 2011 cumulative antibiogram from a Toronto academic intensive care unit. We developed two complementary indices to summarise the clinical impact of antibiotic resistance and drug availability on empiric therapy. The Empiric Coverage Index (ECI) measures susceptibility of common bacterial infections to available empiric antibiotics as a percentage. The Empiric Options Index (EOI) varies from 0 to 'the number of treatment options available', and measures the empiric value of the current stock of antibiotics as a depletable resource. The indices account for drug availability and the relative clinical importance of pathogens. We demonstrate meaning and use by examining the potential impact of new drugs and threatening bacterial strains. In our intensive care unit coverage of device-associated infections measured by the ECI remains high (98%), but 37-44% of treatment potential measured by the EOI has been lost. Without reserved drugs, the ECI is 86-88%. New cephalosporin/β-lactamase inhibitor combinations could increase the EOI, but no single drug can compensate for losses. Increasing methicillin-resistant Staphylococcus aureus (MRSA) prevalence would have little overall impact (ECI=98%, EOI=4.8-5.2) because many Gram-positives are already resistant to β-lactams. Aminoglycoside resistance, however, could have substantial clinical impact because they are among the few drugs that provide coverage of Gram-negative infections (ECI=97%, EOI=3.8-4.5). Our proposed indices summarise the local impact of antibiotic resistance on empiric coverage (ECI) and available empiric treatment options (EOI) using readily available data. Policymakers and drug developers can use the

  20. Epidemiology of infections caused by multiresistant gram-negatives: ESBLs, MBLs, panresistant strains.

    Science.gov (United States)

    Rossolini, Gian Maria; Mantengoli, Elisabetta; Docquier, Jean-Denis; Musmanno, Rosa Anna; Coratza, Grazietta

    2007-07-01

    Microbial drug resistance is a growing problem of global magnitude. In gram-negative pathogens, the most important resistance problems are encountered in Enterobacteriaceae, Pseudomonas aeruginosa and Acinetobacter, with increasing trends observed for all major anti-gram-negative agents (beta-lactams, fluoroquinolones and aminoglycosides). A matter of major concern is the emergence of new beta-lactamases capable of degrading the expanded-spectrum cephalosporins and/or carbapenems, such as the extended-spectrum beta-lactamases (ESBLs) and the carbapenemases. These beta-lactamase genes are often associated with resistance determinants to non-beta-lactam agents (e.g. aminoglycosides and fluoroquinolones), and strains producing ESBLs or carbapenemases often exhibit complex multidrug resistant phenotypes and sometimes are panresistant. The problem is worsened by the dearth of new agents active on multidrug-resistant Gram-negatives in the pipeline. The importance to develop better strategies to control resistance is underscored.

  1. The etiology of neonatal sepsis and patterns of antibiotic resistance

    International Nuclear Information System (INIS)

    Waheed, M.; Laeeq, A.; Maqbool, S.

    2003-01-01

    Objective: To study the patterns of causative bacteria and antibiotic resistance in neonatal sepsis. Results: Among 228 cases included in the study, the male to female ratio was 2.1 to 1. The gestational age was less than 36 weeks in 68 (30%) cases and low birth weight babies were 143 (62.6%). History of birth asphyxia was present in 103 (45%) cases. There were 142 (62.3%) cases of early onset ( 7 days). Out of 233 positive blood cultures Escherichia coli was found to be commonest (47.8%, n =111, p<0.05) both in early onset (47.8%, n=68, p <0.05) and late onset sepsis (47.3%,n=43, p<0.05). Staphylococcus aureus was the most common among gram positive organism. Resistance to cefotaxime, ceftazidime and amikacin was 34% to 80% and to ciprofloxacin 13% to 72%. A total of 64 cases (28%) died. Mortality was four times higher in early onset sespis. Conclusion: Gram negative bacteria are the commenst cause of neonatal sepsis. The resistance to the commonly used antibiotics is alarmingly high. Mortality is four times higher in early one set sepsis. (author)

  2. Pleural effusion adenosine deaminase: a candidate biomarker to discriminate between Gram-negative and Gram-positive bacterial infections of the pleural space

    Directory of Open Access Journals (Sweden)

    Ruolin Li

    2016-05-01

    Full Text Available OBJECTIVES: Delay in the treatment of pleural infection may contribute to its high mortality. In this retrospective study, we aimed to evaluate the diagnostic accuracy of pleural adenosine deaminase in discrimination between Gram-negative and Gram-positive bacterial infections of the pleural space prior to selecting antibiotics. METHODS: A total of 76 patients were enrolled and grouped into subgroups according to Gram staining: 1 patients with Gram-negative bacterial infections, aged 53.2±18.6 years old, of whom 44.7% had empyemas and 2 patients with Gram-positive bacterial infections, aged 53.5±21.5 years old, of whom 63.1% had empyemas. The pleural effusion was sampled by thoracocentesis and then sent for adenosine deaminase testing, biochemical testing and microbiological culture. The Mann-Whitney U test was used to examine the differences in adenosine deaminase levels between the groups. Correlations between adenosine deaminase and specified variables were also quantified using Spearman’s correlation coefficient. Moreover, receiver operator characteristic analysis was performed to evaluate the diagnostic accuracy of pleural effusion adenosine deaminase. RESULTS: Mean pleural adenosine deaminase levels differed significantly between Gram-negative and Gram-positive bacterial infections of the pleural space (191.8±32.1 U/L vs 81.0±16.9 U/L, p<0.01. The area under the receiver operator characteristic curve was 0.689 (95% confidence interval: 0.570, 0.792, p<0.01 at the cutoff value of 86 U/L. Additionally, pleural adenosine deaminase had a sensitivity of 63.2% (46.0-78.2%; a specificity of 73.7% (56.9-86.6%; positive and negative likelihood ratios of 2.18 and 0.50, respectively; and positive and negative predictive values of 70.6% and 66.7%, respectively. CONCLUSIONS: Pleural effusion adenosine deaminase is a helpful alternative biomarker for early and quick discrimination of Gram-negative from Gram-positive bacterial infections of the

  3. Add-On Therapy with Ertapenem in Infections with Multidrug Resistant Gram-Negative Bacteria: Pediatric Experience

    Directory of Open Access Journals (Sweden)

    Sevgen Tanır Basaranoglu

    2017-01-01

    Full Text Available Optimal therapy for infections with carbapenem resistant GNB is not well established due to the weakness of data. Patients presenting with bloodstream infections caused by multidrug resistant Klebsiella pneumoniae were treated with a combination treatment. Optimal therapy for infections with carbapenem resistant Gram-negative bacteria is a serious problem in pediatric patients. We presented three cases who were successfully treated with addition of ertapenem to the combination treatment for bacteremia with multidrug resistant Klebsiella pneumoniae. Dual carbapenem treatment approach is a new approach for these infections and requires more data in children.

  4. Structural and molecular basis for resistance to aminoglycoside antibiotics by the adenylyltransferase ANT(2″)-Ia.

    Science.gov (United States)

    Cox, Georgina; Stogios, Peter J; Savchenko, Alexei; Wright, Gerard D

    2015-01-06

    The aminoglycosides are highly effective broad-spectrum antimicrobial agents. However, their efficacy is diminished due to enzyme-mediated covalent modification, which reduces affinity of the drug for the target ribosome. One of the most prevalent aminoglycoside resistance enzymes in Gram-negative pathogens is the adenylyltransferase ANT(2″)-Ia, which confers resistance to gentamicin, tobramycin, and kanamycin. Despite the importance of this enzyme in drug resistance, its structure and molecular mechanism have been elusive. This study describes the structural and mechanistic basis for adenylylation of aminoglycosides by the ANT(2″)-Ia enzyme. ANT(2″)-Ia confers resistance by magnesium-dependent transfer of a nucleoside monophosphate (AMP) to the 2″-hydroxyl of aminoglycoside substrates containing a 2-deoxystreptamine core. The catalyzed reaction follows a direct AMP transfer mechanism from ATP to the substrate antibiotic. Central to catalysis is the coordination of two Mg(2+) ions, positioning of the modifiable substrate ring, and the presence of a catalytic base (Asp86). Comparative structural analysis revealed that ANT(2″)-Ia has a two-domain structure with an N-terminal active-site architecture that is conserved among other antibiotic nucleotidyltransferases, including Lnu(A), LinB, ANT(4')-Ia, ANT(4″)-Ib, and ANT(6)-Ia. There is also similarity between the nucleotidyltransferase fold of ANT(2″)-Ia and DNA polymerase β. This similarity is consistent with evolution from a common ancestor, with the nucleotidyltransferase fold having adapted for activity against chemically distinct molecules. IMPORTANCE  : To successfully manage the threat associated with multidrug-resistant infectious diseases, innovative therapeutic strategies need to be developed. One such approach involves the enhancement or potentiation of existing antibiotics against resistant strains of bacteria. The reduction in clinical usefulness of the aminoglycosides is a particular

  5. Environmental cycle of antibiotic resistance encoded genes: A systematic review

    Directory of Open Access Journals (Sweden)

    R. ghanbari

    2017-12-01

    Full Text Available Antibiotic-resistant bacteria and genes enter the environment in different ways. The release of these factors into the environment has increased concerns related to public health. The aim of the study was to evaluate the antibiotic resistance genes (ARGs in the environmental resources. In this systematic review, the data were extracted from valid sources of information including ScienceDirect, PubMed, Google Scholar and SID. Evaluation and selection of articles were conducted on the basis of the PRISMA checklist. A total of 39 articles were included in the study, which were chosen from a total of 1249 papers. The inclusion criterion was the identification of genes encoding antibiotic resistance against the eight important groups of antibiotics determined by using the PCR technique in the environmental sources including municipal and hospital wastewater treatment plants, animal and agricultural wastes, effluents from treatment plants, natural waters, sediments, and drinking waters. In this study, 113 genes encoding antibiotic resistance to eight groups of antibiotics (beta-lactams, aminoglycosides, tetracyclines, macrolides, sulfonamides, chloramphenicol, glycopeptides and quinolones were identified in various environments. Antibiotic resistance genes were found in all the investigated environments. The investigation of microorganisms carrying these genes shows that most of the bacteria especially gram-negative bacteria are effective in the acquisition and the dissemination of these pollutants in the environment. Discharging the raw wastewaters and effluents from wastewater treatments acts as major routes in the dissemination of ARGs into environment sources and can pose hazards to public health.

  6. The Changing Role of the Clinical Microbiology Laboratory in Defining Resistance in Gram-negatives.

    Science.gov (United States)

    Endimiani, Andrea; Jacobs, Michael R

    2016-06-01

    The evolution of resistance in Gram-negatives has challenged the clinical microbiology laboratory to implement new methods for their detection. Multidrug-resistant strains present major challenges to conventional and new detection methods. More rapid pathogen identification and antimicrobial susceptibility testing have been developed for use directly on specimens, including fluorescence in situ hybridization tests, automated polymerase chain reaction systems, microarrays, mass spectroscopy, next-generation sequencing, and microfluidics. Review of these methods shows the advances that have been made in rapid detection of resistance in cultures, but limited progress in direct detection from specimens. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Invasive Bacterial Pathogens and their Antibiotic Susceptibility ...

    African Journals Online (AJOL)

    The isolates showed high rates of resistance to most antibiotics tested. The range of resistance for gram positive bacteria were 0% to 85.7%, and for gram negative from 0% to 100%. None of the isolates were resistance to ciprofloxacin and ceftriaxone. CONCLUSION: Our study result showed the presence of invasive ...

  8. Multidrug-resistant gram-negative bacteria colonization of healthy US military personnel in the US and Afghanistan.

    Science.gov (United States)

    Vento, Todd J; Cole, David W; Mende, Katrin; Calvano, Tatjana P; Rini, Elizabeth A; Tully, Charla C; Zera, Wendy C; Guymon, Charles H; Yu, Xin; Cheatle, Kristelle A; Akers, Kevin S; Beckius, Miriam L; Landrum, Michael L; Murray, Clinton K

    2013-02-05

    The US military has seen steady increases in multidrug-resistant (MDR) gram-negative bacteria (GNB) infections in casualties from Iraq and Afghanistan. This study evaluates the prevalence of MDR GNB colonization in US military personnel. GNB colonization surveillance of healthy, asymptomatic military personnel (101 in the US and 100 in Afghanistan) was performed by swabbing 7 anatomical sites. US-based personnel had received no antibiotics within 30 days of specimen collection, and Afghanistan-based personnel were receiving doxycycline for malaria chemoprophylaxis at time of specimen collection. Isolates underwent genotypic and phenotypic characterization. The only colonizing MDR GNB recovered in both populations was Escherichia coli (p=0.01), which was seen in 2% of US-based personnel (all perirectal) and 11% of Afghanistan-based personnel (10 perirectal, 1 foot+groin). Individuals with higher off-base exposures in Afghanistan did not show a difference in overall GNB colonization or MDR E. coli colonization, compared with those with limited off-base exposures. Healthy US- and Afghanistan-based military personnel have community onset-MDR E. coli colonization, with Afghanistan-based personnel showing a 5.5-fold higher prevalence. The association of doxycycline prophylaxis or other exposures with antimicrobial resistance and increased rates of MDR E. coli colonization needs further evaluation.

  9. Daptomycin: a novel lipopeptide antibiotic against Gram-positive pathogens

    Directory of Open Access Journals (Sweden)

    Andres Beiras-Fernandez

    2010-08-01

    Full Text Available Andres Beiras-Fernandez1,*, Ferdinand Vogt1,*, Ralf Sodian1, Florian Weis21Department of Cardiac Surgery, University Hospital Großhadern, Ludwig-Maximilian-University, Munich, Germany; 2Department of Anesthesiology, University Hospital Großhadern, Ludwig-Maximilian-University, Munich, Germany *Andres Beiras-Fernandez and Ferdinand Vogt contributed equally to this paperAbstract: The aim of this review is to summarize the historical background of drug resistance of Gram-positive pathogens as well as to describe in detail the novel lipopeptide antibiotic daptomycin. Pharmacological and pharmacokinetic aspects are reviewed and the current clinical use of daptomycin is presented. Daptomycin seems to be a reliable drug in the treatment of complicated skin and skin structure infections, infective right-sided endocarditis, and bacteremia caused by Gram-positive agents. Its unique mechanism of action and its low resistance profile, together with its rapid bactericidal action make it a favorable alternative to vancomycin in multi-drug resistant cocci. The role of daptomycin in the treatment of prosthetic material infections, osteomyelitis, and urogenital infections needs to be evaluated in randomized clinical trials.Keywords: daptomycin, multi-drug resistance, methicillin-resistant Staphylococcus aureus (MRSA, pneumonia, urinary tract infection, left-sided endocarditis

  10. Presence and potential for horizontal transfer of antibiotic resistance in oxidase-positive bacteria populating raw salad vegetables.

    Science.gov (United States)

    Bezanson, G S; MacInnis, R; Potter, G; Hughes, T

    2008-09-30

    To assess whether domestically grown fresh salad vegetables constitute a possible reservoir of antibiotic resistance for Canadian consumers, aerobic bacteria capable of forming colonies at 30 degrees C on nutrient-limited media were recovered from a single sampling of Romaine lettuce, Savoy spinach and alfalfa sprouts, then examined for their susceptibility to ten antibiotics and the carriage of potentially mobile R-plasmids and integrons. Of the 140 isolates resistant to one or more antibiotic, 93.5 and 90.0% were resistant to ampicillin and cephalothin; 35.7% to chloramphenicol, 10.0% to streptomycin, 4.2% to nalidixic acid, 4.2% to kanamycin, and 2.8% to gentamicin. Gram-positive isolates accounted for less than 4% of the antibiotic resistant strains. A small portion (23.1%) of the predominant oxidase-positive, gram-negative isolates was resistant to two or more antimicrobials. Members of the Pseudomonas fluorescens/putida complex were most prevalent among the 34 resistant strains identified. Sphingobacterium spp. and Acinetobacter baumanni also were detected. Ten of 52 resistant strains carried plasmids, 3 of which were self-transmissible and bore resistance to ampicillin and kanamycin. Eighteen of 48 gave PCR evidence for integron DNA. Class 2 type integrons were the most prevalent, followed by class 1. We conclude that the foods examined here carry antibiotic resistant bacteria at the retail level. Further, our determination that resistant strains contain integron-specific DNA sequences and self-transmissible R-plasmids indicates their potential to influence the pool of antibiotic resistance in humans via lateral gene transfer subsequent to ingestion.

  11. Development of a miniaturised microarray-based assay for the rapid identification of antimicrobial resistance genes in Gram-negative bacteria

    DEFF Research Database (Denmark)

    Batchelor, Miranda; Hopkins, Katie L; Liebana, Ernesto

    2008-01-01

    We describe the development of a miniaturised microarray for the detection of antimicrobial resistance genes in Gram-negative bacteria. Included on the array are genes encoding resistance to aminoglycosides, trimethoprim, sulphonamides, tetracyclines and beta-lactams, including extended-spectrum ...

  12. The resveratrol tetramer (--hopeaphenol inhibits type III secretion in the gram-negative pathogens Yersinia pseudotuberculosis and Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Caroline E Zetterström

    Full Text Available Society faces huge challenges, as a large number of bacteria have developed resistance towards many or all of the antibiotics currently available. Novel strategies that can help solve this problem are urgently needed. One such strategy is to target bacterial virulence, the ability to cause disease e.g., by inhibition of type III secretion systems (T3SSs utilized by many clinically relevant gram-negative pathogens. Many of the antibiotics used today originate from natural sources. In contrast, most virulence-blocking compounds towards the T3SS identified so far are small organic molecules. A recent high-throughput screening of a prefractionated natural product library identified the resveratrol tetramer (--hopeaphenol as an inhibitor of the T3SS in Yersinia pseudotuberculosis. In this study we have investigated the virulence blocking properties of (--hopeaphenol in three different gram-negative bacteria. (--Hopeaphenol was found to have micromolar activity towards the T3SSs in Yersinia pseudotuberculosis and Pseudomonas aeruginosa in cell-based infection models. In addition (--hopeaphenol reduced cell entry and subsequent intracellular growth of Chlamydia trachomatis.

  13. In vitro antimicrobial activity of five essential oils on multi-drug resistant Gram-negative clinical isolates

    OpenAIRE

    Hercules Sakkas; Panagiota Gousia; Vangelis Economou; Vassilios Sakkas; Stefanos Petsios; Chrissanthy Papadopoulou

    2016-01-01

    Aim/Background: The emergence of drug-resistant pathogens has drawn attention on medicinal plants for potential antimicrobial properties. The objective of the present study was the investigation of the antimicrobial activity of five plant essential oils on multidrug resistant Gram-negative bacteria. Materials and Methods: Basil, chamomile blue, origanum, thyme, and tea tree oil were tested against clinical isolates of Acinetobacter baumannii (n = 6), Escherichia coli (n = 4), Klebsiella pneum...

  14. Defining Multidrug Resistance of Gram-Negative Bacteria in the Dutch-German Border Region-Impact of National Guidelines

    NARCIS (Netherlands)

    Köck, Robin; Siemer, Philipp; Esser, Jutta; Kampmeier, Stefanie; Berends, Matthijs S; Glasner, Corinna; Arends, Jan P; Becker, Karsten; Friedrich, Alexander W

    2018-01-01

    Preventing the spread of multidrug-resistant Gram-negative bacteria (MDRGNB) is a public health priority. However, the definition of MDRGNB applied for planning infection prevention measures such as barrier precautions differs depending on national guidelines. This is particularly relevant in the

  15. Sensor histidine kinase is a β-lactam receptor and induces resistance to β-lactam antibiotics.

    Science.gov (United States)

    Li, Lu; Wang, Qiyao; Zhang, Hui; Yang, Minjun; Khan, Mazhar I; Zhou, Xiaohui

    2016-02-09

    β-Lactams disrupt bacterial cell wall synthesis, and these agents are the most widely used antibiotics. One of the principle mechanisms by which bacteria resist the action of β-lactams is by producing β-lactamases, enzymes that degrade β-lactams. In Gram-negative bacteria, production of β-lactamases is often induced in response to the antibiotic-associated damage to the cell wall. Here, we have identified a previously unidentified mechanism that governs β-lactamase production. In the Gram-negative enteric pathogen Vibrio parahaemolyticus, we found a histidine kinase/response regulator pair (VbrK/VbrR) that controls expression of a β-lactamase. Mutants lacking either VbrK or VbrR do not produce the β-lactamase and are no longer resistant to β-lactam antibiotics. Notably, VbrK autophosphorylation is activated by β-lactam antibiotics, but not by other lactams. However, single amino acid substitutions in the putative periplasmic binding pocket of VbrK leads its phosphorylation in response to both β-lactam and other lactams, suggesting that this kinase is a β-lactam receptor that can directly detect β-lactam antibiotics instead of detecting the damage to cell wall resulting from β-lactams. In strong support of this idea, we found that purified periplasmic sensor domain of VbrK binds penicillin, and that such binding is critical for VbrK autophosphorylation and β-lactamase production. Direct recognition of β-lactam antibiotics by a histidine kinase receptor may represent an evolutionarily favorable mechanism to defend against β-lactam antibiotics.

  16. Activities of doripenem against nosocomial bacteremic drug-resistant Gram-negative bacteria in a medical center in Taiwan.

    Science.gov (United States)

    Dong, Shao-Xing; Wang, Jann-Tay; Chang, Shan-Chwen

    2012-12-01

    The majority of nosocomial infections in Taiwan hospitals are caused by drug-resistant Gram-negative bacteria (GNB), including Pseudomonas aeruginosa, Acinetobacter baumannii, and various species of Enterobacteriaceae. Carbapenems are important agents for treating infections caused by these GNB. Recently, doripenem was approved for use in Taiwan in August 2009. However, data on its in vitro activity against nosocomial GNB isolated from Taiwan remain limited. The study was designed to look into this clinical issue. A total of 400 nonduplicated nosocomial blood isolates isolated in 2009, inclusive of P. aeruginosa (n = 100), A. baumannii (n = 100), and Enterobacteriaceae (n = 200), were randomly selected from the bacterial bank preserved at National Taiwan University Hospital. Susceptibilities of these 400 isolates to various antibiotics, including doripenem, imipenem, meropenem, ceftazidime, amikacin, ciprofloxacin, colistin, and tigecycline were determined by using Etest. Doripenem demonstrated similar in vitro activity to imipenem and meropenem against P. aeruginosa (87%, vs. 85% and 89%), A. baumannii (56%, vs. 60% and 60%), and Enterobacteriaceae (100%, vs. 98.5% and 99.5%). The prevalence of carbapenem-resistant (any one of three tested carbapenems) P. aeruginosa, A. baumannii, and Enterobacteriaceae isolates was 15%, 44%, and 0.5%, respectively. Doripenem was as effective as imipenem and meropenem in our study. However, there was a significant proportion of carbapenem resistance among the tested isolates. Hence, longitudinal surveillance is necessary to monitor the resistance trend. Copyright © 2012. Published by Elsevier B.V.

  17. Infection with multidrug-resistant gram-negative bacteria in a pediatric oncology intensive care unit: risk factors and outcomes.

    Science.gov (United States)

    Costa, Patrícia de Oliveira; Atta, Elias Hallack; Silva, André Ricardo Araújo da

    2015-01-01

    This study aimed at evaluating the predictors and outcomes associated with multidrug-resistant gram-negative bacterial (MDR-GNB) infections in an oncology pediatric intensive care unit (PICU). Data were collected relating to all episodes of GNB infection that occurred in a PICU between January of 2009 and December of 2012. GNB infections were divided into two groups for comparison: (1) infections attributed to MDR-GNB and (2) infections attributed to non-MDR-GNB. Variables of interest included age, gender, presence of solid tumor or hematologic disease, cancer status, central venous catheter use, previous Pseudomonas aeruginosa infection, healthcare-associated infection, neutropenia in the preceding 7 days, duration of neutropenia, length of hospital stay before ICU admission, length of ICU stay, and the use of any of the following in the previous 30 days: antimicrobial agents, corticosteroids, chemotherapy, or radiation therapy. Other variables included initial appropriate antimicrobial treatment, definitive inadequate antimicrobial treatment, duration of appropriate antibiotic use, time to initiate adequate antibiotic therapy, and the 7- and 30-day mortality. Multivariate logistic regression analyses showed significant relationships between MDR-GNB and hematologic diseases (odds ratio [OR] 5.262; 95% confidence interval [95% CI] 1.282-21.594; p=0.021) and healthcare-associated infection (OR 18.360; 95% CI 1.778-189.560; p=0.015). There were significant differences between MDR-GNB and non-MDR-GNB patients for the following variables: inadequate initial empirical antibiotic therapy, time to initiate adequate antibiotic treatment, and inappropriate antibiotic therapy. Hematologic malignancy and healthcare-associated infection were significantly associated with MDR-GNB infection in this sample of pediatric oncology patients. Copyright © 2015 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  18. Toward repurposing ciclopirox as an antibiotic against drug-resistant Acinetobacter baumannii, Escherichia coli, and Klebsiella pneumoniae.

    Science.gov (United States)

    Carlson-Banning, Kimberly M; Chou, Andrew; Liu, Zhen; Hamill, Richard J; Song, Yongcheng; Zechiedrich, Lynn

    2013-01-01

    Antibiotic-resistant infections caused by gram-negative bacteria are a major healthcare concern. Repurposing drugs circumvents the time and money limitations associated with developing new antimicrobial agents needed to combat these antibiotic-resistant infections. Here we identified the off-patent antifungal agent, ciclopirox, as a candidate to repurpose for antibiotic use. To test the efficacy of ciclopirox against antibiotic-resistant pathogens, we used a curated collection of Acinetobacter baumannii, Escherichia coli, and Klebsiella pneumoniae clinical isolates that are representative of known antibiotic resistance phenotypes. We found that ciclopirox, at 5-15 µg/ml concentrations, inhibited bacterial growth regardless of the antibiotic resistance status. At these same concentrations, ciclopirox reduced growth of Pseudomonas aeruginosa clinical isolates, but some of these pathogens required higher ciclopirox concentrations to completely block growth. To determine how ciclopirox inhibits bacterial growth, we performed an overexpression screen in E. coli. This screen revealed that galE, which encodes UDP-glucose 4-epimerase, rescued bacterial growth at otherwise restrictive ciclopirox concentrations. We found that ciclopirox does not inhibit epimerization of UDP-galactose by purified E. coli GalE; however, ΔgalU, ΔgalE, ΔrfaI, or ΔrfaB mutant strains all have lower ciclopirox minimum inhibitory concentrations than the parent strain. The galU, galE, rfaI, and rfaB genes all encode enzymes that use UDP-galactose or UDP-glucose for galactose metabolism and lipopolysaccharide (LPS) biosynthesis. Indeed, we found that ciclopirox altered LPS composition of an E. coli clinical isolate. Taken together, our data demonstrate that ciclopirox affects galactose metabolism and LPS biosynthesis, two pathways important for bacterial growth and virulence. The lack of any reported fungal resistance to ciclopirox in over twenty years of use in the clinic, its excellent safety

  19. MICROBIAL PROFILE AND ANTIBIOTIC RESISTANCE PATTERN OF THE BACTERIAL ISOLATES IN A TERTIARY CARE PSYCHIATRY HOSPITAL

    Directory of Open Access Journals (Sweden)

    Jyoti

    2015-11-01

    Full Text Available BACKGROUND: Antibiotic resistance is a challenge for effective management of infections as it increases the morbidity, mortality and costs of treating infectious diseases. AIMS: This study was aimed to obtain the profile of the bacterial isolates and their antibiotic resistance pattern. SETTINGS AND DESIGN: It is a cross sectional study carried out in a tertiary care psychiatry hospital in India. MATERIALS AND METHODS: Isolation and identification of the isolates were done by standard methods. Susceptibility patterns were checked by Kirby Bauer disc diffusion method. STATISTICAL ANALYSIS USED: Statistical analysis was done by using SPSS 16.0 version to calculate the frequencies as well as for cross tabulation. RESULTS: Significant bacterial growth observed in 43(25.6% samples, of which 39(90.7% showed resistant to at least one of the antibiotics used and 36(83.7% were multi-drug resistant. Gram negative organism accounted for the 25(58.14% of total significant isolates, Escherichia coli being the highest (76% in this group. Among multi-drug resistant (MDR isolates E.coli was the highest (44.4% and imipenem resistance was also observed in 1(5.3% of 19 E.coli isolates. Among the 43 isolates 18(41.86% were Gram positive with Streptococcus spp. showing incidence of 41.7% among the total MDR isolates. CONCLUSION: Increasing incidence of MDR strains seen in the population requires continuous monitoring and a restricted use of antibiotics to keep a check on resistance pattern, for effective treatment plan.

  20. Mid-infrared spectroscopic assessment of nanotoxicity in gram-negative vs. gram-positive bacteria.

    Science.gov (United States)

    Heys, Kelly A; Riding, Matthew J; Strong, Rebecca J; Shore, Richard F; Pereira, M Glória; Jones, Kevin C; Semple, Kirk T; Martin, Francis L

    2014-03-07

    Nanoparticles appear to induce toxic effects through a variety of mechanisms including generation of reactive oxygen species (ROS), physical contact with the cell membrane and indirect catalysis due to remnants from manufacture. The development and subsequent increasing usage of nanomaterials has highlighted a growing need to characterize and assess the toxicity of nanoparticles, particularly those that may have detrimental health effects such as carbon-based nanomaterials (CBNs). Due to interactions of nanoparticles with some reagents, many traditional toxicity tests are unsuitable for use with CBNs. Infrared (IR) spectroscopy is a non-destructive, high throughput technique, which is unhindered by such problems. We explored the application of IR spectroscopy to investigate the effects of CBNs on Gram-negative (Pseudomonas fluorescens) and Gram-positive (Mycobacterium vanbaalenii PYR-1) bacteria. Two types of IR spectroscopy were compared: attenuated total reflection Fourier-transform infrared (ATR-FTIR) and synchrotron radiation-based FTIR (SR-FTIR) spectroscopy. This showed that Gram-positive and Gram-negative bacteria exhibit differing alterations when exposed to CBNs. Gram-positive bacteria appear more resistant to these agents and this may be due to the protection afforded by their more sturdy cell wall. Markers of exposure also vary according to Gram status; Amide II was consistently altered in Gram-negative bacteria and carbohydrate altered in Gram-positive bacteria. ATR-FTIR and SR-FTIR spectroscopy could both be applied to extract biochemical alterations induced by each CBN that were consistent across the two bacterial species; these may represent potential biomarkers of nanoparticle-induced alterations. Vibrational spectroscopy approaches may provide a novel means of fingerprinting the effects of CBNs in target cells.

  1. Transferable integrons of Gram-negative bacteria isolated from the gut of a wild boar in the buffer zone of a national park.

    Science.gov (United States)

    Mokracka, Joanna; Koczura, Ryszard; Kaznowski, Adam

    2012-06-01

    The aim of this study was to determine the presence of integron-bearing Gram-negative bacteria in the gut of a wild boar (Sus scrofa L.) shot in the buffer zone of a national park. Five Gram-negative strains of Escherichia coli, Serratia odorifera, Hafnia alvei and Pseudomonas sp. were isolated. Four of these strains had class 2 integrase (intI2), and one harbored class 1 integrase (intI1). The integron-positive strains were multiresistant, i.e., resistant to at least three unrelated antibiotics. All of the integrons were transferred to E. coli J-53 (Rif(R)) in a conjugation assay. The results showed that a number of multiresistant, integron-containing bacterial strains of different genera may inhabit a single individual of a wild animal, allowing the possibility of transfer of antimicrobial resistance genes.

  2. Development of Quorum-Based Anti-Virulence Therapeutics Targeting Gram-Negative Bacterial Pathogens

    Directory of Open Access Journals (Sweden)

    Wen Shan Yew

    2013-08-01

    Full Text Available Quorum sensing is a cell density-dependent signaling phenomenon used by bacteria for coordination of population-wide phenotypes, such as expression of virulence genes, antibiotic resistance and biofilm formation. Lately, disruption of bacterial communication has emerged as an anti-virulence strategy with enormous therapeutic potential given the increasing incidences of drug resistance in pathogenic bacteria. The quorum quenching therapeutic approach promises a lower risk of resistance development, since interference with virulence generally does not affect the growth and fitness of the bacteria and, hence, does not exert an associated selection pressure for drug-resistant strains. With better understanding of bacterial communication networks and mechanisms, many quorum quenching methods have been developed against various clinically significant bacterial pathogens. In particular, Gram-negative bacteria are an important group of pathogens, because, collectively, they are responsible for the majority of hospital-acquired infections. Here, we discuss the current understanding of existing quorum sensing mechanisms and present important inhibitory strategies that have been developed against this group of pathogenic bacteria.

  3. SURVEILLANCE AND CONTROL OF ANTIBIOTIC RESISTANCE IN THE MEDITERRANEAN REGION

    Directory of Open Access Journals (Sweden)

    Walter Ricciardi

    2016-07-01

    Full Text Available Antibiotic resistance is one of the most relevant problems in the healthcare: the growth of resistant micro-organisms in healthcare settings is a worrisome threat, raising length to stay (LOS, morbidity and mortality in those patients. The importance of the antibiotic resistance and its spread around the world, gave rise to the activation of several surveillance systems, based especially on the collection of laboratory data to local or national level. The objective of this work is to carry out a review of the scientific literature existing on the topic and scientific activities related to surveillance on antibiotic resistance in countries bordering the Mediterranean Sea. Recent Data from European Centre for Disease Prevention and Control (November 2015 show, for different combinations bacterium-drug, an increase of resistance from North to South and from West to East of Europe; it is particularly worrying the phenomenon of resistance carried out by some gram negative, specifically Klebsiella pneumoniae and Escherichia coli to third-generation cephalosporin, often combined in opposition to fluoroquinolones and amino glycosides. Is particularly relevant the incidence of resistance to carbapenems by strains of Enterobacteriaceae (Klebsiella included. The resistance exerted by MRSA (Methicillin-resistant Staphylococcus aureus continues to be relevant, albeit showing some decline in recent years. The incidence of resistance carried on by Streptococcus pneumoniae is stable and is mainly relevant to macrolides. Finally, a significant increase in recording relatively exercised by Enterococcus faecium to Vancomycin. Detecting, preventing, and controlling antibiotic resistance requires strategic, coordinated, and sustained efforts. It also depends on the engagement of governments, academia, industry, healthcare providers, the general public, and the agricultural community, as well as international partners. Committing to combating antibiotic-resistant

  4. Pediatric fecal microbiota harbor diverse and novel antibiotic resistance genes.

    Directory of Open Access Journals (Sweden)

    Aimée M Moore

    antibiotic pressure in the human host, and that cryptic gut microbes are an important resistance reservoir. The observed transferability of gut-associated resistance genes to a gram-negative (E. coli host also suggests that the potential for gut-associated resistomes to threaten human health by mediating antibiotic resistance in pathogens warrants further investigation.

  5. Intrathecal or intraventricular therapy for post-neurosurgical Gram-negative meningitis: matched cohort study.

    Science.gov (United States)

    Shofty, B; Neuberger, A; Naffaa, M E; Binawi, T; Babitch, T; Rappaport, Z H; Zaaroor, M; Sviri, G; Paul, M

    2016-01-01

    Gram-negative post-operative meningitis due to carbapenem-resistant bacteria (CR-GNPOM) is a dire complication of neurosurgical procedures. We performed a nested propensity-matched historical cohort study aimed at examining the possible benefit of intrathecal or intraventricular (IT/IV) antibiotic treatment for CR-GNPOM. We included consecutive adults with GNPOM in two centres between 2005 and 2014. Patients receiving combined systemic and IT/IV treatment were matched to patients receiving systemic treatment only. Matching was done based on the propensity of the patients to receive IT/IV treatment. We compared patient groups with 30-day mortality defined as the primary outcome. The cohort included 95 patients with GNPOM. Of them, 37 received IT/IV therapy in addition to systemic treatment (22 with colistin and 15 with amikacin), mostly as initial therapy, through indwelling cerebrospinal fluid drains. Variables associated with IT/IV therapy in the propensity score included no previous neurosurgery, time from admission to meningitis, presence of a urinary catheter and GNPOM caused by carbapenem-resistant Gram-negative bacteria. Following propensity matching, 23 patients given IT/IV therapy and 27 controls were analysed. Mortality was significantly lower with IT/IV therapy: 2/23 (8.7%) versus 9/27 (33.3%), propensity-adjusted OR 0.19, 95% CI 0.04-0.99. Death or neurological deterioration at 30 days, 14-day and in-hospital mortality were lower with IT/IV therapy (OR <0.4 for all) without statistically significant differences. Among patients discharged alive, those receiving IT/IV therapy did not experience more neurological deterioration. Serious adverse events with IT/IV therapy were not documented. Our results support the early use of IT antibiotic treatment for CR-GNPOM when a delivery method is available. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  6. Methods for Confirming the Gram Reaction of Gram-variable Bacillus Species Isolated from Tobacco

    Directory of Open Access Journals (Sweden)

    Morin A

    2014-12-01

    Full Text Available Bacillus is a predominant genus of bacteria isolated from tobacco. The Gram stain is the most commonly used and most important of all diagnostic staining techniques in microbiology. In order to help confirm the Gram positivity of Bacillus isolates from tobacco, three methods using the chemical differences of the cell wall and membrane of Gram-positive and Gram-negative bacteria were investigated: the KOH (potassium hydroxide, the LANA (L-alanine-4-nitroanilide, and the vancomycin susceptibility tests. When colonies of Gram-negative bacteria are treated with 3% KOH solution, a slimy suspension is produced, probably due to destruction of the cell wall and liberation of deoxyribonucleic acid (DNA. Gram-positive cell walls resist KOH treatment. The LANA test reveals the presence of a cell wall aminopeptidase that hydrolyzes the L-alanine-4-nitroanilide in Gram-negative bacteria. This enzyme is absent in Gram-positive bacteria. Vancomycin is a glycopeptide antibiotic inhibiting the cell wall peptido-glycan synthesis of Gram-positive microorganisms. Absence of lysis with KOH, absence of hydrolysis of LANA, and susceptibility to vancomycin were used with the Gram reaction to confirm the Gram positivity of various Bacillus species isolated from tobacco. B. laevolacticus excepted, all Bacillus species tested showed negative reactions to KOH and LANA tests, and all species were susceptible to vancomycin (5 and 30 µg.

  7. Increasing resistant coagulase negative staphylococci in bovine clinical mastitis.

    Science.gov (United States)

    Moniri, R; Dastehgoli, K; Akramian, A

    2007-08-01

    The aim of this study was to determine Coagulase Negative Staphylococci (CNS) and other bacteria for their resistance to antimicrobial agents approved for the control of pathogens involved in clinical bovine mastitis. This descriptive study was done on 106 milk samples obtained from clinical mastitis in dairy cattle husbandry from April 2006 through August 2006 in Kashan, Iran. From the total of 106 milk samples collected from clinical mastitis, 96 (90.6%) lead to positive culture. Coagulase negative Staphylococci isolated in 51 out of 96 samples (53.1%), Staphylococcus aureus isolated in 21 out of 96 (21.9%), gram negative bacilli isolated in 14 out of 96 (14.6%) and Enterococci isolated in 4 (4.2%). The highest rate of resistant CNS observed to penicillin (56.6%) and the highest rate of sensitivity to enrofloxacin 100%, followed by kanamycin, streptomycin and neomycin, 92.2, 82.3 and 82.3%, respectively. The highest rate of resistance S. aureus exhibited to penicillin (66.6%); while the highest rate of sensitivity showed to trimethoprim-sulphamethoxasole (81%), followed by kanamycin and enrofloxacin both at 76.2%. The highest rate of resistance gram negative bacilli exhibited to ampicillin and erythromycin at 71.4%. Their highest rate of sensitivity observed to enrofloxacin (78.6%), followed by kanamycin, (71.4%). In recent years, CNS is emerging as important minor mastitis pathogens and can be the cause of substantial economic losses. The high resistance rate to penicillin and other antibiotics found in this study emphasize the importance of identification of CNS when a bovine clinical mastitis is present.

  8. Antibiotic resistance in children with complicated urinary tract infection

    International Nuclear Information System (INIS)

    Yildiz, B.; Kural, N.; Yarar, C.; Ak, I.; Akcar, N.

    2007-01-01

    Objective was to determine the resistance of antibiotics for complicated urinary tract infection (UTI), including urinary tract anomaly (UTA), for empirical antibiotic therapy of complicated UTI. Four hundred and twenty two urine isolates were obtained from 113 patients with recurrent UTI, who used prophylactic antibiotics between February 1999 and November 2004 in the Eskisehir Osmangazi University, Eskisehir, Turkey. Reflux was found to be most important predisposing factor for recurrent UTI (31.9%). Renal scar was detected more in patients with UTA than without UTA (59.2% versus 12.4%, p<0.05). Gram-negative organisms were dominant in patients with and without UTA (91.5% and 79.2%). Enterococci and Candida spp. were more prevalent in children with UTA than without UTA (p<0.001). Isolates were significantly more resistant to ampicillin, trimethoprim-sulfamethoxazole, amikacin, co-amoxiclav, ticarcillin-clvalanate and piperacillin-tazobactam in patients with UTA than without UTA. We found low resistance to ciprofloxacin and nitrofurantoin in UTI with and without UTA. Enterococci spp. was highly resistance to ampicillin and amikacin in patients with UTA. Aztreonam, meropenem and ciprofloxacin seemed to be the best choice for treatment of UTI with UTA due to Escherichia coli and Klebsiella spp. Nitrofurantoin and nalidixic acid may be first choice antibiotics for prophylaxis in UTI with and without UTA. The UTI with UTA caused by Enterococci spp. might not benefit from a combination of amikacin and ampicillin, it could be treated with glycopeptides. (author)

  9. Clinical study of carbapenem sensitive and resistant Gram-negative bacteremia in neutropenic and nonneutropenic patients: The first series from India.

    Science.gov (United States)

    Ghafur, A K; Vidyalakshmi, P R; Kannaian, P; Balasubramaniam, R

    2014-01-01

    Carbapenem resistance is a growing global concern. There is a lack of published clinical studies on the topic from Indian subcontinent. Aim of this study was to analyze clinical profile of patients with carbapenem sensitive and resistant bacteremia among neutropenic and nonneutropenic patients. Retrospective analysis of 141 patients who had carbapenem resistant or sensitive Gram-negative bacteremia, identified over a period of 1-year was done by medical records review, in Apollo Specialty Hospital, a 300-bedded tertiary care Oncology, neurosurgical and orthopedic center in South India. Of the total 141 patients with Gram-negative bacteremia, 44 had carbapenem resistant ones. Of these 44 patients, 17 were neutropenics (resistant neutropenic group) and 27 nonneutropenic patients (resistant nonneutropenic group). Of the 97 patients with carbapenem sensitive bacteremia, 43 were neutropenic (sensitive neutropenic group) and 54 nonneutropenics (sensitive nonneutropenic group). The 28 days mortality was significantly higher in carbapenem resistant bacteremic group compared to the sensitive one (P = 0.008). This is the first study from India comparing clinical features of patients with carbapenem sensitive and resistant blood stream infections. Patients with carbapenem resistant bacteremia had higher mortality compared to patients with sensitive bacteremia.

  10. Antibiotic resistance among Ureaplasma spp. isolates: cause for concern?

    Science.gov (United States)

    Beeton, M L; Spiller, O B

    2017-02-01

    There is growing global concern regarding the rise of antibiotic-resistant organisms. Many of these reports have focused on various Gram-positive and Gram-negative pathogens, with little attention to the genus Ureaplasma. Ureaplasma spp. are associated with numerous infectious diseases affecting pregnant women, neonates and the immunocompromised. Treatment options are extremely limited due to high levels of intrinsic resistance resulting from the unique physiology of these organisms and further restricted in cases of the developing fetus or neonate, often limiting therapeutic options to predominantly macrolides or rarely fluoroquinolones. The increasing presence of macrolide- and fluoroquinolone-resistant strains among neonatal infections may result in pan-drug resistance and potentially untreatable conditions. Here, we review the requirements for accurate measurement of antimicrobial susceptibility, provide a comprehensive review of the antimicrobial resistance (AMR) for Ureaplasma species in the literature and contextualize these results relative to some investigators' reliance on commercial kits that are not CLSI compliant when determining AMR. The dramatic variation in the resistance patterns and impact of high levels of AMR amongst neonatal populations suggests the need for continued surveillance. Commercial kits represent an excellent tool for initial antibiotic susceptibility determination and screening. However, AMR reporting must utilize internationally standardized methods, as high-titre samples, or Mycoplasma hominis-contaminated samples routinely give false AMR results. Furthermore, there is a requirement for future reports to determine the underlying AMR mechanisms and determine whether expanding AMR is due to spontaneous mutation, transmission of resistance genes on mobile elements or selection and expansion of resistant clones. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy

  11. Comparison of E-test with other conventional susceptibility testing methods for ciprofloxacin and gentamicin against gram negative enteric bacilli.

    Science.gov (United States)

    Ogbolu, D O; Terry-Alli, O A; Daini, O A; Olabiyi, F A; Igharo, E A

    2012-06-01

    Increasing antibiotic resistance in Gram negative bacteria has led to the need for a faster and reliable method for determining antimicrobial susceptibility testing. In a resource poor setting like ours, it's also important to look for methods that will be clinically and economically beneficial to the patient. This study was aimed at evaluating the Epsilometer test (E-test) and conventional methods for determining antimicrobial susceptibility of isolates of Gram-negative enteric bacteria to ciprofloxacin and gentamicin. Disc diffusion, E-test, broth dilution and agar dilution methods were performed on 54 bacterial isolates. Using the E-test, 88.9% of bacterial isolates were resistant to ciprofloxacin, 92.6% were resistant using broth microdilution, 96.3% were resistant using agar dilution and 72.2% were resistant using disc diffusion. Minimum inhibitory concentration (MIC50) of isolates for gentamicin showed significant difference for all the techniques (p 0.05). Both E-test and broth dilution methods showed high levels of agreement (p > 0.05), there were low levels of agreement between E-test and agar dilution method (p < 0.05), especially at MIC50. The E-test can therefore be considered a reliable method to determine antimicrobial susceptibility testing and it gives results which are at least as accurate as those obtained by the broth dilution method.

  12. Procalcitonin levels in gram-positive, gram-negative, and fungal bloodstream infections.

    Science.gov (United States)

    Leli, Christian; Ferranti, Marta; Moretti, Amedeo; Al Dhahab, Zainab Salim; Cenci, Elio; Mencacci, Antonella

    2015-01-01

    Procalcitonin (PCT) can discriminate bacterial from viral systemic infections and true bacteremia from contaminated blood cultures. The aim of this study was to evaluate PCT diagnostic accuracy in discriminating Gram-positive, Gram-negative, and fungal bloodstream infections. A total of 1,949 samples from patients with suspected bloodstream infections were included in the study. Median PCT value in Gram-negative (13.8 ng/mL, interquartile range (IQR) 3.4-44.1) bacteremias was significantly higher than in Gram-positive (2.1 ng/mL, IQR 0.6-7.6) or fungal (0.5 ng/mL, IQR 0.4-1) infections (P Gram-negatives from Gram-positives at the best cut-off value of 10.8 ng/mL and an AUC of 0.944 (95% CI 0.919-0.969, P Gram-negatives from fungi at the best cut-off of 1.6 ng/mL. Additional results showed a significant difference in median PCT values between Enterobacteriaceae and nonfermentative Gram-negative bacteria (17.1 ng/mL, IQR 5.9-48.5 versus 3.5 ng/mL, IQR 0.8-21.5; P Gram-negative from Gram-positive and fungal bloodstream infections. Nevertheless, its utility to predict different microorganisms needs to be assessed in further studies.

  13. The emergence of pan-resistant Gram-negative pathogens merits a rapid global political response.

    Science.gov (United States)

    Walsh, Timothy R; Toleman, Mark A

    2012-01-01

    Recent media coverage of New Delhi metallo-β-lactamase (NDM-1) put antibiotic resistance back on the political map if only for the wrong reasons, mainly the reaction to the naming of NDM-1 and the incorrect assumption that medical tourism was being deliberately targeted. However, work on NDM-1 has most certainly highlighted the rapid dissemination of new antibiotic resistance mechanisms via economic globalization. The example of NDM-1 has also magnified the desperate need for a publicly funded global antibiotic surveillance system rather than just national or regional systems. Furthermore, there is a pressing need to establish a global task force to enforce international transparency and accountability on antibiotic stewardship and the implementation of measures to curb antibiotic resistance. An international antibiotic stewardship index should be established that is related to each country's gross domestic product (GDP) and assesses how much of their GDP is committed to publically funded health initiatives aimed at controlling antibiotic resistance.

  14. Oral Gram-negative anaerobic bacilli as a reservoir of β-lactam resistance genes facilitating infections with multiresistant bacteria.

    Science.gov (United States)

    Dupin, Clarisse; Tamanai-Shacoori, Zohreh; Ehrmann, Elodie; Dupont, Anais; Barloy-Hubler, Frédérique; Bousarghin, Latifa; Bonnaure-Mallet, Martine; Jolivet-Gougeon, Anne

    2015-02-01

    Many β-lactamases have been described in various Gram-negative bacilli (Capnocytophaga, Prevotella, Fusobacterium, etc.) of the oral cavity, belonging to class A of the Ambler classification (CepA, CblA, CfxA, CSP-1 and TEM), class B (CfiA) or class D in Fusobacterium nucleatum (FUS-1). The minimum inhibitory concentrations of β-lactams are variable and this variation is often related to the presence of plasmids or other mobile genetic elements (MGEs) that modulate the expression of resistance genes. DNA persistence and bacterial promiscuity in oral biofilms also contribute to genetic transformation and conjugation in this particular microcosm. Overexpression of efflux pumps is facilitated because the encoding genes are located on MGEs, in some multidrug-resistant clinical isolates, similar to conjugative transposons harbouring genes encoding β-lactamases. All these facts lead us to consider the oral cavity as an important reservoir of β-lactam resistance genes and a privileged place for genetic exchange, especially in commensal strictly anaerobic Gram-negative bacilli. Copyright © 2014 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  15. LiF Reduces MICs of Antibiotics against Clinical Isolates of Gram-Positive and Gram-Negative Bacteria

    Directory of Open Access Journals (Sweden)

    H. C. Syed

    2012-01-01

    Full Text Available Antibiotic resistance is an ever-growing problem yet the development of new antibiotics has slowed to a trickle, giving rise to the use of combination therapy to eradicate infections. The purpose of this study was to evaluate the combined inhibitory effect of lithium fluoride (LiF and commonly used antimicrobials on the growth of the following bacteria: Enterococcus faecalis, Staphyloccoccus aureus, Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumannii, Klebsiella pneumoniae, Serratia marcescens, and Streptococcus pneumoniae. The in vitro activities of ceftazidime, sulfamethoxazole-trimethoprim, streptomycin, erythromycin, amoxicillin, and ciprofloxacin, doxycycline, alone or combined with LiF were performed by microdilution method. MICs were determined visually following 18–20 h of incubation at 37°C. We observed reduced MICs of antibiotics associated with LiF ranging from two-fold to sixteen-fold. The strongest decreases of MICs observed were for streptomycin and erythromycin associated with LiF against Acinetobacter baumannii and Streptococcus pneumoniae. An eight-fold reduction was recorded for streptomycin against S. pneumoniae whereas an eight-fold and a sixteen-fold reduction were obtained for erythromycin against A. baumannii and S. pneumoniae. This suggests that LiF exhibits a synergistic effect with a wide range of antibiotics and is indicative of its potential as an adjuvant in antibiotic therapy.

  16. Bacterial Contamination of Iranian Paper Currency and Their Antibiotic Resistance Patterns

    Directory of Open Access Journals (Sweden)

    Farzaneh Firoozeh

    2017-11-01

    Full Text Available Background: Paper currency is used in exchange for services, and thisis why the circulation of paper currency from person to person expandsmicroorganisms. Objectives:: Paper banknotes would be a vector for transmission of pathogenic microorganisms through handling. This study aimed to determine bacterial contamination of Iranian paper currencies in circulation and their antibiotic resistance patterns. Materials and Methods: In this study, 337 currency notes of different value were collected from markets, shops, restaurants, bus stations and banks in Kashan, Iran during April 2015 to March 2016. The currency notes transferred to microbiology laboratory and were tested for bacterial contamination using standard microbiological methods. Antibiotic resistance patterns of isolated bacteria were determined by disk diffusion method according to CLSI standards. The results and data were analyzed using descriptive statistics. Results: Of 337 currency notes, 262 (77.7% were identified with bacterial contamination. Bacteria isolated from currency notes were as follows: Bacillus spp 113 (43.1%, coagulase-negative Staphylococci 99 (37.7%, Escherichia coli 20 (7.6%, Enterococci species 14 (5.3%, Staphylococcus aureus 8 (3.1%, Klebsiella spp 4 (1.5%, Shigella species 2 (0.8%, Pseudomonas species 2 (0.8%. The most and least contaminated currency notes were 50000 and 500 Rials, respectively. The most resistance rates in gram negative rods were against nalidixicacid, and ampicillin. Also most resistance rates in Staphylococcus aureus, coagulase-negative Staphylococci and Enterococci species were against ampicillin, erythromycin and tetracycline. Conclusion: Our study revealed that the bacterial contamination among Iranian paper currency in circulation especially those obtained from certain sources including shops and bus stations is high and in most cases these bacterial isolates are antibiotic resistant strains.

  17. Neither Single nor a Combination of Routine Laboratory Parameters can Discriminate between Gram-positive and Gram-negative Bacteremia

    Science.gov (United States)

    Ratzinger, Franz; Dedeyan, Michel; Rammerstorfer, Matthias; Perkmann, Thomas; Burgmann, Heinz; Makristathis, Athanasios; Dorffner, Georg; Loetsch, Felix; Blacky, Alexander; Ramharter, Michael

    2015-01-01

    Adequate early empiric antibiotic therapy is pivotal for the outcome of patients with bloodstream infections. In clinical practice the use of surrogate laboratory parameters is frequently proposed to predict underlying bacterial pathogens; however there is no clear evidence for this assumption. In this study, we investigated the discriminatory capacity of predictive models consisting of routinely available laboratory parameters to predict the presence of Gram-positive or Gram-negative bacteremia. Major machine learning algorithms were screened for their capacity to maximize the area under the receiver operating characteristic curve (ROC-AUC) for discriminating between Gram-positive and Gram-negative cases. Data from 23,765 patients with clinically suspected bacteremia were screened and 1,180 bacteremic patients were included in the study. A relative predominance of Gram-negative bacteremia (54.0%), which was more pronounced in females (59.1%), was observed. The final model achieved 0.675 ROC-AUC resulting in 44.57% sensitivity and 79.75% specificity. Various parameters presented a significant difference between both genders. In gender-specific models, the discriminatory potency was slightly improved. The results of this study do not support the use of surrogate laboratory parameters for predicting classes of causative pathogens. In this patient cohort, gender-specific differences in various laboratory parameters were observed, indicating differences in the host response between genders. PMID:26522966

  18. RND-type Drug Efflux Pumps from Gram-negative bacteria: Molecular Mechanism and Inhibition

    Directory of Open Access Journals (Sweden)

    Henrietta eVenter

    2015-04-01

    Full Text Available Drug efflux protein complexes confer multidrug resistance on bacteria by transporting a wide spectrum of structurally diverse antibiotics. Moreover, organisms can only acquire resistance in the presence of an active efflux pump. The substrate range of drug efflux pumps is not limited to antibiotics, but it also includes toxins, dyes, detergents, lipids and molecules involved in quorum sensing; hence efflux pumps are also associated with virulence and biofilm formation. Inhibitors of efflux pumps are therefore attractive compounds to reverse multidrug resistance and to prevent the development of resistance in clinically relevant bacterial pathogens. Recent successes on the structure determination and functional analysis of the AcrB and MexB components of the AcrAB-TolC and MexAB-OprM drug efflux systems as well as the structure of the fully assembled, functional triparted AcrAB-TolC complex significantly contributed to our understanding of the mechanism of substrate transport and the options for inhibition of efflux. These data, combined with the well-developed methodologies for measuring efflux pump inhibition, could allow the rational design and subsequent experimental verification of potential efflux pump inhibitors. In this review we will explore how the available biochemical and structural information can be translated into the discovery and development of new compounds that could reverse drug resistance in Gram-negative pathogens. The current literature on efflux pump inhibitors will also be analysed and the reasons why no compounds have yet progressed into clinical use will be explored.

  19. Comparison of the Cathra Repliscan II, the AutoMicrobic system Gram-Negative General Susceptibility-Plus Card, and the Micro-Media System Fox Panel for dilution susceptibility testing of gram-negative bacilli.

    Science.gov (United States)

    Reiber, N E; Kelly, M T; Latimer, J M; Tison, D L; Hysmith, R M

    1985-06-01

    A comparative evaluation was done to test the accuracy of the Cathra Repliscan II agar dilution system (Diagnostic Equipment, Inc., St. Paul, Minn.), the AutoMicrobic system with Gram-Negative General Susceptibility-Plus Card (Vitek Systems, Inc., Hazelwood, Mo.), and the Micro-Media Fox Panel micro broth dilution system (Micro-Media Systems, Inc., San Jose, Calif.) in determining MICs of 12 antibiotics for 200 gram-negative bacilli. Of the 200 strains tested, 12 isolates did not grow in one of the three systems. The 188 remaining organisms included 158 members of the family Enterobacteriaceae, 20 Pseudomonas spp., 5 Acinetobacter sp., 3 Aeromonas spp., and 2 Vibrio spp. A total of 2,256 organism-antibiotic combinations were analyzed for each system. An MIC was considered correct if two of the three systems were in agreement. When disagreements occurred, correct MICs were determined by the standard agar dilution method. With this criterion, overall agreements of the Cathra Repliscan II system, AutoMicrobic system, and Micro-Media Fox Panel system were 94.7, 94.9, and 95.5%, respectively. Tetracycline (20%), nitrofurantoin (20%), and ampicillin (16%) accounted for 56% of the discrepancies observed. These results indicate that all three systems perform with a high degree of accuracy for susceptibility testing of gram-negative bacilli.

  20. In vitro activity of potential old and new drugs against multidrug-resistant gram-negatives.

    Science.gov (United States)

    Rizek, Camila; Ferraz, Juliana Rosa; van der Heijden, Inneke Marie; Giudice, Mauro; Mostachio, Anna Karina; Paez, Jorge; Carrilho, Claudia; Levin, Anna Sara; Costa, Silvia F

    2015-02-01

    The aim of this study was to evaluate the in vitro susceptibility of MDR gram-negatives bacteria to old drugs such as polymyxin B, minocycline and fosfomycin and new drugs such as tigecycline. One hundred and fifty-three isolates from 4 Brazilian hospitals were evaluated. Forty-seven Acinetobacter baumannii resistant to carbapenens harboring adeB, blaOxA23, blaOxA51, blaOxA143 and blaIMP genes, 48 Stenotrophomonas maltophilia including isolates resistant to levofloxacin and/or trimethoprim-sulfamethoxazole harboring sul-1, sul-2 and qnrMR and 8 Serratia marcescens and 50 Klebsiella pneumoniae resistant to carbapenens harboring blaKPC-2 were tested to determine their minimum inhibitory concentrations (MICs) by microdilution to the following drugs: minocycline, ampicillin-sulbactam, tigecycline, and polymyxin B and by agar dilution to fosfomycin according with breakpoint criteria of CLSI and EUCAST (fosfomycin). In addition, EUCAST fosfomycin breakpoint for Pseudomonas spp. was applied for Acinetobacter spp and S. maltophilia, the FDA criteria for tigecycline was used for Acinetobacter spp and S. maltophilia and the Pseudomonas spp polymyxin B CLSI criterion was used for S. maltophilia. Tigecycline showed the best in vitro activity against the MDR gram-negative evaluated, followed by polymyxin B and fosfomycin. Polymyxin B resistance among K. pneumoniae was detected in 6 isolates, using the breakpoint of MIC > 8 ug/mL. Two of these isolates were resistant to tigecycline. Minocycline was tested only against S. maltophilia and A. baumannii and showed excellent activity against both. Fosfomycin seems to not be an option to treat infections due to the A. baumannii and S. maltophilia isolates according with EUCAST breakpoint, on the other hand, showed excellent activity against S. marcescens and K. pneumoniae. Copyright © 2014 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  1. Short communication: The role of autoinducer 2 (AI-2) on antibiotic resistance regulation in an Escherichia coli strain isolated from a dairy cow with mastitis.

    Science.gov (United States)

    Xue, Ting; Yu, Lumin; Shang, Fei; Li, Wenchang; Zhang, Ming; Ni, Jingtian; Chen, Xiaolin

    2016-06-01

    Extended spectrum β-lactamase (ESBL)-positive Escherichia coli is a major etiological organism responsible for bovine mastitis. The autoinducer 2 (AI-2) quorum sensing system is widely present in many species of gram-negative and gram-positive bacteria and has been proposed to be involved in interspecies communication. In E. coli model strains, the functional mechanisms of AI-2 have been well studied; however, in clinical antibiotic-resistant E. coli strains, whether AI-2 affects the expression of antibiotic resistance genes has not been reported. In this study, we report that exogenous AI-2 increased the antibiotic resistance of a clinical E. coli strain isolated from a dairy cow with mastitis by upregulating the expression of TEM-type enzyme in an LsrR (LuxS regulated repressor)-dependent manner. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. A study on device-related infections with special reference to biofilm production and antibiotic resistance

    Directory of Open Access Journals (Sweden)

    Monil Singhai

    2012-01-01

    Full Text Available Background: Indwelling medical devices (IMDs in critical patients are vulnerable to colonization by biofilm producing bacteria. Complex characteristics of bacterial biofilms promote antibiotic resistance, leading to the emergence of resistant device-related infections (DRI, which pose new challenges in their management. Materials and Methods : The study was done on 135 hospitalized (Intensive care units pediatric patients with IMDs (intravascular catheter, urinary catheter, and endotracheal tube to determine the device-specific infection rates. Biofilm formations were demonstrated by the tube method and by scanning electron microscopy (SEM. Bacteria in biofilms were identified by the standard conventional methods and tested for antibiotic resistance. We also detected the presence of extended spectrum β-lactamases (ESβLs, particularly, blaCTX-M, in gram-negative isolates. Results: The rates of biofilm-based catheter-related blood stream infections (CRBSI, catheter-associated urinary tract infections (CAUTI, and Ventilator Associated Pneumonia (VAP, in our study, were 10.4, 26.6, and 20%. Biofilm formation by the tube method correlated well with the SEM findings. A majority of infections were caused by Klebsiella pneumoniae followed by Staphylococcal biofilms. A high percentage (85.7%, 95% confidence interval 64.5 to 95.8% of biofilm producing bacterial isolates, causing infection, were multidrug resistant. Many biofilm producing gram-negative isolates were ESβLs producers, and a majority particularly harbored blaCTX-M, among the ESβLs genotypes. Conclusion: The incidence of resistant device-related infections, predominantly caused by biofilm producing bacteria, is rising. The tube method is an effective screening method to test biofilm production, where sophisticated microscopy facilities are not available. The varying resistance pattern of organisms isolated in our setup, emphasizes the importance of studying the pattern of infection in

  3. Old and New Glycopeptide Antibiotics: Action and Resistance

    Directory of Open Access Journals (Sweden)

    Elisa Binda

    2014-11-01

    Full Text Available Glycopeptides are considered antibiotics of last resort for the treatment of life-threatening infections caused by relevant Gram-positive human pathogens, such as Staphylococcus aureus, Enterococcus spp. and Clostridium difficile. The emergence of glycopeptide-resistant clinical isolates, first among enterococci and then in staphylococci, has prompted research for second generation glycopeptides and a flurry of activity aimed at understanding resistance mechanisms and their evolution. Glycopeptides are glycosylated non-ribosomal peptides produced by a diverse group of soil actinomycetes. They target Gram-positive bacteria by binding to the acyl-D-alanyl-D-alanine (D-Ala-D-Ala terminus of the growing peptidoglycan on the outer surface of the cytoplasmatic membrane. Glycopeptide-resistant organisms avoid such a fate by replacing the D-Ala-D-Ala terminus with D-alanyl-D-lactate (D-Ala-D-Lac or D-alanyl-D-serine (D-Ala-D-Ser, thus markedly reducing antibiotic affinity for the cellular target. Resistance has manifested itself in enterococci and staphylococci largely through the expression of genes (named van encoding proteins that reprogram cell wall biosynthesis and, thus, evade the action of the antibiotic. These resistance mechanisms were most likely co-opted from the glycopeptide producing actinomycetes, which use them to avoid suicide during antibiotic production, rather than being orchestrated by pathogen bacteria upon continued treatment. van-like gene clusters, similar to those described in enterococci, were in fact identified in many glycopeptide-producing actinomycetes, such as Actinoplanes teichomyceticus, which produces teicoplanin, and Streptomyces toyocaensis, which produces the A47934 glycopeptide. In this paper, we describe the natural and semi-synthetic glycopeptide antibiotics currently used as last resort drugs for Gram-positive infections and compare the van gene-based strategies of glycopeptide resistance among the pathogens and

  4. Architecture of class 1, 2 and 3 integrons from Gram negative bacteria recovered among fruits and vegetables.

    Directory of Open Access Journals (Sweden)

    Daniela Jones-Dias

    2016-09-01

    Full Text Available The spread of antibiotic resistant bacteria throughout the food chain constitutes a public health concern. To understand the contribution of fresh produce in shaping antibiotic resistance bacteria and integron prevalence in the food chain, 333 antibiotic resistance Gram negative isolates were collected from organic and conventionally produced fruits (pears, apples and strawberries and vegetables (lettuces, tomatoes and carrots. Although low levels of resistance have been detected, the bacterial genera identified in the assessed fresh produce are often described not only as environmental, but mostly as commensals and opportunistic pathogens. The genomic characterization of integron-harboring isolates revealed a high number of mobile genetic elements and clinically relevant antibiotic resistance genes, of which we highlight the presence of as mcr-1, qnrA1, blaGES-11, mphA and oqxAB. The study of class 1 (n=8, class 2 (n=3 and class 3 (n=1 integrons, harbored by species such as Morganella morganii, Escherichia coli, Klebsiella pneumoniae, led to the identification of different integron promoters (PcW, PcH1, PcS and PcWTNG-10 and cassette arrays (containing drfA, aadA, cmlA, estX, sat and blaGES. In fact, the diverse integron backbones were associated with transposable elements (e.g. Tn402, Tn7, ISCR1, Tn2*, IS26, IS1326 and IS3 that conferred greater mobility. This is also the first appearance of In1258, In1259 and In3-13, which should be monitored to prevent their establishment as successfully dispersed mobile resistance integrons. These results underscore the growing concern about the dissemination of acquired resistance genes by mobile elements in the food chain.

  5. Procalcitonin Levels in Gram-Positive, Gram-Negative, and Fungal Bloodstream Infections

    Directory of Open Access Journals (Sweden)

    Christian Leli

    2015-01-01

    Full Text Available Procalcitonin (PCT can discriminate bacterial from viral systemic infections and true bacteremia from contaminated blood cultures. The aim of this study was to evaluate PCT diagnostic accuracy in discriminating Gram-positive, Gram-negative, and fungal bloodstream infections. A total of 1,949 samples from patients with suspected bloodstream infections were included in the study. Median PCT value in Gram-negative (13.8 ng/mL, interquartile range (IQR 3.4–44.1 bacteremias was significantly higher than in Gram-positive (2.1 ng/mL, IQR 0.6–7.6 or fungal (0.5 ng/mL, IQR 0.4–1 infections (P<0.0001. Receiver operating characteristic analysis showed an area under the curve (AUC for PCT of 0.765 (95% CI 0.725–0.805, P<0.0001 in discriminating Gram-negatives from Gram-positives at the best cut-off value of 10.8 ng/mL and an AUC of 0.944 (95% CI 0.919–0.969, P<0.0001 in discriminating Gram-negatives from fungi at the best cut-off of 1.6 ng/mL. Additional results showed a significant difference in median PCT values between Enterobacteriaceae and nonfermentative Gram-negative bacteria (17.1 ng/mL, IQR 5.9–48.5 versus 3.5 ng/mL, IQR 0.8–21.5; P<0.0001. This study suggests that PCT may be of value to distinguish Gram-negative from Gram-positive and fungal bloodstream infections. Nevertheless, its utility to predict different microorganisms needs to be assessed in further studies.

  6. Evaluation of Inhibitory and Lethal Effects of Aqueous, Ethanolic and Hydroalcoholic Extracts of Aerial Parts of Salvia chorassanica against Some Gram-negative and Gram-positive Bacteria in Vitro

    Directory of Open Access Journals (Sweden)

    Azam Mehraban

    2016-05-01

    Full Text Available Abstract Background and Objectives: Development of bacterial resistance to antibiotics has led to an increased tendency to development of new more effective and non-toxic antimicrobial compounds. In this study, the inhibitory and lethal effects of aqueous, ethanolic, and hydroalcoholic extracts of aerial parts of Salvia chorassanica were evaluated against Listeria monocytogenes, Bacillus cereus, Salmonella typhi, and Escherichia coli O:157. Methods: In this study, Kirby–Bauer disk diffusion method was used to evaluate antimicrobial activity. In this method, bacteria were cultivated as grass culture in Mueller Hinton Agar (MHA media. To determine the minimum inhibitory concentration and minimum bactericidal concentration, micro-dilution method with ELISA and addition of phenyl tetrazolium chloride reagent, were used. Data were analyzed using one-way ANOVA and Duncan’s test at the significance level of p<0.05. Results: The highest diameter of inhibition in agar diffusion method was related to hydroalcoholic extract of aerial parts of Salvia chorassanica against Gram-positive bacteria Bacillus cereus. The amount of calculated MIC of hydro-alcoholic extract for Gram-positive bacteria was 30mg/ml. This amount was the lowest among other measured MIC. Conclusion: Based on the results of this study, Gram-negative bacteria showed more resistance to different extracts of aerial parts of Salvia chorassanica as compared to Gram-positive bacteria, so that Salmonella typhi was found to be the most resistant bacterium among the tested bacteria.

  7. Activity of siderophores against drug-resistant Gram-positive and Gram-negative bacteria

    Directory of Open Access Journals (Sweden)

    Gokarn K

    2018-01-01

    Full Text Available Karuna Gokarn,1,2 Ramprasad B Pal1 1Department of Microbiology, Sir Hurkisondas Nurrotumdas Medical Research Society, 2Caius Research Laboratory, St Xavier’s College, Mumbai, India Abstract: Infections by drug-resistant bacteria are life-threatening. As iron is a vital element for the growth of bacteria, iron-chelating agents (siderophores can be used to arrest their multiplication. Exogenous siderophores – exochelin-MS and deferoxamine-B – were evaluated for their inhibitory activity against methicillin-resistant Staphylococcus aureus and metallo-β-lactamase producers – Pseudomonas aeruginosa and Acinetobacter baumannii – by disc diffusion, micro-broth dilution, and turbidimetric growth assays. The drug-resistant isolates were inhibited by the synergistic activity of siderophores and antibiotics. Minimum inhibitory concentration of exochelin-MS+ampicillin for different isolates was between 0.05 and 0.5 mg/mL. Minimum inhibitory concentration of deferoxamine-B+ampicillin was 1.0 mg/mL and greater. Iron-chelation therapy could provide a complementary approach to overcome drug resistance in pathogenic bacteria. Keywords: iron-chelation, xenosiderophores, exochelin MS, deferoxamine B

  8. Antimicrobial sensitivity and frequency of DRUG resistance among bacterial strains isolated from cancer patients

    International Nuclear Information System (INIS)

    Faiz, M.; Bashir, T.

    2004-01-01

    Blood stream infections (bacteremia) is potentially life threatening. Concomitant with a change in the incidence and epidemiology of infecting organisms, there has been an increase in resistance to many antibiotic compounds. The widespread emergence of resistance among bacterial pathogens has an impact on our ability to treat patients effectively. The changing spectrum of microbial pathogens and widespread emergence of microbial resistance to antibiotic drugs has emphasized the need to monitor the prevalence of resistance in these strains. In the present study frequency of isolation of clinically significant bacteria and their susceptibility and resistance pattern against a wide range of antimicrobial drugs from positive blood cultures collected during 2001-2003 was studied. A total of 102 consecutive isolates were found with 63% gram positive and 44% gram negative strains. The dominating pathogens were Staphylococcus aureus (51%), Streptococci (31%), Pseudomonas (40%), Proteus (13%), Klebsiella (13%). The isolated strains were tested against a wide range of antibiotics belonging to cephalosporins, aminoglycosides and quinolone derivative group by disk diffusion method. It has been observed that isolated strains among gram positive and negative strains showed different level of resistance against aminoglycosides and cephalosporin group of antibiotics with gram positives showing highest number and frequency of resistance against aminoglycosides (40-50%) and cephalosporins.(35-45%) whereas cephalosporins were found to be more effective against gram negatives with low frequency of resistant strains. Cabapenem and quinolone derivative drugs were found to be most effective among other groups in both gram positive and negative strains with 23-41% strains found sensitive to these two drugs. The frequency of sensitive strains against aminoglycoside and cephalosporin in gram negative and gram positive strains were found to be decreasing yearwise with a trend towards an

  9. Prevalence and antibiotic resistance of coagulase-negative Staphylococci isolated from poultry farms in three regions of Ghana

    Directory of Open Access Journals (Sweden)

    Boamah VE

    2017-06-01

    Full Text Available Vivian Etsiapa Boamah,1 Christian Agyare,1 Hayford Odoi,1 Francis Adu,1 Stephen Yao Gbedema,1 Anders Dalsgaard2 1Microbiology Section, Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana; 2Section of Food Safety and Zoonoses, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederisksberg, Denmark Abstract: The use of antibiotics in animal production has been associated with the development and spread of antibiotic-resistant organisms including commensals. Coagulase-negative Staphylococcus (CoNS species, which were until recently considered non-pathogenic, have been associated with opportunistic infections and high resistance to several antibiotics. This study sought to determine the prevalence, identity, and phenotypic resistance of coagulase-negative Staphylococcus spp. isolated from some selected poultry farms and farm workers in the Ashanti, Brong Ahafo, and Greater Accra regions of Ghana. Poultry litter samples and oral swabs of poultry farm workers were collected, from which bacterial species were isolated, identified, and analyzed. Various selective media were used for the presumptive identification of the different species. Confirmation of bacterial identity was done using matrix-assisted laser desorption/ionization time of flight (MALDI-TOF mass spectrometry. Antibiotic susceptibility testing of the isolates was performed using the Kirby-Bauer disk diffusion method. Zones of growth inhibition were interpreted based on the European Committee on Antimicrobial Susceptibility Testing (EUCAST guidelines. Two hundred and fifty-six coagulase-negative Staphylococcus spp., comprising S. sciuri (42.97%, S. lentus (35.94%, S. gallinarum (6.64%, S. xylosus (4.30%, S. haemolyticus (3.91%, S. saprophyticus (1.95%, and S. cohnii (0.39% were confirmed by MALDI-TOF. CoNS were isolated from samples

  10. Increasing antibiotic resistance among uropathogens isolated during years 2006-2009: impact on the empirical management

    Directory of Open Access Journals (Sweden)

    Hamid Mohammad-Jafari

    2012-02-01

    Full Text Available Urinary tract infections (UTI are one of the most common infections with an increasing resistance to antimicrobial agents. PURPOSE: Empirical initial antibiotic treatment of UTI must rely on susceptible data from local studies. MATERIALS AND METHODS: Retrospective analysis of isolated bacteria from children with UTIs was performed at the university hospital during years 2006-2009. The findings were compared with data collected in a similar study carried out in 2002- 2003. RESULTS: A total of 1439 uropathogens were isolated. Escherichia coli (E.coli was the leading cause, followed by Enterobacter, and other gram negative bacilli. It was observed resistance of E.coli to ceftriaxone, cefexime, amikacin, gentamycin, and nalidixic acid; Enterobacter to cefexime; and the resistance of gram negative bacilli to gentamicin and cefexime increased significantly. The highest effective antibiotic was Imipenem, ciprofloxacin, and amikacin with 96.7%, 95% and 91% sensitivity rates , respectively, followed by ceftriaxone 77.2%, gentamicin 77%, nitrofurantoin 76.4%, nalidixic acid 74.3% and cefexime with 70%. CONCLUSION: The use of nitrofurantoin or nalidixic acid as initial empirical antibacterial therapy for cystitis seems appropriate. For cases of simple febrile UTI, the use of initial parenteral therapies with amikacin or ceftriaxone followed by an oral third generation cephalosporin also seemed appropriated, and in cases of severely ill patients or complicated UTI, imipenem as monotherapy or, a combination of Ceftriaxone with an aminoglycoside, are recommended.

  11. Septicemia caused by the gram-negative bacterium CDC IV c-2 in an immunocompromised human.

    OpenAIRE

    Dan, M; Berger, S A; Aderka, D; Levo, Y

    1986-01-01

    A 37-year-old man with plasma cell leukemia developed nonfatal septicemia caused by the gram-negative bacterium CDC IV c-2. Recovery followed appropriate treatment with antibiotics. The biochemical features of this organism are reviewed.

  12. Comparison of isolates and antibiotic sensitivity pattern in pediatric and adult cancer patients; is it different?

    Science.gov (United States)

    Prabhash, K; Bajpai, J; Gokarn, A; Arora, B; Kurkure, P A; Medhekar, A; Kelkar, R; Biswas, S; Gupta, S; Naronha, V; Shetty, N; Goyel, G; Banavali, S D

    2014-01-01

    Infection is a common cause of mortality and morbidity in cancer patients. Organisms are becoming resistant to antibiotics; age appears to be one of the factors responsible. We analyzed common organisms and their antibiotic sensitivity pattern in the correlation with age. This is a single institutional, retrospective analysis of all culture positive adult and pediatric cancer patients from January 2007 to December 2007. For statistical analysis, Chi-square test for trend was used and P values were obtained. Of 1251 isolates, 262 were from children 12 years of age). Gram-negative organisms were predominant (64.95) while Gram-positive constituted 35.09% of isolates. The most common source in all age groups was peripheral-blood, accounting to 47.8% of all samples. The most common organisms in adults were Pseudomonas aeruginosa (15.3%) while in children it was coagulase negative Staphylococcus aureus (19.8%). Antibiotic sensitivity was different in both groups. In pediatric group higher sensitivity was seen for Cefoparazone-sulbactum, Cefipime, Amikacin, and Tobramycin. No resistance was found for Linezolid. The isolates in both children and adults were predominantly Gram-negative though children had proportionately higher Gram-positive organisms. High-dose cytarabine use, cotrimoxazole prophylaxis, and frequent use of central lines in children especially in hematological malignancies could explain this observation. Children harbor less antibiotic resistance than adults; Uncontrolled, cumulative exposure to antibiotics in our community with increasing age, age-related immune factors and variable bacterial flora in different wards might explain the higher antibiotic resistance in adults. Thus age is an important factor to be considered while deciding empirical antibiotic therapy.

  13. The role of active efflux in antibiotic - resistance of clinical isolates of Helicobacter pylori

    Directory of Open Access Journals (Sweden)

    Falsafi T

    2009-01-01

    Full Text Available Purpose: In gram-negative bacteria, active efflux pumps that excrete drugs can confer resistance to antibiotics however, in Helicobacter pylori this role is not well established. The purpose of this study is to evaluate the role of active efflux in resistance of H. pylori isolates to antibiotics. Materials and Methods: Twelve multiple antibiotic resistant (MAR isolates resistant to at least four antibiotics, including β-lactams, metronidazole, tetracycline, erythromycin, and ciprofloxacin; three resistant to only β-lactams, and two hyper-susceptible isolates, were obtained from screening of 96 clinical isolates of H. pylori . Their minimal inhibitory concentrations (MICs for antibiotics and ethidium-bromide (EtBr were compared in the presence- and absence of a proton-conductor, carbonyl cyanide-m chlorophenyl-hydrazone (CCCP using agar-dilution and disc diffusion. Drug accumulation studies for EtBr and antibiotics were assessed in the presence and absence of CCCP using spectrofluorometry. Results: MIC of EtBr for eight MAR-isolates was decreased two- to four-folds in the presence of CCCP, of which five showed reduced MICs for β-lactam, metronidazole, tetracycline, and ciprofloxacin with CCCP. Accumulation of EtBr by the MAR-isolates was rapid and not dependant on the pattern of multiple resistance. Antibiotic accumulation assay confirmed the presence of energy-dependant efflux of β-lactam, metronidazole, tetracycline, and ciprofloxacin, but no erythromycin in five MAR isolates. Energy-dependant efflux of EtBr or antibiotics was not observed for four MAR-isolates, and three isolates were resistant only to β-lactams. Conclusion: Energy-dependant efflux plays a role in the resistance of H. pylori clinical isolates to structurally unrelated antibiotics in a broadly specific multidrug efflux manner. Difference in the efflux potential of MAR isolates may be related to the presence or absence of functional efflux-pumps in diverse H. pylori

  14. Gram-negative, but not Gram-positive, bacteria elicit strong PGE2 production in human monocytes.

    Science.gov (United States)

    Hessle, Christina C; Andersson, Bengt; Wold, Agnes E

    2003-12-01

    Gram-positive and Gram-negative bacteria induce different cytokine patterns in human mononuclear cells. We have seen that Gram-positives preferentially induce IL-12 and TNF-alpha, whereas Gram-negatives induce more IL-10, IL-6, and IL-8. In this study, we compared the capacity of these two groups of bacteria to induce PGE2. Monocytes stimulated with Gram-negative bacterial species induced much more PGE2 than did Gram-positive bacteria (5600 +/- 330 vs. 1700 +/- 670 pg/mL, p Gram-positive and Gram-negative bacteria. We suggest that Gram-positive and Gram-negative bacteria may stimulate different innate effector functions; Gram-positive bacteria promoting cell-mediated effector functions whereas Gram-negative bacteria inducing mediators inhibiting the same.

  15. A study of bacterial isolates from corneal specimens and their antibiotic resistance profile

    International Nuclear Information System (INIS)

    Begum, N. N.; Al-Khattaf, Abdulaziz S.; Yeboah, E. A.; Kambal, Abdel-Majed M.; Al-Mansouri, Samir M.

    2006-01-01

    We aim to examine the spectrum of bacteria causing corneal infections and their antibiotic susceptibility patterns. This will serve as a guideline for empiric therapy of corneal infections. We conducted the study over a period of 18 months from March 2001 through December 2002 in King Abdul-Aziz University Hospital, Riyadh, Kingdom of Saudi Arabia. Corneal specimens taken from 200 patients were inoculated directly onto different types of media. The isolates were identified and then tested against the appropriate topical or systemic antibiotics. Sixty-seven (33.5%) of the total specimens were culture positive and 133 (66.5%) were culture negative. Fourteen (7%) of these showed organisms in the Gram stained smears and correlated well with the culture reports. Of the 67 positive cultures, 53 (79.1%) were Gram-positive bacteria mostly coagulase-negative Staphylococci 29 (43.3%) followed by Streptococcus pneumoniae (S. pneumoniae) 13 (19.4%). Among Gram-negative bacteria 14 (20.9%), Pseudomonas aeruginosa (P. aeruginosa) 10 (14.9%) was the predominant isolate. All the isolates were sensitive to ofloxacin and the commonly used ocular antibiotics. All the isolated bacteria were sensitive to ofloxacin, a fluoroquinolone. Having marked potency for broad-spectrum activity against both Gram-positive and Gram-negative bacteria, make the fluoroquinolones especially the newer generations, a potential single drug therapy for corneal infections. (author)

  16. Characterization of the Extended-Spectrum beta-Lactamase Producers among Non-Fermenting Gram-Negative Bacteria Isolated from Burnt Patients

    Directory of Open Access Journals (Sweden)

    Mojdeh Hakemi Vala

    2013-09-01

    Full Text Available Please cite this article as: Hakemi Vala M, Hallajzadeh M, Fallah F, Hashemi A, Goudarzi H. Characterization of the extended-spectrum beta-lactamase producers among non-fermenting gram-negative bacteria isolated from burnt patients. Arch Hyg Sci 2013;2(1:1-6. Background & Aims of the Study: Extended-spectrum beta-Lactamases (ESBLs represent a major group of beta-lactamases which are responsible for resistance to oxyimino-cephalosporins and aztreonam and currently being identified in large numbers throughout the world. The objective of this study was to characterize ESBL producers among non-fermenter gram-negative bacteria isolated from burnt patients. Materials & Methods: During April to July 2012, 75 non-fermenter gram-negative bacilli were isolated from 240 bacterial cultures collected from wounds of burnt patients admitted to the Burn Unit at Shahid Motahari Hospital (Tehran, Iran. Bacterial isolation and identification was done using standard methods. Antimicrobial susceptibility testing was performed by disk diffusion method for all strains against selected antibiotics and minimum inhibitory concentration was determined by microdilution test. The ability to produce ESBL was detected through double disk synergy test among candidate strains. Results: Of 75 non-fermenter isolates, 47 Pseudomonas aeruginosa and 28 Acinetobacter baumannii were identified. The resistance of P. aeruginosa isolates to tested antibiotics in antibiogram test were 100% to cefpodoxime, 82.98% to ceftriaxone, 78.73% to imipenem, 75% to meropenem, 72.72% to gentamicin, 69.23% to ciprofloxacin and aztreonam, 67.57% to cefepime, 65.95% to ceftazidime, and 61.53% to piperacillin. The results for Acinetobacter baumannii were 100% to ceftazidime, cefepime, ciprofloxacin, imipenem, meropenem, cefpodoxime, and cefotaxim, 96.85% to gentamicin, 89.65% to ceftriaxone, 65.51% to aztreonam, and 40% to piperacillin. Double disk synergy test showed that 21 (28% of non

  17. Changes in Bacterial Resistance Patterns of Pediatric Urinary Tract Infections and Rationale for Empirical Antibiotic Therapy

    OpenAIRE

    İbrahim Gökçe; Neslihan Çiçek; Serçin Güven; Ülger Altuntaş; Neşe Bıyıklı; Nurdan Yıldız; Harika Alpay

    2017-01-01

    Background: The causative agent spectrum and resistance patterns of urinary tract infections in children are affected by many factors. Aims: To demonstrate antibiotic resistance in urinary tract infections and changing ratio in antibiotic resistance by years. Study Design: Retrospective cross-sectional study. Methods: We analysed antibiotic resistance patterns of isolated Gram (-) bacteria during the years 2011-2014 (study period 2) in children with urinary tract infections. We...

  18. Analisi delle antibiotico-resistenze di Gram-negativi isolati da pazienti con infezioni del tratto urinario afferenti al Polo Oncologico e Dermatologico I.F.O.

    OpenAIRE

    Maria Teresa Gallo; Grazia Prignano; Mauro Belardi; Karim Donato; Gian Piero Testore; Fabrizio Ensoli

    2006-01-01

    Introduction. Urinary tract infections represent a worlwide problem due to their prevalence among nosocomial infections and to the increasing frequency of antibiotic resistance among the Gram-negative pathogens. Knowledge of the antimicrobial resistance patterns according to local epidemiology is essential for providing clinically appropriate therapy for urinary tract infection. In the present study we analysed the drug resistence pattern of Gram negative bacteria isolated from urine samples ...

  19. High prevalence and resistance rates to antibiotics in anaerobic bacteria in specimens from patients with chronic balanitis.

    Science.gov (United States)

    Boyanova, Lyudmila; Mitev, Angel; Gergova, Galina; Mateev, Grisha; Mitov, Ivan

    2012-08-01

    Aim of the study was to assess both prevalence and antibiotic resistance in anaerobic bacteria from glans penis skin of 70 adults. Strain susceptibility was determined by breakpoint susceptibility test or E test. In 9 asymptomatic, 48 untreated and 13 treated symptomatic patients, anaerobes were found in 22.2%, 70.8% and 53.3%, respectively. Gram-positive strains (GPAs) were 2.2-fold more common than Gram-negative ones. Prevalent Gram-negative (GNAs) and GPAs were Prevotella spp. and anaerobic cocci, respectively. Clostridium difficile strain was found in an untreated patient. In GNAs, resistance rates to amoxicillin, metronidazole, clindamycin, tetracycline, levofloxacin, and amoxicillin/clavulanate were 42.1, 0, 52.6, 53.3, 86.7 and 5.2%, respectively. In GPAs, the resistance rates to metronidazole, clindamycin, tetracycline, levofloxacin and amoxicillin/clavulanate were 18.2, 34.1, 52.6, 36.8 and 0%, respectively. In conclusion, anaerobes were 1.6-fold more frequent in untreated symptomatic patients compared with other patients, suggesting their participation in development of chronic balanitis. GPAs were more common than GNAs. The resistance rates to amoxicillin, clindamycin, tetracycline, and levofloxacin were high. Most active agents were metronidazole and amoxicillin/clavulanate. Resistance in anaerobes varies according to sites of specimens and years of study. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Prevalence and antibiotic resistance of coagulase-negative Staphylococci isolated from poultry farms in three regions of Ghana.

    Science.gov (United States)

    Boamah, Vivian Etsiapa; Agyare, Christian; Odoi, Hayford; Adu, Francis; Gbedema, Stephen Yao; Dalsgaard, Anders

    2017-01-01

    The use of antibiotics in animal production has been associated with the development and spread of antibiotic-resistant organisms including commensals. Coagulase-negative Staphylococcus (CoNS) species, which were until recently considered non-pathogenic, have been associated with opportunistic infections and high resistance to several antibiotics. This study sought to determine the prevalence, identity, and phenotypic resistance of coagulase-negative Staphylococcus spp. isolated from some selected poultry farms and farm workers in the Ashanti, Brong Ahafo, and Greater Accra regions of Ghana. Poultry litter samples and oral swabs of poultry farm workers were collected, from which bacterial species were isolated, identified, and analyzed. Various selective media were used for the presumptive identification of the different species. Confirmation of bacterial identity was done using matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry. Antibiotic susceptibility testing of the isolates was performed using the Kirby-Bauer disk diffusion method. Zones of growth inhibition were interpreted based on the European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines. Two hundred and fifty-six coagulase-negative Staphylococcus spp., comprising S. sciuri (42.97%), S. lentus (35.94%), S. gallinarum (6.64%), S. xylosus (4.30%), S. haemolyticus (3.91%), S. saprophyticus (1.95%), and S. cohnii (0.39%) were confirmed by MALDI-TOF. CoNS were isolated from samples from the Brong Ahafo (48.83%), Ashanti (33.59%), and Greater Accra (17.78%) regions. Isolates from poultry litter constituted 55.47%, and farm workers 44.53%. All the isolates were susceptible to amoxicillin/clavulanic acid and amikacin. The isolates exhibited high resistance toward tetracycline (57.03%), doxycycline (43.75%), and oxacillin (43.36%). Multi-drug resistance (MDR) was observed in 19.14% of the isolates. MDR was higher in isolates obtained from poultry farm

  1. Incidence, microbiological profile of nosocomial infections, and their antibiotic resistance patterns in a high volume Cardiac Surgical Intensive Care Unit

    Directory of Open Access Journals (Sweden)

    Manoj Kumar Sahu

    2016-01-01

    Full Text Available Background: Nosocomial infections (NIs in the postoperative period not only increase morbidity and mortality, but also impose a significant economic burden on the health care infrastructure. This retrospective study was undertaken to (a evaluate the incidence, characteristics, risk factors and outcomes of NIs and (b identify common microorganisms responsible for infection and their antibiotic resistance profile in our Cardiac Surgical Intensive Care Unit (CSICU. Patients and Methods: After ethics committee approval, the CSICU records of all patients who underwent cardiovascular surgery between January 2013 and December 2014 were reviewed retrospectively. The incidence of NI, distribution of NI sites, types of microorganisms and their antibiotic resistance, length of CSICU stay, and patient-outcome were determined. Results: Three hundred and nineteen of 6864 patients (4.6% developed NI after cardiac surgery. Lower respiratory tract infections (LRTIs accounted for most of the infections (44.2% followed by surgical-site infection (SSI, 11.6%, bloodstream infection (BSI, 7.5%, urinary tract infection (UTI, 6.9% and infections from combined sources (29.8%. Acinetobacter, Klebsiella, Escherichia coli, and Staphylococcus were the most frequent pathogens isolated in patients with LRTI, BSI, UTI, and SSI, respectively. The Gram-negative bacteria isolated from different sources were found to be highly resistant to commonly used antibiotics. Conclusion: The incidence of NI and sepsis-related mortality, in our CSICU, was 4.6% and 1.9%, respectively. Lower respiratory tract was the most common site of infection and Gram-negative bacilli, the most common pathogens after cardiac surgery. Antibiotic resistance was maximum with Acinetobacter spp.

  2. [Antimicrobial susceptibility patterns of Gram-negative bacteria isolated in urinary tract infections in Venezuela: Results of the SMART study 2009-2012].

    Science.gov (United States)

    Guevara, Napoleón; Guzmán, Manuel; Merentes, Altagracia; Rizzi, Adele; Papaptzikos, Juana; Rivero, Narlesky; Oranges, Carmela; Vlllarroel, Héctor; Limas, Yoxsivell

    2015-12-01

    Antimicrobial resistance of pathogens causing urinary tract infection (UTI) is a growing problem, which complicates their effective treatment. Surveillance is needed to guide appropriate empiric therapy. to describe the susceptibility patterns of Gram-negative bacteria isolated of patients with UTI to twelve antibiotics as part of the Study for Monitoring Antimicrobial Resistance Trends in Venezuela. Between 2009-2012 a total of 472 Gram-negative bacteria were isolated from hospitalized patients with UTI. The isolates were sent to Central Laboratory (Central Laboratory of International Health Management Associates) to confirm their identification, and to make susceptibility testing as recommended by the Clinical and Laboratory Standards Institute. Enterobacteriacea comprised 96.6% of the total, where Escherichia coli (76.9%) and Klebsiella pneumoniae (10.6%) were the most frequent. Extended-spectrum β-lactamases (ESBL) was detected in 21.6% of isolates. Top antimicrobial activity were ertapenem, imipenem, and amikacin (> 90.0%), slightly lower for amikacin (85.1%) in ESBL-producing strains. Resistance rates to fluoroquinolones and ampicillin/sulbactam were high (40 y 64%, respectively). These data suggest a necessary revision of the therapeutic regimens for the empirical treatment of UTI in Venezuela.

  3. Old and New Glycopeptide Antibiotics: Action and Resistance

    OpenAIRE

    Binda, Elisa; Marinelli, Flavia; Marcone, Giorgia Letizia

    2014-01-01

    Glycopeptides are considered antibiotics of last resort for the treatment of life-threatening infections caused by relevant Gram-positive human pathogens, such as Staphylococcus aureus, Enterococcus spp. and Clostridium difficile. The emergence of glycopeptide-resistant clinical isolates, first among enterococci and then in staphylococci, has prompted research for second generation glycopeptides and a flurry of activity aimed at understanding resistance mechanisms and their evolution. Glycop...

  4. Neonatal sepsis in rural India: timing, microbiology and antibiotic resistance in a population-based prospective study in the community setting.

    Science.gov (United States)

    Panigrahi, P; Chandel, D S; Hansen, N I; Sharma, N; Kandefer, S; Parida, S; Satpathy, R; Pradhan, L; Mohapatra, A; Mohapatra, S S; Misra, P R; Banaji, N; Johnson, J A; Morris, J G; Gewolb, I H; Chaudhry, R

    2017-08-01

    To examine the timing and microbiology of neonatal sepsis in a population-based surveillance in the Indian community setting. All live born infants in 223 villages of Odisha state were followed at home for 60 days. Suspect sepsis cases were referred to study hospitals for further evaluation including blood culture. Of 12 622 births, 842 were admitted with suspected sepsis of whom 95% were 4 to 60 days old. Culture-confirmed incidence of sepsis was 6.7/1000 births with 51% Gram negatives (Klebsiella predominating) and 26% Gram positives (mostly Staphylococcus aureus). A very high level of resistance to penicillin and ampicillin, moderate resistance to cephalosporins and extremely low resistance to Gentamicin and Amikacin was observed. The bacterial burden of sepsis in the Indian community is not high. Judicious choice of empiric antibiotics, antibiotic stewardship and alternate modalities should be considered for the management or prevention of neonatal sepsis in India.

  5. Prevalence of the antibiotic resistance genes in coagulase-positive- and negative-Staphylococcus in chicken meat retailed to consumers

    Directory of Open Access Journals (Sweden)

    Kamelia Mahmoud Osman

    2016-11-01

    Full Text Available The use of antibiotics in farm management (growing crops and raising animals has become a major area of concern. Its implications is the consequent emergence of antibiotic resistant bacteria (ARB and accordingly their access into the human food chain with passage of antibiotic resistance genes (ARG to the normal human intestinal microbiota and hence to other pathogenic bacteria causative human disease. Therefore, we pursued in this study to unravel the frequency and the quinolone resistance determining region, mecA and cfr genes of methicillin-susceptible Staphylococcus aureus (MSSA, methicillin-resistant S. aureus (MRSA, methicillin-resistant coagulase-negative staphylococci (MRCNS and methicillin-susceptible coagulase-negative staphylococci (MSCNS isolated from the retail trade of ready-to-eat raw chicken meat samples collected during one year and sold across the Great Cairo area. The 50 Staphylococcus isolated from retail raw chicken meat were analyzed for their antibiotic resistance phenotypic profile on 12 antibiotics (penicillin, oxacillin, methicillin, ampicillin-sulbactam, erythromycin, tetracycline, clindamycin, gentamicin, ciprofloxacin, chloramphenicol, sulfamethoxazole-trimethoprim and vancomycin and their endorsement of the quinolone resistance determining region, mecA and cfr genes. The isolation results revealed 50 isolates, CPS (14 and CNS (36, representing ten species (S. aureus, S. hyicus, S. epidermedius, S. lugdunensis, S. haemolyticus, S. hominus, S. schleiferi, S. cohnii, S. intermedius and S. lentus. Twenty seven isolates were methicillin-resistant. Out of the characterized 50 staphylococcal isolates, three were MRSA but only 2/3 carried the mecA gene. The ARG that bestows resistance to quinolones, β-lactams, macrolides, lincosamides and streptogramin B (MLS(B in MRSA and MR-CNS were perceived. According to the available literature, the present investigation was a unique endeavor into the identification of the quinolone-resistance

  6. Prevalence of the Antibiotic Resistance Genes in Coagulase-Positive-and Negative-Staphylococcus in Chicken Meat Retailed to Consumers.

    Science.gov (United States)

    Osman, Kamelia; Badr, Jihan; Al-Maary, Khalid S; Moussa, Ihab M I; Hessain, Ashgan M; Girah, Zeinab M S Amin; Abo-Shama, Usama H; Orabi, Ahmed; Saad, Aalaa

    2016-01-01

    The use of antibiotics in farm management (growing crops and raising animals) has become a major area of concern. Its implications is the consequent emergence of antibiotic resistant bacteria (ARB) and accordingly their access into the human food chain with passage of antibiotic resistance genes (ARG) to the normal human intestinal microbiota and hence to other pathogenic bacteria causative human disease. Therefore, we pursued in this study to unravel the frequency and the quinolone resistance determining region, mec A and cfr genes of methicillin-susceptible Staphylococcus aureus (MSSA), methicillin-resistant S. aureus (MRSA), methicillin-resistant coagulase-negative staphylococci (MRCNS) and methicillin-susceptible coagulase-negative staphylococci (MSCNS) isolated from the retail trade of ready-to-eat raw chicken meat samples collected during 1 year and sold across the Great Cairo area. The 50 Staphylococcus isolated from retail raw chicken meat were analyzed for their antibiotic resistance phenotypic profile on 12 antibiotics (penicillin, oxacillin, methicillin, ampicillin-sulbactam, erythromycin, tetracycline, clindamycin, gentamicin, ciprofloxacin, chloramphenicol, sulfamethoxazole-trimethoprim, and vancomycin) and their endorsement of the quinolone resistance determining region, mec A and cfr genes. The isolation results revealed 50 isolates, CPS (14) and CNS (36), representing ten species ( S. aureus, S. hyicus, S. epidermedius, S. lugdunensis, S. haemolyticus, S. hominus, S. schleiferi, S. cohnii, S. intermedius , and S. lentus ). Twenty seven isolates were methicillin-resistant. Out of the characterized 50 staphylococcal isolates, three were MRSA but only 2/3 carried the mec A gene. The ARG that bestows resistance to quinolones, β-lactams, macrolides, lincosamides, and streptogramin B [MLS( B )] in MRSA and MR-CNS were perceived. According to the available literature, the present investigation was a unique endeavor into the identification of the quinolone-resistance

  7. Assessment of anaerobic bacterial diversity and its effects on anaerobic system stability and the occurrence of antibiotic resistance genes.

    Science.gov (United States)

    Aydin, Sevcan; Ince, Bahar; Ince, Orhan

    2016-05-01

    This study evaluated the link between anaerobic bacterial diversity and, the biodegradation of antibiotic combinations and assessed how amending antibiotic combination and increasing concentration of antibiotics in a stepwise fashion influences the development of resistance genes in anaerobic reactors. The biodegradation, sorption and occurrence of the known antibiotic resistance genes (ARGs) of erythromycin and tetracycline were investigated using the processes of UV-HPLC and qPCR analysis respectively. Ion Torrent sequencing was used to detect microbial community changes in response to the addition of antibiotics. The overall results indicated that changes in the structure of a microbial community lead to changes in biodegradation capacity, sorption of antibiotics combinations and occurrence of ARGs. The enhanced biodegradation efficiency appeared to generate variations in the structure of the bacterial community. The results suggested that controlling the ultimate Gram-negative bacterial community, especially Acinetobacter-related populations, may promote the successful biodegradation of antibiotic combinations and reduce the occurrence of ARGs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Antibiotic resistance profile and phenotypic detection of beta ...

    African Journals Online (AJOL)

    Abstract. Background: Cockroaches are carriers of numerous microorganisms. However, there is paucity of information on their role as potential reservoir for beta-lactamase producers. Objectives: This research determined the antibiotics susceptibility profile of Beta-lactamase producing Gram-negative bacteria isolated from ...

  9. Antibiotic use and resistance in emerging economies: a situation analysis for Viet Nam.

    Science.gov (United States)

    Nguyen, Kinh Van; Thi Do, Nga Thuy; Chandna, Arjun; Nguyen, Trung Vu; Pham, Ca Van; Doan, Phuong Mai; Nguyen, An Quoc; Thi Nguyen, Chuc Kim; Larsson, Mattias; Escalante, Socorro; Olowokure, Babatunde; Laxminarayan, Ramanan; Gelband, Hellen; Horby, Peter; Thi Ngo, Ha Bich; Hoang, Mai Thanh; Farrar, Jeremy; Hien, Tran Tinh; Wertheim, Heiman F L

    2013-12-10

    Antimicrobial resistance is a major contemporary public health threat. Strategies to contain antimicrobial resistance have been comprehensively set forth, however in developing countries where the need for effective antimicrobials is greatest implementation has proved problematic. A better understanding of patterns and determinants of antibiotic use and resistance in emerging economies may permit more appropriately targeted interventions.Viet Nam, with a large population, high burden of infectious disease and relatively unrestricted access to medication, is an excellent case study of the difficulties faced by emerging economies in controlling antimicrobial resistance. Our working group conducted a situation analysis of the current patterns and determinants of antibiotic use and resistance in Viet Nam. International publications and local reports published between 1-1-1990 and 31-8-2012 were reviewed. All stakeholders analyzed the findings at a policy workshop and feasible recommendations were suggested to improve antibiotic use in Viet Nam.Here we report the results of our situation analysis focusing on: the healthcare system, drug regulation and supply; antibiotic resistance and infection control; and agricultural antibiotic use. Market reforms have improved healthcare access in Viet Nam and contributed to better health outcomes. However, increased accessibility has been accompanied by injudicious antibiotic use in hospitals and the community, with predictable escalation in bacterial resistance. Prescribing practices are poor and self-medication is common - often being the most affordable way to access healthcare. Many policies exist to regulate antibiotic use but enforcement is insufficient or lacking.Pneumococcal penicillin-resistance rates are the highest in Asia and carbapenem-resistant bacteria (notably NDM-1) have recently emerged. Hospital acquired infections, predominantly with multi-drug resistant Gram-negative organisms, place additional strain on

  10. Antimicrobial Activities of Methanol, Ethanol and Supercritical CO2 Extracts of Philippine Piper betle L. on Clinical Isolates of Gram Positive and Gram Negative Bacteria with Transferable Multiple Drug Resistance.

    Directory of Open Access Journals (Sweden)

    Demetrio L Valle

    Full Text Available Piper betle L. has traditionally been used in alternative medicine in different countries for various therapeutic purposes, including as an anti-infective agent. However, studies reported in the literature are mainly on its activities on drug susceptible bacterial strains. This study determined the antimicrobial activities of its ethanol, methanol, and supercritical CO2 extracts on clinical isolates of multiple drug resistant bacteria which have been identified by the Infectious Disease Society of America as among the currently more challenging strains in clinical management. Assay methods included the standard disc diffusion method and the broth microdilution method for the determination of the minimum inhibitory concentration (MIC and the minimum bactericidal concentrations (MBC of the extracts for the test microorganisms. This study revealed the bactericidal activities of all the P. betle leaf crude extracts on methicillin-resistant Staphylococcus aureus (MRSA, vancomycin-resistant Enterococcus (VRE, extended spectrum β-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and metallo-β-lactamase-producing Pseudomonas aeruginosa and Acinetobacter baumannii, with minimum bactericidal concentrations that ranged from 19μg/ml to 1250 μg/ml. The extracts proved to be more potent against the Gram positive MRSA and VRE than for the Gram negative test bacteria. VRE isolates were more susceptible to all the extracts than the MRSA isolates. Generally, the ethanol extracts proved to be more potent than the methanol extracts and supercritical CO2 extracts as shown by their lower MICs for both the Gram positive and Gram negative MDRs. MTT cytotoxicity assay showed that the highest concentration (100 μg/ml of P. betle ethanol extract tested was not toxic to normal human dermal fibroblasts (HDFn. Data from the study firmly established P. betle as an alternative source of anti-infectives against multiple drug resistant

  11. Antimicrobial Activities of Methanol, Ethanol and Supercritical CO2 Extracts of Philippine Piper betle L. on Clinical Isolates of Gram Positive and Gram Negative Bacteria with Transferable Multiple Drug Resistance.

    Science.gov (United States)

    Valle, Demetrio L; Cabrera, Esperanza C; Puzon, Juliana Janet M; Rivera, Windell L

    2016-01-01

    Piper betle L. has traditionally been used in alternative medicine in different countries for various therapeutic purposes, including as an anti-infective agent. However, studies reported in the literature are mainly on its activities on drug susceptible bacterial strains. This study determined the antimicrobial activities of its ethanol, methanol, and supercritical CO2 extracts on clinical isolates of multiple drug resistant bacteria which have been identified by the Infectious Disease Society of America as among the currently more challenging strains in clinical management. Assay methods included the standard disc diffusion method and the broth microdilution method for the determination of the minimum inhibitory concentration (MIC) and the minimum bactericidal concentrations (MBC) of the extracts for the test microorganisms. This study revealed the bactericidal activities of all the P. betle leaf crude extracts on methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), extended spectrum β-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and metallo-β-lactamase-producing Pseudomonas aeruginosa and Acinetobacter baumannii, with minimum bactericidal concentrations that ranged from 19μg/ml to 1250 μg/ml. The extracts proved to be more potent against the Gram positive MRSA and VRE than for the Gram negative test bacteria. VRE isolates were more susceptible to all the extracts than the MRSA isolates. Generally, the ethanol extracts proved to be more potent than the methanol extracts and supercritical CO2 extracts as shown by their lower MICs for both the Gram positive and Gram negative MDRs. MTT cytotoxicity assay showed that the highest concentration (100 μg/ml) of P. betle ethanol extract tested was not toxic to normal human dermal fibroblasts (HDFn). Data from the study firmly established P. betle as an alternative source of anti-infectives against multiple drug resistant bacteria.

  12. Endophthalmitis caused by gram-positive bacteria resistant to vancomycin: Clinical settings, causative organisms, antimicrobial susceptibilities, and treatment outcomes

    Directory of Open Access Journals (Sweden)

    Hegde Sharat Shivaramaiah

    2018-06-01

    Full Text Available Purpose: To report the clinical settings, causative organisms, antimicrobial susceptibilities, and treatment outcomes of patients with endophthalmitis caused by gram-positive bacteria resistant to vancomycin. Methods: Retrospective case series of all patients with culture-proven endophthalmitis caused by gram-positive bacteria resistant to vancomycin between January 2010 and December 2016 in LV Prasad Eye Institute, Visakhapatnam, India. Results: The current study included 14 patients. The clinical settings were post-cataract surgery in 8/14 (57.1% and open globe injury in 6/14 (42.8%. Primary intervention for all patients included tap and intravitreal antibiotic injection. During subsequent follow-up, pars plana vitrectomy was performed in 6 patients and one patient underwent penetrating keratoplasty. Mean number of intravitreal antibiotic injections performed were 3.4 per patient. The most common organisms isolated were coagulase-negative Staphylococci in 6/14 (42.8%, Staphylococcus aureus in 5/14 (35.7%, Streptococcus sp in 2/14 (14.2% and Bacillus sp in 1/14 (7.14%. In addition to vancomycin, resistance to multiple drugs (three or more groups of antibiotics was found in all 14 cases. Antimicrobial susceptibility results showed susceptibility to amikacin in 7/14 (50.0%, gatifloxacin in 6/14 (42.8%, moxifloxacin in 3/13 (23.0%, cefazoline in 5/14 (35.7%, cefuroxime in 3/14 (21.4%, ciprofloxacin in 2/14 (14.2% and linezolid in 5/5 (100%. The mean duration of follow-up was 30.7 weeks (6 weeks–90 weeks. At last follow-up, visual acuity (VA of 20/200 or better was recorded in 7/14 (50% and VA < 5/200 occurred in 7/14 (50%. Conclusion and importance: Antimicrobial susceptibility testing may help in selection of suitable antimicrobial agents for repeat intravitreal injection. Inspite of retreatment with intravitreal antibiotics, these patients generally had poor VA outcomes. Keywords: Coagulase-negative Staphylococci, Endophthalmitis

  13. Detection of Extended Spectrum Beta-Lactamases Among Gram Negative Bacilli Recovered from Cattle Feces In Benin City, Nigeria

    Directory of Open Access Journals (Sweden)

    Helen Oroboghae OGEFERE

    2017-06-01

    Full Text Available This study was carried out to determine the prevalence of extended spectrum beta-lactamase (ESBL among Gram negative bacteria isolated from cattle feces in Benin City, Nigeria. A total of 250 Gram negative bacteria isolates were recovered from cattle feces and were processed microbiologically using standard techniques. Emergent colonies were identified and antibacterial susceptibility tests were determined using Kirby-Bauer disk diffusion method. All bacterial isolates were screened for the presence of ESBL using the double-disc synergy method. A total of 37 (14.8% isolates were positive for ESBL, with 33 (13.2% indicated by ceftazidime, while only 4 (1.6% were indicated by both ceftazidime and cefotaxime (P < 0.0001. Of the Gram negative bacterial isolates recovered, Salmonella species was the most prevalent ESBL-producer with 55.0% prevalence (P = 0.0092, while no isolate of Pseudomonas aeruginosa produced ESBL. ESBL-positive isolates showed poor susceptibility to the tested antibacterial agents in comparison with non-ESBL-producers and imipenem was the most active antibiotic. The prevalence of ESBL among Gram negative bacilli recovered from cattle feces was 14.8%. The study advises prudent use of antibiotics in the treatment of cattle and harps on improved hygiene in managing cattle, as they are potential reservoirs of ESBL-producing organisms.

  14. Association study of multiple antibiotic resistance and virulence: a strategy to assess the extent of risk posed by bacterial population in aquatic environment.

    Science.gov (United States)

    Singh, Santosh Kumar; Ekka, Roseleen; Mishra, Mitali; Mohapatra, Harapriya

    2017-07-01

    The present study explored the association between multiple antibiotic resistance (MAR) index and virulence index to determine what percent of environmental antibiotic-resistant (eARB) bacteria could pose threat as potential pathogen. 16srRNA-based sequencing of 113 non-duplicate isolates identified majority of them to be gram negative belonging to Enterobacter, Pseudomonas, Aeromonas, Proteus, Acinetobacter, and Klebsiella. Statistical comparison of MAR indices of the abovementioned genera indicated differences in the median values among the groups (p  Klebsiella = Acinetobacter > Proteus > Aeromonas > Enterobacter. Association between MAR index and virulence index revealed that 25% of isolates in the population under study posed high threat to human/animal or both; out of which 75% isolates belonged to genus Pseudomonas. Based on observations of comparative analysis of the six gram-negative genera, it could be concluded that Pseudomonas isolates from environment pose significantly high threat as potential pathogens while Enterobacter isolates posed no threat.

  15. A Case Study on Soil Antibiotic Resistome in an Urban Community Garden.

    Science.gov (United States)

    Mafiz, Abdullah Ibn; Perera, Liyanage Nirasha; He, Yingshu; Zhang, Wei; Xiao, Shujie; Hao, Weilong; Sun, Shi; Zhou, Kequan; Zhang, Yifan

    2018-05-29

    Urban agricultural soils can be an important reservoir of antibiotic resistance and have great food safety and public health indications. This study was to investigate antibiotic-resistant bacteria and antibiotic resistance genes in urban agricultural soils using phenotypic and metagenomic tools. A total of 207 soil bacteria were recovered from 41 soil samples collected from an urban agricultural garden in Detroit, USA. The most prevalent antibiotic resistance phenotypes demonstrated by Gram-negative bacteria was the resistance to ampicillin (94.2%), followed by chloramphenicol (80.0%), cefoxitin (79.5%), gentamicin (78.4%), and ceftriaxone (71.1%). Gram-positive bacteria were all resistant to gentamicin, kanamycin, and penicillin. Genes encoding resistance to quinolone, β-lactam, and tetracycline were the most prevalent and abundant in the soil. qepA and tetA, both encoding efflux pumps, predominated in quinolone and tetracycline resistance genes tested, respectively. Positive correlation (p < 0.05) was identified among groups of antibiotic resistance genes and between antibiotic resistance genes and metal resistance genes. The data demonstrated a diverse population of antibiotic resistance in urban agricultural soils. Phenotypic determination together with soil metagenomics proved to be a valuable tool to study the nature and extent of antibiotic resistance in the environment. Copyright © 2018. Published by Elsevier B.V.

  16. Antibiotic Prescription, Organisms and its Resistance Pattern in Patients Admitted to Respiratory ICU with Respiratory Infection in Mysuru.

    Science.gov (United States)

    Mahendra, M; Jayaraj, B S; Lokesh, K S; Chaya, S K; Veerapaneni, Vivek Vardhan; Limaye, Sneha; Dhar, Raja; Swarnakar, Rajesh; Ambalkar, Shrikant; Mahesh, P A

    2018-04-01

    Respiratory infections account for significant morbidity, mortality and expenses to patients getting admitted to ICU. Antibiotic resistance is a major worldwide concern in ICU, including India. It is important to know the antibiotic prescribing pattern in ICU, organisms and its resistance pattern as there is sparse data on Indian ICUs. We conducted a prospective study from August 2015 to February 2016. All patients getting admitted to RICU with respiratory infection who were treated with antibiotics were included into study. Demographic details, comorbidities, Clinco-pathological score (CPI) on day1 and 2 of admission, duration of ICU admission, number of antibiotics used, antibiotic prescription, antimicrobial resistance pattern of patients were collected using APRISE questionnaire. During study period 352 patients were screened and 303 patients were included into study. Mean age was 56.05±16.37 and 190 (62.70%) were men. Most common diagnosis was Pneumonia (66%). Piperacillin-tazobactam was most common empirical antibiotic used. We found 60% resistance to piperacillin-tazobactam. Acinetobacter baumanii was the most common organism isolated (29.2%) and was highly resistant to Carbapenem (60%). Klebsiella pneumoniae was resistant to Amikacin (45%), piperacillin (55%) and Ceftazidime (50%). Piperacillin-tazobactam was the most common antibiotic prescribed to patients with respiratory infection admitted to ICU. More than half of patients (60%) had resistance to the empirical antibiotic used in our ICU, highlighting the need for antibiogram for each ICU. Thirty six percent of patient had prior antibiotic use and had mainly gram negative organisms with high resistance to commonly used antibiotics.

  17. Bioengineered nisin A derivatives with enhanced activity against both Gram positive and Gram negative pathogens.

    Directory of Open Access Journals (Sweden)

    Des Field

    Full Text Available Nisin is a bacteriocin widely utilized in more than 50 countries as a safe and natural antibacterial food preservative. It is the most extensively studied bacteriocin, having undergone decades of bioengineering with a view to improving function and physicochemical properties. The discovery of novel nisin variants with enhanced activity against clinical and foodborne pathogens has recently been described. We screened a randomized bank of nisin A producers and identified a variant with a serine to glycine change at position 29 (S29G, with enhanced efficacy against S. aureus SA113. Using a site-saturation mutagenesis approach we generated three more derivatives (S29A, S29D and S29E with enhanced activity against a range of Gram positive drug resistant clinical, veterinary and food pathogens. In addition, a number of the nisin S29 derivatives displayed superior antimicrobial activity to nisin A when assessed against a range of Gram negative food-associated pathogens, including E. coli, Salmonella enterica serovar Typhimurium and Cronobacter sakazakii. This is the first report of derivatives of nisin, or indeed any lantibiotic, with enhanced antimicrobial activity against both Gram positive and Gram negative bacteria.

  18. Bioengineered Nisin A Derivatives with Enhanced Activity against Both Gram Positive and Gram Negative Pathogens

    Science.gov (United States)

    Field, Des; Begley, Maire; O’Connor, Paula M.; Daly, Karen M.; Hugenholtz, Floor; Cotter, Paul D.; Hill, Colin; Ross, R. Paul

    2012-01-01

    Nisin is a bacteriocin widely utilized in more than 50 countries as a safe and natural antibacterial food preservative. It is the most extensively studied bacteriocin, having undergone decades of bioengineering with a view to improving function and physicochemical properties. The discovery of novel nisin variants with enhanced activity against clinical and foodborne pathogens has recently been described. We screened a randomized bank of nisin A producers and identified a variant with a serine to glycine change at position 29 (S29G), with enhanced efficacy against S. aureus SA113. Using a site-saturation mutagenesis approach we generated three more derivatives (S29A, S29D and S29E) with enhanced activity against a range of Gram positive drug resistant clinical, veterinary and food pathogens. In addition, a number of the nisin S29 derivatives displayed superior antimicrobial activity to nisin A when assessed against a range of Gram negative food-associated pathogens, including E. coli, Salmonella enterica serovar Typhimurium and Cronobacter sakazakii. This is the first report of derivatives of nisin, or indeed any lantibiotic, with enhanced antimicrobial activity against both Gram positive and Gram negative bacteria. PMID:23056510

  19. Evolution of antibiotic resistance in biofilm and planktonic P. aeruginosa populations exposed to sub-inhibitory levels of ciprofloxacin

    DEFF Research Database (Denmark)

    Ahmed, Marwa N.; Porse, Andreas; Sommer, Morten Otto Alexander

    2018-01-01

    in planktonic cultures and are less studied in biofilms. We experimentally evolved P. aeruginosa PAO1 colony-biofilms and stationary-phase planktonic cultures for seven passages in the presence of sub-inhibitory levels (0.1 mg/L) of ciprofloxacin (CIP) and performed a genotypic (whole bacterial population......The opportunistic Gram-negative pathogen Pseudomonas aeruginosa, known for its intrinsic and acquired antibiotic resistance, has a notorious ability to form biofilms, which often facilitate chronic infections. The evolutionary paths to antibiotic resistance have mainly been investigated......-dependent adaptations. A general trend towards a reduction in type IV-pili dependent motility (twitching) in CIP-evolved populations, and towards loss of virulence associated traits in the populations evolved in the absence of antibiotic, was observed. In conclusion, our data indicate that biofilms facilitate...

  20. Veillonella, Firmicutes: Microbes disguised as Gram negatives

    DEFF Research Database (Denmark)

    Vesth, Tammi Camilla; Ozen, Asli; Andersen, Sandra Christine

    2013-01-01

    Negativicutes, including the genus Veillonella, stain Gram negative. Veillonella are among the most abundant organisms of the oral and intestinal microflora of animals and humans, in spite of being strict anaerobes. In this work, the genomes of 24 Negativicutes, including eight Veillonella spp., are compared......, with the exception of a shared LPS biosynthesis pathway. The clade within the class Negativicutes to which the genus Veillonella belongs exhibits unique properties, most of which are in common with Gram-positives and some with Gram negatives. They are only distantly related to Clostridia, but are even less closely...... related to Gram-negative species. Though the Negativicutes stain Gram-negative and possess two membranes, the genome and proteome analysis presented here confirm their place within the (mainly) Gram positive phylum of the Firmicutes. Further studies are required to unveil the evolutionary history...

  1. Stepwise impact of urban wastewater treatment on the bacterial community structure, antibiotic contents, and prevalence of antimicrobial resistance.

    Science.gov (United States)

    Wang, Mingyu; Shen, Weitao; Yan, Lei; Wang, Xin-Hua; Xu, Hai

    2017-12-01

    Bacteria, antibiotics, and antibiotic resistance determinants are key biological pollutants in aquatic systems, which may lead to bacterial infections or prevent the cure of bacterial infections. In this study, we investigated how the wastewater treatment processes in wastewater treatment plants (WWTPs) affect these pollutants. We found that the addition of oxygen, polyaluminum chloride (PAC), and polyacrylamide (PAM), as well as ultraviolet (UV) disinfection could significantly alter the bacterial communities in the water samples. An overall shift from Gram-negative bacteria to Gram-positive bacteria was observed throughout the wastewater treatment steps, but the overall bacterial biomass was not reduced in the WWTP samples. The antibiotic contents were reduced by the WWTP, but the size of the reduction and the step when antibiotic degradation occurred differed among antibiotics. Ciprofloxacin, sulfamethoxazole and erythromycin could be removed completely by the WWTP, whereas cephalexin could not. The removal of ciprofloxacin, cephalexin, and erythromycin occurred in the anaerobic digester, whereas the removal of sulfamethoxazole occurred after the addition of PAC and PAM, and UV disinfection. Antimicrobial resistance determinants were highly prevalent in all of the samples analyzed, except for those targeting vancomycin and colistin. However, wastewater treatment was ineffective at removing antimicrobial resistance determinants from wastewater. There were strong correlations between intI1, floR, sul1, and ermB, thereby suggesting the importance of integrons for the spread of these antimicrobial resistance genes. In general, this study comprised a stepwise analysis of the impact of WWTPs on three biological pollutants: bacteria, antibiotics, and antimicrobial resistance determinants, where our results suggest that the design of WWTPs needs to be improved to address the threats due to these pollutants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. New and improved? A review of novel antibiotics for Gram-positive bacteria.

    Science.gov (United States)

    Abbas, M; Paul, M; Huttner, A

    2017-10-01

    The number of antibiotics in the pipeline targeting Gram-positive pathogens has increased in recent years. This narrative review aims to provide a summary of existing evidence on efficacy, microbiological spectrum and safety of novel systemic antibiotics that have either recently been licensed or completed phase III trials, and possess activity predominantly against Gram-positive organisms. A review of the published literature via the MEDLINE database was performed. In addition, ongoing trials were identified through a search of the clinical trial registration platform clinicaltrials.gov, and when necessary, pharmaceutical companies responsible for the development of the drug were contacted for further information. Data on development, microbiological spectrum, pharmacokinetic/pharmacodynamic properties, clinical efficacy, safety and cost are presented for the new cephalosporins ceftaroline and ceftobiprole; the lipoglycopeptides dalbavancin, oritavancin and telavancin; the fluoroquinolones delafloxacin, nemonoxacin and zabofloxacin; the dihydrofolate-reductase inhibitor iclaprim; the pleuromutilin lefamulin; and the tetracycline omadacycline. Although promising, these new antibiotics have so far been tested in non-severe infections whose treatment is generally uncomplicated and whose aetiologies were not predominantly multidrug-resistant pathogens. None of the new antibiotics have shown superiority to standard care, and none have been investigated for patient-relevant outcomes. Safety and pharmacokinetic data continue to be lacking. How these new drugs are to be integrated into the current armamentarium remains to be established. Copyright © 2017 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  3. Assessing the nosocomial infections' rate and the antibiotic resistance pattern among the patient hospitalized in beheshti hospital during 2013

    Directory of Open Access Journals (Sweden)

    Manijeh Kadkhodaei

    2018-01-01

    Full Text Available Aims: Nosocomial infection is associated with increased mortality, morbidity, and length of stay. Detection of infection, identify the etiology of bacterial antibiotic resistance pattern, is necessary given the widespread use of antibiotics and antibiotic-resistant organisms. Materials and Methods: This cross-sectional study was done on 288 patients admitted to the Beheshti Hospitals in Kashan based on NNIS definitions according to the state of Health and Medical education. In this study infections and antibiotic resistance symptoms were found. Data analyses were performed with Chi-square test. Results: Among the 288 patients studied, with mean out of hospital infection was 0.80%. Most cases of infection associated were pneumonia. The highest rates of infection were in the Intensive Care Unit (ICU with 51.7%. Nosocomial infection in ICU wards was associated with increased mortality and morbidity. The most common types were ventilator-associated pneumonia. Among the microorganisms, negative Gram was seen more. The common pathogens were including Acinetobacter, Escherichia coli, and Klebsiella. Antimicrobial resistance was generally increasing and had emerged from selective pressure from antibiotic use and transmission through health staff. Conclusion: This study showed a correlation between antibiotic use and resistance of microorganisms is significant. Hence, it seems that reducing aggressive acts and conduct hygiene education and monitoring act of antibiotics is necessary to prevent antibiotic resistance.

  4. [Impact of fluoroquinolone use on multidrug-resistant bacteria emergence].

    Science.gov (United States)

    Nseir, S; Ader, F; Marquette, C-H; Durocher, A

    2005-01-01

    During the last two decades, fluoroquinolone use has significantly increased in Europe and in the USA. This could be explained by the arrival of newer fluoroquinolones with antipneumoccal activity. Increased use of fluoroquinolones is associated with higher rates of bacterial resistance to these antibiotics. Resistance of Gram-negative bacilli to fluoroquinolones is increasing in industrialized countries. In addition, fluoroquinolone use has been identified as a risk factor for colonization and infection to methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumanni, extending-spectrum beta-lactamase producing Gram negative bacilli, and multidrug-resistant bacteria. Nosocomial infections due to multidrug-resistant bacteria are associated with higher mortality and morbidity rates. This could be related to more frequent inappropriate initial antibiotic treatment in these patients. Limiting the use of fluoroquinolones, limiting the duration of treatment with fluoroquinolones, and using appropriate dosage of these antibiotics could be suggested to reduce resistance to these antibiotics and to reduce the emergence of multidrug-resistant bacteria.

  5. [Current aspects of the definition and diagnosis of sepsis and antibiotic resistance].

    Science.gov (United States)

    Brunkhorst, Frank M; Gastmeier, Petra; Abu Sin, Muna

    2018-05-01

    Hospital mortality of patients with secondary sepsis remains high at around 40%. Because of the methodological deficiencies of the definitions used so far, valid epidemiological data on secondary sepsis that allow for national and international comparisons are lacking. Since 2016, new clinical diagnostic tools that are also suitable for sepsis screening outside of intensive care units have been available. To counteract the high mortality of nosocomial sepsis, new approaches to the early identification of at-risk patients are needed. An adequate blood culture sampling rate and a high preanalytical quality should be established as a basis for quality assurance, especially in the field of nosocomial bloodstream infections; otherwise, there is a risk of surveillance bias. Data from laboratory-based antibiotic resistance surveillance on MRSA in blood culture isolates have shown a downward trend over the last 4 years. In Gram-negative pathogens, a relatively stable resistance situation has been observed over this period for many of the pathogen-antibiotic combinations.

  6. Disruption of the Gut Microbiome: Clostridium difficile Infection and the Threat of Antibiotic Resistance

    Directory of Open Access Journals (Sweden)

    Priscilla A. Johanesen

    2015-12-01

    Full Text Available Clostridium difficile is well recognized as the leading cause of antibiotic-associated diarrhea, having a significant impact in both health-care and community settings. Central to predisposition to C. difficile infection is disruption of the gut microbiome by antibiotics. Being a Gram-positive anaerobe, C. difficile is intrinsically resistant to a number of antibiotics. Mobile elements encoding antibiotic resistance determinants have also been characterized in this pathogen. While resistance to antibiotics currently used to treat C. difficile infection has not yet been detected, it may be only a matter of time before this occurs, as has been seen with other bacterial pathogens. This review will discuss C. difficile disease pathogenesis, the impact of antibiotic use on inducing disease susceptibility, and the role of antibiotic resistance and mobile elements in C. difficile epidemiology.

  7. Antimicrobial susceptibility of Gram-negative bacteria causing intra-abdominal infections in China: SMART China 2011.

    Science.gov (United States)

    Zhang, Hui; Yang, Qiwen; Xiao, Meng; Chen, Minjun; Badal, Robert E; Xu, Yingchun

    2014-01-01

    The Study for Monitoring Antimicrobial Resistance Trends program monitors the activity of antibiotics against aerobic and facultative Gram-negative bacilli (GNBs) from intra-abdominal infections (IAIs) in patients worldwide. In 2011, 1 929 aerobic and facultative GNBs from 21 hospitals in 16 cities in China were collected. All isolates were tested using a panel of 12 antimicrobial agents, and susceptibility was determined following the Clinical Laboratory Standards Institute guidelines. Among the Gram-negative pathogens causing IAIs, Escherichia coli (47.3%) was the most commonly isolated, followed by Klebsiella pneumoniae (17.2%), Pseudomonas aeruginosa (10.1%), and Acinetobacter baumannii (8.3%). Enterobacteriaceae comprised 78.8% (1521/1929) of the total isolates. Among the antimicrobial agents tested, ertapenem and imipenem were the most active agents against Enterobacteriaceae, with susceptibility rates of 95.1% and 94.4%, followed by amikacin (93.9%) and piperacillin/tazobactam (87.7%). Susceptibility rates of ceftriaxone, cefotaxime, ceftazidime, and cefepime against Enterobacteriaceae were 38.3%, 38.3%, 61.1%, and 50.8%, respectively. The leastactive agent against Enterobacteriaceae was ampicillin/sulbactam (25.9%). The extended-spectrum β-lactamase (ESBL) rates among E. coli, K. pneumoniae, Klebsiella oxytoca, and Proteus mirabilis were 68.8%, 38.1%, 41.2%, and 57.7%, respectively. Enterobacteriaceae were the major pathogens causing IAIs, and the most active agents against the study isolates (including those producing ESBLs) were ertapenem, imipenem, and amikacin. Including the carbapenems, most agents exhibited reduced susceptibility against ESBL-positive and multidrug-resistant isolates.

  8. Analysis of Acinetobacter baumannii resistance patterns in patients with chronic obstructive pulmonary disease (COPD in terms of choice of effective empiric antibiotic therapy

    Directory of Open Access Journals (Sweden)

    Aneta Grochowalska

    2017-06-01

    In the performed study, the infections caused by multi-resistant Acinetobacter baumannii, were observed in COPD, which should be taken into consideration in choosing empirical antibiotic therapy. Simultaneously, the local resistance patterns of multi-drug-resistant (MDR Gram-negative strains co-infecting COPD should be considered in empirical treatment. Moreover, both additional clinical complication and co-infections contribute to a more severe course of diseases. In this study, the mortality percent exceeded 29%.

  9. The Causes of Post-Operative Meningitis: The Comparison Of Gram-Negative and Gram-Positive Pathogens.

    Science.gov (United States)

    Kurtaran, Behice; Kuscu, Ferit; Ulu, Aslihan; Inal, Ayse Seza; Komur, Suheyla; Kibar, Filiz; Cetinalp, Nuri Eralp; Ozsoy, Kerem Mazhar; Arslan, Yusuf Kemal; Aksu, Hasan Salih; Tasova, Yesim

    2017-06-20

    In this study, we aim to determine the microbiological etiology in critically ill neurosurgical patients with nosocomial meningitis (NM) and show the impact of Gram-negative rods and differences of patient's characteristics, clinical and prognostic measures between Gram-negative and Gram-positive meningitis. In this prospective, one center study we reviewed all adult patients hospitalized during a 12-year period and identified pathogens isolated from post-neurosurgical cases of NM. Demographic, clinical, and treatment characteristics were noted from the medical records. Of the 134 bacterial NM patients, 78 were male and 56 were female, with a mean age of 46±15.9 and median age of 50 (18-80) years. 141 strains isolated; 82 (58.2%) were Gram negative, 59 (41.8%) were Gram positive. Most common isolated microorganism was Acinetobacter baumannii (%34.8). In comparison of mortality data shows that the patients who have meningitis with Gram-negative pathogens have higher mortality than with Gram positives (p=0.034). The duration between surgery and meningitis was shorter in Gram negative meningitis cases compared to others (p=0.045) but the duration between the diagnosis and death was shorter in Gram-positive meningitis cases compared to Gram negatives (p= 0.017). CSF protein and lactate level were higher and glucose level was lower in cases of NM with Gram negatives (p value were respectively, 0.022, 0.039 and 0.049). As conclusions; in NM, Gram-negative pathogens were seen more frequently; A.baumanni was the predominant pathogen; and NM caused by Gram negatives had worse clinical and laboratory characteristic and prognostic outcome than Gram positives.

  10. Pharmacodynamic profiling of intravenous antibiotics against prevalent Gram-negative organisms across the globe: the PASSPORT Program-Asia-Pacific Region.

    Science.gov (United States)

    Roberts, Jason A; Kwa, Andrea; Montakantikul, Preecha; Gomersall, Charles; Kuti, Joseph L; Nicolau, David P

    2011-03-01

    Due to escalating antimicrobial resistance amongst Gram-negative organisms, the choice of effective empirical antimicrobial regimens has become challenging. Monte Carlo simulations were conducted for conventional and prolonged infusion regimens of doripenem, imipenem and meropenem using pharmacokinetic data from adult patients with conserved renal function. Minimum inhibitory concentration data against Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii were incorporated from the COMPACT surveillance programme in the Asia-Pacific region of the world. The cumulative fraction of response (CFR) was determined for each regimen against each bacterial population. All simulated carbapenem regimens achieved an optimal CFR against E. coli and K. pneumoniae (94.5-100% CFR). Against P. aeruginosa, doripenem achieved 78.7-92.6% CFR, imipenem achieved 60.4-79.0% CFR and meropenem achieved 73.0-85.1% CFR. The only dosing regimen to achieve ≥ 90% CFR against P. aeruginosa was doripenem 1000 mg and 2000 mg every 8 h (4-h infusion). Carbapenem CFRs against A. baumannii were much lower (29.2-54.4% CFR). CFRs for non-fermenting isolates were ca. 10% lower for isolates collected in the Intensive Care Unit. Carbapenem resistance amongst Enterobacteriaceae remains low in the Asia-Pacific region and thus standard carbapenem dosing regimens had a high likelihood of achieving pharmacodynamic exposures. However, larger doses combined with prolonged infusion will be required to increase the CFR for these carbapenems against resistant non-fermenting Gram-negatives that are common in these countries. The safety and efficacy of these high dosing regimens will need to be confirmed in the clinical setting. Copyright © 2010 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  11. The Frequency and Antibiotic Resistance of Chromate Tolerating Microorganisms in Qom Industrial wastewater

    Directory of Open Access Journals (Sweden)

    MR Zolfaghary

    2012-07-01

    Full Text Available

    Background and Objectives: Chromium is one of the major sources of environmental pollution and a potent occupational carcinogen. The hexavalent chromium compounds are more toxic than those of trivalent. Recent studies have suggested that reduction of Cr(VI to its lower oxidation states and related free radical reactions play an important role in carcinogenic, genotoxic and immunotoxic effects in human and animals.

     This paper reports occurrence of chromium tolerant and antibiotic resistant organism of four industrial wastewaters including electroplating, textile, galvanization, and dye manufacturing in Qom.

     

    Methods: In this study 241 isolates including 23 gram positive coccus, 3 gram negative bacilli and 215 gram positive bacilli were obtained by using of LB Agar plus determined concentration of potassium chromate.

     

    Results: A gram positive coccus, chromate reducing bacteria strain isolated from effluent of chromo plaiting could tolerate up to 760mM concentration in 34°c and pH=7 within 24h and showed resistance to some antibiotics. Biochemical, physiological, morphological and 16SrRNA tests showed this bacteria belongs to staphylococcus arlettae strain R1-7A.

     

    Conclusion: the result indicates that the indigenous microbial isolates can be useful for hexavalent chromium detoxification of chromium contamination environment and reduction of its pathogenicity and carcinogenicity, on the other hand the control of these bacteria is important from the medical view.

     

  12. Biofilm-mediated Antibiotic-resistant Oral Bacterial Infections: Mechanism and Combat Strategies.

    Science.gov (United States)

    Kanwar, Indulata; Sah, Abhishek K; Suresh, Preeti K

    2017-01-01

    Oral diseases like dental caries and periodontal disease are directly associated with the capability of bacteria to form biofilm. Periodontal diseases have been associated to anaerobic Gram-negative bacteria forming a subgingival plaque (Porphyromonas gingivalis, Actinobacillus, Prevotella and Fusobacterium). Biofilm is a complex bacterial community that is highly resistant to antibiotics and human immunity. Biofilm communities are the causative agents of biological developments such as dental caries, periodontitis, peri-implantitis and causing periodontal tissue breakdown. The review recapitulates the latest advancements in treatment of clinical biofilm infections and scientific investigations, while these novel anti-biofilm strategies are still in nascent phases of development, efforts dedicated to these technologies could ultimately lead to anti-biofilm therapies that are superior to the current antibiotic treatment. This paper provides a review of the literature focusing on the studies on biofilm in the oral cavity, formation of dental plaque biofilm, drug resistance of bacterial biofilm and the antibiofilm approaches as biofilm preventive agents in dentistry, and their mechanism of biofilm inhibition. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Combating Antibiotic Resistance

    Science.gov (United States)

    ... Bacteria Phasing Out Certain Antibiotic Use in Farm Animals FDA: Cutting-Edge Technology Sheds Light on Antibiotic Resistance For More Information Antibiotics and Antibiotic Resistance Antimicrobial Resistance Information for Consumers and Health Professionals CDC: ...

  14. Antibiotic Resistance in Childhood with Pneumococcal Infection

    Directory of Open Access Journals (Sweden)

    Ali Gunes

    2013-10-01

    Full Text Available Aim: Resistance to antibiotics is better. Between should not be in capitals. Antibiotics resistant has been increasing in pneumococci that cause serious diseases such as pneumonia, meningitis in recent years. The resistance rates vary between geographic regions. In this study, we aimed to determine antibiotic resistance rates in pneumococcal infections in our region. Material and Method: This study included 31 pneumococcal strains isolated from blood, CSF and urine samples of patients with meningitis, sepsis and urinary tract infections who admitted Dicle University Medicine School Children Clinic and Diyarbakir Pediatric Hospital Between December 2004-April 2007. Reproducing clinical specimens with alpha-hemolysis, optochin-sensitive, bile soluble and gram-positive diplococci morphology was defined as S. pneumoniae. The antimicrobial susceptibilities of strains were measured by the E-test method. MIC values of penicillin against pneumococci was accepted as <0.06 mg / ml value of the sensitive, 0.12-1μg/ml mid-level resistance, ≥ 2 mg / ml value of the high-level resistance. Results: It was found 16% mid-level penicillin resistance and 3.2% high-level penicillin resistance by E-test method. 80.7% of Strains were percent of the penicillin-sensitive. Seftiriakson resistance was found as 3.2%. there was not Vancomycin resistance. Discussion: We think penicillin therapy is enough effective for pneumococcal infections except serious conditions such as meningitis and sepsis. Also we think it should be supported by multicenter studies.

  15. Analysis of antibiotic consumption in burn patients

    Directory of Open Access Journals (Sweden)

    Soleymanzadeh-Moghadam, Somayeh

    2015-06-01

    Full Text Available Infection control is very important in burn care units, because burn wound infection is one of the main causes of morbidity and mortality among burn patients. Thus, the appropriate prescription of antibiotics can be helpful, but unreasonable prescription can have detrimental consequences, including greater expenses to patients and community alike. The aim of this study was to determine the effect of antibiotic therapy on the emergence of antibiotic-resistant bacteria. 525 strains of and were isolated from 335 hospitalized burn patients. Antibiotic susceptibility tests were performed after identification the strains. The records of patients were audited to find the antibiotic used.The results indicated that is the most prevalent Gram-negative bacteria. Further, it showed a relation between abuse of antibiotics and emergence of antibiotic resistance. Control of resistance to antibiotics by appropriate prescription practices not only facilitates prevention of infection caused by multi-drug resistant (MDR microorganisms, but it can also decrease the cost of treatment.

  16. VIP as a potential therapeutic agent in gram negative sepsis.

    Science.gov (United States)

    Ibrahim, Hiba; Barrow, Paul; Foster, Neil

    2012-12-01

    Gram negative sepsis remains a high cause of mortality and places a great burden on public health finance in both the developed and developing world. Treatment of sepsis, using antibiotics, is often ineffective since pathology associated with the disease occurs due to dysregulation of the immune system (failure to return to steady state conditions) which continues after the bacteria, which induced the immune response, have been cleared. Immune modulation is therefore a rational approach to the treatment of sepsis but to date no drug has been developed which is highly effective, cheap and completely safe to use. One potential therapeutic agent is VIP, which is a natural peptide and is highly homologous in all vertebrates. In this review we will discuss the effect of VIP on components of the immune system, relevant to gram negative sepsis, and present data from animal models. Furthermore we will hypothesise on how these studies could be improved in future and speculate on the possible different ways in which VIP could be used in clinical medicine.

  17. Defining Multidrug Resistance of Gram-Negative Bacteria in the Dutch–German Border Region—Impact of National Guidelines

    Directory of Open Access Journals (Sweden)

    Robin Köck

    2018-01-01

    Full Text Available Preventing the spread of multidrug-resistant Gram-negative bacteria (MDRGNB is a public health priority. However, the definition of MDRGNB applied for planning infection prevention measures such as barrier precautions differs depending on national guidelines. This is particularly relevant in the Dutch–German border region, where patients are transferred between healthcare facilities located in the two different countries, because clinicians and infection control personnel must understand antibiograms indicating MDRGNB from both sides of the border and using both national guidelines. This retrospective study aimed to compare antibiograms of Gram-negative bacteria and classify them using the Dutch and German national standards for MDRGNB definition. A total of 31,787 antibiograms from six Dutch and four German hospitals were classified. Overall, 73.7% were no MDRGNB according to both guidelines. According to the Dutch and German guideline, 7772/31,787 (24.5% and 4586/31,787 (12.9% were MDRGNB, respectively (p < 0.0001. Major divergent classifications were observed for extended-spectrum β-lactamase (ESBL -producing Enterobacteriaceae, non-carbapenemase-producing carbapenem-resistant Enterobacteriaceae, Pseudomonas aeruginosa and Stenotrophomonas maltophilia. The observed differences show that medical staff must carefully check previous diagnostic findings when patients are transferred across the Dutch–German border, as it cannot be assumed that MDRGNB requiring special hygiene precautions are marked in the transferred antibiograms in accordance with both national guidelines.

  18. In vitro activity of tigecycline and comparator agents against a global collection of Gram-negative and Gram-positive organisms: tigecycline Evaluation and Surveillance Trial 2004 to 2007.

    Science.gov (United States)

    Garrison, Mark W; Mutters, Reinier; Dowzicky, Michael J

    2009-11-01

    The Tigecycline Evaluation and Surveillance Trial began in 2004 to monitor the in vitro activity of tigecycline and comparator agents against a global collection of Gram-negative and Gram-positive pathogens. Against Gram negatives (n = 63 699), tigecycline MIC(90)'s ranged from 0.25 to 2 mg/L for Escherichia coli, Haemophilus influenzae, Acinetobacter baumannii, Klebsiella oxytoca, Enterobacter cloacae, Klebsiella pneumoniae, and Serratia marcescens (but was > or =32 for Pseudomonas aeruginosa). Against Gram-positive organisms (n = 32 218), tigecycline MIC(90)'s were between 0.06 and 0.25 mg/L for Streptococcus pneumoniae, Enterococcus faecium, Streptococcus agalactiae, Staphylococcus aureus, and Enterococcus faecalis. The in vitro activity of tigecycline was maintained against resistant phenotypes, including multidrug-resistant A. baumannii (9.2% of isolates), extended-spectrum beta-lactamase-producing E. coli (7.0%) and K. pneumoniae (14.0%), beta-lactamase-producing H. influenzae (22.2%), methicillin-resistant S. aureus (44.5%), vancomycin-resistant E. faecium (45.9%) and E. faecalis (2.8%), and penicillin-resistant S. pneumoniae (13.8%). Tigecycline represents a welcome addition to the armamentarium against difficult to treat organisms.

  19. O-antigen protects gram-negative bacteria from histone killing.

    Directory of Open Access Journals (Sweden)

    Catherine Chaput

    Full Text Available Beyond their traditional role of wrapping DNA, histones display antibacterial activity to Gram-negative and -positive bacteria. To identify bacterial components that allow survival to a histone challenge, we selected resistant bacteria from homologous Escherichia coli libraries that harbor plasmids carrying pieces of the chromosome in different sizes. We identified genes required for exopolysaccharide production and for the synthesis of the polysaccharide domain of the lipopolysaccharide, called O-antigen. Indeed, O-antigen and exopolysaccharide conferred further resistance to histones. Notably, O-antigen also conferred resistance to histones in the pathogens Shigella flexneri and Klebsiella pneumoniae.

  20. Antimicrobial resistance of bacterial pathogens in a Neonatal Intensive Care Unit

    Directory of Open Access Journals (Sweden)

    Farzana Ahmed

    2018-03-01

    Full Text Available The aim of this study was to identify the antimicrobial susceptibility pattern and relevant treatment options in a neonatal intensive care unit from January 2012 and June 2016. Out of the total 78 culture positive samples, Gram positive and Gram negative microorganisms were 26% and 74% respectively. Acinetobacter remained the predominant isolate (32.1% followed by Klebsiella species (18.0%. Most of the Gram positive isolates exhibited higher resistance to penicillin, cephalosporin, macrolides, gentamycin and quinolones. Gram positive isolates had sensitivity of 100% to linezolid, vancomycin, chloramphenicol followed by rifampicin (84%. In comparison to other commonly used antibiotics, sensitivity to these four medicines was statistically significant (p<0.05. Similarly, most of the Gram negative bacteria showed resistance to cephalosporin, aminoglycosides. About two-third cases showed resistant to meropenum, quinolones and combination preparation of piperacillin and tazobactam. Overall sensitivity among the Gram negative isolates was to polymixin B (100% and minocycline (97%, followed by colistin (83%. In comparison to other commonly used antibiotics, sensitivity to these three medicines was statistically significant (p<0.05.

  1. Studying the Relationship between the Ability of Biofilm Formation and Antibiotic Resistance in Acinetobacter baumannii Clinical and Environmental Isolates in Tehran, 2015

    Directory of Open Access Journals (Sweden)

    Faegheh Teymori

    2017-07-01

    Full Text Available Abstract Background: Acinetobacters are aerobic gram-negative bacteria which are distributed widespread in soil and water. The bacteria are isolated from cultured skin, mucous membranes, secretions and hospital environment. Acinetobacter baumannii, is a strain that more frequently isolated. Acinetobacter strains are often resistant against antimicrobial agents. Materials and Methods: The method of this study was based on field, observation and test. On August and October 2015, samples were isolated from the soil and water of the Sadeghieh Square river in Tehran, respectively, and were transferred to the laboratory in the ice pack. 50 baumannii samples were isolated by biochemical methods (TSI, SIM, OF and gram test. November 1394, 100 clinical samples were isolated from Imam Khomeini hospital by biochemical method, and in the culture media Mueller Hinton agar plates were transferred to the laboratory. Antibiogram test for 150 baumannii samples was performed. Biofilms formation of Acinetobacter baumannii environmental and clinical samples was investigated by Congo red agar and culture plate methods. Results: In all samples (clinical and soil, most of antibiotic resistance was 92% for imipenem and the resistance of water samples to imipenem was 99.9%. Biofilm formation by Congo red agar in water, soil, and clinical samles was resprctively 44%, 40% and 1%. All isolates were negative biofilm culture plate. Conclusion: Considering Acinetobacter baumannii resistance to antibiotics and the lack of biofilm formation of in clinical and environmental isolates, it was concluded that there wasn’t any relationship between antibiotic resistance and biofilm formation.

  2. Increases of Antibiotic Resistance in Excessive Use of Antibiotics in Smallholder Dairy Farms in Northern Thailand

    Directory of Open Access Journals (Sweden)

    W. Suriyasathaporn

    2012-09-01

    Full Text Available Antibiotic resistance patterns of bacterial isolates from both quarter teat-tip swabs and their quarter milk samples were evaluated in smallholder dairy farms in northern Thailand with excessive use of antibiotics (HIGH compared with normal use (NORM. Results from teat-tip swab samples showed that the percentage of Bacillus spp. resistance to overall antibiotics was significantly lower in the NORM group than that of the HIGH group, whereas, the resistance percentage of coagulase-negative staphylococci in the NORM group was higher than that of the HIGH one. The overall mastitis-causing bacteria isolated from milk samples were environmental streptococci (13.8%, coagulase-negative staphylococci (9.9%, Staphylococcus aureus (5.4%, and Corynebacterium bovis (4.5%. Both staphylococci and streptococci had significantly higher percentages of resistance to cloxacillin and oxacillin in the HIGH group when compared to the NORM one. An occurrence of vancomycin-resistant bacteria was also observed in the HIGH group. In conclusion, the smallholder dairy farms with excessive use of antibiotics had a higher probability of antibiotic-resistant pattern than the farms with normal use.

  3. Defining Multidrug Resistance of Gram-Negative Bacteria in the Dutch-German Border Region-Impact of National Guidelines.

    Science.gov (United States)

    Köck, Robin; Siemer, Philipp; Esser, Jutta; Kampmeier, Stefanie; Berends, Matthijs S; Glasner, Corinna; Arends, Jan P; Becker, Karsten; Friedrich, Alexander W

    2018-01-26

    Preventing the spread of multidrug-resistant Gram-negative bacteria (MDRGNB) is a public health priority. However, the definition of MDRGNB applied for planning infection prevention measures such as barrier precautions differs depending on national guidelines. This is particularly relevant in the Dutch-German border region, where patients are transferred between healthcare facilities located in the two different countries, because clinicians and infection control personnel must understand antibiograms indicating MDRGNB from both sides of the border and using both national guidelines. This retrospective study aimed to compare antibiograms of Gram-negative bacteria and classify them using the Dutch and German national standards for MDRGNB definition. A total of 31,787 antibiograms from six Dutch and four German hospitals were classified. Overall, 73.7% were no MDRGNB according to both guidelines. According to the Dutch and German guideline, 7772/31,787 (24.5%) and 4586/31,787 (12.9%) were MDRGNB, respectively ( p Dutch-German border, as it cannot be assumed that MDRGNB requiring special hygiene precautions are marked in the transferred antibiograms in accordance with both national guidelines.

  4. NDM 1 Gene Carrying Gram negative Bacteria Isolated from Rats ...

    African Journals Online (AJOL)

    In this study, we screened 56 Gram negative bacteria comprising: 3 isolates of Enterobacter ludwigii, 30 Pseudomonas aeruginosa, 22 Proteus mirabilis, and 1 Aeromonas caviae isolated from oral cavity and rectum of rats captured from commercial poultry houses in Ibadan, Oyo State, Nigeria that were resistant to at least ...

  5. Sugar-Grafted Cyclodextrin Nanocarrier as a "Trojan Horse" for Potentiating Antibiotic Activity.

    Science.gov (United States)

    Li, Min; Neoh, Koon Gee; Xu, Liqun; Yuan, Liang; Leong, David Tai; Kang, En-Tang; Chua, Kim Lee; Hsu, Li Yang

    2016-05-01

    The use of "Trojan Horse" nanocarriers for antibiotics to enhance the activity of antibiotics against susceptible and resistant bacteria is investigated. Antibiotic carriers (CD-MAN and CD-GLU) are prepared from β-cyclodextrin grafted with sugar molecules (D-mannose and D-glucose, respectively) via azide-alkyne click reaction. The sugar molecules serve as a chemoattractant enticing the bacteria to take in higher amounts of the antibiotic, resulting in rapid killing of the bacteria. Three types of hydrophobic antibiotics, erythromycin, rifampicin and ciprofloxacin, are used as model drugs and loaded into the carriers. The minimum inhibitory concentration of the antibiotics in the CD-MAN-antibiotic and CD-GLU-antibiotic complexes for Gram-negative Escherichia coli, Pseudomonas aeruginosa and Acinetobacter baumannii strains, and a number of Gram-positive Staphylococcus aureus strains, including the methicillin-resistant strains (MRSA), are reduced by a factor ranging from 3 to >100. The CD-MAN-antibiotic complex is also able to prolong the stability of the loaded antibiotic and inhibit development of intrinsic antibiotic resistance in the bacteria. These non-cytotoxic sugar-modfied nanocarriers can potentiate the activity of existing antibiotics, especially against multidrug-resistant bacteria, which is highly advantageous in view of the paucity of new antibiotics in the pipeline.

  6. In vitro susceptibility of gram-negative bacterial isolates to chlorhexidine gluconate.

    Science.gov (United States)

    Mengistu, Y; Erge, W; Bellete, B

    1999-05-01

    To investigate the susceptibility of clinical isolates of gram-negative bacteria to chlorhexidine gluconate. Prospective laboratory study. Tikur Anbessa Hospital, Addis Ababa, Ethiopia. Clinical specimens from 443 hospital patients. Significant number of gram negative bacteria were not inhibited by chlorhexidine gluconate (0.02-0.05%) used for antisepsis. Four hundred and forty three strains of gram-negative bacteria were isolated from Tikur Anbessa Hospital patients. Escherichia coli (31.6%) and Klebsiella pneumoniae (23%) were the most frequently isolated bacteria followed by Proteus species (13.3%), Pseudomonas species (9.2%), and Citrobacter species (6.1%). Each organism was tested to chlorhexidine gluconate (CHG), minimum inhibitory concentration (MIC) ranging from 0.0001% to 1%w/v. All Salmonella species and E. coli were inhibited by CHG, MIC or = 0.1%). Our results showed that a significant number of the gram-negative bacterial isolates were not inhibited by CHG at the concentration used for disinfection of wounds or instruments (MIC 0.02-0.05% w/v). It is therefore important to select appropriate concentration of this disinfectant and rationally use it for disinfection and hospital hygiene. Continuing follow up and surveillance is also needed to detect resistant bacteria to chlorhexidine or other disinfectants in time.

  7. Bacterial Prevalence and Antibiotic Resistance in Clinical Isolates of Diabetic Foot Ulcers in the Northeast of Tamaulipas, Mexico.

    Science.gov (United States)

    Sánchez-Sánchez, Mario; Cruz-Pulido, Wendy Lizeth; Bladinieres-Cámara, Eduardo; Alcalá-Durán, Rodrigo; Rivera-Sánchez, Gildardo; Bocanegra-García, Virgilio

    2017-06-01

    Diabetic foot ulcers (DFUs) are a serious and common problem in patients with diabetes mellitus and constitute one of the major causes of lower extremity amputation. The microbiological profile of DFUs depends on the acute or chronic character of the wound. Aerobic gram-positive cocci are the predominant organisms isolated from DFUs. Diabetic foot biopsies from patients admitted to the Angiology and Vascular Surgery Hospital of the Northeast, in Reynosa, Tamaulipas from December 2011 to April 2016 were analyzed. The samples were processed using standard microbiology techniques. Antimicrobial susceptibility testing was carried out according to the protocol established by the Clinical & Laboratory Standards Institute (CLSI). We obtained 246 bacterial isolates, based on the results of phenotypic resistance. The least effective antibiotics for gram-positive bacteria were penicillin and dicloxacillin; for gram-negative bacteria, cefalotin and penicillin were the least effective. Levofloxacin, cefalotin, and amikacin were the most effective antibiotics for gram-positive and negative bacteria, respectively. Enterobacter genus was significantly associated with muscle biopsies ( P = .011) and samples without growth were significantly associated with specimens of pyogenic origin ( P = .000). In 215 DFU samples, we found that Staphylococcus aureus was the most commonly isolated pathogen followed by Enterobacter sp. This is consistent with previous reports. Enterobacter species may play an important role in the colonization/infection of certain tissues; however, further studies are needed in this regard.

  8. Heterogeneity of Carbapenem Resistance Mechanisms Among Gram-Negative Pathogens in Lebanon: Results of the First Cross-Sectional Countrywide Study.

    Science.gov (United States)

    Hammoudi Halat, Dalal; Moubareck, Carole Ayoub; Sarkis, Dolla Karam

    2017-09-01

    Carbapenem-resistant Gram-negative pathogens have progressively disseminated to different countries worldwide, presenting a serious public health concern. The aims of this study were to determine the prevalence of carbapenem resistance in Gram-negative bacteria in Lebanon, to elucidate molecular mechanisms, and to identify genetic relatedness of incriminated strains. Carbapenem nonsusceptible Enterobacteriaceae, Acinetobacter baumannii, and Pseudomonas were collected from 11 Lebanese hospitals in 2012. Antimicrobial susceptibility was assessed with phenotypic tests, genes encoding carbapenemases were screened via PCR-sequencing, and genetic relatedness was examined by PGFE and ERIC-PCR. A total of 398 nonrepetitive carbapenem nonsusceptible isolates were studied, of which 44 were Enterobacteriaceae, 142 were A. baumannii, and 212 were Pseudomonas. Among Enterobacteriaceae, 70.4% carried bla OXA-48-like gene on IncL/M-type plasmids, while acquired AmpC cephalosporinases, extended-spectrum-β-lactamases, and efflux-pump were additional contributors to carbapenem resistance. Among A. baumannii, 90% produced OXA-23 and GES-11 and carried insertion sequence ISAba1 upstream and adjacent to bla OXA-23 and bla Acinetobacter -derived cephalosporinases . Among Pseudomonas, 16% harbored VIM-2, 4.2% IMP-2, and 1.4% IMP-1 metallo-β-lactamases. Fingerprint analysis indicated that the spread of OXA-48-like carbapenemases was mostly mediated by horizontal transfer, while OXA-23 and GES-11 diffusion in A. baumannii and VIM-2 diffusion in P. aeruginosa were primarily due to clonal dissemination. This study is the first nationwide investigation of carbapenem resistance in Lebanon, showing low level of resistance in Enterobacteriaceae, and higher levels in A. baumannii and Pseudomonas. With current changes in the region, continuous surveillance of carbapenem resistance is crucial.

  9. Resistance among Gram-negative ESKAPE pathogens isolated from hospitalized patients with intra-abdominal and urinary tract infections in Latin American countries: SMART 2013-2015.

    Science.gov (United States)

    Karlowsky, James A; Hoban, Daryl J; Hackel, Meredith A; Lob, Sibylle H; Sahm, Daniel F

    Gram-negative ESKAPE pathogens (Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) are important etiologic agents of nosocomial infection that are frequently resistant to broad-spectrum antimicrobial agents. Gram-negative ESKAPE pathogens were collected from hospitalized patients in 11 Latin American countries from 2013 to 2015 as part of the Study for Monitoring Antimicrobial Resistance Trends (SMART) global surveillance program. In total, 2113 isolates from intra-abdominal infections (IAI) and 970 isolates from urinary tract infections (UTI) were tested against antimicrobial agents using standardized CLSI broth microdilution methodology. Of the agents tested, amikacin demonstrated the highest rates of susceptibility (%) for K. pneumoniae (92.2, 92.3), Enterobacter spp. (97.5, 92.1), and P. aeruginosa (85.3, 75.2) isolates from both IAI and UTI, respectively. Ertapenem (68.5, 62.6) and imipenem (79.2, 75.9) showed substantially higher rates of susceptibility (%) than other β-lactams, including piperacillin-tazobactam (35.9, 37.4) against ESBL-positive isolates of K. pneumoniae from IAI and UTI, respectively. Rates of susceptibility to all agents tested against A. baumannii were ≤30.9%. Gram-negative ESKAPE pathogens isolated from Latin America demonstrated compromised in vitro susceptibility to commonly prescribed broad-spectrum, parenteral antimicrobial agents. Continued surveillance is warranted. New antimicrobial agents with potent activity against Gram-negative ESKAPE pathogens are urgently needed. Copyright © 2017 Sociedade Brasileira de Infectologia. Published by Elsevier Editora Ltda. All rights reserved.

  10. Resistance among Gram-negative ESKAPE pathogens isolated from hospitalized patients with intra-abdominal and urinary tract infections in Latin American countries: SMART 2013–2015

    Directory of Open Access Journals (Sweden)

    James A. Karlowsky

    2017-05-01

    Full Text Available Gram-negative ESKAPE pathogens (Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species are important etiologic agents of nosocomial infection that are frequently resistant to broad-spectrum antimicrobial agents. Gram-negative ESKAPE pathogens were collected from hospitalized patients in 11 Latin American countries from 2013 to 2015 as part of the Study for Monitoring Antimicrobial Resistance Trends (SMART global surveillance program. In total, 2113 isolates from intra-abdominal infections (IAI and 970 isolates from urinary tract infections (UTI were tested against antimicrobial agents using standardized CLSI broth microdilution methodology. Of the agents tested, amikacin demonstrated the highest rates of susceptibility (% for K. pneumoniae (92.2, 92.3, Enterobacter spp. (97.5, 92.1, and P. aeruginosa (85.3, 75.2 isolates from both IAI and UTI, respectively. Ertapenem (68.5, 62.6 and imipenem (79.2, 75.9 showed substantially higher rates of susceptibility (% than other β-lactams, including piperacillin-tazobactam (35.9, 37.4 against ESBL-positive isolates of K. pneumoniae from IAI and UTI, respectively. Rates of susceptibility to all agents tested against A. baumannii were ≤30.9%. Gram-negative ESKAPE pathogens isolated from Latin America demonstrated compromised in vitro susceptibility to commonly prescribed broad-spectrum, parenteral antimicrobial agents. Continued surveillance is warranted. New antimicrobial agents with potent activity against Gram-negative ESKAPE pathogens are urgently needed.

  11. Rapid Assessment of Resistance to Antibiotic Inhibitors of Protein Synthesis in the Gram-Positive Pathogens, Enterococcus faecalis and Streptococcus pneumoniae, Based on Evaluation of the Lytic Response.

    Science.gov (United States)

    Otero, Fátima; Tamayo, María; Santiso, Rebeca; Gosálvez, Jaime; Bou, Germán; Fernández, José Luis

    2017-04-01

    A novel assay for rapid determination of resistance to antibiotic inhibitors of protein synthesis was developed for the gram-positive pathogens, Enterococcus faecalis and Streptococcus pneumoniae. To this purpose, a lytic response was obtained by a brief incubation with lysozyme or a mixture of lysozyme, Triton X-100, and EDTA for E. faecalis (n = 82) and S. pneumoniae (n = 51), respectively. Lysis was quantified by visualizing the released nucleoids. Antibiotic-susceptible bacteria treated with Clinical and Laboratory Standards Institute (CLSI) breakpoint doses of erythromycin, azithromycin, or doxycycline that inhibited protein synthesis demonstrated a large reduction of lysed cells with respect to the control, that is, without antibiotics. However, cell lysis prevention was much lower in nonsusceptible strains, with unsuccessful inhibition of protein synthesis. ROC analysis showed that a reduction value of ≥35.6% and ≥40.4% discriminates susceptible and nonsusceptible strains for erythromycin and for doxycycline, respectively, in E. faecalis, whereas ≥20.0% is adequate for both macrolides and doxycycline in S. pneumoniae. Resistant stains were identified in 90-120 min with sensitivity and specificity between 91.7% and 100%. This is a proof of concept that evaluation of the lytic response may be a rapid and efficient test for determination of resistance to antibiotic inhibitors of protein synthesis.

  12. Multiplex identification of sepsis-causing Gram-negative pathogens from the plasma of infected blood.

    Science.gov (United States)

    Chung, Boram; Park, Chulmin; Cho, Sung-Yeon; Shin, Juyoun; Shin, Sun; Yim, Seon-Hee; Lee, Dong-Gun; Chung, Yeun-Jung

    2018-02-01

    Early and accurate detection of bacterial pathogens in the blood is the most crucial step for sepsis management. Gram-negative bacteria are the most common organisms causing severe sepsis and responsible for high morbidity and mortality. We aimed to develop a method for rapid multiplex identification of clinically important Gram-negative pathogens and also validated whether our system can identify Gram-negative pathogens with the cell-free plasm DNA from infected blood. We designed five MLPA probe sets targeting the genes specific to major Gram-negative pathogens (uidA and lacY for E. coli, ompA for A. baumannii, phoE for K. pneumoniae, and ecfX for P. aeruginosa) and one set targeting the CTX-M group 1 to identify the ESBL producing Gram-negative pathogens. All six target-specific peaks were clearly separated without any non-specific peaks in a multiplex reaction condition. The minimum detection limit was 100 fg of pathogen DNA. When we tested 28 Gram-negative clinical isolates, all of them were successfully identified without any non-specific peaks. To evaluate the clinical applicability, we tested seven blood samples from febrile patients. Three blood culture positive cases showed E. coli specific peaks, while no peak was detected in the other four culture negative samples. This technology can be useful for detection of major sepsis-causing, drug-resistant Gram-negative pathogens and also the major ESBL producing Gram-negatives from the blood of sepsis patients in a clinical setting. This system can help early initiation of effective antimicrobial treatment against Gram-negative pathogens for sepsis patients, which is very crucial for better treatment outcomes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Gram-Negative Infections in Adult Intensive Care Units of Latin America and the Caribbean

    Directory of Open Access Journals (Sweden)

    Carlos M. Luna

    2014-01-01

    Full Text Available This review summarizes recent epidemiology of Gram-negative infections in selected countries from Latin American and Caribbean adult intensive care units (ICUs. A systematic search of the biomedical literature (PubMed was performed to identify articles published over the last decade. Where appropriate, data also were collected from the reference list of published articles, health departments of specific countries, and registries. Independent cohort data from all countries (Argentina, Brazil, Chile, Colombia, Cuba, Mexico, Trinidad and Tobago, and Venezuela signified a high rate of ICU infections (prevalence: Argentina, 24%; Brazil, 57%. Gram-negative pathogens, predominantly Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Escherichia coli, accounted for >50% of ICU infections, which were often complicated by the presence of multidrug-resistant strains and clonal outbreaks. Empirical use of antimicrobial agents was identified as a strong risk factor for resistance development and excessive mortality. Infection control strategies utilizing hygiene measures and antimicrobial stewardship programs reduced the rate of device-associated infections. To mitigate the poor health outcomes associated with infections by multidrug-resistant Gram-negative bacteria, urgent focus must be placed on infection control strategies and local surveillance programs.

  14. Impact of gamma rays and certain natural products on the virulence of some metallo-β-lactamase producing gram-negative pathogenic bacteria

    International Nuclear Information System (INIS)

    Nada, H.M.A.M.

    2015-01-01

    The emergence of metallo-β-lactamase (MBL) producing gram-negative bacilli is an increasing therapeutic problem that doesn’t have treatment till now, because a) the organism carrying MBL-gene have a high tendency to capture other resistant genes and spread its MBL genes hydrolyze all the classes of β-lactam antibiotics with mobile genetic elements to others. b) MBLs are not inhibited by classical serine β-lactamase inhibitors such as; clavulanic acid, tazobactam, and sulbactam. c) They inhibited by chelating agents such as EDTA and other metal chelators which are difficult to use in clinical treatment because Zn play a crucial role in more than 300 enzymes in human body. The absence of novel agents for treatment and absence of clinical inhibitor to inhibit the activity of MBLs may lead to dead ends. This study was done to evaluate the presence of MBL in Egyptian local gram-negative bacilli isolates by using simple detection methods that could be applied in Egyptian microbiological laboratories. Where, the early detection of MBL-producers results in avoiding the spread of these multidrug-resistant isolates and may help maintain first- and second-line therapies. Also determine the type of MBL-blagenes harboured by the local isolates and their susceptibility pattern to different antibiotics with different mode of actions used in Egyptian hospitals. Finally, trying to inhibit the activity of MBL by low dose of gamma radiation used in treatment of immunocompromised patients or by a natural plant extracts that contain thiol group and flavonoids. Then applied on animal model.

  15. ABC-F Proteins Mediate Antibiotic Resistance through Ribosomal Protection.

    Science.gov (United States)

    Sharkey, Liam K R; Edwards, Thomas A; O'Neill, Alex J

    2016-03-22

    Members of the ABC-F subfamily of ATP-binding cassette proteins mediate resistance to a broad array of clinically important antibiotic classes that target the ribosome of Gram-positive pathogens. The mechanism by which these proteins act has been a subject of long-standing controversy, with two competing hypotheses each having gained considerable support: antibiotic efflux versus ribosomal protection. Here, we report on studies employing a combination of bacteriological and biochemical techniques to unravel the mechanism of resistance of these proteins, and provide several lines of evidence that together offer clear support to the ribosomal protection hypothesis. Of particular note, we show that addition of purified ABC-F proteins to anin vitrotranslation assay prompts dose-dependent rescue of translation, and demonstrate that such proteins are capable of displacing antibiotic from the ribosomein vitro To our knowledge, these experiments constitute the first direct evidence that ABC-F proteins mediate antibiotic resistance through ribosomal protection.IMPORTANCEAntimicrobial resistance ranks among the greatest threats currently facing human health. Elucidation of the mechanisms by which microorganisms resist the effect of antibiotics is central to understanding the biology of this phenomenon and has the potential to inform the development of new drugs capable of blocking or circumventing resistance. Members of the ABC-F family, which includelsa(A),msr(A),optr(A), andvga(A), collectively yield resistance to a broader range of clinically significant antibiotic classes than any other family of resistance determinants, although their mechanism of action has been controversial since their discovery 25 years ago. Here we present the first direct evidence that proteins of the ABC-F family act to protect the bacterial ribosome from antibiotic-mediated inhibition. Copyright © 2016 Sharkey et al.

  16. Investigational drugs for the treatment of infections caused by multidrug-resistant Gram-negative bacteria.

    Science.gov (United States)

    Avery, Lindsay M; Nicolau, David P

    2018-04-01

    Infections caused by multidrug-resistant Gram-negative bacteria (MDR-GNB) are associated with significant mortality and costs. New drugs in development to combat these difficult-to-treat infections primarily target carbapenem-resistant Enterobacteriaceae, MDR Pseudomonas aeruginosa, and MDR Acinetobacter baumannii. Areas covered: The authors summarize in vitro and in vivo efficacy studies, as well as available clinical trial findings, for new agents in development for treatment of infection caused by MDR-GNB. Information regarding dosage regimens utilized in clinical trials and key pharmacokinetic and pharmacodynamic considerations are provided if available. A summary of recently approved agents, delafloxacin and meropenem/vaborbactam, is also included. Expert opinion: The development of multiple novel agents to fight MDR-GNB is promising to help save the lives of patients who acquire infection, and judicious use of these agents is imperative once they come to market to prevent the development of resistance. The other component paramount to this field of research is implementation of effective infection control policies and carbapenem-resistant Enterobacteriaceae (CRE) carrier screening protocols to mitigate the worldwide spread of MDR-GNB. Further investigation of anti-infective synergistic combinations will also be important, as well as support for economic research to reveal the true cost-benefit of utilization of the new agents discussed herein.

  17. From Farms to Markets: Gram-Negative Bacteria Resistant to Third-Generation Cephalosporins in Fruits and Vegetables in a Region of North Africa

    Science.gov (United States)

    Mesbah Zekar, Ferielle; Granier, Sophie A.; Marault, Muriel; Yaici, Lydia; Gassilloud, Benoit; Manceau, Charles; Touati, Abdelaziz; Millemann, Yves

    2017-01-01

    The role of food in human exposure to antimicrobial-resistant bacteria is a growing food safety issue. The contribution of fruits and vegetables eaten raw to this exposure is still unclear. The evaluation of contamination levels of fruits, vegetables and the agricultural environment by third-generation cephalosporin (3GC)-resistant Gram-negative bacteria was performed by analyzing 491 samples of fruits and vegetables collected from 5 markets and 7 farms in Bejaia area, north-eastern Mediterranean coast of Algeria. Ninety soil samples and 45 irrigation water samples were also sampled in farms in order to assess them as potential inoculum sources. All samples were investigated at the same time on ceftazidime-containing selective media for 3GC-resistant Gram-negative bacteria detection and on Hektoen media, for Salmonella spp. presence. The bacteria isolated (n = 30) from fruits and vegetables, soil and irrigation water collected in the farms were almost all non-fermenting bacterial species (Stenotrophomonas, Acinetobacter, Pseudomonas, Ochrobactrum) except one strain of Enterobacter cloacae and two strains of Citrobacter murliniae, isolated on one cucumber and two tomato samples in the same farm. Greater diversity in bacterial species and antimicrobial resistance profiles was observed at markets: Enterobacteriaceae (n = 41) were as strongly represented as non-fermenting bacteria (n = 37). Among Enterobacteriaceae, E. cloacae (n = 21), and Klebsiella pneumoniae (n = 13) were the most common isolates. Most of the K. pneumoniae isolates were extended-spectrum beta-lactamase (ESBL) producers (n = 11). No Salmonella spp. was recovered in any sample. This study showed that fruits and vegetables including those which may be eaten up raw constitute a reservoir of 3GC-resistant Gram-negative bacteria and multi-drug resistant-bacteria in general that can be transferred to humans through food. The general public should be informed of this hazard for health in order to encourage

  18. From Farms to Markets: Gram-Negative Bacteria Resistant to Third-Generation Cephalosporins in Fruits and Vegetables in a Region of North Africa

    Directory of Open Access Journals (Sweden)

    Ferielle Mesbah Zekar

    2017-08-01

    Full Text Available The role of food in human exposure to antimicrobial-resistant bacteria is a growing food safety issue. The contribution of fruits and vegetables eaten raw to this exposure is still unclear. The evaluation of contamination levels of fruits, vegetables and the agricultural environment by third-generation cephalosporin (3GC-resistant Gram-negative bacteria was performed by analyzing 491 samples of fruits and vegetables collected from 5 markets and 7 farms in Bejaia area, north-eastern Mediterranean coast of Algeria. Ninety soil samples and 45 irrigation water samples were also sampled in farms in order to assess them as potential inoculum sources. All samples were investigated at the same time on ceftazidime-containing selective media for 3GC-resistant Gram-negative bacteria detection and on Hektoen media, for Salmonella spp. presence. The bacteria isolated (n = 30 from fruits and vegetables, soil and irrigation water collected in the farms were almost all non-fermenting bacterial species (Stenotrophomonas, Acinetobacter, Pseudomonas, Ochrobactrum except one strain of Enterobacter cloacae and two strains of Citrobacter murliniae, isolated on one cucumber and two tomato samples in the same farm. Greater diversity in bacterial species and antimicrobial resistance profiles was observed at markets: Enterobacteriaceae (n = 41 were as strongly represented as non-fermenting bacteria (n = 37. Among Enterobacteriaceae, E. cloacae (n = 21, and Klebsiella pneumoniae (n = 13 were the most common isolates. Most of the K. pneumoniae isolates were extended-spectrum beta-lactamase (ESBL producers (n = 11. No Salmonella spp. was recovered in any sample. This study showed that fruits and vegetables including those which may be eaten up raw constitute a reservoir of 3GC-resistant Gram-negative bacteria and multi-drug resistant-bacteria in general that can be transferred to humans through food. The general public should be informed of this hazard for health in order

  19. Antibiotic sensitivities of common bacterial pathogens in urinary tract ...

    African Journals Online (AJOL)

    Of the total isolates 71.5% were Gram negatives. Sensitivity tested against ten antibiotics showed that resistance was common, and the effectiveness of tetracycline, ampicillin, co-trimoxazole, chloramphenicol and penicillin was under 50.0%. The resistance rate was 71.5%, 62.2%, and 62.2%, 54.7% and 40.8%, respectively ...

  20. Antibiotic resistance--consequences for animal health, welfare, and food production.

    Science.gov (United States)

    Bengtsson, Björn; Greko, Christina

    2014-05-01

    Most of the literature on the consequences of emergence and spread of bacteria resistant to antibiotics among animals relate to the potential impact on public health. But antibiotics are used to treat sick animals, and resistance in animal pathogens may lead to therapy failure. This has received little scientific attention, and therefore, in this article, we discuss examples that illustrate the possible impact of resistance on animal health and consequences thereof. For all animals, there may be a negative effect on health and welfare when diseases cannot be treated. Other consequences will vary depending on why and how different animal species are kept. Animals kept as companions or for sports often receive advanced care, and antibiotic resistance can lead to negative social and economic consequences for the owners. Further, spread of hospital-acquired infections can have an economic impact on the affected premises. As to animals kept for food production, antibiotics are not needed to promote growth, but, if infectious diseases cannot be treated when they occur, this can have a negative effect on the productivity and economy of affected businesses. Antibiotic resistance in animal bacteria can also have positive consequences by creating incentives for adoption of alternative regimes for treatment and prevention. It is probable that new antibiotic classes placed on the market in the future will not reach veterinary medicine, which further emphasizes the need to preserve the efficacy of currently available antibiotics through antibiotic stewardship. A cornerstone in this work is prevention, as healthy animals do not need antibiotics.

  1. Optimizing empiric therapy for Gram-negative bloodstream infections in children.

    Science.gov (United States)

    Chao, Y; Reuter, C; Kociolek, L K; Patel, R; Zheng, X; Patel, S J

    2018-06-01

    Antimicrobial stewardship can be challenging in children with bloodstream infections (BSIs) caused by Gram-negative bacilli (GNB). This retrospective cohort study explored how data elements in the electronic health record could potentially optimize empiric antibiotic therapy for BSIs caused by GNB, via the construction of customized antibiograms for categorical GNB infections and identification of opportunities to minimize organism-drug mismatch and decrease time to effective therapy. Our results suggest potential strategies that could be implemented at key decision points in prescribing at initiation, modification, and targeting of therapy. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  2. Effect of antibiotic stewardship on the incidence of infection and colonisation with antibiotic-resistant bacteria and Clostridium difficile infection: a systematic review and meta-analysis.

    Science.gov (United States)

    Baur, David; Gladstone, Beryl Primrose; Burkert, Francesco; Carrara, Elena; Foschi, Federico; Döbele, Stefanie; Tacconelli, Evelina

    2017-09-01

    Antibiotic stewardship programmes have been shown to reduce antibiotic use and hospital costs. We aimed to evaluate evidence of the effect of antibiotic stewardship on the incidence of infections and colonisation with antibiotic-resistant bacteria. For this systematic review and meta-analysis, we searched PubMed, the Cochrane Database of Systematic Reviews, the Cochrane Central Register of Controlled Trials, and Web of Science for studies published from Jan 1, 1960, to May 31, 2016, that analysed the effect of antibiotic stewardship programmes on the incidence of infection and colonisation with antibiotic-resistant bacteria and Clostridium difficile infections in hospital inpatients. Two authors independently assessed the eligibility of trials and extracted data. Studies involving long-term care facilities were excluded. The main outcomes were incidence ratios (IRs) of target infections and colonisation per 1000 patient-days before and after implementation of antibiotic stewardship. Meta-analyses were done with random-effect models and heterogeneity was calculated with the I 2 method. We included 32 studies in the meta-analysis, comprising 9 056 241 patient-days and 159 estimates of IRs. Antibiotic stewardship programmes reduced the incidence of infections and colonisation with multidrug-resistant Gram-negative bacteria (51% reduction; IR 0·49, 95% CI 0·35-0·68; pdifficile infections (32%; 0·68, 0·53-0·88; p=0·0029). Antibiotic stewardship programmes were more effective when implemented with infection control measures (IR 0·69, 0·54-0·88; p=0·0030), especially hand-hygiene interventions (0·34, 0·21-0·54; pinfections and colonisation with antibiotic-resistant bacteria and C difficile infections in hospital inpatients. These results provide stakeholders and policy makers with evidence for implementation of antibiotic stewardship interventions to reduce the burden of infections from antibiotic-resistant bacteria. German Center for Infection Research

  3. Antibiotic Resistance in Staphylococcus aureus and Coagulase Negative Staphylococci Isolated from Goats with Subclinical Mastitis

    Directory of Open Access Journals (Sweden)

    Salvatore Virdis

    2010-01-01

    Full Text Available Antimicrobial resistance patterns and gene coding for methicillin resistance (mecA were determined in 25 S. aureus and 75 Coagulase Negative Staphylococci (CNS strains isolates from half-udder milk samples collected from goats with subclinical mastitis. Fourteen (56.0% S. aureus and thirty-one (41.3% CNS isolates were resistant to one or more antimicrobial agents. S. aureus showed the highest resistance rate against kanamycin (28.0%, oxytetracycline (16.0%, and ampicillin (12.0%. The CNS tested were more frequently resistant to ampicillin (36.0% and kanamycin (6.7%. Multiple antimicrobial resistance was observed in eight isolates, and one Staphylococcus epidermidis was found to be resistant to six antibiotics. The mecA gene was not found in any of the tested isolates. Single resistance against β-lactamics or aminoglicosides is the most common trait observed while multiresistance is less frequent.

  4. Prevalence and risk factors for CTX-M gram-negative bacteria in hospitalized patients at a tertiary care hospital in Kilimanjaro, Tanzania

    DEFF Research Database (Denmark)

    Sonda, Tolbert; Kumburu, Happiness; van Zwetselaar, Marco

    2018-01-01

    Emergence and spread of extended spectrum beta-lactamase (ESBL)-producing gram-negative bacteria, mainly due to CTX-M, is a major global public health problem. Patients infected with ESBL-producing gram-negative bacteria have an increased risk of treatment failure and death. We investigated...... 2015 were fully genome sequenced. The prevalence of ESBL-producing gram-negative bacteria was determined based on the presence of blaCTX-M. The odds ratio (OR) and risk factors for ESBL-producing gram-negative bacteria due to CTX-M were assessed using logistic regression models. The overall CTX......-M prevalence (95% CI) was 13.6% (10.1–18.1). Adjusted for other factors, the OR of CTX-M gram-negative bacteria for patients previously hospitalized was 0.26 (0.08–0.88), p = 0.031; the OR for patients currently on antibiotics was 4.02 (1.29–12.58), p = 0.017; the OR for patients currently on ceftriaxone was 0...

  5. Activity of levofloxacin alone and in combination with a DnaK inhibitor against gram-negative rods, including levofloxacin-resistant strains.

    Science.gov (United States)

    Credito, Kim; Lin, Gengrong; Koeth, Laura; Sturgess, Michael A; Appelbaum, Peter C

    2009-02-01

    Synergy time-kill testing of levofloxacin alone and in combination with CHP-105, a representative DnaK inhibitor, against 50 gram-negative rods demonstrated that 34 of the 50 strains tested showed significant synergy between levofloxacin and CHP-105 after 12 h and 24 h. Fourteen of these 34 organisms were quinolone resistant (levofloxacin MICs of > or =4 microg/ml).

  6. Activity of Levofloxacin Alone and in Combination with a DnaK Inhibitor against Gram-Negative Rods, Including Levofloxacin-Resistant Strains▿

    Science.gov (United States)

    Credito, Kim; Lin, Gengrong; Koeth, Laura; Sturgess, Michael A.; Appelbaum, Peter C.

    2009-01-01

    Synergy time-kill testing of levofloxacin alone and in combination with CHP-105, a representative DnaK inhibitor, against 50 gram-negative rods demonstrated that 34 of the 50 strains tested showed significant synergy between levofloxacin and CHP-105 after 12 h and 24 h. Fourteen of these 34 organisms were quinolone resistant (levofloxacin MICs of ≥4 μg/ml). PMID:19015359

  7. Genomic Microbial Epidemiology Is Needed to Comprehend the Global Problem of Antibiotic Resistance and to Improve Pathogen Diagnosis.

    Science.gov (United States)

    Wyrsch, Ethan R; Roy Chowdhury, Piklu; Chapman, Toni A; Charles, Ian G; Hammond, Jeffrey M; Djordjevic, Steven P

    2016-01-01

    Contamination of waste effluent from hospitals and intensive food animal production with antimicrobial residues is an immense global problem. Antimicrobial residues exert selection pressures that influence the acquisition of antimicrobial resistance and virulence genes in diverse microbial populations. Despite these concerns there is only a limited understanding of how antimicrobial residues contribute to the global problem of antimicrobial resistance. Furthermore, rapid detection of emerging bacterial pathogens and strains with resistance to more than one antibiotic class remains a challenge. A comprehensive, sequence-based genomic epidemiological surveillance model that captures essential microbial metadata is needed, both to improve surveillance for antimicrobial resistance and to monitor pathogen evolution. Escherichia coli is an important pathogen causing both intestinal [intestinal pathogenic E. coli (IPEC)] and extraintestinal [extraintestinal pathogenic E. coli (ExPEC)] disease in humans and food animals. ExPEC are the most frequently isolated Gram negative pathogen affecting human health, linked to food production practices and are often resistant to multiple antibiotics. Cattle are a known reservoir of IPEC but they are not recognized as a source of ExPEC that impact human or animal health. In contrast, poultry are a recognized source of multiple antibiotic resistant ExPEC, while swine have received comparatively less attention in this regard. Here, we review what is known about ExPEC in swine and how pig production contributes to the problem of antibiotic resistance.

  8. Selective labelling and eradication of antibiotic-tolerant bacterial populations in Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Chua, Song Lin; Yam, Joey Kuok Hoong; Hao, Piliang

    2016-01-01

    Drug resistance and tolerance greatly diminish the therapeutic potential of antibiotics against pathogens. Antibiotic tolerance by bacterial biofilms often leads to persistent infections, but its mechanisms are unclear. Here we use a proteomics approach, pulsed stable isotope labelling with amino...... acids (pulsed-SILAC), to quantify newly expressed proteins in colistin-tolerant subpopulations of Pseudomonas aeruginosa biofilms (colistin is a 'last-resort' antibiotic against multidrug-resistant Gram-negative pathogens). Migration is essential for the formation of colistin-tolerant biofilm...

  9. Changing Priorities in Vaccinology: Antibiotic Resistance Moving to the Top

    Directory of Open Access Journals (Sweden)

    Aldo Tagliabue

    2018-05-01

    Full Text Available Antimicrobial resistance (AMR is currently the most alarming issue for human health. AMR already causes 700,000 deaths/year. It is estimated that 10 million deaths due to AMR will occur every year after 2050. This equals the number of people dying of cancer every year in present times. International institutions such as G20, World Bank, World Health Organization (WHO, UN General Assembly, European Union, and the UK and USA governments are calling for new antibiotics. To underline this emergency, a list of antibiotic-resistant “priority pathogens” has been published by WHO. It contains 12 families of bacteria that represent the greatest danger for human health. Resistance to multiple antibiotics is particularly relevant for the Gram-negative bacteria present in the list. The ability of these bacteria to develop mechanisms to resist treatment could be transmitted with genetic material, allowing other bacteria to become drug resistant. Although the search for new antimicrobial drugs remains a top priority, the pipeline for new antibiotics is not promising, and alternative solutions are needed. A possible answer to AMR is vaccination. In fact, while antibiotic resistance emerges rapidly, vaccines can lead to a much longer lasting control of infections. New technologies, such as the high-throughput cloning of human B cells from convalescent or vaccinated people, allow for finding new protective antigens (Ags that could not be identified with conventional technologies. Antibodies produced by convalescent B cell clones can be screened for their ability to bind, block, and kill bacteria, using novel high-throughput microscopy platforms that rapidly capture digital images, or by conventional technologies such as bactericidal, opsono-phagocytosis and FACS assays. Selected antibodies expressed by recombinant DNA techniques can be used for passive immunization in animal models and tested for protection. Antibodies providing the best protection can be

  10. Lipopolysaccharide biogenesis and transport at the outer membrane of Gram-negative bacteria.

    Science.gov (United States)

    Sperandeo, Paola; Martorana, Alessandra M; Polissi, Alessandra

    2017-11-01

    The outer membrane (OM) of Gram-negative bacteria is an asymmetric lipid bilayer containing a unique glycolipid, lipopolysaccharide (LPS) in its outer leaflet. LPS molecules confer to the OM peculiar permeability barrier properties enabling Gram-negative bacteria to exclude many toxic compounds, including clinically useful antibiotics, and to survive harsh environments. Transport of LPS poses several problems to the cells due to the amphipatic nature of this molecule. In this review we summarize the current knowledge on the LPS transport machinery, discuss the challenges associated with this process and present the solutions that bacterial cells have evolved to address the problem of LPS transport and assembly at the cell surface. Finally, we discuss how knowledge on LPS biogenesis can be translated for the development of novel antimicrobial therapies. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop. Copyright © 2016. Published by Elsevier B.V.

  11. Investigation of the antibiotic susceptibility patterns of pathogens causing nosocomial infections

    International Nuclear Information System (INIS)

    Yaman, Akgun; Kibar, Filiz; Buyukcelik, Ozlem; Tasova, Yesim; Inal, A.S.; Saltoglu, Nese; Kurtaran, Behice; Dundal, Ismail H.

    2004-01-01

    The aim of this study is to determine the resistance patterns of bacteria causing nosocomial infections. The outcome of this resistance was followed for 3 years. This study was carried out during 2000 to 2002 at a university hospital in Turkey. The resistance patterns of 570 bacteria (390 Gram-negative, 180 Gram-positive) against meropenem, imipenem, ceftazidime, cefotaxime, cefepime, piperacillin/tazobactam, ciprofloxacin and tobramycin were investigated using the E-test. Extended-spectrum beta-lactamase (ESBL) production was determined using ceftazidime and ceftazidime/clavulanic acid E-test strips. Meropenem was the most effective antibiotic against Gram-negative organisms (89.0%); this was followed by imipenem (87.2%) and piperacillin/tazobactam (66.4%). The most active antibiotic against Gram-positive bacteria was imipenem (87.2%) and this was followed by piperacillin/tazobactam (81.7%) and meropenem (77.8%). The rates of production of ESBL by Escherichia coli were 20.9%, Klebsiella pneumoniae 50% and Serratia marcescens were 46.7%. Extended-spectrum beta-lactamase production increased each year (21.7%, 22.1% and 45.5%). All of the ESBL producing isolates were sensitive to meropenem and 98.5% sensitive to imipenem. AmpC beta-lactamase was produced by 20.9% of the Enterobacter species spp, Citrobacter spp. and Serratia marcescens. All of these were sensitive to meropenem and 77.8% to imipenem and ciprofloxacin. Multi-drug resistance rates in Acinetobacter spp were 45.4% and 37.7% in Pseudomonas aeruginosa isolates. As in the entire world, resistance to antibiotics is a serious problem in our country. Solving of this problem depends primarily on prevention of the development of resistance. (author)

  12. BACTERIOLOGICAL PROFILE AND ANTIBIOTIC SENSITIVITY PATTERN IN ACUTE EXACERBATION OF ADVANCED CASES OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE (COPD

    Directory of Open Access Journals (Sweden)

    Avik

    2016-01-01

    Full Text Available Acute exacerbations are significant and frequent events in the natural history of chronic obstructive pulmonary disease. Majority of these exacerbations are of infectious aetiology, bacteria being responsible for 30-50% of these cases. With not many studies of similar type being conducted in the Indian context, this study was undertaken with the purpose of determining the bacteriology of acute exacerbations of chronic obstructive pulmonary disease in hospitalized patients with advanced disease and their antibiotic susceptibility pattern to formulate a cost effective algorithm for antibiotic usage while at the same time reducing the chances of emergence of drug resistance. Sputum sample from a total of 338 patients were send for Gram’s stain and culture sensitivity testing using an array of the commonly used antibiotics. Pathogenic bacteria were isolated from 203 (60.1% samples. Gram negative bacteria were isolated from 79.8 percent (162/203 cases while the rest were Gram positive. Klebsiella species were the commonest (49.2%; 100/203 Gram negative isolates from the sputum samples. Among the gram negative organisms, Carbapenem had the highest sensitivity (90.2% followed by Amikacin, Ciprofloxacin and Piperacillin-Tazobactam. Linezolid was found to be 100 percent sensitive amongst the Gram positive organisms while both Amoxicillin Clavulanate and Azithromycin showed a rather low sensitivity profile overall. 5.0 percent of the Klebsiella infections were multi drug resistant. It was thereby concluded that either Amikacin, Ciprofloxacin or Piperacillin-Tazobactam for be considered for Gram negative organisms and Linezolid be considered for Gram positive organisms as first line antibiotics in empirical therapy while Carbapenems may be kept as reserve drugs should the first line drugs fail.

  13. Antibiotic stress-induced modulation of the endoribonucleolytic activity of RNase III and RNase G confers resistance to aminoglycoside antibiotics in Escherichia coli.

    Science.gov (United States)

    Song, Wooseok; Kim, Yong-Hak; Sim, Se-Hoon; Hwang, Soonhye; Lee, Jung-Hyun; Lee, Younghoon; Bae, Jeehyeon; Hwang, Jihwan; Lee, Kangseok

    2014-04-01

    Here, we report a resistance mechanism that is induced through the modulation of 16S ribosomal RNA (rRNA) processing on the exposure of Escherichia coli cells to aminoglycoside antibiotics. We observed decreased expression levels of RNase G associated with increased RNase III activity on rng mRNA in a subgroup of E. coli isolates that transiently acquired resistance to low levels of kanamycin or streptomycin. Analyses of 16S rRNA from the aminoglycoside-resistant E. coli cells, in addition to mutagenesis studies, demonstrated that the accumulation of 16S rRNA precursors containing 3-8 extra nucleotides at the 5' terminus, which results from incomplete processing by RNase G, is responsible for the observed aminoglycoside resistance. Chemical protection, mass spectrometry analysis and cell-free translation assays revealed that the ribosomes from rng-deleted E. coli have decreased binding capacity for, and diminished sensitivity to, streptomycin and neomycin, compared with wild-type cells. It was observed that the deletion of rng had similar effects in Salmonella enterica serovar Typhimurium strain SL1344. Our findings suggest that modulation of the endoribonucleolytic activity of RNase III and RNase G constitutes a previously uncharacterized regulatory pathway for adaptive resistance in E. coli and related gram-negative bacteria to aminoglycoside antibiotics.

  14. Efflux Pump-mediated Drug Resistance in Burkholderia

    Directory of Open Access Journals (Sweden)

    Nicole L Podnecky

    2015-04-01

    Full Text Available Several members of the genus Burkholderia are prominent pathogens. Infections caused by these bacteria are difficult to treat because of significant antibiotic resistance. Virtually all Burkholderia species are also resistant to polymyxin, prohibiting use of drugs like colistin that are available for treatment of infections caused by most other drug resistant Gram-negative bacteria. Despite clinical significance and antibiotic resistance of Burkholderia species, characterization of efflux pumps lags behind other non-enteric Gram-negative pathogens such as Acinetobacter baumannii and Pseudomonas aeruginosa. Although efflux pumps have been described in several Burkholderia species, they have been best studied in B. cenocepacia and B. pseudomallei. As in other non-enteric Gram-negatives, efflux pumps of the resistance nodulation cell division (RND family are the clinically most significant efflux systems in these two species. Several efflux pumps were described in B. cenocepacia, which when expressed confer resistance to clinically significant antibiotics, including aminoglycosides, chloramphenicol, fluoroquinolones, and tetracyclines. Three RND pumps have been characterized in B. pseudomallei, two of which confer either intrinsic or acquired resistance to aminoglycosides, macrolides, chloramphenicol, fluoroquinolones, tetracyclines, trimethoprim, and in some instances trimethoprim+sulfamethoxazole. Several strains of the host-adapted B. mallei, a clone of B. pseudomallei, lack AmrAB-OprA and are therefore aminoglycoside and macrolide susceptible. B. thailandensis is closely related to B. pseudomallei, but non-pathogenic to humans. Its pump repertoire and ensuing drug resistance profile parallels that of B. pseudomallei. An efflux pump in B. vietnamiensis plays a significant role in acquired aminoglycoside resistance. Summarily, efflux pumps are significant players in Burkholderia drug resistance.

  15. A randomized clinical trial on the effectiveness of a symbiotic product to decolonize patients harboring multidrug-resistant Gram-negative bacilli

    Directory of Open Access Journals (Sweden)

    Mariana Correa Coelho Salomão

    Full Text Available Abstract INTRODUCTION: We aimed to evaluate the effectiveness of a symbiotic product to decolonize the intestinal tract of patients harboring multidrug-resistant (MDR Gram-negative bacilli and to prevent nosocomial infections. METHODS: This was a randomized, double blind, placebo-controlled clinical trial, conducted in a tertiary-care university hospital. All adult hospitalized patients with a positive clinical culture and a positive rectal swab for any MDR Gram-negative bacilli were potentially eligible. Exclusion criteria were pregnancy, immunosuppression, and bowel obstruction/perforation. The intervention consisted of administering a symbiotic product (Lactobacillus bulgaricus, Lactobacillus rhamnosus, and fructo-oligosaccharides twice a day for seven days via the oral/enteral route. RESULTS: Between August 1, 2012 and December 22, 2013, 116 of 275 eligible patients were allocated to treatment (n=57 and placebo (n=59. Overall, 101 patients received at least four doses of the study products and were included in the modified intention-to-treat analysis. The primary study outcome, a negative rectal swab for MDR Gram-negative bacilli after treatment, was identified in 16.7% (8/48 and 20.7% (11/53 of patients in the experimental and placebo group, respectively (p=0.60. The secondary outcome, the combined incidence of nosocomial respiratory and urinary tract infections, was 37.5% (18/48 in the experimental group versus 22.6% (12/53 in the control group (adjusted odds ratio: 1.95, 95% confidence interval: 0.69-5.50, p=0.21. Length of stay after the beginning of the intervention, incidence of adverse events, and in-hospital mortality rates were similar in both study groups. CONCLUSIONS: Under the present study conditions, symbiotic administration was not effective for decolonizing hospitalized patients harboring MDR Gram-negative bacilli.

  16. Source, pattern and antibiotic resistance of blood stream infections in hematopoietic stem cell transplant recipients

    International Nuclear Information System (INIS)

    El-Mahallawy, H.; Samir, I.; Kadry, D.; Abdel Fattah, R.; El-Kholy, A.

    2014-01-01

    Mucositis developing as a result of myelo-ablative high dose therapy administered prior to hematopoietic stem cell transplantation (HSCT) is associated with the risk of bacteremia. The aim of the present study was to detect the pattern of bacteremia coinciding with the present practice of HSCT, to study the contribution of health-care associated infection (HAI) to the pattern of infection, in the context of the problem of antibiotic resistance in HSCT recipients. Patients and methods: This is a retrospective, single center study including patients who developed febrile neutropenia (FN) among HSCT recipients in one year duration. Results: Ninety FN episodes were recorded in 50 patients. Out of 39 positive blood cultures, Gram negative rods (GNR) were the predominant pathogens, constituting 67% (n =26) of isolated organisms, while 33% of infections were caused by gram positive cocci (GPC) (n= 13). Bacteremia was significantly associated with central venous line (CVL) infections and gastroenteritis (diarrhea and vomiting) with a p-value 0.024, 0.20 and 0.0001, respectively. Multi-drug resistant organisms (MDROs) were identified in 27 (69%) of the 39 positive blood cultures. Conclusion: In one year duration, gram negative pathogens were the predominant causes of infection in HSCT recipients with high rates of MDROs in our institution. Gastroenteritis and central venous line infections are the main sources of bacteremia

  17. Small-Molecule Inhibitors of Gram-Negative Lipoprotein Trafficking Discovered by Phenotypic Screening

    Science.gov (United States)

    Fleming, Paul R.; MacCormack, Kathleen; McLaughlin, Robert E.; Whiteaker, James D.; Narita, Shin-ichiro; Mori, Makiko; Tokuda, Hajime; Miller, Alita A.

    2015-01-01

    In Gram-negative bacteria, lipoproteins are transported to the outer membrane by the Lol system. In this process, lipoproteins are released from the inner membrane by the ABC transporter LolCDE and passed to LolA, a diffusible periplasmic molecular chaperone. Lipoproteins are then transferred to the outer membrane receptor protein, LolB, for insertion in the outer membrane. Here we describe the discovery and characterization of novel pyridineimidazole compounds that inhibit this process. Escherichia coli mutants resistant to the pyridineimidazoles show no cross-resistance to other classes of antibiotics and map to either the LolC or LolE protein of the LolCDE transporter complex. The pyridineimidazoles were shown to inhibit the LolA-dependent release of the lipoprotein Lpp from E. coli spheroplasts. These results combined with bacterial cytological profiling are consistent with LolCDE-mediated disruption of lipoprotein targeting to the outer membrane as the mode of action of these pyridineimidazoles. The pyridineimidazoles are the first reported inhibitors of the LolCDE complex, a target which has never been exploited for therapeutic intervention. These compounds open the door to further interrogation of the outer membrane lipoprotein transport pathway as a target for antimicrobial therapy. PMID:25583975

  18. Small-molecule inhibitors of gram-negative lipoprotein trafficking discovered by phenotypic screening.

    Science.gov (United States)

    McLeod, Sarah M; Fleming, Paul R; MacCormack, Kathleen; McLaughlin, Robert E; Whiteaker, James D; Narita, Shin-Ichiro; Mori, Makiko; Tokuda, Hajime; Miller, Alita A

    2015-03-01

    In Gram-negative bacteria, lipoproteins are transported to the outer membrane by the Lol system. In this process, lipoproteins are released from the inner membrane by the ABC transporter LolCDE and passed to LolA, a diffusible periplasmic molecular chaperone. Lipoproteins are then transferred to the outer membrane receptor protein, LolB, for insertion in the outer membrane. Here we describe the discovery and characterization of novel pyridineimidazole compounds that inhibit this process. Escherichia coli mutants resistant to the pyridineimidazoles show no cross-resistance to other classes of antibiotics and map to either the LolC or LolE protein of the LolCDE transporter complex. The pyridineimidazoles were shown to inhibit the LolA-dependent release of the lipoprotein Lpp from E. coli spheroplasts. These results combined with bacterial cytological profiling are consistent with LolCDE-mediated disruption of lipoprotein targeting to the outer membrane as the mode of action of these pyridineimidazoles. The pyridineimidazoles are the first reported inhibitors of the LolCDE complex, a target which has never been exploited for therapeutic intervention. These compounds open the door to further interrogation of the outer membrane lipoprotein transport pathway as a target for antimicrobial therapy. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. Changes in Bacterial Resistance Patterns of Pediatric Urinary Tract Infections and Rationale for Empirical Antibiotic Therapy

    Directory of Open Access Journals (Sweden)

    İbrahim Gökçe

    2017-10-01

    Full Text Available Background: The causative agent spectrum and resistance patterns of urinary tract infections in children are affected by many factors. Aims: To demonstrate antibiotic resistance in urinary tract infections and changing ratio in antibiotic resistance by years. Study Design: Retrospective cross-sectional study. Methods: We analysed antibiotic resistance patterns of isolated Gram (- bacteria during the years 2011-2014 (study period 2 in children with urinary tract infections. We compared these findings with data collected in the same centre in 2001-2003 (study period 1. Results: Four hundred and sixty-five uncomplicated community-acquired Gram (- urinary tract infections were analysed from 2001-2003 and 400 from 2011-2014. Sixty-one percent of patients were female (1.5 girls : 1 boy. The mean age of children included in the study was 3 years and 9 months. Escherichia coli was the predominant bacteria isolated during both periods of the study (60% in study period 1 and 73% in study period 2. Bacteria other than E. coli demonstrated a higher level of resistance to all of the antimicrobials except trimethoprim-sulfamethoxazole than E. coli bacteria during the years 2011-2014. In our study, we found increasing resistance trends of urinary pathogens for cefixime (from 1% to 15%, p0.05. Conclusion: In childhood urinary tract infections, antibiotic resistance should be evaluated periodically and empiric antimicrobial therapy should be decided according to antibiotic sensitivity results

  20. Cues and regulatory pathways involved in natural competence and transformation in pathogenic and environmental Gram-negative bacteria.

    Science.gov (United States)

    Seitz, Patrick; Blokesch, Melanie

    2013-05-01

    Bacterial genomics is flourishing, as whole-genome sequencing has become affordable, readily available and rapid. As a result, it has become clear how frequently horizontal gene transfer (HGT) occurs in bacteria. The potential implications are highly significant because HGT contributes to several processes, including the spread of antibiotic-resistance cassettes, the distribution of toxin-encoding phages and the transfer of pathogenicity islands. Three modes of HGT are recognized in bacteria: conjugation, transduction and natural transformation. In contrast to the first two mechanisms, natural competence for transformation does not rely on mobile genetic elements but is driven solely by a developmental programme in the acceptor bacterium. Once the bacterium becomes competent, it is able to take up DNA from the environment and to incorporate the newly acquired DNA into its own chromosome. The initiation and duration of competence differ significantly among bacteria. In this review, we outline the latest data on representative naturally transformable Gram-negative bacteria and how their competence windows differ. We also summarize how environmental cues contribute to the initiation of competence in a subset of naturally transformable Gram-negative bacteria and how the complexity of the niche might dictate the fine-tuning of the competence window. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  1. [Usefulness of sputum Gram staining in community-acquired pneumonia].

    Science.gov (United States)

    Sato, Tadashi; Aoshima, Masahiro; Ohmagari, Norio; Tada, Hiroshi; Chohnabayashi, Naohiko

    2002-07-01

    To evaluate the usefulness of sputum gram staining in community-acquired pneumonia (CAP), we reviewed 144 cases requiring hospitalization in the last 4 years. The sensitivity was 75.5%, specificity 68.2%, positive predictive value 74.1%, negative predictive value 69.8%, positive likelihood ratio 2.37, negative likelihood ratio 0.36 and accuracy 72.2% in 97 cases. Both sputum gram staining and culture were performed. Concerning bacterial pneumonia (65 cases), we compared the Gram staining group (n = 33), which received initial antibiotic treatment, based on sputum gram staining with the Empiric group (n = 32) that received antibiotics empirically. The success rates of the initial antibiotic treatment were 87.9% vs. 78.1% (P = 0.473); mean hospitalization periods were 9.67 vs. 11.75 days (P = 0.053); and periods of intravenous therapy were 6.73 vs. 7.91 days (P = 0.044), respectively. As for initial treatment, penicillins were used in the Gram staining group more frequently (P gram staining is useful for the shortening of the treatment period and the appropriate selection of initial antibiotics in bacterial pneumonia. We believe, therefore, that sputum gram staining is indispensable as a diagnostic tool CAP.

  2. Bacteremias in liver transplant recipients: shift toward gram-negative bacteria as predominant pathogens.

    Science.gov (United States)

    Singh, Nina; Wagener, Marilyn M; Obman, Asia; Cacciarelli, Thomas V; de Vera, Michael E; Gayowski, Timothy

    2004-07-01

    During the 1990s, gram-positive bacteria emerged as major pathogens after liver transplantation. We sought to determine whether the pathogens associated with bacteremias in liver transplant recipients have changed. Patients included 233 liver transplant recipients transplanted between 1989 and 2003. The proportion of all infections due to bacteremias increased significantly over time (P gram-negatives increased from 25% in the period of 1989-1993 to 51.8% in 1998-03, that of gram-positive bacteria decreased from 75% in the period of 1989-93 to 48.2% in the period of 1998-2003. Methicillin-resistant Staphylococcus aureus (MRSA), Klebsiella pneumoniae, and Pseudomonas aeruginosa were the most frequent pathogens in bacteremic patients. The incidence of bacteremias due to MRSA and Pseudomonas aeruginosa has remained unchanged (P gram-negative bacteria, particularly Klebsiella pneumoniae has increased (P =.02). Klebsiella pneumoniae isolates in the current quartile were not clonally related. In conclusion, bacteremias as a proportion of all infections in liver transplant recipients have increased significantly over time, due in part to a decline in infections due to other major pathogens, e.g., fungi, primarily Candida species, and CMV. Gram-negative bacteria have emerged as predominant pathogens in bacteremic liver transplant recipients.

  3. The gram-negative bacterial periplasm: Size matters.

    Directory of Open Access Journals (Sweden)

    Samuel I Miller

    2018-01-01

    Full Text Available Gram-negative bacteria are surrounded by two membrane bilayers separated by a space termed the periplasm. The periplasm is a multipurpose compartment separate from the cytoplasm whose distinct reducing environment allows more efficient and diverse mechanisms of protein oxidation, folding, and quality control. The periplasm also contains structural elements and important environmental sensing modules, and it allows complex nanomachines to span the cell envelope. Recent work indicates that the size or intermembrane distance of the periplasm is controlled by periplasmic lipoproteins that anchor the outer membrane to the periplasmic peptidoglycan polymer. This periplasm intermembrane distance is critical for sensing outer membrane damage and dictates length of the flagellar periplasmic rotor, which controls motility. These exciting results resolve longstanding debates about whether the periplasmic distance has a biological function and raise the possibility that the mechanisms for maintenance of periplasmic size could be exploited for antibiotic development.

  4. Caractérisation phénotypique des bacilles à gram négatif ...

    African Journals Online (AJOL)

    From March to June 2013, all strains of Gram-negative bacilli resistant to at least a third generation cephalosporin for Enterobacteriaceae, or to ceftazidim (for Pseudomonas spp) and/or to carbapenem for all species, were consecutively included in the study. For each strain, susceptibility to a large panel of antibiotics by the ...

  5. Antibiotic susceptibility of isolates from paediatric intensive care units in Zagreb.

    Science.gov (United States)

    Bedenić, Branka; Prahin, Esmina; Vranić-Ladavac, Mirna; Atalić, Vlasta; Sviben, Mario; Frančula-Zaninović, Sonja; Plečko, Vanda; Kalenić, Smilja

    2014-02-01

    Meropenem Yearly Susceptibility Test Information Collection (MYSTIC) Program is a longitudinal global surveillance study to monitor in vitro data on microbial susceptibility in centers that prescribe meropenem. Results of the six years period (2002-2007) for the antimicrobial efficacy of meropenem compared to other broad-spectrum agents against Gram-negative and Gram-positive isolates collected at pediatric intensive care units of the University Hospital Center Zagreb in Croatia were reported. A total of 110 Gram-negative and 43 Gram-positive pathogens from pediatric specimens were tested. The minimum-inhibitory concentrations (MICs) were determined by broth microdilution method according to CLSI. There was no resistance to either imipenem or meropenem observed for Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis. High resistance rates of K. pneumoniae to ceftazidime and gentamicin (50%) are a raising concern. Pseudomonas aeruginosa was the most resistant Gram-negative species with two (12%) of the strains resistant to meropenem, three (18%) to imipenem, 10 (47%) to gentamicin and six (35%) to piperacillin/tazobactam and ciprofloxacin. According to our results meropenem remains an appropriate antibiotic for the treatment of severe infections caused by Gram-negative bacteria in pediatric population. The results indicate that meropenem has excellent potency and spectrum of activity despite being prescribed for a long time for the treatment of seriously ill patients, and still appears to be a reliable option for the initial empirical therapy of serious nosocomial infections in children. However, later studies have shown the emergence of carbapenem-resistant Gram-negative bacteria after 2008.

  6. Screening of the novel colicinogenic gram-negative rods against pathogenic Escherichia coli O157:H7

    Directory of Open Access Journals (Sweden)

    H Mushtaq

    2015-01-01

    Full Text Available Purpose: Escherichia coli (E. coli O157:H7 is gram-negative enteric pathogen producing different types of Shiga toxin. This bacterium is the most corporate cause of haemorrhagic colitis in human. Administration of antibiotics (particularly sulfa drugs against this pathogen is a debatable topic as this may increase the risk of uremic syndrome; especially in children and aged people. Around the world, microbiologists are in search of alternative therapeutic methods specially probiotics against this pathogen. In the present study, we have focused on the investigation of alternate bio-therapeutics (probiotics for the treatment of patients infected with E. coli O157:H7. This study is based on the identification of colicin-producing gram-negative bacteria (particularly enterobacteriaceae which can competently exclude E. coli O157:H7 from the gut of the infected individual. Materials and Methods: Hundred samples from human, animal faeces and septic tank water were analysed for nonpathogenic gram-negative rods (GNRs. Results: Out of these samples, 175 isolates of GNRs were checked for their activity against E. coli O157:H7. Only 47 isolates inhibited the growth of E. coli O157:H7, among which majority were identified as E. coli. These E. coli strains were found to be the efficient producers of colicin. Some of the closely related species i. e., Citrobacter sp, Pantoea sp. and Kluyvera sp. also showed considerable colicinogenic activity. Moreover, colicinogenic species were found to be nonhaemolytic, tolerant to acidic environment (pH 3 and sensitive to commonly used antibiotics. Conclusion: Nonhaemolytic, acid tolerant and sensitive to antibiotics suggests the possible use of these circulating endothelial cells (CEC as inexpensive and inoffensive therapeutic agent (probiotics in E. coli O157:H7 infections.

  7. Amplifiable DNA from Gram-negative and Gram-positive bacteria by a low strength pulsed electric field method

    Science.gov (United States)

    Vitzthum, Frank; Geiger, Georg; Bisswanger, Hans; Elkine, Bentsian; Brunner, Herwig; Bernhagen, Jürgen

    2000-01-01

    An efficient electric field-based procedure for cell disruption and DNA isolation is described. Isoosmotic suspensions of Gram-negative and Gram-positive bacteria were treated with pulsed electric fields of Pulses had an exponential decay waveform with a time constant of 3.4 µs. DNA yield was linearly dependent on time or pulse number, with several thousand pulses needed. Electrochemical side-effects and electrophoresis were minimal. The lysates contained non-fragmented DNA which was readily amplifiable by PCR. As the method was not limited to samples of high specific resistance, it should be applicable to physiological fluids and be useful for genomic and DNA diagnostic applications. PMID:10734214

  8. Advantage and limitations of nitrofurantoin in multi-drug resistant Indian scenario

    Directory of Open Access Journals (Sweden)

    Laishram Shakti

    2015-01-01

    Full Text Available Infections caused by antibiotic resistant pathogens are of significant concern and are associated with higher mortality and morbidity. Nitrofurantoin is a broad-spectrum bactericidal antibiotic and is effectively used to treat urinary tract infections (UTIs caused by E. coli, Klebsiella sp., Enterobacter sp., Enterococcus sp. and Staphylococcus aureus. It interfere with the synthesis of cell wall, bacterial proteins and DNA of both Gram positive and Gram negative pathogens. Nitrofurantoin has been used successfully for treatment and prophylaxis of acute lower urinary tract infections. With the emergence of antibiotic resistance, nitrofurantoin has become the choice of agent for treating UTIs caused by multi-drug resistant pathogens.

  9. Clinical pulmonary infection score and a spot serum procalcitonin level to guide discontinuation of antibiotics in ventilator-associated pneumonia: a study in a single institution with high prevalence of nonfermentative gram-negative bacilli infection.

    Science.gov (United States)

    Wongsurakiat, Phunsup; Tulatamakit, Sirapat

    2018-01-01

    Background We wanted to determine the impact of combined Clinical Pulmonary Infection Score (CPIS) and a spot serum procalcitonin (PCT)-guided protocol to shorten the duration of antibiotic treatment in patients with ventilator-associated pneumonia (VAP), mainly caused by nonfermentative gram-negative bacilli (NF-GNB). Methods Patients with VAP who received appropriate antibiotics for 7 days, temperature ⩽ 37.8°C, without shock, and CPIS ⩽ 6 were allocated to the PCT group or conventional group according to the treating physicians' decisions. In the PCT group, antibiotics were stopped if the PCT level on day 8 level appeared effective and safe to guide discontinuation of antibiotic treatment in patients with VAP caused by NF-GNB. TCTR20160726002.

  10. In vitro antimicrobial activity of five essential oils on multidrug resistant Gram-negative clinical isolates.

    Science.gov (United States)

    Sakkas, Hercules; Gousia, Panagiota; Economou, Vangelis; Sakkas, Vassilios; Petsios, Stefanos; Papadopoulou, Chrissanthy

    2016-01-01

    The emergence of drug-resistant pathogens has drawn attention on medicinal plants for potential antimicrobial properties. The objective of the present study was the investigation of the antimicrobial activity of five plant essential oils on multidrug resistant Gram-negative bacteria. Basil, chamomile blue, origanum, thyme, and tea tree oil were tested against clinical isolates of Acinetobacter baumannii (n = 6), Escherichia coli (n = 4), Klebsiella pneumoniae (n = 7), and Pseudomonas aeruginosa (n = 5) using the broth macrodilution method. The tested essential oils produced variable antibacterial effect, while Chamomile blue oil demonstrated no antibacterial activity. Origanum, Thyme, and Basil oils were ineffective on P. aeruginosa isolates. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration values ranged from 0.12% to 1.50% (v/v) for tea tree oil, 0.25-4% (v/v) for origanum and thyme oil, 0.50% to >4% for basil oil and >4% for chamomile blue oil. Compared to literature data on reference strains, the reported MIC values were different by 2SD, denoting less successful antimicrobial activity against multidrug resistant isolates. The antimicrobial activities of the essential oils are influenced by the strain origin (wild, reference, drug sensitive, or resistant) and it should be taken into consideration whenever investigating the plants' potential for developing new antimicrobials.

  11. From Farms to Markets: Gram-Negative Bacteria Resistant to Third-Generation Cephalosporins in Fruits and Vegetables in a Region of North Africa

    OpenAIRE

    Mesbah Zekar, Ferielle; Granier, Sophie A.; Marault, Muriel; Yaici, Lydia; Gassilloud, Benoit; Manceau, Charles; Touati, Abdelaziz; Millemann, Yves

    2017-01-01

    The role of food in human exposure to antimicrobial-resistant bacteria is a growing food safety issue. The contribution of fruits and vegetables eaten raw to this exposure is still unclear. The evaluation of contamination levels of fruits, vegetables and the agricultural environment by third-generation cephalosporin (3GC)-resistant Gram-negative bacteria was performed by analyzing 491 samples of fruits and vegetables collected from 5 markets and 7 farms in Bejaia area, north-eastern Mediterra...

  12. Bacillus subtilis as a Platform for Molecular Characterisation of Regulatory Mechanisms of Enterococcus faecalis Resistance against Cell Wall Antibiotics

    OpenAIRE

    Fang, Chong; Stiegeler, Emanuel; Cook, Gregory M.; Mascher, Thorsten; Gebhard, Susanne

    2014-01-01

    To combat antibiotic resistance of Enterococcus faecalis, a better understanding of the molecular mechanisms, particularly of antibiotic detection, signal transduction and gene regulation is needed. Because molecular studies in this bacterium can be challenging, we aimed at exploiting the genetically highly tractable Gram-positive model organism Bacillus subtilis as a heterologous host. Two fundamentally different regulators of E. faecalis resistance against cell wall antibiotics, the bacitra...

  13. Antibacterial and antibiotic-potentiation activities of the methanol extract of some cameroonian spices against Gram-negative multi-drug resistant phenotypes

    Science.gov (United States)

    2012-01-01

    Background The present work was designed to evaluate the antibacterial properties of the methanol extracts of eleven selected Cameroonian spices on multi-drug resistant bacteria (MDR), and their ability to potentiate the effect of some common antibiotics used in therapy. Results The extract of Cinnamomum zeylanicum against Escherichia coli ATCC 8739 and AG100 strains showed the best activities, with the lowest minimal inhibitory concentration (MIC) of 64 μg/ml. The extract of Dorstenia psilurus was the most active when tested in the presence of an efflux pump inhibitor, phenylalanine Arginine-β- Naphtylamide (PAβN), a synergistic effect being observed in 56.25 % of the tested bacteria when it was combined with Erythromycin (ERY). Conclusion The present work evidently provides information on the role of some Cameroonian spices in the fight against multi-resistant bacteria. PMID:22709668

  14. Antibacterial and antibiotic-potentiation activities of the methanol extract of some cameroonian spices against Gram-negative multi-drug resistant phenotypes

    Directory of Open Access Journals (Sweden)

    Voukeng Igor K

    2012-06-01

    Full Text Available Abstract Background The present work was designed to evaluate the antibacterial properties of the methanol extracts of eleven selected Cameroonian spices on multi-drug resistant bacteria (MDR, and their ability to potentiate the effect of some common antibiotics used in therapy. Results The extract of Cinnamomum zeylanicum against Escherichia coli ATCC 8739 and AG100 strains showed the best activities, with the lowest minimal inhibitory concentration (MIC of 64 μg/ml. The extract of Dorstenia psilurus was the most active when tested in the presence of an efflux pump inhibitor, phenylalanine Arginine-β- Naphtylamide (PAβN, a synergistic effect being observed in 56.25 % of the tested bacteria when it was combined with Erythromycin (ERY. Conclusion The present work evidently provides information on the role of some Cameroonian spices in the fight against multi-resistant bacteria.

  15. Antibiotic resistance patterns of coagulase-negative staphylococcus strains isolated from blood cultures of septicemic patients in Turkey.

    Science.gov (United States)

    Koksal, F; Yasar, H; Samasti, M

    2009-01-01

    The aim of this study is to determine antibiotic resistance patterns and slime production characteristics of coagulase-negative Staphylococci (CoNS) caused nosocomial bacteremia. A total of 200 CoNS strains were isolated from blood samples of patients with true bacteremia who were hospitalized in intensive care units and in other departments of Istanbul University Cerrahpasa Medical Hospital between 1999 and 2006. Among 200 CoNS isolates, Staphylococcus epidermidis was the most prevalent species (87) followed by Staphylococcus haemolyticus (23), Staphylococcus hominis (19), Staphylococcus lugdunensis (18), Staphylococcus capitis (15), Staphylococcus xylosus (10), Staphylococcus warneri (8), Staphylococcus saprophyticus (5), Staphylococcus lentus (5), Staphylococcus simulans (4), Staphylococcus chromogenes (3), Staphylococcus cohnii (1), Staphylococcus schleiferi (1), and Staphylococcus auricularis (1). Resistance to methicillin was detected in 67.5% of CoNS isolates. Methicillin-resistant CoNS strains were determined to be more resistant to antibiotics than methicillin-susceptible CoNS strains. Resistance rates of methicillin-resistant and methicillin-susceptible CoNS strains to the antibacterial agents, respectively, were as follows: gentamicin 90% and 17%, erythromycin 80% and 37%, clindamycin 72% and 18%, trimethoprim-sulfamethoxazole 68% and 38%, ciprofloxacin 67% and 23%, tetracycline 60% and 45%, chloramphenicol 56% and 13% and fusidic acid 25% and 15%. None of the strains were resistant to vancomycin and teicoplanin. Slime production was detected in 86 of 200 CoNS strains. Resistance to methicillin was found in 81% of slime-positive and in 57% of slime-negative strains. Our results indicated that there is a high level of resistance to widely used agents in causative methicillin-resistant CoNS strains. However fusidic acid has the smallest resistance ratio, with the exception of glycopeptides. Additionally, most S. epidermidis strains were slime

  16. Impact of Combination Antimicrobial Therapy on Mortality Risk for Critically Ill Patients with Carbapenem-Resistant Bacteremia

    Science.gov (United States)

    Bauer, Seth R.; Neuner, Elizabeth A.; Lam, Simon W.

    2015-01-01

    There are limited treatment options for carbapenem-resistant Gram-negative infections. Currently, there are suggestions in the literature that combination therapy should be used, which frequently includes antibiotics to which the causative pathogen demonstrates in vitro resistance. This case-control study evaluated risk factors associated with all-cause mortality rates for critically ill patients with carbapenem-resistant Gram-negative bacteremia. Adult patients who were admitted to an intensive care unit with sepsis and a blood culture positive for Gram-negative bacteria resistant to a carbapenem were included. Patients with polymicrobial, recurrent, or breakthrough infections were excluded. Included patients were classified as survivors (controls) or nonsurvivors (cases) at 30 days after the positive blood culture. Of 302 patients screened, 168 patients were included, of whom 90 patients died (53.6% [cases]) and 78 survived (46.4% [controls]) at 30 days. More survivors received appropriate antibiotics (antibiotics with in vitro activity) than did nonsurvivors (93.6% versus 53.3%; P carbapenems) (87.2% versus 80%; P = 0.21). After adjustment for baseline factors with multivariable logistic regression, combination therapy was independently associated with decreased risk of death (odds ratio, 0.19 [95% confidence interval, 0.06 to 0.56]; P carbapenem-resistant Gram-negative bacteremia. However, that association is lost if in vitro activity is not considered. PMID:25845872

  17. Lipoprotein Transport: Greasing the Machines of Outer Membrane Biogenesis: Re-Examining Lipoprotein Transport Mechanisms Among Diverse Gram-Negative Bacteria While Exploring New Discoveries and Questions.

    Science.gov (United States)

    Grabowicz, Marcin

    2018-04-01

    The Gram-negative outer membrane (OM) is a potent permeability barrier against antibiotics, limiting clinical options amid mounting rates of resistance. The Lol transport pathway delivers lipoproteins to the OM. All the OM assembly machines require one or more OM lipoprotein to function, making the Lol pathway central for all aspects of OM biogenesis. The Lol pathways of many medically important species clearly deviate from the Escherichia coli paradigm, perhaps with implications for efforts to develop novel antibiotics. Moreover, recent work reveals the existence of an undiscovered alternate route for bringing lipoproteins to the OM. Here, lipoprotein transport mechanisms, and the quality control systems that underpin them, is re-examined in context of their diversity. © 2018 WILEY Periodicals, Inc.

  18. Antibiotic Resistance

    DEFF Research Database (Denmark)

    Munck, Christian

    morbidity and mortality as well as an increase in the cost of treatment. Understanding how bacteria respond to antibiotic exposure gives the foundations for a rational approach to counteract antimicrobial resistance. In the work presented in this thesis, I explore the two fundamental sources...... of antimicrobial resistance: (1) adaptive mutations and (2) horizontal acquisition of resistance genes from antibiotic gene reservoirs. By studying the geno- and phenotypic changes of E. coli in response to single and drug-pair exposures, I uncover the evolutionary trajectories leading to adaptive resistance. I...... to rationally design drug combinations that limit the evolution of antibiotic resistance due to counteracting evolutionary trajectories. My results highlight that an in-depth knowledge about the genetic responses to the individual antimicrobial compounds enables the prediction of responses to drug combinations...

  19. Marinopyrrole Derivatives as Potential Antibiotic Agents against Methicillin-Resistant Staphylococcus aureus (II

    Directory of Open Access Journals (Sweden)

    Rongshi Li

    2013-08-01

    Full Text Available Methicillin-resistant Staphylococcus aureus (MRSA continues to be a major problem, causing severe and intractable infections worldwide. MRSA is resistant to all beta-lactam antibiotics, and alternative treatments are limited. A very limited number of new antibiotics have been discovered over the last half-century, novel agents for the treatment of MRSA infections are urgently needed. Marinopyrrole A was reported to show antibiotic activity against MRSA in 2008. After we reported the first total synthesis of (±-marinopyrrole A, we designed and synthesized a series of marinopyrrole derivatives. Our structure activity relationship (SAR studies of these novel derivatives against a panel of Gram-positive pathogens in antibacterial assays have revealed that a para-trifluoromethyl analog (33 of marinopyrrole A is ≥63-, 8-, and 4-fold more potent than vancomycin against methicillin-resistant Staphylococcus epidermidis (MRSE, methicillin-susceptible Staphylococcus aureus (MSSA and MRSA, respectively. The results provide valuable information in the search for new-generation antibiotics.

  20. Outcomes of critically ill intensive care unit patients treated with fosfomycin for infections due to pandrug-resistant and extensively drug-resistant carbapenemase-producing Gram-negative bacteria.

    Science.gov (United States)

    Pontikis, Konstantinos; Karaiskos, Ilias; Bastani, Styliani; Dimopoulos, George; Kalogirou, Michalis; Katsiari, Maria; Oikonomou, Angelos; Poulakou, Garyphallia; Roilides, Emmanuel; Giamarellou, Helen

    2014-01-01

    Fosfomycin is active in vitro against extensively drug-resistant (XDR) and pandrug-resistant (PDR) Pseudomonas aeruginosa and Klebsiella pneumoniae carbapenemase-producing strains; however, the in vivo effectiveness against such pathogens is almost unknown. A multicentre, observational, prospective case-series study was performed in 11 ICUs. All consecutive fosfomycin-treated patients suffering from XDR or PDR fosfomycin-susceptible, microbiologically documented infections were recorded. Clinical and microbiological outcomes were assessed. A safety analysis was performed. In total, 68 patients received fosfomycin during the study period, 48 of whom were considered suitable for effectiveness analysis based on predefined criteria. Bacteraemia and ventilator-associated pneumonia were the main infections. Carbapenemase-producing K. pneumoniae and P. aeruginosa were isolated in 41 and 17 cases, respectively. All isolates exhibited an XDR or PDR profile, being fosfomycin-susceptible by definition. Fosfomycin was administered intravenously at a median dose of 24g/day for a median of 14 days, mainly in combination with colistin or tigecycline. Clinical outcome at Day 14 was successful in 54.2% of patients, whilst failure, indeterminate outcome and superinfection were documented in 33.3%, 6.3% and 6.3%, respectively. All-cause mortality at Day 28 was 37.5%. Bacterial eradication was observed in 56.3% of cases. Fosfomycin resistance developed in three cases. The main adverse event was reversible hypokalaemia. In conclusion, fosfomycin could have a place in the armamentarium against XDR and PDR Gram-negative infections in the critically ill. Resistance development during therapy, which has been a matter of concern in previous studies, did not occur frequently. The necessity of combination with other antibiotics requires further investigation. Copyright © 2013 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  1. Myroides odoratimimus Forms Structurally Complex and Inherently Antibiotic-Resistant Biofilm in a Wound-Like in vitro Model

    Directory of Open Access Journals (Sweden)

    Arianna Pompilio

    2017-12-01

    Full Text Available Myroides odoratimimus is an aerobic, non-fermenting Gram-negative multidrug-resistant bacterium widely distributed in nature that rarely causes infections in immunocompromised patients. We recently described in a diabetic patient a case of recurrent calcaneal ulcer infection caused by a M. odoratimimus strain showing potential for biofilm formation. For the first time, we therefore evaluated the ability of M. odoratimimus to form biofilm under different pH values and glucose concentrations using an in vitro “skin-like” model, and its susceptibility to levofloxacin, meropenem, and tigecycline. The expression of some antibiotic-resistance related genes was also monitored by RT-PCR during planktonic-to-biofilm transition. Our results indicated that M. odoratimimus can produce relevant amounts of biofilm biomass, in a time-dependent manner, especially at acidic pH and regardless of glucose concentration tested. The comparative analysis of MIC and MBC values between planktonic and sessile cells showed that resistance to antibiotics increased during the planktonic-to-biofilm transition. Viable cell count indicated that none of the tested antibiotics were able to completely eradicate preformed biofilms, although meropenem and levofloxacin were the most active causing a significant, dose-independent, reduction of biofilm's viability, as also confirmed by microscopic analysis. RT-PCR showed that antibiotic-resistance related gyrA and acrB genes are over-expressed during the transition from planktonic to sessile (biofilm lifestyle. Overall, our findings showed that M. odoratimimus can form relevant amounts of inherently antibiotic-resistant biofilm under conditions relevant to wound site, therefore suggesting a role in the pathogenesis of chronic ulcer infections.

  2. Antimicrobial Activities of Leaf Extracts of Guava (Psidium guajava L.) on Two Gram-Negative and Gram-Positive Bacteria

    Science.gov (United States)

    Biswas, Bipul; Rogers, Kimberly; McLaughlin, Fredrick; Yadav, Anand

    2013-01-01

    Aim. To determine the antimicrobial potential of guava (Psidium guajava) leaf extracts against two gram-negative bacteria (Escherichia coli and Salmonella enteritidis) and two gram-positive bacteria (Staphylococcus aureus and Bacillus cereus) which are some of foodborne and spoilage bacteria. The guava leaves were extracted in four different solvents of increasing polarities (hexane, methanol, ethanol, and water). The efficacy of these extracts was tested against those bacteria through a well-diffusion method employing 50 μL leaf-extract solution per well. According to the findings of the antibacterial assay, the methanol and ethanol extracts of the guava leaves showed inhibitory activity against gram-positive bacteria, whereas the gram-negative bacteria were resistant to all the solvent extracts. The methanol extract had an antibacterial activity with mean zones of inhibition of 8.27 and 12.3 mm, and the ethanol extract had a mean zone of inhibition of 6.11 and 11.0 mm against B. cereus and S. aureus, respectively. On the basis of the present finding, guava leaf-extract might be a good candidate in the search for a natural antimicrobial agent. This study provides scientific understanding to further determine the antimicrobial values and investigate other pharmacological properties. PMID:24223039

  3. Antimicrobial Activities of Leaf Extracts of Guava (Psidium guajava L. on Two Gram-Negative and Gram-Positive Bacteria

    Directory of Open Access Journals (Sweden)

    Bipul Biswas

    2013-01-01

    Full Text Available Aim. To determine the antimicrobial potential of guava (Psidium guajava leaf extracts against two gram-negative bacteria (Escherichia coli and Salmonella enteritidis and two gram-positive bacteria (Staphylococcus aureus and Bacillus cereus which are some of foodborne and spoilage bacteria. The guava leaves were extracted in four different solvents of increasing polarities (hexane, methanol, ethanol, and water. The efficacy of these extracts was tested against those bacteria through a well-diffusion method employing 50 μL leaf-extract solution per well. According to the findings of the antibacterial assay, the methanol and ethanol extracts of the guava leaves showed inhibitory activity against gram-positive bacteria, whereas the gram-negative bacteria were resistant to all the solvent extracts. The methanol extract had an antibacterial activity with mean zones of inhibition of 8.27 and 12.3 mm, and the ethanol extract had a mean zone of inhibition of 6.11 and 11.0 mm against B. cereus and S. aureus, respectively. On the basis of the present finding, guava leaf-extract might be a good candidate in the search for a natural antimicrobial agent. This study provides scientific understanding to further determine the antimicrobial values and investigate other pharmacological properties.

  4. Veillonella, Firmicutes: Microbes disguised as Gram negatives.

    Science.gov (United States)

    Vesth, Tammi; Ozen, Aslı; Andersen, Sandra C; Kaas, Rolf Sommer; Lukjancenko, Oksana; Bohlin, Jon; Nookaew, Intawat; Wassenaar, Trudy M; Ussery, David W

    2013-12-20

    The Firmicutes represent a major component of the intestinal microflora. The intestinal Firmicutes are a large, diverse group of organisms, many of which are poorly characterized due to their anaerobic growth requirements. Although most Firmicutes are Gram positive, members of the class Negativicutes, including the genus Veillonella, stain Gram negative. Veillonella are among the most abundant organisms of the oral and intestinal microflora of animals and humans, in spite of being strict anaerobes. In this work, the genomes of 24 Negativicutes, including eight Veillonella spp., are compared to 20 other Firmicutes genomes; a further 101 prokaryotic genomes were included, covering 26 phyla. Thus a total of 145 prokaryotic genomes were analyzed by various methods to investigate the apparent conflict of the Veillonella Gram stain and their taxonomic position within the Firmicutes. Comparison of the genome sequences confirms that the Negativicutes are distantly related to Clostridium spp., based on 16S rRNA, complete genomic DNA sequences, and a consensus tree based on conserved proteins. The genus Veillonella is relatively homogeneous: inter-genus pair-wise comparison identifies at least 1,350 shared proteins, although less than half of these are found in any given Clostridium genome. Only 27 proteins are found conserved in all analyzed prokaryote genomes. Veillonella has distinct metabolic properties, and significant similarities to genomes of Proteobacteria are not detected, with the exception of a shared LPS biosynthesis pathway. The clade within the class Negativicutes to which the genus Veillonella belongs exhibits unique properties, most of which are in common with Gram-positives and some with Gram negatives. They are only distantly related to Clostridia, but are even less closely related to Gram-negative species. Though the Negativicutes stain Gram-negative and possess two membranes, the genome and proteome analysis presented here confirm their place within the

  5. Revisiting the Gram-negative lipoprotein paradigm.

    Science.gov (United States)

    LoVullo, Eric D; Wright, Lori F; Isabella, Vincent; Huntley, Jason F; Pavelka, Martin S

    2015-05-01

    The processing of lipoproteins (Lpps) in Gram-negative bacteria is generally considered an essential pathway. Mature lipoproteins in these bacteria are triacylated, with the final fatty acid addition performed by Lnt, an apolipoprotein N-acyltransferase. The mature lipoproteins are then sorted by the Lol system, with most Lpps inserted into the outer membrane (OM). We demonstrate here that the lnt gene is not essential to the Gram-negative pathogen Francisella tularensis subsp. tularensis strain Schu or to the live vaccine strain LVS. An LVS Δlnt mutant has a small-colony phenotype on sucrose medium and increased susceptibility to globomycin and rifampin. We provide data indicating that the OM lipoprotein Tul4A (LpnA) is diacylated but that it, and its paralog Tul4B (LpnB), still sort to the OM in the Δlnt mutant. We present a model in which the Lol sorting pathway of Francisella has a modified ABC transporter system that is capable of recognizing and sorting both triacylated and diacylated lipoproteins, and we show that this modified system is present in many other Gram-negative bacteria. We examined this model using Neisseria gonorrhoeae, which has the same Lol architecture as that of Francisella, and found that the lnt gene is not essential in this organism. This work suggests that Gram-negative bacteria fall into two groups, one in which full lipoprotein processing is essential and one in which the final acylation step is not essential, potentially due to the ability of the Lol sorting pathway in these bacteria to sort immature apolipoproteins to the OM. This paper describes the novel finding that the final stage in lipoprotein processing (normally considered an essential process) is not required by Francisella tularensis or Neisseria gonorrhoeae. The paper provides a potential reason for this and shows that it may be widespread in other Gram-negative bacteria. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Inhaled Antibiotics in the Treatment of Nosocomial Pneumonia

    Directory of Open Access Journals (Sweden)

    A. N. Kuzovlev

    2013-01-01

    Full Text Available Nosocomial pneumonia is the most common nosocomial infection in intensive care units. Rational antibiotic therapy is the basis for the treatment of nosocomial pneumonia. There is currently a challenge of the pathogens of nosocomial pneumonia being resistant to most of the antibiotics recommended for its treatment. Inhaled antibiotics used in combination with systemic drugs are an effective and safe treatment for nosocomial pneumonia. This review of literature characterizes the current possibilities of inhaled antibiotic therapy for nosocomial pneumonia in detail and describes medicaments and the advantages and disadvantages of this treatment option. Despite insufficient evidence in circumstances where the microorganisms are polyresistant and where the design of novel antibiotics shows no promise, the use of inhaled antibiotics is an important alternative in the treatment of severe nosocomial pneumonia caused by polyresistant gram-negative bacteria. Key words: nosocomial pneumonia, antibiotic therapy, inhaled antibiotics, resistance.

  7. Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes

    Science.gov (United States)

    Hong, Pei-Ying; Al-Jassim, Nada; Ansari, Mohd Ikram; Mackie, Roderick I.

    2013-01-01

    Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the “perfect microbial storm”. Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water. PMID:27029309

  8. Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes

    Directory of Open Access Journals (Sweden)

    Roderick I. Mackie

    2013-07-01

    Full Text Available Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the “perfect microbial storm”. Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water.

  9. Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes

    KAUST Repository

    Hong, Pei-Ying; Aljassim, Nada I.; Ansari, Mohd Ikram; Mackie, Roderick

    2013-01-01

    Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the “perfect microbial storm”. Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water.

  10. Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes

    KAUST Repository

    Hong, Pei-Ying

    2013-07-31

    Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the “perfect microbial storm”. Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water.

  11. Selection of antibiotic resistance at very low antibiotic concentrations.

    Science.gov (United States)

    Sandegren, Linus

    2014-05-01

    Human use of antibiotics has driven the selective enrichment of pathogenic bacteria resistant to clinically used drugs. Traditionally, the selection of resistance has been considered to occur mainly at high, therapeutic levels of antibiotics, but we are now beginning to understand better the importance of selection of resistance at low levels of antibiotics. The concentration of an antibiotic varies in different body compartments during treatment, and low concentrations of antibiotics are found in sewage water, soils, and many water environments due to natural production and contamination from human activities. Selection of resistance at non-lethal antibiotic concentrations (below the wild-type minimum inhibitory concentration) occurs due to differences in growth rate at the particular antibiotic concentration between cells with different tolerance levels to the antibiotic. The minimum selective concentration for a particular antibiotic is reached when its reducing effect on growth of the susceptible strain balances the reducing effect (fitness cost) of the resistance determinant in the resistant strain. Recent studies have shown that resistant bacteria can be selected at concentrations several hundred-fold below the lethal concentrations for susceptible cells. Resistant mutants selected at low antibiotic concentrations are generally more fit than those selected at high concentrations but can still be highly resistant. The characteristics of selection at low antibiotic concentrations, the potential clinical problems of this mode of selection, and potential solutions will be discussed.

  12. Antibiotic-mediated selection of quorum-sensing-negative Staphylococcus aureus

    DEFF Research Database (Denmark)

    Paulander, Wilhelm Erik Axel; Varming, Anders Nissen; Bæk, Kristoffer Torbjørn

    2012-01-01

    of glycopeptide resistance greater than those of other strains. We show here that agr-negative strains have a fitness advantage over agr-positive strains in the presence of sublethal concentrations of some antibiotics and that the fitness defect of agr-positive cells is caused by antibiotic-mediated expression...... expression. We demonstrate that the presence of the agr locus imposes a fitness cost on S. aureus that is mediated by the expression of RNAIII. Further, we show that exposure to sublethal levels of the antibiotics ciprofloxacin, mupirocin, and rifampin, each targeting separate cellular functions, markedly...... increases the agr-mediated fitness cost by inducing the expression of RNAIII. Thus, the extensive use of antibiotics in hospitals may explain why agr-negative variants are frequently isolated from hospital-acquired S. aureus infections but rarely found among community-acquired S. aureus strains. Importantly...

  13. Enhancement of antibiotic effect via gold:silver-alloy nanoparticles

    International Nuclear Information System (INIS)

    Moreira dos Santos, Margarida; Queiroz, Margarida João; Baptista, Pedro V.

    2012-01-01

    A strategy for the development of novel antimicrobials is to combine the stability and pleiotropic effects of inorganic compounds with the specificity and efficiency of organic compounds, such as antibiotics. Here we report on the use of gold:silver-alloy (Au:Ag-alloy) nanoparticles, obtained via a single-step citrate co-reduction method, combined to conventional antibiotics to enhance their antimicrobial effect on bacteria. Addition of the alloy nanoparticles considerably decreased the dose of antibiotic necessary to show antimicrobial effect, both for bacterial cells growing in rich medium in suspension and for bacterial cells resting in a physiological buffer on a humid cellulose surface. The observed effect was more pronounced than the sum of the individual effects of the nanoparticles and antibiotic. We demonstrate the enhancement effect of Au:Ag-alloy nanoparticles with a size distribution of 32.5 ± 7.5 nm mean diameter on the antimicrobial effect of (i) kanamycin on Escherichia coli (Gram-negative bacterium), and (ii) a β-lactam antibiotic on both a sensitive and resistant strain of Staphylococcus aureus (Gram-positive bacterium). Together, these results may pave the way for the combined use of nanoparticle–antibiotic conjugates towards decreasing antibiotic resistance currently observed for certain bacteria and conventional antibiotics.

  14. Enhancement of antibiotic effect via gold:silver-alloy nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Moreira dos Santos, Margarida, E-mail: margarida.santos@fct.unl.pt; Queiroz, Margarida Joao; Baptista, Pedro V. [Universidade Nova de Lisboa, CIGMH, Departamento Ciencias da Vida, Faculdade de Ciencias e Tecnologia (Portugal)

    2012-05-15

    A strategy for the development of novel antimicrobials is to combine the stability and pleiotropic effects of inorganic compounds with the specificity and efficiency of organic compounds, such as antibiotics. Here we report on the use of gold:silver-alloy (Au:Ag-alloy) nanoparticles, obtained via a single-step citrate co-reduction method, combined to conventional antibiotics to enhance their antimicrobial effect on bacteria. Addition of the alloy nanoparticles considerably decreased the dose of antibiotic necessary to show antimicrobial effect, both for bacterial cells growing in rich medium in suspension and for bacterial cells resting in a physiological buffer on a humid cellulose surface. The observed effect was more pronounced than the sum of the individual effects of the nanoparticles and antibiotic. We demonstrate the enhancement effect of Au:Ag-alloy nanoparticles with a size distribution of 32.5 {+-} 7.5 nm mean diameter on the antimicrobial effect of (i) kanamycin on Escherichia coli (Gram-negative bacterium), and (ii) a {beta}-lactam antibiotic on both a sensitive and resistant strain of Staphylococcus aureus (Gram-positive bacterium). Together, these results may pave the way for the combined use of nanoparticle-antibiotic conjugates towards decreasing antibiotic resistance currently observed for certain bacteria and conventional antibiotics.

  15. Staphylococcus aureus carriage rates and antibiotic resistance patterns in patients with acne vulgaris.

    Science.gov (United States)

    Delost, Gregory R; Delost, Maria E; Armile, James; Lloyd, Jenifer

    2016-04-01

    Overuse of antibiotics has led to the development of antibiotic-resistant strains of Staphylococcus aureus, which are occurring more frequently within the community. We sought to determine whether long-term antibiotic therapy for acne alter the carriage rate and antibiotic resistance profiles of S aureus. This was a prospective, cross-sectional, quasiexperimental study. Samples of anterior nares were obtained from dermatology patients given a diagnosis of acne vulgaris (n = 263) who were treated with antibiotics (n = 142) or who were not treated with antibiotics (n = 121). Specimens were tested for the presence of S aureus by growth on mannitol salt agar and then isolated on 5% sheep blood agar. Identification was confirmed based on colonial morphology, Gram stain, catalase, and coagulase testing. Antibiotic susceptibility testing was performed using the VITEK 2 system (bioMerieux, Marcy-l'Étoile, France). The S aureus carriage rate was significantly lower in patients with acne treated with antibiotics (6.3%) compared with those not treated with antibiotics (15.7%; P = .016). The percentage of S aureus isolates resistant to 1 or more antibiotics did not significantly differ between the 2 groups (P = .434). Cross-sectional study, patient compliance, and effects of prior acne treatments are limitations. Treatment of patients with acne using antibiotics decreases the S aureus carriage rate but does not significantly alter the antibiotic resistance rates. Copyright © 2015 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  16. Prevalence of Device-associated Nosocomial Infections Caused By Gram-negative Bacteria in a Trauma Intensive Care Unit in Libya

    Directory of Open Access Journals (Sweden)

    Abdulaziz Zorgani

    2015-07-01

    Full Text Available Objectives: Device-associated nosocomial infections (DANIs have a major impact on patient morbidity and mortality. Our study aimed to determine the distribution rate of DANIs and causative agents and patterns of antibiotic resistance in the trauma-surgical intensive care unit (ICU. Methods: Our study was conducted at Abusalim Trauma Hospital in Tripoli, Libya. All devices associated with nosocomial infections, including central venous catheters (CVC, endotracheal tubes (ETT, Foley’s urinary catheters, chest tubes, nasogastric tubes (NGT, and tracheostomy tubes, were removed aseptically and examined for Gram-negative bacteria (GNB. Results: During a one-year study period, 363 patients were hospitalized; the overall mortality rate was 29%. A total of 79 DANIs were identified, the most common site of infection was ETT (39.2%, followed by urinary catheters (19%, NGTs (18%, tracheostomy tubes (11%, CVCs (10%, and chest tubes (3%. The most frequently isolated organisms were Klebsiella pneumonia, Acinetobacter baumannii, and Pseudomonas aeruginosa (30%, 20%, and 14%, respectively. Extremely high resistance rates were observed among GNB to ampicillin (99%, cefuroxime (95%, amoxicillin-clavulante (92%, and nitrofurantoin (91%. Lower levels of resistance were exhibited to amikacin (38%, imipenem (38%, and colistin (29%. About 39% of the isolates were defined as multi-drug resistant (MDR. Overall, extended spectrum β-lactmase producers were expressed in 39% of isolates mainly among K. pneumonia (88%. A. baumannii isolates exhibited extremely high levels of resistance to all antibiotics except colistin (100% sensitive. In addition, 56.3% of A. baumannii isolates were found to be MDR. P. aeruginosa isolates showed 46%–55% effectiveness to anti-pseudomonas antibiotics. Conclusion: High rates of DANI’s and the emergence of MDR organisms poses a serious threat to patients. There is a need to strengthen infection control within the ICU environment

  17. Impact of ertapenem on antimicrobial resistance in a sentinel group of Gram-negative bacilli: a 6 year antimicrobial resistance surveillance study.

    Science.gov (United States)

    Rodriguez-Osorio, Carlos A; Sanchez-Martinez, Cesar O; Araujo-Melendez, Javier; Criollo, Elia; Macias-Hernandez, Alejandro E; Ponce-de-Leon, Alfredo; Ponce-de-Leon, Sergio; Sifuentes-Osornio, Jose

    2015-03-01

    To determine the association between ertapenem and resistance of Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii-calcoaceticus complex to different antimicrobials while adjusting for relevant hospital factors. This was a retrospective time-series study conducted at a tertiary care centre from September 2002 to August 2008. The specific impact of ertapenem on the resistance of these Gram-negative bacilli (GNB) was assessed by multiple linear regression analysis, adjusting for the average length of stay, rate of hospital-acquired infections and use of 10 other antimicrobials, including type 2 carbapenems. Unadjusted analyses revealed significant increases over the duration of the study in the number of GNB resistant to meropenem/imipenem among 1000 isolates each of E. coli (0.46 ± 0.22, P  0.05) with changes in resistance for any pathogen/antimicrobial combination. After controlling for confounders, ertapenem was not associated with changes in resistance in a group of sentinel GNB, although significant variations in resistance to different antimicrobials were observed in the unadjusted analyses. These results emphasize the importance of implementation of local resistance surveillance platforms and stewardship programmes to combat the global emergence and spread of antimicrobial resistance. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Expanding the potential of NAI-107 for treating serious ESKAPE pathogens: synergistic combinations against Gram-negatives and bactericidal activity against non-dividing cells.

    Science.gov (United States)

    Brunati, Cristina; Thomsen, Thomas T; Gaspari, Eleonora; Maffioli, Sonia; Sosio, Margherita; Jabes, Daniela; Løbner-Olesen, Anders; Donadio, Stefano

    2018-02-01

    To characterize NAI-107 and related lantibiotics for their in vitro activity against Gram-negative pathogens, alone or in combination with polymyxin, and against non-dividing cells or biofilms of Staphylococcus aureus. NAI-107 was also evaluated for its propensity to select or induce self-resistance in Gram-positive bacteria. We used MIC determinations and chequerboard experiments to establish the antibacterial activity of the examined compounds against target microorganisms. Time-kill assays were used to evaluate killing of exponential and stationary-phase cells. The effects on biofilms (growth inhibition and biofilm eradication) were evaluated using biofilm-coated pegs. The frequency of spontaneous resistant mutants was evaluated by either direct plating or by continuous sub-culturing at 0.5 × MIC levels, followed by population analysis profiles. The results showed that NAI-107 and its brominated variant are highly active against Neisseria gonorrhoeae and some other fastidious Gram-negative pathogens. Furthermore, all compounds strongly synergized with polymyxin against Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa, and showed bactericidal activity. Surprisingly, NAI-107 alone was bactericidal against non-dividing A. baumannii cells. Against S. aureus, NAI-107 and related lantibiotics showed strong bactericidal activity against dividing and non-dividing cells. Activity was also observed against S. aureus biofilms. As expected for a lipid II binder, no significant resistance to NAI-107 was observed by direct plating or serial passages. Overall, the results of the current work, along with previously published results on the efficacy of NAI-107 in experimental models of infection, indicate that this lantibiotic represents a promising option in addressing the serious threat of antibiotic resistance. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial

  19. Macrolide resistance mechanisms in Enterobacteriaceae: Focus on azithromycin.

    Science.gov (United States)

    Gomes, Cláudia; Martínez-Puchol, Sandra; Palma, Noemí; Horna, Gertrudis; Ruiz-Roldán, Lidia; Pons, Maria J; Ruiz, Joaquim

    2017-02-01

    From its introduction in 1952 onwards, the clinical use of macrolides has been steadily increasing, both in human and veterinary medicine. Although initially designed to the treatment of Gram-positive microorganisms, this antimicrobial family has also been used to treat specific Gram-negative bacteria. Some of them, as azithromycin, are considered in the armamentarium against Enterobacteriaceae infections. However, the facility that this bacterial genus has to gain or develop mechanisms of antibiotic resistance may compromise the future usefulness of these antibiotics to fight against Enterobacteriaceae infections. The present review is focused on the mechanisms of macrolide resistance, currently described in Enterobacteriaceae.

  20. The Role of Monitoring Gentamicin Levels in Patients with Gram-Negative Peritoneal Dialysis-Associated Peritonitis

    Science.gov (United States)

    Tang, Wen; Cho, Yeoungjee; Hawley, Carmel M.; Badve, Sunil V.; Johnson, David W.

    2014-01-01

    ♦ Background: There is limited available evidence regarding the role of monitoring serum gentamicin concentrations in peritoneal dialysis (PD) patients receiving this antimicrobial agent in gram-negative PD-associated peritonitis. ♦ Methods: Using data collected in all patients receiving PD at a single center who experienced a gram-negative peritonitis episode between 1 January 2005 and 31 December 2011, we investigated the relationship between measured serum gentamicin levels on day 2 following initial empiric antibiotic therapy and subsequent clinical outcomes of confirmed gram-negative peritonitis. ♦ Results: Serum gentamicin levels were performed on day 2 in 51 (77%) of 66 first gram-negative peritonitis episodes. Average serum gentamicin levels on day 2 were 1.83 ± 0.84 mg/L with levels exceeding 2 mg/L in 22 (43%) cases. The overall cure rate was 64%. No cases of ototoxicity were observed. Day-2 gentamicin levels were not significantly different between patients who did and did not have a complication or cure. Using multivariable logistic regression analysis, failure to cure peritonitis was not associated with either day-2 gentamicin level (adjusted odds ratio (OR) 0.96, 95% confidence interval (CI) 0.25 - 3.73) or continuation of gentamicin therapy beyond day 2 (OR 0.28, 0.02 - 3.56). The only exception was polymicrobial peritonitis, where day-2 gentamicin levels were significantly higher in episodes that were cured (2.06 ± 0.41 vs 1.29 ± 0.71, p = 0.01). In 17 (26%) patients receiving extended gentamicin therapy, day-5 gentamicin levels were not significantly related to peritonitis cure. ♦ Conclusion: Day-2 gentamicin levels did not predict gentamicin-related harm or efficacy during short-course gentamicin therapy for gram-negative PD-related peritonitis, except in cases of polymicrobial peritonitis, where higher levels were associated with cure. PMID:24385334

  1. Should the patients colonized with extended-spectrum beta-lactamase-producing Gram-negative bacilli (E-GNB) coming to hospital from the community with pneumonia get anti-E-GNB active empirical treatment?

    Science.gov (United States)

    Peterlin, Lara; Žagar, Mateja; Lejko Zupanc, Tatjana; Paladin, Marija; Beović, Bojana

    2017-10-01

    Extended-spectrum beta-lactamases are responsible for resistance of Gram-negative bacilli to several beta-lactam antibiotics, including those prescribed for treatment pneumonia. To evaluate the importance of colonization with E-GNB for the choice of empirical treatment we performed a retrospective case-control study including 156 patients, hospitalized for treatment of pneumonia from 2009 through 2013. Empirical treatment success and in-hospital survival were significantly lower in patients colonized with E-GNB compared to non-colonized (p = 0.002, p = 0.035). When comparing subgroups of colonized patients, treatment success was significantly lower in patients who were colonized with E-GNB resistant to empirical antibiotic (p = 0.010), but not in those colonized by E-GNB susceptible to empirically given antibiotic (p = 0.104). Difference in in-hospital mortality was insignificant in both subgroups (p = 0.056, p = 0.331). The results of study suggest that an anti-E-GNB active antibiotic should be used for empirical treatment of pneumonia in E-GNB colonized patients.

  2. Bacteriological profile and antibiotic sensitivity pattern of neonatal septicaemia in a rural tertiary care hospital in North India

    Directory of Open Access Journals (Sweden)

    S Thakur

    2016-01-01

    Full Text Available Background: There is not much published literature on neonatal septicemia available for the Sub-Himalayan region of North India. Hence, we undertook this study to find out the bacteriological profile and antibiotic sensitivity pattern of neonatal septicemia in the neonatal Intensive Care Unit. Material and Methods: Blood cultures were performed for all clinically suspected neonatal septicemia cases for 1-year. Identification of all pathogenic isolates was followed by antibiotic sensitivity testing. Results: We did blood cultures for 450 neonates and 42% were culture positive. Early onset sepsis were 92 (49% and 96 (51% were late onset sepsis. Gram-positive isolates were 60% and 40% were Gram-negative. Staphylococcus aureus (40%, coagulase negative Staphylococcus species (16%, non-fermenter group of organisms (NFGOs (15%, and Klebsiella pneumoniae (10% were the main isolates. Nasal cannula 101 (54%, birth asphyxia 91 (48%, and prematurity 73 (38% were the prominent risk factors associated with septicemia. Gram-positive organisms were highly resistant to penicillin (87% whereas Gram-negative isolates showed high resistance to third generation cephalosporins (53–89% and aminoglycosides (50–67%. The S. aureus isolates were methicillin-resistant in 41% whereas extended spectrum beta lactamase production was seen in 48% Gram-negative isolates.Conclusion: Our study highlights the recent emergence of Gram-positive organisms as predominant cause of neonatal septicemia in this part of Sub-Himalayan region, along with the review of literature which shows similar results from North India and rest of the world too. Though Gram-negative bacteria still remain the main cause of mortality in neonatal septicemia, we want to dispel the common notion among practitioners that they are the predominant isolates in neonatal septicemia.

  3. Decreased antibiotic susceptibility and enhanced probiotic production potential of goat milk fermented curd in comparison with cow and buffalo milk

    Directory of Open Access Journals (Sweden)

    Jyoti Lakhanpal

    2017-07-01

    Full Text Available The present study was carried out to characterize and compare the production potential and antibiotic susceptibility of probiotics isolated from goat, cow and buffalo milk. The probiotics isolated from milk fermented curd were compared with regard to their number, morphology, gram staining, motility, bile salt tolerance, pH-resistance, catalase activity, oxidase production and antibiotic resistance. We demonstrated that the probiotics isolated from milk fermented curd of all three species were gram positive, motile, catalase negative, and oxidase negative and were able to produce lactic acid. Further, we observed that buffalo milk is more potent in forming curd with the highest count of probiotics per ml (3.53 × 10!5 as compared to cow (5.8 × 10!6 and goat milk (7×10!7; moreover, goat milk bacterial isolates were more tolerant to acidic pH but were less bile-salt tolerant than cow milk. Also, probiotics isolated from goat milk curd were more resistant to antibiotics (resistant to 12 out of 15 screened antibiotics than those from cow and buffalo milk (resistant to 8-9 antibiotics. This report shows that goat milk fermented products possess the highest antibacterial potential and are highly acid-tolerant.

  4. Development of antibiotic regimens using graph based evolutionary algorithms.

    Science.gov (United States)

    Corns, Steven M; Ashlock, Daniel A; Bryden, Kenneth M

    2013-12-01

    This paper examines the use of evolutionary algorithms in the development of antibiotic regimens given to production animals. A model is constructed that combines the lifespan of the animal and the bacteria living in the animal's gastro-intestinal tract from the early finishing stage until the animal reaches market weight. This model is used as the fitness evaluation for a set of graph based evolutionary algorithms to assess the impact of diversity control on the evolving antibiotic regimens. The graph based evolutionary algorithms have two objectives: to find an antibiotic treatment regimen that maintains the weight gain and health benefits of antibiotic use and to reduce the risk of spreading antibiotic resistant bacteria. This study examines different regimens of tylosin phosphate use on bacteria populations divided into Gram positive and Gram negative types, with a focus on Campylobacter spp. Treatment regimens were found that provided decreased antibiotic resistance relative to conventional methods while providing nearly the same benefits as conventional antibiotic regimes. By using a graph to control the information flow in the evolutionary algorithm, a variety of solutions along the Pareto front can be found automatically for this and other multi-objective problems. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. Environmental pollution by antibiotics and by antibiotic resistance determinants

    International Nuclear Information System (INIS)

    Martinez, Jose Luis

    2009-01-01

    Antibiotics are among the most successful drugs used for human therapy. However, since they can challenge microbial populations, they must be considered as important pollutants as well. Besides being used for human therapy, antibiotics are extensively used for animal farming and for agricultural purposes. Residues from human environments and from farms may contain antibiotics and antibiotic resistance genes that can contaminate natural environments. The clearest consequence of antibiotic release in natural environments is the selection of resistant bacteria. The same resistance genes found at clinical settings are currently disseminated among pristine ecosystems without any record of antibiotic contamination. Nevertheless, the effect of antibiotics on the biosphere is wider than this and can impact the structure and activity of environmental microbiota. Along the article, we review the impact that pollution by antibiotics or by antibiotic resistance genes may have for both human health and for the evolution of environmental microbial populations. - The article reviews the current knowledge on the effects that pollution by antibiotics and antibiotic resistance genes may have for the microbiosphere.

  6. Environmental pollution by antibiotics and by antibiotic resistance determinants

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Jose Luis, E-mail: jlmtnez@cnb.csic.e [Departamento de Biotecnologia Microbiana, Centro Nacional de Biotecnologia, Consejo Superior de Investigaciones Cientificas, Darwin 3, Cantoblanco, 28049 Madrid, and CIBERESP (Spain)

    2009-11-15

    Antibiotics are among the most successful drugs used for human therapy. However, since they can challenge microbial populations, they must be considered as important pollutants as well. Besides being used for human therapy, antibiotics are extensively used for animal farming and for agricultural purposes. Residues from human environments and from farms may contain antibiotics and antibiotic resistance genes that can contaminate natural environments. The clearest consequence of antibiotic release in natural environments is the selection of resistant bacteria. The same resistance genes found at clinical settings are currently disseminated among pristine ecosystems without any record of antibiotic contamination. Nevertheless, the effect of antibiotics on the biosphere is wider than this and can impact the structure and activity of environmental microbiota. Along the article, we review the impact that pollution by antibiotics or by antibiotic resistance genes may have for both human health and for the evolution of environmental microbial populations. - The article reviews the current knowledge on the effects that pollution by antibiotics and antibiotic resistance genes may have for the microbiosphere.

  7. Emergence of Imipenem-Resistant Gram-Negative Bacilli in Intestinal Flora of Intensive Care Patients

    Science.gov (United States)

    Angebault, Cécile; Barbier, François; Hamelet, Emilie; Defrance, Gilles; Ruppé, Etienne; Bronchard, Régis; Lepeule, Raphaël; Lucet, Jean-Christophe; El Mniai, Assiya; Wolff, Michel; Montravers, Philippe; Plésiat, Patrick; Andremont, Antoine

    2013-01-01

    Intestinal flora contains a reservoir of Gram-negative bacilli (GNB) resistant to cephalosporins, which are potentially pathogenic for intensive care unit (ICU) patients; this has led to increasing use of carbapenems. The emergence of carbapenem resistance is a major concern for ICUs. Therefore, in this study, we aimed to assess the intestinal carriage of imipenem-resistant GNB (IR-GNB) in intensive care patients. For 6 months, 523 consecutive ICU patients were screened for rectal IR-GNB colonization upon admission and weekly thereafter. The phenotypes and genotypes of all isolates were determined, and a case control study was performed to identify risk factors for colonization. The IR-GNB colonization rate increased regularly from 5.6% after 1 week to 58.6% after 6 weeks in the ICU. In all, 56 IR-GNB strains were collected from 50 patients: 36 Pseudomonas aeruginosa strains, 12 Stenotrophomonas maltophilia strains, 6 Enterobacteriaceae strains, and 2 Acinetobacter baumannii strains. In P. aeruginosa, imipenem resistance was due to chromosomally encoded resistance (32 strains) or carbapenemase production (4 strains). In the Enterobacteriaceae strains, resistance was due to AmpC cephalosporinase and/or extended-spectrum β-lactamase production with porin loss. Genomic comparison showed that the strains were highly diverse, with 8 exceptions (4 VIM-2 carbapenemase-producing P. aeruginosa strains, 2 Klebsiella pneumoniae strains, and 2 S. maltophilia strains). The main risk factor for IR-GNB colonization was prior imipenem exposure. The odds ratio for colonization was already as high as 5.9 (95% confidence interval [95% CI], 1.5 to 25.7) after 1 to 3 days of exposure and increased to 7.8 (95% CI, 2.4 to 29.8) thereafter. In conclusion, even brief exposure to imipenem is a major risk factor for IR-GNB carriage. PMID:23318796

  8. Novel classes of antibiotics or more of the same?

    Science.gov (United States)

    Coates, Anthony R M; Halls, Gerry; Hu, Yanmin

    2011-05-01

    The world is running out of antibiotics. Between 1940 and 1962, more than 20 new classes of antibiotics were marketed. Since then, only two new classes have reached the market. Analogue development kept pace with the emergence of resistant bacteria until 10-20 years ago. Now, not enough analogues are reaching the market to stem the tide of antibiotic resistance, particularly among gram-negative bacteria. This review examines the existing systemic antibiotic pipeline in the public domain, and reveals that 27 compounds are in clinical development, of which two are new classes, both of which are in Phase I clinical trials. In view of the high attrition rate of drugs in early clinical development, particularly new classes and the current regulatory hurdles, it does not seem likely that new classes will be marketed soon. This paper suggests that, if the world is to return to a situation in which there are enough antibiotics to cope with the inevitable ongoing emergence of bacterial resistance, we need to recreate the prolific antibiotic discovery period between 1940 and 1962, which produced 20 classes that served the world well for 60 years. If another 20 classes and their analogues, particularly targeting gram-negatives could be produced soon, they might last us for the next 60 years. How can this be achieved? Only a huge effort by governments in the form of finance, legislation and providing industry with real incentives will reverse this. Industry needs to re-enter the market on a much larger scale, and academia should rebuild its antibiotic discovery infrastructure to support this effort. The alternative is Medicine without effective antibiotics. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  9. Novel classes of antibiotics or more of the same?

    Science.gov (United States)

    Coates, Anthony RM; Halls, Gerry; Hu, Yanmin

    2011-01-01

    The world is running out of antibiotics. Between 1940 and 1962, more than 20 new classes of antibiotics were marketed. Since then, only two new classes have reached the market. Analogue development kept pace with the emergence of resistant bacteria until 10–20 years ago. Now, not enough analogues are reaching the market to stem the tide of antibiotic resistance, particularly among gram-negative bacteria. This review examines the existing systemic antibiotic pipeline in the public domain, and reveals that 27 compounds are in clinical development, of which two are new classes, both of which are in Phase I clinical trials. In view of the high attrition rate of drugs in early clinical development, particularly new classes and the current regulatory hurdles, it does not seem likely that new classes will be marketed soon. This paper suggests that, if the world is to return to a situation in which there are enough antibiotics to cope with the inevitable ongoing emergence of bacterial resistance, we need to recreate the prolific antibiotic discovery period between 1940 and 1962, which produced 20 classes that served the world well for 60 years. If another 20 classes and their analogues, particularly targeting gram-negatives could be produced soon, they might last us for the next 60 years. How can this be achieved? Only a huge effort by governments in the form of finance, legislation and providing industry with real incentives will reverse this. Industry needs to re-enter the market on a much larger scale, and academia should rebuild its antibiotic discovery infrastructure to support this effort. The alternative is Medicine without effective antibiotics. LINKED ARTICLES This article is part of a themed issue on Respiratory Pharmacology. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2011.163.issue-1 PMID:21323894

  10. Fighting antibiotic resistance in the intensive care unit using antibiotics.

    Science.gov (United States)

    Plantinga, Nienke L; Wittekamp, Bastiaan H J; van Duijn, Pleun J; Bonten, Marc J M

    2015-01-01

    Antibiotic resistance is a global and increasing problem that is not counterbalanced by the development of new therapeutic agents. The prevalence of antibiotic resistance is especially high in intensive care units with frequently reported outbreaks of multidrug-resistant organisms. In addition to classical infection prevention protocols and surveillance programs, counterintuitive interventions, such as selective decontamination with antibiotics and antibiotic rotation have been applied and investigated to control the emergence of antibiotic resistance. This review provides an overview of selective oropharyngeal and digestive tract decontamination, decolonization of methicillin-resistant Staphylococcus aureus and antibiotic rotation as strategies to modulate antibiotic resistance in the intensive care unit.

  11. Cloning, expression, crystallization and preliminary X-ray analysis of a putative multiple antibiotic resistance repressor protein (MarR) from Xanthomonas campestris

    International Nuclear Information System (INIS)

    Tu, Zhi-Le; Li, Juo-Ning; Chin, Ko-Hsin; Chou, Chia-Cheng; Lee, Cheng-Chung; Shr, Hui-Lin; Lyu, Ping-Chiang; Gao, Fei Philip; Wang, Andrew H.-J.; Chou, Shan-Ho

    2005-01-01

    A putative repressor for the multiple antibiotic resistance operon from a plant pathogen X. campestris pv. campestris has been overexpressed in E. coli, purified and crystallized. The crystals diffracted to 2.3 Å with good quality. The multiple antibiotic resistance operon (marRAB) is a member of the multidrug-resistance system. When induced, this operon enhances resistance of bacteria to a variety of medically important antibiotics, causing a serious global health problem. MarR is a marR-encoded protein that represses the transcription of the marRAB operon. Through binding with salicylate and certain antibiotics, however, MarR can derepress and activate the marRAB operon. In this report, the cloning, expression, crystallization and preliminary X-ray analysis of XC1739, a putative MarR repressor protein present in the Xanthomonas campestris pv. campestris, a Gram-negative bacterium causing major worldwide disease of cruciferous crops, are described. The XC1739 crystals diffracted to a resolution of at least 1.8 Å. They are orthorhombic and belong to space group P2 1 2 1 2 1 , with unit-cell parameters a = 39.5, b = 54.2 and c = 139.5 Å, respectively. They contain two molecules in the asymmetric unit from calculation of the self-rotation function

  12. Causative pathogens and antibiotic resistance in children hospitalized for urinary tract infection.

    Science.gov (United States)

    Koçak, Mesut; Büyükkaragöz, Bahar; Çelebi Tayfur, Asli; Çaltik, Aysun; Köksoy, Adem Yasin; Çizmeci, Zeynep; Günbey, Sacit

    2016-06-01

    Urinary tract infections (UTI) are one of the most common bacterial infections in children and a major cause of hospitalization. In this study we investigated the clinical characteristics, causative uropathogens; their antibiotic susceptibility and resistance patterns, treatment modalities and efficacy in children hospitalized for UTI in a tertiary care setting. Patients hospitalized for an upper UTI between March 2009 and July 2014 were enrolled. The urine culture-antibiogram results and accompanying urinary tract abnormalities were recorded retrospectively. A total of 142 patients (104 girls, 73.2%; 38 boys, 26.8%) were enrolled. Mean patient age was 32.6 ± 4.1 months. History of recurrent UTI was present in 45.8% (n = 65), with prior hospitalization in 12.0% (n = 17). Frequency of vesicoureteral reflux was 18.3% (n = 26). Gram-negative enteric microorganisms yielded growth in all culture-positive UTI and the most common microorganism was Escherichia coli (n = 114, 80.3%). Extended spectrum beta-lactamase-producing (ESBL (+)) bacterial strains were detected in 49.3% (n = 70), with third-generation cephalosporin resistance in all and increased duration of hospitalization. The prevalence of UTI with ESBL (+) bacterial strains with multi-drug resistance is increasing in the hospitalized pediatric population, therefore rational use of antibiotics is essential. © 2015 Japan Pediatric Society.

  13. Uso del sistema E-test per lo studio di combinazioni antibiotiche verso batteri Gram-negativi multiresistenti in Fibrosi Cistica

    Directory of Open Access Journals (Sweden)

    Antonietta Lambiase

    2006-06-01

    Full Text Available Objectives: Cystic Fibrosis patients are prone to infection by Gram-negative bacteria, such as Pseudomonas aeruginosa and Burkholderia cepacia, which become very resistant with recurrent antibiotic treatments.The purpose of this study was to evaluate the susceptibility patterns of 12 isolates of Burkholderia cepacia and 8 isolates of Pseudomonas aeruginosa, isolated from Cystic Fibrosis patients to five individual antibiotics (ceftazidime, ciprofloxacin, piperacillin/tazobactam, levofloxacin and trimethoprim-sulfamethoxazole and to four antibiotic combinations (ceftazidime associated with one of the other antibiotics. Methods: Susceptibility tests were carried out using an agar diffusion method, the E-test (AB Biodisk, Solna, Sweden. Results: Strains were selected because of their resistance to individual antimicrobial agents, tested with automated system (Phoenix, BD, which ranged from 41.6% for ceftazidime to 83.3% for ciprofloxacin for Burkholderia cepacia and from 25% for ceftazidime to 100% for trimethoprim-sulfamethoxazole for Pseudomonas aeruginosa. By using E-test,we were able to demonstrate synergy against 2 strains of Pseudomonas aeruginosa (25% with ceftazidime- piperacillin/tazobactam. No synergy was detected against all strains of Burkholderia cepacia. Conclusions:These results suggest that the E-test offers a simple, labour-efficient and accurate method for MIC determination on agar medium and the susceptibility to antibiotic combinations greatly improves the guide to antibiotic therapy for infections to Gram-negative bacteria in Cystic Fibrosis patients.

  14. Coordenação de metais a antibióticos como uma estratégia de combate à resistência bacteriana

    Directory of Open Access Journals (Sweden)

    Diego Pessoa Rocha

    2011-01-01

    Full Text Available Antibiotic resistance has been growing at an alarming rate and consequently the arsenal of effective antibiotics against Gram-negative and Gram-positive bacteria has dropped dramatically. In this sense there is a strong need to produce new substances that not only have good spectrum of activity, but having new mechanisms of action. In this regard, this paper emphasizes the coordination of metals to antibiotics as a strategy for reversing antibiotic resistance and production of new drugs, with a special focus on quinolones, fluoroquinolones, sulfonamides and tetracyclines.

  15. Antibiotic Resistance in Foodborne Pathogens

    OpenAIRE

    Walsh, Ciara; Duffy, Geraldine

    2013-01-01

    Wide-spread antibiotic resistance among bacterial pathogens is now a serious public health issue and multi-antibiotic resistance has been reported in many foodborne pathogens including Salmonella and E. coli. A study to determine antibiotic resistance profiles of a range of Salmonella and Verocytotoxigenic E.coli (VTEC) isolated from Irish foods revealed significant levels of antibiotic resistance in the strains. S. typhimurium DT104 were multiantibiotic resistant with 97% resistant to 7 anti...

  16. Antibiotic resistance profile of staphylococci from clinical sources ...

    African Journals Online (AJOL)

    Infants, children and the aged are among the groups most vulnerable to microbial infections more so when these microbial agents become resistant to antimicrobials. The antibiotic resistant profile of Staphylococcus aureus and selected coagulase negative staphylococci were determined by standard methods. Of the 178 ...

  17. LuxS/AI-2 system is involved in antibiotic susceptibility and autolysis in Staphylococcus aureus NCTC 8325.

    Science.gov (United States)

    Xue, Ting; Zhao, Liping; Sun, Baolin

    2013-01-01

    Current treatment for Staphylococcus aureus infections relies heavily upon the cell wall synthesis inhibitor antibiotics such as penicillin, oxacillin, vancomycin and teicoplanin. Increasing antibiotic resistance requires the development of new approaches to combating infection. Autoinducer-2 (AI-2) exists widely both in Gram-negative and Gram-positive pathogens and is suggested as a universal language for intraspecies and interspecies communication. This study demonstrates the association between AI-2 signalling and cell wall synthesis inhibitor antibiotic susceptibility in S. aureus. In addition, a luxS mutant exhibited decreased autolysis and upregulated vancomycin resistance-associated VraRS two-component regulatory system. This finding may provide novel clues for antimicrobial therapy in S. aureus infection. Copyright © 2012 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  18. Efficacy and Safety of a Colistin Loading Dose, High-Dose Maintenance Regimen in Critically Ill Patients With Multidrug-Resistant Gram-Negative Pneumonia.

    Science.gov (United States)

    Elefritz, Jessica L; Bauer, Karri A; Jones, Christian; Mangino, Julie E; Porter, Kyle; Murphy, Claire V

    2017-09-01

    Emergence of multidrug-resistant (MDR) gram-negative (GN) pathogens and lack of novel antibiotics have increased the use of colistin, despite unknown optimal dosing. This study aimed to evaluate the safety and efficacy of a colistin loading dose, high-dose (LDHD) maintenance regimen in patients with MDR-GN pneumonia. A retrospective cohort analysis was performed comparing critically ill patients with MDR-GN pneumonia pre- and postimplementation of a colistin LDHD guideline with a primary outcome of clinical cure. Safety was assessed using incidence of acute kidney injury (AKI) based on RIFLE (risk, injury, failure, loss, end-stage renal disease) criteria. Seventy-two patients met the inclusion criteria (42 preimplementation and 30 postimplementation). Clinical cure was achieved in 23 (55%) patients in the preimplementation group and 20 (67%) patients in the postimplementation group ( P = .31). AKI occurred in 50% of the patients during the preimplementation period and 58% during the postimplementation period ( P = .59) with no difference in initiation rates of renal replacement therapy. The increased clinical cure rate after implementation of the colistin LDHD guideline did not reach statistical significance. The LDHD guideline, however, was not associated with an increased incidence of AKI, despite higher intravenous colistin doses. Opportunity exists to optimize colistin dosage while balancing toxicity, but larger studies are warranted.

  19. The multifaceted roles of antibiotics and antibiotic resistance in nature

    Directory of Open Access Journals (Sweden)

    Saswati eSengupta

    2013-03-01

    Full Text Available Antibiotics are chemotherapeutic agents, which have been a very powerful tool in the clinical management of bacterial diseases since the 1940s. However, benefits offered by these magic bullets have been substantially lost in subsequent days following the widespread emergence and dissemination of antibiotic resistant strains. While it is obvious that excessive and imprudent use of antibiotics significantly contributes to the emergence of resistant strains, antibiotic-resistance is also observed in natural bacteria of remote places unlikely to be impacted by human intervention. Both antibiotic biosynthetic genes and resistance-conferring genes have been known to evolve billions of years ago, long before clinical use of antibiotics. Hence it appears that antibiotics and antibiotics resistance determinants have some other roles in nature, which often elude our attention because of overemphasis on the therapeutic importance of antibiotics and the crisis imposed by the antibiotic-resistance in pathogens. In the natural milieu, antibiotics are often found to be present in subinhibitory concentrations acting as signalling molecules supporting quorum sensing and biofilm formation. They also play an important role in the production of virulence factors and influence host-parasite interactions (e.g., phagocytosis, adherence to the target cell and so on. The evolutionary and ecological aspects of antibiotics and antibiotic-resistance in the naturally occurring microbial community are little understood. Therefore, the actual role of antibiotics in nature warrants in-depth investigations. Studies on such an intriguing behaviour of the microorganisms promise insight into the intricacies of the microbial physiology and are likely to provide some lead in controlling the emergence and subsequent dissemination of antibiotic resistance. This article highlights some of the recent findings on the role of antibiotics and genes that confer resistance to antibiotics in

  20. Recovery of metallo-tolerant and antibiotic resistant psychrophilic bacteria from Siachen glacier, Pakistan.

    Directory of Open Access Journals (Sweden)

    Muhammad Rafiq

    Full Text Available Cultureable bacterial diversity of previously unexplored Siachen glacier, Pakistan, was studied. Out of 50 isolates 33 (66% were Gram negative and 17 (34% Gram positive. About half of the isolates were pigment producers and were able to grow at 4-37°C. 16S rRNA gene sequences revealed Gram negative bacteria dominated by Proteobacteria (especially γ-proteobacteria and β-proteobacteria and Flavobacteria. The genus Pseudomonas (51.51%, 17 was dominant among γ- proteobacteria. β-proteobacteria constituted 4 (12.12% Alcaligenes and 4 (12.12% Janthinobacterium strains. Among Gram positive bacteria, phylum Actinobacteria, Rhodococcus (23.52%, 4 and Arthrobacter (23.52%, 4 were the dominating genra. Other bacteria belonged to Phylum Firmicutes with representative genus Carnobacterium (11.76%, 2 and 4 isolates represented 4 genera Bacillus, Lysinibacillus, Staphylococcus and Planomicrobium. Most of the Gram negative bacteria were moderate halophiles, while most of the Gram positives were extreme halophiles and were able to grow up to 6.12 M of NaCl. More than 2/3 of the isolates showed antimicrobial activity against multidrug resistant S. aureus, E. coli, Klebsiella pneumonia, Enterococcus faecium, Candida albicans, Aspergillus flavus and Aspergillus fumigatus and ATCC strains. Gram positive bacteria (94.11% were more resistant to heavy metals as compared to Gram negative (78.79% and showed maximum tolerance against iron and least tolerance against mercury.

  1. Phenotypic Resistance to Antibiotics

    Directory of Open Access Journals (Sweden)

    Jose L. Martinez

    2013-04-01

    Full Text Available The development of antibiotic resistance is usually associated with genetic changes, either to the acquisition of resistance genes, or to mutations in elements relevant for the activity of the antibiotic. However, in some situations resistance can be achieved without any genetic alteration; this is called phenotypic resistance. Non-inherited resistance is associated to specific processes such as growth in biofilms, a stationary growth phase or persistence. These situations might occur during infection but they are not usually considered in classical susceptibility tests at the clinical microbiology laboratories. Recent work has also shown that the susceptibility to antibiotics is highly dependent on the bacterial metabolism and that global metabolic regulators can modulate this phenotype. This modulation includes situations in which bacteria can be more resistant or more susceptible to antibiotics. Understanding these processes will thus help in establishing novel therapeutic approaches based on the actual susceptibility shown by bacteria during infection, which might differ from that determined in the laboratory. In this review, we discuss different examples of phenotypic resistance and the mechanisms that regulate the crosstalk between bacterial metabolism and the susceptibility to antibiotics. Finally, information on strategies currently under development for diminishing the phenotypic resistance to antibiotics of bacterial pathogens is presented.

  2. Non-oral gram-negative facultative rods in chronic periodontitis microbiota.

    Science.gov (United States)

    van Winkelhoff, Arie J; Rurenga, Patrick; Wekema-Mulder, Gepke J; Singadji, Zadrach M; Rams, Thomas E

    2016-05-01

    The subgingival prevalence of gram-negative facultative rods not usually inhabiting or indigenous to the oral cavity (non-oral GNFR), as well as selected periodontal bacterial pathogens, were evaluated by culture in untreated and treated chronic periodontitis patients. Subgingival biofilm specimens from 102 untreated and 101 recently treated adults with chronic periodontitis in the Netherlands were plated onto MacConkey III and Dentaid selective media with air-5% CO2 incubation for isolation of non-oral GNFR, and onto enriched Oxoid blood agar with anaerobic incubation for recovery of selected periodontal bacterial pathogens. Suspected non-oral GNFR clinical isolates were identified to a species level with the VITEK 2 automated system. A total of 87 (42.9%) out of 203 patients yielded subgingival non-oral GNFR. Patients recently treated with periodontal mechanical debridement therapy demonstrated a greater prevalence of non-oral GNFR (57.4% vs 28.4%, P chronic periodontitis patients yielded cultivable non-oral GNFR in periodontal pockets, particularly among those recently treated with periodontal mechanical debridement therapy. Since non-oral GNFR species may resist mechanical debridement from periodontal pockets, and are often not susceptible to many antibiotics frequently used in periodontal practice, their subgingival presence may complicate periodontal treatment in species-positive patients and increase risk of potentially dangerous GNFR infections developing at other body sites. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Coagulase-negative staphylococci (CoNS) isolated from ready-to-eat food of animal origin--phenotypic and genotypic antibiotic resistance.

    Science.gov (United States)

    Chajęcka-Wierzchowska, Wioleta; Zadernowska, Anna; Nalepa, Beata; Sierpińska, Magda; Łaniewska-Trokenheim, Łucja

    2015-04-01

    The aim of this work was to study the pheno- and genotypical antimicrobial resistance profile of coagulase negative staphylococci (CoNS) isolated from 146 ready-to-eat food of animal origin (cheeses, cured meats, sausages, smoked fishes). 58 strains were isolated, they were classified as Staphylococcus xylosus (n = 29), Staphylococcus epidermidis (n = 16); Staphylococcus lentus (n = 7); Staphylococcus saprophyticus (n = 4); Staphylococcus hyicus (n = 1) and Staphylococcus simulans (n = 1) by phenotypic and genotypic methods. Isolates were tested for resistance to erythromycin, clindamycin, gentamicin, cefoxitin, norfloxacin, ciprofloxacin, tetracycline, tigecycline, rifampicin, nitrofurantoin, linezolid, trimetoprim, sulphamethoxazole/trimethoprim, chloramphenicol, quinupristin/dalfopristin by the disk diffusion method. PCR was used for the detection of antibiotic resistance genes encoding: methicillin resistance--mecA; macrolide resistance--erm(A), erm(B), erm(C), mrs(A/B); efflux proteins tet(K) and tet(L) and ribosomal protection proteins tet(M). For all the tet(M)-positive isolates the presence of conjugative transposons of the Tn916-Tn1545 family was determined. Most of the isolates were resistant to cefoxitin (41.3%) followed by clindamycin (36.2%), tigecycline (24.1%), rifampicin (17.2%) and erythromycin (13.8%). 32.2% staphylococcal isolates were multidrug resistant (MDR). All methicillin resistant staphylococci harboured mecA gene. Isolates, phenotypic resistant to tetracycline, harboured at least one tetracycline resistance determinant on which tet(M) was most frequent. All of the isolates positive for tet(M) genes were positive for the Tn916-Tn1545 -like integrase family gene. In the erythromycin-resistant isolates, the macrolide resistance genes erm(C) or msr(A/B) were present. Although coagulase-negative staphylococci are not classical food poisoning bacteria, its presence in food could be of public health significance due to the possible spread of

  4. Characterization of the etiological structure and genotypically determined phenotypic resistance to carbapenems of infectious complications leading pathogens in critically ill patients

    Directory of Open Access Journals (Sweden)

    O. A. Nazarchuk

    2018-06-01

    Full Text Available The aim is to investigate the genotypically determined phenotypic resistance to carbapenems of gram-negative microorganisms isolated from patients with critical states. Material and methods. Microbiological etiology of infectious complications in critically ill patients (n = 726 was investigated. In total, during the years 2011–2016, 933 clinical strains of infectious complications pathogens from patients with severe burns (n = 435 and from patients treated in intensive care units (n = 291 were isolated and identified. The sensitivity of microorganisms clinical isolates to antibiotics was investigated by means of the standard microbiological methods. In gram-negative bacteria resistant to carbapenems, a molecular genetic study of mechanisms of resistance, determined by the presence of VIM genes, was carried out using the method of real-time polymerase chain reaction. Results. Studies have shown that gram-negative microorganisms (Acinetobacter spp. – 36.3 %, P. aeruginosa – 31.7 %, Enterobacter spp. – 13.5 %, Proteus spp. – 7.9 %, E. coli – 3.8 %; K. pneumoniae – 3.6 %, etc. account for a significant part of infectious complications pathogens structure in critically ill patients. A. baumannii strains (67 % have expressed phenotypic resistance to most antibiotics, in particular to carbapenems (up to 63.2 %. Poly-antibiotic resistance was also found in P. aeruginosa (72 %, and above one the 3rd part of strains of this pathogen was found to have phenotypic resistance to carbapenems. In-depth study of molecular genetic determinants of the resistance mechanism to β-lactam antibiotics among clinical strains of gram-negative bacteria there was proved VIM-induced resistance to carbapenems in A. baumannii, P. aeruginosa, P. mirabilis. Conclusions. Enterobacteriaceae and non-fermenting gram-negative microorganisms (P. aeruginosa, P. mirabilis, A. baumannii, which are the leading causative agents of infectious complications in patients with

  5. Neonatal bacteriemia isolates and their antibiotic resistance pattern in neonatal insensitive care unit (NICU at Beasat Hospital, Sanandaj, Iran.

    Directory of Open Access Journals (Sweden)

    Parvin Mohammadi

    2014-05-01

    Full Text Available Bacteremia continues to result in significant morbidity and mortality, particularly among neonates. There is scarce data on neonatal bacteremia in among Iranian neonates. In this study, we determined neonatal bacteremia isolates and their antibiotic resistance pattern in neonatal insensitive care unit at Beasat hospital, Sanandaj, Iran. During one year, all neonates admitted to the NICU were evaluated. Staphylococcal isolates were subjected to determine the prevalence of MRS and mecA gene. A total of 355 blood cultures from suspected cases of sepsis were processed, of which 27 (7.6% were positive for bacterial growth. Of the 27 isolates, 20 (74% were Staphylococcus spp as the leading cause of bacteremia. The incidence of Gram negative bacteria was 04 (14.8%. The isolated bacteria were resistant to commonly used antibiotics. Maximum resistance among Staphylococcus spp was against Penicillin, and Ampicillin. In our study, the isolated bacteria were 7.5 % Vancomycin and Ciprofloxacin sensitive. Oxacillin disk diffusion and PCR screened 35% and 30% mec a positive Staphylococcus spp. The spectrum of neonatal bacteremia as seen in NICU at Beasat hospital confirmed the importance of pathogens such as Staphylococcus spp. Penicillin, Ampicillin and Cotrimoxazol resistance was high in theses isolates with high mecA gene carriage, probably due to antibiotic selection.

  6. Pulmonary infiltrates during community acquired Gram-negative bacteremia

    DEFF Research Database (Denmark)

    Fjeldsøe-Nielsen, Hans; Gjeraa, Kirsten; Berthelsen, Birgitte G

    2013-01-01

    The primary aim of this study was to describe the frequency of pulmonary infiltrates on chest X-ray (CXR) during community acquired Gram-negative bacteremia at a single centre in Denmark.......The primary aim of this study was to describe the frequency of pulmonary infiltrates on chest X-ray (CXR) during community acquired Gram-negative bacteremia at a single centre in Denmark....

  7. Selection of antibiotic resistance at very low antibiotic concentrations

    OpenAIRE

    Sandegren, Linus

    2014-01-01

    Human use of antibiotics has driven the selective enrichment of pathogenic bacteria resistant to clinically used drugs. Traditionally, the selection of resistance has been considered to occur mainly at high, therapeutic levels of antibiotics, but we are now beginning to understand better the importance of selection of resistance at low levels of antibiotics. The concentration of an antibiotic varies in different body compartments during treatment, and low concentrations of antibiotics are fou...

  8. Antimicrobial resistance in coagulase-negative staphylococci from Nigerian traditional fermented foods.

    Science.gov (United States)

    Fowoyo, P T; Ogunbanwo, S T

    2017-01-31

    Coagulase-negative staphylococci have become increasingly recognized as the etiological agent of some infections. A significant characteristic of coagulase-negative staphylococci especially strains isolated from animals and clinical samples is their resistance to routinely used antibiotics although, resistant strains isolated from fermented foods have not been fully reported. A total of two hundred and fifty-five CoNS isolates were subjected to antimicrobial susceptibility test using the disc diffusion technique. The minimum inhibitory concentration of the isolates to the tested antibiotics was determined using the microbroth dilution method. Methicillin resistant strains were confirmed by detection of methicillin resistant genes (mecA) and also employing cefoxitin screening test. The isolates were confirmed to be methicillin resistant by the detection of mecA genes and the cefoxitin screening test. The isolates demonstrated appreciable resistance to ampicillin (86.7%), sulfomethoxazole-trimethoprim (74.9%), amoxicillin-clavulanic acid (52.5%) and oxacillin (35.7%). Methicillin resistance was exhibited by 13 out of the 255 isolates although no mecA gene was detected. It was also observed that the methicillin resistant isolates were prevalent in these traditional foods; iru, kindirmo, nono and wara. This study has ameliorated the incidence of multiple antibiotic resistant coagulase-negative staphylococci in Nigerian fermented foods and if not tackled adequately might lead to horizontal transfer of antibiotic resistance from food to man.

  9. Prediction of lipoprotein signal peptides in Gram-negative bacteria.

    Science.gov (United States)

    Juncker, Agnieszka S; Willenbrock, Hanni; Von Heijne, Gunnar; Brunak, Søren; Nielsen, Henrik; Krogh, Anders

    2003-08-01

    A method to predict lipoprotein signal peptides in Gram-negative Eubacteria, LipoP, has been developed. The hidden Markov model (HMM) was able to distinguish between lipoproteins (SPaseII-cleaved proteins), SPaseI-cleaved proteins, cytoplasmic proteins, and transmembrane proteins. This predictor was able to predict 96.8% of the lipoproteins correctly with only 0.3% false positives in a set of SPaseI-cleaved, cytoplasmic, and transmembrane proteins. The results obtained were significantly better than those of previously developed methods. Even though Gram-positive lipoprotein signal peptides differ from Gram-negatives, the HMM was able to identify 92.9% of the lipoproteins included in a Gram-positive test set. A genome search was carried out for 12 Gram-negative genomes and one Gram-positive genome. The results for Escherichia coli K12 were compared with new experimental data, and the predictions by the HMM agree well with the experimentally verified lipoproteins. A neural network-based predictor was developed for comparison, and it gave very similar results. LipoP is available as a Web server at www.cbs.dtu.dk/services/LipoP/.

  10. New transposon tools tailored for metabolic engineering of Gram-negative microbial cell factories

    Directory of Open Access Journals (Sweden)

    Esteban eMartínez-García

    2014-10-01

    Full Text Available Re-programming microorganisms to modify their existing functions and/or to bestow bacteria with entirely new-to-Nature tasks have largely relied so far on specialized molecular biology tools. Such endeavors are not only relevant in the burgeoning metabolic engineering arena, but also instrumental to explore the functioning of complex regulatory networks from a fundamental point of view. À la carte modification of bacterial genomes thus calls for novel tools to make genetic manipulations easier. We propose the use of a series of new broad-host-range mini-Tn5 vectors, termed pBAMDs, for the delivery of gene(s into the chromosome of Gram-negative bacteria and for generating saturated mutagenesis libraries in gene function studies. These delivery vectors endow the user with the possibility of easy cloning and subsequent insertion of functional cargoes with three different antibiotic resistance markers (kanamycin, streptomycin, and gentamicin. After validating the pBAMD vectors in the environmental bacterium Pseudomonas putida KT2440, their use was also illustrated by inserting the entire poly(3-hydroxybutyrate (PHB synthesis pathway from Cupriavidus necator in the chromosome of a phosphotransacetylase mutant of Escherichia coli. PHB is a completely biodegradable polyester with a number of industrial applications that make it attractive as a potential replacement of oil-based plastics. The non-selective nature of chromosomal insertions of the biosynthetic genes was evidenced by a large landscape of PHB synthesis levels in independent clones. One clone was selected and further characterized as a microbial cell factory for PHB accumulation, and it achieved polymer accumulation levels comparable to those of a plasmid-bearing recombinant. Taken together, our results demonstrate that the new mini-Tn5 vectors can be used to confer interesting phenotypes in Gram-negative bacteria that would be very difficult to engineer through direct manipulation of the

  11. New Transposon Tools Tailored for Metabolic Engineering of Gram-Negative Microbial Cell Factories

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-García, Esteban; Aparicio, Tomás; Lorenzo, Víctor de; Nikel, Pablo I., E-mail: pablo.nikel@cnb.csic.es [Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Madrid (Spain)

    2014-10-28

    Re-programming microorganisms to modify their existing functions and/or to bestow bacteria with entirely new-to-Nature tasks have largely relied so far on specialized molecular biology tools. Such endeavors are not only relevant in the burgeoning metabolic engineering arena but also instrumental to explore the functioning of complex regulatory networks from a fundamental point of view. À la carte modification of bacterial genomes thus calls for novel tools to make genetic manipulations easier. We propose the use of a series of new broad-host-range mini-Tn5-vectors, termed pBAMDs, for the delivery of gene(s) into the chromosome of Gram-negative bacteria and for generating saturated mutagenesis libraries in gene function studies. These delivery vectors endow the user with the possibility of easy cloning and subsequent insertion of functional cargoes with three different antibiotic-resistance markers (kanamycin, streptomycin, and gentamicin). After validating the pBAMD vectors in the environmental bacterium Pseudomonas putida KT2440, their use was also illustrated by inserting the entire poly(3-hydroxybutyrate) (PHB) synthesis pathway from Cupriavidus necator in the chromosome of a phosphotransacetylase mutant of Escherichia coli. PHB is a completely biodegradable polyester with a number of industrial applications that make it attractive as a potential replacement of oil-based plastics. The non-selective nature of chromosomal insertions of the biosynthetic genes was evidenced by a large landscape of PHB synthesis levels in independent clones. One clone was selected and further characterized as a microbial cell factory for PHB accumulation, and it achieved polymer accumulation levels comparable to those of a plasmid-bearing recombinant. Taken together, our results demonstrate that the new mini-Tn5-vectors can be used to confer interesting phenotypes in Gram-negative bacteria that would be very difficult to engineer through direct manipulation of the structural genes.

  12. New Transposon Tools Tailored for Metabolic Engineering of Gram-Negative Microbial Cell Factories

    International Nuclear Information System (INIS)

    Martínez-García, Esteban; Aparicio, Tomás; Lorenzo, Víctor de; Nikel, Pablo I.

    2014-01-01

    Re-programming microorganisms to modify their existing functions and/or to bestow bacteria with entirely new-to-Nature tasks have largely relied so far on specialized molecular biology tools. Such endeavors are not only relevant in the burgeoning metabolic engineering arena but also instrumental to explore the functioning of complex regulatory networks from a fundamental point of view. À la carte modification of bacterial genomes thus calls for novel tools to make genetic manipulations easier. We propose the use of a series of new broad-host-range mini-Tn5-vectors, termed pBAMDs, for the delivery of gene(s) into the chromosome of Gram-negative bacteria and for generating saturated mutagenesis libraries in gene function studies. These delivery vectors endow the user with the possibility of easy cloning and subsequent insertion of functional cargoes with three different antibiotic-resistance markers (kanamycin, streptomycin, and gentamicin). After validating the pBAMD vectors in the environmental bacterium Pseudomonas putida KT2440, their use was also illustrated by inserting the entire poly(3-hydroxybutyrate) (PHB) synthesis pathway from Cupriavidus necator in the chromosome of a phosphotransacetylase mutant of Escherichia coli. PHB is a completely biodegradable polyester with a number of industrial applications that make it attractive as a potential replacement of oil-based plastics. The non-selective nature of chromosomal insertions of the biosynthetic genes was evidenced by a large landscape of PHB synthesis levels in independent clones. One clone was selected and further characterized as a microbial cell factory for PHB accumulation, and it achieved polymer accumulation levels comparable to those of a plasmid-bearing recombinant. Taken together, our results demonstrate that the new mini-Tn5-vectors can be used to confer interesting phenotypes in Gram-negative bacteria that would be very difficult to engineer through direct manipulation of the structural genes.

  13. Changes in Bacterial Resistance Patterns of Pediatric Urinary Tract Infections and Rationale for Empirical Antibiotic Therapy.

    Science.gov (United States)

    Gökçe, İbrahim; Çiçek, Neslihan; Güven, Serçin; Altuntaş, Ülger; Bıyıklı, Neşe; Yıldız, Nurdan; Alpay, Harika

    2017-09-29

    The causative agent spectrum and resistance patterns of urinary tract infections in children are affected by many factors. To demonstrate antibiotic resistance in urinary tract infections and changing ratio in antibiotic resistance by years. Retrospective cross-sectional study. We analysed antibiotic resistance patterns of isolated Gram (-) bacteria during the years 2011-2014 (study period 2) in children with urinary tract infections. We compared these findings with data collected in the same centre in 2001-2003 (study period 1). Four hundred and sixty-five uncomplicated community-acquired Gram (-) urinary tract infections were analysed from 2001-2003 and 400 from 2011-2014. Sixty-one percent of patients were female (1.5 girls : 1 boy). The mean age of children included in the study was 3 years and 9 months. Escherichia coli was the predominant bacteria isolated during both periods of the study (60% in study period 1 and 73% in study period 2). Bacteria other than E. coli demonstrated a higher level of resistance to all of the antimicrobials except trimethoprim-sulfamethoxazole than E. coli bacteria during the years 2011-2014. In our study, we found increasing resistance trends of urinary pathogens for cefixime (from 1% to 15%, pUrinary pathogens showed a decreasing trend for nitrofurantoin (from 17% to 7%, p=0.0001). No significant trends were detected for ampicillin (from 69% to 71%), amoxicillin-clavulanate (from 44% to 43%), cefazolin (from 39% to 32%), trimethoprim-sulfamethoxazole (from 32% to 31%), cefuroxime (from 21% to 18%) and ceftriaxone (from 10% to 14%) between the two periods (p>0.05). In childhood urinary tract infections, antibiotic resistance should be evaluated periodically and empiric antimicrobial therapy should be decided according to antibiotic sensitivity results.

  14. ANTIBACTERIAL ACTIVITY AND COMPOSITION OF ESSENTIAL OILS EXTRACTED FROM SOME PLANTS BELONGING TO FAMILY LAMIACEAE AGAINST SOME MULTIDRUG RESISTANT GRAM NEGATIVE BACTERIA

    OpenAIRE

    Fatma A. Ahmed, Nadia Hafez Salah El-Din Ouda, Sherif Moussa Husseiny and Abeer Adel

    2018-01-01

    The aim of this study was to evaluate the antibacterial activity of eight essential oils against some multi-drug resistant Gram negative bacteria (three different isolates of each Acinetobacter baumannii and Klebsiella pneumoniae). The hydrodistilled essential oils of the fresh aerial part of some medicinal plants belonging to family Lamiaceae namely: Origanum majorana L. , Origanum majorana L. , Origanum syriacum L., Thymus capitatus L., Thymus vulgaris L., Salvia fruticosa Mill., Mentha vir...

  15. Strategies to Minimize Antibiotic Resistance

    Directory of Open Access Journals (Sweden)

    Sang Hee Lee

    2013-09-01

    Full Text Available Antibiotic resistance can be reduced by using antibiotics prudently based on guidelines of antimicrobial stewardship programs (ASPs and various data such as pharmacokinetic (PK and pharmacodynamic (PD properties of antibiotics, diagnostic testing, antimicrobial susceptibility testing (AST, clinical response, and effects on the microbiota, as well as by new antibiotic developments. The controlled use of antibiotics in food animals is another cornerstone among efforts to reduce antibiotic resistance. All major resistance-control strategies recommend education for patients, children (e.g., through schools and day care, the public, and relevant healthcare professionals (e.g., primary-care physicians, pharmacists, and medical students regarding unique features of bacterial infections and antibiotics, prudent antibiotic prescribing as a positive construct, and personal hygiene (e.g., handwashing. The problem of antibiotic resistance can be minimized only by concerted efforts of all members of society for ensuring the continued efficiency of antibiotics.

  16. Protamine-induced permeabilization of cell envelopes of gram-positive and gram-negative bacteria

    DEFF Research Database (Denmark)

    Johansen, Charlotte; Verheul, A.; Gram, Lone

    1997-01-01

    carboxyfluorescein and ATP after 2 to 5 min. Maximum antibacterial activity was reached at alkaline pH and in the absence of divalent cations. The efficient permeabilization of cell envelopes of both gram-positive and gram-negative bacteria suggests that protamine causes a general disruption of the cell envelope...

  17. Probing interaction of Gram-positive and Gram-negative bacterial cells with ZnO nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Aanchal; Bhargava, Richa; Poddar, Pankaj, E-mail: p.poddar@ncl.res.in

    2013-04-01

    In the present work, the physiological effects of the ZnO nanorods on the Gram positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Escherichia coli and Aerobacter aerogenes) bacterial cells have been studied. The analysis of bacterial growth curves for various concentrations of ZnO nanorods indicates that Gram positive and Gram negative bacterial cells show inhibition at concentrations of ∼ 64 and ∼ 256 μg/mL respectively. The marked difference in susceptibility towards nanorods was also validated by spread plate and disk diffusion methods. In addition, the scanning electron micrographs show a clear damage to the cells via changed morphology of the cells from rod to coccoid etc. The confocal optical microscopy images of these cells also demonstrate the reduction in live cell count in the presence of ZnO nanorods. These, results clearly indicate that the antibacterial activity of ZnO nanorods is higher towards Gram positive bacterium than Gram negative bacterium which indicates that the structure of the cell wall might play a major role in the interaction with nanostructured materials and shows high sensitivity to the particle concentration. Highlights: ► Effect of ZnO nanorods on the growth cycles of four bacterial strains. ► A relation has been established between growth rate of bacteria and concentration. ► Serious damage in the morphology of bacterial cells in the presence of ZnO nanorods. ► Microscopic studies to see the time dependent effect on bacterial cells.

  18. Distribution and Antimicrobial Susceptibility Pattern of Gram Negative Bacteria Causing Urinary Tract Infection (UTI and Detection New Delhi Metallo-beta-lactamase-1 (NDM-1 Producing Isolates in Ahwaz

    Directory of Open Access Journals (Sweden)

    Parviz Afrugh

    2016-04-01

    Full Text Available Background: Urinary tract infection (UTI is the commonest bacterial infectious disease in worldwide (especially in developing countries with a high rate of morbidity and financial cost. The management of UTI infections has been jeopardized by increase in immergence of antimicrobial drug resistance. Knowledge of the local bacterial etiology and susceptibility patterns is required to trace any change that might have occurred in time so that updated recommendation for optimal empirical therapy of UTI can be made. The aim of this investigation was distribution and antimicrobial susceptibility pattern of gram negative bacteria causing urinary tract infection (UTI and detection NDM-1 (new-delhi-metallo-beta-lactamase-1 producing isolates in Ahwaz. Materials and Methods: This cross-sectional study was done during a period of one year from April 2013 to March 2014. Clean catch midstream urine samples were collected from suspected patients to UTI. The isolates were identified based on morphological and biochemical testes. Culture was performed on routine microbiological media. Susceptibility testing was performed according CLSI (2013 guidelines. Detection of carbapenemase producing isolates was performed by modified hodge test (MHT. Metallo-beta-lactamase isolates were detected by imipenem-EDTA combined disc test (CDT. Results: In this study 708 gram negative organisms were isolated from urine samples. E.coli was the most common isolated bacteria (67% followed by Klebsiella spp. (26.5% and Enterobacter spp. (2.5%. In antibiotic susceptibility testing more than 90% of isolates were sensitive to tetracycline, ceftazidime, meropenem, amikacin, cefotaxime, imipenem, and cefepime. Isolates were more resistant to cephalothin (32%, co-trimoxazol (30.5%, and nalidixic acid (25%. Conclusion: In our results isolated organisms from outpatients showed very high sensitivity to common antibiotics. Continuous and regular monitoring of susceptibility pattern of

  19. The Prehistory of Antibiotic Resistance.

    Science.gov (United States)

    Perry, Julie; Waglechner, Nicholas; Wright, Gerard

    2016-06-01

    Antibiotic resistance is a global problem that is reaching crisis levels. The global collection of resistance genes in clinical and environmental samples is the antibiotic "resistome," and is subject to the selective pressure of human activity. The origin of many modern resistance genes in pathogens is likely environmental bacteria, including antibiotic producing organisms that have existed for millennia. Recent work has uncovered resistance in ancient permafrost, isolated caves, and in human specimens preserved for hundreds of years. Together with bioinformatic analyses on modern-day sequences, these studies predict an ancient origin of resistance that long precedes the use of antibiotics in the clinic. Understanding the history of antibiotic resistance is important in predicting its future evolution. Copyright © 2016 Cold Spring Harbor Laboratory Press; all rights reserved.

  20. The expression of antibiotic resistance genes in antibiotic-producing bacteria.

    Science.gov (United States)

    Mak, Stefanie; Xu, Ye; Nodwell, Justin R

    2014-08-01

    Antibiotic-producing bacteria encode antibiotic resistance genes that protect them from the biologically active molecules that they produce. The expression of these genes needs to occur in a timely manner: either in advance of or concomitantly with biosynthesis. It appears that there have been at least two general solutions to this problem. In many cases, the expression of resistance genes is tightly linked to that of antibiotic biosynthetic genes. In others, the resistance genes can be induced by their cognate antibiotics or by intermediate molecules from their biosynthetic pathways. The regulatory mechanisms that couple resistance to antibiotic biosynthesis are mechanistically diverse and potentially relevant to the origins of clinical antibiotic resistance. © 2014 John Wiley & Sons Ltd.

  1. The determinants of the antibiotic resistance process.

    Science.gov (United States)

    Franco, Beatriz Espinosa; Altagracia Martínez, Marina; Sánchez Rodríguez, Martha A; Wertheimer, Albert I

    2009-01-01

    The use of antibiotic drugs triggers a complex interaction involving many biological, sociological, and psychological determinants. Resistance to antibiotics is a serious worldwide problem which is increasing and has implications for morbidity, mortality, and health care both in hospitals and in the community. To analyze current research on the determinants of antibiotic resistance and comprehensively review the main factors in the process of resistance in order to aid our understanding and assessment of this problem. We conducted a MedLine search using the key words "determinants", "antibiotic", and "antibiotic resistance" to identify publications between 1995 and 2007 on the determinants of antibiotic resistance. Publications that did not address the determinants of antibiotic resistance were excluded. The process and determinants of antibiotic resistance are described, beginning with the development of antibiotics, resistance and the mechanisms of resistance, sociocultural determinants of resistance, the consequences of antibiotic resistance, and alternative measures proposed to combat antibiotic resistance. Analysis of the published literature identified the main determinants of antibiotic resistance as irrational use of antibiotics in humans and animal species, insufficient patient education when antibiotics are prescribed, lack of guidelines for treatment and control of infections, lack of scientific information for physicians on the rational use of antibiotics, and lack of official government policy on the rational use of antibiotics in public and private hospitals.

  2. Antibiotic resistance increases with local temperature

    Science.gov (United States)

    MacFadden, Derek R.; McGough, Sarah F.; Fisman, David; Santillana, Mauricio; Brownstein, John S.

    2018-06-01

    Bacteria that cause infections in humans can develop or acquire resistance to antibiotics commonly used against them1,2. Antimicrobial resistance (in bacteria and other microbes) causes significant morbidity worldwide, and some estimates indicate the attributable mortality could reach up to 10 million by 20502-4. Antibiotic resistance in bacteria is believed to develop largely under the selective pressure of antibiotic use; however, other factors may contribute to population level increases in antibiotic resistance1,2. We explored the role of climate (temperature) and additional factors on the distribution of antibiotic resistance across the United States, and here we show that increasing local temperature as well as population density are associated with increasing antibiotic resistance (percent resistant) in common pathogens. We found that an increase in temperature of 10 °C across regions was associated with an increases in antibiotic resistance of 4.2%, 2.2%, and 2.7% for the common pathogens Escherichia coli, Klebsiella pneumoniae and Staphylococcus aureus. The associations between temperature and antibiotic resistance in this ecological study are consistent across most classes of antibiotics and pathogens and may be strengthening over time. These findings suggest that current forecasts of the burden of antibiotic resistance could be significant underestimates in the face of a growing population and climate change4.

  3. Selective bowel decontamination results in gram-positive translocation.

    Science.gov (United States)

    Jackson, R J; Smith, S D; Rowe, M I

    1990-05-01

    Colonization by enteric gram-negative bacteria with subsequent translocation is believed to be a major mechanism for infection in the critically ill patient. Selective bowel decontamination (SBD) has been used to control gram-negative infections by eliminating these potentially pathogenic bacteria while preserving anaerobic and other less pathogenic organisms. Infection with gram-positive organisms and anaerobes in two multivisceral transplant patients during SBD led us to investigate the effect of SBD on gut colonization and translocation. Twenty-four rats received enteral polymixin E, tobramycin, amphotericin B, and parenteral cefotaxime for 7 days (PTA + CEF); 23 received parenteral cefotaxime alone (CEF), 19 received the enteral antibiotics alone (PTA), 21 controls received no antibiotics. Cecal homogenates, mesenteric lymph node (MLN), liver, and spleen were cultured. Only 8% of the PTA + CEF group had gram-negative bacteria in cecal culture vs 52% CEF, 84% PTA, and 100% in controls. Log Enterococcal colony counts were higher in the PTA + CEF group (8.0 + 0.9) vs controls (5.4 + 0.4) P less than 0.01. Translocation of Enterococcus to the MLN was significantly increased in the PTA + CEF group (67%) vs controls (0%) P less than 0.01. SBD effectively eliminates gram-negative organisms from the gut in the rat model. Overgrowth and translocation of Enterococcus suggests that infection with gram-positive organisms may be a limitation of SBD.

  4. Prevalence and antibiotic resistance of Pseudomonas aeruginosa in water samples in central Italy and molecular characterization of oprD in imipenem resistant isolates.

    Science.gov (United States)

    Schiavano, Giuditta Fiorella; Carloni, Elisa; Andreoni, Francesca; Magi, Silvia; Chironna, Maria; Brandi, Giorgio; Amagliani, Giulia

    2017-01-01

    This study aimed to analyse the prevalence, antibiotic resistance and genetic relatedness of P. aeruginosa isolates obtained from potable and recreational water samples (n. 8,351) collected from different settings (swimming pools, n. 207; healthcare facilities, n 1,684; accommodation facilities, n. 1,518; municipal waterworks, n. 4,500; residential buildings, n. 235). Possible mechanisms underlying resistance to imipenem, with particular focus on those involving oprD-based uptake, were also explored. Isolation and identification of Pseudomonas aeruginosa was performed according to the standardized procedure UNI EN ISO 16266:2008 followed by PCR confirmation. Antibiotic Susceptibility testing was conducted according to EUCAST standardized disk diffusion method. Genetic relatedness of strains was carried out by RAPD. The sequence of the oprD gene was analyzed by standard method. Fifty-three samples (0.63%) were positive for P. aeruginosa, of which 10/207 (4.83%) were from swimming pools. Five isolates (9.43%) were resistant to imipenem, one to Ticarcillin + Clavulanate, one to both Piperacillin and Ticarcillin + Clavulanate. The highest isolation rate of imipenem resistant P. aeruginosa was observed in swimming pool water. Identical RAPD profiles were found in isolates from the same location in the same year or even in different years. Imipenem resistant strains were identified as carbapenemase-negative and resistance has been associated with inactivating mutations within the oprD gene, with a concomitant loss of porin. RAPD results proved that a water system can remain colonized by one strain for long periods and the contamination may be difficult to eradicate. This study has revealed the presence of P. aeruginosa in different water samples, including resistant strains, especially in swimming pools, and confirmed the role of porins as a contributing factor in carbapenem resistance in Gram-negative bacteria.

  5. Antimicrobial Activity of Carbon Nanoparticles Isolated from Natural Sources against Pathogenic Gram-Negative and Gram-Positive Bacteria

    International Nuclear Information System (INIS)

    Varghese, S.; Jose, S.; Varghese, S.; Kuriakose, S.; Jose, S.

    2013-01-01

    This paper describes the isolation of carbon nanoparticles (CNPs) from kitchen soot, characterization of the CNPs by UV/visible spectroscopy, SEM and XRD, and their antimicrobial action. The antibacterial activity of the isolated carbon nanoparticles was tested against various pathogenic bacterial strains such as Gram-negative Proteus refrigere and Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus and Streptococcus haemolyticus. The inhibition zones were measured, and it was found that the carbon nanoparticles isolated from natural sources are active against these Gram-negative and Gram-positive bacterial strains

  6. Mechanisms of Antibiotic Resistance

    Science.gov (United States)

    Munita, Jose M.; Arias, Cesar A.

    2015-01-01

    Emergence of resistance among the most important bacterial pathogens is recognized as a major public health threat affecting humans worldwide. Multidrug-resistant organisms have emerged not only in the hospital environment but are now often identified in community settings, suggesting that reservoirs of antibiotic-resistant bacteria are present outside the hospital. The bacterial response to the antibiotic “attack” is the prime example of bacterial adaptation and the pinnacle of evolution. “Survival of the fittest” is a consequence of an immense genetic plasticity of bacterial pathogens that trigger specific responses that result in mutational adaptations, acquisition of genetic material or alteration of gene expression producing resistance to virtually all antibiotics currently available in clinical practice. Therefore, understanding the biochemical and genetic basis of resistance is of paramount importance to design strategies to curtail the emergence and spread of resistance and devise innovative therapeutic approaches against multidrug-resistant organisms. In this chapter, we will describe in detail the major mechanisms of antibiotic resistance encountered in clinical practice providing specific examples in relevant bacterial pathogens. PMID:27227291

  7. Addressing resistance to antibiotics in systematic reviews of antibiotic interventions

    DEFF Research Database (Denmark)

    Leibovici, Leonard; Paul, Mical; Garner, Paul

    2016-01-01

    Antibiotics are among the most important interventions in healthcare. Resistance of bacteria to antibiotics threatens the effectiveness of treatment. Systematic reviews of antibiotic treatments often do not address resistance to antibiotics even when data are available in the original studies....... This omission creates a skewed view, which emphasizes short-term efficacy and ignores the long-term consequences to the patient and other people. We offer a framework for addressing antibiotic resistance in systematic reviews. We suggest that the data on background resistance in the original trials should...... controlled trials or systematic reviews....

  8. Antibacterial activity and mechanism of Ag-ZnO nanocomposite on S. aureus and GFP-expressing antibiotic resistant E. coli.

    Science.gov (United States)

    Matai, Ishita; Sachdev, Abhay; Dubey, Poornima; Kumar, S Uday; Bhushan, Bharat; Gopinath, P

    2014-03-01

    Emergence of multi-resistant organisms (MROs) leads to ineffective treatment with the currently available medications which pose a great threat to public health and food technology sectors. In this regard, there is an urgent need to strengthen the present therapies or to look over for other potential alternatives like use of "metal nanocomposites". Thus, the present study focuses on synthesis of silver-zinc oxide (Ag-ZnO) nanocomposites which will have a broad-spectrum antibacterial activity against Gram-positive and Gram-negative bacteria. Ag-ZnO nanocomposites of varied molar ratios were synthesized by simple microwave assisted reactions in the absence of surfactants. The crystalline behavior, composition and morphological analysis of the prepared powders were evaluated by X-ray diffraction, infrared spectroscopy, field emission scanning electron microscopy (FE-SEM) and atomic absorption spectrophotometry (AAS). Particle size measurements were carried out by transmission electron microscopy (TEM). Staphylococcus aureus and recombinant green fluorescent protein (GFP) expressing antibiotic resistant Escherichia coli were selected as Gram-positive and Gram-negative model systems respectively and the bactericidal activity of Ag-ZnO nanocomposite was studied. The minimum inhibitory concentration (MIC) and minimum killing concentration (MKC) of the nanocomposite against the model systems were determined by visual turbidity analysis and optical density analysis. Qualitative and quantitative assessments of its antibacterial effects were performed by fluorescent microscopy, fluorescent spectroscopy and Gram staining measurements. Changes in cellular morphology were examined by atomic force microscopy (AFM), FE-SEM and TEM. Finally, on the basis of the present investigation and previously published reports, a plausible antibacterial mechanism of Ag-ZnO nanocomposites was proposed. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Excretion of Antibiotic Resistance Genes by Dairy Calves Fed Milk Replacers with Varying Doses of Antibiotics

    Science.gov (United States)

    Thames, Callie H.; Pruden, Amy; James, Robert E.; Ray, Partha P.; Knowlton, Katharine F.

    2012-01-01

    Elevated levels of antibiotic resistance genes (ARGs) in soil and water have been linked to livestock farms and in some cases feed antibiotics may select for antibiotic resistant gut microbiota. The purpose of this study was to examine the establishment of ARGs in the feces of calves receiving milk replacer containing no antibiotics versus subtherapeutic or therapeutic doses of tetracycline and neomycin. The effect of antibiotics on calf health was also of interest. Twenty-eight male and female dairy calves were assigned to one of the three antibiotic treatment groups at birth and fecal samples were collected at weeks 6, 7 (prior to weaning), and 12 (5 weeks after weaning). ARGs corresponding to the tetracycline (tetC, tetG, tetO, tetW, and tetX), macrolide (ermB, ermF), and sulfonamide (sul1, sul2) classes of antibiotics along with the class I integron gene, intI1, were monitored by quantitative polymerase chain reaction as potential indicators of direct selection, co-selection, or horizontal gene transfer of ARGs. Surprisingly, there was no significant effect of antibiotic treatment on the absolute abundance (gene copies per gram wet manure) of any of the ARGs except ermF, which was lower in the antibiotic-treated calf manure, presumably because a significant portion of host bacterial cells carrying ermF were not resistant to tetracycline or neomycin. However, relative abundance (gene copies normalized to 16S rRNA genes) of tetO was higher in calves fed the highest dose of antibiotic than in the other treatments. All genes, except tetC and intI1, were detectable in feces from 6 weeks onward, and tetW and tetG significantly increased (P calves. Overall, the results provide new insight into the colonization of calf gut flora with ARGs in the early weeks. Although feed antibiotics exerted little effect on the ARGs monitored in this study, the fact that they also provided no health benefit suggests that the greater than conventional nutritional intake applied

  10. Decreased expression of LamB and Odp1 complex is crucial for antibiotic resistance in Escherichia coli.

    Science.gov (United States)

    Lin, Xiang-min; Yang, Man-jun; Li, Hui; Wang, Chao; Peng, Xuan-Xian

    2014-02-26

    We previously revealed a negative regulation of LamB in chlortetracycline-resistant Escherichia coli strain. In the present study, we first showed that the negative regulation, which was characterized by decreased abundance of LamB with elevated growth of its gene-deleted mutant in medium with antibiotics, was a general response in resistance to different classes of antibiotics using 2-DE based proteomics or/and genetically gene-deletion mutant of LamB. Then, we revealed the interaction of LamB and Odp1 which catalyzes the overall conversion of pyruvate to acetyl-CoA and CO2, and found the decrease of the complex in antibiotic-resistant strains with a minimum inhibitory concentration dose-dependent manner. Further spectrofluorometry assay indicated that LamB served as a porin to influx an antibiotic. Finally, we showed that the decreased expression of LamB and Odp1 was detected in almost of all 34 multidrug-resistant strains, which suggested that LamB and Odp1 were biomarkers for identification of antibiotic-resistant E. coli. Our results indicated that the interaction of an outer membrane protein with an energy metabolic enzyme constructed an efficient pathway to resist antibiotics. These findings provide novel insights into the mechanisms of antibiotic resistance. Our data indicate that the negative regulation by LamB is widely detected in antibiotic-resistant E. coli. LamB serves as a porin to influx an antibiotic and is interacted with Odp1. The complex decreases in antibiotic-resistant strains with a MIC dose-dependent manner. Our findings indicate that interaction of outer membrane protein with energy metabolic enzyme constructs an efficient pathway to resist antibiotics and provides novel insights into the mechanisms of antibiotic resistance. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. SURVEILLANCE of CARBAPENEM NON-SUSCEPTIBLE GRAM NEGATIVE STRAINS and CHARACTERIZATION of CARBAPENEMASES of CLASSES A, B and D in a LEBANESE HOSPITAL.

    Science.gov (United States)

    Hammoudi, Dalal; Moubareck, Carole Ayoub; Kanso, Abeer; Nordmann, Patrice; Sarkis, Dolla Karam

    2015-01-01

    The production of carbapenem-hydrolyzing enzymes has been recognized as one of the most currently relevant resistance mechanisms in gram negative bacterial isolates, and is being detected in various countries. In Lebanon, carbapenem resistance was studied among gram negative pathogens collected from a university hospital from January to June of years 2011 and 2012. All isolates were subjected to phenotypic tests including antibiotic susceptibility, cloxacillin effect, modified Hodge test, and Etest for metallo-β-lactamase detection. They were also subjected to genotyping by PCR sequencing to characterize β-lactamases. Between January and June 2011, 48 carbapenem non-susceptible strains were collected. Of these, one Klebsiella pneumoniae harbored OXA-48 and insertion sequence IS 1999; four Acinetobacter baumanni harbored simultaneously OXA-23 and GES-11, and three Pseudomonas harbored VIM-2 carbapenemase. Between January and June 2012, 100 carbapenem non-susceptible strains were collected. Of these, one K. pneumoniae harbored simultaneously OXA-48, IS 1999, and an acquired AmpC of the ACC group; four Serratia marcescens harbored OXA-48, while among eight A. baumannii, one strain co-harbored OXA-23 and GES-11, six harbored OXA-23 and one OXA-24. Fifteen P, aeruginosa and two Pseudomonas species harbored VIM-2; two P. aeruginosa strains produced IMP-1 and two others IMP-2. This epidemiological survey demonstrates the presence of carbapenemases of Ambler classes A, B, and D in a Lebanese hospital and indicates increase in the number and variety of such enzymes.

  12. Treatment and Outcome of Carbapenem-Resistant Gram-Negative Bacilli Blood-Stream Infections in a Tertiary Care Hospital.

    Science.gov (United States)

    Shah, Pooja G; Shah, Sweta R

    2015-07-01

    Infections caused by carbapenem-resistant bacteria constitute a major challenge for current medical practice. To describe treatment and outcome of carbapenem-resistant Gram-negative bacilli (GNB) blood-stream infection (BSI) caused by these organisms at a tertiary care hospital in Mumbai. Carbapenem-resistant isolates from blood cultures were collected from January 2013 to April 2013. Identification and antimicrobial susceptibility testing were performed using Vitek 2 analyzer (Biomerieux Ltd.). Carbapenemase production was detected by modified Hodge's test (MHT). Patient's medical history, treatment and co-morbid conditions were noted. Outcomes of BSIs were evaluated. Forty-two isolates of carbapenem-resistant GNB isolated from BSIs were Enterobacteriaceae spp. (19), Acinetobacter baumannii (15), and Pseudomonas aeruginosa (8). Colistin had maximum in vitro activity with 97% against Enterobacteriaceae, 100% against Acinetobacter, and 100% activity against Pseudomonas aeruginosa isolates. Positivity of MHT was 92.9%. Outcome of colistin mono and combination therapy was comparable with 83% and 79%, respectively. Outcome of colistin and carbapenem combination therapy was found to be 100 percent. High incidences of bacteremia by carbapenem-resistant GNB including Enterobacteriaceae is a worrisome trend. Treatment options are compromised and only available option is colistin which has its own limitation. Colistin monotherapy may be non-inferior compared to combination therapy for treating BSIs caused by isolates with minimum inhibitory concentration (MIC) for colistin as ≤0.5 mg/l. Combined use of the colistin and carbapenem may provide good therapeutic options for BSI caused by carbapenem-resistant GNB and warrants further investigations.

  13. Frequency of common bacteria and their antibiotic sensitivity pattern in diabetics presenting with foot ulcer

    International Nuclear Information System (INIS)

    Rahim, F.; Ishfaq, M.; Rahman, S.U.; Afridi, A.K.

    2016-01-01

    Foot ulcers are one of the most important complications of diabetes mellitus and often lead to lower limb amputation. Diabetic foot ulcers are susceptible to infection. The objective of this study was to determine the frequency of common bacteria infecting these ulcers and their antibiotic sensitivity pattern. Methods: This descriptive cross-sectional study was performed in the Departments of Medicine and Surgery, Khyber Teaching Hospital, Peshawar from April, 2011 to February, 2012. Specimens collected from ulcers of 131 patients were inoculated on Blood Agar and MacConkey Agar, and antibiotic sensitivity was tested using standard disc diffusion method. Results: Out of 131, specimens from 120 patients yielded 176 bacteria. Sixty-six patients had monomicrobial infection while polymicrobial growth was obtained in 54 patients. Overall, Staphylococcus aureus (38.6%) was the most common isolate followed by Pseudomonas aeruginosa (27.3%). Staphylococcus aureus was most often sensitive to Moxifloxacin, Imipenem/Meropenem, Vancomycin and Linezolid while it showed varying sensitivity to Penicillins and Cephalosporins. 47.1% isolates of Staphylococcus aureus were resistant to Methicillin. Most of the gram negative rods were sensitive to Imipenem/Meropenem, Piperacillin-Tazobactam and Ticarcillin-Clavulanate. Majority of gram negative bacteria were found resistant to Cephalosporins and Moxifloxacin except Pseudomonas which showed variable sensitivity to Ceftriaxone, Ceftazidime and Moxifloxacin. Conclusions: Majority of isolates were found resistant to the commonly used antibiotics. Most commonly isolated bacterium, Staphylococcus aureus was most often sensitive to Moxifloxacin, Imipenem/Meropenem, Vancomycin and Linezolid, while majority isolated gram negative rods were sensitive to Imipenem/Meropenem, Piperacillin-Tazobactam and Ticarcillin-Clavulanate. (author)

  14. Bacterial cheating limits antibiotic resistance

    Science.gov (United States)

    Xiao Chao, Hui; Yurtsev, Eugene; Datta, Manoshi; Artemova, Tanya; Gore, Jeff

    2012-02-01

    The widespread use of antibiotics has led to the evolution of resistance in bacteria. Bacteria can gain resistance to the antibiotic ampicillin by acquiring a plasmid carrying the gene beta-lactamase, which inactivates the antibiotic. This inactivation may represent a cooperative behavior, as the entire bacterial population benefits from removing the antibiotic. The cooperative nature of this growth suggests that a cheater strain---which does not contribute to breaking down the antibiotic---may be able to take advantage of cells cooperatively inactivating the antibiotic. Here we find experimentally that a ``sensitive'' bacterial strain lacking the plasmid conferring resistance can invade a population of resistant bacteria, even in antibiotic concentrations that should kill the sensitive strain. We observe stable coexistence between the two strains and find that a simple model successfully explains the behavior as a function of antibiotic concentration and cell density. We anticipate that our results will provide insight into the evolutionary origin of phenotypic diversity and cooperative behaviors.

  15. Probiotic approach to prevent antibiotic resistance.

    Science.gov (United States)

    Ouwehand, Arthur C; Forssten, Sofia; Hibberd, Ashley A; Lyra, Anna; Stahl, Buffy

    2016-01-01

    Probiotics are live microorganisms, mainly belonging to the genera Lactobacillus and Bifidobacterium, although also strain of other species are commercialized, that have a beneficial effect on the host. From the perspective of antibiotic use, probiotics have been observed to reduce the risk of certain infectious disease such as certain types of diarrhea and respiratory tract infection. This may be accompanied with a reduced need of antibiotics for secondary infections. Antibiotics tend to be effective against most common diseases, but increasingly resistance is being observed among pathogens. Probiotics are specifically selected to not contribute to the spread of antibiotic resistance and not carry transferable antibiotic resistance. Concomitant use of probiotics with antibiotics has been observed to reduce the incidence, duration and/or severity of antibiotic-associated diarrhea. This contributes to better adherence to the antibiotic prescription and thereby reduces the evolution of resistance. To what extent probiotics directly reduce the spread of antibiotic resistance is still much under investigation; but maintaining a balanced microbiota during antibiotic use may certainly provide opportunities for reducing the spread of resistances. Key messages Probiotics may reduce the risk for certain infectious diseases and thereby reduce the need for antibiotics. Probiotics may reduce the risk for antibiotic-associated diarrhea Probiotics do not contribute to the spread of antibiotic resistance and may even reduce it.

  16. Mortality and hospital stay associated with resistant Staphylococcus aureus and Escherichia coli bacteremia: estimating the burden of antibiotic resistance in Europe.

    Directory of Open Access Journals (Sweden)

    Marlieke E A de Kraker

    2011-10-01

    Full Text Available The relative importance of human diseases is conventionally assessed by cause-specific mortality, morbidity, and economic impact. Current estimates for infections caused by antibiotic-resistant bacteria are not sufficiently supported by quantitative empirical data. This study determined the excess number of deaths, bed-days, and hospital costs associated with blood stream infections (BSIs caused by methicillin-resistant Staphylococcus aureus (MRSA and third-generation cephalosporin-resistant Escherichia coli (G3CREC in 31 countries that participated in the European Antimicrobial Resistance Surveillance System (EARSS.The number of BSIs caused by MRSA and G3CREC was extrapolated from EARSS prevalence data and national health care statistics. Prospective cohort studies, carried out in hospitals participating in EARSS in 2007, provided the parameters for estimating the excess 30-d mortality and hospital stay associated with BSIs caused by either MRSA or G3CREC. Hospital expenditure was derived from a publicly available cost model. Trends established by EARSS were used to determine the trajectories for MRSA and G3CREC prevalence until 2015. In 2007, 27,711 episodes of MRSA BSIs were associated with 5,503 excess deaths and 255,683 excess hospital days in the participating countries, whereas 15,183 episodes of G3CREC BSIs were associated with 2,712 excess deaths and 120,065 extra hospital days. The total costs attributable to excess hospital stays for MRSA and G3CREC BSIs were 44.0 and 18.1 million Euros (63.1 and 29.7 million international dollars, respectively. Based on prevailing trends, the number of BSIs caused by G3CREC is likely to rapidly increase, outnumbering the number of MRSA BSIs in the near future.Excess mortality associated with BSIs caused by MRSA and G3CREC is significant, and the prolongation of hospital stay imposes a considerable burden on health care systems. A foreseeable shift in the burden of antibiotic resistance from Gram

  17. Crystallization and preliminary diffraction studies of SFC-1, a carbapenemase conferring antibiotic resistance

    International Nuclear Information System (INIS)

    Hong, Myoung-Ki; Lee, Jae Jin; Wu, Xing; Kim, Jin-Kwang; Jeong, Byeong Chul; Pham, Tan-Viet; Kim, Seung-Hwan; Lee, Sang Hee; Kang, Lin-Woo

    2012-01-01

    The SFC-1 gene from S. fonticola was cloned and SFC-1 was expressed, purified and crystallized. X-ray diffraction data were collected from an SFC-1 crystal to 1.6 Å resolution. SFC-1, a class A carbapenemase that confers antibiotic resistance, hydrolyzes the β-lactam rings of β-lactam antibiotics (carbapenems, cephalosporins, penicillins and aztreonam). SFC-1 presents an enormous challenge to infection control, particularly in the eradication of Gram-negative pathogens. As SFC-1 exhibits a remarkably broad substrate range, including β-lactams of all classes, the enzyme is a potential target for the development of antimicrobial agents against pathogens producing carbapenemases. In this study, SFC-1 was cloned, overexpressed, purified and crystallized. The SFC-1 crystal diffracted to 1.6 Å resolution and belonged to the orthorhombic space group P2 1 2 1 2 1 , with unit-cell parameters a = 65.8, b = 68.3, c = 88.8 Å. Two molecules are present in the asymmetric unit, with a corresponding V M of 1.99 Å 3 Da −1 and a solvent content of 38.1%

  18. Antibiotic Resistance and Antibiotic Resistance Genes in Escherichia coli Isolates from Hospital Wastewater in Vietnam.

    Science.gov (United States)

    Lien, La Thi Quynh; Lan, Pham Thi; Chuc, Nguyen Thi Kim; Hoa, Nguyen Quynh; Nhung, Pham Hong; Thoa, Nguyen Thi Minh; Diwan, Vishal; Tamhankar, Ashok J; Stålsby Lundborg, Cecilia

    2017-06-29

    The environmental spread of antibiotic-resistant bacteria has been recognised as a growing public health threat for which hospitals play a significant role. The aims of this study were to investigate the prevalence of antibiotic resistance and antibiotic resistance genes (ARGs) in Escherichia coli isolates from hospital wastewater in Vietnam. Wastewater samples before and after treatment were collected using continuous sampling every month over a year. Standard disk diffusion and E-test were used for antibiotic susceptibility testing. Extended-spectrum beta-lactamase (ESBL) production was tested using combined disk diffusion. ARGs were detected by polymerase chain reactions. Resistance to at least one antibiotic was detected in 83% of isolates; multidrug resistance was found in 32%. The highest resistance prevalence was found for co-trimoxazole (70%) and the lowest for imipenem (1%). Forty-three percent of isolates were ESBL-producing, with the bla TEM gene being more common than bla CTX-M . Co-harbouring of the bla CTX-M , bla TEM and qepA genes was found in 46% of isolates resistant to ciprofloxacin. The large presence of antibiotic-resistant E. coli isolates combined with ARGs in hospital wastewater, even post-treatment, poses a threat to public health. It highlights the need to develop effective processes for hospital wastewater treatment plants to eliminate antibiotic resistant bacteria and ARGs.

  19. Addressing resistance to antibiotics in systematic reviews of antibiotic interventions

    NARCIS (Netherlands)

    Leibovici, Leonard; Paul, Mical; Garner, Paul; Sinclair, David J; Afshari, Arash; Pace, Nathan Leon; Cullum, Nicky; Williams, Hywel C; Smyth, Alan; Skoetz, Nicole; Del Mar, Chris; Schilder, Anne G M; Yahav, Dafna; Tovey, David

    Antibiotics are among the most important interventions in healthcare. Resistance of bacteria to antibiotics threatens the effectiveness of treatment. Systematic reviews of antibiotic treatments often do not address resistance to antibiotics even when data are available in the original studies. This

  20. Antibacterial activities of the methanol extracts of Albizia adianthifolia, Alchornea laxiflora, Laportea ovalifolia and three other Cameroonian plants against multi-drug resistant Gram-negative bacteria.

    Science.gov (United States)

    Tchinda, Cedric F; Voukeng, Igor K; Beng, Veronique P; Kuete, Victor

    2017-05-01

    In the last 10 years, resistance in Gram-negative bacteria has been increasing. The present study was designed to evaluate the in vitro antibacterial activities of the methanol extracts of six Cameroonian medicinal plants Albizia adianthifolia , Alchornea laxiflora , Boerhavia diffusa , Combretum hispidum , Laportea ovalifolia and Scoparia dulcis against a panel of 15 multidrug resistant Gram-negative bacterial strains. The broth microdilution was used to determine the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of the extracts. The preliminary phytochemical screening of the extracts was conducted according to the reference qualitative phytochemical methods. Results showed that all extracts contained compounds belonging to the classes of polyphenols and triterpenes, other classes of chemicals being selectively distributed. The best antibacterial activities were recorded with bark and root extracts of A. adianthifolia as well as with L. ovalifolia extract, with MIC values ranging from 64 to 1024 μg/mL on 93.3% of the fifteen tested bacteria. The lowest MIC value of 64 μg/mL was recorded with A. laxiflora bark extract against Enterobacter aerogenes EA289. Finally, the results of this study provide evidence of the antibacterial activity of the tested plants and suggest their possible use in the control of multidrug resistant phenotypes.

  1. BACTERIAL PROFILE, ANTIBIOTIC SENSITIVITY AND RESISTANCE OF LOWER RESPIRATORY TRACT INFECTIONS IN UPPER EGYPT

    Directory of Open Access Journals (Sweden)

    Gamal Agmy

    2013-09-01

    Full Text Available BACKGROUND: Lower respiratory tract infections (LRTI account for a considerable proportion of morbidity and antibiotic use. We aimed to identify the causative bacteria, antibiotic sensitivity and resistance of hospitalized adult patients due to LRTI in Upper Egypt. METHODS: A multicentre prospective study was performed at 3 University Hospitals for 3 years. Samples included sputum or bronchoalveolar lavage (BAL for staining and culture, and serum for serology. Samples were cultured on 3 bacteriological media (Nutrient, Chocolate ,MacConkey's agars.Colonies were identified via MicroScan WalkAway-96. Pneumoslide IgM kit was used for detection of atypical pathogens via indirect immunofluorescent assay. RESULTS: The predominant isolates in 360 patients with CAP were S.pneumoniae (36%, C. pneumoniae (18%, and M. pneumoniae (12%. A higher sensitivity was recorded for moxifloxacin, levofloxacin, macrolides, and cefepime. A higher of resistance was recorded for doxycycline, cephalosporins, and β-lactam-β-lactamase inhibitors. The predominant isolates in 318 patients with HAP were, methicillin-resistant Staphylococcus aureus; MRSA (23%, K. pneumoniae (14%, and polymicrobial in 12%. A higher sensitivity was recorded for vancomycin, ciprofloxacin, and moxifloxacin. Very high resistance was recorded for β-lactam-β-lactamase inhibitors and cephalosporins. The predominant organisms in 376 patients with acute exacerbation of chronic obstructive pulmonary diseases (AECOPD were H. influnzae (30%, S. pneumoniae (25%, and M. catarrhalis(18%. A higher sensitivity was recorded for moxifloxacin, macrolides and cefepime. A higher rate of resistance was recorded for aminoglycosides and cephalosporins CONCLUSIONS: The most predominant bacteria for CAP in Upper Egypt are S. pneumoniae and atypical organisms, while that for HAP are MRSA and Gram negative bacteria. For acute exacerbation of COPD,H.influnzae was the commonest organism. Respiratory quinolones

  2. The accuracy of Gram stain of respiratory specimens in excluding Staphylococcus aureus in ventilator-associated pneumonia.

    Science.gov (United States)

    Gottesman, Tamar; Yossepowitch, Orit; Lerner, Evgenia; Schwartz-Harari, Orna; Soroksky, Arie; Yekutieli, Daniel; Dan, Michael

    2014-10-01

    To evaluate the Gram stain of deep tracheal aspirate as a tool to direct empiric antibiotic therapy, and more specifically as a tool to exclude the need for empiric antibiotic coverage against Staphylococcus aureus in ventilator-associated pneumonia (VAP). A prospective, single-center, observational, cohort study. All wards at a community hospital. Adult patients requiring mechanical ventilation, identified as having VAP in a 54-month prospective surveillance database. Sampling of lower airway secretions by deep endotracheal aspiration was taken from each patient who developed VAP. Samples were sent immediately for Gram stain and qualitative bacterial cultures. Demographic and relevant clinical data were collected; Gram stain, culture, and antibiotic susceptibility results were documented; and outcome was followed prospectively. The analysis included 114 consecutive patients with 115 episodes of VAP from June 2007 to January 2012. Sensitivity of Gram stain compared with culture was 90.47% for gram-positive cocci, 69.6% for gram-negative rods, and 50% for sterile cultures. Specificity was 82.5%, 77.8%, and 79%, respectively. Negative predictive value was high for gram-positive cocci (97%) and sterile cultures (96%) but low for gram-negative rods (20%). Acinetobacter baumanii (45%) and Pseudomonas aeruginosa (38 %) were the prevailing isolates. S aureus was found in 18.3% of the patients. Most isolates were multiresistant. Absence of gram-positive bacteria on Gram stain had a high negative predictive value. These data can be used to narrow the initial empiric antibiotic regimen and to avoid unnecessary exposure of patients to vancomycin and other antistaphyloccocal agents. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Addressing resistance to antibiotics in systematic reviews of antibiotic interventions.

    Science.gov (United States)

    Leibovici, Leonard; Paul, Mical; Garner, Paul; Sinclair, David J; Afshari, Arash; Pace, Nathan Leon; Cullum, Nicky; Williams, Hywel C; Smyth, Alan; Skoetz, Nicole; Del Mar, Chris; Schilder, Anne G M; Yahav, Dafna; Tovey, David

    2016-09-01

    Antibiotics are among the most important interventions in healthcare. Resistance of bacteria to antibiotics threatens the effectiveness of treatment. Systematic reviews of antibiotic treatments often do not address resistance to antibiotics even when data are available in the original studies. This omission creates a skewed view, which emphasizes short-term efficacy and ignores the long-term consequences to the patient and other people. We offer a framework for addressing antibiotic resistance in systematic reviews. We suggest that the data on background resistance in the original trials should be reported and taken into account when interpreting results. Data on emergence of resistance (whether in the body reservoirs or in the bacteria causing infection) are important outcomes. Emergence of resistance should be taken into account when interpreting the evidence on antibiotic treatment in randomized controlled trials or systematic reviews. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Feed additives shift gut microbiota and enrich antibiotic resistance in swine gut.

    Science.gov (United States)

    Zhao, Yi; Su, Jian-Qiang; An, Xin-Li; Huang, Fu-Yi; Rensing, Christopher; Brandt, Kristian Koefoed; Zhu, Yong-Guan

    2018-04-15

    Antibiotic resistance genes (ARGs) are emerging environmental contaminants posing a threat to public health. Antibiotics and metals are widely used as feed additives and could consequently affect ARGs in swine gut. In this study, high-throughput quantitative polymerase chain reaction (HT-qPCR) based ARG chip and next-generation 16S rRNA gene amplicon sequencing data were analyzed using multiple statistical approaches to profile the antibiotic resistome and investigate its linkages to antibiotics and metals used as feed additives and to the microbial community composition in freshly collected swine manure samples from three large-scale Chinese pig farms. A total of 146 ARGs and up to 1.3×10 10 total ARG copies per gram of swine feces were detected. ARGs conferring resistance to aminoglycoside, macrolide-lincosamide-streptogramin B (MLSB) and tetracycline were dominant in pig gut. Total abundance of ARGs was positively correlated with in-feed antibiotics, microbial biomass and abundance of mobile genetic elements (MGEs) (Padditives and community composition (16.5%). These results suggest that increased levels of in-feed additives could aggravate the enrichment of ARGs and MGEs in swine gut. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Specific Clinical Profile and Risk Factors for Mortality in General Surgery Patients with Infections by Multi-Drug-Resistant Gram-Negative Bacteria.

    Science.gov (United States)

    Rubio-Perez, Ines; Martin-Perez, Elena; Domingo-García, Diego; Garcia-Olmo, Damian

    2017-07-01

    The incidence of gram-negative multi-drug-resistant (MDR) infections is increasing worldwide. This study sought to determine the incidence, clinical profiles, risk factors, and mortality of these infections in general surgery patients. All general surgery patients with a clinical infection by gram-negative MDR bacteria were studied prospectively for a period of five years (2007-2011). Clinical, surgical, and microbiologic parameters were recorded, with a focus on the identification of risk factors for MDR infection and mortality. Incidence of MDR infections increased (5.6% to 15.2%) during the study period; 106 patients were included, 69.8% presented nosocomial infections. Mean age was 65 ± 15 years, 61% male. Extended-spectrum β-lactamases (ESBL) Escherichia coli was the most frequent MDR bacteria. Surgical site infections and abscesses were the most common culture locations. The patients presented multiple pre-admission risk factors and invasive measures during hospitalization. Mortality was 15%, and related to older age (odds ratio [OR] 1.07), malnutrition (OR 13.5), chronic digestive conditions (OR 4.7), chronic obstructive pulmonary disease (OR 3.9), and surgical re-intervention (OR 9.2). Multi-drug resistant infections in the surgical population are increasing. The most common clinical profile is a 65-year-old male, with previous comorbidities, who has undergone a surgical intervention, intensive care unit (ICU) admission, and invasive procedures and who has acquired the MDR infection in the nosocomial setting.

  6. Preemptive antibiotic treatment based on gram staining reduced the incidence of ARDS in mechanically ventilated patients.

    Science.gov (United States)

    Matsushima, Asako; Tasaki, Osamu; Shimizu, Kentaro; Tomono, Kazunori; Ogura, Hiroshi; Shimazu, Takeshi; Sugimoto, Hisashi

    2008-08-01

    Ventilator-associated pneumonia (VAP) is one of the major complications in the intensive care unit. VAP sometimes results in acute respiratory distress syndrome (ARDS), and the associated mortality is high. We hypothesized that preemptive antibiotic therapy based on results of bedside gram staining would reduce the incidence of VAP. Patients who were endotracheally intubated in our intensive care unit for more than 72 hours were included. Patients younger than 16 years of age or patients died because of brain death were excluded. The study was divided into two periods. During the first period, we used antibiotics according to the American Thoracic Society guidelines. During the second period, antibiotics were given according to the results of bedside gram staining even before radiographic infiltrate appeared. One hundred twenty-eight patients and 133 patients were included in the first and second periods, respectively. The incidence of VAP was significantly decreased in the second period (first period, 22%; second period, 9%, p gram staining significantly reduced the incidences of VAP and ARDS without an increase in the use of antibiotics.

  7. Plasmid mediated colistin resistance in food animal intestinal contents detected by selective enrichment

    Science.gov (United States)

    Colistin (polymyxin E) is a cationic polypeptide antibiotic that has broad-spectrum activity against Gram-negative bacteria. It is classified as critically important in human medicine for treating hard-to-treat multi-drug resistant infections. Recently a plasmid-mediated colistin resistance gene (mc...

  8. The determinants of the antibiotic resistance process

    Directory of Open Access Journals (Sweden)

    Beatriz Espinosa Franco

    2009-04-01

    Full Text Available Beatriz Espinosa Franco1, Marina Altagracia Martínez2, Martha A Sánchez Rodríguez1, Albert I Wertheimer31Facultad de Estudios Superiores Zaragoza (UNAM, Mexico; 2Universidad Autónoma Metropolitana Unidad Xochimilco, Mexico; 3Temple University, Philadelphia, Pennsylvania, USABackground: The use of antibiotic drugs triggers a complex interaction involving many biological, sociological, and psychological determinants. Resistance to antibiotics is a serious worldwide problem which is increasing and has implications for morbidity, mortality, and health care both in hospitals and in the community.Objectives: To analyze current research on the determinants of antibiotic resistance and comprehensively review the main factors in the process of resistance in order to aid our understanding and assessment of this problem.Methods: We conducted a MedLine search using the key words “determinants”, “antibiotic”, and “antibiotic resistance” to identify publications between 1995 and 2007 on the determinants of antibiotic resistance. Publications that did not address the determinants of antibiotic resistance were excluded.Results: The process and determinants of antibiotic resistance are described, beginning with the development of antibiotics, resistance and the mechanisms of resistance, sociocultural determinants of resistance, the consequences of antibiotic resistance, and alternative measures proposed to combat antibiotic resistance.Conclusions: Analysis of the published literature identified the main determinants of antibiotic resistance as irrational use of antibiotics in humans and animal species, insufficient patient education when antibiotics are prescribed, lack of guidelines for treatment and control of infections, lack of scientific information for physicians on the rational use of antibiotics, and lack of official government policy on the rational use of antibiotics in public and private hospitals.Keywords: antibiotic drug resistance

  9. Genetic Mechanisms of Antibiotic Resistance and the Role of Antibiotic Adjuvants.

    Science.gov (United States)

    Pontes, Daniela Santos; de Araujo, Rodrigo Santos Aquino; Dantas, Natalina; Scotti, Luciana; Scotti, Marcus Tullius; de Moura, Ricardo Olimpio; Mendonca-Junior, Francisco Jaime Bezerra

    2018-01-01

    The ever increasing number of multidrug-resistant microorganism pathogens has become a great and global public health threat. Antibiotic mechanisms of action and the opposing mechanisms of resistance are intimately associated, but comprehension of the biochemical and molecular functions of such drugs is not a simple exercise. Both the environment, and genetic settings contribute to alterations in phenotypic resistance (natural bacterial evolution), and make it difficult to control the emergence and impacts of antibiotic resistance. Under such circumstances, comprehension of how bacteria develop and/or acquire antibiotic resistance genes (ARG) has a critical role in developing propositions to fight against these superbugs, and to search for new drugs. In this review, we present and discuss both general information and examples of common genetic and molecular mechanisms related to antibiotic resistance, as well as how the expression and interactions of ARGs are important to drug resistance. At the same time, we focus on the recent achievements in the search for antibiotic adjuvants, which help combat antibiotic resistance through deactivation of bacterial mechanisms of action such as β-lactamases. Recent advances involving the use of anti-resistance drugs such as: efflux pump inhibitors; anti-virulence drugs; drugs against quorum sensing; and against type II/III secretion systems are revealed. Such antibiotic adjuvants (as explored herein) collaborate against the problems of antibiotic resistance, and may restore or prolong the therapeutic activity of known antibiotics. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Glycopeptide antibiotic biosynthesis.

    Science.gov (United States)

    Yim, Grace; Thaker, Maulik N; Koteva, Kalinka; Wright, Gerard

    2014-01-01

    Glycopeptides such as vancomycin, teicoplanin and telavancin are essential for treating infections caused by Gram-positive bacteria. Unfortunately, the dwindled pipeline of new antibiotics into the market and the emergence of glycopeptide-resistant enterococci and other resistant bacteria are increasingly making effective antibiotic treatment difficult. We have now learned a great deal about how bacteria produce antibiotics. This information can be exploited to develop the next generation of antimicrobials. The biosynthesis of glycopeptides via nonribosomal peptide assembly and unusual amino acid synthesis, crosslinking and tailoring enzymes gives rise to intricate chemical structures that target the bacterial cell wall. This review seeks to describe recent advances in our understanding of both biosynthesis and resistance of these important antibiotics.

  11. Effects of environmental conditions on the morphologic change of Pseudomonas aeruginosa and its association with antibiotic resistance in burn patients

    Directory of Open Access Journals (Sweden)

    Mohsen Moghoofei

    2015-12-01

    Full Text Available Introduction: Pseudomonas aeruginosa is an aerobic gram-negative bacteria, which causes hospital infections. Bacteria under stress, such as lack of food, pH and osmotic pressure change and antibiotic stress transforms its morphology to coccoid form. In the bacill form due to changes in the peptidoglycan cell wall, membrane lipids and decreased metabolic activity, bacteria resistant to antibiotics. Due to an increase in mortality in burn patients and important problem of antibiotic resistance in P.aeruginosa the researcher decided to study the factors affecting on morphologic change to coccoid form. Materials and methods: In this study P.aeruginosa strains obtained from clinical samples of burned patients (8 samples were taken from the wound by Infectious Disease Specialist and standard strain ATCC 27853 were used. Samples were confirmed by biochemical tests and PCR by 16srDNA primer. Then bacteria were put under lack of food and antibiotic stress invitro. After that bacterial morphology was examined on different days by digital DP 72-BX 51 microscope to 60 days. After induction coccoid forms, bacterial viability was confirmed by flow cytometry. Results: Bacteria begin to change morphology from 5 days for antibiotic stress and 10 days for other stress. Changing morphology was initially elongate bacilli, U shape and finally the coccoid form was seen. Discussion and conclusion: Changing morphology of bacilli to coccoid bacteria that are the result of stress on the bacteria which enter the body can lead to bacterial resistance to antibiotics and have grave consequences for the patient.

  12. Antimicrobial susceptibility trends among gram-positive and -negative clinical isolates collected between 2005 and 2012 in Mexico: results from the Tigecycline Evaluation and Surveillance Trial.

    Science.gov (United States)

    Morfin-Otero, Rayo; Noriega, Eduardo Rodriguez; Dowzicky, Michael J

    2015-12-15

    The Tigecycline Evaluation and Surveillance Trial (T.E.S.T) is a global antimicrobial surveillance study of both gram-positive and gram-negative organisms. This report presents data on antimicrobial susceptibility among organisms collected in Mexico between 2005 and 2012 as part of T.E.S.T., and compares rates between 2005-2007 and 2008-2012. Each center in Mexico submitted at least 200 isolates per collection year; including 65 gram-positive isolates and 135 gram-negative isolates. Minimum inhibitory concentrations (MICs) were determined using Clinical Laboratory Standards Institute (CLSI) broth microdilution methodology and antimicrobial susceptibility was established using the 2013 CLSI-approved breakpoints. For tigecycline US Food and Drug Administration (FDA) breakpoints were applied. Isolates of E. coli and K. pneumoniae with a MIC for ceftriaxone of >1 mg/L were screened for ESBL production using the phenotypic confirmatory disk test according to CLSI guidelines. The rates of some key resistant phenotypes changed during this study: vancomycin resistance among Enterococcus faecium decreased from 28.6 % in 2005-2007 to 19.1 % in 2008-2012, while β-lactamase production among Haemophilus influenzae decreased from 37.6 to 18.9 %. Conversely, methicillin-resistant Staphylococcus aureus increased from 38.1 to 47.9 %, meropenem-resistant Acinetobacter spp. increased from 17.7 to 33.0 % and multidrug-resistant Acinetobacter spp. increased from 25.6 to 49.7 %. The prevalence of other resistant pathogens was stable over the study period, including extended-spectrum β-lactamase-positive Escherichia coli (39.0 %) and Klebsiella pneumoniae (25.0 %). The activity of tigecycline was maintained across the study years with MIC90s of ≤2 mg/L against Enterococcus spp., S. aureus, Streptococcus agalactiae, Streptococcus pneumoniae, Enterobacter spp., E. coli, K. pneumoniae, Klebsiella oxytoca, Serratia marcescens, H. influenzae, and Acinetobacter spp. All gram

  13. High Levels of Antibiotic Resistance but No Antibiotic Production Detected Along a Gypsum Gradient in Great Onyx Cave, KY, USA

    Directory of Open Access Journals (Sweden)

    Kathleen Lavoie

    2017-09-01

    Full Text Available A preliminary study of antibiotic production and antibiotic resistance was conducted in Great Onyx Cave in Mammoth Cave National Park, KY, to determine if gypsum (CaSO4∙2H2O affects these bacterial activities. The cave crosses through the width of Flint Ridge, and passages under the sandstone caprock are dry with different amounts of gypsum. The Great Kentucky Desert hypothesis posits that gypsum limits the distribution of invertebrates in the central areas of Great Onyx Cave. Twenty-four bacterial isolates were cultivated from swabs and soils. Using three methods (soil crumb, soil crumb with indicator bacteria, and the cross-streak method using isolated bacteria we did not detect any production of antibiotics. Antibiotic resistance was widespread, with all 24 isolates resistant to a minimum of two antibiotics of seven tested, with three isolates resistant to all. Antibiotic resistance was high and not correlated with depth into the cave or the amount of gypsum. The Great Kentucky Desert hypothesis of the negative effects of gypsum seems to have no impact on bacterial activity.

  14. Geraniol Restores Antibiotic Activities against Multidrug-Resistant Isolates from Gram-Negative Species▿ †

    Science.gov (United States)

    Lorenzi, Vannina; Muselli, Alain; Bernardini, Antoine François; Berti, Liliane; Pagès, Jean-Marie; Amaral, Leonard; Bolla, Jean-Michel

    2009-01-01

    The essential oil of Helichrysum italicum significantly reduces the multidrug resistance of Enterobacter aerogenes, Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii. Combinations of the two most active fractions of the essential oil with each other or with phenylalanine arginine β-naphthylamide yield synergistic activity. Geraniol, a component of one fraction, significantly increased the efficacy of β-lactams, quinolones, and chloramphenicol. PMID:19258278

  15. Resistencia a antibióticos de bacilos GRAM negativos aislados en unidades de cuidados intensivos: Análisis comparativo de dos periódos (1998-2001 Bacterial resistance to antibiotics in gram negative isolates from intensive care units: Comparative analysis between two periods (1998-2001

    Directory of Open Access Journals (Sweden)

    C. H. Rodriguez

    2003-01-01

    Full Text Available Se comparó la incidencia relativa de las diferentes especies de bacilos gram-negativos y la resistencia a varios antibacterianos, en dos muestras de aislamientos clínicos correspondientes a cinco meses del año 1998 y del mismo período del año 2001, con el objetivo de conocer la evolución de ambos, frecuencia de cada especie como agente etiológico, y resistencia a antimicrobianos. Para ello se analizaron en cada período 100 aislamientos de bacilos gram-negativos obtenidos de muestras clínicas de pacientes internados en salas de cuidados intensivos del Hospital de Clínicas José de San Martín. Se determinó la especie bacteriana y la concentración inhibitoria mínima de cada antibiótico. Acinetobacter spp. fue el microorganismo más aislado en ambos períodos. El porcentaje de aislamientos resistentes a imipenem fue del 60%, mientras que a ciprofloxacina y cefalosporinas de tercera generación fue superior al 80%. En Klebsiella pneumoniae el porcentaje de aislamientos resistentes a cefalosporinas de tercera generación disminuyó del 71.4 al 30% (pThe incidence and drug susceptibility of gram-negative isolates from clinical samples of patients from different intensive care units at the Hospital de Clinicas José de San Martín were analysed. Two hundred isolates during the same five months period, in two different years (1998 and 2001 were obtained and evaluated. Acinetobacter spp., was the most frequently isolated microorganism. Resistance to imipenem was observed in 60% of these isolations while resistance to 3rd generation cephalosporin and ciprofloxacin was observed in more than 80%. Klebsiella pneumoniae was not resistant to imipenem, the resistance to 3rd and 4rth generation cephalosporins decreased from 71.4 to 30% of isolates (p<0.05, while ciprofloxacin resistance increased from 5 to 20% (p<0.05. An increasing resistance to imipenem in Pseudomonas aeruginosa was noted, from 15.4 to 68% (p<0.05%; to ciprofloxacin, from 31.4 to

  16. Revisiting the gram-negative lipoprotein paradigm

    Science.gov (United States)

    The processing of lipoproteins (lpps) in Gram-negative bacteria is generally considered to be an essential pathway. Mature lipoproteins in these bacteria are triacylated, with the final fatty acid addition performed by Lnt, an apolipoprotein n-acyltransferase. The mature lipoproteins are then sorted...

  17. Dustborne and airborne gram-positive and gram-negative bacteria in high versus low ERMI homes

    Science.gov (United States)

    The study aimed at investigating Gram-positive and Gram-negative bacteria in moldy and non-moldy homes, as defined by the home's Environmental Relative Moldiness Index (ERMI) value. The ERMI values were determined from floor dust samples in 2010 and 2011 and homes were classified...

  18. Klebsiella pneumoniae Carbapenemase-2 (KPC-2), Substitutions at Ambler Position Asp179, and Resistance to Ceftazidime-Avibactam: Unique Antibiotic-Resistant Phenotypes Emerge from β-Lactamase Protein Engineering.

    Science.gov (United States)

    Barnes, Melissa D; Winkler, Marisa L; Taracila, Magdalena A; Page, Malcolm G; Desarbre, Eric; Kreiswirth, Barry N; Shields, Ryan K; Nguyen, Minh-Hong; Clancy, Cornelius; Spellberg, Brad; Papp-Wallace, Krisztina M; Bonomo, Robert A

    2017-10-31

    The emergence of Klebsiella pneumoniae carbapenemases (KPCs), β-lactamases that inactivate "last-line" antibiotics such as imipenem, represents a major challenge to contemporary antibiotic therapies. The combination of ceftazidime (CAZ) and avibactam (AVI), a potent β-lactamase inhibitor, represents an attempt to overcome this formidable threat and to restore the efficacy of the antibiotic against Gram-negative bacteria bearing KPCs. CAZ-AVI-resistant clinical strains expressing KPC variants with substitutions in the Ω-loop are emerging. We engineered 19 KPC-2 variants bearing targeted mutations at amino acid residue Ambler position 179 in Escherichia coli and identified a unique antibiotic resistance phenotype. We focus particularly on the CAZ-AVI resistance of the clinically relevant Asp179Asn variant. Although this variant demonstrated less hydrolytic activity, we demonstrated that there was a prolonged period during which an acyl-enzyme intermediate was present. Using mass spectrometry and transient kinetic analysis, we demonstrated that Asp179Asn "traps" β-lactams, preferentially binding β-lactams longer than AVI owing to a decreased rate of deacylation. Molecular dynamics simulations predict that (i) the Asp179Asn variant confers more flexibility to the Ω-loop and expands the active site significantly; (ii) the catalytic nucleophile, S70, is shifted more than 1.5 Å and rotated more than 90°, altering the hydrogen bond networks; and (iii) E166 is displaced by 2 Å when complexed with ceftazidime. These analyses explain the increased hydrolytic profile of KPC-2 and suggest that the Asp179Asn substitution results in an alternative complex mechanism leading to CAZ-AVI resistance. The future design of novel β-lactams and β-lactamase inhibitors must consider the mechanistic basis of resistance of this and other threatening carbapenemases. IMPORTANCE Antibiotic resistance is emerging at unprecedented rates and threatens to reach crisis levels. One key

  19. How bacterial cell division might cheat turgor pressure - a unified mechanism of septal division in Gram-positive and Gram-negative bacteria.

    Science.gov (United States)

    Erickson, Harold P

    2017-08-01

    An important question for bacterial cell division is how the invaginating septum can overcome the turgor force generated by the high osmolarity of the cytoplasm. I suggest that it may not need to. Several studies in Gram-negative bacteria have shown that the periplasm is isoosmolar with the cytoplasm. Indirect evidence suggests that this is also true for Gram-positive bacteria. In this case the invagination of the septum takes place within the uniformly high osmotic pressure environment, and does not have to fight turgor pressure. A related question is how the V-shaped constriction of Gram-negative bacteria relates to the plate-like septum of Gram-positive bacteria. I collected evidence that Gram-negative bacteria have a latent capability of forming plate-like septa, and present a model in which septal division is the basic mechanism in both Gram-positive and Gram-negative bacteria. © 2017 WILEY Periodicals, Inc.

  20. Fecal Microbiota Transfer for Multidrug-Resistant Gram-Negatives: A Clinical Success Combined With Microbiological Failure.

    Science.gov (United States)

    Stalenhoef, Janneke E; Terveer, Elisabeth M; Knetsch, Cornelis W; Van't Hof, Peter J; Vlasveld, Imro N; Keller, Josbert J; Visser, Leo G; Kuijper, Eduard J

    2017-01-01

    Combined fecal microbiota transfer and antibiotic treatment prevented recurrences of urinary tract infections with multidrug-resistant (MDR) Pseudomonas aeruginosa , but it failed to eradicate intestinal colonization with MDR Escherichia coli . Based on microbiota analysis, failure was not associated with distinct diminished microbiota diversity.

  1. Synergistic activity of synthetic N-terminal peptide of human lactoferrin in combination with various antibiotics against carbapenem-resistant Klebsiella pneumoniae strains.

    Science.gov (United States)

    Morici, P; Florio, W; Rizzato, C; Ghelardi, E; Tavanti, A; Rossolini, G M; Lupetti, A

    2017-10-01

    The spread of multi-drug resistant (MDR) Klebsiella pneumoniae strains producing carbapenemases points to a pressing need for new antibacterial agents. To this end, the in-vitro antibacterial activity of a synthetic N-terminal peptide of human lactoferrin, further referred to as hLF1-11, was evaluated against K. pneumoniae strains harboring different carbapenemase genes (i.e. OXA-48, KPC-2, KPC-3, VIM-1), with different susceptibility to colistin and other antibiotics, alone or in combination with conventional antibiotics (gentamicin, tigecycline, rifampicin, clindamycin, and clarithromycin). An antimicrobial peptide susceptibility assay was used to assess the bactericidal activity of hLF1-11 against the different K. pneumoniae strains tested. The synergistic activity was evaluated by a checkerboard titration method, and the fractional inhibitory concentration (FIC) index was calculated for the various combinations. hLF1-11 was more efficient in killing a K. pneumoniae strain susceptible to most antimicrobials (including colistin) than a colistin-susceptible strain and a colistin-resistant MDR K. pneumoniae strain. In addition, hLF1-11 exhibited a synergistic effect with the tested antibiotics against MDR K. pneumoniae strains. The results of this study indicate that resistance to hLF1-11 and colistin are not strictly associated, and suggest an hLF1-11-induced sensitizing effect of K. pneumoniae to antibiotics, especially to hydrophobic antibiotics, which are normally not effective on Gram-negative bacteria. Altogether, these data indicate that hLF1-11 in combination with antibiotics is a promising candidate to treat infections caused by MDR-K. pneumoniae strains.

  2. Antibiotic resistance patterns in fecal bacteria isolated from Christmas shearwater (Puffinus nativitatis) and masked booby (Sula dactylatra) at remote Easter Island.

    Science.gov (United States)

    Ardiles-Villegas, Karen; González-Acuña, Daniel; Waldenström, Jonas; Olsen, Björn; Hernández, Jorge

    2011-09-01

    Antibiotic use and its implications have been discussed extensively in the past decades. This situation has global consequences when antibiotic resistance becomes widespread in the intestinal bacterial flora of stationary and migratory birds. This study investigated the incidence of fecal bacteria and general antibiotic resistance, with special focus on extended spectrum beta-lactamase (ESBL) isolates, in two species of seabirds at remote Easter Island. We identified 11 species of bacteria from masked booby (Sula dactylatra) and Christmas shearwater (Puffinus nativitatis); five species of gram-negative bacilli, four species of Streptococcus (Enterococcus), and 2 species of Staphylococcus. In addition, 6 types of bacteria were determined barely to the genus level. General antibiotic susceptibility was measured in the 30 isolated Enterobacteriaceae to 11 antibiotics used in human and veterinary medicine. The 10 isolates that showed a phenotypic ESBL profile were verified by clavulanic acid inhibition in double mixture discs with cefpodoxime, and two ESBL strains were found, one strain in masked booby and one strain in Christmas shearwater. The two bacteria harboring the ESBL type were identified as Serratia odorifera biotype 1, which has zoonotic importance. Despite minimal human presence in the masked booby and Christmas shearwater habitats, and the extreme geographic isolation of Easter Island, we found several multiresistant bacteria and even two isolates with ESBL phenotypes. The finding of ESBLs has animal and public health significance and is of potential concern, especially because the investigation was limited in size and indicated that antibiotic-resistant bacteria now are distributed globally.

  3. Fate of antibiotic resistant bacteria and genes during wastewater chlorination: implication for antibiotic resistance control.

    Directory of Open Access Journals (Sweden)

    Qing-Bin Yuan

    Full Text Available This study investigated fates of nine antibiotic-resistant bacteria as well as two series of antibiotic resistance genes in wastewater treated by various doses of chlorine (0, 15, 30, 60, 150 and 300 mg Cl2 min/L. The results indicated that chlorination was effective in inactivating antibiotic-resistant bacteria. Most bacteria were inactivated completely at the lowest dose (15 mg Cl2 min/L. By comparison, sulfadiazine- and erythromycin-resistant bacteria exhibited tolerance to low chlorine dose (up to 60 mg Cl2 min/L. However, quantitative real-time PCRs revealed that chlorination decreased limited erythromycin or tetracycline resistance genes, with the removal levels of overall erythromycin and tetracycline resistance genes at 0.42 ± 0.12 log and 0.10 ± 0.02 log, respectively. About 40% of erythromycin-resistance genes and 80% of tetracycline resistance genes could not be removed by chlorination. Chlorination was considered not effective in controlling antimicrobial resistance. More concern needs to be paid to the potential risk of antibiotic resistance genes in the wastewater after chlorination.

  4. [State-of-the-art status on airborne antibiotic resistant bacteria and antibiotic resistance genes].

    Science.gov (United States)

    Li, J; Yao, M S

    2018-04-06

    The world is facing more deaths due to increasing antibiotic-resistant bacterial infections and the shortage of new highly effective antibiotics, however the air media as its important transmission route has not been adequately studied. Based on the latest literature acquired in this work, we have discussed the state-of-the-art research progress of the concentration, distribution and spread of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in different environmental air media, and also analyzed some future prevention and control measures. The large use of antibiotics in the medical settings and animal husbandry places has resulted in higher abundances of ARB and ARGs in the relevant and surrounding atmosphere than in urban and general indoor air environments. ARGs can be spread by adhering to airborne particles, and researchers have also found that air media contain more abundant ARGs than other environmental media such as soil, water and sediment. It was suggested in this review that strengthening the monitoring, study on spreading factors and biological toxicity, and also research and development on pathogen accurate diagnosis and new green antibiotic are expected to help effectively monitor, prevent and control of the impacts of airborne resistant bacteria and resistance genes on both human and ecologies.

  5. Nanoparticle targeting of Gram-positive and Gram-negative bacteria for magnetic-based separations of bacterial pathogens

    Science.gov (United States)

    Lu, Hoang D.; Yang, Shirley S.; Wilson, Brian K.; McManus, Simon A.; Chen, Christopher V. H.-H.; Prud'homme, Robert K.

    2017-04-01

    Antimicrobial resistance is a healthcare problem of increasing significance, and there is increasing interest in developing new tools to address bacterial infections. Bacteria-targeting nanoparticles hold promise to improve drug efficacy, compliance, and safety. In addition, nanoparticles can also be used for novel applications, such as bacterial imaging or bioseperations. We here present the use of a scalable block-copolymer-directed self-assembly process, Flash NanoPrecipitation, to form zinc(II)-bis(dipicolylamine) modified nanoparticles that bind to both Gram-positive and Gram-negative bacteria with specificity. Particles have tunable surface ligand densities that change particle avidity and binding efficacy. A variety of materials can be encapsulated into the core of the particles, such as optical dyes or iron oxide colloids, to produce imageable and magnetically active bacterial targeting constructs. As a proof-of-concept, these particles are used to bind and separate bacteria from solution in a magnetic column. Magnetic manipulation and separation would translate to a platform for pathogen identification or removal. These magnetic and targeted nanoparticles enable new methods to address bacterial infections.

  6. Persistent Bacteremia from Pseudomonas aeruginosa with In Vitro Resistance to the Novel Antibiotics Ceftolozane-Tazobactam and Ceftazidime-Avibactam

    Directory of Open Access Journals (Sweden)

    Louie Mar Gangcuangco

    2016-01-01

    Full Text Available Ceftazidime-avibactam and ceftolozane-tazobactam are new antimicrobials with activity against multidrug-resistant Pseudomonas aeruginosa. We present the first case of persistent P. aeruginosa bacteremia with in vitro resistance to these novel antimicrobials. A 68-year-old man with newly diagnosed follicular lymphoma was admitted to the medical intensive care unit for sepsis and right lower extremity cellulitis. The patient was placed empirically on vancomycin and piperacillin-tazobactam. Blood cultures from Day 1 of hospitalization grew P. aeruginosa susceptible to piperacillin-tazobactam and cefepime identified using VITEK 2 (Biomerieux, Lenexa, KS. Repeat blood cultures from Day 5 grew P. aeruginosa resistant to all cephalosporins, as well as to meropenem by Day 10. Susceptibility testing performed by measuring minimum inhibitory concentration by E-test (Biomerieux, Lenexa, KS revealed that blood cultures from Day 10 were resistant to ceftazidime-avibactam and ceftolozane-tazobactam. The Verigene Blood Culture-Gram-Negative (BC-GN microarray-based assay (Nanosphere, Inc., Northbrook, IL was used to investigate underlying resistance mechanism in the P. aeruginosa isolate but CTX-M, KPC, NDM, VIM, IMP, and OXA gene were not detected. This case report highlights the well-documented phenomenon of antimicrobial resistance development in P. aeruginosa even during the course of appropriate antibiotic therapy. In the era of increasing multidrug-resistant organisms, routine susceptibility testing of P. aeruginosa to ceftazidime-avibactam and ceftolozane-tazobactam is warranted. Emerging resistance mechanisms to these novel antibiotics need to be further investigated.

  7. Antibiotic Susceptibility Pattern of Gram-positive Cocci Cultured from Patients in Three University Hospitals in Tehran, Iran during 2001-2005

    Directory of Open Access Journals (Sweden)

    Aligholi Marzieh

    2009-10-01

    Full Text Available Bacterial resistance to antibiotics is a serious problem and is increasing in prevalence world-wide at an alarming rate. The antimicrobial susceptibility patterns of 1897 gram-positive bacterial Isolates were evaluated. The minimum inhibitory concentration (MIC of isolates which comprised Staphylococcus aureus (927 isolates, coagulase-negative staphylococci (CNS; 425 isolates, Enterococcus faecalis (320 isolates, Enterococcus faecium (157 isolates, and pneumococci (50 isolates collected from 3 teaching hospitals in Tehran were determined by agar dilution method according to Clinical and Laboratory Standards Institute (CLSI guidelines. The presence of mecA gene was investigated in methicillin-resistant staphylococci by PCR method and vanA and vanB genes were targeted in enterococcal isolates by Multiplex PCR method. The resistance rate to methicillin among S. aureus and CNS isolates were 33% and 49%, respectively. All S. aureus isolates were susceptible to vancomycin .The lowest rate of resistance in all S. aureus isolates was found for rifampicin (<4%. The vancomycin resistance rate in enterococci isolates was 11% which was more frequent among E. faecium (19% than E. faecalis (4%, all resistant isolates carrying vanA. High-level resistance to gentamicin and streptomycin, were detected in 47% and 87% of enterococcal isolates respectively. The rate of penicillin resistance in pneumococci was 3% and about 27% of isolates had reduced susceptibility to penicillin. The prevalence of erythromycin resistant among pneumococci was 58%. All pneumococcal isolates were susceptible to ceftriaxone, rifampicin and vancomycin. Our data highlight the importance of access to updated bacterial susceptibility data regarding commonly prescribed agents for clinicians in Iran.

  8. Synthesis, Properties, and Mechanism of Action of New Generation of Polycyclic Glycopeptide Antibiotics.

    Science.gov (United States)

    Olsufyeva, Eugenia N; Tevyashova, Anna N

    2017-01-01

    The increased resistance of glycopeptide based antibiotics has become a serious problem for the chemotherapy of infections triggered by resistant Gram-positive bacteria. This has motivated the urgent sincere efforts to develop potent glycopeptide-based antibiotics in both academy and industry research laboratories. Understanding of the mechanism of action of natural and modified glycopeptides is considered as the basis for the rational design of compounds with valuable properties to achieve the fundamental results. Several hydrophobic glycopeptide analogues active against resistant strains were developed during the last two decades. Three drugs, namely, oritavancin, telavancin and dalbavancin were approved by FDA in 2013-2014. It was found that hydrophobic derivatives act through different mechanisms without binding with the modified target of resistant bacteria. Types: Different types of chemical modifications led to several glycopeptide analogues active against Gram-negative bacteria as advocated by in vitro studies or demonstrating potent antiviral activity in the cell models. A new class of glycopeptide antibiotics with potent activity against sensitive and resistant bacterial strains has been recently reported with the aim to overcome the resistance, however, there are a lot of obscure problems in the complete understanding of their mechanisms of actions. In this review, we summarized the achievements of synthetic methods devoted to the construction of new polycyclic glycopeptide antibiotics and described the studies related to their mechanism of actions. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Handling Time-dependent Variables : Antibiotics and Antibiotic Resistance

    NARCIS (Netherlands)

    Munoz-Price, L. Silvia; Frencken, Jos F.; Tarima, Sergey; Bonten, Marc

    2016-01-01

    Elucidating quantitative associations between antibiotic exposure and antibiotic resistance development is important. In the absence of randomized trials, observational studies are the next best alternative to derive such estimates. Yet, as antibiotics are prescribed for varying time periods,

  10. Resistance profile for pathogens causing urinary tract infection in a pediatric population, and antibiotic treatment response at a university hospital, 2010-2011.

    Science.gov (United States)

    Vélez Echeverri, Catalina; Serna-Higuita, Lina María; Serrano, Ana Katherina; Ochoa-García, Carolina; Rojas Rosas, Luisa; María Bedoya, Ana; Suárez, Margarita; Hincapié, Catalina; Henao, Adriana; Ortiz, Diana; Vanegas, Juan José; Zuleta, John Jairo; Espinal, David

    2014-01-01

    Urinary tract infection (UTI) is one of the most common bacterial infections in childhood and causes acute and chronic morbidity and long-term hypertension and chronic kidney disease. To describe the demographic characteristics, infectious agents, patterns of antibiotic resistance, etiologic agent and profile of susceptibility and response to empirical treatment of UTI in a pediatric population. This is a descriptive, retrospective study. Included in the study were 144 patients, 1:2.06 male to female ratio. The most common symptom was fever (79.9%) and 31.3% had a history of previous UTI. 72.0% of the patients had positive urine leukocyte count (>5 per field), urine gram was positive in 85.0% of samples and gram negative bacilli accounted for 77.8% for the total pathogens isolated. The most frequent uropathogens isolated were Escherichia coli and Klebsiella pneumoniae. Our E.coli isolates had a susceptibility rate higher than 90% to most of the antibiotics used, but a resistance rate of 42.6% to TMP SMX and 45.5% to ampicillin sulbactam. 6.3% of E. coli was extended-spectrum beta-lactamases producer strains. The most frequent empirical antibiotic used was amikacin, which was used in 66.0% of the patients. 17 of 90 patients who underwent voiding cistouretrography (VCUG) had vesicoureteral reflux. This study revealed that E. coli was the most frequent pathogen of community acquired UTI. We found that E. coli and other uropathogens had a high resistance rate against TMP SMX and ampicillin sulbactam. In order to ensure a successful empirical treatment, protocols should be based on local epidemiology and susceptibility rates.

  11. Long-term epidemiology of bacterial susceptibility profiles in adults suffering from febrile neutropenia with hematologic malignancy after antibiotic change

    Directory of Open Access Journals (Sweden)

    J Mebis

    2010-07-01

    Full Text Available J Mebis1,2, H Jansens3, G Minalu4, G Molenberghs4, WA Schroyens1, AP Gadisseur1, A van de Velde1, I Vrelust1, H Goossens3, ZN Berneman11Division of Hematology, Antwerp University Hospital, Edegem, 2Division of Medical Oncology, Jessa Hospital, Hasselt, 3Division of Microbiology, Antwerp University Hospital, Edegem, 4Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Hasselt, BelgiumObjective: The aim of this study was to investigate the epidemiology and antibiotic ­susceptibility profiles of isolated bacterial organisms in relation to empiric treatment of neutropenic fever over a 15-year period.Methods: All patients with or at risk febrile neutropenia and treated in the hematology ward of the Antwerp University Hospital during 1994–2008 were prospectively included. Skin, blood, and urine cultures were taken. Oral quinolone prophylaxis was started in patients with neutropenia without fever. Empiric starting therapy consisted of amikacin in combination with cefepime.Results: A total of 3624 bacteria were isolated. The most common pathogens were coagulase-negative Staphylococci (46%, followed by Escherichia coli (25%, Enterobacteriaceae (15.6%, Staphylococcus aureus (7.2%, and Pseudomonas aeruginosa (3.8%. The balance between Gram-positive and Gram-negative bacteria remained stable, with a majority of Gram-positive bacteria. A shift from oxacillin-sensitive to oxacillin-resistant coagulase-negative Staphylococci was observed. Regarding susceptibility patterns, no vancomycin resistance was detected in coagulase-negative Staphylococci or in S. aureus. The E. coli susceptibility rates remained stable. However, 66% of bloodstream infections were ciprofloxacin-resistant. A reduced susceptibility of P. aeruginosa strains to meropenem was noticed.Conclusions: Improvement in antibiotic susceptibility of inducible Enterobacteriaceae ­following a switch of empiric antibiotic therapy was maintained 15 years

  12. THE STUDY OF ANTIBIOTIC- AND FAGOSENSITIVITY OF NOSOCOMIAL STRAINS BACTERIA ISOLATED FROM TRANSPLANTED PATIENTS

    Directory of Open Access Journals (Sweden)

    N. I. Gabrielan

    2011-01-01

    Full Text Available Antibiotic and fagosensitivity most etiologically important nosocomial strains of bacteria – Pseudomonas aeru- ginosa, Klebsiella pneumoniae, E. coli, Proteus spp., Staphylococcus spp. were studied. Multiple drug-resistant bacteria as gram-positive and gram-negative, isolated from 8 substrates, had been demonstrated. With regard to the sensitivity of Pseudomonas aeruginosa >40% was observed in 40–50% of the strains to aminoglycosides – aztreonam, amikacin, netilmicin, and only 23–25% of the strains – to gentamicin and levofloxacin (an average of antibiotic susceptibility was 27%. All strains of ESBL Klebsiella drew up and were sensitive only to imipenem, meropenem and aminoglycosides. Specific phages lysed 43–48% of the strains Pseudomonas aeruginosa and Klebsiella pneumoniae, E. coli, Pro- teus spp., multidrug resistant strains of Staphylococcus spp. It is proposed to introduce the use of phages in clinical practice. 

  13. Reconstitution of Protein Translation of Mycobacterium Reveals Functional Conservation and Divergence with the Gram-Negative Bacterium Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Aashish Srivastava

    Full Text Available Protein translation is essential for all bacteria pathogens. It has also been a major focus of structural and functional studies and an important target of antibiotics. Here we report our attempts to biochemically reconstitute mycobacterial protein translation in vitro from purified components. This mycobacterial translation system consists of individually purified recombinant translation factors from Mycobacterium tuberculosis (M. tuberculosis, purified tRNAs and ribosomes from Mycobacterium smegmatis (M. smegmatis, and an aminoacyl-tRNA synthetase (AARS mixture from the cell-extract of M. smegmatis. We demonstrate that such mycobacterial translation system was efficient in in vitro protein synthesis, and enabled functional comparisons of translational components between the gram-positive Mycobacterium and the gram-negative E. coli. Although mycobacterial translation factors and ribosomes were highly compatible with their E. coli counterparts, M. smegmatis tRNAs were not properly charged by the E. coli AARSs to allow efficient translation of a reporter. In contrast, both E. coli and M. smegmatis tRNAs exhibited similar activity with the semi-purified M. smegmatis AARSs mixture for in vitro translation. We further demonstrated the use of both mycobacterial and E. coli translation systems as comparative in vitro assays for small-molecule antibiotics that target protein translation. While mycobacterial and E. coli translation were both inhibited at the same IC50 by the antibiotic spectinomycin, mycobacterial translation was preferentially inhibited by the antibiotic tetracycline, suggesting that there may be structural differences at the antibiotic binding sites between the ribosomes of Mycobacterium and E. coli. Our results illustrate an alternative approach for antibiotic discovery and functional studies of protein translation in mycobacteria and possibly other bacterial pathogens.

  14. In Vitro Activity of the Histatin Derivative P-113 against Multidrug-Resistant Pathogens Responsible for Pneumonia in Immunocompromised Patients

    OpenAIRE

    Giacometti, Andrea; Cirioni, Oscar; Kamysz, Wojciech; D'Amato, Giuseppina; Silvestri, Carmela; Prete, Maria Simona Del; Licci, Alberto; Riva, Alessandra; Łukasiak, Jerzy; Scalise, Giorgio

    2005-01-01

    The in vitro activity of the histatin derivative P-113, alone or combined with eight antibiotics, was investigated against multidrug-resistant strains isolated from clinical specimens of immunocompromised patients with pneumonia. The gram-negative isolates were susceptible to P-113. S. aureus showed less susceptibility. Synergy was demonstrated when P-113 was combined with beta-lactams against gram-negative organisms.

  15. Antibiotic resistance - the interplay between antibiotic use in animals and human beings

    DEFF Research Database (Denmark)

    Singer, R.S.; Finch, R.; Wegener, Henrik Caspar

    2003-01-01

    Antibiotic-resistant bacteria were first identified in the 1940s, but while new antibiotics were being discovered at a steady rate, the consequences of this phenomenon were slow to be appreciated. Today, the excessive use of antibiotics compounded by the paucity of new agents on the market has...... meant the problem of antibiotic resistance is fast escalating into a global health crisis. There is no doubt that misuse of these drugs in human beings has contributed to the increasing rates of resistance, but recently the use of antibiotics in food animals and its consequent effect on resistance....... There is a growing concern over the transmission of resistant bacteria via the food chain. Many questions will be difficult to resolve, such as how do you distinguish the fraction of resistance in human beings that originated from animals? If we wait to see evidence that a significant amount of antibiotic resistance...

  16. Antibiotics and Antibiotic Resistance

    Science.gov (United States)

    ... all that ails you. Antibiotics, also known as antimicrobial drugs, are drugs that fight infections caused by bacteria. ... Information for Consumers and Health Professionals Information by drug class Antimicrobial Resistance Animal and Veterinary Related Resources Further information ...

  17. Fighting antibiotic resistance in the intensive care unit using antibiotics

    NARCIS (Netherlands)

    Plantinga, Nienke L.; Wittekamp, Bastiaan H J; Van Duijn, Pleun J.; Bonten, Marc J M

    2015-01-01

    Antibiotic resistance is a global and increasing problem that is not counterbalanced by the development of new therapeutic agents. The prevalence of antibiotic resistance is especially high in intensive care units with frequently reported outbreaks of multidrug-resistant organisms. In addition to

  18. Increasing trend of metronidazole resistance in the treatment of ...

    African Journals Online (AJOL)

    Helicobacter pylori are gram negative spiral bacteria that colonize the human stomach. Infection with H. pylori is associated with chronic gastritis, peptic ulcer, gastric adenocarcinoma and gastric mucosaassociated lymphoid tissue (MALT) lymphoma. Antibiotic resistance is an ever increasing problem with the treatment of ...

  19. Controlling the spread of carbapenemase-producing Gram-negatives: therapeutic approach and infection control.

    Science.gov (United States)

    Carmeli, Y; Akova, M; Cornaglia, G; Daikos, G L; Garau, J; Harbarth, S; Rossolini, G M; Souli, M; Giamarellou, H

    2010-02-01

    Although the rapid spread of carbapenemase-producing Gram-negatives (CPGNs) is providing the scientific community with a great deal of information about the molecular epidemiology of these enzymes and their genetic background, data on how to treat multidrug-resistant or extended drug-resistant carbapenemase-producing Enterobacteriaceae and how to contain their spread are still surprisingly limited, in spite of the rapidly increasing prevalence of these organisms and of their isolation from patients suffering from life-threatening infections. Limited clinical experience and several in vitro synergy studies seem to support the view that antibiotic combinations should be preferred to monotherapies. But, in light of the data available to date, it is currently impossible to quantify the real advantage of drug combinations in the treatment of these infections. Comprehensive clinical studies of the main therapeutic options, broken down by pathogen, enzyme and clinical syndrome, are definitely lacking and, as carbapenemases keep spreading, are urgently needed. This spread is unveiling the substantial unpreparedness of European public health structures to face this worrisome emergency, although experiences from different countries-chiefly Greece and Israel-have shown that CPGN transmission and cross-infection can cause a substantial threat to the healthcare system. This unpreparedness also affects the treatment of individual patients and infection control policies, with dramatic scarcities of both therapeutic options and infection control measures. Although correct implementation of such measures is presumably cumbersome and expensive, the huge clinical and public health problems related to CPGN transmission, alongside the current scarcity of therapeutic options, seem to fully justify this choice.

  20. Klebsiella pneumoniae Carbapenemase-2 (KPC-2, Substitutions at Ambler Position Asp179, and Resistance to Ceftazidime-Avibactam: Unique Antibiotic-Resistant Phenotypes Emerge from β-Lactamase Protein Engineering

    Directory of Open Access Journals (Sweden)

    Melissa D. Barnes

    2017-10-01

    Full Text Available The emergence of Klebsiella pneumoniae carbapenemases (KPCs, β-lactamases that inactivate “last-line” antibiotics such as imipenem, represents a major challenge to contemporary antibiotic therapies. The combination of ceftazidime (CAZ and avibactam (AVI, a potent β-lactamase inhibitor, represents an attempt to overcome this formidable threat and to restore the efficacy of the antibiotic against Gram-negative bacteria bearing KPCs. CAZ-AVI-resistant clinical strains expressing KPC variants with substitutions in the Ω-loop are emerging. We engineered 19 KPC-2 variants bearing targeted mutations at amino acid residue Ambler position 179 in Escherichia coli and identified a unique antibiotic resistance phenotype. We focus particularly on the CAZ-AVI resistance of the clinically relevant Asp179Asn variant. Although this variant demonstrated less hydrolytic activity, we demonstrated that there was a prolonged period during which an acyl-enzyme intermediate was present. Using mass spectrometry and transient kinetic analysis, we demonstrated that Asp179Asn “traps” β-lactams, preferentially binding β-lactams longer than AVI owing to a decreased rate of deacylation. Molecular dynamics simulations predict that (i the Asp179Asn variant confers more flexibility to the Ω-loop and expands the active site significantly; (ii the catalytic nucleophile, S70, is shifted more than 1.5 Å and rotated more than 90°, altering the hydrogen bond networks; and (iii E166 is displaced by 2 ÅÅ when complexed with ceftazidime. These analyses explain the increased hydrolytic profile of KPC-2 and suggest that the Asp179Asn substitution results in an alternative complex mechanism leading to CAZ-AVI resistance. The future design of novel β-lactams and β-lactamase inhibitors must consider the mechanistic basis of resistance of this and other threatening carbapenemases.

  1. Antibiotic resistance reservoirs

    NARCIS (Netherlands)

    Versluis, Dennis

    2016-01-01

    One of the major threats to human health in the 21st century is the emergence of pathogenic bacteria that are resistant to multiple antibiotics, thereby limiting treatment options. An important route through which pathogens become resistant is via acquisition of resistance genes from

  2. Antimicrobial susceptibility of gram-negative pathogens isolated from patients with complicated intra-abdominal infections in South African hospitals (SMART Study 2004-2009): impact of the new carbapenem breakpoints.

    Science.gov (United States)

    Brink, Adrian J; Botha, Roelof F; Poswa, Xoliswa; Senekal, Marthinus; Badal, Robert E; Grolman, David C; Richards, Guy A; Feldman, Charles; Boffard, Kenneth D; Veller, Martin; Joubert, Ivan; Pretorius, Jan

    2012-02-01

    The Study for Monitoring Antimicrobial Resistance Trends (SMART) follows trends in resistance among aerobic and facultative anaerobic gram-negative bacilli (GNB) isolated from complicated intra-abdominal infections (cIAIs) in patients around the world. During 2004-2009, three centralized clinical microbiology laboratories serving 59 private hospitals in three large South African cities collected 1,218 GNB from complicated intra-abdominal infections (cIAIs) and tested them for susceptibility to 12 antibiotics according to the 2011 Clinical Laboratory Standards Institute (CLSI) guidelines. Enterobacteriaceae comprised 83.7% of the isolates. Escherichia coli was the species isolated most commonly (46.4%), and 7.6% of these were extended-spectrum β-lactamase (ESBL)-positive. The highest ESBL rate was documented for Klebsiella pneumoniae (41.2%). Overall, ertapenem was the antibiotic most active against susceptible species for which it has breakpoints (94.6%) followed by amikacin (91.9%), piperacillin-tazobactam (89.3%), and imipenem-cilastatin (87.1%), whereas rates of resistance to ceftriaxone, cefotaxime, ciprofloxacin, and levofloxacin were documented to be 29.7%, 28.7%, 22.5%, and 21.1%, respectively. Multi-drug resistance (MDR), defined as resistance to three or more antibiotic classes, was significantly more common in K. pneumoniae (27.9%) than in E. coli (4.9%; p<0.0001) or Proteus mirabilis (4.1%; p<0.05). Applying the new CLSI breakpoints for carbapenems, susceptibility to ertapenem was reduced significantly in ESBL-positive E. coli compared with ESBL-negative isolates (91% vs. 98%; p<0.05), but this did not apply to imipenem-cilastatin (95% vs. 99%; p=0.0928). A large disparity between imipenem-cilastatin and ertapenem susceptibility in P. mirabilis and Morganella morganii was documented (24% vs. 96% and 15% vs. 92%, respectively), as most isolates of these two species had imipenem-cilastatin minimum inhibitory concentrations in the 2-4 mcg/mL range, which

  3. Dose-Dependent Antimicrobial Activity of Silver Nanoparticles on Polycaprolactone Fibers against Gram-Positive and Gram-Negative Bacteria

    Directory of Open Access Journals (Sweden)

    Erick Pazos-Ortiz

    2017-01-01

    Full Text Available The adhesion ability and adaptability of bacteria, coupled with constant use of the same bactericides, have made the increase in the diversity of treatments against infections necessary. Nanotechnology has played an important role in the search for new ways to prevent and treat infections, including the use of metallic nanoparticles with antibacterial properties. In this study, we worked on the design of a composite of silver nanoparticles (AgNPS embedded in poly-epsilon-caprolactone nanofibers and evaluated its antimicrobial properties against various Gram-positive and Gram-negative microorganisms associated with drug-resistant infections. Polycaprolactone-silver composites (PCL-AgNPs were prepared in two steps. The first step consisted in the reduction in situ of Ag+ ions using N,N-dimethylformamide (DMF in tetrahydrofuran (THF solution, and the second step involved the simple addition of polycaprolactone before electrospinning process. Antibacterial activity of PCL-AgNPs nanofibers against E. coli, S. mutans, K. pneumoniae, S. aureus, P. aeruginosa, and B. subtilis was evaluated. Results showed sensibility of E. coli, K. pneumoniae, S. aureus, and P. aeruginosa, but not for B. subtilis and S. mutans. This antimicrobial activity of PCL-AgNPs showed significant positive correlations associated with the dose-dependent effect. The antibacterial property of the PCL/Ag nanofibers might have high potential medical applications in drug-resistant infections.

  4. Antibacterial Activity of Silver-Graphene Quantum Dots Nanocomposites Against Gram-Positive and Gram-Negative Bacteria

    Science.gov (United States)

    Habiba, Khaled (Inventor); Makarov, Vladimir (Inventor); Weiner, Brad R (Inventor); Morell, Gerardo (Inventor)

    2018-01-01

    The invention provides a composite of silver nanoparticles decorated with graphene quantum dots (Ag-GQDs) using pulsed laser synthesis. The nanocomposites were functionalized with polyethylene glycol (PEG). A concentration of 150 .mu.g/mL of Ag-GQDs, a non-toxic level for human cells, exhibits strong antibacterial activity against both Gram-Positive and Gram-Negative Bacteria.

  5. Volatile metabolites from some gram-negative bacteria

    DEFF Research Database (Denmark)

    Schöller, Charlotte; Molin, Søren; Wilkins, Ken

    1997-01-01

    A survey of volatile organic compounds (VOCs) excreted from various Gram-negative bacteria (Pseudomonas spp., Serratia spp. and Enterobacter spp.) was carried out. Compounds were identified by gas chromatography-mass spectrometry. VOCs identified included dimethyl disulphide, dimethyl trisulphide...

  6. Changes of the Quinolones Resistance to Gram-positive Cocci Isolated during the Past 8 Years in the First Bethune Hospital

    Science.gov (United States)

    Xu, Jiancheng; Chen, Qihui; Yao, Hanxin; Zhou, Qi

    This study was to investigate the quinolones resistance to gram-positive cocci isolated in the First Bethune Hospital during the past 8 years. Disk diffusion test was used to study the antimicrobial resistance. The data were analyzed by WHONET 5 software according to Clinical and Laboratory Standards Institute (CLSI). The rates of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant coagulase-negative Staphylococci (MRCNS) were 50.8%∼83.3% and 79.4%∼81.5%during the past 8 years, respectively. In recent 8 years, the quinolones resistance to gram-positive cocci had increased. Monitoring of the quinolones resistance to gram-positive cocci should be strengthened. The change of the antimicrobial resistance should be investigated in order to guide rational drug usage in the clinic and prevent bacterial strain of drug resistance from being transmitted.

  7. Gram negative wound infection in hospitalised adult burn patients--systematic review and metanalysis-.

    Science.gov (United States)

    Azzopardi, Ernest A; Azzopardi, Elayne; Camilleri, Liberato; Villapalos, Jorge; Boyce, Dean E; Dziewulski, Peter; Dickson, William A; Whitaker, Iain S

    2014-01-01

    Gram negative infection is a major determinant of morbidity and survival. Traditional teaching suggests that burn wound infections in different centres are caused by differing sets of causative organisms. This study established whether Gram-negative burn wound isolates associated to clinical wound infection differ between burn centres. Studies investigating adult hospitalised patients (2000-2010) were critically appraised and qualified to a levels of evidence hierarchy. The contribution of bacterial pathogen type, and burn centre to the variance in standardised incidence of Gram-negative burn wound infection was analysed using two-way analysis of variance. Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumanni, Enterobacter spp., Proteus spp. and Escherichia coli emerged as the commonest Gram-negative burn wound pathogens. Individual pathogens' incidence did not differ significantly between burn centres (F (4, 20) = 1.1, p = 0.3797; r2 = 9.84). Gram-negative infections predominate in burn surgery. This study is the first to establish that burn wound infections do not differ significantly between burn centres. It is the first study to report the pathogens responsible for the majority of Gram-negative infections in these patients. Whilst burn wound infection is not exclusive to these bacteria, it is hoped that reporting the presence of this group of common Gram-negative "target organisms" facilitate clinical practice and target research towards a defined clinical demand.

  8. Sequence-Based Characterization of Tn5801-Like Genomic Islands in Tetracycline-Resistant Staphylococcus pseudintermedius and Other Gram-positive Bacteria from Humans and Animals

    DEFF Research Database (Denmark)

    de Vries, Lisbeth Elvira; Hasman, Henrik; Jurado Rabadán, Sonia

    2016-01-01

    Antibiotic resistance in pathogens is often associated with mobile genetic elements, such as genomic islands (GI) including integrative and conjugative elements (ICEs). These can transfer resistance genes within and between bacteria from humans and/or animals. The aim of this study was to investi......Antibiotic resistance in pathogens is often associated with mobile genetic elements, such as genomic islands (GI) including integrative and conjugative elements (ICEs). These can transfer resistance genes within and between bacteria from humans and/or animals. The aim of this study......-like GIs appear to be relatively common in tetracycline-resistant S. pseudintermedius in Denmark. Almost identical Tn5801-like GIs were identified in different Gram-positive species of pet and human origin, suggesting that horizontal transfer of these elements has occurred between S. pseudintermedius...

  9. Prevalence of the Antibiotic Resistance Genes in Coagulase-Positive-and Negative-Staphylococcus in Chicken Meat Retailed to Consumers

    OpenAIRE

    Osman, Kamelia; Badr, Jihan; Al-Maary, Khalid S.; Moussa, Ihab M. I.; Hessain, Ashgan M.; Girah, Zeinab M. S. Amin; Abo-shama, Usama H.; Orabi, Ahmed; Saad, Aalaa

    2016-01-01

    The use of antibiotics in farm management (growing crops and raising animals) has become a major area of concern. Its implications is the consequent emergence of antibiotic resistant bacteria (ARB) and accordingly their access into the human food chain with passage of antibiotic resistance genes (ARG) to the normal human intestinal microbiota and hence to other pathogenic bacteria causative human disease. Therefore, we pursued in this study to unravel the frequency and the quinolone resista...

  10. Antibiotic resistance of Vibrio parahaemolyticus isolated from pond-reared Litopenaeus vannamei marketed in Natal, Brazil

    Directory of Open Access Journals (Sweden)

    Ligia Maria Rodrigues de Melo

    2011-12-01

    Full Text Available Ten out of fifty fresh and refrigerated samples of shrimp (Litopenaeus vannamei collected from retailers in Natal (Rio Grande do Norte, Northeastern Brazil tested positive for Vibrio parahaemolyticus. The Kanagawa test and multiplex PCR assays were used to detect TDH and TRH hemolysins and the tdh, trh and tlh genes, respectively. All strains were Kanagawa-negative and tlh-positive. Antibiotic susceptibility testing was done for seven antibiotics by the agar diffusion technique. Five strains (50% presented multiple antibiotic resistance to ampicillin (90% and amikacin (60%, while two strains (20% displayed intermediate-level resistance to amikacin. All strains were sensitive to chloramphenicol. Intermediate-level susceptibility and/or resistance to other antibiotics ranged from 10 to 90%, with emphasis on the observed growing intermediate-level resistance to ciprofloxacin. Half our isolates yielded a multiple antibiotic resistance index above 0.2 (range: 0.14-0.29, indicating a considerable risk of propagation of antibiotic resistance throughout the food chain.

  11. Characterization of multiple antibiotic resistant clinical strains of Staphylococcus isolated from pregnant women vagina.

    Science.gov (United States)

    Hetsa, Bakwena Ashton; Kumar, Ajay; Ateba, Collins Njie

    2018-03-29

    Vagina which is one of the important reservoirs for Staphylococcus and in pregnant women pathogenic strains may infect the child during the birth or by vertical transmission. A total of 68 presumptive Staphylococcus strains isolated from human vagina were found to be gram-positive cocci, and only 32 (47%) isolates were found beta-hemolytic. Matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry (MALDI-TOF MS) results confirmed 33 isolates belonged to Staphylococcus which consisting of 6 species, i.e., S. aureus (14), S. vitulinus (7), S. epidermidis (4), S cohnii (3), S. equorum (3), and S. succinus (2). Further, the result of antibiotic susceptibility tests showed that large proportions (76%-100%) of the isolates were resistant to multiple antibiotics and more often resistant to penicillin (100%), ampicillin (100%), oxacillin (97%), oxytetracycline (97%), vancomycin (97%), rifampin (85%), erythromycin (82%), and streptomycin (76%). In the present study, only the sec enterotoxin gene was detected in four S. aureus strains. DNA fingerprints of the 33 isolates that were generated using random amplified polymorphic DNA (RAPD) and enterobacterial repetitive intergenic consensus (ERIC) PCR analysis revealed great genetic relatedness of isolates. High prevalence of vaginal colonization with multiple antibiotic-resistant staphylococci among pregnant women was observed which were emerged from the single respective species clones that underwent evolution. The vertical transmission of these multiple antibiotic-resistant Staphylococcus species to the infant is possible; therefore, the findings of this study emphasize the need for regular surveillance of antibiotic-resistant bacterial strains in pregnant women in this area.

  12. Plant Growth, Antibiotic Uptake, and Prevalence of Antibiotic Resistance in an Endophytic System of Pakchoi under Antibiotic Exposure

    Directory of Open Access Journals (Sweden)

    Hao Zhang

    2017-11-01

    Full Text Available Antibiotic contamination in agroecosystems may cause serious problems, such as the proliferation of various antibiotic resistant bacteria and the spreading of antibiotic resistance genes (ARGs in the environment or even to human beings. However, it is unclear whether environmental antibiotics, antibiotic resistant bacteria, and ARGs can directly enter into, or occur in, the endophytic systems of plants exposed to pollutants. In this study, a hydroponic experiment exposing pakchoi (Brassica chinensis L. to tetracycline, cephalexin, and sulfamethoxazole at 50% minimum inhibitory concentration (MIC levels and MIC levels, respectively, was conducted to explore plant growth, antibiotic uptake, and the development of antibiotic resistance in endophytic systems. The three antibiotics promoted pakchoi growth at 50% MIC values. Target antibiotics at concentrations ranging from 6.9 to 48.1 µg·kg−1 were detected in the treated vegetables. Additionally, the rates of antibiotic-resistant endophytic bacteria to total cultivable endophytic bacteria significantly increased as the antibiotics accumulated in the plants. The detection and quantification of ARGs indicated that four types, tetX, blaCTX-M, and sul1 and sul2, which correspond to tetracycline, cephalexin, and sulfamethoxazole resistance, respectively, were present in the pakchoi endophytic system and increased with the antibiotic concentrations. The results highlight a potential risk of the development and spread of antibiotic resistance in vegetable endophytic systems.

  13. Plant Growth, Antibiotic Uptake, and Prevalence of Antibiotic Resistance in an Endophytic System of Pakchoi under Antibiotic Exposure.

    Science.gov (United States)

    Zhang, Hao; Li, Xunan; Yang, Qingxiang; Sun, Linlin; Yang, Xinxin; Zhou, Mingming; Deng, Rongzhen; Bi, Linqian

    2017-11-03

    Antibiotic contamination in agroecosystems may cause serious problems, such as the proliferation of various antibiotic resistant bacteria and the spreading of antibiotic resistance genes (ARGs) in the environment or even to human beings. However, it is unclear whether environmental antibiotics, antibiotic resistant bacteria, and ARGs can directly enter into, or occur in, the endophytic systems of plants exposed to pollutants. In this study, a hydroponic experiment exposing pakchoi ( Brassica chinensis L.) to tetracycline, cephalexin, and sulfamethoxazole at 50% minimum inhibitory concentration (MIC) levels and MIC levels, respectively, was conducted to explore plant growth, antibiotic uptake, and the development of antibiotic resistance in endophytic systems. The three antibiotics promoted pakchoi growth at 50% MIC values. Target antibiotics at concentrations ranging from 6.9 to 48.1 µg·kg -1 were detected in the treated vegetables. Additionally, the rates of antibiotic-resistant endophytic bacteria to total cultivable endophytic bacteria significantly increased as the antibiotics accumulated in the plants. The detection and quantification of ARGs indicated that four types, tet X, bla CTX-M , and sul 1 and sul 2, which correspond to tetracycline, cephalexin, and sulfamethoxazole resistance, respectively, were present in the pakchoi endophytic system and increased with the antibiotic concentrations. The results highlight a potential risk of the development and spread of antibiotic resistance in vegetable endophytic systems.

  14. Environmental dissemination of antibiotic resistance genes and correlation to anthropogenic contamination with antibiotics

    Science.gov (United States)

    Berglund, Björn

    2015-01-01

    Antibiotic resistance is a growing problem which threatens modern healthcare globally. Resistance has traditionally been viewed as a clinical problem, but recently non-clinical environments have been highlighted as an important factor in the dissemination of antibiotic resistance genes (ARGs). Horizontal gene transfer (HGT) events are likely to be common in aquatic environments; integrons in particular are well suited for mediating environmental dissemination of ARGs. A growing body of evidence suggests that ARGs are ubiquitous in natural environments. Particularly, elevated levels of ARGs and integrons in aquatic environments are correlated to proximity to anthropogenic activities. The source of this increase is likely to be routine discharge of antibiotics and resistance genes, for example, via wastewater or run-off from livestock facilities and agriculture. While very high levels of antibiotic contamination are likely to select for resistant bacteria directly, the role of sub-inhibitory concentrations of antibiotics in environmental antibiotic resistance dissemination remains unclear. In vitro studies have shown that low levels of antibiotics can select for resistant mutants and also facilitate HGT, indicating the need for caution. Overall, it is becoming increasingly clear that the environment plays an important role in dissemination of antibiotic resistance; further studies are needed to elucidate key aspects of this process. Importantly, the levels of environmental antibiotic contamination at which resistant bacteria are selected for and HGT is facilitated at should be determined. This would enable better risk analyses and facilitate measures for preventing dissemination and development of antibiotic resistance in the environment. PMID:26356096

  15. Microbiological and kinetic detection of gram negative bacilli ...

    African Journals Online (AJOL)

    Conclusion: This study showed that bacterial resistances by extended- spectrum β-lactamases are a reality in University Hospital center YalgadoOuedraogo. It calls about antibiotics prescription and hospital hygiene in order to reduce emergence and propagation of new resisting bacterial. Keywords: microbial and kinetic ...

  16. Increasing prevalence of extended-spectrum-betalactamase among Gram-negative bacilli in Latin America: 2008 update from the Study for Monitoring Antimicrobial Resistance Trends (SMART

    Directory of Open Access Journals (Sweden)

    Maria Virginia Villegas

    Full Text Available OBJECTIVES: This analysis of the Study for Monitoring Antimicrobial Resistance Trends (SMART evaluated the susceptibility patterns of Enterobacteriaceae in Latin America in 2008, with emphasis on susceptibility trends of E. coli and K. pneumoniae. METHODS: Clinical isolates were recovered from intra-abdominal infections (IAI from 23 centers in 10 Latin American countries. Isolates were sent to a central laboratory for confirmation of identification, antimicrobial susceptibility and ESBL testing, following the Clinical Laboratory Standards Institute (CLSI guidelines. RESULTS: Of 1,003 Gram-negative bacilli collected from intra-abdominal infections, E. coli and K. pneumoniae were the most commonly isolated organisms, and 26.8% of E. coli and 37.7% of K. pneumoniae were ESBL positive. Ertapenem and imipenem were the most consistently active agents tested; 99% of ESBLpositive E. coli isolates were susceptible to ertapenem and 100% to imipenem as well, and 91% of ESBL-positive K. pneumoniae were susceptible to ertapenem and 98% to imipenem. Quinolones and cephalosporins were less active, achieving 1.5% to 76% inhibition against ESBL-producing E. coli and 3.5% to 61% inhibition against K. pneumoniae. CONCLUSIONS: Local and unit-specific surveillance data is particularly important for selection of empiric therapy and in community-acquired infections as they can help the clinician with antibiotic selection by providing guidance regarding the likely pathogens and their resistance profiles. Our data also confirm the increasing frequency with which ESBL-producing organisms are found in the community setting, with 31.4% of communityacquired and 24.9% of hospital-acquired infections found to produce ESBLs. Imipenem and ertapenem are the most active agents tested for ESBL-positive E. coli and K. pneumoniae.

  17. Priorities for antibiotic resistance surveillance in Europe

    DEFF Research Database (Denmark)

    Fluit, A. C.; van der Bruggen, J. T.; Aarestrup, Frank Møller

    2006-01-01

    Antibiotic resistance is an increasing global problem. Surveillance studies are needed to monitor resistance development, to guide local empirical therapy, and to implement timely and adequate countermeasures. To achieve this, surveillance studies must have standardised methodologies, be longitud......Antibiotic resistance is an increasing global problem. Surveillance studies are needed to monitor resistance development, to guide local empirical therapy, and to implement timely and adequate countermeasures. To achieve this, surveillance studies must have standardised methodologies...... to the various reservoirs of antibiotic-resistant bacteria, such as hospitalised patients, nursing homes, the community, animals and food. Two studies that could serve as examples of tailored programmes are the European Antimicrobial Resistance Surveillance System (EARSS), which collects resistance data during...... of antibiotic resistance....

  18. Glycosaminoglycans are involved in pathogen adherence to corneal epithelial cells differently for Gram-positive and Gram-negative bacteria

    Directory of Open Access Journals (Sweden)

    Beatriz García

    2016-11-01

    Full Text Available The epithelium of the cornea is continuously exposed to pathogens, and adhesion to epithelial cells is regarded as an essential first step in bacterial pathogenesis. In this article, the involvement of glycosaminoglycans in the adhesion of various pathogenic bacteria to corneal epithelial cells is analyzed. All microorganisms use glycosaminoglycans as receptors, but arranged in different patterns depending on the Gram-type of the bacterium. The heparan sulfate chains of syndecans are the main receptors, though other molecular species also seem to be involved, particularly in Gram-negative bacteria. Adherence is inhibited differentially by peptides, including heparin binding sequences, indicating the participation of various groups of Gram-positive and -negative adhesins. The length of the saccharides produces a major effect, and low molecular weight chains inhibit the binding of Gram-negative microorganisms but increase the adherence of Gram-positives. Pathogen adhesion appears to occur preferentially through sulfated domains, and is very dependent on N- and 6-O-sulfation of the glucosamine residue and, to a lesser extent, 2-O sulfation of uronic acid. These data show the differential use of corneal receptors, which could facilitate the development of new anti-infective strategies.

  19. Antibacterial and Antibiotic-Modifying Activity of Methanol Extracts from Six Cameroonian Food Plants against Multidrug-Resistant Enteric Bacteria

    Directory of Open Access Journals (Sweden)

    Joachim K. Dzotam

    2017-01-01

    Full Text Available The present work was designed to investigate the antibacterial activities of methanol extracts from six Cameroonian edible plants and their synergistic effects with some commonly used antibiotics against multidrug-resistant (MDR Gram-negative bacteria expressing active efflux pumps. The extracts were subjected to qualitative phytochemical screening and the microdilution broth method was used for antibacterial assays. The results of phytochemical tests indicate that all tested crude extracts contained polyphenols, flavonoids, triterpenes, and steroids. Extracts displayed selective antibacterial activities with the minimal inhibitory concentration (MIC values ranging from 32 to 1024 μg/mL. The lowest MIC value (32 μg/mL was recorded with Coula edulis extract against E. coli AG102 and K. pneumoniae K2 and with Mangifera indica bark extract against P. aeruginosa PA01 and Citrus sinensis extract against E. coli W3110 which also displayed the best MBC (256 μg/mL value against E. coli ATCC8739. In combination with antibiotics, extracts from M. indica leaves showed synergistic effects with 75% (6/8 of the tested antibiotics against more than 80% of the tested bacteria. The findings of the present work indicate that the tested plants may be used alone or in combination in the treatment of bacterial infections including the multidrug-resistant bacteria.

  20. Dielectrophoretic assay of bacterial resistance to antibiotics

    International Nuclear Information System (INIS)

    Johari, Juliana; Huebner, Yvonne; Hull, Judith C; Dale, Jeremy W; Hughes, Michael P

    2003-01-01

    The dielectrophoretic collection spectra of antibiotic-sensitive and antibiotic-resistant strains of Staphylococcus epidermidis have been determined. These indicate that in the absence of antibiotic treatment there is a strong similarity between the dielectric properties of sensitive and resistant strains, and that there is a significant difference between the sensitive strains before and after treatment with the antibiotic streptomycin after 24 h exposure. This method offers possibilities for the assessment of bacterial resistance to antibiotics. (note)

  1. Multi-scale model of drug induced adaptive resistance of Gram-negative bacteria to polymyxin B.

    Directory of Open Access Journals (Sweden)

    Wojciech Krzyzanski

    Full Text Available The purpose of this report is to apply multi-scale modeling using the theory of physiologically structured populations (PSP to develop a mathematical model for antimicrobial resistance based on a heterogeneous distribution of receptors and affinities among bacterial cells. The theory has been tested on data obtained from an in vitro static time-kill infection model analyzing the pharmacodynamics of polymyxin B against Gram-negative bacteria. The drug binding parameter KD (dissociation equilibrium constant is assumed to vary between the bacterial cells. The PSP model describes the time course of the density distribution of KD upon exposure to cytotoxic drug concentrations. The drug increases the hazard of cell death as a function of receptor occupancy. The initial distribution of KD is described by the Weibull function. Time-kill data were used for model qualification. In vitro static time-kill experiments to evaluate the rate and extent of killing due to polymyxin B against two Klebsiella pneumoniae clinical isolates with differing susceptibilities to polymyxin B were performed over 48 h. The time-kill kinetics data of bacterial load cfu (colony forming units/mL was used for model qualification. The resistant bacterial population is determined by the balance between growth rate and hazard of cell death controlled by polymyxin B concentrations. There exists a critical KD value below which cells continue to grow. Estimates of shape parameters for distributions of KD yielded unimodal distributions with the modes at 0 nM and the right tails containing approximately 25% of the bacteria. Our findings support a hypothesis that resistance of Klebsiella pneumoniae to polymyxin B can be at least partially attributed to a drug-induced selection of a subpopulation due to heterogeneity of polymyxin B receptor binding in the bacterial population.

  2. Type I and Type II mechanisms of antimicrobial photodynamic therapy: an in vitro study on gram-negative and gram-positive bacteria.

    Science.gov (United States)

    Huang, Liyi; Xuan, Yi; Koide, Yuichiro; Zhiyentayev, Timur; Tanaka, Masamitsu; Hamblin, Michael R

    2012-08-01

    Antimicrobial photodynamic therapy (APDT) employs a non-toxic photosensitizer (PS) and visible light, which in the presence of oxygen produce reactive oxygen species (ROS), such as singlet oxygen ((1) O(2), produced via Type II mechanism) and hydroxyl radical (HO(.), produced via Type I mechanism). This study examined the relative contributions of (1) O(2) and HO(.) to APDT killing of Gram-positive and Gram-negative bacteria. Fluorescence probes, 3'-(p-hydroxyphenyl)-fluorescein (HPF) and singlet oxygen sensor green reagent (SOSG) were used to determine HO(.) and (1) O(2) produced by illumination of two PS: tris-cationic-buckminsterfullerene (BB6) and a conjugate between polyethylenimine and chlorin(e6) (PEI-ce6). Dimethylthiourea is a HO(.) scavenger, while sodium azide (NaN(3)) is a quencher of (1) O(2). Both APDT and killing by Fenton reaction (chemical generation of HO(.)) were carried out on Gram-positive bacteria (Staphylococcus aureus and Enterococcus faecalis) and Gram-negative bacteria (Escherichia coli, Proteus mirabilis, and Pseudomonas aeruginosa). Conjugate PEI-ce6 mainly produced (1) O(2) (quenched by NaN(3)), while BB6 produced HO(.) in addition to (1) O(2) when NaN(3) potentiated probe activation. NaN(3) also potentiated HPF activation by Fenton reagent. All bacteria were killed by Fenton reagent but Gram-positive bacteria needed a higher concentration than Gram-negatives. NaN(3) potentiated Fenton-mediated killing of all bacteria. The ratio of APDT killing between Gram-positive and Gram-negative bacteria was 2 or 4:1 for BB6 and 25:1 for conjugate PEI-ce6. There was a NaN(3) dose-dependent inhibition of APDT killing using both PEI-ce6 and BB6 against Gram-negative bacteria while NaN(3) almost failed to inhibit killing of Gram-positive bacteria. Azidyl radicals may be formed from NaN(3) and HO(.). It may be that Gram-negative bacteria are more susceptible to HO(.) while Gram-positive bacteria are more susceptible to (1) O(2). The differences in Na

  3. Gram negative wound infection in hospitalised adult burn patients--systematic review and metanalysis-.

    Directory of Open Access Journals (Sweden)

    Ernest A Azzopardi

    Full Text Available BACKGROUND: Gram negative infection is a major determinant of morbidity and survival. Traditional teaching suggests that burn wound infections in different centres are caused by differing sets of causative organisms. This study established whether Gram-negative burn wound isolates associated to clinical wound infection differ between burn centres. METHODS: Studies investigating adult hospitalised patients (2000-2010 were critically appraised and qualified to a levels of evidence hierarchy. The contribution of bacterial pathogen type, and burn centre to the variance in standardised incidence of Gram-negative burn wound infection was analysed using two-way analysis of variance. PRIMARY FINDINGS: Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumanni, Enterobacter spp., Proteus spp. and Escherichia coli emerged as the commonest Gram-negative burn wound pathogens. Individual pathogens' incidence did not differ significantly between burn centres (F (4, 20 = 1.1, p = 0.3797; r2 = 9.84. INTERPRETATION: Gram-negative infections predominate in burn surgery. This study is the first to establish that burn wound infections do not differ significantly between burn centres. It is the first study to report the pathogens responsible for the majority of Gram-negative infections in these patients. Whilst burn wound infection is not exclusive to these bacteria, it is hoped that reporting the presence of this group of common Gram-negative "target organisms" facilitate clinical practice and target research towards a defined clinical demand.

  4. Distribution of antibiotic resistance in urban watershed in Japan

    International Nuclear Information System (INIS)

    Ham, Young-Sik; Kobori, Hiromi; Kang, Joo-Hyon; Matsuzaki, Takayuki; Iino, Michiyo; Nomura, Hayashi

    2012-01-01

    Antibiotic-resistant E. coli concentrations showed large spatial and temporal variations, with greater concentrations observed in tributaries and downstream than in the upstream and midstream. Twenty percent of the geometric mean concentrations of antibiotic-resistant E. coli in the Tama River basin (Japan) exceeded the maximum acceptable concentration of indicator E. coli established by the USEPA. The indicator E. coli concentrations were positively correlated with those of antibiotic-resistant E. coli and multiple-antibiotic-resistant E. coli (resistance to more than two kinds of antibiotics), respectively, but not the detection rate of antibiotic-resistant E. coli, implying that use of antibiotic-resistant E. coli concentration rather than the detection rate can be a better approach for water quality assessment. Multiple-antibiotic-resistant E. coli is a useful indicator for estimating the resistance diffusion, water quality degradation and public health risk potential. This assessment provides beneficial information for setting national regulatory or environmental standards and managing integrated watershed areas. - Highlights: ► We extensively observed antibiotic-resistant E. coli (AREc) in Tama River (Japan). ► AREc count rather than the detection rate is better approach for water quality test. ► Multiple-AREc is resistant to the antibiotic to which single-AREc has no resistance. ► Multiple-AREc increase will accelerate the diffusion of antibiotic resistance. - Multiple-antibiotic-resistant E. coli in the watershed can cause the diffusion of conventionally rare antibiotic resistance.

  5. Risk factors associated with fluoroquinolone-resistant enterococcal urinary tract infections in a tertiary care university hospital in north India.

    Science.gov (United States)

    Banerjee, Tuhina; Anupurba, Shampa

    2016-10-01

    Fluoroquinolone resistance in both Gram-positive and Gram-negative bacteria has increased with the widespread use of fluoroquinolones. Fluoroquinolone resistance in Gram-negative bacilli has been widely studied, though staphylococci and enterococci are also notably resistant. Enterococci being the second most common cause of healthcare-associated urinary tract infections (UTIs) fluoroquinolones are often the drug of choice. This study was undertaken to assess the risk factors associated with fluoroquinolone-resistant enterococcal UTI in a tertiary level health facility in north India. A total of 365 patients with UTI caused by enterococci were studied over a period of two years. Patients with ciprofloxacin-resistant and susceptible UTI were considered as cases and controls, respectively. Resistance profile of the isolates against common antibiotics was studied by minimum inhibitory concentration (MIC) determination. Mechanisms for fluoroquinolone resistance was studied by efflux pump inhibitor activity and multiplex PCR targeting the qnr genes. A total of 204 (55.89%) cases and 161 (44.1%) controls were identified. The fluoroquinolone-resistant isolates were significantly resistant to ampicillin, high strength aminoglycosides and vancomycin. The majority (78%) of the resistant isolates showed efflux pump activity. Treatment in indoor locations, presence of urinary catheters and pregnancy along with recent exposure to antibiotics especially fluoroquinolones, third generation cephalosporins and piperacillin-tazobactam were identified as independent risk factors. Our results showed that fluoroquinolone resistance in enterococcal UTI was largely associated with indoor usage of antibiotics and use of indwelling devices. Knowledge of risk factors is important to curb this emergence of resistance.

  6. Antimicrobial peptides as potential anti-biofilm agents against multidrug-resistant bacteria.

    Science.gov (United States)

    Chung, Pooi Yin; Khanum, Ramona

    2017-08-01

    Bacterial resistance to commonly used drugs has become a global health problem, causing increased infection cases and mortality rate. One of the main virulence determinants in many bacterial infections is biofilm formation, which significantly increases bacterial resistance to antibiotics and innate host defence. In the search to address the chronic infections caused by biofilms, antimicrobial peptides (AMP) have been considered as potential alternative agents to conventional antibiotics. Although AMPs are commonly considered as the primitive mechanism of immunity and has been extensively studied in insects and non-vertebrate organisms, there is now increasing evidence that AMPs also play a crucial role in human immunity. AMPs have exhibited broad-spectrum activity against many strains of Gram-positive and Gram-negative bacteria, including drug-resistant strains, and fungi. In addition, AMPs also showed synergy with classical antibiotics, neutralize toxins and are active in animal models. In this review, the important mechanisms of action and potential of AMPs in the eradication of biofilm formation in multidrug-resistant pathogen, with the goal of designing novel antimicrobial therapeutics, are discussed. Copyright © 2017. Published by Elsevier B.V.

  7. Tetracyclines function as dual-action light-activated antibiotics.

    Directory of Open Access Journals (Sweden)

    Ya He

    Full Text Available Antimicrobial photodynamic inactivation (aPDI employs photosensitizing dyes activated by visible light to produce reactive oxygen species. aPDI is independent of the antibiotic resistance status of the target cells, and is thought unlikely to produce resistance itself. Among many PS that have been investigated, tetracyclines occupy a unique niche. They are potentially dual-action compounds that can both kill bacteria under illumination, and prevent bacterial regrowth by inhibiting ribosomes. Tetracycline antibiotics are regarded as bacteriostatic rather than bactericidal. Doxycycline (DOTC is excited best by UVA light (365 nm while demeclocycline (DMCT can be efficiently activated by blue light (415 nm as well as UVA. Both compounds were able to eradicate Gram-positive (methicillin-resistant Staphylococcus aureus and Gram-negative (Escherichia coli bacteria (>6 log(10 steps of killing at concentrations (10-50μM and fluences (10-20J/cm2. In contrast to methylene blue, MB plus red light, tetracyclines photoinactivated bacteria in rich growth medium. When ~3 logs of bacteria were killed with DMCT/DOTC+light and the surviving cells were added to growth medium, further bacterial killing was observed, while the same experiment with MB allowed complete regrowth. MIC studies were carried out either in the dark or exposed to 0.5mW/cm2 blue light. Up to three extra steps (8-fold increased antibiotic activity was found with light compared to dark, with MRSA and tetracycline-resistant strains of E. coli. Tetracyclines can accumulate in bacterial ribosomes, where they could be photoactivated with blue/UVA light producing microbial killing via ROS generation.

  8. Antibiotic Overconsumption in Pregnant Women With Urinary Tract Symptoms in Uganda.

    Science.gov (United States)

    Sekikubo, Musa; Hedman, Karolina; Mirembe, Florence; Brauner, Annelie

    2017-08-15

    Urinary tract infections (UTIs) are one of the most common bacterial infections in women. During pregnancy physiological changes, like frequency, mimic UTI symptoms, and therefore bacteriological cultures are needed to confirm the diagnosis. However, in developing countries antibiotic therapy is commonly initiated without culture confirmation. We investigated the prevalence of bacteriuria among pregnant women with and without UTI symptoms in Uganda. In total 2 562 urine samples were evaluated with nitrite and leukocyte esterase tests, using urine culture and/or dipslide with species identification as reference. The prevalence of culture-proven UTI among pregnant women with UTI symptoms was 4%. Since treatment is initiated based only on the presence of symptoms, 96% were erroneously given antibiotics. Further, there is a high prevalence of resistance to commonly used antibiotics, with 18 % ESBL and 36 % multidrug resistant Escherichia coli strains. Nitrite, leukocyte esterase tests, and urine microscopy alone were of poor diagnostic value. Using dipslide, gynecologists and nurses, not trained in microbiology, were mostly able to identify E. coli and negative cultures. Mixed Gram-negative flora, suggesting fecal contamination was, however, in the majority of cases interpreted as a single pathogenic bacterium and would have resulted in antibiotic treatment. To prevent excessive use of antibiotics, dipslide possibly supported by a combination of nitrite and leukocyte esterase tests can be used. Trained frontline health care professionals correctly diagnosed E. coli UTI and negative urine cultures, which would help preventing antibiotic misuse. In addition, regular screening for antibiotic resistance would improve correct treatment. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  9. Reversible antibiotic tolerance induced in Staphylococcus aureus by concurrent drug exposure

    DEFF Research Database (Denmark)

    Haaber, Jakob Krause; Friberg, Cathrine; McCreary, Mark

    2015-01-01

    UNLABELLED: Resistance of Staphylococcus aureus to beta-lactam antibiotics has led to increasing use of the glycopeptide antibiotic vancomycin as a life-saving treatment for major S. aureus infections. Coinfection by an unrelated bacterial species may necessitate concurrent treatment with a second...... antibiotic that targets the coinfecting pathogen. While investigating factors that affect bacterial antibiotic sensitivity, we discovered that susceptibility of S. aureus to vancomycin is reduced by concurrent exposure to colistin, a cationic peptide antimicrobial employed to treat infections by Gram......-negative pathogens. We show that colistin-induced vancomycin tolerance persists only as long as the inducer is present and is accompanied by gene expression changes similar to those resulting from mutations that produce stably inherited reduction of vancomycin sensitivity (vancomycin-intermediate S. aureus [VISA...

  10. A Thermostable Salmonella Phage Endolysin, Lys68, with Broad Bactericidal Properties against Gram-Negative Pathogens in Presence of Weak Acids

    DEFF Research Database (Denmark)

    Oliveira, Hugo; Thiagarajan, Viruthachalam; Walmagh, Maarten

    2014-01-01

    Resistance rates are increasing among several problematic Gram-negative pathogens, a fact that has encouraged the development of new antimicrobial agents. This paper characterizes a Salmonella phage endolysin (Lys68) and demonstrates its potential antimicrobial effectiveness when combined...... with organic acids towards Gram-negative pathogens. Biochemical characterization reveals that Lys68 is more active at pH 7.0, maintaining 76.7% of its activity when stored at 4°C for two months. Thermostability tests showed that Lys68 is only completely inactivated upon exposure to 100°C for 30 min......, and circular dichroism analysis demonstrated the ability to refold into its original conformation upon thermal denaturation. It was shown that Lys68 is able to lyse a wide panel of Gram-negative bacteria (13 different species) in combination with the outer membrane permeabilizers EDTA, citric and malic acid...

  11. Novel bacterial metabolite merochlorin A demonstrates in vitro activity against multi-drug resistant methicillin-resistant Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    George Sakoulas

    Full Text Available We evaluated the in vitro activity of a merochlorin A, a novel compound with a unique carbon skeleton, against a spectrum of clinically relevant bacterial pathogens and against previously characterized clinical and laboratory Staphylococcus aureus isolates with resistance to numerous antibiotics.Merochlorin A was isolated and purified from a marine-derived actinomycete strain CNH189. Susceptibility testing for merochlorin A was performed against previously characterized human pathogens using broth microdilution and agar dilution methods. Cytotoxicity was assayed in tissue culture assays at 24 and 72 hours against human HeLa and mouse sarcoma L929 cell lines.The structure of as new antibiotic, merochlorin A, was assigned by comprehensive spectroscopic analysis. Merochlorin A demonstrated in vitro activity against Gram-positive bacteria, including Clostridium dificile, but not against Gram negative bacteria. In S. aureus, susceptibility was not affected by ribosomal mutations conferring linezolid resistance, mutations in dlt or mprF conferring resistance to daptomycin, accessory gene regulator knockout mutations, or the development of the vancomycin-intermediate resistant phenotype. Merochlorin A demonstrated rapid bactericidal activity against MRSA. Activity was lost in the presence of 20% serum.The unique meroterpenoid, merochlorin A demonstrated excellent in vitro activity against S. aureus and C. dificile and did not show cross-resistance to contemporary antibiotics against Gram positive organisms. The activity was, however, markedly reduced in 20% human serum. Future directions for this compound may include evaluation for topical use, coating biomedical devices, or the pursuit of chemically modified derivatives of this compound that retain activity in the presence of serum.

  12. Antibiotic use and resistance in animals: Belgian initiatives.

    Science.gov (United States)

    Daeseleire, Els; De Graef, Evelyne; Rasschaert, Geertrui; De Mulder, Thijs; Van den Meersche, Tina; Van Coillie, Els; Dewulf, Jeroen; Heyndrickx, Marc

    2016-05-01

    The widespread use of antibiotics in animals is causing concerns about the growing risk for development and the spread of antibiotic-resistant bacteria. Antibiotic consumption is higher in animals than in humans as reported in a joint publication of EFSA (European Food Safety Agency), ECDC (European Centre for Disease Prevention and Control), and EMA (European Medicines Agency) using data from 2011 and 2012. Both in humans and animals, positive associations between the consumption of antibiotics and resistant bacteria are observed. Responsible use of antibiotics in humans and animals should therefore be promoted. In this paper some general aspects of antibiotic resistance such as microbiological versus clinical resistance, intrinsic versus acquired resistance, resistance mechanisms, and transfer of resistance are briefly introduced. In 2012, the Belgian Center of Expertise on Antimicrobial Consumption and Resistance in Animals (AMCRA) was founded. Its mission is to collect and analyze all data related to antibiotic use and resistance in animals in Belgium and to communicate these findings in a neutral and objective manner. One of AMCRA's 10 objectives is a 50% reduction in antibiotic consumption in veterinary medicine in Belgium by 2020. The aim of this paper is to report on the achievements of this national project. The Institute for Agricultural and Fisheries Research (ILVO, Merelbeke-Melle), in collaboration with Ghent University, is currently working on three nationally funded projects on antibiotic resistance in animal husbandry. In the first project, an in vitro model is used to study the influence of low antibiotic concentrations due to carry-over after production and usage of medicated feed on the development of resistance in the pig gut. Part of that project is to develop a quantitative risk assessment model. A second project focuses on tracking excreted antibiotics used in pig rearing and their influence on the development of antibiotic resistance in pig

  13. Coping with antibiotic resistance: combining nanoparticles with antibiotics and other antimicrobial agents.

    Science.gov (United States)

    Allahverdiyev, Adil M; Kon, Kateryna Volodymyrivna; Abamor, Emrah Sefik; Bagirova, Malahat; Rafailovich, Miriam

    2011-11-01

    The worldwide escalation of bacterial resistance to conventional medical antibiotics is a serious concern for modern medicine. High prevalence of multidrug-resistant bacteria among bacteria-based infections decreases effectiveness of current treatments and causes thousands of deaths. New improvements in present methods and novel strategies are urgently needed to cope with this problem. Owing to their antibacterial activities, metallic nanoparticles represent an effective solution for overcoming bacterial resistance. However, metallic nanoparticles are toxic, which causes restrictions in their use. Recent studies have shown that combining nanoparticles with antibiotics not only reduces the toxicity of both agents towards human cells by decreasing the requirement for high dosages but also enhances their bactericidal properties. Combining antibiotics with nanoparticles also restores their ability to destroy bacteria that have acquired resistance to them. Furthermore, nanoparticles tagged with antibiotics have been shown to increase the concentration of antibiotics at the site of bacterium-antibiotic interaction, and to facilitate binding of antibiotics to bacteria. Likewise, combining nanoparticles with antimicrobial peptides and essential oils generates genuine synergy against bacterial resistance. In this article, we aim to summarize recent studies on interactions between nanoparticles and antibiotics, as well as other antibacterial agents to formulate new prospects for future studies. Based on the promising data that demonstrated the synergistic effects of antimicrobial agents with nanoparticles, we believe that this combination is a potential candidate for more research into treatments for antibiotic-resistant bacteria.

  14. Macropis fulvipes Venom component Macropin Exerts its Antibacterial and Anti-Biofilm Properties by Damaging the Plasma Membranes of Drug Resistant Bacteria.

    Science.gov (United States)

    Ko, Su Jin; Kim, Min Kyung; Bang, Jeong Kyu; Seo, Chang Ho; Luchian, Tudor; Park, Yoonkyung

    2017-11-29

    The abuse of antibiotics for disease treatment has led to the emergence of multidrug resistant bacteria. Antimicrobial peptides, found naturally in various organisms, have received increasing interest as alternatives to conventional antibiotics because of their broad spectrum antimicrobial activity and low cytotoxicity. In a previous report, Macropin, isolated from bee venom, exhibited antimicrobial activity against both gram-positive and negative bacteria. In the present study, Macropin was synthesized and its antibacterial and anti-biofilm activities were tested against bacterial strains, including gram-positive and negative bacteria, and drug resistant bacteria. Moreover, Macropin did not exhibit hemolytic activity and cytotoxicity to keratinocytes, whereas Melittin, as a positive control, showed very high toxicity. Circular dichroism assays showed that Macropin has an α-helical structure in membrane mimic environments. Macropin binds to peptidoglycan and lipopolysaccharide and kills the bacteria by disrupting their membranes. Moreover, the fractional inhibitory concentration index indicated that Macropin has additive and partially synergistic effects with conventional antibiotics against drug resistant bacteria. Thus, our study suggested that Macropin has potential for use of an antimicrobial agent for infectious bacteria, including drug resistant bacteria.

  15. Antibiotic resistance shaping multilevel population biology of bacteria

    Directory of Open Access Journals (Sweden)

    Fernando eBaquero

    2013-03-01

    Full Text Available Antibiotics have natural functions, mostly involving cell-to-cell signalling networks. The anthropogenic production of antibiotics, and its release in the microbiosphere results in a disturbance of these networks, antibiotic resistance tending to preserve its integrity. The cost of such adaptation is the emergence and dissemination of antibiotic resistance genes, and of all genetic and cellular vehicles in which these genes are located. Selection of the combinations of the different evolutionary units (genes, integrons, transposons, plasmids, cells, communities and microbiomes, hosts is highly asymmetrical. Each unit of selection is a self-interested entity, exploiting the higher hierarchical unit for its own benefit, but in doing so the higher hierarchical unit might acquire critical traits for its spread because of the exploitation of the lower hierarchical unit. This interactive trade-off shapes the population biology of antibiotic resistance, a composed-complex array of the independent population biologies. Antibiotics modify the abundance and the interactive field of each of these units. Antibiotics increase the number and evolvability of clinical antibiotic resistance genes, but probably also many other genes with different primary functions but with a resistance phenotype present in the environmental resistome. Antibiotics influence the abundance, modularity, and spread of integrons, transposons and plasmids, mostly acting on structures present before the antibiotic era. Antibiotics enrich particular bacterial lineages and clones and contribute to local clonalization processes. Antibiotics amplify particular genetic exchange communities sharing antibiotic resistance genes and platforms within microbiomes. In particular human or animal hosts, the microbiomic composition might facilitate the interactions between evolutionary units involved in antibiotic resistance. The understanding of antibiotic resistance implies expanding our knowledge

  16. Predation and selection for antibiotic resistance in natural environments

    DEFF Research Database (Denmark)

    Leisner, Jørgen; Jørgensen, Niels O. G.; Middelboe, Mathias

    2016-01-01

    Genes encoding resistance to antibiotics appear, like the antibiotics themselves, to be ancient, originating long before the rise of the era of anthropogenic antibiotics. However, detailed understanding of the specific biological advantages of antibiotic resistance in natural environments is still...... lacking, thus limiting our efforts to prevent environmental influx of resistance genes. Here, we propose that antibiotic-resistant cells not only evade predation from antibiotic producers but also take advantage of nutrients released from cells that are killed by the antibiotic-producing bacteria. Thus......, predation is potentially an important mechanism for driving antibiotic resistance during slow or stationary phase of growth when nutrients are deprived. This adds to explain the ancient nature and widespread occurrence of antibiotic resistance in natural environments unaffected by anthropogenic antibiotics...

  17. Bacterial Species and Antibiotic Sensitivity in Korean Patients Diagnosed with Acute Otitis Media and Otitis Media with Effusion.

    Science.gov (United States)

    Kim, Sang Hoon; Jeon, Eun Ju; Hong, Seok Min; Bae, Chang Hoon; Lee, Ho Yun; Park, Moo Kyun; Byun, Jae Yong; Kim, Myung Gu; Yeo, Seung Geun

    2017-04-01

    Changes over time in pathogens and their antibiotic sensitivity resulting from the recent overuse and misuse of antibiotics in otitis media (OM) have complicated treatment. This study evaluated changes over 5 years in principal pathogens and their antibiotic sensitivity in patients in Korea diagnosed with acute OM (AOM) and OM with effusion (OME). The study population consisted of 683 patients who visited the outpatient department of otorhinolaryngology in 7 tertiary hospitals in Korea between January 2010 and May 2015 and were diagnosed with acute AOM or OME. Aural discharge or middle ear fluid were collected from patients in the operating room or outpatient department and subjected to tests of bacterial identification and antibiotic sensitivity. The overall bacteria detection rate of AOM was 62.3% and OME was 40.9%. The most frequently isolated Gram-positive bacterial species was coagulase negative Staphylococcus aureus (CNS) followed by methicillin-susceptible S. aureus (MSSA), methicillin-resistant S. aureus (MRSA), and Streptococcus pneumonia (SP), whereas the most frequently isolated Gram-negative bacterium was Pseudomonas aeruginosa (PA). Regardless of OM subtype, ≥ 80% of CNS and MRSA strains were resistant to penicillin (PC) and tetracycline (TC); isolated MRSA strains showed low sensitivity to other antibiotics, with 100% resistant to PC, TC, cefoxitin (CFT), and erythromycin (EM); and isolated PA showed low sensitivity to quinolone antibiotics, including ciprofloxacin (CIP) and levofloxacin (LFX), and to aminoglycosides. Bacterial species and antibiotic sensitivity did not change significantly over 5 years. The rate of detection of MRSA was higher in OME than in previous studies. As bacterial predominance and antibiotic sensitivity could change over time, continuous and periodic surveillance is necessary in guiding appropriate antibacterial therapy. © 2017 The Korean Academy of Medical Sciences.

  18. Clinical update on linezolid in the treatment of Gram-positive bacterial infections

    Science.gov (United States)

    Ager, Sally; Gould, Kate

    2012-01-01

    Gram-positive pathogens are a significant cause of morbidity and mortality in both community and health care settings. Glycopeptides have traditionally been the antibiotics of choice for multiresistant Gram-positive pathogens but there are problems with their use, including the emergence of glycopeptide-resistant strains, tissue penetration, and achieving and monitoring adequate serum levels. Newer antibiotics such as linezolid, a synthetic oxazolidinone, are available for the treatment of resistant Gram-positive bacteria. Linezolid is active against a wide range of Gram-positive bacteria and has been generally available for the treatment of Gram-positive infections since 2000. There are potential problems with linezolid use, including its bacteriostatic action and the relatively high incidence of reported adverse effects, particularly with long-term use. Long-term use may also be complicated by the development of resistance. However, linezolid has been shown to be clinically useful in the treatment of several serious infections where traditionally bacteriocidal agents have been required and many of its adverse effects are reversible on cessation. It has also been shown to be a cost-effective treatment option in several studies, with its high oral bioavailability allowing an early change from intravenous to oral formulations with consequent earlier patient discharge and lower inpatient costs. PMID:22787406

  19. Antibiotic rezistance genes in soil actinobacteria

    OpenAIRE

    Patrmanová, Tereza

    2016-01-01

    Actinobacteria are important members of the soil ecosystems, where they are involved in organic matter decomposition. It is worth mentioning that their secondary metabolism allows them to produce a variety of different compounds. These compounds include antibiotics, among them aminoglycosides have a place in clinical practice. These antibiotics are significant due to a broad spectrum of activities against both gram-negative and gram-positive bacteria. However, their use currently carries a ri...

  20. Fate and transport of veterinary antibiotics, antibiotic-resistant bacteria, and antibiotic resistance gene from fields receiving poultry manure during storm events

    Science.gov (United States)

    Antimicrobials are used in production agriculture to treat disease and promote animal growth, but the presence of antibiotics in the environment raises concern about widespread antibiotic resistance. This study documents the occurrence and transport of tylosin, tetracycline, enterococci resistant to...