WorldWideScience

Sample records for antibiotic resistance determinants

  1. Environmental pollution by antibiotics and by antibiotic resistance determinants

    Antibiotics are among the most successful drugs used for human therapy. However, since they can challenge microbial populations, they must be considered as important pollutants as well. Besides being used for human therapy, antibiotics are extensively used for animal farming and for agricultural purposes. Residues from human environments and from farms may contain antibiotics and antibiotic resistance genes that can contaminate natural environments. The clearest consequence of antibiotic release in natural environments is the selection of resistant bacteria. The same resistance genes found at clinical settings are currently disseminated among pristine ecosystems without any record of antibiotic contamination. Nevertheless, the effect of antibiotics on the biosphere is wider than this and can impact the structure and activity of environmental microbiota. Along the article, we review the impact that pollution by antibiotics or by antibiotic resistance genes may have for both human health and for the evolution of environmental microbial populations. - The article reviews the current knowledge on the effects that pollution by antibiotics and antibiotic resistance genes may have for the microbiosphere.

  2. Determining of antibiotic resistance profile inStaphylococcus aureus isolates

    Hossein Motamedi; Hadis Mirzabeigi; Tahere Shirali

    2010-01-01

    Objective:To determine the pattern of antibiotic resistance amongStaphylococcus aureus (S. aureus) isolates from clinical specimens and to identify community-acquired methicillin-resistantStaphylococcus aureus(CA-MRSA)in specimens that have been collected from patients referring to one of the hospitals of Ahvaz.Methods:S. aureus isolates from a hospital in Ahvaz were screened for resistance to various antibiotics including methicillin. The susceptibility of the isolates was determined by Kirby-Bauer disc diffusion method. TheMRSA was also treated with ethidium bromide to find the origin of resistance.Results: Among the bacterial isolates, all of 11S. aureus were resistant to methicillin and cefixime,2 were resistant to ciprofloxacine,6 were resistant to tetracycline and the reminder were sensitive or intermediate to other antibiotics. The treated isolates were reminded resistant to methicillin and this suggested that the plasmid was not the origin of resistance in these isolates.Conclusions: These results showed that infection due toMRSA is widespread in Ahvaz and with respect to the spread of vancomycin resistance among MRSA and appearance of overwhelming infections. It is necessary to identify continuously the profile of antibiotic resistance amongS. aureus isolates in other regions and finding appropriate antibiotic for infection control and eradication.

  3. Antibiotic Resistance

    Antibiotics are medicines that fight bacterial infections. Used properly, they can save lives. But there is a growing problem of antibiotic resistance. It happens when bacteria change and become able to resist the effects of an antibiotic. Using antibiotics can lead to resistance. ...

  4. Bacterial Multidrug Efflux Pumps: Much More Than Antibiotic Resistance Determinants

    Paula Blanco; Sara Hernando-Amado; Jose Antonio Reales-Calderon; Fernando Corona; Felipe Lira; Manuel Alcalde-Rico; Alejandra Bernardini; Maria Blanca Sanchez; Jose Luis Martinez

    2016-01-01

    Bacterial multidrug efflux pumps are antibiotic resistance determinants present in all microorganisms. With few exceptions, they are chromosomally encoded and present a conserved organization both at the genetic and at the protein levels. In addition, most, if not all, strains of a given bacterial species present the same chromosomally-encoded efflux pumps. Altogether this indicates that multidrug efflux pumps are ancient elements encoded in bacterial genomes long before the recent use of ant...

  5. Bacterial Multidrug Efflux Pumps: Much More Than Antibiotic Resistance Determinants

    Paula Blanco

    2016-02-01

    Full Text Available Bacterial multidrug efflux pumps are antibiotic resistance determinants present in all microorganisms. With few exceptions, they are chromosomally encoded and present a conserved organization both at the genetic and at the protein levels. In addition, most, if not all, strains of a given bacterial species present the same chromosomally-encoded efflux pumps. Altogether this indicates that multidrug efflux pumps are ancient elements encoded in bacterial genomes long before the recent use of antibiotics for human and animal therapy. In this regard, it is worth mentioning that efflux pumps can extrude a wide range of substrates that include, besides antibiotics, heavy metals, organic pollutants, plant-produced compounds, quorum sensing signals or bacterial metabolites, among others. In the current review, we present information on the different functions that multidrug efflux pumps may have for the bacterial behaviour in different habitats as well as on their regulation by specific signals. Since, in addition to their function in non-clinical ecosystems, multidrug efflux pumps contribute to intrinsic, acquired, and phenotypic resistance of bacterial pathogens, the review also presents information on the search for inhibitors of multidrug efflux pumps, which are currently under development, in the aim of increasing the susceptibility of bacterial pathogens to antibiotics.

  6. Antibiotic Resistance

    ... Radiation-Emitting Products Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco Products For Consumers Home For Consumers Consumer Information by Audience For Women Antibiotic Resistance Share Tweet Linkedin Pin it More ...

  7. Antibiotic Resistance

    Munck, Christian

    morbidity and mortality as well as an increase in the cost of treatment. Understanding how bacteria respond to antibiotic exposure gives the foundations for a rational approach to counteract antimicrobial resistance. In the work presented in this thesis, I explore the two fundamental sources of...... antimicrobial resistance: (1) adaptive mutations and (2) horizontal acquisition of resistance genes from antibiotic gene reservoirs. By studying the geno- and phenotypic changes of E. coli in response to single and drug-pair exposures, I uncover the evolutionary trajectories leading to adaptive resistance. I...... to rationally design drug combinations that limit the evolution of antibiotic resistance due to counteracting evolutionary trajectories. My results highlight that an in-depth knowledge about the genetic responses to the individual antimicrobial compounds enables the prediction of responses to drug...

  8. Determination of Antibiotic Resistance and Synergistic Effect of Multiple Antibiotics on Helicobacter Pylori Isolated from the Stomach Ulcer Biopsy Specimens

    Habibi Nava, F. (MSc

    2014-06-01

    Full Text Available Background and Objective: Resistance of Helicobacter Pylori (H. pylori to antibiotics is the main cause of relapse into Helcobacterial infections. With the use of several antibiotics that have synergistic effect, we can inhibit this antibiotic resistance. Thus, we aimed at determining resistance patterns and assessing the synergy of combining multiple antibiotics on H. pylori. Material and Methods: Biopsy specimens were taken from 100 patients with gastric ulcer referred to Imam Reza hospital in Amol, north of Iran. After isolation and identification of H. Pylori, antibiogram was performed with different antibiotic disks containing one antibiotic, a combination of two antibiotics (metronidazole + clarithromycin and three antibiotics (metronidazole + Claritromycin + Ciprofloxacin. Results: In this study, H. pylori were isolated from 53 (53% biopsy specimens. Of these, 49 (5.92% were resistant to metronidazole, 14 (26% to amoxicillin, 10 (19% to clarithromycin, 7 (13% to tetracycline, 13 (5/24% to furazolidone and 7 (13% to ciprofloxacin. In survey of synergistic effect, an increase in inhibition zone diameter around of combined disks was seen up to 5mm compared to the most effective antibiotic. Conclusion: The inhibition zone diameter of discs containing two and three antibiotics was large, in comparison with one antibiotic. Key words: H. Pylori; Antibiotic Resistance; Synergy Effect

  9. Rapid determination of antibiotic resistance in E. coli using dielectrophoresis

    In recent years, infections due to antibiotic-resistant strains of bacteria such as methillicin-resistant Staphylococcus aureus and ciprofloxacin-resistant Escherichia coli are on the rise, and with them the demand for rapid antibiotic testing is also rising. Conventional tests, such as disc diffusion testing, require a primary sample to be tested in the presence of a number of antibiotics to verify which antibiotics suppress growth, which take approximately 24 h to complete and potentially place the patient at severe risk. In this paper we describe the use of dielectrophoresis as a rapid marker of cell death, by detecting changes in the electrophysiology of the cell caused by the administration of an antibiotic. In contrast to other markers, the electrophysiology of the cell changes rapidly during cell death allowing live cells to be distinguished from dead (or dying) cells without the need for culturing. Using polymyxin B as an example antibiotic, our studies indicate that significant changes in cell characteristics can be observed as soon as 1 h passes after isolating a culture from nutrient broth

  10. Rapid determination of antibiotic resistance in E. coli using dielectrophoresis

    Hoettges, Kai F [School of Engineering, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Dale, Jeremy W [School of Biomedical and Life Sciences, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Hughes, Michael P [School of Engineering, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2007-09-21

    In recent years, infections due to antibiotic-resistant strains of bacteria such as methillicin-resistant Staphylococcus aureus and ciprofloxacin-resistant Escherichia coli are on the rise, and with them the demand for rapid antibiotic testing is also rising. Conventional tests, such as disc diffusion testing, require a primary sample to be tested in the presence of a number of antibiotics to verify which antibiotics suppress growth, which take approximately 24 h to complete and potentially place the patient at severe risk. In this paper we describe the use of dielectrophoresis as a rapid marker of cell death, by detecting changes in the electrophysiology of the cell caused by the administration of an antibiotic. In contrast to other markers, the electrophysiology of the cell changes rapidly during cell death allowing live cells to be distinguished from dead (or dying) cells without the need for culturing. Using polymyxin B as an example antibiotic, our studies indicate that significant changes in cell characteristics can be observed as soon as 1 h passes after isolating a culture from nutrient broth.

  11. Determination of the Antibiotic Resistance Profile of Student Cell Phones

    Lisa Ann Blankinship

    2012-08-01

    Full Text Available Sampling of common use items (e.g., student cell phones for bacterial presence, identification, and antibiotic resistance profiling helps students to recognize the need for routine cleaning of personal items and encourages thoughtful use of currently available medications. This multilab period project can be used to teach or reinforce several methods from general microbiology including aseptic technique, isolation streak, serial dilution, spread plating, Kirby Bauer testing, unknown identification, and media production. The data generated can be saved and added to each semester, thus providing a data set that reflects a local trend of antibiotic resistance.      

  12. How Should We Be Determining Background and Baseline Antibiotic Resistance Levels in Agroecosystem Research?

    Rothrock, Michael J; Keen, Patricia L; Cook, Kimberly L; Durso, Lisa M; Franklin, Alison M; Dungan, Robert S

    2016-03-01

    Although historically, antibiotic resistance has occurred naturally in environmental bacteria, many questions remain regarding the specifics of how humans and animals contribute to the development and spread of antibiotic resistance in agroecosystems. Additional research is necessary to completely understand the potential risks to human, animal, and ecological health in systems altered by antibiotic-resistance-related contamination. At present, analyzing and interpreting the effects of human and animal inputs on antibiotic resistance in agroecosystems is difficult, since standard research terminology and protocols do not exist for studying background and baseline levels of resistance in the environment. To improve the state of science in antibiotic-resistance-related research in agroecosystems, researchers are encouraged to incorporate baseline data within the study system and background data from outside the study system to normalize the study data and determine the potential impact of antibiotic-resistance-related determinants on a specific agroecosystem. Therefore, the aims of this review were to (i) present standard definitions for commonly used terms in environmental antibiotic resistance research and (ii) illustrate the need for research standards (normalization) within and between studies of antibiotic resistance in agroecosystems. To foster synergy among antibiotic resistance researchers, a new surveillance and decision-making tool is proposed to assist researchers in determining the most relevant and important antibiotic-resistance-related targets to focus on in their given agroecosystems. Incorporation of these components within antibiotic-resistance-related studies should allow for a more comprehensive and accurate picture of the current and future states of antibiotic resistance in the environment. PMID:27065388

  13. Determination of the Antibiotic Resistance Profile of Student Cell Phones

    Lisa Ann Blankinship

    2012-01-01

    Sampling of common use items (e.g., student cell phones) for bacterial presence, identification, and antibiotic resistance profiling helps students to recognize the need for routine cleaning of personal items and encourages thoughtful use of currently available medications. This multilab period project can be used to teach or reinforce several methods from general microbiology including aseptic technique, isolation streak, serial dilution, spread plating, Kirby Bauer testing, unknown identifi...

  14. Phenotypic Resistance to Antibiotics

    Jose L. Martinez

    2013-04-01

    Full Text Available The development of antibiotic resistance is usually associated with genetic changes, either to the acquisition of resistance genes, or to mutations in elements relevant for the activity of the antibiotic. However, in some situations resistance can be achieved without any genetic alteration; this is called phenotypic resistance. Non-inherited resistance is associated to specific processes such as growth in biofilms, a stationary growth phase or persistence. These situations might occur during infection but they are not usually considered in classical susceptibility tests at the clinical microbiology laboratories. Recent work has also shown that the susceptibility to antibiotics is highly dependent on the bacterial metabolism and that global metabolic regulators can modulate this phenotype. This modulation includes situations in which bacteria can be more resistant or more susceptible to antibiotics. Understanding these processes will thus help in establishing novel therapeutic approaches based on the actual susceptibility shown by bacteria during infection, which might differ from that determined in the laboratory. In this review, we discuss different examples of phenotypic resistance and the mechanisms that regulate the crosstalk between bacterial metabolism and the susceptibility to antibiotics. Finally, information on strategies currently under development for diminishing the phenotypic resistance to antibiotics of bacterial pathogens is presented.

  15. Antibiotic resistance determinants in a Pseudomonas putida strain isolated from a hospital.

    Lázaro Molina

    Full Text Available Environmental microbes harbor an enormous pool of antibiotic and biocide resistance genes that can impact the resistance profiles of animal and human pathogens via horizontal gene transfer. Pseudomonas putida strains are ubiquitous in soil and water but have been seldom isolated from humans. We have established a collection of P. putida strains isolated from in-patients in different hospitals in France. One of the isolated strains (HB3267 kills insects and is resistant to the majority of the antibiotics used in laboratories and hospitals, including aminoglycosides, ß-lactams, cationic peptides, chromoprotein enediyne antibiotics, dihydrofolate reductase inhibitors, fluoroquinolones and quinolones, glycopeptide antibiotics, macrolides, polyketides and sulfonamides. Similar to other P. putida clinical isolates the strain was sensitive to amikacin. To shed light on the broad pattern of antibiotic resistance, which is rarely found in clinical isolates of this species, the genome of this strain was sequenced and analysed. The study revealed that the determinants of multiple resistance are both chromosomally-borne as well as located on the pPC9 plasmid. Further analysis indicated that pPC9 has recruited antibiotic and biocide resistance genes from environmental microorganisms as well as from opportunistic and true human pathogens. The pPC9 plasmid is not self-transmissible, but can be mobilized by other bacterial plasmids making it capable of spreading antibiotic resistant determinants to new hosts.

  16. Antibiotic resistance determinants in a Pseudomonas putida strain isolated from a hospital.

    Molina, Lázaro; Udaondo, Zulema; Duque, Estrella; Fernández, Matilde; Molina-Santiago, Carlos; Roca, Amalia; Porcel, Mario; de la Torre, Jesús; Segura, Ana; Plesiat, Patrick; Jeannot, Katy; Ramos, Juan-Luis

    2014-01-01

    Environmental microbes harbor an enormous pool of antibiotic and biocide resistance genes that can impact the resistance profiles of animal and human pathogens via horizontal gene transfer. Pseudomonas putida strains are ubiquitous in soil and water but have been seldom isolated from humans. We have established a collection of P. putida strains isolated from in-patients in different hospitals in France. One of the isolated strains (HB3267) kills insects and is resistant to the majority of the antibiotics used in laboratories and hospitals, including aminoglycosides, ß-lactams, cationic peptides, chromoprotein enediyne antibiotics, dihydrofolate reductase inhibitors, fluoroquinolones and quinolones, glycopeptide antibiotics, macrolides, polyketides and sulfonamides. Similar to other P. putida clinical isolates the strain was sensitive to amikacin. To shed light on the broad pattern of antibiotic resistance, which is rarely found in clinical isolates of this species, the genome of this strain was sequenced and analysed. The study revealed that the determinants of multiple resistance are both chromosomally-borne as well as located on the pPC9 plasmid. Further analysis indicated that pPC9 has recruited antibiotic and biocide resistance genes from environmental microorganisms as well as from opportunistic and true human pathogens. The pPC9 plasmid is not self-transmissible, but can be mobilized by other bacterial plasmids making it capable of spreading antibiotic resistant determinants to new hosts. PMID:24465371

  17. Facts about Antibiotic Resistance

    ... Recommendations Pediatric Treatment Recommendations Inpatient Healthcare Professionals Community Pharmacists Continuing Education & Curriculum Opportunities Weighing in on Antibiotic Resistance Improving Prescribing Outpatient Antibiotic Stewardship Interventions That Work Systematic Reviews ...

  18. Antibiotic / Antimicrobial Resistance Glossary

    ... Recommendations Pediatric Treatment Recommendations Inpatient Healthcare Professionals Community Pharmacists Continuing Education & Curriculum Opportunities Weighing in on Antibiotic Resistance Improving Prescribing Outpatient Antibiotic Stewardship Interventions That Work Systematic Reviews ...

  19. Differential Epigenetic Compatibility of qnr Antibiotic Resistance Determinants with the Chromosome of Escherichia coli

    Sánchez, María B.; Martínez, José L.

    2012-01-01

    Environmental bacteria harbor a plethora of genes that, upon their horizontal transfer to new hosts, may confer resistance to antibiotics, although the number of such determinants actually acquired by pathogenic bacteria is very low. The founder effect, fitness costs and ecological connectivity all influence the chances of resistance transfer being successful. We examined the importance of these bottlenecks using the family of quinolone resistance determinants Qnr. The results indicate the ep...

  20. Determination of antibiotic resistance pattern and bacteriocin sensitivity of Listeria monocytogenes strains isolated from different foods in turkey

    This study aimed to determine the antibiotic resistance pattern and bacteriocin sensitivity of Listeria monocytogenes strains isolated from animal derived foods. With disc diffusion assay, all fourteen L. monocytogenes strains were susceptible to the antibiotics, including penicillin G, vancomycin, ...

  1. Determination Pattern of Antibiotic Resistance in Entropathogenic Escherichia coli Strains Isolated from Children with Diarrhea

    P. Karami

    2012-04-01

    Full Text Available Introduction & Objective: Diarrheal diseases are considered a major health problem, especially in children. Enteropathogenic Escherichia coli (EPEC strains are the common cause of diarrhea in children especially in developing countries. Because of undesirable effects of diarrhea and its interference with children's growth, in some cases antibiotic treatment is recommended. In recent years, resistance toward common and effective antibiotics in the treatment of infectious diseases became one of the most important challenges in medical society, for this purpose, antibiotic sensitivity and resistance of strains in every geographical zone must be determined. So in this study, of antibiotic patterns of these bacteria were examined.Materials & Methods: This cross-sectional study was performed on 192 strains of Enteropathogen Escherichia coli isolated from children who were suffering from diarrhea in 1389-1390 in the microbiology laboratory of Hamadan University of medical sciences. To identify these strains, standard biochemical and serology tests were used. The antibiotic sensitivity test of these isolates was carried out with disc diffusion agar method according to the CLSI standards for 14 different antibiotics disc. Resistance toward 3 or more than 3 classes of antibiotics were defined as multidrug resistance.Results: The result of this study shows EPEC strains had the highest resistance to cefpodoxime (97%, trimethoprim (60.7%, tetracycline (58.4% and ampicillin (45.8%. Multidrug resistance was 68.7 percent. These strains also showed the highest sensitivity against imipenem, ceftriaxone, and ciprofloxacin antibiotics.Conclusion: EPEC strains that were studied with resistance to ampicillin, tetracycline and convenient sensitivity against fluoroquinolones are one of the major factors in children’s diarrhea. A result of this research suggests that antimicrobial resistance in Escherichia coli strains are high and prescribing and antibiotic is not

  2. Fate and transport of antibiotic residues and antibiotic resistance genetic determinants during manure storage, treatment, and land application

    Antibiotics are used in swine production for therapeutic treatment of disease and at sub-therapeutic levels for growth promotion and improvement of feed efficiency. It is estimated that ca.75% of antibiotics are not absorbed by animals and are excreted in waste. Antibiotic resistance selection occur...

  3. How should we be determining background and baseline antibiotic resistance levels in agroecosystem research?

    Although historically antibiotic resistance has occurred naturally in environmental bacteria, many questions remain regarding the specifics of how humans and animals contribute to the development and spread of antibiotic resistance in agroecosystems. Additional research is necessary to completely u...

  4. An assay for determining minimal concentrations of antibiotics that drive horizontal transfer of resistance.

    Jutkina, Jekaterina; Rutgersson, Carolin; Flach, Carl-Fredrik; Larsson, D G Joakim

    2016-04-01

    Ability to understand the factors driving horizontal transfer of antibiotic resistance from unknown, harmless bacteria to pathogens is crucial in order to tackle the growing resistance problem. However, current methods to measure effects of stressors on horizontal gene transfer have limitations and often fall short, as the estimated endpoints can be a mix of both the number of transfer events and clonal growth of transconjugants. Our aim was therefore to achieve a proper strategy for assessing the minimal concentration of a stressor (exemplified by tetracycline) that drives horizontal transfer of antibiotic resistance from a complex community to a model pathogen. Conditions were optimized to improve a culture-based approach using the bacterial community of treated sewage effluent as donor, and fluorescent, traceable Escherichia coli as recipient. Reduced level of background resistance, differentiation of isolates as well as decreased risk for measuring effects of selection were achieved through the use of chromogenic medium, optimization of conjugation time as well as applying a different antibiotic for isolation of transconjugants than the one tested for its ability to drive transfer. Using this assay, we showed that a very low concentration of tetracycline, 10μg/L i.e. 150 times below the minimal inhibitory concentration of the recipient, promoted horizontal transfer of multiple antibiotic-resistance determinants. Higher concentrations favoured selection of a tetracycline-resistance phenotype along with a decline in the number of detectable transfer events. The described method can be used to evaluate different environmental conditions and factors that trigger horizontal dissemination of mobile resistance elements, eventually resulting in the formation of drug-resistant pathogens. PMID:26802341

  5. Understanding Antibiotic Resistance

    Goulart-Touma, Christiane

    2014-01-01

    The evolution of antibiotic resistance among bacteria threatens our continued ability to treat infectious diseases. The need for sustainable strategies to cure bacterial infections has never been greater. So far, all attempts to restore susceptibility after resistance arises have been unsuccessful, including restrictions on prescribing antibiotics (Andersson DI et al.2011) and antibiotic cycling (Andersson DI et al. 2005, Bergstrom CT et al. 2004). Part of the problem may be that those effor...

  6. Epidemic Assessment of Bacterial Agents in Osteomyelitis and Their Antibiotic Resistance Pattern Determination

    Reza Mirnejad; Shahab Fallahi; Jalal Kiani; Farhad Jeddi; Mehdi Khoobdel; Nematollah Jonaidi; Farshid Alaeddini

    2008-01-01

    The aim of the present study was to determine the causative agents of osteomyelitis and specifying their antibiotic resistance pattern in patients referred to pediatrics ward of Imam Khomeini Hospital. This study has been performed in Tehran during January to December 2006. In this study, synovial fluid was taken from 90 patients who referred to pediatrics ward of Imam Khomeini. Samples were examined by direct test, culture and biochemical tests. In next step, antibiogram by disk diffusion me...

  7. Into the Wild: Dissemination of Antibiotic Resistance Determinants via a Species Recovery Program

    Power, Michelle L.; Emery, Samantha; Gillings, Michael R.

    2013-01-01

    Management strategies associated with captive breeding of endangered species can establish opportunities for transfer of pathogens and genetic elements between human and animal microbiomes. The class 1 integron is a mobile genetic element associated with clinical antibiotic resistance in gram-negative bacteria. We examined the gut microbiota of endangered brush-tail rock wallabies Petrogale penicillata to determine if they carried class 1 integrons. No integrons were detected in 65 animals fr...

  8. Targeting Antibiotic Resistance.

    Chellat, Mathieu F; Raguž, Luka; Riedl, Rainer

    2016-06-01

    Finding strategies against the development of antibiotic resistance is a major global challenge for the life sciences community and for public health. The past decades have seen a dramatic worldwide increase in human-pathogenic bacteria that are resistant to one or multiple antibiotics. More and more infections caused by resistant microorganisms fail to respond to conventional treatment, and in some cases, even last-resort antibiotics have lost their power. In addition, industry pipelines for the development of novel antibiotics have run dry over the past decades. A recent world health day by the World Health Organization titled "Combat drug resistance: no action today means no cure tomorrow" triggered an increase in research activity, and several promising strategies have been developed to restore treatment options against infections by resistant bacterial pathogens. PMID:27000559

  9. Metagenomic profiling of microbial composition and antibiotic resistance determinants in Puget Sound.

    Jesse A Port

    Full Text Available Human-health relevant impacts on marine ecosystems are increasing on both spatial and temporal scales. Traditional indicators for environmental health monitoring and microbial risk assessment have relied primarily on single species analyses and have provided only limited spatial and temporal information. More high-throughput, broad-scale approaches to evaluate these impacts are therefore needed to provide a platform for informing public health. This study uses shotgun metagenomics to survey the taxonomic composition and antibiotic resistance determinant content of surface water bacterial communities in the Puget Sound estuary. Metagenomic DNA was collected at six sites in Puget Sound in addition to one wastewater treatment plant (WWTP that discharges into the Sound and pyrosequenced. A total of ~550 Mbp (1.4 million reads were obtained, 22 Mbp of which could be assembled into contigs. While the taxonomic and resistance determinant profiles across the open Sound samples were similar, unique signatures were identified when comparing these profiles across the open Sound, a nearshore marina and WWTP effluent. The open Sound was dominated by α-Proteobacteria (in particular Rhodobacterales sp., γ-Proteobacteria and Bacteroidetes while the marina and effluent had increased abundances of Actinobacteria, β-Proteobacteria and Firmicutes. There was a significant increase in the antibiotic resistance gene signal from the open Sound to marina to WWTP effluent, suggestive of a potential link to human impacts. Mobile genetic elements associated with environmental and pathogenic bacteria were also differentially abundant across the samples. This study is the first comparative metagenomic survey of Puget Sound and provides baseline data for further assessments of community composition and antibiotic resistance determinants in the environment using next generation sequencing technologies. In addition, these genomic signals of potential human impact can be used

  10. Antibiotic resistance determinants in the interplay between food and gut microbiota.

    Devirgiliis, Chiara; Barile, Simona; Perozzi, Giuditta

    2011-08-01

    A complex and heterogeneous microflora performs sugar and lactic acid fermentations in food products. Depending on the fermentable food matrix (dairy, meat, vegetable etc.) as well as on the species composition of the microbiota, specific combinations of molecules are produced that confer unique flavor, texture, and taste to each product. Bacterial populations within such "fermented food microbiota" are often of environmental origin, they persist alive in foods ready for consumption, eventually reaching the gastro-intestinal tract where they can interact with the resident gut microbiota of the host. Although this interaction is mostly of transient nature, it can greatly contribute to human health, as several species within the food microbiota also display probiotic properties. Such an interplay between food and gut microbiota underlines the importance of the microbiological quality of fermented foods, as the crowded environment of the gut is also an ideal site for genetic exchanges among bacteria. Selection and spreading of antibiotic resistance genes in foodborne bacteria has gained increasing interest in the past decade, especially in light of the potential transferability of antibiotic resistance determinants to opportunistic pathogens, natural inhabitants of the human gut but capable of acquiring virulence in immunocompromised individuals. This review aims at describing major findings and future prospects in the field, especially after the use of antibiotics as growth promoters was totally banned in Europe, with special emphasis on the application of genomic technologies to improve quality and safety of fermented foods. PMID:21526400

  11. The multifaceted roles of antibiotics and antibiotic resistance in nature

    Saswati eSengupta

    2013-03-01

    Full Text Available Antibiotics are chemotherapeutic agents, which have been a very powerful tool in the clinical management of bacterial diseases since the 1940s. However, benefits offered by these magic bullets have been substantially lost in subsequent days following the widespread emergence and dissemination of antibiotic resistant strains. While it is obvious that excessive and imprudent use of antibiotics significantly contributes to the emergence of resistant strains, antibiotic-resistance is also observed in natural bacteria of remote places unlikely to be impacted by human intervention. Both antibiotic biosynthetic genes and resistance-conferring genes have been known to evolve billions of years ago, long before clinical use of antibiotics. Hence it appears that antibiotics and antibiotics resistance determinants have some other roles in nature, which often elude our attention because of overemphasis on the therapeutic importance of antibiotics and the crisis imposed by the antibiotic-resistance in pathogens. In the natural milieu, antibiotics are often found to be present in subinhibitory concentrations acting as signalling molecules supporting quorum sensing and biofilm formation. They also play an important role in the production of virulence factors and influence host-parasite interactions (e.g., phagocytosis, adherence to the target cell and so on. The evolutionary and ecological aspects of antibiotics and antibiotic-resistance in the naturally occurring microbial community are little understood. Therefore, the actual role of antibiotics in nature warrants in-depth investigations. Studies on such an intriguing behaviour of the microorganisms promise insight into the intricacies of the microbial physiology and are likely to provide some lead in controlling the emergence and subsequent dissemination of antibiotic resistance. This article highlights some of the recent findings on the role of antibiotics and genes that confer resistance to antibiotics in

  12. Pneumococcal resistance to antibiotics.

    Klugman, K P

    1990-01-01

    The geographic distribution of pneumococci resistant to one or more of the antibiotics penicillin, erythromycin, trimethoprim-sulfamethoxazole, and tetracycline appears to be expanding, and there exist foci of resistance to chloramphenicol and rifampin. Multiply resistant pneumococci are being encountered more commonly and are more often community acquired. Factors associated with infection caused by resistant pneumococci include young age, duration of hospitalization, infection with a pneumo...

  13. Study on contamination of sheep meat in Shahrekord area with Listeria ivanovii and determination its antibiotic resistance pattern

    Farid Khalili Borujeni

    2013-06-01

    Full Text Available Background and objectives: Listeria monocytogenes and Listeria ivanovii are two pathogenic species of Listeria. The role of Listeria ivanovii is important in abortion, stillbirth, septicemia in animals and this bacterium sometimes is pathogenic in humans. Contamination of ovine carcasses during the slaughter and processing can cause foodborne infections in humans. In this study we examined the contamination of sheep meat in slaughter house of Shahrekord city to Listeria ivanovii and determined its antibiotic resistance pattern.Material and Methods: A total 200 samples of sheep meat were collected from abattoir and processed by use of two enrichment method. After doing specific biochemical tests and PCR, Listeria spp was identified and antibiotic resistance of isolated Listeria were tested by the agar disc diffusion method. Results: The contamination of sheep carcasses with listeria was 2.5% (5 out of 200 samples. All five isolates (2.5% were recognized as Listeria ivanovii and were resistant to four antibiotics, sensitive to six antibiotics and intermediate to other antibiotics.  Conclusion: According to the contamination rate in sheep carcasses with Listeria ivanovii and the relatively high antibiotic resistance specified in this bacteria, the role of red meat in transmission of Listeria spp. and appropriate use of antibiotics against this bacteria should be considered.

  14. Antibiotic Resistance in Childhood with Pneumococcal Infection

    Ali Gunes

    2013-01-01

    Aim: Resistance to antibiotics is better. Between should not be in capitals. Antibiotics resistant has been increasing in pneumococci that cause serious diseases such as pneumonia, meningitis in recent years. The resistance rates vary between geographic regions. In this study, we aimed to determine antibiotic resistance rates in pneumococcal infections in our region. Material and Method: This study included 31 pneumococcal strains isolated from blood, CSF and urine samples of patients with me...

  15. Determination Pattern of Antibiotic Resistance in Entropathogenic Escherichia coli Strains Isolated from Children with Diarrhea

    P. Karami; Aslani, M M; M. Najafi Mosleh; M.Y. Alikhani

    2012-01-01

    Introduction & Objective: Diarrheal diseases are considered a major health problem, especially in children. Enteropathogenic Escherichia coli (EPEC) strains are the common cause of diarrhea in children especially in developing countries. Because of undesirable effects of diarrhea and its interference with children's growth, in some cases antibiotic treatment is recommended. In recent years, resistance toward common and effective antibiotics in the treatment of infectious diseases became one o...

  16. Antibiotic Resistance Determinants in a Pseudomonas putida Strain Isolated from a Hospital

    Molina, Lázaro; Udaondo, Zulema; Duque, Estrella; Fernández, Matilde; Molina-Santiago, Carlos; Roca, Amalia; Porcel, Mario; de la Torre, Jesús; Segura, Ana; Plesiat, Patrick; Jeannot, Katy; Ramos, Juan-Luis

    2014-01-01

    Environmental microbes harbor an enormous pool of antibiotic and biocide resistance genes that can impact the resistance profiles of animal and human pathogens via horizontal gene transfer. Pseudomonas putida strains are ubiquitous in soil and water but have been seldom isolated from humans. We have established a collection of P. putida strains isolated from in-patients in different hospitals in France. One of the isolated strains (HB3267) kills insects and is resistant to the majority of the...

  17. Strategies to Minimize Antibiotic Resistance

    Sang Hee Lee

    2013-09-01

    Full Text Available Antibiotic resistance can be reduced by using antibiotics prudently based on guidelines of antimicrobial stewardship programs (ASPs and various data such as pharmacokinetic (PK and pharmacodynamic (PD properties of antibiotics, diagnostic testing, antimicrobial susceptibility testing (AST, clinical response, and effects on the microbiota, as well as by new antibiotic developments. The controlled use of antibiotics in food animals is another cornerstone among efforts to reduce antibiotic resistance. All major resistance-control strategies recommend education for patients, children (e.g., through schools and day care, the public, and relevant healthcare professionals (e.g., primary-care physicians, pharmacists, and medical students regarding unique features of bacterial infections and antibiotics, prudent antibiotic prescribing as a positive construct, and personal hygiene (e.g., handwashing. The problem of antibiotic resistance can be minimized only by concerted efforts of all members of society for ensuring the continued efficiency of antibiotics.

  18. A Transposon Screen Identifies Genetic Determinants of Vibrio cholerae Resistance to High-Molecular-Weight Antibiotics.

    Dörr, Tobias; Delgado, Fernanda; Umans, Benjamin D; Gerding, Matthew A; Davis, Brigid M; Waldor, Matthew K

    2016-08-01

    Gram-negative bacteria are notoriously resistant to a variety of high-molecular-weight antibiotics due to the limited permeability of their outer membrane (OM). The basis of OM barrier function and the genetic factors required for its maintenance remain incompletely understood. Here, we employed transposon insertion sequencing to identify genes required for Vibrio cholerae resistance to vancomycin and bacitracin, antibiotics that are thought to be too large to efficiently penetrate the OM. The screen yielded several genes whose protein products are predicted to participate in processes important for OM barrier functions and for biofilm formation. In addition, we identified a novel factor, designated vigA (for vancomycin inhibits growth), that has not previously been characterized or linked to outer membrane function. The vigA open reading frame (ORF) codes for an inner membrane protein, and in its absence, cells became highly sensitive to glycopeptide antibiotics (vancomycin and ramoplanin) and bacitracin but not to other large antibiotics or detergents. In contrast to wild-type (WT) cells, the vigA mutant was stained with fluorescent vancomycin. These observations suggest that VigA specifically prevents the periplasmic accumulation of certain large antibiotics without exerting a general role in the maintenance of OM integrity. We also observed marked interspecies variability in the susceptibilities of Gram-negative pathogens to glycopeptides and bacitracin. Collectively, our findings suggest that the OM barrier is not absolute but rather depends on specific OM-antibiotic interactions. PMID:27216069

  19. Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes

    Roderick I. Mackie

    2013-07-01

    Full Text Available Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the “perfect microbial storm”. Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water.

  20. Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes

    Hong, Pei-Ying

    2013-07-31

    Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the “perfect microbial storm”. Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water.

  1. Streptococcus peumoniae in an Egyptian urban community:incidence of erythromycin-resistance determinants and antibiotic susceptibility profile

    Fatma Abdelaziz Amer; Eman Mohamed Elbehedy; Mohamed Elahmady

    2008-01-01

    Objectives:To determine the incidence of resistance of Streptococcus (Strep).pneumoniae isolated in our lo-cality to erythromycin,to screen for the two resistance determinants erm(B)and mef(A)genes,and to identi-fy the susceptibility profile to commonly used antibiotics.Methods:Samples were collected from patients at-tending the Outpatient Department of Zagazig University Hospital,Zagazig,Egypt,between February 2006 and March 2007.Strep.pneumoniae was identified by conventional procedures.Susceptibilities to erythromycin and 15 antibiotics were identified by disc diffusion method,as outlined by CLSI.E-test was used for MIC de-termination of erythromycin.erm(B)and mef(A)genes were detected by PCR.Results:Eighty-one Strep. pneumoniae strains were identified.Fifty-one of them (63 %)were erythromycin-resistant,and mef(A)gene was the predominant resistance determinant.Vancomycin,imipenem and gatifloxacin had the best activity a-gainst the isolates,whereas tetracycline had the least.Forty-two (51.85%)out of the 81 Strep.pneumoniae strains were multidrug-resistant.Conclusions:High incidence of resistance to erythromycin and multiple anti-microbials existed.mef(A)was the principal erythromycin-resistance gene.

  2. Antibiotic resistance in wild birds

    Bonnedahl, Jonas; Järhult, Josef D.

    2014-01-01

    Wild birds have been postulated as sentinels, reservoirs, and potential spreaders of antibiotic resistance. Antibiotic-resistant bacteria have been isolated from a multitude of wild bird species. Several studies strongly indicate transmission of resistant bacteria from human rest products to wild birds. There is evidence suggesting that wild birds can spread resistant bacteria through migration and that resistant bacteria can be transmitted from birds to humans and vice versa. Through further...

  3. Quantification of Antibiotic Residues and Determination of Antimicrobial Resistance Profiles of Microorganisms Isolated from Bovine Milk in Lebanon

    Sleiman Fawwak; Abi Khalil Pamela; Kassaify Zeina

    2013-01-01

    The rapid growth of dairy sectors in the Middle East, particularly in Lebanon, led to extensive use of antibiotics to enhance the health and productivity of animals. Prolonged usage may lead to antibiotic residues in foods of animal origin; hence, the emergence of antimicrobial resistant microorganisms. Accurate data on the antibiotic usage in livestock treatment, antibiotic residues and antimicrobial resistances in raw milk in Lebanon are lacking. This study aimed to investigate the types an...

  4. The Prehistory of Antibiotic Resistance.

    Perry, Julie; Waglechner, Nicholas; Wright, Gerard

    2016-01-01

    Antibiotic resistance is a global problem that is reaching crisis levels. The global collection of resistance genes in clinical and environmental samples is the antibiotic "resistome," and is subject to the selective pressure of human activity. The origin of many modern resistance genes in pathogens is likely environmental bacteria, including antibiotic producing organisms that have existed for millennia. Recent work has uncovered resistance in ancient permafrost, isolated caves, and in human specimens preserved for hundreds of years. Together with bioinformatic analyses on modern-day sequences, these studies predict an ancient origin of resistance that long precedes the use of antibiotics in the clinic. Understanding the history of antibiotic resistance is important in predicting its future evolution. PMID:27252395

  5. [Modification of antibiotic resistance in microbial symbiosis].

    Aznabaeva, L M; Usviatsov, B Ia; Bukharin, O V

    2010-01-01

    In antibiotic therapy it is necessary to use drugs active against the pathogen in its association with the host normal microflora. The aim of the study was to investigate modification of antibiotic resistance under conditions of the pathogen association with the representatives of the host normal microflora and to develop the microbiological criteria for determining effectiveness of antibacterials. Modification of microbial antibiotic resistance was investigated in 408 associations. Various changes in the antibiotic resistance of the strains were revealed: synergism, antagonism and indifference. On the basis of the results it was concluded that in the choice of the antibiotic active against Staphylococcus aureus and Streptococcus pyogenes the preference should be given to oxacillin, gentamicin and levomycetin, since the resistance of the pathogens to these antibiotics under the association conditions did not increase, which could contribute to their destruction, whereas the resistance of the normoflora increased or did not change, which was important for its retention in the biocenosis. The data on changeability of the antibiotic resistance of the microbial strains under the association conditions made it possible to develop microbiological criteria for determining effectiveness of antibiotics in the treatment of inflammatory diseases of microbial etiology (RF Patent No. 2231554). PMID:21033469

  6. Antibiotic susceptibility of members of the Lactobacillus acidophilus group using broth microdilution and molecular identification of their resistance determinants.

    Mayrhofer, Sigrid; van Hoek, Angela H A M; Mair, Christiane; Huys, Geert; Aarts, Henk J M; Kneifel, Wolfgang; Domig, Konrad J

    2010-11-15

    The range of antibiotic susceptibility to 13 antibiotics in 101 strains of the Lactobacillus acidophilus group was examined using the lactic acid bacteria susceptibility test medium (LSM) and broth microdilution. Additionally, microarray analysis and PCR were applied to identify resistance genes responsible for the displayed resistant phenotypes in a selection of strains. In general, narrow as well as broad unimodal and bimodal MIC distributions were observed for the Lactobacillus acidophilus group and the tested antimicrobial agents. Atypically resistant strains could be determined by visual inspection of the obtained MIC ranges for ampicillin, chloramphenicol, clindamycin, erythromycin, quinupristin/dalfopristin, streptomycin and tetracycline. For most of these atypically resistant strains underlying resistance determinants were found. To our knowledge erm(A) was detected in lactobacilli for the first time within this study. Data derived from this study can be used as a basis for reviewing present microbiological breakpoints for categorization of susceptible and resistant strains within the Lactobacillus acidophilus group to assess the safety of microorganisms intended for use in food and feed applications. PMID:20888656

  7. Antibiotic resistant in microorganisms

    Antimicrobial agents are necessary for use in veterinary medicine including the production of food producing animals. Antibiotic use is indicated for the treatment of bacterial target organisms and/or disease for which the antibiotic was developed. However, an unintended consequence of antibiotic ...

  8. A rapid in situ procedure for determination of bacterial susceptibility or resistance to antibiotics that inhibit peptidoglycan biosynthesis

    Bou Germán

    2011-08-01

    Full Text Available Abstract Background Antibiotics which inhibit bacterial peptidoglycan biosynthesis are the most widely used in current clinical practice. Nevertheless, resistant strains increase dramatically, with serious economic impact and effects on public health, and are responsible for thousands of deaths each year. Critical clinical situations should benefit from a rapid procedure to evaluate the sensitivity or resistance to antibiotics that act at the cell wall. We have adapted a kit for rapid determination of bacterial DNA fragmentation, to assess cell wall integrity. Results Cells incubated with the antibiotic were embedded in an agarose microgel on a slide, incubated in an adapted lysis buffer, stained with a DNA fluorochrome, SYBR Gold and observed under fluorescence microscopy. The lysis affects the cells differentially, depending on the integrity of the wall. If the bacterium is susceptible to the antibiotic, the weakened cell wall is affected by the lysing solution so the nucleoid of DNA contained inside the bacterium is released and spread. Alternatively, if the bacterium is resistant to the antibiotic, it is practically unaffected by the lysis solution and does not liberate the nucleoid, retaining its normal morphological appearance. In an initial approach, the procedure accurately discriminates susceptible, intermediate and resistant strains of Escherichia coli to amoxicillin/clavulanic acid. When the bacteria came from an exponentially growing liquid culture, the effect on the cell wall of the β-lactam was evident much earlier that when they came from an agar plate. A dose-response experiment with an E. coli strain susceptible to ampicillin demonstrated a weak effect before the MIC dose. The cell wall damage was not homogenous among the different cells, but the level of damage increased as dose increased with a predominant degree of effect for each dose. A microgranular-fibrilar extracellular background was evident in gram

  9. The Association of Virulence Determinants of Uropathogenic Escherichia coli With Antibiotic Resistance

    Sara Asadi; Mohammad Kargar; Kavous Solhjoo; Akram Najafi; Sadegh Ghorbani-Dalini

    2014-01-01

    Background: The emergence of antimicrobial resistant strains of Escherichia coli has raised considerable interest in understanding the diversity and epidemiology of E. coli infections in humans. Virulence factors of E. coli determine the specific infections caused by this microorganism. Objectives: This study aimed to determine the prevalence of eight E. coli virulence factors and their association with antimicrobial resistance in bacteria isolated from patients with urinary tract infecti...

  10. Metagenomic exploration of antibiotic resistance in soil.

    Monier, Jean-Michel; Demanèche, Sandrine; Delmont, Tom O; Mathieu, Alban; Vogel, Timothy M; Simonet, Pascal

    2011-06-01

    The ongoing development of metagenomic approaches is providing the means to explore antibiotic resistance in nature and address questions that could not be answered previously with conventional culture-based strategies. The number of available environmental metagenomic sequence datasets is rapidly expanding and henceforth offer the ability to gain a more comprehensive understanding of antibiotic resistance at the global scale. Although there is now evidence that the environment constitutes a vast reservoir of antibiotic resistance gene determinants (ARGDs) and that the majority of ARGDs acquired by human pathogens may have an environmental origin, a better understanding of their diversity, prevalence and ecological significance may help predict the emergence and spreading of newly acquired resistances. Recent applications of metagenomic approaches to the study of ARGDs in natural environments such as soil should help overcome challenges concerning expanding antibiotic resistances. PMID:21601510

  11. Study of Antibiotic Resistance Pattern and Phenotypic Detection of ESBLs in Klebsiella Pneumoniae Strains Isolated from Clinical Samples and Determination of Minimum Inhibitory Concentrations of Imipenem and Ceftazidim Antibiotics

    R. Yousefi Mashouf

    2014-01-01

    Full Text Available Introduction & Objective: One of the mechanisms of antibiotic resistance in gram negative bac-teria, particularly Klebsiella pneumonia strains, is the production of Extended-Spectrum ? lactamase enzymes (ESBLs. Encoding genes of ESBLs are usually located on the plasmid and they are able to transfer to other gram-negative bacteria. Thus, due to the importance of resistance pattern recognition and its sensitivity to the ?- lactam antibiotics, the above men-tioned issue was examined in this study. Materials & Methods: In this study different clinical samples of Boroujerd and Hamadan Hos-pitals during 6 months were collected and identified by biochemical tests and Enterosystem kit. To confirm the strains, the Ure D gene was used as the internal gene of Klebsiella pneumoniae by PCR method. Antibiotic resistance by Disk diffusion method was performed. Phenotypic confirmatory test was used to determine the presence of ESBLs. MIC antibiotics of Ceftazidime and imipenem by E test method were determined. Results: The results showed that the highest rate of Klebsiella pneumoniae strains resistance was related to Cefexime antibiotics 46.7%, Ceftriaxone 43.3%, Azthrunam 43.3%, Cefo-taxime 41.7%, Cotrimaksazol 40.8% , Ceftazidim 36.7% and the least resistance was related to antibiotics Imipenem 0% Sprofluksasin 16.7%, Cefepime 25% and Gentamicin 26.7%. 56 strains( 46.7% were identified as ESBL –positive strains. Using E-test strip for Ceftazidim antibiotic, 66 strains were resistant , 10 strains intermediate ,and 44 strains were sensitive to Ceftazidim and by E test method for Imipenem antibiotic ,120 strains were sensitive. Conclusion: The high prevalence of antibiotic resistance and ESBLs production in the cities which were studied indicates the need for screening of ESBLs in clinical samples by labora-tory and prescribing appropriate antibiotics with ?-lactamase inhibitory power and antibiotics together with clavulanic by physicians. (Sci J Hamadan Univ

  12. Antibiotic Resistance of Shigella Species in Iran

    A.Mehr-Movahed; J. Nikkhah

    1987-01-01

    Antibiotic resistance in Shigella species has been showing a rising trend all over the world. This study was performed to discover the state of antibiotic resistance of Shigella species with regards to six common antibiotics in use in Iran.

  13. Antibiotic resistance of lactic acid bacteria

    Bulajić Snežana

    2008-01-01

    Full Text Available Knowledge on the antibiotic resistance of lactic acid bacteria is still limited, possibly because of the large numbers of genera and species encountered in this group, as well as variances in their resistance spectra. The EFSA considers antibiotic resistances, especially transferable resistances, an important decision criterion for determining a strain's QPS status. There are no approved standards for the phenotypic or genotypic evaluation of antibiotic resistances in food isolates. Also, the choice of media is problematic, as well as the specification of MIC breakpoint values as a result of the large species variation and the possible resulting variation in MIC values between species and genera. The current investigations in this field showed that we might end up with a range of different species- or genus-specific breakpoint values that may further increase the current complexity. Another problem associated with safety determinations of starter strains is that once a resistance phenotype and an associated resistance determinant have been identified, it becomes difficult to show that this determinant is not transferable, especially if the resistance gene is not located on a plasmid and no standard protocols for showing genetic transfer are available. Encountering those problems, the QPS system should allow leeway for the interpretations of results, especially when these relate to the methodology for resistance phenotype determinations, determinations of MIC breakpoints for certain genera, species, or strains, the nondeterminability of a genetic basis of a resistance phenotype and the transferability of resistance genes.

  14. Antibiotics and the resistant microbiome

    Sommer, Morten; Dantas, Gautam

    2011-01-01

    . Less appreciated are the concomitant changes in the human microbiome in response to these assaults and their contribution to clinical resistance problems. Studies have shown that pervasive changes to the human microbiota result from antibiotic treatment and that resistant strains can persist for years....... Additionally, culture-independent functional characterization of the resistance genes from the microbiome has demonstrated a close evolutionary relationship between resistance genes in the microbiome and in pathogens. Application of these techniques and novel cultivation methods are expected to significantly...... expand our understanding of the interplay between antibiotics and the microbiome....

  15. Antibiotic susceptibility of members of the Lactobacillus acidophilus group using broth microdilution and molecular identification of their resistance determinants

    Mayrhofer, S.; Hoek, van A.H.A.M.; Mair, C.; Huys, G.; Aarts, H.J.M.; Kneifel, W.; Domig, K.J.

    2010-01-01

    The range of antibiotic susceptibility to 13 antibiotics in 101 strains of the Lactobacillus acidophilus group was examined using the lactic acid bacteria susceptibility test medium (LSM) and broth microdilution. Additionally, microarray analysis and PCR were applied to identify resistance genes res

  16. Antibiotic resistance of bacterial biofilms

    Hoiby, N.; Bjarnsholt, T.; Givskov, M.;

    2010-01-01

    A biofilm is a structured consortium of bacteria embedded in a self-produced polymer matrix consisting of polysaccharide, protein and DNA. Bacterial biofilms cause chronic infections because they show increased tolerance to antibiotics and disinfectant chemicals as well as resisting phagocytosis...... to antibiotics. Biofilm growth is associated with an increased level of mutations as well as with quorum-sensing-regulated mechanisms. Conventional resistance mechanisms such as chromosomal beta-lactamase, upregulated efflux pumps and mutations in antibiotic target molecules in bacteria also contribute...... to the survival of biofilms. Biofilms can be prevented by early aggressive antibiotic prophylaxis or therapy and they can be treated by chronic suppressive therapy. A promising strategy may be the use of enzymes that can dissolve the biofilm matrix (e.g. DNase and alginate lyase) as well as quorum...

  17. Antibiotic Resistance in Childhood with Pneumococcal Infection

    Ali Gunes

    2013-10-01

    Full Text Available Aim: Resistance to antibiotics is better. Between should not be in capitals. Antibiotics resistant has been increasing in pneumococci that cause serious diseases such as pneumonia, meningitis in recent years. The resistance rates vary between geographic regions. In this study, we aimed to determine antibiotic resistance rates in pneumococcal infections in our region. Material and Method: This study included 31 pneumococcal strains isolated from blood, CSF and urine samples of patients with meningitis, sepsis and urinary tract infections who admitted Dicle University Medicine School Children Clinic and Diyarbakir Pediatric Hospital Between December 2004-April 2007. Reproducing clinical specimens with alpha-hemolysis, optochin-sensitive, bile soluble and gram-positive diplococci morphology was defined as S. pneumoniae. The antimicrobial susceptibilities of strains were measured by the E-test method. MIC values of penicillin against pneumococci was accepted as <0.06 mg / ml value of the sensitive, 0.12-1μg/ml mid-level resistance, ≥ 2 mg / ml value of the high-level resistance. Results: It was found 16% mid-level penicillin resistance and 3.2% high-level penicillin resistance by E-test method. 80.7% of Strains were percent of the penicillin-sensitive. Seftiriakson resistance was found as 3.2%. there was not Vancomycin resistance. Discussion: We think penicillin therapy is enough effective for pneumococcal infections except serious conditions such as meningitis and sepsis. Also we think it should be supported by multicenter studies.

  18. Antibiotic and Antimicrobial Resistance: Threat Report 2013

    ... this? Submit What's this? Submit Button Antibiotic Resistance Threats in the United States, 2013 Recommend on Facebook Tweet Share Compartir This report, Antibiotic resistance threats in the United States, 2013 gives a first- ...

  19. Antibiotic Resistance in Wastewater : Methicillin-resistant Staphylococcus aureus (MRSA)and antibiotic resistance genes

    Börjesson, Stefan

    2009-01-01

    A large part of the antibiotics consumed ends up in wastewater, and in the wastewater the antibiotics may exert selective pressure for or maintain resistance among microorganisms. Antibiotic resistant bacteria and genes encoding antibiotic resistance are commonly detected in wastewater, often at higher rates and concentrations compared to surface water. Wastewater can also provide favourable conditions for the growth of a diverse bacterial community, which constitutes a basis for the selectio...

  20. Environmental dissemination of antibiotic resistance genes and correlation to anthropogenic contamination with antibiotics

    Björn Berglund

    2015-09-01

    Full Text Available Antibiotic resistance is a growing problem which threatens modern healthcare globally. Resistance has traditionally been viewed as a clinical problem, but recently non-clinical environments have been highlighted as an important factor in the dissemination of antibiotic resistance genes (ARGs. Horizontal gene transfer (HGT events are likely to be common in aquatic environments; integrons in particular are well suited for mediating environmental dissemination of ARGs. A growing body of evidence suggests that ARGs are ubiquitous in natural environments. Particularly, elevated levels of ARGs and integrons in aquatic environments are correlated to proximity to anthropogenic activities. The source of this increase is likely to be routine discharge of antibiotics and resistance genes, for example, via wastewater or run-off from livestock facilities and agriculture. While very high levels of antibiotic contamination are likely to select for resistant bacteria directly, the role of sub-inhibitory concentrations of antibiotics in environmental antibiotic resistance dissemination remains unclear. In vitro studies have shown that low levels of antibiotics can select for resistant mutants and also facilitate HGT, indicating the need for caution. Overall, it is becoming increasingly clear that the environment plays an important role in dissemination of antibiotic resistance; further studies are needed to elucidate key aspects of this process. Importantly, the levels of environmental antibiotic contamination at which resistant bacteria are selected for and HGT is facilitated at should be determined. This would enable better risk analyses and facilitate measures for preventing dissemination and development of antibiotic resistance in the environment.

  1. Emerging antibiotic resistance in bacteria with special reference to India

    D Raghunath

    2008-11-01

    The antibiotic era started in the 1940s and changed the profile of infectious diseases and human demography. The burgeoning classes and numbers promised much and elimination of this major cause of human (and animal) morbidity appeared possible. Bacterial antibiotic resistance which was observed soon after antibiotic introduction has been studied extensively. Diverse mechanisms have been demonstrated and the genetic basis elucidated. The resilience of the prokaryote ecosystems to antibiotic stress has been realized. The paper presents these subjects briefly to afford an overview. The epidemiology of antibiotic resistance is dealt with and community practices in different countries are described. The role of high antibiotic usage environments is indicated. The implication of the wide use of antibiotics in animals has been pointed out. Steadily increasing antibiotic resistance and decreasing numbers of newer antibiotics appear to point to a post-antibiotic period during which treatment of infections would become increasingly difficult. This article attempts to review the global antimicrobial resistance scene and juxtaposes it to the Indian experience. The prevalence in India of antibiotic resistance among major groups of pathogens is described. The factors that determine the prevalent high antibiotic resistance rates have been highlighted. The future research activity to ensure continued utility of antibiotics in the control of infections has been indicated.

  2. [Antibiotic resistance of bacteria to 6 antibiotics in secondary effluents of municipal wastewater treatment plants].

    Lu, Sun-Qin; Li, Yi; Huang, Jing-Jing; Wei, Bin; Hu, Hong-Ying

    2011-11-01

    Prevalence of antibiotic-resistant bacteria in wastewater effluents is concerned as an emerging contaminant. To estimate antibiotic resistance in secondary effluents of municipal wastewater treatment plants, antibiotic tolerance of heterotrophic bacteria, proportion of antibiotic-resistant bacteria and hemi-inhibitory concentrations of six antibiotics (penicillin, ampicillin, cefalexin, chloramphenicol, tetracycline and rifampicin) were determined at two wastewater treatment plants (WWTPs) in Beijing. The results showed that proportions of ampicillin-resistant bacteria in WWTP-G and chloramphenicol-resistant bacteria in WWTP-Q were highest to 59% and 44%, respectively. The concentrations of ampicillin-resistant bacteria in the effluents of WWTP-G and WWTP-Q were as high as 4.0 x 10(3) CFU x mL(-1) and 3.5 x 10(4) CFU x mL(-1), respectively; the concentrations of chloramphenicol-resistant bacteria were 4.9 x 10(2) CFU x mL(-1) and 4.6 x 10(4) CFU x mL(-1), respectively. The data also indicated that the hemi-inhibitory concentrations of heterotrophic bacteria to 6 antibiotics were much higher than common concentrations of antibiotics in sewages, which suggested that antibiotic-resistant bacteria could exist over a long period in the effluents with low concentrations of antibiotics. Antibiotic-resistant bacteria could be a potential microbial risk during sewage effluent reuse or emission into environmental waters. PMID:22295644

  3. Automated ribotyping and antibiotic resistance determining of Bacillus spp from conjunctiva of diabetic patients

    Sertaç Argun Kıvanç

    2014-02-01

    Conclusion: Diabetic patients seem to be more prone to B. cereus infections than healthy individuals. It would be greatly beneficial to understand and recognize the prevalence of microorganisms and their resistance patterns for better outcome in ocular surgeries.

  4. Phylogenetic relatedness determined between antibiotic resistance and 16S rRNA genes in actinobacteria

    Ságová-Marečková, M.; Ulanová, Dana; Šanderová, P.; Omelka, M.; Kameník, Zdeněk; Olšovská, J.; Kopecký, J.

    2015-01-01

    Roč. 15, APR 2015 (2015). ISSN 1471-2180 Institutional support: RVO:61388971 Keywords : Actinobacteria * 16S rRNA diversity * Resistance genes Subject RIV: EE - Microbiology , Virology Impact factor: 2.729, year: 2014

  5. MOLECULAR DETECTION OF ANTIBIOTIC-RESISTANCE DETERMINANTS IN ESCHERICHIA COLI ISOLATED FROM THE ENDANGERED AUSTRALIAN SEA LION (NEOPHOCA CINEREA).

    Delport, Tiffany C; Harcourt, Robert G; Beaumont, Linda J; Webster, Koa N; Power, Michelle L

    2015-07-01

    Greater interaction between humans and wildlife populations poses significant risks of anthropogenic impact to natural ecosystems, especially in the marine environment. Understanding the spread of microorganisms at the marine interface is therefore important if we are to mitigate adverse effects on marine wildlife. We investigated the establishment of Escherichia coli in the endangered Australian sea lion (Neophoca cinerea) by comparing fecal isolation from wild and captive sea lion populations. Fecal samples were collected from wild colonies March 2009-September 2010 and from captive individuals March 2011-May 2013. Using molecular screening, we assigned a phylotype to E. coli isolates and determined the presence of integrons, mobile genetic elements that capture gene cassettes conferring resistance to antimicrobial agents common in fecal coliforms. Group B2 was the most abundant phylotype in all E. coli isolates (n = 37), with groups A, B1, and D also identified. Integrons were not observed in E. coli (n = 21) isolated from wild sea lions, but were identified in E. coli from captive animals (n = 16), from which class I integrases were detected in eight isolates. Sequencing of gene cassette arrays identified genes conferring resistance to streptomycin-spectinomycin (aadA1) and trimethoprim (dfrA17, dfrB4). Class II integrases were not detected in the E. coli isolates. The frequent detection in captive sea lions of E. coli with resistance genes commonly identified in human clinical cases suggests that conditions experienced in captivity may contribute to establishment. Identification of antibiotic resistance in the microbiota of Australian sea lions provides crucial information for disease management. Our data will inform conservation management strategies and provide a mechanism to monitor microorganism dissemination to sensitive pinniped populations. PMID:25919463

  6. Controlling antibiotic resistance in the ICU

    Derde, L.P.G.

    2013-01-01

    Patients admitted to intensive care units (ICUs) are frequently colonized with (antibiotic-resistant) bacteria, which may lead to healthcare associated infections. Antimicrobial-resistant bacteria (AMRB), such as methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococci (V

  7. Probiotic approach to prevent antibiotic resistance.

    Ouwehand, Arthur C; Forssten, Sofia; Hibberd, Ashley A; Lyra, Anna; Stahl, Buffy

    2016-06-01

    Probiotics are live microorganisms, mainly belonging to the genera Lactobacillus and Bifidobacterium, although also strain of other species are commercialized, that have a beneficial effect on the host. From the perspective of antibiotic use, probiotics have been observed to reduce the risk of certain infectious disease such as certain types of diarrhea and respiratory tract infection. This may be accompanied with a reduced need of antibiotics for secondary infections. Antibiotics tend to be effective against most common diseases, but increasingly resistance is being observed among pathogens. Probiotics are specifically selected to not contribute to the spread of antibiotic resistance and not carry transferable antibiotic resistance. Concomitant use of probiotics with antibiotics has been observed to reduce the incidence, duration and/or severity of antibiotic-associated diarrhea. This contributes to better adherence to the antibiotic prescription and thereby reduces the evolution of resistance. To what extent probiotics directly reduce the spread of antibiotic resistance is still much under investigation; but maintaining a balanced microbiota during antibiotic use may certainly provide opportunities for reducing the spread of resistances. Key messages Probiotics may reduce the risk for certain infectious diseases and thereby reduce the need for antibiotics. Probiotics may reduce the risk for antibiotic-associated diarrhea Probiotics do not contribute to the spread of antibiotic resistance and may even reduce it. PMID:27092975

  8. Antibiotic Resistance of Shigella Species in Iran

    A.Mehr-Movahed

    1987-07-01

    Full Text Available Antibiotic resistance in Shigella species has been showing a rising trend all over the world. This study was performed to discover the state of antibiotic resistance of Shigella species with regards to six common antibiotics in use in Iran.

  9. DETERMINATION OF THE SPECTRUM OF ANTIBIOTIC RESISTANCE GENES HAVE PHENOTYPIC RESISTANT STRAINS OF PARIETAL INTESTINAL MICROBIOTA IN RATS BY RT-PCR

    Bukina Y.V.

    2016-06-01

    Full Text Available Introduction. The problem of formation of bacterial resistance to glycopeptides and beta-lactam antibiotics (cephalosporins and carbapenems are used worldwide for the treatment of severe community acquired and nosocomial infections, especially caused by polymicrobial flora has become global and is a major factor limiting the effectiveness of antibiotic therapy. In this regard, the study of genetic microbial resistance determinants allows not only to carry out an effective antibiotic therapy, but also to identify two main processes leading to the development of epidemiologically significant events: the introduction of the agent in the risk population from the outside and in situ pathogen (spontaneous genetic drift targeted restructuring of the population. Therefore, the aim of our study was to investigate the resistance genes to carbapenems, cephalosporins, glycopeptides have clinically important phenotype of resistant strains of microorganisms families Enterobacteriaceae, Pseudomonadaceae, Bacteroidaceae, Enterococcaceae, Peptostreptococcaceae. Materials and methods. As a material for PCR studies 712 phenotypically resistant strains of microorganisms isolated from 80 rats "Wistar" line in microbiological study microflora of the wall were used. During the investigation 474 isolates of bacteria of the family Enterobacteriaceae, 39 - Pseudomonadaceae, 71 - Bacteroidaceae, 96 - Enterococcaceae, 32 - Peptostreptococcaceae were studied. Isolation of DNA from bacteria in the study was performed using reagents "DNA-Express" ("Litekh", Russia. For the detection of resistance genes by PCR in real time (RT-PCR reagent kits "FLUOROPOL-RV" ("Litekh", Russia were used. During the experiment, the VIM genes, OXA-48, NDM, KPC, responsible for the resistance of microorganisms to carbapenems, CTX-M - resistance to cephalosporins, as well as genes Van A and van B, the development of resistance to glycopeptides (vancomycin and teicoplanin were determined. Analysis

  10. Determining Sources of Fecal Pollution in a Rural Virginia Watershed with Antibiotic Resistance Patterns in Fecal Streptococci

    Hagedorn, Charles; Robinson, Sandra L.; Filtz, Jennifer R.; Grubbs, Sarah M.; Angier, Theresa A.; Reneau, Raymond B.

    1999-01-01

    Nonpoint sources of pollution that contribute fecal bacteria to surface waters have proven difficult to identify. Knowledge of pollution sources could aid in restoration of the water quality, reduce the amounts of nutrients leaving watersheds, and reduce the danger of infectious disease resulting from exposure to contaminated waters. Patterns of antibiotic resistance in fecal streptococci were analyzed by discriminant and cluster analysis and used to identify sources of fecal pollution in a r...

  11. Diversity and dynamics of antibiotic-resistant bacteria in cheese as determined by PCR denaturing gradient gel electrophoresis.

    Flórez, Ana Belén; Mayo, Baltasar

    2015-12-01

    This work reports the composition and succession of tetracycline- and erythromycin-resistant bacterial communities in a model cheese, monitored by polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE). Bacterial 16S rRNA genes were examined using this technique to detect structural changes in the cheese microbiota over manufacturing and ripening. Total bacterial genomic DNA, used as a template, was extracted from cultivable bacteria grown without and with tetracycline or erythromycin (both at 25 μg ml(-1)) on a non-selective medium used for enumeration of total and viable cells (Plate Count agar with Milk; PCA-M), and from those grown on selective and/or differential agar media used for counting various bacterial groups; i.e., lactic acid bacteria (de Man, Rogosa and Sharpe agar; MRSA), micrococci and staphylococci (Baird-Parker agar; BPA), and enterobacteria (Violet Red Bile Glucose agar; VRBGA). Large numbers of tetracycline- and erythromycin-resistant bacteria were detected in cheese samples at all stages of ripening. Counts of antibiotic-resistant bacteria varied widely depending on the microbial group and the point of sampling. In general, resistant bacteria were 0.5-1.0 Log10 units fewer in number than the corresponding susceptible bacteria. The PCR-DGGE profiles obtained with DNA isolated from the plates for total bacteria and the different bacterial groups suggested Escherichia coli, Lactococcus lactis, Enterococcus faecalis and Staphylococcus spp. as the microbial types resistant to both antibiotics tested. This study shows the suitability of the PCR-DGGE technique for rapidly identifying and tracking antibiotic resistant populations in cheese and, by extension, in other foods. PMID:26241491

  12. Antibiotic resistance pattern in uropathogens

    Gupta V

    2002-01-01

    Full Text Available Uropathogenic strains from inpatient and outpatient departments were studied from April 1997 to March 1999 for their susceptibility profiles. The various isolates were Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis, Acinetobacter baumanii and Enterococcus faecalis. Antibiotic susceptibility pattern of these isolates revealed that for outpatients, first generation cephalosporins, nitrofurantoin, norfloxacin/ciprofloxacin were effective for treatment of urinary tract infection but for inpatients, parenteral therapy with newer aminoglycosides and third generation cephalosporins need to be advocated as the organisms for nosocomial UTI exhibit a high degree of drug resistance. Trimethoprim and sulphamethoxazole combination was not found to be effective for the treatment of urinary tract infections as all the uropathogens from inpatients and outpatients showed high degree of resistance to co-trimoxazole. Culture and sensitivity of the isolates from urine samples should be done as a routine before advocating the therapy.

  13. Emergence of Multidrug-Resistant Pseudomonas aeruginosa: Detection of Isolates harboring blaCTX gene causing infections in hospital and determination of their susceptibility to antibiotics

    Z Rabani

    2015-11-01

    Full Text Available Background & aim: Because of its ubiquitous nature, ability to survive in moist environments, and innate resistance to many antibiotics and antiseptics, P. aeruginosa is a common pathogen in hospitals. The goals of this study were detection of Psudomonas aeruginosa harboring blaCTX gene causing infections in hospitals and determination of their susceptibility to antibiotics and ESBL production. Methods: In the present cross-sectional study, clinical samples from hospitalized patients were collected and culture was done on apropriate media. Final identification was performed using biochemical tests and API 20NE system. According to the protocol CLSI 2014 disc diffusion, combination disk, modified hodge test (MHT and E-test were used for antibiotic susceptibility, ESBL production, carbapenemas production, and MIC values of imipenem respectively. The blaCTX gene was detected in the isolates by PCR molecular method. Results: In the current study, 45 isolates of Pseudomonas aeroginosa were obtained from hospitalized patients, consisting of 19 males (42.2% and 26 females (57.8%. As observed, 57.8% (26 strains of isolates were recovered from sputum. The most effective antibiotics against isolates were amikacin and colistin with 97.8% suseptibility whereas the highest resistance was to cefotaxime (97.8%. As revealed 77.8% of isolates showed response to group 2 carbapenems (imipenem, meropenem. All imipenem resistant strains had the MIC more than 32. Seventeen strains (37.7% were  showed resistant to quinolones (ciprofloxacin, norfloxacin. The results of PCR on blaCTX gene indicated that 15.5% of the isolates possess the gene. Conclusion: Carbapenem group of antibiotic in 22% of infections caused by Pseudomonas aeruginosa were ineffective and indiscriminate prescribing of these drugs will increase the ratet of resistance.

  14. Sensitivity of antibiotic resistant and antibiotic susceptible Escherichia coli, Enterococcus and Staphylococcus strains against ozone.

    Heß, Stefanie; Gallert, Claudia

    2015-12-01

    Tolerance of antibiotic susceptible and antibiotic resistant Escherichia coli, Enterococcus and Staphylococcus strains from clinical and wastewater samples against ozone was tested to investigate if ozone, a strong oxidant applied for advanced wastewater treatment, will affect the release of antibiotic resistant bacteria into the aquatic environment. For this purpose, the resistance pattern against antibiotics of the mentioned isolates and their survival after exposure to 4 mg/L ozone was determined. Antibiotic resistance (AR) of the isolates was not correlating with higher tolerance against ozone. Except for ampicillin resistant E. coli strains, which showed a trend towards increased resistance, E. coli strains that were also resistant against cotrimoxazol, ciprofloxacin or a combination of the three antibiotics were similarly or less resistant against ozone than antibiotic sensitive strains. Pigment-producing Enterococcus casseliflavus and Staphylococcus aureus seemed to be more resistant against ozone than non-pigmented species of these genera. Furthermore, aggregation or biofilm formation apparently protected bacteria in subsurface layers from inactivation by ozone. The relatively large variance of tolerance against ozone may indicate that resistance to ozone inactivation most probably depends on several factors, where AR, if at all, does not play a major role. PMID:26608763

  15. The determination of resistance to ertapenem and other antibiotics with ESBL product of Enterobacteriaceae isolated from urine samples

    Aytekin Çıkman

    2014-09-01

    Full Text Available Objective: Enterobacteriaceae is the most frequently isolated bacteria in urinary system infections. This study investigated the antibiotic susceptibility including ertapenem and extended-spectrum beta-lactamase production of bacteria belons to Enterobacteriaceae isolated from the urinary culture. Methods: Enterobacteriaceae strains, identified by using conventional methods in our laboratory between January 2012 and March 2012, were included the study. The antibiotic susceptibilities were investigated with the KirbyBauer disc diffusion method and the ESBL productions were examined with the double-disc synergy method in accordance with the suggestions of Clinical and Laboratory Standards Institute. Results:In the study, a total of 148 strains were isolated (117 E.coli, 23 Klebsiella spp. and 4 Proteus spp. and 4 Enterobacter spp.. While 26 of E.coli strains (22%, and 8 of Klebsiella spp. strains (35% were considered ESBL positive, no ESBL roduction was determined for Proteus spp. and Enterobacter spp. strains. All the isolated strains were found to be susceptible to ertapenem and meropenem. Amikacin, piperacillin-tazobactam and cefoxitin were determined to be other antibiotics with the greatest effect on Enterobacteriaceae species. Conclusion: Ertapenem was observed to be alternative in the treatment of Enterobacteriaceae isolated from the urinary culture. Carbapenems in particular, amikacin, piperacillin-tazobactam and cefoxitin were found to be the most effective antibiotics in the treatment of this infection.

  16. Antibiotic resistance and presence of tetracycline resistance determinants tet(V) and tap in diverse fast-growing mycobacteria from agricultural soils and clinical isolates

    Kyselková, Martina; Chroňáková, Alica; Němec, Jan; Stehlíková, Z.; Scharfen, J.; Elhottová, Dana

    Praha : Centre of Environmental Microbiology, 2011. s. 266. [Ecology of Soil Microorganisms 2011. Microbes as Important Drivers of Soil Processes. 27.04.2011-01.05.2011, Praha] R&D Projects: GA ČR GAP504/10/2077; GA MŠk LC06066 Institutional research plan: CEZ:AV0Z60660521 Keywords : tetracycline resistance * antibiotic resistance * fast-growing mycobacteria Subject RIV: EH - Ecology, Behaviour

  17. The global problem of antibiotic resistance.

    Gootz, Thomas D

    2010-01-01

    Amid the recent attention justly focused on the potential problem of microbial sources for weapons of bioterrorism, it is also apparent that human pathogens frequently isolated from infections in patients from community and hospital sources have been growing more resistant to commonly used antibiotics. Much of the growth of multiple-drug-resistant (MDR) bacterial pathogens can be contributed to the overuse of broad-spectrum antimicrobial products. However, an equally troubling and often overlooked component of the problem involves the elegant ways in which pathogenic bacteria continually evolve complex genetic systems for acquiring and regulating an endless array of antibiotic-resistance mechanisms. Efforts to develop new antimicrobials have over the past two decades been woefully behind the rapid evolution of resistance genes developing among both gram-positive and gram-negative pathogens. Several new agents that are best suited for use in the hospital environment have been developed to combat staphylococci resistant to beta-lactam antimicrobials following acquisition of the mecA gene. However, the dramatic spread in the US of the now common community strain of Staphylococcus aureus USA300 has shifted the therapeutic need for new antibiotics useful against MRSA to the community. As the pharmaceutical industry focused on discovering new agents for use against MRSA, hospitals in many parts of the world have seen the emergence of gram-negative pathogens such as Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae that are clinically resistant to almost all available antimicrobials. Such MDR isolates usually contain multiple-resistance determinants, including loss of outer membrane porins via gene inactivation by chromosomally encoded insertion sequences, up-regulation of inate efflux pumps, as well as acquisition of drug-inactivating enzymes whose genes are encoded on self-transmissible plasmids, integrons, and complex transposable elements

  18. Rapid determination of resistance to antibiotics in surgical clinical practice based on the measurement of radioactive carbon dioxide

    For the objective choice of an antibiotic a method is needed which is capable of giving informations with an essentially shorter time delay than that of the conventional bacteriological tests i.e. practically in a few hours concerning the sensitivity to the tested antibiotic of the pathogen germ cultured from the sample withdrawn from the patient under surgical treatment. The new measurement method is based on the incubation of the test material in an adequate medium containing glucose labelled with C-14 as only sugar source. The amount of the formed 14CO2 is proportional to the multiplication rate of the bacterium. Experience observed with 312 surgical patients indicated that the sensitivity to an antibiotic agent can be determined in 4-6 hours from the septic intergrowth or from the discharge obtained during the surgical action and in the case of chronical diseases the successfulness of the treatment with the antibiotic can be established precisely. The equipment needed for the tests is simple and the measurements can be carried out readily in hospital laboratories. (P.J.)

  19. Association of virulence plasmid and antibiotic resistance determinants with chromosomal multilocus genotypes in Mexican Salmonella enterica serovar Typhimurium strains

    Silva Claudia

    2009-07-01

    Full Text Available Abstract Background Bacterial genomes are mosaic structures composed of genes present in every strain of the same species (core genome, and genes present in some but not all strains of a species (accessory genome. The aim of this study was to compare the genetic diversity of core and accessory genes of a Salmonella enterica subspecies enterica serovar Typhimurium (Typhimurium population isolated from food-animal and human sources in four regions of Mexico. Multilocus sequence typing (MLST and macrorestriction fingerprints by pulsed-field gel electrophoresis (PFGE were used to address the core genetic variation, and genes involved in pathogenesis and antibiotic resistance were selected to evaluate the accessory genome. Results We found a low genetic diversity for both housekeeping and accessory genes. Sequence type 19 (ST19 was supported as the founder genotype of STs 213, 302 and 429. We found a temporal pattern in which the derived ST213 is replacing the founder ST19 in the four geographic regions analyzed and a geographic trend in the number of resistance determinants. The distribution of the accessory genes was not random among chromosomal genotypes. We detected strong associations among the different accessory genes and the multilocus chromosomal genotypes (STs. First, the Salmonella virulence plasmid (pSTV was found mostly in ST19 isolates. Second, the plasmid-borne betalactamase cmy-2 was found only in ST213 isolates. Third, the most abundant integron, IP-1 (dfrA12, orfF and aadA2, was found only in ST213 isolates. Fourth, the Salmonella genomic island (SGI1 was found mainly in a subgroup of ST19 isolates carrying pSTV. The mapping of accessory genes and multilocus genotypes on the dendrogram derived from macrorestiction fingerprints allowed the establishment of genetic subgroups within the population. Conclusion Despite the low levels of genetic diversity of core and accessory genes, the non-random distribution of the accessory genes

  20. What Can Be Done about Antibiotic Resistance?

    ... WHO issued its Global Strategy for Containment of Antimicrobial Resistance , a document aimed at policy-makers that urges ... of existing antibiotics by modifying them so the bacterial enzymes that cause resistance cannot attack them. Alternately, "decoy" molecules can be ...

  1. Priorities for antibiotic resistance surveillance in Europe

    Fluit, A. C.; van der Bruggen, J. T.; Aarestrup, Frank Møller; Verhoef, J.; Jansen, W. T. M.

    2006-01-01

    Antibiotic resistance is an increasing global problem. Surveillance studies are needed to monitor resistance development, to guide local empirical therapy, and to implement timely and adequate countermeasures. To achieve this, surveillance studies must have standardised methodologies, be longitud......Antibiotic resistance is an increasing global problem. Surveillance studies are needed to monitor resistance development, to guide local empirical therapy, and to implement timely and adequate countermeasures. To achieve this, surveillance studies must have standardised methodologies, be...... various reservoirs of antibiotic-resistant bacteria, such as hospitalised patients, nursing homes, the community, animals and food. Two studies that could serve as examples of tailored programmes are the European Antimicrobial Resistance Surveillance System (EARSS), which collects resistance data during...... development of antibiotic resistance....

  2. Antibiotic resistance: a physicist’s view

    Allen, Rosalind; Waclaw, Bartłomiej

    2016-08-01

    The problem of antibiotic resistance poses challenges across many disciplines. One such challenge is to understand the fundamental science of how antibiotics work, and how resistance to them can emerge. This is an area where physicists can make important contributions. Here, we highlight cases where this is already happening, and suggest directions for further physics involvement in antimicrobial research.

  3. Multiple antibiotic resistance in Stenotrophomonas maltophilia.

    Alonso, A.; Martínez, J L

    1997-01-01

    A cryptic multidrug resistance (MDR) system in Stenotrophomonas maltophilia, the expression of which is selectable by tetracycline, is described. Tetracycline resistance was the consequence of active efflux of the antibiotic, and it was associated with resistance to quinolones and chloramphenicol, but not to aminoglycosides or beta-lactam antibiotics. MDR is linked to the expression of an outer membrane protein (OMP54) both in a model system and in multidrug-resistant clinical isolates.

  4. Effects of antibiotic treatment of nonlactating dairy cows on antibiotic resistance patterns of bovine mastitis pathogens.

    Berghash, S R; Davidson, J. N.; Armstrong, J. C.; Dunny, G M

    1983-01-01

    Antibiotic resistance patterns of the major groups of bovine mastitis pathogens (Streptococcus agalactiae, other streptococci, Staphylococcus aureus, and Staphylococcus epidermidis) were examined by determining the minimum inhibitory concentration (MIC) of 13 different antibiotics against bacterial isolates from dairy cattle. The bacterial strains were obtained from milk samples from each cow in 21 New York state dairy herd surveys. In 12 herd surveys (high antibiotic-use group), all 365 cows...

  5. Background antibiotic resistance patterns in antibiotic-free pastured poultry production

    Antibiotic resistance (AR) is a significant public health issue, and agroecosystems are often viewed as major environmental sources of antibiotic resistant foodborne pathogens. While the use of antibiotics in agroecosystems can potentially increase AR, appropriate background resistance levels in th...

  6. Non-invasive determination of conjugative transfer of plasmids bearing antibiotic-resistance genes in biofilm-bound bacteria: effects of substrate loading and antibiotic selection

    Ma, Hongyan; Bryers, James D.

    2012-01-01

    Biofilms cause much of all human microbial infections. Attempts to eradicate biofilm-based infections rely on disinfectants and antibiotics. Unfortunately, biofilm bacteria are significantly less responsive to antibiotic stressors than their planktonic counterparts. Sublethal doses of antibiotics can actually enhance biofilm formation. Here, we have developed a non-invasive microscopic image analyses to quantify plasmid conjugation within a developing biofilm. Corroborating destructive sample...

  7. Detection of antibiotic resistance in probiotics of dietary supplements

    Wong, Aloysius Tze

    2015-09-14

    Background Probiotics are live microorganisms that confer nutrition- and health-promoting benefits if consumed in adequate amounts. Concomitant with the demand for natural approaches to maintaining health is an increase in inclusion of probiotics in food and health products. Since probiotic bacteria act as reservoir for antibiotic resistant determinants, the transfer of these genes to pathogens sharing the same intestinal habitat is thus conceivable considering the fact that dietary supplements contain high amounts of often heterogeneous populations of probiotics. Such events can confer pathogens protection against commonly-used drugs. Despite numerous reports of antibiotic resistant probiotics in food and biological sources, the antibiogram of probiotics from dietary supplements remained elusive. Findings Here, we screened five commercially available dietary supplements for resistance towards antibiotics of different classes. Probiotics of all batches of products were resistant towards vancomycin while batch-dependent resistance towards streptomycin, aztreonam, gentamycin and/or ciprofloxacin antibiotics was detected for probiotics of brands Bi and Bn, Bg, and L. Isolates of brand Cn was also resistant towards gentamycin, streptomycin and ciprofloxacin antibiotics. Additionally, we also report a discrepancy between the enumerated viable bacteria amounts and the claims of the manufacturers. Conclusions This short report has highlighted the present of antibiotic resistance in probiotic bacteria from dietary supplements and therefore serves as a platform for further screenings and for in-depth characterization of the resistant determinants and the molecular machinery that confers the resistance.

  8. Genotypic Detection of Antibiotic Resistance in "Escherichia Coli.": A Classroom Exercise

    Longtin, Sarah; Guilfoile, Patrick; Asper, Andrea

    2004-01-01

    Bacterial antibiotic resistance remains a problem of clinical importance. Current microbiological methods for determining antibiotic resistance are based on culturing bacteria, and may require up to 48 hours to complete. Molecular methods are increasingly being developed to speed the identification of antibiotic resistance and to determine its…

  9. Antibiotic Resistance Pattern of Gram-Negative Bacteria in Gorgan

    Golsha, R. (MD

    2014-06-01

    Full Text Available Background and Objective: The excessive use of broad-spectrum antibiotics will lead to drug resistance of microorganism and specially nosocomial organisms. Because of high incidence of antibiotic resistance in hospitals, we aimed to study antibiotic resistance to gram negative bacteria. Material and Methods: This cross-sectional study was conducted on the data of biological samples (2006-2008, with positive culture result. Using antibiogram, microbial resistance to isolated microorganism was determined, and after culturing the samples, bacteria were identified by using differential media and antiserum. Then, antibiotic resistance was performed by disk diffusion. Results: The most common gram-negative microorganism obtained from all cultures was E.coli with the lowest drug resistance to Nitrofurantoin. Conclusion: Based on the results, antimicrobial resistance pattern is not the same in different places and furthermore it is ever changing. Therefore, further research is needed to be done to have an accurate pattern of antibiotic resistance to provide effective treatment regimens. Key words: Antibiotic Resistance; Disk Diffusion; Gram Negative Bacteria; Gorgan

  10. Antibiotic resistance: are we all doomed?

    Collignon, P

    2015-11-01

    Antibiotic resistance is a growing and worrying problem associated with increased deaths and suffering for people. Overall, there are only two factors that drive antimicrobial resistance, and both can be controlled. These factors are the volumes of antimicrobials used and the spread of resistant micro-organisms and/or the genes encoding for resistance. The One Health concept is important if we want to understand better and control antimicrobial resistance. There are many things we can do to better control antimicrobial resistance. We need to prevent infections. We need to have better surveillance with good data on usage patterns and resistance patterns available across all sectors, both human and agriculture, locally and internationally. We need to act on these results when we see either inappropriate usage or resistance levels rising in bacteria that are of concern for people. We need to ensure that food and water sources do not spread multi-resistant micro-organisms or resistance genes. We need better approaches to restrict successfully what and how antibiotics are used in people. We need to restrict the use of 'critically important' antibiotics in food animals and the entry of these drugs into the environment. We need to ensure that 'One Health' concept is not just a buzz word but implemented. We need to look at all sectors and control not only antibiotic use but also the spread and development of antibiotic resistant bacteria - both locally and internationally. PMID:26563691

  11. Identification of Antibiotic Use Pattern as an Effort to Control Antibiotic Resistance

    Ivan S. Pradipta; Ellin Febrina; Muhammad H. Ridwan; Rani Ratnawati

    2012-01-01

    The objective of this study is to determine quantity and pattern of antibiotic use in hospitalized patients at one of Bandung’s private hospital that can give benefit in control of antibiotic resistance and procurement planning of antibiotic. Data of antibiotic consumption were obtained from hospital pharmacy department on February–September 2011. Data were processed using the ATC/DDD and DU90% method. There were 390,98 DDD/100 bed days and 381,34 DDD/100 bed days total of an-tbiotic use i...

  12. Mining metagenomic datasets for antibiotic resistance genes

    Antibiotics are medicines that are used to kill, slow down, or prevent the growth of susceptible bacteria. They became widely used in the mid 20th century for controlling disease in humans, animals, and plants, and for a variety of industrial purposes. Antibiotic resistance is a broad term. There ...

  13. The Antibiotic Resistance Problem Revisited

    Lawson, Michael A.

    2008-01-01

    The term "antibiotic" was first proposed by Vuillemin in 1889 but was first used in the current sense by Walksman in 1941. An antibiotic is defined as a "derivative produced by the metabolism of microorganisms that possess antibacterial activity at low concentrations and is not toxic to the host." In this article, the author describes how…

  14. Management Options For Reducing The Release Of Antibiotics And Antibiotic Resistance Genes To The Environment

    Background: There is growing concern worldwide about the role of polluted soil and water - 77 environments in the development and dissemination of antibiotic resistance. 78 Objective: To identify management options for reducing the spread of antibiotics and 79 antibiotic resist...

  15. Identification of Antibiotic Use Pattern as an Effort to Control Antibiotic Resistance

    Ivan S. Pradipta

    2012-03-01

    Full Text Available The objective of this study is to determine quantity and pattern of antibiotic use in hospitalized patients at one of Bandung’s private hospital that can give benefit in control of antibiotic resistance and procurement planning of antibiotic. Data of antibiotic consumption were obtained from hospital pharmacy department on February–September 2011. Data were processed using the ATC/DDD and DU90% method. There were 390,98 DDD/100 bed days and 381,34 DDD/100 bed days total of an-tbiotic use in 2009 and 2010. Thirty nine antibiotic were consumed in 2009 within 11 kind of antibiotics in DU90% segment (ceftriaxone, amoxicillin, cefotaxime, ciprofloxacin, levofloxacin, metronidazole, cefixime, doxycycline, thiamphenicol, cefodoxime, cefalexin and 44 antibiotic were consumed in 2010 within 18 kind of antibiotics in DU90% segment (ceftriaxone, ciprofloxacin, amoxicillin, cefixime, levofloxacin, cefadroxil, cefotaxime, metronidazole, thiamphenicol, doxycycline, clindamycin, chloramphenicol, amikacin, sulbactam, gentamycin, streptomycin, cefoperazone, canamycin. There were decline of antibiotic use that followed decline number of bed days/year in 2009–2010, but in both antibiotic kind and quantity of DU90% antibiotic group were increased.

  16. Fate of Antibiotics and Antibiotic Resistance during Digestion and Composting: A Review.

    Youngquist, Caitlin P; Mitchell, Shannon M; Cogger, Craig G

    2016-03-01

    Antibiotics and antibiotic-resistant bacteria (ARB) enter the environment through municipal and agricultural waste streams and pose a potential risk to human and livestock health through either direct exposure to antibiotic-resistant pathogens or selective pressure on the soil microbial community. This review summarizes current literature on the fate of antibiotics, ARB, and antibiotic resistance genes (ARGs) during anaerobic digestion and composting of manure and wastewater residuals. Studies have shown that removal of antibiotics varies widely during mesophilic anaerobic digestion, even within the same class of antibiotics. Research on ARB shows a wide range of removal under mesophilic conditions, with nearly complete removal under thermophilic conditions. Research on 16 antibiotics in 11 different studies using both bench-scale and farm-scale composting systems demonstrates that composting significantly reduces levels of extractable antibiotics in livestock manure in nearly all cases. Calculated half-lives ranged from 0.9 to 16 d for most antibiotics. There is more limited evidence that levels of ARB are also reduced by composting. Studies of the fate of ARGs show mixed evidence for removal during both mesophilic and thermophilic anaerobic digestion and during thermophilic composting. Antibiotic resistance genes are DNA structures, so they may persist until the DNA structure is degraded, yet the bacterium may have been rendered nonviable long before the DNA is completely degraded. Additional research would be of value to determine optimum anaerobic digestion and composting conditions for removal of ARB and to increase understanding of the fate of ARGs during anaerobic digestion and composting. PMID:27065401

  17. Mission Critical: Preventing Antibiotic Resistance

    ... Remember antibiotics have side effects. Prevent infections by practicing good hand hygiene and getting recommended vaccines. View ... program that includes, at a minimum, this checklist : Leadership commitment: Dedicate necessary human, financial, and IT resources. ...

  18. How to Fight Back Against Antibiotic Resistance

    Dantas, Gautam; Sommer, Morten

    2014-01-01

    Mapping the exchange of genes between pathogens and nonpathogens offers new ways to understand and manage the spread of drug-resistant strains. In reality, the development of new antibiotics is only part of the solution, as pathogens will inevitably develop resistance to even the most promising new...... compounds. To save the era of antibiotics, scientists must figure out what it is about bacterial pathogens that makes resistance inevitable. Although most studies on drug resistance have focused on disease causing pathogens, recent efforts have shifted attention to the resistomes of nonpathogenic bacteria...

  19. Epidemiology of plasmid-mediated quinolone resistance determinants in bacterial isolates from animals and foods with co-resistance to several antibiotics

    Ferreira, Eugénia; Francisco, Ana Patrícia; Jones-Dias, Daniela; Manageiro, Vera; Caniça, Manuela

    2011-01-01

    Background: The use of (fluoro)quinolones both in humans and animals has contributed to the selection of resistant bacteria, limiting the agents available for treatment. This study aims to search for plasmid-mediated quinolone resistance (PMQR) determinants to give information about these expanding resistance mechanisms, their capacity of dissemination among different bacteria by mobile elements, and the role that they play in facilitating co-resistance to several antimicrobials. Methods: ...

  20. Widespread antibiotic resistance of diarrheagenic Escherichia coli and Shigella species

    Azam Fatahi Sadeghabadi

    2014-01-01

    Full Text Available Background: Antibiotic resistance of enteric pathogens particularly Shigella species, is a critical world-wide problem and monitoring their resistant pattern is essential, because the choice of antibiotics is absolutely dependent on regional antibiotic susceptibility patterns. During summer 2013, an unusual increase in number of diarrheal diseases was noticed in Isfahan, a central province of Iran. Therefore, the antibiotic resistance of diarrheagenic Escherichia coli and Shigella species isolated were evaluated. Materials and Methods: According to the guideline on National Surveillance System for Foodborn Diseases, random samples from patients with acute diarrhea were examined in local laboratories of health centers and samples suspicious of Shigella spp. were further assessed in referral laboratory. Isolated pathogens were identified by standard biochemical and serologic tests and antibiotic susceptibility testing was carried out by disc diffusion method. Results: A total of 1086 specimens were obtained and 58 samples suspicious of Shigella were specifically evaluated. The most prevalent isolated pathogen was Shigella sonnei (26/58 followed by E. coli (25/58 and Shigella flexneri (3/58. A large number of isolated bacteria were resistant to co-trimoxazole (Shigella spp: 100%, E. coli: 80%, azithromycin (Shigella spp: 70.4%, E. coli: 44.0%, ceftriaxone (Shigella spp: 88.9%, E. coli: 56.0% and cefixime (Shigella spp: 85.2%, E. coli: 68.0%. About88.3% of S. sonnei isolates, one S. flexneri isolate, and 56% of E. coli strains were resistant to at least three antibiotic classes (multidrug resistant. Conclusion: Due to high levels of resistance to recommended and commonly used antibiotics for diarrhea, continuous monitoring of antibiotic resistance seems essential for determining best options of empirical therapy.

  1. Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria.

    Bennett, P M

    2008-03-01

    Bacteria have existed on Earth for three billion years or so and have become adept at protecting themselves against toxic chemicals. Antibiotics have been in clinical use for a little more than 6 decades. That antibiotic resistance is now a major clinical problem all over the world attests to the success and speed of bacterial adaptation. Mechanisms of antibiotic resistance in bacteria are varied and include target protection, target substitution, antibiotic detoxification and block of intracellular antibiotic accumulation. Acquisition of genes needed to elaborate the various mechanisms is greatly aided by a variety of promiscuous gene transfer systems, such as bacterial conjugative plasmids, transposable elements and integron systems, that move genes from one DNA system to another and from one bacterial cell to another, not necessarily one related to the gene donor. Bacterial plasmids serve as the scaffold on which are assembled arrays of antibiotic resistance genes, by transposition (transposable elements and ISCR mediated transposition) and site-specific recombination mechanisms (integron gene cassettes).The evidence suggests that antibiotic resistance genes in human bacterial pathogens originate from a multitude of bacterial sources, indicating that the genomes of all bacteria can be considered as a single global gene pool into which most, if not all, bacteria can dip for genes necessary for survival. In terms of antibiotic resistance, plasmids serve a central role, as the vehicles for resistance gene capture and their subsequent dissemination. These various aspects of bacterial resistance to antibiotics will be explored in this presentation. PMID:18193080

  2. The determination of resistance to ertapenem and other antibiotics with ESBL product of Enterobacteriaceae isolated from urine samples

    Aytekin Çıkman; Nadire Seval Gündem; Barış Gülhan; Merve Aydın; Mehmet Parlak; Yasemin Bayram

    2014-01-01

    Objective: Enterobacteriaceae is the most frequently isolated bacteria in urinary system infections. This study investigated the antibiotic susceptibility including ertapenem and extended-spectrum beta-lactamase production of bacteria belons to Enterobacteriaceae isolated from the urinary culture. Methods: Enterobacteriaceae strains, identified by using conventional methods in our laboratory between January 2012 and March 2012, were included the study. The antibiotic susceptibilities were...

  3. Study of Antibiotic Resistance Pattern and Phenotypic Detection of ESBLs in Klebsiella Pneumoniae Strains Isolated from Clinical Samples and Determination of Minimum Inhibitory Concentrations of Imipenem and Ceftazidim Antibiotics

    R Yousefi Mashouf; P. Alijani; M Saidijam; M.Y. Alikhani; Rashidi, H.

    2014-01-01

    Introduction & Objective: One of the mechanisms of antibiotic resistance in gram negative bac-teria, particularly Klebsiella pneumonia strains, is the production of Extended-Spectrum ? lactamase enzymes (ESBLs). Encoding genes of ESBLs are usually located on the plasmid and they are able to transfer to other gram-negative bacteria. Thus, due to the importance of resistance pattern recognition and its sensitivity to the ?- lactam antibiotics, the above men-tioned issue was examined in this stu...

  4. Antibiotic resistance pattern in uropathogens

    Gupta V; Yadav A; Joshi R

    2002-01-01

    Uropathogenic strains from inpatient and outpatient departments were studied from April 1997 to March 1999 for their susceptibility profiles. The various isolates were Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis, Acinetobacter baumanii and Enterococcus faecalis. Antibiotic susceptibility pattern of these isolates revealed that for outpatients, first generation cephalosporins, nitrofurantoin, norfloxacin/ciprofloxacin were effective for treatment of urina...

  5. Determination of Extended-Spectrum Beta-lactamases Genes and Antibiotic Resistance Patterns in Escherichia coli Isolates from Healthy Cats

    Baharak Akhtardanesh

    2016-01-01

    Full Text Available ne"> Background: This study was set to detect extended-spectrum beta-lactamases (ESBLsproducing E. coli isolates and the genes underlying their resistance in relation to phylogeneticbackground from fecal samples of healthy owned cats.Methods: A total of 50 E. coli isolates were confirmed by standard bacteriological tests. Thephylogenetic analyses of the isolates were carried out by combinations of three genetic markerschuA, yjaA and DNA fragment TspE4.C2 by a triplex PCR method. The ESBL (blaCTXM, blaTEM,blaSHV, blaOXA encoding genes were detected. To identify ESBL producing phenotypes, allselected isolates were screened with a double disk synergy test including cefotaxime, cefotaximewith clavulanic acid, ceftazidime and ceftazidime with clavulanic acid.Results: Results showed that E. coli isolates fell into four phylogenetic groups (A, D, B1 andB2 with prevalence of 78%, 4%, 8%, 10% and five phylogenetic subgroups including A0 (74%, A1 (4 %, B1 (8 %, B2–2 (6 %, B2–3 (4 % and D1 (4 %, respectively. Among all E. coliisolates, 4% were positive for bla SHV, blaCTX-M-15 and blaOXA-1 genes which distributed in B2-2,B2-3, A0 subgroups, respectively. According to antibiotic susceptibility test, 20 isolates wereresistant which belonged to D (D1 phylogenetic subgroup and A (A0 phylogenetic subgroupgroups.Conclusion: The results showed that healthy cats could be considered as potential source for thedissemination of ESBL-encoding genes. Further investigations in companion animals and theirowners are needed to clarify the importance of spreading of these zoonotic strains.

  6. Response to "Antibiotic Use and Resistance"

    Malo, Sara; Rabanaque, María José; Feja, Christina; Lallana, María Jesús; Aguilar, Isabel; Bjerrum, Lars

    2014-01-01

    As mentioned, antibiotic consumption in heavy users, especially in children, is really striking. Certainly, our results revealed an antibiotic use in this age group higher than published in previous studies, and in line with different reports repeatedly presenting the high antibiotic consumption...... existing in Spain compared with other European countries (1). Determinants involved in antibiotic prescribing are numerous and varied. It is true that therapeutic failures lead to repeated courses of antibiotic treatment. However, it is not probably the only reason. Frequent and high consumption of...... antibiotics, as observed in heavy users, could also be due to factors related to the GP, patient and parents' expectations or the influence exerted by the pharmaceutical industry (2). This article is protected by copyright. All rights reserved....

  7. Antibiotic sensitivity profiles determined with an Escherichia coli gene knockout collection: generating an antibiotic bar code.

    Liu, Anne; Tran, Lillian; Becket, Elinne; Lee, Kim; Chinn, Laney; Park, Eunice; Tran, Katherine; Miller, Jeffrey H

    2010-04-01

    We have defined a sensitivity profile for 22 antibiotics by extending previous work testing the entire KEIO collection of close to 4,000 single-gene knockouts in Escherichia coli for increased susceptibility to 1 of 14 different antibiotics (ciprofloxacin, rifampin [rifampicin], vancomycin, ampicillin, sulfamethoxazole, gentamicin, metronidazole, streptomycin, fusidic acid, tetracycline, chloramphenicol, nitrofurantoin, erythromycin, and triclosan). We screened one or more subinhibitory concentrations of each antibiotic, generating more than 80,000 data points and allowing a reduction of the entire collection to a set of 283 strains that display significantly increased sensitivity to at least one of the antibiotics. We used this reduced set of strains to determine a profile for eight additional antibiotics (spectinomycin, cephradine, aztreonem, colistin, neomycin, enoxacin, tobramycin, and cefoxitin). The profiles for the 22 antibiotics represent a growing catalog of sensitivity fingerprints that can be separated into two components, multidrug-resistant mutants and those mutants that confer relatively specific sensitivity to the antibiotic or type of antibiotic tested. The latter group can be represented by a set of 20 to 60 strains that can be used for the rapid typing of antibiotics by generating a virtual bar code readout of the specific sensitivities. Taken together, these data reveal the complexity of intrinsic resistance and provide additional targets for the design of codrugs (or combinations of drugs) that potentiate existing antibiotics. PMID:20065048

  8. Effects of reducing beta-lactam antibiotic pressure on intestinal colonization of antibiotic-resistant gram-negative bacteria

    S. Nijssen (Saskia); A.C. Fluit (Ad); D.A.M.C. van de Vijver (David); J. Top (Janetta); R.J.L. Willems (Rob); M.J.M. Bonten (Marc)

    2010-01-01

    textabstractBackground: We determined the effects of two antibiotic policies (predominance of either β-lactam antibiotics or fluroquinolones) on acquisition with third-generation cephalosporin-resistant Enterobacteriaceae (CRE) and fluoroquinolone-resistant CRE (FCRE) in two ICUs, with monitoring of

  9. Emergence and dissemination of antibiotic resistance: a global problem.

    Choudhury, R; Panda, S; Singh, D V

    2012-01-01

    Antibiotic resistance is a major problem in clinical health settings. Interestingly the origin of many of antibiotic resistance mechanisms can be traced back to non-pathogenic environmental organisms. Important factors leading to the emergence and spread of antibiotic resistance include absence of regulation in the use of antibiotics, improper waste disposal and associated transmission of antibiotic resistance genes in the community through commensals. In this review, we discussed the impact of globalisation on the transmission of antibiotic resistance genes in bacteria through immigration and export/import of foodstuff. The significance of surveillance to define appropriate use of antibiotics in the clinic has been included as an important preventive measure. PMID:23183460

  10. Antibiotics in Animal Feed Contribute to Drug-Resistant Germs

    ... medlineplus/news/fullstory_158316.html Antibiotics in Animal Feed Contribute to Drug-Resistant Germs: Study Individual farm ... HealthDay News) -- Use of antibiotics in farm animal feed is helping drive the worldwide increase in antibiotic- ...

  11. Antibiotics as CECs: An Overview of the Hazards Posed by Antibiotics and Antibiotic Resistance

    Geoffrey Ivan Scott

    2016-04-01

    Full Text Available ABSTRACTMonitoring programs have traditionally monitored legacy contaminants but are shifting focus to Contaminants of Emerging Concern (CECs. CECs present many challenges for monitoring and assessment, because measurement methods don't always exist nor have toxicological studies been fully conducted to place results in proper context. Also some CECs affect metabolic pathways to produce adverse outcomes that are not assessed through traditional toxicological evaluations. Antibiotics are CECs that pose significant environmental risks including development of both toxic effects at high doses and antibiotic resistance at doses well below the Minimum Inhibitory Concentration (MIC which kill bacteria and have been found in nearly half of all sites monitored in the US. Antimicrobial resistance has generally been attributed to the use of antibiotics in medicine for humans and livestock as well as aquaculture operations. The objective of this study was to assess the extent and magnitude of antibiotics in the environment and estimate their potential hazards in the environment. Antibiotics concentrations were measured in a number of monitoring studies which included Waste Water Treatment Plants (WWTP effluent, surface waters, sediments and biota. A number of studies reported levels of Antibiotic Resistant Microbes (ARM in surface waters and some studies found specific ARM genes (e.g. the blaM-1 gene in E. coli which may pose additional environmental risk. High levels of this gene were found to survive WWTP disinfection and accumulated in sediment at levels 100-1000 times higher than in the sewerage effluent, posing potential risks for gene transfer to other bacteria.in aquatic and marine ecosystems. Antibiotic risk assessment approaches were developed based on the use of MICs and MIC Ratios [High (Antibiotic Resistant/Low (Antibiotic Sensitive MIC] for each antibiotic indicating the range of bacterial adaptability to each antibiotic to help define the No

  12. Functional metagenomics for the investigation of antibiotic resistance

    Mullany, Peter

    2014-01-01

    Antibiotic resistance is a major threat to human health and well-being. To effectively combat this problem we need to understand the range of different resistance genes that allow bacteria to resist antibiotics. To do this the whole microbiota needs to be investigated. As most bacteria cannot be cultivated in the laboratory, the reservoir of antibiotic resistance genes in the non-cultivatable majority remains relatively unexplored. Currently the only way to study antibiotic resistance in thes...

  13. MedlinePlus: Antibiotic Resistance

    ... Disease Control and Prevention) Stop the Spread of Superbugs: Help Fight Drug Resistant Bacteria (National Institutes of ... Infectious Diseases) On the Trail of Drug-Defying Superbugs (National Institute of General Medical Sciences) Clinical Trials ...

  14. [Staphylococcus aureus and antibiotic resistance].

    Sancak, Banu

    2011-07-01

    After the report of first case of methicillin-resistant Staphylococcus aureus (MRSA) in 1961, MRSA become a major problem worldwide. Over the last decade MRSA strains have emerged as serious pathogens in nosocomial and community settings. Glycopeptides (vancomycin and teicoplanin) are still the current mainstay of therapy for infections caused by MRSA. In the last decade dramatic changes have occurred in the epidemiology of MRSA infections. The isolates with reduced susceptibility and in vitro resistance to vancomycin have emerged. Recently, therapeutic alternatives such as quinupristin/dalfopristin, linezolid, tigecycline and daptomycin have been introduced into clinical practice for treating MRSA infections. Nevertheless, these drugs are only approved for certain indication and resistance has already been reported. In this review, the new information on novel drugs for treating MRSA infections and the resistance mechanisms of these drugs were discussed. PMID:21935792

  15. The incidence of antibiotic resistant bacteria in chicken and pork / Eugénie van Wijk

    Van Wijk, Eugénie

    2003-01-01

    The emergence of antibiotic resistance in important human pathogens has globally become a public health concern. Consumption of contaminated meat and meat products constitute a major route for the transmission of antibiotic resistant organisms and the dissemination of resistance genes in the human environment. The aim of this study was to determine the level of antibiotic resistance in potentially pathogenic bacteria associated with pork, chicken meat, chicken manure, chicken f...

  16. Novel Determinants of Antibiotic Resistance: Identification of Mutated Loci in Highly Methicillin-Resistant Subpopulations of Methicillin-Resistant Staphylococcus aureus

    Dordel, Janina; Kim, Choonkeun; Chung, Marilyn; Pardos De La Gándara, María; Holden, Matthew T J; Parkhill, Julian; de Lencastre, Hermínia; Bentley, Stephen D.; Tomasz, Alexander

    2014-01-01

    This work was supported by a grant from the U.S. Public Health Service 2 RO1 AI457838-14 and by grant UL1 TR000043-07S1 from the National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH) Clinical and Translational Science Award (CTSA) program awarded to A. Tomasz. S.D.B. is partly supported by the NIHR Cambridge BRC. This work was also supported by the Wellcome Trust Sanger Institute core grant 098051. We identified mutated genes in highly resistant ...

  17. Commensal Pseudomonas Species Isolated from Wastewater and Freshwater Milieus in the Eastern Cape Province, South Africa, as Reservoir of Antibiotic Resistant Determinants

    Okoh, Anthony I.; Mvuyo Tom; Anibal Sosa; Igbinosa, Isoken H.; Nwodo, Uchechukwu U.

    2012-01-01

    Pseudomonas species are opportunistic pathogens with implications in a wide range of diseases including cystic fibrosis and sickle cell anaemia. Because of their status as multidrug resistant (MDR) and extremely drug resistant (XDR) bacteria Pseudomonas species represent a threat to public health. Prevalence, antibiogram and associated antibiotic resistant genes of Pseudomonas species isolated from freshwater and mixed liquor envi...

  18. The antibiotic resistance in cave environments

    Elhottová, Dana; Petrásek, Jiří; Jirout, Jiří; Chroňáková, Alica; Kyselková, Martina; Volná, Lucie

    Košice : Pavol Jozef Šafárik University in Košice, 2012. s. 41-42. [International Conference on Subterranean Biology /21./. 02.09.2012-07.09.2012, Košice] Institutional support: RVO:60077344 Keywords : antibiotic resistance * cave environments Subject RIV: EH - Ecology, Behaviour

  19. Transfer of antibiotic resistant bacteria from animals to man

    Wegener, Henrik Caspar; Aarestrup, Frank Møller; Gerner-Smidt, P.; Bager, Flemming

    Antibiotic resistance develops in zoonotic bacteria in response to antibiotics used in food animals. A close association exists between the amounts of antibiotics used and the levels of resistance observed. The classes of antibiotics routinely used for treatment of human infections are also used ...

  20. Photodynamic inactivation of antibiotic-resistant pathogens

    Nowadays methicillin-resistant strain Staphylococcus aureus (MRSA) is one of the most widespread multiresistant bacteria. Photodynamic inactivation (PDI) of microorganisms by photosensitizers (PS) may be an effective and alternative therapeutic option against antibiotic resistant bacteria. The effectiveness of new PS cationic porphyrin Zn-TBut4PyP was tested on two strains of S. aureus (MRSA and methicillin-sensitive S. aureus). It is shown that Zn-TBut4PyP has high photodynamic activity against both strains

  1. Helicobacter pylori resistance to antibiotics in Europe and its relationship to antibiotic consumption

    Megraud, Francis; Coenen, Samuel; Versporten, Ann;

    2013-01-01

    in different countries. DESIGN: Primary antibiotic resistance rates of H pylori were determined from April 2008 to June 2009 in 18 European countries. Data on yearly and cumulative use over several years of systemic antibacterial agents in ambulatory care for the period 2001-8 were expressed in Defined Daily...

  2. Distribution of multiple antibiotic resistant Vibrio spp across Palk Bay

    Sneha, K.G.; Anas, A.; Jayalakshmy, K.V.; Jasmin, C.; VipinDas, P.V.; Pai, S.S.; Pappu, S.; Nair, M.; Muraleedharan, K.R.; Sudheesh, K.; Nair, S.

    Presence of multiple antibiotic resistant microorganisms in marine systems is increasingly a focus of concern as they pose potential health risk to humans and animals. The present study reports the distribution, diversity, antibiotic resistance...

  3. Antibiotic-Resistant Bacteria Detected in Sewage Spill

    ... medlineplus.gov/news/fullstory_160031.html Antibiotic-Resistant Bacteria Detected in Sewage Spill 'People need to be ... News) -- Sewer line breaks can release antibiotic-resistant bacteria that pose a public health threat, a new ...

  4. REDUCTION OF ANTIBIOTIC RESISTANCE IN BACTERIA: A REVIEW

    Suresh Jaiswal et al.

    2012-03-01

    Full Text Available Drug resistant bacteria have been posing a major challenge to the effective control of bacterial infections for quite some time. One of the main causes of antibiotics drug resistance is antibiotic overuse, abuse, and in some cases, misuse, due to incorrect diagnosis. Bacterial antibiotic resistance is a significant issues faced by various industries, including the food and agricultural industries, the medical and veterinary profession and others. The potential for transfer of antibiotics resistance, or of potentially lethal antibiotic resistant bacteria, for example from a food animal to human consumer, is of particular concern. A method of controlling development and spread of antibiotic-resistant bacteria include changes in antibiotic usage and pattern of usage of different antibiotics. However, the ability of bacteria to adapt to antibiotic usage and to acquire resistance to existing and new antibiotics usage overcomes such conventional measures, and requires the continued development of alternative means of control of antibiotic resistance bacteria. Alternative means for overcoming the tendency of bacteria to acquire resistance to antibiotic control measures have taken various forms. This article explains one method evaluated for control, that is reducing or removing antibiotic resistance is so called “curing” of antibiotic resistance. Antibiotic resistance is formed in the chromosomal elements. Thus elimination of such drug-resistance plasmids results in loss of antibiotics resistance by the bacterial cell. “Curing” of a microorganism refers to the ability of the organism to spontaneously lose a resistance plasmid under the effect of particular compounds and environmental conditions, thus recovering the antibiotic sensitive state.

  5. Tracking acquired antibiotic resistance in commensal bacteria of Galapagos land iguanas: no man, no resistance.

    Maria Cristina Thaller

    Full Text Available BACKGROUND: Antibiotic resistance, evolving and spreading among bacterial pathogens, poses a serious threat to human health. Antibiotic use for clinical, veterinary and agricultural practices provides the major selective pressure for emergence and persistence of acquired resistance determinants. However, resistance has also been found in the absence of antibiotic exposure, such as in bacteria from wildlife, raising a question about the mechanisms of emergence and persistence of resistant strains under similar conditions, and the implications for resistance control strategies. Since previous studies yielded some contrasting results, possibly due to differences in the ecological landscapes of the studied wildlife, we further investigated this issue in wildlife from a remote setting of the Galapagos archipelago. METHODOLOGY/PRINCIPAL FINDINGS: Screening for acquired antibiotic resistance was carried out in commensal enterobacteria from Conolophus pallidus, the terrestrial iguana of Isla Santa Fe, where: i the abiotic conditions ensure to microbes good survival possibilities in the environment; ii the animal density and their habits favour microbial circulation between individuals; and iii there is no history of antibiotic exposure and the impact of humans and introduced animal species is minimal except for restricted areas. Results revealed that acquired antibiotic resistance traits were exceedingly rare among bacteria, occurring only as non-dominant strains from an area of minor human impact. CONCLUSIONS/SIGNIFICANCE: Where both the exposure to antibiotics and the anthropic pressure are minimal, acquired antibiotic resistance traits are not normally found in bacteria from wildlife, even if the ecological landscape is highly favourable to bacterial circulation among animals. Monitoring antibiotic resistance in wildlife from remote areas could also be a useful tool to evaluate the impact of anthropic pressure.

  6. Antibiotic Resistance in Children with Bloody Diarrhea

    Hamedi Abdolkarim

    2009-05-01

    Full Text Available Shigellosis is an important public health problem, especially in developing countries. Antibiotic treatment of bacterial dysentery, aimed at resolving diarrhea or reducing its duration is especially indicated whenever malnutrition is present. First-line drugs include ampicillin and trimethoprim sulfamethoxazole(TMP-SMX; however multidrug-resistance has occurred and careful antibiotic selection must be considered in prescribing .When epidemiologic data indicate a rise in resistancy, fluoroquinolones may be used in adults and oral third-generation cephalosporins and nalidixic acid in children. All children (n=2400 with acute diarrhea who were admitted to the Pediatric department of Dr.sheykh Hospital Mashhad, Iran from March 2004 to March 2005 were selected and their stool culture were obtained, then positive cultures (312 cases,13% were evaluated by antibiogram. This study showed that in heavily populated areas of IRAN like Mashhad, 97% shigella strain isolated from children with bloody diarrhea were sensitive to nalidixic acid, ciprofloxacin and cefixime and rarely susceptible to ampicillin and cotrimoxazole. There is increasing resistance of Shigella to most of the antibiotics in use, and for this reason, careful selection of antibiotics must use considered in each area. Development and use of new drugs are expensive and have severe limitations in the third world. Simple prophylactic alternatives are therefore, required, such as awareness of hygienic child care practices and early promotion of breast feeding. For treatment of shigellosis in infants Ceftriaxon, and in children Nalidixic Acid is recommended.

  7. Antibiotic Resistance in Urinary Tract Infections in College Students

    Olson, Ronald P.; Haith, Karen

    2012-01-01

    Objective: To determine resistance to antibiotics of "Escherichia coli" in uncomplicated urinary tract infections (uUTIs) in female college students. Participants: Symptomatic patients presenting to a student health service from September 2008 to December 2009. Methods: Clean catch midstream urine samples were tested for urinalysis (UA) and…

  8. Excretion of Antibiotic Resistance Genes by Dairy Calves Fed Milk Replacers with Varying Doses of Antibiotics

    Thames, Callie H; Pruden, Amy; James, Robert E.; Ray, Partha P.; Knowlton, Katharine F.

    2012-01-01

    Elevated levels of antibiotic resistance genes (ARGs) in soil and water have been linked to livestock farms and in some cases feed antibiotics may select for antibiotic resistant gut microbiota. The purpose of this study was to examine the establishment of ARGs in the feces of calves receiving milk replacer containing no antibiotics versus subtherapeutic or therapeutic doses of tetracycline and neomycin. The effect of antibiotics on calf health was also of interest. Twenty-eight male and fema...

  9. Study of Antibiotic Resistance Pattern in Methicillin Resistant Staphylococcus Aureus with Special Reference to Newer Antibiotic.

    Kaur, Dardi Charan; Chate, Sadhana Sanjay

    2015-01-01

    The worldwide epidemic of antibiotic resistance is in danger of ending the golden age of antibiotic therapy. Resistance impacts on all areas of medicine, and is making successful empirical therapy much more difficult to achieve. Staphylococcus aureus demonstrates a unique ability to quickly respond to each new antibiotic with the development of a resistance mechanism, starting with penicillin, until the most recent, linezolid and daptomycin. Methicillin resistant S. aureus (MRSA) has become endemic today in hospitals worldwide. Resistance to the newer antimicrobial-agents - linezolid, vancomycin, teicoplanin, and daptomycin are been reported and also the fear of pandrug-resistance. This study was carried out to know the antimicrobial resistant pattern of MRSA to newer antibiotic, to know any isolates are extensively-drug resistant (XDR)/pandrug resistant (PDR), inducible macrolide-lincosamide streptogramin B (iMLSB), and mupirocin resistance. Thirty-six MRSA isolates resistant to the routinely tested antibiotic were further tested for list of antibiotic by a group of international experts. Isolates were tested for iMLSB and mupirocin resistance by the disk diffusion method. Of 385 MRSA, 36 (9.35%) isolates of MRSA were resistant to the routinely tested antibiotic. Among these 36 MRSA isolates, none of our isolates were XDR/PDR or showed resistant to anti-MRSA cephalosporins (ceftaroline), phosphonic acids, glycopeptides, glycylcyclines, and fucidanes. Lower resistance was seen in oxazolidinones (2.78%), streptogramins (5.56%), lipopeptide (5.56%). Thirty-four (94.44%) isolates showed constitutive MLSB (cMLSB) resistance and two (5.56%) iMLSB phenotypes. High- and low-level mupirocin resistance were seen in 13 (36.11%) and six (16.67%), respectively. In our study, none of our isolates were XDR or PDR. No resistance was observed to ceftaroline, telavancin, teicoplanin, and vancomycin; but the presence of linezolid resistance (1, 2.28%) and daptomycin resistance (2, 5

  10. Mechanisms of antibiotic resistance of Enterobacteriaceae family representatives

    K. R. Kotsyuba

    2014-04-01

    Full Text Available The paper deals with the basic medical scheme of antibiotics use for treatment of lesions caused by enterobacteria and mechanisms of resistance of Enterobacteriaceae to different classes of antibiotics. It is known that the main mechanisms of resistance to antibiotics are enzymatic inactivation, modification of the target, efflux, violation of conduct through the membrane and formation of metabolic shunt. The most common cases of resistance to beta-lactams among Enterobacteriaceae relate to production of plasmid and chromosomal beta-lactamases, violation of the permeability of the outer membrane, and modification of target penicillin binding proteins. Active release of antibiotics from the cell, or efflux, in Enterobacteriaceae is used for maintaining resistance to tetracyclines, macrolides, carbapenems. Genes of efflux system are localized on plasmids and contribute to rapid spreading among Enterobacteriaceae. Mutations are the basis of resistance to novobiocinum and rifampicinum. Enzymatic inactivation by modifying is typical for resistance to aminoglycosides. Three groups of enzymes are engaged in the process, by adding the molecule of acetic acid, phosphate or adenine. Joining of these groups is irreversible and leads to complete loss of biological activity of the antibiotic. Resistance to aminoglycosides appears also due to inhibition of drug penetration, that is associated with genetically determined mechanisms of electron transport through the membrane. Resistance to quinolones and fluoroquinolones is associated with the modification of topoisomerase II and IV which are targets of these groups of antibiotics. Resistance is possible as a result of changes in the structure of the target, breaching of penetration into the cell, and active release from the cell. The highest level of resistance is develope in the case of two- or three-stage mutations in one or the other, or both, subunits in different genes. At the same time, for breaching of

  11. PRESENCE OF ENTEROCOCCI IN COW MILK AND THEIR ANTIBIOTIC RESISTANCE

    Miroslav Kročko; Margita Čanigová; Viera Ducková; Jana Fabianová

    2010-01-01

    Enterococci represent an important part of contaminate microflora in raw milk and dairy products. They constitute significant part of nosocomial pathogens with a remarkable capacity of expressing resistance to several antimicrobial  agents. We aimed to assess occurrence and antibiotic resistance of enterococci in the raw milk samples and pasteurized milk samples. In this study total bacterial count, psychrotrophic count and count of enterococci were determine in raw milk cistern samples,...

  12. Deliberations on the impact of antibiotic contamination on dissemination of antibiotic resistance genes in aquatic environments

    Berglund, Björn

    2014-01-01

    The great success of antibiotics in treating bacterial infectious diseases has been hampered by the increasing prevalence of antibiotic resistant bacteria. Not only does antibiotic resistance threaten to increase the difficulty in treating bacterial infectious diseases, but it could also make medical procedures such as routine surgery and organ transplantations very dangerous to perform. Traditionally, antibiotic resistance has been regarded as a strictly clinical problem and studies of the p...

  13. Effect of seasonal changes on the prevalence of uropathogens in 2010-2011and determination of antibiotic resistance pattern of Escherichia coli in three neighbor cities; Shiraz, Marvdasht and Saadat-Shahr

    Mohammad Pouryasin; Marjan Shaheli; Masoume Rahmani; Tannaz Heidarzadeh; Heidar Sharafi; Mohammad Farvardin

    2014-01-01

    Background: Urinary tract infection (UTI) is a common infection. Having enough knowledge about the etiology of UTIs and also antibiotic resistant pattern of E.coli as the commonest uropahtogen helps the physicians to deal with these kinds of infections. The aim of this study is to determine the prevalence of uropathogens originated by bacteria and antibiotic resistance pat-tern of E.coli as the most common cause of urinary tract infections. Material and methods: From 2010/09/23 to 2011/09/...

  14. Abundance and dynamics of antibiotic resistance genes and integrons in lake sediment microcosms.

    Björn Berglund

    Full Text Available Antibiotic resistance in bacteria causing disease is an ever growing threat to the world. Recently, environmental bacteria have become established as important both as sources of antibiotic resistance genes and in disseminating resistance genes. Low levels of antibiotics and other pharmaceuticals are regularly released into water environments via wastewater, and the concern is that such environmental contamination may serve to create hotspots for antibiotic resistance gene selection and dissemination. In this study, microcosms were created from water and sediments gathered from a lake in Sweden only lightly affected by human activities. The microcosms were exposed to a mixture of antibiotics of varying environmentally relevant concentrations (i.e., concentrations commonly encountered in wastewaters in order to investigate the effect of low levels of antibiotics on antibiotic resistance gene abundances and dynamics in a previously uncontaminated environment. Antibiotic concentrations were measured using liquid chromatography-tandem mass spectrometry. Abundances of seven antibiotic resistance genes and the class 1 integron integrase gene, intI1, were quantified using real-time PCR. Resistance genes sulI and ermB were quantified in the microcosm sediments with mean abundances 5 and 15 gene copies/10(6 16S rRNA gene copies, respectively. Class 1 integrons were determined in the sediments with a mean concentration of 3.8 × 10(4 copies/106 16S rRNA gene copies. The antibiotic treatment had no observable effect on antibiotic resistance gene or integron abundances.

  15. Antibiotic usage and resistance in different regions of the Dutch community

    Bruinsma, N; Filius, PMG; De Smet, PAGM; Degener, J; Endtz, P; Van den Bogaard, AE; Stobberingh, EE

    2002-01-01

    Regional differences of antibiotic use and antibiotic resistance in the fecal indicator bacteria Escherichia coli and enterococci were determined in different cities in the south, west, and north of The Netherlands. In 1999, differences in antibiotic consumption were observed between the different r

  16. Staphylococcus aureus phage types and their correlation to antibiotic resistance

    Mehndiratta P

    2010-10-01

    Full Text Available Context: Staphylococcus aureus is one of the most devastating human pathogen. The organism has a differential ability to spread and cause outbreak of infections. Characterization of these strains is important to control the spread of infection in the hospitals as well as in the community. Aim: To identify the currently existing phage groups of Staphylococcus aureus, their prevalence and resistance to antibiotics. Materials and Methods: Study was undertaken on 252 Staphylococcus aureus strains isolated from clinical samples. Strains were phage typed and their resistance to antibiotics was determined following standard microbiological procedures. Statistical Analysis: Chi square test was used to compare the antibiotic susceptibility between methicillin resistant Staph. aureus (MRSA and methicillin sensitive S. aureus (MSSA strains. Results: Prevalence of MRSA and MSSA strains was found to be 29.36% and 70.65% respectively. Of these 17.56% of MRSA and 40.44% of MSSA strains were community acquired. All the MSSA strains belonging to phage type 81 from the community were sensitive to all the antibiotics tested including clindamycin and were resistant to penicillin. Forty five percent strains of phage group III and 39% of non-typable MRSA strains from the hospital were resistant to multiple antibiotics. Conclusion: The study revealed that predominant phage group amongst MRSA strains was phage group III and amongst MSSA from the community was phage group NA (phage type 81. MSSA strains isolated from the community differed significantly from hospital strains in their phage type and antibiotic susceptibility. A good correlation was observed between community acquired strains of phage type 81 and sensitivity to gentamycin and clindamycin.

  17. PRESENCE OF ENTEROCOCCI IN COW MILK AND THEIR ANTIBIOTIC RESISTANCE

    Miroslav Kročko

    2010-05-01

    Full Text Available Enterococci represent an important part of contaminate microflora in raw milk and dairy products. They constitute significant part of nosocomial pathogens with a remarkable capacity of expressing resistance to several antimicrobial  agents. We aimed to assess occurrence and antibiotic resistance of enterococci in the raw milk samples and pasteurized milk samples. In this study total bacterial count, psychrotrophic count and count of enterococci were determine in raw milk cistern samples, storage tank milk samples and milk samples after pasteurization. A collection of 46 enterococcal isolates were identified and screened for their antibiotic resistance. Isolates of E. faecalis were dominant in raw milk samples (56.5 %. Sensitive to teicoplanine (30 mcg/disk were 97.9 % of enterococcal isolates and 15.2 % isolates were resistant to vankomycin (30 mcg/disk.  

  18. Gene-Drug Interactions and the Evolution of Antibiotic Resistance

    Palmer, Adam Christopher

    2012-01-01

    The evolution of antibiotic resistance is shaped by interactions between genes, the chemical environment, and an antibiotic's mechanism of action. This thesis explores these interactions with experiments, theory, and analysis, seeking a mechanistic understanding of how different interactions between genes and drugs can enhance or constrain the evolution of antibiotic resistance. Chapter 1 investigates the effects of the chemical decay of an antibiotic. Tetracycline resistant and sensitive bac...

  19. Widespread antibiotic resistance of diarrheagenic Escherichia coli and Shigella species

    Azam Fatahi Sadeghabadi; Ali Ajami; Reza Fadaei; Masoud Zandieh; Elham Heidari; Mahmoud Sadeghi; Behrooz Ataei; Shervin Ghaffari Hoseini

    2014-01-01

    Background: Antibiotic resistance of enteric pathogens particularly Shigella species, is a critical world-wide problem and monitoring their resistant pattern is essential, because the choice of antibiotics is absolutely dependent on regional antibiotic susceptibility patterns. During summer 2013, an unusual increase in number of diarrheal diseases was noticed in Isfahan, a central province of Iran. Therefore, the antibiotic resistance of diarrheagenic Escherichia coli and Shigella species iso...

  20. Combination of essential oils and antibiotics reduce antibiotic resistance in plasmid-conferred multidrug resistant bacteria.

    Yap, Polly Soo Xi; Lim, Swee Hua Erin; Hu, Cai Ping; Yiap, Beow Chin

    2013-06-15

    In this study we investigated the relationship between several selected commercially available essential oils and beta-lactam antibiotics on their antibacterial effect against multidrug resistant bacteria. The antibacterial activity of essential oils and antibiotics was assessed using broth microdilution. The combined effects between essential oils of cinnamon bark, lavender, marjoram, tea tree, peppermint and ampicillin, piperacillin, cefazolin, cefuroxime, carbenicillin, ceftazidime, meropenem, were evaluated by means of the checkerboard method against beta-lactamase-producing Escherichia coli. In the latter assays, fractional inhibitory concentration (FIC) values were calculated to characterize interaction between the combinations. Substantial susceptibility of the bacteria toward natural antibiotics and a considerable reduction in the minimum inhibitory concentrations (MIC) of the antibiotics were noted in some paired combinations of antibiotics and essential oils. Out of 35 antibiotic-essential oil pairs tested, four of them showed synergistic effect (FIC≤0.5) and 31 pairs showed no interaction (FIC>0.5-4.0). The preliminary results obtained highlighted the occurrence of a pronounced synergistic relationship between piperacillin/cinnamon bark oil, piperacillin/lavender oil, piperacillin/peppermint oil as well as meropenem/peppermint oil against two of the three bacteria under study with a FIC index in the range 0.26-0.5. The finding highlighted the potential of peppermint, cinnamon bark and lavender essential oils being as antibiotic resistance modifying agent. Reduced usage of antibiotics could be employed as a treatment strategy to decrease the adverse effects and possibly to reverse the beta-lactam antibiotic resistance. PMID:23537749

  1. Fate and transport of veterinary antibiotics, antibiotic-resistant bacteria, and antibiotic resistance gene from fields receiving poultry manure during storm events

    Antimicrobials are used in production agriculture to treat disease and promote animal growth, but the presence of antibiotics in the environment raises concern about widespread antibiotic resistance. This study documents the occurrence and transport of tylosin, tetracycline, enterococci resistant to...

  2. Cooperative Antibiotic Resistance in a Multi-Drug Environment

    Yurtsev, Eugene; Dai, Lei; Gore, Jeff

    2013-03-01

    The emergence of antibiotic resistance in bacteria is a significant health concern. A frequent mechanism of antibiotic resistance involves the production of an enzyme which inactivates the antibiotic. By inactivating the antibiotic, resistant cells can ``share'' their resistance with other cells in the bacterial population, suggesting that it may be possible to observe cooperation between strains that inactivate different antibiotics. Here, we experimentally track the population dynamics of two E. coli strains in the presence of two different antibiotics. We find that together the strains are able to grow in antibiotic concentrations that inhibit growth of either of the strains individually. We observe that even when there is stable coexistence between the two strains, the population size of each strain can undergo large oscillations. We expect that our results will provide insight into the evolution of antibiotic resistance and the evolutionary origin of phenotypic diversity and cooperative behaviors.

  3. Disruption of the Gut Microbiome: Clostridium difficile Infection and the Threat of Antibiotic Resistance

    Priscilla A. Johanesen

    2015-12-01

    Full Text Available Clostridium difficile is well recognized as the leading cause of antibiotic-associated diarrhea, having a significant impact in both health-care and community settings. Central to predisposition to C. difficile infection is disruption of the gut microbiome by antibiotics. Being a Gram-positive anaerobe, C. difficile is intrinsically resistant to a number of antibiotics. Mobile elements encoding antibiotic resistance determinants have also been characterized in this pathogen. While resistance to antibiotics currently used to treat C. difficile infection has not yet been detected, it may be only a matter of time before this occurs, as has been seen with other bacterial pathogens. This review will discuss C. difficile disease pathogenesis, the impact of antibiotic use on inducing disease susceptibility, and the role of antibiotic resistance and mobile elements in C. difficile epidemiology.

  4. Antibiotic resistance in children with complicated urinary tract infection

    Objective was to determine the resistance of antibiotics for complicated urinary tract infection (UTI), including urinary tract anomaly (UTA), for empirical antibiotic therapy of complicated UTI. Four hundred and twenty two urine isolates were obtained from 113 patients with recurrent UTI, who used prophylactic antibiotics between February 1999 and November 2004 in the Eskisehir Osmangazi University, Eskisehir, Turkey. Reflux was found to be most important predisposing factor for recurrent UTI (31.9%). Renal scar was detected more in patients with UTA than without UTA (59.2% versus 12.4%, p<0.05). Gram-negative organisms were dominant in patients with and without UTA (91.5% and 79.2%). Enterococci and Candida spp. were more prevalent in children with UTA than without UTA (p<0.001). Isolates were significantly more resistant to ampicillin, trimethoprim-sulfamethoxazole, amikacin, co-amoxiclav, ticarcillin-clvalanate and piperacillin-tazobactam in patients with UTA than without UTA. We found low resistance to ciprofloxacin and nitrofurantoin in UTI with and without UTA. Enterococci spp. was highly resistance to ampicillin and amikacin in patients with UTA. Aztreonam, meropenem and ciprofloxacin seemed to be the best choice for treatment of UTI with UTA due to Escherichia coli and Klebsiella spp. Nitrofurantoin and nalidixic acid may be first choice antibiotics for prophylaxis in UTI with and without UTA. The UTI with UTA caused by Enterococci spp. might not benefit from a combination of amikacin and ampicillin, it could be treated with glycopeptides. (author)

  5. Resistance to last-resort antibiotics in natural environments

    Tacão, Marta Cristina Oliveira Martins

    2014-01-01

    Last-resort antibiotics are the final line of action for treating serious infections caused by multiresistant strains. Over the years the prevalence of resistant bacteria has been increasing. Natural environments are reservoirs of antibiotic resistance, highly influenced by human-driven activities. The importance of aquatic systems on the evolution of antibiotic resistance is highlighted from the assumption that clinically-relevant resistance genes have originated in strains ...

  6. Antibiotic Resistance Threats in the U.S.

    ... What's this? Submit Button Past Emails CDC Features Antibiotic Resistance Threats in the US Recommend on Facebook Tweet Share Compartir Antibiotics are powerful tools for fighting illness and disease, ...

  7. Antibiotic Resistance Common in Kids' Urinary Tract Infections

    ... nlm.nih.gov/medlineplus/news/fullstory_157809.html Antibiotic Resistance Common in Kids' Urinary Tract Infections Researchers ... coli bacteria are now failing to respond to antibiotic treatment, a new review warns. The culprit, according ...

  8. Isolated cell behavior drives the evolution of antibiotic resistance

    Artemova, Tatiana; Gerardin, Ylaine; Dudley, Carmel; Vega, Nicole M.; Gore, Jeff

    2015-01-01

    Bacterial antibiotic resistance is typically quantified by the minimum inhibitory concentration (MIC), which is defined as the minimal concentration of antibiotic that inhibits bacterial growth starting from a standard cell density. However, when antibiotic resistance is mediated by degradation, the collective inactivation of antibiotic by the bacterial population can cause the measured MIC to depend strongly on the initial cell density. In cases where this inoculum effect is strong, the rela...

  9. Emergence and dissemination of antibiotic resistance: A global problem

    R Choudhury

    2012-01-01

    Full Text Available Antibiotic resistance is a major problem in clinical health settings. Interestingly the origin of many of antibiotic resistance mechanisms can be traced back to non-pathogenic environmental organisms. Important factors leading to the emergence and spread of antibiotic resistance include absence of regulation in the use of antibiotics, improper waste disposal and associated transmission of antibiotic resistance genes in the community through commensals. In this review, we discussed the impact of globalisation on the transmission of antibiotic resistance genes in bacteria through immigration and export/import of foodstuff. The significance of surveillance to define appropriate use of antibiotics in the clinic has been included as an important preventive measure.

  10. Fungal treatment for the removal of antibiotics and antibiotic resistance genes in veterinary hospital wastewater.

    Lucas, D; Badia-Fabregat, M; Vicent, T; Caminal, G; Rodríguez-Mozaz, S; Balcázar, J L; Barceló, D

    2016-06-01

    The emergence and spread of antibiotic resistance represents one of the most important public health concerns and has been linked to the widespread use of antibiotics in veterinary and human medicine. The overall elimination of antibiotics in conventional wastewater treatment plants is quite low; therefore, residual amounts of these compounds are continuously discharged to receiving surface waters, which may promote the emergence of antibiotic resistance. In this study, the ability of a fungal treatment as an alternative wastewater treatment for the elimination of forty-seven antibiotics belonging to seven different groups (β-lactams, fluoroquinolones, macrolides, metronidazoles, sulfonamides, tetracyclines, and trimethoprim) was evaluated. 77% of antibiotics were removed after the fungal treatment, which is higher than removal obtained in conventional treatment plants. Moreover, the effect of fungal treatment on the removal of some antibiotic resistance genes (ARGs) was evaluated. The fungal treatment was also efficient in removing ARGs, such as ermB (resistance to macrolides), tetW (resistance to tetracyclines), blaTEM (resistance to β-lactams), sulI (resistance to sulfonamides) and qnrS (reduced susceptibility to fluoroquinolones). However, it was not possible to establish a clear link between concentrations of antibiotics and corresponding ARGs in wastewater, which leads to the conclusion that there are other factors that should be taken into consideration besides the antibiotic concentrations that reach aquatic ecosystems in order to explain the emergence and spread of antibiotic resistance. PMID:26991378

  11. U.S. Officials Confirm Superbug Resistant to All Antibiotics

    ... E. coli was genetically resistant to the drug colistin. Colistin, an older antibiotic, fell out of favor in ... if carbapenem-resistant bacteria also gain resistance to colistin, it could leave doctors with no treatment options ...

  12. Antibiotic Resistance of Enterococci and Coliform Bacteria in Dairy Products from Commercial Farms

    Ivana Nováková; Miroslava Kačániová; Henrieta Arpášová; Peter Haščík; Simona Kunová; Juraj Čuboň

    2010-01-01

    The aim of this study was to determine the prevalence and antibiotic resistance of enterococci and coliform bacteria isolated from sheep and cows cheese from commercial farms. Susceptibilities of isolated enterococci and coliform bacteria were tested using the disk diffusion method. The bacteria were tested on antibiotics enrofloxacin, sulphonamides, tetracycline and streptomycin. All isolates of Enterococcus strains were resistant of all used antibiotics. The similar results were detected of...

  13. Sampling and Pooling Methods for Capturing Herd Level Antibiotic Resistance in Swine Feces using qPCR and CFU Approaches

    Schmidt, Gunilla Veslemøy; Mellerup, Anders; Christiansen, Lasse Engbo;

    2015-01-01

    The aim of this article was to define the sampling level and method combination that captures antibiotic resistance at pig herd level utilizing qPCR antibiotic resistance gene quantification and culture-based quantification of antibiotic resistant coliform indicator bacteria. Fourteen qPCR assays...... for commonly detected antibiotic resistance genes were developed, and used to quantify antibiotic resistance genes in total DNA from swine fecal samples that were obtained using different sampling and pooling methods. In parallel, the number of antibiotic resistant coliform indicator bacteria was...... determined in the same swine fecal samples. The results showed that the qPCR assays were capable of detecting differences in antibiotic resistance levels in individual animals that the coliform bacteria colony forming units (CFU) could not. Also, the qPCR assays more accurately quantified antibiotic...

  14. Fate of antibiotic resistant cultivable heterotrophic bacteria and antibiotic resistance genes in wastewater treatment processes.

    Zhang, Songhe; Han, Bing; Gu, Ju; Wang, Chao; Wang, Peifang; Ma, Yanyan; Cao, Jiashun; He, Zhenli

    2015-09-01

    Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are emerging contaminants of environmental concern. Heterotrophic bacteria in activated sludge have an important role in wastewater treatment plants (WWTPs). However, the fate of cultivable heterotrophic ARB and ARGs in WWPTs process remains unclear. In the present study, we investigated the antibiotic-resistant phenotypes of cultivable heterotrophic bacteria from influent and effluent water of three WWTPs and analysed thirteen ARGs in ARB and in activated sludge from anoxic, anaerobic and aerobic compartments. From each influent or effluent sample of the three plants, 200 isolates were randomly tested for susceptibility to 12 antibiotics. In these samples, between 5% and 64% isolates showed resistance to >9 antibiotics and the proportion of >9-drug-resistant bacteria was lower in isolates from effluent than from influent. Eighteen genera were identified in 188 isolates from influent (n=94) and effluent (n=94) of one WWTP. Six genera (Aeromonas, Bacillus, Lysinibacillus, Microbacterium, Providencia, and Staphylococcus) were detected in both influent and effluent samples. Gram-negative and -positive isolates dominated in influent and effluent, respectively. The 13 tetracycline-, sulphonamide-, streptomycin- and β-lactam-resistance genes were detected at a higher frequency in ARB from influent than from effluent, except for sulA and CTX-M, while in general, the abundances of ARGs in activated sludge from two of the three plants were higher in aerobic compartments than in anoxic ones, indicating abundant ARGs exit in the excess sledges and/or in uncultivable bacteria. These findings may be useful for elucidating the effect of WWTP on ARB and ARGs. PMID:25950407

  15. Lytic phages obscure the cost of antibiotic resistance in Escherichia coli.

    Tazzyman, Samuel J; Hall, Alex R

    2015-04-01

    The long-term persistence of antibiotic-resistant bacteria depends on their fitness relative to other genotypes in the absence of drugs. Outside the laboratory, viruses that parasitize bacteria (phages) are ubiquitous, but costs of antibiotic resistance are typically studied in phage-free experimental conditions. We used a mathematical model and experiments with Escherichia coli to show that lytic phages strongly affect the incidence of antibiotic resistance in drug-free conditions. Under phage parasitism, the likelihood that antibiotic-resistant genetic backgrounds spread depends on their initial frequency, mutation rate and intrinsic growth rate relative to drug-susceptible genotypes, because these parameters determine relative rates of phage-resistance evolution on different genetic backgrounds. Moreover, the average cost of antibiotic resistance in terms of intrinsic growth in the antibiotic-free experimental environment was small relative to the benefits of an increased mutation rate in the presence of phages. This is consistent with our theoretical work indicating that, under phage selection, typical costs of antibiotic resistance can be outweighed by realistic increases in mutability if drug resistance and hypermutability are genetically linked, as is frequently observed in clinical isolates. This suggests the long-term distribution of antibiotic resistance depends on the relative rates at which different lineages adapt to other types of selection, which in the case of phage parasitism is probably extremely common, as well as costs of resistance inferred by classical in vitro methods. PMID:25268496

  16. Antibiotic resistance genes detected in the marine sponge Petromica citrina from Brazilian coast.

    Laport, Marinella Silva; Pontes, Paula Veronesi Marinho; Dos Santos, Daniela Silva; Santos-Gandelman, Juliana de Fátima; Muricy, Guilherme; Bauwens, Mathieu; Giambiagi-deMarval, Marcia; George, Isabelle

    2016-01-01

    Although antibiotic-resistant pathogens pose a significant threat to human health, the environmental reservoirs of the resistance determinants are still poorly understood. This study reports the detection of resistance genes (ermB, mecA, mupA, qnrA, qnrB and tetL) to antibiotics among certain culturable and unculturable bacteria associated with the marine sponge Petromica citrina. The antimicrobial activities elicited by P. citrina and its associated bacteria are also described. The results indicate that the marine environment could play an important role in the development of antibiotic resistance and the dissemination of resistance genes among bacteria. PMID:27287338

  17. Ecology and Evolution as Targets: the Need for Novel Eco-Evo Drugs and Strategies To Fight Antibiotic Resistance

    Baquero, F.; Coque, T. M.; de la Cruz, F

    2011-01-01

    In recent years, the explosive spread of antibiotic resistance determinants among pathogenic, commensal, and environmental bacteria has reached a global dimension. Classical measures trying to contain or slow locally the progress of antibiotic resistance in patients on the basis of better antibiotic prescribing policies have clearly become insufficient at the global level. Urgent measures are needed to directly confront the processes influencing antibiotic resistance pollution in the microbio...

  18. Bordetella avium Antibiotic Resistance, Novel Enrichment Culture, and Antigenic Characterization

    Beach, Nathan M; Thompson, Seth; Mutnick, Rachel; Brown, Lisa; Kettig, Gina; Puffenbarger, Robyn; Miyamoto, David; Temple, Louise

    2012-01-01

    Bordetella avium continues to be an economic issue in the turkey industry as the causative agent of bordetellosis, which often leads to serious secondary infections. This study presents a broad characterization of the antibiotic resistance patterns in this diverse collection of B. avium strains collected over the past thirty years. In addition, the plasmid basis for the antibiotic resistance was characterized. The antibiotic resistance pattern allowed the development of a novel enrichment cul...

  19. Commensal Pseudomonas Species Isolated from Wastewater and Freshwater Milieus in the Eastern Cape Province, South Africa, as Reservoir of Antibiotic Resistant Determinants

    Anthony I. Okoh

    2012-07-01

    Full Text Available Pseudomonas species are opportunistic pathogens with implications in a wide range of diseases including cystic fibrosis and sickle cell anaemia. Because of their status as multidrug resistant (MDR and extremely drug resistant (XDR bacteria Pseudomonas species represent a threat to public health. Prevalence, antibiogram and associated antibiotic resistant genes of Pseudomonas species isolated from freshwater and mixed liquor environments in the Eastern Cape Province of South Africa were assessed. Polymerase chain reaction (PCR based technique was used to identify the isolates and screen for antibiotic resistant genes. The result shows occurrence of Pseudomonas spp. in freshwater and mixed liquor as follows: 71.42% and 37.5% (P. putida, 14.28% and 31.25% (P. flourescens, 7.14% and 6.25% (P. aeruginosa and 7.14% and 25% for other Pseudomonas species respectively. Disk diffusion antibiogram of the Pseudomonas isolates from the two locations showed 100% resistance to penicillin, oxacillin, clindamycin, rifampicin and 100% susceptibility to ciprofloxacin and gentamicin with varied percentage resistances to cephalothin, nalidixic acid, tetracycline, and ampicillin. The blaTEM antibiotic resistant gene was detected in 12.5% of P. putida, 57.14% of P. fluorescens, 100% P. aeruginosa and 40% in other Pseudomonas species. Similarly, Integrons conserved segment were detected in 12.5% of P. putida, 57.14% of P. fluorescens, 100% of P. aeruginosa and 40% of other Pseudomonas species. The presence of blaTEM gene and integrons conserved segment in some of the isolates is worrisome and suggest Pseudomonas species as important reservoirs of multidrug resistance genes in the Eastern Cape Province environment.

  20. Characterization of antibiotic-resistant bacteria in rendered animal products.

    Hofacre, C L; White, D G; Maurer, J J; Morales, C; Lobsinger, C; Hudson, C

    2001-01-01

    Antibiotics are used in food animal production to treat diseases and also to improve performance. Antibiotics are not used on all farms, and antibiotic resistance is occasionally found on farms that do not use antibiotics. Rendered animal protein products are often included in poultry feeds and could potentially serve as a source of antibiotic-resistant bacteria. One hundred sixty-five rendered animal protein products from cattle, poultry, and fish were aseptically collected from poultry feed mills. Fifty-five percent of the poultry meal samples had detectable levels of gram-negative bacteria ranging from 40 to 10,440 colony-forming units/g of sample. Poultry meal and meat and bone meal had the greatest number of samples with bacteria resistant to five or more antibiotics. A high percentage of feed samples (85%) contained bacteria resistant to amoxicillin, ampicillin, clavulanic acid, or cephalothin, whereas few samples contained bacteria resistant to ciprofloxacin, kanamycin, or trimethoprim/sulfamethoxazole. Acinetobacter calcoaceticus, Citrobacter freundii, and Enterobacter cloacae were the most commonly isolated antibiotic-resistant bacteria. Isolation for Salmonella was also performed, with 14% of the meat and bone meal samples containing Salmonella sp. Only one of the meat and bone meal isolates, Salmonella livingstone, was resistant to five or more antibiotics. Many of the antibiotic-resistant bacteria contained integrons, genetic elements that mediate multiple drug resistance. PMID:11785899

  1. Prevalence of Antibiotic-Resistant Bacteria on Rectal Swabs and Factors Affecting Resistance to Antibiotics in Patients Undergoing Prostate Biopsy

    Kim, Jong Beom; Jung, Seung Il; Hwang, Eu Chang; Kwon, Dong Deuk

    2014-01-01

    Purpose The prevalence of antibiotic-resistant bacteria on rectal swabs in patients undergoing transrectal ultrasound (TRUS)-guided prostate biopsy and the factors affecting resistance to antibiotics were evaluated. Materials and Methods Two hundred twenty-three men who underwent TRUS-guided prostate biopsy from November 2011 to December 2012 were retrospectively evaluated. Rectal swabs were cultured on MacConkey agar to identify antibiotic-resistant bacteria in rectal flora before TRUS-guide...

  2. Bacterial Enzymes and Antibiotic Resistance- Oral Presentation

    Maltz, Lauren [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-25

    By using protein crystallography and X-ray diffraction, structures of bacterial enzymes were solved to gain a better understanding of how enzymatic modification acts as an antibacterial resistance mechanism. Aminoglycoside phosphotransferases (APHs) are one of three aminoglycoside modifying enzymes that confer resistance to the aminoglycoside antibiotics via enzymatic modification, rendering many drugs obsolete. Specifically, the APH(2”) family vary in their substrate specificities and also in their preference for the phosphate donor (ADP versus GDP). By solving the structures of members of the APH(2”) family of enzymes, we can see how domain movements are important to their substrate specificity. Our structure of the ternary complex of APH(2”)-IIIa with GDP and kanamycin, when compared to the known structures of APH(2”)-IVa, reveals that there are real physical differences between these two enzymes, a structural finding that explains why the two enzymes differ in their preferences for certain aminoglycosides. Another important group of bacterial resistance enzymes are the Class D β-lactamases. Oxacillinase carbapenemases (OXAs) are part of this enzyme class and have begun to confer resistance to ‘last resort’ drugs, most notably carbapenems. Our structure of OXA-143 shows that the conformational flexibility of a conserved hydrophobic residue in the active site (Val130) serves to control the entry of a transient water molecule responsible for a key step in the enzyme’s mechanism. Our results provide insight into the structural mechanisms of these two different enzymes.

  3. Antibiotic resistance in food lactic acid bacteria--a review.

    Mathur, Shalini; Singh, Rameshwar

    2005-12-15

    Antibiotics are a major tool utilized by the health care industry to fight bacterial infections; however, bacteria are highly adaptable creatures and are capable of developing resistance to antibiotics. Consequently, decades of antibiotic use, or rather misuse, have resulted in bacterial resistance to many modern antibiotics. This antibiotic resistance can cause significant danger and suffering for many people with common bacterial infections, those once easily treated with antibiotics. For several decades studies on selection and dissemination of antibiotic resistance have focused mainly on clinically relevant species. However, recently many investigators have speculated that commensal bacteria including lactic acid bacteria (LAB) may act as reservoirs of antibiotic resistance genes similar to those found in human pathogens. The main threat associated with these bacteria is that they can transfer resistance genes to pathogenic bacteria. Genes conferring resistance to tetracycline, erythromycin and vancomycin have been detected and characterized in Lactococcus lactis, Enterococci and, recently, in Lactobacillus species isolated from fermented meat and milk products. A number of initiatives have been recently launched by various organizations across the globe to address the biosafety concerns of starter cultures and probiotic microorganisms. The studies can lead to better understanding of the role played by the dairy starter microorganisms in horizontal transfer of antibiotic resistance genes to intestinal microorganisms and food-associated pathogenic bacteria. PMID:16289406

  4. Antibiotic misuse in the community--a contributor to resistance?

    Carey, B

    2012-02-03

    The problem of antibiotic resistance is associated with the indiscriminate usage of antibiotics. Efforts have been directed at encouraging the rational use of these drugs to reduce the volume of antibiotic consumption and decrease resistance rates. There is evidence to suggest that the misuse of antibiotics by patients may also contribute to the problem. We describe a survey of a random selection of patients attending a General Practitioners\\' surgery over a six week period in an effort to estimate the level of non-compliance to antibiotic therapy in the community. The results suggest that there may be a significant level of antibiotic misuse prevalent in the local community. We discuss these results and present evidence in the literature suggesting how antibiotic misuse may affect resistance in the community. The factors affecting patient compliance to therapy are outlined along with suggested measures to improve compliance among patients.

  5. Assessment of Bacterial Antibiotic Resistance Transfer in the Gut

    Susanne Schjørring; Krogfelt, Karen A.

    2011-01-01

    We assessed horizontal gene transfer between bacteria in the gastrointestinal (GI) tract. During the last decades, the emergence of antibiotic resistant strains and treatment failures of bacterial infections have increased the public awareness of antibiotic usage. The use of broad spectrum antibiotics creates a selective pressure on the bacterial flora, thus increasing the emergence of multiresistant bacteria, which results in a vicious circle of treatments and emergence of new antibiotic res...

  6. Coping with antibiotic resistance: combining nanoparticles with antibiotics and other antimicrobial agents.

    Allahverdiyev, Adil M; Kon, Kateryna Volodymyrivna; Abamor, Emrah Sefik; Bagirova, Malahat; Rafailovich, Miriam

    2011-11-01

    The worldwide escalation of bacterial resistance to conventional medical antibiotics is a serious concern for modern medicine. High prevalence of multidrug-resistant bacteria among bacteria-based infections decreases effectiveness of current treatments and causes thousands of deaths. New improvements in present methods and novel strategies are urgently needed to cope with this problem. Owing to their antibacterial activities, metallic nanoparticles represent an effective solution for overcoming bacterial resistance. However, metallic nanoparticles are toxic, which causes restrictions in their use. Recent studies have shown that combining nanoparticles with antibiotics not only reduces the toxicity of both agents towards human cells by decreasing the requirement for high dosages but also enhances their bactericidal properties. Combining antibiotics with nanoparticles also restores their ability to destroy bacteria that have acquired resistance to them. Furthermore, nanoparticles tagged with antibiotics have been shown to increase the concentration of antibiotics at the site of bacterium-antibiotic interaction, and to facilitate binding of antibiotics to bacteria. Likewise, combining nanoparticles with antimicrobial peptides and essential oils generates genuine synergy against bacterial resistance. In this article, we aim to summarize recent studies on interactions between nanoparticles and antibiotics, as well as other antibacterial agents to formulate new prospects for future studies. Based on the promising data that demonstrated the synergistic effects of antimicrobial agents with nanoparticles, we believe that this combination is a potential candidate for more research into treatments for antibiotic-resistant bacteria. PMID:22029522

  7. Antibiotic resistances of intestinal lactobacilli isolated from wild boars.

    Klose, Viviana; Bayer, Katharina; Kern, Corinna; Goelß, Florian; Fibi, Silvia; Wegl, Gertrude

    2014-01-10

    Acquired antibiotic resistances have been reported in lactobacilli of various animal and food sources, but there are no data from wild boar. The objective was a preliminary examination of the antibiotic resistance prevalence of intrinsically vancomycin-resistant lactobacilli isolated from wild boar intestines and analysis of the genetic determinants implicated. Out of three wild boars, 121 lactobacilli were recovered and grouped according to their whole cell protein patterns. Initial phenotypic screening revealed that all were susceptible to erythromycin (2 μg/ml), but 30 were resistant to tetracycline (32 μg/ml). Based on Randomly Amplified Polymorphic DNA-PCR clustering, 64 strains were selected as representative genotypes for identification and minimum inhibitory concentration (MIC) determination. Partial 16S rRNA gene sequencing identified four species: (i) L. mucosae (n=57), (ii) L. reuteri (n=47), (iii) L. fermentum (n=12), and (iv) L. murinus (n=5). Most heterofermentative strains displayed low MICs for ampicillin (AMP), chloramphenicol (CHL), streptomycin (STR), kanamycin (KAN), gentamicin (GEN), erythromycin (ERY), quinupristin/dalfopristin (Q/D), and clindamycin (CLI). Atypical MICs were found mainly in L. mucosae and L. reuteri for TET, KAN, STR, AMP and CHL, but except the TET MICs of L. mucosae mostly at low level. L. murinus strains revealed atypical MICs for aminoglycosides, and/or CHL, AMP, CLI. PCR screening detected tet(W) in 12 and tet(M) in one of heterofermentative strains, as well as the aph(3')-III kanamycin gene in L. murinus. This is the first report showing acquired antibiotic resistance determinants in intestinal lactobacilli of wild boar origin. PMID:24326231

  8. Study of antibiotic resistance of staph aureus and coagulase negative staphylococci isolated from patient samples

    M Anvary

    2006-04-01

    Full Text Available Introduction: Drug resistant Staphylococci are the most important agents of nosocomial infections. In this survey, effect of different antibiotics on these bacteria and their drug resistance was investigated. Methods: The study included 500 strains of Staphylococci. Minimum Inhibitory Concentrations of all antibiotics was determined by the broth macro dilution technique and standard methods from the National Committee for Clinical Laboratory Standards. Result : Oxacillin resistance of S. aureus was 14.2% and that of coagulase-negative staphylococci was 53.4%. The activity of different antibiotics is presented in detail. Conclusion: Surveillance of strains resistant to methicillin is necessary.

  9. Antibiotic-resistant gram-negative bacterial infections in patients with cancer.

    Perez, Federico; Adachi, Javier; Bonomo, Robert A

    2014-11-15

    Patients with cancer are at high risk for infections caused by antibiotic resistant gram-negative bacteria. In this review, we summarize trends among the major pathogens and clinical syndromes associated with antibiotic resistant gram-negative bacterial infection in patients with malignancy, with special attention to carbapenem and expanded-spectrum β-lactam resistance in Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia--all major threats to our cancer patients. Optimal therapy for these antibiotic-resistant pathogens still remains to be determined. PMID:25352627

  10. Supramolecular Antibiotic Switches: A Potential Strategy for Combating Drug Resistance.

    Bai, Haotian; Lv, Fengting; Liu, Libing; Wang, Shu

    2016-08-01

    Bacterial infectious disease is a serious public health concern throughout the world. Pathogen drug resistance, arising from both rational use and abuse/misuse of germicides, complicates the situation. Aside from developing novel antibiotics and antimicrobial agents, molecular approaches have become another significant method to overcome the problem of pathogen drug resistance. Established supramolecular systems, the antibiotic properties of which can be switched "on" and "off" through host-guest interactions, show great potential in combating issues regarding antibiotic resistance in the long term, as indicated by several recent studies. In this Concept, recently developed strategies for antibacterial regulation are summarized and further directions for research into antibiotic switches are proposed. PMID:27312106

  11. Antibiotic Sensitivity Profiles Determined with an Escherichia coli Gene Knockout Collection: Generating an Antibiotic Bar Code ▿ †

    Liu, Anne; Tran, Lillian; Becket, Elinne; Lee, Kim; Chinn, Laney; Park, Eunice; Tran, Katherine; Miller, Jeffrey H.

    2010-01-01

    We have defined a sensitivity profile for 22 antibiotics by extending previous work testing the entire KEIO collection of close to 4,000 single-gene knockouts in Escherichia coli for increased susceptibility to 1 of 14 different antibiotics (ciprofloxacin, rifampin [rifampicin], vancomycin, ampicillin, sulfamethoxazole, gentamicin, metronidazole, streptomycin, fusidic acid, tetracycline, chloramphenicol, nitrofurantoin, erythromycin, and triclosan). We screened one or more subinhibitory concentrations of each antibiotic, generating more than 80,000 data points and allowing a reduction of the entire collection to a set of 283 strains that display significantly increased sensitivity to at least one of the antibiotics. We used this reduced set of strains to determine a profile for eight additional antibiotics (spectinomycin, cephradine, aztreonem, colistin, neomycin, enoxacin, tobramycin, and cefoxitin). The profiles for the 22 antibiotics represent a growing catalog of sensitivity fingerprints that can be separated into two components, multidrug-resistant mutants and those mutants that confer relatively specific sensitivity to the antibiotic or type of antibiotic tested. The latter group can be represented by a set of 20 to 60 strains that can be used for the rapid typing of antibiotics by generating a virtual bar code readout of the specific sensitivities. Taken together, these data reveal the complexity of intrinsic resistance and provide additional targets for the design of codrugs (or combinations of drugs) that potentiate existing antibiotics. PMID:20065048

  12. Antibiotic resistance - the interplay between antibiotic use in animals and human beings

    Singer, R.S.; Finch, R.; Wegener, Henrik Caspar; Bywater, R.; Walters, J.; Lipsitch, M.

    2003-01-01

    meant the problem of antibiotic resistance is fast escalating into a global health crisis. There is no doubt that misuse of these drugs in human beings has contributed to the increasing rates of resistance, but recently the use of antibiotics in food animals and its consequent effect on resistance....... There is a growing concern over the transmission of resistant bacteria via the food chain. Many questions will be difficult to resolve, such as how do you distinguish the fraction of resistance in human beings that originated from animals? If we wait to see evidence that a significant amount of...... antibiotic resistance really does come through the food chain, will it be too late for action? In this forum, we present different perspectives from both human and animal medicine, to better understand the complexity of the problem of antibiotic resistance and examine the challenges that lie ahead....

  13. Incidence, distribution, and spread of tetracycline resistance determinants and integron-associated antibiotic resistance genes among motile aeromonads from a fish farming environment

    Schmidt, Anja S.; Bruun, Morten Sichlau; Dalsgaard, Inger;

    2001-01-01

    A collection of 313 motile aeromonads isolated at Danish rainbow trout farms was analyzed to identify some of the genes involved in high levels of antimicrobial resistance found in a previous field trial (A. S. Schmidt, M. S. Bruun, I. Dalsgaard, K. Pedersen, and J. L. Larsen, Appl. Environ. Micr...

  14. Active surveillance to determine the impact of methicillin resistance on mortality in patients with bacteremia and influences of the use of antibiotics on the development of MRSA infection

    Juliana Pena Porto

    2013-12-01

    Full Text Available Introduction Methicillin-resistant Staphylococcus aureus (MRSA is among the most important pathogens of nosocomial infections, mainly in intensive care units (ICUs, and accounts for 40-60% of all healthcare-associated S. aureus infections. We evaluated the incidence of nosocomial infection by S. aureus, identified the risk factors for MRSA infection, and evaluated the effect of resistance to methicillin on mortality in patients. Methods We conducted MRSA surveillance at a university hospital in Brazil from January 1, 2010, to December 31, 2010, and performed a retrospective case-control matched study to evaluate the frequency of subsequent MRSA bacteremia and death among patients. We evaluated and compared the risk factors between patients with MRSA and methicillin-sensitive Staphylococcus aureus (MSSA infection. Results Sepsis was the most common cause of infection (17.7/1,000 patient-days, followed by surgical site (11.4/1,000 patient-days, pneumonia (4.1/1,000 patient-days, and urinary tract infection (2.4/1,000 patient-days. The significant risk factors were time of hospitalization, use of central vascular catheter (CVC, urinary catheter, nasogastric tube, parenteral nutrition, tracheostomy, mechanical ventilation, and previous antibiotic administration, the latter of which was the only independent risk factor for MRSA infection. Mortality was significantly higher in patients with MRSA. The number of antibiotics tested was not related to increases in the frequency of MRSA/1,000 patient-days. The incidence of mortality attributable to MRSA (bloodstream infection BSI was 50%. Conclusions Surveillance results showed that the use of high levels of antibiotics was directly related to the development of MRSA infection, and the mortality attributable to MRSA in patients with bacteremia was significant.

  15. Antibiotic resistance in triclosan heterotrophic plate count bacteria from sewage water / Ilsé Coetzee

    Coetzee, Ilsé

    2015-01-01

    The concentration of triclosan in antiseptics, disinfectants and preservatives in products exceeds the minimal lethal levels. Extensive use of triclosan and antibiotics results in bacterial resistance to their active ingredients. The precise relationship between use and resistance, however, has been challenging to define. The aim of the study was to identify and determine antibiotic resistance profiles of triclosan tolerant heterotrophic plate count bacteria isolates from sewag...

  16. Persistence and resistance as complementary bacterial adaptations to antibiotics.

    Vogwill, T; Comfort, A C; Furió, V; MacLean, R C

    2016-06-01

    Bacterial persistence represents a simple of phenotypic heterogeneity, whereby a proportion of cells in an isogenic bacterial population can survive exposure to lethal stresses such as antibiotics. In contrast, genetically based antibiotic resistance allows for continued growth in the presence of antibiotics. It is unclear, however, whether resistance and persistence are complementary or alternative evolutionary adaptations to antibiotics. Here, we investigate the co-evolution of resistance and persistence across the genus Pseudomonas using comparative methods that correct for phylogenetic nonindependence. We find that strains of Pseudomonas vary extensively in both their intrinsic resistance to antibiotics (ciprofloxacin and rifampicin) and persistence following exposure to these antibiotics. Crucially, we find that persistence correlates positively to antibiotic resistance across strains. However, we find that different genes control resistance and persistence implying that they are independent traits. Specifically, we find that the number of type II toxin-antitoxin systems (TAs) in the genome of a strain is correlated to persistence, but not resistance. Our study shows that persistence and antibiotic resistance are complementary, but independent, evolutionary adaptations to stress and it highlights the key role played by TAs in the evolution of persistence. PMID:26999656

  17. Antibiotic resistance in urban aquatic environments: can it be controlled?

    Manaia, Célia; Macedo, Gonçalo; Fatta-Kassinos, Despo; Nunes, Olga

    2016-01-01

    Over the last decade, numerous evidences have contributed to establish a link between the natural and humanimpacted environments and the growing public health threat that is the antimicrobial resistance. In the environment, in particular in areas subjected to strong anthropogenic pressures, water plays a major role on the transformation and transport of contaminants including antibiotic residues, antibioticresistant bacteria, and antibiotic resistance genes. Therefore, ...

  18. Metagenomics and other Methods for Measuring Antibiotic Resistance in Agroecosystems

    Background: There is broad concern regarding antibiotic resistance on farms and in fields, however there is no standard method for defining or measuring antibiotic resistance in environmental samples. Methods: We used metagenomic, culture-based, and molecular methods to characterize the amount, t...

  19. Understanding, predicting and manipulating the genotypic evolution of antibiotic resistance

    Palmer, Adam C.; Kishony, Roy

    2013-01-01

    The evolution of antibiotic resistance can now be rapidly tracked with high-throughput technologies for bacterial genotyping and phenotyping. Combined with new approaches to evolve resistance in the laboratory and to characterize clinically evolved resistant pathogens, these methods are revealing the molecular basis and rate of evolution of antibiotic resistance under treatment regimens of single drugs or drug combinations. In this Progress article, we review these new tools to study the evol...

  20. Antibiotics and antibiotic-resistant bacteria in waters associated with a hospital in Ujjain, India

    Marothi Yogyata

    2010-07-01

    Full Text Available Abstract Background Concerns have been raised about the public health implications of the presence of antibiotic residues in the aquatic environment and their effect on the development of bacterial resistance. While there is information on antibiotic residue levels in hospital effluent from some other countries, information on antibiotic residue levels in effluent from Indian hospitals is not available. Also, concurrent studies on antibiotic prescription quantity in a hospital and antibiotic residue levels and resistant bacteria in the effluent of the same hospital are few. Therefore, we quantified antibiotic residues in waters associated with a hospital in India and assessed their association, if any, with quantities of antibiotic prescribed in the hospital and the susceptibility of Escherichia coli found in the hospital effluent. Methods This cross-sectional study was conducted in a teaching hospital outside the city of Ujjain in India. Seven antibiotics - amoxicillin, ceftriaxone, amikacin, ofloxacin, ciprofloxacin, norfloxacin and levofloxacin - were selected. Prescribed quantities were obtained from hospital records. The samples of the hospital associated water were analysed for the above mentioned antibiotics using well developed and validated liquid chromatography/tandem mass spectrometry technique after selectively isolating the analytes from the matrix using solid phase extraction. Escherichia coli isolates from these waters were tested for antibiotic susceptibility, by standard Kirby Bauer disc diffusion method using Clinical and Laboratory Standard Institute breakpoints. Results Ciprofloxacin was the highest prescribed antibiotic in the hospital and its residue levels in the hospital wastewater were also the highest. In samples of the municipal water supply and the groundwater, no antibiotics were detected. There was a positive correlation between the quantity of antibiotics prescribed in the hospital and antibiotic residue levels in

  1. "Practical knowledge" and perceptions of antibiotics and antibiotic resistance among drugsellers in Tanzanian private drugstores

    Tomson Göran

    2010-09-01

    Full Text Available Abstract Background Studies indicate that antibiotics are sold against regulation and without prescription in private drugstores in rural Tanzania. The objective of the study was to explore and describe antibiotics sale and dispensing practices and link it to drugseller knowledge and perceptions of antibiotics and antibiotic resistance. Methods Exit customers of private drugstores in eight districts were interviewed about the drugstore encounter and drugs bought. Drugsellers filled in a questionnaire with closed- and open-ended questions about antibiotics and resistance. Data were analyzed using mixed quantitative and qualitative methods. Results Of 350 interviewed exit customers, 24% had bought antibiotics. Thirty percent had seen a health worker before coming and almost all of these had a prescription. Antibiotics were dispensed mainly for cough, stomachache, genital complaints and diarrhea but not for malaria or headache. Dispensed drugs were assessed as relevant for the symptoms or disease presented in 83% of all cases and 51% for antibiotics specifically. Non-prescribed drugs were assessed as more relevant than the prescribed. The knowledge level of the drugseller was ranked as high or very high by 75% of the respondents. Seventy-five drugsellers from three districts participated. Seventy-nine percent stated that diseases caused by bacteria can be treated with antibiotics but 24% of these also said that antibiotics can be used for treating viral disease. Most (85% said that STI can be treated with antibiotics while 1% said the same about headache, 4% general weakness and 3% 'all diseases'. Seventy-two percent had heard of antibiotic resistance. When describing what an antibiotic is, the respondents used six different kinds of keywords. Descriptions of what antibiotic resistance is and how it occurs were quite rational from a biomedical point of view with some exceptions. They gave rise to five categories and one theme: Perceiving antibiotic

  2. RecA Inhibitors Potentiate Antibiotic Activity and Block Evolution of Antibiotic Resistance.

    Alam, Md Kausar; Alhhazmi, Areej; DeCoteau, John F; Luo, Yu; Geyer, C Ronald

    2016-03-17

    Antibiotic resistance arises from the maintenance of resistance mutations or genes acquired from the acquisition of adaptive de novo mutations or the transfer of resistance genes. Antibiotic resistance is acquired in response to antibiotic therapy by activating SOS-mediated DNA repair and mutagenesis and horizontal gene transfer pathways. Initiation of the SOS pathway promotes activation of RecA, inactivation of LexA repressor, and induction of SOS genes. Here, we have identified and characterized phthalocyanine tetrasulfonic acid RecA inhibitors that block antibiotic-induced activation of the SOS response. These inhibitors potentiate the activity of bactericidal antibiotics, including members of the quinolone, β-lactam, and aminoglycoside families in both Gram-negative and Gram-positive bacteria. They reduce the ability of bacteria to acquire antibiotic resistance mutations and to transfer mobile genetic elements conferring resistance. This study highlights the advantage of including RecA inhibitors in bactericidal antibiotic therapies and provides a new strategy for prolonging antibiotic shelf life. PMID:26991103

  3. Epidemiological Interpretation of Studies Examining the Effect of Antibiotic Usage on Resistance

    Schechner, V.; Temkin, E.; Harbarth, S.; Carmeli, Y; Schwaber, M. J.

    2013-01-01

    Bacterial resistance to antibiotics is a growing clinical problem and public health threat. Antibiotic use is a known risk factor for the emergence of antibiotic resistance, but demonstrating the causal link between antibiotic use and resistance is challenging. This review describes different study designs for assessing the association between antibiotic use and resistance and discusses strengths and limitations of each. Approaches to measuring antibiotic use and antibiotic resistance are pre...

  4. Copper amendment of agricultural soil selects for bacterial antibiotic resistance in the field

    Berg, J.; Tom-Petersen, A.; Nybroe, O.

    2005-01-01

    Aims: The objective of this study was to determine whether Cu-amendment of field plots affects the frequency of Cu resistance, and antibiotic resistance patterns in indigenous soil bacteria. Methods and Results: Soil bacteria were isolated from untreated and Cu-amended field plots. Cu......-amendment significantly increased the frequency of Cu-resistant isolates. A panel of isolates were characterized by Gram-reaction, amplified ribosomal DNA restriction analysis and resistance profiling against seven antibiotics. More than 95% of the Cu-resistant isolates were Gram-negative. Cu-resistant Gram......-negative isolates had significantly higher incidence of resistance to ampicillin, sulphanilamide and multiple (greater than or equal to3) antibiotics than Cu-sensitive Gram-negative isolates. Furthermore, Cu-resistant Gram-negative isolates from Cu-contaminated plots had significantly higher incidence of resistance...

  5. Probing minority population of antibiotic-resistant bacteria.

    Huang, Tianxun; Zheng, Yan; Yan, Ya; Yang, Lingling; Yao, Yihui; Zheng, Jiaxin; Wu, Lina; Wang, Xu; Chen, Yuqing; Xing, Jinchun; Yan, Xiaomei

    2016-06-15

    The evolution and spread of antibiotic-resistant pathogens has become a major threat to public health. Advanced tools are urgently needed to quickly diagnose antibiotic-resistant infections to initiate appropriate treatment. Here we report the development of a highly sensitive flow cytometric method to probe minority population of antibiotic-resistant bacteria via single cell detection. Monoclonal antibody against TEM-1 β-lactamase and Alexa Fluor 488-conjugated secondary antibody were used to selectively label resistant bacteria green, and nucleic acid dye SYTO 62 was used to stain all the bacteria red. A laboratory-built high sensitivity flow cytometer (HSFCM) was applied to simultaneously detect the side scatter and dual-color fluorescence signals of single bacteria. By using E. coli JM109/pUC19 and E. coli JM109 as the model systems for antibiotic-resistant and antibiotic-susceptible bacteria, respectively, as low as 0.1% of antibiotic-resistant bacteria were accurately quantified. By monitoring the dynamic population change of a bacterial culture with the administration of antibiotics, we confirmed that under the antimicrobial pressure, the original low population of antibiotic-resistant bacteria outcompeted susceptible strains and became the dominant population after 5hours of growth. Detection of antibiotic-resistant infection in clinical urine samples was achieved without cultivation, and the bacterial load of susceptible and resistant strains can be faithfully quantified. Overall, the HSFCM-based quantitative method provides a powerful tool for the fundamental studies of antibiotic resistance and holds the potential to provide rapid and precise guidance in clinical therapies. PMID:26852201

  6. Metagenomic Insights into Transferable Antibiotic Resistance in Oral Bacteria.

    Sukumar, S; Roberts, A P; Martin, F E; Adler, C J

    2016-08-01

    Antibiotic resistance is considered one of the greatest threats to global public health. Resistance is often conferred by the presence of antibiotic resistance genes (ARGs), which are readily found in the oral microbiome. In-depth genetic analyses of the oral microbiome through metagenomic techniques reveal a broad distribution of ARGs (including novel ARGs) in individuals not recently exposed to antibiotics, including humans in isolated indigenous populations. This has resulted in a paradigm shift from focusing on the carriage of antibiotic resistance in pathogenic bacteria to a broader concept of an oral resistome, which includes all resistance genes in the microbiome. Metagenomics is beginning to demonstrate the role of the oral resistome and horizontal gene transfer within and between commensals in the absence of selective pressure, such as an antibiotic. At the chairside, metagenomic data reinforce our need to adhere to current antibiotic guidelines to minimize the spread of resistance, as such data reveal the extent of ARGs without exposure to antimicrobials and the ecologic changes created in the oral microbiome by even a single dose of antibiotics. The aim of this review is to discuss the role of metagenomics in the investigation of the oral resistome, including the transmission of antibiotic resistance in the oral microbiome. Future perspectives, including clinical implications of the findings from metagenomic investigations of oral ARGs, are also considered. PMID:27183895

  7. Host-dependent Induction of Transient Antibiotic Resistance: A Prelude to Treatment Failure

    Jessica Z. Kubicek-Sutherland

    2015-09-01

    Full Text Available Current antibiotic testing does not include the potential influence of host cell environment on microbial susceptibility and antibiotic resistance, hindering appropriate therapeutic intervention. We devised a strategy to identify the presence of host–pathogen interactions that alter antibiotic efficacy in vivo. Our findings revealed a bacterial mechanism that promotes antibiotic resistance in vivo at concentrations of drug that far exceed dosages determined by standardized antimicrobial testing. This mechanism has escaped prior detection because it is reversible and operates within a subset of host tissues and cells. Bacterial pathogens are thereby protected while their survival promotes the emergence of permanent drug resistance. This host-dependent mechanism of transient antibiotic resistance is applicable to multiple pathogens and has implications for the development of more effective antimicrobial therapies.

  8. Natural Hot Spots for Gain of Multiple Resistances: Arsenic and Antibiotic Resistances in Heterotrophic, Aerobic Bacteria from Marine Hydrothermal Vent Fields

    Farias, Pedro; Espírito Santo, Christophe; Branco, Rita; Francisco, Romeu; Santos, Susana; Hansen, Lars; Sorensen, Soren; Morais, Paula V.

    2015-01-01

    Microorganisms are responsible for multiple antibiotic resistances that have been associated with resistance/tolerance to heavy metals, with consequences to public health. Many genes conferring these resistances are located on mobile genetic elements, easily exchanged among phylogenetically distant bacteria. The objective of the present work was to isolate arsenic-, antimonite-, and antibiotic-resistant strains and to determine the existence of plasmids harboring antibiotic/arsenic/antimonite...

  9. Is screening patients for antibiotic-resistant bacteria justified in the Indian context?

    Bhattacharya, S.

    2011-01-01

    Infection with multi-antibiotic-resistant bacteria is a common clinical problem in India. In some countries and centres, screening patients to detect colonisation by these organisms is used to determine specific interventions such as decolonisation treatment, prophylactic antibiotics prior to surgical interventions or for selection of empirical antibiotic therapy, and to isolate patients so that transmission of these difficult to treat organisms to other patients could be prevented. In India,...

  10. Bacterial infections in Lilongwe, Malawi: aetiology and antibiotic resistance

    Makoka Mwai H

    2012-03-01

    Full Text Available Abstract Background Life-threatening infections present major challenges for health systems in Malawi and the developing world because routine microbiologic culture and sensitivity testing are not performed due to lack of capacity. Use of empirical antimicrobial therapy without regular microbiologic surveillance is unable to provide adequate treatment in the face of emerging antimicrobial resistance. This study was conducted to determine antimicrobial susceptibility patterns in order to inform treatment choices and generate hospital-wide baseline data. Methods Culture and susceptibility testing was performed on various specimens from patients presenting with possible infectious diseases at Kamuzu Central Hospital, Lilongwe, Malawi. Results Between July 2006 and December 2007 3104 specimens from 2458 patients were evaluated, with 60.1% from the adult medical service. Common presentations were sepsis, meningitis, pneumonia and abscess. An etiologic agent was detected in 13% of patients. The most common organisms detected from blood cultures were Staphylococcus aureus, Escherichia coli, Salmonella species and Streptococcus pneumoniae, whereas Streptococcus pneumoniae and Cryptococcus neoformans were most frequently detected from cerebrospinal fluid. Haemophilus influenzae was rarely isolated. Resistance to commonly used antibiotics was observed in up to 80% of the isolates while antibiotics that were not commonly in use maintained susceptibility. Conclusions There is widespread resistance to almost all of the antibiotics that are empirically used in Malawi. Antibiotics that have not been widely introduced in Malawi show better laboratory performance. Choices for empirical therapy in Malawi should be revised accordingly. A microbiologic surveillance system should be established and prudent use of antimicrobials promoted to improve patient care.

  11. Messages about Antibiotic Resistance in Different Newspaper Genres

    Marwa Nasr

    2013-10-01

    Full Text Available Poorer people are more likely to use antibiotics; inappropriate antibiotic use causes resistance, and health campaigns attempt to change behaviour through education. However, fuelled by the media, the public think antibiotic resistance is outside their control. Differences in the attribution of blame for antibiotic resistance in two genres of UK newspapers, targeting distinct socioeconomic groups, were examined using a mixed methods approach. Firstly, depiction of blame was categorised as either external to the lay public (outside their control or internal (lay person accountable and subjected to a chi-square test. Secondly, using critical discourse analysis, we examined the portrayal of the main agents through newspaper language. Data from 597 articles (307 broadsheets analysed revealed a significant association between newspaper genre and attribution of blame for antibiotic resistance. While both newspaper types blamed antibiotic resistance predominantly on factors external to the lay public, broadsheets were more likely to acknowledge internal factors than tabloids. Tabloids provided a more skewed representation, exposing readers to inaccurate explanations about antibiotic resistance. They highlighted ineptitude in health professionals, victimising patients and blaming others, while broadsheets used less emotive language. Pharmacists should take special care to communicate the importance of appropriate antibiotic use against this backdrop of distortion.

  12. Selective Conditions for a Multidrug Resistance Plasmid Depend on the Sociality of Antibiotic Resistance

    Bottery, Michael; Wood, A. Jamie; Brockhurst, Michael

    2016-01-01

    Multidrug resistance (MDR) plasmids frequently carry antibiotic resistance genes conferring qualitatively different mechanisms of resistance. We show here that the antibiotic concentrations selecting for the RK2 plasmid in Escherichia coli depend upon the sociality of the drug resistance: the selection for selfish drug resistance (efflux pump) occurred at very low drug concentrations, just 1.3% of the MIC of the plasmid-free antibiotic-sensitive strain, whereas selection for cooperative drug ...

  13. Mechanisms of Helicobacter pylori antibiotic resistance and molecular testing

    Toshihiro eNishizawa

    2014-10-01

    Full Text Available Antibiotic resistance in Helicobacter pylori (H. pylori is the main factor affecting the efficacy of current treatment methods against infection caused by this organism. The traditional culture methods for testing bacterial susceptibility to antibiotics are expensive and require 10 to 14 days. Since resistance to clarithromycin, fluoroquinolone, and tetracycline seems to be exclusively caused by specific mutations in a small region of the responsible gene, molecular methods offer an attractive alternative to the above-mentioned techniques. The technique of polymerase chain reaction (PCR is an accurate and rapid method for the detection of mutations that confer antibiotic resistance. This review highlights the mechanisms of antibiotic resistance in H. pylori and the molecular methods for antibiotic susceptibility testing.

  14. Resurrecting the intestinal microbiota to combat antibiotic-resistant pathogens.

    Pamer, Eric G

    2016-04-29

    The intestinal microbiota, which is composed of diverse populations of commensal bacterial species, provides resistance against colonization and invasion by pathogens. Antibiotic treatment can damage the intestinal microbiota and, paradoxically, increase susceptibility to infections. Reestablishing microbiota-mediated colonization resistance after antibiotic treatment could markedly reduce infections, particularly those caused by antibiotic-resistant bacteria. Ongoing studies are identifying commensal bacterial species that can be developed into next-generation probiotics to reestablish or enhance colonization resistance. These live medicines are at various stages of discovery, testing, and production and are being subjected to existing regulatory gauntlets for eventual introduction into clinical practice. The development of next-generation probiotics to reestablish colonization resistance and eliminate potential pathogens from the gut is warranted and will reduce health care-associated infections caused by highly antibiotic-resistant bacteria. PMID:27126035

  15. A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes.

    Sharma, Virender K; Johnson, Natalie; Cizmas, Leslie; McDonald, Thomas J; Kim, Hyunook

    2016-05-01

    Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) in the aquatic environment have become an emerging contaminant issue, which has implications for human and ecological health. This review begins with an introduction to the occurrence of ARB and ARG in different environmental systems such as natural environments and drinking water resources. For example, ARG or ARB with resistance to ciprofloxacin, sulfamethoxazole, trimethoprim, quinolone, vancomycin, or tetracycline (e.g., tet(A), tet(B), tet(C), tet(G), tet(O), tet(M), tet(W), sul I, and sul II) have been detected in the environment. The development of resistance may be intrinsic, may be acquired through spontaneous mutations (de novo), or may occur due to horizontal gene transfer from donor bacteria, phages, or free DNA to recipient bacteria. An overview is also provided of the current knowledge regarding inactivation of ARB and ARG, and the mechanism of the effects of different disinfection processes in water and wastewater (chlorination, UV irradiation, Fenton reaction, ozonation, and photocatalytic oxidation). The effects of constructed wetlands and nanotechnology on ARB and ARG are also summarized. PMID:26775188

  16. Antibiotic resistance - the interplay between antibiotic use in animals and human beings

    Singer, R.S.; Finch, R.; Wegener, Henrik Caspar;

    2003-01-01

    levels in people has also come under scrutiny. Antimicrobials are used therapeutically and prophylactically in animals. More controversially, antimicrobials are also used as growth promoters to improve the ability of the animal to convert feed into body mass. Some argue that the impact of use...... meant the problem of antibiotic resistance is fast escalating into a global health crisis. There is no doubt that misuse of these drugs in human beings has contributed to the increasing rates of resistance, but recently the use of antibiotics in food animals and its consequent effect on resistance...... of antibiotics in animals-whether therapeutic or as growth promoters-pales by comparison with human use, and that efforts should be concentrated on the misuse of antibiotics in people. Others warn of the dangers of unregulated and unnecessary use of antibiotics, especially growth promoters in animal husbandry...

  17. Antibiotic Resistance of Salmonella Enteritidis of Human and Chicken Origin

    GONCAGÜL, Gülşen; GÜNAYDIN, Elçin; ÇARLI, K. Tayfun

    2004-01-01

    The aim of this study was to examine the relationship between antibiotic resistance patterns among Salmonella enterica subsp. enterica Serovar Enteritidis isolates (Salmonella Enteritidis) of human and poultry origin. Antibiotic resistance of 97 Salmonella Enteritidis isolates from 25 chicken meat, 25 chicken intestine and 47 human fecal samples was examined using the National Committee for Clinical Laboratory Standards (NCCLS, 1997) disk diffusion method. Resistance patterns of the isolates ...

  18. Adaptive Landscapes of Resistance Genes Change as Antibiotic Concentrations Change.

    Mira, Portia M; Meza, Juan C; Nandipati, Anna; Barlow, Miriam

    2015-10-01

    Most studies on the evolution of antibiotic resistance are focused on selection for resistance at lethal antibiotic concentrations, which has allowed the detection of mutant strains that show strong phenotypic traits. However, solely focusing on lethal concentrations of antibiotics narrowly limits our perspective of antibiotic resistance evolution. New high-resolution competition assays have shown that resistant bacteria are selected at relatively low concentrations of antibiotics. This finding is important because sublethal concentrations of antibiotics are found widely in patients undergoing antibiotic therapies, and in nonmedical conditions such as wastewater treatment plants, and food and water used in agriculture and farming. To understand the impacts of sublethal concentrations on selection, we measured 30 adaptive landscapes for a set of TEM β-lactamases containing all combinations of the four amino acid substitutions that exist in TEM-50 for 15 β-lactam antibiotics at multiple concentrations. We found that there are many evolutionary pathways within this collection of landscapes that lead to nearly every TEM-genotype that we studied. While it is known that the pathways change depending on the type of β-lactam, this study demonstrates that the landscapes including fitness optima also change dramatically as the concentrations of antibiotics change. Based on these results we conclude that the presence of multiple concentrations of β-lactams in an environment result in many different adaptive landscapes through which pathways to nearly every genotype are available. Ultimately this may increase the diversity of genotypes in microbial populations. PMID:26113371

  19. Antibiotic resistance of Salmonella enterica serovar Paratyphi A in India: Emerging and reemerging problem

    Mandal Shyamapada

    2006-01-01

    Full Text Available Background: Antibiotic resistance pattern and R-plasmid of Salmonella enterica serovar Paratyphi A isolates from Kolkata, India are not well documented. Aims: To determine the trend of antibiotic resistance of S. paratyphi A isolates. Settings and Design: A retrospective study was carried out using blood culture isolates of S. paratyphi A (1991 to 2005 obtained from patients of enteric fever from Asansol and Kolkata and its suburbs (India. Materials and Methods: Antibiotic susceptibility pattern, using seven antibiotics, for the isolates was determined following agar dilution and disk diffusion methods. Transferability of multidrug resistance to ampicillin (Am, chloramphenicol (Chl, cotrimoxazole (Cot and tetracycline (Tet among the isolates was determined by in vitro conjugation. The multi-drug resistant (MDR and antibiotic susceptible S. paratyphi A strains and the trans-conjugants were screened for the presence of plasmid. Statistical Analysis Used: The t test was used to compare the difference between mean minimum inhibitory concentration values of ciprofloxacin (Cp for nalidixic acid (Nx-resistant and Nalidixic acid (Nx-susceptible isolates. Results: Among 13 outbreak causing isolates in 1991, 9 (69.23% showed AmChlCotTet-resistance, while 4 (30.77% Cot-resistance only. During 1992-1994, all 13 isolates were susceptible to Am, Chl, Cot and Tet. During 1995-2005, isolates demonstrated different resistance patterns and emergence of nalidixic acid (Nx-resistance. A transferable plasmid conferring AmChlCotTet-resistance was detected among MDR isolates. All the isolates were susceptible to ceftriaxone (Ctx and ciprofloxacin (Cp. Association between Nalidixic acid (Nx-resistance and reduced susceptibility to ciprofloxacin (Cp among 59 S. paratyphi A isolates was noticed ( P Conclusion: Vigilance for R-plasmid and surveillance of antibiotic susceptibility among S. paratyphi A isolates in and around Kolkata, India, are mandatory in order to combat

  20. Investigating Antibiotic Resistance in Pseudomonas Aeruginosa Strains Isolated from Various Clinical Specimens of Patients Referring to Hospitals in Yazd

    M Kiani

    2015-02-01

    Full Text Available Introduction: Antibiotic resistance in Pseudomonas aeruginosa has become a worldwide problem, and is leading to multi-drug resistance (MDR: Multiple drug resistance. Therefore, this study aimed to determine the antibiotic strain patterns of Pseudomonas aeruginosa isolated from various clinical specimens of patients in hospitals in Yazd. Methods: In this descriptive cross- sectional study, 90 isolates of pseudomonas aeruginosa derived from different clinical samples was transferred to the microbiology lab of Shahid Sadoughi University of Medical Sciences in Yazd in 2013. Conventional biochemical tests were utilized to confirm the presence of bacteria, and then antibiotic resistance pattern was determined using standard disk diffusion (Kirby - Bauer method according to the CLSI guideline. Results: Out of 90 isolates of Pseudomonas aeruginosa isolated from various clinical samples, burn wound specimens had the most antibiotic-resistant pattern. As a matter of fact, all of 28 strains isolated from burn wounds were MDR. Ceftazidime involved the most resistant antibiotic (56%, whereas ciprofloxacin was the least resistant one (44.4%, and 66.6% of the isolates were detected as multi-drug resistant. Conclusion: The prevalence of MDR Pseudomans aeruginosa in the present study was high. As ceftazidime, Ertapenem, and meropenem had effective anti Pseudomonal activity against MDR Pseudomans aeruginosa (in this study increased resistance to these antibiotics was observed, it is necessary to evaluate antibiotic susceptibility as well as to determine antibiotic pattern prior to starting the treatment in order to prevent antibiotic-resistant strains.

  1. Integron involvement in environmental spread of antibiotic resistance

    ThibaultStalder

    2012-04-01

    Full Text Available The spread of antibiotic-resistant bacteria is a growing problem and a public health issue. In recent decades, various genetic mechanisms involved in the spread of resistance genes among bacteria have been identified. Integrons -- genetic elements that acquire, exchange and express genes embedded within gene cassettes (GC -- are one of these mechanisms. Integrons are widely distributed, especially in Gram-negative bacteria; they are carried by mobile genetic elements, plasmids and transposons, which promote their spread within bacterial communities. Initially studied mainly in the clinical setting for their involvement in antibiotic resistance, their role in the environment is now an increasing focus of attention. The aim of this review is to provide an in-depth analysis of recent studies of antibiotic-resistance integrons in the environment, highlighting their potential involvement in antibiotic resistance outside the clinical context. We will focus particularly on the impact of human activities (agriculture, industries, wastewater treatment, etc..

  2. Antibiotic Adjuvants: Diverse Strategies for Controlling Drug-Resistant Pathogens

    Gill, Erin E.; Franco, Octavio L.; Robert E. W. Hancock

    2014-01-01

    The growing number of bacterial pathogens that are resistant to numerous antibiotics is a cause for concern around the globe. There have been no new broad-spectrum antibiotics developed in the last 40 years, and the drugs we have currently are quickly becoming ineffective. In this article, we explore a range of therapeutic strategies that could be employed in conjunction with antibiotics and may help to prolong the life span of these life-saving drugs. Discussed topics include antiresistance ...

  3. Isolation of lytic phages for clinical antibiotic resistant Pseudomonas aeruginosa

    Pires, Diana; Sillankorva, Sanna; Faustino, A.; Azeredo, Joana

    2009-01-01

    Pseudomonas aeruginosa is a relevant opportunist pathogen involved in noso-comial infections. P. aeruginosa uses an arsenal of virulence factors to cause serious infections and one of the most worrying characteristics of this bacte-rium is its low antibiotic susceptibility. The low susceptibility to antibiotics can be attributed to a concerted action of multidrug efflux pumps with chromo-somally-encoded antibiotic resistance genes and the low permeability of the bacterial cellular envelopes. ...

  4. Health risks associated with the presence of antibiotic resistant bacteria in greywater

    Juan Moretton

    2012-04-01

    Full Text Available The removal and disposal of waste from domestic activities is a major health problem in densely populated urban areas. In many areas of Greater Buenos Aires, greywater is disposed in open ditches and risk potential of this has not been adequately quantified. The aim of this study was to evaluate the prevalence of antibiotic-resistant bacteria and its resistance profile present in raw greywater obtained from a channel located in the area of Ingeniero Budge Buenos Aires Province. Thus, the prevalence of heterotrophic bacteria, Gram-negative bacteria resistant to beta-lactam antibiotics and vancomycin-resistant enterococci in greywater, their typing, and resistance to other antibiotics were determined. The prevalence of resistant bacteria was determined by the agar dilution method. Of all the antibiotics tested, the highest prevalence of resistant heterotrophic bacteria was detected with cephalothin (19% and ampicillin (8%. With regard to Gram-negative bacteria, the highest prevalence of resistance was given by coliforms ampicillin (34% and cephalothin (17%. A total of 38% of enterococci with low level resistance to vancomycin was detected. The multiresistant isolates were identified as Escherichia coli, Alcaligenes faecalis y Stenotrophomonas maltophilia. These results indicate that greywater can be considered as a reservoir of bacteria resistant to antibiotics, thus increasing their health risk.

  5. Comparative Genomics of Environmental and Clinical Stenotrophomonas maltophilia Strains with Different Antibiotic Resistance Profiles.

    Youenou, Benjamin; Favre-Bonté, Sabine; Bodilis, Josselin; Brothier, Elisabeth; Dubost, Audrey; Muller, Daniel; Nazaret, Sylvie

    2015-09-01

    Stenotrophomonas maltophilia, a ubiquitous Gram-negative γ-proteobacterium, has emerged as an important opportunistic pathogen responsible for nosocomial infections. A major characteristic of clinical isolates is their high intrinsic or acquired antibiotic resistance level. The aim of this study was to decipher the genetic determinism of antibiotic resistance among strains from different origins (i.e., natural environment and clinical origin) showing various antibiotic resistance profiles. To this purpose, we selected three strains isolated from soil collected in France or Burkina Faso that showed contrasting antibiotic resistance profiles. After whole-genome sequencing, the phylogenetic relationships of these 3 strains and 11 strains with available genome sequences were determined. Results showed that a strain's phylogeny did not match their origin or antibiotic resistance profiles. Numerous antibiotic resistance coding genes and efflux pump operons were revealed by the genome analysis, with 57% of the identified genes not previously described. No major variation in the antibiotic resistance gene content was observed between strains irrespective of their origin and antibiotic resistance profiles. Although environmental strains generally carry as many multidrug resistant (MDR) efflux pumps as clinical strains, the absence of resistance-nodulation-division (RND) pumps (i.e., SmeABC) previously described to be specific to S. maltophilia was revealed in two environmental strains (BurA1 and PierC1). Furthermore the genome analysis of the environmental MDR strain BurA1 showed the absence of SmeABC but the presence of another putative MDR RND efflux pump, named EbyCAB on a genomic island probably acquired through horizontal gene transfer. PMID:26276674

  6. Behavior of antibiotics and antibiotic resistance genes in eco-agricultural system: A case study.

    Cheng, Weixiao; Li, Jianan; Wu, Ying; Xu, Like; Su, Chao; Qian, Yanyun; Zhu, Yong-Guan; Chen, Hong

    2016-03-01

    This study aims to determine abundance and persistence of antibiotics and antibiotic resistance genes (ARGs) in eco-agricultural system (EAS), which starts from swine feces to anaerobic digestion products, then application of anaerobic digestion solid residue (ADSR) and anaerobic digestion liquid residue (ADLR) to the soil to grow ryegrass, one of swine feed. Oxytetracycline had the highest concentration in manure reaching up to 138.7 mg/kg. Most of antibiotics could be effectively eliminated by anaerobic digestion and removal rates ranged from 11% to 86%. ARGs abundance fluctuated within EAS. TetQ had the highest relative abundance and the relative abundance of tetG had the least variation within the system, which indicates that tetG is persistent in the agricultural environment and requires more attention. Compared to the relative abundance in manure, tetC and tetM increased in biogas residue while three ribosomal protection proteins genes (tetO, tetQ, tetW) decreased (p0.05). Most ARGs in downstream components (soils and fishpond) of EAS showed significantly higher relative abundance than the control agricultural system (p<0.05), except for tetG and sulI. PMID:26546700

  7. Antibiotic resistance of the germs which cause acute pyelonephritis in pregnancy

    Salcedo-Ramos Francisco; Jiménez-Herrera José; López-González Omar; Cantillo-Villar Samuel

    2012-01-01

    Introduction: pyelonephritis is one of the most common infections during thepregnancy. Approximately it is presented approximately in 1 to 2 % of the pregnancyand it puts at risk both mother and fetus.Objective: to determine bacterial resistance to antibiotics in pregnant women withacute pyelonephritis.Methods: descriptive and prospective study in which was evaluated the resistance tothe antibiotics used in patients with diagnosis of acute pyelonephritis in the hospitalizedservice of the Clín...

  8. Antibiotic-resistant bacteria in wild primates: increased prevalence in baboons feeding on human refuse.

    Rolland, R M; Hausfater, G; Marshall, B.; Levy, S B

    1985-01-01

    We examined three groups of wild baboons (Papio cynocephalus) in Amboseli National Park, Kenya, to determine the prevalence of aerobic antibiotic-resistant fecal bacteria in nonhuman primates with and without contact with human refuse. Using standard isolation and replica plating techniques, we found only low numbers of antibiotic-resistant gram-negative enteric bacteria in two groups of baboons leading an undisturbed existence in their natural habitat and having limited or no contact with hu...

  9. Resistance of Bacteria Isolated from Otamiri River to Heavy Metals and Some Selected Antibiotics

    I.C. Mgbemena; J.C. Nnokwe; L.A. Adjeroh; N.N. Onyemekara

    2012-01-01

    This study is aimed at determining the resistance of bacteria to heavy metals and some antibiotics. The ability of aquatic bacteria isolates from Otamiri River at Ihiagwa in Owerri North, Imo State to tolerate or resist the presence of certain selected heavy metals: Pb+, Zn2+ and Fe2+ and some antibiotics was investigated. Identification tests for the bacteria isolates from Otamiri River revealed them to belong to the genera Pseudomonas, Aeromonas, Bacillus, Escherichia, Micrococcus and Prote...

  10. Transfer of antibiotic resistant bacteria from animals to man

    Wegener, Henrik Caspar; Aarestrup, Frank Møller; Gerner-Smidt, P.;

    1999-01-01

    . coli (EHEC). Infections with these agents do not generally require antibiotic therapy, but in some cases antibiotics are essential to obtain a successful cure. The levels and types of resistance observed in zoonotic bacteria in some countries, especially the increasing levels of fluoroquinolone...

  11. Antibiotic tolerance and resistance in biofilms

    Ciofu, Oana; Tolker-Nielsen, Tim

    One of the most important features of microbial biofilms is their tolerance to antimicrobial agents and components of the host immune system. The difficulty of treating biofilm infections with antibiotics is a major clinical problem. Although antibiotics may decrease the number of bacteria in...

  12. Antibiotic Application and Emergence of Multiple Antibiotic Resistance (MAR) in Global Catfish Aquaculture.

    Chuah, Li-Oon; Effarizah, M E; Goni, Abatcha Mustapha; Rusul, Gulam

    2016-06-01

    Catfish is one of the most cultivated species worldwide. Antibiotics are usually used in catfish farming as therapeutic and prophylactic agents. In the USA, only oxytetracycline, a combination of sulfadimethoxine and ormetoprim, and florfenicol are approved by the Food Drug Administration for specific fish species (e.g., catfish and salmonids) and their specific diseases. Misuse of antibiotics as prophylactic agents in disease prevention, however, is common and contributes in the development of antibiotic resistance. Various studies had reported on antibiotic residues and/or resistance in farmed species, feral fish, water column, sediments, and, in a lesser content, among farm workers. Ninety percent of the world aquaculture production is carried out in developing countries, which lack regulations and enforcement on the use of antibiotics. Hence, efforts are needed to promote the development and enforcement of such a regulatory structure. Alternatives to antibiotics such as antibacterial vaccines, bacteriophages and their lysins, and probiotics have been applied to curtail the increasing emergence of antibiotic-resistant bacteria due to the imprudent application of antibiotics in aquaculture. PMID:27038482

  13. Prevalence and antibiotic resistance pattern of Campylobacter species in foods of animal origin

    Pallavi

    2014-09-01

    Full Text Available Aim: The aim was to determine the prevalence and evaluation of antibiotic resistance pattern and minimum inhibitory concentration (MIC of Campylobacter species isolated from foods of animal origin. Materials and Methods: A total of 280 samples (comprising 150 chicken meat, 50 chevon and 80 milk were collected from retail meat markets, slaughter houses and dairy farms and analyzed for isolation of Campylobacter species. A total of 29 isolates comprising 23 Campylobacter jejuni and 6 Campylobacter coli were recovered, characterized biochemically and confirmed by polymerase chain reaction. These isolates were then tested for antibiotic resistance pattern through disc diffusion method, and MIC was assessed by MIC strips. The antibiotic resistance assessment was performed against 8 antibiotics viz. ampicillin, co-trimoxazole, erythromycin, levofloxacin, gentamicin, ciprofloxacin, ceftriaxone, and norfloxacin. Results: The prevalence of Campylobacter spp. in chicken meat, chevon and milk samples were observed 17.33%, 6% and 0%, respectively. All the isolates were resistant to co-trimoxazole but sensitive to erythromycin. All the isolates showed different resistance pattern for the rest of the antibiotics. MIC results revealed that all the isolates were within prescribed concentrations for sensitivity for the antibiotics tested. Conclusions: The foods of animal origin are source of Campylobacter infections to human beings. Thus, the development of antibiotic-resistant strains emphasizes the requirement of better surveillance and monitoring of the foods of animal origin and the use of antimicrobials in veterinary and human medicine require careful regulation.

  14. Assessing antibiotic resistance of microorganisms in sanitary sewage.

    Kaeseberg, Thomas; Blumensaat, Frank; Zhang, Jin; Krebs, Peter

    2015-01-01

    The release of antimicrobial substances into surface waters is of growing concern due to direct toxic effects on all trophic levels and the promotion of antibiotic resistance through sub-inhibitory concentration levels. This study showcases (1) the variation of antibiotics in sanitary sewage depending on different timescales and (2) a method to assess the antibiotic resistance based on an inhibition test. The test is based on the measurement of the oxygen uptake rate (OUR) in wastewater samples with increasing concentrations of the selected antibiotic agents. The following antibiotics were analysed in the present study: clarithromycin (CLA) was selected due to its high toxicity to many microorganisms (low EC50), ciprofloxacin (CIP) which is used to generally fight all bacteria concerning interstitial infections and doxycyclin (DOX) having a broad spectrum efficacy. Results show that CLA inhibited the OUR by approximately 50% at a concentration of about 10 mg L⁻¹, because Gram-negative bacteria such as Escherichia coli are resistant, whereas CIP inhibited about 90% of the OUR at a concentration equal to or greater than 10 mg L⁻¹. In the case of DOX, a moderate inhibition of about 38% at a concentration of 10 mg L⁻¹ was identified, indicating a significant antibiotic resistance. The results are consistent with the corresponding findings from the Clinical and Laboratory Standards Institute. Thus, the presented inhibition test provides a simple but robust alternative method to assess antibiotic resistance in biofilms instead of more complex clinical tests. PMID:25633938

  15. Are Sewage Treatment Plants Promoting Antibiotic Resistance?

    1. Introduction 1.1. How bacteria exhibit resistance 1.1.1. Resistance to -lactams 1.1.2. Resistance to sulphonamides and trimethoprim 1.1.3. Resistance to macrolides 1.1.4. Resistance to fluoroquinolones 1.1.5. Resistance to tetracyclines 1.1.6. Resistance to nitroimidaz...

  16. Antibiotic Resistance: The Need For a Global Strategy.

    Elder, David P; Kuentz, Martin; Holm, René

    2016-08-01

    The development of antibiotic resistance is a major problem for mankind and results in fatal consequences on a daily basis across the globe. There are a number of reasons for this situation including increasing globalization with worldwide travel, health tourism, over use and ineffective use (both in man and animals), and counterfeiting of the antimicrobial drug products we have available currently. Although there are huge economical, demographic, legal and logistic differences among the global communities, there are also differences regarding the best approach to dealing with antibiotic resistance. However, as resistant bacteria do not respect international borders, there is clearly a need for a global strategy to minimize the spread of antibiotic resistance, to optimize the use of antibiotics, and to facilitate the development of new and effective medications. This commentary provides an insight into the issues and some of the ongoing programs to ensure an effective treatment for the future. PMID:27397433

  17. Mobile antibiotic resistance encoding elements promote their own diversity.

    Geneviève Garriss

    2009-12-01

    Full Text Available Integrating conjugative elements (ICEs are a class of bacterial mobile genetic elements that disseminate via conjugation and then integrate into the host cell genome. The SXT/R391 family of ICEs consists of more than 30 different elements that all share the same integration site in the host chromosome but often encode distinct properties. These elements contribute to the spread of antibiotic resistance genes in several gram-negative bacteria including Vibrio cholerae, the agent of cholera. Here, using comparative analyses of the genomes of several SXT/R391 ICEs, we found evidence that the genomes of these elements have been shaped by inter-ICE recombination. We developed a high throughput semi-quantitative method to explore the genetic determinants involved in hybrid ICE formation. Recombinant ICE formation proved to be relatively frequent, and to depend on host (recA and ICE (s065 and s066 loci, which can independently and potentially cooperatively mediate hybrid ICE formation. s065 and s066, which are found in all SXT/R391 ICEs, are orthologues of the bacteriophage lambda Red recombination genes bet and exo, and the s065/s066 recombination system is the first Red-like recombination pathway to be described in a conjugative element. Neither ICE excision nor conjugative transfer proved to be essential for generation of hybrid ICEs. Instead conjugation facilitates the segregation of hybrids and could provide a means to select for functional recombinant ICEs containing novel combinations of genes conferring resistance to antibiotics. Thus, ICEs promote their own diversity and can yield novel mobile elements capable of disseminating new combinations of antibiotic resistance genes.

  18. Pattern of antibiotic resistant mastitis in dairy cows

    D. Chandrasekaran; Venkatesan, P; K. G. Tirumurugaan; A. P. Nambi; P. S. Thirunavukkarasu; Kumanan, K.; Vairamuthu, S.; Mr. S. Ramesh

    2014-01-01

    Aim: To study the prevalence of drug resistant mastitis and their pattern of antibiotic resistance in dairy cows from Tamil Nadu. Materials and Methods: Isolation and identification of resistant pathogens were performed from acute clinical mastitis samples. Based on culture, isolation and sensitivity tests, cows with resistant mastitis were grouped as; Group I: Escherichia coli (n=119), Group II: Staphylococcus aureus (n=104) and Group III: Methicillin-resistant Staphylococcal aureus (MRSA...

  19. Bactericidal antibiotic-phytochemical combinations against methicillin resistant Staphylococcus aureus

    Bhone Myint Kyaw; Shuchi arora; Chu Sing Lim

    2012-01-01

    Methicillin resistant Staphylococcus aureus (MRSA) infection is a global concern nowadays. Due to its multi-drug resistant nature, treatment with conventional antibiotics does not assure desired clinical outcomes. Therefore, there is a need to find new compounds and/or alternative methods to get arsenal against the pathogen. Combination therapies using conventional antibiotics and phytochemicals fulfill both requirements. In this study, the efficacy of different phytochemicals in combination ...

  20. Plasmid Mediated Antibiotic Resistance in Isolated Bacteria From Burned Patients

    Beige, Fahimeh; Baseri Salehi, Majid; Bahador, Nima; Mobasherzadeh, Sina

    2014-01-01

    Background: Nowadays, the treatment of burned patients is difficult because of the high frequency of infection with antibiotic resistance bacteria. Objectives: This study was conducted to evaluate the level of antibiotic resistance in Gram-negative bacteria and its relation with the existence of plasmid. Materials and Methods: The samples were collected from two hundred twenty hospitalized burned patients in Isfahan burn hospital during a three-month period (March 2012 to June 2012). The samp...

  1. Studies on emergence and spread of antibiotic resistant Streptococcus pneumoniae

    Karlsson, Diana

    2010-01-01

    Streptococcus pneumoniae is one of the major contributors to mortality and morbidity around the world. It causes a wide variety of diseases ranging from uncomplicated respiratory infections to life-threatening invasive infections such as meningitis and septicemia. In recent years, the effectiveness of antibiotic therapy has been hampered by the increasing rates of resistant pneumococci. As antibiotic resistance increases, there is a growing need for interventions that minimi...

  2. Intravenous antibiotics infusion and bacterial resistence: nursing responsability

    Heloisa Helena Karnas Hoefel; Liana Lautert

    2006-01-01

    The success of antibiotics treatment and development of bacterial resistance depend on many factors. The preparation and management of these factors are associated with nursing care. The aim of this paper is review literature about preparation, management and knowledge of intravenous antibiotics errors analyzing possibilities of influence of bacterial resistance prevention by nurses. Methods: a systematic review was done from LiILACS and M...

  3. Tet and sul antibiotic resistance genes in livestock lagoons of various operation type, configuration, and antibiotic occurrence

    McKinney, C.W.; Loftin, K.A.; Meyer, M.T.; Davis, J.G.; Pruden, A.

    2010-01-01

    Although livestock operations are known to harbor elevated levels of antibiotic resistant bacteria, few studies have examined the potential of livestock waste lagoons to reduce antibiotic resistance genes (ARGs). The purpose of this study was to determine the prevalence and examine the behavior of tetracycline [tet(O) and tet(W)] and sulfonamide [sul(I) and su/(II)] ARGsin a broad cross-section of livestock lagoons within the same semiarid western watershed. ARGs were monitored for one year in the water and the settled solids of eight lagoon systems by quantitative polymerase chain reaction. In addition, antibiotic residues and various bulk water quality constituents were analyzed. It was found that the lagoons of the chicken layer operation had the lowest concentrations of both tet and sul ARGs and low total antibiotic concentrations, whereas su ARGs were highest in the swine lagoons, which generally corresponded to the highest total antibiotic concentrations. A marginal benefit of organic and small dairy operations also was observed compared to conventional and large dairies, respectively. In all lagoons, su ARGs were observed to be generally more recalcitrant than tet ARGs. Also, positive correlations of various bulk water quality constituents were identified with tet ARGs but not sul ARGs. Significant positive correlations were identified between several metals and tet ARGs, but Pearson's correlation coefficients were mostly lower than those determined between antibiotic residues and ARGs. This study represents a quantitative characterization of ARGs in lagoons across a variety of livestock operations and provides insight into potential options for managing antibiotic resistance emanating from agricultural activities. ?? 2010 American Chemical Society.

  4. Public Beliefs about Antibiotics, Infection and Resistance: A Qualitative Study

    Helen Madden

    2013-11-01

    Full Text Available We aimed to gain an in-depth understanding of public views and ways of talking about antibiotics. Four focus groups were held with members of the public. In addition, 39 households were recruited and interviews, diaries of medicine taking, diaries of any contact with medication were used to explore understanding and use of medication. Discussions related to antibiotics were identified and analyzed. Participants in this study were worried about adverse effects of antibiotics, particularly for recurrent infections. Some were concerned that antibiotics upset the body’s “balance”, and many used strategies to try to prevent and treat infections without antibiotics. They rarely used military metaphors about infection (e.g., describing bacteria as invading armies but instead spoke of clearing infections. They had little understanding of the concept of antibiotic resistance but they thought that over-using antibiotics was unwise because it would reduce their future effectiveness. Previous studies tend to focus on problems such as lack of knowledge, or belief in the curative powers of antibiotics for viral illness, and neglect the concerns that people have about antibiotics, and the fact that many people try to avoid them. We suggest that these concerns about antibiotics form a resource for educating patients, for health promotion and social marketing strategies.

  5. Antibiotic resistance of Clostridium perfringens isolates from broiler chickens in Egypt.

    Osman, K M; Elhariri, M

    2013-12-01

    The use of antibiotic feed additives in broiler chickens results in a high prevalence of resistance among their enteric bacteria, with a consequent emergence of antibiotic resistance in zoonotic enteropathogens. Despite growing concerns about the emergence of antibiotic-resistant strains, which show varying prevalences in different geographic regions, little work has been done to investigate this issue in the Middle East. This study provides insight into one of the world's most common and financially crippling poultry diseases, necrotic enteritis caused by Clostridium perfringens. The study was designed to determine the prevalence of antibiotic resistance in C. perfringens isolates from clinical cases of necrotic enteritis in broiler chickens in Egypt. A total of 125 isolates were obtained from broiler flocks in 35 chicken coops on 17 farms and were tested using the disc diffusion method. All 125 isolates were resistant to gentamicin, streptomycin, oxolinic acid, lincomycin, erythromycin and spiramycin. The prevalence of resistance to other antibiotics was also high: rifampicin (34%), chloramphenicol (46%), spectinomycin (50%), tylosin-fosfomycin (52%), ciprofloxacin (58%), norfloxacin (67%), oxytetracycline (71%), flumequine (78%), enrofloxacin (82%), neomycin (93%), colistin (94%), pefloxacin (94%), doxycycline (98%) and trimethoprim-sulfamethoxazole (98%). It is recommended that C. perfringens infections in Egypt should be treated with antibiotics for which resistant isolates are rare at present; namely, amoxicillin, ampicillin, cephradine, fosfomycin and florfenicol. PMID:24761735

  6. Resistance pattern of clinical isolates of staphylococcus aureus against five groups of antibiotics

    Among the samples received in pathology laboratory, Pakistan institute of Medical Science, Islamabad, 5069 samples had bacterial growth, among these 2580 (51%) samples were Gram-positive cocci and 1688 were Staphylococcus aureus during a period of two years. Out of these Gram-positive cocci 56% were resistant to penicillin group, 27% were resistant to cephalosporin group, 22% were resistant to aminoglycoside group 15% were resistant to quinolone group and 31% were resistant to other antibiotics (cotrimaxazole, erythromycin, aztreonam, vancomycin, nitrofurantion and meropenam). Antibio-grams of Gram-positive cocci were determined against various antibiotics by disc diffusion method. The rate of resistance to most of the antibiotics such as ampicillin, piperacillin, carbenicillin, penicillin, cephradine, cefotaxime, erythromycin, ceclor, ofloxacin, pefloxacin, ciprofloxacin, cotrimexazole (septran), gentamicin, meropenem, ceftazidime, erythromycin, tobramycin, enoxacin was higher when tested against the isolates collected from pus as compared to those from blood and urine. Antibiotic resistant strains were more prevalent in pus samples than other clinical isolates (blood and urine). The randomly selected 155 strains of Staphylococcus aureus when tested against five groups of antibiotics showed resistance rate against ampicillin (92%), cephradine (92%), cephradine (60%), and gentamicin (58%). However intermediate resistance was found in case of vancomicin (38%), in hospitalized and non-hospitalized patients. (author)

  7. Intravenous antibiotics infusion and bacterial resistence: nursing responsability

    Heloisa Helena Karnas Hoefel

    2006-12-01

    Full Text Available The success of antibiotics treatment and development of bacterial resistance depend on many factors. The preparation and management of these factors are associated with nursing care. The aim of this paper is review literature about preparation, management and knowledge of intravenous antibiotics errors analyzing possibilities of influence of bacterial resistance prevention by nurses. Methods: a systematic review was done from LiILACS and Medline searching for the word nursing and bacterial resistance, antibiotics control, hospital infections, administration drugs, errors and adverse events. There were chose 58 papers about nursing and/or were basics for international and Brazilian studies. Results: It was described international classifications errors and consequences analyzing their possible influences on antibiotics effects. Based on these knowledge, interventions are recommended to implement safety practice and care.

  8. Global Challenge of Antibiotic-Resistant Treponema pallidum▿

    Stamm, Lola V.

    2010-01-01

    Syphilis is a multistage infectious disease that is usually transmitted through contact with active lesions of a sexual partner or from an infected pregnant woman to her fetus. Despite elimination efforts, syphilis remains endemic in many developing countries and has reemerged in several developed countries, including China, where a widespread epidemic recently occurred. In the absence of a vaccine, syphilis control is largely dependent upon identification of infected individuals and treatment of these individuals and their contacts with antibiotics. Although penicillin is still effective, clinically significant resistance to macrolides, a second-line alternative to penicillin, has emerged. Macrolide-resistant strains of Treponema pallidum are now prevalent in several developed countries. An understanding of the genetic basis of T. pallidum antibiotic resistance is essential to enable molecular surveillance. This review discusses the genetic basis of T. pallidum macrolide resistance and the potential of this spirochete to develop additional antibiotic resistance that could seriously compromise syphilis treatment and control. PMID:19805553

  9. The ABC of Ribosome-Related Antibiotic Resistance

    Wilson, Daniel N.

    2016-01-01

    ABSTRACT The increase in multidrug-resistant pathogenic bacteria is limiting the utility of our current arsenal of antimicrobial agents. Mechanistically understanding how bacteria obtain antibiotic resistance is a critical first step to the development of improved inhibitors. One common mechanism for bacteria to obtain antibiotic resistance is by employing ATP-binding cassette (ABC) transporters to actively pump the drug from the cell. The ABC-F family includes proteins conferring resistance to a variety of clinically important ribosome-targeting antibiotics; however, controversy remains as to whether resistance is conferred via efflux like other ABC transporters or whether another mechanism, such as ribosome protection, is at play. A recent study by Sharkey and coworkers (L. K. Sharkey, T. A. Edwards, and A. J. O’Neill, mBio 7:e01975-15, 2016, http://dx.doi.org/10.1128/mBio.01975-15) provides strong evidence that ABC-F proteins conferring antibiotic resistance utilize ribosome protection mechanisms, namely, by interacting with the ribosome and displacing the drug from its binding site, thus revealing a novel role for ABC-F proteins in antibiotic resistance. PMID:27143393

  10. ANTIBIOTIC RESISTANCE AND CHROMIUM REDUCTION PATTERN AMONG ACTINOMYCETES

    Preeti Jain

    2012-01-01

    Full Text Available Actinomycetes, one of the most important groups of microbes, exhibit many interesting activities such as degradation and transformation of organic and metal substrates together with production of antibiotics. With these bioactivities, actinomycetes would play an important role in the webs of the marine environment. The present study was designed to evaluate the antibiotic resistance pattern, antibiotic producing potential and chromium resistance as well as chromium reduction potential of a range of actinomycetes isolated from marine environments. Actinomycetes were isolated from marine sediment samples obtained from St. Martin’s Island in Bangladesh. Antibiotic resistance among the selected isolates was studied against 10 different antibiotics by disc diffusion method and antibiotic producing potential was assessed by the perpendicular streak method. The isolates were screened for resistance towards heavy metal Cr(VI on culture plates supplemented with Cr(VI at concentrations ranging from 1-5 mM of Cr(VI. Highly resistant isolates were subjected to screening for Cr(VI reduction activity, which was estimated using the Cr(VI specific colorimetric reagent 1, 5-diphenylcarbazide. Out of the total 30 different selected isolates, 25 (83.33% showed resistance against more than three antibiotics and 6 (20% showed resistance to more than six antibiotics. Ninety three percent of the isolates showed MAR index greater than 0.2 and tolerance to Cr(VI at 1mM of initial Cr(VI. None of the isolates displayed antimicrobial activity against the organisms tested. Among the isolates tested for chromate reduction, two were most efficient showing complete reduction of 1mM Cr(VI within 24 h. These two isolates (SM-11, SM-20 were capable of reducing chromate even at high initial Cr(VI concentrations. Remarkably, the isolate SM-11 was found to reduce 82.67%, 44.34% of Cr(VI at 2.5mM, 5mM of initial Cr(VI concentrations respectively, within 72h of incubation. The

  11. Aerobic bacterial profile and antibiotic resistance in patients with diabetic foot infections

    Michele Cezimbra Perim; Joelma da Costa Borges; Stela Regina Costa Celeste; Ederson de Freitas Orsolin; Rafael Rocha Mendes; Gabriella Oliveira Mendes; Roumayne Lopes Ferreira; Solange Cristina Carreiro; Maria Cristina da Silva Pranchevicius

    2015-01-01

    ABSTRACTINTRODUCTION: This study aimed to determine the frequencies of bacterial isolates cultured from diabetic foot infections and assess their resistance and susceptibility to commonly used antibiotics.METHODS: This prospective study included 41 patients with diabetic foot lesions. Bacteria were isolated from foot lesions, and their antibiotic susceptibility pattern was determined using the Kirby-Bauer disk diffusion method and/or broth method [minimum inhibitory concentration (MIC)].RESUL...

  12. Water Disinfection Byproducts Induce Antibiotic Resistance-Role of Environmental Pollutants in Resistance Phenomena.

    Li, Dan; Zeng, Siyu; He, Miao; Gu, April Z

    2016-03-15

    The spread of antibiotic resistance represents a global threat to public health, and has been traditionally attributed to extensive antibiotic uses in clinical and agricultural applications. As a result, researchers have mostly focused on clinically relevant high-level resistance enriched by antibiotics above the minimal inhibitory concentrations (MICs). Here, we report that two common water disinfection byproducts (chlorite and iodoacetic acid) had antibiotic-like effects that led to the evolution of resistant E. coli strains under both high (near MICs) and low (sub-MIC) exposure concentrations. The subinhibitory concentrations of DBPs selected strains with resistance higher than those evolved under above-MIC exposure concentrations. In addition, whole-genome analysis revealed distinct mutations in small sets of genes known to be involved in multiple drug and drug-specific resistance, as well as in genes not yet identified to play role in antibiotic resistance. The number and identities of genetic mutations were distinct for either the high versus low sub-MIC concentrations exposure scenarios. This study provides evidence and mechanistic insight into the sub-MIC selection of antibiotic resistance by antibiotic-like environmental pollutants such as disinfection byproducts in water, which may be important contributors to the spread of global antibiotic resistance. The results from this study open an intriguing and profound question on the roles of large amount and various environmental contaminants play in selecting and spreading the antibiotics resistance in the environment. PMID:26928861

  13. The use of platensimycin and platencin to fight antibiotic resistance.

    Allahverdiyev, Adil M; Bagirova, Melahat; Abamor, Emrah Sefik; Ates, Sezen Canim; Koc, Rabia Cakir; Miraloglu, Meral; Elcicek, Serhat; Yaman, Serkan; Unal, Gokce

    2013-01-01

    Infectious diseases are known as one of the most life-threatening disabilities worldwide. Approximately 13 million deaths related to infectious diseases are reported each year. The only way to combat infectious diseases is by chemotherapy using antimicrobial agents and antibiotics. However, due to uncontrolled and unnecessary use of antibiotics in particular, surviving bacteria have evolved resistance against several antibiotics. Emergence of multidrug resistance in bacteria over the past several decades has resulted in one of the most important clinical health problems in modern medicine. For instance, approximately 440,000 new cases of multidrug-resistant tuberculosis are reported every year leading to the deaths of 150,000 people worldwide. Management of multidrug resistance requires understanding its molecular basis and the evolution and dissemination of resistance; development of new antibiotic compounds in place of traditional antibiotics; and innovative strategies for extending the life of antibiotic molecules. Researchers have begun to develop new antimicrobials for overcoming this important problem. Recently, platensimycin - isolated from extracts of Streptomyces platensis - and its analog platencin have been defined as promising agents for fighting multidrug resistance. In vitro and in vivo studies have shown that these new antimicrobials have great potential to inhibit methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, and penicillin-resistant Streptococcus pneumoniae by targeting type II fatty acid synthesis in bacteria. Showing strong efficacy without any observed in vivo toxicity increases the significance of these antimicrobial agents for their use in humans. However, at the present time, clinical trials are insufficient and require more research. The strong antibacterial efficacies of platensimycin and platencin may be established in clinical trials and their use in humans for coping with multidrug resistance may be

  14. Ten years of antibiotic consumption in ambulatory care: Trends in prescribing practice and antibiotic resistance in Austria

    Apfalter Petra

    2009-05-01

    Full Text Available Abstract Background The primary aims of this study were (i to determine the quantity and pattern of antibiotic use in Austria between 1998 and 2007 and (ii to analyze antibiotic resistance rates in relation to antibiotic consumption in important clinical situations in order to provide data for empirical therapeutic regimens for key indications. Methods Consumption data and resistance data were obtained via the Austrian surveillance networks European Antimicrobial Resistance Surveillance System (EARSS and European Surveillance on Antimicrobial Consumption (ESAC. The EARSS collects data on isolates from blood and cerebrospinal fluid obtained predominantly in the hospital setting. The Anatomical Therapeutic Chemical (ATC classification and the Defined Daily Dose (DDD measurement units were assigned to the data. The number of DDDs and packages per 1,000 inhabitants (PID were used to calculate the level of antibiotic consumption. Antibiotic resistance was expressed in resistance rates, i.e., the percentage of resistant isolates compared to all isolates of one bacterial species. Results The overall antibiotic consumption measured in DIDs increased by 10% between 1998 and 2007, whereas PIDs decreased by 3%. The consumption of substances within the drug utilization 90% segment (measured in PID increased for ciprofloxacin (+118.9, clindamycin (+76.3, amoxicillin/clavulanic acid (+61.9%, cefpodoxime (+31.6, azithromycin (+24.7; and decreased for erythromycin (-79.5%, trimethoprim (-56,1%, norfloxacin (-48.8%, doxycycline (-44.6, cefaclor (-35.1%, penicillin (-34.0%, amoxicillin (-22.5, minocycline (-21.9% and clarithromycin (-9.9%. Starting in 2001, an increase in the percentage of invasive E. coli isolates resistant to aminopenicillins (from 35% to 53%, fluoroquinolones (from 7% to 25.5% and third-generation cephalosporins (from 0% to 8.8% was observed. The percentage of nonsusceptible or intermediate penicillin-resistant pneumococcal isolates remained

  15. Plasmid Mediated Antibiotic and Heavy Metal Resistance in Bacillus Strains Isolated From Soils in Rize, Turkey

    Elif SEVİM

    2015-09-01

    Full Text Available Fifteen Bacillus strains which were isolated from soil samples were examined for resistance to 17 different antibiotics (ampicillin, methicillin, erythromycin, norfloxacin, cephalotine, gentamycin, ciprofloxacin, streptomycin, tobramycin, chloramphenicol, trimethoprim-sulfamethoxazole, tetracycline, vancomycin, oxacilin, neomycin, kanamycin and, novabiocin and to 10 different heavy metals (copper, lead, cobalt, chrome, iron, mercury, zinc, nickel, manganese and, cadmium and for the presence of plasmid DNA. A total of eleven strains (67% were resistant to at least one antibiotic. The most common resistance was observed against methicillin and oxacillin. The most resistance strains were found as Bacillus sp. B3 and Bacillus sp. B11. High heavy metal resistance against copper, chromium, zinc, iron and nickel was detected, but mercury and cobalt resistance was not detected, except for 3 strains (B3, B11, and B12 which showed mercury resistance. It has been determined that seven Bacillus strains have plasmids. The isolated plasmids were transformed into the Bacillus subtilis W168 and it was shown that heavy metal and antibiotic resistance determinants were carried on these plasmids. These results showed that there was a correlation between plasmid content and resistance for both antibiotic and heavy metal resistance

  16. Impact of antibiotic resistance on chemotherapy for pneumococcal infections

    Pallarés Giner, Roman; Viladrich, P F; Liñares Louzao, Josefina; Cabellos Mínguez, Ma. Carmen; Gudiol i Munté, Francesc

    1998-01-01

    Over the past three decades, penicillin-resistant pneumococci have emerged worldwide. In addition, penicillin-resistant strains have also decreased susceptibility to other β-lactams (including cephalosporins) and these strains are often resistant to other antibiotic groups, making the treatment options much more difficult. Nevertheless, the present in vitro definitions of resistance to penicillin and cephalosporins in pneumococci could not be appropriated for all types of pneumococcal infecti...

  17. Ready for a world without antibiotics? The Pensières Antibiotic Resistance Call to Action

    Carlet Jean

    2012-02-01

    Full Text Available Abstract Resistance to antibiotics has increased dramatically over the past few years and has now reached a level that places future patients in real danger. Microorganisms such as Escherichia coli and Klebsiella pneumoniae, which are commensals and pathogens for humans and animals, have become increasingly resistant to third-generation cephalosporins. Moreover, in certain countries, they are also resistant to carbapenems and therefore susceptible only to tigecycline and colistin. Resistance is primarily attributed to the production of beta-lactamase genes located on mobile genetic elements, which facilitate their transfer between different species. In some rare cases, Gram-negative rods are resistant to virtually all known antibiotics. The causes are numerous, but the role of the overuse of antibiotics in both humans and animals is essential, as well as the transmission of these bacteria in both the hospital and the community, notably via the food chain, contaminated hands, and between animals and humans. In addition, there are very few new antibiotics in the pipeline, particularly for Gram-negative bacilli. The situation is slightly better for Gram-positive cocci as some potent and novel antibiotics have been made available in recent years. A strong and coordinated international programme is urgently needed. To meet this challenge, 70 internationally recognized experts met for a two-day meeting in June 2011 in Annecy (France and endorsed a global call to action ("The Pensières Antibiotic Resistance Call to Action". Bundles of measures that must be implemented simultaneously and worldwide are presented in this document. In particular, antibiotics, which represent a treasure for humanity, must be protected and considered as a special class of drugs.

  18. ANTIBIOTIC RESISTANCE IN THE OPPORTUNISTIC PATHOGEN STENOTROPHOMONAS MALTOPHILIA

    María Blanca Sánchez

    2015-06-01

    Full Text Available Stenotrophomonas maltophilia is an environmental bacterium found in the soil, associated with plants and animals, and in aquatic environments. It is also an opportunistic pathogen now causing an increasing number of nosocomial infections. The treatment of S. maltophilia is quite difficult given its intrinsic resistance to a number of antibiotics, and because it is able to acquire new resistances via horizontal gene transfer and mutations. Certainly, strains resistant to quinolones, cotrimoxale and/or cephalosporins - antibiotics commonly used to treat S. maltophilia infections - have emerged. The increasing number of available S. maltophilia genomes has allowed the identification and annotation of a large number of antimicrobial and heavy metal resistance genes. Most encode inactivating enzymes and efflux pumps, but information on their role in intrinsic and acquired resistance is limited. Non-typical antibiotic resistance mechanisms that also form part of the intrinsic resistome have been identified via mutant library screening. These include non-typical antibiotic resistance genes, such as bacterial metabolism genes, and non-inheritable resistant phenotypes, such as biofilm formation and persistence. Their relationships with resistance are complex and require further study.

  19. Antibiotic resistance in the opportunistic pathogen Stenotrophomonas maltophilia.

    Sánchez, María B

    2015-01-01

    Stenotrophomonas maltophilia is an environmental bacterium found in the soil, associated with plants and animals, and in aquatic environments. It is also an opportunistic pathogen now causing an increasing number of nosocomial infections. The treatment of S. maltophilia is quite difficult given its intrinsic resistance to a number of antibiotics, and because it is able to acquire new resistances via horizontal gene transfer and mutations. Certainly, strains resistant to quinolones, cotrimoxale and/or cephalosporins-antibiotics commonly used to treat S. maltophilia infections-have emerged. The increasing number of available S. maltophilia genomes has allowed the identification and annotation of a large number of antimicrobial resistance genes. Most encode inactivating enzymes and efflux pumps, but information on their role in intrinsic and acquired resistance is limited. Non-typical antibiotic resistance mechanisms that also form part of the intrinsic resistome have been identified via mutant library screening. These include non-typical antibiotic resistance genes, such as bacterial metabolism genes, and non-inheritable resistant phenotypes, such as biofilm formation and persistence. Their relationships with resistance are complex and require further study. PMID:26175724

  20. Antibiotic Resistance in Acinetobacter Baumannii Strains Isolated from Nosocomial Infections

    Pinar Korkmaz

    2016-01-01

    Full Text Available Aim: Acinetobacter baumannii is an opportunistic nosocomial pathogen and one of the most important multidrug-resistant microorganisms in hospitals worldwide. A.baumannii most commonly causes ventilator-associated pneumonia and blood stream infections and mortality rates in these infections can reach 35%. In this study, it was aimed to assess the frequency of Acinetobacter baumannii species which were considered to be causative agents of nosocomial infection and their resistance to antimicrobial agents between January 2009 and November 2014 in our hospital. Material and Method: The diagnosis of nosocomial A.baumannii infection was made according to Centers for Disease Control and Prevention (CDC criteria. Identification of the microorganisms isolated from the specimens of the patients and antimicrobial susceptibility testing of them were performed by using VITEK 2 ID-AST automated system. Susceptibilities of amikacin, ampicillin-sulbactam, gentamicin, tobramycin, netilmycin, imipenem, meropenem, piperacillin, piperacillin-tazobactam, ceftazidime, ceftriaxone, cefotaxime, ciprofloxacin, levofloxacin, tetracycline, tigecycline, colistin and co-trimoxazole were investigated in the species. SPSS 19,0 program was used for statistical analysis. Results: A total of 308 Acinetobacter species were isolated and these species were obtained more frequently from the clinical samples sent from the intensive care unit (92,9% and deep tracheal aspirate samples (64,6%. When all of the species were evaluated, the most efficient antibiotics were determined to be colistin, tigecycline and netilmycin. The susceptibility rates for colistin, tigecycline and netilmycin were determined to be 92,8%, 85,3% and 82%, respectively. These are followed by tobramycin with a susceptibility rate of 76,4%, gentamicin with a susceptibility rate of 47,8% and amikacin with a susceptibility rate of 46,3%. Discussion: In our study, colistin, tigecycline and netilmycin are the most

  1. SURVEILLANCE AND CONTROL OF ANTIBIOTIC RESISTANCE IN THE MEDITERRANEAN REGION

    Walter Ricciardi

    2016-07-01

    Full Text Available Antibiotic resistance is one of the most relevant problems in the healthcare: the growth of resistant micro-organisms in healthcare settings is a worrisome threat, raising length to stay (LOS, morbidity and mortality in those patients. The importance of the antibiotic resistance and its spread around the world, gave rise to the activation of several surveillance systems, based especially on the collection of laboratory data to local or national level. The objective of this work is to carry out a review of the scientific literature existing on the topic and scientific activities related to surveillance on antibiotic resistance in countries bordering the Mediterranean Sea. Recent Data from European Centre for Disease Prevention and Control (November 2015 show, for different combinations bacterium-drug, an increase of resistance from North to South and from West to East of Europe; it is particularly worrying the phenomenon of resistance carried out by some gram negative, specifically Klebsiella pneumoniae and Escherichia coli to third-generation cephalosporin, often combined in opposition to fluoroquinolones and amino glycosides. Is particularly relevant the incidence of resistance to carbapenems by strains of Enterobacteriaceae (Klebsiella included. The resistance exerted by MRSA (Methicillin-resistant Staphylococcus aureus continues to be relevant, albeit showing some decline in recent years. The incidence of resistance carried on by Streptococcus pneumoniae is stable and is mainly relevant to macrolides. Finally, a significant increase in recording relatively exercised by Enterococcus faecium to Vancomycin. Detecting, preventing, and controlling antibiotic resistance requires strategic, coordinated, and sustained efforts. It also depends on the engagement of governments, academia, industry, healthcare providers, the general public, and the agricultural community, as well as international partners. Committing to combating antibiotic-resistant

  2. Surveillance and Control of Antibiotic Resistance in the Mediterranean Region.

    Ricciardi, Walter; Giubbini, Gabriele; Laurenti, Patrizia

    2016-01-01

    Antibiotic resistance is one of the most relevant problems in the healthcare: the growth of resistant microorganisms in healthcare settings is a worrisome threat, raising length to stay (LOS), morbidity and mortality in those patients. The importance of the antibiotic resistance and its spread around the world, gave rise to the activation of several surveillance systems, based especially on the collection of laboratory data to local or national level. The objective of this work is to carry out a review of the scientific literature existing on the topic and scientific activities related to surveillance of antibiotic resistance in the countries bordering the Mediterranean Sea. Recent Data from European Centre for Disease Prevention and Control (November 2015) show, for different combinations bacterium-drug, an increase of resistance from North to South and from West to East of Europe. It is of particular concern the phenomenon of resistance carried out by some gram-negative, specifically Klebsiella pneumoniae and Escherichia coli to third-generation cephalosporin, often combined in opposition to fluoroquinolones and aminoglycosides. Is particularly high the incidence of resistance to carbapenems by strains of Enterobacteriaceae (Klebsiella included). The resistance exerted by MRSA (Methicillin-resistant Staphylococcus aureus) continues to be relevant, albeit showing some decline in recent years. The incidence of resistance carried on by Streptococcus pneumoniae is stable and is mainly relevant to macrolides. Finally, a significant increase in recording relatively exercised by Enterococcus faecium to Vancomycin. Detecting, preventing, and controlling antibiotic resistance requires strategic, coordinated, and sustained efforts. It also depends on the engagement of governments, academia, industry, healthcare providers, the general public, and the agricultural community, as well as international partners. Committing to combating antibiotic-resistant microbes does support

  3. Staphylococcal resistance against five groups of life saving antibiotics in the year 2003-2005.

    Fatima, Anab; Shyum-Naqvi, Syed Baqir; Khaliq, Sheikh Abdul; Perveen, Shaheen; Yousuf, Rabia Ismail; Saeed, Rehana

    2013-11-01

    In the year 2003 to 2005 a prospective study was conducted to find out the predominance of Staphylococcus (Staphylococcus aureus) resistance pattern in opposition to five life saving antibiotics as these are the sole agents to treat critically ill patients in hospitals. During the period of two years almost 2500 samples of bacterial culture were taken from different pathological laboratories and hospitals in Karachi. Among these 1500 were Gram positive cocci and 1000 samples were identified as Staphylococcus aureus. Life saving antibiotics were taken from five different groups and by mean of disk diffusion technique antibiogram of Staphylococcus aureus against these antibiotic were determined. During the course of study imipenem showed 11%, amikacin exhibited 58%, cefipime showed 31%, vancomycin and piperacillin/tazobactam displayed 24% resistance against Staphylococcus aureus. Imipenem was found to be most effective against Staphylococcus aureus.Resistance to other antibiotics developed quickly in Staphylococcus aureus collected from clinical areas where these antimicrobial agents are extensively used. PMID:24191318

  4. Characterization of Antibiotics and Antibiotic Resistance Genes on an Ecological Farm System

    Songhe Zhang

    2015-01-01

    Full Text Available There is a growing concern worldwide about the prevalence of antibiotics and antibiotic resistance genes (ARGs on the farm. In this study, we investigated the distribution of seven antibiotics and ten ARGs in fresh and dried pig feces, in biogas slurry, and in grape-planting soil from an ecological farm. Antibiotics including sulfamethazine, norfloxacin, ofloxacin, tetracycline, oxytetracycline, and chlortetracycline were detected in these samples (except for sulfamethoxazole in dried feces. In general, antibiotics levels in samples were in the sequence: biogas slurry > fresh feces > soil or dried feces. Results of ecological risk assessments revealed that among the seven antibiotics chlortetracycline showed the highest ecological risk. Among the ten ARGs, sulI and tetO were the most prevalent on this ecological farm. There were positive correlations between certain ARGs and the corresponding antibiotics on this ecological farm. Therefore, continuous monitoring of antibiotics and their corresponding ARGs should be conducted in the agroecosystem near the concentrated animal farming operation systems.

  5. Antibiotic concentration and antibiotic-resistant bacteria in two shallow urban lakes after stormwater event.

    Zhang, Songhe; Pang, Si; Wang, PeiFang; Wang, Chao; Han, Nini; Liu, Bin; Han, Bing; Li, Yi; Anim-Larbi, Kwaku

    2016-05-01

    Stormwater runoff is generally characterized as non-point source pollution. In the present study, antibiotic concentration and antibiotic susceptibilities of cultivable heterotrophic bacteria were investigated in two small shallow urban lakes before and after strong storm event. Several antibiotics, lactose-fermenting bacteria and cultivable heterotrophic bacteria concentrations increased in surface water and/or surface sediment of two small urban lakes (Lake Xuanwu and Wulongtan) after strong storm event. In general, the frequencies of bacteria showing resistance to nine antibiotics increased after storm event. Based on the 16S rRNA genes of 50 randomly selected isolates from each water sample of two lakes, Aeromonas and Bacillus were dominant genera in samples from two lakes, while genera Proteus and Lysinibacillus were the third abundant genera in Lake Xuanwu and Wulongtu, respectively. Presences of nine antibiotic resistance genes (ARGs) in the 100 isolates were detected and most of these isolates harbored at least two ARGs with different functions. The detection frequency of ARGs in Gram-negative isolates was higher than that in Gram-positive isolates. The most prevalent integron in 100 isolates was int(II) (n = 28), followed by int(I) (n = 17) and int(III) (n = 17). Our results indicate that strong storm events potentially contribute to the transfer of ARGs and antibiotic-resistant bacteria from land-sewer system to the urban Lakes. PMID:26865482

  6. Prevalence of veterinary antibiotics and antibiotic-resistant Escherichia coli in the surface water of a livestock production region in northern China.

    Xuelian Zhang

    Full Text Available This study investigated the occurrence of 12 veterinary antibiotics (VAs and the susceptibility of Escherichia coli (E. coli in a rural water system that was affected by livestock production in northern China. Each of the surveyed sites was determined with at least eight antibiotics with maximum concentration of up to 450 ng L(-1. The use of VAs in livestock farming probably was a primary source of antibiotics in the rivers. Increasing total antibiotics were measured from up- to mid- and downstream in the two tributaries. Eighty-eight percent of the 218 E. coli isolates that were derived from the study area exhibited, in total, 48 resistance profiles against the eight examined drugs. Significant correlations were found among the resistance rates of sulfamethoxazole-trimethoprim, chloromycetin and ampicillin as well as between tetracycline and chlortetracycline, suggesting a possible cross-selection for resistance among these drugs. The E. coli resistance frequency also increased from up- to midstream in the three rivers. E. coli isolates from different water systems showed varying drug numbers of resistance. No clear relationship was observed in the antibiotic resistance frequency with corresponding antibiotic concentration, indicating that the antibiotic resistance for E. coli in the aquatic environment might be affected by factors besides antibiotics. High numbers of resistant E. coli were also isolated from the conserved reservoir. These results suggest that rural surface water may become a large pool of VAs and resistant bacteria. This study contributes to current information on VAs and resistant bacteria contamination in aquatic environments particularly in areas under intensive agriculture. Moreover, this study indicates an urgent need to monitor the use of VAs in animal production, and to control the release of animal-originated antibiotics into the environment.

  7. Methods to predict antibiotic resistance: From genes to metagenomes

    Lira, Felipe

    2015-01-01

    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Biología Molecular. Fecha de lectura: 21-10-2015 As many antibiotics exist as many mechanisms of resistance will rise. Antibiotic resistance is a worldwide problem and deserves all sort of attention and dedication to identify the critical points which might promote or facilitate the emergence of novel resistance genes in one community, as well the propagation of the already kno...

  8. Isolation and characterization of antibiotic-resistant bacteria from pharmaceutical industrial wastewaters.

    Tahrani, Leyla; Soufi, Leila; Mehri, Ines; Najjari, Afef; Hassan, Abdenaceur; Van Loco, Joris; Reyns, Tim; Cherif, Ameur; Ben Mansour, Hedi

    2015-12-01

    Contamination of surface waters in underdeveloped countries is a great concern. Treated and untreated wastewaters have been discharged into rivers and streams, leading to possible waterborne infection outbreaks which may represent a significant dissemination mechanism of antibiotic resistance genes among pathogenic bacterial populations. The present study aims to determine the multi-drug resistance patterns among isolated and identified bacterial strains in a pharmaceutical wastewater effluent in north Tunisia. Fourteen isolates were obtained and seven of them were identified. These isolates belong to different genera namely, Pseudomonas, Acinetobacter, Exiguobacterium, Delftia and Morganella. Susceptibility patterns of these isolates were studied toward commonly used antibiotics in Tunisia. All the identified isolates were found to have 100% susceptibility against colistin sulfate and 100% resistance against amoxicillin. Among the 11 antibiotics tested, six patterns of multi-drug resistance were obtained. The potential of the examined wastewater effluent in spreading multi-drug resistance and the associated public health implications are discussed. PMID:26343496

  9. Determination of antibiotic hypersensitivity among 4,000 single-gene-knockout mutants of Escherichia coli.

    Tamae, Cindy; Liu, Anne; Kim, Katherine; Sitz, Daniel; Hong, Jeeyoon; Becket, Elinne; Bui, Ann; Solaimani, Parrisa; Tran, Katherine P; Yang, Hanjing; Miller, Jeffrey H

    2008-09-01

    We have tested the entire Keio collection of close to 4,000 single-gene knockouts in Escherichia coli for increased susceptibility to one of seven different antibiotics (ciprofloxacin, rifampin, vancomycin, ampicillin, sulfamethoxazole, gentamicin, or metronidazole). We used high-throughput screening of several subinhibitory concentrations of each antibiotic and reduced more than 65,000 data points to a set of 140 strains that display significantly increased sensitivities to at least one of the antibiotics, determining the MIC in each case. These data provide targets for the design of "codrugs" that can potentiate existing antibiotics. We have made a number of double mutants with greatly increased sensitivity to ciprofloxacin, and these overcome the resistance generated by certain gyrA mutations. Many of the gene knockouts in E. coli are hypersensitive to more than one antibiotic. Together, all of these data allow us to outline the cell's "intrinsic resistome," which provides innate resistance to antibiotics. PMID:18621901

  10. Pediatric fecal microbiota harbor diverse and novel antibiotic resistance genes.

    Aimée M Moore

    Full Text Available Emerging antibiotic resistance threatens human health. Gut microbes are an epidemiologically important reservoir of resistance genes (resistome, yet prior studies indicate that the true diversity of gut-associated resistomes has been underestimated. To deeply characterize the pediatric gut-associated resistome, we created metagenomic recombinant libraries in an Escherichia coli host using fecal DNA from 22 healthy infants and children (most without recent antibiotic exposure, and performed functional selections for resistance to 18 antibiotics from eight drug classes. Resistance-conferring DNA fragments were sequenced (Illumina HiSeq 2000, and reads assembled and annotated with the PARFuMS computational pipeline. Resistance to 14 of the 18 antibiotics was found in stools of infants and children. Recovered genes included chloramphenicol acetyltransferases, drug-resistant dihydrofolate reductases, rRNA methyltransferases, transcriptional regulators, multidrug efflux pumps, and every major class of beta-lactamase, aminoglycoside-modifying enzyme, and tetracycline resistance protein. Many resistance-conferring sequences were mobilizable; some had low identity to any known organism, emphasizing cryptic organisms as potentially important resistance reservoirs. We functionally confirmed three novel resistance genes, including a 16S rRNA methylase conferring aminoglycoside resistance, and two tetracycline-resistance proteins nearly identical to a bifidobacterial MFS transporter (B. longum s. longum JDM301. We provide the first report to our knowledge of resistance to folate-synthesis inhibitors conferred by a predicted Nudix hydrolase (part of the folate synthesis pathway. This functional metagenomic survey of gut-associated resistomes, the largest of its kind to date, demonstrates that fecal resistomes of healthy children are far more diverse than previously suspected, that clinically relevant resistance genes are present even without recent selective

  11. Analysis of antibiotic resistance in bacteria isolated from the surface microlayer and underlying water of an estuarine environment.

    Azevedo, Juliana S N; Araújo, Susana; Oliveira, Cláudia S; Correia, António; Henriques, Isabel

    2013-02-01

    We compared the prevalence of cultivable antibiotic-resistant bacteria and resistance genes in the surface microlayer (SML) and underlying waters (UW) of an estuary. Prevalence of resistant bacteria was determined in antibiotic-supplemented agar. Bacterial isolates from the UW (n=91) and SML (n=80), selected in media without antibiotic, were characterized concerning susceptibility against nine antibiotics. The presence of genes bla(TEM), bla(OXA-B), bla(SHV), bla(IMP), tet(A), tet(B), tet(E), tet(M), cat, sul1, sul2, sul3, aadA, IntI1, IntI2, and IntI3 was assessed by PCR. The variable regions of integrons were sequenced. Ampicillin- and streptomycin-resistant bacteria were significantly more prevalent in SML. Resistance levels among the bacterial collections were generally low, preventing detection of significant differences between SML and UW. The tet(E) gene was detected in two Aeromonas isolates and tet(M) was detected in a Pseudomonas isolate. Gene sul1 was amplified from three Aeromonas isolates. Prevalence of intI genes was 2.11%. Cassette arrays contained genes encoding resistance to aminoglycosides and chloramphenicol. A higher prevalence of antibiotic-resistant bacteria in the SML, although only detectable when bacteria were selected in antibiotic-supplemented agar, suggests that SML conditions select for antibiotic resistance. Results also showed that antibiotic resistance was uncommon among estuarine bacteria and the resistance mechanisms are probably predominantly intrinsic. PMID:23067198

  12. Aerobic digestion reduces the quantity of antibiotic resistance genes in residual municipal wastewater solids

    Burch, Tucker R.; Sadowsky, Michael J.; LaPara, Timothy M.

    2013-01-01

    Numerous initiatives have been undertaken to circumvent the problem of antibiotic resistance, including the development of new antibiotics, the use of narrow spectrum antibiotics, and the reduction of inappropriate antibiotic use. We propose an alternative but complimentary approach to reduce antibiotic resistant bacteria (ARB) by implementing more stringent technologies for treating municipal wastewater, which is known to contain large quantities of ARB and antibiotic resistance genes (ARGs)...

  13. Antibiotic resistance via the food chain: Fact or fiction?

    Sabiha Y. Essack

    2010-09-01

    Full Text Available The mechanisms that bacteria use to acquire additional genetic material, including genes coding for antibiotic resistance, are principally the secondary pathways that have been described as transformation and conjugation pathways. The farming industry often is reported as a hotspot for antibiotic-resistance reservoirs. In this review, we consider the exposure of food animals during the course of their lifespans to preventative, therapeutic or prophylactic treatment with antibiotic agents. In this context, zoonotic bacteria are commonly recognised as a potential threat to human health, with therapeutic treatment of pathogenic organisms on farms increasing the likelihood of selective antibiotic pressure influencing the commensal flora of the intestines. Existing literature indicates, however, that the effective impact on human health of such interventions in the food production process is still subject to debate.

  14. Antibiotic resistance in urban aquatic environments: can it be controlled?

    Manaia, Célia M; Macedo, Gonçalo; Fatta-Kassinos, Despo; Nunes, Olga C

    2016-02-01

    Over the last decade, numerous evidences have contributed to establish a link between the natural and human-impacted environments and the growing public health threat that is the antimicrobial resistance. In the environment, in particular in areas subjected to strong anthropogenic pressures, water plays a major role on the transformation and transport of contaminants including antibiotic residues, antibiotic-resistant bacteria, and antibiotic resistance genes. Therefore, the urban water cycle, comprising water abstraction, disinfection, and distribution for human consumption, and the collection, treatment, and delivery of wastewater to the environment, is a particularly interesting loop to track the fate of antibiotic resistance in the environment and to assess the risks of its transmission back to humans. In this article, the relevance of different transepts of the urban water cycle on the potential enrichment and spread of antibiotic resistance is reviewed. According to this analysis, some gaps of knowledge, research needs, and control measures are suggested. The critical rationale behind the measures suggested and the desirable involvement of some key action players is also discussed. PMID:26649735

  15. Antibiotic resistance in Campylobacter: emergence, transmission and persistence

    Luangtongkum, Taradon; Jeon, Byeonghwa; Han, Jing; Plummer, Paul; Logue, Catherine M.; Zhang, Qijing

    2009-01-01

    Campylobacter is a leading foodborne bacterial pathogen, which causes gastroenteritis in humans. This pathogenic organism is increasingly resistant to antibiotics, especially fluoroquinolones and macrolides, which are the most frequently used antimicrobials for the treatment of campylobacteriosis when clinical therapy is warranted. As a zoonotic pathogen, Campylobacter has a broad animal reservoir and infects humans via contaminated food, water or milk. Antibiotic usage in both animal agricul...

  16. In tepid defense of population health: physicians and antibiotic resistance.

    Saver, Richard S

    2008-01-01

    Antibiotic resistance menaces the population as a dire public health threat and costly social problem. Recent proposals to combat antibiotic resistance focus to a large degree on supply side approaches. Suggestions include tinkering with patent rights so that pharmaceutical companies have greater incentives to discover novel antibiotics as well as to resist overselling their newer drugs already on market. This Article argues that a primarily supply side emphasis unfortunately detracts attention from physicians' important demand side influences. Physicians have a vital and unavoidably necessary role to play in ensuring socially optimal access to antibiotics. Dismayingly, physicians' management of the antibiotic supply has been poor and their defense of population health tepid at best. Acting as a prudent steward of the antibiotic supply often seems to be at odds with a physician's commonly understood fiduciary duties, ethical obligations, and professional norms, all of which traditionally emphasize the individual health paradigm as opposed to population health responsibilities. Meanwhile, physicians face limited incentives for antibiotic conservation from other sources, such as malpractice liability, regulatory standards, and reimbursement systems. While multifaceted efforts are needed to combat antibiotic resistance effectively, physician gatekeeping behavior should become a priority area of focus. This Article considers how health law and policy tools could favorably change the incentives physicians face for antibiotic conservation. A clear lesson from the managed care reform battles of the recent past is that interventions, to have the best chance of success, need to respect physician interest in clinical autonomy and individualized medicine even if, somewhat paradoxically, vigorously promoting population health perspectives. Also, physicians' legal and ethical obligations need to be reconceptualized in the antibiotic context in order to better support

  17. Antibiotic resistance mechanisms in M. tuberculosis: an update.

    Nguyen, Liem

    2016-07-01

    Treatment of tuberculosis (TB) has been a therapeutic challenge because of not only the naturally high resistance level of Mycobacterium tuberculosis to antibiotics but also the newly acquired mutations that confer further resistance. Currently standardized regimens require patients to daily ingest up to four drugs under direct observation of a healthcare worker for a period of 6-9 months. Although they are quite effective in treating drug susceptible TB, these lengthy treatments often lead to patient non-adherence, which catalyzes for the emergence of M. tuberculosis strains that are increasingly resistant to the few available anti-TB drugs. The rapid evolution of M. tuberculosis, from mono-drug-resistant to multiple drug-resistant, extensively drug-resistant and most recently totally drug-resistant strains, is threatening to make TB once again an untreatable disease if new therapeutic options do not soon become available. Here, I discuss the molecular mechanisms by which M. tuberculosis confers its profound resistance to antibiotics. This knowledge may help in developing novel strategies for weakening drug resistance, thus enhancing the potency of available antibiotics against both drug susceptible and resistant M. tuberculosis strains. PMID:27161440

  18. Heavy metal and antibiotic resistance in bacteria isolated from the environment of swine farms

    The aim of the present study was to determine the level of heavy metal resistance and antibiotic resistance patterns of bacterial isolates from environment of swine farms in China. A total of 284 bacteria were isolated, 158 from manure, 62 from soil and 64 from wastewater in different swine farm samples. All the isolates were tested for resistant against eight heavy metals. From the total of 284 isolates, maximum bacterial isolates were found to be resistant to Zn/sup 2+/ (98.6%) followed by Cu/sup 2+/ (97.5%), Cd/sup 2+/ (68.3%), Mn/sup 2+/ (60.2%), Pb/sup 2+/(51.4%), Ni/sup 2+/(41.5%) and Cr/sup 2+/(45.1%). However, most of the isolates were sensitive to Co/sup 2+/. Meanwhile,all the isolates were tested for sensitively to nine antibiotics. The results shows that most isolates were sensitive to cefoxitin and oxacillin, but resistance to tetracycline, ampicillin, gentamicin, amikacin, erythromycin, clindamycin were widespread. Multiple resistant to metals and antibiotics were also observed in this study. Most isolates were tolerant to different concentrations of various heavy metals and antibiotics. Our results confirmed that environment of swine farms in China has a significant proportion of heavy metal and antibiotic resistant bacteria, and these bacteria constitute a potential risk for swine health and public health. (author)

  19. Antibiotic susceptibility and molecular mechanisms of macrolide resistance in streptococci isolated from adult cystic fibrosis patients.

    Thornton, Christina S; Grinwis, Margot E; Sibley, Christopher D; Parkins, Michael D; Rabin, Harvey R; Surette, Michael G

    2015-11-01

    The cystic fibrosis (CF) airways are colonized by polymicrobial communities with high bacterial load and are influenced by frequent antibiotic exposures. This community includes diverse streptococci, some of which have been directly or indirectly associated with pulmonary exacerbations. As many streptococci are naturally competent, horizontal transfer of antibiotic-resistant determinants coupled with frequent and/or chronic antibiotic exposure may contribute to high resistance rates. In this study, we assessed antibiotic resistance in 413 streptococcal isolates from adult CF patients against nine antibiotics relevant in CF treatment. We observed very low rates of cephalosporin resistance [cefepime and ceftriaxone ( genes. The majority of isolates were, however, found to have point mutations at position 2058 or 2059 of the 23S ribosomal subunit - a molecular mechanism of resistance not commonly reported in the non-pyogenic and non-pneumococcal streptococci, and unique in comparison with previous studies. The high rates of resistance observed here may result in poor outcomes where specific streptococci are contributing to CF airway disease and serve as a reservoir of resistance genes within the CF airway microbiome. PMID:26408040

  20. ANTIBIOTIC RESISTANCE IN LACTIC ACID BACTERIA ISOLATED FROM FERMENTED DAIRY PRODUCTS AND BOZA

    Gamze Başbülbül

    2015-06-01

    Full Text Available In this study, the resistance of 83 strains of lactic acid bacteria isolated from Turkish cheese, yogurt, kefir and boza samples to 6 antibiotics (gentamicin, tetracycline, chloramphenicol, erythromycin, vancomycin and ciprofloxacin was evaluated. The 83 isolates were identified by 16S rRNA gene sequencing and according to BLAST comparisons with sequences in the data banks, those strains showing the highest similarities with the isolates were Enterococcus faecium (10, Lactococcus lactis subsp. Lactis (10, Lactobacillus fermentum (6, Lactobacillus plantarum (6, Lactobacillus coryniformis (7, Lactobacillus casei (13, Leuconostoc mesenteroides (14, Pediococcus pentosaceus (10, Weisella confusa (7. Antimicrobial resistance of strains to 6 antibiotics was determined using the agar dilution method. The antibiotic resistance among all the isolates was detected against chloramphenicol (31,3 % of the isolates, tetracycline (30,1 %, erythromycin (2,4 %, ciprofloxacin (2,41%, vancomycin (73,5 %, intrinsic resistance. Overall 19,3 % of the isolates showed resistance against multiple antibiotics. Antibiotic resistance genes were studied by PCR and the following genes were detected; tet(M gene in Lactobacillus fermentum (1, Lactobacillus plantarum (1, Pediococcus pentosaceus (5, Enterococcus faecium (2, Weisella confusa (4 and the vancomycin resistance gene van(A in one Weisella confusa strain.

  1. ENZYMATIC ACTIVITY AND ANTIBIOTIC RESISTANCE PROFILE OF LACTOBACILLUS PARACASEI SSP. PARACASEI-1 ISOLATED FROM REGIONAL YOGURTS OF BANGLADESH

    Ummay Honi

    2013-12-01

    Full Text Available Lactobacillus paracasei ssp. paracasei-1 was identified from traditional yogurts of Khulna region, Bangladesh and its enzyme and antibiotic resistance profiles were determined. A commercially available API Zym kit was employed to determine the activities of 19 different enzymes. We found that L. paracasei ssp. paracasei-1 showed strong activities for several enzymes, viz. leucine arylamidase, valine arylamidase, napthol-AS-BI-phosphohydrolase, β-galactosidase, α –Glucosidase, N-Acetyl- β- glucosaminidase while activities for other enzymes were absent. Antibiotic resistance profile was assessed by minimum inhibitory concentration (MIC test for 61 major antibiotics and 4 antifungal agents obtained from commercial sources in MRS Agar media. The strain generally showed resistance to gram negative spectrum antibiotic while it showed susceptibility towards β-lactam antibiotic to gram positive spectrum antibiotic. The findings provide the therapeutic basis of using L. paracasei ssp. paracasei-1 in finished food products.

  2. Excretion of antibiotic resistance genes by dairy calves fed milk replacers with varying doses of antibiotics

    Callie H. Thames

    2012-04-01

    Full Text Available Elevated levels of antibiotic resistance genes (ARGs in soil and water have been linked to livestock farms and in some cases feed antibiotics may select for antibiotic resistant gut microbiota. The purpose of this study was to examine the establishment of ARGs in the feces of calves receiving milk replacer containing no antibiotics versus subtherapeutic or therapeutic doses of tetracycline and neomycin. The effect of antibiotics on calf health was also of interest. Twenty-eight male and female dairy calves were assigned to one of the three antibiotic treatment groups at birth and fecal samples were collected at weeks 6, 7 (prior to weaning, and 12 (5 weeks after weaning. ARGs corresponding to the tetracycline (tetC, tetG, tetO, tetW, and tetX, macrolide (ermB, ermF, and sulfonamide (sul1, sul2 classes of antibiotics along with the class I integron gene, intI1, were monitored by quantitative polymerase chain reaction as potential indicators of direct selection, co-selection, or horizontal gene transfer of ARGs. Surprisingly, there was no significant effect of antibiotic treatment on the absolute abundance (gene copies/ g wet manure of any of the ARGs except ermF, which was lower in the antibiotic-treated calf manure, presumably because a significant portion of host bacterial cells carrying ermF were not resistant to tetracycline or neomycin. However, relative abundance (gene copies normalized to 16S rRNA genes of tetO was higher in calves fed the highest dose of antibiotic than in the other treatments. All genes, except tetC and intI1, were detectable in feces from 6 weeks onwards, and tetW and tetG significantly increased (P<0.10, even in control calves. Overall, the results provide new insight into the colonization of calf gut flora with ARGs in the early weeks. Although feed antibiotics exerted little effect on the ARGs monitored in this study, the fact that they also provided no health benefit suggests that the greater than conventional

  3. The use of platensimycin and platencin to fight antibiotic resistance

    Allahverdiyev AM

    2013-09-01

    Full Text Available Adil M Allahverdiyev,1 Melahat Bagirova,1 Emrah Sefik Abamor,1 Sezen Canim Ates,1 Rabia Cakir Koc,2 Meral Miraloglu,3 Serhat Elcicek,4 Serkan Yaman,1 Gokce Unal1 1Department of Bioengineering, Yildiz Technical University, Istanbul, Turkey; 2Department of Biomedical Engineering, Yeni Yuzyil University, Istanbul, Turkey; 3Vocational School of Health Services, Cukurova University, Adana, Turkey; 4Department of Bioengineering, Firat University, Elazig, Turkey Abstract: Infectious diseases are known as one of the most life-threatening disabilities worldwide. Approximately 13 million deaths related to infectious diseases are reported each year. The only way to combat infectious diseases is by chemotherapy using antimicrobial agents and antibiotics. However, due to uncontrolled and unnecessary use of antibiotics in particular, surviving bacteria have evolved resistance against several antibiotics. Emergence of multidrug resistance in bacteria over the past several decades has resulted in one of the most important clinical health problems in modern medicine. For instance, approximately 440,000 new cases of multidrug-resistant tuberculosis are reported every year leading to the deaths of 150,000 people worldwide. Management of multidrug resistance requires understanding its molecular basis and the evolution and dissemination of resistance; development of new antibiotic compounds in place of traditional antibiotics; and innovative strategies for extending the life of antibiotic molecules. Researchers have begun to develop new antimicrobials for overcoming this important problem. Recently, platensimycin – isolated from extracts of Streptomyces platensis – and its analog platencin have been defined as promising agents for fighting multidrug resistance. In vitro and in vivo studies have shown that these new antimicrobials have great potential to inhibit methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, and penicillin-resistant

  4. Efforts to slacken antibiotic resistance: Labeling meat products from animals raised without antibiotics in the United States.

    Centner, Terence J

    2016-09-01

    As bacteria and diseases spread due to climatic change, greater amounts of antibiotics will be used thereby exacerbating the problem of antibiotic resistance. To help slacken the development of resistant bacteria, the medical community is attempting to reduce unnecessary and excessive usage of antibiotics. One of the targets is the use of antibiotics for enhancing animal growth and promoting feed efficiency in the production of food animals. While governments can adopt regulations prohibiting nontherapeutic uses of antibiotics in food animals and strategies to reduce antibiotic usage, another idea is to publicize when antibiotics are used in food animal production by allowing labeled meat products. This paper builds upon existing labeling and marketing efforts in the United States to show how a government can develop a verified antibiotic-free labeling program that would allow consumers to purchase meat products from animals that had never received antibiotics. PMID:27236477

  5. Consolidating and Exploring Antibiotic Resistance Gene Data Resources

    Xavier, Basil Britto; Das, Anupam J.; Cochrane, Guy;

    2016-01-01

    The unrestricted use of antibiotics has resulted in rapid acquisition of antibiotic resistance (AR) and spread of multidrug-resistant (MDR) bacterial pathogens. With the advent of next-generation sequencing technologies and their application in understanding MDR pathogen dynamics, it has become...... imperative to unify AR gene data resources for easy accessibility for researchers. However, due to the absence of a centralized platform for AR gene resources, availability, consistency, and accuracy of information vary considerably across different databases. In this article, we explore existing AR gene...... data resources in order to make them more visible to the clinical microbiology community, to identify their limitations, and to propose potential solutions....

  6. Bottlenecks in the Transferability of Antibiotic Resistance from Natural Ecosystems to Human Bacterial Pathogens

    Martínez, José L.

    2012-01-01

    It is generally accepted that resistance genes acquired by human pathogens through horizontal gene transfer originated in environmental, non-pathogenic bacteria. As a consequence, there is increasing concern on the roles that natural, non-clinical ecosystems, may play in the evolution of resistance. Recent studies have shown that the variability of determinants that can provide antibiotic resistance on their expression in a heterologous host is much larger than what is actually found in human...

  7. Bottlenecks in the transmission of antibiotic resistance from natural ecosystems to human bacterial pathogens

    Martinez, Jose L.

    2012-01-01

    It is generally accepted that resistance genes acquired by human pathogens trough horizontal gene transfer have been originated in environmental, non pathogenic bacteria. As the consequence, there exists an increasing concern on the role that natural, non-clinical ecosystems, may play on the evolution of resistance. Recent studies have shown that the variability of determinants that can provide antibiotic resistance upon their expression in a heterologous host is much larger than what is actu...

  8. Relationships between antibiotics and antibiotic resistance gene levels in municipal solid waste leachates in Shanghai, China.

    Wu, Dong; Huang, Zhiting; Yang, Kai; Graham, David; Xie, Bing

    2015-04-01

    Many studies have quantified antibiotics and antibiotic resistance gene (ARG) levels in soils, surface waters, and waste treatment plants (WTPs). However, similar work on municipal solid waste (MSW) landfill leachates is limited, which is concerning because antibiotics disposal is often in the MSW stream. Here we quantified 20 sulfonamide (SA), quinolone (FQ), tetracycline (TC), macrolide (ML), and chloramphenicol (CP) antibiotics, and six ARGs (sul1, sul2, tetQ, tetM, ermB, and mefA) in MSW leachates from two Shanghai transfer stations (TS; sites Hulin (HL) and Xupu (XP)) and one landfill reservoir (LR) in April and July 2014. Antibiotic levels were higher in TS than LR leachates (985 ± 1965 ng/L vs 345 ± 932 ng/L, n = 40), which was because of very high levels in the HL leachates (averaging at 1676 ± 5175 ng/L, n = 40). The mean MLs (3561 ± 8377 ng/L, n = 12), FQs (975 ± 1608 ng/L, n = 24), and SAs (402 ± 704 ng/L, n = 42) classes of antibiotics were highest across all samples. ARGs were detected in all leachate samples with normalized sul2 and ermB levels being especially elevated (-1.37 ± 1.2 and -1.76 ± 1.6 log (copies/16S-rDNA), respectively). However, ARG abundances did not correlate with detected antibiotic levels, except for tetW and tetQ with TC levels (r = 0.88 and 0.81, respectively). In contrast, most measured ARGs did significantly correlate with heavy metal levels (p < 0.05), especially with Cd and Cr. This study shows high levels of ARGs and antibiotics can prevail in MSW leachates and landfills may be an underappreciated as a source of antibiotics and ARGs to the environment. PMID:25760223

  9. Antibiotic contamination and occurrence of antibiotic-resistant bacteria in aquatic environments of northern Vietnam.

    Hoa, Phan Thi Phuong; Managaki, Satoshi; Nakada, Norihide; Takada, Hideshige; Shimizu, Akiko; Anh, Duong Hong; Viet, Pham Hung; Suzuki, Satoru

    2011-07-01

    The ubiquitous application and release of antibiotics to the environment can result in bacterial antibiotic resistance, which in turn can be a serious risk to humans and other animals. Southeast Asian countries commonly apply an integrated recycling farm system called VAC (Vegetable, Aquaculture and Caged animal). In the VAC environment, antibiotics are released from animal and human origins, which would cause antibiotic-resistant bacteria (ARB). This study evaluated occurrence of ARB in the VAC environment in northern Vietnam, with quantitative analysis of antibiotic pollution. We found that sulfonamides were commonly detected at all sites. In dry season, while sulfamethazine was a major contaminant in pig farm pond (475-6662 ng/l) and less common in city canal and aquaculture sites, sulfamethoxazole was a major one in city canal (612-4330 ng/l). Erythromycin (154-2246 ng/l) and clarithromycin (2.8-778 ng/ml) were the common macrolides in city canal, but very low concentrations in pig farm pond and aquaculture sites. High frequencies of sulfamethoxazole-resistant bacteria (2.14-94.44%) were found whereas the occurrence rates of erythromycin-resistant bacteria were lower (Aeromonas were the major genera. Twenty three of 25 genera contained sul genes. This study showed specific contamination patterns in city and VAC environments and concluded that ARB occurred not only within contaminated sites but also those less contaminated. Various species can obtain resistance in VAC environment, which would be reservoir of drug resistance genes. Occurrence of ARB is suggested to relate with rainfall condition and horizontal gene transfer in diverse microbial community. PMID:21669325

  10. Reference Group Choice and Antibiotic Resistance Outcomes

    Kaye, Keith S.; Engemann, John J.; Mozaffari, Essy; Carmeli, Yehuda

    2004-01-01

    Two types of cohort studies examining patients infected with methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) were contrasted, using different reference groups. Cases were compared to uninfected patients and patients infected with the corresponding, susceptible organism. VRE and MRSA were associated with adverse outcomes. The effect was greater when uninfected control patients were used.

  11. ANTIBACTERIAL ACTIVITY OF SOME WILD MEDICAL PLANTS EXTRACT TO ANTIBIOTIC RESISTANT ESCHERICHIA COLI

    Lukáš Hleba

    2013-02-01

    Full Text Available Antibiotics are probably the most successful family of drugs so far developed for improving human health. Because of increasing resistance to antibiotics of many bacteria, plant extracts and plant compounds are of new interest as antiseptics and antimicrobial agents in medicine. In this study, we researched antimicrobial effects of extracts of some medical plants (Tussilagofarfara, Equisetum arvense, Sambucusnigra, Aesculushippocastanumand Taraxacumofficinale from Slovakia to antibiotic resistant and antibiotic sensitive bacteria isolated from milk of cows and mare, which were breeded in different conditions. Microorganisms which were used in this experiment we isolated from milk from conventional breeding of cows (tenE. coli strains and from ecological breeding of Lipicanmare (tenE. coli strains by sterile cotton swabs. For antibiotic susceptibility testing was used disc diffusion method according by EUCAST. After dried at room temperature we weighed 50 g of crushed medical plants (parts and it were to extract in 400 ml methanol for two weeks at room temperature. For antimicrobial susceptibility testing of medical plants extract blank discs with 6 mm diameter disc diffusion method was used. We determined that all Escherichia coli strains isolated from milk of conventional breeding of cows were resistant to ampicillin and chloramphenicol. We determined that all tested ampicillin and chloramphenicol resistant E. coli strains isolated from conventional breeding of cow showed susceptibility to all used medical plants extracts. In difference, we determined that antibiotic susceptible E. coli strains isolated from ecological breeding of Lipicanmare were susceptible to Tussilagofarfara extract only. From these results we could be conclude some observations, which could be important step in treatment of bacterial infections caused by antibiotic resistant bacteria and it could be important knowledge for treatment of livestock in conventional breeding

  12. Aerobic digestion reduces the quantity of antibiotic resistance genes in residual municipal wastewater solids

    TimothyMLaPara

    2013-02-01

    Full Text Available Numerous initiatives have been undertaken to circumvent the problem of antibiotic resistance, including the development of new antibiotics, the use of narrow spectrum antibiotics, and the reduction of inappropriate antibiotic use. We propose an alternative but complimentary approach to reduce antibiotic resistant bacteria by implementing more stringent technologies for treating municipal wastewater, which is known to contain large quantities of antibiotic resistant bacteria and antibiotic resistance genes (ARGs. In this study, we investigated the ability of conventional aerobic digestion to reduce the quantity of ARGs in untreated wastewater solids. A bench-scale aerobic digester was fed untreated wastewater solids collected from a full-scale municipal wastewater treatment facility. The reactor was operated under semi-continuous flow conditions for more than 200 days at a residence time of approximately 40 days. During this time, the quantities of tet(A, tet(W, and erm(B decreased by more than 90%. In contrast, intI1 did not decrease, and tet(X increased in quantity by 5-fold. Following operation in semi-continuous flow mode, the aerobic digester was converted to batch mode to determine the first-order decay coefficients, with half-lives ranging from as short as 2.8 days for tet(W to as long as 6.3 days for intI1. These results demonstrated that aerobic digestion can be used to reduce the quantity of antibiotic resistance genes in untreated wastewater solids, but that rates can vary substantially depending on the reactor design (i.e., batch versus continuous-flow and the specific ARG.

  13. Growth mediated feedback and the abrupt onset of antibiotic resistance

    Barrett Deris, J.

    2010-03-01

    Recent results in our lab indicate that global gene expression will change in a growth-dependent manner for bacteria in sublethal antibiotic levels. We analyzed a system containing a constitutively expressed drug resistance gene and found that growth-mediated feedback provided a mechanism for bistable growth rates. That is, two identical cell-lines in the same antibiotic-infused media may respond with distinct growth rates. Our experimental work with cells carrying this resistance gene has shown that a rapid drop in growth occurs over a relatively small range of antibiotic. This result is consistent with a growth plateau arising in our analysis of the feedback mechanism. Furthermore, experiments have shown that a culture's degree of drug resistance depends on the initial growth conditions prior to exposure to high levels of antibiotics. This result is consistent with the predicted existence of a hysteretic regime near the growth plateau. The work reveals concrete mechanisms by which bacteria cope with high levels of antibiotics and illustrates the importance of considering growth-mediated feedback on gene circuits.

  14. Antibiotic Resistance in Escherichia coli from Pigs in Organic and Conventional Farming in Four European Countries.

    Julia Österberg

    Full Text Available Organic pig production differs in many ways from conventional production of pigs, e.g., in antibiotic use, herd structure, feeding regimes, access to outdoor areas and space allowance per pig. This study investigated if these differences result in a lower occurrence of antibiotic resistance in organic slaughter pigs in Denmark, France, Italy and Sweden. Samples were taken from the colon content and/or faeces and minimum inhibitory concentrations (MIC of ten antibiotics were determined in isolates of Escherichia coli. In addition, the proportion of tetracycline (TET resistant E. coli in colon content and/or faeces from individual pigs was determined. In all four countries the percentage resistance to ampicillin, streptomycin, sulphonamides or trimethoprim was significantly lower in E. coli from organic pigs. In France and Italy, the percentage of isolates resistant to chloramphenicol, ciprofloxacin, nalidixic acid or gentamicin was also significantly lower in the E. coli from organic pigs. Resistance to cefotaxime, was not found in any country. The percentage of E. coli isolates resistant to TET as well as the proportion of TET-resistant E. coli was significantly lower in organic than in conventional pigs, except in Sweden where TET-resistance was equally low in both production types. There were also differences between countries within production type in the percentage resistance to individual antibiotics as well as the proportion of TET-resistant E. coli with lower median proportions in Sweden and Denmark compared to France and Italy. The study shows that in each of the four countries resistance in intestinal E. coli was less common in organic than in conventional pigs, but that there were also large differences in resistance between countries within each production type, indicating that both country- and production-specific factors influence the occurrence of resistance.

  15. Antibiotic Resistance in Escherichia coli from Pigs in Organic and Conventional Farming in Four European Countries.

    Österberg, Julia; Wingstrand, Anne; Nygaard Jensen, Annette; Kerouanton, Annaelle; Cibin, Veronica; Barco, Lisa; Denis, Martine; Aabo, Sören; Bengtsson, Björn

    2016-01-01

    Organic pig production differs in many ways from conventional production of pigs, e.g., in antibiotic use, herd structure, feeding regimes, access to outdoor areas and space allowance per pig. This study investigated if these differences result in a lower occurrence of antibiotic resistance in organic slaughter pigs in Denmark, France, Italy and Sweden. Samples were taken from the colon content and/or faeces and minimum inhibitory concentrations (MIC) of ten antibiotics were determined in isolates of Escherichia coli. In addition, the proportion of tetracycline (TET) resistant E. coli in colon content and/or faeces from individual pigs was determined. In all four countries the percentage resistance to ampicillin, streptomycin, sulphonamides or trimethoprim was significantly lower in E. coli from organic pigs. In France and Italy, the percentage of isolates resistant to chloramphenicol, ciprofloxacin, nalidixic acid or gentamicin was also significantly lower in the E. coli from organic pigs. Resistance to cefotaxime, was not found in any country. The percentage of E. coli isolates resistant to TET as well as the proportion of TET-resistant E. coli was significantly lower in organic than in conventional pigs, except in Sweden where TET-resistance was equally low in both production types. There were also differences between countries within production type in the percentage resistance to individual antibiotics as well as the proportion of TET-resistant E. coli with lower median proportions in Sweden and Denmark compared to France and Italy. The study shows that in each of the four countries resistance in intestinal E. coli was less common in organic than in conventional pigs, but that there were also large differences in resistance between countries within each production type, indicating that both country- and production-specific factors influence the occurrence of resistance. PMID:27362262

  16. Antibiotic Resistance in Escherichia coli from Pigs in Organic and Conventional Farming in Four European Countries

    Nygaard Jensen, Annette; Kerouanton, Annaelle; Cibin, Veronica; Barco, Lisa; Denis, Martine; Aabo, Sören

    2016-01-01

    Organic pig production differs in many ways from conventional production of pigs, e.g., in antibiotic use, herd structure, feeding regimes, access to outdoor areas and space allowance per pig. This study investigated if these differences result in a lower occurrence of antibiotic resistance in organic slaughter pigs in Denmark, France, Italy and Sweden. Samples were taken from the colon content and/or faeces and minimum inhibitory concentrations (MIC) of ten antibiotics were determined in isolates of Escherichia coli. In addition, the proportion of tetracycline (TET) resistant E. coli in colon content and/or faeces from individual pigs was determined. In all four countries the percentage resistance to ampicillin, streptomycin, sulphonamides or trimethoprim was significantly lower in E. coli from organic pigs. In France and Italy, the percentage of isolates resistant to chloramphenicol, ciprofloxacin, nalidixic acid or gentamicin was also significantly lower in the E. coli from organic pigs. Resistance to cefotaxime, was not found in any country. The percentage of E. coli isolates resistant to TET as well as the proportion of TET-resistant E. coli was significantly lower in organic than in conventional pigs, except in Sweden where TET-resistance was equally low in both production types. There were also differences between countries within production type in the percentage resistance to individual antibiotics as well as the proportion of TET-resistant E. coli with lower median proportions in Sweden and Denmark compared to France and Italy. The study shows that in each of the four countries resistance in intestinal E. coli was less common in organic than in conventional pigs, but that there were also large differences in resistance between countries within each production type, indicating that both country- and production-specific factors influence the occurrence of resistance. PMID:27362262

  17. Monitoring Antibiotic Residues and Corresponding Antibiotic Resistance Genes in an Agroecosystem

    Yasser M. Awad

    2015-01-01

    Full Text Available Antibiotic resistance genes (ARGs have been commonly reported due to the overuse worldwide of antibiotics. Antibiotic overuse disturbs the environment and threatens public human health. The objective of this study was to measure the residual concentrations of veterinary antibiotics in the tetracycline group (TCs, including tetracycline (TC and chlortetracycline (CTC, as well as those in the sulfonamide group (SAs, including sulfamethazine (SMT, sulfamethoxazole (SMX, and sulfathiazole (STZ. We also isolated the corresponding ARGs in the agroecosystem. Four sediment samples and two rice paddy soil samples were collected from sites near a swine composting facility along the Naerincheon River in Hongcheon, Korea. High performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS was employed with a solid-phase extraction method to measure the concentration of each antibiotic. ARGs were identified by the qualitative polymerase chain-reaction using synthetic primers. SAs and their corresponding ARGs were highly detected in sediment samples whereas TCs were not detected except for sediments sample #1. ARGs for TCs and SAs were detected in rice paddy soils, while ARGs for TCs were only found in sediment #2 and #4. Continuous monitoring of antibiotic residue and its comprehensive impact on the environment is needed to ensure environmental health.

  18. Antibiotic-resistant acne: getting under the skin.

    Sinha, Mau; Sadhasivam, Suresh; Bhattacharyya, Anamika; Jain, Shilpi; Ghosh, Shamik; Arndt, Kenneth A; Dover, Jeffrey S; Sengupta, Shiladitya

    2016-06-01

    Propionibacterium acnes is a key pathogenic factor in the development of acne. Antibiotics are the first choice of treatment for mild-to-moderate, mixed, papular/pustular, and moderate nodular acne, and an alternative choice in severe, nodular/conglobate acne. The emergence of resistance to the currently available antibiotics poses a serious set-back to this algorithm, and the reduced arsenal can diminish efficacy of treatment. This emerging situation should catalyze innovations in dermatology; for example, newer drugs and technologies such as next-generation antibiotics with excellent potency and low propensity to develop resistance, rapid diagnostic platforms to select responders and nonresponders, and delivery technologies that target the bacteria. Such innovations can dramatically expand the arsenal for dermatologists in the management of acne. PMID:27416310

  19. Resistance to antibiotics: limit theorems for a stochastic SIS model structured by level of resistance

    Boëlle, Pierre-Yves; Thomas, Guy

    2016-01-01

    The rise of bacterial resistance to antibiotics is a major Public Health concern. It is the result of two interacting processes: the selection of resistant bacterial strains under exposure to antibiotics and the dissemination of bacterial strains throughout the population by contact between colonized and uncolonized individuals. To investigate the resulting time evolution of bacterial resistance, Temime et al (2003) developed a stochas-tic SIS model, which was structured by the level of resis...

  20. ANTIBIOTIC RESISTANCE IN ENTEROBACTERIACEAE STRAINS ISOLATED FROM CHICKEN AND MILK SAMPLES

    Lukáš Hleba

    2015-02-01

    Full Text Available Antibiotic resistance and identification of strains in Enterobacteriaceae genera isolated from milk, milk products and rectal swabs of chicken was examined in this experiment. After samples collection cultivation and identification of bacterial strain was done. MALDI TOF MS Biotyper for identification of Enterobacteriaceae strains was used. For susceptibility testing disc diffusion methodology was used according by EUCAST. Results showed high level of ampicillin resistance in isolates from milk and milk samples. The highest streptomycin resistance was detected in isolates from rectal swabs of chicken. After identification, we determined that S. enterica ser. Typhimurium, which was isolated from rectal swabs of chicken showed the most multi-resistance from all identificated strains of Enterobacteriaceae. The most isolates bacterial strain was E. coli, which showed resistance against four antibiotics from rectal swabs of chicken. Also our results showed that the higher resistance level is in rectal swabs of chicken like in milk samples.

  1. Changes in Enterococcal and E coli populations and related antibiotic resistance from medical center to receiving environment

    Petit, F.; Berthe, T.; Oberle, K.; Denamur, E.; Clermont, O.; Leclercq, R.; Cattoir, V.; Budzinski, H.

    2013-12-01

    The spread of antibiotic-resistant faecal bacteria and their corresponding genes in water environment, as a result of the overuse of antibiotics, have become an ecological and a public problem. The aim of this multidisciplinary research program (FLASH) -associating chemists, hydrologists, clinical and environmental microbiologists- was to determine to what extent the hospital effluent have an ecological impact on the downstream aquatic environment. For this purpose, fate of Escherichia coli (distribution of phylogenetic groups, antibiotic resistance, integrons- 342 strains) and Enterococci (diversity, antibiotic resistance, genes ermB, mefA, clonal complex 17- 235 strains ) was analyzed in water and sediments along a medical center - WWTP - river - estuary continuum, during a high epidemiologic period in the North west of France. A multi-residue chemical methodology was developed in order to detect low levels of 34 antibiotics in water. To link occurrence of antibiotic-resistant bacteria in water and antibiotic prescription, we use the data collection from the hospital and the antibiotics sales information. In the medical center, the main prescribed antibiotic (amoxicillin) was weakly found in effluents. Along the continuum, contamination of water by antibiotics decreased from 160μg.L-1 (cefotaxim) in hospital effluents to 1ng.L-1 (ofloxacin) in the river. These concentrations were too low to exert a selective pressure (mg.L-1) on antibiotic-resistant bacteria. In same samples, occurrences of antibiotic-resistant E. coli and those harboring a class 1 integrons decreased significantly (p-value water microcosm experiment (< 2days). Once in the estuary, E. coli and the corresponding antibiotic-resistance genes are submitted to the particle dynamics and are deposited on mudflats. Among Enterococcus populations, E. faecium was mainly isolated (from 89% to 98%). All E. faecium isolates from medical center effluents were multiply antibiotic-resistant, contained erm

  2. Diversity and antibiotic resistance of aeromonas spp. in drinking and waste water treatment plants

    Figueira, Vânia; Vaz-Moreira, Ivone; Silva, Márcia; Manaia, Célia M

    2011-01-01

    The taxonomic diversity and antibiotic resistance phenotypes of aeromonads were examined in samples from drinking and waste water treatment plants (surface, ground and disinfected water in a drinking water treatment plant, and raw and treated waste water) and tap water. Bacteria identification and intra-species variation were determined based on the analysis of the 16S rRNA, gyrB and cpn60 gene sequences. Resistance phenotypes were determined using the disc diffusion method. Aeromonas ver...

  3. Antibiotic resistance and microbial composition along the manufacturing process of Mozzarella di Bufala Campana.

    Devirgiliis, Chiara; Caravelli, Antonella; Coppola, Doriana; Barile, Simona; Perozzi, Giuditta

    2008-12-10

    The use of antibiotics as growth promoters in livestock, banned in all EU member states in January 2006, has led to selection of antibiotic resistant strains within environmental bacteria, including gram-positive, non pathogenic bacteria that colonize the GI tract of humans and animals. In Italy and in other Mediterranean countries, fermented foods employing environmental bacteria pre-existing in the raw substrates, rather than industrial starters of defined genotype, represent a significant proportion of cheese and meat products carrying the official PDO designation (Protected Designation of Origin). Our study focused on the microbiological and molecular analysis of lactobacilli and of other lactic acid bacteria (LABs) isolated from the Italian PDO product water buffalo Mozzarella cheese, with the aim of identifying genes responsible for tetracycline, erythromycin and kanamycin resistance. We isolated over 500 LAB colonies from retail products, as well as from raw milk and natural whey starters employed in their production. Microbiological analysis showed that about 50% of these isolates were represented by lactobacilli, which were further characterized in terms of species and strain composition, as well as by determining phenotypic and genotypic antibiotic resistance. To overcome the limits of culture-dependent approaches that select only cultivable species, we have also extracted total DNA from the whole microbiome present in the cheese and investigated the presence of specific antibiotic resistance genes with molecular approaches. Genetic determinants of antibiotic resistance were identified almost exclusively in bacteria isolated from the raw, unprocessed substrates, while the final, marketed products did not contain phenotypically resistant lactobacilli, i.e. displaying MIC values above the microbiological breakpoint. Overall, our results suggest that the traditional procedures necessary for manufacturing of this typical cheese, such as high temperature

  4. ANTIBIOTIC RESISTANT BACTERIA FROM HALIOTIS TUBERCULATA AND MYTILUS GALLOPROVINCIALIS

    F. Conte; Longo, S.; Malaspina, A.

    2009-01-01

    The antibiotic resistance (AR) of Gram negative bacteria from Haliotis tuberculata (Ht) and Mytilus galloprovincialis (Mg) was assessed. Essential differences between R profiles of Pseudomonas spp and of other strains was not observed. Strains AR from Ht and Mg was similar.

  5. Antibiotic Resistant Bacteria--What Everyone Needs To Know.

    Pascoe, Neil; Felkner, Marilyn; Maldonado, Maria

    2003-01-01

    Notes the overuse of antibiotics and the resulting resistant bacterial strains. Describes how to control and prevent staphylococcal infections specifically, and almost all infectious diseases generally. Specific sections address: (1) what are staph infections; (2) preventing staph infections; (3) caring for wounds; and (4) controlling staph…

  6. U.K. Case of Throat Gonorrhea Resists Antibiotics

    ... https://medlineplus.gov/news/fullstory_159536.html U.K. Case of Throat Gonorrhea Resists Antibiotics U.S. officials ... head, STI Section, Public Health England, London, U.K.; Robert D. Kirkcaldy, M.D., M.P.H., ...

  7. Multidrug transporters and antibiotic resistance in Lactococcus lactis

    Poelarends, GJ; Mazurkiewicz, P; Konings, WN

    2002-01-01

    The Gram-positive bacterium Lactococcus lactis produces two distinct multidrug transporters, designated LmrA and LmrP, that both confer resistance to a wide variety of cationic lipophilic cytotoxic compounds as well as to many clinically relevant antibiotics. While LmrP is a proton/drug antiporter t

  8. Molecular Mechanisms of Antibiotic Resistance in Helicobacter pylori

    M.M. Gerrits (Monique)

    2004-01-01

    textabstractAn estimated 4 to 5 million individuals in the Netherlands are actively infected with Helicobacter pylori. Eradication of this bacterium becomes more difficult as the prevalence of antibiotic resistance is increasing worldwide. Most H. pylori infections are now diagnosed by non-invasi

  9. The Gut as Reservoir of Antibiotic Resistance: Microbial Diversity of Tetracycline Resistance in Mother and Infant

    de Vries, Lisbeth Elvira; Valles, Yvonne; Agersø, Yvonne;

    2011-01-01

    study using a metagenomic approach to determine the diversity of microorganisms conferring tetracycline resistance (Tc-r) in the guts of a healthy mother-infant pair one month after childbirth, and to investigate the potential for horizontal transfer and maternal transmission of Tc-r genes. Fecal fosmid...... the infant's gut. In addition, although not found in the infant metagenomic library, tet(O) and tet(W) could be detected in the uncloned DNA purified from the infant fecal sample. This is the first study to reveal the diversity of Tc-r bacteria in the human gut, to detect a likely transmission of antibiotic...

  10. Antibiotic resistance of Gardnerella vaginalis in recurrent bacterial vaginosis

    Nagaraja P

    2008-01-01

    Full Text Available Fifty strains of Gardnerella vaginalis isolated from 321 high vaginal swabs over a period of five months were tested for their antibiotic sensitivity. Sixty eight per cent of all isolates were resistant to metronidazole while 76% were sensitive to clindamycin. All the strains isolated from cases with recurrence of infection were resistant to metronidazole. Clindamycin therapy has a better clinical efficacy than metronidazole in cases of recurrent bacterial vaginosis.

  11. Resistance to antibiotics in heterotrophic bacteria as a result of environmental pollution

    Maria Bartoszewic

    2014-12-01

    Full Text Available Introduction. The aim of the study was to investigate resistance to selected antibiotics in Escherichia coli and Enterococcus faecalis strains that were isolated from water collected from ten streams within the administrative boundaries of the city of Sopot. Material and methods. 114 E. coli strains and 57 E. faecalis strains were studied. Antibiotic resistance was determined by the disc diffusion method using antibiotic-impregnated discs. Results. The isolated E. coli strains were resistant to chloramphenicol (21%, cefepime (51%, tetracycline (41%, imipenem (35%, cephazoline (62% and gentamicin (90%. E. faecalis isolates showed resistance to erythromycin (75%, chloramphenicol (21% and imipenem (33%. The relationship between the level of antibiotic resistance, the origin of water sample and the level of water contamination with E. coli and Enterococcus faecalis bacteria in the investigated streams was analyzed. Conclusions. Based on the obtained results, it was determined that multi-drug resistant bacterial strains of E. coli and E. faecalis are present in the investigated surface waters.

  12. Antibiotic resistance of Enterobacteriaceae strains isolated from different animals gastrointestinal tracts

    Lukáš Hleba

    2015-05-01

    Full Text Available In this study we monitored antibiotic resistance in Enterobacteriaceae strains isolated from different animals gastrointestinal tracts  (GIT. We isolated Enterobacteriaceae from chicken, ducks, lambs, pigs, sheeps, cows and rabbits collected from slovakian farms. Enterobacteriaceae strains were cultivated on MacConkey agar at 35° ± 2°C at 24 hours. Pure cultures of Enterobacteriaceae strains were obtained by four-way streak method on Chromogenic coliform agar. Identification of purified Enterobacteriaceae strains were done by Enterotest 24 and MALDI TOF MS. For susceptibility testing disk diffusion method was used according by EUCAST. We determined the most resistance in Enterobacteriaceae strains against streptomycin, tetracycline, ampicillin, piperecillin, levofloxacine, chloramphenicol and smaller level of resistance against amikacin, ceftriaxone and ofloxacine. Equally we detected resistance to more antibiotics in one strain. The most resistance was Salmonella enterica ser. Typhimurium. Also E. coli was resistance against four antibiotics and Raoultella ornithinolytica too. Antibiotic resistance was found in other isolated strains too.

  13. Carriage of antibiotic-resistant bacteria by healthy children.

    Millar, M R; Walsh, T R; Linton, C J; Zhang, S; Leeming, J P; Bennett, P M

    2001-05-01

    The frequency of carriage of antibiotic-resistant bacteria in healthy 7- and 8-year-old children in Bristol was studied. Children born in Avon between 1 April 1991 and 31 December 1992, attending the Avon Longitudinal Study of Pregnancy and Childhood (ALSPAC) 7 year follow-up clinic, formed the study population. Carriage was estimated using mouth and stool samples. None of 105 children on whom information was available had received tetracycline, chloramphenicol, ciprofloxacin or an extended-spectrum cephalosporin in the previous year. Staphylococcus aureus was isolated from mouthwashes from 200 (37.1%) of 539 children sampled. Six (3%) of the isolates were resistant to chloramphenicol or tetracycline and four (2%) were methicillin resistant. Haemophilus spp. were isolated from 369 (72%) of 513 samples and 63 (17%) were ampicillin resistant, 49 (13.3%) were erythromycin resistant and seven (1.9%) were tetracycline resistant. Branhamella catarrhalis was isolated from 333 (74%) of 450 samples. Twenty-eight (8.4%) were erythromycin resistant and 14 (4.2%) strains were tetracycline resistant. Group A beta-haemolytic streptococci were isolated from 17 of 507 children sampled. One (5.9%) was tetracycline resistant. Stool samples were returned from 335 (62%) of 539 children from whom they were requested. Eleven per cent of samples yielded Gram-negative bacilli with high-level resistance to chloramphenicol, which was frequently linked to resistance to ampicillin, spectinomycin and streptomycin. Isolates demonstrating resistance to the third-generation cephalosporin ceftazidime were recovered from 17 subjects (3.2%). Six (35%) of 17 isolates possessed extended-spectrum beta-lactamases. Healthy children carry bacteria resistant to antibiotics to which children are not usually exposed. Resistance to ceftazidime, chloramphenicol and tetracycline may be co-selected by exposure to other antibiotics used in children or may be acquired from family members, pets, other children or

  14. Selection of Streptomyces isolates from Turkish karstic caves against antibiotic resistant microorganisms.

    Yücel, Semra; Yamaç, Mustafa

    2010-01-01

    In this work, actinomycetes isolates were isolated from rock wall and speleothem surfaces and soil samples of 19 karstic caves in Turkey. Out of 290 isolates isolated, 180 isolates (62%) exhibited antimicrobial activity against a panel of four bacteria, two yeasts and four filamentous fungi in the screening program. One of them, Streptomyces sp. 1492, was examined for antibiotic production in batch culture. The maximum of antimicrobial activity was shown at 5th day. Antimicrobial activity of the extracted active compound was recorded as dose dependent bacteriostatic or bactericidal against antibiotic resistant clinical bacteria strains; methicillin-resistant Staphylococcus aureus (MRSA), vancomycin resistant Enterobacter faecium (VRE), and Acinetobacter baumanii. Minimum inhibitor concentration and minimum bactericidal concentrations were determined as lower than standard antibiotic streptomycin; 125 microg/ml and 250-1000 microg/ml, respectively. Active component was found as heat-stable. PMID:20067859

  15. Population structure of Neisseria gonorrhoeae based on whole genome data and its relationship with antibiotic resistance

    Matthew N. Ezewudo

    2015-03-01

    Full Text Available Neisseria gonorrhoeae is the causative agent of gonorrhea, a sexually transmitted infection (STI of major importance. As a result of antibiotic resistance, there are now limited options for treating patients. We collected draft genome sequence data and associated metadata data on 76 N. gonorrhoeae strains from around the globe and searched for known determinants of antibiotics resistance within the strains. The population structure and evolutionary forces within the pathogen population were analyzed. Our results indicated a cosmopolitan gonoccocal population mainly made up of five subgroups. The estimated ratio of recombination to mutation (r/m = 2.2 from our data set indicates an appreciable level of recombination occurring in the population. Strains with resistance phenotypes to more recent antibiotics (azithromycin and cefixime were mostly found in two of the five population subgroups.

  16. Population structure of Neisseria gonorrhoeae based on whole genome data and its relationship with antibiotic resistance.

    Ezewudo, Matthew N; Joseph, Sandeep J; Castillo-Ramirez, Santiago; Dean, Deborah; Del Rio, Carlos; Didelot, Xavier; Dillon, Jo-Anne; Selden, Richard F; Shafer, William M; Turingan, Rosemary S; Unemo, Magnus; Read, Timothy D

    2015-01-01

    Neisseria gonorrhoeae is the causative agent of gonorrhea, a sexually transmitted infection (STI) of major importance. As a result of antibiotic resistance, there are now limited options for treating patients. We collected draft genome sequence data and associated metadata data on 76 N. gonorrhoeae strains from around the globe and searched for known determinants of antibiotics resistance within the strains. The population structure and evolutionary forces within the pathogen population were analyzed. Our results indicated a cosmopolitan gonoccocal population mainly made up of five subgroups. The estimated ratio of recombination to mutation (r/m = 2.2) from our data set indicates an appreciable level of recombination occurring in the population. Strains with resistance phenotypes to more recent antibiotics (azithromycin and cefixime) were mostly found in two of the five population subgroups. PMID:25780762

  17. Use of Antibiotic Resistance Analysis To Identify Nonpoint Sources of Fecal Pollution

    Wiggins, B A; Andrews, R. W.; Conway, R. A.; Corr, C. L.; Dobratz, E. J.; Dougherty, D. P.; Eppard, J. R.; Knupp, S. R.; Limjoco, M. C.; Mettenburg, J. M.; Rinehardt, J. M.; Sonsino, J.; Torrijos, R. L.; Zimmerman, M.E.

    1999-01-01

    A study was conducted to determine the reliability and repeatability of antibiotic resistance analysis as a method of identifying the sources of fecal pollution in surface water and groundwater. Four large sets of isolates of fecal streptococci (from 2,635 to 5,990 isolates per set) were obtained from 236 samples of human sewage and septage, cattle and poultry feces, and pristine waters. The patterns of resistance of the isolates to each of four concentrations of up to nine antibiotics were a...

  18. Prevalence and Antibiotic Resistance of Neonatal Sepsis Pathogens in Neyshabour, Iran

    Behmadi

    2016-04-01

    Full Text Available Background Neonatal sepsis is a systemic inflammatory response syndrome that is secondary to infection. It is a major cause of neonatal mortality in the world, particularly in developing countries. A definitive diagnosis requires the isolation of pathogens from a normally sterile body site, including blood, cerebrospinal fluid and urine. Empirical antibiotic therapy is based on the physician’s knowledge of the anticipated bacterial species and their expected antibiotic susceptibilities. Objectives The aim of this study was to determine the prevalence and evaluate the antimicrobial susceptibility patterns of bacterial infections at a neonatal unit. Patients and Methods This study was conducted at the neonatal intensive care unit and neonatal ward of Hakim hospital, Neyshabour, Iran. Blood, cerebrospinal fluid (CSF and urine specimens were collected before institution of empirical antibiotic therapy. Antibiotic resistance pattern of the isolates was studied by the disc diffusion technique. Results Coagulase-negative staphylococci (CoNS were the most prevalent pathogens isolated from blood specimens in early and late-onset disease. Escherichia coli and Klebsiella were the most causative pathogens in early and late-onset urinary tract infections. They had high resistance to our empirical antibiotic regimens. Prevalence of bacterial meningitis was low in our study. Conclusions Due to the increasing resistance of pathogens to usual empirical antibiotics, it is reasonable to stress upon preventive measures, so that a minimum number of neonates develop sepsis.

  19. Antibiotics as CECs: An Overview of the Hazards Posed by Antibiotics and Antibiotic Resistance

    Geoffrey Ivan Scott; Porter, Dwayne E.; R. Sean Norman; C. Hart Scott; Miguel Ignacio Uyaguari-Diaz; Keith eMaruya; Steve B. Weisberg; Fulton, Michael H.; Ed F. Wirth; Janet eMooore; Pennington , Paul L.; Daniel eSchlenk; Cobb, George P.; Denslow, Nancy D.

    2016-01-01

    ABSTRACTMonitoring programs have traditionally monitored legacy contaminants but are shifting focus to Contaminants of Emerging Concern (CECs). CECs present many challenges for monitoring and assessment, because measurement methods don't always exist nor have toxicological studies been fully conducted to place results in proper context. Also some CECs affect metabolic pathways to produce adverse outcomes that are not assessed through traditional toxicological evaluations. Antibiotics are CEC...

  20. 2nd U.S. Case of Bacteria Resistant to Last-Resort Antibiotic

    ... news/fullstory_159807.html 2nd U.S. Case of Bacteria Resistant to Last-Resort Antibiotic Scientists concerned it ... the United States who was infected with a bacteria that is resistant to an antibiotic of last ...

  1. Antibiotic and metal resistance in a ST395 Pseudomonas aeruginosa environmental isolate: A genomics approach.

    Teixeira, Pedro; Tacão, Marta; Alves, Artur; Henriques, Isabel

    2016-09-15

    We analyzed the resistome of Pseudomonas aeruginosa E67, an epiphytic isolate from a metal-contaminated estuary. The aim was to identify genetic determinants of resistance to antibiotics and metals, assessing possible co-selection mechanisms. Identification was based on phylogenetic analysis and average nucleotide identity value calculation. MLST affiliated E67 to ST395, previously described as a high-risk clone. Genome analysis allowed identifying genes probably involved in resistance to antibiotics (e.g. beta-lactams, aminoglycosides and chloramphenicol) and metals (e.g. mercury and copper), consistent with resistance phenotypes. Several genes associated with efflux systems, as well as genetic determinants contributing to gene motility, were identified. Pseudomonas aeruginosa E67 possesses an arsenal of resistance determinants, probably contributing to adaptation to a polluted ecosystem. Association to mobile structures highlights the role of these platforms in multi-drug resistance. Physical links between metal and antibiotic resistance genes were not identified, suggesting a predominance of cross-resistance associated with multidrug efflux pumps. PMID:27371958

  2. Insects Represent a Link between Food Animal Farms and the Urban Environment for Antibiotic Resistance Traits

    Zurek, Ludek; Ghosh, Anuradha

    2014-01-01

    Antibiotic-resistant bacterial infections result in higher patient mortality rates, prolonged hospitalizations, and increased health care costs. Extensive use of antibiotics as growth promoters in the animal industry represents great pressure for evolution and selection of antibiotic-resistant bacteria on farms. Despite growing evidence showing that antibiotic use and bacterial resistance in food animals correlate with resistance in human pathogens, the proof for direct transmission of antibi...

  3. Phages limit the evolution of bacterial antibiotic resistance in experimental microcosms

    Zhang, Quan-Guo; Buckling, Angus

    2012-01-01

    The evolution of multi-antibiotic resistance in bacterial pathogens, often resulting from de novo mutations, is creating a public health crisis. Phages show promise for combating antibiotic-resistant bacteria, the efficacy of which, however, may also be limited by resistance evolution. Here, we suggest that phages may be used as supplements to antibiotics in treating initially sensitive bacteria to prevent resistance evolution, as phages are unaffected by most antibiotics and there should be ...

  4. Adaptive resistance to antibiotics in bacteria: a systems biology perspective.

    Sandoval-Motta, Santiago; Aldana, Maximino

    2016-05-01

    Despite all the major breakthroughs in antibiotic development and treatment procedures, there is still no long-term solution to the bacterial antibiotic resistance problem. Among all the known types of resistance, adaptive resistance (AdR) is particularly inconvenient. This phenotype is known to emerge as a consequence of concentration gradients, as well as contact with subinhibitory concentrations of antibiotics, both known to occur in human patients and livestock. Moreover, AdR has been repeatedly correlated with the appearance of multidrug resistance, although the biological processes behind its emergence and evolution are not well understood. Epigenetic inheritance, population structure and heterogeneity, high mutation rates, gene amplification, efflux pumps, and biofilm formation have all been reported as possible explanations for its development. Nonetheless, these concepts taken independently have not been sufficient to prevent AdR's fast emergence or to predict its low stability. New strains of resistant pathogens continue to appear, and none of the new approaches used to kill them (mixed antibiotics, sequential treatments, and efflux inhibitors) are completely efficient. With the advent of systems biology and its toolsets, integrative models that combine experimentally known features with computational simulations have significantly improved our understanding of the emergence and evolution of the adaptive-resistant phenotype. Apart from outlining these findings, we propose that one of the main cornerstones of AdR in bacteria, is the conjunction of two types of mechanisms: one rapidly responding to transient environmental challenges but not very efficient, and another much more effective and specific, but developing on longer time scales. WIREs Syst Biol Med 2016, 8:253-267. doi: 10.1002/wsbm.1335 For further resources related to this article, please visit the WIREs website. PMID:27103502

  5. IDENTIFICATION AND ANTIBIOTIC RESISTANCE PROFILE OFENTEROBACTERIACEAE SPECIES AND LACTOBACILLUS SPP. ISOLATED FROM HONEY BEES (APIS MELLIFERA DIGESTIVE TRACT

    Lukáš Hleba

    2014-02-01

    Full Text Available Honey bees play important role in agricultural environment as main pollinators. Its important for many agricultural and wild plants. Also honey bee are producers of honey, which is consumed directly and it should be not a heat treatment. Many bacteria can be survive in honey for long time. Some of these bacteria are human and animal facultative pathogens, including Enterobactericaeae genera. If these bacteria contain antibiotic resistant genes than it can to leads to troubles in healing of some of bacterial infections. Lactobacillus spp. can be a reservoir of resistant genes for pathogenic bacterial strains. In this study we isolated Enterobacteriaceae strains from digestive tracts of honey bees. These strains was tested to the eight selected antibiotics by disc diffusion method and strains were indentified by MALDI TOF MS Biotyper. From this study we determined resistance to piperacillin in the highest level. Equally, we determined that Citrobacter gillenii was resistant to three antibiotics (piperacillin, chloramphenicol and levofloxacin from eight. Resistance to other antibiotics were determined in low levels and other indentified bacteria were resistant to one antibiotic, if any. Also we detected resistance in Lactobacillus spp. and determined MICs distribution for some selected antibiotics. For absence of similar studies we could not to discuss our results and we think that further experiments and studies are needed.

  6. A STUDY ON THE KNOWLEDGE, ATTITUDE, PERCEPTIONS AND PRACTICES OF ANTIBIOTIC USAGE AND RESISTANCE AMONG THE MEDICAL STUDENTS OF JNIMS, IMPHAL, MANIPUR

    Shyami Tarao; Polly; Zingpi; Agatha

    2015-01-01

    The threat of antibiotic resistance is rapidly progressing. Awareness on its seriousness is the first step towards curtailing its progress. Young doctors should be given more education during their undergraduate training regarding antibiotic resistance & appropriate prescribing. The objective of this study was to determine the knowledge, attitude concerning ant ibiotic resistance as well as their self - reported practices related to ...

  7. Antagonistic self-sensing and mate-sensing signaling controls antibiotic-resistance transfer

    Chatterjee, Anushree; Cook, Laura C. C.; Shu, Che-Chi; Chen, Yuqing; Manias, Dawn A.; Ramkrishna, Doraiswami; Dunny, Gary M.; Hu, Wei-Shou

    2013-01-01

    Conjugation is one of the most common ways bacteria acquire antibiotic resistance, contributing to the emergence of multidrug-resistant “superbugs.” Bacteria of the genus Enterococcus faecalis are highly antibiotic-resistant nosocomial pathogens that use the mechanism of conjugation to spread antibiotic resistance between resistance-bearing donor cells and resistance-deficient recipient cells. Here, we report a unique quorum sensing-based communication system that uses two antagonistic signal...

  8. Effect of seasonal changes on the prevalence of uropathogens in 2010-2011and determination of antibiotic resistance pattern of Escherichia coli in three neighbor cities; Shiraz, Marvdasht and Saadat-Shahr

    Mohammad Pouryasin

    2014-03-01

    In addition to the patients’ gender and the region of study, seasonal changes fol-lowed by thermal and humidity changes, is another significant factor which influences the etiolo-gy of UTIs. Also antibiotic resistance pattern would be different even in neighbor cities.

  9. Pattern of antibiotic resistant mastitis in dairy cows

    D. Chandrasekaran

    2014-06-01

    Full Text Available Aim: To study the prevalence of drug resistant mastitis and their pattern of antibiotic resistance in dairy cows from Tamil Nadu. Materials and Methods: Isolation and identification of resistant pathogens were performed from acute clinical mastitis samples. Based on culture, isolation and sensitivity tests, cows with resistant mastitis were grouped as; Group I: Escherichia coli (n=119, Group II: Staphylococcus aureus (n=104 and Group III: Methicillin-resistant Staphylococcal aureus (MRSA (n=12. The isolates were tested using agar disc diffusion method for their antimicrobial susceptibility and modified resazurin assay microdilution technique for minimum inhibitory concentration (MIC to 8 antimicrobial drugs. The organisms were also confirmed for their identity by performing PCR on the bacterial pellet targeting the specific genes such as 16s-23s rRNA, mecA and blaZ respectively for the resistant pathogens and also confirmed by sequencing. Results: Antibiotic resistant mastitis was detected in 235 out of 401 cows accounting to 56.1%. The predominant resistant causative pathogen was E. coli (50.64% followed by S. aureus (44.25% and MRSA (5.11%. In vitro antibiotic sensitivity test and MIC breakpoints, E. coli, S. aureus and MRSA organisms showed more sensitivity to enrofloxacin, amoxicillin + sulbactam, gentamicin and ceftriaxone and had highest resistant to penicillin followed by amoxicillin, oxytetracycline and methicillin. E. coli and S. aureus isolates were found to be resistant to 1 or 2 antimicrobials, whereas most of the MRSA isolates were found to be multi-drug resistant i.e resistance to 3 or more of antimicrobials. Out of 235 milk samples, the specific target gene 16s-23s rRNA (E. coli , 16s-23s rRNA (S. aureus and MRSA (mecA and blaZ could be amplified from 119, 104 and 12 isolates with a percentage positivity of 50.64 (119/235, 89.64 (104/116 and 10.34 (12/116 respectively. Conclusion: Prevalence of antimicrobial resistance (AMR in

  10. Occurrence and persistence of antibiotic resistance genes in river biofilms after wastewater inputs in small rivers.

    Proia, Lorenzo; von Schiller, Daniel; Sànchez-Melsió, Alexandre; Sabater, Sergi; Borrego, Carles M; Rodríguez-Mozaz, Sara; Balcázar, José Luis

    2016-03-01

    The extensive use of antibiotics in human and veterinary medicine and their subsequent release into the environment may have direct consequences for autochthonous bacterial communities, especially in freshwater ecosystems. In small streams and rivers, local inputs of wastewater treatment plants (WWTPs) may become important sources of organic matter, nutrients and emerging pollutants, such as antibiotic resistance genes (ARGs). In this study, we evaluated the effect of WWTP effluents as a source of ARGs in river biofilms. The prevalence of genes conferring resistance to main antibiotic families, such as beta-lactams (blaCTX-M), fluoroquinolones (qnrS), sulfonamides (sul I), and macrolides (ermB), was determined using quantitative PCR (qPCR) in biofilm samples collected upstream and downstream WWTPs discharge points in four low-order streams. Our results showed that the WWTP effluents strongly modified the hydrology, physico-chemistry and biological characteristics of the receiving streams and favoured the persistence and spread of antibiotic resistance in microbial benthic communities. It was also shown that the magnitude of effects depended on the relative contribution of each WWTP to the receiving system. Specifically, low concentrations of ARGs were detected at sites located upstream of the WWTPs, while a significant increase of their concentrations was observed in biofilms collected downstream of the WWTP discharge points (particularly ermB and sul I genes). These findings suggest that WWTP discharges may favour the increase and spread of antibiotic resistance among streambed biofilms. The present study also showed that the presence of ARGs in biofilms was noticeable far downstream of the WWTP discharge (up to 1 km). It is therefore reasonable to assume that biofilms may represent an ideal setting for the acquisition and spread of antibiotic resistance determinants and thus be considered suitable biological indicators of anthropogenic pollution by active

  11. Where antibiotic resistance mutations meet quorum-sensing

    Rok Krašovec

    2014-06-01

    Full Text Available We do not need to rehearse the grim story of the global rise of antibiotic resistant microbes. But what if it were possible to control the rate with which antibiotic resistance evolves by de novo mutation? It seems that some bacteria may already do exactly that: they modify the rate at which they mutate to antibiotic resistance dependent on their biological environment. In our recent study [Krašovec, et al. Nat. Commun. (2014, 5, 3742] we find that this modification depends on the density of the bacterial population and cell-cell interactions (rather than, for instance, the level of stress. Specifically, the wild-type strains of Escherichia coli we used will, in minimal glucose media, modify their rate of mutation to rifampicin resistance according to the density of wild-type cells. Intriguingly, the higher the density, the lower the mutation rate (Figure 1. Why this novel density-dependent ‘mutation rate plasticity’ (DD-MRP occurs is a question at several levels. Answers are currently fragmentary, but involve the quorum-sensing gene luxS and its role in the activated methyl cycle.

  12. Antibiotic resistance gene abundance in feces of calves fed pirlimycin-dosed whole milk

    Littier, Heather Melissa

    2015-01-01

    Exposure to antibiotics has the potential to increase the incidence and proliferation of antibiotic resistance genes (ARG) in the gut and fecal microbiome. Non-saleable, antibiotic-containing milk from cows treated with antibiotics (waste milk) is commonly fed to dairy calves but the effects of ingestion of antibiotics at an early age on the gut microbiome and the development of ARG in the naive gut are not well understood. Pirlimycin, a lincosamide antibiotic acting against Gram positive bac...

  13. Antibiotic Resistance Patterns in Invasive Group B Streptococcal Isolates

    Mei L. Castor

    2008-01-01

    Full Text Available Antibiotics are used for both group B streptococcal (GBS prevention and treatment. Active population-based surveillance for invasive GBS disease was conducted in four states during 1996—2003. Of 3813 case-isolates, 91.0% (3471 were serotyped, 77.1% (2937 had susceptibility testing, and 46.6% (3471 had both. All were sensitive to penicillin, ampicillin, cefazolin, cefotaxime, and vancomycin. Clindamycin and erythromycin resistance was 12.7% and 25.6%, respectively, and associated with serotype V (P<.001. Clindamycin resistance increased from 10.5% to 15.0% (X2 for trend 12.70; P<.001; inducible clindamycin resistance was associated with the erm genotype. Erythromycin resistance increased from 15.8% to 32.8% (X2 for trend 55.46; P<.001. While GBS remains susceptible to beta-lactams, resistance to alternative agents such as erythromycin and clindamycin is an increasing concern.

  14. Impact of antibiotic restriction on resistance levels of Escherichia coli

    Boel, Jonas; Andreasen, Viggo; Jarløv, Jens Otto;

    2016-01-01

    OBJECTIVES: We evaluated the effect of an antibiotic stewardship programme (ASP) on the use of antibiotics and resistance levels of Escherichia coli using a method that allowed direct comparison between an intervention hospital and a control hospital. METHODS: The study was conducted as a...... of E. coli. Results were directly compared with data from the control hospital utilizing a subtracted time series (STS). RESULTS: Direct comparison with the control hospital showed that the ASP was associated with a significant change in the level of use of cephalosporins [-151 DDDs/1000 bed-days (95......% CI -177, -126)] and fluoroquinolones [-44.5 DDDs/1000 bed-days (95% CI -58.9, -30.1)]. Resistance of E. coli showed a significant change in slope for cefuroxime [-0.13 percentage points/month (95% CI -0.21, -0.057)] and ciprofloxacin [-0.15 percentage points/month (95% CI -0.26, -0.038)]. CONCLUSIONS...

  15. Rifampin phosphotransferase is an unusual antibiotic resistance kinase.

    Stogios, Peter J; Cox, Georgina; Spanogiannopoulos, Peter; Pillon, Monica C; Waglechner, Nicholas; Skarina, Tatiana; Koteva, Kalinka; Guarné, Alba; Savchenko, Alexei; Wright, Gerard D

    2016-01-01

    Rifampin (RIF) phosphotransferase (RPH) confers antibiotic resistance by conversion of RIF and ATP, to inactive phospho-RIF, AMP and Pi. Here we present the crystal structure of RPH from Listeria monocytogenes (RPH-Lm), which reveals that the enzyme is comprised of three domains: two substrate-binding domains (ATP-grasp and RIF-binding domains); and a smaller phosphate-carrying His swivel domain. Using solution small-angle X-ray scattering and mutagenesis, we reveal a mechanism where the swivel domain transits between the spatially distinct substrate-binding sites during catalysis. RPHs are previously uncharacterized dikinases that are widespread in environmental and pathogenic bacteria. These enzymes are members of a large unexplored group of bacterial enzymes with substrate affinities that have yet to be fully explored. Such an enzymatically complex mechanism of antibiotic resistance augments the spectrum of strategies used by bacteria to evade antimicrobial compounds. PMID:27103605

  16. Antibiotic resistance of Helicobacter pylori in Mashhad, Iran

    Objective: To evaluate Helicobacter pylori resistance to amoxicillin, clarithromycin, metronidazole and tetracycline in Mashhad, Iran. Methods: The cross-sectional study was done from January to May 2008 in Mashhad, involving 185 patients who had been indicated for endoscopy and lesions had been found. Biopsy samples were assessed with histological evaluation, rapid urease test, and culture. Antibiotic resistance was assessed by the disc diffusion method. Data was analysed with SPSS 11.5 using chi-square and Fisher exact test. P values of < 0.05 were regarded as statistically significant. Results: Of the total patients, histological evaluations were positive in 124 (67%). Compared with histology, sensitivity and specificity of rapid urease test were 96.7% and 100%, respectively. In 82 (66.1%) patients with positive cultures, antibiotic resistance was found in 14 (17.1%) for clarithromycin; 53 (64.6%) for metronidazole; and 8 (9.8%) for amoxicillin. No resistance was observed for tetracycline. Moreover, 9 (64%) patients with resistance to clarithromycin had co-resistance to metronidazole. Conclusion: Metronidazole is not recommended for treatment of Helicobacter pylori as a first-line drug. Also, considering the sensitivity and specificity of rapid urease test, we suggest this method as a suitable alternative for histology. (author)

  17. Characterization of Antibiotic Resistance Profiles of Ocular Enterobacteriaceae Isolates

    Paul-Satyaseela, Maneesh; Murali, Sowmiya; Thirunavukkarasu, Bharani; Naraharirao, Madhavan Hajib; Jambulingam, Malathi

    2016-01-01

    Emergence of extended-spectrum β-lactamase (ESBL) and fluoroquinolone resistance among ocular Enterobacteriaceae is increasing in higher frequency. Therefore, studies are being carried out to understand their multidrug resistance pattern. A total of 101 Enterobacteriaceae isolates recovered from various ocular diseases in a tertiary eye care center at Chennai, India during the period of January 2011 to June 2014 were studied. Forty one randomly chosen isolates were subjected to antibiotic susceptibility by minimum inhibitory concentration (MIC) and genotypic analysis. Of them, 16 were ESBL producers, one was carbapenemase producer and four were resistant to ertapenem which could be due to porin loss associated with AmpC production, and 17 were resistant to fluoroquinolones. Sixteen isolates harbored ESBL genes in which 14 had more than one gene and none of them were positive for blaNDM-1 gene. QNR genes were detected in 18 isolates. ESBL producers were predominantly isolated from conjunctiva. A high degree of ESBL production and fluoroquinolone resistance is seen among the genus Klebsiella sp. Hence, monitoring the rate of ESBL prevalence plays a vital role in the administration of appropriate intravitreal antibiotics to save the vision and also to reduce the development of drug resistance in ocular pathogens. PMID:27141313

  18. Combinatorial Activity of Flavonoids with Antibiotics Against Drug-Resistant Staphylococcus aureus.

    Abreu, Ana Cristina; Serra, Sofia C; Borges, Anabela; Saavedra, Maria José; Mcbain, Andrew J; Salgado, António J; Simões, Manuel

    2015-12-01

    The use of resistance-modifying agents is a potential strategy that is used to prolong the effective life of antibiotics in the face of increasing antibiotic resistance. Since certain flavonoids are potent bacterial efflux pump inhibitors, we assessed morin, rutin, quercetin, hesperidin, and (+)-catechin for their combined activity with the antibiotics ciprofloxacin, tetracycline, erythromycin, oxacillin, and ampicillin against drug-resistant strains of Staphylococcus aureus, including methicillin-resistant S. aureus. Four established methods were used to determine the combined efficacy of each combination: microdilution checkerboard assays, time-kill determinations, the Etest, and dual disc-diffusion methods. The cytotoxicity of the flavonoids was additionally evaluated in a mouse fibroblast cell line. Quercetin and its isomer morin decreased by 3- to 16-fold the minimal inhibitory concentration of ciprofloxacin, tetracycline, and erythromycin against some S. aureus strains. Rutin, hesperidin, and (+)-catechin did not promote any potentiation of antibiotics. Despite the potential cytotoxicity of these phytochemicals at a high concentration (fibroblast IC50 of 41.8 and 67.5 mg/L, respectively), quercetin is commonly used as a supplement for several therapeutic purposes. All the methods, with exception of the time-kill assay, presented a high degree of congruence without any apparent strain specificity. PMID:25734256

  19. Antibiotic Resistance in Staphylococcus aureus and Coagulase Negative Staphylococci Isolated from Goats with Subclinical Mastitis

    Salvatore Virdis

    2010-01-01

    Full Text Available Antimicrobial resistance patterns and gene coding for methicillin resistance (mecA were determined in 25 S. aureus and 75 Coagulase Negative Staphylococci (CNS strains isolates from half-udder milk samples collected from goats with subclinical mastitis. Fourteen (56.0% S. aureus and thirty-one (41.3% CNS isolates were resistant to one or more antimicrobial agents. S. aureus showed the highest resistance rate against kanamycin (28.0%, oxytetracycline (16.0%, and ampicillin (12.0%. The CNS tested were more frequently resistant to ampicillin (36.0% and kanamycin (6.7%. Multiple antimicrobial resistance was observed in eight isolates, and one Staphylococcus epidermidis was found to be resistant to six antibiotics. The mecA gene was not found in any of the tested isolates. Single resistance against β-lactamics or aminoglicosides is the most common trait observed while multiresistance is less frequent.

  20. Factors influencing antibiotic resistance burden in municipal wastewater treatment plants

    Novo, Ana; Manaia, Célia M.

    2010-01-01

    Municipal wastewater treatment plants are recognized reservoirs of antibiotic-resistant bacteria. Three municipal wastewater treatment plants differing on the dimensions and bio-treatment processes were compared for the loads of amoxicillin-, tetracycline-, and ciprofloxacinresistant heterotrophic bacteria, enterobacteria, and enterococci in the raw inflow and in the treated effluents. The sewage received by each plant, in average, corresponded to 85,000 inhabitant equ...

  1. Saponins increase susceptibility of vancomycin-resistant enterococci to antibiotic compounds.

    Schmidt, Sebastian; Heimesaat, Markus M; Fischer, André; Bereswill, Stefan; Melzig, Matthias F

    2014-12-01

    The resistance of commensal bacteria to first and second line antibiotics has reached an alarming level in many parts of the world and endangers the effective treatment of infectious diseases. In this study, the influence of the plant-derived natural saponins glycyrrhizic acid, β-aescin, α-hederin, hederacoside C, and primulic acid 1 on the susceptibility of vancomycin-resistant enterococci (VRE) against antibiotics of clinical relevance was investigated in 20 clinical isolates. Furthermore, the antibacterial properties of saponins under study against VRE were determined in vitro. Results reveal that the susceptibility of VRE against gentamicin, teicoplanin, and daptomycin was enhanced in the presence of the saponin glycyrrhizic acid. Most importantly, glycyrrhizic acid (1 mg/ml) diminished the minimal inhibitory concentration (MIC) of gentamicin in gentamicin low-level intrinsic resistant VRE from 2 - >8 mg/l to ≤ 0.125-1 mg/l. The adding of β-aescin, α-hederin, hederacoside C, and primulic acid 1 to the antibiotics under study showed, compared to glycyrrhizic acid, less influence on the antibiotic potency. Only glycyrrhizic acid (1 mg/ml) and α‑hederin (0.2 mg/ml) showed weak antibacterial properties against the clinical isolates. Our study points towards a therapeutic potential of saponins in the coapplication with antibiotics for bacterial infections. PMID:25544893

  2. Recycling Antibiotics into GUMBOS: A New Combination Strategy to Combat Multi-Drug-Resistant Bacteria

    Marsha R. Cole

    2015-04-01

    Full Text Available The emergence of multi-drug-resistant bacteria, coupled with the lack of new antibiotics in development, is fast evolving into a global crisis. New strategies utilizing existing antibacterial agents are urgently needed. We propose one such strategy in which four outmoded β-lactam antibiotics (ampicillin, carbenicillin, cephalothin and oxacillin and a well-known antiseptic (chlorhexidine di-acetate were fashioned into a group of uniform materials based on organic salts (GUMBOS as an alternative to conventional combination drug dosing strategies. The antibacterial activity of precursor ions (e.g., chlorhexidine diacetate and β-lactam antibiotics, GUMBOS and their unreacted mixtures were studied with 25 clinical isolates with varying antibiotic resistance using a micro-broth dilution method. Acute cytotoxicity and therapeutic indices were determined using fibroblasts, endothelial and cervical cell lines. Intestinal permeability was predicted using a parallel artificial membrane permeability assay. GUMBOS formed from ineffective β-lactam antibiotics and cytotoxic chlorhexidine diacetate exhibited unique pharmacological properties and profound antibacterial activity at lower concentrations than the unreacted mixture of precursor ions at equivalent stoichiometry. Reduced cytotoxicity to invasive cell types commonly found in superficial and chronic wounds was also observed using GUMBOS. GUMBOS show promise as an alternative combination drug strategy for treating wound infections caused by drug-resistant bacteria.

  3. Aerobic bacterial profile and antibiotic resistance in patients with diabetic foot infections

    Michele Cezimbra Perim

    2015-10-01

    Full Text Available ABSTRACTINTRODUCTION: This study aimed to determine the frequencies of bacterial isolates cultured from diabetic foot infections and assess their resistance and susceptibility to commonly used antibiotics.METHODS: This prospective study included 41 patients with diabetic foot lesions. Bacteria were isolated from foot lesions, and their antibiotic susceptibility pattern was determined using the Kirby-Bauer disk diffusion method and/or broth method [minimum inhibitory concentration (MIC].RESULTS: The most common location of ulceration was the toe (54%, followed by the plantar surface (27% and dorsal portion (19%. A total of 89 bacterial isolates were obtained from 30 patients. The infections were predominantly due to Gram-positive bacteria and polymicrobial bacteremia. The most commonly isolated Gram-positive bacteria were Staphylococcus aureus, followed by Staphylococcus saprophyticus, Staphylococcus epidermidis, Streptococcus agalactiae, and Streptococcus pneumoniae. The most commonly isolated Gram-negative bacteria were Proteus spp. and Enterobacterspp., followed by Escherichia coli, Pseudomonasspp., and Citrobacterspp. Nine cases of methicillin-resistant Staphylococcus aureus (MRSA had cefoxitin resistance, and among these MRSA isolates, 3 were resistant to vancomycin with the MIC technique. The antibiotic imipenem was the most effective against both Gram-positive and Gram-negative bacteria, and gentamicin was effective against Gram-negative bacteria.CONCLUSIONS: The present study confirmed the high prevalence of multidrug-resistant pathogens in diabetic foot ulcers. It is necessary to evaluate the different microorganisms infecting the wound and to know the antibiotic susceptibility patterns of the isolates from the infected wound. This knowledge is crucial for planning treatment with the appropriate antibiotics, reducing resistance patterns, and minimizing healthcare costs.

  4. Incidence and transferability of antibiotic resistance in the enteric bacteria isolated from hospital wastewater

    Mohammad Zubair Alam

    2013-09-01

    Full Text Available This study reports the occurrence of antibiotic resistance and production of β-lactamases including extended spectrum beta-lactamases (ESβL in enteric bacteria isolated from hospital wastewater. Among sixty-nine isolates, tested for antibiotic sensitivity, 73.9% strains were resistant to ampicillin followed by nalidixic acid (72.5%, penicillin (63.8%, co-trimoxazole (55.1%, norfloxacin (53.6%, methicillin (52.7%, cefuroxime (39.1%, cefotaxime (23.2% and cefixime (20.3%. Resistance to streptomycin, chloramphenicol, nitrofurantoin, tetracycline, and doxycycline was recorded in less than 13% of the strains. The minimum inhibitory concentration (MIC showed a high level of resistance (800-1600 µg/mL to one or more antibiotics. Sixty three (91% isolates produced β-lactamases as determined by rapid iodometric test. Multiple antibiotic resistances were noted in both among ESβL and non-ESβL producers. The β-lactamases hydrolyzed multiple substrates including penicillin (78.8% isolates, ampicillin (62.3%, cefodroxil (52.2%, cefotoxime (21.7% and cefuroxime (18.8%. Fifteen isolates producing ESβLs were found multidrug resistant. Four ESβL producing isolates could transfer their R-plasmid to the recipient strain E. coli K-12 with conjugation frequency ranging from 7.0 x 10-3 to 8.8 x 10-4. The findings indicated that ESβL producing enteric bacteria are common in the waste water. Such isolates may disseminate the multiple antibiotic resistance traits among bacterial community through genetic exchange mechanisms and thus requires immediate attention.

  5. Quantification, serovars, and antibiotic resistance of salmonella isolated from retail raw chicken meat in Vietnam.

    Ta, Yen T; Nguyen, Trung Thanh; To, Phuong Bich; Pham, Da Xuan; Le, Hao Thi Hong; Thi, Giang Nguyen; Alali, Walid Q; Walls, Isabel; Doyle, Michael P

    2014-01-01

    The objectives of this study were to quantify Salmonella counts on retail raw poultry meat in Vietnam and to phenotypically characterize (serovars and antibiotic resistance) the isolates. A total of 300 chicken carcasses were collected from two cities and two provinces in Vietnam. Salmonella counts on the samples were determined according to the most-probable-number (MPN) method of the U.S. Department of Agriculture, Food Safety and Inspection Service (USDA-FSIS). A total of 457 isolates were serotyped and tested for antibiotic susceptibility. Overall, 48.7% of chicken samples were Salmonella positive with a count of 2.0 log MPN per carcass. There were no significant differences (P > 0.05) in log MPN per carcass by the study variables (market type, storage condition, and chicken production system). There was a significant difference (P antibiotic was common (i.e., 73.3%), with high resistance to tetracycline (59.1%) and ampicillin (41.6%). Resistance to three antibiotics was the most frequently found multidrug resistance profile (17.7%, n = 81); the profile that was resistant to the highest number of drugs was resistant to nine antibiotics (0.7%, n = 3). Only Salmonella Albany posed phenotypic resistance to ceftriaxone (a drug of choice to treat severe cases of salmonellosis). The data revealed that, whereas Salmonella prevalence on raw poultry was high (48.7%), counts were low, which suggests that the exposure risk to Salmonella is low. However, improper storage of raw chicken meat and cross-contamination may increase Salmonella cell counts and pose a greater risk for infection. These data may be helpful in developing risk assessment models and preventing the transmission of foodborne Salmonella from poultry to humans in Vietnam. PMID:24405999

  6. Bordetella avium antibiotic resistance, novel enrichment culture, and antigenic characterization.

    Beach, Nathan M; Thompson, Seth; Mutnick, Rachel; Brown, Lisa; Kettig, Gina; Puffenbarger, Robyn; Stockwell, Stephanie B; Miyamoto, David; Temple, Louise

    2012-11-01

    Bordetella avium continues to be an economic issue in the turkey industry as the causative agent of bordetellosis, which often leads to serious secondary infections. This study presents a broad characterization of the antibiotic resistance patterns in this diverse collection of B. avium strains collected over the past thirty years. In addition, the plasmid basis for the antibiotic resistance was characterized. The antibiotic resistance pattern allowed the development of a novel enrichment culture method that was subsequently employed to gather new isolates from diseased turkeys and a healthy sawhet owl. While a healthy turkey flock was shown to seroconvert by four weeks-of-age, attempts to culture B. avium from healthy turkey poults were unsuccessful. Western blot of B. avium strains using pooled serum from diseased and healthy commercial turkey flocks revealed both antigenic similarities and differences between strains. In sum, the work documents the continued exposure of commercial turkey flocks to B. avium and the need for development of an effective, inexpensive vaccine to control spread of the disease. PMID:22721730

  7. Calcined Eggshell Waste for Mitigating Soil Antibiotic-Resistant Bacteria/Antibiotic Resistance Gene Dissemination and Accumulation in Bell Pepper.

    Ye, Mao; Sun, Mingming; Feng, Yanfang; Li, Xu; Schwab, Arthur P; Wan, Jinzhong; Liu, Manqiang; Tian, Da; Liu, Kuan; Wu, Jun; Jiang, Xin

    2016-07-13

    The combined accumulation of antibiotics, heavy metals, antibiotic-resistant bacteria (ARB)/antibiotic resistance genes (ARGs) in vegetables has become a new threat to human health. This is the first study to investigate the feasibility of calcined eggshells modified by aluminum sulfate as novel agricultural wastes to impede mixed contaminants from transferring to bell pepper (Capsicum annuum L.). In this work, calcined eggshell amendment mitigated mixed pollutant accumulation in bell pepper significantly, enhanced the dissipation of soil tetracycline, sulfadiazine, roxithromycin, and chloramphenicol, decreased the water-soluble fractions of antibiotics, and declined the diversity of ARB/ARGs inside the vegetable. Moreover, quantitative polymerase chain reaction analysis detected that ARG levels in the bell pepper fruits significantly decreased to 10(-10) copies/16S copies, indicating limited risk of ARGs transferring along the food chain. Furthermore, the restoration of soil microbial biological function suggests that calcined eggshell is an environmentally friendly amendment to control the dissemination of soil ARB/ARGs in the soil-vegetable system. PMID:27333280

  8. Bactericidal antibiotic-phytochemical combinations against methicillin resistant Staphylococcus aureus

    Bhone Myint Kyaw

    2012-09-01

    Full Text Available Methicillin resistant Staphylococcus aureus (MRSA infection is a global concern nowadays. Due to its multi-drug resistant nature, treatment with conventional antibiotics does not assure desired clinical outcomes. Therefore, there is a need to find new compounds and/or alternative methods to get arsenal against the pathogen. Combination therapies using conventional antibiotics and phytochemicals fulfill both requirements. In this study, the efficacy of different phytochemicals in combination with selected antibiotics was tested against 12 strains of S. aureus (ATCC MRSA 43300, ATCC methicillin sensitive S. aureus or MSSA 29213 and 10 MRSA clinical strains collected from National University Hospital, Singapore. Out of the six phytochemicals used, tannic acid was synergistic with fusidic acid, minocycline, cefotaxime and rifampicin against most of strains tested and additive with ofloxacin and vancomycin. Quercetin showed synergism with minocycline, fusidic acid and rifampicin against most of the strains. Gallic acid ethyl ester showed additivity against all strains in combination with all antibiotics under investigation except with vancomycin where it showed indifference effect. Eugenol, menthone and caffeic acid showed indifference results against all strains in combination with all antibiotics. Interestingly, no antagonism was observed within these interactions. Based on the fractional inhibitory concentration indices, synergistic pairs were further examined by time-kill assays to confirm the accuracy and killing rate of the combinations over time. The two methods concurred with each other with 92% accuracy and the combinatory pairs were effective throughout the 24 hours of assay. The study suggests a possible incorporation of effective phytochemicals in combination therapies for MRSA infections.

  9. Antibiotic Resistance of Salmonella spp. Isolated from Shrimp Farming Freshwater Environment in Northeast Region of Brazil

    Fátima C. T. Carvalho

    2013-01-01

    Full Text Available This study investigated the presence and antibiotic resistance of Salmonella spp. in a shrimp farming environment in Northeast Region of Brazil. Samples of water and sediments from two farms rearing freshwater-acclimated Litopenaeus vannamei were examined for the presence of Salmonella. Afterwards, Salmonella isolates were serotyped, the antimicrobial resistance was determined by a disk diffusion method, and the plasmid curing was performed for resistant isolates. A total of 30 (16.12% of the 186 isolates were confirmed to be Salmonella spp., belonging to five serovars: S. serovar Saintpaul, S. serovar Infantis, S. serovar Panama, S. serovar Madelia, and S. serovar Braenderup, along with 2 subspecies: S. enterica serovar houtenae and S. enterica serovar enterica. About twenty-three percent of the isolates were resistant to at least one antibiotic, and twenty percent were resistant to at least two antibiotics. Three strains isolated from water samples (pond and inlet canal exhibited multiresistance to ampicillin, tetracycline, oxytetracycline, and nitrofurantoin. One of them had a plasmid with genes conferring resistance to nitrofurantoin and ampicillin. The incidence of bacteria pathogenic to humans in a shrimp farming environment, as well as their drug-resistance pattern revealed in this study, emphasizes the need for a more rigorous attention to this area.

  10. Antibiotic-resistance Staphylococcus aureus isolated from cow’s milk in the Hawassa area, South Ethiopia

    Daka, Deresse; G/silassie, Solomon; Yihdego, Dawit

    2012-01-01

    Background Quarter milk samples from cows were examined to determine the prevalence of Staphylococcus aureus (SA) and different antibiotic resistant pattern were determined in a cross-sectional study design. Objective The objective of this study was to isolate Staphylococcus aureus from samples of cow’s milk obtained from Hawassa area and to determine their antibiotic susceptibility patterns. Method A total of 160 milk (CCP1-CCP5) samples were collected and screened for the presence of S. aur...

  11. The gut is the epicentre of antibiotic resistance

    Carlet Jean

    2012-11-01

    Full Text Available Abstract The gut contains very large numbers of bacteria. Changes in the composition of the gut flora, due in particular to antibiotics, can happen silently, leading to the selection of highly resistant bacteria and Candida species. These resistant organisms may remain for months in the gut of the carrier without causing any symptoms or translocate through the gut epithelium, induce healthcare-associated infections, undergo cross-transmission to other individuals, and cause limited outbreaks. Techniques are available to prevent, detect, and treat the carriage of resistant organisms in the gut. However, evidence on these techniques is scant, the only exception being selective digestive decontamination (SDD, which has been extensively studied in neutropenic and ICU patients. After the destruction of resistant colonizing bacteria, which has been successfully obtained in several studies, the gut could be re-colonized with normal faecal flora or probiotics. Studies are warranted to evaluate this concept.

  12. Multiple Antibiotic Resistance and Heavy Metal Resistance Profile of Bacteria Isolated from Giant Freshwater Prawn (Macrobrachium rosenbergii) Hatchery

    S W Lee; M Najiah; W Wendy; A Zahrol; M Nadirah

    2009-01-01

    In this article,antibiogram and heavy metal resistance profile of bacteria isolated from giant freshwater prawn (Macrobrachium rosenbergii) hatchery in Malaysia are described.Although giant freshwater prawn was introduced into Malaysia since the 1980s,there was no database information on antibiogram and heavy metal resistance profile of bacteria from giant freshwater prawn (M.rosenbergii) hatchery in Malaysia.Therefore,this study was carried out to determine the effectiveness of antibiotic and heavy metal resistance profile to control bacterial diseases in M.rosenbergii hatchery.The results can provide valuable information for local M.rosenbergii post-larval producer.Antibiotic sensitivity test was carried out by disk-diffusion method against 15 types of antibiotics as follows:oxolinic acid (2 μg),ampicillin (10 μg),erythromycin (15 μg),furazolidone (15 μg),lincomycin (15 μg),amoxicillin (25 μg),col istin sulphate (25 μg),doxycycline (30 μg),florfenicol (30 μg),flumequine (30 μg),nalidixic acid (30 μg),tetracycline (30 μg),oleandomyein (15 μg),fosfomycin (50 μg),and spiramycin (100 μg),whereas heavy metal resistance profile of the present bacterial isolates was determined by 2-fold agar dilution technique.In this study,5 types of bacteria were successfully isolated;they were Aeromonas spp.(n= 77),Escherichia coil (n = 73),Edwardsiella spp.(n = 62),Salmonella spp.(n= 75),and Vibrio spp.(n = 43).The result showed that furazolidone was the most effective antibiotic to control the bacteria isolated in this study,approximately 89.7% of the bacterial isolates were sensitive to this antibiotic.Multiple antibiotic resistance (MAR) index indicated that the hatchery water source and M.rosenbergii post-larval and sediment tanks were at high-risk exposure to the tested antibiotic.Furthermore,all the tested heavy metals (Cd2+,Cr6+ Hg2+,and Cu2+) failed to inhibit the growth of the bacterial isolates.Therefore,it indicated that the water source of the hatchery is

  13. Frequency of Antibiotic Resistance Patterns in Bacteria Isolated from Children

    Esmaeili, R.

    2014-06-01

    Full Text Available Background and Objective: Bacterial infectioins in particular meningitis, pneumonia and septicemia are still some of the most causes of mortalities in children.The aim of present study was to identify the most common bacterial agents causing infectionis in children under 14 and detection of antibiotic resistance paterns. Material and Methods: During two years,1897samples were obtained from the patients suspected bacterial infectioins. They were investigated for bacterial cultures, age, sex and antibiogram patterns. The species were identified by biochemical and serological methods. Results: Of 1897 samples, 563 (29.6% had positve bacterial culture. Of these 74.7% were gram negative and 25.3% gram positive . The most common species were Escherichia coli(34.1%, Staphylococcus aureus (17.1%, Psuedomonas aeroginosa (12.4%, Kelebsiella (11% and Staphylococcus epidermidis (5.7%. The most effective antibiotics against both gram positive and gram negative bacteria were ceftriaoxne, nitrofurantoin, nalidixic acid, amikacin and gentamycin. Conclusion: The gram negative bacteria in particular Escherichia coli, Psuedomonas aeroginosa and Kelebsiella are the predominant causes of bacterial infections in children under 14 in these regions. Most species showed a high relative resisitance to routine antibiotics such as ampicillin, trimethoprim and chloramphenicol. Key Words: Bacteria; Infection; Children; Antibiotic

  14. Characterisation of Phenotypic and Genotypic Antibiotic Resistance Profile of Enterococci from Cheeses in Turkey

    Yipel, Mustafa; Aslantaş, Özkan; Gündoğdu, Aycan

    2016-01-01

    The aim of this study was to determine the prevalence of enterococci in cheese samples and to characterize their antimicrobial resistance profiles as well as the associated resistance genes. A total of 139 enterococci were isolated from 99 cheese samples, the isolates were identified as E. faecalis (61.2%), E. faecium (15.1%), E. gallinarum (12.9%), E. durans (5.0%), E. casseliflavis (2.9%) and E. avium (2.9%). The most frequent antimicrobial resistance observed in enterococci isolates was to lincomycin (88.5%), followed by kanamycin (84.2%), gentamycin (low level, 51.1%), rifampin (46.8%) and tetracycline (33.8%). Among the isolates, the frequencies of high level gentamycin and streptomycin resistant enterococci strains were 2.2% and 5.8%, respectively. Apart from the mentioned antibiotics, low levels of resistance to ciprofloxacin, erythromycin and chloramphenicol were found. Moreover no resistance was observed against penicillin and ampicillin. The antimicrobial resistance genes including tetM, tetL, ermB, cat, aph(3’)-IIIa, ant(6)-Ia and aac(6’)-Ieaph(2”)-Ia were found in enterococci from Turkish cheese samples. In the current study, we provided data for antibiotic resistance and the occurrence of resistance genes among enterococci. Regulatory and quality control programs for milk and other dairy products from farms to retail outlets has to be established and strengthened to monitor trends in antimicrobial resistance among emerging food borne pathogens in Turkey.

  15. Characterisation of Phenotypic and Genotypic Antibiotic Resistance Profile of Enterococci from Cheeses in Turkey.

    Kürekci, Cemil; Önen, Sevda Pehlivanlar; Yipel, Mustafa; Aslantaş, Özkan; Gündoğdu, Aycan

    2016-01-01

    The aim of this study was to determine the prevalence of enterococci in cheese samples and to characterize their antimicrobial resistance profiles as well as the associated resistance genes. A total of 139 enterococci were isolated from 99 cheese samples, the isolates were identified as E. faecalis (61.2%), E. faecium (15.1%), E. gallinarum (12.9%), E. durans (5.0%), E. casseliflavis (2.9%) and E. avium (2.9%). The most frequent antimicrobial resistance observed in enterococci isolates was to lincomycin (88.5%), followed by kanamycin (84.2%), gentamycin (low level, 51.1%), rifampin (46.8%) and tetracycline (33.8%). Among the isolates, the frequencies of high level gentamycin and streptomycin resistant enterococci strains were 2.2% and 5.8%, respectively. Apart from the mentioned antibiotics, low levels of resistance to ciprofloxacin, erythromycin and chloramphenicol were found. Moreover no resistance was observed against penicillin and ampicillin. The antimicrobial resistance genes including tetM, tetL, ermB, cat, aph(3')-IIIa, ant(6)-Ia and aac(6')-Ieaph(2")-Ia were found in enterococci from Turkish cheese samples. In the current study, we provided data for antibiotic resistance and the occurrence of resistance genes among enterococci. Regulatory and quality control programs for milk and other dairy products from farms to retail outlets has to be established and strengthened to monitor trends in antimicrobial resistance among emerging food borne pathogens in Turkey. PMID:27433106

  16. Do antibiotic residues in soils play a role in amplification and transmission of antibiotic resistant bacteria in cattle populations?

    DouglasRubenCall

    2013-07-01

    Full Text Available When we consider factors that contribute to the emergence, amplification, and persistence of antibiotic resistant bacteria, the conventional assumption is that antibiotic use is the primary driver in these processes and that selection occurs primarily in the patient or animal. Evidence suggests that this may not always be the case. Experimental trials show that parenteral administration of a third-generation cephalosporin (ceftiofur in cattle has limited or short-term effects on the prevalence of ceftiofur-resistant bacteria in the gastrointestinal tract. While this response may be sufficient to explain a pattern of widespread resistance to cephalosporins, approximately two-thirds of ceftiofur metabolites are excreted in the urine raising the possibility that environmental selection plays an important additive role in the amplification and maintenance of antibiotic resistant E. coli on farms. Consequently, we present a rationale for an environmental selection hypothesis whereby excreted antibiotic residues such as ceftiofur are a significant contributor to the proliferation of antibiotic resistant bacteria in food animal systems. We also present a mathematical model of our hypothesized system as a guide for designing experiments to test this hypothesis. If supported for antibiotics such as ceftiofur, then there may be new approaches to combat the proliferation of antibiotic resistance beyond the prudent use mantra.

  17. A Survey and Analysis of the American Public's Perceptions and Knowledge About Antibiotic Resistance.

    Carter, Rebecca R; Sun, Jiayang; Jump, Robin L P

    2016-09-01

    Background.  Little is known about the American public's perceptions or knowledge about antibiotic-resistant bacteria or antibiotic misuse. We hypothesized that although many people recognize antibiotic resistance as a problem, they may not understand the relationship between antibiotic consumption and selection of resistant bacteria. Methods.  We developed and tested a survey asking respondents about their perceptions and knowledge regarding appropriate antibiotic use. Respondents were recruited with the Amazon Mechanical Turk crowdsourcing platform. The survey, carefully designed to assess a crowd-sourced population, asked respondents to explain "antibiotic resistance" in their own words. Subsequent questions were multiple choice. Results.  Of 215 respondents, the vast majority agreed that inappropriate antibiotic use contributes to antibiotic resistance (92%), whereas a notable proportion (70%) responded neutrally or disagreed with the statement that antibiotic resistance is a problem. Over 40% of respondents indicated that antibiotics were the best choice to treat a fever or a runny nose and sore throat. Major themes from the free-text responses included that antibiotic resistance develops by bacteria, or by the infection, or the body (ie, an immune response). Minor themes included antibiotic overuse and antibiotic resistance caused by bacterial adaptation or an immune response. Conclusions.  Our findings indicate that the public is aware that antibiotic misuse contributes to antibiotic resistance, but many do not consider it to be an important problem. The free-text responses suggest specific educational targets, including the difference between an immune response and bacterial adaptation, to increase awareness and understanding of antibiotic resistance. PMID:27382598

  18. Microbiological End-Point Determination of Antibiotics

    Rumney, C. J.; Coutts, J. T.; Smith, J. S.; Rowland, I R

    2011-01-01

    There is currently some concern regarding the possibility that consumption, by humans, of small quantities of veterinary antibiotics, present as residues in meat, might adversely alter the indigenous gut microflora. This study aimed to assess the potential effect on the human gut microflora of exposure to low levels of tilmicosin and spiramycin. Four groups of 4 human-flora-associated rats were dosed for 5 days with either water, tilmicosin (400 or 120 µg/kg/day) or spiramycin (500...

  19. Antibiotic resistance and plasmids carriage among Escherichia coli isolates from chicken meat in Malaysia

    One hundred and thirty-one Escherichia coli isolates from raw chicken meat were tested for antibiotic susceptibility to twelve antibiotics, namely ampicillin 10μg, cefoparazone 30μg, cephradine 30μg, ciprofloxacin 5μg, chloramphenicol 30μg, enrofloxacin 5μg, erythromycin 15μg, kanamycin 30μg, nalidixic acid 30μg, tetracycline 30μg, trimethoprim 5μg, and vancomycin 30μg. The plasmid isolation was carried out according to the method described by Maniatis et al, with modifications as in the protocol provided by Taq Dye Deoxy Terminator Cycle Sequencing Kit (ABI P/ N 401150). The newly modified method is a mini alkaline-lysis / PGE precipitation procedure and easy to perform on large numbers of samples. The graphical method of relating the logarithm of the molecular weight of a DNA molecule (log C) to its electrophoretic mobility (m) in gels was used to determine the molecular weight of plasmid. Plasmids of known molecular weight from E. coli V517 were used as standards for calibrating the size of plasmid DNA molecules. In this study DNA fragments are referred to as plasmids. In all Escherichia coli isolates resistance to ampicillin (96.2%), cefoperazone (83.3%), cephradine (93.9%), ciprofloxacin (78.0%), chloramphenical (75.6%), enrofloxacin (72.0%), erythromycin (84.0%), kanamycin (50.8%), nalidixic acid (94.7%), tetracycline (90.2%), trimethoprim (94.7%) and vancomycin (100%) was observed (Table I). Plasmid occurrence rates of 81.7% were observed among E. coli isolates from the chicken meat. The number of plasmids ranged from 0 to 8 and the sizes of plasmids ranged from 1.2 MDa to 118.6 MDa. Plasmids were detected in 93.8% of E. coli isolates that were resistant to all 12 antibiotics and in 90.5% of E. coli isolates resistant to 11 antibodies (Table II). Three (2.8%) E. coli isolates harboured 8 plasmids and showed resistant to 12 antibiotics (Table III). The antibiotic resistance among the E. coli isolates in this study was compared and it was found a

  20. First case of Helicobacter pylori infection resistant to seven antibiotics in Iran

    Amin Talebi Bezmin Abadi

    2014-10-01

    Full Text Available Treatment of Helicobacter pylori infection with common antibiotics is typically recommended for several digestive conditions, including peptic ulcers. However, reports of resistant H. pylori isolates are increasing, and unfortunately, these do not respond to currently available therapeutic regimens. We report the case of a 31-year-old woman with two peptic ulcers in the duodenal antrum. An H. pylori strain was isolated, and tested for antibiotic resistance using agar dilution and disk diffusion. The isolated strain was found to be resistant to all seven antibiotics that were tested. Therefore, constant monitoring for antibiotic resistance should be performed prior to initiating antibiotic therapy.

  1. A new strategy to fight antimicrobial resistance: the revival of old antibiotics

    Nadim eCassir

    2014-10-01

    Full Text Available The increasing prevalence of hospital- and community-acquired infections caused by multidrug-resistant bacterial pathogens is limiting the options for effective antibiotic therapy. Moreover, this alarming spread of antimicrobial resistance has not been paralleled by the development of novel antimicrobials. Resistance to the scarce new antibiotics is also emerging. In this context, the rational use of older antibiotics could represent an alternative for the treatment of multidrug-resistant bacterial pathogens. This strategy would help to optimize the armamentarium of antibiotics so as to preserve the effectiveness of new antibiotics and avoid the prescription of drugs known to favor the spread of resistance (i.e., quinolones. Furthermore, from a global economic perspective, this strategy could be useful in public health, given that several of these cheapest forgotten antibiotics are not available in many countries. We will review here the successful treatment of multidrug-resistant bacterial infections with old antibiotics and discuss their place in current practice.

  2. Dynamics of Mutator and Antibiotic-Resistant Populations in a Pharmacokinetic/Pharmacodynamic Model of Pseudomonas aeruginosa Biofilm Treatment

    Macià, María D.; Pérez, José L.; Molin, Søren;

    2011-01-01

    Biofilm growth, antibiotic resistance, and mutator phenotypes are key components of chronic respiratory infections by Pseudomonas aeruginosa in cystic fibrosis patients. We examined the dynamics of mutator and antibiotic-resistant populations in P. aeruginosa flow-cell biofilms, using fluorescently...... monitored by confocal laser scanning microscopy (CLSM), and the numbers of viable cells and resistant mutants (4- and 16-fold MICs) were determined. Despite optimized pharmacokinetic/pharmacodynamic (PK/PD) parameters, CIP treatment did not suppress resistance development in P. aeruginosa biofilms. One.......01 proportion, took over the whole biofilm after only 2 days of CIP treatment outnumbering PAO1 by 3 log at t4. Our results show that mutational mechanisms play a major role in biofilm antibiotic resistance and that theoretically optimized PK/PD parameters fail to suppress resistance development, suggesting...

  3. Antibiotic resistance and prevalence of Enterococcus spp. and Escherichia coli isolated from bryndza cheese

    Marek Vrabec

    2015-10-01

    Full Text Available The study aimed at determining the prevalence antibiotic resistance of species – identified enterococci and Escherichia (E. coli isolated from typical fresh Slovak cheese, bryndza. Antibiotic resistance of enterococci was determined by disk diffusion method. Of isolated enterococci, 240 were obtained from bryndza cheese. The first two decimal dilutions from 24 bryndza cheese samples purchased at supermarkets in Košice (0.1 mL were spread on the surface of Slanetz and Bartley agar and incubated for 48±2 h at 37±1ºC. Species identification of enterococci and E. coli was detected by means of matrix-assisted laser desorption/ ionization time-of-flight mass spectrometry (MALDI-TOF MS based on bacterial protein profiling. The following species of enterococci were identified by MALDI-TOF MS: Enterococcus (Ent. faecalis (22 strains, Ent. faecium (18 strains, Ent. sacharolyticus (6 strains, Ent. gilvus (4 strains, Ent. durans (9 strains, and Ent. casseliflavus (6 strains. All of the 45 E. coli strains and 74 strains of enterococci identified by MALDI-TOF MS were determined for occurrence of blaTEM, blaSHV and blaCTX-M genes. The results of our study suggest that the highest resistance of enterococci was on tetracycline (29.73% and any resistance was recorded on vancomycin (0%. The highest multidrug-resistance was recorded on two antibiotics (32.43%. Neither one isolate of enterococci was resistant to all 6 antibiotics used in the experiment. In total, 19 (42.22% E. coli were found to be producers of extended-spectrum β-lactamase.

  4. Antibiotics and heavy metals resistance patterns of Enterococcus faecalis and faecium bacteria isolated from the human and the livestock sources

    Yaser Sharifi

    2015-12-01

    Full Text Available Background: Enterococci have emerged as a major cause of nosocomial infections and within this group, Enterococcus faecalis and Enterococcus faecium cause the majority of human and livestock enterococcal infections. In this article, we tried to determine antibiotics and metals resistance patterns of E. faecalis and E. faecium strains. Methods: One hundred sixty different strains of E. faecalis and E. faecium were collected from livestock sewage and the human fecal waste during 15 months. Then bacterial antibiotics sensitivity tests were carried out using the Agar disc diffusion method. Results: Generally, 100% of E. faecalis strains separated from human and livestock sources (i.e. sheep showed penicillin (P/ kanamycin (K/ nitrofurantoin (N/ loracarbef (L/ Ciprofloxacin (Cc/ ampicillin (AN/ nalidixic acid (NA/ sulfamethoxazole (S antibiotics resistance patterns. In addition, 55% of isolated E. faecium showed P/S/AN/NA antibiotics resistance patterns. Each strain showed a resistance to at least two aminoglycoside antibiotics. However, E. faecalis strains from human and the livestock sources showed 94% and 100% of resistance to nitrofurantoin, respectively. The effects of different metal concentrations was evaluated in both strains. The agar dilution method was applied in this stage. Hg at 0.05 mmol/L of minimum inhibitory concentration (MIC showed toxicity to both the human and livestock Enterococcus strains. Cadmium at 1 mmol/L and 0.5 mmol/L concentrations had the most toxicity to E. faecalis and E. faecium strains, respectively. Obviously, toxicity to bacteria is less than other metals. As a result, Zn/Ni/Cu/Co resistance pattern is suggested for both strains. Finally, antibiotics and heavy metals resistance patterns were monitored simultaneously. Conclusion: Almost all E. faecalis strains isolated from humans and livestock showed antibiotics and heavy metals resistance patterns of P/K/L/Cc/S/AN/NA/Zn/Cu/Co simultaneously. Moreover, 55% of E

  5. Apigenin as an anti-quinolone-resistance antibiotic.

    Morimoto, Yuh; Baba, Tadashi; Sasaki, Takashi; Hiramatsu, Keiichi

    2015-12-01

    We previously reported the first 'reverse antibiotic' (RA), nybomycin (NYB), which showed a unique antimicrobial activity against Staphylococcus aureus strains. NYB specifically suppressed the growth of quinolone-resistant S. aureus strains but was not effective against quinolone-susceptible strains. Although NYB was first reported in 1955, little was known about its unique antimicrobial activity because it was before the synthesis of the first quinolone ('old quinolone'), nalidixic acid, in 1962. Following our re-discovery of NYB, we looked for other RAs among natural substances that act on quinolone-resistant bacteria. Commercially available flavones were screened against S. aureus, including quinolone-resistant strains, and their minimum inhibitory concentrations (MICs) were compared using the microbroth dilution method. Some of the flavones screened showed stronger antimicrobial activity against quinolone-resistant strains than against quinolone-susceptible ones. Amongst them, apigenin (API) was the most potent in its RA activity. DNA cleavage assay showed that API inhibited DNA gyrase harbouring the quinolone resistance mutation gyrA(Ser84Leu) but did not inhibit 'wild-type' DNA gyrase that is sensitive to levofloxacin. An API-susceptible S. aureus strain Mu50 was also selected using agar plates containing 20mg/L API. Whole-genome sequencing of selected mutant strains was performed and frequent back-mutations (reverse mutations) were found among API-resistant strains derived from the API-susceptible S. aureus strains. Here we report that API represents another molecular class of natural antibiotic having RA activity against quinolone-resistant bacteria. PMID:26526895

  6. Radioactivity measurements for determining bacterial increase and sensibility to antibiotics

    The authors elaborated a sensitive and objective measuring method for determining the bacteria increase in biological material and the sensibility to antibiotics. When 14C glucose is added to the medium as the single source of sugar, the respiratory carbon dioxide formed by the bacteria reflects the rate of increase. The released 14C dioxide can be measured continuously without loss to the environment and the degree of bacterial infection and the antibiotic activity, respectively, can be determined. (author)

  7. Antibiotic resistance in bacteria isolated from vegetables with regards to the marketing stage (farm vs. supermarket).

    Schwaiger, Karin; Helmke, Katharina; Hölzel, Christina Susanne; Bauer, Johann

    2011-08-15

    The aim of this study was to elucidate whether and to what extent fresh produce from Germany plays a role as a carrier and reservoir of antibiotic resistant bacteria. For this purpose, 1001 vegetables (fruit, root, bulbous vegetables, salads and cereals) were collected from 13 farms and 11 supermarkets in Germany and examined bacteriologically. Phenotypic resistance of Enterobacter cloacae (n=172); Enterobacter gergoviae (n=92); Pantoea agglomerans (n=96); Pseudomonas aeruginosa (n=295); Pseudomonas putida (n=106) and Enterococcus faecalis (n=100) against up to 30 antibiotics was determined by using the microdilution method. Resistance to ß-lactams was most frequently expressed by P. agglomerans and E. gergoviae against cefaclor (41% and 29%). Relatively high resistance rates were also observed for doxycycline (23%), erythromycin (21%) and rifampicin (65%) in E. faecalis, for spectinomycin (28%) and mezlocillin (12%) in E. cloacae, as well as for streptomycin (19%) in P. putida. In P. aeruginosa, relatively low resistance rates were observed for the aminoglycosides amikacin, apramicin, gentamicin, neomycin, netilmicin and tobramycin (<4%); 11% was resistant to streptomycin. No glycopeptide-resistant enterococci were observed. Resistance rates of bacteria isolated from farm samples were higher than those of the retail markets whenever significant differences were observed. This suggests that expressing resistance is at the expense of bacterial viability, since vegetables purchased directly at the farm are probably fresher than at the supermarket, and they have not been exposed to stress factors. However, this should not keep the customer from buying directly at the farm, since the overall resistance rates were not higher than observed in bacteria from human or animal origin. Instead, peeling or washing vegetables before eating them raw is highly recommended, since it reduces not only the risk of contact with pathogens, but also that of ingesting and spreading

  8. Bacteriophages as potential treatment option for antibiotic resistant bacteria.

    Bragg, Robert; van der Westhuizen, Wouter; Lee, Ji-Yun; Coetsee, Elke; Boucher, Charlotte

    2014-01-01

    The world is facing an ever-increasing problem with antibiotic resistant bacteria and we are rapidly heading for a post-antibiotic era. There is an urgent need to investigate alterative treatment options while there are still a few antibiotics left. Bacteriophages are viruses that specifically target bacteria. Before the development of antibiotics, some efforts were made to use bacteriophages as a treatment option, but most of this research stopped soon after the discovery of antibiotics. There are two different replication options which bacteriophages employ. These are the lytic and lysogenic life cycles. Both these life cycles have potential as treatment options. There are various advantages and disadvantages to the use of bacteriophages as treatment options. The main advantage is the specificity of bacteriophages and treatments can be designed to specifically target pathogenic bacteria while not negatively affecting the normal microbiota. There are various advantages to this. However, the high level of specificity also creates potential problems, the main being the requirement of highly specific diagnostic procedures. Another potential problem with phage therapy includes the development of immunity and limitations with the registration of phage therapy options. The latter is driving research toward the expression of phage genes which break the bacterial cell wall, which could then be used as a treatment option. Various aspects of phage therapy have been investigated in studies undertaken by our research group. We have investigated specificity of phages to various avian pathogenic E. coli isolates. Furthermore, the exciting NanoSAM technology has been employed to investigate bacteriophage replication and aspects of this will be discussed. PMID:24619620

  9. Antibiotic Exposure in a Low-Income Country: Screening Urine Samples for Presence of Antibiotics and Antibiotic Resistance in Coagulase Negative Staphylococcal Contaminants

    Lerbeck, Anne Mette; Tersbøl, Britt Pinkowski; Styrishave, Bjarne

    2014-01-01

    Development of antimicrobial resistance has been assigned to excess and misuse of antimicrobial agents. Staphylococci are part of the normal flora but are also potential pathogens that have become essentially resistant to many known antibiotics. Resistances in coagulase negative staphylococci (Co......NS) are suggested to evolve due to positive selective pressure following antibiotic treatment. This study investigated the presence of the nine most commonly used antimicrobial agents in human urine from outpatients in two hospitals in Ghana in relation to CoNS resistance. Urine and CoNS were sampled (n...... was the most common isolate (75%), followed by S. epidermidis (13%) and S. hominis (6%). S. haemolyticus was also the species displaying the highest resistance prevalence (82%). 69% of the isolated CoNS were multiple drug resistant (§4 antibiotics) and 45% of the CoNS were methicillin resistant...

  10. Status Report from the Scientific Panel on Antibiotic Use in Dermatology of the American Acne and Rosacea Society: Part 1: Antibiotic Prescribing Patterns, Sources of Antibiotic Exposure, Antibiotic Consumption and Emergence of Antibiotic Resistance, Impact of Alterations in Antibiotic Prescribing, and Clinical Sequelae of Antibiotic Use.

    Del Rosso, James Q; Webster, Guy F; Rosen, Ted; Thiboutot, Diane; Leyden, James J; Gallo, Richard; Walker, Clay; Zhanel, George; Eichenfield, Lawrence

    2016-04-01

    Oral and topical antibiotics are commonly prescribed in dermatologie practice, often for noninfectious disorders, such as acne vulgaris and rosacea. Concerns related to antibiotic exposure from both medical and nonmedical sources require that clinicians consider in each case why and how antibiotics are being used and to make appropriate adjustments to limit antibiotic exposure whenever possible. This first article of a three-part series discusses prescribing patterns in dermatology, provides an overview of sources of antibiotic exposure, reviews the relative correlations between the magnitude of antibiotic consumption and emergence of antibiotic resistance patterns, evaluates the impact of alterations in antibiotic prescribing, and discusses the potential relevance and clinical sequelae of antibiotic use, with emphasis on how antibiotics are used in dermatology. PMID:27462384

  11. 'Reduce Resistance' An Antibiotic stewardship program to change prescribing practices in a Public Dental Service

    McCafferty, Rosarii

    2015-01-01

    This program implemented an antibiotic stewardship program (ASP) to change prescribing practices in one Public Dental Service with the aim of reducing the number of unnecessary antibiotic prescriptions and ensuring that those antibiotics which are prescribed adhere to best practice guidelines. There is vast scientific evidence that antibiotic resistance is promoted through excessive use of antibiotics and that Dental Surgeons are contributing significantly to this issue due to their inappropr...

  12. Chemotherapy of radiation disease in experimental animals with intestine microflora resistant to some antibiotics

    Tumanyan, M.A.; Izvekova, A.V.

    1974-01-01

    Infectious complications of radiation sickness in rats and rabbits with artificially developed resistance of the intestine microflora to penicillin, streptomycin and levomycetin were treated with antibiotics administered orally. Kanamycin, erythromycin, tetracycline, ampicillin and oxacillin were administered twice a day for 20 to 25 days after the irradiation. The efficacy of the treatment determined by the animal survival for a month after the irradiation showed that the intestine microflora resistance to some antibiotics did not lower the effect of the others. Erythromycin and combinations of kanamycin with tetracycline or erythromycin and ampicillin with erythromycin providing 50 percent survival of the animals irradiated in doses of LD/sub 100/30/ proved to be most effective, when the intestine microflora was resistant to penicillin, streptomycin and levomycetin.

  13. Antibiotics

    Antibiotics are powerful medicines that fight bacterial infections. Used properly, antibiotics can save lives. They either kill bacteria or ... natural defenses can usually take it from there. Antibiotics do not fight infections caused by viruses, such ...

  14. Improving predictions of the risk of resistance development against new and old antibiotics.

    Andersson, D I

    2015-10-01

    The methods used today by academic researchers and the pharmaceutical industry to assess the risk of emergence of resistance, for example during development of new antibiotics or when assessing an old antibiotic, are sub-optimal. Even though easy to perform, the presently used serial passage procedures, minimal prevention concentration measurements and determination of mutation rates in vitro are generally providing inadequate knowledge for risk assessment and making decisions to continue/discontinue drug development. These methods need to be complemented and replaced with more relevant methods such as determination of whether resistance genes already pre-exist in various metagenomes, and the likelihood that these genes can transfer into the relevant pathogens and be stably maintained. Furthermore, to determine the risk of emergence of mutationally conferred resistance the fitness effect of the resistance mechanism is key, as this parameter will determine the ability of the resistant mutants to be maintained and enriched in the host after they have emerged. This information combined with knowledge of bacterial population sizes and growth and killing dynamics at relevant infection sites should allow for better forecasting of the risk of resistance emerging in clinical settings. PMID:26003279

  15. Antibiotic Resistance of Isolated Bacteria from Urban and Hospital Wastewaters in Hamadan City

    Karimi, M; A.M Ebrahimzadeh Namvar; R Shokoohi; M. Hadi; M Solaimany Aminabad

    2011-01-01

    "nBackground and Objectives: widely use of antibiotics as therapy and uncontrolled discharge of them to receiving waters increased the percentages of antibiotic resistant bacteria in various environments which may cause problems in therapy. The aim of this study was to investigate the antibiotic resistance of E. coli, K. pneumoniae and P. aeruginosa bacteria isolated from urban and hospital wastewaters. Nine antibiotics namely Chloramphenicol, Ciprofloxacin, Trimethoprim Sulfamethoxazol, Gent...

  16. The gut as reservoir of antibiotic resistance: microbial diversity of tetracycline resistance in mother and infant.

    Lisbeth E de Vries

    Full Text Available The microbiota in the human gastrointestinal tract (GIT is highly exposed to antibiotics, and may be an important reservoir of resistant strains and transferable resistance genes. Maternal GIT strains can be transmitted to the offspring, and resistances could be acquired from birth. This is a case study using a metagenomic approach to determine the diversity of microorganisms conferring tetracycline resistance (Tc(r in the guts of a healthy mother-infant pair one month after childbirth, and to investigate the potential for horizontal transfer and maternal transmission of Tc(r genes. Fecal fosmid libraries were functionally screened for Tc(r, and further PCR-screened for specific Tc(r genes. Tc(r fosmid inserts were sequenced at both ends to establish bacterial diversity. Mother and infant libraries contained Tc(r, although encoded by different genes and organisms. Tc(r organisms in the mother consisted mainly of Firmicutes and Bacteroidetes, and the main gene detected was tet(O, although tet(W and tet(X were also found. Identical Tc(r gene sequences were present in different bacterial families and even phyla, which may indicate horizontal transfer within the maternal GIT. In the infant library, Tc(r was present exclusively in streptococci carrying tet(M, tet(L and erm(T within a novel composite transposon, Tn6079. This transposon belongs to a family of broad host range conjugative elements, implying a potential for the joint spread of tetracycline and erythromycin resistance within the infant's gut. In addition, although not found in the infant metagenomic library, tet(O and tet(W could be detected in the uncloned DNA purified from the infant fecal sample. This is the first study to reveal the diversity of Tc(r bacteria in the human gut, to detect a likely transmission of antibiotic resistance from mother to infant GITs and to indicate the possible occurrence of gene transfers among distantly related bacteria coinhabiting the GIT of the same

  17. Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment

    Pruden, Amy; Larsson, D.G. Joakim; Amézquita, Alejandro;

    2013-01-01

    determinants via environmental pathways, with the ultimate goal of extending the useful life span of antibiotics. We also examined incentives and disincentives for action. Methods: We focused on management options with respect to limiting agricultural sources; treatment of domestic, hospital, and industrial...... wastewater; and aquaculture. Discussion: We identified several options, such as nutrient management, runoff control, and infrastructure upgrades. Where appropriate, a cross-section of examples from various regions of the world is provided. The importance of monitoring and validating effectiveness of...

  18. Hygromycin B and apramycin antibiotic resistance cassettes for use in Campylobacter jejuni.

    Andrew Cameron

    Full Text Available Campylobacter jejuni genetic manipulation is restricted by the limited number of antibiotic resistance cassettes available for use in this diarrheal pathogen. In this study, two antibiotic resistance cassettes were developed, encoding for hygromycin B and apramycin resistance, for use in mutagenesis or for selection of gene expression and complementation constructs in C. jejuni. First, the marker genes were successfully modified to allow for insertional mutagenesis or deletion of a gene-of-interest, and were bracketed with restriction sites for the facilitation of site-specific cloning. These hygromycin B and apramycin markers are encoded by plasmids pAC1H and pAC1A, respectively. We also modified an insertional gene-delivery vector to create pRRH and pRRA, containing the hygromycin B and apramycin resistance genes, and 3 unique restriction sites for the directional introduction of genes into the conserved multi-copy rRNA gene clusters of the C. jejuni chromosome. We determined the effective antibiotic concentrations required for selection, and established that no harmful effects or fitness costs were associated with carrying hygromycin B or apramycin resistance under standard C. jejuni laboratory conditions. Using these markers, the arylsulfatase reporter gene astA was deleted, and the ability to genetically complement the astA deletion using pRRH and pRRA for astA gene insertion was demonstrated. Furthermore, the relative levels of expression from the endogenous astA promoter were compared to that of polycistronic mRNA expression from the constitutive promoter upstream of the resistance gene. The development of additional antibiotic resistance cassettes for use in Campylobacter will enable multiple gene deletion and expression combinations as well as more in-depth study of multi-gene systems important for the survival and pathogenesis of this important bacterium.

  19. The etiology of neonatal sepsis and patterns of antibiotic resistance

    Objective: To study the patterns of causative bacteria and antibiotic resistance in neonatal sepsis. Results: Among 228 cases included in the study, the male to female ratio was 2.1 to 1. The gestational age was less than 36 weeks in 68 (30%) cases and low birth weight babies were 143 (62.6%). History of birth asphyxia was present in 103 (45%) cases. There were 142 (62.3%) cases of early onset (7 days). Out of 233 positive blood cultures Escherichia coli was found to be commonest (47.8%, n =111, p<0.05) both in early onset (47.8%, n=68, p <0.05) and late onset sepsis (47.3%,n=43, p<0.05). Staphylococcus aureus was the most common among gram positive organism. Resistance to cefotaxime, ceftazidime and amikacin was 34% to 80% and to ciprofloxacin 13% to 72%. A total of 64 cases (28%) died. Mortality was four times higher in early onset sespis. Conclusion: Gram negative bacteria are the commenst cause of neonatal sepsis. The resistance to the commonly used antibiotics is alarmingly high. Mortality is four times higher in early one set sepsis. (author)

  20. Can chlorination co-select antibiotic-resistance genes?

    Lin, Wenfang; Zhang, Menglu; Zhang, Shenghua; Yu, Xin

    2016-08-01

    Selective pressures, such as chemical or heavy metal pollution, may co-select for bacterial antibiotic resistance in the environment. However, whether chlorination in water treatment can co-select antibiotic-resistant bacteria is controversial. In this study, high capacity quantitative polymerase chain reaction (qPCR) analysis was applied to target almost all known antibiotic-resistance genes (ARGs) (282 types) and 13 mobile genetic elements (MGEs) in bacteria detected in secondary effluents from a municipal wastewater treatment plant after chlorination. The results revealed that 125 unique ARGs were detected in non-chlorinated samples, and the number decreased (79-91 types) as the chlorine concentration was increased. Moreover, 7.49 × 10(4)-3.92 × 10(7) copies/100 ml water reduction of ARGs occurred with 4 mg Cl2/l. Considering the relative abundance of ARGs (i.e., ARG copies normalized to 16S rRNA gene copies), 119 ARGs decreased in response to chlorination, whereas only six ARGs, such as dfrA1, tetPB-03, tetPA, ampC-04, tetA-02, and erm(36), were potentially enriched by 10.90-, 10.06-, 8.63-, 6.86-, 3.77-, and 1.09-fold, respectively. Furthermore, the relative abundance of 12 detected MGEs was lower after chlorination. Therefore, chlorination was effective in reducing ARGs and MGEs rather than co-selecting them. PMID:27192478

  1. Does human activity impact the natural antibiotic resistance background? Abundance of antibiotic resistance genes in 21 Swiss lakes.

    Czekalski, Nadine; Sigdel, Radhika; Birtel, Julia; Matthews, Blake; Bürgmann, Helmut

    2015-08-01

    Antibiotic resistance genes (ARGs) are emerging environmental contaminants, known to be continuously discharged into the aquatic environment via human and animal waste. Freshwater aquatic environments represent potential reservoirs for ARG and potentially allow sewage-derived ARG to persist and spread in the environment. This may create increased opportunities for an eventual contact with, and gene transfer to, human and animal pathogens via the food chain or drinking water. However, assessment of this risk requires a better understanding of the level and variability of the natural resistance background and the extent of the human impact. We have analyzed water samples from 21 Swiss lakes, taken at sampling points that were not under the direct influence of local contamination sources and analyzed the relative abundance of ARG using quantitative real-time PCR. Copy numbers of genes mediating resistance to three different broad-spectrum antibiotic classes (sulfonamides: sul1, sul2, tetracyclines: tet(B), tet(M), tet(W) and fluoroquinolones: qnrA) were normalized to copy numbers of bacterial 16S rRNA genes. We used multiple linear regression to assess if ARG abundance is related to human activities in the catchment, microbial community composition and the eutrophication status of the lakes. Sul genes were detected in all sampled lakes, whereas only four lakes contained quantifiable numbers of tet genes, and qnrA remained below detection in all lakes. Our data indicate higher abundance of sul1 in lakes with increasing number and capacity of wastewater treatment plants (WWTPs) in the catchment. sul2 abundance was rather related to long water residence times and eutrophication status. Our study demonstrates the potential of freshwater lakes to preserve antibiotic resistance genes, and provides a reference for ARG abundance from lake systems with low human impact as a baseline for assessing ARG contamination in lake water. PMID:25913323

  2. Induction of bacterial antibiotic resistance by mutagenic halogenated nitrogenous disinfection byproducts

    Halogenated nitrogenous disinfection byproducts (N-DBPs) raise concerns regarding their mutagenicity and carcinogenicity threatening public health. However, environmental consequence of their mutagenicity has received less attention. In this study, the effect of halogenated N-DBPs on bacterial antibiotic resistance (BAR) was investigated. After exposure to bromoacetamide (BAcAm), trichloroacetonitrile (TCAN) or tribromonitromethane (TBNM), the resistance of Pseudomonas aeruginosa PAO1 to both individual and multiple antibiotics (ciprofloxacin, gentamicin, polymyxin B, rifampin, tetracycline, ciprofloxacin + gentamicin and ciprofloxacin + tetracycline) was increased, which was predominantly ascribed to the overexpression of efflux pumps. The mechanism of this effect was demonstrated to be mutagenesis through sequencing and analyzing antibiotic resistance genes. The same induction phenomena also appeared in Escherichia coli, suggesting this effect may be universal to waterborne pathogens. Therefore, more attention should be given to halogenated N-DBPs, as they could increase not only genotoxicological risks but also epidemiological risks of drinking water. - Highlights: • The halogenated N-DBPs could induce bacterial antibiotic resistance. • Both individual and multiple resistances could be induced. • Efflux mechanism played an important role in the induced antibiotic resistance. • The halogenated N-DBPs induced bacterial antibiotic resistance via mutagenesis. • Effects of N-DBPs on antibiotic resistance may be universal to waterborne pathogens. - Halogenated N-DBPs could increase antibiotic resistance, even multidrug resistance via mutagenesis, contributing to the enrichment of antibiotic resistant bacteria in drinking water

  3. Drug-resistance mechanisms and prevalence of Enterobacter cloacae resistant to multi-antibiotics

    张杰; 顾怡明; 俞云松; 周志慧; 杜小玲

    2004-01-01

    @@The main drug-resistance mechanism of gram-negative bacteria is producing β-lactamases. Two kinds of enzymes cause drug resistance by hydrolyzing oxyimino-cephalosporins and aztreonam: one is chromosomally encoded AmpC β-lactamases, the other is plasmid-mediated extended-spectrum β-lactamases (ESBLs). Enterobacter cloacae can produce both of them, so that these strains are seriously resistance to many antibiotics. In order to study the main drug-resistant mechanism in Enterobacter cloacae, PCR and nucleotide sequencing were performed on 58 multidrug resistant strains.

  4. PCR-based identification of methicillin-resistant Staphylococcus aureus strains and their antibiotic resistance profiles

    Abazar Pournajaf; Abdollah Ardebili; Leyla Goudarzi; Mahmoud Khodabandeh; Tahmineh Narimani; Hassan Abbaszadeh

    2014-01-01

    Objective: To evaluated the PCR for mecA gene compared with the conventional oxacillin disk diffusion method for methicillin-resistant Staphylococcus aureus (S. aureus) identification. Methods: A total of 292 S. aureus strains were isolated from various clinical specimens obtained from hospitalized patients. Susceptibility test to several antimicrobial agents was performed by disk diffusion agar according to Clinical and Laboratory Standards Institute guidelines. The PCR amplification of the mecA gene was carried out in all the clinical isolates.Results:activity and vancomycin was the most effective. The rate of methicillin-resistant S. aureus prevalence determined by oxacillin disk diffusion method was 47.6%; whereas, 45.1% of S. aureus isolates were mecA- positive in the PCR assay. Among antibiotics used in our study, penicillin showed the least anti-staphylococcal Conclusions: This study is suggestive that the PCR for detection of mecA gene is a fast, accurate and valuable diagnostic tool, particularly in hospitals in areas where methicillin-resistant S. aureus is endemic.

  5. Magnetic isotope effect of magnesium (25)Mg on E. coli resistance to antibiotics.

    Letuta, U G; Vekker, A S; Kornilova, T A; Gryaznov, A A; Cheplakov, I A

    2016-07-01

    Effects of synergism and antagonism of antibacterial drugs and magnetic isotope of magnesium (25)Mg on antibiotic resistance of bacteria E. coli were discovered. Fourteen antibiotics from seven different groups were tested. The increase in antibiotic resistance in the presence of the ion (25)Mg(2+) was discovered in E. coli cells incubated with quinolones/fluoroquinolones, indicating the inhibiting effect of the magnetic moments of nuclei (25)Mg on DNA synthesis. The change in antibiotic resistance was also detected in bacteria affected by magnesium (25)Mg and certain antibiotics from aminoglycoside and lincosamide groups. PMID:27599512

  6. Antibiotic adjuvants: diverse strategies for controlling drug-resistant pathogens.

    Gill, Erin E; Franco, Octavio L; Hancock, Robert E W

    2015-01-01

    The growing number of bacterial pathogens that are resistant to numerous antibiotics is a cause for concern around the globe. There have been no new broad-spectrum antibiotics developed in the last 40 years, and the drugs we have currently are quickly becoming ineffective. In this article, we explore a range of therapeutic strategies that could be employed in conjunction with antibiotics and may help to prolong the life span of these life-saving drugs. Discussed topics include antiresistance drugs, which are administered to potentiate the effects of current antimicrobials in bacteria where they are no longer (or never were) effective; antivirulence drugs, which are directed against bacterial virulence factors; host-directed therapies, which modulate the host's immune system to facilitate infection clearance; and alternative treatments, which include such therapies as oral rehydration for diarrhea, phage therapy, and probiotics. All of these avenues show promise for the treatment of bacterial infections and should be further investigated to explore their full potential in the face of a postantibiotic era. PMID:25393203

  7. Functional Screening of Antibiotic Resistance Genes from a Representative Metagenomic Library of Food Fermenting Microbiota

    Chiara Devirgiliis; Paola Zinno; Mariarita Stirpe; Simona Barile; Giuditta Perozzi

    2014-01-01

    Lactic acid bacteria (LAB) represent the predominant microbiota in fermented foods. Foodborne LAB have received increasing attention as potential reservoir of antibiotic resistance (AR) determinants, which may be horizontally transferred to opportunistic pathogens. We have previously reported isolation of AR LAB from the raw ingredients of a fermented cheese, while AR genes could be detected in the final, marketed product only by PCR amplification, thus pointing at the need for more sensitive...

  8. Resistance to Antibiotics of Clinical Relevance in the Fecal Microbiota of Mexican Wildlife

    Jurgi Cristóbal-Azkarate; Dunn, Jacob C.; Jennifer M W Day; Amábile-Cuevas, Carlos F.

    2014-01-01

    There are a growing number of reports of antibiotic resistance (ATBR) in bacteria living in wildlife. This is a cause for concern as ATBR in wildlife represents a potential public health threat. However, little is known about the factors that might determine the presence, abundance and dispersion of ATBR bacteria in wildlife. Here, we used culture and molecular methods to assess ATBR in bacteria in fecal samples from howler monkeys (Alouatta palliata), spider monkeys (Ateles geoffroyi), tapir...

  9. ANTIBIOTIC RESISTANCE PATTERN IN PSEUDOMONAS AERUGINOSA SPECIES ISOLATED AT INDORE (M.P.

    Prafulla

    2014-01-01

    Full Text Available INTRODUCTION : Pseudomonas aeruginosa is an aerobic , motile , gram negative rod that belongs to the family , pseudomonadaceae 2 . Its general resistance is due to a combination of factors 3 .Regional variations in the antibiotic resistance exist for different organisms , including P. aeruginosa and this may be related to the difference in the antibiotic prescribing habits. So , we a imed in the present study , to determine the status of antimicrobial resistance to anti - pseudomonadal agents and the magnitude of the multidrug r esistance in these organisms. MATERIALS AND METHODS : This study was conducted during 1 st January 2013 to 30 th September 2013. During this period total of 5877 samples were tested , out of 5877 samples , 1693 samples showed growth on culture and out of 1693 sa mples , 152 Pseudomonas aeruginosa were isolated. Identification & sensitivity of all isolates were done by BD Phoenix TM Automated Microbiological System. The antibiotics which were include d in the panel were ciprofloxacin , levofloxacin , gentamicin , amikaci n , tobramycin , aztreonam , ceftazidime , cefepime , piperacillin , piperacillin/tazobactam , ticarcillin/tazobactam , imipenem , meropenem and colistin according to CLSIs guidelines. RESULT : In the present study , the highest number s of Pseudomonas infections was found in pus followed by urine and Endotracheal secretion. Pseudomonas aeruginosa isolated from various samples were resistant to aztreonam , ciprofloxacin followed by levofloxacin , ceftazidime , cefepime , amikacin , imipenem & colistin. CONCLUSION : To preven t the spread of the resistant bacteria , it is critically important to have strict antibiotic policies wherein surveillance programmes for multidrug resistant organisms and infection control procedures need to be implemented

  10. The frequency of resistance to antibiotics of most frequently isolated bacteria from blood cultures during the period 1997-2002

    Mirović Veljko

    2004-01-01

    Full Text Available The aim of this study was to determine the frequency of resistance to antibiotics of the most frequently isolated bacteria from blood cultures of hospitalized patients during the period 1997-2002. The resistance to antibiotics was determined by disk diffusion method according to National Committee for Clinical Laboratory Standards procedures. The majority of staphylococci isolates were resistant to methicillin, and the proportion of methicillin-resistant Staphylococcus aureus was stable (76.8-81.6%, during the follow-up period. None of the staphylococci isolates were resistant to vancomycin, but there was a very high incidence of high-level resistance of enterococci to aminoglycosides (47.2-72.2%. In 1998, only one strain among enterococci was resistant to vancomycin (Enterococcus faecium, VanA fenotype. Enterococcus spp isolates expressed variable frequency of resistance to ampicillin (15-40.1% during the follow-up period. Among Enterobacteriaceae there were no isolates resistant to imipenem, but dramatic increase of the resistance to ceftriaxone was found from 35.9% in 1997 to 95.9% in 2002 (p<0.001. Extended spectrum beta-lactamases production was found in all the species of enterobacteria isolates. Resistance to imipenem was observed in Acinetobacter spp isolates in 2002 for the first time. Pseudomonas spp isolates expressed high and very variable resistance to all antibiotics tested during the follow-up period.

  11. Occurrence of antibiotic resistance and characterization of resistant genes and integrons in Enterobacteriaceae isolated from integrated fish farms south China

    Su, Hao-Chang; Ying, Guang-Guo; Tao, Ran; Zhang, Rui-Quan; Fogarty, Lisa R.; Kolpin, Dana W.

    2011-01-01

    Antibiotics are still widely applied in animal husbandry to prevent diseases and used as feed additives to promote animal growth. This could result in antibiotic resistance to bacteria and antibiotic residues in animals. In this paper, Enterobacteriaceae isolated from four integrated fish farms in Zhongshan, South China were tested for antibiotic resistance, tetracycline resistance genes, sulfonamide resistance genes, and class 1 integrons. The Kirby-Bauer disk diffusion method and polymerase chain reaction (PCR) assays were carried out to test antibiotic susceptibility and resistance genes, respectively. Relatively high antibiotic resistance frequencies were found, especially for ampicillin (80%), tetracycline (52%), and trimethoprim (50%). Out of 203 Enterobacteriaceae isolates, 98.5% were resistant to one or more antibiotics tested. Multiple antibiotic resistance (MAR) was found highest in animal manures with a MAR index of 0.56. Tetracycline resistance genes (tet(A), tet(C)) and sulfonamide resistance genes (sul2) were detected in more than 50% of the isolates. The intI1 gene was found in 170 isolates (83.7%). Both classic and non-classic class 1 integrons were found. Four genes, aadA5, aadA22, dfr2, and dfrA17, were detected. To our knowledge, this is the first report for molecular characterization of antibiotic resistance genes in Enterobacteriaceae isolated from integrated fish farms in China and the first time that gene cassette array dfrA17-aadA5 has been detected in such fish farms. Results of this study indicated that fish farms may be a reservoir of highly diverse and abundant antibiotic resistant genes and gene cassettes. Integrons may play a key role in multiple antibiotic resistances posing potential health risks to the general public and aquaculture.

  12. Effective Phages as Green Antimicrobial Agents Against Antibiotic-Resistant Hospital Escherichia coli

    Rahmani, Rana; Zarrini, Gholamreza; Sheikhzadeh, Farzam; Aghamohammadzadeh, Naser

    2015-01-01

    Background: Bacteriophages are viruses that attack bacteria and lead to their lysis in an efficient and highly specific manner. These natural enemies of bacteria were used as therapeutic agents before the advent of antibiotics. Currently, with the rapid spread of multi-drug resistant bacteria, phage therapy can be an effective alternative treatment for antibiotic resistant bacteria. Objectives: This study evaluated the effectiveness of bacteriophages in removing antibiotic-resistant clinical ...

  13. Antibiotic resistances in Listeria monocytogenes and Salmonella enterica isolated from foods with animal origin

    Baltasar Balsalobre Hernández; Joaquín Hernández-Godoy

    2004-01-01

    Extensive use of antibiotics in both human and animal health and in cattle production has generated resistant microorganisms to common antibiotics. Resistances spread caused by human and animal therapeutic is well known, but we know poorly frecuency of resistant bacteria in foods with animal origin and destinated to human consumers. In this paper, sensitivity to nineteen antibiotics was investigated in Listeria monocytogenes and Salmonella enterica strains isolated from foods with animal orig...

  14. Mathematical modelling of bacterial resistance to multiple antibiotics and immune system response

    Daşbaşı, Bahatdin; Öztürk, İlhan

    2016-01-01

    Resistance of developed bacteria to antibiotic treatment is a very important issue, because introduction of any new antibiotic is after a little while followed by the formation of resistant bacterial isolates in the clinic. The significant increase in clinical resistance to antibiotics is a troubling situation especially in nosocomial infections, where already defenseless patients can be unsuccessful to respond to treatment, causing even greater health issue. Nosocomial infections can be iden...

  15. Lytic phages obscure the cost of antibiotic resistance in Escherichia coli

    Tazzyman, Samuel J; Hall, Alex R

    2014-01-01

    The long-term persistence of antibiotic-resistant bacteria depends on their fitness relative to other genotypes in the absence of drugs. Outside the laboratory, viruses that parasitize bacteria (phages) are ubiquitous, but costs of antibiotic resistance are typically studied in phage-free experimental conditions. We used a mathematical model and experiments with Escherichia coli to show that lytic phages strongly affect the incidence of antibiotic resistance in drug-free conditions. Under pha...

  16. [Investigation of Antibiotic Resistance Genes (ARGs) in Landfill].

    Li, Lei; Xu, Jing; Zhao, You-cai; Song, Li-yan

    2015-05-01

    Antibiotic resistant genes (ARGs), an emerging contaminant, have been detected worldwide in various environments such as sediments and river. However, little is known about ARGs distribution in landfill. In this study, we investigated five ARGs [sulfonamides resistant genes (sulI and sulII), chloramphenicols resistant gene (cat), β-lactams resistant gene (bla-SHV), and tetracyclines resistant gene (tetW)] in refuse samples collected from jiangeungou landfill (Xi'an, China) by real-time PCR. We then correlated the ARGs and physiochemical properties of refuse to examine the link between them. Results showed that all tested ARGs have been detected in all samples, suggesting that landfill served as ARGs reservoir. The highest copies numbers of sulII, sulI, tetW, bla-SHV, and cat were (3.70 ± 0.06) x 10(8) copies · g(-1) ( dry refuse), (9.33 · 0.06) x 10(6) copies · g(-1) (dry refuse), (2.27 0.08) x 10(5) copies · g(-1) (dry refuse), (3.68 ± 0.09) x 10(4) copies · g(-1) (dry refuse), and (1.39 ± 0.10) x 10(4) copies · g(-1) (dry refuse), respectively. Further, sulI, sulII, and cat positively correlated to moisture and sulI and cat negatively correlated to pH. PMID:26314129

  17. Retail ready-to-eat food as a potential vehicle for Staphylococcus spp. harboring antibiotic resistance genes.

    Chajęcka-Wierzchowska, Wioleta; Zadernowska, Anna; Nalepa, Beata; Sierpińska, Magda; Laniewska-Trokenheim, Lucja

    2014-06-01

    Ready-to-eat (RTE) food, which does not need thermal processing before consumption, could be a vehicle for the spread of antibiotic-resistant microorganisms. As part of general microbiological safety checks, staphylococci are routinely enumerated in these kinds of foods. However, the presence of antibiotic-resistant staphylococci in RTE food is not routinely investigated, and data are only available from a small number of studies. The present study evaluated the pheno- and genotypical antimicrobial resistance profile of Staphylococcus spp. isolated from 858 RTE foods (cheeses, cured meats, sausages, smoked fishes, salads). Of 113 strains isolated, S. aureus was the most prevalent species, followed by S. xylosus, S. saprophyticus, and S. epidermidis. More than half (54.9%) of the isolates were resistant to at least one class of tested antibiotic; of these, 35.4% of the strains were classified as multidrug resistant. Most of the isolates were resistant to cefoxitin (49.6%), followed by clindamycin (39.3%), tigecycline (27.4%), quinupristin-dalfopristin (22.2%), rifampin (20.5%), tetracycline (17.9%), and erythromycin (8.5%). All methicillin-resistant staphylococci harbored the mecA gene. Among the isolates resistant to at least one antibiotic, 38 harbored tetracycline resistance determinant tet (M), 24 harbored tet (L), and 9 harbored tet (K). Of the isolates positive for tet (M) genes, 34.2% were positive for the Tn916-Tn1545-like integrase family gene. Our results indicated that retail RTE food could be considered an important route for the transmission of antibiotic-resistant bacteria harboring multiple antibiotic resistance genes. PMID:24853524

  18. Discharge of swine wastes risks water quality and food safety: Antibiotics and antibiotic resistance genes from swine sources to the receiving environments.

    He, Liang-Ying; Ying, Guang-Guo; Liu, You-Sheng; Su, Hao-Chang; Chen, Jun; Liu, Shuang-Shuang; Zhao, Jian-Liang

    2016-01-01

    Swine feedlots are widely considered as a potential hotspot for promoting the dissemination of antibiotic resistance genes (ARGs) in the environment. ARGs could enter the environment via discharge of animal wastes, thus resulting in contamination of soil, water, and food. We investigated the dissemination and diversification of 22 ARGs conferring resistance to sulfonamides, tetracyclines, chloramphenicols, and macrolides as well as the occurrence of 18 corresponding antibiotics from three swine feedlots to the receiving water, soil environments and vegetables. Most ARGs and antibiotics survived the on-farm waste treatment processes in the three swine farms. Elevated diversity of ARGs was observed in the receiving environments including river water and vegetable field soils when compared with respective controls. The variation of ARGs along the vertical soil profiles of vegetable fields indicated enrichment and migration of ARGs. Detection of various ARGs and antibiotic residues in vegetables fertilized by swine wastes could be of great concern to the general public. This research demonstrated the contribution of swine wastes to the occurrence and development of antibiotic resistance determinants in the receiving environments and potential risks to food safety and human health. PMID:27107226

  19. Induction of a stable sigma factor SigR by translation-inhibiting antibiotics confers resistance to antibiotics

    Yoo, Ji-Sun; Oh, Gyeong-Seok; Ryoo, Sungweon; Roe, Jung-Hye

    2016-01-01

    Antibiotic-producing streptomycetes are rich sources of resistance mechanisms against endogenous and exogenous antibiotics. An ECF sigma factor σR (SigR) is known to govern the thiol-oxidative stress response in Streptomyces coelicolor. Amplification of this response is achieved by producing an unstable isoform of σR called σR′. In this work, we present evidence that antibiotics induce the SigR regulon via a redox-independent pathway, leading to antibiotic resistance. The translation-inhibiting antibiotics enhanced the synthesis of stable σR, eliciting a prolonged response. WblC/WhiB7, a WhiB-like DNA-binding protein, is responsible for inducing sigRp1 transcripts encoding the stable σR. The amount of WblC protein and its binding to the sigRp1 promoter in vivo increased upon antibiotic treatment. A similar phenomenon appears to exist in Mycobacterium tuberculosis as well. These findings reveal a novel antibiotic-induced resistance mechanism conserved among actinomycetes, and also give an explicit example of overlap in cellular damage and defense mechanisms between thiol-oxidative and anti- translational stresses. PMID:27346454

  20. Educational interventions to improve antibiotic use in the community: report from the International Forum on Antibiotic Resistance (IFAR) colloquium, 2002.

    Finch, Roger G; Metlay, Joshua P; Davey, Peter G; Baker, Lee J

    2004-01-01

    National and international strategies for the control of antibiotic resistance recommend education for health-care professionals and the public to promote prudent antibiotic use. This paper, based on discussions at the 2002 colloquium of the International Forum on Antibiotic Resistance (IFAR), provides an international discourse between theoretical approaches to behaviour change and practical experience gained in large-scale antibiotic use educational campaigns. Interventions are more likely to be effective if their aim is to change behaviour, rather than provide information. They should target all relevant groups, especially parents, children, day-care staff, and health-care professionals. They should use clear and consistent messages concerning bacterial versus viral infection, prudent antibiotic use, symptomatic treatment, and infection-control measures (eg, handwashing). Campaigns should use a range of communications using pilot-testing, strong branding, and sociocultural adaptation. Prime-time television is likely to be the most effective public medium, while academic detailing is especially useful for health-care professionals. Multifaceted interventions can improve antibiotic prescribing to some degree. However, there are few data on their effects on resistance patterns and patient outcomes, and on their cost-effectiveness. Current research aims include the application of behaviour-change models, the development and validation of prudent antibiotic prescribing standards, and the refinement of tools to assess educational interventions. PMID:14720568

  1. Genotypes and Antibiotic Resistances of Campylobacter jejuni Isolates from Cattle and Pigeons in Dairy Farms

    Valentina Bianchini

    2014-07-01

    Full Text Available Campylobacter jejuni is the most common food-borne zoonotic pathogen causing human gastroenteritis worldwide and has assumed more importance in Italy following the increased consumption of raw milk. Our objectives were to get an overview of genotypes and antibiotic resistances in C. jejuni isolated from milk, cattle feces, and pigeons in dairy herds of Northern Italy. flaB-typing was applied to 78 C. jejuni isolates, previously characterized by Multi-Locus Sequence Typing, and genotypic resistances towards macrolides and quinolones based on point mutations in the 23S rRNA and gyrA genes, respectively, were determined. flaB-typing revealed 22 different types with one of them being novel and was useful to further differentiate strains with an identical Sequence Type (ST and to identify a pigeon-specific clone. Macrolide resistance was not found, while quinolone resistance was detected in 23.3% of isolates. A relationship between specific genotypes and antibiotic resistance was observed, but was only significant for the Clonal Complex 206. Our data confirm that pigeons do not play a role in the spread of C. jejuni among cattle and they are not responsible for milk contamination. A relevant number of bulk milk samples were contaminated by C. jejuni resistant to quinolones, representing a possible source of human resistant strains.

  2. Genotypes and antibiotic resistances of Campylobacter jejuni isolates from cattle and pigeons in dairy farms.

    Bianchini, Valentina; Luini, Mario; Borella, Laura; Parisi, Antonio; Jonas, Romie; Kittl, Sonja; Kuhnert, Peter

    2014-07-01

    Campylobacter jejuni is the most common food-borne zoonotic pathogen causing human gastroenteritis worldwide and has assumed more importance in Italy following the increased consumption of raw milk. Our objectives were to get an overview of genotypes and antibiotic resistances in C. jejuni isolated from milk, cattle feces, and pigeons in dairy herds of Northern Italy. flaB-typing was applied to 78 C. jejuni isolates, previously characterized by Multi-Locus Sequence Typing, and genotypic resistances towards macrolides and quinolones based on point mutations in the 23S rRNA and gyrA genes, respectively, were determined. flaB-typing revealed 22 different types with one of them being novel and was useful to further differentiate strains with an identical Sequence Type (ST) and to identify a pigeon-specific clone. Macrolide resistance was not found, while quinolone resistance was detected in 23.3% of isolates. A relationship between specific genotypes and antibiotic resistance was observed, but was only significant for the Clonal Complex 206. Our data confirm that pigeons do not play a role in the spread of C. jejuni among cattle and they are not responsible for milk contamination. A relevant number of bulk milk samples were contaminated by C. jejuni resistant to quinolones, representing a possible source of human resistant strains. PMID:25026083

  3. Genotypes and Antibiotic Resistances of Campylobacter jejuni Isolates from Cattle and Pigeons in Dairy Farms

    Bianchini, Valentina; Luini, Mario; Borella, Laura; Parisi, Antonio; Jonas, Romie; Kittl, Sonja; Kuhnert, Peter

    2014-01-01

    Campylobacter jejuni is the most common food-borne zoonotic pathogen causing human gastroenteritis worldwide and has assumed more importance in Italy following the increased consumption of raw milk. Our objectives were to get an overview of genotypes and antibiotic resistances in C. jejuni isolated from milk, cattle feces, and pigeons in dairy herds of Northern Italy. flaB-typing was applied to 78 C. jejuni isolates, previously characterized by Multi-Locus Sequence Typing, and genotypic resistances towards macrolides and quinolones based on point mutations in the 23S rRNA and gyrA genes, respectively, were determined. flaB-typing revealed 22 different types with one of them being novel and was useful to further differentiate strains with an identical Sequence Type (ST) and to identify a pigeon-specific clone. Macrolide resistance was not found, while quinolone resistance was detected in 23.3% of isolates. A relationship between specific genotypes and antibiotic resistance was observed, but was only significant for the Clonal Complex 206. Our data confirm that pigeons do not play a role in the spread of C. jejuni among cattle and they are not responsible for milk contamination. A relevant number of bulk milk samples were contaminated by C. jejuni resistant to quinolones, representing a possible source of human resistant strains. PMID:25026083

  4. Relationship between antibiotic- and disinfectant-resistance profiles in bacteria harvested from tap water.

    Khan, Sadia; Beattie, Tara K; Knapp, Charles W

    2016-06-01

    Chlorination is commonly used to control levels of bacteria in drinking water; however, viable bacteria may remain due to chlorine resistance. What is concerning is that surviving bacteria, due to co-selection factors, may also have increased resistance to common antibiotics. This would pose a public health risk as it could link resistant bacteria in the natural environment to human population. Here, we investigated the relationship between chlorine- and antibiotic-resistances by harvesting 148 surviving bacteria from chlorinated drinking-water systems and compared their susceptibilities against chlorine disinfectants and antibiotics. Twenty-two genera were isolated, including members of Paenibacillus, Burkholderia, Escherichia, Sphingomonas and Dermacoccus species. Weak (but significant) correlations were found between chlorine-tolerance and minimum inhibitory concentrations against the antibiotics tetracycline, sulfamethoxazole and amoxicillin, but not against ciprofloxacin; this suggest that chlorine-tolerant bacteria are more likely to also be antibiotic resistant. Further, antibiotic-resistant bacteria survived longer than antibiotic-sensitive organisms when exposed to free chlorine in a contact-time assay; however, there were little differences in susceptibility when exposed to monochloramine. Irrespective of antibiotic-resistance, spore-forming bacteria had higher tolerance against disinfection compounds. The presence of chlorine-resistant bacteria surviving in drinking-water systems may carry additional risk of antibiotic resistance. PMID:26966812

  5. Virulence genes, antibiotic resistance and integrons in Escherichia coli strains isolated from synanthropic birds from Spain.

    Sacristán, C; Esperón, F; Herrera-León, S; Iglesias, I; Neves, E; Nogal, V; Muñoz, M J; de la Torre, A

    2014-01-01

    The aim of this study was to determine the presence of virulence genes and antibiotic resistance profiles in 164 Escherichia coli strains isolated from birds (feral pigeons, hybrid ducks, house sparrows and spotless starlings) inhabiting urban and rural environments. A total of eight atypical enteropathogenic E. coli strains were identified: one in a house sparrow, four in feral pigeons and three in spotless starlings. Antibiotic resistance was present in 32.9% (54) of E. coli strains. The dominant type of resistance was to tetracycline (21.3%), ampicillin (19.5%) and sulfamethoxazole (18.9%). Five isolates had class 1 integrons containing gene cassettes encoding for dihydrofolate reductase A (dfrA) and aminoglycoside adenyltransferase A (aadA), one in a feral pigeon and four in spotless starlings. To our knowledge, the present study constitutes the first detection of virulence genes from E. coli in spotless starlings and house sparrows, and is also the first identification worldwide of integrons containing antibiotic resistance gene cassettes in E. coli strains from spotless starlings and pigeons. PMID:24689431

  6. Antibiotic resistant Esherichia coli strains from seafood and its susceptibility to seaweed extracts

    Subramanian Kumaran; Balaraman Deivasigamani; Kumarappan Alagappan; Mannikam Sakthivel; Rajamani Karthikeyan

    2010-01-01

    Objective: To determine the prevalence and antibiotic resistance of Escherichia coli (E.coli) , in seafood obtained from Cuddalore and Parangipettai fish landing centres. Also, to identify the susceptibility of E. coli against predominant seaweeds red alga Kappaphycusalvarezii (K. alvarezii) and brown alga Padina boergessenii (P. boergessenii) extracts as sulfated polysaccharides and polyphenols respectively. Methods: A total of 48 samples (Two stations Cuddalore and Parangipettai, Tamil Nadu, India). Sampling area are fish landing centre where fishes caught from sea and estuary, seafood processing plants (packing and ice packed fishes) and local fish markets (fish samples). After isolation totally 80 strains were analyzed for its antimicrobial resistance and sensitivity against commercially 10 antibiotics. The ampicillin resistant E. coli CE21 was identified through molecular techniques as 16S rDNA sequencing. Two seaweeds K. alvarezii and P. boergessenii were screened for antibacterial activity against 12 antibiotic resistant E. coli strains. Results: Totally 48 swabbed samples from two different fish handling area were characterized for total bacterial and E. coli count. Mostly, the E. coli strains were isolated from fish local market and seafood processing plants before and after packaging process. In that maximum 56.25% strains were resistant to ampicillin and the minimum 2.5% strains were resistant to chloramphenicol. Therefore, the E. coli CE21 was identified through molecular techniques E. coli (GenBank accession number GU065251), The MIC value for polyphenol extract was slightly less than sulfated polysaccharides. E. coli strain isolated from Parangipettai was considerably increased MIC value that Cuddalore. Conclusions:The polyphenol and sulfated polysaccharides showed promising inhibitory response against all antimicrobial resistant E. coli strains and in particular the inhibitory response of ampicillin resistant E. coli.

  7. Antibiotic resistance of lactic acid bacteria isolated from dry-fermented sausages.

    Fraqueza, Maria João

    2015-11-01

    Dry-fermented sausages are meat products highly valued by many consumers. Manufacturing process involves fermentation driven by natural microbiota or intentionally added starter cultures and further drying. The most relevant fermentative microbiota is lactic acid bacteria (LAB) such as Lactobacillus, Pediococcus and Enterococcus, producing mainly lactate and contributing to product preservation. The great diversity of LAB in dry-fermented sausages is linked to manufacturing practices. Indigenous starters development is considered to be a very promising field, because it allows for high sanitary and sensorial quality of sausage production. LAB have a long history of safe use in fermented food, however, since they are present in human gastrointestinal tract, and are also intentionally added to the diet, concerns have been raised about the antimicrobial resistance in these beneficial bacteria. In fact, the food chain has been recognized as one of the key routes of antimicrobial resistance transmission from animal to human bacterial populations. The World Health Organization 2014 report on global surveillance of antimicrobial resistance reveals that this issue is no longer a future prediction, since evidences establish a link between the antimicrobial drugs use in food-producing animals and the emergence of resistance among common pathogens. This poses a risk to the treatment of nosocomial and community-acquired infections. This review describes the possible sources and transmission routes of antibiotic resistant LAB of dry-fermented sausages, presenting LAB antibiotic resistance profile and related genetic determinants. Whenever LAB are used as starters in dry-fermented sausages processing, safety concerns regarding antimicrobial resistance should be addressed since antibiotic resistant genes could be mobilized and transferred to other bacteria. PMID:26002560

  8. Relatively high antibiotic resistance among heterotrophic bacteria from arctic fjord sediments than water - Evidence towards better selection pressure in the fjord sediments

    Hatha, A. A. Mohamed; Neethu, C. S.; Nikhil, S. M.; Rahiman, K. M. Mujeeb; Krishnan, K. P.; Saramma, A. V.

    2015-12-01

    The objective of this study was to determine the prevalence of antibiotic resistance among aerobic heterotrophic bacteria and coliform bacteria from water and sediment of Kongsfjord. The study was based on the assumption that arctic fjord environments are relatively pristine and offer very little selection pressure for drug resistant mutants. In order to test the hypothesis, 200 isolates belonging to aerobic heterotrophic bacteria and 114 isolates belonging to coliforms were tested against 15 antibiotics belonging to 5 different classes such as beta lactams, aminoglycosides, quinolones, sulpha drugs and tetracyclines. Resistance to beta lactam and extended spectrum beta lactam (ESBL) antibiotics was considerably high and they found to vary significantly (p antibiotic resistance against ESBL's extent and diversity of antibiotic resistance (as revealed by multiple antibiotic resistance index and resistance patterns), was high in the aerobic heterotrophic bacteria. Most striking observation was that isolates from fjord sediments (both heterotrophic bacteria and coliforms) in general showed relatively high prevalence of antibiotic resistance against most of the antibiotics tested, indicating to better selection pressure for drug resistance mutants in the fjord sediments.

  9. Bacterial resistance to antibiotics in acne vulgaris: An in vitro study

    Hassanzadeh Parvin

    2008-01-01

    Full Text Available Background: Acne vulgaris is one of the most common skin disorders in youth especially during the puberty. Objective: This in vitro study was performed to determine the antibiotic resistance and sensitivity in acne vulgaris. Materials and Methods: Samples were collected from normal skin and nodulocystic and pustular skin lesions of one hundred youngsters (64 girls, 36 boys among college students in the age range of 18-24 years old. The specimens were cultured individually on blood agar and Muller-Hinton media. The cultures were then incubated under both aerobic and anaerobic conditions for 2 to 7 days. Bacteria were identified and their resistance to common antibiotics was evaluated according to the standard procedures. Results: In aerobic culture of pustular and nodulocystic skin lesions, Staphylococcus aureus was present in 41% of subjects, Staphylococcus epidermidis in 53% and Micrococcus spp in 45% of subjucts. In anaerobic bacterial culture of pustular and nodulocystic skin lesions, Staphylococcus aureus was present in 39%, Propionibacterium acne in 33% and Staphylococcus epidermidis in 21% of subjects. The results of present study revealed that clindamycin and erythromycin were the least effective antibiotics for Propionibacterium acne while tetracycline was the least effective for Staphylococcus aureus in vitro . A synergic effect of benzoyl peroxide, erythromycin or clindamycin was noticed. Rifampin was the most effective antibiotic in vitro . Conclusion: Our results showed that rifampin was the most sensitive antibiotic in vitro for acne vulgaris. To achieve a better treatment, a combination of rifampin with other antibiotics may be more efficient. We suggest in vivo studies for better evaluation and treatment of acne patients with rifampin.

  10. Resistance to antibiotics in Lacid acid bacteria - strain Lactococcus

    Filipić Brankica

    2015-01-01

    Full Text Available Lactic acid bacteria (LAB are widely used in the food industry, especially in the production of fermented dairy products and meat. The most studied species among Lis Lactococcus lactis. L. lactis strains are of great importance in the production of fermented dairy products such as yogurt, butter, fresh cheese and some kind of semi-hard cheese. Although L. lactis acquired the „Generally Regarded As Safe“ (GRAS status, many investigations indicated that lactococci may act as reservoirs of antibiotic resistance genes, which could be transferred to other bacterial species in human gastrointestinal tract includ­ing pathogens. The genome analysis of L. lactis indicated the presence of at least 40 putative drug transporter genes, and only four multidrug resistance (MDR transporters are functionally characterized: LmrA, LmrP, LmrCD i CmbT. LmrA is the first described MDR transporter in prokaryotes. LmrCD is responsible for resistance to cholate, which is an integral part of human bile and LmrCD is important for intestinal survival of lactococci that are used as probiotics. Secondary multidrug transporter LmrP confers resistance to lincosamides, macrolides, streptogramins and tetracyclines. CmbT protein has an effect on the host cell resistance to lincomycin, sulfadiazine, streptomycin, rifampicin, puromycin and sulfametox­azole. Since the food chain is an important way of transmitting resistance genes in human and animal population, it is of great importance to study the mechanisms of resistance in lactococci and other LAB, intended for the food industry. [Projekat Ministarstva nauke Republike Srbije, br. 173019: Izučavanje gena i molekularnih mehanizama u osnovi probiotičke aktivnosti bakterija mlečne kiseline izolovanih sa područja Zapadnog Balkana

  11. Bottlenecks in the transmission of antibiotic resistance from natural ecosystems to human bacterial pathogens

    Jose L Martinez

    2012-01-01

    Full Text Available It is generally accepted that resistance genes acquired by human pathogens trough horizontal gene transfer have been originated in environmental, non pathogenic bacteria. As the consequence, there exists an increasing concern on the role that natural, non-clinical ecosystems, may play on the evolution of resistance. Recent studies have shown that the variability of determinants that can provide antibiotic resistance upon their expression in a heterologous host is much larger than what is actually found in human pathogens. Along the review, the role that different processes as founder effect, ecological connectivity, fitness costs or second-order selection may have on the establishment of a specific resistance determinant in the population of bacterial pathogens is analysed.

  12. Antibiotic resistance of hospital strains of Enterococcus faecalis and Enterococcus faecium

    Mirović Veljko

    2002-01-01

    Full Text Available The aim of this study was to determine the resistance of Enterococcus faecalis (E. faecalis and Enterococcus faecium (E. faecium to penicillin, ampicillin, vancomycin, teicoplanin, gentamicin (high level, streptomycin (high level, oxytetracycline, chloramphenicol, rifampin, erythromycin, ciprofloxacin, norfloxacin, and nitrofurantoin from clinical specimens during 1999. The resistance of enterococci to antibiotics was determined by disk diffusion and dilution methods according to the American National Committee for Clinical Laboratory Standards guidelines. The production of β-lactamase was determined by nitrocefin disks. In E. faecalis and E. faecium isolates (n=111 and n=48 the frequency of the resistance to both penicillins was 0.9% and 89.6%, respectively. All enterococci isolates were β-lactamase negative. Only one strain of E. faecium was vancomycin resistant (Van A fenotype. Among E. faecalis isolates (n=109 high level gentamicin resistance (HLGR, high level streptomycin resistance (HLSR, and resistance to both agents was 52.3%, 50.4%, and 43.7%, respectively. Among E. faecium isolates (n=48 HLGR, HLSR, and to both agents were 68.7%, 75%, and 62.5% respectively. The majority of E. faecium isolates were resistant to both penicillin and ampicillin. E. faecalis remained susceptible to penicillins. Moreover, there was a very high incidence of enterococci resistant to high level aminoglycosides.

  13. Tracking down antibiotic-resistant Pseudomonas aeruginosa isolates in a wastewater network.

    Céline Slekovec

    Full Text Available The Pseudomonas aeruginosa-containing wastewater released by hospitals is treated by wastewater treatment plants (WWTPs, generating sludge, which is used as a fertilizer, and effluent, which is discharged into rivers. We evaluated the risk of dissemination of antibiotic-resistant P. aeruginosa (AR-PA from the hospital to the environment via the wastewater network. Over a 10-week period, we sampled weekly 11 points (hospital and urban wastewater, untreated and treated water, sludge of the wastewater network and the river upstream and downstream of the WWTP of a city in eastern France. We quantified the P. aeruginosa load by colony counting. We determined the susceptibility to 16 antibiotics of 225 isolates, which we sorted into three categories (wild-type, antibiotic-resistant and multidrug-resistant. Extended-spectrum β-lactamases (ESBLs and metallo-β-lactamases (MBLs were identified by gene sequencing. All non-wild-type isolates (n = 56 and a similar number of wild-type isolates (n = 54 were genotyped by pulsed-field gel electrophoresis and multilocus sequence typing. Almost all the samples (105/110, 95.5% contained P. aeruginosa, with high loads in hospital wastewater and sludge (≥3×10(6 CFU/l or/kg. Most of the multidrug-resistant isolates belonged to ST235, CC111 and ST395. They were found in hospital wastewater and some produced ESBLs such as PER-1 and MBLs such as IMP-29. The WWTP greatly reduced P. aeruginosa counts in effluent, but the P. aeruginosa load in the river was nonetheless higher downstream than upstream from the WWTP. We conclude that the antibiotic-resistant P. aeruginosa released by hospitals is found in the water downstream from the WWTP and in sludge, constituting a potential risk of environmental contamination.

  14. Tracking Down Antibiotic-Resistant Pseudomonas aeruginosa Isolates in a Wastewater Network

    Slekovec, Céline; Plantin, Julie; Cholley, Pascal; Thouverez, Michelle; Talon, Daniel; Bertrand, Xavier; Hocquet, Didier

    2012-01-01

    The Pseudomonas aeruginosa-containing wastewater released by hospitals is treated by wastewater treatment plants (WWTPs), generating sludge, which is used as a fertilizer, and effluent, which is discharged into rivers. We evaluated the risk of dissemination of antibiotic-resistant P. aeruginosa (AR-PA) from the hospital to the environment via the wastewater network. Over a 10-week period, we sampled weekly 11 points (hospital and urban wastewater, untreated and treated water, sludge) of the wastewater network and the river upstream and downstream of the WWTP of a city in eastern France. We quantified the P. aeruginosa load by colony counting. We determined the susceptibility to 16 antibiotics of 225 isolates, which we sorted into three categories (wild-type, antibiotic-resistant and multidrug-resistant). Extended-spectrum β-lactamases (ESBLs) and metallo-β-lactamases (MBLs) were identified by gene sequencing. All non-wild-type isolates (n = 56) and a similar number of wild-type isolates (n = 54) were genotyped by pulsed-field gel electrophoresis and multilocus sequence typing. Almost all the samples (105/110, 95.5%) contained P. aeruginosa, with high loads in hospital wastewater and sludge (≥3×106 CFU/l or/kg). Most of the multidrug-resistant isolates belonged to ST235, CC111 and ST395. They were found in hospital wastewater and some produced ESBLs such as PER-1 and MBLs such as IMP-29. The WWTP greatly reduced P. aeruginosa counts in effluent, but the P. aeruginosa load in the river was nonetheless higher downstream than upstream from the WWTP. We conclude that the antibiotic-resistant P. aeruginosa released by hospitals is found in the water downstream from the WWTP and in sludge, constituting a potential risk of environmental contamination. PMID:23284623

  15. Self-medication with antibiotics in Europe and its determinants

    Grigoryan, Larissa

    2007-01-01

    A postal survey was conducted to determine and compare the prevalence of self-medication with antibiotics in 19 European countries. Face to face interviews were conducted with the respondents of the postal survey to study the determinants of self-medication.

  16. Evolution by Pervasive Gene Fusion in Antibiotic Resistance and Antibiotic Synthesizing Genes

    Orla Coleman

    2015-03-01

    Full Text Available Phylogenetic (tree-based approaches to understanding evolutionary history are unable to incorporate convergent evolutionary events where two genes merge into one. In this study, as exemplars of what can be achieved when a tree is not assumed a priori, we have analysed the evolutionary histories of polyketide synthase genes and antibiotic resistance genes and have shown that their history is replete with convergent events as well as divergent events. We demonstrate that the overall histories of these genes more closely resembles the remodelling that might be seen with the children’s toy Lego, than the standard model of the phylogenetic tree. This work demonstrates further that genes can act as public goods, available for re-use and incorporation into other genetic goods.

  17. Correlation between antibiotic and biocide resistance in mesophilic and psychrotrophic Pseudomonas spp. isolated from slaughterhouse surfaces throughout meat chain production.

    Lavilla Lerma, Leyre; Benomar, Nabil; Casado Muñoz, María del Carmen; Gálvez, Antonio; Abriouel, Hikmate

    2015-10-01

    The aim of this study was to evaluate biocide susceptibility in mesophilic and psychrotrophic pseudomonads isolated from surfaces of a goat and lamb slaughterhouse, which was representative of the region. To determine biocide resistance in pseudomonads, we determined for the first time the epidemiological cut-off values (ECOFFs) of benzalkonium, cetrimide, chlorhexidine, hexachlorophene, P3 oxonia, polyhexamethylene guanidine hydrochloride (PHMG), topax 66 and triclosan being generally very similar in different Pseudomonas spp. with some exceptions. Thus, resistance of pseudomonads was mainly shown to triclosan, and in lesser extent to cetrimide and benzalkonium chloride depending on the species, however they were highly susceptible to industrial formulations of biocides. By means of statistical analysis, positive correlations between antibiotics, biocides and both antimicrobials in pseudomonads were detected suggesting a co- or cross resistance between different antimicrobials in goat and lamb slaughterhouse environment. Cross-resistance between biocides and antibiotics in pseudomonads were especially detected between PHMG or triclosan and different antibiotics depending on the biocide and the population type. Thus, the use of those biocides as disinfectant in slaughterhouse zones must be carefully evaluated because of the selection pressure effect of antimicrobials on the emergence of resistant bacteria which could be spread to the consumer. It is noteworthy that specific industrial formulations such as topax 66 and oxonia P3 showed few correlations with antibiotics (none or 1-2 antibiotics) which should be taken into consideration for disinfection practices in goat and lamb slaughterhouse. PMID:26187825

  18. Role of the Stringent Stress Response in the Antibiotic Resistance Phenotype of Methicillin-Resistant Staphylococcus aureus.

    Aedo, Sandra; Tomasz, Alexander

    2016-04-01

    Resistance to beta-lactam antibiotics in methicillin-resistantStaphylococcus aureus(MRSA) requires the presence of an acquired genetic determinant,mecAormecC, which encode penicillin-binding protein PBP2A or PBP2A', respectively. Although all MRSA strains share a mechanism of resistance, the phenotypic expression of beta-lactam resistance shows considerable strain-to-strain variation. The stringent stress response, a stress response that results from nutrient limitation, was shown to play a key role in determining the resistance level of an MRSA strain. In the present study, we validated the impact of the stringent stress response on transcription and translation ofmecAin the MRSA clinical isolate strain N315, which also carries known regulatory genes (mecI/mecR1/mecR2andblaI/blaR1) formecAtranscription. We showed that the impact of the stringent stress response on the resistance level may be restricted to beta-lactam resistance based on a "foreign" determinant such asmecA, as opposed to resistance based on mutations in the nativeS. aureusdeterminantpbpB(encoding PBP2). Our observations demonstrate that high-level resistance mediated by the stringent stress response follows the current model of beta-lactam resistance in which the native PBP2 protein is also essential for expression of the resistance phenotype. We also show that theStaphylococcus sciuri pbpDgene (also calledmecAI), the putative evolutionary precursor ofmecA, confers oxacillin resistance in anS. aureusstrain, generating a heterogeneous phenotype that can be converted to high and homogenous resistance by induction of the stringent stress response in the bacteria. PMID:26833147

  19. Coexistence of Antibiotic-Producing and Antibiotic-Sensitive Bacteria in Biofilms Is Mediated by Resistant Bacteria▿ †

    Narisawa, Naoki; Haruta, Shin; Arai, Hiroyuki; Ishii, Masaharu; Igarashi, Yasuo

    2008-01-01

    Antibiotic-sensitive bacteria have been found to coexist with antibiotic-producing bacteria in biofilms, but little is known about how the former develop in such an environment. Here we isolated pyocyanin-sensitive bacteria belonging to the genus Brevibacillus from a biofilm derived from soil extract and based on the preestablished biofilm of a pyocyanin producer, Pseudomonas aeruginosa strain P1. In addition, pyocyanin-resistant strains belonging to the genus Raoultella were isolated from th...

  20. Antibiotic and heavy metal resistance in motile aeromonads and pseudomonads from rainbow trout (Oncorhynchus mykiss) farms in Australia.

    Akinbowale, Olasumbo L; Peng, Haihong; Grant, Peter; Barton, Mary D

    2007-08-01

    A total of 129 Pseudomonas spp. and 90 Aeromonas spp. were isolated from nine rainbow trout (Oncorhynchus mykiss) farms in Australia. All the isolates were tested for sensitivity to 15 antibiotics and the multiresistant strains were tested for sensitivity to seven heavy metals. Minimal inhibitory concentrations (MICs) were determined by the agar dilution method. In Pseudomonas spp., resistance to amoxicillin, cefalothin, ceftiofur, ticarcillin, chloramphenicol, florfenicol, streptomycin, nitrofurantoin and trimethoprim was widespread, whereas resistance to cefotaxime and oxolinic acid was less common and only single isolates were resistant to tetracycline and sulfamethoxazole; all isolates were sensitive to ciprofloxacin and gentamicin. In Aeromonas spp., resistance to amoxicillin and cefalothin was widespread, resistance to ticarcillin, tetracycline and streptomycin was common, whilst resistance to ceftiofur, florfenicol and sulfamethoxazole was less common. Single isolates were resistant to chloramphenicol, nitrofurantoin and trimethoprim, and all isolates were sensitive to cefotaxime, oxolinic acid, ciprofloxacin and gentamicin. Multiple resistance was also observed. Most isolates were tolerant to different concentrations of various heavy metals, as evidenced by their MICs ranging from 6.25 microg/mL to >3200 microg/mL. These results confirm our previous findings that bacteria resistant to antibiotics are present in fish and sediments from aquaculture in Australia. In addition, we have found resistance to heavy metals in fish and sediment isolates. Much of the antibiotic resistance detected is likely to be intrinsic, although resistance to oxytetracycline, streptomycin and sulfonamides suggests either contamination from run-off from farms or perhaps off-label use of antibiotics in a situation where no antibiotics are licensed for use in aquaculture. PMID:17524624

  1. Characterization of Antibiotic Resistance Gene Abundance and Microbiota Composition in Feces of Organic and Conventional Pigs from Four EU Countries.

    Gerzova, Lenka; Babak, Vladimir; Sedlar, Karel; Faldynova, Marcela; Videnska, Petra; Cejkova, Darina; Jensen, Annette Nygaard; Denis, Martine; Kerouanton, Annaelle; Ricci, Antonia; Cibin, Veronica; Österberg, Julia; Rychlik, Ivan

    2015-01-01

    One of the recent trends in animal production is the revival of interest in organic farming. The increased consumer interest in organic animal farming is mainly due to concerns about animal welfare and the use of antibiotics in conventional farming. On the other hand, providing animals with a more natural lifestyle implies their increased exposure to environmental sources of different microorganisms including pathogens. To address these concerns, we determined the abundance of antibiotic resistance and diversity within fecal microbiota in pigs kept under conventional and organic farming systems in Sweden, Denmark, France and Italy. The abundance of sul1, sul2, strA, tet(A), tet(B) and cat antibiotic resistance genes was determined in 468 samples by real-time PCR and the fecal microbiota diversity was characterized in 48 selected samples by pyrosequencing of V3/V4 regions of 16S rRNA. Contrary to our expectations, there were no extensive differences between the abundance of tested antibiotic resistance genes in microbiota originating from organic or conventionally housed pigs within individual countries. There were also no differences in the microbiota composition of organic and conventional pigs. The only significant difference was the difference in the abundance of antibiotic resistance genes in the samples from different countries. Fecal microbiota in the samples originating from southern European countries (Italy, France) exhibited significantly higher antibiotic resistance gene abundance than those from northern parts of Europe (Denmark, Sweden). Therefore, the geographical location of the herd influenced the antibiotic resistance in the fecal microbiota more than farm's status as organic or conventional. PMID:26218075

  2. Characterization of Antibiotic Resistance Gene Abundance and Microbiota Composition in Feces of Organic and Conventional Pigs from Four EU Countries.

    Lenka Gerzova

    Full Text Available One of the recent trends in animal production is the revival of interest in organic farming. The increased consumer interest in organic animal farming is mainly due to concerns about animal welfare and the use of antibiotics in conventional farming. On the other hand, providing animals with a more natural lifestyle implies their increased exposure to environmental sources of different microorganisms including pathogens. To address these concerns, we determined the abundance of antibiotic resistance and diversity within fecal microbiota in pigs kept under conventional and organic farming systems in Sweden, Denmark, France and Italy. The abundance of sul1, sul2, strA, tet(A, tet(B and cat antibiotic resistance genes was determined in 468 samples by real-time PCR and the fecal microbiota diversity was characterized in 48 selected samples by pyrosequencing of V3/V4 regions of 16S rRNA. Contrary to our expectations, there were no extensive differences between the abundance of tested antibiotic resistance genes in microbiota originating from organic or conventionally housed pigs within individual countries. There were also no differences in the microbiota composition of organic and conventional pigs. The only significant difference was the difference in the abundance of antibiotic resistance genes in the samples from different countries. Fecal microbiota in the samples originating from southern European countries (Italy, France exhibited significantly higher antibiotic resistance gene abundance than those from northern parts of Europe (Denmark, Sweden. Therefore, the geographical location of the herd influenced the antibiotic resistance in the fecal microbiota more than farm's status as organic or conventional.

  3. Survival of Antibiotic Resistant Bacteria and Horizontal Gene Transfer Control Antibiotic Resistance Gene Content in Anaerobic Digesters

    Miller, Jennifer H.; Novak, John T.; Knocke, William R.; Pruden, Amy

    2016-01-01

    Understanding fate of antibiotic resistant bacteria (ARB) vs. their antibiotic resistance genes (ARGs) during wastewater sludge treatment is critical in order to reduce the spread of antibiotic resistance through process optimization. Here, we spiked high concentrations of tetracycline-resistant bacteria, isolated from mesophilic (Iso M1-1—a Pseudomonas sp.) and thermophilic (Iso T10—a Bacillus sp.) anaerobic digested sludge, into batch digesters and monitored their fate by plate counts and quantitative polymerase chain reaction (QPCR) of their corresponding tetracycline ARGs. In batch studies, spiked ARB plate counts returned to baseline (thermophilic) or 1-log above baseline (mesophilic) while levels of the ARG present in the spiked isolate [tet(G)] remained high in mesophilic batch reactors. To compare results under semi-continuous flow conditions with natural influent variation, tet(O), tet(W), and sul1 ARGs, along with the intI1 integrase gene, were monitored over a 9-month period in the raw feed sludge and effluent sludge of lab-scale thermophilic and mesophilic anaerobic digesters. sul1 and intI1 in mesophilic and thermophilic digesters correlated positively (Spearman rho = 0.457–0.829, P < 0.05) with the raw feed sludge. There was no correlation in tet(O) or tet(W) ratios in raw sludge and mesophilic digested sludge or thermophilic digested sludge (Spearman rho = 0.130–0.486, P = 0.075–0.612). However, in the thermophilic digester, the tet(O) and tet(W) ratios remained consistently low over the entire monitoring period. We conclude that the influent sludge microbial composition can influence the ARG content of a digester, apparently as a result of differential survival or death of ARBs or horizontal gene transfer of genes between raw sludge ARBs and the digester microbial community. Notably, mesophilic digestion was more susceptible to ARG intrusion than thermophilic digestion, which may be attributed to a higher rate of ARB survival and

  4. Survival of Antibiotic Resistant Bacteria and Horizontal Gene Transfer Control Antibiotic Resistance Gene Content in Anaerobic Digesters.

    Miller, Jennifer H; Novak, John T; Knocke, William R; Pruden, Amy

    2016-01-01

    Understanding fate of antibiotic resistant bacteria (ARB) vs. their antibiotic resistance genes (ARGs) during wastewater sludge treatment is critical in order to reduce the spread of antibiotic resistance through process optimization. Here, we spiked high concentrations of tetracycline-resistant bacteria, isolated from mesophilic (Iso M1-1-a Pseudomonas sp.) and thermophilic (Iso T10-a Bacillus sp.) anaerobic digested sludge, into batch digesters and monitored their fate by plate counts and quantitative polymerase chain reaction (QPCR) of their corresponding tetracycline ARGs. In batch studies, spiked ARB plate counts returned to baseline (thermophilic) or 1-log above baseline (mesophilic) while levels of the ARG present in the spiked isolate [tet(G)] remained high in mesophilic batch reactors. To compare results under semi-continuous flow conditions with natural influent variation, tet(O), tet(W), and sul1 ARGs, along with the intI1 integrase gene, were monitored over a 9-month period in the raw feed sludge and effluent sludge of lab-scale thermophilic and mesophilic anaerobic digesters. sul1 and intI1 in mesophilic and thermophilic digesters correlated positively (Spearman rho = 0.457-0.829, P < 0.05) with the raw feed sludge. There was no correlation in tet(O) or tet(W) ratios in raw sludge and mesophilic digested sludge or thermophilic digested sludge (Spearman rho = 0.130-0.486, P = 0.075-0.612). However, in the thermophilic digester, the tet(O) and tet(W) ratios remained consistently low over the entire monitoring period. We conclude that the influent sludge microbial composition can influence the ARG content of a digester, apparently as a result of differential survival or death of ARBs or horizontal gene transfer of genes between raw sludge ARBs and the digester microbial community. Notably, mesophilic digestion was more susceptible to ARG intrusion than thermophilic digestion, which may be attributed to a higher rate of ARB survival and/or horizontal gene

  5. The culturable soil antibiotic resistome: a community of multi-drug resistant bacteria.

    Fiona Walsh

    Full Text Available Understanding the soil bacterial resistome is essential to understanding the evolution and development of antibiotic resistance, and its spread between species and biomes. We have identified and characterized multi-drug resistance (MDR mechanisms in the culturable soil antibiotic resistome and linked the resistance profiles to bacterial species. We isolated 412 antibiotic resistant bacteria from agricultural, urban and pristine soils. All isolates were multi-drug resistant, of which greater than 80% were resistant to 16-23 antibiotics, comprising almost all classes of antibiotic. The mobile resistance genes investigated, (ESBL, bla NDM-1, and plasmid mediated quinolone resistance (PMQR resistance genes were not responsible for the respective resistance phenotypes nor were they present in the extracted soil DNA. Efflux was demonstrated to play an important role in MDR and many resistance phenotypes. Clinically relevant Burkholderia species are intrinsically resistant to ciprofloxacin but the soil Burkholderia species were not intrinsically resistant to ciprofloxacin. Using a phenotypic enzyme assay we identified the antibiotic specific inactivation of trimethoprim in 21 bacteria from different soils. The results of this study identified the importance of the efflux mechanism in the soil resistome and variations between the intrinsic resistance profiles of clinical and soil bacteria of the same family.

  6. Isolation and identification of antibiotic resistance genes in Staphylococcus aureus isolates from respiratory system infections in shahrekord, Iran

    Maryam Reisi

    2014-07-01

    Full Text Available   Introduction : Staphylococcus aureus is considered as one of pathogenic agents in humans, that engages different body parts including respiratory system and causes to spend lots of costs and extending patient’s treatment period. This study which is performed to separate and investigate the pattern of antibiotic resistance in Staphylococcus aureus isolates from upper respiratory system infections in Shahrekord.   Materials and methods: This study was done by sectional-descriptive method On 200 suspicious persons to the upper respiratory system infections who were referred to the Imam Ali clinic in Shahrekord in 2012. After isolation of Staphylococcus aureus from cultured nose discharges, antibiotic resistance genes were identified by polymerase chain reaction (PCR by using defined primer pairs .   Results : Among 200 investigated samples in 60 cases (30% Staphylococcus aureus infection (by culturing and PCR method was determined. Isolates showed the lowest amount of antibiotic resistance to vancomycin (0.5% and the highest amount of resistance to the penicillin G and cefotaxime (100%. mecA gene (encoding methicillin resistance with frequency of 85.18% and aacA-D gene (encoding resistance to aminoglycosides with frequency of 28.33% showed the highest and lowest frequency of antibiotic resistance genes coding in Staphylococcus aureus isolates respectively .   Discussion and conclusion : Notable prevalence of resistant Staphylococcus aureus isolates in community acquired respiratory infections, recommend continuous control necessity to impede the spreading of these bacteria and their infections.  

  7. Development of Methods for Genetic Assessment of Antibiotic Resistance In Animal Herds

    Schmidt, Gunilla Veslemøy

    distant from the Danish pig production. Fecal samples from wildlife and Massai cattle in Tanzania were screened for the presence of the 14 antibiotic resistance genes using the qPCR assays. The wildlife and cattle samples were collected in the Ngorongoro Conservational Area (NCA) (wildlife and cattle...... detected in the wildlife samples, regardless of the sampling site. Eight of the antibiotic resistance genes were detected in the samples, the most prevalent being tet(W) and blaCMY-2. Due to the nature of the blaCMY-2 antibiotic resistance spectrum, and the finding of this gene in 10 of 12 screened samples......Antibiotic drugs are important in treating bacterial infectious diseases in humans and animals. There are severe consequences when infectious bacteria become resistant to antibiotics such as treatment failure and even death. Since antibiotics were discovered, their use has been associated with a...

  8. Resistance to Third-Generation Cephalosporins and Other Antibiotics by Enterobacteriaceae in Western Nigeria

    A. O. Okesola

    2009-01-01

    Full Text Available Problem statement: The emergence and spread of resistance to third-generation cephalosporins are threatening to create species resistant to all currently available agents. The most common cause of bacterial resistance to beta-lactam antibiotics is the production of beta-lactamases and many of the 2nd and 3rd-generation penicillins and cephalosporins were specifically designed to resist the hydrolytic action of major ß-lactamases. However new ß-lactamases emerged against each of the new classes of ß-lactams that were introduced and caused resistance. This study was designed to determine the rate of resistance to 3rd-generation cephalosporins and other classes of antibiotics by the Enterobacteriaceae in this environment. Approach: One hundred bacteria isolates belonging to the family Enterobacteriaceae identified from different clinical specimens between October and December 2007 using standard bacteriological methods. These were subjected to antibiotic susceptibility testing to third-generation cephalosporins and other classes of antibiotics which included quinolones and an aminoglycoside using the Kirby-Bauer method of disc diffusion test. Results: Out of the total number of Enterobacteriaceae isolated in the study period, only 54.8% of the klebsiella species isolated were sensitive to ceftazidime, 48.4% to ceftriaxone and 30.7% to cefotaxime. With Escherichia coli however, the susceptibility pattern to the 3rd-generation cephalosporins was better (65.6% were sensitive to ceftazidime, 62.5% to ceftriaxone and 71.9% to cefotaxime. In proteus species, the susceptibility pattern was generally poor to the three classes of antibiotics(50% were sensitive to ceftazidime and ceftriaxone, 0% to cefotaxime, 33.3% to ciprofloxacin, 50% to gentamycin and 0% to amoxycillin/clavulanate. Conclusion/Recommendations: The poor susceptibility to amoxicillin/clavulanate demonstrated by all the isolates in this

  9. Mutations in the bacterial ribosomal protein l3 and their association with antibiotic resistance

    Klitgaard, Rasmus N; Ntokou, Eleni; Nørgaard, Katrine;

    2015-01-01

    Different groups of antibiotics bind to the peptidyl transferase center (PTC) in the large subunit of the bacterial ribosome. Resistance to these groups of antibiotics has often been linked with mutations or methylations of the 23S rRNA. In recent years, there has been a rise in the number of...... studies where mutations have been found in the ribosomal protein L3 in bacterial strains resistant to PTC-targeting antibiotics but there is often no evidence that these mutations actually confer antibiotic resistance. In this study, a plasmid exchange system was used to replace plasmid-carried wild...

  10. Relationship between Antibiotic Resistance, Biofilm Formation, and Biofilm-Specific Resistance in Acinetobacter baumannii.

    Qi, Lihua; Li, Hao; Zhang, Chuanfu; Liang, Beibei; Li, Jie; Wang, Ligui; Du, Xinying; Liu, Xuelin; Qiu, Shaofu; Song, Hongbin

    2016-01-01

    In this study, we aimed to examine the relationships between antibiotic resistance, biofilm formation, and biofilm-specific resistance in clinical isolates of Acinetobacter baumannii. The tested 272 isolates were collected from several hospitals in China during 2010-2013. Biofilm-forming capacities were evaluated using the crystal violet staining method. Antibiotic resistance/susceptibility profiles to 21 antibiotics were assessed using VITEK 2 system, broth microdilution method or the Kirby-Bauer disc diffusion method. The minimum inhibitory concentration (MIC) and minimum biofilm eradication concentration (MBEC) to cefotaxime, imipenem, and ciprofloxacin were evaluated using micro dilution assays. Genetic relatedness of the isolates was also analyzed by pulsed-field gel electrophoresis (PFGE) and plasmid profile. Among all the 272 isolates, 31 were multidrug-resistant (MDR), and 166 were extensively drug-resistant (XDR). PFGE typing revealed 167 pattern types and 103 clusters with a similarity of 80%. MDR and XDR isolates built up the main prevalent genotypes. Most of the non-MDR isolates were distributed in a scattered pattern. Additionally, 249 isolates exhibited biofilm formation, among which 63 were stronger biofilm formers than type strain ATCC19606. Population that exhibited more robust biofilm formation likely contained larger proportion of non-MDR isolates. Isolates with higher level of resistance tended to form weaker biofilms. The MBECs for cefotaxime, imipenem, and ciprofloxacin showed a positive correlation with corresponding MICs, while the enhancement in resistance occurred independent of the quantity of biofilm biomass produced. Results from this study imply that biofilm acts as a mechanism for bacteria to get a better survival, especially in isolates with resistance level not high enough. Moreover, even though biofilms formed by isolates with high level of resistance are always weak, they could still provide similar level of protection for the

  11. The Widespread Multidrug-Resistant Serotype O12 Pseudomonas aeruginosa Clone Emerged through Concomitant Horizontal Transfer of Serotype Antigen and Antibiotic Resistance Gene Clusters

    Thrane, Sandra Wingaard; Taylor, Véronique L.; Freschi, Luca;

    2015-01-01

    conclusion, serotype switching in combination with acquisition of an antibiotic resistance determinant most likely contributed to the dissemination of the O12 serotype in clinical settings. Infection rates in hospital settings by multidrug-resistant (MDR) Pseudomonas aeruginosa clones have increased during...... switching was the result of horizontal transfer and genetic recombination of lipopolysaccharide (LPS) biosynthesis genes originating from an MDR taxonomic outlier P. aeruginosa strain. Moreover, the recombination event also resulted in acquisition of antibiotic resistance genes. These results impact on our...... clinical settings and outbreaks. These serotype O12 isolates exhibit high levels of resistance to various classes of antibiotics. Here, we explore how the P. aeruginosa OSA biosynthesis gene clusters evolve in the population by investigating the association between the phylogenetic relationships among 83 P...

  12. High-frequency conjugative transfer of antibiotic resistance genes to Yersinia pestis in the flea midgut.

    Hinnebusch, B Joseph; Rosso, Marie-Laure; Schwan, Tom G; Carniel, Elisabeth

    2002-10-01

    The acquisition of foreign DNA by horizontal transfer from unrelated organisms is a major source of variation leading to new strains of bacterial pathogens. The extent to which this occurs varies widely, due in part to lifestyle factors that determine exposure to potential donors. Yersinia pestis, the plague bacillus, infects normally sterile sites in its mammalian host, but forms dense aggregates in the non-sterile digestive tract of its flea vector to produce a transmissible infection. Here we show that unrelated co-infecting bacteria in the flea midgut are readily incorporated into these aggregates, and that this close physical contact leads to high-frequency conjugative genetic exchange. Transfer of an antibiotic resistance plasmid from an Escherichia coli donor to Y. pestis occurred in the flea midgut at a frequency of 10-3 after only 3 days of co-infection, and after 4 weeks 95% of co-infected fleas contained an average of 103 antibiotic-resistant Y. pestis transconjugants. Thus, transit in its arthropod vector exposes Y. pestis to favourable conditions for efficient genetic exchange with microbial flora of the flea gut. Horizontal gene transfer in the flea may be the source of antibiotic-resistant Y. pestis strains recently isolated from plague patients in Madagascar. PMID:12406213

  13. Silver nanoparticle-embedded polymersome nanocarriers for the treatment of antibiotic-resistant infections

    Geilich, Benjamin M.; van de Ven, Anne L.; Singleton, Gloria L.; Sepúlveda, Liuda J.; Sridhar, Srinivas; Webster, Thomas J.

    2015-02-01

    The rapidly diminishing number of effective antibiotics that can be used to treat infectious diseases and associated complications in a physician's arsenal is having a drastic impact on human health today. This study explored the development and optimization of a polymersome nanocarrier formed from a biodegradable diblock copolymer to overcome bacterial antibiotic resistance. Here, polymersomes were synthesized containing silver nanoparticles embedded in the hydrophobic compartment, and ampicillin in the hydrophilic compartment. Results showed for the first time that these silver nanoparticle-embedded polymersomes (AgPs) inhibited the growth of Escherichia coli transformed with a gene for ampicillin resistance (bla) in a dose-dependent fashion. Free ampicillin, AgPs without ampicillin, and ampicillin polymersomes without silver nanoparticles had no effect on bacterial growth. The relationship between the silver nanoparticles and ampicillin was determined to be synergistic and produced complete growth inhibition at a silver-to-ampicillin ratio of 1 : 0.64. In this manner, this study introduces a novel nanomaterial that can effectively treat problematic, antibiotic-resistant infections in an improved capacity which should be further examined for a wide range of medical applications.

  14. Mechanism of resistance to macrolide-lincosamide-streptogramin antibiotics in Streptococcus thermophilus

    Resistance to macrolide-lincosamide-streptogramin (MLS) group antibiotics in the dairy bacterium Streptococcus thermophilus (ST) is documented but the mechanism of resistance has not been elucidated. MIC values for erythromycin (Erm), azithromycin (Azm), tylosin (Tyl), spiramycin (Spm), pristinamyci...

  15. ASSESSMENT OF ANTIMICROBIAL ACTIVITY OF PUNICA GRANATUM AGAINST ANTIBIOTIC-RESISTANT CLOSTRIDIUM PERFRINGENS TYPE (D)

    FRDOOS AL FADEL , SHAZA AL LAHAM, HASSANA CHOUR

    2015-01-01

    The search for new antibiotics and alternative products to solve the increasing number of bacterial resistance to customary antibiotics has become an urgent need. To investigate the effectiveness of the extracts prepared from different parts of Syrian Punica granatum Linn (family Punicaceae), against Clostridium perfringens type (D), which is resistant against many antibiotics, 684 samples were isolated from intestines and livers of death goats by using blood agar, and a selective agar for gr...

  16. Antimicrobial resistance: risk associated with antibiotic overuse and initiatives to reduce the problem

    Llor, Carl; Bjerrum, Lars

    2014-01-01

    Antimicrobial resistance is a global public health challenge, which has accelerated by the overuse of antibiotics worldwide. Increased antimicrobial resistance is the cause of severe infections, complications, longer hospital stays and increased mortality. Overprescribing of antibiotics is associated with an increased risk of adverse effects, more frequent re-attendance and increased medicalization of self-limiting conditions. Antibiotic overprescribing is a particular problem in primary care...

  17. Irrigation waters and pipe-based biofilms as sources for antibiotic-resistant bacteria

    The presence of antibiotic-resistant bacteria in environmental surface waters has gained recent attention. Wastewater- and drinking water distribution systems are known to disseminate antibiotic-resistant bacteria, with the biofilms that form on the inner-surfaces of the pipeline as a hotspot for pr...

  18. Prevalence of Antibiotic Resistance in Escherichia coli Isolated from Poultry Meat Supply in Isfahan

    Farhad Safarpordehkordi

    2014-08-01

    Conclusions: Despite the high contamination rate of chicken meat with Escherichia coli, majority of isolates had high resistance to common antibiotics. Complete cooking of meat and avoid indiscriminate prescribing of antibiotics, preventing the occurrence of food poisoning due to resistant Escherichia coli.

  19. Molecular characterization of "plasmid-free" antibiotic-resistant Haemophilus influenzae.

    Roberts, M C; Smith, A. L.

    1980-01-01

    We examined 14 multiresistant and 8 ampicillin- or tetracycline-resistant Haemophilus influenzae isolates and 4 ampicillin-resistant H. parainfluenzae isolates for plasmid deoxyribonucleic acid. Sixteen strains carried plasmids. Both "plasmid-free" and plasmid-carrying isolates transferred the antibiotic resistance by conjugation. All transconjugants carried plasmid deoxyribonucleic acid, suggesting that the apparent plasmid-free strains contained R plasmids encoding for antibiotic resistance.

  20. Functional characterization of the antibiotic resistance reservoir in the human microflora

    Sommer, Morten; Church, George M; Dantas, Gautam

    2010-01-01

    reservoirs of antibiotic resistance accessible to pathogens. Due to the high likelihood of contact and genetic exchange with pathogens during disease progression, the human microflora warrants special attention as perhaps the most accessible reservoir of resistance genes. Indeed, numerous previous studies...... have demonstrated substantial antibiotic resistance in cultured isolates from the human microflora. By applying metagenomic functional selections, we recently demonstrated that the functional repertoire of resistance genes in the human microbiome is much more diverse than suggested using previous...

  1. Removal of antibiotics and antibiotic resistance genes from domestic sewage by constructed wetlands: Optimization of wetland substrates and hydraulic loading.

    Chen, Jun; Wei, Xiao-Dong; Liu, You-Sheng; Ying, Guang-Guo; Liu, Shuang-Shuang; He, Liang-Ying; Su, Hao-Chang; Hu, Li-Xin; Chen, Fan-Rong; Yang, Yong-Qiang

    2016-09-15

    This study aimed to assess removal potential of antibiotics and antibiotic resistance genes (ARGs) in raw domestic wastewater by various mesocosm-scale horizontal subsurface-flow constructed wetlands (CWs) planted Cyperus alternifolius L. with different design parameters. Twelve CWs with three hydraulic loading rates (HLR 10, 20 and 30cm/day) and four substrates (oyster shell, zeolite, medical stone and ceramic) were set up in order to select the best optimized wetland. The result showed that 7 target antibiotics compounds including erythromycin-H2O, lincomycin, monensin, ofloxacin, sulfamerazine, sulfamethazine and novobiocin were detected, and all selected 18 genes (three sulfonamide resistance genes (sul1, sul2 and sul3), four tetracycline resistance genes (tetG, tetM, tetO and tetX), two macrolide resistance genes (ermB and ermC), three quinolone resistance genes (qnrB, qnrD and qnrS) and four chloramphenicol resistance genes (cmlA, fexA, fexB and floR)) and two integrase genes (int1 and int2) were positively detected in the domestic wastewaters. The aqueous removal rates of the total antibiotics ranged from17.9 to 98.5%, while those for the total ARGs varied between 50.0 and 85.8% by the mesocosm-scale CWs. After considering their aqueous removal rates in combination with their mass removals, the CW with zeolite as the substrate and HLR of 20cm/day was selected as the best choice. Combined chemical and biological analyses indicate that both microbial degradation and physical sorption processes were responsible for the fate of antibiotics and ARGs in the wetlands. The findings from this study suggest constructed wetlands could be a promising technology for the removal of emerging contaminants such as antibiotics and ARGs in domestic wastewater. PMID:27173842

  2. Antibiotic resistance and plasmid carriage among Escherichia coli isolates from chicken meat in Malaysia

    Escherichia coli isolates from 131 raw chicken meat samples were tested for susceptibility to 12 antibiotics. Plasmids were isolated from many samples and their DNA molecular weight calculated. An 81.7% plasmid occurrence rate was observed among the isolates, ranging from 0 to 8 in number and with sizes from 1.2 to 118.6 MDa. Plasmids were detected in 93.8% of E. coIi isolates resistant to all 12 antibiotics, and in 90.5% of E. coli isolates resistant to 11. Three (2.8%) isolates harboured 8 plasmids and were resistant to all 12 antibiotics. Antibiotic resistant genes in bacteria are usually carried in extrachromosomal DNA and it is postulated that E. coli with a high number of plasmids possesses wider resistance to antibiotics. (author)

  3. Ciprofloxacin residue and antibiotic-resistant biofilm bacteria in hospital effluent.

    Ory, Jérôme; Bricheux, Geneviève; Togola, Anne; Bonnet, Jean Louis; Donnadieu-Bernard, Florence; Nakusi, Laurence; Forestier, Christiane; Traore, Ousmane

    2016-07-01

    Discharge of antimicrobial residues and resistant bacteria in hospital effluents is supposed to have strong impacts on the spread of antibiotic resistant bacteria in the environment. This study aimed to characterize the effluents of the Gabriel Montpied teaching hospital, Clermont-Ferrand, France, by simultaneously measuring the concentration of ciprofloxacin and of biological indicators resistant to this molecule in biofilms formed in the hospital effluent and by comparing these data to ciprofloxacin consumption and resistant bacterial isolates of the hospital. Determination of the measured environmental concentration of ciprofloxacin by spot sampling and polar organic chemical integrative (POCIS) sampling over 2 weeks, and comparison with predicted environmental concentrations produced a hazard quotient >1, indicating a potential ecotoxicological risk. A negative impact was also observed with whole hospital effluent samples using the Tetrahymena pyriformis biological model. During the same period, biofilms were formed within the hospital effluent, and analysis of ciprofloxacin-resistant isolates indicated that Gamma-Proteobacteria were numerous, predominantly Aeromonadaceae (69.56%) and Enterobacteriaceae (22.61%). Among the 115 isolates collected, plasmid-mediated fluoroquinolone-resistant genes were detected, with mostly aac(6')-lb-cr and qnrS. In addition, 60% of the isolates were resistant to up to six antibiotics, including molecules mostly used in the hospital (aminosides and third-generation cephalosporins). In parallel, 1247 bacteria isolated from hospitalized patients and resistant to at least one of the fluoroquinolones were collected. Only 5 of the 14 species identified in the effluent biofilm were also found in the clinical isolates, but PFGE typing of the Gram-negative isolates found in both compartments showed there was no clonality among the strains. Altogether, these data confirm the role of hospital loads as sources of pollution for wastewater

  4. Staphylococci with markers of antibiotic resistance collected from blood cultures

    Vittorio Focarelli

    2012-06-01

    Full Text Available Introduction: Blood culture is still the gold standard for the detection of the causative agent of sepsis. Especially in intensive care patients and those with vascular catheters, the most common organisms isolated are coagulase-negative staphylococci (CoNS and Staphylococcus aureus, both characterized by multidrug resistance. Purposes of our work are the study of the incidence of markers of resistance in staphylococci and evaluation of potential changes over the years. Materials and methods: In the period January 2008-June 2011 5239 blood cultures were analyzed.They were mainly obtained from the departments of Intensive Care, Cardiology, Hematology, General Medicine, Emergency Medicine, Infectious Diseases, Oncology, Pulmonology and Pediatric Hematoncology. The vials containing the blood were incubated in the BACTEC 9120 automated tool of Becton Dickinson and susceptibility testing performed with the Phoenix instrument of the same company. Results:Within a total of 5239 blood cultures, 3967 (75.7% were negative and 1272 (24.3% positive. Fungi were isolated in 6.2% (79 of the positive ones, Gram-negative bacteria in 24.6% (313 and Gram-positive bacteria in 69.2% (880. Within the latter, 187 (21.2% were not staphylococcal isolates, 693 (78.8% were stafiloccocci mainly represented by S. epidermidis, S. aureus, S. hominis, S. haemolyticus and S. saprophyticus. Of the 693 staphylococcal isolates, 436 (62.9% were b lactamase producers, and between them 336 (77.1% were methicillin resistant, while only 3 of 436 (0.69% were S. aureus resistant to vancomycin as well.The incidence of markers of resistance was very high, especially in patients in intensive care and cardiac surgery, who are usually subjected to combined antibiotic therapy. In the three years studied there were no statistically significant differences in the resistance of staphylococci. Conclusions: The data show an alarming high number of multi-resistant staphylococci, which is often a

  5. Antibiotic Resistance Pattern of Pseudomonas Aeruginosa, Isolated from Patient with Burn Wound Infection in Guilan,Iran

    Iraj Nikokar

    2013-03-01

    Full Text Available Background and Objectives: Antibiotic resistance of Pseudomonas aeruginosa remains a major problem in burn patients. The main objective of this study was to determine the antibiotic resistance pattern and frequency of class 1 integrons among P. aeruginosa strains isolated from patients with burn wound infections in a new Burn Centre in Guilan, Iran.Materials and Methods: The bacterial isolates were collected from 182 patients with burn wound infections and P. aeruginosa species were identified by standard bacteriological methods. The drug susceptibility test, using 11 antimicrobial agents, was performed for all the isolates via agar disk diffusion method. PCR was carried out for the detection of integrons.Results: Out of a total of 182 hospitalized patients in the burn center assessed, 86 (47% found to have P. aeruginosa in their isolates. Resistance rates to various antibiotics were as follows: cloxacillin (91.8%, cotrimoxazole (86%, cephazolin (83.7%, carbenicillin (74.4%, piperacillin (69.9%, ceftazidime (68.8%, ciprofloxacin (66.3%, tobramycin (58.2%, amikacin (48.8% and gentamicin (37.2%, while the most effective antibiotic was imipenem with a resistance rate of 23.3%. Thirty nine (45.3% isolates were detected as multi-drug resistant. The PCR results showed that 37 (43% P. aeruginosa isolates and 27 (69.2% multi-drug resistant strains harbored class 1 integrons. A significant correlation was obtained between the presence of integrons and resistance against imipenem, ceftazidime, piperacillin and ciprofloxacin (P < 0.001.Conclusion: Optimization of using antimicrobial agents and control of infection is recommended to prevent the increasing population of drug resistant organisms in the new burn centre setting in this study. Furthermore, the high frequency of class 1 integrons among multi-drug resistant strains might be responsible for dissemination of antibiotic resistance gene.

  6. Antibiotic Resistance of Isolated Bacteria from Urban and Hospital Wastewaters in Hamadan City

    M Karimi

    2011-04-01

    Full Text Available "nBackground and Objectives: widely use of antibiotics as therapy and uncontrolled discharge of them to receiving waters increased the percentages of antibiotic resistant bacteria in various environments which may cause problems in therapy. The aim of this study was to investigate the antibiotic resistance of E. coli, K. pneumoniae and P. aeruginosa bacteria isolated from urban and hospital wastewaters. Nine antibiotics namely Chloramphenicol, Ciprofloxacin, Trimethoprim Sulfamethoxazol, Gentamycin, Ceftizoxime, Nalidixic Acid, Ceftazidime, Ceftriaxon and Cefalexin were investigated in this study."nMaterials and Methods: through a cross-sectional descriptive study the isolation of bacteria from hospital and urban wastewater samples was performed by microbiological identification techniques. The resistance to nine antibiotics was tested by application of the standard disc diffusion technique and zone-size interpretation chart of Kirby-Baeur. Non-parametric Mann-Whitney test was used to assessing two environments differences."nResults: The resistance percentage of E. coli to studied antibiotics was significantly less (ranged from 1.81 to 51.02% than the resistance percentage of P. aeroginosa (ranged from 3.57 to 61.76 and K. pneumoniae (ranged from 6.45 to 91.83%. the highest resistance to antibiotics studied was for K. pneumonia in comparison with others. E. coli, K. pneumonia and P. aeroginosa bacteria showed the highest resistance to CAZ, SXT and CN, respectively. The study showed the resistance rate in hospital wastewater is more than urban wastewater."nConclusion: Easy access and uncontrolled usage of antibiotics cause discharge of antibiotics to wastewaters and consequently diminish the drugs' effectiveness. High concentration of antibiotic and diversity in wastewater of hospital in comparison with urban wastewater causes to transfer resistant agents between bacteria and increased the multiple resistances.

  7. Microbial assessment and prevalence of antibiotic resistance in polluted Oluwa River, Nigeria

    T.A. Ayandiran

    2014-01-01

    Full Text Available Antibiotics are emerging environmental contaminants, causing both short-term and long-term alterations of natural microbial communities due to their high biological activities. The antibiotic resistance pattern of bacteria from anthropogenic polluted Oluwa River, Nigeria was carried out. Microbial profiling and antibiotic sensitivity tests were carried out on water and sediment samples using 13 different antibiotics. Microorganisms isolated include those in the genera Bacillus, Micrococcus, Pseudomonas, Streptococcus, Proteus and Staphylococcus. The microbial count of isolates from water samples ranged between 94.10 × 102 Cfu/100 ml and 156.20 × 102 Cfu/100 ml while that of sediment samples ranged from 2.55 × 104 Cfu g−1 to 14.30 × 104 Cfu g−1. From the water isolates, 100% resistance to antibiotics was found in Micrococcus spp. and Pseudomonas spp. while another Micrococcus, Streptococcus, Staphylococcus and Bacillus spp. showed between 40% and 90% resistances. From the sediment isolates, 100% resistance to antibiotics was found in a Bacillus spp. and Pseudomonas spp. while another Bacillus, Micrococcus, Staphylococcus, Streptococcus and Proteus spp. showed between 70% and 90% resistances. Multiple antibiotic resistance (MAR was shown by all the isolates and Bacillus, Micrococcus and Pseudomonas spp. showed the highest resistances (100% to all antibiotics. Thus, Oluwa River is not safe for public consumption.

  8. Antibiotic resistance pattern among the Salmonella isolated from human, animal and meat in India.

    Singh, Shweta; Agarwal, Rajesh Kumar; Tiwari, Suresh C; Singh, Himanshu

    2012-03-01

    The present study was conducted to study the antibiotic resistance pattern among nontyphoidal Salmonella isolated from human, animal and meat. A total of 37 Salmonella strains isolated from clinical cases (human and animal) and meat during 2008-2009 belonging to 12 serovars were screened for their antimicrobial resistance pattern using 25 antimicrobial agents falling under 12 different antibiotic classes. All the Salmonella isolates tested showed multiple drug resistance varying from 5.40% to 100% with 16 of the 25 antibiotics tested. None of the isolates were sensitive to erythromycin and metronidazole. Resistance was also observed against clindamycin (94.59%), ampicillin (86.49%), co-trimoxazole (48.65%), colistin (45.94%), nalidixic acid (35.10%), amoxyclave (18.90%), cephalexin, meropenem, tobramycin, nitrofurantoin, tetracycline, amoxicillin (8.10% each), sparfloxacin and streptomycin (5.40% each). Isolates from clinical cases of animals were resistant to as many as 16 antibiotics, whereas isolates from human clinical cases and meat were resistant to 9 and 14 antibiotics, respectively. Overall, 19 resistotypes were recorded. Analysis of multiple antibiotic resistance index (MARI) indicated that clinical isolates from animals had higher MARI (0.25) as compared to isolates from food (0.22) and human (0.21). Among the different serotypes studied for antibiogram, Paratyhi B isolates, showed resistance to three to 13 antibiotics, whereas Typhimurium strains were resistant to four to seven antibiotics. Widespread multidrug resistance among the isolates from human, animal and meat was observed. Some of the uncommon serotypes exhibited higher resistance rate. Considerable changes in the resistance pattern were also noted. An interesting finding was the reemergence of sensitivity to some of the old antibiotics (chloromphenicol, tetracycline). PMID:21853412

  9. Cefditoren and ceftriaxone enhance complement-mediated immunity in the presence of specific antibodies against antibiotic-resistant pneumococcal strains.

    Elisa Ramos-Sevillano

    Full Text Available BACKGROUND: Specific antibodies mediate humoral and cellular protection against invading pathogens such as Streptococcus pneumoniae by activating complement mediated immunity, promoting phagocytosis and stimulating bacterial clearance. The emergence of pneumococcal strains with high levels of antibiotic resistance is of great concern worldwide and a serious threat for public health. METHODOLOGY/PRINCIPAL FINDINGS: Flow cytometry was used to determine whether complement-mediated immunity against three antibiotic-resistant S. pneumoniae clinical isolates is enhanced in the presence of sub-inhibitory concentrations of cefditoren and ceftriaxone. The binding of acute phase proteins such as C-reactive protein and serum amyloid P component, and of complement component C1q, to pneumococci was enhanced in the presence of serum plus either of these antibiotics. Both antibiotics therefore trigger the activation of the classical complement pathway against S. pneumoniae. C3b deposition was also increased in the presence of specific anti-pneumococcal antibodies and sub-inhibitory concentrations of cefditoren and ceftriaxone confirming that the presence of these antibiotics enhances complement-mediated immunity to S. pneumoniae. CONCLUSIONS/SIGNIFICANCE: Using cefditoren and ceftriaxone to promote the binding of acute phase proteins and C1q to pneumococci, and to increase C3b deposition, when anti-pneumococcal antibodies are present, might help reduce the impact of antibiotic resistance in S. pneumoniae infections.

  10. Antibiotic Use, Its Resistance in Nepal and Recommendations for Action: A Situation Analysis.

    Basnyat, B; Pokharel, P; Dixit, S; Giri, S

    2015-01-01

    Antibiotics are crucial, life-saving medicines in the fight against infectious disease, but resistance to these drugs is growing all over. This article presents key findings from a detailed situation analysis produced by the Global Antibiotic Resistance Partnership (GARP)-Nepal working group. In the absence of nationally-representative surveillance, it is not possible to fully describe antibiotic resistance in the country, but many important bacterial pathogens are highly resistant to most first-line and some second-line antibiotics, according to available reports. In credible studies, more than half of Escherichia coli, Klebsiella pneumoniae and Streptococcus pneumoniae isolates tested, and over 30 percent of some Shigella spp. and Vibrio cholerae isolates were resistant to first-line antibiotics. The findings for Neisseria gonorrheae and hospital-acquired Staphylococcus aureus are similar. Antibiotic use in animal food is poorly documented in Nepal, but it is commonly acknowledged to be widespread, contributing to the overall antibiotic resistance burden. The volume of veterinary antibiotic sales in Nepal rose over 50 percent from 2008 to 2012, most through retailers without veterinarian prescription. Antibiotics are necessary to treat infections in animals, but they are also used extensively for preventing disease, a use that can be restricted without jeopardizing animal or human health. They may also be used for promoting animal growth, which can be eliminated with no health consequences. Nepal has made important advances in reducing mortality and morbidity and increasing health coverage, but has not yet taken steps to address antibiotic resistance. The GARP-Nepal working group outlines the components of a national strategy on antibiotic resistance, consistent with the recent call by the World Health Organization for national action plans, to be developed collaboratively with stakeholders and partners from government and all relevant sectors. PMID:26744193

  11. Resistance Genes and Genetic Elements Associated with Antibiotic Resistance in Clinical and Commensal Isolates of Streptococcus salivarius.

    Chaffanel, Fanny; Charron-Bourgoin, Florence; Libante, Virginie; Leblond-Bourget, Nathalie; Payot, Sophie

    2015-06-15

    The diversity of clinical (n = 92) and oral and digestive commensal (n = 120) isolates of Streptococcus salivarius was analyzed by multilocus sequence typing (MLST). No clustering of clinical or commensal strains can be observed in the phylogenetic tree. Selected strains (92 clinical and 46 commensal strains) were then examined for their susceptibilities to tetracyclines, macrolides, lincosamides, aminoglycosides, and phenicol antibiotics. The presence of resistance genes tet(M), tet(O), erm(A), erm(B), mef(A/E), and catQ and associated genetic elements was investigated by PCR, as was the genetic linkage of resistance genes. High rates of erythromycin and tetracycline resistance were observed among the strains. Clinical strains displayed either the erm(B) (macrolide-lincosamide-streptogramin B [MLSB] phenotype) or mef(A/E) (M phenotype) resistance determinant, whereas almost all the commensal strains harbored the mef(A/E) resistance gene, carried by a macrolide efflux genetic assembly (MEGA) element. A genetic linkage between a macrolide resistance gene and genes of Tn916 was detected in 23 clinical strains and 5 commensal strains, with a predominance of Tn3872 elements (n = 13), followed by Tn6002 (n = 11) and Tn2009 (n = 4) elements. Four strains harboring a mef(A/E) gene were also resistant to chloramphenicol and carried a catQ gene. Sequencing of the genome of one of these strains revealed that these genes colocalized on an IQ-like element, as already described for other viridans group streptococci. ICESt3-related elements were also detected in half of the isolates. This work highlights the potential role of S. salivarius in the spread of antibiotic resistance genes both in the oral sphere and in the gut. PMID:25862227

  12. Antibiotic resistance patterns in Escherichia coli from gulls in nine European countries

    Johan Stedt

    2014-01-01

    Full Text Available Background: The prevalence of antibiotic resistant faecal indicator bacteria from humans and food production animals has increased over the last decades. In Europe, resistance levels in Escherichia coli from these sources show a south-to-north gradient, with more widespread resistance in the Mediterranean region compared to northern Europe. Recent studies show that resistance levels can be high also in wildlife, but it is unknown to what extent resistance levels in nature conform to the patterns observed in human-associated bacteria. Methods: To test this, we collected 3,158 faecal samples from breeding gulls (Larus sp. from nine European countries and tested 2,210 randomly isolated E. coli for resistance against 10 antibiotics commonly used in human and veterinary medicine. Results: Overall, 31.5% of the gull E. coli isolates were resistant to ≥1 antibiotic, but with considerable variation between countries: highest levels of isolates resistant to ≥1 antibiotic were observed in Spain (61.2% and lowest levels in Denmark (8.3%. For each tested antibiotic, the Iberian countries were either the countries with the highest levels or in the upper range in between-country comparisons, while northern countries generally had a lower proportion of resistant E. coli isolates, thereby resembling the gradient of resistance seen in human and food animal sources. Conclusion: We propose that gulls may serve as a sentinel of environmental levels of antibiotic resistant E. coli to complement studies of human-associated microbiota.

  13. Multiple Pathways of Genome Plasticity Leading to Development of Antibiotic Resistance

    Didier Mazel

    2013-05-01

    Full Text Available The emergence of multi-resistant bacterial strains is a major source of concern and has been correlated with the widespread use of antibiotics. The origins of resistance are intensively studied and many mechanisms involved in resistance have been identified, such as exogenous gene acquisition by horizontal gene transfer (HGT, mutations in the targeted functions, and more recently, antibiotic tolerance through persistence. In this review, we focus on factors leading to integron rearrangements and gene capture facilitating antibiotic resistance acquisition, maintenance and spread. The role of stress responses, such as the SOS response, is discussed.

  14. Recognition determinants for proteins and antibiotics within 23S rRNA

    Douthwalte, S; Voldborg, Bjørn Gunnar Rude; Hansen, Lykke Haastrup;

    1995-01-01

    Ribosomal RNAs fold into phylogenetically conserved secondary and tertiary structures that determine their function in protein synthesis. We have investigated Escherichia coli 23S rRNA to identify structural elements that interact with antibiotic and protein ligands. Using a combination of...... molecular genetic and biochemical probing techniques, we have concentrated on regions of the rRNA that are connected with specific functions. These are located in different domains within the 23S rRNA and include the ribosomal GTPase-associated center in domain II, which contains the binding sites for r......-proteins L10.(L12)4 and L11 and is inhibited by interaction with the antibiotic thiostrepton. The peptidyltransferase center within domain V is inhibited by macrolide, lincosamide, and streptogramin B antibiotics, which interact with the rRNA around nucleotide A2058. Drug resistance is conferred by mutations...

  15. Update on antibiotic resistance in foodborne Lactobacillus and Lactococcus species

    Chiara eDevirgiliis

    2013-10-01

    Full Text Available Lactobacilli represent a major Lactic Acid Bacteria (LAB component within the complex microbiota of fermented foods obtained from meat, dairy and vegetable sources. Lactococci, on the other hand, are typical of milk and fermented dairy products, which in turn represent the vast majority of fermented products. As is the case for all species originating from the environment, foodborne lactobacilli and lactococci consist of natural, uncharacterized strains, whose biodiversity depends on geographical origin, seasonality, animal feeding/plant growth conditions. Although a few species of opportunistic pathogens have been described in lactobacilli and lactococci, they are mostly non-pathogenic, Gram-positive bacteria displaying probiotic features. Since antibiotic resistant (AR strains do not constitute an immediate threat to human health, scientific interest for detailed studies on AR genes in these species has been greatly hindered. However, increasing evidence points at a crucial role for foodborne LAB as reservoir of potentially transmissible AR genes, underlining the need for further, more detailed studies aimed at identifying possible strategies to avoid AR spread to pathogens through fermented food consumption. The availability of a growing number of sequenced bacterial genomes has been very helpful in identifying the presence/distribution of mobile elements associated with AR genes, but open questions and knowledge gaps still need to be filled, underlining the need for systematic and datasharing approaches to implement both surveillance and mechanistic studies on transferability of AR genes. In the present review we report an update of the recent literature on AR in lactobacilli and lactococci following the 2006 EU-wide ban of the use of antibiotics as feed additives in animal farming, and we discuss the limits of the present knowledge in evaluating possible risks for human health.

  16. Update on antibiotic resistance in foodborne Lactobacillus and Lactococcus species.

    Devirgiliis, Chiara; Zinno, Paola; Perozzi, Giuditta

    2013-01-01

    Lactobacilli represent a major Lactic Acid Bacteria (LAB) component within the complex microbiota of fermented foods obtained from meat, dairy, and vegetable sources. Lactococci, on the other hand, are typical of milk and fermented dairy products, which in turn represent the vast majority of fermented foods. As is the case for all species originating from the environment, foodborne lactobacilli and lactococci consist of natural, uncharacterized strains, whose biodiversity depends on geographical origin, seasonality, animal feeding/plant growth conditions. Although a few species of opportunistic pathogens have been described, lactobacilli and lactococci are mostly non-pathogenic, Gram-positive bacteria displaying probiotic features. Since antibiotic resistant (AR) strains do not constitute an immediate threat to human health, scientific interest for detailed studies on AR genes in these species has been greatly hindered. However, increasing evidence points at a crucial role for foodborne LAB as reservoir of potentially transmissible AR genes, underlining the need for further, more detailed studies aimed at identifying possible strategies to avoid AR spread to pathogens through fermented food consumption. The availability of a growing number of sequenced bacterial genomes has been very helpful in identifying the presence/distribution of mobile elements associated with AR genes, but open questions and knowledge gaps still need to be filled, highlighting the need for systematic and datasharing approaches to implement both surveillance and mechanistic studies on transferability of AR genes. In the present review we report an update of the recent literature on AR in lactobacilli and lactococci following the 2006 EU-wide ban of the use of antibiotics as feed additives in animal farming, and we discuss the limits of the present knowledge in evaluating possible risks for human health. PMID:24115946

  17. Antibiotic resistance pattern and gene expression of non-typhoid Salmonella in riversheds.

    Hsu, Chao-Yu; Hsu, Bing-Mu; Ji, Wen-Tsai; Chen, Jung-Sheng; Hsu, Tsui-Kang; Ji, Dar-Der; Tseng, Shao-Feng; Chiu, Yi-Chou; Kao, Po-Min; Huang, Yu-Li

    2015-05-01

    In this study, antibiotic resistance and major phenol and genotypes of non-typhoid Salmonella spp. from riversheds in Taiwan were examined. In 236 water samples tested, 54 (22.9%) contained Salmonella spp. Fifteen Salmonella serovars were identified from the Salmonella isolates, and some common serovars are associated with infections of human and livestock, including Albany (27.8%), Newport (14.8%), Bareilly (13.0%), Derby (11.1%), and Typhimurium (7.4%). Various environmental factors may also affect the presence and proportion of different serovars in the receiving waters. In contrast, serovars with narrower range of hosts, e.g., Dublin, were rarely detected. The Salmonella isolates were subjected to eight antibiotics for drug resistance, and 51.9% of the samples were resistant to at least one tested antibiotics. Tetracycline and sulfadiazine were the two most ineffective antibiotics against the Salmonella isolates, and the results were indicative of long-term antibiotics abuse as fodder supplements in animal husbandry. The more commonly detected serovars such as Albany, Derby, and Typhimurium were also more likely to be resistant to multiple antibiotics. Finally, a significant correlation was observed between resistance to chloramphenicol and the resistance gene cmlA, suggesting that the resistance genotypes could persist in the environment even long after prohibition of the drug use. The high prevalence of antibiotic-resistant Salmonella spp. infers elevated infection risks that must be further examined. PMID:25563835

  18. Evolution of an Antibiotic Resistance Enzyme Constrained by Stability and Activity Trade-offs

    Wang, Xiaojun; Minasov, George; Shoichet, Brian K. (NWU)

    2010-03-08

    Pressured by antibiotic use, resistance enzymes have been evolving new activities. Does such evolution have a cost? To investigate this question at the molecular level, clinically isolated mutants of the {beta}-lactamase TEM-1 were studied. When purified, mutant enzymes had increased activity against cephalosporin antibiotics but lost both thermodynamic stability and kinetic activity against their ancestral targets, penicillins. The X-ray crystallographic structures of three mutant enzymes were determined. These structures suggest that activity gain and stability loss is related to an enlarged active site cavity in the mutant enzymes. In several clinically isolated mutant enzymes, a secondary substitution is observed far from the active site (Met182 {yields} Thr). This substitution had little effect on enzyme activity but restored stability lost by substitutions near the active site. This regained stability conferred an advantage in vivo. This pattern of stability loss and restoration may be common in the evolution of new enzyme activity.

  19. Antibiotic resistance modulation by natural products obtained from Nasutitermes corniger (Motschulsky, 1855) and its nest.

    Chaves, Thiago P; Clementino, Elaine L C; Felismino, Delcio C; Alves, Rômulo R N; Vasconcellos, Alexandre; Coutinho, Henrique D M; Medeiros, Ana Cláudia D

    2015-07-01

    Insects and their products are included in the traditional pharmacopoeia of various ethnic groups worldwide. In the Brazilian semiarid region can be highlighted the use of the termite Nasutitermes corniger for the treatment of various diseases. This study evaluated the ethanol extract of N. corniger and its nest as an antimicrobial agent and as a modulator of bacterial resistance against multidrug strains. The Minimum Inhibitory Concentration (MIC) of the extract on Staphylococcus aureus and Escherichia coli by microdilution was determined, as well as MIC of antibiotics in the presence and absence of extract. Despite having no significant antimicrobial activity (MIC ⩾ 1000 μg mL(-1)), the extract showed additive activity to the antibiotic efficacy, significantly reducing its MIC. These results suggest that N. corniger and its nest are promising natural products for use in antimicrobial therapy. PMID:26150745

  20. Antibiotic-Resistant Fecal Bacteria, Antibiotics, and Mercury in Surface Waters of Oakland County, Michigan, 2005-2006

    Fogarty, Lisa R.; Duris, Joseph W.; Crowley, Suzanne L.; Hardigan, Nicole

    2007-01-01

    Water samples collected from 20 stream sites in Oakland and Macomb Counties, Mich., were analyzed to learn more about the occurrence of cephalosporin-resistant Escherichia coli (E. coli) and vancomycin-resistant enterococci (VRE) and the co-occurrence of antibiotics and mercury in area streams. Fecal indicator bacteria concentrations exceeded the Michigan recreational water-quality standard of 300 E. coli colony-forming units (CFU) per 100 milliliters of water in 19 of 35 stream-water samples collected in Oakland County. A gene commonly associated with enterococci from humans was detected in samples from Paint Creek at Rochester and Evans Ditch at Southfield, indicating that human fecal waste is a possible source of fecal contamination at these sites. E. coli resistant to the cephalosporin antibiotics (cefoxitin and/or ceftriaxone) were found at all sites on at least one occasion. The highest percentages of E. coli isolates resistant to cefoxitin and ceftriaxone were 71 percent (Clinton River at Auburn Hills) and 19 percent (Sashabaw Creek near Drayton Plains), respectively. Cephalosporin-resistant E. coli was detected more frequently in samples from intensively urbanized or industrialized areas than in samples from less urbanized areas. VRE were not detected in any sample collected in this study. Multiple antibiotics (azithromycin, erythromycin, ofloxacin, sulfamethoxazole, and trimethoprim) were detected in water samples from the Clinton River at Auburn Hills, and tylosin (an antibiotic used in veterinary medicine and livestock production that belongs to the macrolide group, along with erythromycin) was detected in one water sample from Paint Creek at Rochester. Concentrations of total mercury were as high as 19.8 nanograms per liter (Evans Ditch at Southfield). There was no relation among percentage of antibiotic-resistant bacteria and measured concentrations of antibiotics or mercury in the water. Genetic elements capable of exchanging multiple antibiotic-resistance

  1. Multiple antibiotic-resistant bacteria on fluted pumpkin leaves, a herb of therapeutic value.

    Igbeneghu, Oluwatoyin A; Abdu, Abdulrasheed B

    2014-06-01

    Fluted pumpkin (Telfairia occidentalis) is a minimally-processed green leafy vegetable traditionally used for its antianaemic properties in the form of leaf juice without a heating or inactivation step before consumption. The aim of the study was to assess the presence of surface microbiota on T. occidentalis leaves and also to determine the antimicrobial susceptibility of isolated organisms. Bacterial contaminants on 50 samples of T. occidentalis leaves were isolated and characterized using standard biochemical methods and the antimicrobial susceptibility of isolated organisms was determined using the antibiotic disc diffusion assay. The results obtained show that the leaves of T. occidentalis is contaminated with organisms which included Enterobacter agglomerans (25.9%), Proteus vulgaris (24.9%), Klebsiella spp. (2.6%), and Serratia liquefaciens (2.1%). Other bacterial isolates recovered in order of frequency included: Staphylococcus spp. (33.7%), Bacillus spp. (8.3%), and Pseudomonas fluorescens (2.6%). Of the 193 bacterial isolates from the leaves of T. occidentalis samples tested for antimicrobial resistance, all (100%) were found to be resistant to ampicillin, cloxacillin, augmentin, erythromycin, and tetracycline while 96% of the isolates were resistant to cephalothin. Resistance to trimethoprim (93%) and gentamicin (83%) was also observed. Approximately, 22% of the isolates were resistant to ciprofloxacin; however, only 11 (5.8%) were resistant to ofloxacin. Thus, uncooked T. occidentalis is a potential source of highly-resistant epiphytic bacteria which could be opportunistic pathogens in consumers. PMID:25076655

  2. Exposure to phages has little impact on the evolution of bacterial antibiotic resistance on drug concentration gradients

    Zhang, Quan-Guo

    2014-01-01

    The use of phages for treating bacterial pathogens has recently been advocated as an alternative to antibiotic therapy. Here, we test a hypothesis that bacteria treated with phages may show more limited evolution of antibiotic resistance as the fitness costs of resistance to phages may add to those of antibiotic resistance, further reducing the growth performance of antibiotic-resistant bacteria. We did this by studying the evolution of phage-exposed and phage-free Pseudomonas fluorescens cul...

  3. Antibiotics as selectors and accelerators of diversity in the mechanisms of resistance: From the resistome to genetic plasticity in the beta-lactamases world

    Juan- Carlos eGalán

    2013-02-01

    Full Text Available Antibiotics and antibiotic resistance determinants, natural molecules closely related to bacterial physiology and consistent with an ancient origin, are not only present in antibiotic-producing bacteria. Throughput sequencing technologies have revealed an unexpected reservoir of antibiotic resistance in the environment. These data suggest that co-evolution between antibiotic and antibiotic resistance genes has occurred since the beginning of time. This evolutionary race has probably been slow because of highly regulated processes and low antibiotic concentrations. Therefore to understand this global problem, a new variable must be introduced, that the antibiotic resistance is a natural event, inherent to life. However, the industrial production of natural and synthetic antibiotics has dramatically accelerated this race, selecting some of the many resistance genes present in nature and contributing to their diversification. One of the best models available to understand the biological impact of selection and diversification are -lactamases. They constitute the most widespread mechanism of resistance, at least among pathogenic bacteria, with more than 1000 enzymes identified in the literature. In the last years, there has been growing concern about the description, spread and diversification of -lactamases with carbapenemase activity and AmpC-type in plasmids. Phylogenies of these enzymes help the understanding of the evolutionary forces driving their selection. Moreover, understanding the adaptive potential of -lactamases contribute to exploration the evolutionary antagonists trajectories through the design of more efficient synthetic molecules. In this review, we attempt to analyse the antibiotic resistance problem from new perspectives. From intrinsic and environmental resistomes to the adaptive potential of resistance genes and the driving forces involved in their diversification, in order to provide a global perspective of the

  4. Relationship between Mutation of IR in the mtr System of Neisseria Gonorrhoeae and Multiple Antibiotic Resistance

    ZHANG Lixia; LIN Nengxing; HUANG Changzheng; CHEN Hongxiang; LIN Yun; TU Yating

    2006-01-01

    To study the relationship between mutation of the inverted repeat sequence (IR) in the multiple transferable resistant system (mtr) of Neisseria gonorrhoeae (NG) and itsmultiple antibiotic resistance, minimal inhibitory concentrations (MICs) for the clinically isolated strains were tested by agar-dilution-method. The mtr system's IR gene of NG was sequenced after amplification by polymerase chain reaction (PCR). Either two susce ptive or five penicillin-resistant strains had no base mutation in IR gene, while all of the 13 strains with multiple-antibiotic-resistance had a singlebase deletion (A/T). The result suggests that a single-base deletion of the thirteen-base IR sequence in mtr system of NG might result in multiple antibiotic resistance but is not associated with single antibiotic resistance.

  5. Distribution of quinolones, sulfonamides, tetracyclines in aquatic environment and antibiotic resistance in Indochina

    Satoru eSuzuki

    2012-02-01

    Full Text Available Southeast Asia has become the center of rapid industrial development and economic growth. However, this growth has far outpaced investment in public infrastructure, leading to the unregulated release of many pollutants, including wastewater-related contaminants such as antibiotics. Antibiotics are of major concern because they can easily be released into the environment from numerous sources, and can subsequently induce development of antibiotic-resistant bacteria. Recent studies have shown that for some categories of drugs this source-to-environment antibiotic resistance relationship is more complex. This review summarizes current understanding regarding the presence of quinolones, sulfonamides, and tetracyclines in aquatic environments of Indochina and the prevalence of bacteria resistant to them. Several noteworthy findings are discussed: 1 quinolone contamination and the occurrence of quinolone resistance are not correlated; 2 occurrence of the sul sulfonamide resistance gene varies geographically; and 3 microbial diversity might be related to the rate of oxytetracycline resistance.

  6. Susceptibility of antibiotic-resistant and antibiotic-sensitive foodborne pathogens to acid anionic sanitizers.

    Lopes, J A

    1998-10-01

    Acid anionic sanitizers for treatment of fruits and vegetables were prepared using ingredients generally recognized as safe by the U.S. Food and Drug Administration or anionic surfactants and organic acid food additives. They met the regulatory definition as sanitizers by showing bactericidal efficacy of 99.999% in 30 s against Staphylococcus aureus ATCC 6538 and Escherichia coli ATCC 11229. These sanitizers showed a broad spectrum of microbicidal activity against both gram-positive and gram-negative bacteria. Antibiotic-sensitive and resistant strains of Listeria monocytogenes and Salmonella typhimurium were equally susceptible to these sanitizers. The acid anionic sanitizers showed microbicidal efficacy equal to that of hypochlorite against Aeromonas hydrophila, E. coli O157:H7, L. monocytogenes, Pseudomonas aeruginosa, S. typhimurium, and S. aureus. Unlike most other sanitizers, these agents do not covalently react with organic components of food; unlike cationic agents, they do not leave residues. The acid anionic sanitizers are prepared using stable, biodegradable, and nontoxic ingredients. Rapid microbicidal activity and the ease of storage, transportation, and use make these sanitizers an attractive alternative to hypochlorite for sanitizing fruits and vegetables. PMID:9798163

  7. Antibiotic susceptibility of sulfamethoxazole-trimethoprim resistant Stenotrophomonas maltophilia strains isolated at a tertiary care centre in Hungary.

    Juhász, Emese; Pongrácz, Júlia; Iván, Miklós; Kristóf, Katalin

    2015-09-01

    Sulfamethoxazole-trimethoprim (SXT) is the drug-of-choice in Stenotrophomonas maltophilia caused infections. There has been an increase in resistance to SXT of S. maltophilia over recent years. In this study 30 S. maltophilia clinical isolates resistant to SXT were investigated. Antibiotic susceptibilities for ciprofloxacin, moxifloxacin, levofloxacin, doxycycline, tigecycline, ceftazidime, colistin and chloramphenicol were determined by broth microdilution method. None of the strains were susceptible to ciprofloxacin, tigecycline, ceftazidime or colistin. Only 37% of the isolates were susceptible to levofloxacin or moxifloxacin. Two isolates resistant to all tested antibiotic agents and two others susceptible only to doxycycline were further investigated: susceptibility for combinations of antibiotics was analyzed by checkerboard technique. According to the fractional inhibitory concentration indices calculated, moxifloxacin plus ceftazidime combination was found to be synergistic in each case. Genetic testing revealed the predominance of sul1 gene. Our study concluded that the range of effective antibiotic agents is even more limited in infections caused by SXT-resistant S. maltophilia. In these cases, in vitro synergistic antibiotic combinations could be potential therapeutic options. PMID:26551572

  8. COAGULASE POSITIVE STAPHYLOCOCCI RESISTANCE TO BETALACTAM ANTIBIOTICS: USING IODOMETRIC AND ACIDOMETRIC ASSAY – 1999

    A TAVAKOLI

    2002-12-01

    Full Text Available Introduction. It is very important to know the resistant bacteria to common used antibiotics in our community. Staphylococcus coagulase positive was the main cause of infection in infectious disease. This study was done to demonstrate the pattern of resistance to batalactamase antibiotics among staphiococci. Methods. During a period of five month, 38 coagulase positive staphylococcus isolates were identified from various clinical specimens from 600 patients at the AI-Zahra university hospital (affiliated to IUMSHS. Results. Betalactamase production assays using rapid acidometric and iodometric tests showed that 78.9 percent and 73.6 percent of isolates were positive, respectively. The differnce in determination rate between acidometric and iodometric tests was not statistically significant. Moreover the acidometric test was cheaper and more easy to perform than iodometric test. In vitro sensitivity testing using the disc diffusion method showed that all of isolates were resistant to carbenicillin, ampicillin and amoxicillin, while 7.9 percent and 13.2 percent were resistant to cefazolin and cephalexin, respectively. Discussion. We recommend use of cefazolin, cephalexin and oxacillin for treatment of patients with staphylococcus infections.

  9. Antibiotic-Resistant Neisseria gonorrhoeae Spread Faster with More Treatment, Not More Sexual Partners.

    Fingerhuth, Stephanie M; Bonhoeffer, Sebastian; Low, Nicola; Althaus, Christian L

    2016-05-01

    The sexually transmitted bacterium Neisseria gonorrhoeae has developed resistance to all antibiotic classes that have been used for treatment and strains resistant to multiple antibiotic classes have evolved. In many countries, there is only one antibiotic remaining for empirical N. gonorrhoeae treatment, and antibiotic management to counteract resistance spread is urgently needed. Understanding dynamics and drivers of resistance spread can provide an improved rationale for antibiotic management. In our study, we first used antibiotic resistance surveillance data to estimate the rates at which antibiotic-resistant N. gonorrhoeae spread in two host populations, heterosexual men (HetM) and men who have sex with men (MSM). We found higher rates of spread for MSM (0.86 to 2.38 y-1, mean doubling time: 6 months) compared to HetM (0.24 to 0.86 y-1, mean doubling time: 16 months). We then developed a dynamic transmission model to reproduce the observed dynamics of N. gonorrhoeae transmission in populations of heterosexual men and women (HMW) and MSM. We parameterized the model using sexual behavior data and calibrated it to N. gonorrhoeae prevalence and incidence data. In the model, antibiotic-resistant N. gonorrhoeae spread with a median rate of 0.88 y-1 in HMW and 3.12 y-1 in MSM. These rates correspond to median doubling times of 9 (HMW) and 3 (MSM) months. Assuming no fitness costs, the model shows the difference in the host population's treatment rate rather than the difference in the number of sexual partners explains the differential spread of resistance. As higher treatment rates result in faster spread of antibiotic resistance, treatment recommendations for N. gonorrhoeae should carefully balance prevention of infection and avoidance of resistance spread. PMID:27196299

  10. Nanomechanical detection of antibiotic-mucopeptide binding in a model for superbug drug resistance

    Ndieyira, J. W.; Watari, M.; Barrera, A. Donoso; Zhou, D; Vögtli, M; Batchelor, M.; Cooper, M. A.; Strunz, T; Horton, M. A.; Abell, C; Rayment, T.; Aeppli, G.; McKendry, R. A.

    2008-01-01

    The alarming growth of the antibiotic-resistant superbugs methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) is driving the development of new technologies to investigate antibiotics and their modes of action. We report the label-free detection of vancomycin binding to bacterial cell wall precursor analogues (mucopeptides) on cantilever arrays, with 10 nM sensitivity and at clinically relevant concentrations in blood serum. Differential measurements...

  11. Screening alternative antibiotics against oxytetracycline-susceptible and -resistant Paenibacillus larvae

    Kochansky, Jan; Knox, David; Feldlaufer, Mark; Pettis, Jeffery

    2001-01-01

    International audience Since resistance of the causative organism of American foulbrood, Paenibacillus larvae subsp. larvae, to oxytetracycline (OTC) is becoming widespread in the United States, we began a search for effective alternative antibiotics. We investigated the sensitivity of P. l. larvae to 27 antibiotics, which were primarily ones already registered with the US Food and Drug Administration for agricultural uses. Bacterial resistance to OTC also conferred resistance to other tet...

  12. Nasopharyngeal carriage of community-acquired, antibiotic-resistant Streptococcus pneumoniae in a Zambian paediatric population.

    Woolfson, A; Huebner, R.; Wasas, A; Chola, S.; Godfrey-Faussett, P.; Klugman, K.

    1997-01-01

    The emergence of antibiotic-resistant Streptococcus pneumoniae is an international health problem. Apart from South Africa few data on pneumococcal resistance are available for sub-Saharan Africa. This study examines the nasopharyngeal carriage and prevalence of antibiotic resistance in pneumococci isolated from 260 Zambian children aged < 6 years. Pneumococci were isolated from 71.9% of the children; the odds of carrying organisms were twice as high among children < 2 years of age compared w...

  13. Antibiotics and the Human Gut Microbiome: Dysbioses and Accumulation of Resistances

    Francino, M. P.

    2016-01-01

    The human microbiome is overly exposed to antibiotics, due, not only to their medical use, but also to their utilization in farm animals and crops. Microbiome composition can be rapidly altered by exposure to antibiotics, with potential immediate effects on health, for instance through the selection of resistant opportunistic pathogens that can cause acute disease. Microbiome alterations induced by antibiotics can also indirectly affect health in the long-term. The mutualistic microbes in the human body interact with many physiological processes, and participate in the regulation of immune and metabolic homeostasis. Therefore, antibiotic exposure can alter many basic physiological equilibria, promoting long-term disease. In addition, excessive antibiotic use fosters bacterial resistance, and the overly exposed human microbiome has become a significant reservoir of resistance genes, contributing to the increasing difficulty in controlling bacterial infections. Here, the complex relationships between antibiotics and the human microbiome are reviewed, with focus on the intestinal microbiota, addressing (1) the effects of antibiotic use on the composition and function of the gut microbiota, (2) the impact of antibiotic-induced microbiota alterations on immunity, metabolism, and health, and (3) the role of the gut microbiota as a reservoir of antibiotic resistances. PMID:26793178

  14. Antibiotics and the human gut microbiome: dysbioses and accumulation of resistances

    M Pilar Francino

    2016-01-01

    Full Text Available The human microbiome is overly exposed to antibiotics, due, not only to their medical use, but also to their utilization in farm animals and crops. Microbiome composition can be rapidly altered by exposure to antibiotics, with potential immediate effects on health, for instance through the selection of resistant opportunistic pathogens that can cause acute disease. Microbiome alterations induced by antibiotics can also indirectly affect health in the long-term. The mutualistic microbes in the human body interact with many physiological processes, and participate in the regulation of immune and metabolic homeostasis. Therefore, antibiotic exposure can alter many basic physiological equilibria, promoting long-term disease. In addition, excessive antibiotic use fosters bacterial resistance, and the overly exposed human microbiome has become a significant reservoir of resistance genes, contributing to the increasing difficulty in controlling bacterial infections. Here, the complex relationships between antibiotics and the human microbiome are reviewed, with focus on the intestinal microbiota, addressing 1 the effects of antibiotic use on the composition and function of the gut microbiota, 2 the impact of antibiotic-induced microbiota alterations on immunity, metabolism, and health, and 3 the role of the gut microbiota as a reservoir of antibiotic resistances.

  15. Antimicrobial resistance of Helicobacter pylori strains to five antibiotics, including levofloxacin, in Northwestern Turkey

    Reyhan Caliskan

    2015-06-01

    Full Text Available INTRODUCTION: Antibiotic resistance is the main factor that affects the efficacy of current therapeutic regimens against Helicobacter pylori. This study aimed to determine the rates of resistance to efficacy clarithromycin, amoxicillin, tetracycline, levofloxacin and metronidazole among H. pylori strains isolated from Turkish patients with dyspepsia. METHODS: H. pylori was cultured from corpus and antrum biopsies that were collected from patients with dyspeptic symptoms, and the antimicrobial susceptibility of H. pylori was determined using the E-test (clarithromycin, amoxicillin, tetracycline, metronidazole and levofloxacin according to the EUCAST breakpoints. Point mutations in the 23S rRNA gene of clarithromycin-resistant strains were investigated using real-time PCR. RESULTS: A total of 98 H. pylori strains were isolated, all of which were susceptible to amoxicillin and tetracycline. Of these strains, 36.7% (36/98 were resistant to clarithromycin, 35.5% (34/98 were resistant to metronidazole, and 29.5% (29/98 were resistant to levofloxacin. Multiple resistance was detected in 19.3% of the isolates. The A2143G and A2144G point mutations in the 23S rRNA-encoding gene were found in all 36 (100% of the clarithromycin-resistant strains. Additionally, the levofloxacin MIC values increased to 32 mg/L in our H. pylori strains. Finally, among the clarithromycin-resistant strains, 27.2% were resistant to levofloxacin, and 45.4% were resistant to metronidazole. CONCLUSIONS: We conclude that treatment failure after clarithromycin- or levofloxacin-based triple therapy is not surprising and that metronidazole is not a reliable agent for the eradication of H. pylori infection in Turkey.

  16. Microbiological and biochemical studies on certain antibiotic-resistant bacteria isolated from certain clinical specimens

    Infection is a dynamic process involving invasion of the body by pathogenic microorganisms and reactions of the tissues to microorganisms and their toxins. Pathogenic microorganisms isolated from clinical samples are of great threat to human health.The outcome of an infection depends on the virulence of the pathogen and the relative degree of resistance or susceptibility to antimicrobial chemotherapy. Antimicrobial agents interfere with specific processes that are essential for growth and division.Development of antibiotic resistance in bacteria is a problem of great concern. The high prevalence of resistant bacteria seems to be related to uncontrolled usage of antibiotics. B-lactamases are the most common cause of bacterial resistance to B-lactam antimicrobial agents, and it is one of the most important reason for increasing the resistance in pathogenic bacteria against some antibiotics especially those acting on inhibition of cell wall synthesis. One hundred and seven clinical samples and specimens were collected from public, private hospitals and National Cancer Institute (NCI) in Cairo, Egypt. Out of them 72 cases positive for microbial infection. Twelve cases were showed mixed infection. Eighty four isolates of pathogenic bacteria and yeast were collected from single and mixed culture. Susceptibilities of the isolates to 20 different antimicrobial agents were determined according to Kirby-Bauer method. Nine multi-drug resistant gram-negative bacterial strains were identified by (Micro Scan WalkAway 96 SI System). Six of them urine isolates, 2 wound (pus) isolates and one sputum isolate. The identified strains were exposed to in-vitro gamma irradiation at dose level of 24.4 Gy, which is biologically equivalent to the fractionated multiple therapeutic dose used in the protocol of cancer treatment of some patients. The antimicrobial susceptibility of the nine multi-drug resistant strains were carried out by disk diffusion method before and after irradiation

  17. Resistance to antibiotics of clinical relevance in the fecal microbiota of Mexican wildlife.

    Jurgi Cristóbal-Azkarate

    Full Text Available There are a growing number of reports of antibiotic resistance (ATBR in bacteria living in wildlife. This is a cause for concern as ATBR in wildlife represents a potential public health threat. However, little is known about the factors that might determine the presence, abundance and dispersion of ATBR bacteria in wildlife. Here, we used culture and molecular methods to assess ATBR in bacteria in fecal samples from howler monkeys (Alouatta palliata, spider monkeys (Ateles geoffroyi, tapirs (Tapirus bairdii and felids (jaguars, Panthera onca; pumas, Puma concolor; jaguarundis, Puma yagouaroundi; and ocelots, Leopardus pardalis living freely in two regions of the Mexican state of Veracruz under different degrees of human influence. Overall, our study shows that ATBR is commonplace in bacteria isolated from wildlife in southeast Mexico. Most of the resistances were towards old and naturally occurring antibiotics, but we also observed resistances of potential clinical significance. We found that proximity to humans positively affected the presence of ATBR and that ATBR was higher in terrestrial than arboreal species. We also found evidence suggesting different terrestrial and aerial routes for the transmission of ATBR between humans and wildlife. The prevalence and potential ATBR transfer mechanisms between humans and wildlife observed in this study highlight the need for further studies to identify the factors that might determine ATBR presence, abundance and distribution.

  18. Resistance to antibiotics of clinical relevance in the fecal microbiota of Mexican wildlife.

    Cristóbal-Azkarate, Jurgi; Dunn, Jacob C; Day, Jennifer M W; Amábile-Cuevas, Carlos F

    2014-01-01

    There are a growing number of reports of antibiotic resistance (ATBR) in bacteria living in wildlife. This is a cause for concern as ATBR in wildlife represents a potential public health threat. However, little is known about the factors that might determine the presence, abundance and dispersion of ATBR bacteria in wildlife. Here, we used culture and molecular methods to assess ATBR in bacteria in fecal samples from howler monkeys (Alouatta palliata), spider monkeys (Ateles geoffroyi), tapirs (Tapirus bairdii) and felids (jaguars, Panthera onca; pumas, Puma concolor; jaguarundis, Puma yagouaroundi; and ocelots, Leopardus pardalis) living freely in two regions of the Mexican state of Veracruz under different degrees of human influence. Overall, our study shows that ATBR is commonplace in bacteria isolated from wildlife in southeast Mexico. Most of the resistances were towards old and naturally occurring antibiotics, but we also observed resistances of potential clinical significance. We found that proximity to humans positively affected the presence of ATBR and that ATBR was higher in terrestrial than arboreal species. We also found evidence suggesting different terrestrial and aerial routes for the transmission of ATBR between humans and wildlife. The prevalence and potential ATBR transfer mechanisms between humans and wildlife observed in this study highlight the need for further studies to identify the factors that might determine ATBR presence, abundance and distribution. PMID:25233089

  19. Occurrence of Stenotrophomonas maltophilia in agricultural soils and antibiotic resistance properties.

    Deredjian, Amélie; Alliot, Nolwenn; Blanchard, Laurine; Brothier, Elisabeth; Anane, Makram; Cambier, Philippe; Jolivet, Claudy; Khelil, Mohamed Naceur; Nazaret, Sylvie; Saby, Nicolas; Thioulouse, Jean; Favre-Bonté, Sabine

    2016-05-01

    The occurrence of Stenotrophomonas maltophilia was monitored in organic amendments and agricultural soils from various sites in France and Tunisia. S. maltophilia was detected in horse and bovine manures, and its abundance ranged from 0.294 (±0.509) × 10(3) to 880 (±33.4) × 10(3) CFU (g drywt)(-1) of sample. S. maltophilia was recovered from most tested soil samples (104/124). Its abundance varied from 0.33 (±0.52) to 414 (±50) × 10(3) CFU (g drywt)(-1) of soil and was not related to soil characteristics. Antibiotic resistance properties of a set of environmental strains were compared to a clinical set, and revealed a high diversity of antibiotic resistance profiles, given both the numbers of resistance and the phenotypes. Manure strains showed resistance phenotypes, with most of the strains resisting between 7 and 9 antibiotics. While French soil strains were sensitive to most antibiotics tested, some Tunisian strains displayed resistance phenotypes close to those of clinical French strains. Screening for metal resistance among 66 soil strains showed a positive relationship between antibiotic and metal resistance. However, the prevalence of antibiotic resistance phenotypes in the studied sites was not related to the metal content in soil samples. PMID:26774914

  20. Antibiotic resistances in Listeria monocytogenes and Salmonella enterica isolated from foods with animal origin

    Baltasar Balsalobre Hernández

    2004-12-01

    Full Text Available Extensive use of antibiotics in both human and animal health and in cattle production has generated resistant microorganisms to common antibiotics. Resistances spread caused by human and animal therapeutic is well known, but we know poorly frecuency of resistant bacteria in foods with animal origin and destinated to human consumers. In this paper, sensitivity to nineteen antibiotics was investigated in Listeria monocytogenes and Salmonella enterica strains isolated from foods with animal origin, including fresh meat, hamburgers, fresh sausages, boiled ham and new-laid chicken eggs. The plate diffusion method of Bauer-Kirby was used.Listeria monocytogenes strains showed a very high sensitivity to all antibiotics checked, with the exception of one strain tetracycline resistant. In contrast, Salmonella enterica showed a high frecuency of resistances, in special to tetracycline, streptomycin, nalidixic acid, ticarcillin, ampicillin and chloramphenicol. Moreover, multi-resistance was a common phenomenon. Twenty percent of S. enterica strains were resistant to four or more antibiotics. Frecuency of resistances was higher in 4,5,12:i:-, Hadar, Typhimurium and Virchow serotypes.In conclusion, Salmonella enterica strains isolated from foods with animal origin and destinated to human consumers are usually resistant to several antibiotics. The significance of this observation and its potential health risk must be investigated.

  1. Potential management of resistant microbial infections with a novel non-antibiotic

    Dutta, Noton Kumar; Annadurai, Subramanian; Mazumdar, Kaushiki;

    2007-01-01

    Diclofenac sodium (Dc), an anti-inflammatory agent, has remarkable inhibitory action both against drug-sensitive and drug-resistant clinical isolates of various Gram-positive and Gram-negative bacteria. The aim of this study was to determine the ability of Dc to protect mice from a virulent...... Salmonella infection. Dc injected at 1.5 microg/g and 3.0 microg/g mouse body weight significantly protected animals from the lethality of Salmonella infection. As was the case for the in vitro interaction, Dc in combination with streptomycin was even more effective. The non-antibiotic drug Dc has potential...

  2. Effects of UV light disinfection on antibiotic-resistant coliforms in wastewater effluents

    Total coliforms and total coliforms resistant to streptomycin, tetracycline, or chloramphenicol were isolated from filtered activated sludge effluents before and after UV light irradiation. Although the UV irradiation effectively disinfected the wastewater effluent, the percentage of the total surviving coliform population resistant to tetracycline or chloramphenicol was significantly higher than the percentage of the total coliform population resistant to those antibiotics before UV irradiation. This finding was attributed to the mechanism of R-factor mediated resistance to tetracycline. No significant difference was noted for the percentage of the surviving total coliform population resistant to streptomycin before or after UV irradiation. Multiple drug resistant to patterns of 300 total coliform isolates revealed that 82% were resistant to two or more antibiotics. Furthermore, 46% of these isolates were capable of transferring antibiotic resistance to a sensitive strain of Escherichia coli

  3. Prevalence and antibiotic susceptibility of methicillin-resistant Staphylococcus aureus in ocular infections

    Maria Eugenia Vola

    2013-12-01

    Full Text Available PURPOSE: To study the prevalence of methicillin-resistant Staphylococcus aureus among S. aureus ocular infections in a tertiary health center in Brazil and compare antibiotic susceptibility patterns between MRSA and methicillin-susceptible S. aureus isolates. METHODS: Electronic records from the ocular microbiology laboratory of the Universidade Federal de São Paulo were retrospectively reviewed. During a 10-year period (between January 2000 and December 2009 all conjunctivitis, keratitis, and endophthalmitis cases with a positive culture for S. aureus were identified. Antibiotic susceptibility was determined using the Kirby-Bauer disk diffusion method. RESULTS: Five hundred sixty-six S. aureus isolates were identified; of those, 56 (9.9% were resistant to methicillin. Throughout the 10-year period, Staphylococcus aureus showed a significant increasing trend from 7.55% to 16.18% among overall S. aurues infections (p=0.001 and from 3.7% to 13.16% in conjunctivitis (p=0.001. Conversely, we did not observe the same trend among those with keratitis (p=0.38. Staphylococcus aureus isolates showed higher resistance rates to tobramycin, gentamicin, ciprofloxacin, gatifloxacin, and moxifloxacin when compared with S. aureus isolates (p< 0.001. All cases were susceptible to vancomycin. CONCLUSION: We observed an increasing trend in the overall prevalence of Staphylococcus aureus ocular infections and statistically significant higher resistance rates to commonly used antibiotics compared to Staphylococcus aureus. Our data supports the need for constant bacterial surveillance and should be taken into consideration before initiating empiric treatment of ocular infections.

  4. Species Diversity and Pheno- and Genotypic Antibiotic Resistance Patterns of Staphylococci Isolated from Retail Ground Meats.

    Guran, Husnu Sahan; Kahya, Serpil

    2015-06-01

    The presence and species diversity of staphylococci in 250 ground beef and lamb meat samples obtained from Diyarbakir, Turkey were investigated. The presence of the 16S rRNA gene, mecA, nuc, pvl, and femA was analyzed by multiplex PCR. Pheno- and genotypic antibiotic resistance profiles of 208 staphylococci isolates were established. Of the ground beef and ground lamb samples, 86.4% and 62.4% were positive for staphylococci, respectively. Staphylococcus aureus, S. saprophyticus, S. hominis, S. lentus, S. pasteuri, S. warneri, S. intermedius, and S. vitulinus made up 40.8%, 28.8%, 11%, 3.8%, 3.8%, 2.4%, 2.4%, and 2.4% of isolates, respectively. Of the 85 S. aureus isolates, 40%, 47%, and 5.8% carried femA, mecA, and pvl, respectively, whereas the corresponding rates for the 118 coagulase-negative staphylococci (CoNS) were 0%, 10.1%, and 0%, respectively. We determined from the 208 isolates, the highest antibiotic resistances were to tetracycline and oxytetracycline (85.5%), followed by penicillin (51.4%), novobiocin (45.6%), ampicillin (39.9%), and doxycycline (31.7%), using the Clinical and Laboratory Standards Inst. (CLSI) method. All isolates were sensitive to gentamycin, ofloxacin, and tobramycin, but 2.3% of the S. aureus isolates had resistance to vancomycin. The staphylococci isolates carried tet(K), blaZ, tet(L), tet(W), cat, tet(S), tet(M), ermB, ermA, and ermC antibiotic resistance genes at rates of 59%, 51.7%, 36.9%, 31.8%, 27.2%, 27.2%, 24.4%, 18.1%, 7.9%, and 3.9%, respectively. PMID:25944650

  5. Occurrence and distribution of antibiotic resistance genes in the coastal area of the Bohai Bay, China.

    Niu, Zhi-Guang; Zhang, Kai; Zhang, Ying

    2016-06-15

    Considering the abuse of antibiotics worldwide, we investigated the abundance of three classes of antibiotic resistance genes (ARGs) and the concentrations of corresponding antibiotics in water and sediments of Bohai Bay. The results showed that sulI and sulII were detected in all samples, and their abundance range was 10(-5)-10(-2)/16S gene copies. The abundance of tetM and ermB were relatively higher than the other genes of tet-ARGs and erm-ARGs. Sulfonamides were the most prevalent antibiotics, and the concentrations of antibiotic in sediments were higher than those in water. The correlation analysis revealed that antibiotics had pertinence with corresponding ARGs, indicating that antibiotics play an important role in the creation and transfer of ARGs. The results of regression analysis indicated that the propagation and maintenance of sulI and sulII were facilitated by class I integrons. PMID:27107623

  6. Antibiotic resistance of Vibrio harveyi isolated from seawater in Korea.

    Kang, Chang-Ho; Kim, YongGyeong; Oh, Soo Ji; Mok, Jong-Soo; Cho, Myung-Hwan; So, Jae-Seong

    2014-09-15

    Vibrio harveyi is an opportunistic human pathogen that may cause gastroenteritis, severe necrotizing soft-tissue infections, and primary septicemia, with a potentially high rate of lethality. In this study, we isolated and characterized V. harveyi from seawater collected from the West Sea in Korea, including sites located near shellfish farms. For the initial isolation of putative V. harveyi, isolates were incubated on thiosulfate citrate bile salt sucrose agar plates for 24h, followed by selection of greenish colonies. Gram-negative and oxidase-positive colonies were subsequently confirmed by biochemical assays and the API 20E kit test system. Species-specific 16S rRNA and hemolysin genes were used to design V. harveyi-specific PCR primers. From 840 seawater samples, a total of 2 strains of V. harveyi were isolated from shellfish farm seawater. The two isolates were subjected to profiling against 16 antibiotics and found to be resistant to cephalothin, vancomycin, ampicillin, cefepime, cefotetan, and streptomycin. PMID:25066453

  7. PHENOTYPIC AND MOLECULAR CHARACTERIZATION OF ANTIBIOTICS RESISTANCE E. CLOACAE ISOLATES

    Abdalnabi J Abid

    2015-12-01

    Full Text Available The present study aimed detecting and characterizing of β-lactamases producing E.cloacae isolated from different clinical sources in Hilla hospitals using phenotypic and molecular methods. A total of 308 samples were collected from two major hospitals at Hilla Province from October 2013 to April 2014. All isolates were tested biochemically, it was found that only 15 isolates from all isolates were belonging to Enterobactercloacae. All E. cloacae isolates were primarily screened for β-lactams resistance. Antibiotic susceptibility and minimum inhibitory concentration tests were performed using disk diffusion and agar dilution methods, respectively. The molecular study documented a widespread of Amp C genes among isolates of E. cloacae isolatesrepresented by 6/15(40% positive isolates for Amp C primers. PCR assay revealed that prevalence rate of bla-TEM gene among tested isolates was 9(60%. followed by the bla-OXA gene was detected only in 3(20%.While bla-VEB gene and bla-SHV gene was not detected in any of the isolates. Some virulence factors of bacteria were also studied, and the results showed that all bacterial strains have capsule ,the results also also detected biofilm formation among isolates and the results revealed that 13(86%of the isolates are biofilm former.

  8. Antibiotic resistance among aquatic bacteria in natural freshwater environments of Korea.

    Kim, Tae Woon; Joung, Yochan; Han, Ji-Hye; Jung, Wonwha; Kim, Seung Bum

    2015-12-01

    The taxonomic diversity and antibiotic resistance among freshwater bacterial communities in the major water bodies of Korea was examined using 437 penicillin-resistant, and 110 tetracycline-resistant bacterial isolates. Based on 16S rRNA gene sequence analysis, most isolates were assigned to Proteobacteria, which was then followed by Bacteroidetes. Strains of Aeromonas were found as the most abundant penicillin-resistant populations, whereas those affiliated to diverse species including enteric groups were found as the most abundant tetracycline-resistant populations. Most strains exhibited multiple antibiotic resistance, and all tested strains were resistant to penicillin and hygromycin. High levels of resistance were observed for antibiotics acting on cell wall synthesis, whereas low levels were for those acting on DNA replication or transcription in general. It is apparent from this study that penicillin resistance is widespread among environmental bacteria, although the antibiotic has been generally non-detectable in the environment. It is also likely from the taxonomic composition of the resistant communities that various sources including terrestrial animals and humans may contribute to antibiotic resistance in the freshwater environment. PMID:26608770

  9. IncF Plasmids Are Commonly Carried by Antibiotic Resistant Escherichia coli Isolated from Drinking Water Sources in Northern Tanzania

    Lyimo, Beatus; Buza, Joram; Subbiah, Murugan; Temba, Sylivester; Kipasika, Honest; Smith, Woutrina; Call, Douglas R.

    2016-01-01

    The aim of this study was to identify the replicon types of plasmids, conjugation efficiencies, and the complement of antibiotic resistance genes for a panel of multidrug resistant E. coli isolates from surface waters in northern Tanzania. Standard membrane filtration was used to isolate and uidA PCR was used to confirm the identity of strains as E. coli. Antibiotic susceptibility was determined by breakpoint assay and plasmid conjugation was determined by filter-mating experiments. PCR and sequencing were used to identify resistance genes and PCR-based replicon typing was used to determine plasmid types. Filter mating experiments indicated conjugation efficiencies ranged from 10−1 to 10−7. Over 80% of the donor cells successfully passed their resistance traits and eleven different replicon types were detected (IncI1, FIC, P, FIIA, A/C, FIB, FIA, H12, K/B B/O, and N). IncF plasmids were most commonly detected (49% of isolates), followed by types IncI1 and IncA/C. Detection of these public health-relevant conjugative plasmids and antibiotic resistant traits in Tanzanian water suggests the possible pollution of these water sources from human, livestock, and wild animal wastes and also shows the potential of these water sources in the maintenance and transmission of these resistance traits between environments, animals, and people. PMID:27110245

  10. IncF Plasmids Are Commonly Carried by Antibiotic Resistant Escherichia coli Isolated from Drinking Water Sources in Northern Tanzania

    Beatus Lyimo

    2016-01-01

    Full Text Available The aim of this study was to identify the replicon types of plasmids, conjugation efficiencies, and the complement of antibiotic resistance genes for a panel of multidrug resistant E. coli isolates from surface waters in northern Tanzania. Standard membrane filtration was used to isolate and uidA PCR was used to confirm the identity of strains as E. coli. Antibiotic susceptibility was determined by breakpoint assay and plasmid conjugation was determined by filter-mating experiments. PCR and sequencing were used to identify resistance genes and PCR-based replicon typing was used to determine plasmid types. Filter mating experiments indicated conjugation efficiencies ranged from 10−1 to 10−7. Over 80% of the donor cells successfully passed their resistance traits and eleven different replicon types were detected (IncI1, FIC, P, FIIA, A/C, FIB, FIA, H12, K/B B/O, and N. IncF plasmids were most commonly detected (49% of isolates, followed by types IncI1 and IncA/C. Detection of these public health-relevant conjugative plasmids and antibiotic resistant traits in Tanzanian water suggests the possible pollution of these water sources from human, livestock, and wild animal wastes and also shows the potential of these water sources in the maintenance and transmission of these resistance traits between environments, animals, and people.

  11. IncF Plasmids Are Commonly Carried by Antibiotic Resistant Escherichia coli Isolated from Drinking Water Sources in Northern Tanzania.

    Lyimo, Beatus; Buza, Joram; Subbiah, Murugan; Temba, Sylivester; Kipasika, Honest; Smith, Woutrina; Call, Douglas R

    2016-01-01

    The aim of this study was to identify the replicon types of plasmids, conjugation efficiencies, and the complement of antibiotic resistance genes for a panel of multidrug resistant E. coli isolates from surface waters in northern Tanzania. Standard membrane filtration was used to isolate and uidA PCR was used to confirm the identity of strains as E. coli. Antibiotic susceptibility was determined by breakpoint assay and plasmid conjugation was determined by filter-mating experiments. PCR and sequencing were used to identify resistance genes and PCR-based replicon typing was used to determine plasmid types. Filter mating experiments indicated conjugation efficiencies ranged from 10(-1) to 10(-7). Over 80% of the donor cells successfully passed their resistance traits and eleven different replicon types were detected (IncI1, FIC, P, FIIA, A/C, FIB, FIA, H12, K/B B/O, and N). IncF plasmids were most commonly detected (49% of isolates), followed by types IncI1 and IncA/C. Detection of these public health-relevant conjugative plasmids and antibiotic resistant traits in Tanzanian water suggests the possible pollution of these water sources from human, livestock, and wild animal wastes and also shows the potential of these water sources in the maintenance and transmission of these resistance traits between environments, animals, and people. PMID:27110245

  12. Detection of antibiotic resistance and tetracycline resistance genes in Enterobacteriaceae isolated from the Pearl rivers in South China

    Tao Ran [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, Tianhe District, Guangzhou 510640 (China); Ying Guangguo, E-mail: guangguo.ying@gmail.co [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, Tianhe District, Guangzhou 510640 (China); Su Haochang [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, Tianhe District, Guangzhou 510640 (China); Zhou Hongwei [Department of Environmental Health, School of Public Health and Tropical Medicine, Southern Medical University, 1838 North Guangzhou Street, Baiyun District, Guangzhou 510515 (China); Sidhu, Jatinder P.S. [CSIRO Land and Water, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia QLD 4067 (Australia)

    2010-06-15

    This study investigated antibiotic resistance profiles and tetracycline resistance genes in Enterobacteriaceae family isolates from the Pearl rivers. The Enterobacteriaceae isolates were tested for susceptibility to seven antibiotics ampicillin, chloramphenicol, ciprofloxacin, levofloxacin, sulphamethoxazole/trimethoprim, tetracycline and trimethoprim. In Liuxi reservoir, with an exception to ampicillin resistant strains (11%) no other antibiotic resistance bacterial strains were detected. However, multiple drug resistance in bacterial isolates from the other sites of Pearl rivers was observed which is possibly due to sewage discharge and input from other anthropogenic sources along the rivers. Four tetracycline resistance genes tet A, tet B, tet C and tet D were detected in the isolates from the rivers. The genes tet A and tet B were widely detected with the detection frequencies of 43% and 40% respectively. Ciprofloxacin and levofloxacin resistant enteric bacteria were also isolated from the pig and duck manures which suggest a wider distribution of human specific drugs in the environment. This investigation provided a baseline data on antibiotic resistance profiles and tetracycline resistance genes in the Pearl rivers delta. - High rates of antibiotic resistance in Enterobacteriaceae from river water are attributed to wastewater contamination.

  13. Detection of antibiotic resistance and tetracycline resistance genes in Enterobacteriaceae isolated from the Pearl rivers in South China

    This study investigated antibiotic resistance profiles and tetracycline resistance genes in Enterobacteriaceae family isolates from the Pearl rivers. The Enterobacteriaceae isolates were tested for susceptibility to seven antibiotics ampicillin, chloramphenicol, ciprofloxacin, levofloxacin, sulphamethoxazole/trimethoprim, tetracycline and trimethoprim. In Liuxi reservoir, with an exception to ampicillin resistant strains (11%) no other antibiotic resistance bacterial strains were detected. However, multiple drug resistance in bacterial isolates from the other sites of Pearl rivers was observed which is possibly due to sewage discharge and input from other anthropogenic sources along the rivers. Four tetracycline resistance genes tet A, tet B, tet C and tet D were detected in the isolates from the rivers. The genes tet A and tet B were widely detected with the detection frequencies of 43% and 40% respectively. Ciprofloxacin and levofloxacin resistant enteric bacteria were also isolated from the pig and duck manures which suggest a wider distribution of human specific drugs in the environment. This investigation provided a baseline data on antibiotic resistance profiles and tetracycline resistance genes in the Pearl rivers delta. - High rates of antibiotic resistance in Enterobacteriaceae from river water are attributed to wastewater contamination.

  14. Antibiotics and the Human Gut Microbiome: Dysbioses and Accumulation of Resistances

    Francino, M. P.

    2016-01-01

    The human microbiome is overly exposed to antibiotics, due, not only to their medical use, but also to their utilization in farm animals and crops. Microbiome composition can be rapidly altered by exposure to antibiotics, with potential immediate effects on health, for instance through the selection of resistant opportunistic pathogens that can cause acute disease. Microbiome alterations induced by antibiotics can also indirectly affect health in the long-term. The mutualistic microbes in the...

  15. Antibiotics and the human gut microbiome: dysbioses and accumulation of resistances

    M Pilar eFrancino

    2016-01-01

    The human microbiome is overly exposed to antibiotics, due, not only to their medical use, but also to their utilization in farm animals and crops. Microbiome composition can be rapidly altered by exposure to antibiotics, with potential immediate effects on health, for instance through the selection of resistant opportunistic pathogens that can cause acute disease. Microbiome alterations induced by antibiotics can also indirectly affect health in the long-term. The mutualistic microbes in the...

  16. The resistance of Enterobacteriaceae members and Pseudomonas species to p-laktam antibiotics

    Durmaz, Dr. Bengül; ÖZEROL, Dr. İ Halil; Şahin, Dr. Kazını; Tekerekoğlu, Dr. M. Sait; Köroğlu, Dr. Mehmet

    1997-01-01

    This study was performed in İnönü University Turgut ÖZAL Medical Center to asses the resistance of Enterobacteriaceae and Pseudomonas species to P-laktam antibiotics. From October 1995 to February 1997, 1126 Gram negative bacilli were isolated. 1022 (91) of isolates were Enterobacteriaceae members whereas 104 (9%) of them were Pseudomonas species. Sensitivities of pathogens P-laktam antibiotics were performed by Kirby-Bauer disc diffusion method. Following antibiotics were effective as: cefta...

  17. A Survey of the Epidemiology and Antibiotic Resistance Patterns of Enteropathogens Isolates in an Iranian Hospital

    Mirjafari Tafti

    2016-02-01

    Full Text Available Background Infectious diarrhea is one of the most frequent diseases among children, especially in developing countries. Objectives The aim of this study was to determine the etiological agents and drug resistance patterns of common enteric pathogens isolated in an Iranian 1000-bed tertiary care hospital. Patients and Methods In a retrospective study, we analyzed the etiology and drug resistance patterns of enteric pathogens associated with diarrheal cases. The study was carried out in the Milad hospital of Tehran over two years, from April of 2012 to January of 2014. Stool specimens from patients with diarrhea (n = 7321 were examined for enteric pathogens using routine microbiological culture methods. Strains of Salmonella, Shigella, and enteric pathogenic E. coli (EPEC were serotyped and their susceptibility to commonly used antimicrobial agents was determined by a disk diffusion method, as recommended by the clinical and laboratory standards institute (CLSI guidelines. Results Enteric pathogens were isolated from 310 (4.23% of the patients. The most frequently isolated microorganisms included enteropathogenic E. coli (EPEC, Salmonella, and Shigella spp. The majority of the isolates of EPEC were resistant to commonly used antibiotics such as ampicillin (85.61%, cefixime (79.41%, and nalidixic acid. Resistance among other enteric pathogens was also prevalent. About 45.70% of the Salmonella isolates were resistant to chloramphenicol, and 87.95% were resistant to sulfamethoxazole/trimethoprim. Resistance of the Shigella isolates to nalidixic acid in comparison to the resistance recorded in previous studies was higher. Conclusions The results show that enteric bacteria, including EPEC, Salmonella spp., and Shigella spp. are the major causative agents of diarrhea in the hospital. The emergence of antimicrobial resistance among enteric pathogens is an important problem for public health. Considering the threat of emerging antimicrobial resistance

  18. Molecular characterization and antibiotic resistance of Enterococcus species from gut microbiota of Chilean Altiplano camelids

    Katheryne Guerrero-Olmos

    2014-10-01

    Full Text Available Background: Enterococcus is one of the major human pathogens able to acquire multiple antibiotic-resistant markers as well as virulence factors which also colonize remote ecosystems, including wild animals. In this work, we characterized the Enterococcus population colonizing the gut of Chilean Altiplano camelids without foreign human contact. Material and methods: Rectal swabs from 40 llamas and 10 alpacas were seeded in M-Enterococcus agar, and we selected a total of 57 isolates. Species identification was performed by biochemical classical tests, semi-automated WIDER system, mass spectrometry analysis by MALDI-TOF (matrix-assisted laser desorption/ionization with a time-of-flight mass spectrometer, and, finally, nucleotide sequence of internal fragments of the 16S rRNA, rpoB, pheS, and aac(6-I genes. Genetic diversity was measured by pulsed field gel electrophoresis (PFGE-SmaI, whereas the antibiotic susceptibility was determined by the WIDER system. Carriage of virulence factors was explored by polymerase chain reaction (PCR. Results: Our results demonstrated that the most prevalent specie was Enterococcus hirae (82%, followed by other non–Enterococcus faecalis and non–Enterococcus faecium species. Some discrepancies were detected among the identification methods used, and the most reliable were the rpoB, pheS, and aac(6-I nucleotide sequencing. Selected isolates exhibited susceptibility to almost all studied antibiotics, and virulence factors were not detected by PCR. Finally, some predominant clones were characterized by PFGE into a diverse genetic background. Conclusion: Enterococcus species from the Chilean camelids’ gut microbiota were different from those adapted to humans, and they remained free of antibiotic resistance mechanisms as well as virulence factors.

  19. Antibacterial Activity of Various Plants Extracts Against Antibiotic-resistant Aeromonas hydrophila

    Al Laham, Shaza Anwar; Al Fadel, Frdoos Mohammad

    2014-01-01

    Background: Aeromonas hydrophila cause one of the most important diseases in fishes and lead to economic losses, and may be contaminated human beings. Objectives: The current research aimed to investigate the anti-bacterial activity shown by the extracts prepared from different parts of Olea europea, Myrtus communis, Thymus vulgaris, Rosmarinuis officinalis, and Achillea falcata that grow in Syria against A. hydrophila that causes the most dangerous bacterial diseases in fish. Materials and Methods: The study was performed in four stages: First of all, the presence of A. hydrophila was investigated in 450 Samples of Cyprinus Carpio fish using blood agar, Trypticase soya agar, and Analytical Profile Index (API20E). Secondly, the plants extract was obtained using water, absolute alcohol, then ether using Soxhlet extraction apparatus and rotary vacuum evaporator. Thirdly, the antibacterial activity of some antibiotics on these bacteria was evaluated by disk diffusion method. Finally, the antibacterial effect of the extracts was determined by disk diffusion method. Results: The studied antibiotics showed no antibacterial activity against these bacteria, except amikacin which had an acceptable effectiveness. However, the ethanol extracts of the studied plants revealed different antibacterial effects against A. hydrophila which showed antibiotic resistant. T. vulgaris extract had the strongest effect, whereas O. europea extract had the weakest activity. The water and ether petroleum extracts had no antibacterial activities. Conclusions: Ethanol extracts of the studied plants had different antibacterial effects against antibiotic-resistant A. hydrophila. T. vulgaris had the highest activity, R. officinalis had the second, and M. communis and A. falcate were in the third place, while the O. europea had the weakest antibacterial activity. PMID:25368797

  20. Tracking Change: A Look at the Ecological Footprint of Antibiotics and Antimicrobial Resistance

    David M. Patrick

    2013-03-01

    Full Text Available Among the class of pollutants considered as ‘emerging contaminants’, antibiotic compounds including drugs used in medical therapy, biocides and disinfectants merit special consideration because their bioactivity in the environment is the result of their functional design. Antibiotics can alter the structure and function of microbial communities in the receiving environment and facilitate the development and spread of resistance in critical species of bacteria including pathogens. Methanogenesis, nitrogen transformation and sulphate reduction are among the key ecosystem processes performed by bacteria in nature that can also be affected by the impacts of environmental contamination by antibiotics. Together, the effects of the development of resistance in bacteria involved in maintaining overall ecosystem health and the development of resistance in human, animal and fish pathogens, make serious contributions to the risks associated with environmental pollution by antibiotics. In this brief review, we discuss the multiple impacts on human and ecosystem health of environmental contamination by antibiotic compounds.

  1. Steering Evolution with Sequential Therapy to Prevent the Emergence of Bacterial Antibiotic Resistance.

    Daniel Nichol

    2015-09-01

    Full Text Available The increasing rate of antibiotic resistance and slowing discovery of novel antibiotic treatments presents a growing threat to public health. Here, we consider a simple model of evolution in asexually reproducing populations which considers adaptation as a biased random walk on a fitness landscape. This model associates the global properties of the fitness landscape with the algebraic properties of a Markov chain transition matrix and allows us to derive general results on the non-commutativity and irreversibility of natural selection as well as antibiotic cycling strategies. Using this formalism, we analyze 15 empirical fitness landscapes of E. coli under selection by different β-lactam antibiotics and demonstrate that the emergence of resistance to a given antibiotic can be either hindered or promoted by different sequences of drug application. Specifically, we demonstrate that the majority, approximately 70%, of sequential drug treatments with 2-4 drugs promote resistance to the final antibiotic. Further, we derive optimal drug application sequences with which we can probabilistically 'steer' the population through genotype space to avoid the emergence of resistance. This suggests a new strategy in the war against antibiotic-resistant organisms: drug sequencing to shepherd evolution through genotype space to states from which resistance cannot emerge and by which to maximize the chance of successful therapy.

  2. The role of active efflux in antibiotic - resistance of clinical isolates of Helicobacter pylori

    Falsafi T

    2009-01-01

    Full Text Available Purpose: In gram-negative bacteria, active efflux pumps that excrete drugs can confer resistance to antibiotics however, in Helicobacter pylori this role is not well established. The purpose of this study is to evaluate the role of active efflux in resistance of H. pylori isolates to antibiotics. Materials and Methods: Twelve multiple antibiotic resistant (MAR isolates resistant to at least four antibiotics, including β-lactams, metronidazole, tetracycline, erythromycin, and ciprofloxacin; three resistant to only β-lactams, and two hyper-susceptible isolates, were obtained from screening of 96 clinical isolates of H. pylori . Their minimal inhibitory concentrations (MICs for antibiotics and ethidium-bromide (EtBr were compared in the presence- and absence of a proton-conductor, carbonyl cyanide-m chlorophenyl-hydrazone (CCCP using agar-dilution and disc diffusion. Drug accumulation studies for EtBr and antibiotics were assessed in the presence and absence of CCCP using spectrofluorometry. Results: MIC of EtBr for eight MAR-isolates was decreased two- to four-folds in the presence of CCCP, of which five showed reduced MICs for β-lactam, metronidazole, tetracycline, and ciprofloxacin with CCCP. Accumulation of EtBr by the MAR-isolates was rapid and not dependant on the pattern of multiple resistance. Antibiotic accumulation assay confirmed the presence of energy-dependant efflux of β-lactam, metronidazole, tetracycline, and ciprofloxacin, but no erythromycin in five MAR isolates. Energy-dependant efflux of EtBr or antibiotics was not observed for four MAR-isolates, and three isolates were resistant only to β-lactams. Conclusion: Energy-dependant efflux plays a role in the resistance of H. pylori clinical isolates to structurally unrelated antibiotics in a broadly specific multidrug efflux manner. Difference in the efflux potential of MAR isolates may be related to the presence or absence of functional efflux-pumps in diverse H. pylori

  3. Recent advances in the understanding of antibiotic resistance in Clostridium difficile infection

    2016-01-01

    Clostridium difficile epidemiology has changed in recent years, with the emergence of highly virulent types associated with severe infections, high rates of recurrences and mortality. Antibiotic resistance plays an important role in driving these epidemiological changes and the emergence of new types. While clindamycin resistance was driving historical endemic types, new types are associated with resistance to fluoroquinolones. Furthermore, resistance to multiple antibiotics is a common feature of the newly emergent strains and, in general, of many epidemic isolates. A reduced susceptibility to antibiotics used for C. difficile infection (CDI) treatment, in particular to metronidazole, has recently been described in several studies. Furthermore, an increased number of strains show resistance to rifamycins, used for the treatment of relapsing CDI. Several mechanisms of resistance have been identified in C. difficile, including acquisition of genetic elements and alterations of the antibiotic target sites. The C. difficile genome contains a plethora of mobile genetic elements, many of them involved in antibiotic resistance. Transfer of genetic elements among C. difficile strains or between C. difficile and other bacterial species can occur through different mechanisms that facilitate their spread. Investigations of the fitness cost in C. difficile indicate that both genetic elements and mutations in the molecular targets of antibiotics can be maintained regardless of the burden imposed on fitness, suggesting that resistances may persist in the C. difficile population also in absence of antibiotic selective pressure. The rapid evolution of antibiotic resistance and its composite nature complicate strategies in the treatment and prevention of CDI. The rapid identification of new phenotypic and genotypic traits, the implementation of effective antimicrobial stewardship and infection control programs, and the development of alternative therapies are needed to prevent and

  4. Plasmid metagenomics reveals multiple antibiotic resistance gene classes among the gut microbiomes of hospitalised patients.

    Jitwasinkul, Tossawan; Suriyaphol, Prapat; Tangphatsornruang, Sithichoke; Hansen, Martin Asser; Hansen, Lars Hestbjerg; Sørensen, Søren Johannes; Permpikul, Chairat; Rongrungruang, Yong; Tribuddharat, Chanwit

    2016-09-01

    Antibiotic resistance genes are rapidly spread between pathogens and the normal flora, with plasmids playing an important role in their circulation. This study aimed to investigate antibiotic resistance plasmids in the gut microbiome of hospitalised patients. Stool samples were collected from seven inpatients at Siriraj Hospital (Bangkok, Thailand) and were compared with a sample from a healthy volunteer. Plasmids from the gut microbiomes extracted from the stool samples were subjected to high-throughput DNA sequencing (GS Junior). Newbler-assembled DNA reads were categorised into known and unknown sequences (using >80% alignment length as the cut-off), and ResFinder was used to classify the antibiotic resistance gene pools. Plasmid replicon modules were used for plasmid typing. Forty-six genes conferring resistance to several classes of antibiotics were identified in the stool samples. Several antibiotic resistance genes were shared by the patients; interestingly, most were reported previously in food animals and healthy humans. Four antibiotic resistance genes were found in the healthy subject. One gene (aph3-III) was identified in the patients and the healthy subject and was related to that in cattle. Uncommon genes of hospital origin such as blaTEM-124-like and fosA, which confer resistance to extended-spectrum β-lactams and fosfomycin, respectively, were identified. The resistance genes did not match the patients' drug treatments. In conclusion, several plasmid types were identified in the gut microbiome; however, it was difficult to link these to the antibiotic resistance genes identified. That the antibiotic resistance genes came from hospital and community environments is worrying. PMID:27530840

  5. Co-Selection of Resistance to Antibiotics, Biocides and Heavy Metals, and Its Relevance to Foodborne Pathogens

    Andrew D. Wales

    2015-11-01

    Full Text Available Concerns have been raised in recent years regarding co-selection for antibiotic resistance among bacteria exposed to biocides used as disinfectants, antiseptics and preservatives, and to heavy metals (particularly copper and zinc used as growth promoters and therapeutic agents for some livestock species. There is indeed experimental and observational evidence that exposure to these non-antibiotic antimicrobial agents can induce or select for bacterial adaptations that result in decreased susceptibility to one or more antibiotics. This may occur via cellular mechanisms that are protective across multiple classes of antimicrobial agents or by selection of genetic determinants for resistance to non-antibiotic agents that are linked to genes for antibiotic resistance. There may also be relevant effects of these antimicrobial agents on bacterial community structure and via non-specific mechanisms such as mobilization of genetic elements or mutagenesis. Notably, some co-selective adaptations have adverse effects on fitness in the absence of a continued selective pressure. The present review examines the evidence for the significance of these phenomena, particularly in respect of bacterial zoonotic agents that commonly occur in livestock and that may be transmitted, directly or via the food chain, to human populations.

  6. Co-Selection of Resistance to Antibiotics, Biocides and Heavy Metals, and Its Relevance to Foodborne Pathogens.

    Wales, Andrew D; Davies, Robert H

    2015-01-01

    Concerns have been raised in recent years regarding co-selection for antibiotic resistance among bacteria exposed to biocides used as disinfectants, antiseptics and preservatives, and to heavy metals (particularly copper and zinc) used as growth promoters and therapeutic agents for some livestock species. There is indeed experimental and observational evidence that exposure to these non-antibiotic antimicrobial agents can induce or select for bacterial adaptations that result in decreased susceptibility to one or more antibiotics. This may occur via cellular mechanisms that are protective across multiple classes of antimicrobial agents or by selection of genetic determinants for resistance to non-antibiotic agents that are linked to genes for antibiotic resistance. There may also be relevant effects of these antimicrobial agents on bacterial community structure and via non-specific mechanisms such as mobilization of genetic elements or mutagenesis. Notably, some co-selective adaptations have adverse effects on fitness in the absence of a continued selective pressure. The present review examines the evidence for the significance of these phenomena, particularly in respect of bacterial zoonotic agents that commonly occur in livestock and that may be transmitted, directly or via the food chain, to human populations. PMID:27025641

  7. Antibiotic Resistance Pattern and the Prevalence of Extended Spectrum Beta-Lactamases (ESBLs in Urinary Isolates of Klebsiella Pneumoniae

    Shahraki, SH. (PhD

    2014-11-01

    Full Text Available Background and Objective: Klebsiella pneumoniae is an opportunistic nosocomial pathogen causing a variety of infections including urinary tract infections, pneumonia, septicemia, wound infections and infections in the intensive care units. Since the ESBL producing Klebsiella pneumoniae strains are increasingly causing urinary tract infections, we aim to assess antibiotic resistance pattern and evaluate the prevalence of ESBL in Klebsiella pneumoniae isolated from urinary tract infections. Material and Methods: this cross-sectional study was conducted on 122 Klebsiella pneumoniae strains collected from Zahedan hospitals. After final identification of isolates, antibiotic susceptibility tests were carried out by using disk diffusion in agar method for 16 antibiotics and ESBL production was determined by the combined disk method. Results: The Klebsiella pneumoniae strains showed susceptibility to imipenem and amikacin ( 94.3% ,chloramphenicol (88.5% , gentamicin (81.1% , ciprofloxacin (80.3% , cefepime (73% ,streptomycin (72.1%, nalidixic acid (68% , tetracycline (65.6%, and cefotaxime, ceftazidime, cefpodoxime (62.3% . The resistance of strains was seen to nitrofurantoin (53.3%, cotrimoxazole (39.3%, Cefpodoxime (37.7%, cefotaxime (36.9%, ceftriaxone (36.1%, aztreonam (34.4%, ceftazidime (32.8%. Thirty-eight isolates (31.1% were shown to produce ESBLs. Conclusion: A high rate of resistance was observed to most of the antibiotics among ESBL producing strains; therefore, it is important to be careful about the use of antibiotics and identification of ESBL using phenotypic methods.

  8. Recent changes in bacteremia in patients with cancer: a systematic review of epidemiology and antibiotic resistance.

    Montassier, E; Batard, E; Gastinne, T; Potel, G; de La Cochetière, M F

    2013-07-01

    Bacteremia remains a major cause of life-threatening complication in patients with cancer. Significant changes in the spectrum of microorganisms isolated from blood culture have been reported in cancer patients over the past years. The aim of our systematic review was to inventory the recent trends in epidemiology and antibiotic resistance of microorganisms causing bacteremia in cancer patients. Data for this review was identified by searches of Medline, Scopus and Cochrane Library for indexed articles and abstracts published in English since 2008. The principal search terms were: "antimicrobial resistance", "bacteremia", "bacterial epidemiology", "bloodstream infection", "cancer patients", "carbapenem resistance", "Escherichia coli resistance", "extended-spectrum β-lactamase producing E. coli", "febrile neutropenia", "fluoroquinolone resistance", "neutropenic cancer patient", "vancomycin-resistant Enterococcus", and "multidrug resistance". Boolean operators (NOT, AND, OR) were also used in succession to narrow and widen the search. Altogether, 27 articles were selected to be analyzed in the review. We found that Gram-negative bacteria were the most frequent pathogen isolated, particularly in studies with minimal use of antibiotic prophylaxis. Another important trend is the extensive emergence of antimicrobial-resistant strains associated with increased risk of morbidity, mortality and cost. This increasing incidence of antibiotic resistance has been reported in Gram-negative bacteria as well as in Gram-positive bacteria. This exhaustive review, reporting the recent findings in epidemiology and antibiotic resistance of bacteremia in cancer patients, highlights the necessity of local continuous surveillance of bacteremia and stringent enforcement of antibiotic stewardship programs in cancer patients. PMID:23354675

  9. The Order Bacillales Hosts Functional Homologs of the Worrisome cfr Antibiotic Resistance Gene

    Hansen, Lykke H.; Planellas, Mercè H.; Long, Katherine S.; Vester, Birte

    2012-01-01

    coli, and MICs for selected antibiotics indicate that the cfr-like genes confer resistance to PhLOPSa (phenicol, lincosamide, oxazolidinone, pleuromutilin, and streptogramin A) antibiotics in the same way as the cfr gene. In addition, modification at A2503 on 23S rRNA was confirmed by primer extension...

  10. Secular Trends in Nosocomial Bloodstream Infections : Antibiotic-Resistant Bacteria Increase the Total Burden of Infection

    Ammerlaan, H. S. M.; Harbarth, S.; Buiting, A. G. M.; Crook, D. W.; Fitzpatrick, F.; Hanberger, H.; Herwaldt, L. A.; van Keulen, P. H. J.; Kluytmans, J. A. J. W.; Kola, A.; Kuchenbecker, R. S.; Lingaas, E.; Meessen, N.; Morris-Downes, M. M.; Pottinger, J. M.; Rohner, P.; dos Santos, R. P.; Seifert, H.; Wisplinghoff, H.; Ziesing, S.; Walker, A. S.; Bonten, M. J. M.

    2013-01-01

    Background. It is unknown whether rising incidence rates of nosocomial bloodstream infections (BSIs) caused by antibiotic-resistant bacteria (ARB) replace antibiotic-susceptible bacteria (ASB), leaving the total BSI rate unaffected. Methods. We investigated temporal trends in annual incidence densit

  11. Bacteremia in Cancer Patients: A Two Center Experience of Isolates and Spectrum of Antibiotic Resistance Pattern

    Naseh; Marashi; Asgari; Aghabarari; Mahmudi; Asadi; Hatami; Kalantar

    2015-01-01

    Background; Bacteremia is a frequent condition in cancer patients with a significant morbidity and mortality worldwide, which is a medical crisis that needs broad-spectrum antibiotic treatment. Objectives This study examined bacteremia in cancer patients from two medical centers regarding isolates and spectrum of antibiotic resistance pattern. Patients and Methods This was a prospe...

  12. Recycling antibiotics into GUMBOS: A new combination strategy to combat multi-drug resistant bacteria

    The emergence of multi-drug resistant bacteria, coupled with the lack of new antibiotics in development, is fast evolving into a global crisis. New strategies utilizing existing antibacterial agents are urgently needed. We propose one such strategy in which four outmoded ß-lactam antibiotics (amp...

  13. Presence of Antibiotic Resistant Enterococci in Rinses of Milking Equipment after Sanitation Process

    Miroslav Kročko

    2011-10-01

    Full Text Available Enterococci are common milk contaminants, and microbial contamination of milk by this group of microorganisms can occur from a variety of sources. Significance of enterococci can be assessed by many separated points of view, otherwise a lot of research has focused on the potential role of food enterococci as reservoirs and/or vehicles of antibiotic resistance. The aim of this investigation was to evaluate the occurence of enterococci in rinses of milking equipment (n = 38 on two farms using automatic sanitation system. Our results showed, that alkaline disinfectant (on chlorine basis was effective towards enterococci because apart from 2 samples, their presence in rinses has not been determined. Average number of enterococci survived the aplication of acid disinfectant reached the value 5.00.101 CFU.ml-1. Together, 60 strains were randomly isolated and identified from the grown colonies of genus Enterococcus, and E. faecalis was the predominat species (69.6 %. In rinses, also E. faecium, E. mundtii and undefined enterococci were found. Among antibiotic resistant isolates, 83.9 % of isolates were sensitive to erytromycin (15mcg/disk and resistant to vancomycin (30 mcg/disk were 20 % of isolates.

  14. Occurrence of antibiotic and metal resistance in bacteria from organs of river fish

    Bacterial populations in some organs, viz., liver, spleen, kidney, gill, and arborescent organ of the catfish Clarias batrachus were enumerated followed by determination of resistance for antibiotics and metals. The total viable counts in these organs, observed, were 2.24x104, 2.08x104, 1.44x104, 1.23x104, and 6.40x103 colony-forming units/mL, respectively. The random bacterial isolates from these fish organs showed resistance in decreasing order for colistin (98%), ampicillin (82%), gentamycin (34%), carbenicillin (28%), tetracyline (20%), streptomycin (12%), and ciprofloxacin (02%). Most of the isolates exhibited an increasing order of tolerance for the metals (μg/mL) copper (100), lead (200), manganese (400), cadmium (200), and chromium (50), with minimum inhibitory concentration (MIC) ranging from <50 to 1600 μg/mL. These observations indicate that the significant occurrence of bacterial population in organs of fish with high incidence of resistance for antibiotics and metals may pose risk to fish fauna and public health

  15. Fight evolution with evolution: plasmid-dependent phages with a wide host range prevent the spread of antibiotic resistances

    Ojala, Ville; Laitalainen, Jarkko; Jalasvuori, Matti

    2013-01-01

    The emergence of pathogenic bacteria resistant to multiple antibiotics is a serious worldwide public health concern. Whenever antibiotics are applied, the genes encoding for antibiotic resistance are selected for within bacterial populations. This has led to the prevalence of conjugative plasmids that carry resistance genes and can transfer themselves between diverse bacterial groups. In this study, we investigated whether it is feasible to attempt to prevent the spread of antibiotic resistan...

  16. Fight evolution with evolution: plasmid-dependent phages with a wide host range prevent the spread of antibiotic resistance

    Ojala, Ville; Laitalainen, Jarkko; Jalasvuori, Matti

    2013-01-01

    The emergence of pathogenic bacteria resistant to multiple antibiotics is a serious worldwide public health concern. Whenever antibiotics are applied, the genes encoding for antibiotic resistance are selected for within bacterial populations. This has led to the prevalence of conjugative plasmids that carry resistance genes and can transfer themselves between diverse bacterial groups. In this study, we investigated whether it is feasible to attempt to prevent the spread of antibiotic resistan...

  17. New Is Old, and Old Is New: Recent Advances in Antibiotic-Based, Antibiotic-Free and Ethnomedical Treatments against Methicillin-Resistant Staphylococcus aureus Wound Infections.

    Dou, Jian-Lin; Jiang, Yi-Wei; Xie, Jun-Qiu; Zhang, Xiao-Gang

    2016-01-01

    Staphylococcus aureus is the most common pathogen of wound infections. Thus far, methicillin-resistant S. aureus (MRSA) has become the major causative agent in wound infections, especially for nosocomial infections. MRSA infections are seldom eradicated by routine antimicrobial therapies. More concerning, some strains have become resistant to the newest antibiotics of last resort. Furthermore, horizontal transfer of a polymyxin resistance gene, mcr-1, has been identified in Enterobacteriaceae, by which resistance to the last group of antibiotics will likely spread rapidly. The worst-case scenario, "a return to the pre-antibiotic era", is likely in sight. A perpetual goal for antibiotic research is the discovery of an antibiotic that lacks resistance potential, such as the recent discovery of teixobactin. However, when considering the issue from an ecological and evolutionary standpoint, it is evident that it is insufficient to solve the antibiotic dilemma through the use of antibiotics themselves. In this review, we summarized recent advances in antibiotic-based, antibiotic-free and ethnomedical treatments against MRSA wound infections to identify new clues to solve the antibiotic dilemma. One potential solution is to use ethnomedical drugs topically. Some ethnomedical drugs have been demonstrated to be effective antimicrobials against MRSA. A decline in antibiotic resistance can therefore be expected, as has been demonstrated when antibiotic-free treatments were used to limit the use of antibiotics. It is also anticipated that these drugs will have low resistance potential, although there is only minimal evidence to support this claim to date. More clinical trials and animal tests should be conducted on this topic. PMID:27120596

  18. New Is Old, and Old Is New: Recent Advances in Antibiotic-Based, Antibiotic-Free and Ethnomedical Treatments against Methicillin-Resistant Staphylococcus aureus Wound Infections

    Jian-Lin Dou

    2016-04-01

    Full Text Available Staphylococcus aureus is the most common pathogen of wound infections. Thus far, methicillin-resistant S. aureus (MRSA has become the major causative agent in wound infections, especially for nosocomial infections. MRSA infections are seldom eradicated by routine antimicrobial therapies. More concerning, some strains have become resistant to the newest antibiotics of last resort. Furthermore, horizontal transfer of a polymyxin resistance gene, mcr-1, has been identified in Enterobacteriaceae, by which resistance to the last group of antibiotics will likely spread rapidly. The worst-case scenario, “a return to the pre-antibiotic era”, is likely in sight. A perpetual goal for antibiotic research is the discovery of an antibiotic that lacks resistance potential, such as the recent discovery of teixobactin. However, when considering the issue from an ecological and evolutionary standpoint, it is evident that it is insufficient to solve the antibiotic dilemma through the use of antibiotics themselves. In this review, we summarized recent advances in antibiotic-based, antibiotic-free and ethnomedical treatments against MRSA wound infections to identify new clues to solve the antibiotic dilemma. One potential solution is to use ethnomedical drugs topically. Some ethnomedical drugs have been demonstrated to be effective antimicrobials against MRSA. A decline in antibiotic resistance can therefore be expected, as has been demonstrated when antibiotic-free treatments were used to limit the use of antibiotics. It is also anticipated that these drugs will have low resistance potential, although there is only minimal evidence to support this claim to date. More clinical trials and animal tests should be conducted on this topic.

  19. Irrigation waters and pipe-based biofilms as sources for antibiotic-resistant bacteria.

    Blaustein, Ryan A; Shelton, Daniel R; Van Kessel, Jo Ann S; Karns, Jeffrey S; Stocker, Matthew D; Pachepsky, Yakov A

    2016-01-01

    The presence of antibiotic-resistant bacteria in environmental surface waters has gained recent attention. Wastewater and drinking water distribution systems are known to disseminate antibiotic-resistant bacteria, with the biofilms that form on the inner-surfaces of the pipeline as a hot spot for proliferation and gene exchange. Pipe-based irrigation systems that utilize surface waters may contribute to the dissemination of antibiotic-resistant bacteria in a similar manner. We conducted irrigation events at a perennial stream on a weekly basis for 1 month, and the concentrations of total heterotrophic bacteria, total coliforms, and fecal coliforms, as well as the concentrations of these bacterial groups that were resistant to ampicillin and tetracycline, were monitored at the intake water. Prior to each of the latter three events, residual pipe water was sampled and 6-in. sections of pipeline (coupons) were detached from the system, and biofilm from the inner-wall was removed and analyzed for total protein content and the above bacteria. Isolates of biofilm-associated bacteria were screened for resistance to a panel of seven antibiotics, representing five antibiotic classes. All of the monitored bacteria grew substantially in the residual water between irrigation events, and the biomass of the biofilm steadily increased from week to week. The percentages of biofilm-associated isolates that were resistant to antibiotics on the panel sometimes increased between events. Multiple-drug resistance was observed for all bacterial groups, most often for fecal coliforms, and the distributions of the numbers of antibiotics that the total coliforms and fecal coliforms were resistant to were subject to change from week to week. Results from this study highlight irrigation waters as a potential source for antibiotic-resistant bacteria, which can subsequently become incorporated into and proliferate within irrigation pipe-based biofilms. PMID:26703979

  20. The fitness cost of antibiotic resistance in Streptococcus pneumoniae: insight from the field.

    M Cyrus Maher

    Full Text Available BACKGROUND: Laboratory studies have suggested that antibiotic resistance may result in decreased fitness in the bacteria that harbor it. Observational studies have supported this, but due to ethical and practical considerations, it is rare to have experimental control over antibiotic prescription rates. METHODS AND FINDINGS: We analyze data from a 54-month longitudinal trial that monitored pneumococcal drug resistance during and after biannual mass distribution of azithromycin for the elimination of the blinding eye disease, trachoma. Prescription of azithromycin and antibiotics that can create cross-resistance to it is rare in this part of the world. As a result, we were able to follow trends in resistance with minimal influence from unmeasured antibiotic use. Using these data, we fit a probabilistic disease transmission model that included two resistant strains, corresponding to the two dominant modes of resistance to macrolide antibiotics. We estimated the relative fitness of these two strains to be 0.86 (95% CI 0.80 to 0.90, and 0.88 (95% CI 0.82 to 0.93, relative to antibiotic-sensitive strains. We then used these estimates to predict that, within 5 years of the last antibiotic treatment, there would be a 95% chance of elimination of macrolide resistance by intra-species competition alone. CONCLUSIONS: Although it is quite possible that the fitness cost of macrolide resistance is sufficient to ensure its eventual elimination in the absence of antibiotic selection, this process takes time, and prevention is likely the best policy in the fight against resistance.