In the first part of this work, starting from Einstein's equations of the Classical General Relativity, a new kind of solutions for the Mixmaster model are explored. By dispensing with the extension to the complex variable field, which is usual in problems such as the Laplace equation or the harmonic oscillator, in a similar manner to that of Quantum Mechanics, the equations appear to have solutions that belong to the complex General Relativity. A first integral is performed by establishing a separation of the first derivatives. Then a second integral is obtained once the respective equations with separate variables are found and whose integrals provide a family of complex solutions. However, reality conditions do not seem to be easily imposed at this stage. Above all, it is significant that the classical Einstein's equations for the debatably integrable Mixmaster model present complex solutions. In the second part of this work, following a specific strategy in which the cosmological time variables are operated upon, a new family of solutions to the empty Taub universe is found. Among the characteristics of such a family, it stands the positive acceleration provided by the tri-curvature property of this universe to two of the three scale factors of the Taub model. This effect of the tri-curvature results not in a restoring force such as normal gravity but in the conversion of the Taub cosmology into an accelerating universe. (Author)
Palsingh, S. (Inventor)
1975-01-01
An educational toy useful in demonstrating fundamental concepts regarding the laws of gravity is described. The device comprises a sphere 10 of radius r resting on top of sphere 12 of radius R. The center of gravity of sphere 10 is displaced from its geometrical center by distance D. The dimensions are so related that D((R+r)/r) is greater than r. With the center of gravity of sphere 10 lying on a vertical line, the device is in equilibrium. When sphere 10 is rolled on the surface of sphere 12 it will return to its equilibrium position upon release. This creates an illusion that sphere 10 is defying the laws of gravity. In reality, due to the above noted relationship of D, R, and r, the center of gravity of sphere 10 rises from its equilibrium position as it rolls a short distance up or down the surface of sphere 12.
Discrete physics, because it replaces time evolution generated by the energy operator with a global bit-string generator (program universe) and replaces ''fields'' with the relativistic Wheeler-Feynman ''action at a distance,'' allows the consistent formulation of the concept of signed gravitational charge for massive particles. The resulting prediction made by this version of the theory is that free anti-particles near the surface of the earth will ''fall'' up with the same acceleration that the corresponding particles fall down. So far as we can see, no current experimental information is in conflict with this prediction of our theory. The experiment crusis will be one of the anti-proton or anti-hydrogen experiments at CERN. Our prediction should be much easier to test than the small effects which those experiments are currently designed to detect or bound. 23 refs
Anisotropic phenomena in gauge/gravity duality
In this thesis we use gauge/gravity duality to model anisotropic effects realised in nature. Firstly we analyse transport properties in holographic systems with a broken rotational invariance. Secondly we discuss geometries dual to IR fixed points with anisotropic scaling behaviour, which are related to quantum critical points in condensed matter systems. Gauge/gravity duality relates a gravity theory in Anti-de Sitter space to a lower dimensional strongly coupled quantum field theory in Minkowski space. Over the past decade this duality provided many insights into systems at strong coupling, e.g. quark-gluon plasma and condensed matter close to quantum critical points. One very important result computed in this framework is the value of the shear viscosity divided by the entropy density in strongly coupled theories. The quantitative result agrees very well with measurements of the ratio in quark-gluon plasma. However, for isotropic two derivative Einstein gravity it is temperature independent. We show that by breaking the rotational symmetry of a system we obtain a temperature dependent shear viscosity over entropy density. This is important to make contact with real world systems, since substances in nature display such dependence. In addition, we derive various transport properties in strongly coupled anisotropic systems using the gauge/gravity dictionary. The most notable results include an electrical conductivity with Drude behaviour in the low frequency region. This resembles conductors with broken translational invariance. However, we did not implement the breaking explicitly. Furthermore, our analysis shows that this setup models effects, resembling the piezoelectric and exoelectric effects, known from liquid crystals. In a second project we discuss a geometry with non-trivial scaling behaviour in order to model an IR fixed point of condensed matter theories. We construct the UV completion of this geometry and analyse its properties by computing the
The Superheavy Elements and Anti-Gravity
Anastasovski, Petar K.
2004-02-01
The essence of any propulsion concept is to overcome gravity. Anti-gravity is a natural means to achieve this. Thus, the technology to pursue anti-gravity, by using superheavy elements, may provide a new propulsion paradigm. The theory of superluminal relativity provides a hypothesis for existence of elements with atomic number up to Z = 145, some of which may possess anti-gravity properties. Analysis results show that curved space-time exists demonstrating both gravitic and anti-gravitic properties not only around nuclei but inside the nuclei as well. Two groups of elements (Z Hawking, in honour of Stephen W. Hawking.
Drag phenomena from holographic massive gravity
Baggioli, Matteo
2015-01-01
We consider the motion of point particles in a strongly coupled field theory with broken translation invariance. We obtain the energy and momentum loss rates and drag coefficients for a class of such particles by solving for the motion of classical strings in holographic massive gravity. At low temperatures compared to the graviton mass the behaviour of the string is controlled by the appearance of an exotic ground state with non-zero entropy at zero temperature. Additionally we find an upper bound on the diffusion constant for a collection of these particles which is saturated when the mass of the graviton goes to zero.
The Superheavy Elements and Anti-Gravity
The essence of any propulsion concept is to overcome gravity. Anti-gravity is a natural means to achieve this. Thus, the technology to pursue anti-gravity, by using superheavy elements, may provide a new propulsion paradigm. The theory of superluminal relativity provides a hypothesis for existence of elements with atomic number up to Z = 145, some of which may possess anti-gravity properties. Analysis results show that curved space-time exists demonstrating both gravitic and anti-gravitic properties not only around nuclei but inside the nuclei as well. Two groups of elements (Z < 64 and 63 < Z <145) exist that demonstrate these capabilities. The nuclei of the first group of elements have the masses with only the property of gravity. The nuclei of the elements of the second group have the masses with both properties: gravity and anti-gravity in two different ranges of curved space-time around the nuclei.. The hypothetical element with Z = 145 is the unique among all elements whose nucleus has only anti-gravity property. It is proposed that this element be named Hawking, in honour of Stephen W. Hawking
Localized Gravity on Branes in anti-de Sitter Spaces
Halyo, Edi
1999-01-01
We discuss the conditions under which 4D gravity is localized on domain walls in 5D anti-de Sitter spaces. Our approach is based on considering the limits in which the localized gravity decouples. We find that gravity is localized if the wall is located a finite distance from the boundary of the anti-de Sitter space and has a finite tension. In addition, it has to be a $\\delta$-function source of gravity.
Anti-Newtonian cosmologies in f(R) gravity
Abebe, Amare
2014-01-01
In this paper, we investigate a class of perfect-fluid "anti-Newtonian" cosmological models in the context of f(R) gravity. In particular, we study the integrability conditions of such gravity models using covariant consistency analysis formalisms. We show that, unlike the results in General Relativity, anti-Newtonian cosmologies are not silent models and that they can exist subject to the solution of an integrability condition equation we derive. We also present the set of evolution equation...
Melendez L, L
2004-07-01
In the first part of this work, starting from Einstein's equations of the Classical General Relativity, a new kind of solutions for the Mixmaster model are explored. By dispensing with the extension to the complex variable field, which is usual in problems such as the Laplace equation or the harmonic oscillator, in a similar manner to that of Quantum Mechanics, the equations appear to have solutions that belong to the complex General Relativity. A first integral is performed by establishing a separation of the first derivatives. Then a second integral is obtained once the respective equations with separate variables are found and whose integrals provide a family of complex solutions. However, reality conditions do not seem to be easily imposed at this stage. Above all, it is significant that the classical Einstein's equations for the debatably integrable Mixmaster model present complex solutions. In the second part of this work, following a specific strategy in which the cosmological time variables are operated upon, a new family of solutions to the empty Taub universe is found. Among the characteristics of such a family, it stands the positive acceleration provided by the tri-curvature property of this universe to two of the three scale factors of the Taub model. This effect of the tri-curvature results not in a restoring force such as normal gravity but in the conversion of the Taub cosmology into an accelerating universe. (Author)
Anti-Newtonian cosmologies in f(R) gravity
In this paper, we investigate a class of perfect-fluid ‘anti-Newtonian’ cosmological models in the context of f(R) gravity. In particular, we study the integrability conditions of such gravity models using covariant consistency analysis formalisms. We show that, unlike the results in General Relativity, anti-Newtonian cosmologies are not silent models and that they can exist subject to the solution of an integrability condition equation we derive. We also present the set of evolution equations governing the linear perturbations of matter, expansion and Ricci scalar for this class of models. (paper)
BRST and Anti-BRST Symmetries in Perturbative Quantum Gravity
Faizal, Mir
2010-01-01
In perturbative quantum gravity, the sum of the classical Lagrangian density, a gauge fixing term and a ghost term is invariant under two sets of supersymmetric transformations called the BRST and the anti-BRST transformations. In this paper we will analyse the BRST and the anti-BRST symmetries of perturbative quantum gravity in curved spacetime, in linear as well as non-linear gauges. We will show that even though the sum of ghost term and the gauge fixing term can always be expressed as a t...
Dynamically broken Anti-de Sitter action for gravity
Tresguerres, Romualdo
2008-01-01
Due to a suitable Higgs mechanism, a standard Anti-de Sitter gauge theory becomes spontaneously broken. The resulting Lorentz invariant gravitational action includes the Hilbert-Einstein term of ordinary Einstein-Cartan gravity with cosmological constant, plus contributions quadratic in curvature and torsion, and a scalar Higgs sector.
Fermions in (Anti) de Sitter Gravity in Four Dimensions
Ikeda, Noriaki; Fukuyama, Takeshi
2009-01-01
Fermions in (anti) de Sitter gravity theory in four dimensions are considered. Especially we propose new fermion actions to derive a Weyl or Majorana fermion action if we break the AdS (dS) group to the Lorentz group in curved spacetime.
Green's function for anti--de Sitter space gravity
We solve for the retarded Green's function for linearized gravity in a background with a negative cosmological constant, anti--de Sitter space. In this background, it is possible for a signal to reach spatial infinity in a finite time. Therefore the form of the Green's function depends on a choice of boundary condition at spatial infinity. We take as our condition that a signal which reaches infinity should be lost, not reflected back. We calculate the Green's function associated with this condition, and show that it reproduces the correct classical solution for a point mass at the origin, the anti--de Sitter--Schwarzschild solution
Anti-de Sitter 3-dimensional Gravity with Torsion
Blagojevic, M; Vasilic, M.
2004-01-01
Using the canonical formalism, we study the asymptotic symmetries of the topological 3-dimensional gravity with torsion. In the anti-de Sitter sector, the symmetries are realized by two independent Virasoro algebras with classical central charges. In the simple case of the teleparallel vacuum geometry, the central charges are equal to each other and have the same value as in general relativity, while in the general Riemann-Cartan geometry, they become different.
General heavenly equation governs anti-self-dual gravity
Malykh, A. A.; Sheftel, M. B.
2010-01-01
We show that the general heavenly equation, suggested recently by Doubrov and Ferapontov \\cite{fer}, governs anti-self-dual (ASD) gravity. We derive ASD Ricci-flat vacuum metric governed by the general heavenly equation, null tetrad and basis of 1-forms for this metric. We present algebraic exact solutions of the general heavenly equation as a set of zeros of homogeneous polynomials in independent and dependent variables. A real solution is obtained for the case of neutral signature.
General heavenly equation governs anti-self-dual gravity
Malykh, A A
2011-01-01
We show that the general heavenly equation, suggested recently by Doubrov and Ferapontov \\cite{fer}, governs anti-self-dual (ASD) gravity. We derive ASD Ricci-flat vacuum metric governed by the general heavenly equation, null tetrad and basis of 1-forms for this metric. We present algebraic exact solutions of the general heavenly equation as a set of zeros of homogeneous polynomials in independent and dependent variables.
Pilot Fullerton dons EES anti-gravity suit lower torso on middeck
1982-01-01
Pilot Fullerton dons ejection escape suit (EES) anti-gravity (anti-g) suit lower torso on forward port side middeck above potable water tank. Anti-g suit is an olive drab inner garment that complements EES.
Entanglement entropy in critical phenomena and analog models of quantum gravity
A general geometrical structure of the entanglement entropy for spatial partition of a relativistic QFT system is established by using methods of the effective gravity action and the spectral geometry. A special attention is payed to the subleading terms in the entropy in different dimensions and to behavior in different states. It is conjectured, on the base of relation between the entropy and the action, that in a fundamental theory the ground state entanglement entropy per unit area equals 1/(4GN), where GN is the Newton constant in the low-energy gravity sector of the theory. The conjecture opens a new avenue in analogue gravity models. For instance, in higher-dimensional condensed matter systems, which near a critical point are described by relativistic QFT's, the entanglement entropy density defines an effective gravitational coupling. By studying the properties of this constant one can get new insights in quantum gravity phenomena, such as the universality of the low-energy physics, the renormalization group behavior of GN, the statistical meaning of the Bekenstein-Hawking entropy
Multiculturalism and Anti-multiculturalism Phenomena in South Korea
Yong-Seung, Lee
2016-01-01
Multicultural policies in South Korea are currently showing some signs of backlash. The declaration that multiculturalism has failed has been successively announced around the world, and it is often observed that the extreme rightwing parties that support anti-multiculturalism and anti-immigration secure a significant number of votes. It is not certain how closely the phenomenon of backlash against multicultural policies in South Korea is related to global trends, yet this tendency undoubtedl...
Anti-gravity: The key to 21st century physics
The masses coupling constants and cosmological parameters obtained using our discrete and combinatorial physics based on discrimination between bit-strings indicate that we can achieve the unification of quantum mechanics with relativity which had become the goal of twentieth century physics. To broaden our case we show that limitations on measurement of the position and velocity of an individual massive particle observed in a colliding beam scattering experiment imply real, rational commutation relations between position and velocity. Prior to this limit being pushed down to quantum effects, the lower bound is set by the available technology, but is otherwise scale invariant. Replacing force by force per unit mass and force per unit charge allows us to take over the Feynman-Dyson proof of the Maxwell Equations and extend it to weak gravity. The crossing symmetry of the individual scattering processes when one or more particles are replaced by anti-particles predicts both Coulomb attraction (for charged particles) and a Newtonian repulsion between any particle and its anti-particle. Previous quantum results remain intact, and predict the expected relativistic fine structure and spin dependencies. Experimental confirmation of this anti-gravity prediction would inaugurate the physics of the twenty-first century
General heavenly equation governs anti-self-dual gravity
We show that the general heavenly equation, suggested recently by Doubrov and Ferapontov (2010 arXiv:0910.3407v2 [math.DG]), governs anti-self-dual (ASD) gravity. We derive ASD Ricci-flat vacuum metric governed by the general heavenly equation, null tetrad and basis of 1-forms for this metric. We present algebraic exact solutions of the general heavenly equation as a set of zeros of homogeneous polynomials in independent and dependent variables. A real solution is obtained for the case of a neutral signature.
Asymptotically anti-de Sitter spacetimes in topologically massive gravity
We consider asymptotically anti-de Sitter spacetimes in three-dimensional topologically massive gravity with a negative cosmological constant, for all values of the mass parameter μ (μ≠0). We provide consistent boundary conditions that accommodate the recent solutions considered in the literature, which may have a slower falloff than the one relevant for general relativity. These conditions are such that the asymptotic symmetry is in all cases the conformal group, in the sense that they are invariant under asymptotic conformal transformations and that the corresponding Virasoro generators are finite. It is found that, at the chiral point |μl|=1 (where l is the anti-de Sitter radius), allowing for logarithmic terms (absent for general relativity) in the asymptotic behavior of the metric makes both sets of Virasoro generators nonzero even though one of the central charges vanishes.
Intersecting hypersurfaces in anti-de Sitter and Lovelock gravity
Colliding and intersecting hypersurfaces filled with matter (membranes) are studied in the Lovelock higher order curvature theory of gravity. Lovelock terms couple hypersurfaces of different dimensionalities, extending the range of possible intersection configurations. We restrict the study to constant curvature membranes in constant curvature anti-de Sitter (AdS) and dS background and consider their general intersections. This illustrates some key features which make the theory different from the Einstein gravity. Higher co-dimension membranes may lie at the intersection of co-dimension one hypersurfaces in Lovelock gravity; the hypersurfaces are located at the discontinuities of the first derivative of the metric, and they need not carry matter. The example of colliding membranes shows that general solutions can only be supported by (spacelike) matter at the collision surface, thus naturally conflicting with the dominant energy condition (DEC). The imposition of the DEC gives selection rules on the types of collision allowed. When the hypersurfaces do not carry matter, one gets a solitonlike configuration. Then, at the intersection one has a co-dimension two or higher membrane standing alone in AdS-vacuum space-time without conical singularities. Another result is that if the number of intersecting hypersurfaces goes to infinity the limiting space-time is free of curvature singularities if the intersection is put at the boundary of each AdS bulk
Accuracy of unloading with the anti-gravity treadmill.
McNeill, David K P; de Heer, Hendrik D; Bounds, Roger G; Coast, J Richard
2015-03-01
Body weight (BW)-supported treadmill training has become increasingly popular in professional sports and rehabilitation. To date, little is known about the accuracy of the lower-body positive pressure treadmill. This study evaluated the accuracy of the BW support reported on the AlterG "Anti-Gravity" Treadmill across the spectrum of unloading, from full BW (100%) to 20% BW. Thirty-one adults (15 men and 16 women) with a mean age of 29.3 years (SD = 10.9), and a mean weight of 66.55 kg (SD = 12.68) were recruited. Participants were weighed outside the machine and then inside at 100-20% BW in 10% increments. Predicted BW, as presented by the AlterG equipment, was compared with measured BW. Significant differences between predicted and measured BW were found at all but 90% through 70% of BW. Differences were small (Anti-Gravity Treadmill®, with the largest differences (>5%) found at 100% BW and the greatest BW support (30 and 20% BW). These differences may be associated with changes in metabolic demand and maximum speed during walking or running and should be taken into consideration when using these devices for training and research purposes. PMID:25226319
Critical gravity as van Dam-Veltman-Zakharov discontinuity in anti de Sitter space
Myung, Yun Soo
2011-01-01
We consider critical gravity as van Dam-Vletman-Zakharov (vDVZ) discontinuity in anti de Sitter space. For this purpose, we introduce the higher curvature gravity. This discontinuity can be confirmed by calculating the residues of relevant poles explicitly. For the non-critical gravity of $0
Motivations for anti-gravity in general relativity
Arguments are presented showing that it is natural to interpret the negative mass part of the Kerr solution as representing the geometry experienced by antimatter. The C, P and T discrete transformations are considered for this geometry. The C and T properties of the proposed identification are found to be in agreement with the usual representation of antimatter. In addition, a property of perfect stigmatism through Kerr wormholes which allows general relativity to mimic anti-gravity is conjectured. Kerr wormholes would then act as 'super-mirrors' reversing the C, P and T images of an object seen through it. This interpretation is subjected to several experimental tests and able to provide an explanation, without any free parameter, of the 'CP'-violation observed in the neutral kaon system. (K.A.)
Motivations for anti-gravity in general relativity
Chardin, G. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. d`Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l`Instrumentation Associee
1996-05-01
Arguments are presented showing that it is natural to interpret the negative mass part of the Kerr solution as representing the geometry experienced by antimatter. The C, P and T discrete transformations are considered for this geometry. The C and T properties of the proposed identification are found to be in agreement with the usual representation of antimatter. In addition, a property of perfect stigmatism through Kerr wormholes which allows general relativity to mimic anti-gravity is conjectured. Kerr wormholes would then act as `super-mirrors` reversing the C, P and T images of an object seen through it. This interpretation is subjected to several experimental tests and able to provide an explanation, without any free parameter, of the `CP`-violation observed in the neutral kaon system. (K.A.). 37 refs.
Anti-evaporation of Schwarzschild–de Sitter black holes in F(R) gravity
We studied the anti-evaporation of a degenerate Schwarzschild–de Sitter black hole (so-called Nariai space-time) in modified F(R) gravity. We analyze the perturbations in the Nariai black hole and find that anti-evaporation may occur in F(R) gravity even at a classical level. For several power-law F(R) gravities which may describe the inflation and/or dark energy eras, we presented the theory parameter bounds for the occurrence of anti-evaporation and conjectured creation of an infinite number of horizons. (paper)
Algebraic solutions of anti-self-dual gravity
Full text: (author)It is considered a four-dimensional PDE: complex Monge-Amp'ere equation (CMA), solutions of which govern anti-self-dual gravity, i.e. determine anti-self-dual Ricci-flat Kahler metrics, solutions of the vacuum Einstein equations with the Euclidean signature. It is used simultaneously two mutually complex conjugate pairs of partner symmetries of CMA related by a recursion relation. For both pairs of partner symmetries, using Lie equations, it is introduced explicitly group parameters as additional variables, replacing symmetry characteristics and their complex conjugates by derivatives of the unknown with respect to group parameters. It is studied the resulting system of six equations in the eight-dimensional space, that includes CMA, four equations of the recursion between partner symmetries and one integrability condition of this system. It is used point symmetries of this extended system for performing its symmetry reduction with respect to group parameters that facilitates solving the extended system. This procedure does not imply a reduction in the number of physical variables and hence it is ended up with orbits of non-invariant solutions of CMA, generated by one partner symmetry, not used in the reduction. These solutions are determined by six linear equations with constant coefficients in the five-dimensional space which are obtained by a three-dimensional Legendre transformation of the reduced extended system. It is presented an example of algebraic solutions that govern Legendre-transformed Ricci-flat Kahler metrics with no Killing vectors. It is defined as a set of roots of a homogeneous polynomial of degree 6 in the six complex variables which determines a four-dimensional compact manifold in a five-dimensional complex projective space
Anti-de Sitter holography for gravity and higher spin theories in two dimensions
Grumiller, Daniel(Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10/136, A-1040, Vienna, Austria); Leston, Mauricio; Vassilevich, Dmitri(CMCC, Universidade Federal do ABC, Santo André, S.P., Brazil)
2013-01-01
We provide a holographic description of two-dimensional dilaton gravity with Anti-de Sitter boundary conditions. We find that the asymptotic symmetry algebra consists of a single copy of the Virasoro algebra with non-vanishing central charge and point out difficulties with the standard canonical treatment. We generalize our results to higher spin theories and thus provide the first examples of two-dimensional higher spin gravity with holographic description. For spin-3 gravity we find that th...
On the proposed existence of an anti-gravity regime in the early Universe
In an interesting letter, Linde has recently suggested that, as a result of the behaviour of dense matter in the early Universe, the realization of an anti-gravity phase is possible, in principle, without the intervention of quantum gravity. Using the Friedman cosmological model, we amplify the discussion given by Linde and find a difficulty with his interpretation. (orig.)
Marriage of Electromagnetism and Gravity in an Extended Space Model and Astrophysical Phenomena
Andreev, V. A.; Tsipenyuk, D. Yu.
2013-09-01
The generalization of Einstein's special theory of relativity (SRT) is proposed. In this model the possibility of unification of scalar gravity and electromagnetism into a single unified field is considered. Formally, the generalization of the SRT is that instead of (1+3)-dimensional Minkowski space the (1+4)-dimensional extension G is considered. As a fifth additional coordinate the interval S is used. This value is saved under the usual Lorentz transformations in Minkowski space M, but it changes when the transformations in the extended space G are used. We call this model the extended space model (ESM). From a physical point of view our expansion means that processes in which the rest mass of the particles changes are acceptable now. If the rest mass of a particle does not change and the physical quantities do not depend on an additional variable S, then the electromagnetic and gravitational fields exist independently of each other. But if the rest mass is variable and there is a dependence on S, then these two fields are combined into a single unified field. In the extended space model a photon can have a nonzero mass and this mass can be either positive or negative. The gravitational effects such as the speed of escape, gravitational red shift and detection of light can be analyzed in the frame of the extended space model. In this model all these gravitational effects can be found algebraically by the rotations in the (1+4) dimensional space. Now it becomes possible to predict some future results of visible size of supermassive objects in our Universe due to new stage of experimental astronomy development in the RadioAstron Project and analyze phenomena is an explosion of the star V838 Mon.
Anti-Evaporation of Schwarzschild-de Sitter Black Holes in $F(R)$ gravity
Nojiri, Shin'ichi; Odintsov, Sergei D.
2013-01-01
We studied the anti-evaporation of degenerate Schwarzschild-de Sitter black hole (so-called Nariai space-time) in modified $F(R)$ gravity. The analysis of perturbations of the Nariai black hole is done with the conclusion that anti-evaporation may occur in such a theory already on classical level. For several power-law $F(R)$ gravities which may describe the inflation and/or dark energy eras we presented the theory parameters bounds for occurrence of anti-evaporation and conjectured creation ...
(Anti-) de Sitter Electrically Charged Black Hole Solutions in Higher-Derivative Gravity
Lin, Kai; Qian, Wei-Liang; Pavan, A. B.; Abdalla, E.
2016-01-01
In this paper, static electrically charged black hole solutions with cosmological constant are investigated in an Einstein-Hilbert theory of gravity with additional quadratic curvature terms. Beside the analytic Schwarzschild (Anti-) de Sitter solutions, non-Schwarzschild (Anti-) de Sitter solutions are also obtained numerically by employing the shooting method. The results show that there exist two groups of asymptotically (Anti-) de Sitter spacetimes for both charged and uncharged black hol...
Anti-de Sitter gauge theory for gravity
Verwimp, Theo
2010-01-01
First a review is given of Riemann-Cartan space-time and Einstein-Cartan gravity. This gives us the necessary tools to handle the SO(2,3) Yang-Mills gauge theory for gravity. New here is the derivation of the conservation laws. Finally possible solutions of the field equations are discussed. They depend on the scale of the de Sitter length.
Merkel, A; Tournat, V; Gusev, V
2014-08-01
We report the experimental observation of the gravity-induced asymmetry for the nonlinear transformation of acoustic waves in a noncohesive granular phononic crystal. Because of the gravity, the contact precompression increases with depth inducing space variations of not only the linear and nonlinear elastic moduli but also of the acoustic wave dissipation. We show experimentally and explain theoretically that, in contrast to symmetric propagation of linear waves, the amplitude of the nonlinearly self-demodulated wave depends on whether the propagation of the waves is in the direction of the gravity or in the opposite direction. Among the observed nonlinear processes, we report frequency mixing of the two transverse-rotational modes belonging to the optical band of vibrations and propagating with negative phase velocities, which results in the excitation of a longitudinal wave belonging to the acoustic band of vibrations and propagating with positive phase velocity. We show that the measurements of the gravity-induced asymmetry in the nonlinear acoustic phenomena can be used to compare the in-depth distributions of the contact nonlinearity and of acoustic absorption. PMID:25215842
The instabilities and (anti)-evaporation of Schwarzschild-de Sitter black holes in modified gravity
L. Sebastiani; Momeni, D.; Myrzakulov, R.; Odintsov, S. D.
2013-01-01
We investigate the future evolution of Nariai black hole which is extremal limit of Schwarzschild-de Sitter one in modified gravity. The perturbations equations around Nariai black hole are derived in static and cosmological patches for general $F(R)$-gravity. The analytical and numerical study of several realistic $F(R)$-models shows the occurence of rich variety of scenarios: instabilities, celebrated Hawking evaporation and anti-evaporation of black hole. The realization of specific scenar...
Massive Higher Derivative Gravity in D-dimensional Anti-de Sitter Spacetimes
Gullu, Ibrahim; Tekin, Bayram(Department of Physics, Middle East Technical University, 06800 Ankara, Turkey)
2009-01-01
We find the propagator and calculate the tree level scattering amplitude between two covariantly conserved sources in an Anti-de Sitter background for the most general D-dimensional quadratic, four-derivative, gravity with a Pauli-Fierz mass. We also calculate the Newtonian potential for various limits of the theory in flat space. We show how the recently introduced three dimensional New Massive Gravity is uniquely singled out among higher derivative models as a (tree level) unitary model and...
Chemical potentials in three-dimensional higher spin anti-de Sitter gravity
Henneaux, Marc(Université Libre de Bruxelles, ULB-Campus Plaine CP231, 1050, Brussels, Belgium); Pérez, Alfredo; Tempo, David; Troncoso, Ricardo(Centro de Estudios Científicos (CECs), Av. Arturo Prat 514, Valdivia, Chile)
2013-01-01
We indicate how to introduce chemical potentials for higher spin charges in higher spin anti-de Sitter gravity in a manner that manifestly preserves the original asymptotic W-symmetry. This is done by switching on a non-vanishing component of the connection along the temporal (thermal) circles. We first recall the procedure in the pure gravity case (no higher spin) where the only "chemical potentials" are the temperature and the chemical potential associated with the angular momentum. We then...
Massive higher derivative gravity in D-dimensional anti-de Sitter spacetimes
We find the propagator and calculate the tree level scattering amplitude between two covariantly conserved sources in an anti-de Sitter background for the most general D-dimensional quadratic, four-derivative, gravity with a Pauli-Fierz mass. We also calculate the Newtonian potential for various limits of the theory in flat space. We show how the recently introduced three-dimensional New Massive Gravity is uniquely singled out among higher derivative models as a (tree level) unitary model and that its Newtonian limit is equivalent to that of the usual massive gravity in flat space.
Dewitt, Kenneth J.; Brockwell, Jonathan L.; Yung, Chain-Nan; Chai, An-Ti; Mcquillen, John B.; Sotos, Raymond G.; Neumann, Eric S.
1988-01-01
This paper will describe the experimental and analytical work that has been done to establish justification and feasibility for a Shuttle mid-deck experiment involving mass transfer between a gas bubble and a liquid. The experiment involves the observation and measurement of the dissolution of an isolated, immobile gas bubble of specified size and composition in a thermostatted solvent liquid of known concentration in the reduced gravity environment of earth orbit. Methods to generate and deploy the bubble have been successful both in normal gravity using mutually buoyant fluids and under reduced gravity conditions in the NASA Lear Jet. Initialization of the experiment with a bubble of a prescribed size and composition in a liquid of known concentration has been accomplished using the concept of unstable equilibrium. Subsequent bubble dissolution or growth is obtained by a step increase or decrease in the liquid pressure. A numerical model has been developed which simulates the bubble dynamics and can be used to determine molecular parameters by comparison with the experimental data. The primary objective of the experiment is the elimination of convective effects that occur in normal gravity. The results will yield information on transport under conditions of pure diffusion.
Topological regularization and self-duality in four-dimensional anti-de Sitter gravity
Miskovic, Olivera; Olea, Rodrigo
2009-01-01
It is shown that the addition of a topological invariant (Gauss-Bonnet term) to the anti-de Sitter (AdS) gravity action in four dimensions recovers the standard regularization given by holographic renormalization procedure. This crucial step makes possible the inclusion of an odd parity invariant (Pontryagin term) whose coupling is fixed by demanding an asymptotic (anti) self-dual condition on the Weyl tensor. This argument allows to find the dual point of the theory where the holographic str...
Study on dynamic anti-sliding stability of a high gravity dam considering complex dam foundation
Deng-hong CHEN; Du, Cheng-bin
2011-01-01
There existed some limitations when analyzing the anti-sliding seismic stability of dam-foundation system by traditional pseudo-static method and response spectrum method. The dynamic strength reduction method was used to study on the deep anti-sliding stability of a high gravity dam considering complex dam foundation under strong earthquake-induced ground action. The static analysis was firstly carried out by reducing the shear strength parameters of the dam foundation’s rock mass with equal...
Investigations of the Effects of Altered Vestibular System Function on Hindlimb Anti-Gravity Muscles
Lowery, Mary Sue
1998-01-01
Exposure to different gravitational environments, both the microgravity of spaceflight and the hypergravity of centrifugation, result in altered vestibulo-spinal function which can be reversed by reacclimation to earth gravity (2). Control of orientation, posture, and locomotion are functions of the vestibular system which are altered by changes in gravitational environment. Not only is the vestibular system involved with coordination and proprioception, but the gravity sensing portion of the vestibular system also plays a major role in maintaining muscle tone through projections to spinal cord motoneurons that control anti-gravity muscles. I have been involved with investigations of several aspects of the link between vestibular inputs and muscle morphology and function during my work with Dr. Nancy Daunton this summer and the previous summer. We have prepared a manuscript for submission (4) to Aviation, Space, and Environmental Medicine based on work that I performed last summer in Dr. Daunton's lab. Techniques developed for that project will be utilized in subsequent experiments begun in the summer of 1998. I have been involved with the development of a pilot project to test the effects of vestibular galvanic stimulation (VGS) on anti-gravity muscles and in another project testing the effects of the ototoxic drug streptomycin on the otolith-spinal reflex and anti-gravity muscle morphology.
Interface and transport phenomena under reduced gravity. II - Surfaces and wetting
Bewersdorff, A.; Mueller, G.; Oertel, H., Jr.; Sahm, P. R.; Sell, P.-J.; Siekmann, J.
1983-02-01
Liquids contained in propellant tanks under microgravity conditions are subject to reduced gravity forces, surface forces and boundary adhesion. Based on the principle of the minimum of the total potential energy, the basic equations of capillary hydrostatics are derived and the equilibrium configurations of the free fluid surface in rotationally symmetric containers are calculated. Tank geometries for technical purposes are discussed, as well as the role of outgassing of molten matter in materials processing in space. The Hele-Shaw cell is described as a simple and reliable instrument for terrestrial experiments on bubble dynamics under simulated microgravity and temperature gradients. Finally, the wetting kinetics of model tubes under simulated gravity and microgravity is examined.
Exact solutions of dilaton gravity with (anti)-de Sitter asymptotics
Mignemi, S.
2009-01-01
We present a technique for obtaining spherically symmetric, asymptotically (anti)-de Sitter, black hole solutions of dilaton gravity with generic coupling to a Maxwell field, starting from exact asymptotically flat solutions and adding a suitable dilaton potential to the action.
Anti-Gravity Loop-shaped heat pipe with graded pore-size wick
An Anti-Gravity Loop-Shaped Heat Pipe (AGLSHP) with a Continuous Graded Pore-Size Wick (CGPSW) was developed for the cooling of electronic devices at the anti-gravity orientation on the ground. At this orientation, heat is transferred toward the direction of the gravitational field. The AGLSHP consists of an evaporator, a condenser, a vapor line and a liquid line. The CGPSW is formed by sintered copper powders and it is filled inside the evaporator and the liquid line. The corresponding test system was developed to investigate the start-up characteristics and heat transfer performance of the AGLSHP at the anti-gravity orientation. The experimental result shows that, the AGLSHP has the capability to start-up reliably without any temperature overshoot or oscillation at the test heat loads. And the AGLSHP is able to keep the temperature of the evaporator below 105 °C and the overall thermal resistance below 0.24 °C/W at the heat load of 100 W. It is also found that the ideal heat load range of the AGLSHP at the anti-gravity orientation is from 30 W to 90 W. In this power range the overall thermal resistance stabilizes at about 0.15 °C/W, and the maximum temperature of the evaporator is lower than 84 °C at the heat load of 90 W. - Highlights: ► We present a loop-shaped heat pipe for the anti-gravity application on the ground. ► We present the continuous graded pore-size wick and its fabrication process. ► We test the start-up and heat transfer performance of this loop-shaped heat pipe. ► This loop-shaped heat pipe starts up reliably and has satisfying heat transfer capability.
Transport Phenomena in Stratified Multi-Fluid Flow in the Presence and Absence of Gravity
Chigier, Norman; Humphrey, William
1996-01-01
Experiments are being conducted to study the effects of buoyancy on planar density-stratified shear flows. A wind tunnel generates planar flows separated by an insulating splitter plate, with either flow heated, which emerge from a two-dimensional nozzle. The objective is to isolate and define the effect of gravity and buoyancy on a stratified shear layer. To this end, both stably and unstably stratified layers will be investigated. This paper reports on the results of temperature and velocity measurements across the nozzle exit plane and downstream along the nozzle center plane.
Topological regularization and self-duality in four-dimensional anti-de Sitter gravity
It is shown that the addition of a topological invariant (Gauss-Bonnet term) to the anti-de Sitter gravity action in four dimensions recovers the standard regularization given by the holographic renormalization procedure. This crucial step makes possible the inclusion of an odd parity invariant (Pontryagin term) whose coupling is fixed by demanding an asymptotic (anti) self-dual condition on the Weyl tensor. This argument allows one to find the dual point of the theory where the holographic stress tensor is related to the boundary Cotton tensor as Tji=±(l2/8πG)Cji, which has been observed in recent literature in solitonic solutions and hydrodynamic models. A general procedure to generate the counterterm series for anti-de Sitter gravity in any even dimension from the corresponding Euler term is also briefly discussed.
Instabilities and anti-evaporation of Reissner–Nordström black holes in modified F(R) gravity
We study the instabilities and related anti-evaporation of the extremal Reissner–Nordström (RN) black hole in F(R) gravity. It is remarkable that the effective electric charge can be generated for some solutions of F(R) gravity without electromagnetic field. The anti-evaporation effect occurs but it emerges only in the strong coupling limit of the effective gravitational coupling. The instabilities of RN black hole are also investigated when the electromagnetic sector is added to the action of F(R) gravity. We show the anti-evaporation occurs in the Maxwell-F(R) gravity with the arbitrary gravitational coupling constant although it does not occur in the Maxwell–Einstein gravity. Furthermore, general spherically-symmetric solution of F(R) gravity in the Einstein frame is obtained
(Anti-) de Sitter Electrically Charged Black Hole Solutions in Higher-Derivative Gravity
Lin, Kai; Pavan, A B; Abdalla, E
2016-01-01
In this paper, static electrically charged black hole solutions with cosmological constant are investigated in an Einstein-Hilbert theory of gravity with additional quadratic curvature terms. Beside the analytic Schwarzschild (Anti-) de Sitter solutions, non-Schwarzschild (Anti-) de Sitter solutions are also obtained numerically by employing the shooting method. The results show that there exist two groups of asymptotically (Anti-) de Sitter spacetimes for both charged and uncharged black holes. In particular, it was found that for uncharged black holes the first group can be reduced to the Schwarzschild (Anti-) de Sitter solution, while the second group is intrinsically different from a Schwarzschild (Anti-) de Sitter solution even when the charge and the cosmological constant become zero.
(Anti-) de Sitter electrically charged black-hole solutions in higher-derivative gravity
Lin, Kai; Qian, Wei-Liang; Pavan, A. B.; Abdalla, E.
2016-06-01
In this paper, static electrically charged black-hole solutions with cosmological constant are investigated in an Einstein-Hilbert theory of gravity with additional quadratic curvature terms. Beside the analytic Schwarzschild (Anti-) de Sitter solutions, non-Schwarzschild (Anti-) de Sitter solutions are also obtained numerically by employing the shooting method. The results show that there exist two groups of asymptotically (Anti-) de Sitter spacetimes for both charged and uncharged black holes. In particular, it was found that for uncharged black holes the first group can be reduced to the Schwarzschild (Anti-) de Sitter solution, while the second group is intrinsically different from a Schwarzschild (Anti-) de Sitter solution even when the charge and the cosmological constant become zero.
The asymptotic dynamics of two-dimensional (anti-)de Sitter gravity
We show that the asymptotic dynamics of two-dimensional de Sitter or anti-de Sitter Jackiw-Teitelboim (JT) gravity is described by a generalized two-particle Calogero-Sutherland model. This correspondence is established by formulating the JT model of (A)dS gravity in two dimensions as a topological gauge theory, which reduces to a nonlinear 0+1-dimensional sigma model on the boundary of (A)dS space. The appearance of cyclic coordinates allows then a further reduction to the Calogero-Sutherland quantum mechanical model. (author)
The Asymptotic Dynamics of two-dimensional (anti-)de Sitter Gravity
Brigante, Mauro; Cacciatori, Sergio; Klemm, Dietmar; Zanon, Daniela
2002-01-01
We show that the asymptotic dynamics of two-dimensional de Sitter or anti-de Sitter Jackiw-Teitelboim (JT) gravity is described by a generalized two-particle Calogero-Sutherland model. This correspondence is established by formulating the JT model of (A)dS gravity in two dimensions as a topological gauge theory, which reduces to a nonlinear 0+1-dimensional sigma model on the boundary of (A)dS space. The appearance of cyclic coordinates allows then a further reduction to the Calogero-Sutherlan...
Critical phenomena of regular black holes in anti-de Sitter space-time
Fan, Zhong-Ying
2016-01-01
In General Relativity coupled to a non-linear electromagnetic field, together with a negative cosmological constant, we obtain the general static spherical symmetric black hole solution with magnetic charges, which is asymptotic to anti-de Sitter (AdS) space-times. In particular, for a degenerate case the solution becomes a Hayward-AdS black hole, which is regular everywhere in the full space-time. The existence of such a regular black hole solution preserves the weak energy condition while the strong energy condition is violated. We then derive the first law and the Smarr formula of the black hole solution. We further discuss its thermodynamic properties and study the critical phenomena in the extended phase space where the cosmological constant is treated as a thermodynamic variable as well as the parameter associated with the non-linear electrodynamics. We obtain many interesting results such as: the Maxwell's equal area law in the $P-V$ (or $S-T$) diagram is violated and consequently the critical point $(...
Marriage of Electromagnetism and Gravity in Extended Space Model and Astrophysical Phenomena
Andreev, V A
2013-01-01
The generalization of Einstein's special theory of relativity (SRT) is proposed. In this model the possibility of unification of scalar gravity and electromagnetism into a single united field is considered. Formally, the generalization of the SRT is that instead of (1+3)-dimensional Minkowski space the (1+4)-dimensional extension G is considered. As a fifth additional coordinate the interval S is used. This value is saved under the usual Lorentz transformations in Minkowski space M, but it changes when the transformations in the extended space G are used. We call this model the extended space model (ESM). From a physical point of view our expansion means that processes in which the rest mass of the particles changes are acceptable now. If the rest mass of a particle does not change and the physical quantities do not depend on an additional variable S, then the electromagnetic and gravitational fields exist independently of each other. But if the rest mass is variable and there is a dependence on S, then these...
Plebanski-like action for general relativity and anti-self-dual gravity
Celada, Mariano; González, Diego; Montesinos, Merced
2016-05-01
We present a new B F -type action for complex general relativity with or without a cosmological constant resembling Plebanski's action, which depends on an SO (3 ,C ) connection, a set of 2-forms, a symmetric matrix, and a 4-form. However, it differs from the Plebanski formulation in the way that the symmetric matrix enters into the action. The advantage of this fact is twofold. First, as compared to Plebanski's action, the symmetric matrix can now be integrated out, which leads to a pure B F -type action principle for general relativity; the canonical analysis of the new action then shows that it has the same phase space of the Ashtekar formalism up to a canonical transformation induced by a topological term. Second, a particular choice of the parameters involved in the formulation produces a B F -type action principle describing conformally anti-self-dual gravity. Therefore, the new action unifies both general relativity and anti-self-dual gravity.
Stability of anti-de sitter space in Einstein-Gauss-Bonnet gravity.
Deppe, Nils; Kolly, Allison; Frey, Andrew; Kunstatter, Gabor
2015-02-20
Recently it has been argued that in Einstein gravity anti-de Sitter spacetime is unstable against the formation of black holes for a large class of arbitrarily small perturbations. We examine the effects of including a Gauss-Bonnet term. In five dimensions, spherically symmetric Einstein-Gauss-Bonnet gravity has two key features: Choptuik scaling exhibits a radius gap, and the mass function goes to a finite value as the horizon radius vanishes. These suggest that black holes will not form dynamically if the total mass-energy content of the spacetime is too small, thereby restoring the stability of anti-de Sitter spacetime in this context. We support this claim with numerical simulations and uncover a rich structure in horizon radii and formation times as a function of perturbation amplitude. PMID:25763946
Berthelsen, Martin Peter; Husu, Edith; Christensen, Sofie Bouschinger;
2014-01-01
weakness. We investigated the functional effects of combined aerobic and strength training in patients with Becker and limb-girdle muscular dystrophies with knee muscle strength levels as low as 3% of normal strength. Eight patients performed 10weeks of aerobic and strength training on an anti...... by 8±2% and dynamic postural balance by 13±4%, indicating an improved physical function. Plasma creatine kinase remained unchanged. These results provide evidence that a combination of aerobic and strength training during anti-gravity has the potential to safely improve functional ability in severely...
Experimental constraints on anti-gravity and antimatter, in the context of dark energy
Ting, Yuan-Sen
2013-01-01
In a paper by Villata (2011), the possibility of a repulsive gravitational interaction between antimatter and ordinary matter was discussed. The author argued that this anti-gravity can be regarded as a prediction of general relativity, under the assumption of CPT symmetry. Stringent experimental constraints have been established against such a suggestion. The measurement of free-fall accelerations of various nuclei by the Eot-Wash group and searches for equivalence principle violation throug...
Study on dynamic anti-sliding stability of a high gravity dam considering complex dam foundation
Deng-hong CHEN
2011-06-01
Full Text Available There existed some limitations when analyzing the anti-sliding seismic stability of dam-foundation system by traditional pseudo-static method and response spectrum method. The dynamic strength reduction method was used to study on the deep anti-sliding stability of a high gravity dam considering complex dam foundation under strong earthquake-induced ground action. The static analysis was firstly carried out by reducing the shear strength parameters of the dam foundation’s rock mass with equal proportion. Then, the time-history seismic analysis was carried out based on the static analysis. It was proposed as one of dynamic instability criterions that the peak values of the dynamic displacements and plastic strain energy change suddenly with increasing strength reduction coefficient. The elasto-plastic behavior of the dam foundation was idealized using Drucker–Prager yield criterion based on associated flow rule assumption. Through the static, dynamic strength reduction analysis and dynamic linear elastic analysis of the overflow dam monolith of a high gravity dam, the results’ reliability of elastic-plastic time history analysis was confirmed. The results also showed that the rock mass strength of the high gravity dam foundation has higher strength reserve coefficient. The instability criterions of dynamic strength reduction method proposed were feasible. Although the static anti-slide analysis methods and standards of gravity dam based on the numerical methods are being discussed at present, the dynamic calculation method and instability criterions proposed in this paper would provide some meaningful suggestions for the dynamic analysis of the similar projects.
Spivey, Reggie A.; Jeter, Linda B.; Vonk, Chris
2007-01-01
The Microgravity Science Glovebox (MSG) is a double rack facility aboard the International Space Station (ISS) designed for gravity-dependent phenomena investigation handling. The MSG has been operating in the ISS US Laboratory Module since July 2002. The MSG facility provides an enclosed working area for investigation manipulation and observation in the ISS. The MSG s unique design provides two levels of containment to protect the ISS crew from hazardous operations. Research investigations operating inside the MSG are provided a large 255 liter work volume, 1000 watts of dc power via a versatile supply interface (120,28, +/-12, and 5 Vdc), 1000 watts of cooling capability, video and data recording and real time downlink, ground commanding capabilities, access to ISS Vacuum Exhaust and Vacuum Resource Systems, and gaseous nitrogen supply. With these capabilities, the MSG is an ideal platform for research required to advance the technology readiness levels (TRL) needed for the Crew Exploration Vehicle and the Exploration Initiative. Areas of research that will benefit from investigations in the MSG include thermal management, fluid physics, spacecraft fire safety, materials science, combustion and reacting control systems, in situ fabrication and repair, and advanced life support technologies. This paper will provide a detailed explanation of the MSG facility, a synopsis of the research that has already been accomplished in the MSG, an overview of investigations planning to operate in the MSG, and possible augmentations that can be added to the MSG facility to further enhance the resources provided to investigations.
Reissner–Nordström Anti-de Sitter Black Holes in Mimetic F(R Gravity
V. K. Oikonomou
2016-05-01
Full Text Available In this paper, we study under which conditions the Reissner–Nordström anti-de Sitter black hole can be a solution of the vacuum mimetic F ( R gravity with Lagrange multiplier and mimetic scalar potential. As the author demonstrates, the resulting picture in the mimetic F ( R gravity case is a trivial extension of the standard F ( R approach, and in effect, the metric perturbations in the mimetic F ( R gravity case, for the Reissner–Nordström anti-de Sitter black hole metric, at the first order of the perturbed variables are the same at the leading order.
Reissner–Nordström Anti-de Sitter Black Holes in Mimetic F(R) Gravity
Oikonomou, V. K.
2016-01-01
In this paper, we study under which conditions the Reissner–Nordström anti-de Sitter black hole can be a solution of the vacuum mimetic F ( R ) gravity with Lagrange multiplier and mimetic scalar potential. As the author demonstrates, the resulting picture in the mimetic F ( R ) gravity case is a trivial extension of the standard F ( R ) approach, and in effect, the metric perturbations in the mimetic F ( R ) gravity case, for the Reissner–Nordström anti-de Sit...
Localization of gravity and bulk matters on a thick anti-de Sitter brane
In this paper, we investigate the localization and the mass spectra of gravity and various bulk matter fields on a thick anti-de Sitter (AdS) brane, by presenting the mass-independent potentials of the Kaluza-Klein (KK) modes in the corresponding Schroedinger equations. For gravity, the potential of the KK modes tends to infinity at the boundaries of the extra dimension, which leads to an infinite number of the bound KK modes. Although the gravity zero mode cannot be localized on the AdS brane, the massive modes are trapped on the brane. The scalar perturbations of the thick AdS brane have been analyzed, and the brane is stable under the scalar perturbations. For spin-0 scalar fields and spin-1 vector fields, the potentials of the KK modes also tend to infinity at the boundaries of the extra dimension, and the characteristic of the localization is the same as the case of gravity. For spin-1/2 fermions, by introducing the usual Yukawa coupling ηΨφΨ with the positive coupling constant η, the four-dimensional massless left-chiral fermion and massive Dirac fermions are obtained on the AdS thick brane.
Reissner–Nordström Anti-de Sitter Black Holes in Mimetic F(R) Gravity
Oikonomou, V. K.
2016-05-01
In this paper we study under which conditions the Reissner-Nordstr\\"om-anti de Sitter black hole can be a solution of the vacuum mimetic $F(R)$ gravity with Lagrange multiplier and mimetic scalar potential. As we demonstrate, the resulting picture in the mimetic $F(R)$ gravity case, is different in comparison to the ordinary $F(R)$ gravity case, with the two descriptions resulting to a different set of constraints that need to hold true. We also investigate the metric perturbations in the mimetic $F(R)$ gravity case, for the Reissner-Nordstr\\"om-anti de Sitter black hole metric, at first order of the perturbed variables. Interestingly enough, the resulting equations are identical to the ones corresponding to the ordinary $F(R)$ gravity Reissner-Nordstr\\"om-anti de Sitter black hole, at least at first order. We attribute this feature to the particular form of the Reissner-Nordstr\\"om-anti de Sitter metric, and we speculate for which cases there could be differences between the mimetic and non-mimetic case. Since the perturbation equations are the same for the two cases, it is possible to have black hole instabilities in the mimetic $F(R)$ gravity case too, which can be interpreted as anti-evaporation of the black hole.
Higgs phenomenon for 4-D gravity in anti de Sitter space
We show that standard Einstein gravity coupled to a free conformal field theory (CFT) in anti-de Sitter space can undergo a Higgs phenomenon whereby the graviton acquires a nonzero mass (and three extra polarizations). We show that the essential ingredients of this mechanism are the discreteness of the energy spectrum in AdS space, and unusual boundary conditions on the elementary fields of the CFT. These boundary conditions can be interpreted as implying the existence of a 3-d defect CFT living at the boundary of AdS4. Our free-field computation sheds light on the essential, model-independent features of AdS4 that give rise to massive gravity. (author)
A note on asymptotically anti-de Sitter quantum spacetimes in loop quantum gravity
Bodendorfer, Norbert
2015-01-01
A framework conceptually based on the conformal techniques employed to study the structure of the gravitational field at infinity is set up in the context of loop quantum gravity to describe asymptotically anti-de Sitter quantum spacetimes. A conformal compactification of the spatial slice is performed, which, in terms of the rescaled metric, has now finite volume, and can thus be conveniently described by spin networks states. The conformal factor used is a physical scalar field, which has the necessary asymptotics for many asymptotically AdS black hole solutions.
(Anti-) de Sitter Black Holes in higher derivative gravity and dual Conformal Field Theories
Nojiri, Shin'ichi; Odintsov, Sergei D.
2002-01-01
Thermodynamics of five-dimensional Schwarzschild Anti-de Sitter (SAdS) and SdS black holes in the particular model of higher derivative gravity is considered. The free energy, mass (thermodynamical energy) and entropy are evaluated. There exists the parameters region where BH entropy is zero or negative. The arguments are given that corresponding BH solutions are not stable. We also present the FRW-equations of motion of time (space)-like branes in SAdS or SdS BH background. The properties of...
Effect of temperature gradient on heavy quark anti-quark potential using gravity dual model
Ganesh, S
2016-01-01
The Quark-gluon plasma (QGP) is an expanding fireball, with finite dimensions. Given the finite dimensions, the temperature would be highest at the center, and close to the critical temperature, $T_c$, at the boundary, giving rise to a temperature gradient inside the QGP. A heavy quark anti-quark pair immersed in the QGP medium would see this temperature gradient. The effect of the temperature gradient on the quark anti-quark potential is analyzed using a gravity dual model. The resulting modification to the potential due to the temperature gradient is seen to have a $L^{-2}$ correction term. This could be a possible fallout of the breaking of conformal invariance at finite temperature.
AEgIS experiment: Towards anti-hydrogen beam production for antimatter gravity measurements
AEgIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) is an experiment that aims to perform the first direct measurement of the gravitational acceleration g of anti-hydrogen in the Earth's field. A cold anti-hydrogen beam will be produced by charge exchange reaction between cold antiprotons and positronium excited in Rydberg states. Rydberg positronium (with quantum number n between 20 and 30) will be produced by a two steps laser excitation. The anti-hydrogen beam, after being accelerated by Stark effect, will fly through the gratings of a 'moire' deflectometer. The deflection of the horizontal beam due to its free fall will be measured by a position sensitive detector. It is estimated that the detection of about 103 anti-hydrogen atoms is required to determine the gravitational acceleration with a precision of 1%. In this report an overview of the AEgIS experiment is presented and its current status is described. Details on the production of slow positronium and its excitation with lasers are discussed. (authors)
Plebanski-like action for general relativity and anti-self-dual gravity
Celada, Mariano; Montesinos, Merced
2016-01-01
We present a new $BF$-type action for complex general relativity with or without a cosmological constant resembling Plebanski's action, which depends on an SO(3,$\\mathbb{C}$) connection, a set of 2-forms, a symmetric matrix, and a 4-form. However, it differs from the Plebanski formulation in the way that the symmetric matrix enters into the action. The advantage of this fact is twofold. First, as compared to Plebanski's action, the symmetric matrix can now be integrated out, which leads to a pure $BF$-type action principle for general relativity; the canonical analysis of the new action then shows that it has the same phase space of the Ashtekar formalism up to a canonical transformation induced by a topological term. Second, a particular choice of the parameters involved in the formulation produces a $BF$-type action principle describing conformally anti-self-dual gravity. Therefore, the new action unifies both general relativity and anti-self-dual gravity.
Berthelsen, Martin Peter; Husu, Edith; Christensen, Sofie Bouschinger; Prahm, Kira Philipsen; Vissing, John; Jensen, Bente Rona
2014-06-01
Recent studies in patients with muscular dystrophies suggest positive effects of aerobic and strength training. These studies focused training on using bicycle ergometers and conventional strength training, which precludes more severely affected patients from participating, because of their weakness. We investigated the functional effects of combined aerobic and strength training in patients with Becker and limb-girdle muscular dystrophies with knee muscle strength levels as low as 3% of normal strength. Eight patients performed 10 weeks of aerobic and strength training on an anti-gravity treadmill, which offered weight support up to 80% of their body weight. Six minute walking distance, dynamic postural balance, and plasma creatine kinase were assessed 10 weeks prior to training, immediately before training and after 10 weeks of training. Training elicited an improvement of walking distance by 8±2% and dynamic postural balance by 13±4%, indicating an improved physical function. Plasma creatine kinase remained unchanged. These results provide evidence that a combination of aerobic and strength training during anti-gravity has the potential to safely improve functional ability in severely affected patients with Becker and limb-girdle muscular dystrophies. PMID:24684860
Gamow, George
2003-01-01
A distinguished physicist and teacher, George Gamow also possessed a special gift for making the intricacies of science accessible to a wide audience. In Gravity, he takes an enlightening look at three of the towering figures of science who unlocked many of the mysteries behind the laws of physics: Galileo, the first to take a close look at the process of free and restricted fall; Newton, originator of the concept of gravity as a universal force; and Einstein, who proposed that gravity is no more than the curvature of the four-dimensional space-time continuum.Graced with the author's own draw
Reissner–Nordström Anti-de Sitter Black Holes in Mimetic F(R) Gravity
Oikonomou, V.K.
2016-01-01
In this paper we study under which conditions the Reissner-Nordstr\\"om-anti de Sitter black hole can be a solution of the vacuum mimetic $F(R)$ gravity with Lagrange multiplier and mimetic scalar potential. As we demonstrate, the resulting picture in the mimetic $F(R)$ gravity case, is different in comparison to the ordinary $F(R)$ gravity case, with the two descriptions resulting to a different set of constraints that need to hold true. We also investigate the metric perturbations in the mim...
Vogel, S N; Havell, E A
1990-01-01
Tumor necrosis factor alpha (TNF alpha) has been implicated as a major mediator of lipopolysaccharide (LPS)-induced phenomena. Administration to mice of a polyclonal, monospecific antibody prepared against recombinant murine TNF alpha abolished detection of LPS-induced TNF alpha activity and significantly reduced levels of LPS-induced colony-stimulating factor but failed to reduce the production of LPS-induced interferon, corticosterone, or LPS-induced hypoglycemia.
Henneaux, Marc(Université Libre de Bruxelles, ULB-Campus Plaine CP231, 1050, Brussels, Belgium); Rey, Soo-Jong
2010-01-01
We investigate the asymptotic symmetry algebra of (2+1)-dimensional higher spin, anti-de Sitter gravity. We use the formulation of the theory as a Chern-Simons gauge theory based on the higher spin algebra hs(1,1). Expanding the gauge connection around asymptotically anti-de Sitter spacetime, we specify consistent boundary conditions on the higher spin gauge fields. We then study residual gauge transformation, the corresponding surface terms and their Poisson bracket algebra. We find that the...
Experimental constraints on anti-gravity and antimatter, in the context of dark energy
Ting, Yuan-Sen
2013-01-01
In a paper by Villata (2011), the possibility of a repulsive gravitational interaction between antimatter and ordinary matter was discussed. The author argued that this anti-gravity can be regarded as a prediction of general relativity, under the assumption of CPT symmetry. Stringent experimental constraints have been established against such a suggestion. The measurement of free-fall accelerations of various nuclei by the Eot-Wash group and searches for equivalence principle violation through the gravitational splitting in kaon physics consistently establish null results on any difference between the gravitational behaviour of antimatter and ordinary matter. The original arguments against antigravity were questioned by Nieto & Goldman (1991). In the light of new experiments as well as theoretical developments in the past 20 years, some of Nieto & Goldman's concerns have been addressed. While a precise measurement of the free-fall acceleration of antihydrogen will eventually lay this issue to rest, th...
BRST transformations for an affine gauge model of gravity with local anti Ganti L(4, R) symmetry
BRST transformations are constructed for the fields in an affine gauge model of gravity with spontaneously broken local anti Ganti L(4, R) symmetry, as a step in the quantization procedure. The invariance of the quantum action under these transformations holds under general gauge fixing conditions. (orig.)
Malling, Anne Sofie Bøgh; Jensen, Bente Rona
2016-01-01
, the aim was to study the effect of motor intensive training performed in a safe anti-gravity environment using lower-body positive pressure (LBPP) technology on performance during dynamic balance related tasks. Thirteen male PDP went through an 8-week control period followed by 8 weeks of motor...
Small angle neutron scattering (SANS) instrument with long flight path is a very powerful tool to investigate the structures of various nanoscale materials. Currently, a new 40m SANS instrument is under development to be installed at HANARO, which will be one of the key facilities for nano-characterization in Korea. To enhance the measurement capability of the 40m SANS, especially in the low Q region, cold neutron focusing and cancellation of gravity effects using multiple biconcave lenses and prisms are suggested. In this paper, we present recent Monte Carlo simulation studies on the refractive focusing and anti-gravity optics
More on asymptotically anti-de Sitter spaces in topologically massive gravity
Recently, the asymptotic behavior of three-dimensional anti-de Sitter (AdS) gravity with a topological mass term was investigated. Boundary conditions were given that were asymptotically invariant under the two dimensional conformal group and that included a falloff of the metric sufficiently slow to consistently allow pp-wave type of solutions. Now, pp waves can have two different chiralities. Above the chiral point and at the chiral point, however, only one chirality can be considered, namely, the chirality that has the milder behavior at infinity. The other chirality blows up faster than AdS and does not define an asymptotically AdS spacetime. By contrast, both chiralities are subdominant with respect to the asymptotic behavior of AdS spacetime below the chiral point. Nevertheless, the boundary conditions given in the earlier treatment only included one of the two chiralities (which could be either one) at a time. We investigate in this paper whether one can generalize these boundary conditions in order to consider simultaneously both chiralities below the chiral point. We show that this is not possible if one wants to keep the two-dimensional conformal group as asymptotic symmetry group. Hence, the boundary conditions given in the earlier treatment appear to be the best possible ones compatible with conformal symmetry. In the course of our investigations, we provide general formulas controlling the asymptotic charges for all values of the topological mass (not just below the chiral point).
Rehabilitation Exercises to Induce Balanced Scapular Muscle Activity in an Anti-gravity Posture.
Ishigaki, Tomonobu; Yamanaka, Masanori; Hirokawa, Motoki; Tai, Keita; Ezawa, Yuya; Samukawa, Mina; Tohyama, Harukazu; Sugawara, Makoto
2014-12-01
[Purpose] The purpose of this study was to compare the intramuscular balance ratios of the upper trapezius muscle (UT) and the lower trapezius muscle (LT), and the intermuscular balance ratios of the UT and the serratus anterior muscle (SA) among prone extension (ProExt), prone horizontal abduction with external rotation (ProHAbd), forward flexion in the side-lying position (SideFlex), side-lying external rotation (SideEr), shoulder flexion with glenohumeral horizontal abduction load (FlexBand), and shoulder flexion with glenohumeral horizontal adduction load (FlexBall) in the standing posture. [Methods] The electromyographic (EMG) activities of the UT, LT and SA were measured during the tasks. The percentage of maximum voluntary isometric contraction (%MVIC) was calculated for each muscle, and the UT/LT ratios and the UT/SA ratios were compared among the tasks. [Results] The UT/LT ratio with the FlexBand was not significantly different from those of the four exercises in the side-lying and prone postures. The UT/SA ratio with the FlexBall demonstrated appropriate balanced activity. [Conclusion] In an anti-gravity posture, we recommend the FlexBand and the FlexBall for inducing balanced UT/LT and UT/SA ratios, respectively. PMID:25540485
Balance control and anti-gravity muscle activity during the experience of fear at heights.
Wuehr, Max; Kugler, Guenter; Schniepp, Roman; Eckl, Maria; Pradhan, Cauchy; Jahn, Klaus; Huppert, Doreen; Brandt, Thomas
2014-02-01
Fear of heights occurs when a visual stimulus causes the apprehension of losing balance and falling. A moderate form of visual height intolerance (vHI) affects about one third of the general population and has relevant consequences for the quality of life. A quantitative evaluation of balance mechanisms in persons susceptible to vHI during height exposure is missing. VHI-related changes in postural control were assessed by center-of-pressure displacements and electromyographic recordings of selected leg, arm, and neck muscles in 16 subjects with vHI while standing at heights on an emergency balcony versus standing in the laboratory at ground level. Characteristics of open- and closed-loop postural control were analyzed. Body sway and muscle activity parameters were correlated with the subjective estimates of fear at heights. During height exposure, (1) open-loop control was disturbed by a higher diffusion activity (P anti-gravity leg and neck muscles, both of which depend on the severity of evoked fear at heights. PMID:24744901
Rainbow valley of colored (anti) de Sitter gravity in three dimensions
Gwak, Seungho; Joung, Euihun; Mkrtchyan, Karapet; Rey, Soo-Jong
2016-04-01
We propose a theory of three-dimensional (anti) de Sitter gravity carrying Chan-Paton color charges. We define the theory by Chern-Simons formulation with the gauge algebra (gl_2oplus gl_2)⊗ u(N) , obtaining a color-decorated version of interacting spin-one and spin-two fields. We also describe the theory in metric formulation and show that, among N 2 massless spin-two fields, only the singlet one plays the role of metric graviton whereas the rest behave as colored spinning matter that strongly interacts at large N. Remarkably, these colored spinning matter acts as Higgs field and generates a non-trivial potential of staircase shape. At each extremum labelled by k=0,dots, [N-1/2] , the u(N) color gauge symmetry is spontaneously broken down to u(N-k)oplus u(k) and provides different (A)dS backgrounds with the cosmological constants {(N/N-2k)}^2Λ . When this symmetry breaking takes place, the spin-two Goldstone modes combine with (or are eaten by) the spin-one gauge fields to become partially-massless spin-two fields. We discuss various aspects of this theory and highlight physical implications.
Rainbow Valley of Colored (Anti) de Sitter Gravity in Three Dimensions
Gwak, Seungho; Mkrtchyan, Karapet; Rey, Soo-Jong
2015-01-01
We propose a theory of three-dimensional (anti) de Sitter gravity carrying Chan-Paton color charges. We define the theory by Chern-Simons formulation with the gauge algebra (gl(2) + gl(2)) times u(N), obtaining a color-decorated version of interacting spin-one and spin-two fields. We also describe the theory in metric formulation and show that, among N times N massless spin-two fields, only the singlet one plays the role of metric graviton whereas the rest behave as "colored spinning matter" that strongly interacts at large N.Remarkably, these colored spinning matter generates a non-trivial potential of staircase shape. At each extremum labelled by k = 0,...., [(N-1)/2], the u(N) color gauge symmetry is spontaneously broken down to u(N-k)+u(k) and provides different (A)dS(3) backgrounds with the effective cosmological constants (N/(N-2k))^2 Lambda.When this gauge symmetry breaking takes place, the spin-two Goldstone modes combine with (or are eaten by) the spin-one gauge fields to become partially massless sp...
Oxygen consumption of elite distance runners on an anti-gravity treadmill®.
McNeill, David K P; Kline, John R; de Heer, Hendrick D; Coast, J Richard
2015-06-01
Lower body positive pressure (LBPP), or 'anti-gravity' treadmills® have become increasingly popular among elite distance runners. However, to date, few studies have assessed the effect of body weight support (BWS) on the metabolic cost of running among elite runners. This study evaluated how BWS influenced the relationship between velocity and metabolic cost among 6 elite male distance runners. Participants ran three- 16 minute tests consisting of 4 stages of 4 minutes at 8, 7, 6 and 5 min·mile(-1) pace (3.35, 3.84, 4.47 and 5.36 m·s(-1)), while maintaining an aerobic effort (Respiratory Exchange Ratio ≤1.00). One test was run on a regular treadmill, one on an anti-gravity treadmill with 40% BWS and one with 20% BWS being provided. Expired gas data were collected and regression equations used to determine and compare slopes. Significant decreases in oxygen uptake (V̇O2) were found with each increase in BWS (p < 0.001). At 20% BWS, the average decrease in net VO2 was greater than proportional (34%), while at 40% BWS, the average net reduction in VO2 was close to proportional (38%). Across velocities, the slope of the relationship between VO2 and velocity (ΔV̇O2/Δv) was steeper with less support. The slopes at both the 20% and 40% BWS conditions were similar, especially when compared to the regular treadmill. Variability in VO2 between athletes was much greater on the LBPP treadmill and was greater with increased levels of BWS. In this study we evaluated the effect of body weight support on V̇O2 among elite distance runners. We have shown that oxygen uptake decreased with support, but not in direct proportion to that support. Further, because of the high variability in oxygen uptake between athletes on the LBPP treadmill, prediction equations may not be reliable and other indicators (heart rate, perceived exertion or directly measured oxygen uptake) should be used to guide training intensity when training on the LBPP treadmill. Key pointsWith increasing
Oxygen Consumption of Elite Distance Runners on an Anti-Gravity Treadmill®
David K.P. McNeill, John R. Kline, Hendrick D. de Heer, J. Richard Coast
2015-06-01
Full Text Available Lower body positive pressure (LBPP, or ‘anti-gravity’ treadmills® have become increasingly popular among elite distance runners. However, to date, few studies have assessed the effect of body weight support (BWS on the metabolic cost of running among elite runners. This study evaluated how BWS influenced the relationship between velocity and metabolic cost among 6 elite male distance runners. Participants ran three- 16 minute tests consisting of 4 stages of 4 minutes at 8, 7, 6 and 5 min·mile−1 pace (3.35, 3.84, 4.47 and 5.36 m·s−1, while maintaining an aerobic effort (Respiratory Exchange Ratio ≤1.00. One test was run on a regular treadmill, one on an anti-gravity treadmill with 40% BWS and one with 20% BWS being provided. Expired gas data were collected and regression equations used to determine and compare slopes. Significant decreases in oxygen uptake (V̇O2 were found with each increase in BWS (p < 0.001. At 20% BWS, the average decrease in net VO2 was greater than proportional (34%, while at 40% BWS, the average net reduction in VO2 was close to proportional (38%. Across velocities, the slope of the relationship between VO2 and velocity (ΔV̇O2/Δv was steeper with less support. The slopes at both the 20% and 40% BWS conditions were similar, especially when compared to the regular treadmill. Variability in VO2 between athletes was much greater on the LBPP treadmill and was greater with increased levels of BWS. In this study we evaluated the effect of body weight support on V̇O2 among elite distance runners. We have shown that oxygen uptake decreased with support, but not in direct proportion to that support. Further, because of the high variability in oxygen uptake between athletes on the LBPP treadmill, prediction equations may not be reliable and other indicators (heart rate, perceived exertion or directly measured oxygen uptake should be used to guide training intensity when training on the LBPP treadmill.
Cvetic, M; Odintsov, S D
2002-01-01
We investigate the charged Schwarzschild-Anti-deSitter (SAdS) BH thermodynamics in 5d Einstein-Gauss-Bonnet gravity with electromagnetic field. The Hawking-Page phase transitions between SAdS BH and pure AdS space are studied. The corresponding phase diagrams (with critical line defined by GB term coefficient and electric charge) are drawn. The possibility to account for higher derivative Maxwell terms is mentioned. In frames of proposed dS/CFT correspondence it is demonstrated that brane gravity maybe localized similarly to AdS/CFT. SdS BH thermodynamics in 5d Einstein and Einstein-Gauss-Bonnet gravity is considered. The corresponding (complicated) surface counterterms are found and used to get the conserved BH mass, free energy and entropy. The interesting feature of of higher derivative gravity is the possibility for negative (or zero) SdS (or SAdS) BH entropy which depends on the parameters of higher derivative terms. We speculate that negative entropy is indication for some new type instability where tra...
Li, Ran; Zhao, Jun-Kun
2016-04-01
We investigate the massive vector particles' Hawking radiation from the neutral rotating Anti-de Sitter (AdS) black holes in conformal gravity by using the tunneling method. It is well known that the dynamics of massive vector particles are governed by the Proca field equation. Applying WKB approximation to the Proca equation, the tunneling probabilities and radiation spectrums of the emitted particles are derived. Hawking temperature of the neutral rotating AdS black holes in conformal gravity is recovered, which is consistent with the previous result in the literature. Supported by the National Natural Science Foundation of China under Grant No. 11205048, and the Foundation for Young Key Teacher of Henan Normal University
Prasia, P
2016-01-01
In this work we study the Quasi Normal Modes(QNMs) under massless scalar perturbations and the thermodynamics of linearly charged BTZ black holes in massive gravity in the (Anti)de Sitter((A)dS) space time. It is found that the behavior of QNMs changes with the massive parameter and also with the charge of the black hole. The thermodynamics of such black holes in the (A)dS space time is also analyzed in detail. The behavior of specific heat with temperature for such black holes gives an indication of a phase transition that depends on the massive parameter and also on the charge of the black hole.
Cvetic, M.; Nojiri, S.; Odintsov, S.D.(Institut de Ciencies de lEspai (IEEC-CSIC), Campus UAB, Carrer de Can Magrans, s/n, Cerdanyola del Valles, Barcelona, 08193, Spain)
2001-01-01
We investigate the charged Schwarzschild-Anti-deSitter (SAdS) BH thermodynamics in 5d Einstein-Gauss-Bonnet gravity with electromagnetic field. The Hawking-Page phase transitions between SAdS BH and pure AdS space are studied. The corresponding phase diagrams (with critical line defined by GB term coefficient and electric charge) are drawn. The possibility to account for higher derivative Maxwell terms is mentioned. In frames of proposed dS/CFT correspondence it is demonstrated that brane gra...
Bugbee, William D; Pulido, Pamela A; Goldberg, Timothy; D'Lima, Darryl D
2016-01-01
The objective was to determine the safety, feasibility, and effects of anti-gravity gait training on functional outcomes (Knee Injury and Osteoarthritis Outcome Score [KOOS], the Timed Up and Go test [TUG], Numerical Rating Scale [NRS] for pain) with the AlterG® Anti-Gravity Treadmill® device for total knee arthroplasty (TKA) rehabilitation. Subjects (N = 30) were randomized to land-based vs anti-gravity gait training over 4 weeks of physical therapy after TKA. Adverse events, complications, and therapist satisfaction were recorded. All patients completed rehabilitation protocols without adverse events. KOOS, TUG, and NRS scores improved in both groups with no significant differences between groups. For the AlterG group, Sports/Recreation and Quality of Life subscales of the KOOS had the most improvement. At the end of physical therapy, TUG and NRS pain scores improved from 14 seconds to 8 seconds and from 2.8 to 1.1, respectively. Subjectively, therapists reported 100% satisfaction with the AlterG. This initial pilot study demonstrated that the AlterG Anti-Gravity Treadmill device was safe and feasible. While functional outcomes improved over time with use of the anti-gravity gait training, further studies are needed to define the role of this device as an alternative or adjunct to established rehabilitation protocols. PMID:27327921
On a canonical quantization of 3D Anti de Sitter pure gravity
Kim, Jihun; Porrati, Massimo
2015-10-01
We perform a canonical quantization of pure gravity on AdS 3 using as a technical tool its equivalence at the classical level with a Chern-Simons theory with gauge group SL(2,{R})× SL(2,{R}) . We first quantize the theory canonically on an asymptotically AdS space -which is topologically the real line times a Riemann surface with one connected boundary. Using the "constrain first" approach we reduce canonical quantization to quantization of orbits of the Virasoro group and Kähler quantization of Teichmüller space. After explicitly computing the Kähler form for the torus with one boundary component and after extending that result to higher genus, we recover known results, such as that wave functions of SL(2,{R}) Chern-Simons theory are conformal blocks. We find new restrictions on the Hilbert space of pure gravity by imposing invariance under large diffeomorphisms and normalizability of the wave function. The Hilbert space of pure gravity is shown to be the target space of Conformal Field Theories with continuous spectrum and a lower bound on operator dimensions. A projection defined by topology changing amplitudes in Euclidean gravity is proposed. It defines an invariant subspace that allows for a dual interpretation in terms of a Liouville CFT. Problems and features of the CFT dual are assessed and a new definition of the Hilbert space, exempt from those problems, is proposed in the case of highly-curved AdS 3.
Einstein Gravity from Conformal Gravity
Maldacena, Juan
2011-01-01
We show that that four dimensional conformal gravity plus a simple Neumann boundary condition can be used to get the semiclassical (or tree level) wavefunction of the universe of four dimensional asymptotically de-Sitter or Euclidean anti-de Sitter spacetimes. This simple Neumann boundary condition selects the Einstein solution out of the more numerous solutions of conformal gravity. It thus removes the ghosts of conformal gravity from this computation. In the case of a five dimensional pure ...
On a Canonical Quantization of 3D Anti de Sitter Pure Gravity
Kim, Jihun
2015-01-01
We perform a canonical quantization of pure gravity on AdS3 using as a technical tool its equivalence at the classical level with a Chern-Simons theory with gauge group SL(2,R)xSL(2,R). We first quantize the theory canonically on an asymptotically AdS space --which is topologically the real line times a Riemann surface with one connected boundary. Using the "constrain first" approach we reduce canonical quantization to quantization of orbits of the Virasoro group and Kaehler quantization of Teichmuller space. After explicitly computing the Kaehler form for the torus with one boundary component and after extending that result to higher genus, we recover known results, such as that wave functions of SL(2,R) Chern-Simons theory are conformal blocks. We find new restrictions on the Hilbert space of pure gravity by imposing invariance under large diffeomorphisms and normalizability of the wave function. The Hilbert space of pure gravity is shown to be the target space of Conformal Field Theories with continuous sp...
Applications of gauge/gravity dualities with charged Anti-de Sitter black holes
Grass, Viviane Theresa
2010-05-17
In this thesis, we deal with different applications of the Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence. The AdS/CFT correspondence, which is also more generally referred to as gauge/gravity duality, is a conjectured duality in superstring theory between strongly-coupled four-dimensional N=4 superconformal Yang-Mills theory and weakly-coupled type IIB string theory in five-dimensional AdS spacetime. This duality provides a powerful method to investigate strongly-coupled low-energy systems in four dimensions by substitutionally carrying out calculations in five-dimensional weakly-coupled supergravity. In this work, we use the AdS/CFT correspondence to explore three different strongly-coupled systems, namely a brane world accommodating a strongly-coupled field theory, a strongly-coupled fluid on a three-sphere and a strongly-coupled p-wave superfluid. In all these cases, the dual supergravity descriptions involve charged AdS black holes. The first system studied here is a Randall-Sundrum brane world moving in the background of a five-dimensional non-extremal black hole of N=2 gauged supergravity. The equations of motion of the brane are found to be equal to the Friedmann-Robertson-Walker (FRW) equations for a closed universe. The closed brane universe has special thermodynamic properties. The energy of the brane field theory exhibits a subextensive Casimir contribution, and the entropy can be expressed as a Cardy-Verlinde-type formula. We show that the equations for both quantities can take forms that strongly resemble the two FRW equations. At the horizon of the black hole, these two sets of equations are shown to even merge with each other which might suggest the existence of a common underlying theory. In addition, as a by-product result, the non-extremal black hole solutions considered here are found to admit an alternative description in terms of first-order flow equations similar to those which are well-known from the attractor mechanism of
Applications of gauge/gravity dualities with charged Anti-de Sitter black holes
In this thesis, we deal with different applications of the Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence. The AdS/CFT correspondence, which is also more generally referred to as gauge/gravity duality, is a conjectured duality in superstring theory between strongly-coupled four-dimensional N=4 superconformal Yang-Mills theory and weakly-coupled type IIB string theory in five-dimensional AdS spacetime. This duality provides a powerful method to investigate strongly-coupled low-energy systems in four dimensions by substitutionally carrying out calculations in five-dimensional weakly-coupled supergravity. In this work, we use the AdS/CFT correspondence to explore three different strongly-coupled systems, namely a brane world accommodating a strongly-coupled field theory, a strongly-coupled fluid on a three-sphere and a strongly-coupled p-wave superfluid. In all these cases, the dual supergravity descriptions involve charged AdS black holes. The first system studied here is a Randall-Sundrum brane world moving in the background of a five-dimensional non-extremal black hole of N=2 gauged supergravity. The equations of motion of the brane are found to be equal to the Friedmann-Robertson-Walker (FRW) equations for a closed universe. The closed brane universe has special thermodynamic properties. The energy of the brane field theory exhibits a subextensive Casimir contribution, and the entropy can be expressed as a Cardy-Verlinde-type formula. We show that the equations for both quantities can take forms that strongly resemble the two FRW equations. At the horizon of the black hole, these two sets of equations are shown to even merge with each other which might suggest the existence of a common underlying theory. In addition, as a by-product result, the non-extremal black hole solutions considered here are found to admit an alternative description in terms of first-order flow equations similar to those which are well-known from the attractor mechanism of
Ultra-low energy antiprotons for anti hydrogen spectroscopy and antimatter gravity
Approximately one million antiprotons have been captured in a large scale Penning trap at the Low Antiproton Ring (LEAR) at CERN. This has opened new discussions of the possible use of ultra-low energy antiprotons for gravitational physics as well as for precision spectroscopy of anti hydrogen for CPT tests
Asymptotically warped anti-de Sitter spacetimes in topologically massive gravity
Asymptotically warped AdS spacetimes in topologically massive gravity with negative cosmological constant are considered in the case of spacelike stretched warping, where black holes have been shown to exist. We provide a set of asymptotic conditions that accommodate solutions in which the local degree of freedom (the ''massive graviton'') is switched on. An exact solution with this property is explicitly exhibited and possesses a slower falloff than the warped AdS black hole. The boundary conditions are invariant under the semidirect product of the Virasoro algebra with a u(1) current algebra. We show that the canonical generators are integrable and finite. When the graviton is not excited, our analysis is compared and contrasted with earlier results obtained through the covariant approach to conserved charges. In particular, we find agreement with the conserved charges of the warped AdS black holes as well as with the central charges in the algebra.
Oxygen Consumption of Elite Distance Runners on an Anti-Gravity Treadmill®
McNeill, David K.P.; Kline, John R.; de Heer, Hendrick D.; Coast, J. Richard
2015-01-01
Lower body positive pressure (LBPP), or ‘anti-gravity’ treadmills® have become increasingly popular among elite distance runners. However, to date, few studies have assessed the effect of body weight support (BWS) on the metabolic cost of running among elite runners. This study evaluated how BWS influenced the relationship between velocity and metabolic cost among 6 elite male distance runners. Participants ran three- 16 minute tests consisting of 4 stages of 4 minutes at 8, 7, 6 and 5 min·mi...
Braneworld cosmology in (anti)-de Sitter Einstein-Gauss-Bonnet-Maxwell gravity
Braneworld cosmology for a domain wall embedded in the charged (anti)-de Sitter-Schwarzschild black hole of the five-dimensional Einstein-Gauss-Bonnet-Maxwell theory is considered. The effective Friedmann equation for the brane is derived by introducing the necessary surface counterterms required for a well-defined variational principle in the Gauss-Bonnet theory and for the finiteness of the bulk space. The asymptotic dynamics of the brane cosmology is determined and it is found that solutions with vanishingly small spatial volume are unphysical. The finiteness of the bulk action is related to the vanishing of the effective cosmological constant on the brane. An analogy between the Friedmann equation and a generalized Cardy-Verlinde formula is drawn. (author)
Bose-Einstein condensate (BEC) provides a nice stage when the nonlinear Schroedinger equation plays a vital role. We study the dynamics of multi-component repulsive BEC in 2 dimensions with harmonic traps by using the nonlinear Schroedinger (or Gross-Pitaevskii) equation. Firstly we consider a driven two-component BEC with each component trapped in different vertical positions. The appropriate tuning of the oscillation frequency of the magnetic field leads to a striking anti-gravity transport of BEC. This phenomenon is a manifestation of macroscopic non-adiabatic tunneling in a system with two internal (electronic) degrees of freedom. The dynamics splits into a fast complex spatio-temporal oscillation of each condensate wavefunctions together with a slow levitation of the total center of mass. Secondly, we examine the three-component repulsive BEC in 2 dimensions in a harmonic trap in the absence of magnetic field, and construct a model conservative chaos based on a picture of vortex molecules. We obtain an effective nonlinear dynamics for three vortex cores, which represents three charged particles under the uniform magnetic field with the repulsive inter-particle potential quadratic in the inter-vortex distance γij on short scale and logarithmic in γij on large scale. The vortices here acquire the inertia in marked contrast to the standard theory of point vortices since Onsager. We then explore 'the chaos in the three-body problem' in the context of vortices with inertia. (author)
Is nonrelativistic gravity possible?
Kocharyan, A. A.
2009-01-01
We study nonrelativistic gravity using the Hamiltonian formalism. For the dynamics of general relativity (relativistic gravity) the formalism is well known and called the Arnowitt-Deser-Misner (ADM) formalism. We show that if the lapse function is constrained correctly, then nonrelativistic gravity is described by a consistent Hamiltonian system. Surprisingly, nonrelativistic gravity can have solutions identical to relativistic gravity ones. In particular, (anti-)de Sitter black holes of Eins...
Quantum Gravity Inde Sitter Space And Anti-de Sitter Space
Lippert, M S
2004-01-01
In this thesis, we consider two aspects of quantum gravity—the nature of holography in anti-de Sitter space and string theory models of de Sitter space. Searching for a holographic resolution of the black hole information paradox, we pursue the identity of precursors in the context of AdS/CFT. We consider precursors that encode bulk information causally disconnected from the boundary and whose measurement involves nonlocal bulk processes. Previous arguments that these precursors are large, undecorated Wilson loops are found to be flawed. We construct a toy model of holography which encapsulates the expected properties of precursors and compare it with previous such discussions. The information contained in precursors is argued to be encoded in the high-energy sector of the theory and not observable by low-energy measurements. These considerations lead us to propose a locality bound, which indicates where locality breaks down due to black hole or stringy effects. We apply the locality bound to Hawkin...
Malling, Anne Sofie B; Jensen, Bente R
2016-01-01
Recent studies indicate that the effect of training on motor performance in persons with Parkinson's disease (PDP) is dependent on motor intensity. However, training of high motor intensity can be hard to apply in PDP due to e.g. bradykinesia, rigidity, tremor and postural instability. Therefore, the aim was to study the effect of motor intensive training performed in a safe anti-gravity environment using lower-body positive pressure (LBPP) technology on performance during dynamic balance related tasks. Thirteen male PDP went through an 8-week control period followed by 8 weeks of motor intensive antigravity training. Seventeen healthy males constituted a control group (CON). Performance during a five repetition sit-to-stand test (STS; sagittal plane) and a dynamic postural balance test (DPB; transversal plane) was evaluated. Effect measures were completion time, functional rates of force development, directional changes and force variance. STS completion time improved by 24% to the level of CON which was explained by shorter sitting-time and standing-time and larger numeric rate of force change during lowering to the chair, indicating faster vertical directional change and improved relaxation. DPB completion time tended to improve and was accompanied by improvements of functional medial and lateral rates of force development and higher vertical force variance during DPB. Our results suggest that the performance improvements may relate to improved inter-limb coordination. It is concluded that 8 weeks of motor intensive training in a safe LBPP environment improved performance during dynamic balance related tasks in PDP. PMID:26444077
Rabounski D.
2007-07-01
Full Text Available We consider the Podkletnov effect — the weight loss of an object located over a superconducting disc in air due to support by an alternating magnetic field. We consider this problem using the mathematical methods of General Relativity. We show via Einstein’s equations and the geodesic equations in a space perturbed by a disc undergoing oscillatory bounces orthogonal to its own plane, that there is no r ˆ ole of superconductivity; the Podkletnov effect is due to the fact that the field of the background space non-holonomity (the basic non-othogonality of time lines to the spatial section, being perturbed by such an oscillating disc produces energy and momentum flow in order to compensate the perturbation in itself. Such a momentum flow is directed above the disc in Podkletnov’s experiment, so it works like negative gravity (anti-gravity. We propose a simple mechanical system which, simulating the Podkletnov effect, is an experimental test of the whole theory. The theory allows for other “anti-gravity devices”, which simulate the Podkletnov effect without use of very costly superconductor technology. Such devices could be applied to be used as a cheap source of new energy, and could have implications to air and space travel.
一种提高重力坝抗震性能的方法%Method to improve anti-seismic performance of gravity dams
周星德; 章青; 吴继敏; 刘谦敏; 刘广波; 石星星
2011-01-01
针对我国大坝多建于高烈度地震区、坝基中存在软弱结构面和缓倾角裂隙等现象,以某重力坝为研究对象,探讨了在大坝坝底铺设铅加球墨铸铁对坝体动力反应及动力深层抗滑稳定性的影响.计算结果表明,坝底铺设铅加球墨铸铁可有效降低坝体动力反应,提高重力坝动力深层抗滑稳定性,这为提高大坝抗震性能提供了一种新的途径.%Aimed at the phenomenon of China's dams mostly built on high intensity earthquake areas with weak structural surfaces and low-inclined cracks in the dam foundation, the influences of laying lead and nodular cast iron at the dam bottom on its dynamic responses and dynamic deep anti-slide stability were investigated by taking a gravity dam as an example. The results show that laying lead and nodular cast iron at the dam bottom can effectively reduce its dynamic responses and enhance its deep anti-slide stability. It may provide a new approach for raising the anti-seismic performance of gravity dams.
Loop Quantization of a Model for D=1+2 (Anti)de Sitter Gravity Coupled to Topological Matter
Constantinidis, Clisthenis P.; Oporto, Zui; Piguet, Olivier
2014-01-01
We present a complete quantization of Lorentzian D=1+2 gravity with cosmological constant, coupled to a set of topological matter fields. The approach of Loop Quantum Gravity is used thanks to a partial gauge fixing leaving a residual gauge invariance under a compact semi-simple gauge group, namely Spin(4) = SU(2) x SU(2). A pair of quantum observables is constructed, which are non-trivial despite of being null at the classical level.
重力坝抗滑稳定的研究方法概述%Research on Anti Sliding Stability of Gravity Dams
赵军亮
2013-01-01
Gravity instability problems almost al because of there is not a detailed understanding of ground engineering ge-ological conditions in the early, which overlooked the weak in-terlayer in the foundation of existence and eventual y leads to the emergence of various engineering problems. This paper by analyzing the methods of gravity dams anti sliding stability m-akes a comparison of the advantages and disadvantages of var-ious methods, thus clearly gets the stability analysis of gravity dam against sliding, and provides the reference for the constru-ction of project.%重力坝失稳问题的产生几乎全部是因为在工程勘测的前期对地质地况没有进行详细的了解，以致忽视了坝基中存在的软弱夹层，最终导致了各种工程问题的产生。本文通过总结重力坝抗滑稳定的分析方法，比对各种方法的优缺点，从而清晰地得出重力坝抗滑稳定分析的趋势，为工程的建设提供了借鉴意义。
Loop quantization of a model for D = 1 + 2 (anti)de Sitter gravity coupled to topological matter
We present a complete quantization of Lorentzian D=1+2 gravity with cosmological constant, coupled to a set of topological matter fields. The approach of loop quantum gravity is used thanks to a partial gauge fixing leaving a residual gauge invariance under a compact semi-simple gauge group, namely Spin(4) = SU(2) × SU(2). A pair of quantum observables is constructed, which are non-trivial despite being gauge-equivalent to zero at the classical level. A semi-classical approximation based on appropriately defined coherent states shows non-vanishing expectation values for them, thus not reproducing their classical behaviour. (paper)
Loop quantum gravity and observations
Barrau, A.; Grain, J.
2014-01-01
Quantum gravity has long been thought to be completely decoupled from experiments or observations. Although it is true that smoking guns are still missing, there are now serious hopes that quantum gravity phenomena might be tested. We review here some possible ways to observe loop quantum gravity effects either in the framework of cosmology or in astroparticle physics.
Symmetries of Quantum Nonsymmetric Gravity
Mebarki, N; Boudine, A; Benslama, A
1999-01-01
Symmetries of Quantum Nonsymmetric gravity are studied and the corresponding generators are constructed . The related equal time canonical (and non canonical) (anti) commutation relations are established.
重力坝深层抗滑稳定的可靠度校准%Reliability calibration for deep strata anti-sliding stability of gravity dam
王素芳
2001-01-01
The standard doesn't give out the determinate safe index about the deep strata anti-sliding stability of gravity dam. The reliability calibration was done with JC method for the condition of shear zone tending to upstream. And yet the dam height, safety factors, etc. how to influence reliability index were studied and discussed here.%对于重力坝的深层抗滑稳定问题，规范并未给出明确的安全指标，为此采用JC法对剪切带倾向上游的情况进行了可靠度校准，并研究了坝高、安全系数等对可靠指标的影响。
矢量控制反坦克导弹重力补偿设计%Design of Gravity Compensation for Anti-Tank Missile with Vector Control
侯师; 张靖; 朱湘龙
2012-01-01
针对矢量控制的反坦克导弹,提出了一种基于导弹飞行物理过程、从导弹系统整体角度出发求取重力补偿的方法.通过仿真验证了该方法的可行性,并与传递函数法作了比较.这种方法一定程度上避免了孤立以某一主要影响因子分段求取重补指令,因此更加简便,同时可靠.%Addressing an anti-tank missile with vector control, this paper puts forward a new way to solve gravity compensation based on the physical process of the missile in flight and also considering from a whole view on the missile system. We have validated the feasibility by emulator and then drawn a conclusion that this method is more convenient and reliable than the way of transfer function methods. To a certain extent,the method avoids taking only certain primary impact factors into account and solving gravity compensation in a segmented way.
代占平; 陈炎桂; 苏永生
2013-01-01
Two methods are widely used in stability checking of gravity quay: limit state method with single factor, probability-based limit state method expressed with partial safety factors. The first method is replied in Design and Construction Code for Gravity Quay (1987) and BS 6349(1988), the second in Design and Construction Code for Gravity Quay (2009) and BS 6349 (2010). The calculation difference on overturning and anti-slide are compared between Chinese code and Britain new and old revision standard. The comparison is further detailed by taking a typical gravity block wharf as an example, so as to offer reference for the design of gravity block structure in foreign projects.%重力式码头稳定性的验证方法主要有：单一安全系数表达的极限状态设计方法；以概率论为基础，以分项系数表达的极限状态设计方法。《重力式码头设计与施工规范》（1987）和BS 6349（1988）均采用安全系数法；JTS167-2-2009《重力式码头设计与施工规范》和BS 6349（2010）均采用以概率论为基础，以分项系数表达的极限状态设计方法。重点对比分析中国与英国BS新、旧规范在抗滑、抗倾计算上的差异，结合现有重力式方块码头工程实例，根据其计算结果验证分析的准确性，供海外项目重力式方块结构设计参考。
Noncommutative Quantum Gravity
Faizal, Mir
2013-01-01
We discuss the BRST and anti-BRST symmetries for perturbative quantum gravity in noncommutative spacetime. In this noncommutative perturbative quantum gravity the sum of the classical Lagrangian density with a gauge fixing term and a ghost term is shown to be invariant the noncommutative BRST and the noncommutative anti-BRST transformations. We analyse the gauge fixing term and the ghost term in both linear as well as non-linear gauges. We also discuss the unitarity evolution of the theory an...
Fluctuation phenomena are the ''tip of the iceberg'' revealing the existence, behind even the most quiescent appearing macroscopic states, of an underlying world of agitated, ever-changing microscopic processes. While the presence of these fluctuations can be ignored in some cases, e.g. if one is satisfied with purely thermostatic description of systems in equilibrium, they are central to the understanding of other phenomena, e.g. the nucleation of a new phase following the quenching of a system into the co-existence region. This volume contains a collection of review articles, written by experts in the field, on the subject of fluctuation phenomena. Some of the articles are of a very general nature discussing the modern mathematical formulation of the problems involved, while other articles deal with specific topics such as kinetics of phase transitions and conductivity in solids. The juxtaposition of the variety of physical situations in which fluctuation phenomena play an important role is novel and should give the reader an insight into this subject
By using a new approach, we demonstrate the analytic expressions for slowly rotating Gauss—Bonnet charged black hole solutions with one non-vanishing angular momentum in higher-dimensional anti-de Sitter spaces. Up to linear order of the rotating parameter a, the mass, Hawking temperature and entropy of the charged black holes get no corrections from rotation. (general)
By using a new approach, we demonstrate the analytic expressions for slowly rotating Gauss-Bonnet charged black hole solutions with one non-vanishing angular momentum in higher-dimensional anti-de Sitter spaces. Up to linear order of the rotating parameter a, the mass, Hawking temperature and entropy of the charged black holes get no corrections from rotation. (authors)
Ming-chao Li
2015-10-01
Full Text Available This study used the finite element method (FEM to analyze the stress field and seepage field of a roller-compacted concrete (RCC dam, with an upstream impervious layer constructed with different types of concrete materials, including three-graded RCC, two-graded RCC, conventional vibrated concrete (CVC, and grout-enriched vibrated RCC (GEVR, corresponding to the design schemes S1 through S4. It also evaluated the anti-seepage performance of the imperious layer in the four design schemes under the normal water level and flood-check level. Stress field analysis of a retaining section and discharge section shows that the maximum tensile stress occurs near the dam heel, the maximum compressive stress occurs near the dam toe, and the stress distributions in the four schemes can satisfy the stress control criteria. Seepage field analysis shows that the uplift pressure heads in schemes S3 and S4 descend rapidly in the anti-seepage region, and that the calculated results of daily seepage flow under the steady seepage condition in these two schemes are about 30% to 50% lower than those in the other two schemes, demonstrating that CVC and GEVR show better anti-seepage performance. The results provide essential parameters such as the uplift pressure head and seepage flow for physical model tests and anti-seepage structure selection in RCC dams.
Black hole critical phenomena without black holes
Steven L Liebling
2000-10-01
Studying the threshold of black hole formation via numerical evolution has led to the discovery of fascinating nonlinear phenomena. Power-law mass scaling, aspects of universality, and self-similarity have now been found for a large variety of models. However, questions remain. Here I brieﬂy review critical phenomena, discuss some recent results, and describe a model which demonstrates similar phenomena without gravity.
Localized gravity on FRW branes
Singh, Parampreet; Dadhich, Naresh
2002-01-01
We study the system of Schwarzschild anti de Sitter (S-AdS) bulk and FRW brane for localization of gravity; i.e. zero mass gravitons having ground state on the brane, and thereby recovering the Einstein gravity with high energy correction. It has been known that gravity is not localized on AdS brane with AdS bulk. We prove the general result that gravity is not localized for dynamic branes whenever Lambda_4 0 and black h...
复杂地基重力坝深层抗滑模拟研究%Simulation of deep anti-sliding of gravity dam on complex foundation
王振; 韩春; 宋志斌; 王延梅
2013-01-01
The anti-sliding stability of gravity dam is always related to the overall safety of reservoir,and is very important.The paper adopted discrete element method to simulate the stability of dam base of complex structure surface that included bedding and joints.It also calculated the stability of dam body under two conditions of empty and full reservoir in different geological conditions.Study shows that the stability of dam is good when the reservoir is empty,while the reservoir is full of water,the stability of dam is affect significantly by the geological condition.Multiple sliding surface form are more better than double sliding surface form for the stability of dam.The stability is related to the position of the gravity dam centre.The results can be used for the design of gravity dam under complex geological condition.%重力坝抗滑稳定性关系到水库地整体安全,极为重要.本文采用离散元法对含层理、节理等复杂结构面的坝基抗滑稳定性进行了数值模拟研究,计算了不同地质条件下水库无蓄水、水库蓄满两种工况的坝体稳定性.研究表明:水库在无蓄水时,坝体稳定性都比较好,但当水库蓄满后,坝体稳定性受地质环境影响显著,多滑动面形式比双滑动面形式更有利益坝体稳定,并且与重力坝的重心位置有关.本文提出的方法与计算结果,可供复杂地质条件下重力坝设计参考.
ZOU De-Cheng; YANG Zhan-Ying; YUE Rui-Hong
2011-01-01
@@ By using a new approach, we demonstrate the analytic expressions for slowly rotating Gauss-Bonnet charged black hole solutions with one non-vanishing angular momentum in higher-dimensional anti-de Sitter spaces.Up to linear order of the rotating parameter a, the mass, Hawking temperature and entropy of the charged black holes get no corrections from rotation.%By using a new approach, we demonstrate the analytic expressions for slowly rotating Gauss-Bonnet charged black hole solutions with one non-vanishing angular momentum in higher-dimensionalanti-de Sitter spaces. Up to linear order of the rotating parameter a, the mass, Hawking temperature and entropy of the charged black holes get no corrections from rotation.
Kerr-Newman-dS/AdS solution and anti-evaporation in higher-order torsion scalar gravity theories
Nashed, Gamal G. L.
2016-03-01
We derive a null tetrad from axially-symmetric vierbein field. The f(T)f(T)-Maxwell field equations with cosmological constant, where T is the scalar torsion, are applied to the null tetrad. An exact non-vacuum solution having three constants of integration is derived which is a solution to the f (T) -Maxwell field equations provided that f(T)=T0f(T)=T0 and fT=df(T)dT=1fT=df(T)dT=1, where T0T0 is a constant. The scalar torsion related to this solution is constant, i.e., T=T0T=T0, and differs from the classical general relativity when f(T)≈T0f(T)≈T0. We study the singularities of this solution using curvature and torsion invariants. We consider a slow rotation and show that the derived solution behaves asymptotically as de Sitter spacetime and display the existence of Nariai spacetime as a background solution. We assume a perturbation of Nariai spacetime till the first order and investigate the behavior of the black hole horizon. Finally, we explain that the anti-evaporation occurs on the classical level in the f (T) gravitational theories.
Few aspects of magnetic resonance (MR) imaging are as potentially confusing as the effect of motion on the MR image. While the MR image is anatomically similar to the image produced by CT, the MR appearance of flowing blood has no correlate in CT. Flowing blood can appear bright or dark, depending on the velocity and direction of flow. To a first approximation, rapidly flowing blood appears dark ('flow void') and slowly flowing blood appears bright. This phenomenon is illustrated. This appearance is markedly influenced by factors related to the imaging sequence and to the MR imager itself. The signal from flowing blood depends on the position of the slice relative to the rest of the multislice imaging volume. It depends on the repetition time TR, the echo-delay time TE, the echo number, and the slice thickness. In fast scanning techniques with short repetition times, gradient echoes, and flip angles less than 90 degrees, flow has a different appearance than on standard 90 degrees/180 degrees spin-echo images. The principles which affect the appearance of flowing blood also affect the appearance of flowing cerebrospinal fluid (CSF). Examples of CSF flow phenomena are given
Analog Systems for Gravity Duals
Hossenfelder, S.
2014-01-01
We show that analog gravity systems exist for charged, planar black holes in asymptotic Anti-de Sitter space. These black holes have been employed to describe, via the gauge-gravity duality, strongly coupled condensed matter systems on the boundary of AdS-space. The analog gravity system is a different condensed matter system that, in a suitable limit, describes the same bulk physics as the theory on the AdS boundary. This combination of the gauge-gravity duality and analog gravity therefore ...
Claudia de Rham
2014-08-01
Full Text Available We review recent progress in massive gravity. We start by showing how different theories of massive gravity emerge from a higher-dimensional theory of general relativity, leading to the Dvali–Gabadadze–Porrati model (DGP, cascading gravity, and ghost-free massive gravity. We then explore their theoretical and phenomenological consistency, proving the absence of Boulware–Deser ghosts and reviewing the Vainshtein mechanism and the cosmological solutions in these models. Finally, we present alternative and related models of massive gravity such as new massive gravity, Lorentz-violating massive gravity and non-local massive gravity.
Full text: Gravity in three dimensions strikes a balance between models that are tractable and models that are relevant in nature. It may exhibit black hole solutions, graviton modes and asymptotically Anti-deSitter solutions that may have holographic CFT duals. Some of the recent progress in this field is reviewed, with focus on quantum gravity. (author)
Bergshoeff, Eric; Hohm, Olaf; Merbis, Wout; Routh, Alasdair J.; Townsend, Paul K.
2014-01-01
We present an alternative to topologically massive gravity (TMG) with the same 'minimal' bulk properties; i.e. a single local degree of freedom that is realized as a massive graviton in linearization about an anti-de Sitter (AdS) vacuum. However, in contrast to TMG, the new 'minimal massive gravity'
折线台阶状基础面重力坝的抗滑稳定性分析%Anti-sliding Stability Analysis of Gravity Dam with Polyline Stepped Foundation
李东辉; 于跃; 陈宗荣; 武帅
2011-01-01
At present there is not common and perfect method for anti-sliding stability analysis of gravity dam with polyline stepped foundation. Based on the idea of sliding wedge method and anti-sliding stability analysis of gravity dam,a simple method is put forward and the computer program is developed, which takes the dam body as rigid body and slide mass is made up with wedges. This method is applied to analyze anti-sliding stability of Manwan # 4 monolith. The resuits show that the method is simple and practical with lower computational coat and higher precision.%折线台阶状基础面重力坝的抗滑稳定性分析,目前尚无统一完善的计算方法,基于滑楔法及重力坝深层抗滑稳定分析方法,提出了一种视坝体为刚体、滑动体由若干楔形体组成的简易方法,编制了计算程序,并将其应用于漫湾水电站#4坝段抗滑稳定性分析中.结果表明,该方法简便实用、计算成本低,且精度较高.
Bergshoeff, Eric A.; Hohm, Olaf; Rosseel, Jan; Townsend, Paul K.
2011-01-01
The physical modes of a recently proposed D-dimensional "critical gravity'', linearized about its anti-de Sitter vacuum, are investigated. All "log mode'' solutions, which we categorize as "spin-2'' or "Proca'', arise as limits of the massive spin-2 modes of the noncritical theory. The linearized Ei
Sobreiro, R. F.; Tomaz, A. A.; Otoya, V. J. Vasquez
2012-01-01
Pure gauge theories for de Sitter, anti de Sitter and orthogonal groups, in four-dimensional Euclidean spacetime, are studied. It is shown that, if the theory is asymptotically free and a dynamical mass is generated, then an effective geometry may be induced and a gravity theory emerges.
Conformal gravity from AdS/CFT
We explicitly calculate the induced gravity theory at the boundary of an asymptotically Anti-de Sitter five dimensional Einstein gravity. We also display the action that encodes the dynamics of radial diffeomorphisms. It is found that the induced theory is a four dimensional conformal gravity plus a scalar field. This calculation confirms some previous results found by a different approach.
Generalized geometry and non-symmetric gravity
Jurco, Branislav; Khoo, Fech Scen; Schupp, Peter; Vysoky, Jan
2015-01-01
Generalized geometry provides the framework for a systematic approach to non-symmetric metric gravity theory and naturally leads to an Einstein-Kalb-Ramond gravity theory with totally anti-symmetric contortion. The approach is related to the study of the low-energy effective closed string gravity actions.
Born-Infeld gravity in three dimensions
In this paper we explore different aspects of three dimensional Born-Infeld as well as Born-Infeld-Chern-Simons gravity. We show that the models have anti-de Sitter and anti-de Sitter wave vacuum solutions. Moreover, we observe that although Born-Infeld-Chern-Simons gravity admits a logarithmic solution, Born-Infeld gravity does not, though it has a limiting logarithmic solution as we approach the critical point.
Cahill R. T.
2015-10-01
Full Text Available A new quantum gravity experiment is reported with the data confirming the generali- sation of the Schrödinger equation to include the interaction of the wave function with dynamical space. Dynamical space turbulence, via this interaction process, raises and lowers the energy of the electron wave function, which is detected by observing conse- quent variations in the electron quantum barrier tunnelling rate in reverse-biased Zener diodes. This process has previously been reported and enabled the measurement of the speed of the dynamical space flow, which is consistent with numerous other detection experiments. The interaction process is dependent on the angle between the dynamical space flow velocity and the direction of the electron flow in the diode, and this depen- dence is experimentally demonstrated. This interaction process explains gravity as an emergent quantum process, so unifying quantum phenomena and gravity. Gravitational waves are easily detected.
Sneddon, Andrew
2013-01-01
Gravity is a cross-disciplinary research project in Fine Art at Sheffield Institute of the Arts (SIA) in partnership with Sheffield Galleries and Museums. Gravity is led by Penny McCarthy, Dr Becky Shaw and Andrew Sneddon. Gravity begins with a series of lectures designed to examine the wider context of practice and discourse. Gravity examines the contemporary condition of the art object or artefact, and the relations between maker, medium, site of production and systems of dissemination. ...
Claudia de Rham
2014-01-01
We review recent progress in massive gravity. We start by showing how different theories of massive gravity emerge from a higher-dimensional theory of general relativity, leading to the Dvali–Gabadadze–Porrati model (DGP), cascading gravity, and ghost-free massive gravity. We then explore their theoretical and phenomenological consistency, proving the absence of Boulware–Deser ghosts and reviewing the Vainshtein mechanism and the cosmological solutions in these models. Finally, we present alt...
赵宏; 王洁欣; 张海霞; 沈志刚; 甄崇礼; 陈建峰
2009-01-01
The nanoparticles of the hydrophobie drug of danazol with narrow size distribution are facilely prepared by controlled high-gravity anti.solvent precipitation(HGAP)process.Intensified mlcromlxlng and uniform nucleation environment are created by thc high-gravity equipment(rotating packed bed)in carrymg out the anti-solvent precipitation process to produce nanoparticles.The average particle size decreases from 55μm of the raw danazol to 190 nm of the nanoparticles,The Brunauer-Emmett-Teller(BET)surface area sharply Increases from 0.66 ,m2.g-1 to 15.08 m2.g-1.Accordingly,the dissolution rate is greatly improved.The molecular state,chemical.composition,and crystal form of the danazol nanoparticles remains unchanged after processmg according to Fourier transtorm infrared(FTIR)and X-ray difiraction(XRD).The high recovery ratio and continuous production-capa-city are highly appreciated in industry.Therefore,the HGAP method might offer a general and facile platform tor mass production of hydrophobic pharmaceutical danazol particles in nanometer range.
Liouville gravity from Einstein gravity
Grumiller, D.; Jackiw, R.
2007-01-01
We show that Liouville gravity arises as the limit of pure Einstein gravity in 2+epsilon dimensions as epsilon goes to zero, provided Newton's constant scales with epsilon. Our procedure - spherical reduction, dualization, limit, dualizing back - passes several consistency tests: geometric properties, interactions with matter and the Bekenstein-Hawking entropy are as expected from Einstein gravity.
Instabilities and anti-evaporation of Reissner–Nordström black holes in modified $F(R)$ gravity
Nojiri, Shin'ichi; Odintsov, Sergei D.
2014-01-01
We study the instabilities and related anti-evaporation of the extremal Reissner–Nordström (RN) black hole in F(R) gravity. It is remarkable that the effective electric charge can be generated for some solutions of F(R) gravity without electromagnetic field. The anti-evaporation effect occurs but it emerges only in the strong coupling limit of the effective gravitational coupling. The instabilities of RN black hole are also investigated when the electromagnetic sector is added to the action o...
Recently proposed 'critical' higher-derivative gravities in AdSD D>3 are expected to carry logarithmic representation of the anti-de Sitter isometry group. In this article, we quantize linear fluctuations of these critical gravities, which are known to be either identical with linear fluctuations of Einstein's gravity or satisfy logarithmic boundary conditions at spacial infinity. We identify the scalar product uniquely defined by the symplectic structure implied by the classical action, and show that it does not posses null vectors. Instead, we show that the scalar product between any two Einstein modes vanishes, while the scalar product of an Einstein mode with a logarithmic mode is generically nonzero. This is the basic property of logarithmic representation that makes them neither unitary nor unitarizable.
A. V. Vikulin
2015-09-01
Full Text Available Gravity phenomena related to the Earth movements in the Solar System and through the Galaxy are reviewed. Such movements are manifested by geological processes on the Earth and correlate with geophysical fields of the Earth. It is concluded that geodynamic processes and the gravity phenomena (including those of cosmic nature are related. The state of the geomedium composed of blocks is determined by stresses with force moment and by slow rotational waves that are considered as a new type of movements [Vikulin, 2008, 2010]. It is shown that the geomedium has typical rheid properties [Carey, 1954], specifically an ability to flow while being in the solid state [Leonov, 2008]. Within the framework of the rotational model with a symmetric stress tensor, which is developed by the authors [Vikulin, Ivanchin, 1998; Vikulin et al., 2012a, 2013], such movement of the geomedium may explain the energy-saturated state of the geomedium and a possibility of its movements in the form of vortex geological structures [Lee, 1928]. The article discusses the gravity wave detection method based on the concept of interactions between gravity waves and crustal blocks [Braginsky et al., 1985]. It is concluded that gravity waves can be recorded by the proposed technique that detects slow rotational waves. It is shown that geo-gravitational movements can be described by both the concept of potential with account of gravitational energy of bodies [Kondratyev, 2003] and the nonlinear physical acoustics [Gurbatov et al., 2008]. Based on the combined description of geophysical and gravitational wave movements, the authors suggest a hypothesis about the nature of spin, i.e. own moment as a demonstration of the space-time ‘vortex’ properties.
Influence of hole-opening of gravity dam on its anti-seismic behavior%重力坝坝体开孔对大坝抗震性能的影响
王家骐; 张燎军; 赵路静
2015-01-01
The practical seismic damages of gravity dams often occur on the middle and upper part of the dam body, where the dam hole-opening are arranged, so that the dam head with openings become a weak spot for anti-seismic of gravity dams. Tak-ing a powerhouse dam section of a scheduling RCC gravity dam for instance, we establish a three dimensional analytical model that considers the dam-foundation-water interaction based on ADINA. In this way, the characteristics such as natural vibration characteristic, dam displacement, principal tensile stress and crack propagation of dams with or without openings, were re-searched under strong earthquake. The results show that dam hole-opening has more impacts on local stress rather than on inte-gral rigidity. So in anti-seismic design of gravity dams, we should focus on the hole-opening and take measures such as arran-ging reinforcing bars and using high grade concrete.%重力坝实际震损多出现在坝体中上部,坝身孔洞也常布置于此,地震作用下坝头孔洞附近成为抗震安全的薄弱部位. 以某待建水电站碾压混凝土重力坝厂房坝段为例,基于ADINA有限元软件建立考虑坝体-地基-库水相互作用的三维有限元动力计算模型,研究了在强震作用下考虑大坝开孔与否对坝体自振特性、坝体位移、主拉应力和裂缝开展情况的影响. 结果表明,考虑坝体开孔对大坝整体刚度影响不大,但对局部应力影响显著,抗震设计须重视坝体实际开孔情况,采取加强配筋和提高混凝土标号等措施. 研究成果可为同类工程抗震设计提供参考.
Dereli, T.; Yetişmişoğlu, C.
2016-06-01
We derive the field equations for topologically massive gravity coupled with the most general quadratic curvature terms using the language of exterior differential forms and a first-order constrained variational principle. We find variational field equations both in the presence and absence of torsion. We then show that spaces of constant negative curvature (i.e. the anti de-Sitter space AdS 3) and constant torsion provide exact solutions.
Bergshoeff, Eric; Hohm, Olaf; Merbis, Wout; Routh, Alasdair J.; Townsend, Paul K
2014-01-01
We present an alternative to Topologically Massive Gravity (TMG) with the same "minimal" bulk properties; i.e. a single local degree of freedom that is realized as a massive graviton in linearization about an anti-de Sitter (AdS) vacuum. However, in contrast to TMG, the new "minimal massive gravity" has both a positive energy graviton and positive central charges for the asymptotic AdS-boundary conformal algebra.
AdS Chern-Simons gravity induces conformal gravity
Aros, Rodrigo; Díaz, Danilo E.
2014-04-01
The leitmotif of this paper is the question of whether four- and higher even-dimensional conformal gravities do have a Chern-Simons pedigree. We show that Weyl gravity can be obtained as the dimensional reduction of a five-dimensional Chern-Simons action for a suitable (gauge-fixed, tractorlike) five-dimensional anti-de Sitter connection. The gauge-fixing and dimensional reduction program readily admits a generalization to higher dimensions for the case of certain conformal gravities obtained by contractions of the Weyl tensor.
n-DBI gravity is a gravitational theory introduced in [C. Herdeiro and S. Hirano, arXiv:1109.1468.], motivated by Dirac-Born-Infeld type conformal scalar theory and designed to yield noneternal inflation spontaneously. It contains a foliation structure provided by an everywhere timelike vector field n, which couples to the gravitational sector of the theory, but decouples in the small curvature limit. We show that any solution of Einstein gravity with a particular curvature property is a solution of n-DBI gravity. Among them is a class of geometries isometric to a Reissner-Nordstroem-(anti)-de Sitter black hole, which is obtained within the spherically symmetric solutions of n-DBI gravity minimally coupled to the Maxwell field. These solutions have, however, two distinct features from their Einstein gravity counterparts: (1) the cosmological constant appears as an integration constant and can be positive, negative, or vanishing, making it a variable quantity of the theory; and (2) there is a nonuniqueness of solutions with the same total mass, charge, and effective cosmological constant. Such inequivalent solutions cannot be mapped to each other by a foliation preserving diffeomorphism. Physically they are distinguished by the expansion and shear of the congruence tangent to n, which define scalar invariants on each leaf of the foliation.
Higher dimensional nonlinear massive gravity
Do, Tuan Q.
2016-05-01
Inspired by a recent ghost-free nonlinear massive gravity in four-dimensional spacetime, we study its higher dimensional scenarios. As a result, we are able to show the constantlike behavior of massive graviton terms for some well-known metrics such as the Friedmann-Lemaitre-Robertson-Walker, Bianchi type I, and Schwarzschild-Tangherlini (anti-) de Sitter metrics in a specific five-dimensional nonlinear massive gravity under an assumption that its fiducial metrics are compatible with physical ones. In addition, some simple cosmological solutions of the five-dimensional massive gravity are figured out consistently.
Underwater explosions and cavitation phenomena
Kamegai, M.
1979-08-28
Some aspects of underwater explosions and cavitation phenomena have been studied by using a thermodynamic equation of state for water and a one-dimensional Lagrangian hydrocode. The study showed that surface cavitation is caused by the main blast wave and a bubble pulse from rebound of a release wave moving toward the center of the exploding bubble. Gravity has little effect on the surface cavitation. In nuclear explosions the bubble is bounded by a two-phase region rather than a gas-water interface. The two-phase region cavitates as the bubble expands, changing the optical absorption coefficient by many orders of magnitude and significantly affecting the optical signature. In assessing cavitation damage, it is concluded that a water jet of unstable bubble collapse erodes solid walls. The study leads to suggestions for future research.
Underwater explosions and cavitation phenomena
Some aspects of underwater explosions and cavitation phenomena have been studied by using a thermodynamic equation of state for water and a one-dimensional Lagrangian hydrocode. The study showed that surface cavitation is caused by the main blast wave and a bubble pulse from rebound of a release wave moving toward the center of the exploding bubble. Gravity has little effect on the surface cavitation. In nuclear explosions the bubble is bounded by a two-phase region rather than a gas-water interface. The two-phase region cavitates as the bubble expands, changing the optical absorption coefficient by many orders of magnitude and significantly affecting the optical signature. In assessing cavitation damage, it is concluded that a water jet of unstable bubble collapse erodes solid walls. The study leads to suggestions for future research
S-Duality for Linearized Gravity
Nieto, J.A.
1999-01-01
We develope the analogue of S-duality for linearized gravity in (3+1)-dimensions. Our basic idea is to consider the self-dual (anti-self-dual) curvature tensor for linearized gravity in the context of the Macdowell-Mansouri formalism. We find that the strong-weak coupling duality for linearized gravity is an exact symmetry and implies small-large duality for the cosmological constant.
Topological Black Holes in Weyl Conformal Gravity
Klemm, Dietmar
1998-01-01
We present a class of exact solutions of Weyl conformal gravity, which have an interpretation as topological black holes. Solutions with negative, zero or positive scalar curvature at infinity are found, the former generalizing the well-known topological black holes in anti-de Sitter gravity. The rather delicate question of thermodynamic properties of such objects in Weyl conformal gravity is discussed; suggesting that the thermodynamics of the found solutions should be treated within the fra...
What do we know about quantum gravity? The short answer - the short scientific answer - is nothing. The problem has been studied for more than 70 years, yet we still do not have a single experimental result that requires us to advocate a quantum theory of gravity. But some physicists, myself included, believe that this could change very soon - that we might actually gain our first real 'quantum-gravity data'. The motivation for studying quantum gravity comes from a sort of 'aesthetic discomfort' with our inability to obtain a more satisfactory philosophical world view. For many of us it is unsatisfactory, for example, to describe nature in terms of two very different theories. On the one hand we have a description of the electromagnetic, weak and strong forces unified within the Standard Model of particle physics to form a quantum field theory. On the other, we have gravity, which is governed by the theory of general relativity. We do, in fact, have a scientifically well defined 'quantum-gravity problem', which concerns our inability to fully predict the outcome of experiments. The central question is this: can we obtain quantitative predictions for processes in which both gravity and the Standard Model have to be taken into account? Decades of research have shown that the Standard Model is hugely successful in describing microscopic phenomena involving fundamental particles, where gravity can be ignored. General relativity has been equally good at describing the motions of planets and other macroscopic bodies, where the quantum properties of particles can safely be neglected. We do not, however, have any data from situations in which both quantum theory and general relativity have to be taken into account. In the November issue of Physics World Giovanni Amelino-Camelia in the Department of Physics at the University of Rome La Sapienza explains how cosmic-ray observations and space-based gamma ray telescopes could provide physicists with the first experimental
Wormhole solutions to Horava gravity
Botta-Cantcheff, Marcelo; Grandi, Nicolas; Sturla, Mauricio
2009-01-01
We present wormhole solutions to Horava non-relativistic gravity theory in vacuum. We show that, if the parameter $\\lambda$ is set to one, transversable wormholes connecting two asymptotically de Sitter or anti-de Sitter regions exist. In the case of arbitrary $\\lambda$, the asymptotic regions have a more complicated metric with constant curvature. We also show that, when the detailed balance condition is violated softly, tranversable and asymptotically Minkowski, de Sitter or anti-de Sitter ...
Gravity Waves in Three Dimensions
Gurses, Metin; Tekin, Bayram
2015-01-01
We find the explicit forms of the anti-de Sitter plane, anti-de Sitter spherical, and pp waves that solve both the linearized and exact field equations of the most general higher derivative gravity theory in three dimensions. As a sub-class, we work out the six derivative theory and the critical version of it where the masses of the two spin-2 excitations vanish and the spin-0 excitations decouple.
Lujan, Richard E.
2001-01-01
A mechanical gravity brake that prevents hoisted loads within a shaft from free-falling when a loss of hoisting force occurs. A loss of hoist lifting force may occur in a number of situations, for example if a hoist cable were to break, the brakes were to fail on a winch, or the hoist mechanism itself were to fail. Under normal hoisting conditions, the gravity brake of the invention is subject to an upward lifting force from the hoist and a downward pulling force from a suspended load. If the lifting force should suddenly cease, the loss of differential forces on the gravity brake in free-fall is translated to extend a set of brakes against the walls of the shaft to stop the free fall descent of the gravity brake and attached load.
Three-dimensional tricritical gravity
Bergshoeff, Eric A.; de Haan, Sjoerd; Merbis, Wout; Rosseel, Jan; Zojer, Thomas
2012-01-01
We consider a class of parity-even, six-derivative gravity theories in three dimensions. After linearizing around anti-de Sitter space, the theories have one massless and two massive graviton solutions for generic values of the parameters. At a special, so-called tricritical, point in parameter spac
Compactification in first order gravity
Aros, Rodrigo; Romo, Mauricio; Zamorano, Nelson
2007-01-01
The Kaluza-Klein compactification process is applied in five dimensions to CS gravity, for the anti-de Sitter and Poincar\\'e groups, using the first order formalism. In this context some solutions are found and analyzed. Also, the conserved charges associated to the solutions are computed.
Conformal Gravity from AdS/CFT mechanism
Aros, Rodrigo; Romo, Mauricio; Zamorano, Nelson
2006-01-01
We explicitly calculate the induced gravity theory at the boundary of an asymptotically Anti-de Sitter five dimensional Einstein gravity. We also display the action that encodes the dynamics of radial diffeomorphisms. It is found that the induced theory is a four dimensional conformal gravity plus a scalar field. This calculation confirms some previous results found by a different approach.
Nonlinear surface electromagnetic phenomena
Ponath, H-E
1991-01-01
In recent years the physics of electromagnetic surface phenomena has developed rapidly, evolving into technologies for communications and industry, such as fiber and integrated optics. The variety of phenomena based on electromagnetism at surfaces is rich and this book was written with the aim of summarizing the available knowledge in selected areas of the field. The book contains reviews written by solid state and optical physicists on the nonlinear interaction of electromagnetic waves at and with surfaces and films. Both the physical phenomena and some potential applications are
Dropout Phenomena at Universities
Larsen, Michael Søgaard; Kornbeck, Kasper Pihl; Kristensen, Rune;
Dropout from university studies comprises a number of complex phenomena with serious complex consequences and profound political attention. Further analysis of the field is, therefore, warranted. Such an analysis is offered here as a systematic review which gives answers based on the best possible...... evidence found in the research field comprised by the three review questions to be addressed. The aims of this systematic review can, thus, be summarized like this: Which answers can be offered from research in relation to the following questions: What is dropout from university studies? Why do such...... dropout phenomena occur at universities? What can be done by the universities to prevent or reduce such dropout phenomena?...
Interfacial transport phenomena
Slattery, John C; Oh, Eun-Suok
2007-01-01
Revised and updated extensively from the previous editionDiscusses transport phenomena at common lines or three-phase lines of contactProvides a comprehensive summary about the extensions of continuum mechanics to the nanoscale
Criticality in Einstein-Gauss-Bonnet Gravity: Gravity without Graviton
Fan, Zhong-Ying; Lu, Hong
2016-01-01
General Einstein-Gauss-Bonnet gravity with a cosmological constant allows two (A)dS spacetimes as its vacuum solutions. We find a critical point in the parameter space where the two (A)dS spacetimes coalesce into one and the linearized perturbations lack any bilinear kinetic terms. The vacuum perturbations hence loose their interpretation as linear graviton modes at the critical point. Nevertheless, the critical theory admits black hole solutions due to the nonlinear effect. We also consider Einstein gravity extended with general quadratic curvature invariants and obtain critical points where the theory has no bilinear kinetic terms for either the scalar trace mode or the transverse modes. Such critical phenomena are expected to occur frequently in general higher derivative gravities.
Introduction to wetting phenomena
In these lectures the field of wetting phenomena is introduced from the point of view of statistical physics. The phase transition from partial to complete wetting is discussed and examples of relevant experiments in binary liquid mixtures are given. Cahn's concept of critical-point wetting is examined in detail. Finally, a connection is drawn between wetting near bulk criticality and the universality classes of surface critical phenomena. (author)
Poenaru, D N; Greiner, W
2005-01-01
Complex fission phenomena can be studied in a unified way. Very general reflection asymmetrical equilibrium (saddle-point) nuclear shapes, may be obtained by solving an integro-differential equation without being necessary to specify a certain parametrization. The mass asymmetry in cold fission phenomena can be explained as the result of adding a phenomenological shell correction to the liquid drop model deformation energy. Applications to binary, ternary, and quaternary fission are outlined. Predictions of two alpha accompanied fission are experimentally confirmed.
Severe accidents are nuclear reactor accidents in which the reactor core is substantially damaged. The report describes severe reactor accident phenomena and their significance for the safety of nuclear power plants. A comprehensive set of phenomena ranging from accident initiation to containment behaviour and containment integrity questions are covered. The report is based on expertise gained in the severe accident assessment projects conducted at the Technical Research Centre of Finland (VTT). (49 refs., 32 figs., 12 tabs.)
Bergshoeff, Eric A; Rosseel, Jan; Townsend, Paul K
2011-01-01
The physical modes of a recently proposed D-dimensional "critical gravity", linearized about its anti-de Sitter vacuum, are investigated. All "log mode" solutions, which we categorize as `spin 2' or `Proca', arise as limits of the massive spin 2 modes of the non-critical theory. The linearized Einstein tensor of a spin 2 log mode is itself a 'non-gauge' solution of the linearized Einstein equations whereas the linearized Einstein tensor of a Proca mode takes the form of a linearized general coordinate transformation. Our results suggest the existence of a holographically dual logarithmic conformal field theory.
Universality of Quantum Gravity Corrections
Das, Saurya
2008-01-01
We show that the existence of a minimum measurable length and the related Generalized Uncertainty Principle (GUP), predicted by theories of Quantum Gravity, influence all quantum Hamiltonians. Thus, they predict quantum gravity corrections to various quantum phenomena. We compute such corrections to the Lamb Shift, the Landau levels and the tunnelling current in a Scanning Tunnelling Microscope (STM). We show that these corrections can be interpreted in two ways: (a) either that they are exceedingly small, beyond the reach of current experiments, or (b) that they predict upper bounds on the quantum gravity parameter in the GUP, compatible with experiments at the electroweak scale. Thus, more accurate measurements in the future would either be able to test these predictions, or further tighten the above bounds and predict an intermediate length scale, between the electroweak and the Planck scale.
Gravity and low-frequency geodynamics
Teisseyre, Roman
1989-01-01
This fourth volume in the series Physics and Evolution of the Earth's Interior, provides a comprehensive review of the geophysical and geodetical aspects related to gravity and low-frequency geodynamics. Such aspects include the Earth's gravity field, geoid shape theory, and low-frequency phenomena like rotation, oscillations and tides.Global-scale phenomena are treated as a response to source excitation in spherical Earth models consisting of several shells: lithosphere, mantle, core and sometimes also the inner solid core. The effect of gravitation and rotation on the Earth's shape is anal
Davis, Hyman R.; Long, R. H.; Simone, A. A.
1979-01-01
Solids are separated from a liquid in a gravity settler provided with inclined solid intercepting surfaces to intercept the solid settling path to coalesce the solids and increase the settling rate. The intercepting surfaces are inverted V-shaped plates, each formed from first and second downwardly inclined upwardly curved intersecting conical sections having their apices at the vessel wall.
Nutma, Teake
2012-01-01
We present higher-derivative gravities that propagate an arbitrary number of gravitons of different mass on (A)dS backgrounds. These theories have multiple critical points, at which the masses degenerate and the graviton energies are non-negative. For six derivatives and higher there are critical points with positive energy.
Pipinos, Savas
2010-01-01
This article describes one classroom activity in which the author simulates the Newtonian gravity, and employs the Euclidean Geometry with the use of new technologies (NT). The prerequisites for this activity were some knowledge of the formulae for a particle free fall in Physics and most certainly, a good understanding of the notion of similarity…
The Improved Anti-Sliding Calculation Method of Gravity Retaining Wall%重力式挡土墙抗滑动稳定计算方法改进研究
张云冬; 马淑芝; 汪刚
2012-01-01
针对目前重力式挡土墙抗滑稳定性计算方法中存在的缺陷,将挡土墙入土部分划分成小网格,遍历搜寻出抗倾覆稳定系数最小的点,此点就是挡士墙的实际倾覆转动点所在的位置,根据此转动点的位置,将挡墙两侧的土体划分成四个部分分别计算各部分土压力,再结合墙底与地基土摩擦力的分析,推导出改进的墙体抗滑动稳定系数的计算公式.还通过改变墙体的几何参数,分析了最小抗倾覆转动点的位置和墙体抗滑稳定性系数随墙体宽度、挡土墙入土深度等的变化规律.%The present anti-sliding stability calculations of gravity retaining wall has some defects. This paper had divided the retaining walls that buried into earth in small grid. By searching for the point of minimum stability factor against overturning. This point is the actual turning point of the retaining walls. According to the location of this turning point, both sides of the wall are divided into four sections in order to calculated the earth pressure. At the end of the analysis, combining the friction of soil and foundation wall to get the improved anti-sliding stability factor formula. This article also, analysised the location of the minimum turning point of overturning and the anti-sliding coefficient of stability, and how they change with the change of retaining walls, width and depth that buried into earth.
The Other Side of Gravity and Geometry: Antigravity and Anticurvature
Wanas, M. I.
2012-01-01
Gravity is one of the four known fundamental interactions used to study and interpret physical phenomenae. It governs diverse phenomenae, especially those connected with large-scale structures. From more than one decade, existing gravity theories have suffered from some problems, when confronting their predictions with the results of some experiments and observations. This situation has led to many suggestions, none of which is final, so far. Here, we show that the assumption of existence of ...
Tunneling without barriers with gravity
Kanno, Sugumi; Sasaki, Misao; Soda, Jiro
2012-01-01
We consider the vacuum decay of the flat Minkowski space to an anti-de Sitter space. We find a one-parameter family of potentials that allow exact, analytical instanton solutions describing tunneling without barriers in the presence of gravity. In the absence of gravity such instantons were found and discussed by Lee and Weinberg more than a quarter of a century ago. The bounce action is also analytically computed. We discuss possible implications of these new instantons to cosmology in the c...
Bourg, I.C.; Sposito, G.
2011-05-01
Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculation (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).
Giribet, Gaston
2014-01-01
Minimal Massive Gravity (MMG) is an extension of three-dimensional Topologically Massive Gravity that, when formulated about Anti-de Sitter space, accomplishes to solve the tension between bulk and boundary unitarity that other models in three dimensions suffer from. We study this theory at the chiral point, i.e. at the point of the parameter space where one of the central charges of the dual conformal field theory vanishes. We investigate the non-linear regime of the theory, meaning that we study exact solutions to the MMG field equations that are not Einstein manifolds. We exhibit a large class of solutions of this type, which behave asymptotically in different manners. In particular, we find analytic solutions that represent two-parameter deformations of extremal Banados-Teitelboim-Zanelli (BTZ) black holes. These geometries behave asymptotically as solutions of the so-called Log Gravity, and, despite the weakened falling-off close to the boundary, they have finite mass and finite angular momentum, which w...
Mirage phenomena in superconducting quantum corrals
We investigate the local density of states and the order parameter structure inside an elliptic quantum corral on surfaces of isotropic and anisotropic superconductors. The Bogoliubov-de Gennes equations are solved in the presence of non-magnetic and magnetic impurities. We observe and discuss a variety of mirage and anti-mirage phenomena, which specifically reflect the nature of the superconducting pairing state. (Abstract Copyright [2005], Wiley Periodicals, Inc.)
Mirage phenomena in superconducting quantum corrals
Schmid, Markus; Kampf, Arno P.
2005-01-01
We investigate the local density of states and the order parameter structure inside an elliptic quantum corral on surfaces of isotropic and anisotropic superconductors. The Bogoliubov-de Gennes equations are solved in the presence of non-magnetic and magnetic impurities. We observe and discuss a variety of mirage and anti-mirage phenomena, which specifically reflect the nature of the superconducting pairing state.
Rheological phenomena in focus
Boger, DV
1993-01-01
More than possibly any other scientific discipline, rheology is easily visualized and the relevant literature contains many excellent photographs of unusual and often bizarre phenomena. The present book brings together these photographs for the first time. They are supported by a full explanatory text. Rheological Phenomena in Focus will be an indispensable support manual to all those who teach rheology or have to convince colleagues of the practical relevance of the subject within an industrial setting. For those who teach fluid mechanics, the book clearly illustrates the difference be
Threshold Gravity Determination and Artificial Gravity Studies Using Magnetic Levitation
Ramachandran, N.; Leslie, F.
2005-01-01
What is the threshold gravity (minimum gravity level) required for the nominal functioning of the human system? What dosage is required (magnitude and duration)? Do human cell lines behave differently in microgravity in response to an external stimulus? The critical need for a variable gravity simulator is emphasized by recent experiments on human epithelial cells and lymphocytes on the Space Shuttle clearly showing that cell growth and function are markedly different from those observed terrestrially. Those differences are also dramatic between cells grown in space and those in Rotating Wall Vessels (RWV), or NASA bioreactor often used to simulate microgravity, indicating that although morphological growth patterns (three dimensional growth) can be successfully simulated using RWVs, cell function performance is not reproduced - a critical difference. If cell function is dramatically affected by gravity off-loading, then cell response to stimuli such as radiation, stress, etc. can be very different from terrestrial cell lines. Yet, we have no good gravity simulator for use in study of these phenomena. This represents a profound shortcoming for countermeasures research. We postulate that we can use magnetic levitation of cells and tissue, through the use of strong magnetic fields and field gradients, as a terrestrial microgravity model to study human cells. Specific objectives of the research are: 1. To develop a tried, tested and benchmarked terrestrial microgravity model for cell culture studies; 2. Gravity threshold determination; 3. Dosage (magnitude and duration) of g-level required for nominal functioning of cells; 4. Comparisons of magnetic levitation model to other models such as RWV, hind limb suspension, etc. and 5. Cellular response to reduced gravity levels of Moon and Mars.
Center for low-gravity fluid mechanics and transport phenomena
Kassoy, D. R.; Sani, R. L.
1991-01-01
Research projects in several areas are discussed. Mass transport in vapor phase systems, droplet collisions and coalescence in microgravity, and rapid solidification of undercooled melts are discussed.
Sawtooth phenomena in tokamaks
A review of experimental and theoretical investigaions of sawtooth phenomena in tokamaks is presented. Different types of sawtooth oscillations, scaling laws and methods of interanl disruption stabilization are described. Theoretical models of the sawtooth instability are discussed. 122 refs.; 4 tabs
Bioelectrochemistry II membrane phenomena
Blank, M
1987-01-01
This book contains the lectures of the second course devoted to bioelectro chemistry, held within the framework of the International School of Biophysics. In this course another very large field of bioelectrochemistry, i. e. the field of Membrane Phenomena, was considered, which itself consists of several different, but yet related subfields. Here again, it can be easily stated that it is impossible to give a complete and detailed picture of all membrane phenomena of biological interest in a short course of about one and half week. Therefore the same philosophy, as the one of the first course, was followed, to select a series of lectures at postgraduate level, giving a synthesis of several membrane phenomena chosen among the most'important ones. These lectures should show the large variety of membrane-regulated events occurring in living bodies, and serve as sound interdisciplinary basis to start a special ized study of biological phenomena, for which the investigation using the dual approach, physico-che...
This book discusses the state of the art of quantum gravity, quantum effects in cosmology, quantum black-hole physics, recent developments in supergravity, and quantum gauge theories. Topics considered include the problems of general relativity, pregeometry, complete cosmological theories, quantum fluctuations in cosmology and galaxy formation, a new inflationary universe scenario, grand unified phase transitions and the early Universe, the generalized second law of thermodynamics, vacuum polarization near black holes, the relativity of vacuum, black hole evaporations and their cosmological consequences, currents in supersymmetric theories, the Kaluza-Klein theories, gauge algebra and quantization, and twistor theory. This volume constitutes the proceedings of the Second Seminar on Quantum Gravity held in Moscow in 1981
Dengiz, Suat; Kilicarslan, Ercan; Tekin, Bayram
2013-01-01
We compute the tree-level scattering amplitude between two covariantly conserved sources in generic Cosmological Topologically Massive Gravity augmented with a Fierz-Pauli term that has three massive degrees of freedom. We consider the Chiral Gravity limit in the anti-de Sitter space as well as the limit of Flat-Space Chiral Gravity. We show that Chiral Gravity cannot be unitarily deformed with a Fierz-Pauli mass. We calculate the non-relativistic potential energy between two point-like spinn...
Clifton, T; Barrow, John D.
2006-01-01
We consider the possibility of energy being exchanged between the scalar and matter fields in scalar-tensor theories of gravity. Such an exchange provides a new mechanism which can drive variations in the gravitational 'constant' G. We find exact solutions for the evolution of spatially flat Friedman-Roberston-Walker cosmologies in this scenario and discuss their behaviour at both early and late times.
We consider the possibility of energy being exchanged between the scalar and matter fields in scalar-tensor theories of gravity. Such an exchange provides a new mechanism which can drive variations in the gravitational 'constant' G. We find exact solutions for the evolution of spatially flat Friedmann-Robertson-Walker cosmologies in this scenario and discuss their behavior at both early and late times. We also consider the physical consequences and observational constraints on these models
Hu, B. L. (Bei-Lok)
1999-01-01
We give a summary of the status of current research in stochastic semiclassical gravity and suggest directions for further investigations. This theory generalizes the semiclassical Einstein equation to an Einstein-Langevin equation with a stochastic source term arising from the fluctuations of the energy-momentum tensor of quantum fields. We mention recent efforts in applying this theory to the study of black hole fluctuations and backreaction problems, linear response of hot flat space, and ...
Analogue gravitational phenomena in Bose-Einstein condensates
Finazzi, Stefano
2012-01-01
Analogue gravity is based on the simple observation that perturbations propagating in several physical systems can be described by a quantum field theory in a curved spacetime. While phenomena like Hawking radiation are hardly detectable in astrophysical black holes, these effects may be experimentally tested in analogue systems. In this Thesis, focusing on Bose-Einstein condensates, we present our recent results about analogue models of gravity from three main perspectives: as laboratory tests of quantum field theory in curved spacetime, for the techniques that they provide to address various issues in general relativity, and as toy models of quantum gravity. The robustness of Hawking-like particle creation is investigated in flows with a single black hole horizon. Furthermore, we find that condensates with two (white and black) horizons develop a dynamical instability known in general relativity as black hole laser effect. Using techniques borrowed from analogue gravity, we also show that warp drives, which...
Quantum gravity is an attempt to unify general relativity with quantum mechanics which are the two highly successful fundamental theories of theoretical physics. The main difficulty in this unification arises from the fact that, while general relativity describes gravity as a macroscopic geometrical theory, quantum mechanics explains microscopic phenomena. As a further complication, not only do both theories describe different scales but also their philosophical ramifications and the mathematics used to describe them differ in a dramatic way. Consequently, one possible starting point of an attempt at a unification is quantum mechanics, i.e. particle physics, and try to incorporate gravitation. This pathway has been chosen by particle physicists which led to string theory. On the other hand, loop quantum gravity (LQG) chooses the other possibility, i.e. it takes the geometrical aspects of gravity seriously and quantizes geometry. The first part of this thesis deals with a generalization of loop quantum cosmology (LQC) to toroidal topologies. LQC is a quantization of homogenous solutions of Einstein's field equations using tools from LQG. First the general concepts of closed topologies is introduced with special emphasis on Thurston's theorem and its consequences. It is shown that new degrees of freedom called Teichmueller parameters come into play and their dynamics can be described by a Hamiltonian. Several numerical solutions for a toroidal universe are presented and discussed. Following the guidelines of LQG this dynamics are rewritten using the Ashtekar variables and numerical solutions are shown. However, in order to find a suitable Hilbert space a canonical transformation must be performed. On the other hand this transformation makes the quantization of geometrical quantities less tractable such that two different ways are presented. It is shown that in both cases the spectrum of such geometrical operators depends on the initial value problem. Furthermore, we
Lamon, Raphael
2010-06-29
Quantum gravity is an attempt to unify general relativity with quantum mechanics which are the two highly successful fundamental theories of theoretical physics. The main difficulty in this unification arises from the fact that, while general relativity describes gravity as a macroscopic geometrical theory, quantum mechanics explains microscopic phenomena. As a further complication, not only do both theories describe different scales but also their philosophical ramifications and the mathematics used to describe them differ in a dramatic way. Consequently, one possible starting point of an attempt at a unification is quantum mechanics, i.e. particle physics, and try to incorporate gravitation. This pathway has been chosen by particle physicists which led to string theory. On the other hand, loop quantum gravity (LQG) chooses the other possibility, i.e. it takes the geometrical aspects of gravity seriously and quantizes geometry. The first part of this thesis deals with a generalization of loop quantum cosmology (LQC) to toroidal topologies. LQC is a quantization of homogenous solutions of Einstein's field equations using tools from LQG. First the general concepts of closed topologies is introduced with special emphasis on Thurston's theorem and its consequences. It is shown that new degrees of freedom called Teichmueller parameters come into play and their dynamics can be described by a Hamiltonian. Several numerical solutions for a toroidal universe are presented and discussed. Following the guidelines of LQG this dynamics are rewritten using the Ashtekar variables and numerical solutions are shown. However, in order to find a suitable Hilbert space a canonical transformation must be performed. On the other hand this transformation makes the quantization of geometrical quantities less tractable such that two different ways are presented. It is shown that in both cases the spectrum of such geometrical operators depends on the initial value problem
Black Hole Phase Transition in Massive Gravity
Ning, Shou-Li; Liu, Wen-Biao
2016-07-01
In massive gravity, some new phenomena of black hole phase transition are found. There are more than one critical points under appropriate parameter values and the Gibbs free energy near critical points also has some new properties. Moreover, the Maxwell equal area rule is also investigated and the coexistence curve of the black hole is given.
Fundamentals of Fire Phenomena
Quintiere, James
discipline. It covers thermo chemistry including mixtures and chemical reactions; Introduces combustion to the fire protection student; Discusses premixed flames and spontaneous ignition; Presents conservation laws for control volumes, including the effects of fire; Describes the theoretical bases for......Understanding fire dynamics and combustion is essential in fire safety engineering and in fire science curricula. Engineers and students involved in fire protection, safety and investigation need to know and predict how fire behaves to be able to implement adequate safety measures and hazard...... analyses. Fire phenomena encompass everything about the scientific principles behind fire behaviour. Combining the principles of chemistry, physics, heat and mass transfer, and fluid dynamics necessary to understand the fundamentals of fire phenomena, this book integrates the subject into a clear...
Membrane Transport Phenomena (MTP)
Mason, Larry W.
1997-01-01
The third semi-annual period of the MTP project has been involved with performing experiments using the Membrane Transport Apparatus (MTA), development of analysis techniques for the experiment results, analytical modeling of the osmotic transport phenomena, and completion of a DC-9 microgravity flight to test candidate fluid cell geometries. Preparations were also made for the MTP Science Concept Review (SCR), held on 13 June 1997 at Lockheed Martin Astronautics in Denver. These activities are detailed in the report.
Transport phenomena II essentials
REA, The Editors of
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Transport Phenomena II covers forced convention, temperature distribution, free convection, diffusitivity and the mechanism of mass transfer, convective mass transfer, concentration
Poenaru, Dorin N.; Gherghescu, Radu A.; Greiner, Walter
2005-01-01
Complex fission phenomena are studied in a unified way. Very general reflection asymmetrical equilibrium (saddle point) nuclear shapes are obtained by solving an integro-differential equation without being necessary to specify a certain parametrization. The mass asymmetry in binary cold fission of Th and U isotopes is explained as the result of adding a phenomenological shell correction to the liquid drop model deformation energy. Applications to binary, ternary, and quaternary fission are ou...
Blood Flow Multiscale Phenomena
Agić, Ante; Mijović, Budimir; Nikolić, Tatjana
2007-01-01
The cardiovascular disease is one of most frequent cause deaths in modern society. The objective of this work is analyse the effect of dynamic vascular geometry (curvature, torsion,bifurcation) and pulsatile blood nature on secondary flow, wall shear stress and platelet deposition. The problem was examined as multi-scale physical phenomena using perturbation analysis and numerical modelling. The secondary flow determined as influence pulsatile pressure, vascular tube time-dependen...
We present an alternative to topologically massive gravity (TMG) with the same ‘minimal’ bulk properties; i.e. a single local degree of freedom that is realized as a massive graviton in linearization about an anti-de Sitter (AdS) vacuum. However, in contrast to TMG, the new ‘minimal massive gravity’ has both a positive energy graviton and positive central charges for the asymptotic AdS-boundary conformal algebra. (paper)
Born-Infeld Gravity in any Dimension
Nieto, J.A.
2004-01-01
We develop a Born-Infeld type theory for gravity in any dimension. We show that in four dimensions our formalism allows a self-dual (or anti-self dual) Born-Infeld gravity description. Moreover, we show that such a self-dual action is reduced to both the Deser-Gibbons and the Jacobson-Smolin-Samuel action of Ashtekar formulation. A supersymmetric generalization of our approach is outlined.
Massive Gravity in Ads and Minkowski Backgrounds
Porrati, M.
2004-01-01
I review some interesting features of massive gravity in two maximally symmetric backgrounds: Anti de Sitter space and Minkowski space. While massive gravity in AdS can be seen as a spontaneously broken, UV safe theory, no such interpretation exists yet in the flat-space case. Here, I point out the problems encountered in trying to find such completion, and possible mechanisms to overcome them.
Minimal Massive 3D Gravity Unitarity Redux
Arvanitakis, Alex S.; Townsend, Paul K
2015-01-01
A geometrical analysis of the bulk and anti-de Sitter boundary unitarity conditions of 3D "Minimal Massive Gravity" (MMG) (which evades the "bulk/boundary clash" of Topologically Massive Gravity) is used to extend and simplify previous results, showing that unitarity selects, up to equivalence, a connected region in parameter space. We also initiate the study of flat-space holography for MMG. Its relevant flat space limit is a deformation of 3D conformal gravity; the deformation is both non-l...
Conformal gravity holography in four dimensions.
Grumiller, Daniel; Irakleidou, Maria; Lovrekovic, Iva; McNees, Robert
2014-03-21
We formulate four-dimensional conformal gravity with (anti-)de Sitter boundary conditions that are weaker than Starobinsky boundary conditions, allowing for an asymptotically subleading Rindler term concurrent with a recent model for gravity at large distances. We prove the consistency of the variational principle and derive the holographic response functions. One of them is the conformal gravity version of the Brown-York stress tensor, the other is a "partially massless response". The on shell action and response functions are finite and do not require holographic renormalization. Finally, we discuss phenomenologically interesting examples, including the most general spherically symmetric solutions and rotating black hole solutions with partially massless hair. PMID:24702345
Gauge Theory of Gravity and Supergravity
Kaul, Romesh K.
2006-01-01
We present a formulation of gravity in terms of a theory based on complex SU(2) gauge fields with a general coordinate invariant action functional quadratic in the field strength. Self-duality or anti-self-duality of the field strength emerges as a constraint from the equations of motion of this theory. This in turn leads to Einstein gravity equations for a dilaton and an axion conformally coupled to gravity for the self-dual constraint. The analysis has also been extended to N=1 and 2 super ...
National Oceanic and Atmospheric Administration, Department of Commerce — The NGS Absolute Gravity data (78 stations) was received in July 1993. Principal gravity parameters include Gravity Value, Uncertainty, and Vertical Gradient. The...
National Oceanic and Atmospheric Administration, Department of Commerce — This data base (14,559 records) was received in January 1986. Principal gravity parameters include elevation and observed gravity. The observed gravity values are...
Neutrino oscillations under gravity: mass independent oscillation
Mukhopadhyay, Banibrata
2003-01-01
I discuss the possibility of neutrino oscillation in presence of gravity. In this respect I consider the propagation of neutrinos in the early phase of universe and around black holes. It is seen that whether the rest masses of a neutrino and corresponding anti-neutrino are considered to be same or not due to space-time curvature effect non-zero oscillation probability between the neutrino and anti-neutrino states comes out. Therefore I can conclude that under gravity neutrino oscillation tak...
Quantification of natural phenomena
The science is like a great spider's web in which unexpected connections appear and therefore it is frequently difficult to already know the consequences of new theories on those existent. The physics is a clear example of this. The Newton mechanics laws describe the physical phenomena observable accurately by means of our organs of the senses or by means of observation teams not very sophisticated. After their formulation at the beginning of the XVIII Century, these laws were recognized in the scientific world as a mathematical model of the nature. Together with the electrodynamics law, developed in the XIX century, and the thermodynamic one constitutes what we call the classic physics. The state of maturity of the classic physics at the end of last century it was such that some scientists believed that the physics was arriving to its end obtaining a complete description of the physical phenomena. The spider's web of the knowledge was supposed finished, or at least very near its termination. It ended up saying, in arrogant form, that if the initial conditions of the universe were known, we could determine the state of the same one in any future moment. Two phenomena related with the light would prove in firm form that mistaken that they were, creating unexpected connections in the great spider's web of the knowledge and knocking down part of her. The thermal radiation of the bodies and the fact that the light spreads to constant speed in the hole, without having an absolute system of reference with regard to which this speed is measured, they constituted the decisive factors in the construction of a new physics. The development of sophisticated of measure teams gave access to more precise information and it opened the microscopic world to the observation and confirmation of existent theories
Birefringence phenomena revisited
Pereira, Dante D; Gonçalves, Bruno
2016-01-01
The propagation of electromagnetic waves is investigated in the context of the isotropic and nonlinear dielectric media at rest in the eikonal limit of the geometrical optics. Taking into account the functional dependence $\\varepsilon=\\varepsilon(E,B)$ and $\\mu=\\mu(E,B)$ for the dielectric coefficients, a set of phenomena related to the birefringence of the electromagnetic waves induced by external fields are derived and discussed. Our results contemplate the known cases already reported in the literature: Kerr, Cotton-Mouton, Jones and magnetoelectric effects. Moreover, new effects are presented here as well as the perspectives of its experimental confirmations.
Transport phenomena I essentials
REA, The Editors of
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Transport Phenomena I includes viscosity, flow of Newtonian fluids, velocity distribution in laminar flow, velocity distributions with more than one independent variable, thermal con
1999-01-01
This map from the MGS Horizon Sensor Assembly (HORSE) shows middle atmospheric temperatures near the 1 mbar level of Mars between Ls 170 to 175 (approx. July 14 - 23, 1999). Local Mars times between 1:30 and 4:30 AM are included. Infrared radiation measured by the Mars Horizon Sensor Assembly was used to make the map. That device continuously views the 'limb' of Mars in four directions, to help orient the spacecraft instruments to the nadir: straight down. The map shows thermal wave phenomena that are caused by the large topographic variety of Mars' surface, as well the latitudinally symmetric behavior expected at this time of year near the equinox.
Lawrance, R
1972-01-01
Solid State Phenomena explores the fundamentals of the structure and their influence on the properties of solids. This book is composed of five chapters that focus on the electrical and thermal conductivities of crystalline solids. Chapter 1 describes the nature of solids, particularly metals and crystalline materials. This chapter also presents a model to evaluate crystal structure, the forces between atom pairs, and the mechanism of plastic and elastic deformation. Chapter 2 demonstrates random vibrations of atoms in a solid using a one-dimensional array, while Chapter 3 examines the resista
The author presents a series of lectures intended for students familiar with the methods used in many developments of general relativity, cosmology and supergravity. First, he deals with geometry before gravity; manifolds, tensors, spinors and their derivatives are defined. The rules of Cartan's exterior differential calculus are established. Basic formulas of Riemannian geometry are proved with the method of the moving frame (veilbein). Some aspects of the de Rham cohomology are lightly touched on; the physical meaning of the curvature tensor which leads to the Einstein equations is analyzed; Weyl's and Palitini's variational principle are introduced and compared; the extension of first integrals for field equations on curved space is discussed; and finally, a brief description of homogeneous cosmologies, in particular the anti-de Sitter space, is given
High energy scattering in gravity and supergravity
B. Giddings, Steven; Schmidt-Sommerfeld, Maximilian; Andersen, Jeppe Rosenkrantz
2010-01-01
We investigate features of perturbative gravity and supergravity by studying scattering in the ultraplanckian limit, and sharpen arguments that the dynamics is governed by long-distance physics. A simple example capturing aspects of the eikonal resummation suggests why short distance phenomena...... and in particular divergences or nonrenormalizability do not necessarily play a central role in this regime. A more profound problem is apparently unitarity. These considerations can be illustrated by showing that known gravity and supergravity amplitudes have the same long-distance behavior, despite the extra...... a physical scattering process, and ultraplanckian scattering exhibiting Regge behavior. These arguments sharpen the need to find a nonperturbative completion of gravity with mechanisms which restore unitarity in the strong gravity regime....
PREFACE Integrability and nonlinear phenomena Integrability and nonlinear phenomena
Gómez-Ullate, David; Lombardo, Sara; Mañas, Manuel; Mazzocco, Marta; Nijhoff, Frank; Sommacal, Matteo
2010-10-01
Back in 1967, Clifford Gardner, John Greene, Martin Kruskal and Robert Miura published a seminal paper in Physical Review Letters which was to become a cornerstone in the theory of integrable systems. In 2006, the authors of this paper received the AMS Steele Prize. In this award the AMS pointed out that `In applications of mathematics, solitons and their descendants (kinks, anti-kinks, instantons, and breathers) have entered and changed such diverse fields as nonlinear optics, plasma physics, and ocean, atmospheric, and planetary sciences. Nonlinearity has undergone a revolution: from a nuisance to be eliminated, to a new tool to be exploited.' From this discovery the modern theory of integrability bloomed, leading scientists to a deep understanding of many nonlinear phenomena which is by no means reachable by perturbation methods or other previous tools from linear theories. Nonlinear phenomena appear everywhere in nature, their description and understanding is therefore of great interest both from the theoretical and applicative point of view. If a nonlinear phenomenon can be represented by an integrable system then we have at our disposal a variety of tools to achieve a better mathematical description of the phenomenon. This special issue is largely dedicated to investigations of nonlinear phenomena which are related to the concept of integrability, either involving integrable systems themselves or because they use techniques from the theory of integrability. The idea of this special issue originated during the 18th edition of the Nonlinear Evolution Equations and Dynamical Systems (NEEDS) workshop, held at Isola Rossa, Sardinia, Italy, 16-23 May 2009 (http://needs-conferences.net/2009/). The issue benefits from the occasion offered by the meeting, in particular by its mini-workshops programme, and contains invited review papers and contributed papers. It is worth pointing out that there was an open call for papers and all contributions were peer reviewed
Alvarez-Gaume, Luis; Kounnas, Costas; Lust, Dieter; Riotto, Antonio
2015-01-01
We discuss quadratic gravity where terms quadratic in the curvature tensor are included in the action. After reviewing the corresponding field equations, we analyze in detail the physical propagating modes in some specific backgrounds. First we confirm that the pure $R^2$ theory is indeed ghost free. Then we point out that for flat backgrounds the pure $R^2$ theory propagates only a scalar massless mode and no spin-two tensor mode. However, the latter emerges either by expanding the theory around curved backgrounds like de Sitter or anti-de Sitter, or by changing the long-distance dynamics by introducing the standard Einstein term. In both cases, the theory is modified in the infrared and a propagating graviton is recovered. Hence we recognize a subtle interplay between the UV and IR properties of higher order gravity. We also calculate the corresponding Newton's law for general quadratic curvature theories. Finally, we discuss how quadratic actions may be obtained from a fundamental theory like string- or M-...
Gravitational decoherence, alternative quantum theories and semiclassical gravity
In this report we discuss three aspects: 1) Semiclassical gravity theory (SCG): 4 levels of theories describing the interaction of quantum matter with classical gravity. 2) Alternative Quantum Theories: Discerning those which are derivable from general relativity (GR) plus quantum field theory (QFT) from those which are not 3) Gravitational Decoherence: derivation of a master equation and examination of the assumptions which led to the claims of observational possibilities. We list three sets of corresponding problems worthy of pursuit: a) Newton-Schrödinger Equations in relation to SCG; b) Master equation of gravity-induced effects serving as discriminator of 2); and c) Role of gravity in macroscopic quantum phenomena.
"Anti-Gravity" Treadmills Speed Rehabilitation
2009-01-01
A former Ames Research Center engineer, Dr. Robert Whalen, invented a treadmill that he licensed to a Menlo Park, California company, Alter-G Inc. The company s G-Trainer is an enclosed treadmill that uses air pressure to help patients feel up to 80 percent lighter, easing discomfort during rehabilitation. A patient desiring more weightlessness during a workout can simply press a button and the air pressure increases, lifting the body and reducing strain and impact. The U.S. Food and Drug Administration cleared the G-Trainer for medical use in January 2008, and researchers are now assessing the G-Trainer s effectiveness in aiding patients with various neurological or musculoskeletal conditions.
MULTISCALE PHENOMENA IN MATERIALS
A. BISHOP
2000-09-01
This project developed and supported a technology base in nonequilibrium phenomena underpinning fundamental issues in condensed matter and materials science, and applied this technology to selected problems. In this way the increasingly sophisticated synthesis and characterization available for classes of complex electronic and structural materials provided a testbed for nonlinear science, while nonlinear and nonequilibrium techniques helped advance our understanding of the scientific principles underlying the control of material microstructure, their evolution, fundamental to macroscopic functionalities. The project focused on overlapping areas of emerging thrusts and programs in the Los Alamos materials community for which nonlinear and nonequilibrium approaches will have decisive roles and where productive teamwork among elements of modeling, simulations, synthesis, characterization and applications could be anticipated--particularly multiscale and nonequilibrium phenomena, and complex matter in and between fields of soft, hard and biomimetic materials. Principal topics were: (i) Complex organic and inorganic electronic materials, including hard, soft and biomimetic materials, self-assembly processes and photophysics; (ii) Microstructure and evolution in multiscale and hierarchical materials, including dynamic fracture and friction, dislocation and large-scale deformation, metastability, and inhomogeneity; and (iii) Equilibrium and nonequilibrium phases and phase transformations, emphasizing competing interactions, frustration, landscapes, glassy and stochastic dynamics, and energy focusing.
Phenomena Associated With EIT Waves
Thompson, B. J.; Biesecker, D. A.; Gopalswamy, N.
2003-01-01
We discuss phenomena associated with "EIT Wave" transients. These phenomena include coronal mass ejections, flares, EUV/SXR dimmings, chromospheric waves, Moreton waves, solar energetic particle events, energetic electron events, and radio signatures. Although the occurrence of many phenomena correlate with the appearance of EIT waves, it is difficult to mfer which associations are causal. The presentation will include a discussion of correlation surveys of these phenomena.
Gravity and Mirror Gravity in Plebanski Formulation
Bennett, D. L.; Laperashvili, L. V.; Nielsen, H. B.; Tureanu, A.
2012-01-01
We present several theories of four-dimensional gravity in the Plebanski formulation, in which the tetrads and the connections are the independent dynamical variables. We consider the relation between different versions of gravitational theories: Einstenian, dual, 'mirror' gravities and gravity with torsion. According to Plebanski's assumption, our world, in which we live, is described by the self-dual left-handed gravity. We propose that if the Mirror World exists in Nature, then the 'mirror...
Lombard, John
2016-01-01
We introduce the construction of a new framework for probing discrete emergent geometry and boundary-boundary observables based on a fundamentally a-dimensional underlying network structure. Using a gravitationally motivated action with Forman weighted combinatorial curvatures and simplicial volumes relying on a decomposition of an abstract simplicial complex into realized embeddings of proper skeletons, we demonstrate properties such as a minimal volume-scale cutoff, the necessity of a positive-definite cosmological constant as a regulator for non-degenerate geometries, and naturally emergent simplicial structures from Metropolis network evolution simulations with no restrictions on attachment rules or regular building blocks. We see emergent properties which echo results from both the spinfoam formalism and causal dynamical triangulations in quantum gravity, and provide analytical and numerical results to support the analogy. We conclude with a summary of open questions and intent for future work in develop...
Newtonian gravity in loop quantum gravity
Smolin, Lee
2010-01-01
We apply a recent argument of Verlinde to loop quantum gravity, to conclude that Newton's law of gravity emerges in an appropriate limit and setting. This is possible because the relationship between area and entropy is realized in loop quantum gravity when boundaries are imposed on a quantum spacetime.
AdS Waves as Exact Solutions to Quadratic Gravity
Gullu, Ibrahim; Gurses, Metin; Sisman, Tahsin Cagri; Tekin, Bayram(Department of Physics, Middle East Technical University, 06800 Ankara, Turkey)
2011-01-01
We give an exact solution of the quadratic gravity in D dimensions. The solution is a plane fronted wave metric with a cosmological constant. This metric solves not only the full quadratic gravity field equations but also the linearized ones which include the linearized equations of the recently found critical gravity. A subset of the solutions change the asymptotic structure of the anti-de Sitter space due to their logarithmic behavior.
Crystallization phenomena in slags
Orrling, Carl Folke
2000-09-01
The crystallization of the mold slag affects both the heat transfer and the lubrication between the mold and the strand in continuous casting of steel. In order for mold slag design to become an engineering science rather than an empirical exercise, a fundamental understanding of the melting and solidification behavior of a slag must be developed. Thus it is necessary to be able to quantify the phenomena that occur under the thermal conditions that are found in the mold of a continuous caster. The double hot thermocouple technique (DHTT) and the Confocal Laser Scanning Microscope used in this study are two novel techniques for investigating melting and solidification phenomena of transparent slags. Results from these techniques are useful in defining the phenomena that occur when the slag film infiltrates between the mold and the shell of the casting. TTT diagrams were obtained for various slags and indicated that the onset of crystallization is a function of cooling rate and slag chemistry. Crystal morphology was found to be dependent upon the experimental temperature and four different morphologies were classified based upon the degree of melt undercooling. Continuous cooling experiments were carried out to develop CCT diagrams and it was found that the amount and appearance of the crystalline fraction greatly depends on the cooling conditions. The DHTT can also be used to mimic the cooling profile encountered by the slag in the mold of a continuous caster. In this differential cooling mode (DCT), it was found that the details of the cooling rate determine the actual response of the slag to a thermal gradient and small changes can lead to significantly different results. Crystal growth rates were measured and found to be in the range between 0.11 mum/s to 11.73 mum/s depending on temperature and slag chemistry. Alumina particles were found to be effective innoculants in oxide melts reducing the incubation time for the onset of crystallization and also extending
Boundary Dynamics of Higher Dimensional Chern-Simons Gravity
Gegenberg, J.; Kunstatter, G.
2000-01-01
We review the relevance to the black hole entropy problem of boundary dynamics in Chern-Simons gravity. We then describe a recent derivation of the action induced on the four dimensional boundary in a five dimensional Chern-Simons gravity theory with gauge invariant, anti-deSitter boundary conditions.
Workshop on Interface Phenomena
Kreuzer, Hans
1987-01-01
This book contains the proceedings of the first Workshop on Interface Phenomena, organized jointly by the surface science groups at Dalhousie University and the University of Maine. It was our intention to concentrate on just three topics related to the kinetics of interface reactions which, in our opinion, were frequently obscured unnecessarily in the literature and whose fundamental nature warranted an extensive discussion to help clarify the issues, very much in the spirit of the Discussions of the Faraday Society. Each session (day) saw two principal speakers expounding the different views; the session chairmen were asked to summarize the ensuing discussions. To understand the complexity of interface reactions, paradigms must be formulated to provide a framework for the interpretation of experimen tal data and for the construction of theoretical models. Phenomenological approaches have been based on a small number of rate equations for the concentrations or mole numbers of the various species involved i...
Experimental studies of fast fission phenomena are presented. The paper is divided into three parts. In the first part, problems associated with fast fission processes are examined in terms of interaction potentials and a dynamic model is presented in which highly elastic collisions, the formation of compound nuclei and fast fission appear naturally. In the second part, a description is given of the experimental methods employed, the observations made and the preliminary interpretation of measurements suggesting the occurence of fast fission processes. In the third part, our dynamic model is incorporated in a general theory of the dissipative processes studied. This theory enables fluctuations associated with collective variables to be calculated. It is applied to highly inelastic collisions, to fast fission and to the fission dynamics of compound nuclei (for which a schematic representation is given). It is with these calculations that the main results of the second part can be interpreted
A brief review of anode phenomena in vacuum arcs is presented. Discussed in succession are: the transition of the arc into the anode spot mode; the temperature of the anode before, during and after the anode spot forms; and anode ions. Characteristically the anode spot has a temperature of the order of the atmospheric boiling point of the anode material and is a copious source of vapor and energetic ions. The dominant mechanism controlling the transition of the vacuum arc into the anode spot mode appears to depend upon the electrode geometry, the electrode material, and the current waveform of the particular vacuum arc being considered. Either magnetic constriction in the gap plasma or gross anode melting can trigger the transition; indeed, a combination of the two is a common cause of anode spot formation
Spin–spin interactions in massive gravity and higher derivative gravity theories
We show that, in the weak field limit, at large separations, in sharp contrast to General Relativity (GR), all massive gravity theories predict distance-dependent spin alignments for spinning objects. For all separations GR requires anti-parallel spin orientations with spins pointing along the line joining the sources. Hence total spin is minimized in GR. On the other hand, while massive gravity at small separations (mgr⩽1.62) gives the same result as GR, for large separations (mgr>1.62) the spins become parallel to each other and perpendicular to the line joining the objects. Namely, the potential energy is minimized when the total spin is maximized in massive gravity for large separations. We also compute the spin–spin interactions in quadratic gravity theories and find that while at large separations GR result is intact, at small separations, spins become perpendicular to the line joining sources and anti-parallel to each other
PREFACE Integrability and nonlinear phenomena Integrability and nonlinear phenomena
Gómez-Ullate, David; Lombardo, Sara; Mañas, Manuel; Mazzocco, Marta; Nijhoff, Frank; Sommacal, Matteo
2010-10-01
Back in 1967, Clifford Gardner, John Greene, Martin Kruskal and Robert Miura published a seminal paper in Physical Review Letters which was to become a cornerstone in the theory of integrable systems. In 2006, the authors of this paper received the AMS Steele Prize. In this award the AMS pointed out that `In applications of mathematics, solitons and their descendants (kinks, anti-kinks, instantons, and breathers) have entered and changed such diverse fields as nonlinear optics, plasma physics, and ocean, atmospheric, and planetary sciences. Nonlinearity has undergone a revolution: from a nuisance to be eliminated, to a new tool to be exploited.' From this discovery the modern theory of integrability bloomed, leading scientists to a deep understanding of many nonlinear phenomena which is by no means reachable by perturbation methods or other previous tools from linear theories. Nonlinear phenomena appear everywhere in nature, their description and understanding is therefore of great interest both from the theoretical and applicative point of view. If a nonlinear phenomenon can be represented by an integrable system then we have at our disposal a variety of tools to achieve a better mathematical description of the phenomenon. This special issue is largely dedicated to investigations of nonlinear phenomena which are related to the concept of integrability, either involving integrable systems themselves or because they use techniques from the theory of integrability. The idea of this special issue originated during the 18th edition of the Nonlinear Evolution Equations and Dynamical Systems (NEEDS) workshop, held at Isola Rossa, Sardinia, Italy, 16-23 May 2009 (http://needs-conferences.net/2009/). The issue benefits from the occasion offered by the meeting, in particular by its mini-workshops programme, and contains invited review papers and contributed papers. It is worth pointing out that there was an open call for papers and all contributions were peer reviewed
Oriti, Daniele
2009-03-01
Preface; Part I. Fundamental Ideas and General Formalisms: 1. Unfinished revolution C. Rovelli; 2. The fundamental nature of space and time G. 't Hooft; 3. Does locality fail at intermediate length scales R. Sorkin; 4. Prolegomena to any future quantum gravity J. Stachel; 5. Spacetime symmetries in histories canonical gravity N. Savvidou; 6. Categorical geometry and the mathematical foundations of quantum gravity L. Crane; 7. Emergent relativity O. Dreyer; 8. Asymptotic safety R. Percacci; 9. New directions in background independent quantum gravity F. Markopoulou; Questions and answers; Part II: 10. Gauge/gravity duality G. Horowitz and J. Polchinski; 11. String theory, holography and quantum gravity T. Banks; 12. String field theory W. Taylor; Questions and answers; Part III: 13. Loop Quantum Gravity T. Thiemann; 14. Covariant loop quantum gravity? E. LIvine; 15. The spin foam representation of loop quantum gravity A. Perez; 16. 3-dimensional spin foam quantum gravity L. Freidel; 17. The group field theory approach to quantum gravity D. Oriti; Questions and answers; Part IV. Discrete Quantum Gravity: 18. Quantum gravity: the art of building spacetime J. Ambjørn, J. Jurkiewicz and R. Loll; 19. Quantum Regge calculations R. Williams; 20. Consistent discretizations as a road to quantum gravity R. Gambini and J. Pullin; 21. The causal set approach to quantum gravity J. Henson; Questions and answers; Part V. Effective Models and Quantum Gravity Phenomenology: 22. Quantum gravity phenomenology G. Amelino-Camelia; 23. Quantum gravity and precision tests C. Burgess; 24. Algebraic approach to quantum gravity II: non-commutative spacetime F. Girelli; 25. Doubly special relativity J. Kowalski-Glikman; 26. From quantum reference frames to deformed special relativity F. Girelli; 27. Lorentz invariance violation and its role in quantum gravity phenomenology J. Collins, A. Perez and D. Sudarsky; 28. Generic predictions of quantum theories of gravity L. Smolin; Questions and
Minimal Massive Gravity: Conserved Charges, Excitations and the Chiral Gravity Limit
Tekin, Bayram(Department of Physics, Middle East Technical University, 06800 Ankara, Turkey)
2014-01-01
We find the excitations and construct the conserved charges ( mass and angular momentum) of the recently found Minimal Massive Gravity (MMG) in 2+1 dimensions in asymptotically Anti-de Sitter (AdS) spacetimes. The field equation of the theory does not come from an action and hence lacks the required Bianchi Identity needed to define conserved charges. But the theory, which also provides a healthy extension of the Topologically Massive Gravity in the bulk and boundary of spacetime, does admit ...
Einstein Gravity, Massive Gravity, Multi-Gravity and Nonlinear Realizations
Goon, Garrett; Hinterbichler, Kurt; Joyce, Austin; Trodden, Mark
2014-01-01
The existence of a ghost free theory of massive gravity begs for an interpre-tation as a Higgs phase of General Relativity. We revisit the study of massive gravity as a Higgs phase. Absent a compelling microphysical model of spontaneous symmetry breaking in gravity, we approach this problem from the viewpoint of nonlinear realizations. We employ the coset construction to search for the most restrictive symmetry breaking pattern whose low energy theory will both admit the de Rham-Gabadadze-Tol...
Gravitational waves in geometric scalar gravity
Toniato, J D
2016-01-01
We investigate the description of gravitational waves in the geometric scalar theory of gravity (GSG). The GSG belongs to a class of theories such that gravity is described by a single scalar field and the associated physical metric describing the spacetime is constructed from a disformal transformation of Minkowski geometry. In this theory, gravitational waves have a longitudinal polarization mode, besides others modes that are observer dependent. We examine the orbital variation of a binary system due to the emission of gravitational waves, showing that GSG can also be successful in explaining this phenomena.
Linker, Patrick
2016-01-01
A couple of quantum gravity theories were proposed to make theoretical predictions about the behavior of gravity. The most recent approach to quantum gravity, called E-theory, is proposed mathematical, but there is not formulated much about what dynamics of gravity this theory proposes. This research paper treats the main results of the application of E-theory to General relativity involving conservation laws and scattering of particles in presence of gravity. Also the low-energy limit of thi...
Gravity wave transmission diagram
Tomikawa, Yoshihiro
2016-07-01
A possibility of gravity wave propagation from a source region to the airglow layer around the mesopause has been discussed based on the gravity wave blocking diagram taking into account the critical level filtering alone. This paper proposes a new gravity wave transmission diagram in which both the critical level filtering and turning level reflection of gravity waves are considered. It shows a significantly different distribution of gravity wave transmissivity from the blocking diagram.
Gravity, Twistors and the MHV Formalism
Mason, Lionel
2008-01-01
We give a self-contained derivation of the MHV amplitudes for gravity and use the associated twistor generating function to define a twistor action for the MHV diagram approach to gravity. Starting from a background field calculation on a spacetime with anti self-dual curvature, we obtain a simple spacetime formula for the scattering of a single, positive helicity linearized graviton into one of negative helicity. Re-expressing our integral in terms of twistor data allows us to consider a spacetime that is asymptotic to a superposition of plane waves. Expanding these out perturbatively yields the gravitational MHV amplitudes of Berends, Giele & Kuijf. We go on to take the twistor generating function off-shell at the perturbative level. Combining this with a twistor action for the anti self-dual background, we obtain a twistor action for the MHV diagram approach to perturbative gravity. We finish by extending these results to supergravity, in particular N=4 and N=8.
Moduli Space of Topological 2-form Gravity
Abe, Mitsuko; Nakamichi, A.; Ueno, T.
1993-01-01
We propose a topological version of four-dimensional (Euclidean) Einstein gravity, in which anti-self-dual 2-forms and an SU(2) connection are used as fundamental fields. The theory describes the moduli space of conformally self-dual Einstein manifolds. In the presence of a cosmological constant, we evaluate the index of the elliptic complex associated with the moduli space.
Nuclear fuel deformation phenomena
Nuclear fuel encounters severe thermomechanical environments. Its mechanical response is profoundly influenced by an underlying heterogeneous microstructure but also inherently dependent on the temperature and stress level histories. The ability to adequately simulate the response of such microstructures, to elucidate the associated macroscopic response in such extreme environments is crucial for predicting both performance and transient fuel mechanical responses. This chapter discusses key physical phenomena and the status of current modelling techniques to evaluate and predict fuel deformations: creep, swelling, cracking and pellet-clad interaction. This chapter only deals with nuclear fuel; deformations of cladding materials are discussed elsewhere. An obvious need for a multi-physics and multi-scale approach to develop a fundamental understanding of properties of complex nuclear fuel materials is presented. The development of such advanced multi-scale mechanistic frameworks should include either an explicit (domain decomposition, homogenisation, etc.) or implicit (scaling laws, hand-shaking,...) linkage between the different time and length scales involved, in order to accurately predict the fuel thermomechanical response for a wide range of operating conditions and fuel types (including Gen-IV and TRU). (authors)
Acid deposition, commonly known as acid rain, occurs when emissions from the combustion of fossil fuels and other industrial processes undergo complex chemical reactions in the atmosphere and fall to the earth as wet deposition (rain, snow, cloud, fog) or dry deposition (dry particles, gas). Rain and snow are already naturally acidic, but are only considered problematic when less than a ph of 5.0 The main chemical precursors leading to acidic conditions are atmospheric concentrations of sulfur dioxide (SO2) and nitrogen oxides (NOx). When these two compounds react with water, oxygen, and sunlight in the atmosphere, the result is sulfuric (H2SO4) and nitric acids (HNO3), the primary agents of acid deposition which mainly produced from the combustion of fossil fuel and from petroleum refinery. Airborne chemicals can travel long distances from their sources and can therefore affect ecosystems over broad regional scales and in locations far from the sources of emissions. According to the concern of petroleum ministry with the environment and occupational health, in this paper we will discussed the acid deposition phenomena through the following: Types of acidic deposition and its components in the atmosphere Natural and man-made sources of compounds causing the acidic deposition. Chemical reactions causing the acidic deposition phenomenon in the atmosphere. Factors affecting level of acidic deposition in the atmosphere. Impact of acid deposition. Procedures for acidic deposition control in petroleum industry
A Soliton and a Black Hole are in Gauss-Bonnet gravity. Who wins?
Wong, Anson W. C.; Mann, Robert B.
2012-01-01
We study here the phase-transitional evolution between the Eguchi-Hanson soliton, the orbifolded Schwarzschild Anti de-Sitter black hole, and orbifolded thermal Anti de-Sitter space in Gauss-Bonnet gravity for a small Gauss-Bonnet coefficient $\\alpha$. Novel phase structure is uncovered for both negative and positive $\\alpha$ with spacetime configurations that are stable in Gauss-Bonnet gravity without being so in Einsteinian gravity. The evolutionary tracks taken towards such stable configur...
Nonlinear dynamics of parity-even tricritical gravity in three and four dimensions
Apolo, Luis; Porrati, Massimo
2012-01-01
Recently proposed "multicritical" higher-derivative gravities in Anti de Sitter space carry logarithmic representations of the Anti de Sitter isometry group. While generically non-unitary already at the quadratic, free-theory level, in special cases these theories admit a unitary subspace. The simplest example of such behavior is "tricritical" gravity. In this paper, we extend the study of parity-even tricritical gravity in d = 3, 4 to the first nonlinear order. We show that the would-be unit...
Analogue gravitational phenomena in Bose-Einstein condensates
Finazzi, Stefano
2012-08-01
Analogue gravity is based on the simple observation that perturbations propagating in several physical systems can be described by a quantum field theory in a curved spacetime. While phenomena like Hawking radiation are hardly detectable in astrophysical black holes, these effects may be experimentally tested in analogue systems. In this Thesis, focusing on Bose-Einstein condensates, we present our recent results about analogue models of gravity from three main perspectives: as laboratory tests of quantum field theory in curved spacetime, for the techniques that they provide to address various issues in general relativity, and as toy models of quantum gravity. The robustness of Hawking-like particle creation is investigated in flows with a single black hole horizon. Furthermore, we find that condensates with two (white and black) horizons develop a dynamical instability known in general relativity as black hole laser effect. Using techniques borrowed from analogue gravity, we also show that warp drives, which are general relativistic spacetimes allowing faster-than-light travel, are unstable. Finally, the cosmological constant issue is investigated from an analogue gravity perspective and relativistic Bose-Einstein condensates are proposed as new analogue systems with novel interesting properties.
Toward Understanding Astrophysical Phenomena
Luan, Jing
2015-06-01
I hope to resume working on fast radio bursts (FRBs) in the near future. But after we completed our FRB paper, I decided to pause this project because of the lack of observational constraints. The pulsar triple system, J0733+1715, has its orbital parameters fitted to high accuracy owing to the precise timing of the central ms pulsar. The two orbits are highly hierarchical, namely Porb,1 " Porb,2, where 1 and 2 label the inner and outer white dwarf (WD) companions respectively. Moreover, their orbital planes almost coincide, providing a unique opportunity to study secular interaction associated purely with eccentricity beyond the solar system. Secular interaction only involves effect averaged over many orbits. Thus each companion can be represented by an elliptical wire with its mass distributed inversely proportional to its local orbital speed. Generally there exists a mutual torque, which vanishes only when their apsidal lines are parallel or anti-parallel. To maintain either mode, the eccentricity ratio, e1/ e2, must be of the proper value, so that both apsidal lines precess together. For J0733+1715, e1 " e2 for the parallel mode, while e 1 " e2 for the anti-parallel one. We show that the former precesses ˜10 times slower than the latter. Currently the system is dominated by the parallel mode. Although only a little anti-parallel mode survives, both eccentricities especially e1 oscillate on ˜103yr timescale. Detectable changes would occur within ˜1y. We demonstrate that the anti-parallel mode gets damped ˜10 4 times faster than its parallel brother by any dissipative process diminishing e1. If it is the tidal damping in the inner WD, we proceed to estimate its tidal quantity parameter (Q) to be ˜106, which was poorly constrained by observations. However, tidal damping may also happen during the preceding low-mass X-ray binary (LMXB) phase or hydrogen thermal nuclear flashes. But, in both cases, the inner companion fills its Roche lobe and probably suffers