WorldWideScience

Sample records for anthrax toxin uptake

  1. Tumor Targeting and Drug Delivery by Anthrax Toxin

    Directory of Open Access Journals (Sweden)

    Christopher Bachran

    2016-07-01

    Full Text Available Anthrax toxin is a potent tripartite protein toxin from Bacillus anthracis. It is one of the two virulence factors and causes the disease anthrax. The receptor-binding component of the toxin, protective antigen, needs to be cleaved by furin-like proteases to be activated and to deliver the enzymatic moieties lethal factor and edema factor to the cytosol of cells. Alteration of the protease cleavage site allows the activation of the toxin selectively in response to the presence of tumor-associated proteases. This initial idea of re-targeting anthrax toxin to tumor cells was further elaborated in recent years and resulted in the design of many modifications of anthrax toxin, which resulted in successful tumor therapy in animal models. These modifications include the combination of different toxin variants that require activation by two different tumor-associated proteases for increased specificity of toxin activation. The anthrax toxin system has proved to be a versatile system for drug delivery of several enzymatic moieties into cells. This highly efficient delivery system has recently been further modified by introducing ubiquitin as a cytosolic cleavage site into lethal factor fusion proteins. This review article describes the latest developments in this field of tumor targeting and drug delivery.

  2. Tumor Targeting and Drug Delivery by Anthrax Toxin.

    Science.gov (United States)

    Bachran, Christopher; Leppla, Stephen H

    2016-07-01

    Anthrax toxin is a potent tripartite protein toxin from Bacillus anthracis. It is one of the two virulence factors and causes the disease anthrax. The receptor-binding component of the toxin, protective antigen, needs to be cleaved by furin-like proteases to be activated and to deliver the enzymatic moieties lethal factor and edema factor to the cytosol of cells. Alteration of the protease cleavage site allows the activation of the toxin selectively in response to the presence of tumor-associated proteases. This initial idea of re-targeting anthrax toxin to tumor cells was further elaborated in recent years and resulted in the design of many modifications of anthrax toxin, which resulted in successful tumor therapy in animal models. These modifications include the combination of different toxin variants that require activation by two different tumor-associated proteases for increased specificity of toxin activation. The anthrax toxin system has proved to be a versatile system for drug delivery of several enzymatic moieties into cells. This highly efficient delivery system has recently been further modified by introducing ubiquitin as a cytosolic cleavage site into lethal factor fusion proteins. This review article describes the latest developments in this field of tumor targeting and drug delivery.

  3. Tumor Targeting and Drug Delivery by Anthrax Toxin

    OpenAIRE

    Bachran, Christopher; Leppla, Stephen H.

    2016-01-01

    Anthrax toxin is a potent tripartite protein toxin from Bacillus anthracis. It is one of the two virulence factors and causes the disease anthrax. The receptor-binding component of the toxin, protective antigen, needs to be cleaved by furin-like proteases to be activated and to deliver the enzymatic moieties lethal factor and edema factor to the cytosol of cells. Alteration of the protease cleavage site allows the activation of the toxin selectively in response to the presence of tumor-associ...

  4. Potent antitumor activity of a urokinase-activated engineered anthrax toxin

    Science.gov (United States)

    Liu, Shihui; Aaronson, Hannah; Mitola, David J.; Leppla, Stephen H.; Bugge, Thomas H.

    2003-01-01

    The acquisition of cell-surface urokinase plasminogen activator activity is a hallmark of malignancy. We generated an engineered anthrax toxin that is activated by cell-surface urokinase in vivo and displays limited toxicity to normal tissue but broad and potent tumoricidal activity. Native anthrax toxin protective antigen, when administered with a chimeric anthrax toxin lethal factor, Pseudomonas exotoxin fusion protein, was extremely toxic to mice, causing rapid and fatal organ damage. Replacing the furin activation sequence in anthrax toxin protective antigen with an artificial peptide sequence efficiently activated by urokinase greatly attenuated toxicity to mice. In addition, the mutation conferred cell-surface urokinase-dependent toxin activation in vivo, as determined by using a panel of plasminogen, plasminogen activator, plasminogen activator receptor, and plasminogen activator inhibitor-deficient mice. Surprisingly, toxin activation critically depended on both urokinase plasminogen activator receptor and plasminogen in vivo, showing that both proteins are essential cofactors for the generation of cell-surface urokinase. The engineered toxin displayed potent tumor cell cytotoxicity to a spectrum of transplanted tumors of diverse origin and could eradicate established solid tumors. This tumoricidal activity depended strictly on tumor cell-surface plasminogen activation. The data show that a simple change of protease activation specificity converts anthrax toxin from a highly lethal to a potent tumoricidal agent.

  5. Anthrax Toxin Receptor 2–Dependent Lethal Toxin Killing In Vivo

    Science.gov (United States)

    Scobie, Heather M; Wigelsworth, Darran J; Marlett, John M; Thomas, Diane; Rainey, G. Jonah A; Lacy, D. Borden; Manchester, Marianne; Collier, R. John; Young, John A. T

    2006-01-01

    Anthrax toxin receptors 1 and 2 (ANTXR1 and ANTXR2) have a related integrin-like inserted (I) domain which interacts with a metal cation that is coordinated by residue D683 of the protective antigen (PA) subunit of anthrax toxin. The receptor-bound metal ion and PA residue D683 are critical for ANTXR1-PA binding. Since PA can bind to ANTXR2 with reduced affinity in the absence of metal ions, we reasoned that D683 mutant forms of PA might specifically interact with ANTXR2. We show here that this is the case. The differential ability of ANTXR1 and ANTXR2 to bind D683 mutant PA proteins was mapped to nonconserved receptor residues at the binding interface with PA domain 2. Moreover, a D683K mutant form of PA that bound specifically to human and rat ANTXR2 mediated killing of rats by anthrax lethal toxin, providing strong evidence for the physiological importance of ANTXR2 in anthrax disease pathogenesis. PMID:17054395

  6. Comparative toxicity and efficacy of engineered anthrax lethal toxin variants with broad anti-tumor activities

    International Nuclear Information System (INIS)

    Peters, Diane E.; Hoover, Benjamin; Cloud, Loretta Grey; Liu, Shihui; Molinolo, Alfredo A.; Leppla, Stephen H.; Bugge, Thomas H.

    2014-01-01

    We have previously designed and characterized versions of anthrax lethal toxin that are selectively cytotoxic in the tumor microenvironment and which display broad and potent anti-tumor activities in vivo. Here, we have performed the first direct comparison of the safety and efficacy of three engineered anthrax lethal toxin variants requiring activation by either matrix-metalloproteinases (MMPs), urokinase plasminogen activator (uPA) or co-localized MMP/uPA activities. C57BL/6J mice were challenged with six doses of engineered toxins via intraperitoneal (I.P.) or intravenous (I.V.) dose routes to determine the maximum tolerated dose for six administrations (MTD6) and dose-limiting toxicities. Efficacy was evaluated using the B16-BL6 syngraft model of melanoma; mice bearing established tumors were treated with six I.P. doses of toxin and tumor measurements and immunohistochemistry, paired with terminal blood work, were used to elaborate upon the anti-tumor mechanism and relative efficacy of each variant. We found that MMP-, uPA- and dual MMP/uPA-activated anthrax lethal toxins exhibited the same dose-limiting toxicity; dose-dependent GI toxicity. In terms of efficacy, all three toxins significantly reduced primary B16-BL6 tumor burden, ranging from 32% to 87% reduction, and they also delayed disease progression as evidenced by dose-dependent normalization of blood work values. While target organ toxicity and effective doses were similar amongst the variants, the dual MMP/uPA-activated anthrax lethal toxin exhibited the highest I.P. MTD6 and was 1.5–3-fold better tolerated than the single MMP- and uPA-activated toxins. Overall, we demonstrate that this dual MMP/uPA-activated anthrax lethal toxin can be administered safely and is highly effective in a preclinical model of melanoma. This modified bacterial cytotoxin is thus a promising candidate for further clinical development and evaluation for use in treating human cancers. - Highlights: • Toxicity and anti

  7. Comparative toxicity and efficacy of engineered anthrax lethal toxin variants with broad anti-tumor activities

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Diane E. [Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States); Program of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, MA (United States); Hoover, Benjamin [Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (United States); Cloud, Loretta Grey [Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States); Liu, Shihui [Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (United States); Molinolo, Alfredo A. [Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States); Leppla, Stephen H. [Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (United States); Bugge, Thomas H., E-mail: thomas.bugge@nih.go [Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States)

    2014-09-01

    We have previously designed and characterized versions of anthrax lethal toxin that are selectively cytotoxic in the tumor microenvironment and which display broad and potent anti-tumor activities in vivo. Here, we have performed the first direct comparison of the safety and efficacy of three engineered anthrax lethal toxin variants requiring activation by either matrix-metalloproteinases (MMPs), urokinase plasminogen activator (uPA) or co-localized MMP/uPA activities. C57BL/6J mice were challenged with six doses of engineered toxins via intraperitoneal (I.P.) or intravenous (I.V.) dose routes to determine the maximum tolerated dose for six administrations (MTD6) and dose-limiting toxicities. Efficacy was evaluated using the B16-BL6 syngraft model of melanoma; mice bearing established tumors were treated with six I.P. doses of toxin and tumor measurements and immunohistochemistry, paired with terminal blood work, were used to elaborate upon the anti-tumor mechanism and relative efficacy of each variant. We found that MMP-, uPA- and dual MMP/uPA-activated anthrax lethal toxins exhibited the same dose-limiting toxicity; dose-dependent GI toxicity. In terms of efficacy, all three toxins significantly reduced primary B16-BL6 tumor burden, ranging from 32% to 87% reduction, and they also delayed disease progression as evidenced by dose-dependent normalization of blood work values. While target organ toxicity and effective doses were similar amongst the variants, the dual MMP/uPA-activated anthrax lethal toxin exhibited the highest I.P. MTD6 and was 1.5–3-fold better tolerated than the single MMP- and uPA-activated toxins. Overall, we demonstrate that this dual MMP/uPA-activated anthrax lethal toxin can be administered safely and is highly effective in a preclinical model of melanoma. This modified bacterial cytotoxin is thus a promising candidate for further clinical development and evaluation for use in treating human cancers. - Highlights: • Toxicity and anti

  8. Delayed Toxicity Associated with Soluble Anthrax Toxin Receptor Decoy-Ig Fusion Protein Treatment

    Science.gov (United States)

    Cote, Christopher; Welkos, Susan; Manchester, Marianne; Young, John A. T.

    2012-01-01

    Soluble receptor decoy inhibitors, including receptor-immunogloubulin (Ig) fusion proteins, have shown promise as candidate anthrax toxin therapeutics. These agents act by binding to the receptor-interaction site on the protective antigen (PA) toxin subunit, thereby blocking toxin binding to cell surface receptors. Here we have made the surprising observation that co-administration of receptor decoy-Ig fusion proteins significantly delayed, but did not protect, rats challenged with anthrax lethal toxin. The delayed toxicity was associated with the in vivo assembly of a long-lived complex comprised of anthrax lethal toxin and the receptor decoy-Ig inhibitor. Intoxication in this system presumably results from the slow dissociation of the toxin complex from the inhibitor following their prolonged circulation. We conclude that while receptor decoy-Ig proteins represent promising candidates for the early treatment of B. anthracis infection, they may not be suitable for therapeutic use at later stages when fatal levels of toxin have already accumulated in the bloodstream. PMID:22511955

  9. Cardiac-specific catalase overexpression rescues anthrax lethal toxin-induced cardiac contractile dysfunction: role of oxidative stress and autophagy

    OpenAIRE

    Kandadi, Machender R; Yu, Xuejun; Frankel, Arthur E; Ren, Jun

    2012-01-01

    Abstract Background Lethal and edema toxins secreted by Bacillus anthracis during anthrax infection were found to incite serious cardiovascular complications. However, the underlying mechanisms in anthrax lethal toxin-induced cardiac anomalies remain unknown. This study was designed to evaluate the impact of antioxidant enzyme catalase in anthrax lethal toxin-induced cardiomyocyte contractile dysfunction. Methods Wild type (WT) and cardiac-specific catalase overexpression mice were challenged...

  10. Tumor endothelium marker-8 based decoys exhibit superiority over capillary morphogenesis protein-2 based decoys as anthrax toxin inhibitors.

    Directory of Open Access Journals (Sweden)

    Chenguang Cai

    Full Text Available Anthrax toxin is the major virulence factor produced by Bacillus anthracis. The toxin consists of three protein subunits: protective antigen (PA, lethal factor, and edema factor. Inhibition of PA binding to its receptors, tumor endothelium marker-8 (TEM8 and capillary morphogenesis protein-2 (CMG2 can effectively block anthrax intoxication, which is particularly valuable when the toxin has already been overproduced at the late stage of anthrax infection, thus rendering antibiotics ineffectual. Receptor-like agonists, such as the mammalian cell-expressed von Willebrand factor type A (vWA domain of CMG2 (sCMG2, have demonstrated potency against the anthrax toxin. However, the soluble vWA domain of TEM8 (sTEM8 was ruled out as an anthrax toxin inhibitor candidate due to its inferior affinity to PA. In the present study, we report that L56A, a PA-binding-affinity-elevated mutant of sTEM8, could inhibit anthrax intoxication as effectively as sCMG2 in Fisher 344 rats. Additionally, pharmacokinetics showed that L56A and sTEM8 exhibit advantages over sCMG2 with better lung-targeting and longer plasma retention time, which may contribute to their enhanced protective ability in vivo. Our results suggest that receptor decoys based on TEM8 are promising anthrax toxin inhibitors and, together with the pharmacokinetic studies in this report, may contribute to the development of novel anthrax drugs.

  11. Comparative toxicity and efficacy of engineered anthrax lethal toxin variants with broad anti-tumor activities.

    Science.gov (United States)

    Peters, Diane E; Hoover, Benjamin; Cloud, Loretta Grey; Liu, Shihui; Molinolo, Alfredo A; Leppla, Stephen H; Bugge, Thomas H

    2014-09-01

    We have previously designed and characterized versions of anthrax lethal toxin that are selectively cytotoxic in the tumor microenvironment and which display broad and potent anti-tumor activities in vivo. Here, we have performed the first direct comparison of the safety and efficacy of three engineered anthrax lethal toxin variants requiring activation by either matrix-metalloproteinases (MMPs), urokinase plasminogen activator (uPA) or co-localized MMP/uPA activities. C57BL/6J mice were challenged with six doses of engineered toxins via intraperitoneal (I.P.) or intravenous (I.V.) dose routes to determine the maximum tolerated dose for six administrations (MTD6) and dose-limiting toxicities. Efficacy was evaluated using the B16-BL6 syngraft model of melanoma; mice bearing established tumors were treated with six I.P. doses of toxin and tumor measurements and immunohistochemistry, paired with terminal blood work, were used to elaborate upon the anti-tumor mechanism and relative efficacy of each variant. We found that MMP-, uPA- and dual MMP/uPA-activated anthrax lethal toxins exhibited the same dose-limiting toxicity; dose-dependent GI toxicity. In terms of efficacy, all three toxins significantly reduced primary B16-BL6 tumor burden, ranging from 32% to 87% reduction, and they also delayed disease progression as evidenced by dose-dependent normalization of blood work values. While target organ toxicity and effective doses were similar amongst the variants, the dual MMP/uPA-activated anthrax lethal toxin exhibited the highest I.P. MTD6 and was 1.5-3-fold better tolerated than the single MMP- and uPA-activated toxins. Overall, we demonstrate that this dual MMP/uPA-activated anthrax lethal toxin can be administered safely and is highly effective in a preclinical model of melanoma. This modified bacterial cytotoxin is thus a promising candidate for further clinical development and evaluation for use in treating human cancers. Published by Elsevier Inc.

  12. Crystallization and preliminary X-ray analysis of the vWA domain of human anthrax toxin receptor 1

    International Nuclear Information System (INIS)

    Cai, Chenguang; Zhao, Ying; Tong, Xiaohang; Fu, Sheng; Li, Yuanyuan; Wu, Yang; Li, Xumei; Lou, Zhiyong

    2010-01-01

    The vWA domain of human anthrax toxin receptor 1 was overexpressed in E. coli, purified and crystallized. Diffraction data were collected to 1.8 Å resolution. The Gram-positive spore-forming bacterium Bacillus anthracis causes anthrax by secreting anthrax toxin, which consists of protective antigen (PA), lethal factor and oedema factor. Binding of PA to receptors triggers the multi-step process of anthrax toxin entry into target cells. Two distinct cellular receptors, ANTXR1 (also known as tumour endothelial marker 8; TEM8) and ANTXR2 (also known as capillary morphogenesis protein 2; CMG2), for anthrax toxin have been identified. Although the crystal structure of the extracellular von Willebrand factor A (vWA) domain of CMG2 has been reported, the difference between the vWA domains of TEM8 and CMG2 remains unclear because there are no structural data for the TEM8 vWA domain. In this report, the TEM8 vWA domain was expressed, purified and crystallized. X-ray diffraction data were collected to 1.8 Å resolution from a single crystal, which belonged to space group P1 with unit-cell parameters a = 65.9, b = 66.1, c = 74.4 Å, α = 63.7, β = 88.2, γ = 59.9°

  13. Cardiac-specific catalase overexpression rescues anthrax lethal toxin-induced cardiac contractile dysfunction: role of oxidative stress and autophagy.

    Science.gov (United States)

    Kandadi, Machender R; Yu, Xuejun; Frankel, Arthur E; Ren, Jun

    2012-11-07

    Lethal and edema toxins secreted by Bacillus anthracis during anthrax infection were found to incite serious cardiovascular complications. However, the underlying mechanisms in anthrax lethal toxin-induced cardiac anomalies remain unknown. This study was designed to evaluate the impact of antioxidant enzyme catalase in anthrax lethal toxin-induced cardiomyocyte contractile dysfunction. Wild type (WT) and cardiac-specific catalase overexpression mice were challenged with lethal toxin (2 μg/g, intraperotineally (i.p.)). Cardiomyocyte contractile and intracellular Ca(2+) properties were assessed 18 h later using an IonOptix edge-detection system. Proteasome function was assessed using chymotrypsin-like and caspase-like activities. GFP-LC3 puncta and Western blot analysis were used to evaluate autophagy and protein ubiquitination. Lethal toxin exposure suppressed cardiomyocyte contractile function (suppressed peak shortening, maximal velocity of shortening/re-lengthening, prolonged duration of shortening/re-lengthening, and impaired intracellular Ca(2+) handling), the effects of which were alleviated by catalase. In addition, lethal toxin triggered autophagy, mitochondrial and ubiquitin-proteasome defects, the effects of which were mitigated by catalase. Pretreatment of cardiomyocytes from catalase mice with the autophagy inducer rapamycin significantly attenuated or ablated catalase-offered protection against lethal toxin-induced cardiomyocyte dysfunction. On the other hand, the autophagy inhibitor 3-MA ablated or significantly attenuated lethal toxin-induced cardiomyocyte contractile anomalies. Our results suggest that catalase is protective against anthrax lethal toxin-induced cardiomyocyte contractile and intracellular Ca(2+) anomalies, possibly through regulation of autophagy and mitochondrial function.

  14. Cardiac-specific catalase overexpression rescues anthrax lethal toxin-induced cardiac contractile dysfunction: role of oxidative stress and autophagy

    Directory of Open Access Journals (Sweden)

    Kandadi Machender R

    2012-11-01

    Full Text Available Abstract Background Lethal and edema toxins secreted by Bacillus anthracis during anthrax infection were found to incite serious cardiovascular complications. However, the underlying mechanisms in anthrax lethal toxin-induced cardiac anomalies remain unknown. This study was designed to evaluate the impact of antioxidant enzyme catalase in anthrax lethal toxin-induced cardiomyocyte contractile dysfunction. Methods Wild type (WT and cardiac-specific catalase overexpression mice were challenged with lethal toxin (2 μg/g, intraperotineally (i.p.. Cardiomyocyte contractile and intracellular Ca2+ properties were assessed 18 h later using an IonOptix edge-detection system. Proteasome function was assessed using chymotrypsin-like and caspase-like activities. GFP-LC3 puncta and Western blot analysis were used to evaluate autophagy and protein ubiquitination. Results Lethal toxin exposure suppressed cardiomyocyte contractile function (suppressed peak shortening, maximal velocity of shortening/re-lengthening, prolonged duration of shortening/re-lengthening, and impaired intracellular Ca2+ handling, the effects of which were alleviated by catalase. In addition, lethal toxin triggered autophagy, mitochondrial and ubiquitin-proteasome defects, the effects of which were mitigated by catalase. Pretreatment of cardiomyocytes from catalase mice with the autophagy inducer rapamycin significantly attenuated or ablated catalase-offered protection against lethal toxin-induced cardiomyocyte dysfunction. On the other hand, the autophagy inhibitor 3-MA ablated or significantly attenuated lethal toxin-induced cardiomyocyte contractile anomalies. Conclusions Our results suggest that catalase is protective against anthrax lethal toxin-induced cardiomyocyte contractile and intracellular Ca2+ anomalies, possibly through regulation of autophagy and mitochondrial function.

  15. Anthrax

    Science.gov (United States)

    2017-06-30

    capsule and toxins. Hemorrhagic edema and necrosis of mediastinal lymph nodes ensue. Alveoli show a hemorrhagic exudate and only rarely bacilli...follow cutaneous anthrax and, almost invariably, accompanies inhalational and gastrointestinal anthrax. Vascular injury may result from the proliferation

  16. Disulfide bonds in the ectodomain of anthrax toxin receptor 2 are required for the receptor-bound protective-antigen pore to function.

    Directory of Open Access Journals (Sweden)

    Jianjun Sun

    Full Text Available BACKGROUND: Cell-surface receptors play essential roles in anthrax toxin action by providing the toxin with a high-affinity anchor and self-assembly site on the plasma membrane, mediating the toxin entry into cells through endocytosis, and shifting the pH threshold for prepore-to-pore conversion of anthrax toxin protective antigen (PA to a more acidic pH, thereby inhibiting premature pore formation. Each of the two known anthrax toxin receptors, ANTXR1 and ANTXR2, has an ectodomain comprised of an N-terminal von Willebrand factor A domain (VWA, which binds PA, and an uncharacterized immunoglobulin-like domain (Ig that connects VWA to the membrane-spanning domain. Potential roles of the receptor Ig domain in anthrax toxin action have not been investigated heretofore. METHODOLOGY/PRINCIPAL FINDINGS: We expressed and purified the ANTXR2 ectodomain (R2-VWA-Ig in E. coli and showed that it contains three disulfide bonds: one in R2-VWA and two in R2-Ig. Reduction of the ectodomain inhibited functioning of the pore, as measured by K(+ release from liposomes or Chinese hamster ovary cells or by PA-mediated translocation of a model substrate across the plasma membrane. However, reduction did not affect binding of the ectodomain to PA or the transition of ectodomain-bound PA prepore to the pore conformation. The inhibitory effect depended specifically on reduction of the disulfides within R2-Ig. CONCLUSIONS/SIGNIFICANCE: We conclude that disulfide integrity within R2-Ig is essential for proper functioning of receptor-bound PA pore. This finding provides a novel venue to investigate the mechanism of anthrax toxin action and suggests new strategies for inhibiting toxin action.

  17. The Disulfide Bond Cys255-Cys279 in the Immunoglobulin-Like Domain of Anthrax Toxin Receptor 2 Is Required for Membrane Insertion of Anthrax Protective Antigen Pore.

    Directory of Open Access Journals (Sweden)

    Pedro Jacquez

    Full Text Available Anthrax toxin receptors act as molecular clamps or switches that control anthrax toxin entry, pH-dependent pore formation, and translocation of enzymatic moieties across the endosomal membranes. We previously reported that reduction of the disulfide bonds in the immunoglobulin-like (Ig domain of the anthrax toxin receptor 2 (ANTXR2 inhibited the function of the protective antigen (PA pore. In the present study, the disulfide linkage in the Ig domain was identified as Cys255-Cys279 and Cys230-Cys315. Specific disulfide bond deletion mutants were achieved by replacing Cys residues with Ala residues. Deletion of the disulfide bond C255-C279, but not C230-C315, inhibited the PA pore-induced release of the fluorescence dyes from the liposomes, suggesting that C255-C279 is essential for PA pore function. Furthermore, we found that deletion of C255-C279 did not affect PA prepore-to-pore conversion, but inhibited PA pore membrane insertion by trapping the PA membrane-inserting loops in proteinaceous hydrophobic pockets. Fluorescence spectra of Trp59, a residue adjacent to the PA-binding motif in von Willebrand factor A (VWA domain of ANTXR2, showed that deletion of C255-C279 resulted in a significant conformational change on the receptor ectodomain. The disulfide deletion-induced conformational change on the VWA domain was further confirmed by single-particle 3D reconstruction of the negatively stained PA-receptor heptameric complexes. Together, the biochemical and structural data obtained in this study provides a mechanistic insight into the role of the receptor disulfide bond C255-C279 in anthrax toxin action. Manipulation of the redox states of the receptor, specifically targeting to C255-C279, may become a novel strategy to treat anthrax.

  18. Anthrax toxin: the long and winding road that leads to the kill.

    Science.gov (United States)

    Abrami, Laurence; Reig, Nuria; van der Goot, F Gisou

    2005-02-01

    The past five years have led to a tremendous increase in our molecular understanding of the mode of action of the anthrax toxin, one of the two main virulence factors produced by Bacillus anthracis. The structures of each of the three components of the toxin--lethal factor (LF), edema factor (EF) and protective antigen (PA)--have been solved not only in their monomeric forms but, depending on the subunit, in a heptameric form, bound to their substrate, co-factor or receptor. The endocytic route followed by the toxin has also been unraveled and the enzymatic mechanisms of EF and LF elucidated.

  19. Immunization of Mice with Anthrax Protective Antigen Limits Cardiotoxicity but Not Hepatotoxicity Following Lethal Toxin Challenge

    Directory of Open Access Journals (Sweden)

    T. Scott Devera

    2015-06-01

    Full Text Available Protective immunity against anthrax is inferred from measurement of vaccine antigen-specific neutralizing antibody titers in serum samples. In animal models, in vivo challenges with toxin and/or spores can also be performed. However, neither of these approaches considers toxin-induced damage to specific organ systems. It is therefore important to determine to what extent anthrax vaccines and existing or candidate adjuvants can provide organ-specific protection against intoxication. We therefore compared the ability of Alum, CpG DNA and the CD1d ligand α-galactosylceramide (αGC to enhance protective antigen-specific antibody titers, to protect mice against challenge with lethal toxin, and to block cardiotoxicity and hepatotoxicity. By measurement of serum cardiac Troponin I (cTnI, and hepatic alanine aminotransferase (ALT, and aspartate aminotransferase (AST, it was apparent that neither vaccine modality prevented hepatic intoxication, despite high Ab titers and ultimate survival of the subject. In contrast, cardiotoxicity was greatly diminished by prior immunization. This shows that a vaccine that confers survival following toxin exposure may still have an associated morbidity. We propose that organ-specific intoxication should be monitored routinely during research into new vaccine modalities.

  20. Highly predictive support vector machine (SVM) models for anthrax toxin lethal factor (LF) inhibitors.

    Science.gov (United States)

    Zhang, Xia; Amin, Elizabeth Ambrose

    2016-01-01

    Anthrax is a highly lethal, acute infectious disease caused by the rod-shaped, Gram-positive bacterium Bacillus anthracis. The anthrax toxin lethal factor (LF), a zinc metalloprotease secreted by the bacilli, plays a key role in anthrax pathogenesis and is chiefly responsible for anthrax-related toxemia and host death, partly via inactivation of mitogen-activated protein kinase kinase (MAPKK) enzymes and consequent disruption of key cellular signaling pathways. Antibiotics such as fluoroquinolones are capable of clearing the bacilli but have no effect on LF-mediated toxemia; LF itself therefore remains the preferred target for toxin inactivation. However, currently no LF inhibitor is available on the market as a therapeutic, partly due to the insufficiency of existing LF inhibitor scaffolds in terms of efficacy, selectivity, and toxicity. In the current work, we present novel support vector machine (SVM) models with high prediction accuracy that are designed to rapidly identify potential novel, structurally diverse LF inhibitor chemical matter from compound libraries. These SVM models were trained and validated using 508 compounds with published LF biological activity data and 847 inactive compounds deposited in the Pub Chem BioAssay database. One model, M1, demonstrated particularly favorable selectivity toward highly active compounds by correctly predicting 39 (95.12%) out of 41 nanomolar-level LF inhibitors, 46 (93.88%) out of 49 inactives, and 844 (99.65%) out of 847 Pub Chem inactives in external, unbiased test sets. These models are expected to facilitate the prediction of LF inhibitory activity for existing molecules, as well as identification of novel potential LF inhibitors from large datasets. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Design of monodisperse and well-defined polypeptide-based polyvalent inhibitors of anthrax toxin.

    Science.gov (United States)

    Patke, Sanket; Boggara, Mohan; Maheshwari, Ronak; Srivastava, Sunit K; Arha, Manish; Douaisi, Marc; Martin, Jacob T; Harvey, Ian B; Brier, Matthew; Rosen, Tania; Mogridge, Jeremy; Kane, Ravi S

    2014-07-28

    The design of polyvalent molecules, presenting multiple copies of a specific ligand, represents a promising strategy to inhibit pathogens and toxins. The ability to control independently the valency and the spacing between ligands would be valuable for elucidating structure-activity relationships and for designing potent polyvalent molecules. To that end, we designed monodisperse polypeptide-based polyvalent inhibitors of anthrax toxin in which multiple copies of an inhibitory toxin-binding peptide were separated by flexible peptide linkers. By tuning the valency and linker length, we designed polyvalent inhibitors that were over four orders of magnitude more potent than the corresponding monovalent ligands. This strategy for the rational design of monodisperse polyvalent molecules may not only be broadly applicable for the inhibition of toxins and pathogens, but also for controlling the nanoscale organization of cellular receptors to regulate signaling and the fate of stem cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The Effects of Anthrax Lethal Toxin on Host Barrier Function

    Directory of Open Access Journals (Sweden)

    David M. Frucht

    2011-06-01

    Full Text Available The pathological actions of anthrax toxin require the activities of its edema factor (EF and lethal factor (LF enzyme components, which gain intracellular access via its receptor-binding component, protective antigen (PA. LF is a metalloproteinase with specificity for selected mitogen-activated protein kinase kinases (MKKs, but its activity is not directly lethal to many types of primary and transformed cells in vitro. Nevertheless, in vivo treatment of several animal species with the combination of LF and PA (termed lethal toxin or LT leads to morbidity and mortality, suggesting that LT-dependent toxicity is mediated by cellular interactions between host cells. Decades of research have revealed that a central hallmark of this toxicity is the disruption of key cellular barriers required to maintain homeostasis. This review will focus on the current understanding of the effects of LT on barrier function, highlighting recent progress in establishing the molecular mechanisms underlying these effects.

  3. Noninvasive imaging technologies reveal edema toxin as a key virulence factor in anthrax.

    Science.gov (United States)

    Dumetz, Fabien; Jouvion, Grégory; Khun, Huot; Glomski, Ian Justin; Corre, Jean-Philippe; Rougeaux, Clémence; Tang, Wei-Jen; Mock, Michèle; Huerre, Michel; Goossens, Pierre Louis

    2011-06-01

    Powerful noninvasive imaging technologies enable real-time tracking of pathogen-host interactions in vivo, giving access to previously elusive events. We visualized the interactions between wild-type Bacillus anthracis and its host during a spore infection through bioluminescence imaging coupled with histology. We show that edema toxin plays a central role in virulence in guinea pigs and during inhalational infection in mice. Edema toxin (ET), but not lethal toxin (LT), markedly modified the patterns of bacterial dissemination leading, to apparent direct dissemination to the spleen and provoking apoptosis of lymphoid cells. Each toxin alone provoked particular histological lesions in the spleen. When ET and LT are produced together during infection, a specific temporal pattern of lesion developed, with early lesions typical of LT, followed at a later stage by lesions typical of ET. Our study provides new insights into the complex spatial and temporal effects of B. anthracis toxins in the infected host, suggesting a greater role than previously suspected for ET in anthrax and suggesting that therapeutic targeting of ET contributes to protection. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  4. The medicinal chemistry of botulinum, ricin and anthrax toxins.

    Science.gov (United States)

    Hicks, Rickey P; Hartell, Mark G; Nichols, Daniel A; Bhattacharjee, Apurba K; van Hamont, John E; Skillman, Donald R

    2005-01-01

    The potential use of weapons of mass destruction (nuclear, biological or chemical) by terrorist organizations represents a major threat to world peace and safety. Only a limited number of vaccines are available to protect the general population from the medical consequences of these weapons. In addition there are major health concerns associated with a pre-exposure mass vaccination of the general population. To reduce or eliminate the impact of these terrible threats, new drugs must be developed to safely treat individuals exposed to these agents. A review of all therapeutic agents under development for the treatment of the illnesses and injuries that result from exposure to nuclear, biological or chemical warfare agents is beyond the scope of any single article. The intent here is to provide a focused review for medicinal and organic chemists of three widely discussed and easily deployed biological warfare agents, botulinum neurotoxin and ricin toxins and the bacteria Bacillus anthracis. Anthrax will be addressed because of its similarity in both structure and mechanism of catalytic activity with botulinum toxin. The common feature of these three agents is that they exhibit their biological activity via toxin enzymatic hydrolysis of a specific bond in their respective substrate molecules. A brief introduction to the history of each of the biological warfare agents is presented followed by a discussion on the mechanisms of action of each at the molecular level, and a review of current potential inhibitors under investigation.

  5. Uptake and bioaccumulation of Cry toxins by an aphidophagous predator

    International Nuclear Information System (INIS)

    Paula, Débora P.; Andow, David A.

    2016-01-01

    Uptake of Cry toxins by insect natural enemies has rarely been considered and bioaccumulation has not yet been demonstrated. Uptake can be demonstrated by the continued presence of Cry toxin after exposure has stopped and gut contents eliminated. Bioaccumulation can be demonstrated by showing uptake and that the concentration of Cry toxin in the natural enemy exceeds that in its food. We exposed larvae of the aphidophagous predator, Harmonia axyridis, to Cry1Ac and Cry1F through uniform and constant tritrophic exposure via an aphid, Myzus persicae, and looked for toxin presence in the pupae. We repeated the experiment using only Cry1F and tested newly emerged adults. Both Cry toxins were detected in pupae, and Cry1F was detected in recently emerged, unfed adults. Cry1Ac was present 2.05 times and Cry1F 3.09 times higher in predator pupae than in the aphid prey. Uptake and bioaccumulation in the third trophic level might increase the persistence of Cry toxins in the food web and mediate new exposure routes to natural enemies. - Highlights: • Uptake and bioaccumulation of two Cry toxins by a larval coccinellid was tested. • Uptake was demonstrated by presence of the toxins in pupae and adults. • Bioaccumulation was shown by higher toxin concentration in pupae than prey. • Cry1Ac was present 2.05× and Cry1F 3.09× higher in predator pupae than prey. • This might increase persistence of Cry toxins in food webs with new exposure routes. - Immatures of the predaceous coccinellid Harmonia axyridis can uptake and bioaccumulate Cry toxins delivered via their aphid prey.

  6. Functions of phenylalanine residues within the beta-barrel stem of the anthrax toxin pore.

    Directory of Open Access Journals (Sweden)

    Jie Wang

    2009-07-01

    Full Text Available A key step of anthrax toxin action involves the formation of a protein-translocating pore within the endosomal membrane by the Protective Antigen (PA moiety. Formation of this transmembrane pore by PA involves interaction of the seven 2beta2-2beta3 loops of the heptameric precursor to generate a 14-strand transmembrane beta barrel.We examined the effects on pore formation, protein translocation, and cytotoxicity, of mutating two phenylalanines, F313 and F314, that lie at the tip the beta barrel, and a third one, F324, that lies part way up the barrel.Our results show that the function of these phenylalanine residues is to mediate membrane insertion and formation of stable transmembrane channels. Unlike F427, a key luminal residue in the cap of the pore, F313, F314, and F324 do not directly affect protein translocation through the pore. Our findings add to our knowledge of structure-function relationships of a key virulence factor of the anthrax bacillus.

  7. In vitro evaluation, biodistribution and scintigraphic imaging in mice of radiolabeled anthrax toxins

    International Nuclear Information System (INIS)

    Dadachova, Ekaterina; Rivera, Johanna; Revskaya, Ekaterina; Nakouzi, Antonio; Cahill, Sean M.; Blumenstein, Michael; Xiao, Hui; Rykunov, Dmitry; Casadevall, Arturo

    2008-01-01

    Introduction: There is a lot of interest towards creating therapies and vaccines for Bacillus anthracis, a bacterium which causes anthrax in humans and which spores can be made into potent biological weapons. Systemic injection of lethal factor (LF), edema factor (EF) and protective antigen (PA) in mice produces toxicity, and this protocol is commonly used to investigate the efficacy of specific antibodies in passive protection and vaccine studies. Availability of toxins labeled with imageable radioisotopes would allow to demonstrate their tissue distribution after intravenous injection at toxin concentration that are below pharmacologically significant to avoid masking by toxic effects. Methods: LF, EF and PA were radiolabeled with 188 Re and 99m Tc, and their performance in vitro was evaluated by macrophages and Chinese hamster ovary cells toxicity assays and by binding to macrophages. Scintigraphic imaging and biodistribution of intravenously (IV) injected 99m Tc-and 123 I-labeled toxins was performed in BALB/c mice. Results: Radiolabeled toxins preserved their biological activity. Scatchard-type analysis of the binding of radiolabeled PA to the J774.16 macrophage-like cells revealed 6.6x10 4 binding sites per cell with a dissociation constant of 6.7 nM. Comparative scintigraphic imaging of mice injected intravenously with either 99m Tc-or 123 I-labeled PA, EF and LF toxins demonstrated similar biodistribution patterns with early localization of radioactivity in the liver, spleen, intestines and excretion through kidneys. The finding of renal excretion shortly after IV injection strongly suggests that toxins are rapidly degraded which could contribute to the variability of mouse toxigenic assays. Biodistribution studies confirmed that all three toxins concentrated in the liver and the presence of high levels of radioactivity again implied rapid degradation in vivo. Conclusions: The availability of 188 Re and 99m Tc-labeled PA, LF and EF toxins allowed us to

  8. A Biologically-Based Computational Approach to Drug Repurposing for Anthrax Infection

    Directory of Open Access Journals (Sweden)

    Jane P. F. Bai

    2017-03-01

    Full Text Available Developing drugs to treat the toxic effects of lethal toxin (LT and edema toxin (ET produced by B. anthracis is of global interest. We utilized a computational approach to score 474 drugs/compounds for their ability to reverse the toxic effects of anthrax toxins. For each toxin or drug/compound, we constructed an activity network by using its differentially expressed genes, molecular targets, and protein interactions. Gene expression profiles of drugs were obtained from the Connectivity Map and those of anthrax toxins in human alveolar macrophages were obtained from the Gene Expression Omnibus. Drug rankings were based on the ability of a drug/compound’s mode of action in the form of a signaling network to reverse the effects of anthrax toxins; literature reports were used to verify the top 10 and bottom 10 drugs/compounds identified. Simvastatin and bepridil with reported in vitro potency for protecting cells from LT and ET toxicities were computationally ranked fourth and eighth. The other top 10 drugs were fenofibrate, dihydroergotamine, cotinine, amantadine, mephenytoin, sotalol, ifosfamide, and mefloquine; literature mining revealed their potential protective effects from LT and ET toxicities. These drugs are worthy of investigation for their therapeutic benefits and might be used in combination with antibiotics for treating B. anthracis infection.

  9. Effective antiprotease-antibiotic treatment of experimental anthrax

    Directory of Open Access Journals (Sweden)

    MacAfee Rebecca

    2005-04-01

    Full Text Available Abstract Background Inhalation anthrax is characterized by a systemic spread of the challenge agent, Bacillus anthracis. It causes severe damage, including multiple hemorrhagic lesions, to host tissues and organs. It is widely believed that anthrax lethal toxin secreted by proliferating bacteria is a major cause of death, however, the pathology of intoxication in experimental animals is drastically different from that found during the infectious process. In order to close a gap between our understanding of anthrax molecular pathology and the most prominent clinical features of the infectious process we undertook bioinformatic and experimental analyses of potential proteolytic virulence factors of B. anthracis distinct from lethal toxin. Methods Secreted proteins (other than lethal and edema toxins produced by B. anthracis were tested for tissue-damaging activity and toxicity in mice. Chemical protease inhibitors and rabbit immune sera raised against B. anthracis proteases were used to treat mice challenged with B. anthracis (Sterne spores. Results B. anthracis strain delta Ames (pXO1-, pXO2- producing no lethal and edema toxins secrets a number of metalloprotease virulence factors upon cultivation under aerobic conditions, including those with hemorrhagic, caseinolytic and collagenolytic activities, belonging to M4 and M9 thermolysin and bacterial collagenase families, respectively. These factors are directly toxic to DBA/2 mice upon intratracheal administration at 0.5 mg/kg and higher doses. Chemical protease inhibitors (phosphoramidon and 1, 10-phenanthroline, as well as immune sera against M4 and M9 proteases of B. anthracis, were used to treat mice challenged with B. anthracis (Sterne spores. These substances demonstrate a substantial protective efficacy in combination with ciprofloxacin therapy initiated as late as 48 h post spore challenge, compared to the antibiotic alone. Conclusion Secreted proteolytic enzymes are important pathogenic

  10. Effective antiprotease-antibiotic treatment of experimental anthrax

    OpenAIRE

    Popov, Serguei G; Popova, Taissia G; Hopkins, Svetlana; Weinstein, Raymond S; MacAfee, Rebecca; Fryxell, Karl J; Chandhoke, Vikas; Bailey, Charles; Alibek, Ken

    2005-01-01

    Abstract Background Inhalation anthrax is characterized by a systemic spread of the challenge agent, Bacillus anthracis. It causes severe damage, including multiple hemorrhagic lesions, to host tissues and organs. It is widely believed that anthrax lethal toxin secreted by proliferating bacteria is a major cause of death, however, the pathology of intoxication in experimental animals is drastically different from that found during the infectious process. In order to close a gap between our un...

  11. A Viral Nanoparticle with Dual Function as an Anthrax Antitoxin and Vaccine

    Science.gov (United States)

    Manayani, Darly J; Thomas, Diane; Dryden, Kelly A; Reddy, Vijay; Siladi, Marc E; Marlett, John M; Rainey, G. Jonah A; Pique, Michael E; Scobie, Heather M; Yeager, Mark; Young, John A. T; Manchester, Marianne; Schneemann, Anette

    2007-01-01

    The recent use of Bacillus anthracis as a bioweapon has stimulated the search for novel antitoxins and vaccines that act rapidly and with minimal adverse effects. B. anthracis produces an AB-type toxin composed of the receptor-binding moiety protective antigen (PA) and the enzymatic moieties edema factor and lethal factor. PA is a key target for both antitoxin and vaccine development. We used the icosahedral insect virus Flock House virus as a platform to display 180 copies of the high affinity, PA-binding von Willebrand A domain of the ANTXR2 cellular receptor. The chimeric virus-like particles (VLPs) correctly displayed the receptor von Willebrand A domain on their surface and inhibited lethal toxin action in in vitro and in vivo models of anthrax intoxication. Moreover, VLPs complexed with PA elicited a potent toxin-neutralizing antibody response that protected rats from anthrax lethal toxin challenge after a single immunization without adjuvant. This recombinant VLP platform represents a novel and highly effective, dually-acting reagent for treatment and protection against anthrax. PMID:17922572

  12. Genetically modified anthrax lethal toxin safely delivers whole HIV protein antigens into the cytosol to induce T cell immunity

    Science.gov (United States)

    Lu, Yichen; Friedman, Rachel; Kushner, Nicholas; Doling, Amy; Thomas, Lawrence; Touzjian, Neal; Starnbach, Michael; Lieberman, Judy

    2000-07-01

    Bacillus anthrax lethal toxin can be engineered to deliver foreign proteins to the cytosol for antigen presentation to CD8 T cells. Vaccination with modified toxins carrying 8-9 amino acid peptide epitopes induces protective immunity in mice. To evaluate whether large protein antigens can be used with this system, recombinant constructs encoding several HIV antigens up to 500 amino acids were produced. These candidate HIV vaccines are safe in animals and induce CD8 T cells in mice. Constructs encoding gag p24 and nef stimulate gag-specific CD4 proliferation and a secondary cytotoxic T lymphocyte response in HIV-infected donor peripheral blood mononuclear cells in vitro. These results lay the foundation for future clinical vaccine studies.

  13. Anthrax lethal toxin disrupts intestinal barrier function and causes systemic infections with enteric bacteria.

    Directory of Open Access Journals (Sweden)

    Chen Sun

    Full Text Available A variety of intestinal pathogens have virulence factors that target mitogen activated protein kinase (MAPK signaling pathways, including Bacillus anthracis. Anthrax lethal toxin (LT has specific proteolytic activity against the upstream regulators of MAPKs, the MAPK kinases (MKKs. Using a murine model of intoxication, we show that LT causes the dose-dependent disruption of intestinal epithelial integrity, characterized by mucosal erosion, ulceration, and bleeding. This pathology correlates with an LT-dependent blockade of intestinal crypt cell proliferation, accompanied by marked apoptosis in the villus tips. C57BL/6J mice treated with intravenous LT nearly uniformly develop systemic infections with commensal enteric organisms within 72 hours of administration. LT-dependent intestinal pathology depends upon its proteolytic activity and is partially attenuated by co-administration of broad spectrum antibiotics, indicating that it is both a cause and an effect of infection. These findings indicate that targeting of MAPK signaling pathways by anthrax LT compromises the structural integrity of the mucosal layer, serving to undermine the effectiveness of the intestinal barrier. Combined with the well-described immunosuppressive effects of LT, this disruption of the intestinal barrier provides a potential mechanism for host invasion via the enteric route, a common portal of entry during the natural infection cycle of Bacillus anthracis.

  14. Monitoring the kinetics of the pH-driven transition of the anthrax toxin prepore to the pore by biolayer interferometry and surface plasmon resonance.

    Science.gov (United States)

    Naik, Subhashchandra; Brock, Susan; Akkaladevi, Narahari; Tally, Jon; McGinn-Straub, Wesley; Zhang, Na; Gao, Phillip; Gogol, E P; Pentelute, B L; Collier, R John; Fisher, Mark T

    2013-09-17

    Domain 2 of the anthrax protective antigen (PA) prepore heptamer unfolds and refolds during endosome acidification to generate an extended 100 Å β barrel pore that inserts into the endosomal membrane. The PA pore facilitates the pH-dependent unfolding and translocation of bound toxin enzymic components, lethal factor (LF) and/or edema factor, from the endosome to the cytoplasm. We constructed immobilized complexes of the prepore with the PA-binding domain of LF (LFN) to monitor the real-time prepore to pore kinetic transition using surface plasmon resonance and biolayer interferometry (BLI). The kinetics of this transition increased as the solution pH was decreased from 7.5 to 5.0, mirroring acidification of the endosome. Once it had undergone the transition, the LFN-PA pore complex was removed from the BLI biosensor tip and deposited onto electron microscopy grids, where PA pore formation was confirmed by negative stain electron microscopy. When the soluble receptor domain (ANTRX2/CMG2) binds the immobilized PA prepore, the transition to the pore state was observed only after the pH was lowered to early (pH 5.5) or late (pH 5.0) endosomal pH conditions. Once the pore formed, the soluble receptor readily dissociated from the PA pore. Separate binding experiments with immobilized PA pores and the soluble receptor indicate that the receptor has a weakened propensity to bind to the transitioned pore. This immobilized anthrax toxin platform can be used to identify or validate potential antimicrobial lead compounds capable of regulating and/or inhibiting anthrax toxin complex formation or pore transitions.

  15. Monitoring the kinetics of the pH driven transition of the anthrax toxin prepore to the pore by biolayer interferometry and surface plasmon resonance

    Science.gov (United States)

    Naik, Subhashchandra; Brock, Susan; Akkaladevi, Narahari; Tally, Jon; Mcginn-Straub, Wesley; Zhang, Na; Gao, Phillip; Gogol, E. P.; Pentelute, B. L.; Collier, R. John; Fisher, Mark T.

    2013-01-01

    Domain 2 of the anthrax protective antigen (PA) prepore heptamer unfolds and refolds during endosome acidification to generate an extended 100 Å beta barrel pore that inserts into the endosomal membrane. The PA pore facilitates the pH dependent unfolding and translocation of bound toxin enzymic components, lethal factor (LF) and/or edema factor (EF), from the endosome into the cytoplasm. We constructed immobilized complexes of the prepore with the PA-binding domain of LF (LFN) to monitor the real-time prepore to pore kinetic transition using surface plasmon resonance (SPR) and bio-layer interferometry (BLI). The kinetics of this transition increased as the solution pH was decreased from pH 7.5 to pH 5.0, mirroring acidification of the endosome. Once transitioned, the LFN-PA pore complex was removed from the BLI biosensor tip and deposited onto EM grids, where the PA pore formation was confirmed by negative stain electron microscopy. When the soluble receptor domain (ANTRX2/CMG2) binds the immobilized PA prepore, the transition to the pore state was observed only after the pH was lowered to early or late endosomal pH conditions (5.5 to 5.0 respectively). Once the pore formed, the soluble receptor readily dissociated from the PA pore. Separate binding experiments with immobilized PA pores and soluble receptor indicate that the receptor has a weakened propensity to bind to the transitioned pore. This immobilized anthrax toxin platform can be used to identify or validate potential antimicrobial lead compounds capable of regulating and/or inhibiting anthrax toxin complex formation or pore transitions. PMID:23964683

  16. A 2011 Risk/Benefit Analysis of the Anthrax Vaccine Immunization Program

    Science.gov (United States)

    2011-06-10

    filled with botulinum toxin, 10 with anthrax, and 2 with aflatoxin.‖18 In 1992, Ken Alibek, a senior Russian bioweapons program manager defected...William K. Honner, Rosha A. Loach , Cynthia A. Moore, and J. David Erickson. ―Birth Defects Among Infants Born to Women Who Received Anthrax Vaccine In

  17. Peptide Probes Reveal a Hydrophobic Steric Ratchet in the Anthrax Toxin Protective Antigen Translocase.

    Science.gov (United States)

    Colby, Jennifer M; Krantz, Bryan A

    2015-11-06

    Anthrax toxin is a tripartite virulence factor produced by Bacillus anthracis during infection. Under acidic endosomal pH conditions, the toxin's protective antigen (PA) component forms a transmembrane channel in host cells. The PA channel then translocates its two enzyme components, lethal factor and edema factor, into the host cytosol under the proton motive force. Protein translocation under a proton motive force is catalyzed by a series of nonspecific polypeptide binding sites, called clamps. A 10-residue guest/host peptide model system, KKKKKXXSXX, was used to functionally probe polypeptide-clamp interactions within wild-type PA channels. The guest residues were Thr, Ala, Leu, Phe, Tyr, and Trp. In steady-state translocation experiments, the channel blocked most tightly with peptides that had increasing amounts of nonpolar surface area. Cooperative peptide binding was observed in the Trp-containing peptide sequence but not the other tested sequences. Trp substitutions into a flexible, uncharged linker between the lethal factor amino-terminal domain and diphtheria toxin A chain expedited translocation. Therefore, peptide-clamp sites in translocase channels can sense large steric features (like tryptophan) in peptides, and while these steric interactions may make a peptide translocate poorly, in the context of folded domains, they can make the protein translocate more rapidly presumably via a hydrophobic steric ratchet mechanism. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Tumor therapy with a urokinase plasminogen activator-activated anthrax lethal toxin alone and in combination with paclitaxel.

    Science.gov (United States)

    Wein, Alexander N; Liu, Shihui; Zhang, Yi; McKenzie, Andrew T; Leppla, Stephen H

    2013-02-01

    PA-U2, an engineered anthrax protective antigen that is activated by urokinase was combined with wildtype lethal factor in the treatment of Colo205 colon adenocarcinoma in vitro and B16-BL6 mouse melanoma in vitro and in vivo. This therapy was also tested in combination with the small molecule paclitaxel, based on prior reports suggesting synergy between ERK1/2 inhibition and chemotherapeutics. Colo205 was sensitive to PA-U2/LF while B16-BL6 was not. For the combination treatment of B16-BL6, paclitaxel showed a dose response in vitro, but cells remained resistant to PA-U2/LF even in the presence of paclitaxel. In vivo, each therapy slowed tumor progression, and an additive effect between the two was observed. Since LF targets tumor vasculature while paclitaxel is an antimitotic, it is possible the agents were acting against different cells in the stroma, precluding a synergistic effect. The engineered anthrax toxin PA-U2/LF warrants further development and testing, possibly in combination with an antiangiogenesis therapy such as sunitinib or sorafinib.

  19. Impact of Dendrimer Terminal Group Chemistry on Blockage of the Anthrax Toxin Channel: A Single Molecule Study.

    Science.gov (United States)

    Yamini, Goli; Kalu, Nnanya; Nestorovich, Ekaterina M

    2016-11-15

    Nearly all the cationic molecules tested so far have been shown to reversibly block K⁺ current through the cation-selective PA 63 channels of anthrax toxin in a wide nM-mM range of effective concentrations. A significant increase in channel-blocking activity of the cationic compounds was achieved when multiple copies of positively charged ligands were covalently linked to multivalent scaffolds, such as cyclodextrins and dendrimers. Even though multivalent binding can be strong when the individual bonds are relatively weak, for drug discovery purposes we often strive to design multivalent compounds with high individual functional group affinity toward the respective binding site on a multivalent target. Keeping this requirement in mind, here we perform a single-channel/single-molecule study to investigate kinetic parameters of anthrax toxin PA 63 channel blockage by second-generation (G2) poly(amido amine) (PAMAM) dendrimers functionalized with different surface ligands, including G2-NH₂, G2-OH, G2-succinamate, and G2-COONa. We found that the previously reported difference in IC 50 values of the G2-OH/PA 63 and G2-NH₂/PA 63 binding was determined by both on- and off-rates of the reversible dendrimer/channel binding reaction. In 1 M KCl, we observed a decrease of about three folds in k o n and a decrease of only about ten times in t r e s with G2-OH compared to G2-NH₂. At the same time for both blockers, k o n and t r e s increased dramatically with transmembrane voltage increase. PAMAM dendrimers functionalized with negatively charged succinamate, but not carboxyl surface groups, still had some residual activity in inhibiting the anthrax toxin channels. At 100 mV, the on-rate of the G2-succinamate binding was comparable with that of G2-OH but showed weaker voltage dependence when compared to G2-OH and G2-NH₂. The residence time of G2-succinamate in the channel exhibited opposite voltage dependence compared to G2-OH and G2-NH₂, increasing with the cis

  20. Serology and anthrax in humans, livestock and Etosha National Park wildlife.

    Science.gov (United States)

    Turnbull, P C; Doganay, M; Lindeque, P M; Aygen, B; McLaughlin, J

    1992-04-01

    Results are presented from a number of epidemiological studies using enzyme immunoassays (EIA) based on the purified anthrax toxin antigens, protective antigen, lethal factor and oedema factor. Studies on sera from a group of 62 human anthrax patients in Turkey and from cattle in Britain following two unrelated outbreaks of anthrax show that EIA using protective antigen can be a useful diagnostic aid and will detect subclinical infections in appropriate circumstances. A serological survey on wildlife in the Etosha National Park, Namibia, where anthrax is endemic, showed that naturally acquired anthrax-specific antibodies are rare in herbivores but common in carnivores; in carnivores, titres appear to reflect the prevalence of anthrax in their ranges. Problems, as yet unresolved, were encountered in studies on sera from pigs following an outbreak of anthrax on a farm in Wales. Clinical details, including treatment, of the human and one of the bovine outbreaks are summarized and discussed in relation to the serological findings.

  1. Progress and novel strategies in vaccine development and treatment of anthrax.

    Science.gov (United States)

    Chitlaru, Theodor; Altboum, Zeev; Reuveny, Shaul; Shafferman, Avigdor

    2011-01-01

    The lethal anthrax disease is caused by spores of the gram-positive Bacillus anthracis, a member of the cereus group of bacilli. Although the disease is very rare in the Western world, development of anthrax countermeasures gains increasing attention due to the potential use of B. anthracis spores as a bio-terror weapon. Protective antigen (PA), the non-toxic subunit of the bacterial secreted exotoxin, fulfills the role of recognizing a specific receptor and mediating the entry of the toxin into the host target cells. PA elicits a protective immune response and represents the basis for all current anthrax vaccines. Anti-PA neutralizing antibodies are useful correlates for protection and for vaccine efficacy evaluation. Post exposure anti-toxemic and anti-bacteremic prophylactic treatment of anthrax requires prolonged antibiotic administration. Shorter efficient postexposure treatments may require active or passive immunization, in addition to antibiotics. Although anthrax is acknowledged as a toxinogenic disease, additional factors, other than the bacterial toxin, may be involved in the virulence of B. anthracis and may be needed for the long-lasting protection conferred by PA immunization. The search for such novel factors is the focus of several high throughput genomic and proteomic studies that are already leading to identification of novel targets for therapeutics, for vaccine candidates, as well as biomarkers for detection and diagnosis. © 2010 John Wiley & Sons A/S.

  2. Role of the Antigen Capture Pathway in the Induction of a Neutralizing Antibody Response to Anthrax Protective Antigen

    Directory of Open Access Journals (Sweden)

    Anita Verma

    2018-02-01

    Full Text Available Toxin neutralizing antibodies represent the major mode of protective immunity against a number of toxin-mediated bacterial diseases, including anthrax; however, the cellular mechanisms that lead to optimal neutralizing antibody responses remain ill defined. Here we show that the cellular binding pathway of anthrax protective antigen (PA, the binding component of anthrax toxin, determines the toxin neutralizing antibody response to this antigen. PA, which binds cellular receptors and efficiently enters antigen-presenting cells by receptor-mediated endocytosis, was found to elicit robust anti-PA IgG and toxin neutralizing antibody responses. In contrast, a receptor binding-deficient mutant of PA, which does not bind receptors and only inefficiently enters antigen-presenting cells by macropinocytosis, elicited very poor antibody responses. A chimeric protein consisting of the receptor binding-deficient PA mutant tethered to the binding subunit of cholera toxin, which efficiently enters cells using the cholera toxin receptor rather than the PA receptor, elicited an anti-PA IgG antibody response similar to that elicited by wild-type PA; however, the chimeric protein elicited a poor toxin neutralizing antibody response. Taken together, our results demonstrate that the antigen capture pathway can dictate the magnitudes of the total IgG and toxin neutralizing antibody responses to PA as well as the ratio of the two responses.

  3. Small molecule inhibitors of anthrax edema factor.

    Science.gov (United States)

    Jiao, Guan-Sheng; Kim, Seongjin; Moayeri, Mahtab; Thai, April; Cregar-Hernandez, Lynne; McKasson, Linda; O'Malley, Sean; Leppla, Stephen H; Johnson, Alan T

    2018-01-15

    Anthrax is a highly lethal disease caused by the Gram-(+) bacteria Bacillus anthracis. Edema toxin (ET) is a major contributor to the pathogenesis of disease in humans exposed to B. anthracis. ET is a bipartite toxin composed of two proteins secreted by the vegetative bacteria, edema factor (EF) and protective antigen (PA). Our work towards identifying a small molecule inhibitor of anthrax edema factor is the subject of this letter. First we demonstrate that the small molecule probe 5'-Fluorosulfonylbenzoyl 5'-adenosine (FSBA) reacts irreversibly with EF and blocks enzymatic activity. We then show that the adenosine portion of FSBA can be replaced to provide more drug-like molecules which are up to 1000-fold more potent against EF relative to FSBA, display low cross reactivity when tested against a panel of kinases, and are nanomolar inhibitors of EF in a cell-based assay of cAMP production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Cellular Uptake of the Clostridium perfringens Binary Iota-Toxin

    Science.gov (United States)

    Blöcker, Dagmar; Behlke, Joachim; Aktories, Klaus; Barth, Holger

    2001-01-01

    The binary iota-toxin is produced by Clostridium perfringens type E strains and consists of two separate proteins, the binding component iota b (98 kDa) and an actin-ADP-ribosylating enzyme component iota a (47 kDa). Iota b binds to the cell surface receptor and mediates the translocation of iota a into the cytosol. Here we studied the cellular uptake of iota-toxin into Vero cells. Bafilomycin A1, but not brefeldin A or nocodazole, inhibited the cytotoxic effects of iota-toxin, indicating that toxin is translocated from an endosomal compartment into the cytoplasm. Acidification (pH ≤ 5.0) of the extracellular medium enabled iota a to directly enter the cytosol in the presence of iota b. Activation by chymotrypsin induced oligomerization of iota b in solution. An average mass of 530 ± 28 kDa for oligomers was determined by analytical ultracentrifugation, indicating heptamer formation. The entry of iota-toxin into polarized CaCo-2 cells was studied by measuring the decrease in transepithelial resistance after toxin treatment. Iota-toxin led to a significant decrease in resistance when it was applied to the basolateral surface of the cells but not following application to the apical surface, indicating a polarized localization of the iota-toxin receptor. PMID:11292715

  5. 14 C-Glucose uptake studies in the red rot toxin treated sugarcane ...

    African Journals Online (AJOL)

    Fungal toxins cause serious damage to the cellular functions of host tissue. In the present report the toxin extracted from Colletotrichum falcatum Went was partially purified and treatments were given to the callus of susceptible sugarcane callus variety CoC 671. The influence on 14C-glucose uptake and its further utilization ...

  6. Clostridium botulinum C2 toxin--new insights into the cellular up-take of the actin-ADP-ribosylating toxin.

    Science.gov (United States)

    Aktories, Klaus; Barth, Holger

    2004-04-01

    Clostridium botulinum C2 toxin is a member of the family of binary actin-ADP-ribosylating toxins. It consists of the enzyme component C2I, and the separated binding/translocation component C2II. Proteolytically activated C2II forms heptamers and binds to a carbohydrate cell surface receptor. After attachment of C2I, the toxin complex is endocytosed to reach early endosomes. At low pH of endosomes, C2II-heptamers insert into the membrane, form pores and deliver C2I into the cytosol. Here, C2I ADP-ribosylates actin at Arg177 to block actin polymerization and to induce depolymerization of actin filaments. The mini-review describes main properties of C2 toxin and discusses new findings on the involvement of chaperones in the up-take process of the toxin.

  7. Toxin-independent virulence of Bacillus anthracis in rabbits.

    Directory of Open Access Journals (Sweden)

    Haim Levy

    Full Text Available The accepted paradigm states that anthrax is both an invasive and toxinogenic disease and that the toxins play a major role in pathogenicity. In the guinea pig (GP model we have previously shown that deletion of all three toxin components results in a relatively moderate attenuation in virulence, indicating that B. anthracis possesses an additional toxin-independent virulence mechanism. To characterize this toxin-independent mechanism in anthrax disease, we developed a new rabbit model by intravenous injection (IV of B. anthracis encapsulated vegetative cells, artificially creating bacteremia. Using this model we were able to demonstrate that also in rabbits, B. anthracis mutants lacking the toxins are capable of killing the host within 24 hours. This virulent trait depends on the activity of AtxA in the presence of pXO2, as, in the absence of the toxin genes, deletion of either component abolishes virulence. Furthermore, this IV virulence depends mainly on AtxA rather than the whole pXO1. A similar pattern was shown in the GP model using subcutaneous (SC administration of spores of the mutant strains, demonstrating the generality of the phenomenon. The virulent strains showed higher bacteremia levels and more efficient tissue dissemination; however our interpretation is that tissue dissemination per se is not the main determinant of virulence whose exact nature requires further elucidation.

  8. Forecasting of interaction between bee propolis and protective antigenic domain in anthrax using the software and bioinformatics web servers

    Directory of Open Access Journals (Sweden)

    Elmira Mohammadi

    2017-01-01

    Full Text Available Background: Protective antigen of anthrax toxin, after touching the cell receptors, plays an important role in the pathogenesis of toxin. The purpose of this study was to investigate the interaction of anthrax toxin protective antigen and four great combination propolis included caffeic acid, benzyl caffeate, cinnamic acid and kaempferol using the softwares and bioinformatics web servers. Methods: Three-dimensional structure of protective antigen (receptor obtains from Protein Data Bank (PDB. Four of the main components from propolis were selected          as ligand and their 3D-structures were obtained from ChemSpider and ZINC     compound database. The interaction of each ligand and receptor was assessed                   by SwissDock server (http://www.swissdock.ch/ and BSP-SLIM server (http://zhanglab.ccmb.med.umich.edu/BSP-SLIM. Docking results appears with Fullfitness numbers (in kcal/mol. Identification of amino acids involved in ligand and receptor interaction, was performed using the Chimera software; UCSF Chimera program (http://www.cgl.ucsf.edu/. Results: The results of interaction between propolis components and protective antigen by BSP-SLIM server showed that the most interaction was related with benzyl caffeate, caffeic acid, kaempferol and cinnamic acid, respectively. Results for the desired ligand Interaction with protective antigen genes using SwissDock server showed that the caffeic acid had ΔG equals -9.10 kcal/mol and FullFitness equal to -993.16 kcal/mol respectively. The analysis of interaction between ligands with amino-acids of protective antigen indicated that the interaction of Caffeic acid whit Glutamic acid 117 had energy -15.5429 kcal/mol. Conclusion: Finding strong and safe inhibitors for anthrax toxin is very useful method for inhibiting its toxicity to cell. In this study the binding ability of four flavonoids to protective antigen was studied. Glutamic acid 117 is very effective

  9. Role of visible light-activated photocatalyst on the reduction of anthrax spore-induced mortality in mice.

    Directory of Open Access Journals (Sweden)

    Jyh-Hwa Kau

    Full Text Available BACKGROUND: Photocatalysis of titanium dioxide (TiO(2 substrates is primarily induced by ultraviolet light irradiation. Anion-doped TiO(2 substrates were shown to exhibit photocatalytic activities under visible-light illumination, relative environmentally-friendly materials. Their anti-spore activity against Bacillus anthracis, however, remains to be investigated. We evaluated these visible-light activated photocatalysts on the reduction of anthrax spore-induced pathogenesis. METHODOLOGY/PRINCIPAL FINDINGS: Standard plating method was used to determine the inactivation of anthrax spore by visible light-induced photocatalysis. Mouse models were further employed to investigate the suppressive effects of the photocatalysis on anthrax toxin- and spore-mediated mortality. We found that anti-spore activities of visible light illuminated nitrogen- or carbon-doped titania thin films significantly reduced viability of anthrax spores. Even though the spore-killing efficiency is only approximately 25%, our data indicate that spores from photocatalyzed groups but not untreated groups have a less survival rate after macrophage clearance. In addition, the photocatalysis could directly inactivate lethal toxin, the major virulence factor of B. anthracis. In agreement with these results, we found that the photocatalyzed spores have tenfold less potency to induce mortality in mice. These data suggest that the photocatalysis might injury the spores through inactivating spore components. CONCLUSION/SIGNIFICANCE: Photocatalysis induced injuries of the spores might be more important than direct killing of spores to reduce pathogenicity in the host.

  10. A Dual Role for the Bacillus anthracis Master Virulence Regulator AtxA: Control of Sporulation and Anthrax Toxin Production.

    Science.gov (United States)

    Dale, Jennifer L; Raynor, Malik J; Ty, Maureen C; Hadjifrangiskou, Maria; Koehler, Theresa M

    2018-01-01

    Bacillus anthracis is an endemic soil bacterium that exhibits two different lifestyles. In the soil environment, B. anthracis undergoes a cycle of saprophytic growth, sporulation, and germination. In mammalian hosts, the pathogenic lifestyle of B. anthracis is spore germination followed by vegetative cell replication, but cells do not sporulate. During infection, and in specific culture conditions, transcription of the structural genes for the anthrax toxin proteins and the biosynthetic operon for capsule synthesis is positively controlled by the regulatory protein AtxA. A critical role for the atxA gene in B. anthracis virulence has been established. Here we report an inverse relationship between toxin production and sporulation that is linked to AtxA levels. During culture in conditions favoring sporulation, B. anthracis produces little to no AtxA. When B. anthracis is cultured in conditions favoring toxin gene expression, AtxA is expressed at relatively high levels and sporulation rate and efficiency are reduced. We found that a mutation within the atxA promoter region resulting in AtxA over-expression leads to a marked sporulation defect. The sporulation phenotype of the mutant is dependent upon pXO2-0075 , an atxA -regulated open reading frame located on virulence plasmid pXO2. The predicted amino acid sequence of the pXO2-0075 protein has similarity to the sensor domain of sporulation sensor histidine kinases. It was shown previously that pXO2-0075 overexpression suppresses sporulation. We have designated pXO2-0075 " skiA " for "sporulation kinase inhibitor." Our results indicate that in addition to serving as a positive regulator of virulence gene expression, AtxA modulates B. anthracis development.

  11. Anthrax blood test

    Science.gov (United States)

    Anthrax serology test; Antibody test for anthrax; Serologic test for B. anthracis ... This test may be performed when the health care provider suspects you have anthrax infection. The bacteria that cause ...

  12. Differential dependence on N-glycosylation of anthrax toxin receptors CMG2 and TEM8.

    Directory of Open Access Journals (Sweden)

    Sarah Friebe

    Full Text Available ANTXR 1 and 2, also known as TEM8 and CMG2, are two type I membrane proteins, which have been extensively studied for their role as anthrax toxin receptors, but with a still elusive physiological function. Here we have analyzed the importance of N-glycosylation on folding, trafficking and ligand binding of these closely related proteins. We find that TEM8 has a stringent dependence on N-glycosylation. The presence of at least one glycan on each of its two extracellular domains, the vWA and Ig-like domains, is indeed necessary for efficient trafficking to the cell surface. In the absence of any N-linked glycans, TEM8 fails to fold correctly and is recognized by the ER quality control machinery. Expression of N-glycosylation mutants reveals that CMG2 is less vulnerable to sugar loss. The absence of N-linked glycans in one of the extracellular domains indeed has little impact on folding, trafficking or receptor function of the wild type protein expressed in tissue culture cells. N-glycans do, however, seem required in primary fibroblasts from human patients. Here, the presence of N-linked sugars increases the tolerance to mutations in cmg2 causing the rare genetic disease Hyaline Fibromatosis Syndrome. It thus appears that CMG2 glycosylation provides a buffer towards genetic variation by promoting folding of the protein in the ER lumen.

  13. Monoclonal antibodies and toxins--a perspective on function and isotype.

    Science.gov (United States)

    Chow, Siu-Kei; Casadevall, Arturo

    2012-06-01

    Antibody therapy remains the only effective treatment for toxin-mediated diseases. The development of hybridoma technology has allowed the isolation of monoclonal antibodies (mAbs) with high specificity and defined properties, and numerous mAbs have been purified and characterized for their protective efficacy against different toxins. This review summarizes the mAb studies for 6 toxins--Shiga toxin, pertussis toxin, anthrax toxin, ricin toxin, botulinum toxin, and Staphylococcal enterotoxin B (SEB)--and analyzes the prevalence of mAb functions and their isotypes. Here we show that most toxin-binding mAbs resulted from immunization are non-protective and that mAbs with potential therapeutic use are preferably characterized. Various common practices and caveats of protection studies are discussed, with the goal of providing insights for the design of future research on antibody-toxin interactions.

  14. A FRET-based high throughput screening assay to identify inhibitors of anthrax protective antigen binding to capillary morphogenesis gene 2 protein.

    Directory of Open Access Journals (Sweden)

    Michael S Rogers

    Full Text Available Anti-angiogenic therapies are effective for the treatment of cancer, a variety of ocular diseases, and have potential benefits in cardiovascular disease, arthritis, and psoriasis. We have previously shown that anthrax protective antigen (PA, a non-pathogenic component of anthrax toxin, is an inhibitor of angiogenesis, apparently as a result of interaction with the cell surface receptors capillary morphogenesis gene 2 (CMG2 protein and tumor endothelial marker 8 (TEM8. Hence, molecules that bind the anthrax toxin receptors may be effective to slow or halt pathological vascular growth. Here we describe development and testing of an effective homogeneous steady-state fluorescence resonance energy transfer (FRET high throughput screening assay designed to identify molecules that inhibit binding of PA to CMG2. Molecules identified in the screen can serve as potential lead compounds for the development of anti-angiogenic and anti-anthrax therapies. The assay to screen for inhibitors of this protein-protein interaction is sensitive and robust, with observed Z' values as high as 0.92. Preliminary screens conducted with a library of known bioactive compounds identified tannic acid and cisplatin as inhibitors of the PA-CMG2 interaction. We have confirmed that tannic acid both binds CMG2 and has anti-endothelial properties. In contrast, cisplatin appears to inhibit PA-CMG2 interaction by binding both PA and CMG2, and observed cisplatin anti-angiogenic effects are not mediated by interaction with CMG2. This work represents the first reported high throughput screening assay targeting CMG2 to identify possible inhibitors of both angiogenesis and anthrax intoxication.

  15. Anthrax: Diagnosis

    Science.gov (United States)

    ... Diagnosis Language: English (US) Español (Spanish) Recommend on Facebook Tweet Share Compartir Doctors in the United States rarely see a patient with anthrax. CDC Guidance and case definitions are available to help doctors diagnose anthrax, take ...

  16. Anthrax lethal toxin inhibits translation of hypoxia-inducible factor 1α and causes decreased tolerance to hypoxic stress.

    Science.gov (United States)

    Ouyang, Weiming; Torigoe, Chikako; Fang, Hui; Xie, Tao; Frucht, David M

    2014-02-14

    Hypoxia is considered to be a contributor to the pathology associated with administration of anthrax lethal toxin (LT). However, we report here that serum lactate levels in LT-treated mice are reduced, a finding inconsistent with the anaerobic metabolism expected to occur during hypoxia. Reduced lactate levels are also observed in the culture supernatants of LT-treated cells. LT inhibits the accumulation of hypoxia-inducible factor (HIF)-1α, a subunit of HIF-1, the master regulator directing cellular responses to hypoxia. The toxin has no effect on the transcription or protein turnover of HIF-1α, but instead it acts to inhibit HIF-1α translation. LT treatment diminishes phosphorylation of eIF4B, eIF4E, and rpS6, critical components of the intracellular machinery required for HIF-1α translation. Moreover, blockade of MKK1/2-ERK1/2, but not p38 or JNK signaling, lowers HIF-1α protein levels in both normoxic and hypoxic conditions, consistent with a role for MKK1 and MKK2 as the major targets of LT responsible for the inhibition of HIF-1α translation. The physiological importance of the LT-induced translation blockade is demonstrated by the finding that LT treatment decreases the survival of hepatocyte cell lines grown in hypoxic conditions, an effect that is overcome by preinduction of HIF-1α. Taken together, these data support a role for LT in dysregulating HIF-1α and thereby disrupting homeostatic responses to hypoxia, an environmental characteristic of certain tissues at baseline and/or during disseminated infection with Bacillus anthracis.

  17. Regulatory mechanisms of anthrax toxin receptor 1-dependent vascular and connective tissue homeostasis.

    Science.gov (United States)

    Besschetnova, Tatiana Y; Ichimura, Takaharu; Katebi, Negin; St Croix, Brad; Bonventre, Joseph V; Olsen, Bjorn R

    2015-03-01

    It is well known that angiogenesis is linked to fibrotic processes in fibroproliferative diseases, but insights into pathophysiological processes are limited, due to lack of understanding of molecular mechanisms controlling endothelial and fibroblastic homeostasis. We demonstrate here that the matrix receptor anthrax toxin receptor 1 (ANTXR1), also known as tumor endothelial marker 8 (TEM8), is an essential component of these mechanisms. Loss of TEM8 function in mice causes reduced synthesis of endothelial basement membrane components and hyperproliferative and leaky blood vessels in skin. In addition, endothelial cell alterations in mutants are almost identical to those of endothelial cells in infantile hemangioma lesions, including activated VEGF receptor signaling in endothelial cells, increased expression of the downstream targets VEGF and CXCL12, and increased numbers of macrophages and mast cells. In contrast, loss of TEM8 in fibroblasts leads to increased rates of synthesis of fiber-forming collagens, resulting in progressive fibrosis in skin and other organs. Compromised interactions between TEM8-deficient endothelial and fibroblastic cells cause dramatic reduction in the activity of the matrix-degrading enzyme MMP2. In addition to insights into mechanisms of connective tissue homeostasis, our data provide molecular explanations for vascular and connective tissue abnormalities in GAPO syndrome, caused by loss-of-function mutations in ANTXR1. Furthermore, the loss of MMP2 activity suggests that fibrotic skin abnormalities in GAPO syndrome are, in part, the consequence of pathophysiological mechanisms underlying syndromes (NAO, Torg and Winchester) with multicentric skin nodulosis and osteolysis caused by homozygous loss-of-function mutations in MMP2. Copyright © 2014 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  18. Indirect Detection Of Bacillus Anthracis (Anthrax) Using Amplified Gamma Phage-Based Assays

    Science.gov (United States)

    2007-11-01

    enter 26 Figure 3.0 Model of anthrax toxin entry into eukaryotic cells 27 the lungs and into the mucus membrane...extract from porcine and mixture meat and milk peptones, 2.0 g D(+) glucose, 5.0 g NaCl and 2.5 g disodium phosphate) and TSB (g/L: 17.0 pancreatic...are present in blood serum, lymph fluid, gastric secretions, milk , and saliva. Serum antibody concentrations are commonly determined using the

  19. Anthrax Remembered

    Centers for Disease Control (CDC) Podcasts

    2015-08-03

    Dr. John Jernigan and Dr. D. Peter Drotman recall the 2001 anthrax attacks and rapid publication of the landmark paper reporting the initial cases of inhalational anthrax.  Created: 8/3/2015 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 8/3/2015.

  20. Antibodies to Anthrax Toxin in Humans and Guinea Pigs and Their Relevance to Protective Immunity

    National Research Council Canada - National Science Library

    Turnbull, P

    1988-01-01

    ... stimulation of more than just production of antibody to PA. Titers to the three components in sera of individuals with histories of clinically diagnosed anthrax as well as from human vaccinees are included in the report.

  1. Crotoxin, the major toxin from the rattlesnake Crotalus durissus terrificus, inhibits ³H-choline uptake in guinea pig ileum

    Directory of Open Access Journals (Sweden)

    L.S. Kattah

    2000-09-01

    Full Text Available We examined the effect of crotoxin, the neurotoxic complex from the venom of the South American rattlesnake Crotalus durissus terrificus, on the uptake of ³H-choline in minces of smooth muscle myenteric plexus from guinea pig ileum. In the concentration range used (0.03-1 µM and up to 10 min of treatment, crotoxin decreased ³H-choline uptake by 50-75% compared to control. This inhibition was time dependent and did not seem to be associated with the disruption of the neuronal membrane, because at least for the first 20 min of tissue exposure to the toxin (up to 1 µM the levels of lactate dehydrogenase (LDH released into the supernatant were similar to those of controls. Higher concentrations of crotoxin or more extensive incubation times with this toxin resulted in elevation of LDH activity detected in the assay supernatant. The inhibitory effect of crotoxin on ³H-choline uptake seems to be associated with its phospholipase activity since the equimolar substitution of Sr2+ for Ca2+ in the incubation medium or the modification of the toxin with p-bromophenacyl bromide substantially decreased this effect. Our results show that crotoxin inhibits ³H-choline uptake with high affinity (EC25 = 10 ± 5 nM. We suggest that this inhibition could explain, at least in part, the blocking effect of crotoxin on neurotransmission.

  2. Radiologic findings of the anthrax: focus on alimentary anthrax

    International Nuclear Information System (INIS)

    Kim, Sung Woo; Kim, Won Ho; Yang, Geun Seok; Kim, Tae Hun; Kang, Duk Sik

    1995-01-01

    To evaluate the radiologic findings of alimentary anthrax. 19 patients with alimentary anthrax, which was caused by ingestion of contaminated beef, were included in this study. The diagnosis was made by demonstration of Bacillus anthracis in smear and culture of the contaminated meat. We evaluated the clinical manifestations and the findings of thoracic, abdominal radiographs, cervical, abdominal ultrasonograms and abdominal CT scans. Out of the 19 patients with the alimentary infection, 9 had oropharyngeal form, 18 had abdominal form and 8 had combination of oropharyngeal and abdominal form. The patients had general symptoms and signs such as fever, chill, myalgia. Clinical symptoms and signs were sore throat, throat injection, throat ulcer and patch in oropharyngeal form, and nausea, vomiting abdominal pain, diarrhea, and gross GI bleeding in abdominal form. Radiologic findings included enlarged cervical lymph nodes (36%) in oropharyngeal form, and paralytic ileus (26%), ascites (26%), hepatomegaly (21%), enlarged mesenteric lymph nodes (26%), small bowel wall thickening (5%) in abdominal form. In two patients, late complications occurred as intestinal obstruction due to ileal stricture with perforation, and inflammatory changes of pelvic cavity due to ileovesical fistula. Radiologic findings of alimentary anthrax are difficult in differentiation from those of other inflammatory bowel disease, but those radiologic findings with clinical manifestations may be helpful in diagnosis and evaluation of disease process in patients with alimentary anthrax

  3. Mechanism of Diphtheria Toxin Catalytic Domain Delivery to the Eukaryotic Cell Cytosol and the Cellular Factors that Directly Participate in the Process

    Science.gov (United States)

    Murphy, John R.

    2011-01-01

    Research on diphtheria and anthrax toxins over the past three decades has culminated in a detailed understanding of their structure function relationships (e.g., catalytic (C), transmembrane (T), and receptor binding (R) domains), as well as the identification of their eukaryotic cell surface receptor, an understanding of the molecular events leading to the receptor-mediated internalization of the toxin into an endosomal compartment, and the pH triggered conformational changes required for pore formation in the vesicle membrane. Recently, a major research effort has been focused on the development of a detailed understanding of the molecular interactions between each of these toxins and eukaryotic cell factors that play an essential role in the efficient translocation of their respective catalytic domains through the trans-endosomal vesicle membrane pore and delivery into the cell cytosol. In this review, I shall focus on recent findings that have led to a more detailed understanding of the mechanism by which the diphtheria toxin catalytic domain is delivered to the eukaryotic cell cytosol. While much work remains, it is becoming increasingly clear that the entry process is facilitated by specific interactions with a number of cellular factors in an ordered sequential fashion. In addition, since diphtheria, anthrax lethal factor and anthrax edema factor all carry multiple coatomer I complex binding motifs and COPI complex has been shown to play an essential role in entry process, it is likely that the initial steps in catalytic domain entry of these divergent toxins follow a common mechanism. PMID:22069710

  4. Human anthrax as a re-emerging disease.

    Science.gov (United States)

    Doganay, Mehmet; Demiraslan, Hayati

    2015-01-01

    Anthrax is primarily a disease of herbivores and the etiological agent is B. anthracis which is a gram-positive, aerobic, spore-forming, and rod shaped bacterium. Bacillus anthracis spores are highly resistant to heat, pressure, ultraviolet and ionizing radiation, chemical agents and disinfectants. For these reasons, B. anthracis spores are an attractive choice as biological agents for the use of bioweapon and/or bioterrorism. Soil is the main reservoir for the infectious agent. The disease most commonly affects wild and domestic mammals. Human are secondarily infected by contact with infected animals and contaminated animal products or directly expose to B. anthracis spores. Anthrax occurs worldwide. This infection is still endemic or hyperendemic in both animals and humans in some part of areas of the world; particularly in Middle East, West Africa, Central Asia, some part of India, South America. However, some countries are claiming free of anthrax, and anthrax has become a re-emerging disease in western countries with the intentional outbreak. Currently, anthrax is classified according to its setting as (1) naturally occurring anthrax, (2) bioterrorism-related anthrax. Vast majority of human anthrax are occurring as naturally occurring anthrax in the world. It is also a threaten disease for western countries. The aim of this paper is to review the relevant patents, short historical perspective, microbiological and epidemiological features, clinical presentations and treatment.

  5. Cationic PAMAM dendrimers as pore-blocking binary toxin inhibitors.

    Science.gov (United States)

    Förstner, Philip; Bayer, Fabienne; Kalu, Nnanya; Felsen, Susanne; Förtsch, Christina; Aloufi, Abrar; Ng, David Y W; Weil, Tanja; Nestorovich, Ekaterina M; Barth, Holger

    2014-07-14

    Dendrimers are unique highly branched macromolecules with numerous groundbreaking biomedical applications under development. Here we identified poly(amido amine) (PAMAM) dendrimers as novel blockers for the pore-forming B components of the binary anthrax toxin (PA63) and Clostridium botulinum C2 toxin (C2IIa). These pores are essential for delivery of the enzymatic A components of the internalized toxins from endosomes into the cytosol of target cells. We demonstrate that at low μM concentrations cationic PAMAM dendrimers block PA63 and C2IIa to inhibit channel-mediated transport of the A components, thereby protecting HeLa and Vero cells from intoxication. By channel reconstitution and high-resolution current recording, we show that the PAMAM dendrimers obstruct transmembrane PA63 and C2IIa pores in planar lipid bilayers at nM concentrations. These findings suggest a new potential role for the PAMAM dendrimers as effective polyvalent channel-blocking inhibitors, which can protect human target cells from intoxication with binary toxins from pathogenic bacteria.

  6. Anthrax

    Science.gov (United States)

    ... it's most commonly seen in grazing animals like sheep, pigs, cattle, horses, and goats, anthrax also can ... at first, but it rapidly turns into severe pneumonia and requires hospitalization. It usually takes fewer than ...

  7. Anthrax

    Science.gov (United States)

    ... site may get infected. Exams and Tests The health care provider will perform a physical examination. The tests to diagnose anthrax depend on the type of disease that is suspected. A culture of the skin, and sometimes a biopsy , are ...

  8. Transient Co-Expression of Post-Transcriptional Gene Silencing Suppressors for Increased in Planta Expression of a Recombinant Anthrax Receptor Fusion Protein

    Directory of Open Access Journals (Sweden)

    Kittipong Rattanaporn

    2011-08-01

    Full Text Available Potential epidemics of infectious diseases and the constant threat of bioterrorism demand rapid, scalable, and cost-efficient manufacturing of therapeutic proteins. Molecular farming of tobacco plants provides an alternative for the recombinant production of therapeutics. We have developed a transient production platform that uses Agrobacterium infiltration of Nicotiana benthamiana plants to express a novel anthrax receptor decoy protein (immunoadhesin, CMG2-Fc. This chimeric fusion protein, designed to protect against the deadly anthrax toxins, is composed of the von Willebrand factor A (VWA domain of human capillary morphogenesis 2 (CMG2, an effective anthrax toxin receptor, and the Fc region of human immunoglobulin G (IgG. We evaluated, in N. benthamiana intact plants and detached leaves, the expression of CMG2-Fc under the control of the constitutive CaMV 35S promoter, and the co-expression of CMG2-Fc with nine different viral suppressors of post-transcriptional gene silencing (PTGS: p1, p10, p19, p21, p24, p25, p38, 2b, and HCPro. Overall, transient CMG2-Fc expression was higher on intact plants than detached leaves. Maximum expression was observed with p1 co-expression at 3.5 days post-infiltration (DPI, with a level of 0.56 g CMG2-Fc per kg of leaf fresh weight and 1.5% of the total soluble protein, a ten-fold increase in expression when compared to absence of suppression. Co-expression with the p25 PTGS suppressor also significantly increased the CMG2-Fc expression level after just 3.5 DPI.

  9. Transient co-expression of post-transcriptional gene silencing suppressors for increased in planta expression of a recombinant anthrax receptor fusion protein.

    Science.gov (United States)

    Arzola, Lucas; Chen, Junxing; Rattanaporn, Kittipong; Maclean, James M; McDonald, Karen A

    2011-01-01

    Potential epidemics of infectious diseases and the constant threat of bioterrorism demand rapid, scalable, and cost-efficient manufacturing of therapeutic proteins. Molecular farming of tobacco plants provides an alternative for the recombinant production of therapeutics. We have developed a transient production platform that uses Agrobacterium infiltration of Nicotiana benthamiana plants to express a novel anthrax receptor decoy protein (immunoadhesin), CMG2-Fc. This chimeric fusion protein, designed to protect against the deadly anthrax toxins, is composed of the von Willebrand factor A (VWA) domain of human capillary morphogenesis 2 (CMG2), an effective anthrax toxin receptor, and the Fc region of human immunoglobulin G (IgG). We evaluated, in N. benthamiana intact plants and detached leaves, the expression of CMG2-Fc under the control of the constitutive CaMV 35S promoter, and the co-expression of CMG2-Fc with nine different viral suppressors of post-transcriptional gene silencing (PTGS): p1, p10, p19, p21, p24, p25, p38, 2b, and HCPro. Overall, transient CMG2-Fc expression was higher on intact plants than detached leaves. Maximum expression was observed with p1 co-expression at 3.5 days post-infiltration (DPI), with a level of 0.56 g CMG2-Fc per kg of leaf fresh weight and 1.5% of the total soluble protein, a ten-fold increase in expression when compared to absence of suppression. Co-expression with the p25 PTGS suppressor also significantly increased the CMG2-Fc expression level after just 3.5 DPI.

  10. [Anthrax due to deliberate infection

    NARCIS (Netherlands)

    Dissel, J.T. van; Kullberg, B.J.; Berg, P.C. van den; Steenbergen, J.E. van

    2001-01-01

    Anthrax is a zoonosis which is particularly prevalent in cattle, goats and sheep and is caused by Bacillus anthracis, a Gram-positive spore forming aerobic microorganism. The endospores can survive outside of the body for many decades. The natural form of anthrax has a cutaneous, pulmonary and

  11. Pathology of wild-type and toxin-independent Bacillus anthracis meningitis in rabbits.

    Directory of Open Access Journals (Sweden)

    Assa Sittner

    Full Text Available Hemorrhagic meningitis is considered a complication of anthrax and was reported in about 50% of deadly cases in humans and non-human primates (NHP. Recently we demonstrated in Guinea pigs and rabbits that 100% of the B. anthracis-infected animals presented histopathology of meningitis at the time of death, some without any sign of hemorrhage. A similar pathology was observed in animals that succumbed following infection with the toxin deficient mutant, thus indicating that anthrax meningitis is a toxin-independent phenomenon. In this manuscript we describe a histopathological study of the B. anthracis infection of the central nervous system (CNS. Though we could find sporadic growth of the bacteria around blood vessels in the cortex, we report that the main infiltration route is the choroid plexus. We found massive destruction of entire sections of the choroid plexus coupled with massive aggregation of bacilli in the ventricles, in close proximity to the parenchyma. The choroid plexus also contained significant amounts of intravascular bacterial aggregates, often enclosed in what appear to be fibrin-like clots. The high concentration of these aggregates in areas of significant tissue destruction combined with the fact that capsular B. anthracis bacteria have a low tendency to adhere to endothelial cells, might suggest that these clots are used as an adherence mechanism by the bacteria. The major histopathological finding is meningitis. We find massive bacterial growth in the meninges without evidence of encephalitis, even when the bacteria emerge from a parenchymal blood vessel. Erythrocytes were present within the meningeal space but no clear vasculitis could be detected. Histology of the brain stem indicates meningitis, edema and hemorrhages that might explain death from suffocation due to direct damage to the respiratory center. All of these processes are toxin-independent, since they were observed following infection with either the wild

  12. Vaccines and bioterrorism: smallpox and anthrax.

    Science.gov (United States)

    Kimmel, Sanford R; Mahoney, Martin C; Zimmerman, Richard K

    2003-01-01

    Because of the success of vaccination and the ring strategy in eradicating smallpox from the world, smallpox vaccine has not been recommended for the United States civilian populations for decades. Given the low but possible threat of bioterrorism, smallpox vaccination is now recommended for those teams investigating potential smallpox cases and for selected personnel of acute-care hospitals who would be needed to care for victims in the event of a terrorist attack. Treatment and post-exposure prophylaxis for anthrax are ciprofloxacin or doxycycline. Anthrax vaccine alone is not effective for post-exposure prevention of anthrax; vaccination is accompanied by 60 days of antibiotic therapy. In addition to military use, anthrax vaccine is recommended for pre-exposure use in those persons whose work involves repeated exposure to Bacillus anthracis spores.

  13. Pharmacophore selection and redesign of non-nucleotide inhibitors of anthrax edema factor.

    Science.gov (United States)

    Schein, Catherine H; Chen, Deliang; Ma, Lili; Kanalas, John J; Gao, Jian; Jimenez, Maria Estrella; Sower, Laurie E; Walter, Mary A; Gilbertson, Scott R; Peterson, Johnny W

    2012-11-08

    Antibiotic treatment may fail to protect individuals, if not started early enough, after infection with Bacillus anthracis, due to the continuing activity of toxins that the bacterium produces. Stable and easily stored inhibitors of the edema factor toxin (EF), an adenylyl cyclase, could save lives in the event of an outbreak, due to natural causes or a bioweapon attack. The toxin's basic activity is to convert ATP to cAMP, and it is thus in principle a simple phosphatase, which means that many mammalian enzymes, including intracellular adenylcyclases, may have a similar activity. While nucleotide based inhibitors, similar to its natural substrate, ATP, were identified early, these compounds had low activity and specificity for EF. We used a combined structural and computational approach to choose small organic molecules in large, web-based compound libraries that would, based on docking scores, bind to residues within the substrate binding pocket of EF. A family of fluorenone-based inhibitors was identified that inhibited the release of cAMP from cells treated with EF. The lead inhibitor was also shown to inhibit the diarrhea caused by enterotoxigenic E. coli (ETEC) in a murine model, perhaps by serving as a quorum sensor. These inhibitors are now being tested for their ability to inhibit Anthrax infection in animal models and may have use against other pathogens that produce toxins similar to EF, such as Bordetella pertussis or Vibrio cholera.

  14. Meningoencephalitis due to anthrax: CT and MR findings

    Energy Technology Data Exchange (ETDEWEB)

    Yildirim, Hanefi; Koc, Mustafa; Murat, Ayse [Firat University, Department of Radiology, Elazig (Turkey); Kabakus, Nimet; Incekoey Girgin, Feyza [Firat University, Department of Paediatric Neurology, Elazig (Turkey)

    2006-11-15

    Anthrax is primarily a disease of herbivores, but it also causes cutaneous, respiratory and gastrointestinal infections in humans. Bacillus anthracis is an uncommon cause of meningitis and generally produces a haemorrhagic meningoencephalitis. We present the CT and MR findings of anthrax meningoencephalitis due to the cutaneous form of anthrax in a 12-year-old boy. They showed focal intracerebral haemorrhage with leptomeningeal enhancement. (orig.)

  15. Anthrax in Vintage Animal-hair Shaving Brushes

    Centers for Disease Control (CDC) Podcasts

    2017-08-08

    Dr. Kate Hendricks, a CDC anthrax expert, discusses anthrax in vintage shaving brushes.  Created: 8/8/2017 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 8/8/2017.

  16. Ligand-induced expansion of the S1' site in the anthrax toxin lethal factor

    Energy Technology Data Exchange (ETDEWEB)

    Maize, Kimberly M.; Kurbanov, Elbek K.; Johnson, Rodney L.; Amin, Elizabeth Ambrose; Finzel, Barry C. (UMM)

    2016-07-05

    The Bacillus anthracis lethal factor (LF) is one component of a tripartite exotoxin partly responsible for persistent anthrax cytotoxicity after initial bacterial infection. Inhibitors of the zinc metalloproteinase have been investigated as potential therapeutic agents, but LF is a challenging target because inhibitors lack sufficient selectivity or possess poor pharmaceutical properties. These structural studies reveal an alternate conformation of the enzyme, induced upon binding of specific inhibitors, that opens a previously unobserved deep pocket termed S1'* which might afford new opportunities to design selective inhibitors that target this subsite.

  17. Non-Replicating Adenovirus-Vectored Anthrax Vaccine

    International Nuclear Information System (INIS)

    Van Kampen, K. R.; Zhang, J.; Jex, E.; Tang, D. C.

    2007-01-01

    As bioterrorism is emerging as a national threat, it is urgent to develop a new generation of anthrax vaccines that can be rapidly produced and mass administered in an emergency setting. We have demonstrated that protective immunity against anthrax spores could be elicited in mice by intranasal administration of a non-replicating human adenovirus serotype 5 (Ad5)-derived vector encoding Bacillus anthracis protective antigen (PA) in a single-dose regimen. The potency of an Ad5 vector encoding PA was remarkably enhanced by codon optimization of the PA gene to match the tRNA pool found in human cells. This nasal vaccine can be mass-administered by non-medical personnel during a bioterrorist attack. In addition, replication-competent adenovirus (RCA)-free Ad5-vectored anthrax vaccines can be mass produced in PER.C6 cells in serum-free wave bioreactors and purified by column chromatography to meet a surge in demand. The non-replicating nature of this new generation of anthrax vaccine ensures an excellent safety profile for vaccines and the environment.(author)

  18. Screen-printed fluorescent sensors for rapid and sensitive anthrax biomarker detection

    International Nuclear Information System (INIS)

    Lee, Inkyu; Oh, Wan-Kyu; Jang, Jyongsik

    2013-01-01

    Highlights: •We fabricated flexible anthrax sensors with a simple screen-printing method. •The sensors selectively detected B. anthracis biomarker. •The sensors provide the visible alarm against anthrax attack. -- Abstract: Since the 2001 anthrax attacks, efforts have focused on the development of an anthrax detector with rapid response and high selectivity and sensitivity. Here, we demonstrate a fluorescence sensor for detecting anthrax biomarker with high sensitivity and selectivity using a screen-printing method. A lanthanide–ethylenediamine tetraacetic acid complex was printed on a flexible polyethersulfone film. Screen-printing deposition of fluorescent detecting moieties produced fluorescent patterns that acted as a visual alarm against anthrax

  19. Anthrax Meningitis - Report Of An Autopsied Case

    Directory of Open Access Journals (Sweden)

    Mahadevan A

    1999-01-01

    Full Text Available Anthrax is a rare cause of hemorrhagic meningitis in man. This report illustrates the characteristic hemorrhagic manifestations in the brain of a patient dying of anthrax meningitis secondary to overwhelming bacteremia. Gross examination of the brain revealed a thick dense subarachnoid hemorrhage with numerous petechial hemorrhages in the cortex. Histologically, meningoencephalitis with vascular necrosis, edema, perivascular cortical hemorrhages and clumps of Gram positive bacilli in the vascular lumen and invading vessel wall were the salient features. The anthrax bacillus was isolated from CSF and brain tissue and further its pathogenecity was confirmed by animal inoculation.

  20. Cellular Entry of Clostridium perfringens Iota-Toxin and Clostridium botulinum C2 Toxin.

    Science.gov (United States)

    Takehara, Masaya; Takagishi, Teruhisa; Seike, Soshi; Oda, Masataka; Sakaguchi, Yoshihiko; Hisatsune, Junzo; Ochi, Sadayuki; Kobayashi, Keiko; Nagahama, Masahiro

    2017-08-11

    Clostridium perfringens iota-toxin and Clostridium botulinum C2 toxin are composed of two non-linked proteins, one being the enzymatic component and the other being the binding/translocation component. These latter components recognize specific receptors and oligomerize in plasma membrane lipid-rafts, mediating the uptake of the enzymatic component into the cytosol. Enzymatic components induce actin cytoskeleton disorganization through the ADP-ribosylation of actin and are responsible for cell rounding and death. This review focuses upon the recent advances in cellular internalization of clostridial binary toxins.

  1. The use of anthrax and orthopox therapeutic antibodies from human origin in biodefense

    International Nuclear Information System (INIS)

    Stienstra, S.

    2009-01-01

    It is impossible to protect whole nations from the effects of bioterrorism by preventive vaccination; there are too many possible agents, costs would be exorbitantly high, and the health risks associated with complex mass vaccination programs would be unacceptable. Adequate protection, however, could be provided via a combination of rapid detection and diagnosis and the treatment of those exposed with drugs which would be beneficial in all stages of disease. Monoclonal antibodies, preferably from human origin to prevent severe complications, which neutralize or block the pathological effects of biological agents, are the optimal candidates to be deployed in case of biological warfare or a bioterrorist event. The human body is one of the better and most suitably equipped places for the generation of monoclonal antibodies which are to be used effectively in humans for treatment. Such antibodies will be of optimal physiological specificity, affinity, and pharmacological properties. In addition, the chances on severe adverse effects and cross-reactivity with human tissues will be slim. Therefore the human immune response is used by the Dutch company IQ Therapeutics, a spin-off of the Groningen University, as a basis for selecting the antibodies. People, immunised against or infected with the agent in question, donate blood cells voluntarily, which are used to generate fully human monoclonal antibodies. In this way effective therapeutics against the protective antigen (PA) and lethal factor (LF) toxin components of Bacillus anthracis are developed and currently antibodies against orthopox viruses are generated as well from donors, which have been immunized with vaccinia. Other projects are the development of therapeutic antibodies for MRSA (antibiotics resistant Staphylococcus aureus) and Enterococcus spp. Both human antibodies against the anthrax toxin components are efficacious in vitro and in pre- and post-exposure settings in mice and rabbits. The anti-LF antibody

  2. Cellular Entry of Clostridium perfringens Iota-Toxin and Clostridium botulinum C2 Toxin

    Directory of Open Access Journals (Sweden)

    Masaya Takehara

    2017-08-01

    Full Text Available Clostridium perfringens iota-toxin and Clostridium botulinum C2 toxin are composed of two non-linked proteins, one being the enzymatic component and the other being the binding/translocation component. These latter components recognize specific receptors and oligomerize in plasma membrane lipid-rafts, mediating the uptake of the enzymatic component into the cytosol. Enzymatic components induce actin cytoskeleton disorganization through the ADP-ribosylation of actin and are responsible for cell rounding and death. This review focuses upon the recent advances in cellular internalization of clostridial binary toxins.

  3. Bacillus anthracis lethal toxin disrupts TCR signaling in CD1d-restricted NKT cells leading to functional anergy.

    Directory of Open Access Journals (Sweden)

    Sunil K Joshi

    2009-09-01

    Full Text Available Exogenous CD1d-binding glycolipid (alpha-Galactosylceramide, alpha-GC stimulates TCR signaling and activation of type-1 natural killer-like T (NKT cells. Activated NKT cells play a central role in the regulation of adaptive and protective immune responses against pathogens and tumors. In the present study, we tested the effect of Bacillus anthracis lethal toxin (LT on NKT cells both in vivo and in vitro. LT is a binary toxin known to suppress host immune responses during anthrax disease and intoxicates cells by protective antigen (PA-mediated intracellular delivery of lethal factor (LF, a potent metalloprotease. We observed that NKT cells expressed anthrax toxin receptors (CMG-2 and TEM-8 and bound more PA than other immune cell types. A sub-lethal dose of LT administered in vivo in C57BL/6 mice decreased expression of the activation receptor NKG2D by NKT cells but not by NK cells. The in vivo administration of LT led to decreased TCR-induced cytokine secretion but did not affect TCR expression. Further analysis revealed LT-dependent inhibition of TCR-stimulated MAP kinase signaling in NKT cells attributable to LT cleavage of the MAP kinase kinase MEK-2. We propose that Bacillus anthracis-derived LT causes a novel form of functional anergy in NKT cells and therefore has potential for contributing to immune evasion by the pathogen.

  4. Anthrax lethal factor as an immune target in humans and transgenic mice and the impact of HLA polymorphism on CD4+ T cell immunity.

    Science.gov (United States)

    Ascough, Stephanie; Ingram, Rebecca J; Chu, Karen K; Reynolds, Catherine J; Musson, Julie A; Doganay, Mehmet; Metan, Gökhan; Ozkul, Yusuf; Baillie, Les; Sriskandan, Shiranee; Moore, Stephen J; Gallagher, Theresa B; Dyson, Hugh; Williamson, E Diane; Robinson, John H; Maillere, Bernard; Boyton, Rosemary J; Altmann, Daniel M

    2014-05-01

    Bacillus anthracis produces a binary toxin composed of protective antigen (PA) and one of two subunits, lethal factor (LF) or edema factor (EF). Most studies have concentrated on induction of toxin-specific antibodies as the correlate of protective immunity, in contrast to which understanding of cellular immunity to these toxins and its impact on infection is limited. We characterized CD4+ T cell immunity to LF in a panel of humanized HLA-DR and DQ transgenic mice and in naturally exposed patients. As the variation in antigen presentation governed by HLA polymorphism has a major impact on protective immunity to specific epitopes, we examined relative binding affinities of LF peptides to purified HLA class II molecules, identifying those regions likely to be of broad applicability to human immune studies through their ability to bind multiple alleles. Transgenics differing only in their expression of human HLA class II alleles showed a marked hierarchy of immunity to LF. Immunogenicity in HLA transgenics was primarily restricted to epitopes from domains II and IV of LF and promiscuous, dominant epitopes, common to all HLA types, were identified in domain II. The relevance of this model was further demonstrated by the fact that a number of the immunodominant epitopes identified in mice were recognized by T cells from humans previously infected with cutaneous anthrax and from vaccinated individuals. The ability of the identified epitopes to confer protective immunity was demonstrated by lethal anthrax challenge of HLA transgenic mice immunized with a peptide subunit vaccine comprising the immunodominant epitopes that we identified.

  5. Mapping the Distribution of Anthrax in Mainland China, 2005-2013.

    Directory of Open Access Journals (Sweden)

    Wan-Jun Chen

    2016-04-01

    Full Text Available Anthrax, a global re-emerging zoonotic disease in recent years is enzootic in mainland China. Despite its significance to the public health, spatiotemporal distributions of the disease in human and livestock and its potential driving factors remain poorly understood.Using the national surveillance data of human and livestock anthrax from 2005 to 2013, we conducted a retrospective epidemiological study and risk assessment of anthrax in mainland China. The potential determinants for the temporal and spatial distributions of human anthrax were also explored. We found that the majority of human anthrax cases were located in six provinces in western and northeastern China, and five clustering areas with higher incidences were identified. The disease mostly peaked in July or August, and males aged 30-49 years had higher incidence than other subgroups. Monthly incidence of human anthrax was positively correlated with monthly average temperature, relative humidity and monthly accumulative rainfall with lags of 0-2 months. A boosted regression trees (BRT model at the county level reveals that densities of cattle, sheep and human, coverage of meadow, coverage of typical grassland, elevation, coverage of topsoil with pH > 6.1, concentration of organic carbon in topsoil, and the meteorological factors have contributed substantially to the spatial distribution of the disease. The model-predicted probability of occurrence of human cases in mainland China was mapped at the county level.Anthrax in China was characterized by significant seasonality and spatial clustering. The spatial distribution of human anthrax was largely driven by livestock husbandry, human density, land cover, elevation, topsoil features and climate. Enhanced surveillance and intervention for livestock and human anthrax in the high-risk regions, particularly on the Qinghai-Tibetan Plateau, is the key to the prevention of human infections.

  6. The pattern of anthrax cases on livestock in West Nusa Tenggara Province

    Directory of Open Access Journals (Sweden)

    Enymartindah

    1998-03-01

    Full Text Available A retrospective study on anthrax in endemic area was carried out from 1984 to 1994 in West Nusa Tenggara Province (NTB to uncover the occurrence of anthrax and the pattern of the disease in livestock. Data of anthrax incidence had been compiled for the 11 years from Animal Health Section and Type B Laboratory of the Livestock Service Office, NTB Province in Mataram. This was done to get the information about locations and times when the cases occurred, and the vaccination status of livestock in the anthrax area. The pattern of anthrax in livestock was analyzed by using time series analysis, and the long term trend was then illustrated by linier regression . During the years, anthrax cases in livestock were reported high in Sumbawa island, while the cases in Lombok island were relatively low. There were no anthrax cases reported from East Lombok District . The long term trend of anthrax occurrence in livestock from 1984 to 1994 tended to decrease (Y= 6,04 - 0,0162 X.

  7. The anthrax letters: a medical detective story

    National Research Council Canada - National Science Library

    Cole, Leonard A

    2003-01-01

    .... Library of Congress Cataloging-in-Publication Data Cole, Leonard A., 1933The anthrax letters : a medical detective story / Leonard A. Cole. p. cm. Includes bibliographical references and index. ISBN 0-309-08881-X - ISBN 0-309-52584-5 (PDF) 1. Bioterrorism- United States. 2. Anthrax- United States. 3. Postal service- United States. 4. Victims of...

  8. Ecological suitability modeling for anthrax in the Kruger National Park, South Africa.

    Directory of Open Access Journals (Sweden)

    Pieter Johan Steenkamp

    Full Text Available The spores of the soil-borne bacterium, Bacillus anthracis, which causes anthrax are highly resistant to adverse environmental conditions. Under ideal conditions, anthrax spores can survive for many years in the soil. Anthrax is known to be endemic in the northern part of Kruger National Park (KNP in South Africa (SA, with occasional epidemics spreading southward. The aim of this study was to identify and map areas that are ecologically suitable for the harboring of B. anthracis spores within the KNP. Anthrax surveillance data and selected environmental variables were used as inputs to the maximum entropy (Maxent species distribution modeling method. Anthrax positive carcasses from 1988-2011 in KNP (n = 597 and a total of 40 environmental variables were used to predict and evaluate their relative contribution to suitability for anthrax occurrence in KNP. The environmental variables that contributed the most to the occurrence of anthrax were soil type, normalized difference vegetation index (NDVI and precipitation. Apart from the endemic Pafuri region, several other areas within KNP were classified as ecologically suitable. The outputs of this study could guide future surveillance efforts to focus on predicted suitable areas for anthrax, since the KNP currently uses passive surveillance to detect anthrax outbreaks.

  9. Factors associated with repeated outbreak of anthrax in Bangladesh: qualitative and quantitative study

    Directory of Open Access Journals (Sweden)

    Jayedul Hassan

    2015-06-01

    Full Text Available Anthrax, caused by Bacillus anthracis is an acute, febrile disease of warm blooded animals including humans. Social norms and poverty in addition to climatic factors such as soil conditions, seasons of year, ambient temperature and rainfall influence the persistence of the B. anthracis and anthrax outbreaks. The present study was designed to reveal the factors influencing the repeated outbreak of anthrax in Bangladesh. Considering the previous outbreaks of anthrax, Sirajganj, Bogra, Kushtia, Tangail and Mymensingh districts of Bangladesh were selected for this study. To elucidate the factors, qualitative data relating to the animal management, knowledge and behavior of the people; and quantitative data relating to soil conditions, ambient temperature and rainfall were acquired, and analyzed critically. Based on the outbreak histories, a year was divided into two seasons, anthrax prone season (May-November and anthrax dry season (December-April. Anthrax spores could be isolated from 11.67% (n=14/120 of the soil samples collected from the study areas. The present study revealed that poor knowledge, lack of awareness, improper carcass disposal, inadequate vaccination, high Ca content and moisture in the soil along with high ambient temperature and rainfall during the anthrax prone season were the possible influencing factors of repeated outbreaks of anthrax in the study areas. Intensive propaganda to create public awareness of anthrax together with proper vaccination may reduce anthrax outbreaks in Bangladesh.

  10. Pharmacophore Selection and Redesign of Non-nucleotide Inhibitors of Anthrax Edema Factor

    Directory of Open Access Journals (Sweden)

    Maria Estrella Jimenez

    2012-11-01

    Full Text Available Antibiotic treatment may fail to protect individuals, if not started early enough, after infection with Bacillus anthracis, due to the continuing activity of toxins that the bacterium produces. Stable and easily stored inhibitors of the edema factor toxin (EF, an adenylyl cyclase, could save lives in the event of an outbreak, due to natural causes or a bioweapon attack. The toxin’s basic activity is to convert ATP to cAMP, and it is thus in principle a simple phosphatase, which means that many mammalian enzymes, including intracellular adenylcyclases, may have a similar activity. While nucleotide based inhibitors, similar to its natural substrate, ATP, were identified early, these compounds had low activity and specificity for EF. We used a combined structural and computational approach to choose small organic molecules in large, web-based compound libraries that would, based on docking scores, bind to residues within the substrate binding pocket of EF. A family of fluorenone-based inhibitors was identified that inhibited the release of cAMP from cells treated with EF. The lead inhibitor was also shown to inhibit the diarrhea caused by enterotoxigenic E. coli (ETEC in a murine model, perhaps by serving as a quorum sensor. These inhibitors are now being tested for their ability to inhibit Anthrax infection in animal models and may have use against other pathogens that produce toxins similar to EF, such as Bordetella pertussis or Vibrio cholera.

  11. Anthrax of the eyelids.

    Science.gov (United States)

    Amraoui, A.; Tabbara, K. F.; Zaghloul, K.

    1992-01-01

    Anthrax is a disease caused by Bacillus anthracis. The disease affects primarily herbivores including sheep, cattle, horses, and other domestic animals. Humans may rarely be affected. We examined one male and two female patients with a localised itchy erythematous papule of the eyelid. A necrotising ulcer formed in each of the three cases resulting in a black lesion. Scraping in each case showed Gram positive rods and culture grew Bacillus anthracis. All three patients responded to the intravenous administration of penicillin G, and the lesion resolved leaving scars in two cases. Anthrax is a rare disease but should be considered in the differential diagnosis of ulcers or pustules of the eyelids. Images PMID:1486081

  12. Treatment of Anthrax Disease Frequently Asked Questions

    Energy Technology Data Exchange (ETDEWEB)

    Judd, Kathleen S.; Young, Joan E.; Lesperance, Ann M.; Malone, John D.

    2010-05-14

    This document provides a summary of Frequently Asked Questions (FAQs) on the treatment of anthrax disease caused by a wide-area release of Bacillus anthracis spores as an act bioterrorism. These FAQs are intended to provide the public health and medical community, as well as others, with guidance and communications to support the response and long-term recovery from an anthrax event.

  13. Metabolic Discrimination of Select List Agents by Monitoring Cellular Responses in a Multianalyte Microphysiometer

    Directory of Open Access Journals (Sweden)

    John Wikswo

    2009-03-01

    Full Text Available Harnessing the potential of cells as complex biosensors promises the potential to create sensitive and selective detectors for discrimination of biodefense agents. Here we present toxin detection and suggest discrimination using cells in a multianalyte microphysiometer (MMP that is capable of simultaneously measuring flux changes in four extracellular analytes (acidification rate, glucose uptake, oxygen uptake, and lactate production in real-time. Differential short-term cellular responses were observed between botulinum neurotoxin A and ricin toxin with neuroblastoma cells, alamethicin and anthrax protective antigen with RAW macrophages, and cholera toxin, muscarine, 2,4-dinitro-phenol, and NaF with CHO cells. These results and the post exposure dynamics and metabolic recovery observed in each case suggest the usefulness of cell-based detectors to discriminate between specific analytes and classes of compounds in a complex matrix, and furthermore to make metabolic inferences on the cellular effects of the agents. This may be particularly valuable for classifying unknown toxins.

  14. Human and animal anthrax in Ethiopia: A retrospective record ...

    African Journals Online (AJOL)

    26,737 animal anthrax cases (human to animal ratio 1:5) were reported from 2009 to 2013 ... respectively) This data analysis revealed that less number of human anthrax cases ..... quality to reach to strong conclusions and recommendations.

  15. 2014 Anthrax epidemic in Koubia prefecture, Guinea-Conakry.

    Science.gov (United States)

    Sow, M S; Boushab, M B; Balde, H; Camara, A; Sako, F B; Traoré, F A; Diallo, M O S; Diallo, M D; Keita, M; Sylla, A O; Tounkara, T M; Cissé, M

    2016-11-01

    Anthrax disease is an anthropozoonosis caused by a Gram-positive bacterium, Bacillus anthracis. Our objective was to describe the epidemiological, clinical and therapeutic features of the 2014 epidemic in Koubia prefecture. This retrospective study examined all of the anthrax cases reported in Fafaya, Koubia Prefecture. In March and April 2014, there were 39 cases of human anthrax reported, for an incidence of 1.135%. The mean age was 20.9 (± 18.3) with a sex ratio of 2.54 (28/11) in favor of men. Seventy-six percent (23/39) were single. More than one half were students (53.8%). The main clinical signs were fever in 71, 8% (n = 28 /), papules 59% (n = 23), vesicles of 59% (n = 23) Digestive and cutaneous signs represented 35.9 % and 64.1% respectively; 35% had ingested contaminated meat and 17.95% were in direct contact with a sick animal. We didn't find any correlation between the mode of infection and onset of signs. The fatality rate was 28.21%. The 2014 epidemic of anthrax disease in the Koubia prefecture was marked by a high incidence and lethality. Clinical manifestations were cutaneaous and digestive. These results may serve further interventions to fight against anthrax disease. They should mainly focus on an awareness of peasants, surveillance and vaccination of cattle. Other studies seem to be necessary.

  16. Evaluation of the house fly Musca domestica as a mechanical vector for an anthrax.

    Directory of Open Access Journals (Sweden)

    Antonio Fasanella

    Full Text Available Anthrax is a disease of human beings and animals caused by the encapsulated, spore-forming, Bacillus anthracis. The potential role of insects in the spread of B. anthracis to humans and domestic animals during an anthrax outbreak has been confirmed by many studies. Among insect vectors, the house fly Musca domestica is considered a potential agent for disease transmission. In this study, laboratory-bred specimens of Musca domestica were infected by feeding on anthrax-infected rabbit carcass or anthrax contaminated blood, and the presence of anthrax spores in their spots (faeces and vomitus was microbiologically monitored. It was also evaluated if the anthrax spores were able to germinate and replicate in the gut content of insects. These results confirmed the role of insects in spreading anthrax infection. This role, although not major, given the huge size of fly populations often associated with anthrax epidemics in domestic animals, cannot be neglected from an epidemiological point of view and suggest that fly control should be considered as part of anthrax control programs.

  17. Tumor therapy with a urokinase plasminogen activator-activated anthrax lethal toxin alone and in combination with paclitaxel

    OpenAIRE

    Wein, Alexander N.; Liu, Shihui; Zhang, Yi; McKenzie, Andrew T.; Leppla, Stephen H.

    2012-01-01

    PA-U2, an engineered anthrax protective antigen that is activated by urokinase was combined with wild-type lethal factor in the treatment of Colo205 colon adenocarcinoma in vitro and B16-BL6 mouse melanoma in vitro and in vivo. This therapy was also tested in combination with the small molecule paclitaxel, based on prior reports suggesting synergy between ERK1/2 inhibition and chemotherapeutics. Colo205 was sensitive to PA-U2/LF while B16-BL6 was not. For the combination treatment of B16-BL6,...

  18. [Anthrax meningoencephalitis: a case report and review of Turkish literature].

    Science.gov (United States)

    Metan, Gökhan; Uysal, Burcu; Coşkun, Ramazan; Perçin, Duygu; Doğanay, Mehmet

    2009-10-01

    The incidence of anthrax is decreasing in Turkey, however, it is still endemic in some regions of the country. Although central nervous system involvement is rare in cases with anthrax, high mortality rates are significant. Here, we report a 46-years old woman who was anthrax meningoencephalitis. The patient was from Yozgat located in Central Anatolia, Turkey. Her history revealed that following peeling the skin of sheeps and consuming their meat a week ago, a lesion developed in her left forearm and she had been treated with penicilin G with the diagnosis of cutaneous anthrax in a local health center. The patient was admitted to the emergency room of our hospital due to increased headache and loss of conciousness and diagnosed as anthrax meningitis. Crytallized penicilin G (24 MU/day IV) and vancomycin (2 g/day IV) were initiated. The macroscopy of cerebrospinal fluid (CSF) sample was haemorrhagic, white blood cell count was 40/mm3 (80% of neutrophil) and Gram staining of CSF yielded abundant gram-positive bacilli. The diagnosis was confirmed by the isolation of Bacillus anthracis from CSF culture. Although the isolate was susceptible to penicillin and dexamethasone was added to the treatment, the patient died. Review of the Turkish literature revealed seven cases of anthrax with central nervous system involvement between 1980-2008. One of the patients was an 11-years old boy and the others were adults aged between 19 and 64 years. The source of the infection was skin in four patients and inhalation in one patient. The most common findings in all of the patients were inhabitance in rural area, haemorrhagic CSF and loss of all patients despite appropriate antibiotic therapy. In conclusion, anthrax meningitis and meningoencephalitis should be considered in the differential diagnosis of haemorrhagic meningitis in areas where anthrax is endemic and high rate of mortality despite appropriate therapy should always be kept in mind.

  19. Two anthrax cases with soft tissue infection, severe oedema and sepsis in Danish heroin users

    DEFF Research Database (Denmark)

    Russell, Lene; Pedersen, Michael; Jensen, Andreas V

    2013-01-01

    Anthrax had become extremely rare in Europe, but in 2010 an outbreak of anthrax among heroin users in Scotland increased awareness of contaminated heroin as a source of anthrax. We present the first two Danish cases of injectional anthrax and discuss the clinical presentations, which included both...

  20. First Autochthonous Coinfected Anthrax in an Immunocompetent Patient

    Directory of Open Access Journals (Sweden)

    Parvaneh Afshar

    2015-01-01

    Full Text Available Cutaneous anthrax has a mortality rate of 20% if no antibacterial treatment is applied. The clinical manifestations of cutaneous anthrax are obviously striking, but coinfection may produce atypical lesions and mask the clinical manifestations and proper laboratory diagnosis. Anthrax is known to be more common in the Middle East and Iran is one of the countries in which the zoonotic form of anthrax may still be encountered. We report a case of a 19-years-old male who used to apply Venetian ceruse on his skin. Venetian ceruse (also known as Spirits of Saturn is an old cosmetic product used for skin whitening traditionally made from sheep’s spinal cord. The patient referred to the Referral Laboratory, Mazandaran University of Medical Sciences, Sari, Iran, with atypical dermatosis, pronounced pain, and oedema of the affected tissue. It was confirmed by both conventional and molecular analysis that culture was a mixture of Bacillus anthracis and Trichophyton interdigitale. The patient was initially treated with ceftriaxone (1000 mg/day for two weeks, gentamicin (1.5–2 mg/kg/day, terbinafine (200 mg/week for one month, and 1% clotrimazole cream (5 weeks two times per day which resulted in gradual improvement. No relapse could be detected after one-year follow-up. Anthrax infection might present a broader spectrum of symptoms than expected by clinicians. These unfamiliar characteristics may lead to delayed diagnosis, inadequate treatment, and higher mortality rate. Clinicians need to be aware of this issue in order to have successful management over this infection.

  1. Integrated MOSFET-Embedded-Cantilever-Based Biosensor Characteristic for Detection of Anthrax Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Mostafa, Salwa [University of Tennessee, Knoxville (UTK); Lee, Ida [ORNL; Islam, Syed K [University of Tennessee, Knoxville (UTK); Eliza, Sazia A. [University of Tennessee, Knoxville (UTK); Shekhawat, Gajendra [Northwestern University, Evanston; Dravid, Vinayak [Northwestern University, Evanston; Tulip, Fahmida S [ORNL

    2011-01-01

    In this work, MOSFET-embedded cantilevers are configured as microbial sensors for detection of anthrax simulants, Bacillus thuringiensis. Anthrax simulants attached to the chemically treated gold-coated cantilever cause changes in the MOSFET drain current due to the bending of the cantilever which indicates the detection of anthrax simulant. Electrical properties of the anthrax simulant are also responsible for the change in the drain current. The test results suggest a detection range of 10 L of stimulant test solution (a suspension population of 1.3 107 colony-forming units/mL diluted in 40% ethanol and 60% deionized water) with a linear response of 31 A/ L.

  2. Modeling the Ecological Niche of Bacillus anthracis to Map Anthrax Risk in Kyrgyzstan.

    Science.gov (United States)

    Blackburn, Jason K; Matakarimov, Saitbek; Kozhokeeva, Sabira; Tagaeva, Zhyldyz; Bell, Lindsay K; Kracalik, Ian T; Zhunushov, Asankadyr

    2017-03-01

    AbstractAnthrax, caused by the environmental bacterium Bacillus anthracis , is an important zoonosis nearly worldwide. In Central Asia, anthrax represents a major veterinary and public health concern. In the Republic of Kyrgyzstan, ongoing anthrax outbreaks have been reported in humans associated with handling infected livestock and contaminated animal by-products such as meat or hides. The current anthrax situation has prompted calls for improved insights into the epidemiology, ecology, and spatial distribution of the disease in Kyrgyzstan to better inform control and surveillance. Disease control for both humans and livestock relies on annual livestock vaccination ahead of outbreaks. Toward this, we used a historic database of livestock anthrax reported from 1932 to 2006 mapped at high resolution to develop an ecological niche model-based prediction of B. anthracis across Kyrgyzstan and identified spatial clusters of livestock anthrax using a cluster morphology statistic. We also defined the seasonality of outbreaks in livestock. Cattle were the most frequently reported across the time period, with the greatest number of cases in late summer months. Our niche models defined four areas as suitable to support pathogen persistence, the plateaus near Talas and Bishkek, the valleys of western Kyrgyzstan along the Fergana Valley, and the low-lying areas along the shore of Lake Isyk-Kul. These areas should be considered "at risk" for livestock anthrax and subsequent human cases. Areas defined by the niche models can be used to prioritize anthrax surveillance and inform efforts to target livestock vaccination campaigns.

  3. Development of a toxicity model for paralytic shellfish toxins in mussel: uptake and release of toxins in Green Bay mussel

    International Nuclear Information System (INIS)

    Tabbada, Rhett Simon DC.; Ranada, Ma. Llorina O.; De Leon, Aileen L.; Bulos, Adelina M.; Sta, Maria; Efren, J.; De Vera, Azucena; Balagtas, Angelina; Sombrito, Elvira Z.

    2009-01-01

    In view of the expressed need to study shellfish toxicity and elucidate the kinetics of saxitoxin in green mussels Perna viridis), uptake/depuration rates of saxitoxin were studied in Juag Lagoon, Sorsogon and Sorsogon Bay. Both areas experience recurring blooms of Pyrodinium bahamanse var compressum (PbC) making them excellent study sites. Two sampling stations were selected, to which, mussels were introduced. Algal cell density and mussel toxicity were measured by receptor binding assay (RBA) and high performance liquid chromatography (HPLC) from May to December 2007. During this period, two bloom events occurred, wherein, a decrease in cell density by two orders of magnitude (30,000 to 600 cells·1 +1 ) caused an order of magnitude decrease in toxicity (600 to 30 μg STX eq./100 g shellfish meat). A time lag between peaks of cell density and the corresponding toxicity was revealed. Vegetative cells were present throughout the sampling period, and a uniform horizontal and vertical distribution of cells was observed between the stations. Cell densities were significantly correlated with both RBA and HPLC estimates of STX content in mussels (Pearson r values of 0.7486 and 0.4325 for RBA and HPLC, respectively). In Sorsogon Bay, six sampling stations were also chosen, from which, water and mussels were being collected. Preliminary data showed that the cellular toxin content was primarily STX, making up to 90-100% of total toxin quantified. The average toxicity was estimated at 52.81fmol/cell. The effect of physiological factors to overall shellfish toxicity, though not directly characterized, may be deduced from these studies. (author)

  4. DUST-BATHING BEHAVIORS OF AFRICAN HERBIVORES AND THE POTENTIAL RISK OF INHALATIONAL ANTHRAX.

    Science.gov (United States)

    Barandongo, Zoe R; Mfune, John K E; Turner, Wendy C

    2018-01-01

    :  Anthrax in herbivorous wildlife and livestock is generally assumed to be transmitted via ingestion or inhalation of Bacillus anthracis spores. Although recent studies have highlighted the importance of the ingestion route for anthrax transmission, little is known about the inhalational route in natural systems. Dust bathing could aerosolize soilborne pathogens such as B. anthracis, exposing dust-bathing individuals to inhalational infections. We investigated the potential role of dust bathing in the transmission of inhalational anthrax to herbivorous wildlife in Etosha National Park, Namibia, an area with endemic seasonal anthrax outbreaks. We 1) cultured soils from dust-bathing sites for the presence and concentration of B. anthracis spores, 2) monitored anthrax carcass sites, the locations with the highest B. anthracis concentrations, for evidence of dust bathing, including a site where a zebra died of anthrax on a large dust bath, and 3) characterized the ecology and seasonality of dust bathing in plains zebra ( Equus quagga), blue wildebeest ( Connochaetes taurinus), and African savanna elephant ( Loxodonta africana) using a combination of motion-sensing camera traps and direct observations. Only two out of 83 dust-bath soils were positive for B. anthracis, both with low spore concentrations (≤20 colony-forming units per gram). We also detected no evidence of dust baths occurring at anthrax carcass sites, perhaps due to carcass-induced changes in soil composition that may deter dust bathing. Finally, despite observing some seasonal variation in dust bathing, preliminary evidence suggests that the seasonality of dust bathing and anthrax mortalities are not correlated. Thus, although dust bathing creates a dramatic cloud of aerosolized soil around an individual, our microbiologic, ecologic, and behavioral results in concert demonstrate that dust bathing is highly unlikely to transmit inhalational anthrax infections.

  5. Military Hospitalizations among Deployed US Service Members Following Anthrax Vaccination, 1998-2001

    National Research Council Canada - National Science Library

    Wells, Timothy S; Sato, Paul A; Smith, Tyler C; Wang, Linda Z; Reed, Robert J; Kappel Ryan, Margaret A

    2006-01-01

    .... To determine if anthrax vaccination was associated with an increased risk of hospitalization, a historical cohort study utilizing pre- and post-anthrax-vaccination hospitalizations was undertaken...

  6. Anthrax, People and Dead Hippos

    Centers for Disease Control (CDC) Podcasts

    2017-11-07

    Epidemiologist, Dr. Melissa Marx, discuses anthrax deaths in people who ate dead hippos.  Created: 11/7/2017 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 11/7/2017.

  7. Phase I study of safety and immunogenicity of an Escherichia coli-derived recombinant protective antigen (rPA) vaccine to prevent anthrax in adults.

    Science.gov (United States)

    Brown, Bruce K; Cox, Josephine; Gillis, Anita; VanCott, Thomas C; Marovich, Mary; Milazzo, Mark; Antonille, Tanya Santelli; Wieczorek, Lindsay; McKee, Kelly T; Metcalfe, Karen; Mallory, Raburn M; Birx, Deborah; Polonis, Victoria R; Robb, Merlin L

    2010-11-05

    The fatal disease caused by Bacillus anthracis is preventable with a prophylactic vaccine. The currently available anthrax vaccine requires a lengthy immunization schedule, and simpler and more immunogenic options for protection against anthrax are a priority for development. In this report we describe a phase I clinical trial testing the safety and immunogenicity of an anthrax vaccine using recombinant Escherichia coli-derived, B. anthracis protective antigen (rPA). A total of 73 healthy adults ages 18-40 were enrolled and 67 received 2 injections separated by 4 weeks of either buffered saline placebo, or rPA formulated with or without 704 µg/ml Alhydrogel® adjuvant in increasing doses (5, 25, 50, 100 µg) of rPA. Participants were followed for one year and safety and immunologic data were assessed. Tenderness and warmth were the most common post-injection site reactions. No serious adverse events related to the vaccine were observed. The most robust humoral immune responses were observed in subjects receiving 50 µg of rPA formulated with Alhydrogel® with a geometric mean concentration of anti-rPA IgG antibodies of 283 µg/ml and a toxin neutralizing geometric 50% reciprocal geometric mean titer of 1061. The highest lymphoproliferative peak cellular response (median Lymphocyte Stimulation Index of 29) was observed in the group receiving 25 µg Alhydrogel®-formulated rPA. The vaccine was safe, well tolerated and stimulated a robust humoral and cellular response after two doses. ClinicalTrials.gov NCT00057525.

  8. Soil geochemical parameters influencing the spatial distribution of anthrax in Northwest Minnesota, USA

    International Nuclear Information System (INIS)

    Nath, Samuel; Dere, Ashlee

    2016-01-01

    Bacillus anthracis is the pathogenic bacterium that causes anthrax, which dwells in soils as highly resilient endospores. B. anthracis spore viability in soil is dependent upon environmental conditions, but the soil properties necessary for spore survival are unclear. In this study we used a range of soil geochemical and physical parameters to predict the spatial distribution of B. anthracis in northwest Minnesota, where 64 cases of anthrax in livestock were reported from 2000 to 2013. Two modeling approaches at different spatial scales were used to identify the soil conditions most correlated to known anthrax cases using both statewide and locally collected soil data. Ecological niche models were constructed using the Maximum Entropy (Maxent) approach and included 11 soil parameters as environmental inputs and recorded anthrax cases as known presences. One ecological niche model used soil data and anthrax presences for the entire state while a second model used locally sampled soil data (n = 125) and a subset of anthrax presences, providing a test of spatial scale. In addition, simple logistic regression models using the localized soil data served as an independent measure of variable importance. Maxent model results indicate that at a statewide level, soil calcium and magnesium concentrations, soil pH, and sand content are the most important properties for predicting soil suitability for B. anthracis while at the local level, clay and sand content along with phosphorous and strontium concentrations are most important. These results also show that the spatial scale of analysis is important when considering soil parameters most important for B. anthracis spores. For example, at a broad scale, B. anthracis spores may require Ca-rich soils and an alkaline pH, but may also concentrate in microenvironments with high Sr concentrations. The study is also one of the first ecological niche models that demonstrates the major importance of soil texture for defining

  9. Orbito-Maxillofacial Cutaneous Anthrax

    African Journals Online (AJOL)

    and development of a black eschar were reviewed. Occupational history, falls and/or contact with animal meat was ... and oral ciprofloxacin (500mg BD for 21 days). The culture results isolated Bacillus anthracis highly ... The clinical evolution of cutaneous anthrax is typical with the initial development of minute red macules.

  10. Growth medium for the rapid isolation and identification of anthrax

    Science.gov (United States)

    Kiel, Johnathan L.; Parker, Jill E.; Grubbs, Teri R.; Alls, John L.

    2000-07-01

    Anthrax has been recognized as a highly likely biological warfare or terrorist agent. The purpose of this work was to design a culture technique to rapidly isolate and identify `live' anthrax. In liquid or solid media form, 3AT medium (3-amino-L-tyrosine, the main ingredient) accelerated germination and growth of anthrax spores in 5 to 6 hours to a point expected at 18 to 24 hours with ordinary medium. During accelerated growth, standard definitive diagnostic tests such as sensitivity to lysis by penicillin or bacteriophage can be run. During this time, the bacteria synthesized a fluorescent and thermochemiluminescent polymer. Bacteria captured by specific antibody are, therefore, already labeled. Because living bacteria are required to generate the polymer, the test converts immunoassays for anthrax into viability assays. Furthermore, the polymer formation leads to the death of the vegetative form and non-viability of the spores produced in the medium. By altering the formulation of the medium, other microbes and even animal and human cells can be grown in it and labeled (including viruses grown in the animal or human cells).

  11. A modified anthrax toxin-based enzyme-linked immunospot assay reveals robust T cell responses in symptomatic and asymptomatic Ebola virus exposed individuals.

    Science.gov (United States)

    Herrera, Bobby Brooke; Hamel, Donald J; Oshun, Philip; Akinsola, Rolake; Akanmu, Alani S; Chang, Charlotte A; Eromon, Philomena; Folarin, Onikepe; Adeyemi, Kayode T; Happi, Christian T; Lu, Yichen; Ogunsola, Folasade; Kanki, Phyllis J

    2018-05-01

    Ebola virus (EBOV) caused more than 11,000 deaths during the 2013-2016 epidemic in West Africa without approved vaccines or immunotherapeutics. Despite its high lethality in some individuals, EBOV infection can produce little to no symptoms in others. A better understanding of the immune responses in individuals who experienced minimally symptomatic and asymptomatic infection could aid the development of more effective vaccines and antivirals against EBOV and related filoviruses. Between August and November 2017, blood samples were collected from 19 study participants in Lagos, Nigeria, including 3 Ebola virus disease (EVD) survivors, 10 individuals with documented close contact with symptomatic EVD patients, and 6 control healthcare workers for a cross-sectional serosurvey and T cell analysis. The Lagos samples, as well as archived serum collected from healthy individuals living in surrounding areas of the 1976 Democratic Republic of Congo (DRC) epidemic, were tested for EBOV IgG using commercial enzyme-linked immunosorbent assays (ELISAs) and Western blots. We detected antibodies in 3 out of 3 Lagos survivors and identified 2 seropositive individuals not known to have ever been infected. Of the DRC samples tested, we detected antibodies in 9 out of 71 (12.7%). To characterize the T cell responses in the Lagos samples, we developed an anthrax toxin-based enzyme-linked immunospot (ELISPOT) assay. The seropositive asymptomatic individuals had T cell responses against EBOV nucleoprotein, matrix protein, and glycoprotein 1 that were stronger in magnitude compared to the survivors. Our data provide further evidence of EBOV exposure in individuals without EVD-like illness and, for the first time, demonstrate that these individuals have T cell responses that are stronger in magnitude compared to severe cases. These findings suggest that T cell immunity may protect against severe EVD, which has important implications for vaccine development.

  12. Monte Carlo N-particle simulation of neutron-based sterilisation of anthrax contamination.

    Science.gov (United States)

    Liu, B; Xu, J; Liu, T; Ouyang, X

    2012-10-01

    To simulate the neutron-based sterilisation of anthrax contamination by Monte Carlo N-particle (MCNP) 4C code. Neutrons are elementary particles that have no charge. They are 20 times more effective than electrons or γ-rays in killing anthrax spores on surfaces and inside closed containers. Neutrons emitted from a (252)Cf neutron source are in the 100 keV to 2 MeV energy range. A 2.5 MeV D-D neutron generator can create neutrons at up to 10(13) n s(-1) with current technology. All these enable an effective and low-cost method of killing anthrax spores. There is no effect on neutron energy deposition on the anthrax sample when using a reflector that is thicker than its saturation thickness. Among all three reflecting materials tested in the MCNP simulation, paraffin is the best because it has the thinnest saturation thickness and is easy to machine. The MCNP radiation dose and fluence simulation calculation also showed that the MCNP-simulated neutron fluence that is needed to kill the anthrax spores agrees with previous analytical estimations very well. The MCNP simulation indicates that a 10 min neutron irradiation from a 0.5 g (252)Cf neutron source or a 1 min neutron irradiation from a 2.5 MeV D-D neutron generator may kill all anthrax spores in a sample. This is a promising result because a 2.5 MeV D-D neutron generator output >10(13) n s(-1) should be attainable in the near future. This indicates that we could use a D-D neutron generator to sterilise anthrax contamination within several seconds.

  13. Interplay between toxin transport and flotillin localization

    DEFF Research Database (Denmark)

    Pust, Sascha; Dyve, Anne Berit; Torgersen, Maria L

    2010-01-01

    The flotillin proteins are localized in lipid domains at the plasma membrane as well as in intracellular compartments. In the present study, we examined the importance of flotillin-1 and flotillin-2 for the uptake and transport of the bacterial Shiga toxin (Stx) and the plant toxin ricin and we...... for flotillin-1 or -2. However, the Golgi-dependent sulfation of both toxins was significantly reduced in flotillin knockdown cells. Interestingly, when the transport of ricin to the ER was investigated, we obtained an increased mannosylation of ricin in flotillin-1 and flotillin-2 knockdown cells. The toxicity...... of both toxins was twofold increased in flotillin-depleted cells. Since BFA (Brefeldin A) inhibits the toxicity even in flotillin knockdown cells, the retrograde toxin transport is apparently still Golgi-dependent. Thus, flotillin proteins regulate and facilitate the retrograde transport of Stx and ricin....

  14. Follicle-stimulating hormone receptor-mediated uptake of 45Ca2+ by cultured rat Sertoli cells does not require activation of cholera toxin- or pertussis toxin-sensitive guanine nucleotide binding proteins or adenylate cyclase

    International Nuclear Information System (INIS)

    Grasso, P.; Reichert, L.E. Jr.

    1990-01-01

    We have previously reported that FSH stimulates flux of 45Ca2+ into cultured Sertoli cells from immature rats via voltage-sensitive and voltage-independent calcium channels. In the present study, we show that this effect of FSH does not require cholera toxin (CT)- or pertussis toxin (PT)-sensitive guanine nucleotide binding (G) protein or activation of adenylate cyclase (AC). Significant stimulation of 45Ca2+ influx was observed within 1 min, and maximal response (3.2-fold over basal levels) was achieved within 2 min after exposure to FSH. FSH-stimulated elevations in cellular cAMP paralleled increases in 45Ca2+ uptake, suggesting a possible coupling of AC activation to 45Ca2+ influx. (Bu)2cAMP, however, was not able to enhance 45Ca2+ uptake over basal levels at a final concentration of 1000 microM, although a concentration-related increase in androstenedione conversion to estradiol was evident. Exposure of Sertoli cells to CT (10 ng/ml) consistently stimulated basal levels of androstenedione conversion to estradiol but had no effect on basal levels of 45Ca2+ uptake. Similarly, CT had no effect on FSH-induced 45Ca2+ uptake, but potentiated FSH-stimulated estradiol synthesis. PT (10 ng/ml) augmented basal and FSH-stimulated estradiol secretion without affecting 45Ca2+ influx. The adenosine analog N6-phenylisopropyladenosine, which binds to Gi-coupled adenosine receptors on Sertoli cells, inhibited FSH-stimulated androgen conversion to estradiol in a dose-related (1-1000 nM) manner, but FSH-stimulated 45Ca2+ influx remained unchanged. Our results show that in contrast to FSH-stimulated estradiol synthesis, the flux of 45Ca2+ into Sertoli cells in response to FSH is not mediated either directly or indirectly by CT- or PT-sensitive G protein, nor does it require activation of AC. Our data further suggest that the FSH receptor itself may function as a calcium channel

  15. Structure, Function and Evolution of Clostridium botulinum C2 and C3 Toxins: Insight to Poultry and Veterinary Vaccines.

    Science.gov (United States)

    Chellapandi, Paulchamy; Prisilla, Arokiyasamy

    2017-01-01

    Clostridium botulinum group III strains are able to produce cytotoxins, C2 toxin and C3 exotoxin, along with botulinum neurotoxin types C and D. C2 toxin and C3 exotoxin produced by this organism are the most important members of bacterial ADP-ribosyltransferase superfamily. Both toxins have distinct pathophysiological functions in the avian and mammalian hosts. The members of this superfamily transfer an ADP-ribose moiety of NAD+ to specific eukaryotic target proteins. The present review describes the structure, function and evolution aspects of these toxins with a special emphasis to the development of veterinary vaccines. C2 toxin is a binary toxin that consists of a catalytic subunit (C2I) and a translocation subunit (C2II). C2I component is structurally and functionally similar to the VIP2 and iota A toxin whereas C2II component shows a significant homology with the protective antigen from anthrax toxin and iota B. Unlike C2 toxin, C3 toxin is devoid of translocation/binding subunit. Extensive studies on their sequence-structure-function link spawn additional efforts to understand the catalytic mechanisms and target recognition. Structural and functional relationships with them are often determined by using evolutionary constraints as valuable biological measures. Enzyme-deficient mutants derived from these toxins have been used as drug/protein delivery systems in eukaryotic cells. Thus, current knowledge on their molecular diversity is a well-known perspective to design immunotoxin or subunit vaccine for C. botulinum infection. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Persistent anthrax as a major driver of wildlife mortality in a tropical rainforest.

    Science.gov (United States)

    Hoffmann, Constanze; Zimmermann, Fee; Biek, Roman; Kuehl, Hjalmar; Nowak, Kathrin; Mundry, Roger; Agbor, Anthony; Angedakin, Samuel; Arandjelovic, Mimi; Blankenburg, Anja; Brazolla, Gregory; Corogenes, Katherine; Couacy-Hymann, Emmanuel; Deschner, Tobias; Dieguez, Paula; Dierks, Karsten; Düx, Ariane; Dupke, Susann; Eshuis, Henk; Formenty, Pierre; Yuh, Yisa Ginath; Goedmakers, Annemarie; Gogarten, Jan F; Granjon, Anne-Céline; McGraw, Scott; Grunow, Roland; Hart, John; Jones, Sorrel; Junker, Jessica; Kiang, John; Langergraber, Kevin; Lapuente, Juan; Lee, Kevin; Leendertz, Siv Aina; Léguillon, Floraine; Leinert, Vera; Löhrich, Therese; Marrocoli, Sergio; Mätz-Rensing, Kerstin; Meier, Amelia; Merkel, Kevin; Metzger, Sonja; Murai, Mizuki; Niedorf, Svenja; De Nys, Hélène; Sachse, Andreas; van Schijndel, Joost; Thiesen, Ulla; Ton, Els; Wu, Doris; Wieler, Lothar H; Boesch, Christophe; Klee, Silke R; Wittig, Roman M; Calvignac-Spencer, Sébastien; Leendertz, Fabian H

    2017-08-02

    Anthrax is a globally important animal disease and zoonosis. Despite this, our current knowledge of anthrax ecology is largely limited to arid ecosystems, where outbreaks are most commonly reported. Here we show that the dynamics of an anthrax-causing agent, Bacillus cereus biovar anthracis, in a tropical rainforest have severe consequences for local wildlife communities. Using data and samples collected over three decades, we show that rainforest anthrax is a persistent and widespread cause of death for a broad range of mammalian hosts. We predict that this pathogen will accelerate the decline and possibly result in the extirpation of local chimpanzee (Pan troglodytes verus) populations. We present the epidemiology of a cryptic pathogen and show that its presence has important implications for conservation.

  17. Persistent anthrax as a major driver of wildlife mortality in a tropical rainforest

    Science.gov (United States)

    Hoffmann, Constanze; Zimmermann, Fee; Biek, Roman; Kuehl, Hjalmar; Nowak, Kathrin; Mundry, Roger; Agbor, Anthony; Angedakin, Samuel; Arandjelovic, Mimi; Blankenburg, Anja; Brazolla, Gregory; Corogenes, Katherine; Couacy-Hymann, Emmanuel; Deschner, Tobias; Dieguez, Paula; Dierks, Karsten; Düx, Ariane; Dupke, Susann; Eshuis, Henk; Formenty, Pierre; Yuh, Yisa Ginath; Goedmakers, Annemarie; Gogarten, Jan F.; Granjon, Anne-Céline; McGraw, Scott; Grunow, Roland; Hart, John; Jones, Sorrel; Junker, Jessica; Kiang, John; Langergraber, Kevin; Lapuente, Juan; Lee, Kevin; Leendertz, Siv Aina; Léguillon, Floraine; Leinert, Vera; Löhrich, Therese; Marrocoli, Sergio; Mätz-Rensing, Kerstin; Meier, Amelia; Merkel, Kevin; Metzger, Sonja; Murai, Mizuki; Niedorf, Svenja; de Nys, Hélène; Sachse, Andreas; van Schijndel, Joost; Thiesen, Ulla; Ton, Els; Wu, Doris; Wieler, Lothar H.; Boesch, Christophe; Klee, Silke R.; Wittig, Roman M.; Calvignac-Spencer, Sébastien; Leendertz, Fabian H.

    2017-08-01

    Anthrax is a globally important animal disease and zoonosis. Despite this, our current knowledge of anthrax ecology is largely limited to arid ecosystems, where outbreaks are most commonly reported. Here we show that the dynamics of an anthrax-causing agent, Bacillus cereus biovar anthracis, in a tropical rainforest have severe consequences for local wildlife communities. Using data and samples collected over three decades, we show that rainforest anthrax is a persistent and widespread cause of death for a broad range of mammalian hosts. We predict that this pathogen will accelerate the decline and possibly result in the extirpation of local chimpanzee (Pan troglodytes verus) populations. We present the epidemiology of a cryptic pathogen and show that its presence has important implications for conservation.

  18. Cationic uremic toxins affect human renal proximal tubule cell functioning through interaction with the organic cation transporter.

    Science.gov (United States)

    Schophuizen, Carolien M S; Wilmer, Martijn J; Jansen, Jitske; Gustavsson, Lena; Hilgendorf, Constanze; Hoenderop, Joost G J; van den Heuvel, Lambert P; Masereeuw, Rosalinde

    2013-12-01

    Several organic cations, such as guanidino compounds and polyamines, have been found to accumulate in plasma of patients with kidney failure due to inadequate renal clearance. Here, we studied the interaction of cationic uremic toxins with renal organic cation transport in a conditionally immortalized human proximal tubule epithelial cell line (ciPTEC). Transporter activity was measured and validated in cell suspensions by studying uptake of the fluorescent substrate 4-(4-(dimethylamino)styryl)-N-methylpyridinium-iodide (ASP(+)). Subsequently, the inhibitory potencies of the cationic uremic toxins, cadaverine, putrescine, spermine and spermidine (polyamines), acrolein (polyamine breakdown product), guanidine, and methylguanidine (guanidino compounds) were determined. Concentration-dependent inhibition of ASP(+) uptake by TPA, cimetidine, quinidine, and metformin confirmed functional endogenous organic cation transporter 2 (OCT2) expression in ciPTEC. All uremic toxins tested inhibited ASP(+) uptake, of which acrolein required the lowest concentration to provoke a half-maximal inhibition (IC50 = 44 ± 2 μM). A Dixon plot was constructed for acrolein using three independent inhibition curves with 10, 20, or 30 μM ASP(+), which demonstrated competitive or mixed type of interaction (K i = 93 ± 16 μM). Exposing the cells to a mixture of cationic uremic toxins resulted in a more potent and biphasic inhibitory response curve, indicating complex interactions between the toxins and ASP(+) uptake. In conclusion, ciPTEC proves a suitable model to study cationic xenobiotic interactions. Inhibition of cellular uptake transport was demonstrated for several uremic toxins, which might indicate a possible role in kidney disease progression during uremia.

  19. Micromotors to capture and destroy anthrax simulant spores.

    Science.gov (United States)

    Orozco, Jahir; Pan, Guoqing; Sattayasamitsathit, Sirilak; Galarnyk, Michael; Wang, Joseph

    2015-03-07

    Towards addressing the need for detecting and eliminating biothreats, we describe a micromotor-based approach for screening, capturing, isolating and destroying anthrax simulant spores in a simple and rapid manner with minimal sample processing. The B. globilli antibody-functionalized micromotors can recognize, capture and transport B. globigii spores in environmental matrices, while showing non-interactions with excess of non-target bacteria. Efficient destruction of the anthrax simulant spores is demonstrated via the micromotor-induced mixing of a mild oxidizing solution. The new micromotor-based approach paves a way to dynamic multifunctional systems that rapidly recognize, isolate, capture and destroy biological threats.

  20. The Saccharomyces boulardii CNCM I-745 Strain Shows Protective Effects against the B. anthracis LT Toxin

    Directory of Open Access Journals (Sweden)

    Rodolphe Pontier-Bres

    2015-10-01

    Full Text Available The probiotic yeast Saccharomyces boulardii (S. boulardii has been prescribed for the prophylaxis and treatment of several infectious diarrheal diseases. Gastrointestinal anthrax causes fatal systemic disease. In the present study, we investigated the protective effects conferred by Saccharomyces boulardii CNCM I-745 strain on polarized T84 columnar epithelial cells intoxicated by the lethal toxin (LT of Bacillus anthracis. Exposure of polarized T84 cells to LT affected cell monolayer integrity, modified the morphology of tight junctions and induced the formation of actin stress fibers. Overnight treatment of cells with S. boulardii before incubation with LT maintained the integrity of the monolayers, prevented morphological modification of tight junctions, restricted the effects of LT on actin remodeling and delayed LT-induced MEK-2 cleavage. Mechanistically, we demonstrated that in the presence of S. boulardii, the medium is depleted of both LF and PA sub-units of LT and the appearance of a cleaved form of PA. Our study highlights the potential of the S. boulardii CNCM I-745 strain as a prophylactic agent against the gastrointestinal form of anthrax.

  1. The Saccharomyces boulardii CNCM I-745 strain shows protective effects against the B. anthracis LT toxin.

    Science.gov (United States)

    Pontier-Bres, Rodolphe; Rampal, Patrick; Peyron, Jean-François; Munro, Patrick; Lemichez, Emmanuel; Czerucka, Dorota

    2015-10-30

    The probiotic yeast Saccharomyces boulardii (S. boulardii) has been prescribed for the prophylaxis and treatment of several infectious diarrheal diseases. Gastrointestinal anthrax causes fatal systemic disease. In the present study, we investigated the protective effects conferred by Saccharomyces boulardii CNCM I-745 strain on polarized T84 columnar epithelial cells intoxicated by the lethal toxin (LT) of Bacillus anthracis. Exposure of polarized T84 cells to LT affected cell monolayer integrity, modified the morphology of tight junctions and induced the formation of actin stress fibers. Overnight treatment of cells with S. boulardii before incubation with LT maintained the integrity of the monolayers, prevented morphological modification of tight junctions, restricted the effects of LT on actin remodeling and delayed LT-induced MEK-2 cleavage. Mechanistically, we demonstrated that in the presence of S. boulardii, the medium is depleted of both LF and PA sub-units of LT and the appearance of a cleaved form of PA. Our study highlights the potential of the S. boulardii CNCM I-745 strain as a prophylactic agent against the gastrointestinal form of anthrax.

  2. Follicle-stimulating hormone receptor-mediated uptake of sup 45 Ca sup 2+ by cultured rat Sertoli cells does not require activation of cholera toxin- or pertussis toxin-sensitive guanine nucleotide binding proteins or adenylate cyclase

    Energy Technology Data Exchange (ETDEWEB)

    Grasso, P.; Reichert, L.E. Jr. (Albany Medical College, NY (USA))

    1990-08-01

    We have previously reported that FSH stimulates flux of 45Ca2+ into cultured Sertoli cells from immature rats via voltage-sensitive and voltage-independent calcium channels. In the present study, we show that this effect of FSH does not require cholera toxin (CT)- or pertussis toxin (PT)-sensitive guanine nucleotide binding (G) protein or activation of adenylate cyclase (AC). Significant stimulation of 45Ca2+ influx was observed within 1 min, and maximal response (3.2-fold over basal levels) was achieved within 2 min after exposure to FSH. FSH-stimulated elevations in cellular cAMP paralleled increases in 45Ca2+ uptake, suggesting a possible coupling of AC activation to 45Ca2+ influx. (Bu)2cAMP, however, was not able to enhance 45Ca2+ uptake over basal levels at a final concentration of 1000 microM, although a concentration-related increase in androstenedione conversion to estradiol was evident. Exposure of Sertoli cells to CT (10 ng/ml) consistently stimulated basal levels of androstenedione conversion to estradiol but had no effect on basal levels of 45Ca2+ uptake. Similarly, CT had no effect on FSH-induced 45Ca2+ uptake, but potentiated FSH-stimulated estradiol synthesis. PT (10 ng/ml) augmented basal and FSH-stimulated estradiol secretion without affecting 45Ca2+ influx. The adenosine analog N6-phenylisopropyladenosine, which binds to Gi-coupled adenosine receptors on Sertoli cells, inhibited FSH-stimulated androgen conversion to estradiol in a dose-related (1-1000 nM) manner, but FSH-stimulated 45Ca2+ influx remained unchanged. Our results show that in contrast to FSH-stimulated estradiol synthesis, the flux of 45Ca2+ into Sertoli cells in response to FSH is not mediated either directly or indirectly by CT- or PT-sensitive G protein, nor does it require activation of AC. Our data further suggest that the FSH receptor itself may function as a calcium channel.

  3. EGA Protects Mammalian Cells from Clostridium difficile CDT, Clostridium perfringens Iota Toxin and Clostridium botulinum C2 Toxin.

    Science.gov (United States)

    Schnell, Leonie; Mittler, Ann-Katrin; Sadi, Mirko; Popoff, Michel R; Schwan, Carsten; Aktories, Klaus; Mattarei, Andrea; Azarnia Tehran, Domenico; Montecucco, Cesare; Barth, Holger

    2016-04-01

    The pathogenic bacteria Clostridium difficile, Clostridium perfringens and Clostridium botulinum produce the binary actin ADP-ribosylating toxins CDT, iota and C2, respectively. These toxins are composed of a transport component (B) and a separate enzyme component (A). When both components assemble on the surface of mammalian target cells, the B components mediate the entry of the A components via endosomes into the cytosol. Here, the A components ADP-ribosylate G-actin, resulting in depolymerization of F-actin, cell-rounding and eventually death. In the present study, we demonstrate that 4-bromobenzaldehyde N-(2,6-dimethylphenyl)semicarbazone (EGA), a compound that protects cells from multiple toxins and viruses, also protects different mammalian epithelial cells from all three binary actin ADP-ribosylating toxins. In contrast, EGA did not inhibit the intoxication of cells with Clostridium difficile toxins A and B, indicating a possible different entry route for this toxin. EGA does not affect either the binding of the C2 toxin to the cells surface or the enzyme activity of the A components of CDT, iota and C2, suggesting that this compound interferes with cellular uptake of the toxins. Moreover, for C2 toxin, we demonstrated that EGA inhibits the pH-dependent transport of the A component across cell membranes. EGA is not cytotoxic, and therefore, we propose it as a lead compound for the development of novel pharmacological inhibitors against clostridial binary actin ADP-ribosylating toxins.

  4. EGA Protects Mammalian Cells from Clostridium difficile CDT, Clostridium perfringens Iota Toxin and Clostridium botulinum C2 Toxin

    Science.gov (United States)

    Schnell, Leonie; Mittler, Ann-Katrin; Sadi, Mirko; Popoff, Michel R.; Schwan, Carsten; Aktories, Klaus; Mattarei, Andrea; Tehran, Domenico Azarnia; Montecucco, Cesare; Barth, Holger

    2016-01-01

    The pathogenic bacteria Clostridium difficile, Clostridium perfringens and Clostridium botulinum produce the binary actin ADP-ribosylating toxins CDT, iota and C2, respectively. These toxins are composed of a transport component (B) and a separate enzyme component (A). When both components assemble on the surface of mammalian target cells, the B components mediate the entry of the A components via endosomes into the cytosol. Here, the A components ADP-ribosylate G-actin, resulting in depolymerization of F-actin, cell-rounding and eventually death. In the present study, we demonstrate that 4-bromobenzaldehyde N-(2,6-dimethylphenyl)semicarbazone (EGA), a compound that protects cells from multiple toxins and viruses, also protects different mammalian epithelial cells from all three binary actin ADP-ribosylating toxins. In contrast, EGA did not inhibit the intoxication of cells with Clostridium difficile toxins A and B, indicating a possible different entry route for this toxin. EGA does not affect either the binding of the C2 toxin to the cells surface or the enzyme activity of the A components of CDT, iota and C2, suggesting that this compound interferes with cellular uptake of the toxins. Moreover, for C2 toxin, we demonstrated that EGA inhibits the pH-dependent transport of the A component across cell membranes. EGA is not cytotoxic, and therefore, we propose it as a lead compound for the development of novel pharmacological inhibitors against clostridial binary actin ADP-ribosylating toxins. PMID:27043629

  5. Defining Moments in MMWR History: CDC's Response to Intentional Release of Anthrax - 2001

    Centers for Disease Control (CDC) Podcasts

    On October 4, 2001, shortly after the September 11 attacks in New York City and Washington, DC, the Palm Beach County Health Department, the Florida State Department of Health, and CDC reported a case of anthrax in a 63-year-old man from Florida. This case was first reported in MMWR and marked the beginning of a series of anthrax cases that resulted from intentional delivery of Bacillus anthracis spores sent through the mail. In this podcast, Dr. Sherif Zaki recalls CDC's investigation and response to the anthrax attacks.

  6. Detailed Safety Review of Anthrax Vaccine Adsorbed

    National Research Council Canada - National Science Library

    2001-01-01

    To date, 18 human studies have assessed the safety of anthrax vaccination. These studies, some stretching back almost 50 years, reported adverse events after vaccination in varying degrees of detail...

  7. Semicarbazone EGA Inhibits Uptake of Diphtheria Toxin into Human Cells and Protects Cells from Intoxication

    Directory of Open Access Journals (Sweden)

    Leonie Schnell

    2016-07-01

    Full Text Available Diphtheria toxin is a single-chain protein toxin that invades human cells by receptor-mediated endocytosis. In acidic endosomes, its translocation domain inserts into endosomal membranes and facilitates the transport of the catalytic domain (DTA from endosomal lumen into the host cell cytosol. Here, DTA ADP-ribosylates elongation factor 2 inhibits protein synthesis and leads to cell death. The compound 4-bromobenzaldehyde N-(2,6-dimethylphenylsemicarbazone (EGA has been previously shown to protect cells from various bacterial protein toxins which deliver their enzymatic subunits from acidic endosomes to the cytosol, including Bacillus anthracis lethal toxin and the binary clostridial actin ADP-ribosylating toxins C2, iota and Clostridium difficile binary toxin (CDT. Here, we demonstrate that EGA also protects human cells from diphtheria toxin by inhibiting the pH-dependent translocation of DTA across cell membranes. The results suggest that EGA might serve for treatment and/or prevention of the severe disease diphtheria.

  8. Clostridial Binary Toxins: Iota and C2 Family Portraits

    Science.gov (United States)

    Stiles, Bradley G.; Wigelsworth, Darran J.; Popoff, Michel R.; Barth, Holger

    2011-01-01

    There are many pathogenic Clostridium species with diverse virulence factors that include protein toxins. Some of these bacteria, such as C. botulinum, C. difficile, C. perfringens, and C. spiroforme, cause enteric problems in animals as well as humans. These often fatal diseases can partly be attributed to binary protein toxins that follow a classic AB paradigm. Within a targeted cell, all clostridial binary toxins destroy filamentous actin via mono-ADP-ribosylation of globular actin by the A component. However, much less is known about B component binding to cell-surface receptors. These toxins share sequence homology amongst themselves and with those produced by another Gram-positive, spore-forming bacterium also commonly associated with soil and disease: Bacillus anthracis. This review focuses upon the iota and C2 families of clostridial binary toxins and includes: (1) basics of the bacterial source; (2) toxin biochemistry; (3) sophisticated cellular uptake machinery; and (4) host–cell responses following toxin-mediated disruption of the cytoskeleton. In summary, these protein toxins aid diverse enteric species within the genus Clostridium. PMID:22919577

  9. Whole Genome Analysis of Injectional Anthrax Identifies Two Disease Clusters Spanning More Than 13 Years

    Directory of Open Access Journals (Sweden)

    Paul Keim

    2015-11-01

    Lay Person Interpretation: Injectional anthrax has been plaguing heroin drug users across Europe for more than 10 years. In order to better understand this outbreak, we assessed genomic relationships of all available injectional anthrax strains from four countries spanning a >12 year period. Very few differences were identified using genome-based analysis, but these differentiated the isolates into two distinct clusters. This strongly supports a hypothesis of at least two separate anthrax spore contamination events perhaps during the drug production processes. Identification of two events would not have been possible from standard epidemiological analysis. These comprehensive data will be invaluable for classifying future injectional anthrax isolates and for future geographic attribution.

  10. Modeling the environmental suitability of anthrax in Ghana and estimating populations at risk: Implications for vaccination and control.

    Science.gov (United States)

    Kracalik, Ian T; Kenu, Ernest; Ayamdooh, Evans Nsoh; Allegye-Cudjoe, Emmanuel; Polkuu, Paul Nokuma; Frimpong, Joseph Asamoah; Nyarko, Kofi Mensah; Bower, William A; Traxler, Rita; Blackburn, Jason K

    2017-10-01

    Anthrax is hyper-endemic in West Africa. Despite the effectiveness of livestock vaccines in controlling anthrax, underreporting, logistics, and limited resources makes implementing vaccination campaigns difficult. To better understand the geographic limits of anthrax, elucidate environmental factors related to its occurrence, and identify human and livestock populations at risk, we developed predictive models of the environmental suitability of anthrax in Ghana. We obtained data on the location and date of livestock anthrax from veterinary and outbreak response records in Ghana during 2005-2016, as well as livestock vaccination registers and population estimates of characteristically high-risk groups. To predict the environmental suitability of anthrax, we used an ensemble of random forest (RF) models built using a combination of climatic and environmental factors. From 2005 through the first six months of 2016, there were 67 anthrax outbreaks (851 cases) in livestock; outbreaks showed a seasonal peak during February through April and primarily involved cattle. There was a median of 19,709 vaccine doses [range: 0-175 thousand] administered annually. Results from the RF model suggest a marked ecological divide separating the broad areas of environmental suitability in northern Ghana from the southern part of the country. Increasing alkaline soil pH was associated with a higher probability of anthrax occurrence. We estimated 2.2 (95% CI: 2.0, 2.5) million livestock and 805 (95% CI: 519, 890) thousand low income rural livestock keepers were located in anthrax risk areas. Based on our estimates, the current anthrax vaccination efforts in Ghana cover a fraction of the livestock potentially at risk, thus control efforts should be focused on improving vaccine coverage among high risk groups.

  11. Modeling the environmental suitability of anthrax in Ghana and estimating populations at risk: Implications for vaccination and control.

    Directory of Open Access Journals (Sweden)

    Ian T Kracalik

    2017-10-01

    Full Text Available Anthrax is hyper-endemic in West Africa. Despite the effectiveness of livestock vaccines in controlling anthrax, underreporting, logistics, and limited resources makes implementing vaccination campaigns difficult. To better understand the geographic limits of anthrax, elucidate environmental factors related to its occurrence, and identify human and livestock populations at risk, we developed predictive models of the environmental suitability of anthrax in Ghana. We obtained data on the location and date of livestock anthrax from veterinary and outbreak response records in Ghana during 2005-2016, as well as livestock vaccination registers and population estimates of characteristically high-risk groups. To predict the environmental suitability of anthrax, we used an ensemble of random forest (RF models built using a combination of climatic and environmental factors. From 2005 through the first six months of 2016, there were 67 anthrax outbreaks (851 cases in livestock; outbreaks showed a seasonal peak during February through April and primarily involved cattle. There was a median of 19,709 vaccine doses [range: 0-175 thousand] administered annually. Results from the RF model suggest a marked ecological divide separating the broad areas of environmental suitability in northern Ghana from the southern part of the country. Increasing alkaline soil pH was associated with a higher probability of anthrax occurrence. We estimated 2.2 (95% CI: 2.0, 2.5 million livestock and 805 (95% CI: 519, 890 thousand low income rural livestock keepers were located in anthrax risk areas. Based on our estimates, the current anthrax vaccination efforts in Ghana cover a fraction of the livestock potentially at risk, thus control efforts should be focused on improving vaccine coverage among high risk groups.

  12. Cutaneous anthrax in the northeast of Iran: A case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Mohsen Karbalaei Zadeh Babaki

    2018-02-01

    Full Text Available Bacillus anthracis is an aerobic, gram-positive, and spore-forming Bacillus species. The most common form of anthrax infection is the cutaneous form. The infection usually develops several days after exposure to products of infected animals and manifest as black sore with severe swelling on the skin.A 52-year-old female with a black and swollen lesion on her index finger presented to Ghaem Hospital, Mashhad, Iran, in October 2015. Biopsy and swab culture were performed immediately. Cutaneous anthrax was characterized by microscopic examination of B. anthracis spore using Gram staining. The patient was then treated with antibiotics after diagnosis.According to the reports of Provincial Health Center of Khorasan Razavi, northeast of Iran, no cases of anthrax have been reported in humans since 2013. There were neither occupational risk factors, nor any routine predisposing factors for acquiring anthrax in this woman. Although this patient is the first case reported with cutaneous anthrax since the past three years, two cases of sheep anthrax have been reported in Khorasan Razavi Province during 2013-2015. This patient had a history of contact with the skull of a slaughtered sheep. The patient was treated after making correct and rapid diagnosis and sufficient antibiotic therapy.

  13. Uptake, transfer and elimination kinetics of paralytic shellfish toxins in common octopus (Octopus vulgaris).

    Science.gov (United States)

    Lopes, Vanessa M; Baptista, Miguel; Repolho, Tiago; Rosa, Rui; Costa, Pedro Reis

    2014-01-01

    Marine phycotoxins derived from harmful algal blooms are known to be associated with mass mortalities in the higher trophic levels of marine food webs. Bivalve mollusks and planktivorous fish are the most studied vectors of marine phycotoxins. However, field surveys recently showed that cephalopod mollusks also constitute potential vectors of toxins. Thus, here we determine, for the first time, the time course of accumulation and depuration of paralytic shellfish toxins (PSTs) in the common octopus (Octopus vulgaris). Concomitantly, the underlying kinetics of toxin transfer between tissue compartments was also calculated. Naturally contaminated clams were used to orally expose the octopus to PSTs during 6 days. Afterwards, octopus specimens were fed with non-contaminated shellfish during 10 days of depuration period. Toxins reached the highest concentrations in the digestive gland surpassing the levels in the kidney by three orders of magnitude. PSTs were not detected in any other tissue analyzed. Net accumulation efficiencies of 42% for GTX5, 36% for dcSTX and 23% for C1+2 were calculated for the digestive gland. These compounds were the most abundant toxins in both digestive gland and the contaminated shellfish diet. The small differences in relative abundance of each toxin observed between the prey and the cephalopod predator indicates low conversion rates of these toxins. The depuration period was better described using an exponential decay model comprising a single compartment - the entire viscera. It is worth noting that since octopuses' excretion and depuration rates are low, the digestive gland is able to accumulate very high toxin concentrations for long periods of time. Therefore, the present study clearly shows that O. vulgaris is a high-potential vector of PSTs during and even after the occurrence of these toxic algal blooms. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Acid Sphingomyelinase Promotes Cellular Internalization of Clostridium perfringens Iota-Toxin.

    Science.gov (United States)

    Nagahama, Masahiro; Takehara, Masaya; Miyamoto, Kazuaki; Ishidoh, Kazumi; Kobayashi, Keiko

    2018-05-20

    Clostridium perfringens iota-toxin is a binary actin-ADP-ribosylating toxin composed of the enzymatic component Ia and receptor binding component Ib. Ib binds to a cell surface receptor, forms Ib oligomer in lipid rafts, and associates with Ia. The Ia-Ib complex then internalizes by endocytosis. Here, we showed that acid sphingomyelinase (ASMase) facilitates the cellular uptake of iota-toxin. Inhibitions of ASMase and lysosomal exocytosis by respective blockers depressed cell rounding induced by iota-toxin. The cytotoxicity of the toxin increased in the presence of Ca 2+ in extracellular fluids. Ib entered target cells in the presence but not the absence of Ca 2+ . Ib induced the extracellular release of ASMase in the presence of Ca 2+ . ASMase siRNA prevented the cell rounding induced by iota-toxin. Furthermore, treatment of the cells with Ib resulted in the production of ceramide in cytoplasmic vesicles. These observations showed that ASMase promotes the internalization of iota-toxin into target cells.

  15. Historical evolution of human anthrax from occupational disease to potentially global threat as bioweapon.

    Science.gov (United States)

    D'Amelio, Enrico; Gentile, Bernardina; Lista, Florigio; D'Amelio, Raffaele

    2015-12-01

    Anthrax is caused by Bacillus anthracis, which can naturally infect livestock, wildlife and occupationally exposed humans. However, for its resistance due to spore formation, ease of dissemination, persistence in the environment and high virulence, B. anthracis has been considered the most serious bioterrorism agent for a long time. During the last century anthrax evolved from limited natural disease to potentially global threat if used as bioweapon. Several factors may mitigate the consequences of an anthrax attack, including 1. the capability to promptly recognize and manage the illness and its public health consequences; 2. the limitation of secondary contamination risk through an appropriate decontamination; and 3. the evolution of genotyping methods (for microbes characterization at high resolution level) that can influence the course and/or focus of investigations, impacting the response of the government to an attack. A PubMed search has been done using the key words “bioterrorism anthrax”. Over one thousand papers have been screened and the most significant examined to present a comprehensive literature review in order to discuss the current knowledge and strategies in preparedness for a possible deliberate release of B. anthracis spores and to indicate the most current and complete documents in which to deepen. The comprehensive analysis of the two most relevant unnatural anthrax release events, Sverdlovsk in the former Soviet Union (1979) and the contaminated letters in the USA (2001), shows that inhalational anthrax may easily and cheaply be spread resulting in serious consequences. The damage caused by an anthrax attack can be limited if public health organization, first responders, researchers and investigators will be able to promptly manage anthrax cases and use new technologies for decontamination methods and in forensic microbiology.

  16. Changing patterns of human anthrax in Azerbaijan during the post-Soviet and preemptive livestock vaccination eras.

    Directory of Open Access Journals (Sweden)

    Ian Kracalik

    2014-07-01

    Full Text Available We assessed spatial and temporal changes in the occurrence of human anthrax in Azerbaijan during 1984 through 2010. Data on livestock outbreaks, vaccination efforts, and human anthrax incidence during Soviet governance, post-Soviet governance, preemptive livestock vaccination were analyzed. To evaluate changes in the spatio-temporal distribution of anthrax, we used a combination of spatial analysis, cluster detection, and weighted least squares segmented regression. Results indicated an annual percent change in incidence of (+11.95% from 1984 to 1995 followed by declining rate of -35.24% after the initiation of livestock vaccination in 1996. Our findings also revealed geographic variation in the spatial distribution of reporting; cases were primarily concentrated in the west early in the study period and shifted eastward as time progressed. Over twenty years after the dissolution of the Soviet Union, the distribution of human anthrax in Azerbaijan has undergone marked changes. Despite decreases in the incidence of human anthrax, continued control measures in livestock are needed to mitigate its occurrence. The shifting patterns of human anthrax highlight the need for an integrated "One Health" approach that takes into account the changing geographic distribution of the disease.

  17. Evaluation of cutaneous anthrax cases during an outbreak in the east region of Turkey.

    Science.gov (United States)

    Kural Ünüvar, Esra; Akgün Karapınar, Deniz Bahar; Dizen Namdar, Nazlı

    2016-11-17

    Anthrax is a zoonotic infection caused by Bacillus anthracis. We aimed to retrospectively evaluate cutaneous anthrax cases that occurred during an outbreak in eastern Turkey (Hakkari-Yüksekova), where people mostly earn their living from animal husbandry. Forty-six cutaneous anthrax patients that were admitted to the hospital during a very short duration of 3 months (June-August 2011) were evaluated. Out of 46 patients, 27 (52%) were women and 19 (48%) were men. The mean age was 37 ± 13 years. The distribution of occupations was 1 butcher, 1 cook, 5 farmers, 27 housewives, 11 shepherds, and 1 teacher. Multiple lesions were seen in 7 patients (15%) and the rest of the patients had only 1 lesion. We observed significant clinical differences among the cases and noted which particular symptoms were associated with the various skin lesions. We treated our patients with intramuscular procaine penicillin or oral ciprofloxacin/doxycycline. Anthrax is an important health problem that can cause lethal outbreaks. Therefore, one should think about anthrax when faced with a patient with history of animal contact that has a painless ulcer with edema and/or vesicles, especially in endemic countries like Turkey.

  18. Awareness and attitudes towards anthrax and meat consumption practices among affected communities in Zambia: A mixed methods approach.

    Directory of Open Access Journals (Sweden)

    Doreen Chilolo Sitali

    2017-05-01

    Full Text Available In Zambia, human anthrax cases often occur following cases of animal anthrax. Human behaviour has been implicated in this transmission. The objective of the study was to explore human behavioural patterns that may contribute to outbreaks of anthrax among affected communities.A mixed methods study was conducted in four districts of Zambia from November 2015 to February 2016. A cross sectional survey involving 1,127 respondents, six focus group discussions and seven key informant interviews with professional staff were conducted. Descriptive statistics on socio-demographic characteristics, awareness of anthrax, attitudes towards cattle vaccination and risk factors for anthrax and vaccination practices were run using STATA 12 for analysis.Overall, 88% of respondents heard about anthrax, 85.1% were aware that anthrax is transmitted by eating infected meat and 64.2% knew that animals and humans can be infected with anthrax. However, qualitative data suggested that awareness of anthrax varied across communities. Qualitative findings also indicated that, in Western and Muchinga provinces, human anthrax was transmitted by eating infected beef and hippo (Hippopotamus amphibious meat, respectively. Although survey data indicated that 62.2% of respondents vaccinated their animals, qualitative interviews and annual vaccination reports indicated low vaccination rates, which were attributed to inadequate veterinary service provision and logistical challenges. While 82% of respondents indicated that they reported animal deaths to veterinary officers, only 13.5% of respondents buried infected carcasses. Majority (78.1% of respondents either ate, sold or shared meat from dead animals with other community members. Poverty, lack of access to meat protein and economic reasons were cited as drivers for consuming infected meat.Health education campaigns must be intensified to reduce the risk of human exposure. Veterinary extension services should be strengthened and

  19. Dinophysis Toxins: Causative Organisms, Distribution and Fate in Shellfish

    Science.gov (United States)

    Reguera, Beatriz; Riobó, Pilar; Rodríguez, Francisco; Díaz, Patricio A.; Pizarro, Gemita; Paz, Beatriz; Franco, José M.; Blanco, Juan

    2014-01-01

    Several Dinophysis species produce diarrhoetic toxins (okadaic acid and dinophysistoxins) and pectenotoxins, and cause gastointestinal illness, Diarrhetic Shellfish Poisoning (DSP), even at low cell densities (Chile, and Europe. Toxicity and toxin profiles are very variable, more between strains than species. The distribution of DSP events mirrors that of shellfish production areas that have implemented toxin regulations, otherwise misinterpreted as bacterial or viral contamination. Field observations and laboratory experiments have shown that most of the toxins produced by Dinophysis are released into the medium, raising questions about the ecological role of extracelular toxins and their potential uptake by shellfish. Shellfish contamination results from a complex balance between food selection, adsorption, species-specific enzymatic transformations, and allometric processes. Highest risk areas are those combining Dinophysis strains with high cell content of okadaates, aquaculture with predominance of mytilids (good accumulators of toxins), and consumers who frequently include mussels in their diet. Regions including pectenotoxins in their regulated phycotoxins will suffer from much longer harvesting bans and from disloyal competition with production areas where these toxins have been deregulated. PMID:24447996

  20. Anthrax does not forgive mistakes: the information assessment following the yamal peninsula outbreak in the summer of 2016

    Directory of Open Access Journals (Sweden)

    I. V. Shestakova

    2017-01-01

    Full Text Available For the first time in a long time period the sources of actual information about anthrax in Russia and in the world are systematized. The essence of the problem, features of epidemiology and clinical manifestations of the current forms of anthrax disease are analyzed. The upgraded classification of anthrax is presented, the clinical manifestations of oro-oropharyngeal varieties of intestinal form and injectable form of anthrax are described, according to extensive literature data and international guidelines and recommendations. The recommendations for clinical management of patients and diagnosis of disease are given. The need for strict compliance to the vaccination requirements of anthrax among animals and persons from risk groups is proven.

  1. Naturally acquired anthrax antibodies in a cheetah (Acinonyx jubatus) in Botswana.

    Science.gov (United States)

    Good, Kyle M; Houser, Annmarie; Arntzen, Lorraine; Turnbull, Peter C B

    2008-07-01

    An outbreak of anthrax in the Jwana Game Reserve in Jwaneng, Botswana, was first observed when three cheetahs (Acinonyx jubatus) died of the disease in November 2004. In the aftermath of this event, banked serum samples collected from 23 wild-caught cheetahs were examined, by the inhibition enzyme-linked immunoassay (ELISA), for antibodies to the protective antigen (PA) of Bacillus anthracis. Of the 23 cheetahs, 16 regularly accessed the reserve. Antibodies to PA were detected in one cheetah collected in May 2004, indicating the disease was occurring well before it was first noticed. This appears to be the first demonstration of naturally acquired anthrax antibodies in cheetahs. The finding of one antibody-positive animal amongst at least 16 potentially exposed individuals is consistent with existing reports that it is uncommon for cheetahs to develop natural immunity to anthrax.

  2. Diphtheria toxin-induced channels in Vero cells selective for monovalent cations

    International Nuclear Information System (INIS)

    Sandvig, K.; Olsnes, S.

    1988-01-01

    Ion fluxes associated with translocation of diphtheria toxin across the surface membrane of Vero cells were studied. When cells with surface-bound toxin were exposed to low pH to induce toxin entry, the cells became permeable to Na+, K+, H+, choline+, and glucosamine+. There was no increased permeability to Cl-, SO4(-2), glucose, or sucrose, whereas the uptake of 45 Ca2+ was slightly increased. The influx of Ca2+, which appears to be different from that of monovalent cations, was reduced by several inhibitors of anion transport and by verapamil, Mn2+, Co2+, and Ca2+, but not by Mg2+. The toxin-induced fluxes of N+, K+, and protons were inhibited by Cd2+. Cd2+ also protected the cells against intoxication by diphtheria toxin, suggesting that the open cation-selective channel is required for toxin translocation. The involvement of the toxin receptor is discussed

  3. Risk Assessment of Shellfish Toxins

    Directory of Open Access Journals (Sweden)

    Rex Munday

    2013-11-01

    Full Text Available Complex secondary metabolites, some of which are highly toxic to mammals, are produced by many marine organisms. Some of these organisms are important food sources for marine animals and, when ingested, the toxins that they produce may be absorbed and stored in the tissues of the predators, which then become toxic to animals higher up the food chain. This is a particular problem with shellfish, and many cases of poisoning are reported in shellfish consumers each year. At present, there is no practicable means of preventing uptake of the toxins by shellfish or of removing them after harvesting. Assessment of the risk posed by such toxins is therefore required in order to determine levels that are unlikely to cause adverse effects in humans and to permit the establishment of regulatory limits in shellfish for human consumption. In the present review, the basic principles of risk assessment are described, and the progress made toward robust risk assessment of seafood toxins is discussed. While good progress has been made, it is clear that further toxicological studies are required before this goal is fully achieved.

  4. Frequent and seasonally variable sublethal anthrax infections are accompanied by short-lived immunity in an endemic system.

    Science.gov (United States)

    Cizauskas, Carrie A; Bellan, Steven E; Turner, Wendy C; Vance, Russell E; Getz, Wayne M

    2014-09-01

    Few studies have examined host-pathogen interactions in wildlife from an immunological perspective, particularly in the context of seasonal and longitudinal dynamics. In addition, though most ecological immunology studies employ serological antibody assays, endpoint titre determination is usually based on subjective criteria and needs to be made more objective. Despite the fact that anthrax is an ancient and emerging zoonotic infectious disease found world-wide, its natural ecology is not well understood. In particular, little is known about the adaptive immune responses of wild herbivore hosts against Bacillus anthracis. Working in the natural anthrax system of Etosha National Park, Namibia, we collected 154 serum samples from plains zebra (Equus quagga), 21 from springbok (Antidorcas marsupialis) and 45 from African elephants (Loxodonta africana) over 2-3 years, resampling individuals when possible for seasonal and longitudinal comparisons. We used enzyme-linked immunosorbent assays to measure anti-anthrax antibody titres and developed three increasingly conservative models to determine endpoint titres with more rigourous, objective mensuration. Between 52 and 87% of zebra, 0-15% of springbok and 3-52% of elephants had measurable anti-anthrax antibody titres, depending on the model used. While the ability of elephants and springbok to mount anti-anthrax adaptive immune responses is still equivocal, our results indicate that zebra in ENP often survive sublethal anthrax infections, encounter most B. anthracis in the wet season and can partially booster their immunity to B. anthracis. Thus, rather than being solely a lethal disease, anthrax often occurs as a sublethal infection in some susceptible hosts. Though we found that adaptive immunity to anthrax wanes rapidly, subsequent and frequent sublethal B. anthracis infections cause maturation of anti-anthrax immunity. By triggering host immune responses, these common sublethal infections may act as

  5. Adenylate Cyclase Toxin promotes bacterial internalisation into non phagocytic cells.

    Science.gov (United States)

    Martín, César; Etxaniz, Asier; Uribe, Kepa B; Etxebarria, Aitor; González-Bullón, David; Arlucea, Jon; Goñi, Félix M; Aréchaga, Juan; Ostolaza, Helena

    2015-09-08

    Bordetella pertussis causes whooping cough, a respiratory infectious disease that is the fifth largest cause of vaccine-preventable death in infants. Though historically considered an extracellular pathogen, this bacterium has been detected both in vitro and in vivo inside phagocytic and non-phagocytic cells. However the precise mechanism used by B. pertussis for cell entry, or the putative bacterial factors involved, are not fully elucidated. Here we find that adenylate cyclase toxin (ACT), one of the important toxins of B. pertussis, is sufficient to promote bacterial internalisation into non-phagocytic cells. After characterization of the entry route we show that uptake of "toxin-coated bacteria" proceeds via a clathrin-independent, caveolae-dependent entry pathway, allowing the internalised bacteria to survive within the cells. Intracellular bacteria were found inside non-acidic endosomes with high sphingomyelin and cholesterol content, or "free" in the cytosol of the invaded cells, suggesting that the ACT-induced bacterial uptake may not proceed through formation of late endolysosomes. Activation of Tyr kinases and toxin-induced Ca(2+)-influx are essential for the entry process. We hypothesize that B. pertussis might use ACT to activate the endocytic machinery of non-phagocytic cells and gain entry into these cells, in this way evading the host immune system.

  6. Brown spider dermonecrotic toxin directly induces nephrotoxicity

    International Nuclear Information System (INIS)

    Chaim, Olga Meiri; Sade, Youssef Bacila; Bertoni da Silveira, Rafael; Toma, Leny; Kalapothakis, Evanguedes; Chavez-Olortegui, Carlos; Mangili, Oldemir Carlos; Gremski, Waldemiro; Dietrich, Carl Peter von; Nader, Helena B.; Sanches Veiga, Silvio

    2006-01-01

    culture substratum. In addition, dermonecrotic toxin treatment of MDCK cells changed their viability evaluated by XTT and Neutral-Red Uptake methodologies. The present results point to brown spider dermonecrotic toxin cytotoxicity upon renal structures in vivo and renal cells in vitro and provide experimental evidence that this brown spider toxin is directly involved in nephrotoxicity evoked during Loxosceles spider venom accidents

  7. Anthrax and the Geochemistry of Soils in the Contiguous United States

    Directory of Open Access Journals (Sweden)

    Dale W. Griffin

    2014-08-01

    Full Text Available Soil geochemical data from sample sites in counties that reported occurrences of anthrax in wildlife and livestock since 2000 were evaluated against counties within the same states (MN, MT, ND, NV, OR, SD and TX that did not report occurrences. These data identified the elements, calcium (Ca, manganese (Mn, phosphorus (P and strontium (Sr, as having statistically significant differences in concentrations between county type (anthrax occurrence versus no occurrence. Tentative threshold values of the lowest concentrations of each of these elements (Ca = 0.43 wt %, Mn = 142 mg/kg, P = 180 mg/kg and Sr = 51 mg/kg and average concentrations (Ca = 1.3 wt %, Mn = 463 mg/kg, P = 580 mg/kg and Sr = 170 mg/kg were identified from anthrax-positive counties as prospective investigative tools in determining whether an outbreak had “potential” or was “likely” at any given geographic location in the contiguous United States.

  8. Obiltoxaximab Prevents Disseminated Bacillus anthracis Infection and Improves Survival during Pre- and Postexposure Prophylaxis in Animal Models of Inhalational Anthrax

    Science.gov (United States)

    Yamamoto, Brent J.; Shadiack, Annette M.; Carpenter, Sarah; Sanford, Daniel; Henning, Lisa N.; Gonzales, Nestor; O'Connor, Edward; Casey, Leslie S.

    2016-01-01

    The Centers for Disease Control and Prevention recommend adjunctive antitoxins when systemic anthrax is suspected. Obiltoxaximab, a monoclonal antibody against protective antigen (PA), is approved for treatment of inhalational anthrax in combination with antibiotics and for prophylaxis when alternative therapies are not available. The impact of toxin neutralization with obiltoxaximab during pre- and postexposure prophylaxis was explored, and efficacy results that supported the prophylaxis indication are presented here. New Zealand White rabbits and cynomolgus macaques received obiltoxaximab as a single intramuscular or intravenous dose of 2 to 16 mg/kg of body weight at various times relative to Bacillus anthracis aerosol spore challenge. The primary endpoint was survival, and effect of treatment timing was explored. In rabbits, obiltoxaximab administration 9 h postchallenge singly or combined with a 5-day levofloxacin regimen protected 89% to 100% of animals compared to 33% with levofloxacin monotherapy. In cynomolgus macaques, a single intramuscular dose of 16 mg/kg obiltoxaximab led to 100% survival when given 1 to 3 days preexposure and 83% to 100% survival when given 18 to 24 h postexposure and prior to systemic bacteremia onset. Obiltoxaximab administration after bacteremia onset resulted in lower (25% to 50%) survival rates reflective of treatment setting. Prophylactic administration of obiltoxaximab before spore challenge or to spore-challenged animals before systemic bacterial dissemination is efficacious in promoting survival, ameliorating toxemia, and inhibiting bacterial spread to the periphery. PMID:27431219

  9. Uptake of inorganic mercury by human locus ceruleus and corticomotor neurons: implications for amyotrophic lateral sclerosis

    Science.gov (United States)

    2013-01-01

    Background Environmental toxins are suspected to play a role in the pathogenesis of amyotrophic lateral sclerosis (ALS). In an attempt to determine which pathways these toxins can use to enter motor neurons we compared the distribution of mercury in the CNS of a human and of mice that had been exposed to inorganic mercury. Results In the human who had been exposed to metallic mercury, mercury was seen predominantly in the locus ceruleus and corticomotor neurons, as well as in scattered glial cells. In mice that had been exposed to mercury vapor or mercuric chloride, mercury was present in lower motor neurons in the spinal cord and brain stem. Conclusions In humans, inorganic mercury can be taken up predominantly by corticomotor neurons, possibly when the locus ceruleus is upregulated by stress. This toxin uptake into corticomotor neurons is in accord with the hypothesis that ALS originates in these upper motor neurons. In mice, inorganic mercury is taken up predominantly by lower motor neurons. The routes toxins use to enter motor neurons depends on the nature of the toxin, the duration of exposure, and possibly the amount of stress (for upper motor neuron uptake) and exercise (for lower motor neuron uptake) at the time of toxin exposure. PMID:24252585

  10. Patient and family physician preferences for care and communication in the eventuality of anthrax terrorism.

    Science.gov (United States)

    Kahan, Ernesto; Fogelman, Yacov; Kitai, Eliezer; Vinker, Shlomo

    2003-08-01

    The threat of bioterrorism consequent to the September 11, 2001 attack in the USA generated suggestions for improved medical response mainly through hospital preparedness. The aim of the present study was to investigate the impact of this period of tension on patients' first choice for care and for receiving relevant information, and on primary care doctors' feelings of responsibility in the eventuality of an anthrax attack. During October 11-31, 2001, 500 patients from 30 clinics throughout Israel were asked to complete a questionnaire on their awareness of the anthrax threat, measures taken to prepare for it, and preferred sources of care and information. Their 30 physicians, and an additional 20, completed a questionnaire on knowledge about anthrax and anthrax-related patient behaviours and clinic visits. The outstanding finding was the low rate (30%) of patients who chose the hospital emergency department as their first choice for care or information if they were worried about an anthrax attack or the media communicated that an attack was in progress. The other two-thirds preferred their family doctor or the health authorities. Most of the physicians (89%) felt it was their responsibility to treat anthrax-infected patients and that they should therefore be supplied with appropriate guidelines. This study suggests that in Israel, a country with a high degree of awareness of civil defence aspects, both patients and primary care doctors believe that family physicians should have a major role in the case of bioterrorist attacks. This must be seriously considered during formulation of relevant health services programmes.

  11. Identification and validation of a linear protective neutralizing epitope in the β-pore domain of alpha toxin.

    Science.gov (United States)

    Oscherwitz, Jon; Cease, Kemp B

    2015-01-01

    The plethora of virulence factors associated with Staphylococcus aureus make this bacterium an attractive candidate for a molecularly-designed epitope-focused vaccine. This approach, which necessitates the identification of neutralizing epitopes for incorporation into a vaccine construct, is being evaluated for pathogens where conventional approaches have failed to elicit protective humoral responses, like HIV-1 and malaria, but may also hold promise for pathogens like S. aureus, where the elicitation of humoral immunity against multiple virulence factors may be required for development of an effective vaccine. Among the virulence factors employed by S. aureus, animal model and epidemiological data suggest that alpha toxin, a multimeric β-pore forming toxin like protective antigen from Bacillus anthracis, is particularly critical, yet no candidate neutralizing epitopes have been delineated in alpha toxin to date. We have previously shown that a linear determinant in the 2β2-2β3 loop of the pore forming domain of B. anthracis protective antigen is a linear neutralizing epitope. Antibody against this site is highly potent for neutralizing anthrax lethal toxin in vitro and for protection of rabbits in vivo from virulent B. anthracis. We hypothesized that sequences in the β-pore of S. aureus alpha toxin that share structural and functional homology to β-pore sequences in protective antigen would contain a similarly critical neutralizing epitope. Using an in vivo mapping strategy employing peptide immunogens, an optimized in vitro toxin neutralization assay, and an in vivo dermonecrosis model, we have now confirmed the presence of this epitope in alpha toxin, termed the pore neutralizing determinant. Antibody specific for this determinant neutralizes alpha toxin in vitro, and is highly effective for mitigating dermonecrosis and bacterial growth in a mouse model of S. aureus USA300 skin infection. The delineation of this linear neutralizing determinant in alpha

  12. Identification and validation of a linear protective neutralizing epitope in the β-pore domain of alpha toxin.

    Directory of Open Access Journals (Sweden)

    Jon Oscherwitz

    Full Text Available The plethora of virulence factors associated with Staphylococcus aureus make this bacterium an attractive candidate for a molecularly-designed epitope-focused vaccine. This approach, which necessitates the identification of neutralizing epitopes for incorporation into a vaccine construct, is being evaluated for pathogens where conventional approaches have failed to elicit protective humoral responses, like HIV-1 and malaria, but may also hold promise for pathogens like S. aureus, where the elicitation of humoral immunity against multiple virulence factors may be required for development of an effective vaccine. Among the virulence factors employed by S. aureus, animal model and epidemiological data suggest that alpha toxin, a multimeric β-pore forming toxin like protective antigen from Bacillus anthracis, is particularly critical, yet no candidate neutralizing epitopes have been delineated in alpha toxin to date. We have previously shown that a linear determinant in the 2β2-2β3 loop of the pore forming domain of B. anthracis protective antigen is a linear neutralizing epitope. Antibody against this site is highly potent for neutralizing anthrax lethal toxin in vitro and for protection of rabbits in vivo from virulent B. anthracis. We hypothesized that sequences in the β-pore of S. aureus alpha toxin that share structural and functional homology to β-pore sequences in protective antigen would contain a similarly critical neutralizing epitope. Using an in vivo mapping strategy employing peptide immunogens, an optimized in vitro toxin neutralization assay, and an in vivo dermonecrosis model, we have now confirmed the presence of this epitope in alpha toxin, termed the pore neutralizing determinant. Antibody specific for this determinant neutralizes alpha toxin in vitro, and is highly effective for mitigating dermonecrosis and bacterial growth in a mouse model of S. aureus USA300 skin infection. The delineation of this linear neutralizing

  13. Dinophysis Toxins: Causative Organisms, Distribution and Fate in Shellfish

    Directory of Open Access Journals (Sweden)

    Beatriz Reguera

    2014-01-01

    Full Text Available Several Dinophysis species produce diarrhoetic toxins (okadaic acid and dinophysistoxins and pectenotoxins, and cause gastointestinal illness, Diarrhetic Shellfish Poisoning (DSP, even at low cell densities (<103 cells·L−1. They are the main threat, in terms of days of harvesting bans, to aquaculture in Northern Japan, Chile, and Europe. Toxicity and toxin profiles are very variable, more between strains than species. The distribution of DSP events mirrors that of shellfish production areas that have implemented toxin regulations, otherwise misinterpreted as bacterial or viral contamination. Field observations and laboratory experiments have shown that most of the toxins produced by Dinophysis are released into the medium, raising questions about the ecological role of extracelular toxins and their potential uptake by shellfish. Shellfish contamination results from a complex balance between food selection, adsorption, species-specific enzymatic transformations, and allometric processes. Highest risk areas are those combining Dinophysis strains with high cell content of okadaates, aquaculture with predominance of mytilids (good accumulators of toxins, and consumers who frequently include mussels in their diet. Regions including pectenotoxins in their regulated phycotoxins will suffer from much longer harvesting bans and from disloyal competition with production areas where these toxins have been deregulated.

  14. The anthrax vaccine: is it safe? does it work?

    National Research Council Canada - National Science Library

    Committee to Assess the Safety and Efficacy of the Anthrax Vaccine, Medical Follow-Up Agency

    2002-01-01

    ...), was licensed in 1970. It was initially used to protect people who might be exposed to anthrax where they worked, such as veterinarians and textile plant workers who process animal hair. When the U...

  15. Recombinant protective antigen 102 (rPA102): profile of a second-generation anthrax vaccine.

    Science.gov (United States)

    Keitel, Wendy A

    2006-08-01

    Recent terrorist attacks involving the use of Bacillus anthracis spores have stimulated interest in the development of new vaccines for anthrax prevention. Studies of the pathogenesis of anthrax and of the immune responses following infection and immunization underscore the pivotal role that antibodies to the protective antigen play in protection. The most promising vaccine candidates contain purified recombinant protective antigen. Clinical trials of one of these, recombinant protective antigen (rPA)102, are underway. Initial results suggest that rPA102 is well tolerated and immunogenic. Additional trials are necessary to identify optimal formulations and immunization regimens for pre- and postexposure prophylaxis. Future licensure of these and other candidate vaccines will depend on their safety and immunogenicity profiles in humans, and their ability to confer protection in animal models of inhalational anthrax.

  16. Defining Moments in MMWR History: CDC’s Response to Intentional Release of Anthrax - 2001

    Centers for Disease Control (CDC) Podcasts

    2017-10-12

    On October 4, 2001, shortly after the September 11 attacks in New York City and Washington, DC, the Palm Beach County Health Department, the Florida State Department of Health, and CDC reported a case of anthrax in a 63-year-old man from Florida. This case was first reported in MMWR and marked the beginning of a series of anthrax cases that resulted from intentional delivery of Bacillus anthracis spores sent through the mail. In this podcast, Dr. Sherif Zaki recalls CDC’s investigation and response to the anthrax attacks.  Created: 10/12/2017 by MMWR.   Date Released: 10/12/2017.

  17. Dendritic Cells Endocytose Bacillus Anthracis Spores: Implications for Anthrax Pathogenesis

    National Research Council Canada - National Science Library

    Brittingham, Katherine C; Ruthel, Gordon; Panchal, Rekha G; Fuller, Claudette L; Ribot, Wilson J

    2005-01-01

    Phagocytosis of inhaled Bacillus anthracis spores and subsequent trafficking to lymph nodes are decisive events in the progression of inhaled anthrax because they initiate germination and dissemination of spores...

  18. Edema toxin impairs anthracidal phospholipase A2 expression by alveolar macrophages.

    Directory of Open Access Journals (Sweden)

    Benoit Raymond

    2007-12-01

    Full Text Available Bacillus anthracis, the etiological agent of anthrax, is a spore-forming gram-positive bacterium. Infection with this pathogen results in multisystem dysfunction and death. The pathogenicity of B. anthracis is due to the production of virulence factors, including edema toxin (ET. Recently, we established the protective role of type-IIA secreted phospholipase A2 (sPLA2-IIA against B. anthracis. A component of innate immunity produced by alveolar macrophages (AMs, sPLA2-IIA is found in human and animal bronchoalveolar lavages at sufficient levels to kill B. anthracis. However, pulmonary anthrax is almost always fatal, suggesting the potential impairment of sPLA2-IIA synthesis and/or action by B. anthracis factors. We investigated the effect of purified ET and ET-deficient B. anthracis strains on sPLA2-IIA expression in primary guinea pig AMs. We report that ET inhibits sPLA2-IIA expression in AMs at the transcriptional level via a cAMP/protein kinase A-dependent process. Moreover, we show that live B. anthracis strains expressing functional ET inhibit sPLA2-IIA expression, whereas ET-deficient strains induced this expression. This stimulatory effect, mediated partly by the cell wall peptidoglycan, can be counterbalanced by ET. We conclude that B. anthracis down-regulates sPLA2-IIA expression in AMs through a process involving ET. Our study, therefore, describes a new molecular mechanism implemented by B. anthracis to escape innate host defense. These pioneering data will provide new molecular targets for future intervention against this deadly pathogen.

  19. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): anthrax

    DEFF Research Database (Denmark)

    EFSA Panel on Animal Health and Welfare; More, Simon J.; Bøtner, Anette

    2017-01-01

    Anthrax has been assessed according to the criteria of the Animal Health Law (AHL), in particular criteria of Article 7 on disease profile and impacts, Article 5 on the eligibility of anthrax to be listed, Article 9 for the categorisation of anthrax according to disease prevention and control rul...... species to be listed for anthrax according to Article 8(3) are several species of mammals, birds and reptiles, and susceptible herbivores and pigs as reservoir....

  20. [Properties of live antibiotics-resistant anthrax vaccine STI-PR after long-term storage].

    Science.gov (United States)

    Aksenova, L Iu; Buravtseva, N P; Kogotkova, O I; Eremenko, E I; Tsygankova, O I

    2007-01-01

    Study showed that cultural, morphologic, genetic, immunologic characteristics, and resistance to antibiotics of STI-PR anthrax vaccine did not change after storage during 20 years in lyophilized condition. It has been shown that medium for lyophilization plays important role in preservation of vitality of anthrax spores. Optimal preservative properties have been observed for thioureal and sucrose-gelatinous media for lyophilization. Obtained results give reasons for prolongation of shelf live of STI-PR vaccine from 2 - 3 to 5 - 8 years.

  1. Confirmation of acute nitrate poisoning differentiating from anthrax in three Indian indigenous cattle

    Directory of Open Access Journals (Sweden)

    Kumaresan Nagarajan

    2015-03-01

    Full Text Available This article reports cases of nitrate poisoning in Indian indigenous cattle breeds comprising two Gir cows aging 4 years each, and one Barugur cow at 1.5 years of age. The cattle with case history of sudden death and oozing of partially clotted blood from the anal opening were brought to the Central University Laboratory (CUL, Center for Animal Health Studies (CAHS, Tamil Nadu Veterinary and Animal Sciences University (TANUVAS for diagnostic investigation with a suspicion of anthrax. According to anamnesis, all the animals were clinically normal and did not reveal any abnormality on the previous day. The animals were fed with recently harvested sorghum leaves and stalks. Smears examined for anthrax were found negative. Biological test (mice inoculation for anthrax was also negative. Gross lesions on necropsy examination of the carcases were suggestive of nitrate intoxication. Finally, nitrate intoxication of these cattle was confirmed by chemical and toxicological analysis of fodder, rumen content, aqueous humor, liver, kidney and urine.

  2. Warm temperature acclimation impacts metabolism of paralytic shellfish toxins from Alexandrium minutum in commercial oysters.

    Science.gov (United States)

    Farrell, Hazel; Seebacher, Frank; O'Connor, Wayne; Zammit, Anthony; Harwood, D Tim; Murray, Shauna

    2015-09-01

    Species of Alexandrium produce potent neurotoxins termed paralytic shellfish toxins and are expanding their ranges worldwide, concurrent with increases in sea surface temperature. The metabolism of molluscs is temperature dependent, and increases in ocean temperature may influence both the abundance and distribution of Alexandrium and the dynamics of toxin uptake and depuration in shellfish. Here, we conducted a large-scale study of the effect of temperature on the uptake and depuration of paralytic shellfish toxins in three commercial oysters (Saccostrea glomerata and diploid and triploid Crassostrea gigas, n = 252 per species/ploidy level). Oysters were acclimated to two constant temperatures, reflecting current and predicted climate scenarios (22 and 27 °C), and fed a diet including the paralytic shellfish toxin-producing species Alexandrium minutum. While the oysters fed on A. minutum in similar quantities, concentrations of the toxin analogue GTX1,4 were significantly lower in warm-acclimated S. glomerata and diploid C. gigas after 12 days. Following exposure to A. minutum, toxicity of triploid C. gigas was not affected by temperature. Generally, detoxification rates were reduced in warm-acclimated oysters. The routine metabolism of the oysters was not affected by the toxins, but a significant effect was found at a cellular level in diploid C. gigas. The increasing incidences of Alexandrium blooms worldwide are a challenge for shellfish food safety regulation. Our findings indicate that rising ocean temperatures may reduce paralytic shellfish toxin accumulation in two of the three oyster types; however, they may persist for longer periods in oyster tissue. © 2015 John Wiley & Sons Ltd.

  3. Sugar-Coated PPE's, Novel Nanomaterial's and Sensing Modules for Disease and Bioterrorism Related Threats

    Energy Technology Data Exchange (ETDEWEB)

    Bunz, Uwe [Georgia Inst. of Technology, Atlanta, GA (United States)

    2003-11-21

    The detection and sensing of biological warfare agents (ricin, anthrax toxin), of disease agents (cholera, botulinum, and tetnus toxins, influenza virus, etc.) and of biologically active species important for national security and disease control.

  4. False alarms, real challenges--one university's communication response to the 2001 anthrax crisis.

    Science.gov (United States)

    Clarke, Christopher E; Chess, Caron

    2006-01-01

    Considerable research exists on how government agencies at the federal, state, and local levels communicated during the fall 2001 anthrax attacks. However, there is little research on how other institutions handled this crisis, in terms of their response to potential anthrax contamination (aka "white powder scares") and their approach to disseminating important health and safety information. In this article, we investigate a major university's communication response to the anthrax crisis. First, we describe its communication experiences relating to a large white powder scare that occurred in October 2001. Second, we describe the university's broader communication efforts in terms of several important elements of risk communication research, including influence of source attributes, key messages, preferred channels, responses to information requests, and organizational influences. This study underlines that an institution does not have to be directly affected by a crisis to find itself on the communication "front lines." Moreover, other institutions may find it useful to learn from the experiences of this university, so that they may communicate more effectively during future crises.

  5. The anthrax vaccine and research: reactions from postal workers and public health professionals.

    Science.gov (United States)

    Quinn, Sandra Crouse; Thomas, Tammy; Kumar, Supriya

    2008-12-01

    During the 2001 anthrax attacks, public health agencies faced operational and communication decisions about the use of antibiotic prophylaxis and the anthrax vaccine with affected groups, including postal workers. This communication occurred within an evolving situation with incomplete and uncertain data. Guidelines for prophylactic antibiotics changed several times, contributing to confusion and mistrust. At the end of 60 days of taking antibiotics, people were offered an additional 40 days' supply of antibiotics, with or without the anthrax vaccine, the former constituting an investigational new drug protocol. Using data from interviews and focus groups with 65 postal workers in 3 sites and structured interviews with 16 public health professionals, this article examines the challenges for public health professionals who were responsible for communication with postal workers about the vaccine. Multiple factors affected the response, including a lack of trust, risk perception, disagreement about the recommendation, and the controversy over the military's use of the vaccine. Some postal workers reacted with suspicion to the vaccine offer, believing that they were the subjects of research, and some African American workers specifically drew an analogy to the Tuskegee syphilis study. The consent forms required for the protocol heightened mistrust. Postal workers also had complex and ambivalent responses to additional research on their health. The anthrax attacks present us with an opportunity to understand the challenges of communication in the context of uncertain science and suggest key strategies that may improve communications about vaccines and other drugs authorized for experimental use in future public health emergencies.

  6. [Anthrax in the canton of Zurich between 1878 and 2005].

    Science.gov (United States)

    Brandes Ammann, A; Brandl, H

    2007-07-01

    Historical records reporting cases of animal anthrax in the canton of Zurich between 1878 and 2005 were analysed on the level of political communities regarding occurrence and number of cases, animals affected, and number of communities affected. Data were correlated with industrial activities (tanning, wool and horse hair processing) in a community and to the prevailing meteorological conditions. A total of 830 cases of animal anthrax has been recorded in 140 of 171 communities. Occurrence correlated with industrial activities in a community such as companies handling potentially contaminated materials (hides, fur, wool, hair, meat, or bone meal). The influence of wool processing companies (P = 0. 004) and tanneries (P = 0. 032) was significant whereas horse hair processing had no effect. However, a statistical relationship between the number of cases reported and meteorological data (rainfall, mean temperature) was not found.

  7. Structure and action of the binary C2 toxin from Clostridium botulinum.

    Science.gov (United States)

    Schleberger, Christian; Hochmann, Henrike; Barth, Holger; Aktories, Klaus; Schulz, Georg E

    2006-12-08

    C2 toxin from Clostridium botulinum is composed of the enzyme component C2-I, which ADP-ribosylates actin, and the binding and translocation component C2-II, responsible for the interaction with eukaryotic cell receptors and the following endocytosis. Three C2-I crystal structures at resolutions of up to 1.75 A are presented together with a crystal structure of C2-II at an appreciably lower resolution and a model of the prepore formed by fragment C2-IIa. The C2-I structure was determined at pH 3.0 and at pH 6.1. The structural differences are small, indicating that C2-I does not unfold, even at a pH value as low as 3.0. The ADP-ribosyl transferase activity of C2-I was determined for alpha and beta/gamma-actin and related to that of Iota toxin and of mutant S361R of C2-I that introduced the arginine observed in Iota toxin. The substantial activity differences between alpha and beta/gamma-actin cannot be explained by the protein structures currently available. The structure of the transport component C2-II at pH 4.3 was established by molecular replacement using a model of the protective antigen of anthrax toxin at pH 6.0. The C-terminal receptor-binding domain of C2-II could not be located but was present in the crystals. It may be mobile. The relative orientation and positions of the four other domains of C2-II do not differ much from those of the protective antigen, indicating that no large conformational changes occur between pH 4.3 and pH 6.0. A model of the C2-IIa prepore structure was constructed based on the corresponding assembly of the protective antigen. It revealed a surprisingly large number of asparagine residues lining the pore. The interaction between C2-I and C2-IIa and the translocation of C2-I into the target cell are discussed.

  8. Trimethyl Chitosan Nanoparticles Encapsulated Protective Antigen Protects the Mice Against Anthrax

    Directory of Open Access Journals (Sweden)

    Anshu Malik

    2018-03-01

    Full Text Available Anthrax is an era old deadly disease against which there are only two currently available licensed vaccines named anthrax vaccine adsorbed and precipitated (AVP. Though they can provide a protective immunity, their multiple side-effects owing to their ill-defined composition and presence of toxic proteins (LF and EF of Bacillus anthracis, the causative organism of anthrax, in the vaccine formulation makes their widespread use objectionable. Hence, an anthrax vaccine that contains well-defined and controlled components would be highly desirable. In this context, we have evaluated the potential of various vaccine formulations comprising of protective antigen (PA encapsulated trimethyl-chitosan nanoparticles (TMC-PA in conjunction with either CpG-C ODN 2395 (CpG or Poly I:C. Each formulation was administered via three different routes, viz., subcutaneous (SC, intramuscular (IM, and intraperitoneal in female BALB/c mice. Irrespective of the route of immunization, CpG or Poly I:C adjuvanted TMC-PA nanoparticles induced a significantly higher humoral response (total serum IgG and its isotypes viz., IgG1, IgG2a, and IgG2b, compared to their CpG or Poly I:C PA counterparts. This clearly demonstrates the synergistic behavior of CpG and Poly I:C with TMC nanoparticles. The adjuvant potential of TMC nanoparticles could be observed in all the three routes as the TMC-PA nanoparticles by themselves induced IgG titers (1–1.5 × 105 significantly higher than both CpG PA and Poly I:C PA groups (2–8 × 104. The effect of formulations on T-helper (Th cell development was assessed by quantifying the Th1-dependant (TNF-α, IFN-γ, and IL-2, Th2-dependant (IL-4, IL-6, and IL-10, and Th17-type (IL-17A cytokines. Adjuvanation with CpG and Poly I:C, the TMC-PA nanoparticles triggered a Th1 skewed immune response, as suggested by an increase in the levels of total IgG2a along with IFN-γ cytokine production. Interestingly, the TMC-PA group showed a Th2-biased

  9. Gastrointestinal helminths may affect host susceptibility to anthrax through seasonal immune trade-offs.

    Science.gov (United States)

    Cizauskas, Carrie A; Turner, Wendy C; Wagner, Bettina; Küsters, Martina; Vance, Russell E; Getz, Wayne M

    2014-11-12

    Most vertebrates experience coinfections, and many pathogen-pathogen interactions occur indirectly through the host immune system. These interactions are particularly strong in mixed micro-macroparasite infections because of immunomodulatory effects of helminth parasites. While these trade-offs have been examined extensively in laboratory animals, few studies have examined them in natural systems. Additionally, many wildlife pathogens fluctuate seasonally, at least partly due to seasonal host immune changes. We therefore examined seasonality of immune resource allocation, pathogen abundance and exposure, and interactions between infections and immunity in plains zebra (Equus quagga) in Etosha National Park (ENP), Namibia, a system with strongly seasonal patterns of gastrointestinal (GI) helminth infection intensity and concurrent anthrax outbreaks. Both pathogens are environmentally transmitted, and helminth seasonality is driven by environmental pressures on free living life stages. The reasons behind anthrax seasonality are currently not understood, though anthrax is less likely directly driven by environmental factors. We measured a complex, interacting set of variables and found evidence that GI helminth infection intensities, eosinophil counts, IgE and IgGb antibody titers, and possibly IL-4 cytokine signaling were increased in wetter seasons, and that ectoparasite infestations and possibly IFN-γ cytokine signaling were increased in drier seasons. Monocyte counts and anti-anthrax antibody titers were negatively associated with wet season eosinophilia, and monocytes were negatively correlated with IgGb and IgE titers. Taken together, this supports the hypothesis that ENP wet seasons are characterized by immune resource allocation toward Th-2 type responses, while Th1-type immunity may prevail in drier seasons, and that hosts may experience Th1-Th2 trade-offs. We found evidence that this Th2-type resource allocation is likely driven by GI parasite infections

  10. Rapid generation of an anthrax immunotherapeutic from goats using a novel non-toxic muramyl dipeptide adjuvant

    OpenAIRE

    Kelly, Cassandra D; O'Loughlin, Chris; Gelder, Frank B; Peterson, Johnny W; Sower, Laurie E; Cirino, Nick M

    2007-01-01

    Background There is a clear need for vaccines and therapeutics for potential biological weapons of mass destruction and emerging diseases. Anthrax, caused by the bacterium Bacillus anthracis, has been used as both a biological warfare agent and bioterrorist weapon previously. Although antibiotic therapy is effective in the early stages of anthrax infection, it does not have any effect once exposed individuals become symptomatic due to B. anthracis exotoxin accumulation. The bipartite exotoxin...

  11. NAD+-Glycohydrolase Promotes Intracellular Survival of Group A Streptococcus.

    Directory of Open Access Journals (Sweden)

    Onkar Sharma

    2016-03-01

    Full Text Available A global increase in invasive infections due to group A Streptococcus (S. pyogenes or GAS has been observed since the 1980s, associated with emergence of a clonal group of strains of the M1T1 serotype. Among other virulence attributes, the M1T1 clone secretes NAD+-glycohydrolase (NADase. When GAS binds to epithelial cells in vitro, NADase is translocated into the cytosol in a process mediated by streptolysin O (SLO, and expression of these two toxins is associated with enhanced GAS intracellular survival. Because SLO is required for NADase translocation, it has been difficult to distinguish pathogenic effects of NADase from those of SLO. To resolve the effects of the two proteins, we made use of anthrax toxin as an alternative means to deliver NADase to host cells, independently of SLO. We developed a novel method for purification of enzymatically active NADase fused to an amino-terminal fragment of anthrax toxin lethal factor (LFn-NADase that exploits the avid, reversible binding of NADase to its endogenous inhibitor. LFn-NADase was translocated across a synthetic lipid bilayer in vitro in the presence of anthrax toxin protective antigen in a pH-dependent manner. Exposure of human oropharyngeal keratinocytes to LFn-NADase in the presence of protective antigen resulted in cytosolic delivery of NADase activity, inhibition of protein synthesis, and cell death, whereas a similar construct of an enzymatically inactive point mutant had no effect. Anthrax toxin-mediated delivery of NADase in an amount comparable to that observed during in vitro infection with live GAS rescued the defective intracellular survival of NADase-deficient GAS and increased the survival of SLO-deficient GAS. Confocal microscopy demonstrated that delivery of LFn-NADase prevented intracellular trafficking of NADase-deficient GAS to lysosomes. We conclude that NADase mediates cytotoxicity and promotes intracellular survival of GAS in host cells.

  12. Rabies virus glycoprotein as a carrier for anthrax protective antigen

    International Nuclear Information System (INIS)

    Smith, Mary Ellen; Koser, Martin; Xiao Sa; Siler, Catherine; McGettigan, James P.; Calkins, Catherine; Pomerantz, Roger J.; Dietzschold, Bernhard; Schnell, Matthias J.

    2006-01-01

    Live viral vectors expressing foreign antigens have shown great promise as vaccines against viral diseases. However, safety concerns remain a major problem regarding the use of even highly attenuated viral vectors. Using the rabies virus (RV) envelope protein as a carrier molecule, we show here that inactivated RV particles can be utilized to present Bacillus anthracis protective antigen (PA) domain-4 in the viral membrane. In addition to the RV glycoprotein (G) transmembrane and cytoplasmic domains, a portion of the RV G ectodomain was required to express the chimeric RV G anthrax PA on the cell surface. The novel antigen was also efficiently incorporated into RV virions. Mice immunized with the inactivated recombinant RV virions exhibited seroconversion against both RV G and anthrax PA, and a second inoculation greatly increased these responses. These data demonstrate that a viral envelope protein can carry a bacterial protein and that a viral carrier can display whole polypeptides compared to the limited epitope presentation of previous viral systems

  13. Evaluation of clinical and serological findings for diagnosis of cutaneous anthrax infection after an outbreak.

    Science.gov (United States)

    Gulseren, Duygu; Süzük-Yıldız, Serap; Çelebi, Bekir; Kılıç, Selçuk

    2017-09-01

    Anthrax, caused by the bacterium Bacillus anthracis, is one of the oldest documented infectious diseases in both livestock and humans. We aimed to evaluate clinical findings and risk factors of patients with cutaneous anthrax infection and report anti-lethal factor (LF) IgG and anti-protective antigen (PA) IgG titers in the serologic diagnosis of disease. In this study, serum samples of 18 cutaneous anthrax patients were collected and anti-LF IgG and anti-PA IgG titers were measured by enzyme-linked immunosorbent assay (ELISA). Twelve (67%) males and 6 (33%) females, with a mean age of 36.06 ± 16.58 years were included in the study. Risk factors identified in the patient population studied were slaughtering (28%), flaying (56%), chopping meat (67%), burying diseased animal corpses (17%) and milking (6%) livestock. Black eschar formation (94%), pruritus (78%) and painful lymphadenopathy (61%) were first three common clinical signs and symptoms, respectively. Fourteen (78%) patients produced a positive IgG response against PA, 11 (61%) patients produced against LF. Three (17%) patients had no response to either antigen. A detailed history of contact with sick animals or animal products along with clinical findings should be taken at the first step for the diagnosis of cutaneous anthrax infection. Serologic detection of anti-LF IgG and anti-PA IgG with ELISA may be useful auxillary method for establishing the diagnosis.

  14. Cholera toxin entry into pig enterocytes occurs via a lipid raft- and clathrin-dependent mechanism

    DEFF Research Database (Denmark)

    Hansen, Gert H; Dalskov, Stine-Mathilde; Rasmussen, Christina Rehné

    2005-01-01

    The small intestinal brush border is composed of lipid raft microdomains, but little is known about their role in the mechanism whereby cholera toxin gains entry into the enterocyte. The present work characterized the binding of cholera toxin B subunit (CTB) to the brush border and its internaliz......The small intestinal brush border is composed of lipid raft microdomains, but little is known about their role in the mechanism whereby cholera toxin gains entry into the enterocyte. The present work characterized the binding of cholera toxin B subunit (CTB) to the brush border and its...... accompanied the toxin internalization whereas no formation of caveolae was observed. CTB was strongly associated with the buoyant, detergent-insoluble fraction of microvillar membranes. Neither CTB's raft association nor uptake via clathrin-coated pits was affected by methyl-beta-cyclodextrin, indicating...... that membrane cholesterol is not required for toxin binding and entry. The ganglioside GM(1) is known as the receptor for CTB, but surprisingly the toxin also bound to sucrase-isomaltase and coclustered with this glycosidase in apical membrane pits. CTB binds to lipid rafts of the brush border...

  15. Proximal Tubules Have the Capacity to Regulate Uptake of Albumin.

    Science.gov (United States)

    Wagner, Mark C; Campos-Bilderback, Silvia B; Chowdhury, Mahboob; Flores, Brittany; Lai, Xianyin; Myslinski, Jered; Pandit, Sweekar; Sandoval, Ruben M; Wean, Sarah E; Wei, Yuan; Satlin, Lisa M; Wiggins, Roger C; Witzmann, Frank A; Molitoris, Bruce A

    2016-02-01

    Evidence from multiple studies supports the concept that both glomerular filtration and proximal tubule (PT) reclamation affect urinary albumin excretion rate. To better understand these roles of glomerular filtration and PT uptake, we investigated these processes in two distinct animal models. In a rat model of acute exogenous albumin overload, we quantified glomerular sieving coefficients (GSC) and PT uptake of Texas Red-labeled rat serum albumin using two-photon intravital microscopy. No change in GSC was observed, but a significant decrease in PT albumin uptake was quantified. In a second model, loss of endogenous albumin was induced in rats by podocyte-specific transgenic expression of diphtheria toxin receptor. In these albumin-deficient rats, exposure to diphtheria toxin induced an increase in albumin GSC and albumin filtration, resulting in increased exposure of the PTs to endogenous albumin. In this case, PT albumin reabsorption was markedly increased. Analysis of known albumin receptors and assessment of cortical protein expression in the albumin overload model, conducted to identify potential proteins and pathways affected by acute protein overload, revealed changes in the expression levels of calreticulin, disabled homolog 2, NRF2, angiopoietin-2, and proteins involved in ATP synthesis. Taken together, these results suggest that a regulated PT cell albumin uptake system can respond rapidly to different physiologic conditions to minimize alterations in serum albumin level. Copyright © 2016 by the American Society of Nephrology.

  16. Interaction of 125I-labeled botulinum neurotoxins with nerve terminals. II. Autoradiographic evidence for its uptake into motor nerves by acceptor-mediated endocytosis

    International Nuclear Information System (INIS)

    Black, J.D.; Dolly, J.O.

    1986-01-01

    Using pharmacological and autoradiographic techniques it has been shown that botulinum neurotoxin (BoNT) is translocated across the motor nerve terminal membrane to reach a postulated intraterminal target. In the present study, the nature of this uptake process was investigated using electron microscopic autoradiography. It was found that internalization is acceptor-mediated and that binding to specific cell surface acceptors involves the heavier chain of the toxin. In addition, uptake was shown to be energy and temperature-dependent and to be accelerated by nerve stimulation, a treatment which also shortens the time course of the toxin-induced neuroparalysis. These results, together with the observation that silver grains were often associated with endocytic structures within the nerve terminal, suggested that acceptor-mediated endocytosis is responsible for toxin uptake. Possible recycling of BoNT acceptors (an important aspect of acceptor-mediated endocytosis of toxins) at motor nerve terminals was indicated by comparing the extent of labeling in the presence and absence of metabolic inhibitors. On the basis of these collective results, it is concluded that BoNT is internalized by acceptor-mediated endocytosis and, hence, the data support the proposal that this toxin inhibits release of acetylcholine by interaction with an intracellular target

  17. Role of Food Insecurity in Outbreak of Anthrax Infections among Humans and Hippopotamuses Living in a Game Reserve Area, Rural Zambia.

    Science.gov (United States)

    Lehman, Mark W; Craig, Allen S; Malama, Constantine; Kapina-Kany'anga, Muzala; Malenga, Philip; Munsaka, Fanny; Muwowo, Sergio; Shadomy, Sean; Marx, Melissa A

    2017-09-01

    In September 2011, a total of 511 human cases of anthrax (Bacillus anthracis) infection and 5 deaths were reported in a game management area in the district of Chama, Zambia, near where 85 hippopotamuses (Hippopotamus amphibious) had recently died of suspected anthrax. The human infections generally responded to antibiotics. To clarify transmission, we conducted a cross-sectional, interviewer-administered household survey in villages where human anthrax cases and hippopotamuses deaths were reported. Among 284 respondents, 84% ate hippopotamus meat before the outbreak. Eating, carrying, and preparing meat were associated with anthrax infection. Despite the risk, 23% of respondents reported they would eat meat from hippopotamuses found dead again because of food shortage (73%), lack of meat (12%), hunger (7%), and protein shortage (5%). Chronic food insecurity can lead to consumption of unsafe foods, leaving communities susceptible to zoonotic infection. Interagency cooperation is necessary to prevent outbreaks by addressing the root cause of exposure, such as food insecurity.

  18. Recent outbreak of cutaneous anthrax in Bangladesh: clinico-demographic profile and treatment outcome of cases attended at Rajshahi Medical College Hospital

    Directory of Open Access Journals (Sweden)

    Siddiqui Muhammad

    2012-08-01

    Full Text Available Abstract Background Human cutaneous anthrax results from skin exposure to B. anthracis, primarily due to occupational exposure. Bangladesh has experienced a number of outbreaks of cutaneous anthrax in recent years. The last episode occurred from April to August, 2011 and created mass havoc due to its dreadful clinical outcome and socio-cultural consequences. We report here the clinico-demographic profile and treatment outcome of 15 cutaneous anthrax cases attended at the Dermatology Outpatient Department of Rajshahi Medical College Hospital, Bangladesh between April and August, 2011 with an aim to create awareness for early case detection and management. Findings Anthrax was suspected primarily based on cutaneous manifestations of typical non-tender ulcer with black eschar, with or without oedema, and a history of butchering, or dressing/washing of cattle/goat or their meat. Diagnosis was established by demonstration of large gram-positive rods, typically resembling B. anthracis under light microscope where possible and also by ascertaining therapeutic success. The mean age of cases was 21.4 years (ranging from 3 to 46 years, 7 (46.7% being males and 8 (53.3% females. The majority of cases were from lower middle socioeconomic status. Types of exposures included butchering (20%, contact with raw meat (46.7%, and live animals (33.3%. Malignant pustule was present in upper extremity, both extremities, face, and trunk at frequencies of 11 (73.3%, 2 (13.3%, 1 (6.7% and 1 (6.7% respectively. Eight (53.3% patients presented with fever, 7 (46.7% had localized oedema and 5 (33.3% had regional lymphadenopathy. Anthrax was confirmed in 13 (86.7% cases by demonstration of gram-positive rods. All cases were cured with 2 months oral ciprofloxacin combined with flucoxacillin for 2 weeks. Conclusions We present the findings from this series of cases to reinforce the criteria for clinical diagnosis and to urge prompt therapeutic measures to treat

  19. Efficacy of Oritavancin in a Murine Model of Bacillus anthracis Spore Inhalation Anthrax

    National Research Council Canada - National Science Library

    Heine, H. S; Bassett, J; Miller, L; Bassett, A; Ivins, B. E; Lehous, D; Arhin, F. F; Parr, Jr., T. R; Moeck, G

    2008-01-01

    The inhaled form of Bacillus anthracis infection may be fatal to humans. The current standard of care for inhalational anthrax postexposure prophylaxis is ciprofloxacin therapy twice daily for 60 days...

  20. The Binary Toxin CDT of Clostridium difficile as a Tool for Intracellular Delivery of Bacterial Glucosyltransferase Domains

    Directory of Open Access Journals (Sweden)

    Lara-Antonia Beer

    2018-06-01

    Full Text Available Binary toxins are produced by several pathogenic bacteria. Examples are the C2 toxin from Clostridium botulinum, the iota toxin from Clostridium perfringens, and the CDT from Clostridium difficile. All these binary toxins have ADP-ribosyltransferases (ADPRT as their enzymatically active component that modify monomeric actin in their target cells. The binary C2 toxin was intensively described as a tool for intracellular delivery of allogenic ADPRTs. Here, we firstly describe the binary toxin CDT from C. difficile as an effective tool for heterologous intracellular delivery. Even 60 kDa glucosyltransferase domains of large clostridial glucosyltransferases can be delivered into cells. The glucosyltransferase domains of five tested large clostridial glucosyltransferases were successfully introduced into cells as chimeric fusions to the CDTa adapter domain (CDTaN. Cell uptake was demonstrated by the analysis of cell morphology, cytoskeleton staining, and intracellular substrate glucosylation. The fusion toxins were functional only when the adapter domain of CDTa was N-terminally located, according to its native orientation. Thus, like other binary toxins, the CDTaN/b system can be used for standardized delivery systems not only for bacterial ADPRTs but also for a variety of bacterial glucosyltransferase domains.

  1. Patients' request for and emergency physicians' prescription of antimicrobial prophylaxis for anthrax during the 2001 bioterrorism-related outbreak

    Directory of Open Access Journals (Sweden)

    Aber Robert C

    2005-01-01

    Full Text Available Abstract Background Inappropriate use of antibiotics by individuals worried about biological agent exposures during bioterrorism events is an important public health concern. However, little is documented about the extent to which individuals with self-identified risk of anthrax exposure approached physicians for antimicrobial prophylaxis during the 2001 bioterrorism attacks in the United States. Methods We conducted a telephone survey of randomly selected members of the Pennsylvania Chapter of the American College of Emergency Physicians to assess patients' request for and emergency physicians' prescription of antimicrobial agents during the 2001 anthrax attacks. Results Ninety-seven physicians completed the survey. Sixty-four (66% respondents had received requests from patients for anthrax prophylaxis; 16 (25% of these physicians prescribed antibiotics to a total of 23 patients. Ten physicians prescribed ciprofloxacin while 8 physicians prescribed doxycycline. Conclusion During the 2001 bioterrorist attacks, the majority of the emergency physicians we surveyed encountered patients who requested anthrax prophylaxis. Public fears may lead to a high demand for antibiotic prophylaxis during bioterrorism events. Elucidation of the relationship between public health response to outbreaks and outcomes would yield insights to ease burden on frontline clinicians and guide strategies to control inappropriate antibiotic allocation during bioterrorist events.

  2. [PERSPECTIVES OF DEVELOPMENT OF LIVE RECOMBINANT ANTHRAX VACCINES BASED ON OPPORTUNISTIC AND APATHOGENIC MICROORGANISMS].

    Science.gov (United States)

    Popova, P Yu; Mikshis, N I

    2016-01-01

    Live genetic engineering anthrax vaccines on the platform of avirulent and probiotic micro-organisms are a safe and adequate alternative to preparations based on attenuated Bacillus anthracis strains. Mucosal application results in a direct contact of the vaccine preparations with mucous membranes in those organs arid tissues of the macro-organisms, that are exposed to the pathogen in the first place, resulting in a development of local and systemic immune response. Live recombinant anthrax vaccines could be used both separately as well as in a prime-boost immunization scheme. The review focuses on immunogenic and protective properties of experimental live genetic engineering prearations, created based on members of geni of Salmonella, Lactobacillus and adenoviruses.

  3. Action of cholera toxin in the intestinal epithelial cells

    International Nuclear Information System (INIS)

    Hyun, C.S.

    1982-01-01

    The primary event in the action of cholera toxin on the isolated chick intestinal epithelial cell is its interaction with the cell membrane. This involves a large number (17 million per cell) of high affinity binding sites which belong to a single class. Binding of biologically active 125 I-labeled toxin is rapid, temperature-dependent, reversible, and saturable over a wide range of concentrations and includes only a small contribution from nonspecific sites. A characteristic lag phase of 10 min occurs following the complete binding of toxin before any increase in cellular cAMP levels can be detected in the isolated cells. The response (elevation of cellular cAMP) of the enterocytes to cholera toxin is linear with time for 40-50 min and causes a six- to eight-fold increase over control levels at steady stae. cAMP and agents that increase cAMP production inhibit Cl - -independent Na + influx into the isolated enterocytes whereas chlorporomazine (CPZ) which completely abolishes toxin-induced elevation of cAMP both reverses and prevents the cAMP-mediated inhibition of Na + entry. Correlation between cellular cAMP levels and the magnitude of Na + influx into the enterocytes provides evidence for a cAMP-mediated control of intestinal Na + uptake, which may represent the mechanistic basis for the antiabsorptive effect of CT and Na + during induction of intestinal secretion. The effect of cAMP on Na + but no Cl - influx in our villus cell preparation can be partially explained in terms of a cAMP-regulated Na + /H + neutral exchange system

  4. ATP Release from Human Airway Epithelial Cells Exposed to Staphylococcus aureus Alpha-Toxin

    Directory of Open Access Journals (Sweden)

    Romina Baaske

    2016-12-01

    Full Text Available Airway epithelial cells reduce cytosolic ATP content in response to treatment with S. aureus alpha-toxin (hemolysin A, Hla. This study was undertaken to investigate whether this is due to attenuated ATP generation or to release of ATP from the cytosol and extracellular ATP degradation by ecto-enzymes. Exposure of cells to rHla did result in mitochondrial calcium uptake and a moderate decline in mitochondrial membrane potential, indicating that ATP regeneration may have been attenuated. In addition, ATP may have left the cells through transmembrane pores formed by the toxin or through endogenous release channels (e.g., pannexins activated by cellular stress imposed on the cells by toxin exposure. Exposure of cells to an alpha-toxin mutant (H35L, which attaches to the host cell membrane but does not form transmembrane pores, did not induce ATP release from the cells. The Hla-mediated ATP-release was completely blocked by IB201, a cyclodextrin-inhibitor of the alpha-toxin pore, but was not at all affected by inhibitors of pannexin channels. These results indicate that, while exposure of cells to rHla may somewhat reduce ATP production and cellular ATP content, a portion of the remaining ATP is released to the extracellular space and degraded by ecto-enzymes. The release of ATP from the cells may occur directly through the transmembrane pores formed by alpha-toxin.

  5. Stool C difficile toxin

    Science.gov (United States)

    ... toxin; Colitis - toxin; Pseudomembranous - toxin; Necrotizing colitis - toxin; C difficile - toxin ... be analyzed. There are several ways to detect C difficile toxin in the stool sample. Enzyme immunoassay ( ...

  6. Binding of host-selective toxin analogs to mitochondria from normal and Texas male sterile cytoplasm maize

    International Nuclear Information System (INIS)

    Frantzen, K.A.; Daly, J.M.; Knoche, H.W.

    1987-01-01

    Tritium-labeled toxin analogs were prepared by reduction with NaB 3 H 4 of either the toxin from Helminthosporium maydis race T or a toxin component from Phyllosticta maydis. These reduced analogs had high radiochemical specific activities, high biological activities, and plant specificities identical to the native toxins. A filtration assay was developed to test the binding of these labeled analogs to isolated mitochondria. Binding was not energy dependent nor was there measurable matrical uptake. The analogs were shown to be lipophilic, a characteristic which gave rise to considerable nondisplaceable binding. Under conditions limiting nondisplaceable binding, the displaceable binding was shown to be linear with respect to toxin concentration and unsaturable. No significant differences were observed in the binding characteristics between the mitochondria from normal and male-sterile (Texas) cytoplasm maize. The findings suggest that, at physiologically relevant concentrations, these toxin analogs permeate the membranes of susceptible and resistant mitochondria alike. The lack of demonstrable specific binding does not rule out the involvement of a classical receptor site but does indicate that other kinds of molecular interactions may be involved in the mechanisms for toxicity and specificity

  7. Fluid flow enhances the effectiveness of toxin export by aquatic microorganisms: a first-passage perspective

    Science.gov (United States)

    Licata, Nicholas; Clark, Aaron

    2014-03-01

    Aquatic microorganisms face a variety of challenges in the course of development. One central challenge is efficiently regulating the export of toxic molecules inside the developing embryo. The strategies employed should be robust with respect to the variable ocean environment and limit the chances that exported toxins are reabsorbed. In this talk we consider the first-passage problem for the uptake of exported toxins by a spherical embryo. A perturbative solution of the advection-diffusion equation reveals that a concentration boundary layer forms in the vicinity of the embryo, and that fluid flow enhances the effectiveness of toxin export. We highlight connections between the model results and recent experiments on the development of sea urchin embryos. We acknowledge financial support from the University of Michigan-Dearobrn CASL Faculty Summer Research Grant.

  8. Uptake and release of paralytic shellfish toxins by the clam Ruditapes decussatus exposed to Gymnodinium catenatum and subsequent depuration.

    Science.gov (United States)

    Botelho, Maria João; Vale, Carlos; Grilo, Rita Velez; Ferreira, João Gomes

    2012-06-01

    A laboratory experiment was performed with the clam Ruditapes decussatus, fed with the toxic dinoflagellate Gymnodinium catenatum and the non-toxic algae Isochrysis galbana (14 days) and subsequently only with I. galbana (15 days). Individual paralytic shellfish toxins were determined by LC-FLD in G. catenatum cells, whole clam tissues, and particulate organic matter (POM) produced by clams. The toxins dcSTX and dcGTX2 + 3 in the algae were less abundant than C1 + 2 and B1, but were predominant in clams during both the exposure and depuration phases. The toxin dcNEO was only detected in clams during a short period, indicating conversion from other compounds. The toxin composition of the POM indicated the export of dcSTX as faeces or pseudo-faeces along the entire experiment (2.5-14 nmol mg(-1)), B1 was present in a short period of the exposure and C1 + 2 and dcGTX2 + 3 absent. A mass balance calculation indicated that approximately 95% of C1 + 2 and 85% of B1 supplied to the clams were converted into other toxins or lost in solution. Conversely, the net gain of 512, 61 and 31 nmol for dcSTX, dcGTX2 + 3 and dcNEO, respectively, suggests the conversion from other assimilated compounds by clams during exposure and depuration phases. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Estimating the location and spatial extent of a covert anthrax release.

    Directory of Open Access Journals (Sweden)

    Judith Legrand

    2009-01-01

    Full Text Available Rapidly identifying the features of a covert release of an agent such as anthrax could help to inform the planning of public health mitigation strategies. Previous studies have sought to estimate the time and size of a bioterror attack based on the symptomatic onset dates of early cases. We extend the scope of these methods by proposing a method for characterizing the time, strength, and also the location of an aerosolized pathogen release. A back-calculation method is developed allowing the characterization of the release based on the data on the first few observed cases of the subsequent outbreak, meteorological data, population densities, and data on population travel patterns. We evaluate this method on small simulated anthrax outbreaks (about 25-35 cases and show that it could date and localize a release after a few cases have been observed, although misspecifications of the spore dispersion model, or the within-host dynamics model, on which the method relies can bias the estimates. Our method could also provide an estimate of the outbreak's geographical extent and, as a consequence, could help to identify populations at risk and, therefore, requiring prophylactic treatment. Our analysis demonstrates that while estimates based on the first ten or 15 observed cases were more accurate and less sensitive to model misspecifications than those based on five cases, overall mortality is minimized by targeting prophylactic treatment early on the basis of estimates made using data on the first five cases. The method we propose could provide early estimates of the time, strength, and location of an aerosolized anthrax release and the geographical extent of the subsequent outbreak. In addition, estimates of release features could be used to parameterize more detailed models allowing the simulation of control strategies and intervention logistics.

  10. [Anthrax meningoencephalitis: a case following a cutaneous lesion in Morocco].

    Science.gov (United States)

    Ziadi, A; Hachimi, A; Soraa, N; Tassi, N; Nejmi, H; Elkhayari, M; Samkaoui, M A

    2014-05-01

    Anthrax meningoencephalitis is very rare especially following skin location. We report a case of meningoencephalitis secondary to skin lesion. The diagnosis is based on clinical presentation and confirmed by microbiological tests. Its evolution remains fatal despite aggressive resuscitation. Copyright © 2014 Société française d’anesthésie et de réanimation (Sfar). Published by Elsevier SAS. All rights reserved.

  11. Cellular vacuoles induced by Mycoplasma pneumoniae CARDS toxin originate from Rab9-associated compartments.

    Directory of Open Access Journals (Sweden)

    Coreen Johnson

    Full Text Available Recently, we identified an ADP-ribosylating and vacuolating cytotoxin in Mycoplasma pneumoniae designated Community Acquired Respiratory Distress Syndrome (CARDS toxin. In this study we show that vacuoles induced by recombinant CARDS (rCARDS toxin are acidic and derive from the endocytic pathway as determined by the uptake of neutral red and the fluid-phase marker, Lucifer yellow, respectively. Also, we demonstrate that the formation of rCARDS toxin-associated cytoplasmic vacuoles is inhibited by the vacuolar ATPase inhibitor, bafilomycin A1, and the ionophore, monensin. To examine the ontogeny of these vacuoles, we analyzed the distribution of endosomal and lysosomal membrane markers during vacuole formation and observed the enrichment of the late endosomal GTPase, Rab9, around rCARDS toxin-induced vacuoles. Immunogold-labeled Rab9 and overexpression of green fluorescent-tagged Rab9 further confirmed vacuolar association. The late endosomal- and lysosomal-associated membrane proteins, LAMP1 and LAMP2, also localized to the vacuolar membranes, while the late endosomal protein, Rab7, and early endosomal markers, Rab5 and EEA1, were excluded. HeLa cells expressing dominant-negative (DN Rab9 exhibited markedly reduced vacuole formation in the presence of rCARDS toxin, in contrast to cells expressing DN-Rab7, highlighting the importance of Rab9 function in rCARDS toxin-induced vacuolation. Our findings reveal the unique Rab9-association with rCARDS toxin-induced vacuoles and its possible relationship to the characteristic histopathology that accompanies M. pneumoniae infection.

  12. The genome of a Bacillus isolate causing anthrax in chimpanzees combines chromosomal properties of B. cereus with B. anthracis virulence plasmids.

    Directory of Open Access Journals (Sweden)

    Silke R Klee

    Full Text Available Anthrax is a fatal disease caused by strains of Bacillus anthracis. Members of this monophyletic species are non motile and are all characterized by the presence of four prophages and a nonsense mutation in the plcR regulator gene. Here we report the complete genome sequence of a Bacillus strain isolated from a chimpanzee that had died with clinical symptoms of anthrax. Unlike classic B. anthracis, this strain was motile and lacked the four prohages and the nonsense mutation. Four replicons were identified, a chromosome and three plasmids. Comparative genome analysis revealed that the chromosome resembles those of non-B. anthracis members of the Bacillus cereus group, whereas two plasmids were identical to the anthrax virulence plasmids pXO1 and pXO2. The function of the newly discovered third plasmid with a length of 14 kbp is unknown. A detailed comparison of genomic loci encoding key features confirmed a higher similarity to B. thuringiensis serovar konkukian strain 97-27 and B. cereus E33L than to B. anthracis strains. For the first time we describe the sequence of an anthrax causing bacterium possessing both anthrax plasmids that apparently does not belong to the monophyletic group of all so far known B. anthracis strains and that differs in important diagnostic features. The data suggest that this bacterium has evolved from a B. cereus strain independently from the classic B. anthracis strains and established a B. anthracis lifestyle. Therefore we suggest to designate this isolate as "B. cereus variety (var. anthracis".

  13. America’s Food: Does Anthrax Pose A Threat?

    Science.gov (United States)

    2002-04-01

    a 1996 JAMA article, “Unexplained Severe Illness Possibly Associated with Consumption of Kombucha Tea - Iowa 1995.”13 For clarification, the... Kombucha “mush- room” is a “ symbiotic colony of several species of yeast and bacteria that are bound to- gether by a surrounding membrane.”14 Dr. Sadjadi...described an outbreak in Iran of cuta- 9 neous anthrax related to the Kombucha mushroom. In 1996 in a village on the outskirts of Tehran, 20 people

  14. Lung damage and pulmonary uptake of serotonin in intact dogs

    International Nuclear Information System (INIS)

    Dawson, C.A.; Christensen, C.W.; Rickaby, D.A.; Linehan, J.H.; Johnston, M.R.

    1985-01-01

    The authors examined the influence of glass bead embolization and oleic acid, dextran, and imipramine infusion on the pulmonary uptake of trace doses of [ 3 H]serotonin and the extravascular volume accessible to [ 14 C]antipyrine in anesthetized dogs. Embolization and imipramine decreased serotonin uptake by 53 and 61%, respectively, but no change was observed with oleic acid or dextran infusion. The extravascular volume accessible to the antipyrine was reduced by 77% after embolization and increased by 177 and approximately 44% after oleic acid and dextran infusion, respectively. The results suggest that when the perfused endothelial surface is sufficiently reduced, as with embolization, the uptake of trace doses of serotonin will be depressed. In addition, decreases in serotonin uptake in response to imipramine in this study and in response to certain endothelial toxins in other studies suggest that serotonin uptake can reveal certain kinds of changes in endothelial function. However, the lack of a response to oleic acid-induced damage in the present study suggests that serotonin uptake is not sensitive to all forms of endothelial damage

  15. Inhibition of cholera toxin and other AB toxins by polyphenolic compounds

    Science.gov (United States)

    All AB-type protein toxins have intracellular targets despite an initial extracellular location. These toxins use different methods to reach the cytosol and have different effects on the target cell. Broad-spectrum inhibitors against AB toxins are therefore hard to develop because the toxins use dif...

  16. Anthrax in America: A Chronology and Analysis of the Fall 2001 Attacks

    Science.gov (United States)

    2002-11-01

    Glenville, CT, 55 miles west of Oxford. • Officials confirm that the anthrax spores in a letter received by Santiago, Chile pediatrician Antonio Barfi were...process of opening the Leahy letter after two weeks of planning and rehearsals. In charge is John Ezzell , a man described by the Weekend Australian as

  17. Hsp70 facilitates trans-membrane transport of bacterial ADP-ribosylating toxins into the cytosol of mammalian cells.

    Science.gov (United States)

    Ernst, Katharina; Schmid, Johannes; Beck, Matthias; Hägele, Marlen; Hohwieler, Meike; Hauff, Patricia; Ückert, Anna Katharina; Anastasia, Anna; Fauler, Michael; Jank, Thomas; Aktories, Klaus; Popoff, Michel R; Schiene-Fischer, Cordelia; Kleger, Alexander; Müller, Martin; Frick, Manfred; Barth, Holger

    2017-06-02

    Binary enterotoxins Clostridium (C.) botulinum C2 toxin, C. perfringens iota toxin and C. difficile toxin CDT are composed of a transport (B) and a separate non-linked enzyme (A) component. Their B-components mediate endocytic uptake into mammalian cells and subsequently transport of the A-components from acidic endosomes into the cytosol, where the latter ADP-ribosylate G-actin resulting in cell rounding and cell death causing clinical symptoms. Protein folding enzymes, including Hsp90 and peptidyl-prolyl cis/trans isomerases facilitate transport of the A-components across endosomal membranes. Here, we identified Hsp70 as a novel host cell factor specifically interacting with A-components of C2, iota and CDT toxins to facilitate their transport into the cell cytosol. Pharmacological Hsp70-inhibition specifically prevented pH-dependent trans-membrane transport of A-components into the cytosol thereby protecting living cells and stem cell-derived human miniguts from intoxication. Thus, Hsp70-inhibition might lead to development of novel therapeutic strategies to treat diseases associated with bacterial ADP-ribosylating toxins.

  18. The Importance of Health Risk Communication in the Creation of the Anthrax Vaccine Immunization Program

    National Research Council Canada - National Science Library

    Freeman, Bradley

    2001-01-01

    ... press. This paper suggests that a more proactive educational program with a greater utilization of health risk communication techniques would have reduced much of the negative reaction to the anthrax vaccine...

  19. Binding of ATP by pertussis toxin and isolated toxin subunits

    International Nuclear Information System (INIS)

    Hausman, S.Z.; Manclark, C.R.; Burns, D.L.

    1990-01-01

    The binding of ATP to pertussis toxin and its components, the A subunit and B oligomer, was investigated. Whereas, radiolabeled ATP bound to the B oligomer and pertussis toxin, no binding to the A subunit was observed. The binding of [ 3 H]ATP to pertussis toxin and the B oligomer was inhibited by nucleotides. The relative effectiveness of the nucleotides was shown to be ATP > GTP > CTP > TTP for pertussis toxin and ATP > GTP > TTP > CTP for the B oligomer. Phosphate ions inhibited the binding of [ 3 H]ATP to pertussis toxin in a competitive manner; however, the presence of phosphate ions was essential for binding of ATP to the B oligomer. The toxin substrate, NAD, did not affect the binding of [ 3 H]ATP to pertussis toxin, although the glycoprotein fetuin significantly decreased binding. These results suggest that the binding site for ATP is located on the B oligomer and is distinct from the enzymatically active site but may be located near the eukaryotic receptor binding site

  20. Binding of ATP by pertussis toxin and isolated toxin subunits

    Energy Technology Data Exchange (ETDEWEB)

    Hausman, S.Z.; Manclark, C.R.; Burns, D.L. (Center for Biologics Evaluation and Research, Bethesda, MD (USA))

    1990-07-03

    The binding of ATP to pertussis toxin and its components, the A subunit and B oligomer, was investigated. Whereas, radiolabeled ATP bound to the B oligomer and pertussis toxin, no binding to the A subunit was observed. The binding of ({sup 3}H)ATP to pertussis toxin and the B oligomer was inhibited by nucleotides. The relative effectiveness of the nucleotides was shown to be ATP > GTP > CTP > TTP for pertussis toxin and ATP > GTP > TTP > CTP for the B oligomer. Phosphate ions inhibited the binding of ({sup 3}H)ATP to pertussis toxin in a competitive manner; however, the presence of phosphate ions was essential for binding of ATP to the B oligomer. The toxin substrate, NAD, did not affect the binding of ({sup 3}H)ATP to pertussis toxin, although the glycoprotein fetuin significantly decreased binding. These results suggest that the binding site for ATP is located on the B oligomer and is distinct from the enzymatically active site but may be located near the eukaryotic receptor binding site.

  1. Catastrophic Incident Recovery: Long-Term Recovery from an Anthrax Event Symposium

    Energy Technology Data Exchange (ETDEWEB)

    Lesperance, Ann M.

    2008-06-30

    On March 19, 2008, policy makers, emergency managers, and medical and Public Health officials convened in Seattle, Washington, for a workshop on Catastrophic Incident Recovery: Long-Term Recovery from an Anthrax Event. The day-long symposium was aimed at generating a dialogue about restoration and recovery through a discussion of the associated challenges that impact entire communities, including people, infrastructure, and critical systems.

  2. PREDICTION OF AEROSOL HAZARDS ARISING FROM THE OPENING OF AN ANTHRAX-TAINTED LETTER IN AN OPEN OFFICE ENVIRONMENT USING COMPUTATIONAL FLUID DYNAMICS

    OpenAIRE

    FUE-SANG LIEN; HUA JI; EUGENE YEE; BILL KOURNIKAKIS

    2010-01-01

    Early experimental work, conducted at Defence R&D Canada–Suffield, measured and characterized the personal and environmental contamination associated with simulated anthrax-tainted letters under a number of different scenarios in order to obtain a better understanding of the physical and biological processes for detecting, assessing, and formulating potential mitigation strategies for managing the risks associated with opening an anthrax-tainted letter. These experimental investigations have ...

  3. Enhancement of an Analytical Method for the Determination of Squalene in Anthrax Vaccine Absorbed Formulations

    National Research Council Canada - National Science Library

    Spanggord, Ronald J; Sun, Meg; Lim, Peter; Ellis, William Y

    2006-01-01

    Specific lots of anthrax vaccine adsorbed administered to members of the U.S. Armed Forces have been alleged to contain squalene, a chemical purported to be associated with illnesses of Gulf War veterans...

  4. Failure of botulinum toxin injection for neurogenic detrusor overactivity: Switch of toxin versus second injection of the same toxin.

    Science.gov (United States)

    Peyronnet, Benoit; Castel-Lacanal, Evelyne; Manunta, Andréa; Roumiguié, Mathieu; Marque, Philippe; Rischmann, Pascal; Gamé, Xavier

    2015-12-01

    To evaluate the efficacy of a second injection of the same toxin versus switching to a different botulinum toxin A after failure of a first detrusor injection in patients with neurogenic detrusor overactivity. The charts of all patients who underwent detrusor injections of botulinum toxin A (either abobotulinumtoxinA or onabotulinumtoxinA) for the management of neurogenic detrusor overactivity at a single institution were retrospectively reviewed. Patients in whom a first detrusor injection had failed were included in the present study. They were managed by a second injection of the same toxin at the same dosage or by a new detrusor injection using a different botulinum toxin A. Success was defined as a resolution of urgency, urinary incontinence and detrusor overactivity in a patient self-catheterizing seven times or less per 24 h. A total of 58 patients were included for analysis. A toxin switch was carried out in 29 patients, whereas the other 29 patients received a reinjection of the same toxin at the same dose. The success rate was higher in patients who received a toxin switch (51.7% vs. 24.1%, P = 0.03). Patients treated with a switch from abobotulinumtoxinA to onabotulinumtoxinA and those treated with a switch from onabotulinumtoxinA to abobotulinumtoxinA had similar success rates (52.9% vs. 50%, P = 0.88). After failure of a first detrusor injection of botulinum toxin for neurogenic detrusor overactivity, a switch to a different toxin seems to be more effective than a second injection of the same toxin. The replacement of onabotulinumtoxin by abobotulinumtoxin or the reverse provides similar results. © 2015 The Japanese Urological Association.

  5. Radiolabelling of cholera toxin

    International Nuclear Information System (INIS)

    Santos, R.G.; Neves, Nicoli M.J.; Abdalla, L.F.; Brandao, R.L.; Etchehebehere, L.; Lima, M.E. de; Nicoli, J.R.

    1999-01-01

    Binding of cholera toxin to ganglioside receptors of enterocyte microvilli catalyzes the activation of adenylate cyclase causing a rise in cAMP which final result is a copious diarrhea. Saccharomyces boulardii, a nonpathogenic yeast has been used to prevent diarrhea. Although the antidiarrheic properties of S. boulardii are widely recognized, this yeast has been used on empirical basis, and the mechanism of this protective effect is unknown. The addition of cholera toxin to S. boulardii induces the raising of cAMP that triggers the activation of neutral trehalase. This suggests that toxin specifically binding to cells, is internalized and active the protein phosphorylation cascade. Our objective is labeling the cholera toxin to verify the presence of binding sites on yeast cell surfaces for the cholera toxin. Cholera toxin was radiolabelled with Na 125 I by a chloramine-T method modified from Cuatrecasas and Griffiths et alii. The 125 I-Cholera toxin showed a specific radioactivity at about 1000 cpm/fmol toxin. Biological activity of labeled cholera toxin measured by trehalase activation was similar to the native toxin. (author)

  6. Analysis of anthrax and plague biowarfare vaccine interactions with human monocyte-derived dendritic cells

    NARCIS (Netherlands)

    Skowera, Anna; de Jong, Esther C.; Schuitemaker, Joost H. N.; Allen, Jennifer S.; Wessely, Simon C.; Griffiths, Gareth; Kapsenberg, Martien; Peakman, Mark

    2005-01-01

    The anti-biowarfare anthrax and plague vaccines require repeated dosing to achieve adequate protection. To test the hypothesis that this limited immunogenicity results from the nature of vaccine interactions with the host innate immune system, we investigated molecular and cellular interactions

  7. The central nervous system as target of Bacillus anthracis toxin independent virulence in rabbits and guinea pigs.

    Directory of Open Access Journals (Sweden)

    Haim Levy

    Full Text Available Infection of the central nervous system is considered a complication of Anthrax and was reported in humans and non-human primates. Previously we have reported that Bacillus anthracis possesses a toxin-independent virulent trait that, like the toxins, is regulated by the major virulence regulator, AtxA, in the presence of pXO2. This toxin-independent lethal trait is exhibited in rabbits and Guinea pigs following significant bacteremia and organ dissemination. Various findings, including meningitis seen in humans and primates, suggested that the CNS is a possible target for this AtxA-mediated activity. In order to penetrate into the brain tissue, the bacteria have to overcome the barriers isolating the CNS from the blood stream. Taking a systematic genetic approach, we compared intracranial (IC inoculation and IV/SC inoculation for the outcome of the infection in rabbits/GP, respectively. The outstanding difference between the two models is exhibited by the encapsulated strain VollumΔpXO1, which is lethal when injected IC, but asymptomatic when inoculated IV/SC. The findings demonstrate that there is an apparent bottleneck in the ability of mutants to penetrate into the brain. Any mutant carrying either pXO1 or pXO2 will kill the host upon IC injection, but only those carrying AtxA either on pXO1 or in the chromosome in the background of pXO2 can penetrate into the brain following peripheral inoculation. The findings were corroborated by histological examination by H&E staining and immunofluorescence of rabbits' brains following IV and IC inoculations. These findings may have major implications on future research both on B. anthracis pathogenicity and on vaccine development.

  8. The evaluation of clinical and laboratory findings of 63 inpatient with cutaneous anthrax: Characteristics of cutaneous anthrax in Turkey

    Directory of Open Access Journals (Sweden)

    Hatice Uce Özkol

    2014-12-01

    Full Text Available Background and Design: Despite a very uncommon disease in developed countries, cutaneous anthrax (CA is currently endemic in our countries. In this study, we aimed to bring out characteristic of anthrax of Turkey by comparing our results and the other CA reports in Turkey. Materials and Methods: Sixty three inpatients with CA between October 2009 and December 2012 were investigated retrospectively. All patients were diagnosed CA by clinical finding and/or microbiological examination. The demographic characteristics patient, routine tests, wound culture and gram staining results were recorded. Results were recorded on statistical program of SPSS 13.0 and were written using percent (%. Results: There were 63 inpatients (41 female (65.1%, 22 male (34.9%, mean age 35.9 years range10-83. Forty nine patients (77.8% had a history of contact with animals or animal product. Thirty-eight (60.3% and twenty-one (33.3% patients were found in the summer and fall season, respectively. Gram staining and culture were performed in 51 patients. Gram-positive bacilli were detected in 17 patients (33.3% by gram smear. Bacillus anthracis bacilli were produced in 11 patients (21.5% in cultures test. The lesions were mostly seen on the left hand (30.2%. Penicillin was most frequently preferred in treatment of CA (87.3%. Conclusion: CA is still endemic in Eastern Anatolia and continues to increase in recent years. Women living in the villages in which income is obtained from buying and selling of animals constitute the most important risk group. Preventive actions such as training of the risky society, vaccination of animals, and obstructing of illegal animal entries across the border, will reduce the incidence of CA.

  9. Radiolabelling of cholera toxin

    Energy Technology Data Exchange (ETDEWEB)

    Santos, R.G.; Neves, Nicoli M.J. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil); Abdalla, L.F.; Brandao, R.L.; Etchehebehere, L. [Ouro Preto Univ., MG (Brazil). Escola de Farmacia. Lab. de Fisiologia e Bioquimica de Microorganismos; Lima, M.E. de [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Inst. de Ciencias Biologicas. Dept. de Bioquimica e Imunologia; Nicoli, J.R. [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Inst. de Ciencias Biologicas. Dept. de Microbiologia

    1999-11-01

    Binding of cholera toxin to ganglioside receptors of enterocyte microvilli catalyzes the activation of adenylate cyclase causing a rise in cAMP which final result is a copious diarrhea. Saccharomyces boulardii, a nonpathogenic yeast has been used to prevent diarrhea. Although the antidiarrheic properties of S. boulardii are widely recognized, this yeast has been used on empirical basis, and the mechanism of this protective effect is unknown. The addition of cholera toxin to S. boulardii induces the raising of cAMP that triggers the activation of neutral trehalase. This suggests that toxin specifically binding to cells, is internalized and active the protein phosphorylation cascade. Our objective is labeling the cholera toxin to verify the presence of binding sites on yeast cell surfaces for the cholera toxin. Cholera toxin was radiolabelled with Na {sup 125} I by a chloramine-T method modified from Cuatrecasas and Griffiths et alii. The {sup 125} I-Cholera toxin showed a specific radioactivity at about 1000 cpm/fmol toxin. Biological activity of labeled cholera toxin measured by trehalase activation was similar to the native toxin. (author) 5 refs., 3 figs.; e-mail: nevesmj at urano.cdtn.br

  10. Prevention, detection, and response to anthrax outbreak in Northern Tanzania using one health approach: A case study of Selela ward in Monduli district

    Directory of Open Access Journals (Sweden)

    Elibariki R. Mwakapeje

    2017-11-01

    Full Text Available Background: Anthrax is an infectious fatal zoonotic disease caused by Bacillus anthracis. Anthrax outbreak was confirmed in samples of wild animals following rumors of the outbreak in wild animals, livestock, and humans in Selela ward, Monduli district of Northern Tanzania. Therefore, a multi-sectorial team was deployed for outbreak response in the affected areas. Objectives: The aim of the response was to manage the outbreak in a One Health approach and specifically: (i To determine the magnitude of anthrax outbreak in humans, livestock, and wild animals in Selela ward, (ii to assess the outbreak local response capacity, (iii to establish mechanisms for safe disposal of animal carcasses in the affected areas, and (iv to mount effective control and preventive strategies using One Health approach in the affected areas. Materials and Methods: This was a cross-sectional field survey using: (i Active searching of suspected human cases at health facilities and community level, (ii physical counting and disposal of wild animal carcasses in the affected area, (iii collection of specimens from suspected human cases and animal carcasses for laboratory analysis, and (iv meetings with local animal and human health staff, political, and traditional leaders at local levels. We analyzed data by STATA software, and a map was created using Quantum GIS software. Results: A total of 21 humans were suspected, and most of them (62% being from Selela ward. The outbreak caused deaths of 10 cattle, 26 goats, and three sheep, and 131 wild animal carcasses were discarded the majority of them being wildebeest (83%. Based on laboratory results, three blood smears tested positive for anthrax using Giemsa staining while two wildebeest samples tested positive and five human blood samples tested negative for anthrax using quantitative polymerase chain reaction techniques. Clinical forms of anthrax were also observed in humans and livestock which suggest that wild animals may

  11. Approval of raxibacumab for the treatment of inhalation anthrax under the US Food and Drug Administration Animal rule

    Directory of Open Access Journals (Sweden)

    Chia-Wei eTsai

    2015-12-01

    Full Text Available On December 14, 2012, the FDA approved raxibacumab, the first product developed under Project BioShield to achieve this milestone, and the first biologic product to be approved through the FDA animal efficacy rule (or Animal Rule. Raxibacumab is approved for the treatment of adult and pediatric patients with inhalational anthrax due to Bacillus anthracis in combination with appropriate antibiotic drugs and for prophylaxis of inhalational anthrax when alternative therapies are not available or are not appropriate. The approval of Raxibacumab illustrates many of the challenges that product developers may encounter when pursuing approval under the Animal Rule and highlights a number of important regulatory and policy issues.

  12. Detection of anthrax lef with DNA-based photonic crystal sensors

    Science.gov (United States)

    Zhang, Bailin; Dallo, Shatha; Peterson, Ralph; Hussain, Syed; Weitao, Tao; Ye, Jing Yong

    2011-12-01

    Bacillus anthracis has posed a threat of becoming biological weapons of mass destruction due to its virulence factors encoded by the plasmid-borne genes, such as lef for lethal factor. We report the development of a fast and sensitive anthrax DNA biosensor based on a photonic crystal structure used in a total-internal-reflection configuration. For the detection of the lef gene, a single-stranded DNA lef probe was biotinylated and immobilized onto the sensor via biotin-streptavidin interactions. A positive control, lef-com, was the complementary strand of the probe, while a negative control was an unrelated single-stranded DNA fragment from the 16S rRNA gene of Acinetobacter baumannii. After addition of the biotinylated lef probe onto the sensor, significant changes in the resonance wavelength of the sensor were observed, resulting from binding of the probe to streptavidin on the sensor. The addition of lef-com led to another significant increase as a result of hybridization between the two DNA strands. The detection sensitivity for the target DNA reached as low as 0.1 nM. In contrast, adding the unrelated DNAs did not cause an obvious shift in the resonant wavelength. These results demonstrate that detection of the anthrax lef by the photonic crystal structure in a total-internal-reflection sensor is highly specific and sensitive.

  13. Bioterrorism: toxins as weapons.

    Science.gov (United States)

    Anderson, Peter D

    2012-04-01

    The potential for biological weapons to be used in terrorism is a real possibility. Biological weapons include infectious agents and toxins. Toxins are poisons produced by living organisms. Toxins relevant to bioterrorism include ricin, botulinum, Clostridium perfrigens epsilson toxin, conotoxins, shigatoxins, saxitoxins, tetrodotoxins, mycotoxins, and nicotine. Toxins have properties of biological and chemical weapons. Unlike pathogens, toxins do not produce an infection. Ricin causes multiorgan toxicity by blocking protein synthesis. Botulinum blocks acetylcholine in the peripheral nervous system leading to muscle paralysis. Epsilon toxin damages cell membranes. Conotoxins block potassium and sodium channels in neurons. Shigatoxins inhibit protein synthesis and induce apoptosis. Saxitoxin and tetrodotoxin inhibit sodium channels in neurons. Mycotoxins include aflatoxins and trichothecenes. Aflatoxins are carcinogens. Trichothecenes inhibit protein and nucleic acid synthesis. Nicotine produces numerous nicotinic effects in the nervous system.

  14. Anthrax outbreak in a Swedish beef cattle herd - 1st case in 27 years: Case report

    Directory of Open Access Journals (Sweden)

    Granberg Malin

    2010-02-01

    Full Text Available Abstract After 27 years with no detected cases, an outbreak of anthrax occurred in a beef cattle herd in the south of Sweden. The outbreak was unusual as it occurred in winter, in animals not exposed to meat-and-bone meal, in a non-endemic country. The affected herd consisted of 90 animals, including calves and young stock. The animals were kept in a barn on deep straw bedding and fed only roughage. Seven animals died during 10 days, with no typical previous clinical signs except fever. The carcasses were reportedly normal in appearance, particularly as regards rigor mortis, bleeding and coagulation of the blood. Subsequently, three more animals died and anthrax was suspected at necropsy and confirmed by culture and PCR on blood samples. The isolated strain was susceptible to tetracycline, ciprofloxacin and ampicillin. Subtyping by MLVA showed the strain to cluster with isolates in the A lineage of Bacillus anthracis. Environmental samples from the holding were all negative except for two soil samples taken from a spot where infected carcasses had been kept until they were picked up for transport. The most likely source of the infection was concluded to be contaminated roughage, although this could not be substantiated by laboratory analysis. The suspected feed was mixed with soil and dust and originated from fields where flooding occurred the previous year, followed by a dry summer with a very low water level in the river allowing for the harvesting on soil usually not exposed. In the early 1900s, animal carcasses are said to have been dumped in this river during anthrax outbreaks and it is most likely that some anthrax spores could remain in the area. The case indicates that untypical cases in non-endemic areas may be missed to a larger extent than previously thought. Field tests allowing a preliminary risk assessment of animal carcasses would be helpful for increased sensitivity of detection and prevention of further exposure to the causative

  15. The organic anion transport polypeptide 1d1 (Oatp1d1) mediates hepatocellular uptake of phalloidin and microcystin into skate liver.

    Science.gov (United States)

    Meier-Abt, F; Hammann-Hänni, A; Stieger, B; Ballatori, N; Boyer, J L

    2007-02-01

    Organic anion transporting polypeptides (rodent Oatp; human OATP) mediate cellular uptake of numerous organic compounds including xenobiotic toxins into mammalian hepatocytes. In the little skate Leucoraja erinacea a liver-specific Oatp (Oatp1d1, also called sOatp) has been identified and suggested to represent an evolutionarily ancient precursor of the mammalian liver OATP1B1 (human), Oatp1b2 (rat), and OATP1B3 (human). The present study tested whether Oatp1d1 shares functional transport activity of the xenobiotic oligopeptide toxins phalloidin and microcystin with the mammalian liver Oatps/OATPs. The phalloidin analogue [(3)H]-demethylphalloin was taken up into skate hepatocytes with high affinity (Km approximately 0.4 microM), and uptake could be inhibited by phalloidin and a variety of typical Oatp/OATP substrates such as bromosulfophthalein, bile salts, estrone-3-sulfate, cyclosporine A and high concentrations of microcystin-LR (Ki approximately 150 microM). When expressed in Xenopus laevis oocytes Oatp1d1 increased uptake of demethylphalloin (Km approximately 2.2 microM) and microcystin-LR (Km approximately 27 microM) 2- to 3-fold over water-injected oocytes, whereas the alternative skate liver organic anion transporter, the dimeric Ostalpha/beta, exhibited no phalloidin and only minor microcystin-LR transport. Also, the closest mammalian Oatp1d1 orthologue, the human brain and testis OATP1C1, did not show any phalloidin transport activity. These results demonstrate that the evolutionarily ancient Oatp1d1 is able to mediate uptake of cyclic oligopeptide toxins into skate liver. The findings support the notion that Oatp1d1 is a precursor of the liver-specific mammalian Oatps/OATPs and that its transport properties are closely associated with certain forms of toxic liver injury such as for example protein phosphatase inhibition by the water-borne toxin microcystin.

  16. The organic anion transport polypeptide 1d1 (Oatp1d1) mediates hepatocellular uptake of phalloidin and microcystin into skate liver

    International Nuclear Information System (INIS)

    Meier-Abt, F.; Hammann-Haenni, A.; Stieger, B.; Ballatori, N.; Boyer, J.L.

    2007-01-01

    Organic anion transporting polypeptides (rodent Oatp; human OATP) mediate cellular uptake of numerous organic compounds including xenobiotic toxins into mammalian hepatocytes. In the little skate Leucoraja erinacea a liver-specific Oatp (Oatp1d1, also called sOatp) has been identified and suggested to represent an evolutionarily ancient precursor of the mammalian liver OATP1B1 (human), Oatp1b2 (rat), and OATP1B3 (human). The present study tested whether Oatp1d1 shares functional transport activity of the xenobiotic oligopeptide toxins phalloidin and microcystin with the mammalian liver Oatps/OATPs. The phalloidin analogue [ 3 H]-demethylphalloin was taken up into skate hepatocytes with high affinity (Km ∼ 0.4 μM), and uptake could be inhibited by phalloidin and a variety of typical Oatp/OATP substrates such as bromosulfophthalein, bile salts, estrone-3-sulfate, cyclosporine A and high concentrations of microcystin-LR (Ki ∼ 150 μM). When expressed in Xenopus laevis oocytes Oatp1d1 increased uptake of demethylphalloin (Km ∼ 2.2 μM) and microcystin-LR (Km ∼ 27 μM) 2- to 3-fold over water-injected oocytes, whereas the alternative skate liver organic anion transporter, the dimeric Ostα/β, exhibited no phalloidin and only minor microcystin-LR transport. Also, the closest mammalian Oatp1d1 orthologue, the human brain and testis OATP1C1, did not show any phalloidin transport activity. These results demonstrate that the evolutionarily ancient Oatp1d1 is able to mediate uptake of cyclic oligopeptide toxins into skate liver. The findings support the notion that Oatp1d1 is a precursor of the liver-specific mammalian Oatps/OATPs and that its transport properties are closely associated with certain forms of toxic liver injury such as for example protein phosphatase inhibition by the water-borne toxin microcystin

  17. Botulinum toxin

    Directory of Open Access Journals (Sweden)

    Nigam P

    2010-01-01

    Full Text Available Botulinum toxin, one of the most poisonous biological substances known, is a neurotoxin produced by the bacterium Clostridium botulinum. C. botulinum elaborates eight antigenically distinguishable exotoxins (A, B, C 1 , C 2 , D, E, F and G. All serotypes interfere with neural transmission by blocking the release of acetylcholine, the principal neurotransmitter at the neuromuscular junction, causing muscle paralysis. The weakness induced by injection with botulinum toxin A usually lasts about three months. Botulinum toxins now play a very significant role in the management of a wide variety of medical conditions, especially strabismus and focal dystonias, hemifacial spasm, and various spastic movement disorders, headaches, hypersalivation, hyperhidrosis, and some chronic conditions that respond only partially to medical treatment. The list of possible new indications is rapidly expanding. The cosmetological applications include correction of lines, creases and wrinkling all over the face, chin, neck, and chest to dermatological applications such as hyperhidrosis. Injections with botulinum toxin are generally well tolerated and side effects are few. A precise knowledge and understanding of the functional anatomy of the mimetic muscles is absolutely necessary to correctly use botulinum toxins in clinical practice.

  18. Botulinum toxin in parkinsonism: The when, how, and which for botulinum toxin injections.

    Science.gov (United States)

    Cardoso, Francisco

    2018-06-01

    The aim of this article is to provide a review of the use of injections of botulinum toxin in the management of selected symptoms and signs of Parkinson's disease and other forms of parkinsonism. Sialorrhea is defined as inability to control oral secretions, resulting in excessive saliva in the oropharynx. There is a high level of evidence for the treatment of sialorrhea in parkinsonism with injections of different forms of botulinum toxin type A as well as botulinum toxin type B. Tremor can be improved by the use of botulinum toxin injections but improved tremor control often leads to concomitant motor weakness, limiting its use. Levodopa induced dyskinesias are difficult to treat with botulinum toxin injections because of their variable frequency and direction. Apraxia of eyelid opening, a sign more commonly seen in progressive supranuclear palsy and other tauopathies, often improves after botulinum toxin injections. Recent data suggest that regardless of the underlying mechanism, pain in parkinsonism can be alleviated by botulinum toxin injections. Finally, freezing of gait, camptocormia and Pisa syndrome in parkinsonism almost invariably fail to respond to botulinum toxin injections. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Lipid reorganization induced by Shiga toxin clustering on planar membranes.

    Directory of Open Access Journals (Sweden)

    Barbara Windschiegl

    Full Text Available The homopentameric B-subunit of bacterial protein Shiga toxin (STxB binds to the glycolipid Gb(3 in plasma membranes, which is the initial step for entering cells by a clathrin-independent mechanism. It has been suggested that protein clustering and lipid reorganization determine toxin uptake into cells. Here, we elucidated the molecular requirements for STxB induced Gb(3 clustering and for the proposed lipid reorganization in planar membranes. The influence of binding site III of the B-subunit as well as the Gb(3 lipid structure was investigated by means of high resolution methods such as fluorescence and scanning force microscopy. STxB was found to form protein clusters on homogenous 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC/cholesterol/Gb(3 (65:30:5 bilayers. In contrast, membranes composed of DOPC/cholesterol/sphingomyelin/Gb(3 (40:35:20:5 phase separate into a liquid ordered and liquid disordered phase. Dependent on the fatty acid composition of Gb(3, STxB-Gb(3 complexes organize within the liquid ordered phase upon protein binding. Our findings suggest that STxB is capable of forming a new membrane phase that is characterized by lipid compaction. The significance of this finding is discussed in the context of Shiga toxin-induced formation of endocytic membrane invaginations.

  20. Polyamine toxins

    DEFF Research Database (Denmark)

    Strømgaard, Kristian; Jensen, Lars S; Vogensen, Stine B

    2005-01-01

    Polyamine toxins, isolated from spiders and wasps, have been used as pharmacological tools for the study of ionotropic receptors, but their use have so far been hampered by their lack of selectivity. In this mini-review, we describe how careful synthetic modification of native polyamine toxins ha...

  1. Bacillus anthracis-derived edema toxin (ET counter-regulates movement of neutrophils and macromolecules through the endothelial paracellular pathway

    Directory of Open Access Journals (Sweden)

    Nguyen Chinh

    2012-01-01

    Full Text Available Abstract Background A common finding amongst patients with inhalational anthrax is a paucity of polymorphonuclear leukocytes (PMNs in infected tissues in the face of abundant circulating PMNs. A major virulence determinant of anthrax is edema toxin (ET, which is formed by the combination of two proteins produced by the organism, edema factor (EF, which is an adenyl cyclase, and protective antigen (PA. Since cAMP, a product of adenyl cyclase, is known to enhance endothelial barrier integrity, we asked whether ET might decrease extravasation of PMNs into tissues through closure of the paracellular pathway through which PMNs traverse. Results Pretreatment of human microvascular endothelial cell(ECs of the lung (HMVEC-L with ET decreased interleukin (IL-8-driven transendothelial migration (TEM of PMNs with a maximal reduction of nearly 60%. This effect required the presence of both EF and PA. Conversely, ET did not diminish PMN chemotaxis in an EC-free system. Pretreatment of subconfluent HMVEC-Ls decreased transendothelial 14 C-albumin flux by ~ 50% compared to medium controls. Coadministration of ET with either tumor necrosis factor-α or bacterial lipopolysaccharide, each at 100 ng/mL, attenuated the increase of transendothelial 14 C-albumin flux caused by either agent alone. The inhibitory effect of ET on TEM paralleled increases in protein kinase A (PKA activity, but could not be blocked by inhibition of PKA with either H-89 or KT-5720. Finally, we were unable to replicate the ET effect with either forskolin or 3-isobutyl-1-methylxanthine, two agents known to increase cAMP. Conclusions We conclude that ET decreases IL-8-driven TEM of PMNs across HMVEC-L monolayers independent of cAMP/PKA activity.

  2. Higher cytotoxicity of divalent antibody-toxins than monovalent antibody-toxins

    International Nuclear Information System (INIS)

    Won, JaeSeon; Nam, PilWon; Lee, YongChan; Choe, MuHyeon

    2009-01-01

    Recombinant antibody-toxins are constructed via the fusion of a 'carcinoma-specific' antibody fragment to a toxin. Due to the high affinity and high selectivity of the antibody fragments, antibody-toxins can bind to surface antigens on cancer cells and kill them without harming normal cells [L.H. Pai, J.K. Batra, D.J. FitzGerald, M.C. Willingham, I. Pastan, Anti-tumor activities of immunotoxins made of monoclonal antibody B3 and various forms of Pseudomonas exotoxin, Proc. Natl. Acad. Sci. USA 88 (1991) 3358-3362]. In this study, we constructed the antibody-toxin, Fab-SWn-PE38, with SWn (n = 3, 6, 9) sequences containing n-time repeated (G 4 S) between the Fab fragment and PE38 (38 kDa truncated form of Pseudomonas exotoxin A). The SWn sequence also harbored one cysteine residue that could form a disulfide bridge between two Fab-SWn-PE38 monomers. We assessed the cytotoxicity of the monovalent (Fab-SWn-PE38), and divalent ([Fab-SWn-PE38] 2 ) antibody-toxins. The cytotoxicity of the dimer against the CRL1739 cell line was approximately 18.8-fold higher than that of the monomer on the ng/ml scale, which was approximately 37.6-fold higher on the pM scale. These results strongly indicate that divalency provides higher cytotoxicity for an antibody-toxin.

  3. Action of cholera toxin in the intestinal epithelial cells

    International Nuclear Information System (INIS)

    Hyun, C.S.

    1982-01-01

    The primary event in the action of cholera toxin on the isolated chick intestinal epithelial cell is its interaction with a large number of high affinity binding sites in the cell membrane. Binding of 125 I-labeled toxin is rapid, temperature-dependent, reversible, and saturable over a wide range of concentrations and includes only a small contribution from nonspecific sites. A characteristic lag phase of 10 min occurs following the complete binding of toxin before any increase in cellular cAMP levels can be detected. The response (elevation of cellular cAMP) is linear with time for 40 to 50 min and causes a six- to eight-fold increase over control levels (10 to 15 picomole cAMP/mg cellular protein) at steady state. cAMP and agents that increase cAMP production inhibit Cl - -independent Na + influx into the isolated enterocytes whereas chlorpromazine (CPZ) which completely abolishes toxin-induced elevation of cAMP both reverses and prevents the cAMP-mediated inhibition of Na + entry. Correlation between cellular cAMP levels and the magnitude of Na + influx provides evidence for a cAMP-mediated control of intestinal Na + uptake, which may represent the mechanistic basis for the antiabsorptive effect of CT on Na + during induction of intestinal secretion. The effect of cAMP on Na + but not Cl - influx preparations can be partially explained in terms of a cAMP-regulated Na + /H + neutral exchange system. Data on the coupling relationship between Na + transport and the intra- and extracellular pH in the enterocytes show that an amiloride-sensitive electroneutral Na + /H + exchange process occurs. This coupling between Na + and H + is partially inhibited by CT and dbcAMP, suggesting that the Na + /H + exchange may be a cAMP-regulated process. 31 references, 32 figures, 5 tables

  4. One-pot synthesis of strongly fluorescent DNA-CuInS2 quantum dots for label-free and ultrasensitive detection of anthrax lethal factor DNA

    International Nuclear Information System (INIS)

    Liu, Ziping; Su, Xingguang

    2016-01-01

    Herein, high quality DNA-CuInS 2 QDs are facilely synthesized through a one-pot hydrothermal method with fluorescence quantum yield as high as 23.4%, and the strongly fluorescent DNA-CuInS 2 QDs have been utilized as a novel fluorescent biosensor for label-free and ultrasensitive detection of anthrax lethal factor DNA. L-Cysteine (L-Cys) and a specific-sequence DNA are used as co-ligands to stabilize the CuInS 2 QDs. The specific-sequence DNA consists of two domains: phosphorothiolates domain (sulfur-containing variants of the usual phosphodiester backbone) controls the nanocrystal passivation and serves as a ligand, and the functional domain (non-phosphorothioates) controls the biorecognition. The as-prepared DNA-CuInS 2 QDs have high stability, good water-solubility and low toxicity. Under the optimized conditions, a linear correlation was established between the fluorescence intensity ratio I/I 0 (I 0 is the original fluorescence intensity of DNA-CuInS 2 QDs, and I is the fluorescence intensity of DNA-CuInS 2 QDs/GO with the addition of various concentrations of anthrax lethal factor DNA) and the concentration of anthrax lethal factor DNA in the range of 0.029–0.733 nmol L −1 with a detection limit of 0.013 nmol L −1 . The proposed method has been successfully applied to the determination of anthrax lethal factor DNA sequence in human serum samples with satisfactory results. Because of low toxicity and fine biocompatibility, DNA-CuInS 2 QDs also hold potential applications in bioimaging. - Highlights: • Strongly fluorescent DNA-QDs were successfully prepared by a one-pot hydrothermal method with quantum yield up to 23.4%. • A biosensor for label-free detection of anthrax lethal factor DNA was established based on the as-prepared DNA-QDs. • The DNA sensor took advantage of the feature that ssDNA binds to GO with significantly higher affinity than dsDNA. • Good sensitivity and selectivity were obtained. • This method was utilized to detect

  5. Autoproteolytic Activation of Bacterial Toxins

    Directory of Open Access Journals (Sweden)

    Aimee Shen

    2010-05-01

    Full Text Available Protease domains within toxins typically act as the primary effector domain within target cells. By contrast, the primary function of the cysteine protease domain (CPD in Multifunctional Autoprocessing RTX-like (MARTX and Clostridium sp. glucosylating toxin families is to proteolytically cleave the toxin and release its cognate effector domains. The CPD becomes activated upon binding to the eukaryotic-specific small molecule, inositol hexakisphosphate (InsP6, which is found abundantly in the eukaryotic cytosol. This property allows the CPD to spatially and temporally regulate toxin activation, making it a prime candidate for developing anti-toxin therapeutics. In this review, we summarize recent findings related to defining the regulation of toxin function by the CPD and the development of inhibitors to prevent CPD-mediated activation of bacterial toxins.

  6. Toxin production in Dinophysis and the fate of these toxins in marine mussels

    DEFF Research Database (Denmark)

    Nielsen, Lasse Tor

    Diarrhetic shellfish poisoning (DSP) poses a considerable threat to food safety and to the economy of shellfish fishers and farmers in many parts of the world. Thousands of DSP intoxications have been reported, and bivalve harvesting can sometimes be closed down several months in a row. The toxins....... acuta. I grew the two species in laboratory cultures at different irradiances (7-130 μmol photons m-2 s-1) and with different food availability. The results showed that irradiance had no effects on toxin profiles, and only limited effects of the cellular toxin contents. Rather, toxin production rates...... are primarily produced by the marine mixotrophic dinoflagellates Dinophysis spp., known to occur in most parts of the world. Dinophysis can, along with other planktonic organisms, be consumed by filter-feeding bivalves, and thus the toxins can accumulate. Dinophysis can produce the three toxin groups, okadaic...

  7. Uptake, distribution and depuration of paralytic shellfish toxins from Alexandrium minutum in Australian greenlip abalone, Haliotis laevigata.

    Science.gov (United States)

    Dowsett, Natalie; Hallegraeff, Gustaaf; van Ruth, Paul; van Ginkel, Roel; McNabb, Paul; Hay, Brenda; O'Connor, Wayne; Kiermeier, Andreas; Deveney, Marty; McLeod, Catherine

    2011-07-01

    Farmed greenlip abalone Haliotis laevigata were fed commercial seaweed-based food pellets or feed pellets supplemented with 8 × 10⁵ Alexandrium minutum dinoflagellate cells g⁻¹ (containing 12 ± 3.0 μg STX-equivalent 100 g⁻¹, which was mainly GTX-1,4) every second day for 50 days. Exposure of abalone to PST supplemented feed for 50 days did not affect behaviour or survival but saw accumulation of up to 1.6 μg STX-equivalent 100 g⁻¹ in the abalone foot tissue (muscle, mouth without oesophagus and epipodial fringe), which is ∼50 times lower than the maximum permissible limit (80 μg 100 g⁻¹ tissue) for PSTs in molluscan shellfish. The PST levels in the foot were reduced to 0.48 μg STX-equivalent 100 g⁻¹ after scrubbing and removal of the pigment surrounding the epithelium of the epipodial fringe (confirmed by both HPLC and LC-MS/MS). Thus, scrubbing the epipodial fringe, a common procedure during commercial abalone canning, reduced PST levels by ∼70%. Only trace levels of PSTs were detected in the viscera (stomach, gut, heart, gonad, gills and mantle) of the abalone. A toxin reduction of approximately 73% was observed in STX-contaminated abalone held in clean water and fed uncontaminated food over 50 days. The low level of PST uptake when abalone were exposed to high numbers of A. minutum cells over a prolonged period may indicate a low risk of PSP poisoning to humans from the consumption of H. laevigata that has been exposed to a bloom of potentially toxic A. minutum in Australia. Further research is required to establish if non-dietary accumulation can result in significant levels of PSTs in abalone. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  8. Toxin-Based Therapeutic Approaches

    Science.gov (United States)

    Shapira, Assaf; Benhar, Itai

    2010-01-01

    Protein toxins confer a defense against predation/grazing or a superior pathogenic competence upon the producing organism. Such toxins have been perfected through evolution in poisonous animals/plants and pathogenic bacteria. Over the past five decades, a lot of effort has been invested in studying their mechanism of action, the way they contribute to pathogenicity and in the development of antidotes that neutralize their action. In parallel, many research groups turned to explore the pharmaceutical potential of such toxins when they are used to efficiently impair essential cellular processes and/or damage the integrity of their target cells. The following review summarizes major advances in the field of toxin based therapeutics and offers a comprehensive description of the mode of action of each applied toxin. PMID:22069564

  9. Immunoassay for Capsular Antigen of Bacillus anthracis Enables Rapid Diagnosis in a Rabbit Model of Inhalational Anthrax.

    Directory of Open Access Journals (Sweden)

    Marcellene A Gates-Hollingsworth

    Full Text Available Inhalational anthrax is a serious biothreat. Effective antibiotic treatment of inhalational anthrax requires early diagnosis; the further the disease has progressed, the less the likelihood for cure. Current means for diagnosis such as blood culture require several days to a result and require advanced laboratory infrastructure. An alternative approach to diagnosis is detection of a Bacillus anthracis antigen that is shed into blood and can be detected by rapid immunoassay. The goal of the study was to evaluate detection of poly-γ-D-glutamic acid (PGA, the capsular antigen of B. anthracis, as a biomarker surrogate for blood culture in a rabbit model of inhalational anthrax. The mean time to a positive blood culture was 26 ± 5.7 h (mean ± standard deviation, whereas the mean time to a positive ELISA was 22 ± 4.2 h; P = 0.005 in comparison with blood culture. A lateral flow immunoassay was constructed for detection of PGA in plasma at concentrations of less than 1 ng PGA/ml. Use of the lateral flow immunoassay for detection of PGA in the rabbit model found that antigen was detected somewhat earlier than the earliest time point at which the blood culture became positive. The low cost, ease of use, and rapid time to result of the lateral flow immunoassay format make an immunoassay for PGA a viable surrogate for blood culture for detection of infection in individuals who have a likelihood of exposure to B. anthracis.

  10. Monoclonal Antibodies and Toxins—A Perspective on Function and Isotype

    Directory of Open Access Journals (Sweden)

    Siu-Kei Chow

    2012-06-01

    Full Text Available Antibody therapy remains the only effective treatment for toxin-mediated diseases. The development of hybridoma technology has allowed the isolation of monoclonal antibodies (mAbs with high specificity and defined properties, and numerous mAbs have been purified and characterized for their protective efficacy against different toxins. This review summarizes the mAb studies for 6 toxins—Shiga toxin, pertussis toxin, anthrax toxin, ricin toxin, botulinum toxin, and Staphylococcal enterotoxin B (SEB—and analyzes the prevalence of mAb functions and their isotypes. Here we show that most toxin-binding mAbs resulted from immunization are non-protective and that mAbs with potential therapeutic use are preferably characterized. Various common practices and caveats of protection studies are discussed, with the goal of providing insights for the design of future research on antibody-toxin interactions.

  11. Monoclonal Antibodies and Toxins—A Perspective on Function and Isotype

    Science.gov (United States)

    Chow, Siu-Kei; Casadevall, Arturo

    2012-01-01

    Antibody therapy remains the only effective treatment for toxin-mediated diseases. The development of hybridoma technology has allowed the isolation of monoclonal antibodies (mAbs) with high specificity and defined properties, and numerous mAbs have been purified and characterized for their protective efficacy against different toxins. This review summarizes the mAb studies for 6 toxins—Shiga toxin, pertussis toxin, anthrax toxin, ricin toxin, botulinum toxin, and Staphylococcal enterotoxin B (SEB)—and analyzes the prevalence of mAb functions and their isotypes. Here we show that most toxin-binding mAbs resulted from immunization are non-protective and that mAbs with potential therapeutic use are preferably characterized. Various common practices and caveats of protection studies are discussed, with the goal of providing insights for the design of future research on antibody-toxin interactions. PMID:22822456

  12. Affinity chromatography of tetanus toxin, tetanus toxoid, and botulinum A toxin on synaptosomes, and differentiation of their acceptors

    Energy Technology Data Exchange (ETDEWEB)

    Habermann, E [Giessen Univ. (Germany, F.R.). Pharmakologisches Inst.

    1976-01-01

    /sup 125/I-labelled tetanus toxin and /sup 125/I-labelled botulinum A neurotoxin are known to be specifically bound to brain synaptosomes. In order to discriminate between active toxin and inactive admixtures present in the starting material or arising during iodination, synaptosome columns were prepared using bromacetylcellulose and/or kieselgur (Celite) as carriers. Both types of columns adsorb the toxins from low ionic strength medium and release them if the pH and ionic strength are raised. Botulinum toxin was eluted with lower ionic strength than tetanus toxin, and could be freed from nontoxic admixtures. Analysis by affinity chromatography disclosed partially toxoided tetanus toxin in both labelled and unlabelled toxin samples. High concentrations of formaldehyde (0.5%) destroyed both toxicity and affinity to the synaptosomes of tetanus toxin. Low concentrations of formaldehyde (0.05%) yielded a derivative of low toxicity which was still, however less firmly, bound to synaptosomes. Tetanus and botulinum toxin differ by their acceptors. Whereas unlabelled botulinum toxin is unable to compete with labelled tetanus toxin, unlabelled tetanus toxin slightly competes with botulinum toxin. Both labelled toxins display anomalous binding behaviour in that they cannot be displaced completely even with a large excess of unlabelled toxin.

  13. Affinity chromatography of tetanus toxin, tetanus toxoid, and botulinum A toxin on synaptosomes, and differentiation of their acceptors

    International Nuclear Information System (INIS)

    Habermann, E.

    1976-01-01

    125 I-labelled tetanus toxin and 125 I-labelled botulinum A neurotoxin are known to be specifically bound to brain synaptosomes. In order to discriminate between active toxin and inactive admixtures present in the starting material or arising during iodination, synaptosome columns were prepared using bromacetylcellulose and/or kieselgur (Celite) as carriers. Both types of columns adsorb the toxins from low ionic strength medium and release them if the pH and ionic strength are raised. Botulinum toxin was eluted with lower ionic strength than tetanus toxin, and could be freed from nontoxic admixtures. Analysis by affinity chromatography disclosed partially toxoided tetanus toxin in both labelled and unlabelled toxin samples. High concentrations of formaldehyde (0.5%) destroyed both toxicity and affinity to the synaptosomes of tetanus toxin. Low concentrations of formaldehyde (0.05%) yielded a derivative of low toxicity which was still, however less firmly, bound to synaptosomes. Tetanus and botulinum toxin differ by their acceptors. Whereas unlabelled botulinum toxin is unable to compete with labelled tetanus toxin, unlabelled tetanus toxin slightly competes with botulinum toxin. Both labelled toxins display anomalous binding behaviour in that they cannot be displaced completely even with a large excess of unlabelled toxin. (orig.) [de

  14. Toxin-Based Therapeutic Approaches

    Directory of Open Access Journals (Sweden)

    Itai Benhar

    2010-10-01

    Full Text Available Protein toxins confer a defense against predation/grazing or a superior pathogenic competence upon the producing organism. Such toxins have been perfected through evolution in poisonous animals/plants and pathogenic bacteria. Over the past five decades, a lot of effort has been invested in studying their mechanism of action, the way they contribute to pathogenicity and in the development of antidotes that neutralize their action. In parallel, many research groups turned to explore the pharmaceutical potential of such toxins when they are used to efficiently impair essential cellular processes and/or damage the integrity of their target cells. The following review summarizes major advances in the field of toxin based therapeutics and offers a comprehensive description of the mode of action of each applied toxin.

  15. One-pot synthesis of strongly fluorescent DNA-CuInS{sub 2} quantum dots for label-free and ultrasensitive detection of anthrax lethal factor DNA

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ziping; Su, Xingguang, E-mail: suxg@jlu.edu.cn

    2016-10-26

    Herein, high quality DNA-CuInS{sub 2} QDs are facilely synthesized through a one-pot hydrothermal method with fluorescence quantum yield as high as 23.4%, and the strongly fluorescent DNA-CuInS{sub 2} QDs have been utilized as a novel fluorescent biosensor for label-free and ultrasensitive detection of anthrax lethal factor DNA. L-Cysteine (L-Cys) and a specific-sequence DNA are used as co-ligands to stabilize the CuInS{sub 2} QDs. The specific-sequence DNA consists of two domains: phosphorothiolates domain (sulfur-containing variants of the usual phosphodiester backbone) controls the nanocrystal passivation and serves as a ligand, and the functional domain (non-phosphorothioates) controls the biorecognition. The as-prepared DNA-CuInS{sub 2} QDs have high stability, good water-solubility and low toxicity. Under the optimized conditions, a linear correlation was established between the fluorescence intensity ratio I/I{sub 0} (I{sub 0} is the original fluorescence intensity of DNA-CuInS{sub 2} QDs, and I is the fluorescence intensity of DNA-CuInS{sub 2} QDs/GO with the addition of various concentrations of anthrax lethal factor DNA) and the concentration of anthrax lethal factor DNA in the range of 0.029–0.733 nmol L{sup −1} with a detection limit of 0.013 nmol L{sup −1}. The proposed method has been successfully applied to the determination of anthrax lethal factor DNA sequence in human serum samples with satisfactory results. Because of low toxicity and fine biocompatibility, DNA-CuInS{sub 2} QDs also hold potential applications in bioimaging. - Highlights: • Strongly fluorescent DNA-QDs were successfully prepared by a one-pot hydrothermal method with quantum yield up to 23.4%. • A biosensor for label-free detection of anthrax lethal factor DNA was established based on the as-prepared DNA-QDs. • The DNA sensor took advantage of the feature that ssDNA binds to GO with significantly higher affinity than dsDNA. • Good sensitivity and selectivity were

  16. Pertussis toxin treatment attenuates some effects of insulin in BC3H-1 murine myocytes

    International Nuclear Information System (INIS)

    Luttrell, L.M.; Hewlett, E.L.; Romero, G.; Rogol, A.D.

    1988-01-01

    The effects of pertussis toxin (PT) treatment on insulin-stimulated myristoyl-diacylglycerol (DAG) generation, hexose transport, and thymidine incorporation were studied in differentiated BC3H-1 mycocytes. Insulin treatment caused a biphasic increase in myristoyl-DAG production which was abolished in myocytes treated with PT. There was no effect of PT treatment on basal (nonstimulated) myristoyl-DAG production. Insulin-stimulated hydrolysis of a membrane phosphatidylinositol glycan was blocked by PT treatment. ADP-ribosylation of BC3H-1 plasma membranes with [ 32 P]NAD revealed a 40-kDa protein as the major PT substrate in vivo and in vitro. The time course and dose dependence of the effects of PT on diacylglycerol generation correlated with the in vivo ADP-ribosylation of the 40-kDa substrate. Pertussis toxin treatment resulted in a 71% attenuation of insulin-stimulated hexose uptake without effect on either basal or phorbol ester-stimulated uptake. The stimulatory effects of insulin and fetal calf serum on [ 3 H]thymidine incorporation into quiescent myocytes were attenuated by 61 and 59%, respectively, when PT was added coincidently with the growth factors. Nonstimulated and EGF-stimulated [ 3 H]thymidine incorporation was unaffected by PT treatment. These data suggest that a PT-sensitive G protein is involved in the cellular signaling mechanisms of insulin

  17. Botulinum Toxin (Botox) for Facial Wrinkles

    Science.gov (United States)

    ... Stories Español Eye Health / Eye Health A-Z Botulinum Toxin (Botox) for Facial Wrinkles Sections Botulinum Toxin (Botox) ... Facial Wrinkles How Does Botulinum Toxin (Botox) Work? Botulinum Toxin (Botox) for Facial Wrinkles Leer en Español: La ...

  18. Lymphocyte receptors for pertussis toxin

    Energy Technology Data Exchange (ETDEWEB)

    Clark, C.G.; Armstrong, G.D. (Univ. of Alberta, Edmonton (Canada))

    1990-12-01

    We have investigated human T-lymphocyte receptors for pertussis toxin by affinity isolation and photoaffinity labeling procedures. T lymphocytes were obtained from peripheral human blood, surface iodinated, and solubilized in Triton X-100. The iodinated mixture was then passed through pertussis toxin-agarose, and the fractions were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Autoradiography of the fixed, dried gels revealed several bands in the pertussis toxin-bound fraction that were not observed in fractions obtained from histone or fetuin-agarose. Further investigations employed a photoaffinity labeling reagent, sulfosuccinimidyl 2-(p-azido-salicylamido)-1,3'-dithiopropionate, to identify pertussis toxin receptors in freshly isolated peripheral blood monocytic cells, T lymphocytes, and Jurkat cells. In all three cell systems, the pertussis toxin affinity probe specifically labeled a single protein species with an apparent molecular weight of 70,000 that was not observed when the procedure was performed in the presence of excess unmodified pertussis toxin. A protein comparable in molecular weight to the one detected by the photoaffinity labeling technique was also observed among the species that bound to pertussis toxin-agarose. The results suggest that pertussis toxin may bind to a 70,000-Da receptor in human T lymphocytes.

  19. Botulinum toxin: bioweapon & magic drug.

    Science.gov (United States)

    Dhaked, Ram Kumar; Singh, Manglesh Kumar; Singh, Padma; Gupta, Pallavi

    2010-11-01

    Botulinum neurotoxins, causative agents of botulism in humans, are produced by Clostridium botulinum, an anaerobic spore-former Gram positive bacillus. Botulinum neurotoxin poses a major bioweapon threat because of its extreme potency and lethality; its ease of production, transport, and misuse; and the need for prolonged intensive care among affected persons. A single gram of crystalline toxin, evenly dispersed and inhaled, can kill more than one million people. The basis of the phenomenal potency of botulinum toxin is enzymatic; the toxin is a zinc proteinase that cleaves neuronal vesicle associated proteins responsible for acetylcholine release into the neuromuscular junction. As a military or terrorist weapon, botulinum toxin could be disseminated via aerosol or by contamination of water or food supplies, causing widespread casualties. A fascinating aspect of botulinum toxin research in recent years has been development of the most potent toxin into a molecule of significant therapeutic utility . It is the first biological toxin which is licensed for treatment of human diseases. In the late 1980s, Canada approved use of the toxin to treat strabismus, in 2001 in the removal of facial wrinkles and in 2002, the FDA in the United States followed suit. The present review focuses on both warfare potential and medical uses of botulinum neurotoxin.

  20. Topical botulinum toxin.

    Science.gov (United States)

    Collins, Ashley; Nasir, Adnan

    2010-03-01

    Nanotechnology is a rapidly growing discipline that capitalizes on the unique properties of matter engineered on the nanoscale. Vehicles incorporating nanotechnology have led to great strides in drug delivery, allowing for increased active ingredient stability, bioavailability, and site-specific targeting. Botulinum toxin has historically been used for the correction of neurological and neuromuscular disorders, such as torticollis, blepharospasm, and strabismus. Recent dermatological indications have been for the management of axillary hyperhydrosis and facial rhytides. Traditional methods of botulinum toxin delivery have been needle-based. These have been associated with increased pain and cost. Newer methods of botulinum toxin formulation have yielded topical preparations that are bioactive in small pilot clinical studies. While there are some risks associated with topical delivery, the refinement and standardization of delivery systems and techniques for the topical administration of botulinum toxin using nanotechnology is anticipated in the near future.

  1. PREDICTION OF AEROSOL HAZARDS ARISING FROM THE OPENING OF AN ANTHRAX-TAINTED LETTER IN AN OPEN OFFICE ENVIRONMENT USING COMPUTATIONAL FLUID DYNAMICS

    Directory of Open Access Journals (Sweden)

    FUE-SANG LIEN

    2010-09-01

    Full Text Available Early experimental work, conducted at Defence R&D Canada–Suffield, measured and characterized the personal and environmental contamination associated with simulated anthrax-tainted letters under a number of different scenarios in order to obtain a better understanding of the physical and biological processes for detecting, assessing, and formulating potential mitigation strategies for managing the risks associated with opening an anthrax-tainted letter. These experimental investigations have been extended in the present study to simulate numerically the contamination from the opening of anthrax-tainted letters in an open office environment using computational fluid dynamics (CFD. A quantity of 0.1 g of Bacillus atropheus (formerly referred to as Bacillus subtilis var globigii (BG spores in dry powder form, which was used here as a surrogate species for Bacillus anthracis (anthrax, was released from an opened letter in the experiment. The accuracy of the model for prediction of the spatial distribution of BG spores in the office from the opened letter is assessed qualitatively (and to the extent possible, quantitatively by detailed comparison with measured BG concentrations obtained under a number of different scenarios, some involving people moving within the office. The observed discrepancy between the numerical predictions and experimental measurements of concentration was probably the result of a number of physical processes which were not accounted for in the numerical simulation. These include air flow leakage from cracks and crevices of the building shell; the dispersion of BG spores in the Heating, Ventilation, and Air Conditioning (HVAC system; and, the effect of deposition and re-suspension of BG spores from various surfaces in the office environment.

  2. A retrospective study on the epidemiology of anthrax, foot and mouth disease, haemorrhagic septicaemia, peste des petits ruminants and rabies in Bangladesh, 2010-2012.

    Directory of Open Access Journals (Sweden)

    Shankar P Mondal

    Full Text Available Anthrax, foot and mouth disease (FMD, haemorrhagic septicaemia (HS, peste des petits ruminants (PPR and rabies are considered to be endemic in Bangladesh. This retrospective study was conducted to understand the geographic and seasonal distribution of these major infectious diseases in livestock based on data collected through passive surveillance from 1 January 2010 to 31 December 2012. Data analysis for this period revealed 5,937 cases of anthrax, 300,333 of FMD, 13,436 of HS, 247,783 of PPR and 14,085 cases of dog bite/rabies. While diseases were reported in almost every district of the country, the highest frequency of occurrence corresponded to the susceptible livestock population in the respective districts. There was no significant difference in the disease occurrences between districts bordering India/Myanmar and non-border districts (p>0.05. Significantly higher (p<0.01 numbers of anthrax (84.5%, FMD (88.3%, HS (84.9% and dog bite/rabies (64.3% cases were reported in cattle than any other species. PPR cases were reported mostly (94.8% in goats with only isolated cases (5.2% in sheep. The diseases occur throughout the year with peak numbers reported during June through September and lowest during December through April, with significant differences (p<0.01 between the months. The annual usages of vaccines for anthrax, FMD, HS and PPR were only 7.31%, 0.61%, 0.84% and 11.59% of the susceptible livestock population, respectively. Prophylactic vaccination against rabies was 21.16% of cases. There were significant differences (p<0.01 in the administration of anthrax, FMD and HS vaccines between border and non-border districts, but not PPR or rabies vaccines. We recommend that surveillance and reporting of these diseases need to be improved throughout the country. Furthermore, all suspected clinical cases should be confirmed by laboratory examination. The findings of this study can be used in the formulation of more effective disease

  3. An Alternative Approach to Combination Vaccines: Intradermal Administration of Isolated Components for Control of Anthrax, Botulism, Plague and Staphylococcal Toxic Shock

    National Research Council Canada - National Science Library

    Morefield, Garry L; Tammariello, Ralph F; Purcell, Bret K; Worsham, Patricia L; Chapman, Jennifer; Smith, Leonard A; Alarcon, Jason B; Mikszta, John A; Ulrich, Robert G

    2008-01-01

    ... incompatible vaccine mixtures. Intradermally administered arrays of vaccines for protection from anthrax, botulism, plague, and staphylococcal toxic shock were biocompatible in vivo, retained potent antibody responses...

  4. Botulinum toxin injection - larynx

    Science.gov (United States)

    Injection laryngoplasty; Botox - larynx: spasmodic dysphonia-BTX; Essential voice tremor (EVT)-btx; Glottic insufficiency; Percutaneous electromyography - guided botulinum toxin treatment; Percutaneous indirect laryngoscopy - guided botulinum toxin treatment; ...

  5. 9 CFR 310.9 - Anthrax; carcasses not to be eviscerated; disposition of affected carcasses; hides, hoofs, horns...

    Science.gov (United States)

    2010-01-01

    ... have handled anthrax material is thorough cleansing of the hands and arms with liquid soap and running... Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY ORGANIZATION AND... request to the Scientific Services, Meat and Poultry Inspection, Food Safety and Inspection Service, U.S...

  6. Anthrax Sampling and Decontamination: Technology Trade-Offs

    Energy Technology Data Exchange (ETDEWEB)

    Price, Phillip N.; Hamachi, Kristina; McWilliams, Jennifer; Sohn, Michael D.

    2008-09-12

    The goal of this project was to answer the following questions concerning response to a future anthrax release (or suspected release) in a building: 1. Based on past experience, what rules of thumb can be determined concerning: (a) the amount of sampling that may be needed to determine the extent of contamination within a given building; (b) what portions of a building should be sampled; (c) the cost per square foot to decontaminate a given type of building using a given method; (d) the time required to prepare for, and perform, decontamination; (e) the effectiveness of a given decontamination method in a given type of building? 2. Based on past experience, what resources will be spent on evaluating the extent of contamination, performing decontamination, and assessing the effectiveness of the decontamination in abuilding of a given type and size? 3. What are the trade-offs between cost, time, and effectiveness for the various sampling plans, sampling methods, and decontamination methods that have been used in the past?

  7. Effects of cadmium on the uptake of dopamine and norepinephrine in rat brain synaptosomes

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Cadmium (Cd) a known environmental contaminant is neurotoxic. Kinetics of cadmium inhibition indicate that the metal may compete with ATP and Na + sites on Na + -K + ATPase in rat brain synaptosomes. Uptake and release processes of catecholamines into the central nervous system are dependent on membrane bound Na + -K + ATPase. It is suggested that the uptake and release processes of dopamine (DA) and norepinephrine (NE) in neurons are energy utilizing and hence are dependent on active ion transport. If the two aforementioned mechanisms are truly interdependent, then any alteration caused by a toxin to either of the above two mechanisms should also cause a parallel change in the other. The purpose of this study was to examine in vitro effects of cadmium chloride on the uptake of DA and NE and the activity of ATPase in the rat brain synaptosome

  8. 9 CFR 309.7 - Livestock affected with anthrax; cleaning and disinfection of infected livestock pens and driveways.

    Science.gov (United States)

    2010-01-01

    ...; cleaning and disinfection of infected livestock pens and driveways. 309.7 Section 309.7 Animals and Animal... INSPECTION § 309.7 Livestock affected with anthrax; cleaning and disinfection of infected livestock pens and... followed immediately by a thorough disinfection of the exposed premises by soaking the ground, fences...

  9. [Intoxication of botulinum toxin].

    Science.gov (United States)

    Chudzicka, Aleksandra

    2015-09-01

    Botulinum toxin is an egzotoxin produced by Gram positive bacteria Clostridium botulinum. It is among the most potent toxins known. The 3 main clinical presentations of botulism are as follows: foodborne botulism, infant botulism and wound botulism. The main symptom of intoxication is flat muscles paralysis. The treatment is supportive care and administration of antitoxin. In prevention the correct preparing of canned food is most important. Botulinum toxin is accepted as a biological weapon. © 2015 MEDPRESS.

  10. Anthrax Cases Associated with Animal-Hair Shaving Brushes.

    Science.gov (United States)

    Szablewski, Christine M; Hendricks, Kate; Bower, William A; Shadomy, Sean V; Hupert, Nathaniel

    2017-05-01

    During the First World War, anthrax cases in the United States and England increased greatly and seemed to be associated with use of new shaving brushes. Further investigation revealed that the source material and origin of shaving brushes had changed during the war. Cheap brushes of imported horsehair were being made to look like the preferred badger-hair brushes. Unfortunately, some of these brushes were not effectively disinfected and brought with them a nasty stowaway: Bacillus anthracis. A review of outbreak summaries, surveillance data, and case reports indicated that these cases originated from the use of ineffectively disinfected animal-hair shaving brushes. This historical information is relevant to current public health practice because renewed interest in vintage and animal-hair shaving brushes has been seen in popular culture. This information should help healthcare providers and public health officials answer questions on this topic.

  11. Why do we study animal toxins?

    Science.gov (United States)

    ZHANG, Yun

    2015-01-01

    Venom (toxins) is an important trait evolved along the evolutionary tree of animals. Our knowledges on venoms, such as their origins and loss, the biological relevance and the coevolutionary patterns with other organisms are greatly helpful in understanding many fundamental biological questions, i.e., the environmental adaptation and survival competition, the evolution shaped development and balance of venoms, and the sophisticated correlations among venom, immunity, body power, intelligence, their genetic basis, inherent association, as well as the cost-benefit and trade-offs of biological economy. Lethal animal envenomation can be found worldwide. However, from foe to friend, toxin studies have led lots of important discoveries and exciting avenues in deciphering and fighting human diseases, including the works awarded the Nobel Prize and lots of key clinic therapeutics. According to our survey, so far, only less than 0.1% of the toxins of the venomous animals in China have been explored. We emphasize on the similarities shared by venom and immune systems, as well as the studies of toxin knowledge-based physiological toxin-like proteins/peptides (TLPs). We propose the natural pairing hypothesis. Evolution links toxins with humans. Our mission is to find out the right natural pairings and interactions of our body elements with toxins, and with endogenous toxin-like molecules. Although, in nature, toxins may endanger human lives, but from a philosophical point of view, knowing them well is an effective way to better understand ourselves. So, this is why we study toxins. PMID:26228472

  12. Expression of the ’Bacillus anthracis’ Protective Antigen Gene by Baculovirus and Vaccinia Virus Recombinants

    Science.gov (United States)

    1990-02-01

    procaryotic systems (12. 45). Certain eucaryotic ically cleaved by a trypsin-like proteas: ito produce a recep- viruses are currently being explored as...19847. Proteolytic activation of anthrax toxin bound to cellular recep- ACKN()WEIX;NMNTS tor%.. p. 111-112. In F. Fehrenbach et al. ifed.). Bacterial

  13. A Supramolecular Sensing Platform for Phosphate Anions and an Anthrax Biomarker in a Microfluidic Device

    Directory of Open Access Journals (Sweden)

    Jurriaan Huskens

    2011-10-01

    Full Text Available A supramolecular platform based on self-assembled monolayers (SAMs has been implemented in a microfluidic device. The system has been applied for the sensing of two different analyte types: biologically relevant phosphate anions and aromatic carboxylic acids, which are important for anthrax detection. A Eu(III-EDTA complex was bound to β-cyclodextrin monolayers via orthogonal supramolecular host-guest interactions. The self-assembly of the Eu(III-EDTA conjugate and naphthalene β-diketone as an antenna resulted in the formation of a highly luminescent lanthanide complex on the microchannel surface. Detection of different phosphate anions and aromatic carboxylic acids was demonstrated by monitoring the decrease in red emission following displacement of the antenna by the analyte. Among these analytes, adenosine triphosphate (ATP and pyrophosphate, as well as dipicolinic acid (DPA which is a biomarker for anthrax, showed a strong response. Parallel fabrication of five sensing SAMs in a single multichannel chip was performed, as a first demonstration of phosphate and carboxylic acid screening in a multiplexed format that allows a general detection platform for both analyte systems in a single test run with µM and nM detection sensitivity for ATP and DPA, respectively.

  14. Plant Insecticidal Toxins in Ecological Networks

    Directory of Open Access Journals (Sweden)

    Sébastien Ibanez

    2012-04-01

    Full Text Available Plant secondary metabolites play a key role in plant-insect interactions, whether constitutive or induced, C- or N-based. Anti-herbivore defences against insects can act as repellents, deterrents, growth inhibitors or cause direct mortality. In turn, insects have evolved a variety of strategies to act against plant toxins, e.g., avoidance, excretion, sequestration and degradation of the toxin, eventually leading to a co-evolutionary arms race between insects and plants and to co-diversification. Anti-herbivore defences also negatively impact mutualistic partners, possibly leading to an ecological cost of toxin production. However, in other cases toxins can also be used by plants involved in mutualistic interactions to exclude inadequate partners and to modify the cost/benefit ratio of mutualism to their advantage. When considering the whole community, toxins have an effect at many trophic levels. Aposematic insects sequester toxins to defend themselves against predators. Depending on the ecological context, toxins can either increase insects’ vulnerability to parasitoids and entomopathogens or protect them, eventually leading to self-medication. We conclude that studying the community-level impacts of plant toxins can provide new insights into the synthesis between community and evolutionary ecology.

  15. Plant insecticidal toxins in ecological networks.

    Science.gov (United States)

    Ibanez, Sébastien; Gallet, Christiane; Després, Laurence

    2012-04-01

    Plant secondary metabolites play a key role in plant-insect interactions, whether constitutive or induced, C- or N-based. Anti-herbivore defences against insects can act as repellents, deterrents, growth inhibitors or cause direct mortality. In turn, insects have evolved a variety of strategies to act against plant toxins, e.g., avoidance, excretion, sequestration and degradation of the toxin, eventually leading to a co-evolutionary arms race between insects and plants and to co-diversification. Anti-herbivore defences also negatively impact mutualistic partners, possibly leading to an ecological cost of toxin production. However, in other cases toxins can also be used by plants involved in mutualistic interactions to exclude inadequate partners and to modify the cost/benefit ratio of mutualism to their advantage. When considering the whole community, toxins have an effect at many trophic levels. Aposematic insects sequester toxins to defend themselves against predators. Depending on the ecological context, toxins can either increase insects' vulnerability to parasitoids and entomopathogens or protect them, eventually leading to self-medication. We conclude that studying the community-level impacts of plant toxins can provide new insights into the synthesis between community and evolutionary ecology.

  16. Temporal dynamics in microbial soil communities at anthrax carcass sites.

    Science.gov (United States)

    Valseth, Karoline; Nesbø, Camilla L; Easterday, W Ryan; Turner, Wendy C; Olsen, Jaran S; Stenseth, Nils Chr; Haverkamp, Thomas H A

    2017-09-26

    Anthrax is a globally distributed disease affecting primarily herbivorous mammals. It is caused by the soil-dwelling and spore-forming bacterium Bacillus anthracis. The dormant B. anthracis spores become vegetative after ingestion by grazing mammals. After killing the host, B. anthracis cells return to the soil where they sporulate, completing the lifecycle of the bacterium. Here we present the first study describing temporal microbial soil community changes in Etosha National Park, Namibia, after decomposition of two plains zebra (Equus quagga) anthrax carcasses. To circumvent state-associated-challenges (i.e. vegetative cells/spores) we monitored B. anthracis throughout the period using cultivation, qPCR and shotgun metagenomic sequencing. The combined results suggest that abundance estimation of spore-forming bacteria in their natural habitat by DNA-based approaches alone is insufficient due to poor recovery of DNA from spores. However, our combined approached allowed us to follow B. anthracis population dynamics (vegetative cells and spores) in the soil, along with closely related organisms from the B. cereus group, despite their high sequence similarity. Vegetative B. anthracis abundance peaked early in the time-series and then dropped when cells either sporulated or died. The time-series revealed that after carcass deposition, the typical semi-arid soil community (e.g. Frankiales and Rhizobiales species) becomes temporarily dominated by the orders Bacillales and Pseudomonadales, known to contain plant growth-promoting species. Our work indicates that complementing DNA based approaches with cultivation may give a more complete picture of the ecology of spore forming pathogens. Furthermore, the results suggests that the increased vegetation biomass production found at carcass sites is due to both added nutrients and the proliferation of microbial taxa that can be beneficial for plant growth. Thus, future B. anthracis transmission events at carcass sites may be

  17. Synthesis and biology of cyclic imine toxins, an emerging class of potent, globally distributed marine toxins.

    Science.gov (United States)

    Stivala, Craig E; Benoit, Evelyne; Aráoz, Rómulo; Servent, Denis; Novikov, Alexei; Molgó, Jordi; Zakarian, Armen

    2015-03-01

    From a small group of exotic compounds isolated only two decades ago, Cyclic Imine (CI) toxins have become a major class of marine toxins with global distribution. Their distinct chemical structure, biological mechanism of action, and intricate chemistry ensures that CI toxins will continue to be the subject of fascinating fundamental studies in the broad fields of chemistry, chemical biology, and toxicology. The worldwide occurrence of potent CI toxins in marine environments, their accumulation in shellfish, and chemical stability are important considerations in assessing risk factors for human health. This review article aims to provide an account of chemistry, biology, and toxicology of CI toxins from their discovery to the present day.

  18. Defense against Toxin Weapons

    National Research Council Canada - National Science Library

    Franz, David

    1998-01-01

    .... We typically fear what we do not understand. Although un- derstanding toxin poisoning is less useful in a toxin attack than knowledge of cold injury on an Arctic battlefield, information on any threat reduces its potential to harm...

  19. Food toxin detection with atomic force microscope

    Science.gov (United States)

    Externally introduced toxins or internal spoilage correlated pathogens and their metabolites are all potential sources of food toxins. To prevent and protect unsafe food, many food toxin detection techniques have been developed to detect various toxins for quality control. Although several routine m...

  20. Conditional Toxin Splicing Using a Split Intein System.

    Science.gov (United States)

    Alford, Spencer C; O'Sullivan, Connor; Howard, Perry L

    2017-01-01

    Protein toxin splicing mediated by split inteins can be used as a strategy for conditional cell ablation. The approach requires artificial fragmentation of a potent protein toxin and tethering each toxin fragment to a split intein fragment. The toxin-intein fragments are, in turn, fused to dimerization domains, such that addition of a dimerizing agent reconstitutes the split intein. These chimeric toxin-intein fusions remain nontoxic until the dimerizer is added, resulting in activation of intein splicing and ligation of toxin fragments to form an active toxin. Considerations for the engineering and implementation of conditional toxin splicing (CTS) systems include: choice of toxin split site, split site (extein) chemistry, and temperature sensitivity. The following method outlines design criteria and implementation notes for CTS using a previously engineered system for splicing a toxin called sarcin, as well as for developing alternative CTS systems.

  1. Mutant with diphtheria toxin receptor and acidification function but defective in entry of toxin

    International Nuclear Information System (INIS)

    Kohno, Kenji; Hayes, H.; Mekada, Eisuke; Uchida, Tsuyoshi

    1987-01-01

    A mutant of Chinese hamster ovary cells, GE1, that is highly resistant to diphtheria toxin was isolated. The mutant contains 50% ADP-ribosylatable elongation factor 2, but its protein synthesis was not inhibited by the toxin even at concentrations above 100 μg/ml. 125 I-labeled diphtheria toxin was associated with GE1 cells as well as with the parent cells but did not block protein synthesis of GE1 cells even when the cells were exposed to low pH in the presence or absence of NH 4 Cl. The infections of GE1 cells and the parent cells by vesicular stomatitis virus were similar. GE1 cells were cross-resistant to Pseudomonas aeruginosa exotoxin A and so were about 1,000 times more resistant to this toxin than the parent cells. Hybrids of GE1 cells and the parent cells or mutant cells lacking a functional receptor were more sensitive to diphtheria toxin than GE1 cells. These results suggest that entry of diphtheria toxin into cells requires a cellular factor(s) in addition to those involved in receptor function and acidification of endosomes and that GE1 cells do not express this cellular factor. This character is recessive in GE1 cells

  2. Purification and characterization of Yersinia enterocolitica and Yersinia pestis LcrV-cholera toxin A(2)/B chimeras.

    Science.gov (United States)

    Tinker, Juliette K; Davis, Chadwick T; Arlian, Britni M

    2010-11-01

    Yersinia pestis is a virulent human pathogen and potential biological weapon. Despite a long history of research on this organism, there is no licensed vaccine to protect against pneumonic forms of Y. pestis disease. In the present study, plasmids were constructed to express cholera toxin A(2)/B chimeric molecules containing the LcrV protective antigen from Yersinia enterocolitica and Y. pestis. These chimeras were expressed and purified to high yields from the supernatant of transformed Escherichia coli. Western and GM(1) ELISA assays were used to characterize the composition, receptor-binding and relative stability of the LcrV-CTA(2)/B chimera in comparison to cholera toxin. In addition, we investigated the ability of the Y. pestis LcrV-CTA(2)/B chimera to bind to and internalize into cultured epithelial cells and macrophages by confocal microscopy. These studies indicate that the uptake and trafficking of the LcrV antigen from the chimera is comparable to the trafficking of native toxin. Together these findings report that stable, receptor-binding, non-toxic LcrV-cholera toxin A(2)/B chimeras can be expressed at high levels in E. coli and purified from the supernatant. In addition, the internalization of antigen in vitro reported here supports the development of these molecules as novel mucosal vaccine candidates. Copyright 2010 Elsevier Inc. All rights reserved.

  3. Shiga toxin 1 interaction with enterocytes causes apical protein mistargeting through the depletion of intracellular galectin-3

    Energy Technology Data Exchange (ETDEWEB)

    Laiko, Marina; Murtazina, Rakhilya; Malyukova, Irina [Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States); Zhu, Chengru; Boedeker, Edgar C. [Department of Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131 (United States); Gutsal, Oksana [Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States); O' Malley, Robert; Cole, Robert N. [Department of Biochemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States); Tarr, Phillip I. [Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110 (United States); Murray, Karen F. [Department of Pediatrics, Children' s Hospital and Regional Medical Center, Seattle, WA 98105 (United States); Kane, Anne [The Tufts New England Medical Center, Boston, MA 02111 (United States); Donowitz, Mark [Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States); Kovbasnjuk, Olga, E-mail: okovbas1@jhmi.edu [Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States)

    2010-02-15

    Shiga toxins (Stx) 1 and 2 are responsible for intestinal and systemic sequelae of infection by enterohemorrhagic Escherichia coli (EHEC). However, the mechanisms through which enterocytes are damaged remain unclear. While secondary damage from ischemia and inflammation are postulated mechanisms for all intestinal effects, little evidence excludes roles for more primary toxin effects on intestinal epithelial cells. We now document direct pathologic effects of Stx on intestinal epithelial cells. We study a well-characterized rabbit model of EHEC infection, intestinal tissue and stool samples from EHEC-infected patients, and T84 intestinal epithelial cells treated with Stx1. Toxin uptake by intestinal epithelial cells in vitro and in vivo causes galectin-3 depletion from enterocytes by increasing the apical galectin-3 secretion. This Shiga toxin-mediated galectin-3 depletion impairs trafficking of several brush border structural proteins and transporters, including villin, dipeptidyl peptidase IV, and the sodium-proton exchanger 2, a major colonic sodium absorptive protein. The mistargeting of proteins responsible for the absorptive function might be a key event in Stx1-induced diarrhea. These observations provide new evidence that human enterocytes are directly damaged by Stx1. Conceivably, depletion of galectin-3 from enterocytes and subsequent apical protein mistargeting might even provide a means whereby other pathogens might alter intestinal epithelial absorption and produce diarrhea.

  4. Computational Studies of Snake Venom Toxins.

    Science.gov (United States)

    Ojeda, Paola G; Ramírez, David; Alzate-Morales, Jans; Caballero, Julio; Kaas, Quentin; González, Wendy

    2017-12-22

    Most snake venom toxins are proteins, and participate to envenomation through a diverse array of bioactivities, such as bleeding, inflammation, and pain, cytotoxic, cardiotoxic or neurotoxic effects. The venom of a single snake species contains hundreds of toxins, and the venoms of the 725 species of venomous snakes represent a large pool of potentially bioactive proteins. Despite considerable discovery efforts, most of the snake venom toxins are still uncharacterized. Modern bioinformatics tools have been recently developed to mine snake venoms, helping focus experimental research on the most potentially interesting toxins. Some computational techniques predict toxin molecular targets, and the binding mode to these targets. This review gives an overview of current knowledge on the ~2200 sequences, and more than 400 three-dimensional structures of snake toxins deposited in public repositories, as well as of molecular modeling studies of the interaction between these toxins and their molecular targets. We also describe how modern bioinformatics have been used to study the snake venom protein phospholipase A2, the small basic myotoxin Crotamine, and the three-finger peptide Mambalgin.

  5. Computational Studies of Snake Venom Toxins

    Directory of Open Access Journals (Sweden)

    Paola G. Ojeda

    2017-12-01

    Full Text Available Most snake venom toxins are proteins, and participate to envenomation through a diverse array of bioactivities, such as bleeding, inflammation, and pain, cytotoxic, cardiotoxic or neurotoxic effects. The venom of a single snake species contains hundreds of toxins, and the venoms of the 725 species of venomous snakes represent a large pool of potentially bioactive proteins. Despite considerable discovery efforts, most of the snake venom toxins are still uncharacterized. Modern bioinformatics tools have been recently developed to mine snake venoms, helping focus experimental research on the most potentially interesting toxins. Some computational techniques predict toxin molecular targets, and the binding mode to these targets. This review gives an overview of current knowledge on the ~2200 sequences, and more than 400 three-dimensional structures of snake toxins deposited in public repositories, as well as of molecular modeling studies of the interaction between these toxins and their molecular targets. We also describe how modern bioinformatics have been used to study the snake venom protein phospholipase A2, the small basic myotoxin Crotamine, and the three-finger peptide Mambalgin.

  6. A segment of 97 amino acids within the translocation domain of Clostridium difficile toxin B is essential for toxicity.

    Directory of Open Access Journals (Sweden)

    Yongrong Zhang

    Full Text Available Clostridium difficile toxin B (TcdB intoxicates target cells by glucosylating Rho GTPases. TcdB (269 kDa consists of at least 4 functional domains including a glucosyltransferase domain (GTD, a cysteine protease domain (CPD, a translocation domain (TD, and a receptor binding domain (RBD. The function and molecular mode of action of the TD, which is the largest segment of TcdB and comprises nearly 50% of the protein, remain largely unknown. Here we show that a 97-amino-acid segment (AA1756 - 1852, designated as ?97 or D97, located in the C-terminus of the TD and adjacent to the RBD, is essential for the cellular activity of TcdB. Deletion of this segment in TcdB (designated as TxB-D97, did not adversely alter toxin enzymatic activities or its cellular binding and uptake capacity. TxB-D97 bound to and entered cells in a manner similar to TcdB holotoxin. Both wild type and mutant toxins released their GTDs similarly in the presence of inositol hexakisphosphate (InsP6, and showed a similar glucosyltransferase activity in a cell-free glucosylating assay. Despite these similarities, the cytotoxic activity of TxB-D97 was reduced by more than 5 logs compared to wild type toxin, supported by the inability of TxB-D97 to glucosylate Rac1 of target cells. Moreover, the mutant toxin failed to elicit tumor necrosis factor alpha (TNF-α in macrophages, a process dependent on the glucosyltransferase activity of the toxin. Cellular fractionation of toxin-exposed cells revealed that TxB-D97 was unable to efficiently release the GTD into cytosol. Thereby, we conclude the 97-amino-acid region of the TD C-terminus of TcdB adjacent to the RBD, is essential for the toxicity of TcdB.

  7. Analysing the spatial patterns of livestock anthrax in Kazakhstan in relation to environmental factors: a comparison of local (Gi* and morphology cluster statistics

    Directory of Open Access Journals (Sweden)

    Ian T. Kracalik

    2012-11-01

    Full Text Available We compared a local clustering and a cluster morphology statistic using anthrax outbreaks in large (cattle and small (sheep and goats domestic ruminants across Kazakhstan. The Getis-Ord (Gi* statistic and a multidirectional optimal ecotope algorithm (AMOEBA were compared using 1st, 2nd and 3rd order Rook contiguity matrices. Multivariate statistical tests were used to evaluate the environmental signatures between clusters and non-clusters from the AMOEBA and Gi* tests. A logistic regression was used to define a risk surface for anthrax outbreaks and to compare agreement between clustering methodologies. Tests revealed differences in the spatial distribution of clusters as well as the total number of clusters in large ruminants for AMOEBA (n = 149 and for small ruminants (n = 9. In contrast, Gi* revealed fewer large ruminant clusters (n = 122 and more small ruminant clusters (n = 61. Significant environmental differences were found between groups using the Kruskall-Wallis and Mann- Whitney U tests. Logistic regression was used to model the presence/absence of anthrax outbreaks and define a risk surface for large ruminants to compare with cluster analyses. The model predicted 32.2% of the landscape as high risk. Approximately 75% of AMOEBA clusters corresponded to predicted high risk, compared with ~64% of Gi* clusters. In general, AMOEBA predicted more irregularly shaped clusters of outbreaks in both livestock groups, while Gi* tended to predict larger, circular clusters. Here we provide an evaluation of both tests and a discussion of the use of each to detect environmental conditions associated with anthrax outbreak clusters in domestic livestock. These findings illustrate important differences in spatial statistical methods for defining local clusters and highlight the importance of selecting appropriate levels of data aggregation.

  8. [3H]GABA uptake as a marker for cell type in primary cultures of cerebellum and olfactory bulb

    International Nuclear Information System (INIS)

    Currie, D.N.; Dutton, G.R.

    1980-01-01

    Uptake of [ 3 H]GABA into cell cultures of rat cerebellum and olfactory bulb was studied by autoradiography, using β-alanine and aminocyclohexane carboxylic acid to distinguish neuronal-specific and glial-specific uptake. Neurons and astrocytes were also labelled by tetanus toxin and anti-GFAP respectively. This combination of markers allowed identification and quantification of several cell types. Cerebellar cultures were found to contain 77% granule neurons, 7.5% inhibitory neurons (probably stellate and basket cells) and 15% astrocytes. Olfactory bulb cultures were over 50% in small neurons which accumulated GABA, the olfactory bulb granule neuron being GABAergic in vivo. (Auth.)

  9. SVM-based prediction of propeptide cleavage sites in spider toxins identifies toxin innovation in an Australian tarantula.

    Directory of Open Access Journals (Sweden)

    Emily S W Wong

    Full Text Available Spider neurotoxins are commonly used as pharmacological tools and are a popular source of novel compounds with therapeutic and agrochemical potential. Since venom peptides are inherently toxic, the host spider must employ strategies to avoid adverse effects prior to venom use. It is partly for this reason that most spider toxins encode a protective proregion that upon enzymatic cleavage is excised from the mature peptide. In order to identify the mature toxin sequence directly from toxin transcripts, without resorting to protein sequencing, the propeptide cleavage site in the toxin precursor must be predicted bioinformatically. We evaluated different machine learning strategies (support vector machines, hidden Markov model and decision tree and developed an algorithm (SpiderP for prediction of propeptide cleavage sites in spider toxins. Our strategy uses a support vector machine (SVM framework that combines both local and global sequence information. Our method is superior or comparable to current tools for prediction of propeptide sequences in spider toxins. Evaluation of the SVM method on an independent test set of known toxin sequences yielded 96% sensitivity and 100% specificity. Furthermore, we sequenced five novel peptides (not used to train the final predictor from the venom of the Australian tarantula Selenotypus plumipes to test the accuracy of the predictor and found 80% sensitivity and 99.6% 8-mer specificity. Finally, we used the predictor together with homology information to predict and characterize seven groups of novel toxins from the deeply sequenced venom gland transcriptome of S. plumipes, which revealed structural complexity and innovations in the evolution of the toxins. The precursor prediction tool (SpiderP is freely available on ArachnoServer (http://www.arachnoserver.org/spiderP.html, a web portal to a comprehensive relational database of spider toxins. All training data, test data, and scripts used are available from

  10. Microalgal toxin(s): characteristics and importance

    African Journals Online (AJOL)

    Prokaryotic and eukaryotic microalgae produce a wide array of compounds with biological activities. These include antibiotics, algicides, toxins, pharmaceutically active compounds and plant growth regulators. Toxic microalgae, in this sense, are common only among the cyanobacteria and dinoflagellates. The microalgal ...

  11. Native low-density lipoprotein uptake by macrophage colony-stimulating factor-differentiated human macrophages is mediated by macropinocytosis and micropinocytosis.

    Science.gov (United States)

    Anzinger, Joshua J; Chang, Janet; Xu, Qing; Buono, Chiara; Li, Yifu; Leyva, Francisco J; Park, Bum-Chan; Greene, Lois E; Kruth, Howard S

    2010-10-01

    To examine the pinocytotic pathways mediating native low-density lipoprotein (LDL) uptake by human macrophage colony-stimulating factor-differentiated macrophages (the predominant macrophage phenotype in human atherosclerotic plaques). We identified the kinase inhibitor SU6656 and the Rho GTPase inhibitor toxin B as inhibitors of macrophage fluid-phase pinocytosis of LDL. Assessment of macropinocytosis by time-lapse microscopy revealed that both drugs almost completely inhibited macropinocytosis, although LDL uptake and cholesterol accumulation by macrophages were only partially inhibited (approximately 40%) by these agents. Therefore, we investigated the role of micropinocytosis in mediating LDL uptake in macrophages and identified bafilomycin A1 as an additional partial inhibitor (approximately 40%) of macrophage LDL uptake that targeted micropinocytosis. When macrophages were incubated with both bafilomycin A1 and SU6656, inhibition of LDL uptake was additive (reaching 80%), showing that these inhibitors target different pathways. Microscopic analysis of fluid-phase uptake pathways in these macrophages confirmed that LDL uptake occurs through both macropinocytosis and micropinocytosis. Our findings show that human macrophage colony-stimulating factor-differentiated macrophages take up native LDL by macropinocytosis and micropinocytosis, underscoring the importance of both pathways in mediating LDL uptake by these cells.

  12. Immunotoxins: The Role of the Toxin

    Directory of Open Access Journals (Sweden)

    David FitzGerald

    2013-08-01

    Full Text Available Immunotoxins are antibody-toxin bifunctional molecules that rely on intracellular toxin action to kill target cells. Target specificity is determined via the binding attributes of the chosen antibody. Mostly, but not exclusively, immunotoxins are purpose-built to kill cancer cells as part of novel treatment approaches. Other applications for immunotoxins include immune regulation and the treatment of viral or parasitic diseases. Here we discuss the utility of protein toxins, of both bacterial and plant origin, joined to antibodies for targeting cancer cells. Finally, while clinical goals are focused on the development of novel cancer treatments, much has been learned about toxin action and intracellular pathways. Thus toxins are considered both medicines for treating human disease and probes of cellular function.

  13. Radioimmunoassay for yeast killer toxin from Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Siddiqui, F.A.; Bussey, H.

    1981-01-01

    A radioimmunoassay was developed for the K1 killer toxin from strain T158C/S14a of Saccharomyces cerevisiae. Iodine 125-labelled toxin was made to a specific activity of 100 μCi/mg of protein. Antibody to purified toxin was prepared in rabbits using toxin cross-linked to itself. These antibodies, partially purified by 50 percent ammonium sulfate precipitation and Sepharose CL-6B column chromatography, produced one precipitation band with killer toxin and bound 125 I-labelled toxin in a radioimmunoassay. The antibody preparation also bound with the toxins from another K1 killer, A364A, and three chromosomal superkiller mutants derived from it. (auth)

  14. Heterogeneous Family of Cyclomodulins: Smart Weapons That Allow Bacteria to Hijack the Eukaryotic Cell Cycle and Promote Infections

    Directory of Open Access Journals (Sweden)

    Rachid A. El-Aouar Filho

    2017-05-01

    Full Text Available Some bacterial pathogens modulate signaling pathways of eukaryotic cells in order to subvert the host response for their own benefit, leading to successful colonization and invasion. Pathogenic bacteria produce multiple compounds that generate favorable conditions to their survival and growth during infection in eukaryotic hosts. Many bacterial toxins can alter the cell cycle progression of host cells, impairing essential cellular functions and impeding host cell division. This review summarizes current knowledge regarding cyclomodulins, a heterogeneous family of bacterial effectors that induce eukaryotic cell cycle alterations. We discuss the mechanisms of actions of cyclomodulins according to their biochemical properties, providing examples of various cyclomodulins such as cycle inhibiting factor, γ-glutamyltranspeptidase, cytolethal distending toxins, shiga toxin, subtilase toxin, anthrax toxin, cholera toxin, adenylate cyclase toxins, vacuolating cytotoxin, cytotoxic necrotizing factor, Panton-Valentine leukocidin, phenol soluble modulins, and mycolactone. Special attention is paid to the benefit provided by cyclomodulins to bacteria during colonization of the host.

  15. Marine and freshwater toxins.

    Science.gov (United States)

    Hungerford, James M

    2006-01-01

    In a very busy and exciting year, 2005 included First Action approval of a much needed official method for paralytic shellfish toxins and multiple international toxin symposia highlighted by groundbreaking research. These are the first-year milestones and activities of the Marine and Freshwater Toxins Task Force and Analytical Community. Inaugurated in 2004 and described in detail in last year's General Referee Report (1) this international toxins group has grown to 150 members from many regions and countries. Perhaps most important they are now making important and global contributions to food safety and to providing alternatives to animal-based assays. Official Method 2005.06 was first approved in late 2004 by the Task Force and subsequently Official First Action in 2005 (2) by the Methods Committee on Natural Toxins and Food Allergens and the Official Methods Board. This nonproprietary method (3) is a precolumn oxidation, liquid chromatographic method that makes good use of fluorescence detection to provide high sensitivity detection of the saxitoxins. It has also proven to be rugged enough for regulatory use and the highest level of validation. As pointed out in the report of method principle investigator and Study Director James Lawrence, approval of 2005.06 now provides the first official alternative to the mouse bioassay after many decades of shellfish monitoring. This past year in April 2005 the group also held their first international conference, "Marine and Freshwater Toxins Analysis: Ist Joint Symposium and AOAC Task Force Meeting," in Baiona, Spain. The 4-day conference consisted of research and stakeholder presentations and symposium-integrated subgroup sessions on ciguatoxins, saxitoxin assays and liquid chromatography (LC) methods for saxitoxins and domoic acids, okadaiates and azaspiracids, and yessotoxins. Many of these subgroups were recently formed in 2005 and are working towards their goals of producing officially validated analytical methods

  16. Role of Botulinum Toxin in Depression.

    Science.gov (United States)

    Parsaik, Ajay K; Mascarenhas, Sonia S; Hashmi, Aqeel; Prokop, Larry J; John, Vineeth; Okusaga, Olaoluwa; Singh, Balwinder

    2016-03-01

    The goal of this review was to consolidate the evidence concerning the efficacy of botulinum toxin type A (onabotulinumtoxinA) in depression. We searched MEDLINE, EMBASE, Cochrane, and Scopus through May 5, 2014, for studies evaluating the efficacy of botulinum toxin A in depression. Only randomized controlled trials were included in the meta-analysis. A pooled mean difference in primary depression score, and pooled odds ratio for response and remission rate with 95% confidence interval (CI) were estimated using the random-effects model. Heterogeneity was assessed using Cochran Q test and χ statistic. Of the 639 articles that were initially retrieved, 5 studies enrolling 194 subjects (age 49±9.6 y) were included in the systematic review, and 3 randomized controlled trials enrolling 134 subjects were included in the meta-analysis. The meta-analysis showed a significant decrease in mean primary depression scores among patients who received botulinum toxin A compared with placebo (-9.80; 95% CI, -12.90 to -6.69) with modest heterogeneity between the studies (Cochran Q test, χ=70). Response and remission rates were 8.3 and 4.6 times higher, respectively, among patients receiving botulinum toxin A compared with placebo, with no heterogeneity between the studies. The 2 studies excluded from the meta-analysis also found a significant decrease in primary depression scores in patients after receiving botulinum toxin A. A few subjects had minor side effects, which were similar between the groups receiving botulinum toxin and those receiving placebo. This study suggests that botulinum toxin A can produce significant improvement in depressive symptoms and is a safe adjunctive treatment for patients receiving pharmacotherapy for depression. Future trials are needed to evaluate the antidepressant effect per se of botulinum toxin A and to further elucidate the underlying antidepressant mechanism of botulinum toxin A.

  17. Botulinum toxin therapy for limb dystonias.

    Science.gov (United States)

    Yoshimura, D M; Aminoff, M J; Olney, R K

    1992-03-01

    We investigated the effectiveness of botulinum toxin in 17 patients with limb dystonias (10 with occupational cramps, three with idiopathic dystonia unrelated to activity, and two each with post-stroke and parkinsonian dystonia) in a placebo-controlled, blinded study. We identified affected muscles clinically and by recording the EMG from implanted wire electrodes at rest and during performance of tasks that precipitated abnormal postures. There were three injections given with graded doses of toxin (average doses, 5 to 10, 10 to 20, and 20 to 40 units per muscle) and one with placebo, in random order. Subjective improvement occurred after 53% of injections of botulinum toxin, and this was substantial in 24%. Only one patient (7%) improved after placebo injection. Subjective improvement occurred in 82% of patients with at least one dose of toxin, lasting for 1 to 4 months. Response rates were similar between clinical groups. Objective evaluation failed to demonstrate significant improvement following treatment with toxin compared with placebo. The major side effect was transient focal weakness after 53% of injections of toxin.

  18. Microevolution of Anthrax from a Young Ancestor (M.A.Y.A. Suggests a Soil-Borne Life Cycle of Bacillus anthracis.

    Directory of Open Access Journals (Sweden)

    Peter Braun

    Full Text Available During an anthrax outbreak at the Pollino National Park (Basilicata, Italy in 2004, diseased cattle were buried and from these anthrax-foci Bacillus anthracis endospores still diffuse to the surface resulting in local accumulations. Recent data suggest that B. anthracis multiplies in soil outside the animal-host body. This notion is supported by the frequent isolation of B. anthracis from soil lacking one or both virulence plasmids. Such strains represent an evolutionary dead end, as they are likely no longer able to successfully infect new hosts. This loss of virulence plasmids is explained most simply by postulating a soil-borne life cycle of the pathogen. To test this hypothesis we investigated possible microevolution at two natural anthrax foci from the 2004 outbreak. If valid, then genotypes of strains isolated from near the surface at these foci should be on a different evolutionary trajectory from those below residing in deeper-laying horizons close to the carcass. Thus, the genetic diversity of B. anthracis isolates was compared conducting Progressive Hierarchical Resolving Assays using Nucleic Acids (PHRANA and next generation Whole Genome Sequencing (WGS. PHRANA was not discriminatory enough to resolve the fine genetic relationships between the isolates. Conversely, WGS of nine isolates from near-surface and nine from near-carcass revealed five isolate specific SNPs, four of which were found only in different near-surface isolates. In support of our hypothesis, one surface-isolate lacked plasmid pXO1 and also harbored one of the unique SNPs. Taken together, our results suggest a limited soil-borne life cycle of B. anthracis.

  19. Recent Insights into Clostridium perfringens Beta-Toxin

    Directory of Open Access Journals (Sweden)

    Masahiro Nagahama

    2015-02-01

    Full Text Available Clostridium perfringens beta-toxin is a key mediator of necrotizing enterocolitis and enterotoxemia. It is a pore-forming toxin (PFT that exerts cytotoxic effect. Experimental investigation using piglet and rabbit intestinal loop models and a mouse infection model apparently showed that beta-toxin is the important pathogenic factor of the organisms. The toxin caused the swelling and disruption of HL-60 cells and formed a functional pore in the lipid raft microdomains of sensitive cells. These findings represent significant progress in the characterization of the toxin with knowledge on its biological features, mechanism of action and structure-function having been accumulated. Our aims here are to review the current progresses in our comprehension of the virulence of C. perfringens type C and the character, biological feature and structure-function of beta-toxin.

  20. Military Importance of Natural Toxins and Their Analogs

    Directory of Open Access Journals (Sweden)

    Vladimír Pitschmann

    2016-04-01

    Full Text Available Toxin weapon research, development, production and the ban on its uses is an integral part of international law, with particular attention paid to the protection against these weapons. In spite of this, hazards associated with toxins cannot be completely excluded. Some of these hazards are also pointed out in the present review. The article deals with the characteristics and properties of natural toxins and synthetic analogs potentially constituting the basis of toxin weapons. It briefly describes the history of military research and the use of toxins from distant history up to the present age. With respect to effective disarmament conventions, it mentions certain contemporary concepts of possible toxin applications for military purposes and the protection of public order (suppression of riots; it also briefly refers to the question of terrorism. In addition, it deals with certain traditional as well as modern technologies of the research, synthesis, and use of toxins, which can affect the continuing development of toxin weapons. These are, for example, cases of new toxins from natural sources, their chemical synthesis, production of synthetic analogs, the possibility of using methods of genetic engineering and modern biotechnologies or the possible applications of nanotechnology and certain pharmaceutical methods for the effective transfer of toxins into the organism. The authors evaluate the military importance of toxins based on their comparison with traditional chemical warfare agents. They appeal to the ethics of the scientific work as a principal condition for the prevention of toxin abuse in wars, military conflicts, as well as in non-military attacks.

  1. Military Importance of Natural Toxins and Their Analogs.

    Science.gov (United States)

    Pitschmann, Vladimír; Hon, Zdeněk

    2016-04-28

    Toxin weapon research, development, production and the ban on its uses is an integral part of international law, with particular attention paid to the protection against these weapons. In spite of this, hazards associated with toxins cannot be completely excluded. Some of these hazards are also pointed out in the present review. The article deals with the characteristics and properties of natural toxins and synthetic analogs potentially constituting the basis of toxin weapons. It briefly describes the history of military research and the use of toxins from distant history up to the present age. With respect to effective disarmament conventions, it mentions certain contemporary concepts of possible toxin applications for military purposes and the protection of public order (suppression of riots); it also briefly refers to the question of terrorism. In addition, it deals with certain traditional as well as modern technologies of the research, synthesis, and use of toxins, which can affect the continuing development of toxin weapons. These are, for example, cases of new toxins from natural sources, their chemical synthesis, production of synthetic analogs, the possibility of using methods of genetic engineering and modern biotechnologies or the possible applications of nanotechnology and certain pharmaceutical methods for the effective transfer of toxins into the organism. The authors evaluate the military importance of toxins based on their comparison with traditional chemical warfare agents. They appeal to the ethics of the scientific work as a principal condition for the prevention of toxin abuse in wars, military conflicts, as well as in non-military attacks.

  2. Toxins of filamentous fungi.

    Science.gov (United States)

    Bhatnagar, Deepak; Yu, Jiujiang; Ehrlich, Kenneth C

    2002-01-01

    Mycotoxins are low-molecular-weight secondary metabolites of fungi. The most significant mycotoxins are contaminants of agricultural commodities, foods and feeds. Fungi that produce these toxins do so both prior to harvest and during storage. Although contamination of commodities by toxigenic fungi occurs frequently in areas with a hot and humid climate (i.e. conditions favorable for fungal growth), they can also be found in temperate conditions. Production of mycotoxins is dependent upon the type of producing fungus and environmental conditions such as the substrate, water activity (moisture and relative humidity), duration of exposure to stress conditions and microbial, insect or other animal interactions. Although outbreaks of mycotoxicoses in humans have been documented, several of these have not been well characterized, neither has a direct correlation between the mycotoxin and resulting toxic effect been well established in vivo. Even though the specific modes of action of most of the toxins are not well established, acute and chronic effects in prokaryotic and eukaryotic systems, including humans have been reported. The toxicity of the mycotoxins varies considerably with the toxin, the animal species exposed to it, and the extent of exposure, age and nutritional status. Most of the toxic effects of mycotoxins are limited to specific organs, but several mycotoxins affect many organs. Induction of cancer by some mycotoxins is a major concern as a chronic effect of these toxins. It is nearly impossible to eliminate mycotoxins from the foods and feed in spite of the regulatory efforts at the national and international levels to remove the contaminated commodities. This is because mycotoxins are highly stable compounds, the producing fungi are ubiquitous, and food contamination can occur both before and after harvest. Nevertheless, good farm management practices and adequate storage facilities minimize the toxin contamination problems. Current research is

  3. [Genodiagnosis and molecular typing of the pathogens for plague, cholera, and anthrax].

    Science.gov (United States)

    Kutyrev, V V; Smirnova, N I

    2003-01-01

    The paper contains a survey of published data about the use of DNA-diagnostics in indicating and identifying the causative agents of highly dangerous infections like plague, cholera and anthrax. A discussion of data about the genetic relationship between strains of the mentioned causative agents isolated from different sources by using the molecular-typing methods as well as about the evolution ties between strains of different origins is in the focus of attention. Results of comparative studies of nucleotide sequences of genomes or of individual genomes in different Yersinia pestis, Vibrio cholerae and Bacillus anthracis strains, which are indicative of the evolution of their pathogenicity, are also under discussion.

  4. Toxin-Antitoxin Battle in Bacteria

    DEFF Research Database (Denmark)

    Cataudella, Ilaria

    This PhD thesis consists of three research projects revolving around the common thread of investigation of the properties and biological functions of Toxin-Antitoxin loci. Toxin-Antitoxin (TA) loci are transcriptionally regulated via an auto-inhibition mechanism called conditional cooperativity, ...

  5. Bio Warfare and Terrorism: Toxins and Other Mid-Spectrum Agents

    National Research Council Canada - National Science Library

    Madsen, James M

    2005-01-01

    ... counterparts are still by definition toxins. Related terms include phycotoxins (toxins from algae), mycotoxins (fungal toxins), phytotoxins (plant toxins), and venoms (toxins from animals, especially vertebrates...

  6. Engineering toxins for 21st century therapies.

    Science.gov (United States)

    Chaddock, John A; Acharya, K Ravi

    2011-04-01

    'Engineering Toxins for 21st Century Therapies' (9-10 September 2010) was part of the Royal Society International Seminar series held at the Kavli International Centre, UK. Participants were assembled from a range of disciplines (academic, industry, regulatory, public health) to discuss the future potential of toxin-based therapies. The meeting explored how the current structural and mechanistic knowledge of toxins could be used to engineer future toxin-based therapies. To date, significant progress has been made in the design of novel recombinant biologics based on domains of natural toxins, engineered to exhibit advantageous properties. The meeting concluded, firstly that future product development vitally required the appropriate combination of creativity and innovation that can come from the academic, biotechnology and pharma sectors. Second, that continued investigation into understanding the basic science of the toxins and their targets was essential in order to develop new opportunities for the existing products and to create new products with enhanced properties. Finally, it was concluded that the clinical potential for development of novel biologics based on toxin domains was evident. © 2011 The Authors Journal compilation © 2011 FEBS.

  7. Crystallization of isoelectrically homogeneous cholera toxin

    International Nuclear Information System (INIS)

    Spangler, B.D.; Westbrook, E.M.

    1989-01-01

    Past difficulty in growing good crystals of cholera toxin has prevented the study of the crystal structure of this important protein. The authors have determined that failure of cholera toxin to crystallize well has been due to its heterogeneity. They have now succeeded in overcoming the problem by isolating a single isoelectric variant of this oligomeric protein (one A subunit and five B subunits). Cholera toxin purified by their procedure readily forms large single crystals. The crystal form has been described previously. They have recorded data from native crystals of cholera toxin to 3.0-angstrom resolution with our electronic area detectors. With these data, they have found the orientation of a 5-fold symmetry axis within these crystals, perpendicular to the screw dyad of the crystal. They are now determining the crystal structure of cholera toxin by a combination of multiple heavy-atom isomorphous replacement and density modification techniques, making use of rotational 5-fold averaging of the B subunits

  8. Botulinum toxin in trigeminal neuralgia.

    Science.gov (United States)

    Castillo-Álvarez, Federico; Hernando de la Bárcena, Ignacio; Marzo-Sola, María Eugenia

    2017-01-06

    Trigeminal neuralgia is one of the most disabling facial pain syndromes, with a significant impact on patients' quality of life. Pharmacotherapy is the first choice for treatment but cases of drug resistance often require new strategies, among which various interventional treatments have been used. In recent years a new therapeutic strategy consisting of botulinum toxin has emerged, with promising results. We reviewed clinical cases and case series, open-label studies and randomized clinical trials examining the use of botulinum toxin for drug-refractory trigeminal neuralgia published in the literature. The administration of botulinum toxin has proven to be a safe and effective therapeutic strategy in patients with drug-refractory idiopathic trigeminal neuralgia, but many questions remain unanswered as to the precise role of botulinum toxin in the treatment of this disease. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  9. Collaborative Research Program on Seafood Toxins

    Science.gov (United States)

    1988-08-14

    Crystallographic Structures of Saxitoxins Cl and C2 Appendix C: Collaborative Research Program an Seafcod Toxins Progress Report on Ciguatera and Related...radioimmunoassay for PSP were also evalumted. The Hokama stick test for ciguatera toxin was also evaluated. 4. initiate Studies on the Accumulation...tco•d which caie a form of b-mnn poisoning referred to as ciguatera . The respcnsible toxins originate from ll1ular rine algae of the division

  10. Entry of Shiga toxin into cells

    DEFF Research Database (Denmark)

    Sandvig, Kirsten; van Deurs, Bo

    1994-01-01

    Cellebiologi, Shiga toxin, receptors, glycolipids, endocytosis, trans-Golgi network, endoplasmic reticulum, retrograde transport......Cellebiologi, Shiga toxin, receptors, glycolipids, endocytosis, trans-Golgi network, endoplasmic reticulum, retrograde transport...

  11. Botulinum Toxin: Pharmacology and Therapeutic Roles in Pain States.

    Science.gov (United States)

    Patil, Shilpadevi; Willett, Olga; Thompkins, Terin; Hermann, Robert; Ramanathan, Sathish; Cornett, Elyse M; Fox, Charles J; Kaye, Alan David

    2016-03-01

    Botulinum toxin, also known as Botox, is produced by Clostridium botulinum, a gram-positive anaerobic bacterium, and botulinum toxin injections are among the most commonly practiced cosmetic procedures in the USA. Although botulinum toxin is typically associated with cosmetic procedures, it can be used to treat a variety of other conditions, including pain. Botulinum toxin blocks the release of acetylcholine from nerve endings to paralyze muscles and to decrease the pain response. Botulinum toxin has a long duration of action, lasting up to 5 months after initial treatment which makes it an excellent treatment for chronic pain patients. This manuscript will outline in detail why botulinum toxin is used as a successful treatment for pain in multiple conditions as well as outline the risks associated with using botulinum toxin in certain individuals. As of today, the only FDA-approved chronic condition that botulinum toxin can be used to treat is migraines and this is related to its ability to decrease muscle tension and increase muscle relaxation. Contraindications to botulinum toxin treatments are limited to a hypersensitivity to the toxin or an infection at the site of injection, and there are no known drug interactions with botulinum toxin. Botulinum toxin is an advantageous and effective alternative pain treatment and a therapy to consider for those that do not respond to opioid treatment. In summary, botulinum toxin is a relatively safe and effective treatment for individuals with certain pain conditions, including migraines. More research is warranted to elucidate chronic and long-term implications of botulinum toxin treatment as well as effects in pregnant, elderly, and adolescent patients.

  12. Loading and Light Degradation Characteristics of B t Toxin on Nano goethite: A Potential Material for Controlling the Environmental Risk of B t Toxin

    International Nuclear Information System (INIS)

    Zhou, X.; She, Ch.; She, Ch.; Liu, H.

    2015-01-01

    Transgenic B t-modified crops release toxins into soil through root exudate s and upon decomposition of residues. The fate of these toxins in soil has not been yet clearly elucidated. Nano goethite was found to have a different influence on the lifetime and identicalness activity of B t toxin. The aim of this study was to elucidate the adsorption characteristics of B t toxin on nano goethite and its activity changes before and after adsorption. The adsorption of toxin on nano goethite reached equilibrium within 5 h, and the adsorption isotherm of B t toxin on nano goethite conformed to the Langmuir equation (). In the range of ph from 6.0 to 8.0, larger adsorption occurred at lower ph value. The toxin adsorption decreased with the temperature between 10 and 50 degree. The results of Ftir, XRD, and SEM indicated that toxin did not influence the structure of nano goethite and the adsorption of toxin only on the surface of nano goethite. The LC_5_0 value for bound toxin was higher than that of free toxin, and the nano goethite greatly accelerated the degradation of toxin by ultraviolet irradiation. The above results suggested that nano goethite is a potential material for controlling the environmental risk of toxin released by Bt transgenic plants

  13. Inhalation Anthrax (Ames aerosol) in Naive and Vaccinated New Zealand Rabbits: Characterizing the Spread of Bacteria from Lung Deposition to Bacteremia

    Science.gov (United States)

    2012-06-28

    Lond.) 51, 372–385. Henderson, D. W., Peacock , S., and Belton, F. C. (1956). Observations on the prophylaxis of experimental pulmonary anthrax in...terms of the Creative Commons Attribution Non Commercial License, which permits non-commercial use, distribution, and reproduction in other forums

  14. Recombinant expression and purification of a tumor-targeted toxin in Bacillus anthracis

    International Nuclear Information System (INIS)

    Bachran, Christopher; Abdelazim, Suzanne; Fattah, Rasem J.; Liu, Shihui; Leppla, Stephen H.

    2013-01-01

    Highlights: ► Non-infectious and protease-deficient Bacillus anthracis protein expression system. ► Successful expression and purification of a tumor-targeted fusion protein drug. ► Very low endotoxin contamination of purified protein. ► Efficient protein secretion simplifies purification. ► Functional anti-tumor fusion protein purified. -- Abstract: Many recombinant therapeutic proteins are purified from Escherichia coli. While expression in E. coli is easily achieved, some disadvantages such as protein aggregation, formation of inclusion bodies, and contamination of purified proteins with the lipopolysaccharides arise. Lipopolysaccharides have to be removed to prevent inflammatory responses in patients. Use of the Gram-positive Bacillus anthracis as an expression host offers a solution to circumvent these problems. Using the multiple protease-deficient strain BH460, we expressed a fusion of the N-terminal 254 amino acids of anthrax lethal factor (LFn), the N-terminal 389 amino acids of diphtheria toxin (DT389) and human transforming growth factor alpha (TGFα). The resulting fusion protein was constitutively expressed and successfully secreted by B. anthracis into the culture supernatant. Purification was achieved by anion exchange chromatography and proteolytic cleavage removed LFn from the desired fusion protein (DT389 fused to TGFα). The fusion protein showed the intended specific cytotoxicity to epidermal growth factor receptor-expressing human head and neck cancer cells. Final analyses showed low levels of lipopolysaccharides, originating most likely from contamination during the purification process. Thus, the fusion to LFn for protein secretion and expression in B. anthracis BH460 provides an elegant tool to obtain high levels of lipopolysaccharide-free recombinant protein.

  15. Computational Studies of Snake Venom Toxins

    OpenAIRE

    Paola G. Ojeda; David Ramírez; Jans Alzate-Morales; Julio Caballero; Quentin Kaas; Wendy González

    2017-01-01

    Most snake venom toxins are proteins, and participate to envenomation through a diverse array of bioactivities, such as bleeding, inflammation, and pain, cytotoxic, cardiotoxic or neurotoxic effects. The venom of a single snake species contains hundreds of toxins, and the venoms of the 725 species of venomous snakes represent a large pool of potentially bioactive proteins. Despite considerable discovery efforts, most of the snake venom toxins are still uncharacterized. Modern bioinformatics t...

  16. Toxins That Affect Voltage-Gated Sodium Channels.

    Science.gov (United States)

    Ji, Yonghua

    2017-10-26

    Voltage-gated sodium channels (VGSCs) are critical in generation and conduction of electrical signals in multiple excitable tissues. Natural toxins, produced by animal, plant, and microorganisms, target VGSCs through diverse strategies developed over millions of years of evolutions. Studying of the diverse interaction between VGSC and VGSC-targeting toxins has been contributing to the increasing understanding of molecular structure and function, pharmacology, and drug development potential of VGSCs. This chapter aims to summarize some of the current views on the VGSC-toxin interaction based on the established receptor sites of VGSC for natural toxins.

  17. Cyanobacterial toxins: risk management for health protection

    International Nuclear Information System (INIS)

    Codd, Geoffrey A.; Morrison, Louise F.; Metcalf, James S.

    2005-01-01

    This paper reviews the occurrence and properties of cyanobacterial toxins, with reference to the recognition and management of the human health risks which they may present. Mass populations of toxin-producing cyanobacteria in natural and controlled waterbodies include blooms and scums of planktonic species, and mats and biofilms of benthic species. Toxic cyanobacterial populations have been reported in freshwaters in over 45 countries, and in numerous brackish, coastal, and marine environments. The principal toxigenic genera are listed. Known sources of the families of cyanobacterial toxins (hepato-, neuro-, and cytotoxins, irritants, and gastrointestinal toxins) are briefly discussed. Key procedures in the risk management of cyanobacterial toxins and cells are reviewed, including derivations (where sufficient data are available) of tolerable daily intakes (TDIs) and guideline values (GVs) with reference to the toxins in drinking water, and guideline levels for toxigenic cyanobacteria in bathing waters. Uncertainties and some gaps in knowledge are also discussed, including the importance of exposure media (animal and plant foods), in addition to potable and recreational waters. Finally, we present an outline of steps to develop and implement risk management strategies for cyanobacterial cells and toxins in waterbodies, with recent applications and the integration of Hazard Assessment Critical Control Point (HACCP) principles

  18. Botulinum toxin for the treatment of bruxism.

    Science.gov (United States)

    Tinastepe, Neslihan; Küçük, Burcu Bal; Oral, Koray

    2015-10-01

    Botulinum toxin, the most potent biological toxin, has been shown to be effective for a variety of disorders in several medical conditions, when used both therapeutically and cosmetically. In recent years, there has been a rising trend in the use of this pharmacological agent to control bruxing activity, despite its reported adverse effects. The aim of this review was to provide a brief overview to clarify the underlying essential ideas for the use of botulinum toxin in bruxism based on available scientific papers. An electronic literature search was performed to identify publications related to botulinum toxin and its use for bruxism in PubMed. Hand searching of relevant articles was also made to identify additional studies. Of the eleven identified studies, only two were randomized controlled trials, compared with the effectiveness of botulinum toxins on the reduction in the frequency of bruxism events and myofascial pain after injection. The authors of these studies concluded that botulinum toxin could be used as an effective treatment for reducing nocturnal bruxism and myofascial pain in patients with bruxism. Evidence-based research was limited on this topic. More randomized controlled studies are needed to confirm that botulinum toxin is safe and reliable for routine clinical use in bruxism.

  19. Binding of Diphtheria Toxin to Phospholipids in Liposomes

    Science.gov (United States)

    Alving, Carl R.; Iglewski, Barbara H.; Urban, Katharine A.; Moss, Joel; Richards, Roberta L.; Sadoff, Jerald C.

    1980-04-01

    Diphtheria toxin bound to the phosphate portion of some, but not all, phospholipids in liposomes. Liposomes consisting of dimyristoyl phosphatidylcholine and cholesterol did not bind toxin. Addition of 20 mol% (compared to dimyristoyl phosphatidylcholine) of dipalmitoyl phosphatidic acid, dicetyl phosphate, phosphatidylinositol phosphate, cardiolipin, or phosphatidylserine in the liposomes resulted in substantial binding of toxin. Inclusion of phosphatidylinositol in dimyristol phosphatidylcholine / cholesterol liposomes did not result in toxin binding. The calcium salt of dipalmitoyl phosphatidic acid was more effective than the sodium salt, and the highest level of binding occurred with liposomes consisting only of dipalmitoyl phosphatidic acid (calcium salt) and cholesterol. Binding of toxin to liposomes was dependent on pH, and the pattern of pH dependence varied with liposomes having different compositions. Incubation of diphtheria toxin with liposomes containing dicetyl phosphate resulted in maximal binding at pH 3.6, whereas binding to liposomes containing phosphatidylinositol phosphate was maximal above pH 7. Toxin did not bind to liposomes containing 20 mol% of a free fatty acid (palmitic acid) or a sulfated lipid (3-sulfogalactosylceramide). Toxin binding to dicetyl phosphate or phosphatidylinositol phosphate was inhibited by UTP, ATP, phosphocholine, or p-nitrophenyl phosphate, but not by uracil. We conclude that (a) diphtheria toxin binds specifically to the phosphate portion of certain phospholipids, (b) binding to phospholipids in liposomes is dependent on pH, but is not due only to electrostatic interaction, and (c) binding may be strongly influenced by the composition of adjacent phospholipids that do not bind toxin. We propose that a minor membrane phospholipid (such as phosphatidylinositol phosphate or phosphatidic acid), or that some other phosphorylated membrane molecule (such as a phosphoprotein) may be important in the initial binding of

  20. Can a toxin gene NAAT be used to predict toxin EIA and the severity of Clostridium difficile infection?

    Directory of Open Access Journals (Sweden)

    Mark I. Garvey

    2017-12-01

    Full Text Available Abstract Background Diagnosis of C. difficile infection (CDI is controversial because of the many laboratory methods available and their lack of ability to distinguish between carriage, mild or severe disease. Here we describe whether a low C. difficile toxin B nucleic acid amplification test (NAAT cycle threshold (CT can predict toxin EIA, CDI severity and mortality. Methods A three-stage algorithm was employed for CDI testing, comprising a screening test for glutamate dehydrogenase (GDH, followed by a NAAT, then a toxin enzyme immunoassay (EIA. All diarrhoeal samples positive for GDH and NAAT between 2012 and 2016 were analysed. The performance of the NAAT CT value as a classifier of toxin EIA outcome was analysed using a ROC curve; patient mortality was compared to CTs and toxin EIA via linear regression models. Results A CT value ≤26 was associated with ≥72% toxin EIA positivity; applying a logistic regression model we demonstrated an association between low CT values and toxin EIA positivity. A CT value of ≤26 was significantly associated (p = 0.0262 with increased one month mortality, severe cases of CDI or failure of first line treatment. The ROC curve probabilities demonstrated a CT cut off value of 26.6. Discussions Here we demonstrate that a CT ≤26 indicates more severe CDI and is associated with higher mortality. Samples with a low CT value are often toxin EIA positive, questioning the need for this additional EIA test. Conclusions A CT ≤26 could be used to assess the potential for severity of CDI and guide patient treatment.

  1. Drooling in Parkinson's disease: A randomized controlled trial of incobotulinum toxin A and meta-analysis of Botulinum toxins.

    Science.gov (United States)

    Narayanaswami, Pushpa; Geisbush, Thomas; Tarulli, Andrew; Raynor, Elizabeth; Gautam, Shiva; Tarsy, Daniel; Gronseth, Gary

    2016-09-01

    Botulinum toxins are a therapeutic option for drooling in Parkinson's Disease (PD). The aims of this study were to: 1. evaluate the efficacy of incobotulinum toxin A for drooling in PD. 2. Perform a meta-analysis of studies of Botulinum toxins for drooling in PD. 1. Primary study: Randomized, double blind, placebo controlled, cross over trial. Incobotulinum toxin (100 units) or saline was injected into the parotid (20 units) and submandibular (30 units) glands. Subjects returned monthly for three evaluations after each injection. Outcome measures were saliva weight and Drooling Frequency and Severity Scale. 2. Systematic review of literature, followed by inverse variance meta-analyses using random effects models. 1. Primary Study: Nine of 10 subjects completed both arms. There was no significant change in the primary outcome of saliva weight one month after injection in the treatment period compared to placebo period (mean difference, gm ± SD: -0.194 ± 0.61, range: -1.28 to 0.97, 95% CI -0.71 to 0.32). Secondary outcomes also did not change. 2. Meta-analysis of six studies demonstrated significant benefit of Botulinum toxin on functional outcomes (effect size, Cohen's d: -1.32, CI -1.86 to -0.78). The other studies used a higher dose of Botulinum toxin A into the parotid glands. This study did not demonstrate efficacy of incobotulinum toxin A for drooling in PD, but lacked precision to exclude moderate benefit. The parotid/submandibular dose-ratio may have influenced results. Studies evaluating higher doses of incobotulinum toxin A into the parotid glands may be useful. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Array biosensor for detection of toxins

    Science.gov (United States)

    Ligler, Frances S.; Taitt, Chris Rowe; Shriver-Lake, Lisa C.; Sapsford, Kim E.; Shubin, Yura; Golden, Joel P.

    2003-01-01

    The array biosensor is capable of detecting multiple targets rapidly and simultaneously on the surface of a single waveguide. Sandwich and competitive fluoroimmunoassays have been developed to detect high and low molecular weight toxins, respectively, in complex samples. Recognition molecules (usually antibodies) were first immobilized in specific locations on the waveguide and the resultant patterned array was used to interrogate up to 12 different samples for the presence of multiple different analytes. Upon binding of a fluorescent analyte or fluorescent immunocomplex, the pattern of fluorescent spots was detected using a CCD camera. Automated image analysis was used to determine a mean fluorescence value for each assay spot and to subtract the local background signal. The location of the spot and its mean fluorescence value were used to determine the toxin identity and concentration. Toxins were measured in clinical fluids, environmental samples and foods, with minimal sample preparation. Results are shown for rapid analyses of staphylococcal enterotoxin B, ricin, cholera toxin, botulinum toxoids, trinitrotoluene, and the mycotoxin fumonisin. Toxins were detected at levels as low as 0.5 ng mL(-1).

  3. Staphylococcus aureus α-Toxin: Nearly a Century of Intrigue

    Directory of Open Access Journals (Sweden)

    Bryan J. Berube

    2013-06-01

    Full Text Available Staphylococcus aureus secretes a number of host-injurious toxins, among the most prominent of which is the small β-barrel pore-forming toxin α-hemolysin. Initially named based on its properties as a red blood cell lytic toxin, early studies suggested a far greater complexity of α-hemolysin action as nucleated cells also exhibited distinct responses to intoxication. The hemolysin, most aptly referred to as α-toxin based on its broad range of cellular specificity, has long been recognized as an important cause of injury in the context of both skin necrosis and lethal infection. The recent identification of ADAM10 as a cellular receptor for α-toxin has provided keen insight on the biology of toxin action during disease pathogenesis, demonstrating the molecular mechanisms by which the toxin causes tissue barrier disruption at host interfaces lined by epithelial or endothelial cells. This review highlights both the historical studies that laid the groundwork for nearly a century of research on α-toxin and key findings on the structural and functional biology of the toxin, in addition to discussing emerging observations that have significantly expanded our understanding of this toxin in S. aureus disease. The identification of ADAM10 as a proteinaceous receptor for the toxin not only provides a greater appreciation of truths uncovered by many historic studies, but now affords the opportunity to more extensively probe and understand the role of α-toxin in modulation of the complex interaction of S. aureus with its human host.

  4. Botulinum toxin for the treatment of strabismus.

    Science.gov (United States)

    Rowe, Fiona J; Noonan, Carmel P

    2017-03-02

    The use of botulinum toxin as an investigative and treatment modality for strabismus is well reported in the medical literature. However, it is unclear how effective it is in comparison to other treatment options for strabismus. The primary objective was to examine the efficacy of botulinum toxin therapy in the treatment of strabismus compared with alternative conservative or surgical treatment options. This review sought to ascertain those types of strabismus that particularly benefit from the use of botulinum toxin as a treatment option (such as small angle strabismus or strabismus with binocular potential, i.e. the potential to use both eyes together as a pair). The secondary objectives were to investigate the dose effect and complication rates associated with botulinum toxin. We searched CENTRAL (which contains the Cochrane Eyes and Vision Trials Register) (2016, Issue 6), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to July 2016), Embase (January 1980 to July 2016), Latin American and Caribbean Literature on Health Sciences (LILACS) (January 1982 to July 2016), the ISRCTN registry (www.isrctn.com/editAdvancedSearch), ClinicalTrials.gov (www.clinicaltrials.gov), and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 11 July 2016. We handsearched the British and Irish Orthoptic Journal, Australian Orthoptic Journal, proceedings of the European Strabismological Association (ESA), International Strabismological Association (ISA) and International Orthoptic Association (IOA) (www.liv.ac.uk/orthoptics/research/search.htm) and American Academy of Paediatric Ophthalmology and Strabismus meetings (AAPOS). We contacted researchers who are active in this field for information about further

  5. Single toxin dose-response models revisited

    Energy Technology Data Exchange (ETDEWEB)

    Demidenko, Eugene, E-mail: eugened@dartmouth.edu [Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH03756 (United States); Glaholt, SP, E-mail: sglaholt@indiana.edu [Indiana University, School of Public & Environmental Affairs, Bloomington, IN47405 (United States); Department of Biological Sciences, Dartmouth College, Hanover, NH03755 (United States); Kyker-Snowman, E, E-mail: ek2002@wildcats.unh.edu [Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH03824 (United States); Shaw, JR, E-mail: joeshaw@indiana.edu [Indiana University, School of Public & Environmental Affairs, Bloomington, IN47405 (United States); Chen, CY, E-mail: Celia.Y.Chen@dartmouth.edu [Department of Biological Sciences, Dartmouth College, Hanover, NH03755 (United States)

    2017-01-01

    The goal of this paper is to offer a rigorous analysis of the sigmoid shape single toxin dose-response relationship. The toxin efficacy function is introduced and four special points, including maximum toxin efficacy and inflection points, on the dose-response curve are defined. The special points define three phases of the toxin effect on mortality: (1) toxin concentrations smaller than the first inflection point or (2) larger then the second inflection point imply low mortality rate, and (3) concentrations between the first and the second inflection points imply high mortality rate. Probabilistic interpretation and mathematical analysis for each of the four models, Hill, logit, probit, and Weibull is provided. Two general model extensions are introduced: (1) the multi-target hit model that accounts for the existence of several vital receptors affected by the toxin, and (2) model with a nonzero mortality at zero concentration to account for natural mortality. Special attention is given to statistical estimation in the framework of the generalized linear model with the binomial dependent variable as the mortality count in each experiment, contrary to the widespread nonlinear regression treating the mortality rate as continuous variable. The models are illustrated using standard EPA Daphnia acute (48 h) toxicity tests with mortality as a function of NiCl or CuSO{sub 4} toxin. - Highlights: • The paper offers a rigorous study of a sigmoid dose-response relationship. • The concentration with highest mortality rate is rigorously defined. • A table with four special points for five morality curves is presented. • Two new sigmoid dose-response models have been introduced. • The generalized linear model is advocated for estimation of sigmoid dose-response relationship.

  6. Toxin-Based Therapeutic Approaches

    OpenAIRE

    Itai Benhar; Assaf Shapira

    2010-01-01

    Protein toxins confer a defense against predation/grazing or a superior pathogenic competence upon the producing organism. Such toxins have been perfected through evolution in poisonous animals/plants and pathogenic bacteria. Over the past five decades, a lot of effort has been invested in studying their mechanism of action, the way they contribute to pathogenicity and in the development of antidotes that neutralize their action. In parallel, many research groups turned to explore the pharmac...

  7. Oxidative stress induction by T-2 toxin causes DNA damage and triggers apoptosis via caspase pathway in human cervical cancer cells

    International Nuclear Information System (INIS)

    Chaudhari, Manjari; Jayaraj, R.; Bhaskar, A.S.B.; Lakshmana Rao, P.V.

    2009-01-01

    T-2 toxin is the most toxic trichothecene and both humans and animals suffer from several pathological conditions after consumption of foodstuffs contaminated with trichothecenes. We investigated the molecular mechanism of T-2 toxin induced cytotoxicity and cell death in HeLa cells. T-2 toxin at LC50 of 10 ng/ml caused time dependent increase in cytotoxicity as assessed by dye uptake, lactatedehydrogenase leakage and MTT assay. The toxin caused generation of reactive oxygen species as early as 30 min followed by significant depletion of glutathione levels and increased lipid peroxidation. The results indicate oxidative stress as underlying mechanism of cytotoxicity. Single stranded DNA damage after T-2 treatment was observed as early as 2 and 4 h by DNA diffusion assay. The cells exhibited apoptotic morphology like condensed chromatin and nuclear fragmentation after 4 h of treatment. Downstream of T-2 induced oxidative stress and DNA damage a time dependent increase in expression level of p53 protein was observed. The increase in Bax/Bcl2 ratio indicated shift in response, in favour of apoptotic process in T-2 toxin treated cells. Western blot analysis showed increase in levels of mitochondrial apoptogenic factors Bax, Bcl-2, cytochrome-c followed by activation of caspases-9, -3 and -7 leading to DNA fragmentation and apoptosis. In addition to caspase-dependent pathway, our results showed involvement of caspase-independent AIF pathway in T-2 induced apoptosis. Broad spectrum caspase inhibitor z-VAD-fmk could partially protect the cells from DNA damage but could not inhibit AIF induced oligonucleosomal DNA fragmentation beyond 4 h. Results of the study clearly show that oxidative stress is the underlying mechanism by which T-2 toxin causes DNA damage and apoptosis.

  8. Bacillus cereus Biovar Anthracis Causing Anthrax in Sub-Saharan Africa-Chromosomal Monophyly and Broad Geographic Distribution.

    Directory of Open Access Journals (Sweden)

    Kym S Antonation

    2016-09-01

    Full Text Available Through full genome analyses of four atypical Bacillus cereus isolates, designated B. cereus biovar anthracis, we describe a distinct clade within the B. cereus group that presents with anthrax-like disease, carrying virulence plasmids similar to those of classic Bacillus anthracis. We have isolated members of this clade from different mammals (wild chimpanzees, gorillas, an elephant and goats in West and Central Africa (Côte d'Ivoire, Cameroon, Central African Republic and Democratic Republic of Congo. The isolates shared several phenotypic features of both B. anthracis and B. cereus, but differed amongst each other in motility and their resistance or sensitivity to penicillin. They all possessed the same mutation in the regulator gene plcR, different from the one found in B. anthracis, and in addition, carry genes which enable them to produce a second capsule composed of hyaluronic acid. Our findings show the existence of a discrete clade of the B. cereus group capable of causing anthrax-like disease, found in areas of high biodiversity, which are possibly also the origin of the worldwide distributed B. anthracis. Establishing the impact of these pathogenic bacteria on threatened wildlife species will require systematic investigation. Furthermore, the consumption of wildlife found dead by the local population and presence in a domestic animal reveal potential sources of exposure to humans.

  9. Inhibition of epithelial Na+ transport by atriopeptin, protein kinase c, and pertussis toxin

    International Nuclear Information System (INIS)

    Mohrmann, M.; Cantiello, H.F.; Ausiello, D.A.

    1987-01-01

    The authors have recently shown the selective inhibition of an amiloride-sensitive, conductive pathway for Na + by atrial natriuretic peptide and 8-bromoguanosine 3',5'-cyclic monophosphate (8-BrcGMP) in the renal epithelial cell line, LLC-PK i . Using 22 Na + fluxes, they further investigated the modulation of Na + transport by atrial natriuretic peptide and by agents that increase cGMP production, activate protein kinase c, or modulate guanine nucleotide regulatory protein function. Sodium nitroprusside increases intracellular cGMP concentrations without affecting cAMP concentrations and completely inhibits amiloride-sensitive Na + uptake in a time- and concentration-dependent manner. Oleoyl 2-acetylglycerol and phorbol 12-myristate 13-acetate, activators of protein kinase c, inhibit Na + uptake by 93 ± 13 and 51 ± 10%, respectively. Prolonged incubation with phorbol ester results in the downregulation of protein kinase c activity and reduces the inhibitory effect of atrial natriuretic peptide, suggesting that the action of this peptide involves stimulation of protein kinase c. Pertussis toxin, which induces the ADP-ribosylation of a 41-kDa guanine nucleotide regulatory protein in LLC-PK i cells, inhibits 22 Na + influx to the same extent as amiloride. Thus, increasing cGMP, activating protein kinase c, and ADP-ribosylating a guanine nucleotide regulatory protein all inhibit Na + uptake. These events may be sequentially involved in the action of atrial natriuretic peptide

  10. Botulinum toxin for vaginismus treatment.

    Science.gov (United States)

    Ferreira, Juliana Rocha; Souza, Renan Pedra

    2012-01-01

    Vaginismus is characterized by recurrent or persistent involuntary contraction of the perineal muscles surrounding the outer third of the vagina when penile, finger, tampon, or speculum penetration is attempted. Recent results have suggested the use of botulinum toxin for the treatment of vaginismus. Here, we assessed previously published data to evaluate the therapeutic effectiveness of botulinum toxin for vaginismus. We have carried out a systematic review followed by a meta-analysis. Our results indicate that botulinum toxin is an effective therapeutic option for patients with vaginismus (pooled odds ratio of 8.723 with 95% confidence interval limits of 1.942 and 39.162, p = 0.005). This may hold particularly true in treatment-refractory patients because most of the studies included in this meta-analysis have enrolled these subjects in their primary analysis. Botulinum toxin appears to bea reasonable intervention for vaginismus. However, this conclusion should be read carefully because of the deficiency of placebo-controlled randomized clinical trials and the quality issues presented in the existing ones.

  11. A toxin-binding alkaline phosphatase fragment synergizes Bt toxin Cry1Ac against susceptible and resistant Helicoverpa armigera.

    Directory of Open Access Journals (Sweden)

    Wenbo Chen

    Full Text Available Evolution of resistance by insects threatens the continued success of pest control using insecticidal crystal (Cry proteins from the bacterium Bacillus thuringiensis (Bt in sprays and transgenic plants. In this study, laboratory selection with Cry1Ac yielded five strains of cotton bollworm, Helicoverpa armigera, with resistance ratios at the median lethal concentration (LC50 of activated Cry1Ac ranging from 22 to 1700. Reduced activity and reduced transcription of an alkaline phosphatase protein that binds Cry1Ac was associated with resistance to Cry1Ac in the four most resistant strains. A Cry1Ac-binding fragment of alkaline phosphatase from H. armigera (HaALP1f was not toxic by itself, but it increased mortality caused by Cry1Ac in a susceptible strain and in all five resistant strains. Although synergism of Bt toxins against susceptible insects by toxin-binding fragments of cadherin and aminopeptidase N has been reported previously, the results here provide the first evidence of synergism of a Bt toxin by a toxin-binding fragment of alkaline phosphatase. The results here also provide the first evidence of synergism of a Bt toxin by any toxin-binding peptide against resistant insects.

  12. Effect of cholera toxin on cAMP levels and Na+ influx in isolated intestinal epithelial cells

    International Nuclear Information System (INIS)

    Hyun, C.S.; Kimmich, G.A.

    1982-01-01

    Freshly isolated chicken intestinal cells contain approximately 20 pmol adenosine 3',5'-cyclic monophosphate (cAMP)/mg cellular protein. Incubation with 3 μg/ml cholera toxin (CT) at 37 0 C induces an elevation of cellular cAMP beginning 10-15 min after initial exposure. The response is linear with time for 40-50 min and causes a six- to eightfold increase over control levels at steady state. Dibutyryl cAMP and agents that increase cAMP production inhibit Na + influx into the isolated enterocytes. Chlorpromazine completely abolishes the toxin-induced elevation of cAMP in the isolated cells and also reverses the effect on Na + entry. The data provide evidence for a cAMP-mediated control of intestinal cell Na + uptake, which may represent the mechanistic basis for the antiabsorptive effect of CT on Na + during induction of intestinal secretory activity. Studies on the time-dependent effects of chlorpromazine on both intracellular cAMP concentration and Na + influx suggest that the reactivation of the Na + transport system after cAMP-induced inhibition is slow relative to the disappearance of cAMP

  13. Short Toxin-like Proteins Abound in Cnidaria Genomes

    Directory of Open Access Journals (Sweden)

    Michal Linial

    2012-11-01

    Full Text Available Cnidaria is a rich phylum that includes thousands of marine species. In this study, we focused on Anthozoa and Hydrozoa that are represented by the Nematostella vectensis (Sea anemone and Hydra magnipapillata genomes. We present a method for ranking the toxin-like candidates from complete proteomes of Cnidaria. Toxin-like functions were revealed using ClanTox, a statistical machine-learning predictor trained on ion channel inhibitors from venomous animals. Fundamental features that were emphasized in training ClanTox include cysteines and their spacing along the sequences. Among the 83,000 proteins derived from Cnidaria representatives, we found 170 candidates that fulfill the properties of toxin-like-proteins, the vast majority of which were previously unrecognized as toxins. An additional 394 short proteins exhibit characteristics of toxin-like proteins at a moderate degree of confidence. Remarkably, only 11% of the predicted toxin-like proteins were previously classified as toxins. Based on our prediction methodology and manual annotation, we inferred functions for over 400 of these proteins. Such functions include protease inhibitors, membrane pore formation, ion channel blockers and metal binding proteins. Many of the proteins belong to small families of paralogs. We conclude that the evolutionary expansion of toxin-like proteins in Cnidaria contributes to their fitness in the complex environment of the aquatic ecosystem.

  14. In vitro reconstitution of the Clostridium botulinum type D progenitor toxin.

    Science.gov (United States)

    Kouguchi, Hirokazu; Watanabe, Toshihiro; Sagane, Yoshimasa; Sunagawa, Hiroyuki; Ohyama, Tohru

    2002-01-25

    Clostridium botulinum type D strain 4947 produces two different sizes of progenitor toxins (M and L) as intact forms without proteolytic processing. The M toxin is composed of neurotoxin (NT) and nontoxic-nonhemagglutinin (NTNHA), whereas the L toxin is composed of the M toxin and hemagglutinin (HA) subcomponents (HA-70, HA-17, and HA-33). The HA-70 subcomponent and the HA-33/17 complex were isolated from the L toxin to near homogeneity by chromatography in the presence of denaturing agents. We were able to demonstrate, for the first time, in vitro reconstitution of the L toxin formed by mixing purified M toxin, HA-70, and HA-33/17. The properties of reconstituted and native L toxins are indistinguishable with respect to their gel filtration profiles, native-PAGE profiles, hemagglutination activity, binding activity to erythrocytes, and oral toxicity to mice. M toxin, which contained nicked NTNHA prepared by treatment with trypsin, could no longer be reconstituted to the L toxin with HA subcomponents, whereas the L toxin treated with proteases was not degraded into M toxin and HA subcomponents. We conclude that the M toxin forms first by assembly of NT with NTNHA and is subsequently converted to the L toxin by assembly with HA-70 and HA-33/17.

  15. Botulinum toxin in pain treatment.

    Science.gov (United States)

    Colhado, Orlando Carlos Gomes; Boeing, Marcelo; Ortega, Luciano Bornia

    2009-01-01

    Botulinum toxin (BTX) is one of the most potent bacterial toxins known and its effectiveness in the treatment of some pain syndromes is well known. However, the efficacy of some of its indications is still in the process of being confirmed. The objective of this study was to review the history, pharmacological properties, and clinical applications of BTX in the treatment of pain of different origins. Botulinum toxin is produced by fermentation of Clostridium botulinum, a Gram-positive, anaerobic bacterium. Commercially, BTX comes in two presentations, types A and B. Botulinum toxin, a neurotoxin with high affinity for cholinergic synapses, blocks the release of acetylcholine by nerve endings without interfering with neuronal conduction of electrical signals or synthesis and storage of acetylcholine. It has been proven that BTX can selectively weaken painful muscles, interrupting the spasm-pain cycle. Several studies have demonstrated the efficacy and safety of BTX-A in the treatment of tension headaches, migraines, chronic lumbar pain, and myofascial pain. Botulinum toxin type A is well tolerated in the treatment of chronic pain disorders in which pharmacotherapy regimens can cause side effects. The reduction in the consumption of analgesics and length of action of 3 to 4 months per dose represent other advantages of its use. However, further studies are necessary to establish the efficacy of BTX-A in chronic pain disorders and its exact mechanism of action, as well as its potential in multifactorial treatments.

  16. Botulinum Toxin for Rhinitis.

    Science.gov (United States)

    Ozcan, Cengiz; Ismi, Onur

    2016-08-01

    Rhinitis is a common clinical entity. Besides nasal obstruction, itching, and sneezing, one of the most important symptoms of rhinitis is nasal hypersecretion produced by nasal glands and exudate from the nasal vascular bed. Allergic rhinitis is an IgE-mediated inflammatory reaction of nasal mucosa after exposure to environmental allergens. Idiopathic rhinitis describes rhinitis symptoms that occur after non-allergic, noninfectious irritants. Specific allergen avoidance, topical nasal decongestants, nasal corticosteroids, immunotherapy, and sinonasal surgery are the main treatment options. Because the current treatment modalities are not enough for reducing rhinorrhea in some patients, novel treatment options are required to solve this problem. Botulinum toxin is an exotoxin generated by Clostridium botulinum. It disturbs the signal transmission at the neuromuscular and neuroglandular junction by inhibiting the acetylcholine release from the presynaptic nerve terminal. It has been widely used in neuromuscular, hypersecretory, and autonomic nerve system disorders. There have been a lot of published articles concerning the effect of this toxin on rhinitis symptoms. Based on the results of these reports, intranasal botulinum toxin A administration appears to be a safe and effective treatment method for decreasing rhinitis symptoms in rhinitis patients with a long-lasting effect. Botulinum toxin type A will be a good treatment option for the chronic rhinitis patients who are resistant to other treatment methods.

  17. Diffusion of Botulinum Toxins

    Directory of Open Access Journals (Sweden)

    Matthew A. Brodsky

    2012-08-01

    Full Text Available Background: It is generally agreed that diffusion of botulinum toxin occurs, but the extent of the spread and its clinical importance are disputed. Many factors have been suggested to play a role but which have the most clinical relevance is a subject of much discussion.Methods: This review discusses the variables affecting diffusion, including protein composition and molecular size as well as injection factors (e.g., volume, dose, injection method. It also discusses data on diffusion from comparative studies in animal models and human clinical trials that illustrate differences between the available botulinum toxin products (onabotulinumtoxinA, abobotulinumtoxinA, incobotulinumtoxinA, and rimabotulinumtoxinB.Results: Neither molecular weight nor the presence of complexing proteins appears to affect diffusion; however, injection volume, concentration, and dose all play roles and are modifiable. Both animal and human studies show that botulinum toxin products are not interchangeable, and that some products are associated with greater diffusion and higher rates of diffusion-related adverse events than others.Discussion: Each of the botulinum toxins is a unique pharmacologic entity. A working knowledge of the different serotypes is essential to avoid unwanted diffusion-related adverse events. In addition, clinicians should be aware that the factors influencing diffusion may range from properties intrinsic to the drug to accurate muscle selection as well as dilution, volume, and dose injected.

  18. The role of toxins in Clostridium difficile infection.

    Science.gov (United States)

    Chandrasekaran, Ramyavardhanee; Lacy, D Borden

    2017-11-01

    Clostridium difficile is a bacterial pathogen that is the leading cause of nosocomial antibiotic-associated diarrhea and pseudomembranous colitis worldwide. The incidence, severity, mortality and healthcare costs associated with C. difficile infection (CDI) are rising, making C. difficile a major threat to public health. Traditional treatments for CDI involve use of antibiotics such as metronidazole and vancomycin, but disease recurrence occurs in about 30% of patients, highlighting the need for new therapies. The pathogenesis of C. difficile is primarily mediated by the actions of two large clostridial glucosylating toxins, toxin A (TcdA) and toxin B (TcdB). Some strains produce a third toxin, the binary toxin C. difficile transferase, which can also contribute to C. difficile virulence and disease. These toxins act on the colonic epithelium and immune cells and induce a complex cascade of cellular events that result in fluid secretion, inflammation and tissue damage, which are the hallmark features of the disease. In this review, we summarize our current understanding of the structure and mechanism of action of the C. difficile toxins and their role in disease. Published by Oxford University Press on behalf of FEMS 2017.

  19. Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins.

    Science.gov (United States)

    Mantzouki, Evanthia; Lürling, Miquel; Fastner, Jutta; de Senerpont Domis, Lisette; Wilk-Woźniak, Elżbieta; Koreivienė, Judita; Seelen, Laura; Teurlincx, Sven; Verstijnen, Yvon; Krztoń, Wojciech; Walusiak, Edward; Karosienė, Jūratė; Kasperovičienė, Jūratė; Savadova, Ksenija; Vitonytė, Irma; Cillero-Castro, Carmen; Budzyńska, Agnieszka; Goldyn, Ryszard; Kozak, Anna; Rosińska, Joanna; Szeląg-Wasielewska, Elżbieta; Domek, Piotr; Jakubowska-Krepska, Natalia; Kwasizur, Kinga; Messyasz, Beata; Pełechaty, Aleksandra; Pełechaty, Mariusz; Kokocinski, Mikolaj; García-Murcia, Ana; Real, Monserrat; Romans, Elvira; Noguero-Ribes, Jordi; Duque, David Parreño; Fernández-Morán, Elísabeth; Karakaya, Nusret; Häggqvist, Kerstin; Demir, Nilsun; Beklioğlu, Meryem; Filiz, Nur; Levi, Eti E.; Iskin, Uğur; Bezirci, Gizem; Tavşanoğlu, Ülkü Nihan; Özhan, Koray; Gkelis, Spyros; Panou, Manthos; Fakioglu, Özden; Avagianos, Christos; Kaloudis, Triantafyllos; Çelik, Kemal; Yilmaz, Mete; Marcé, Rafael; Catalán, Nuria; Bravo, Andrea G.; Buck, Moritz; Colom-Montero, William; Mustonen, Kristiina; Pierson, Don; Yang, Yang; Raposeiro, Pedro M.; Gonçalves, Vítor; Antoniou, Maria G.; Tsiarta, Nikoletta; McCarthy, Valerie; Perello, Victor C.; Feldmann, Tõnu; Laas, Alo; Panksep, Kristel; Tuvikene, Lea; Gagala, Ilona; Mankiewicz-Boczek, Joana; Yağcı, Meral Apaydın; Çınar, Şakir; Çapkın, Kadir; Yağcı, Abdulkadir; Cesur, Mehmet; Bilgin, Fuat; Bulut, Cafer; Uysal, Rahmi; Obertegger, Ulrike; Boscaini, Adriano; Flaim, Giovanna; Salmaso, Nico; Cerasino, Leonardo; Richardson, Jessica; Visser, Petra M.; Verspagen, Jolanda M. H.; Karan, Tünay; Soylu, Elif Neyran; Maraşlıoğlu, Faruk; Napiórkowska-Krzebietke, Agnieszka; Ochocka, Agnieszka; Pasztaleniec, Agnieszka; Antão-Geraldes, Ana M.; Vasconcelos, Vitor; Morais, João; Vale, Micaela; Köker, Latife; Akçaalan, Reyhan; Albay, Meriç; Špoljarić Maronić, Dubravka; Stević, Filip; Žuna Pfeiffer, Tanja; Fonvielle, Jeremy; Straile, Dietmar; Rothhaupt, Karl-Otto; Hansson, Lars-Anders; Urrutia-Cordero, Pablo; Bláha, Luděk; Geriš, Rodan; Fránková, Markéta; Koçer, Mehmet Ali Turan; Alp, Mehmet Tahir; Remec-Rekar, Spela; Elersek, Tina; Triantis, Theodoros; Zervou, Sevasti-Kiriaki; Hiskia, Anastasia; Haande, Sigrid; Skjelbred, Birger; Madrecka, Beata; Nemova, Hana; Drastichova, Iveta; Chomova, Lucia; Edwards, Christine; Sevindik, Tuğba Ongun; Tunca, Hatice; Önem, Burçin; Aleksovski, Boris; Krstić, Svetislav; Vucelić, Itana Bokan; Nawrocka, Lidia; Salmi, Pauliina; Machado-Vieira, Danielle; de Oliveira, Alinne Gurjão; Delgado-Martín, Jordi; García, David; Cereijo, Jose Luís; Gomà, Joan; Trapote, Mari Carmen; Vegas-Vilarrúbia, Teresa; Obrador, Biel; Grabowska, Magdalena; Karpowicz, Maciej; Chmura, Damian; Úbeda, Bárbara; Gálvez, José Ángel; Özen, Arda; Christoffersen, Kirsten Seestern; Warming, Trine Perlt; Kobos, Justyna; Mazur-Marzec, Hanna; Pérez-Martínez, Carmen; Ramos-Rodríguez, Eloísa; Arvola, Lauri; Alcaraz-Párraga, Pablo; Toporowska, Magdalena; Pawlik-Skowronska, Barbara; Niedźwiecki, Michał; Pęczuła, Wojciech; Leira, Manel; Hernández, Armand; Moreno-Ostos, Enrique; Blanco, José María; Rodríguez, Valeriano; Montes-Pérez, Jorge Juan; Palomino, Roberto L.; Rodríguez-Pérez, Estela; Carballeira, Rafael; Camacho, Antonio; Picazo, Antonio; Rochera, Carlos; Santamans, Anna C.; Ferriol, Carmen; Romo, Susana; Soria, Juan Miguel; Dunalska, Julita; Sieńska, Justyna; Szymański, Daniel; Kruk, Marek; Kostrzewska-Szlakowska, Iwona; Jasser, Iwona; Žutinić, Petar; Gligora Udovič, Marija; Plenković-Moraj, Anđelka; Frąk, Magdalena; Bańkowska-Sobczak, Agnieszka; Wasilewicz, Michał; Özkan, Korhan; Maliaka, Valentini; Kangro, Kersti; Grossart, Hans-Peter; Paerl, Hans W.; Carey, Cayelan C.; Ibelings, Bas W.

    2018-04-13

    Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and cytotoxins (e.g., cylindrospermopsin) due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI) increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains.

  20. Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins

    Directory of Open Access Journals (Sweden)

    Evanthia Mantzouki

    2018-04-01

    Full Text Available Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins. Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a and cytotoxins (e.g., cylindrospermopsin due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains.

  1. A Retrospective Study on the Epidemiology of Anthrax, Foot and Mouth Disease, Haemorrhagic Septicaemia, Peste des Petits Ruminants and Rabies in Bangladesh, 2010-2012

    Science.gov (United States)

    Mondal, Shankar P.; Yamage, Mat

    2014-01-01

    Anthrax, foot and mouth disease (FMD), haemorrhagic septicaemia (HS), peste des petits ruminants (PPR) and rabies are considered to be endemic in Bangladesh. This retrospective study was conducted to understand the geographic and seasonal distribution of these major infectious diseases in livestock based on data collected through passive surveillance from 1 January 2010 to 31 December 2012. Data analysis for this period revealed 5,937 cases of anthrax, 300,333 of FMD, 13,436 of HS, 247,783 of PPR and 14,085 cases of dog bite/rabies. While diseases were reported in almost every district of the country, the highest frequency of occurrence corresponded to the susceptible livestock population in the respective districts. There was no significant difference in the disease occurrences between districts bordering India/Myanmar and non-border districts (p>0.05). Significantly higher (pBangladesh. PMID:25101836

  2. Diphtheria toxin translocation across cellular membranes is regulated by sphingolipids

    International Nuclear Information System (INIS)

    Spilsberg, Bjorn; Hanada, Kentaro; Sandvig, Kirsten

    2005-01-01

    Diphtheria toxin is translocated across cellular membranes when receptor-bound toxin is exposed to low pH. To study the role of sphingolipids for toxin translocation, both a mutant cell line lacking the first enzyme in de novo sphingolipid synthesis, serine palmitoyltransferase, and a specific inhibitor of the same enzyme, myriocin, were used. The serine palmitoyltransferase-deficient cell line (LY-B) was found to be 10-15 times more sensitive to diphtheria toxin than the genetically complemented cell line (LY-B/cLCB1) and the wild-type cell line (CHO-K1), both when toxin translocation directly across the plasma membrane was induced by exposing cells with surface-bound toxin to low pH, and when the toxin followed its normal route via acidified endosomes into the cytosol. Toxin binding was similar in these three cell lines. Furthermore, inhibition of serine palmitoyltransferase activity by addition of myriocin sensitized the two control cell lines (LY-B/cLCB1 and CHO-K1) to diphtheria toxin, whereas, as expected, no effect was observed in cells lacking serine palmitoyltransferase (LY-B). In conclusion, diphtheria toxin translocation is facilitated by depletion of membrane sphingolipids

  3. Bacterial toxins as pathogen weapons against phagocytes

    Directory of Open Access Journals (Sweden)

    Ana edo Vale

    2016-02-01

    Full Text Available Bacterial toxins are virulence factors that manipulate host cell functions and take over the control of vital processes of living organisms to favour microbial infection. Some toxins directly target innate immune cells, thereby annihilating a major branch of the host immune response. In this review we will focus on bacterial toxins that act from the extracellular milieu and hinder the function of macrophages and neutrophils. In particular, we will concentrate on toxins from Gram-positive and Gram-negative bacteria that manipulate cell signalling or induce cell death by either imposing direct damage to the host cells cytoplasmic membrane or enzymatically modifying key eukaryotic targets. Outcomes regarding pathogen dissemination, host damage and disease progression will be discussed.

  4. Distinct Roles for CdtA and CdtC during Intoxication by Cytolethal Distending Toxins.

    Directory of Open Access Journals (Sweden)

    Shandee D Dixon

    Full Text Available Cytolethal distending toxins (CDTs are heterotrimeric protein exotoxins produced by a diverse array of Gram-negative pathogens. The enzymatic subunit, CdtB, possesses DNase and phosphatidylinositol 3-4-5 trisphosphate phosphatase activities that induce host cell cycle arrest, cellular distension and apoptosis. To exert cyclomodulatory and cytotoxic effects CDTs must be taken up from the host cell surface and transported intracellularly in a manner that ultimately results in localization of CdtB to the nucleus. However, the molecular details and mechanism by which CDTs bind to host cells and exploit existing uptake and transport pathways to gain access to the nucleus are poorly understood. Here, we report that CdtA and CdtC subunits of CDTs derived from Haemophilus ducreyi (Hd-CDT and enteropathogenic E. coli (Ec-CDT are independently sufficient to support intoxication by their respective CdtB subunits. CdtA supported CdtB-mediated killing of T-cells and epithelial cells that was nearly as efficient as that observed with holotoxin. In contrast, the efficiency by which CdtC supported intoxication was dependent on the source of the toxin as well as the target cell type. Further, CdtC was found to alter the subcellular trafficking of Ec-CDT as determined by sensitivity to EGA, an inhibitor of endosomal trafficking, colocalization with markers of early and late endosomes, and the kinetics of DNA damage response. Finally, host cellular cholesterol was found to influence sensitivity to intoxication mediated by Ec-CdtA, revealing a role for cholesterol or cholesterol-rich membrane domains in intoxication mediated by this subunit. In summary, data presented here support a model in which CdtA and CdtC each bind distinct receptors on host cell surfaces that direct alternate intracellular uptake and/or trafficking pathways.

  5. Influence of zeolite shape and particle size on their capacity to adsorb uremic toxin as powders and as fillers in membranes.

    Science.gov (United States)

    Lu, Limin; Chen, Chen; Samarasekera, Champika; Yeow, John T W

    2017-08-01

    Membranes with zeolites are promising for performing blood dialysis because zeolites can eliminate uremic toxins through molecular sieving. Although the size and the shape of zeolite particles can potentially influence the performance of the membranes with respect of creatinine uptake level, it is not clear what sizes and shapes lead to better performance. In this paper, we carry out experiments to answer this question. Spherical microparticle 840, spherical nanoparticle P-87 and rod-like nanoparticle P-371 zeolites were chosen to be used in all the experiments. Their creatinine uptake levels were first measured as powders in creatinine solutions with different concentrations, volumes and adsorption times. Then, nanofibrous membranes with zeolites were electrospun and their ability to adsorb creatinine was measured and compared against their respective powders' creatinine uptake level. The experiment shows that the zeolites have similar creatinine uptake ability as powders. However, they have significantly different creatinine uptake ability after being incorporated inside the membranes. Spherical microparticle 840 in the membrane presented the best creatinine uptake ability, at 8957 µg g -1 , which was half of its powders'. On the other hand, P-87 presented largely decreased, while P-371 presented even lower creatinine uptake ability in membranes when compared to respective powders'. The results shows that microparticle and sphere shaped particles perform better inside the membranes. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1594-1601, 2017. © 2016 Wiley Periodicals, Inc.

  6. Dual lanthanide-doped complexes: the development of a time-resolved ratiometric fluorescent probe for anthrax biomarker and a paper-based visual sensor.

    Science.gov (United States)

    Wang, Qi-Xian; Xue, Shi-Fan; Chen, Zi-Han; Ma, Shi-Hui; Zhang, Shengqiang; Shi, Guoyue; Zhang, Min

    2017-08-15

    In this work, a novel time-resolved ratiometric fluorescent probe based on dual lanthanide (Tb: terbium, and Eu: europium)-doped complexes (Tb/DPA@SiO 2 -Eu/GMP) has been designed for detecting anthrax biomarker (dipicolinic acid, DPA), a unique and major component of anthrax spores. In such complexes-based probe, Tb/DPA@SiO 2 can serve as a stable reference signal with green fluorescence and Eu/GMP act as a sensitive response signal with red fluorescence for ratiometric fluorescent sensing DPA. Additionally, the probe exhibits long fluorescence lifetime, which can significantly reduce the autofluorescence interferences from biological samples by using time-resolved fluorescence measurement. More significantly, a paper-based visual sensor for DPA has been devised by using filter paper embedded with Tb/DPA@SiO 2 -Eu/GMP, and we have proved its utility for fluorescent detection of DPA, in which only a handheld UV lamp is used. In the presence of DPA, the paper-based visual sensor, illuminated by a handheld UV lamp, would result in an obvious fluorescence color change from green to red, which can be easily observed with naked eyes. The paper-based visual sensor is stable, portable, disposable, cost-effective and easy-to-use. The feasibility of using a smartphone with easy-to-access color-scanning APP as the detection platform for quantitative scanometric assays has been also demonstrated by coupled with our proposed paper-based visual sensor. This work unveils an effective method for accurate, sensitive and selective monitoring anthrax biomarker with backgroud-free and self-calibrating properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Dynamics of plc gene transcription and α-toxin production during growth of Clostridium perfringens strains with contrasting α-toxin production

    DEFF Research Database (Denmark)

    Abildgaard, Lone; Schramm, Andreas; Rudi, Knut

    2009-01-01

    The aim of the present study was to investigate transcription dynamics of the α-toxin-encoding plc gene relative to two housekeeping genes (gyrA and rplL) in batch cultures of three Clostridium perfringens strains with low, intermediate, and high levels of α-toxin production, respectively. The plc...... transcript level was always low in the low α-toxin producing strain. For the two other strains, plc transcription showed an inducible pattern and reached a maximum level in the late exponential growth phase. The transcription levels were however inversely correlated to α-toxin production for the two strains....... We propose that this discrepancy is due to differences in plc translation rates between the strains and that strain-specific translational rates therefore must be determined before α-toxin production can be extrapolated from transcript levels in C. perfringens....

  8. CD44 Promotes intoxication by the clostridial iota-family toxins.

    Science.gov (United States)

    Wigelsworth, Darran J; Ruthel, Gordon; Schnell, Leonie; Herrlich, Peter; Blonder, Josip; Veenstra, Timothy D; Carman, Robert J; Wilkins, Tracy D; Van Nhieu, Guy Tran; Pauillac, Serge; Gibert, Maryse; Sauvonnet, Nathalie; Stiles, Bradley G; Popoff, Michel R; Barth, Holger

    2012-01-01

    Various pathogenic clostridia produce binary protein toxins associated with enteric diseases of humans and animals. Separate binding/translocation (B) components bind to a protein receptor on the cell surface, assemble with enzymatic (A) component(s), and mediate endocytosis of the toxin complex. Ultimately there is translocation of A component(s) from acidified endosomes into the cytosol, leading to destruction of the actin cytoskeleton. Our results revealed that CD44, a multifunctional surface protein of mammalian cells, facilitates intoxication by the iota family of clostridial binary toxins. Specific antibody against CD44 inhibited cytotoxicity of the prototypical Clostridium perfringens iota toxin. Versus CD44(+) melanoma cells, those lacking CD44 bound less toxin and were dose-dependently resistant to C. perfringens iota, as well as Clostridium difficile and Clostridium spiroforme iota-like, toxins. Purified CD44 specifically interacted in vitro with iota and iota-like, but not related Clostridium botulinum C2, toxins. Furthermore, CD44 knockout mice were resistant to iota toxin lethality. Collective data reveal an important role for CD44 during intoxication by a family of clostridial binary toxins.

  9. Recombinant expression and purification of a tumor-targeted toxin in Bacillus anthracis

    Energy Technology Data Exchange (ETDEWEB)

    Bachran, Christopher; Abdelazim, Suzanne; Fattah, Rasem J.; Liu, Shihui [National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 (United States); Leppla, Stephen H., E-mail: sleppla@niaid.nih.gov [National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 (United States)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Non-infectious and protease-deficient Bacillus anthracis protein expression system. Black-Right-Pointing-Pointer Successful expression and purification of a tumor-targeted fusion protein drug. Black-Right-Pointing-Pointer Very low endotoxin contamination of purified protein. Black-Right-Pointing-Pointer Efficient protein secretion simplifies purification. Black-Right-Pointing-Pointer Functional anti-tumor fusion protein purified. -- Abstract: Many recombinant therapeutic proteins are purified from Escherichia coli. While expression in E. coli is easily achieved, some disadvantages such as protein aggregation, formation of inclusion bodies, and contamination of purified proteins with the lipopolysaccharides arise. Lipopolysaccharides have to be removed to prevent inflammatory responses in patients. Use of the Gram-positive Bacillus anthracis as an expression host offers a solution to circumvent these problems. Using the multiple protease-deficient strain BH460, we expressed a fusion of the N-terminal 254 amino acids of anthrax lethal factor (LFn), the N-terminal 389 amino acids of diphtheria toxin (DT389) and human transforming growth factor alpha (TGF{alpha}). The resulting fusion protein was constitutively expressed and successfully secreted by B. anthracis into the culture supernatant. Purification was achieved by anion exchange chromatography and proteolytic cleavage removed LFn from the desired fusion protein (DT389 fused to TGF{alpha}). The fusion protein showed the intended specific cytotoxicity to epidermal growth factor receptor-expressing human head and neck cancer cells. Final analyses showed low levels of lipopolysaccharides, originating most likely from contamination during the purification process. Thus, the fusion to LFn for protein secretion and expression in B. anthracis BH460 provides an elegant tool to obtain high levels of lipopolysaccharide-free recombinant protein.

  10. Facilitation of risk communication during the anthrax attacks of 2001: the organizational backstory.

    Science.gov (United States)

    Chess, Caron; Clarke, Lee

    2007-09-01

    The anthrax attacks of 2001 created risk communication problems that cannot be fully understood without appreciating the dynamics among organizations. Case studies of communication in New Jersey, consisting of interviews with a range of participants, found that existing organizational and professional networks facilitated trust among decisionmakers. This interpersonal trust improved communication among agencies and thereby risk communication with the public. For example, "white powder scares" were a problem even in places without contamination. Professionals' trust in each other was vital for responding productively. Conversely, organizational challenges, including conflict among agencies, hindered communication with key audiences. Although centralization and increased control are often seen as the remedy for communicative confusion, they also can quash the improvisational responses needed during crises.

  11. Toxin gene determination and evolution in scorpaenoid fish.

    Science.gov (United States)

    Chuang, Po-Shun; Shiao, Jen-Chieh

    2014-09-01

    In this study, we determine the toxin genes from both cDNA and genomic DNA of four scorpaenoid fish and reconstruct their evolutionary relationship. The deduced protein sequences of the two toxin subunits in Sebastapistes strongia, Scorpaenopsis oxycephala, and Sebastiscus marmoratus are about 700 amino acid, similar to the sizes of the stonefish (Synanceia horrida, and Synanceia verrucosa) and lionfish (Pterois antennata and Pterois volitans) toxins previously published. The intron positions are highly conserved among these species, which indicate the applicability of gene finding by using genomic DNA template. The phylogenetic analysis shows that the two toxin subunits were duplicated prior to the speciation of Scorpaenoidei. The precedence of the gene duplication over speciation indicates that the toxin genes may be common to the whole family of Scorpaeniform. Furthermore, one additional toxin gene has been determined in the genomic DNA of Dendrochirus zebra. The phylogenetic analysis suggests that an additional gene duplication occurred before the speciation of the lionfish (Pteroinae) and a pseudogene may be generally present in the lineage of lionfish. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Discovery of novel bacterial toxins by genomics and computational biology.

    Science.gov (United States)

    Doxey, Andrew C; Mansfield, Michael J; Montecucco, Cesare

    2018-06-01

    Hundreds and hundreds of bacterial protein toxins are presently known. Traditionally, toxin identification begins with pathological studies of bacterial infectious disease. Following identification and cultivation of a bacterial pathogen, the protein toxin is purified from the culture medium and its pathogenic activity is studied using the methods of biochemistry and structural biology, cell biology, tissue and organ biology, and appropriate animal models, supplemented by bioimaging techniques. The ongoing and explosive development of high-throughput DNA sequencing and bioinformatic approaches have set in motion a revolution in many fields of biology, including microbiology. One consequence is that genes encoding novel bacterial toxins can be identified by bioinformatic and computational methods based on previous knowledge accumulated from studies of the biology and pathology of thousands of known bacterial protein toxins. Starting from the paradigmatic cases of diphtheria toxin, tetanus and botulinum neurotoxins, this review discusses traditional experimental approaches as well as bioinformatics and genomics-driven approaches that facilitate the discovery of novel bacterial toxins. We discuss recent work on the identification of novel botulinum-like toxins from genera such as Weissella, Chryseobacterium, and Enteroccocus, and the implications of these computationally identified toxins in the field. Finally, we discuss the promise of metagenomics in the discovery of novel toxins and their ecological niches, and present data suggesting the existence of uncharacterized, botulinum-like toxin genes in insect gut metagenomes. Copyright © 2018. Published by Elsevier Ltd.

  13. 77 FR 9888 - Shiga Toxin-Producing Escherichia coli

    Science.gov (United States)

    2012-02-21

    ... Toxin-Producing Escherichia coli in Certain Raw Beef Products AGENCY: Food Safety and Inspection Service... toxin-producing Escherichia coli (STEC) serogroups (O26, O45, O103, O111, O121, and O145). This new date..., that are contaminated with Shiga toxin-producing Escherichia coli (STEC) O26, O45, O103, O111, O121...

  14. Perturbing Tandem Energy Transfer in Luminescent Heterobinuclear Lanthanide Coordination Polymer Nanoparticles Enables Real-Time Monitoring of Release of the Anthrax Biomarker from Bacterial Spores.

    Science.gov (United States)

    Gao, Nan; Zhang, Yunfang; Huang, Pengcheng; Xiang, Zhehao; Wu, Fang-Ying; Mao, Lanqun

    2018-06-05

    Lanthanide-based luminescent sensors have been widely used for the detection of the anthrax biomarker dipicolinic acid (DPA). However, mainly based on DPA sensitization to the lanthanide core, most of them failed to realize robust detection of DPA in bacterial spores. We proposed a new strategy for reliable detection of DPA by perturbing a tandem energy transfer in heterobinuclear lanthanide coordination polymer nanoparticles simply constructed by two kinds of lanthanide ions, Tb 3+ and Eu 3+ , and guanosine 5'-monophosphate. This smart luminescent probe was demonstrated to exhibit highly sensitive and selective visual luminescence color change upon exposure to DPA, enabling accurate detection of DPA in complex biosystems such as bacterial spores. DPA release from bacterial spores on physiological germination was also successfully monitored in real time by confocal imaging. This probe is thus expected to be a powerful tool for efficient detection of bacterial spores in responding to anthrax threats.

  15. T-2 toxin Analysis in Poultry and Cattle Feedstuff.

    Science.gov (United States)

    Gholampour Azizi, Issa; Azarmi, Masumeh; Danesh Pouya, Naser; Rouhi, Samaneh

    2014-05-01

    T-2 toxin is a mycotoxin that is produced by the Fusarium fungi. Consumption of food and feed contaminated with T-2 toxin causes diseases in humans and animals. In this study T-2 toxin was analyzed in poultry and cattle feedstuff in cities of Mazandaran province (Babol, Sari, Chalus), Northern Iran. In this study, 90 samples were analyzed for T-2 toxin contamination by the ELISA method. Out of 60 concentrate and bagasse samples collected from various cities of Mazandaran province, 11.7% and 3.3% were contaminated with T-2 toxin at concentrations > 25 and 50 µg/kg, respectively. For mixed poultry diets, while 10% of the 30 analyzed samples were contaminated with > 25 µg/kg, none of the tested samples contained T-2 toxin at levels > 50 µg/kg. The results obtained from this study show that poultry and cattle feedstuff can be contaminated with different amounts of T-2 toxin in different conditions and locations. Feedstuff that are contaminated by this toxin cause different diseases in animals; thus, potential transfer of mycotoxins to edible by-products from animals fed mycotoxin-contaminated feeds drives the need to routinely monitor mycotoxins in animal feeds and their components. This is the basis on which effective management of mycotoxins and their effects can be implemented.

  16. Pharmacological Cyclophilin Inhibitors Prevent Intoxication of Mammalian Cells with Bordetella pertussis Toxin.

    Science.gov (United States)

    Ernst, Katharina; Eberhardt, Nina; Mittler, Ann-Katrin; Sonnabend, Michael; Anastasia, Anna; Freisinger, Simon; Schiene-Fischer, Cordelia; Malešević, Miroslav; Barth, Holger

    2018-05-01

    The Bordetella pertussis toxin (PT) is one important virulence factor causing the severe childhood disease whooping cough which still accounted for approximately 63,000 deaths worldwide in children in 2013. PT consists of PTS1, the enzymatically active (A) subunit and a non-covalently linked pentameric binding/transport (B) subunit. After endocytosis, PT takes a retrograde route to the endoplasmic reticulum (ER), where PTS1 is released into the cytosol. In the cytosol, PTS1 ADP-ribosylates inhibitory alpha subunits of trimeric GTP-binding proteins (Giα) leading to increased cAMP levels and disturbed signalling. Here, we show that the cyclophilin (Cyp) isoforms CypA and Cyp40 directly interact with PTS1 in vitro and that Cyp inhibitors cyclosporine A (CsA) and its tailored non-immunosuppressive derivative VK112 both inhibit intoxication of CHO-K1 cells with PT, as analysed in a morphology-based assay. Moreover, in cells treated with PT in the presence of CsA, the amount of ADP-ribosylated Giα was significantly reduced and less PTS1 was detected in the cytosol compared to cells treated with PT only. The results suggest that the uptake of PTS1 into the cytosol requires Cyps. Therefore, CsA/VK112 represent promising candidates for novel therapeutic strategies acting on the toxin level to prevent the severe, life-threatening symptoms caused by PT.

  17. Isolation of Shiga toxin-producing Escherichia coli harboring variant Shiga toxin genes from seafood

    Directory of Open Access Journals (Sweden)

    Sreepriya Prakasan

    2018-03-01

    Full Text Available Background and Aim: Shiga toxin-producing Escherichia coli (STEC are important pathogens of global significance. STEC are responsible for numerous food-borne outbreaks worldwide and their presence in food is a potential health hazard. The objective of the present study was to determine the incidence of STEC in fresh seafood in Mumbai, India, and to characterize STEC with respect to their virulence determinants. Materials and Methods: A total of 368 E. coli were isolated from 39 fresh seafood samples (18 finfish and 21 shellfish using culture-based methods. The isolates were screened by polymerase chain reaction (PCR for the genes commonly associated with STEC. The variant Shiga toxin genes were confirmed by Southern blotting and hybridization followed by DNA sequencing. Results: One or more Shiga toxins genes were detected in 61 isolates. Of 39 samples analyzed, 10 (25.64% samples harbored STEC. Other virulence genes, namely, eaeA (coding for an intimin and hlyA (hemolysin A were detected in 43 and 15 seafood isolates, respectively. The variant stx1 genes from 6 isolates were sequenced, five of which were found to be stx1d variants, while one sequence varied considerably from known stx1 sequences. Southern hybridization and DNA sequence analysis suggested putative Shiga toxin variant genes (stx2 in at least 3 other isolates. Conclusion: The results of this study showed the occurrence of STEC in seafood harboring one or more Shiga toxin genes. The detection of STEC by PCR may be hampered due to the presence of variant genes such as the stx1d in STEC. This is the first report of stx1d gene in STEC isolated from Indian seafood.

  18. [Environmental toxins in breast milk].

    Science.gov (United States)

    Bratlid, Dag

    2009-12-17

    Breast milk is very important to ensure infants a well-composed and safe diet during the first year of life. However, the quality of breast milk seems to be affected by an increasing amount of environmental toxins (particularly so-called Persistent, Bioaccumulative Toxins [PBTs]). Many concerns have been raised about the negative effects this may have on infant health. The article is a review of literature (mainly review articles) identified through a non-systematic search in PubMed. The concentration of PBTs in breast milk is mainly caused by man's position as the terminal link in the nutritional chain. Many breast-fed infants have a daily intake of such toxins that exceed limits defined for the population in general. Animal studies demonstrate effects on endocrine function and neurotoxicity in the offspring, and a number of human studies seem to point in the same direction. However the "original" optimal composition of breast milk still seems to protect against long-term effects of such toxicity. There is international consensus about the need to monitor breast milk for the presence of PBTs. Such surveillance will be a good indicator of the population's general exposure to these toxins and may also contribute to identifying groups as risk who should not breast-feed their children for a long time.

  19. Botulinum toxin for treatment of glandular hypersecretory disorders.

    LENUS (Irish Health Repository)

    Laing, T A

    2012-02-03

    SUMMARY: The use of botulinum toxin to treat disorders of the salivary glands is increasing in popularity in recent years. Recent reports of the use of botulinum toxin in glandular hypersecretion suggest overall favourable results with minimal side-effects. However, few randomised clinical trials means that data are limited with respect to candidate suitability, treatment dosages, frequency and duration of treatment. We report a selection of such cases from our own department managed with botulinum toxin and review the current data on use of the toxin to treat salivary gland disorders such as Frey\\'s syndrome, excessive salivation (sialorrhoea), focal and general hyperhidrosis, excessive lacrimation and chronic rhinitis.

  20. Characterization of a Toxin A-Negative, Toxin B-Positive Strain of Clostridium difficile Responsible for a Nosocomial Outbreak of Clostridium difficile-Associated Diarrhea

    Science.gov (United States)

    Alfa, Michelle J.; Kabani, Amin; Lyerly, David; Moncrief, Scott; Neville, Laurie M.; Al-Barrak, Ali; Harding, Godfrey K. H.; Dyck, Brenda; Olekson, Karen; Embil, John M.

    2000-01-01

    Clostridium difficile-associated diarrhea (CAD) is a very common nosocomial infection that contributes significantly to patient morbidity and mortality as well as to the cost of hospitalization. Previously, strains of toxin A-negative, toxin B-positive C. difficile were not thought to be associated with clinically significant disease. This study reports the characterization of a toxin A-negative, toxin B-positive strain of C. difficile that was responsible for a recently described nosocomial outbreak of CAD. Analysis of the seven patient isolates from the outbreak by pulsed-field gel electrophoresis indicated that this outbreak was due to transmission of a single strain of C. difficile. Our characterization of this strain (HSC98) has demonstrated that the toxin A gene lacks 1.8 kb from the carboxy repetitive oligopeptide (CROP) region but apparently has no other major deletions from other regions of the toxin A or toxin B gene. The remaining 1.3-kb fragment of the toxin A CROP region from strain HSC98 showed 98% sequence homology with strain 1470, previously reported by M. Weidmann in 1997 (GenBank accession number Y12616), suggesting that HSC98 is toxinotype VIII. The HSC98 strain infecting patients involved in this outbreak produced the full spectrum of clinical illness usually associated with C. difficile-associated disease. This pathogenic spectrum was manifest despite the inability of this strain to alter tight junctions as determined by using in vitro tissue culture testing, which suggested that no functional toxin A was produced by this strain. PMID:10878068

  1. [Botulinum toxin: An important complement for facial rejuvenation surgery].

    Science.gov (United States)

    Le Louarn, C

    2017-10-01

    The improved understanding of the functional anatomy of the face and of the action of the botulinum toxin A leads us to determine a new injection procedure which consequently decreases the risk of eyebrow and eyelid ptosis and increases the toxin's injection possibilities and efficiencies. With less units of toxin, the technique herein described proposes to be more efficient on more muscles: variable toxin injections concentration adapted to each injected muscle are used. Thanks to a new procedure in the upper face, toxin A injection can be quite close to an endoscopic surgical action. In addition, interesting results are achievable to rejuvenate the lateral canthus with injection on the upper lateral tarsus, to rejuvenate the nose with injection at the alar base, the jawline and the neck region. Lastly, a smoothing effect on the skin (meso botox) is obtained by the anticholinergic action of the toxin A on the dermal receptors. Copyright © 2017. Published by Elsevier Masson SAS.

  2. AB toxins: a paradigm switch from deadly to desirable.

    Science.gov (United States)

    Odumosu, Oludare; Nicholas, Dequina; Yano, Hiroshi; Langridge, William

    2010-07-01

    To ensure their survival, a number of bacterial and plant species have evolved a common strategy to capture energy from other biological systems. Being imperfect pathogens, organisms synthesizing multi-subunit AB toxins are responsible for the mortality of millions of people and animals annually. Vaccination against these organisms and their toxins has proved rather ineffective in providing long-term protection from disease. In response to the debilitating effects of AB toxins on epithelial cells of the digestive mucosa, mechanisms underlying toxin immunomodulation of immune responses have become the focus of increasing experimentation. The results of these studies reveal that AB toxins may have a beneficial application as adjuvants for the enhancement of immune protection against infection and autoimmunity. Here, we examine similarities and differences in the structure and function of bacterial and plant AB toxins that underlie their toxicity and their exceptional properties as immunomodulators for stimulating immune responses against infectious disease and for immune suppression of organ-specific autoimmunity.

  3. AB Toxins: A Paradigm Switch from Deadly to Desirable

    Directory of Open Access Journals (Sweden)

    Oludare Odumosu

    2010-06-01

    Full Text Available To ensure their survival, a number of bacterial and plant species have evolved a common strategy to capture energy from other biological systems. Being imperfect pathogens, organisms synthesizing multi-subunit AB toxins are responsible for the mortality of millions of people and animals annually. Vaccination against these organisms and their toxins has proved rather ineffective in providing long-term protection from disease. In response to the debilitating effects of AB toxins on epithelial cells of the digestive mucosa, mechanisms underlying toxin immunomodulation of immune responses have become the focus of increasing experimentation. The results of these studies reveal that AB toxins may have a beneficial application as adjuvants for the enhancement of immune protection against infection and autoimmunity. Here, we examine similarities and differences in the structure and function of bacterial and plant AB toxins that underlie their toxicity and their exceptional properties as immunomodulators for stimulating immune responses against infectious disease and for immune suppression of organ-specific autoimmunity.

  4. Botulinum toxin A for the Treatment of Overactive Bladder.

    Science.gov (United States)

    Hsieh, Po-Fan; Chiu, Hung-Chieh; Chen, Kuan-Chieh; Chang, Chao-Hsiang; Chou, Eric Chieh-Lung

    2016-02-29

    The standard treatment for overactive bladder starts with patient education and behavior therapies, followed by antimuscarinic agents. For patients with urgency urinary incontinence refractory to antimuscarinic therapy, currently both American Urological Association (AUA) and European Association of Urology (EAU) guidelines suggested that intravesical injection of botulinum toxin A should be offered. The mechanism of botulinum toxin A includes inhibition of vesicular release of neurotransmitters and the axonal expression of capsaicin and purinergic receptors in the suburothelium, as well as attenuation of central sensitization. Multiple randomized, placebo-controlled trials demonstrated that botulinum toxin A to be an effective treatment for patients with refractory idiopathic or neurogenic detrusor overactivity. The urinary incontinence episodes, maximum cystometric capacity, and maximum detrusor pressure were improved greater by botulinum toxin A compared to placebo. The adverse effects of botulinum toxin A, such as urinary retention and urinary tract infection, were primarily localized to the lower urinary tract. Therefore, botulinum toxin A offers an effective treatment option for patients with refractory overactive bladder.

  5. Toxins and antimicrobial peptides: interactions with membranes

    Science.gov (United States)

    Schlamadinger, Diana E.; Gable, Jonathan E.; Kim, Judy E.

    2009-08-01

    The innate immunity to pathogenic invasion of organisms in the plant and animal kingdoms relies upon cationic antimicrobial peptides (AMPs) as the first line of defense. In addition to these natural peptide antibiotics, similar cationic peptides, such as the bee venom toxin melittin, act as nonspecific toxins. Molecular details of AMP and peptide toxin action are not known, but the universal function of these peptides to disrupt cell membranes of pathogenic bacteria (AMPs) or a diverse set of eukaryotes and prokaryotes (melittin) is widely accepted. Here, we have utilized spectroscopic techniques to elucidate peptide-membrane interactions of alpha-helical human and mouse AMPs of the cathelicidin family as well as the peptide toxin melittin. The activity of these natural peptides and their engineered analogs was studied on eukaryotic and prokaryotic membrane mimics consisting of resistant pathogens.

  6. Botulinum toxin type a for chronic migraine.

    Science.gov (United States)

    Ashkenazi, Avi

    2010-03-01

    Chronic migraine (CM) is the leading cause of chronic daily headache, a common and debilitating headache syndrome. The management of CM patients is challenging, with only limited benefit from available oral preventive medications. Botulinum neurotoxin (BoNT) has been used extensively to treat disorders associated with increased muscle tone. More recent scientific data support an analgesic effect of the toxin. The pharmacokinetic and pharmacodynamic profiles of BoNT make it an appealing candidate for migraine prevention. Results from older clinical trials on the efficacy of the toxin in CM were inconclusive. However, recent trials using more stringent inclusion criteria have shown positive results, supporting the use of the toxin in some patients with this disorder. This review summarizes the scientific data on the analgesic properties of BoNT, as well as the clinical data on the efficacy of the toxin in treating CM.

  7. Stealth and mimicry by deadly bacterial toxins

    DEFF Research Database (Denmark)

    Yates, S.P.; Jørgensen, Rene; Andersen, Gregers Rom

    2006-01-01

    Diphtheria toxin and exotoxin A are well-characterized members of the ADP-ribosyltransferase toxin family that serve as virulence factors in the pathogenic bacteria, Corynebacterium diphtheriae and Pseudomonas aeruginosa.  New high-resolution structural data of the Michaelis complex...

  8. Naturally acquired antibodies to Bacillus anthracis protective antigen in vultures of southern Africa

    Directory of Open Access Journals (Sweden)

    P. C.B. Turnbull

    2008-08-01

    Full Text Available TURNBULLP, P.C.B. DIEKMANNM,M., KILIAN, J.W., VERSFELDW, W.,DE VOS, V., ARNTZENL, L.,WOLTER, K., BARTELS, P. & KOTZE, A. 2008.N aturally acquired antibodies to Bacillusa nthracisp rotective antigeni n vultureso f southern Africa. Onderstepoort Journal of Veterinary Research, T5:95-102 Sera from 19 wild caught vultures in northern Namibia and 15 (12 wild caught and three captive bred but with minimal histories in North West Province, South Africa, were examined by an enzyme-linked immunosorbenats say( ELISAf or antibodiesto the Bacillus anthracis toxin protective antigen (PA. As assessed from the baseline established with a control group of ten captive reared vultures with well-documented histories, elevated titres were found in 12 of the 19 (63% wild caught Namibian birds as compared with none of the 15 South African ones. There was a highly significant difference between the Namibian group as a hole and the other groups (P 0.05. Numbers in the Namibian group were too small to determine any significances in species-, sex- or age-related differences within the raw data showing elevated titres in four out of six Cape Vultures, Gyps coprotheress, six out of ten Whitebacked Vultures, Gyps africanus, and one out of three Lappet-faced Vultures, Aegypiust racheliotus, or in five of six males versus three of seven females, and ten of 15 adults versus one of four juveniles. The results are in line with the available data on the incidence of anthrax in northern Namibia and South Africa and the likely contact of the vultures tested with anthrax carcasses. lt is not known whether elevated titre indicates infection per se in vultures or absorption of incompletely digested epitopes of the toxin or both. The results are discussed in relation to distances travelled by vultures as determined by new tracking techniques, how serology can reveal anthrax activity in an area and the issue of the role of vultures in transmission of anthrax.

  9. Solid-phase synthesis of polyamine toxin analogues

    DEFF Research Database (Denmark)

    Kromann, Hasse; Krikstolaityte, Sonata; Andersen, Anne J

    2002-01-01

    The wasp toxin philanthotoxin-433 (PhTX-433) is a nonselective and noncompetitive antagonist of ionotropic receptors, such as ionotropic glutamate receptors and nicotinic acetylcholine receptors. Polyamine toxins are extensively used for the characterization of subtypes of ionotropic glutamate re...

  10. Cnidarian Toxins Acting on Voltage-Gated Ion Channels

    Directory of Open Access Journals (Sweden)

    Robert M. Greenberg

    2006-04-01

    Full Text Available Abstract: Voltage-gated ion channels generate electrical activity in excitable cells. As such, they are essential components of neuromuscular and neuronal systems, and are targeted by toxins from a wide variety of phyla, including the cnidarians. Here, we review cnidarian toxins known to target voltage-gated ion channels, the specific channel types targeted, and, where known, the sites of action of cnidarian toxins on different channels.

  11. Dysport: pharmacological properties and factors that influence toxin action.

    Science.gov (United States)

    Pickett, Andy

    2009-10-01

    The pharmacological properties of Dysport that influence toxin action are reviewed and compared with other botulinum toxin products. In particular, the subject of diffusion is examined and discussed based upon the evidence that currently exists, both from laboratory studies and from clinical data. Diffusion of botulinum toxin products is not related to the size of the toxin complex in the product since the complex dissociates under physiological conditions, releasing the naked neurotoxin to act. The active neurotoxin in Type A products is the same and therefore diffusion is equal when equal doses are administered.

  12. Emergence of Escherichia coli encoding Shiga toxin 2f in human Shiga toxin-producing E-coli (STEC) infections in the Netherlands, January 2008 to December 2011

    NARCIS (Netherlands)

    Friesema, I.; van der Zwaluw, K.; Schuurman, T.; Kooistra-Smid, M.; Franz, E.; van Duynhoven, Y.; van Pelt, W.

    2014-01-01

    The Shiga toxins of Shiga toxin-producing Escherichia coli (STEC) can be divided into Shiga toxin 1 (Stx1) and Shiga toxin 2 (Stx2) with several sub-variants. Variant Stx(2f) is one of the latest described, but has been rarely associated with symptomatic human infections. In the enhanced STEC

  13. Comparison of anorectic potencies of the trichothecenes T-2 toxin, HT-2 toxin and satratoxin G to the ipecac alkaloid emetine

    Directory of Open Access Journals (Sweden)

    Wenda Wu

    2015-01-01

    Full Text Available Trichothecene mycotoxins, potent translational inhibitors that are associated with human food poisonings and damp-building illnesses, are of considerable concern to animal and human health. Food refusal is a hallmark of exposure of experimental animals to deoxynivalenol (DON and other Type B trichothecenes but less is known about the anorectic effects of foodborne Type A trichothecenes (e.g., T-2 toxin, HT-2 toxin, airborne Type D trichothecenes (e.g., satratoxin G [SG] or functionally analogous metabolites that impair protein synthesis. Here, we utilized a well-described mouse model of food intake to compare the anorectic potencies of T-2 toxin, HT-2 toxin, and SG to that of emetine, a medicinal alkaloid derived from ipecac that inhibits translation. Intraperitoneal (IP administration with T-2 toxin, HT-2 toxin, emetine and SG evoked anorectic responses that occurred within 0.5 h that lasted up to 96, 96, 3 and 96 h, respectively, with lowest observed adverse effect levels (LOAELs being 0.1, 0.1, 2.5 and 0.25 mg/kg BW, respectively. When delivered via natural routes of exposure, T-2 toxin, HT-2 toxin, emetine (oral and SG (intranasal induced anorectic responses that lasted up to 48, 48, 3 and 6 h, respectively with LOAELs being 0.1, 0.1, 0.25, and 0.5 mg/kg BW, respectively. All four compounds were generally much more potent than DON which was previously observed to have LOAELs of 1 and 2.5 mg/kg BW after IP and oral dosing, respectively. Taken together, these anorectic potency data will be valuable in discerning the relative risks from trichothecenes and other translational inhibitors of natural origin.

  14. How Parkinsonian Toxins Dysregulate the Autophagy Machinery

    Directory of Open Access Journals (Sweden)

    Ruben K. Dagda

    2013-11-01

    Full Text Available Since their discovery, Parkinsonian toxins (6-hydroxydopamine, MPP+, paraquat, and rotenone have been widely employed as in vivo and in vitro chemical models of Parkinson’s disease (PD. Alterations in mitochondrial homeostasis, protein quality control pathways, and more recently, autophagy/mitophagy have been implicated in neurotoxin models of PD. Here, we highlight the molecular mechanisms by which different PD toxins dysregulate autophagy/mitophagy and how alterations of these pathways play beneficial or detrimental roles in dopamine neurons. The convergent and divergent effects of PD toxins on mitochondrial function and autophagy/mitophagy are also discussed in this review. Furthermore, we propose new diagnostic tools and discuss how pharmacological modulators of autophagy/mitophagy can be developed as disease-modifying treatments for PD. Finally, we discuss the critical need to identify endogenous and synthetic forms of PD toxins and develop efficient health preventive programs to mitigate the risk of developing PD.

  15. ACTION OF DIPHTHERIA TOXIN IN THE GUINEA PIG

    Science.gov (United States)

    Baseman, Joel B.; Pappenheimer, A. M.; Gill, D. M.; Harper, Annabel A.

    1970-01-01

    The blood clearance and distribution in the tissues of 125I after intravenous injection of small doses (1.5–5 MLD or 0.08–0.25 µg) of 125I-labeled diphtheria toxin has been followed in guinea pigs and rabbits and compared with the fate of equivalent amounts of injected 125I-labeled toxoid and bovine serum albumin. Toxoid disappeared most rapidly from the blood stream and label accumulated and was retained in liver, spleen, and especially in kidney. Both toxin and BSA behaved differently. Label was found widely distributed among all the organs except the nervous system and its rate of disappearance from the tissues paralleled its disappearance from the circulation. There was no evidence for any particular affinity of toxin for muscle tissue or for a "target" organ. Previous reports by others that toxin causes specific and selective impairment of protein synthesis in muscle tissue were not confirmed. On the contrary, both in guinea pigs and rabbits, a reduced rate of protein synthesis was observed in all tissues that had taken up the toxin label. In tissues removed from intoxicated animals of both species there was an associated reduction in aminoacyl transferase 2 content. It is concluded that the primary action of diphtheria toxin in the living animal is to effect the inactivation of aminoacyl transferase 2. The resulting inhibition in rate of protein synthesis leads to morphologic damage in all tissues reached by the toxin and ultimately to death of the animal. PMID:5511567

  16. Comparison of T-2 Toxin and HT-2 Toxin Distributed in the Skeletal System with That in Other Tissues of Rats by Acute Toxicity Test.

    Science.gov (United States)

    Yu, Fang Fang; Lin, Xia Lu; Yang, Lei; Liu, Huan; Wang, Xi; Fang, Hua; Lammi, ZMikko J; Guo, Xiong

    2017-11-01

    Twelve healthy rats were divided into the T-2 toxin group receiving gavage of 1 mg/kg T-2 toxin and the control group receiving gavage of normal saline. Total relative concentrations of T-2 toxin and HT-2 toxin in the skeletal system (thighbone, knee joints, and costal cartilage) were significantly higher than those in the heart, liver, and kidneys (P skeletal system (thighbone and costal cartilage) were also significantly higher than those in the heart, liver, and kidneys. The rats administered T-2 toxin showed rapid metabolism compared with that in rats administered HT-2 toxin, and the metabolic conversion rates in the different tissues were 68.20%-90.70%. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  17. The Medicinal Chemistry of Botulinum, Ricin and Anthrax Toxins

    Science.gov (United States)

    2005-01-01

    workers 68 reported that the natural peptide determined that upon complexation with BABIM, the active buforin I, isolated From the stomach of the...active site by the BABIM and is then concentrations. Buforin I consists of 39 amino acid residues, transported to another region of the protein. The IC50...cleavage site [79]. Similar analysis of buforin I S, subsite of BoNT/B that recognizes the Glu [76] residue suggest that it exists as a helix-turn

  18. Crystal structure of Clostridium difficile toxin A

    Energy Technology Data Exchange (ETDEWEB)

    Chumbler, Nicole M.; Rutherford, Stacey A.; Zhang, Zhifen; Farrow, Melissa A.; Lisher, John P.; Farquhar, Erik; Giedroc, David P.; Spiller, Benjamin W.; Melnyk, Roman A.; Lacy, D. Borden

    2016-01-11

    Clostridium difficile infection is the leading cause of hospital-acquired diarrhoea and pseudomembranous colitis. Disease is mediated by the actions of two toxins, TcdA and TcdB, which cause the diarrhoea, as well as inflammation and necrosis within the colon. The toxins are large (308 and 270 kDa, respectively), homologous (47% amino acid identity) glucosyltransferases that target small GTPases within the host. The multidomain toxins enter cells by receptor-mediated endocytosis and, upon exposure to the low pH of the endosome, insert into and deliver two enzymatic domains across the membrane. Eukaryotic inositol-hexakisphosphate (InsP6) binds an autoprocessing domain to activate a proteolysis event that releases the N-terminal glucosyltransferase domain into the cytosol. Here, we report the crystal structure of a 1,832-amino-acid fragment of TcdA (TcdA1832), which reveals a requirement for zinc in the mechanism of toxin autoprocessing and an extended delivery domain that serves as a scaffold for the hydrophobic α-helices involved in pH-dependent pore formation. A surface loop of the delivery domain whose sequence is strictly conserved among all large clostridial toxins is shown to be functionally important, and is highlighted for future efforts in the development of vaccines and novel therapeutics.

  19. Botulinum Toxin and Muscle Atrophy: A Wanted or Unwanted Effect.

    Science.gov (United States)

    Durand, Paul D; Couto, Rafael A; Isakov, Raymond; Yoo, Donald B; Azizzadeh, Babak; Guyuron, Bahman; Zins, James E

    2016-04-01

    While the facial rejuvenating effect of botulinum toxin type A is well known and widespread, its use in body and facial contouring is less common. We first describe its use for deliberate muscle volume reduction, and then document instances of unanticipated and undesirable muscle atrophy. Finally, we investigate the potential long-term adverse effects of botulinum toxin-induced muscle atrophy. Although the use of botulinum toxin type A in the cosmetic patient has been extensively studied, there are several questions yet to be addressed. Does prolonged botulinum toxin treatment increase its duration of action? What is the mechanism of muscle atrophy and what is the cause of its reversibility once treatment has stopped? We proceed to examine how prolonged chemodenervation with botulinum toxin can increase its duration of effect and potentially contribute to muscle atrophy. Instances of inadvertent botulinum toxin-induced atrophy are also described. These include the "hourglass deformity" secondary to botulinum toxin type A treatment for migraine headaches, and a patient with atrophy of multiple facial muscles from injections for hemifacial spasm. Numerous reports demonstrate that muscle atrophy after botulinum toxin type A treatment occurs and is both reversible and temporary, with current literature supporting the notion that repeated chemodenervation with botulinum toxin likely responsible for both therapeutic and incidental temporary muscle atrophy. Furthermore, duration of response may be increased with subsequent treatments, thus minimizing frequency of reinjection. Practitioners should be aware of the temporary and reversible effect of botulinum toxin-induced muscle atrophy and be prepared to reassure patients on this matter. © 2016 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com.

  20. Oxidative Stress in Shiga Toxin Production by Enterohemorrhagic Escherichia coli

    Directory of Open Access Journals (Sweden)

    Katarzyna Licznerska

    2016-01-01

    Full Text Available Virulence of enterohemorrhagic Escherichia coli (EHEC strains depends on production of Shiga toxins. These toxins are encoded in genomes of lambdoid bacteriophages (Shiga toxin-converting phages, present in EHEC cells as prophages. The genes coding for Shiga toxins are silent in lysogenic bacteria, and prophage induction is necessary for their efficient expression and toxin production. Under laboratory conditions, treatment with UV light or antibiotics interfering with DNA replication are commonly used to induce lambdoid prophages. Since such conditions are unlikely to occur in human intestine, various research groups searched for other factors or agents that might induce Shiga toxin-converting prophages. Among other conditions, it was reported that treatment with H2O2 caused induction of these prophages, though with efficiency significantly lower relative to UV-irradiation or mitomycin C treatment. A molecular mechanism of this phenomenon has been proposed. It appears that the oxidative stress represents natural conditions provoking induction of Shiga toxin-converting prophages as a consequence of H2O2 excretion by either neutrophils in infected humans or protist predators outside human body. Finally, the recently proposed biological role of Shiga toxin production is described in this paper, and the “bacterial altruism” and “Trojan Horse” hypotheses, which are connected to the oxidative stress, are discussed.

  1. Botulinum Toxin in Neurogenic Detrusor Overactivity

    Directory of Open Access Journals (Sweden)

    Carlos Arturo Levi D'Ancona

    2012-09-01

    Full Text Available Purpose To evaluate the effects of botulinum toxin on urodynamic parameters and quality of life in patients with neurogenic detrusor overactivity. Methods Thirty four adult patients with spinal cord injury and detrusor overactivity were selected. The patients received 300 units of botulinum toxin type A. The endpoints evaluated with the episodes of urinary incontinence and measured the maximum cystometric capacity, maximum amplitude of detrusor pressure and bladder compliance at the beginning and end of the study (24 weeks and evaluated the quality of life by applying the Qualiveen questionnaire. Results A significant decrease in the episodes of urinary incontinence was observed. All urodynamic parameters presented a significant improvement. The same was observed in the quality of life index and the specific impact of urinary problems scores from the Qualiveen questionnaire. Six patients did not complete the study, two due to incomplete follow-up, and four violated protocol and were excluded from the analyses. No systemic adverse events of botulinum toxin type A were reported. Conclusions A botulinum toxin type A showed a significantly improved response in urodynamics parameters and specific and general quality of life.

  2. Rapid assessment of agents of biological terrorism: defining the differential diagnosis of inhalational anthrax using electronic communication in a practice-based research network.

    Science.gov (United States)

    Temte, Jonathan L; Anderson, Anna Lisa

    2004-01-01

    Early detection of bioterrorism requires assessment of diagnoses assigned to cases of rare diseases with which clinicians have little experience. In this study, we evaluated the process of defining the differential diagnosis for inhalational anthrax using electronic communication within a practice-based research network (PBRN) and compared the results with those obtained from a nationwide random sample of family physicians with a mailed instrument. We distributed survey instruments by e-mail to 55 physician members of the Wisconsin Research Network (WReN), a regional PBRN. The instruments consisted of 3 case vignettes randomly drawn from a set describing 11 patients with inhalational anthrax, 2 with influenza A, and 1 with Legionella pneumonia. Physicians provided their most likely nonanthrax diagnosis, along with their responses to 4 yes-or-no management questions for each case. Physicians who had not responded at 1 week received a second e-mail with the survey instrument. The comparison group consisted of the nationwide sample of physicians who completed mailed survey instruments. Primary outcome measures were response rate, median response time, and frequencies of diagnostic categories assigned to cases of inhalational anthrax. The PBRN response rate compared favorably with that of the national sample (47.3% vs 37.0%; P = not significant). The median response time for the PBRN was significantly shorter than that for the national sample (2 vs 28 days; P < .001). No significant differences were found between the PBRN and the Midwest subset of the national sample in the frequencies of major diagnostic categories or in case management. Electronic means of creating differential diagnoses for rare infectious diseases of national significance is feasible within PBRNs. Information is much more rapidly acquired and is consistent with that obtained by conventional methods.

  3. Bacterial toxin-antitoxin systems: more than selfish entities?

    OpenAIRE

    Laurence Van Melderen; Manuel Saavedra De Bast

    2009-01-01

    Bacterial toxin?antitoxin (TA) systems are diverse and widespread in the prokaryotic kingdom. They are composed of closely linked genes encoding a stable toxin that can harm the host cell and its cognate labile antitoxin, which protects the host from the toxin's deleterious effect. TA systems are thought to invade bacterial genomes through horizontal gene transfer. Some TA systems might behave as selfish elements and favour their own maintenance at the expense of their host. As a consequence,...

  4. Gene therapy for carcinoma of the breast: Genetic toxins

    International Nuclear Information System (INIS)

    Vassaux, Georges; Lemoine, Nick R

    2000-01-01

    Gene therapy was initially envisaged as a potential treatment for genetically inherited, monogenic disorders. The applications of gene therapy have now become wider, however, and include cardiovascular diseases, vaccination and cancers in which conventional therapies have failed. With regard to oncology, various gene therapy approaches have been developed. Among them, the use of genetic toxins to kill cancer cells selectively is emerging. Two different types of genetic toxins have been developed so far: the metabolic toxins and the dominant-negative class of toxins. This review describes these two different approaches, and discusses their potential applications in cancer gene therapy

  5. Modification of opiate agonist binding by pertussis toxin

    Energy Technology Data Exchange (ETDEWEB)

    Abood, M.E.; Lee, N.M.; Loh, H.H.

    1986-03-05

    Opiate agonist binding is decreased by GTP, suggesting the possible involvement of GTP binding proteins in regulation of opiate receptor binding. This possibility was addressed by asking whether pertussis toxin treatment, which results in ADP-ribosylation and modification of G proteins, would alter opiate agonist binding. The striatum was chosen for the initial brain area to be studied, since regulation of opiate action in this area had been shown to be modified by pertussis toxin. Treatment of striatal membranes with pertussis toxin results in up to a 55% decrease in /sup 3/(H)-DADLE binding as compared with membranes treated identically without toxin. This corresponds to a near complete ADP-ribosylation of both G proteins in the striatal membrane. The decrease in agonist binding appears to be due to an altered affinity of the receptor for agonist as opposed to a decrease in the number of sites. This effect of pertussis toxin on opiate agonist binding demonstrates the actual involvement of G proteins in regulation of opiate receptor binding.

  6. Modification of opiate agonist binding by pertussis toxin

    International Nuclear Information System (INIS)

    Abood, M.E.; Lee, N.M.; Loh, H.H.

    1986-01-01

    Opiate agonist binding is decreased by GTP, suggesting the possible involvement of GTP binding proteins in regulation of opiate receptor binding. This possibility was addressed by asking whether pertussis toxin treatment, which results in ADP-ribosylation and modification of G proteins, would alter opiate agonist binding. The striatum was chosen for the initial brain area to be studied, since regulation of opiate action in this area had been shown to be modified by pertussis toxin. Treatment of striatal membranes with pertussis toxin results in up to a 55% decrease in 3 (H)-DADLE binding as compared with membranes treated identically without toxin. This corresponds to a near complete ADP-ribosylation of both G proteins in the striatal membrane. The decrease in agonist binding appears to be due to an altered affinity of the receptor for agonist as opposed to a decrease in the number of sites. This effect of pertussis toxin on opiate agonist binding demonstrates the actual involvement of G proteins in regulation of opiate receptor binding

  7. ADP-ribosylation of transducin by pertussis toxin

    International Nuclear Information System (INIS)

    Watkins, P.A.; Burns, D.L.; Kanaho, Y.; Liu, T.Y.; Hewlett, E.L.; Moss, J.

    1985-01-01

    Transducin, the guanyl nucleotide-binding regulatory protein of retinal rod outer segments that couples the photon receptor, rhodopsin, with the light-activated cGMP phosphodiesterase, can be resolved into two functional components, T alpha and T beta gamma. T alpha (39 kDa), which is [ 32 P]ADP-ribosylated by pertussis toxin and [ 32 P]NAD in rod outer segments and in purified transducin, was also labeled by the toxin after separation from T beta gamma (36 kDa and approximately 10 kDa); neither component of T beta gamma was a pertussis toxin substrate. Labeling of T alpha was enhanced by T beta gamma and was maximal at approximately 1:1 molar ratio of T alpha : T beta gamma. Limited proteolysis by trypsin of T alpha in the presence of guanyl-5'-yl imidodiphosphate (Gpp(NH)p) resulted in the sequential appearance of proteins of 38 and 32 kDa. The amino terminus of both 38- and 32 -kDa proteins was leucine, whereas that of T alpha could not be identified and was assumed to be blocked. The 32 -kDa peptide was not a pertussis toxin substrate. Labeling of the 38-kDa protein was poor and was not enhanced by T beta gamma. Trypsin treatment of [ 32 P]ADP-ribosyl-T alpha produced a labeled 37-38-kDa doublet followed by appearance of radioactivity at the dye front. It appears, therefore, that, although the 38-kDa protein was poor toxin substrate, it contained the ADP-ribosylation site. Without rhodopsin, labeling of T alpha (in the presence of T beta gamma) was unaffected by Gpp(NH)p, guanosine 5'-O-(thiotriphosphate) (GTP gamma S), GTP, GDP, and guanosine 5'-O-(thiodiphosphate) (GDP beta S) but was increased by ATP. When photolyzed rhodopsin and T beta gamma were present, Gpp(NH)p and GTP gamma S decreased [ 32 P]ADP-ribosylation by pertussis toxin. Thus, pertussis toxin-catalyzed [ 32 P]ADP-ribosylation of T alpha was affected by nucleotides, rhodopsin and light in addition to T beta gamma

  8. Marine toxins and their toxicological significance: An overview

    Digital Repository Service at National Institute of Oceanography (India)

    Sarkar, A.

    , Hemolysins-1 and hemolysin-2, saxitoxin, neosaxitoxin, gonyautoxin, tetrodotoxin, ptychodiscus brevis toxin and theonellamide F. According to their mode of action, these toxins are classified into different categories such as cytotoxin, enterotoxin...

  9. Toxin synergism in snake venoms

    DEFF Research Database (Denmark)

    Laustsen, Andreas Hougaard

    2016-01-01

    Synergism between venom toxins exists for a range of snake species. Synergism can be derived from both intermolecular interactions and supramolecular interactions between venom components, and can be the result of toxins targeting the same protein, biochemical pathway or physiological process. Few...... simple systematic tools and methods for determining the presence of synergism exist, but include co-administration of venom components and assessment of Accumulated Toxicity Scores. A better understanding of how to investigate synergism in snake venoms may help unravel strategies for developing novel...

  10. Sverdlovsk Anthrax Outbreak: An Educational Case Study

    Science.gov (United States)

    Steele, S. J.; van der Vink, G.

    2002-05-01

    In April and May of 1979 an Anthrax epidemic broke out in the city of Sverdlovsk (now Ekaterinburg) in the former Soviet Union. Sixty-four people were reported to have died from the outbreak, although there is still debate concerning the actual number of victims. While Soviet officials initially attributed this outbreak to contaminated meat, the US Government maintained that the outbreak was due to a leakage from a biological weapons facility. We have created and implemented an undergraduate educational exercise based on the forensic analysis of this event. Students were provided case data of the victims, area satellite images and meteorological data. One goal of the exercise was for students to reconstruct the most probable scenario of events through valid inference based on the limited information and uncertainties associated with the data set. Another goal was to make students sensitive to issues of biological weapons and bioterrorism. The exercise was highly rated by students even before the events of September 11. There is a clear need to educate students, particularly in the sciences, to be aware of the signatures of terrorist activities. Evidence of terrorist activities is more likely to appear from unintended discoveries than from active intelligence gathering. We believe our national security can be enhanced by sensitizing those that monitor the natural environment to the signatures of terrorist activities through the types of educational exercises that we have developed.

  11. Multiagent vaccines vectored by Venezuelan equine encephalitis virus replicon elicits immune responses to Marburg virus and protection against anthrax and botulinum neurotoxin in mice.

    Science.gov (United States)

    Lee, John S; Groebner, Jennifer L; Hadjipanayis, Angela G; Negley, Diane L; Schmaljohn, Alan L; Welkos, Susan L; Smith, Leonard A; Smith, Jonathan F

    2006-11-17

    The development of multiagent vaccines offers the advantage of eliciting protection against multiple diseases with minimal inoculations over a shorter time span. We report here the results of using formulations of individual Venezuelan equine encephalitis (VEE) virus replicon-vectored vaccines against a bacterial disease, anthrax; a viral disease, Marburg fever; and against a toxin-mediated disease, botulism. The individual VEE replicon particles (VRP) expressed mature 83-kDa protective antigen (MAT-PA) from Bacillus anthracis, the glycoprotein (GP) from Marburg virus (MBGV), or the H(C) fragment from botulinum neurotoxin (BoNT H(C)). CBA/J mice inoculated with a mixture of VRP expressing BoNT H(C) serotype C (BoNT/C H(C)) and MAT-PA were 80% protected from a B. anthracis (Sterne strain) challenge and then 100% protected from a sequential BoNT/C challenge. Swiss mice inoculated with individual VRP or with mixtures of VRP vaccines expressing BoNT H(C) serotype A (BoNT/A H(C)), MAT-PA, and MBGV-GP produced antibody responses specific to the corresponding replicon-expressed protein. Combination of the different VRP vaccines did not diminish the antibody responses measured for Swiss mice inoculated with formulations of two or three VRP vaccines as compared to mice that received only one VRP vaccine. Swiss mice inoculated with VRP expressing BoNT/A H(C) alone or in combination with VRP expressing MAT-PA and MBGV GP, were completely protected from a BoNT/A challenge. These studies demonstrate the utility of combining individual VRP vaccines into multiagent formulations for eliciting protective immune responses to various types of diseases.

  12. Passive vaccination with a human monoclonal antibody: generation of antibodies and studies for efficacy in Bacillus anthracis infections.

    Science.gov (United States)

    vor dem Esche, Ulrich; Huber, Maria; Zgaga-Griesz, Andrea; Grunow, Roland; Beyer, Wolfgang; Hahn, Ulrike; Bessler, Wolfgang G

    2011-07-01

    A major difficulty in creating human monoclonal antibodies is the lack of a suitable myeloma cell line to be used for fusion experiments. In order to create fully human monoclonal antibodies for passive immunization, the human mouse heteromyeloma cell line CB-F7 was evaluated. Using this cell line, we generated human monoclonal antibodies against Bacillus anthracis toxin components. Antibodies against protective antigen (PA) and against lethal factor (LF) were obtained using peripheral blood lymphocytes (PBLs) from persons vaccinated with the UK anthrax vaccine. PBL were fused with the cell line CB-F7. We obtained several clones producing PA specific Ig and one clone (hLF1-SAN) producing a monoclonal antibody (hLF1) directed against LF. The LF binding antibody was able to neutralize Anthrax toxin activity in an in vitro neutralization assay, and preliminary in vivo studies in mice also indicated a trend towards protection. We mapped the epitope of the antibody binding to LF by dot blot analysis and ELIFA using 80 synthetic LF peptides of 20 amino acid lengths with an overlapping range of 10 amino acids. Our results suggest the binding of the monoclonal antibody to the peptide regions 121-150 or 451-470 of LF. The Fab-fragment of the antibody hLF1 was cloned in Escherichia coli and could be useful as part of a fully human monoclonal antibody for the treatment of Anthrax infections. In general, our studies show the applicability of the CB-F7 line to create fully human monoclonal antibodies for vaccination. Copyright © 2010 Elsevier GmbH. All rights reserved.

  13. Mass Spectrometric Identification and Differentiation of Botulinum Neurotoxins through Toxin Proteomics.

    Science.gov (United States)

    Kalb, Suzanne R; Barr, John R

    2013-08-01

    Botulinum neurotoxins (BoNTs) cause the disease botulism, which can be lethal if untreated. There are seven known serotypes of BoNT, A-G, defined by their response to antisera. Many serotypes are distinguished into differing subtypes based on amino acid sequence and immunogenic properties, and some subtypes are further differentiated into toxin variants. Toxin characterization is important as different types of BoNT can respond differently to medical countermeasures for botulism, and characterization of the toxin can aid in epidemiologic and forensic investigations. Proteomic techniques have been established to determine the serotype, subtype, or toxin variant of BoNT. These techniques involve digestion of the toxin into peptides, tandem mass spectrometric (MS/MS) analysis of the peptides, and database searching to identify the BoNT protein. These techniques demonstrate the capability to detect BoNT and its neurotoxin-associated proteins, and differentiate the toxin from other toxins which are up to 99.9% identical in some cases. This differentiation can be accomplished from toxins present in a complex matrix such as stool, food, or bacterial cultures and no DNA is required.

  14. Radiation resistance of paralytic shellfish poison (PSP) toxins

    Energy Technology Data Exchange (ETDEWEB)

    San Juan, Edith M

    2000-04-01

    Radiation resistance of paralytic shellfish poison (PSP) toxins, obtained from Pyrodinium bahamense var. compressum in shellstocks of green mussels, was determined by subjecting the semi-purified toxin extract as well as the shellstocks of green mussels to high doses of ionizing radiation of 5, 10, 15 and 20 kGy. The concentration of the PSP toxins was determined by the Standard Mouse Bioassay (SMB) method. The radiation assistance of the toxins was determined by plotting the PSP toxin concentration versus applied dose in a semilog paper. The D{sub 10} value or decimal reduction dose was obtained from the straight line which is the dose required to reduce the toxicity level by 90%. The effects of irradiation on the quality of green mussels in terms of its physico-chemical, microbiological and sensory attributes were also conducted. The effect of irradiation on the fatty acid components of green mussels was determined by gas chromatography. Radiation resistance of the PSP toxins was determined to be lower in samples with initially high toxicity level as compared with samples with initially low toxicity level. The D{sub 10} values of samples with initially high PSP level were 28.5 kGy in shellstocks of green musssels and 17.5 kGy in the semi-purified toxin extract. When the PSP level was low initially, the D{sub 10} values were as high as 57.5 and 43.5 kGy in shellstocks of green mussels for the two trials, and 43.0 kGy in semi-purified toxin extract. The microbial load of the irradiated mussels was remarkably reduced. No differnce in color and odor characteristics were observed in the mussel samples subjected to varying doses of ionizing radiation. There was darkening in the color of mussel meat and its juice. The concentration of the fatty acid components in the fresh green mussels were considerably higher as compared with those present in the irradiated mussels, though some volatile fatty acids were detected as a result of irradiation. (Author)

  15. Radiation resistance of paralytic shellfish poison (PSP) toxins

    International Nuclear Information System (INIS)

    San Juan, Edith M.

    2000-04-01

    Radiation resistance of paralytic shellfish poison (PSP) toxins, obtained from Pyrodinium bahamense var. compressum in shellstocks of green mussels, was determined by subjecting the semi-purified toxin extract as well as the shellstocks of green mussels to high doses of ionizing radiation of 5, 10, 15 and 20 kGy. The concentration of the PSP toxins was determined by the Standard Mouse Bioassay (SMB) method. The radiation assistance of the toxins was determined by plotting the PSP toxin concentration versus applied dose in a semilog paper. The D 10 value or decimal reduction dose was obtained from the straight line which is the dose required to reduce the toxicity level by 90%. The effects of irradiation on the quality of green mussels in terms of its physico-chemical, microbiological and sensory attributes were also conducted. The effect of irradiation on the fatty acid components of green mussels was determined by gas chromatography. Radiation resistance of the PSP toxins was determined to be lower in samples with initially high toxicity level as compared with samples with initially low toxicity level. The D 10 values of samples with initially high PSP level were 28.5 kGy in shellstocks of green musssels and 17.5 kGy in the semi-purified toxin extract. When the PSP level was low initially, the D 10 values were as high as 57.5 and 43.5 kGy in shellstocks of green mussels for the two trials, and 43.0 kGy in semi-purified toxin extract. The microbial load of the irradiated mussels was remarkably reduced. No differnce in color and odor characteristics were observed in the mussel samples subjected to varying doses of ionizing radiation. There was darkening in the color of mussel meat and its juice. The concentration of the fatty acid components in the fresh green mussels were considerably higher as compared with those present in the irradiated mussels, though some volatile fatty acids were detected as a result of irradiation. (Author)

  16. Bacterial community affects toxin production by Gymnodinium catenatum.

    Directory of Open Access Journals (Sweden)

    Maria E Albinsson

    Full Text Available The paralytic shellfish toxin (PST-producing dinoflagellate Gymnodinium catenatum grows in association with a complex marine bacterial community that is both essential for growth and can alter culture growth dynamics. Using a bacterial community replacement approach, we examined the intracellular PST content, production rate, and profile of G. catenatum cultures grown with bacterial communities of differing complexity and composition. Clonal offspring were established from surface-sterilized resting cysts (produced by sexual crosses of strain GCDE06 and strain GCLV01 and grown with: 1 complex bacterial communities derived from each of the two parent cultures; 2 simplified bacterial communities composed of the G. catenatum-associated bacteria Marinobacter sp. strain DG879 or Alcanivorax sp. strain DG881; 3 a complex bacterial community associated with an untreated, unsterilized sexual cross of the parents. Toxin content (STX-equivalent per cell of clonal offspring (134-197 fmol STX cell(-1 was similar to the parent cultures (169-206 fmol STX cell(-1, however cultures grown with single bacterial types contained less toxin (134-146 fmol STX cell(-1 than offspring or parent cultures grown with more complex mixed bacterial communities (152-176 fmol STX cell(-1. Specific toxin production rate (fmol STX day(-1 was strongly correlated with culture growth rate. Net toxin production rate (fmol STX cell(-1 day(-1 did not differ among treatments, however, mean net toxin production rate of offspring was 8-fold lower than the parent cultures, suggesting that completion of the sexual lifecycle in laboratory cultures leads to reduced toxin production. The PST profiles of offspring cultures were most similar to parent GCDE06 with the exception of cultures grown with Marinobacter sp. DG879 which produced higher proportions of dcGTX2+3 and GC1+2, and lower proportions of C1+2 and C3+4. Our data demonstrate that the bacterial community can alter intracellular STX

  17. Bacterial community affects toxin production by Gymnodinium catenatum.

    Science.gov (United States)

    Albinsson, Maria E; Negri, Andrew P; Blackburn, Susan I; Bolch, Christopher J S

    2014-01-01

    The paralytic shellfish toxin (PST)-producing dinoflagellate Gymnodinium catenatum grows in association with a complex marine bacterial community that is both essential for growth and can alter culture growth dynamics. Using a bacterial community replacement approach, we examined the intracellular PST content, production rate, and profile of G. catenatum cultures grown with bacterial communities of differing complexity and composition. Clonal offspring were established from surface-sterilized resting cysts (produced by sexual crosses of strain GCDE06 and strain GCLV01) and grown with: 1) complex bacterial communities derived from each of the two parent cultures; 2) simplified bacterial communities composed of the G. catenatum-associated bacteria Marinobacter sp. strain DG879 or Alcanivorax sp. strain DG881; 3) a complex bacterial community associated with an untreated, unsterilized sexual cross of the parents. Toxin content (STX-equivalent per cell) of clonal offspring (134-197 fmol STX cell(-1)) was similar to the parent cultures (169-206 fmol STX cell(-1)), however cultures grown with single bacterial types contained less toxin (134-146 fmol STX cell(-1)) than offspring or parent cultures grown with more complex mixed bacterial communities (152-176 fmol STX cell(-1)). Specific toxin production rate (fmol STX day(-1)) was strongly correlated with culture growth rate. Net toxin production rate (fmol STX cell(-1) day(-1)) did not differ among treatments, however, mean net toxin production rate of offspring was 8-fold lower than the parent cultures, suggesting that completion of the sexual lifecycle in laboratory cultures leads to reduced toxin production. The PST profiles of offspring cultures were most similar to parent GCDE06 with the exception of cultures grown with Marinobacter sp. DG879 which produced higher proportions of dcGTX2+3 and GC1+2, and lower proportions of C1+2 and C3+4. Our data demonstrate that the bacterial community can alter intracellular STX

  18. Proteinaceous toxins from three species of scorpaeniform fish (lionfish Pterois lunulata, devil stinger Inimicus japonicus and waspfish Hypodytes rubripinnis): close similarity in properties and primary structures to stonefish toxins.

    Science.gov (United States)

    Kiriake, Aya; Suzuki, Yasuko; Nagashima, Yuji; Shiomi, Kazuo

    2013-08-01

    The crude toxins from three species of venomous fish (lionfish Pterois lunulata, devil stinger Inimicus japonicus and waspfish Hypodytes rubripinnis) belonging to the order Scorpaeniformes exhibited mouse-lethal, hemolytic, edema-forming and nociceptive activities. In view of the antigenic cross-reactivity with the stonefish toxins, the primary structures of the stonefish toxin-like toxins from the three scorpaeniform fish were determined by cDNA cloning using primers designed from the highly conserved sequences of the stonefish toxins. Based on the data obtained in gel filtration, immunoblotting and cDNA cloning, each toxin was judged to be a 160 kDa heterodimer composed of 80 kDa α- and β-subunits. The three scorpaeniform fish toxins contain a B30.2/SPRY domain (∼200 amino acid residues) in the C-terminal region of each subunit, as reported for the toxins from two species of lionfish and two species of stonefish. With respect to the amino acid sequence similarity, the scorpaeniform fish toxins are divided into the following two groups: toxins from three species of lionfish and those from devil stinger, two species of stonefish and waspfish. The phylogenetic tree generated also clearly supports the classification of the toxins. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Cholix Toxin, a Novel ADP-ribosylating Factor from Vibrio cholerae

    Energy Technology Data Exchange (ETDEWEB)

    Jorgensen, Rene; Purdy, Alexandra E.; Fieldhouse, Robert J.; Kimber, Matthew S.; Bartlett, Douglas H.; Merrill, A. Rod (Guelph); (NIH); (UCSD)

    2008-07-15

    The ADP-ribosyltransferases are a class of enzymes that display activity in a variety of bacterial pathogens responsible for causing diseases in plants and animals, including those affecting mankind, such as diphtheria, cholera, and whooping cough. We report the characterization of a novel toxin from Vibrio cholerae, which we call cholix toxin. The toxin is active against mammalian cells (IC50 = 4.6 {+-} 0.4 ng/ml) and crustaceans (Artemia nauplii LD50 = 10 {+-} 2 {mu}g/ml). Here we show that this toxin is the third member of the diphthamide-specific class of ADP-ribose transferases and that it possesses specific ADP-ribose transferase activity against ribosomal eukaryotic elongation factor 2. We also describe the high resolution crystal structures of the multidomain toxin and its catalytic domain at 2.1- and 1.25-{angstrom} resolution, respectively. The new structural data show that cholix toxin possesses the necessary molecular features required for infection of eukaryotes by receptor-mediated endocytosis, translocation to the host cytoplasm, and inhibition of protein synthesis by specific modification of elongation factor 2. The crystal structures also provide important insight into the structural basis for activation of toxin ADP-ribosyltransferase activity. These results indicate that cholix toxin may be an important virulence factor of Vibrio cholerae that likely plays a significant role in the survival of the organism in an aquatic environment.

  20. Botulinum toxin type A versus botulinum toxin type B for cervical dystonia.

    Science.gov (United States)

    Duarte, Gonçalo S; Castelão, Mafalda; Rodrigues, Filipe B; Marques, Raquel E; Ferreira, Joaquim; Sampaio, Cristina; Moore, Austen P; Costa, João

    2016-10-26

    This is an update of a Cochrane review first published in 2003. Cervical dystonia is the most common form of focal dystonia and is a disabling disorder characterised by painful involuntary head posturing. There are two available formulations of botulinum toxin, with botulinum toxin type A (BtA) usually considered the first line therapy for this condition. Botulinum toxin type B (BtB) is an alternative option, with no compelling theoretical reason why it might not be as- or even more effective - than BtA. To compare the efficacy, safety and tolerability of botulinum toxin type A (BtA) versus botulinum toxin type B (BtB) in people with cervical dystonia. To identify studies for this review we searched the Cochrane Movement Disorders Group Trials Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, reference lists of articles and conference proceedings. All elements of the search, with no language restrictions, were last run in October 2016. Double-blind, parallel, randomised, placebo-controlled trials (RCTs) comparing BtA versus BtB in adults with cervical dystonia. Two independent authors assessed records, selected included studies, extracted data using a paper pro forma, and evaluated the risk of bias. We resolved disagreements by consensus or by consulting a third author. We performed meta-analyses using the random-effects model, for the comparison BtA versus BtB to estimate pooled effects and corresponding 95% confidence intervals (95% CI). No prespecified subgroup analyses were carried out. The primary efficacy outcome was improvement on any validated symptomatic rating scale, and the primary safety outcome was the proportion of participants with adverse events. We included three RCTs, all new to this update, of very low to low methodological quality, with a total of 270 participants.Two studies exclusively enrolled participants with a known positive response to BtA treatment. This raises concerns of population enrichment

  1. [Botulism: structure and function of botulinum toxin and its clinical application].

    Science.gov (United States)

    Oguma, Keiji; Yamamoto, Yumiko; Suzuki, Tomonori; Fatmawati, Ni Nengah Dwi; Fujita, Kumiko

    2012-08-01

    Clostridium botulinum produces seven immunological distinct poisonous neurotoxins, A to G, with molecular masses of approximately 150kDa. In acidic foods and culture fluid, the neurotoxins associate with non-toxic components, and form large complexes designated progenitor toxins. The progenitor toxins are found in three forms named LL, L, and M. These neurotoxins and progenitor toxins were purified, and whole nucleotide sequences of their structure genes were determined. In this manuscript, the structure and function of these toxins, and the application of these toxins to clinical usage have been described.

  2. Botulinum toxin in the treatment of vocal fold nodules.

    Science.gov (United States)

    Allen, Jacqui E; Belafsky, Peter C

    2009-12-01

    Promising new techniques in the management of vocal fold nodules have been developed in the past 2 years. Simultaneously, the therapeutic use of botulinum toxin has rapidly expanded. This review explores the use of botulinum toxin in treatment of vocal nodules and summarizes current therapeutic concepts. New microsurgical instruments and techniques, refinements in laser technology, radiosurgical excision and steroid intralesional injections are all promising new techniques in the management of vocal nodules. Botulinum toxin-induced 'voice rest' is a new technique we have employed in patients with recalcitrant nodules. Successful resolution of nodules is possible with this technique, without the risk of vocal fold scarring inherent in dissection/excision techniques. Botulinum toxin usage is exponentially increasing, and large-scale, long-term studies demonstrate its safety profile. Targeted vocal fold temporary paralysis induced by botulinum toxin injection is a new, well tolerated and efficacious treatment in patients with persistent vocal fold nodules.

  3. Synthesis of protein in intestinal cells exposed to cholera toxin

    International Nuclear Information System (INIS)

    Peterson, J.W.; Berg, W.D. Jr.; Coppenhaver, D.H.

    1987-01-01

    The mechanism by which cyclic adenosine monophosphate (AMP), formed by intestinal epithelial cells in response to cholera toxin, ultimately results in alterations in water and electrolyte transport is poorly understood. Several studies have indicated that inhibitors of transcription or translation block much of the transport of ions and water in the intestine and edema formation in tissue elicited by cholera toxin. Data presented in this study confirmed the inhibitory effects of cycloheximide on cholera toxin-induced fluid accumulation in the rabbit intestinal loop model. Neither cycloheximide nor actinomycin D altered the amount of cyclic AMP that accumulated in intestinal cells and Chinese hamster ovary cells exposed to cholera toxin. An increase in [ 3 H] leucine incorporation was readily demonstrable in intestinal epithelial cells from rabbits challenged with Vibrio cholerae. Similarly, intestinal epithelial cells incubated with cholera toxin for 4 hr synthesized substantially more protein than controls as determined by relative incorporation of [ 35 S] methionine. Most of the new protein synthesized in response to cholera toxin was membrane associated and of high molecular weight. The possible significance of the toxin-induced protein relative to cholera pathogenesis was discussed

  4. Botulinum Toxin in Management of Limb Tremor

    Directory of Open Access Journals (Sweden)

    Elina Zakin

    2017-11-01

    Full Text Available Essential tremor is characterized by persistent, usually bilateral and symmetric, postural or kinetic activation of agonist and antagonist muscles involving either the distal or proximal upper extremity. Quality of life is often affected and one’s ability to perform daily tasks becomes impaired. Oral therapies, including propranolol and primidone, can be effective in the management of essential tremor, although adverse effects can limit their use and about 50% of individuals lack response to oral pharmacotherapy. Locally administered botulinum toxin injection has become increasingly useful in the management of essential tremor. Targeting of select muscles with botulinum toxin is an area of active research, and muscle selection has important implications for toxin dosing and functional outcomes. The use of anatomical landmarks with palpation, EMG guidance, electrical stimulation, and ultrasound has been studied as a technique for muscle localization in toxin injection. Earlier studies implemented a standard protocol for the injection of (predominantly wrist flexors and extensors using palpation and EMG guidance. Targeting of muscles by selection of specific activators of tremor (tailored to each patient using kinematic analysis might allow for improvement in efficacy, including functional outcomes. It is this individualized muscle selection and toxin dosing (requiring injection within various sites of a single muscle that has allowed for success in the management of tremors.

  5. A Quantitative Electrochemiluminescence Assay for Clostridium perfringens alpha toxin

    National Research Council Canada - National Science Library

    Merrill, Gerald A; Rivera, Victor R; Neal, Dwayne D; Young, Charles; Poli, Mark A

    2006-01-01

    .... Biotinylated antibodies to C. perfringens alpha toxin bound to streptavidin paramagnetic beads specifically immunoadsorbed soluble sample alpha toxin which subsequently selectively immunoadsorbed ruthenium (Ru...

  6. Fate of Fusarium Toxins during Brewing.

    Science.gov (United States)

    Habler, Katharina; Geissinger, Cajetan; Hofer, Katharina; Schüler, Jan; Moghari, Sarah; Hess, Michael; Gastl, Martina; Rychlik, Michael

    2017-01-11

    Some information is available about the fate of Fusarium toxins during the brewing process, but only little is known about the single processing steps in detail. In our study we produced beer from two different barley cultivars inoculated with three different Fusarium species, namely, Fusarium culmorum, Fusarium sporotrichioides, and Fusarium avenaceum, producing a wide range of mycotoxins such as type B trichothecenes, type A trichothecenes, and enniatins. By the use of multi-mycotoxin LC-MS/MS stable isotope dilution methods we were able to follow the fate of Fusarium toxins during the entire brewing process. In particular, the type B trichothecenes deoxynivalenol, 3-acetyldeoxynivalenol, and 15-acetyldeoxynivalenol showed similar behaviors. Between 35 and 52% of those toxins remained in the beer after filtration. The contents of the potentially hazardous deoxynivalenol-3-glucoside and the type A trichothecenes increased during mashing, but a rapid decrease of deoxynivalenol-3-glucoside content was found during the following steps of lautering and wort boiling. The concentration of enniatins greatly decreased with the discarding of spent grains or finally with the hot break. The results of our study show the retention of diverse Fusarium toxins during the brewing process and allow for assessing the food safety of beer regarding the monitored Fusarium mycotoxins.

  7. Evolution of Bacillus thuringiensis Cry toxins insecticidal activity.

    Science.gov (United States)

    Bravo, Alejandra; Gómez, Isabel; Porta, Helena; García-Gómez, Blanca Ines; Rodriguez-Almazan, Claudia; Pardo, Liliana; Soberón, Mario

    2013-01-01

    Insecticidal Cry proteins produced by Bacillus thuringiensis are use worldwide in transgenic crops for efficient pest control. Among the family of Cry toxins, the three domain Cry family is the better characterized regarding their natural evolution leading to a large number of Cry proteins with similar structure, mode of action but different insect specificity. Also, this group is the better characterized regarding the study of their mode of action and the molecular basis of insect specificity. In this review we discuss how Cry toxins have evolved insect specificity in nature and analyse several cases of improvement of Cry toxin action by genetic engineering, some of these examples are currently used in transgenic crops. We believe that the success in the improvement of insecticidal activity by genetic evolution of Cry toxins will depend on the knowledge of the rate-limiting steps of Cry toxicity in different insect pests, the mapping of the specificity binding regions in the Cry toxins, as well as the improvement of mutagenesis strategies and selection procedures. © 2012 The Authors. Microbial Biotechnology © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  8. Treatment of Palatal Myoclonus with Botulinum Toxin Injection

    Directory of Open Access Journals (Sweden)

    Mursalin M. Anis

    2013-01-01

    Full Text Available Palatal myoclonus is a rare cause of pulsatile tinnitus in patients presenting to the otolaryngology office. Rhythmic involuntary contractions of the palatal muscles produce the pulsatile tinnitus in these patients. Treatment of this benign but distressing condition with anxiolytics, anticonvulsants, and surgery has been largely unsuccessful. A few investigators have obtained promising results with botulinum toxin injection into the palatal muscles. We present a patient with palatal myoclonus who failed conservative treatment with anxiolytics. Unilateral injection of botulinum toxin into her tensor veli palatini muscle under electromyographic guidance resolved pulsatile tinnitus in her ipsilateral ear and unmasked pulsatile tinnitus in the contralateral ear. A novel method of following transient postinjection symptoms using a diary is presented in this study. Botulinum toxin dose must be titrated to achieve optimal results in each individual patient, analogous to titrations done for spasmodic dysphonia. Knowledge of the temporal onset of postinjection side effects and symptomatic relief may aid physicians in dose titration and surveillance. We present suggestions on titrating the botulinum toxin dose to optimal levels. A review of the literature on the use of botulinum toxin for palatal myoclonus and some common complications are discussed.

  9. Comparison of the Structural Stability and Dynamic Properties of Recombinant Anthrax Protective Antigen and its 2-Fluorohistidine Labeled Analogue

    OpenAIRE

    Hu, Lei; Joshi, Sangeeta B.; Andra, Kiran K.; Thakkar, Santosh V.; Volkin, David B.; Bann, James G.; Middaugh, C. Russell

    2012-01-01

    Protective antigen (PA) is the primary protein antigenic component of both the currently used anthrax vaccine and related recombinant vaccines under development. An analogue of recombinant PA (2-FHis rPA) has been recently shown to block the key steps of pore formation in the process of inducing cytotoxicity in cells, and thus can potentially be used as an antitoxin or a vaccine. This rPA analogue was produced by fermentation to incorporate the unnatural amino acid 2-fluorohistidine (2-FHis)....

  10. Treatment of Gastrointestinal Sphincters Spasms with Botulinum Toxin A

    Directory of Open Access Journals (Sweden)

    Giuseppe Brisinda

    2015-05-01

    Full Text Available Botulinum toxin A inhibits neuromuscular transmission. It has become a drug with many indications. The range of clinical applications has grown to encompass several neurological and non-neurological conditions. One of the most recent achievements in the field is the observation that botulinum toxin A provides benefit in diseases of the gastrointestinal tract. Although toxin blocks cholinergic nerve endings in the autonomic nervous system, it has also been shown that it does not block non-adrenergic non-cholinergic responses mediated by nitric oxide. This has promoted further interest in using botulinum toxin A as a treatment for overactive smooth muscles and sphincters. The introduction of this therapy has made the treatment of several clinical conditions easier, in the outpatient setting, at a lower cost and without permanent complications. This review presents current data on the use of botulinum toxin A in the treatment of pathological conditions of the gastrointestinal tract.

  11. Cosmetic Effect of Botulinum Toxin In Focal Hyperhydrosis

    Directory of Open Access Journals (Sweden)

    Jain S

    2005-01-01

    Full Text Available Hyperhydrosis of axillae, palm and sole is not a very uncommon problem. It leads to great embarrassment and considerable emotional stress to the individuals. Botulinum toxins prevent the release of acetylcholine at nerve terminals, therefore, reduces sweat secretion. Six patients of axillary and 4 patients of palmer and planter hyperhydrosis were treated with botulinum toxin. All patients experienced relatively satisfactory reduction of hyperhydrosis for period ranging between 4-7 months. No adverse effects were observed. Botulinum toxin therefore can be considered as an effective treatment in focal hyperhydrosis.

  12. The resurgence of botulinum toxin injection for strabismus in children.

    Science.gov (United States)

    Mahan, Marielle; Engel, J Mark

    2017-09-01

    The present review discusses recent advances in the use of botulinum toxin for the management of strabismus in children. Botulinum toxin injection produces similar results compared to surgery for certain subtypes of strabismus, especially acute onset esotropia. It may be more effective in many subtypes of esotropia where surgery has been less reliable, including partially accommodative esotropia, esotropia associated with cerebral palsy, and thyroid eye disease. Small retrospective studies have demonstrated the efficacy of botulinum toxin in the treatment of many types of pediatric strabismus, providing some guidance for clinicians to determine which patients would benefit most from this intervention. Although administration of botulinum toxin is generally accepted as a reasonable option in select cases, many strabismus surgeons have not fully embraced the treatment, in part because of perceived disadvantages compared to surgery and difficulty in identifying subsets with the highest potential for therapeutic success. A recent study compared the administration of botulinum toxin in children with acute-onset esotropia to surgical correction and found botulinum toxin had a statistically equal success rate, but with the advantage of significantly less time under general anesthesia. In addition, botulinum toxin has been recently tried in patients with partially accommodative esotropia, esotropia associated with cerebral palsy, cyclic esotropia, and in patients with thyroid eye disease. The present review will discuss current clinical recommendations based on recent studies on the use of botulinum toxin in children with strabismus.

  13. General synthesis of β-alanine-containing spider polyamine toxins and discovery of nephila polyamine toxins 1 and 8 as highly potent inhibitors of ionotropic glutamate receptors

    DEFF Research Database (Denmark)

    Lucas, Simon; Poulsen, Mette H; Nørager, Niels G

    2012-01-01

    Certain spiders contain large pools of polyamine toxins, which are putative pharmacological tools awaiting further discovery. Here we present a general synthesis strategy for this class of toxins and prepare five structurally varied polyamine toxins. Electrophysiological testing at three ionotrop...

  14. Initiating informatics and GIS support for a field investigation of Bioterrorism: The New Jersey anthrax experience

    Directory of Open Access Journals (Sweden)

    Skinner Ric

    2003-11-01

    Full Text Available Abstract Background The investigation of potential exposure to anthrax spores in a Trenton, New Jersey, mail-processing facility required rapid assessment of informatics needs and adaptation of existing informatics tools to new physical and information-processing environments. Because the affected building and its computers were closed down, data to list potentially exposed persons and map building floor plans were unavailable from the primary source. Results Controlling the effects of anthrax contamination required identification and follow-up of potentially exposed persons. Risk of exposure had to be estimated from the geographic relationship between work history and environmental sample sites within the contaminated facility. To assist in establishing geographic relationships, floor plan maps of the postal facility were constructed in ArcView Geographic Information System (GIS software and linked to a database of personnel and visitors using Epi Info and Epi Map 2000. A repository for maintaining the latest versions of various documents was set up using Web page hyperlinks. Conclusions During public health emergencies, such as bioterrorist attacks and disease epidemics, computerized information systems for data management, analysis, and communication may be needed within hours of beginning the investigation. Available sources of data and output requirements of the system may be changed frequently during the course of the investigation. Integrating data from a variety of sources may require entering or importing data from a variety of digital and paper formats. Spatial representation of data is particularly valuable for assessing environmental exposure. Written documents, guidelines, and memos important to the epidemic were frequently revised. In this investigation, a database was operational on the second day and the GIS component during the second week of the investigation.

  15. Uso de la vacuna contra el carbunco en los Estados Unidos de América Use of anthrax vaccine in the United States of America: recommendations of the Advisory Committee on Immunization Practices

    Directory of Open Access Journals (Sweden)

    2001-07-01

    Full Text Available This piece presents the recommendations of the Advisory Committee on Immunization Practices of the United States of America concerning the use of aluminum hydroxide adsorbed cell-free anthrax vaccine (Anthrax Vaccine Adsorbed, or AVA and the use of chemoprophylaxis against Bacillus anthracis in the United States. The recommended vaccination schedule consists of three subcutaneous injections, at 0, 2, and 4 weeks, and three booster vaccinations, at 6, 12, and 18 months. To maintain immunity, an annual booster injection is recommended. Approximately 95% of vaccinees seroconvert, with a fourfold rise in anti-PA (protective antigen IgG titers after three doses. Analysis of data from the United States' Vaccine Adverse Event Reporting System has documented no pattern of serious adverse events clearly associated with the vaccine, except injection-site reactions. Vaccination is contraindicated in the case of a previous history of anthrax infection or anaphylactic reaction following a previous dose of AVA or any of the vaccine components. In addition, vaccination should be postponed in the case of moderate or severe acute illness. Pregnant women should be vaccinated against anthrax only if the potential benefits of vaccination outweigh the potential risks to the fetus. Vaccination during breast-feeding is not medically contraindicated. Routine preexposure vaccination with AVA is indicated for persons engaged in: a work involving production quantities or concentrations of B. anthracis cultures or b activities with a high potential for aerosol production. For the military and other select populations or for groups for which a calculable risk can be assessed, preexposure vaccination may be indicated. Following confirmed or suspected exposure to B. anthracis, postexposure antibiotic prophylaxis should be administered with ciprofloxacin, ofloxacin, doxycycline, penicillin VK, or amoxicillin. If the vaccine is available, prophylaxis should continue for 4 weeks

  16. Effect of Gating Modifier Toxins on Membrane Thickness: Implications for Toxin Effect on Gramicidin and Mechanosensitive Channels

    Directory of Open Access Journals (Sweden)

    Shin-Ho Chung

    2013-02-01

    Full Text Available Various gating modifier toxins partition into membranes and interfere with the gating mechanisms of biological ion channels. For example, GsMTx4 potentiates gramicidin and several bacterial mechanosensitive channels whose gating kinetics are sensitive to mechanical properties of the membrane, whereas binding of HpTx2 shifts the voltage-activity curve of the voltage-gated potassium channel Kv4.2 to the right. The detailed process by which the toxin partitions into membranes has been difficult to probe using molecular dynamics due to the limited time scale accessible. Here we develop a protocol that allows the spontaneous assembly of a polypeptide toxin into membranes in atomistic molecular dynamics simulations of tens of nanoseconds. The protocol is applied to GsMTx4 and HpTx2. Both toxins, released in water at the start of the simulation, spontaneously bind into the lipid bilayer within 50 ns, with their hydrophobic patch penetrated into the bilayer beyond the phosphate groups of the lipids. It is found that the bilayer is about 2 Å thinner upon the binding of a GsMTx4 monomer. Such a thinning effect of GsMTx4 on membranes may explain its potentiation effect on gramicidin and mechanosensitive channels.

  17. Potentiometric chemical sensors for the detection of paralytic shellfish toxins.

    Science.gov (United States)

    Ferreira, Nádia S; Cruz, Marco G N; Gomes, Maria Teresa S R; Rudnitskaya, Alisa

    2018-05-01

    Potentiometric chemical sensors for the detection of paralytic shellfish toxins have been developed. Four toxins typically encountered in Portuguese waters, namely saxitoxin, decarbamoyl saxitoxin, gonyautoxin GTX5 and C1&C2, were selected for the study. A series of miniaturized sensors with solid inner contact and plasticized polyvinylchloride membranes containing ionophores, nine compositions in total, were prepared and their characteristics evaluated. Sensors displayed cross-sensitivity to four studied toxins, i.e. response to several toxins together with low selectivity. High selectivity towards paralytic shellfish toxins was observed in the presence of inorganic cations with selectivity coefficients ranging from 0.04 to 0.001 for Na + and K + and 3.6*10 -4 to 3.4*10 -5 for Ca 2+ . Detection limits were in the range from 0.25 to 0.9 μmolL -1 for saxitoxin and decarbamoyl saxitoxin, and from 0.08 to 1.8 μmolL -1 for GTX5 and C1&C2, which allows toxin detection at the concentration levels corresponding to the legal limits. Characteristics of the developed sensors allow their use in the electronic tongue multisensor system for simultaneous quantification of paralytic shellfish toxins. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Milling technological experiments to reduce Fusarium toxin contamination in wheat

    Directory of Open Access Journals (Sweden)

    Véha A.

    2015-01-01

    Full Text Available We examine 4 different DON-toxin-containing (0.74 - 1.15 - 1.19 - 2.14 mg/kg winter wheat samples: they were debranned and undebranned, and we investigated the flour’s and the by-products’ (coarse, fine bran toxin content changes. SATAKE lab-debranner was used for debranning and BRABENDER lab-mill for the milling process. Without debranning, two sample flours were above the DON toxin limit (0.75 mg/kg, which are waste. By minimum debranning (and minimum debranning mass loss; 6-8%, our experience with whole flour is that the multi-stage debranning measurement significantly reduces the content of the flour’s DON toxin, while the milling by-products, only after careful consideration and DON toxin measurements, may be produced for public consumption and for feeding.

  19. Staphylococcus aureus α-toxin modulates skin host response to viral infection.

    Science.gov (United States)

    Bin, Lianghua; Kim, Byung Eui; Brauweiler, Anne; Goleva, Elena; Streib, Joanne; Ji, Yinduo; Schlievert, Patrick M; Leung, Donald Y M

    2012-09-01

    Patients with atopic dermatitis (AD) with a history of eczema herpeticum have increased staphylococcal colonization and infections. However, whether Staphylococcus aureus alters the outcome of skin viral infection has not been determined. We investigated whether S aureus toxins modulated host response to herpes simplex virus (HSV) 1 and vaccinia virus (VV) infections in normal human keratinocytes (NHKs) and in murine infection models. NHKs were treated with S aureus toxins before incubation of viruses. BALB/c mice were inoculated with S aureus 2 days before VV scarification. Viral loads of HSV-1 and VV were evaluated by using real-time PCR, a viral plaque-forming assay, and immunofluorescence staining. Small interfering RNA duplexes were used to knockdown the gene expression of the cellular receptor of α-toxin, a disintegrin and metalloprotease 10 (ADAM10). ADAM10 protein and α-toxin heptamers were detected by using Western blot assays. We demonstrate that sublytic staphylococcal α-toxin increases viral loads of HSV-1 and VV in NHKs. Furthermore, we demonstrate in vivo that the VV load is significantly greater (P skin inoculated with an α-toxin-producing S aureus strain compared with murine skin inoculated with the isogenic α-toxin-deleted strain. The viral enhancing effect of α-toxin is mediated by ADAM10 and is associated with its pore-forming property. Moreover, we demonstrate that α-toxin promotes viral entry in NHKs. The current study introduces the novel concept that staphylococcal α-toxin promotes viral skin infection and provides a mechanism by which S aureus infection might predispose the host toward disseminated viral infections. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  20. Quantitative determination of biological activity of botulinum toxins utilizing compound muscle action potentials (CMAP), and comparison of neuromuscular transmission blockage and muscle flaccidity among toxins.

    Science.gov (United States)

    Torii, Yasushi; Goto, Yoshitaka; Takahashi, Motohide; Ishida, Setsuji; Harakawa, Tetsuhiro; Sakamoto, Takashi; Kaji, Ryuji; Kozaki, Shunji; Ginnaga, Akihiro

    2010-01-01

    The biological activity of various types of botulinum toxin has been evaluated using the mouse intraperitoneal LD(50) test (ip LD(50)). This method requires a large number of mice to precisely determine toxin activity, and so has posed a problem with regard to animal welfare. We have used a direct measure of neuromuscular transmission, the compound muscle action potential (CMAP), to evaluate the effect of different types of botulinum neurotoxin (NTX), and we compared the effects of these toxins to evaluate muscle relaxation by employing the digit abduction scoring (DAS) assay. This method can be used to measure a broad range of toxin activities the day after administration. Types A, C, C/D, and E NTX reduced the CMAP amplitude one day after administration at below 1 ip LD(50), an effect that cannot be detected using the mouse ip LD(50) assay. The method is useful not only for measuring toxin activity, but also for evaluating the characteristics of different types of NTX. The rat CMAP test is straightforward, highly reproducible, and can directly determine the efficacy of toxin preparations through their inhibition of neuromuscular transmission. Thus, this method may be suitable for pharmacology studies and the quality control of toxin preparations. Copyright 2009 Elsevier Ltd. All rights reserved.

  1. Binding properties of Clostridium botulinum type C progenitor toxin to mucins.

    Science.gov (United States)

    Nakamura, Toshio; Takada, Noriko; Tonozuka, Takashi; Sakano, Yoshiyuki; Oguma, Keiji; Nishikawa, Atsushi

    2007-04-01

    It has been reported that Clostridium botulinum type C 16S progenitor toxin (C16S toxin) first binds to the sialic acid on the cell surface of mucin before invading cells [A. Nishikawa, N. Uotsu, H. Arimitsu, J.C. Lee, Y. Miura, Y. Fujinaga, H. Nakada, T. Watanabe, T. Ohyama, Y. Sakano, K. Oguma, The receptor and transporter for internalization of Clostridium botulinum type C progenitor toxin into HT-29 cells, Biochem. Biophys. Res. Commun. 319 (2004) 327-333]. In this study we investigated the binding properties of the C16S toxin to glycoproteins. Although the toxin bound to membrane blotted mucin derived from the bovine submaxillary gland (BSM), which contains a lot of sialyl oligosaccharides, it did not bind to neuraminidase-treated BSM. The binding of the toxin to BSM was inhibited by N-acetylneuraminic acid, N-glycolylneuraminic acid, and sialyl oligosaccharides strongly, but was not inhibited by neutral oligosaccharides. Both sialyl alpha2-3 lactose and sialyl alpha2-6 lactose prevented binding similarly. On the other hand, the toxin also bound well to porcine gastric mucin. In this case, neutral oligosaccharides might play an important role as ligand, since galactose and lactose inhibited binding. These results suggest that the toxin is capable of recognizing a wide variety of oligosaccharide structures.

  2. Prediction of Toxin Genes from Chinese Yellow Catfish Based on Transcriptomic and Proteomic Sequencing

    Directory of Open Access Journals (Sweden)

    Bing Xie

    2016-04-01

    Full Text Available Fish venom remains a virtually untapped resource. There are so few fish toxin sequences for reference, which increases the difficulty to study toxins from venomous fish and to develop efficient and fast methods to dig out toxin genes or proteins. Here, we utilized Chinese yellow catfish (Pelteobagrus fulvidraco as our research object, since it is a representative species in Siluriformes with its venom glands embedded in the pectoral and dorsal fins. In this study, we set up an in-house toxin database and a novel toxin-discovering protocol to dig out precise toxin genes by combination of transcriptomic and proteomic sequencing. Finally, we obtained 15 putative toxin proteins distributed in five groups, namely Veficolin, Ink toxin, Adamalysin, Za2G and CRISP toxin. It seems that we have developed a novel bioinformatics method, through which we could identify toxin proteins with high confidence. Meanwhile, these toxins can also be useful for comparative studies in other fish and development of potential drugs.

  3. Pufferfish mortality associated with novel polar marine toxins in Hawaii

    Science.gov (United States)

    Work, Thierry M.; Moeller, Perer D. R.; Beauchesne, Kevin R.; Dagenais, Julie; Breeden, Renee; Rameyer, Robert; Walsh, Willliam A.; Abecassis, Melanie; Kobayashi, Donald R.; Conway, Carla M.; Winton, James

    2017-01-01

    Fish die-offs are important signals in tropical marine ecosystems. In 2010, a mass mortality of pufferfish in Hawaii (USA) was dominated by Arothron hispidus showing aberrant neurological behaviors. Using pathology, toxinology, and field surveys, we implicated a series of novel, polar, marine toxins as a likely cause of this mass mortality. Our findings are striking in that (1) a marine toxin was associated with a kill of a fish species that is itself toxic; (2) we provide a plausible mechanism to explain clinical signs of affected fish; and (3) this epizootic likely depleted puffer populations. Whilst our data are compelling, we did not synthesize the toxin de novo, and we were unable to categorically prove that the polar toxins caused mortality or that they were metabolites of an undefined parent compound. However, our approach does provide a template for marine fish kill investigations associated with marine toxins and inherent limitations of existing methods. Our study also highlights the need for more rapid and cost-effective tools to identify new marine toxins, particularly small, highly polar molecules.

  4. ADP-ribosylation by cholera toxin: functional analysis of a cellular system that stimulates the enzymic activity of cholera toxin fragment A1

    International Nuclear Information System (INIS)

    Gill, D.M.; Coburn, J.

    1987-01-01

    The authors have clarified relationships between cholera toxin, cholera toxin substrates, a membrane protein S that is required for toxin activity, and a soluble protein CF that is needed for the function of S. The toxin has little intrinsic ability to catalyze ADP-ribosylations unless it encounters the active form of the S protein, which is S liganded to GTP or to a GTP analogue. In the presence of CF, S x GTP forms readily, though reversibly, but a more permanent active species, S-guanosine 5'-O-(3-thiotriphosphate) (S x GTPγS), forms over a period of 10-15 min at 37 0 C. Both guanosine 5'-O-(2-thiodiphosphate) and GTP block this quasi-permanent activation. Some S x GTPγS forms in membranes that are exposed to CF alone and then to GTPγS, with a wash in between, and it is possible that CF facilitates a G nucleotide exchange. S x GTPγS dissolved by nonionic detergents persists in solution and can be used to support the ADP-ribosylation of nucleotide-free substrates. In this circumstance, added guanyl nucleotides have no further effect. This active form of S is unstable, especially when heated, but the thermal inactivation above 45 0 C is decreased by GTPγS. Active S is required equally for the ADP-ribosylation of all of cholera toxin's protein substrates, regardless of whether they bind GTP or not. They suggest that active S interacts directly with the enzymic A 1 fragments of cholera toxin and not with any toxin substrate. The activation and activity of S are independent of the state, or even the presence, of adenylate cyclase and seem to be involved with the cyclase system only via cholera toxin. S is apparently not related by function to certain other GTP binding proteins, including p21/sup ras/, and appears to be a new GTP binding protein whose physiologic role remains to be identified

  5. Structural constraints-based evaluation of immunogenic avirulent toxins from Clostridium botulinum C2 and C3 toxins as subunit vaccines.

    Science.gov (United States)

    Prisilla, A; Prathiviraj, R; Sasikala, R; Chellapandi, P

    2016-10-01

    Clostridium botulinum (group-III) is an anaerobic bacterium producing C2 and C3 toxins in addition to botulinum neurotoxins in avian and mammalian cells. C2 and C3 toxins are members of bacterial ADP-ribosyltransferase superfamily, which modify the eukaryotic cell surface proteins by ADP-ribosylation reaction. Herein, the mutant proteins with lack of catalytic and pore forming function derived from C2 (C2I and C2II) and C3 toxins were computationally evaluated to understand their structure-function integrity. We have chosen many structural constraints including local structural environment, folding process, backbone conformation, conformational dynamic sub-space, NAD-binding specificity and antigenic determinants for screening of suitable avirulent toxins. A total of 20 avirulent mutants were identified out of 23 mutants, which were experimentally produced by site-directed mutagenesis. No changes in secondary structural elements in particular to α-helices and β-sheets and also in fold rate of all-β classes. Structural stability was maintained by reordered hydrophobic and hydrogen bonding patterns. Molecular dynamic studies suggested that coupled mutations may restrain the binding affinity to NAD(+) or protein substrate upon structural destabilization. Avirulent toxins of this study have stable energetic backbone conformation with a common blue print of folding process. Molecular docking studies revealed that avirulent mutants formed more favorable hydrogen bonding with the side-chain of amino acids near to conserved NAD-binding core, despite of restraining NAD-binding specificity. Thus, structural constraints in the avirulent toxins would determine their immunogenic nature for the prioritization of protein-based subunit vaccine/immunogens to avian and veterinary animals infected with C. botulinum. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Toxin-mediated effects on the innate mucosal defenses: implications for enteric vaccines

    DEFF Research Database (Denmark)

    Glenn, Gregory M; Francis, David H; Danielsen, E Michael

    2009-01-01

    mucosal barrier as a key step in enteric pathogen survival. We review key observations relevant to the roles of LT and cholera toxin in protective immunity and the effects of these toxins on innate mucosal defenses. We suggest either that toxin-mediated fluid secretion mechanically disrupts the mucus...... layer or that toxins interfere with innate mucosal defenses by other means. Such a breach gives pathogens access to the enterocyte, leading to binding and pathogenicity by enterotoxigenic E. coli (ETEC) and other organisms. Given the common exposure to LT(+) ETEC by humans visiting or residing...... unexpectedly broad protective effects against LT(+) ETEC and mixed infections when using a toxin-based enteric vaccine. If toxins truly exert barrier-disruptive effects as a key step in pathogenesis, then a return to classic toxin-based vaccine strategies for enteric disease is warranted and can be expected...

  7. Anti-idiotypic antibodies that protect cells against the action of diphtheria toxin

    International Nuclear Information System (INIS)

    Rolf, J.M.; Gaudin, H.M.; Tirrell, S.M.; MacDonald, A.B.; Eidels, L.

    1989-01-01

    An anti-idiotypic serum prepared against the combining site (idiotype) of specific anti-diphtheria toxoid antibodies was characterized with respect to its interaction with highly diphtheria toxin-sensitive Vero cells. Although the anti-idiotypic serum protected Vero cells against the cytotoxic action of diphtheria toxin, it did not prevent the binding of 125 I-labeled diphtheria toxin to the cells but did inhibit the internalization and degradation of 125 I-labeled toxin. This anti-idiotypic serum immunoprecipitated a cell-surface protein from radiolabeled Vero cells with an apparent Mr of approximately 15,000. These results are consistent with the hypothesis that the anti-idiotypic serum contains antibodies that carry an internal image of an internalization site on the toxin and that a cell-surface protein involved in toxin internalization possesses a complementary site recognized by both the toxin and the anti-idiotypic antibodies

  8. Shiga toxin induces membrane reorganization and formation of long range lipid order

    DEFF Research Database (Denmark)

    Solovyeva, Vita; Johannes, Ludger; Simonsen, Adam Cohen

    2015-01-01

    membrane reordering. When Shiga toxin was added above the lipid chain melting temperature, the toxin interaction with the membrane induced rearrangement and clustering of Gb3 lipids that resulted in the long range order and alignment of lipids in gel domains. The toxin induced redistribution of Gb3 lipids...... inside gel domains is governed by the temperature at which Shiga toxin was added to the membrane: above or below the phase transition. The temperature is thus one of the critical factors controlling lipid organization and texture in the presence of Shiga toxin. Lipid chain ordering imposed by Shiga toxin...... binding can be another factor driving the reconstruction of lipid organization and crystallization of lipids inside gel domains....

  9. Diversity and Impact of Prokaryotic Toxins on Aquatic Environments: A Review

    Directory of Open Access Journals (Sweden)

    Rogério Tenreiro

    2010-10-01

    Full Text Available Microorganisms are ubiquitous in all habitats and are recognized by their metabolic versatility and ability to produce many bioactive compounds, including toxins. Some of the most common toxins present in water are produced by several cyanobacterial species. As a result, their blooms create major threats to animal and human health, tourism, recreation and aquaculture. Quite a few cyanobacterial toxins have been described, including hepatotoxins, neurotoxins, cytotoxins and dermatotoxins. These toxins are secondary metabolites, presenting a vast diversity of structures and variants. Most of cyanobacterial secondary metabolites are peptides or have peptidic substructures and are assumed to be synthesized by non-ribosomal peptide synthesis (NRPS, involving peptide synthetases, or NRPS/PKS, involving peptide synthetases and polyketide synthases hybrid pathways. Besides cyanobacteria, other bacteria associated with aquatic environments are recognized as significant toxin producers, representing important issues in food safety, public health, and human and animal well being. Vibrio species are one of the most representative groups of aquatic toxin producers, commonly associated with seafood-born infections. Some enterotoxins and hemolysins have been identified as fundamental for V. cholerae and V. vulnificus pathogenesis, but there is evidence for the existence of other potential toxins. Campylobacter spp. and Escherichia coli are also water contaminants and are able to produce important toxins after infecting their hosts. Other bacteria associated with aquatic environments are emerging as toxin producers, namely Legionella pneumophila and Aeromonas hydrophila, described as responsible for the synthesis of several exotoxins, enterotoxins and cytotoxins. Furthermore, several Clostridium species can produce potent neurotoxins. Although not considered aquatic microorganisms, they are ubiquitous in the environment and can easily contaminate drinking

  10. Office-based endoscopic botulinum toxin injection in laryngeal movement disorders.

    Science.gov (United States)

    Kaderbay, A; Righini, C A; Castellanos, P F; Atallah, I

    2018-06-01

    Botulinum toxin injection is widely used for the treatment of laryngeal movement disorders. Electromyography-guided percutaneous injection is the technique most commonly used to perform intralaryngeal botulinum toxin injection. We describe an endoscopic approach for intralaryngeal botulinum toxin injection under local anaesthesia without using electromyography. A flexible video-endoscope with an operating channel is used. After local anaesthesia of the larynx by instillation of lidocaine, a flexible needle is inserted into the operating channel in order to inject the desired dose of botulinum toxin into the vocal and/or vestibular folds. Endoscopic botulinum toxin injection under local anaesthesia is a reliable technique for the treatment of laryngeal movement disorders. It can be performed by any laryngologist without the need for electromyography. It is easy to perform for the operator and comfortable for the patient. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  11. Prokaryotic adenylate cyclase toxin stimulates anterior pituitary cells in culture

    International Nuclear Information System (INIS)

    Cronin, M.J.; Evans, W.S.; Rogol, A.D.; Weiss, A.A.; Thorner, M.O.; Orth, D.N.; Nicholson, W.E.; Yasumoto, T.; Hewlett, E.L.

    1986-01-01

    Bordetella pertussis synthesis a variety of virulence factors including a calmodulin-dependent adenylate cyclase (AC) toxin. Treatment of anterior pituitary cells with this AC toxin resulted in an increase in cellular cAMP levels that was associated with accelerated exocytosis of growth hormone (GH), prolactin, adrenocorticotropic hormone (ACTH), and luteinizing hormone (LH). The kinetics of release of these hormones, however, were markedly different; GH and prolactin were rapidly released, while LH and ACTH secretion was more gradually elevated. Neither dopamine agonists nor somatostatin changes the ability of AC toxin to generate cAMP (up to 2 h). Low concentrations of AC toxin amplified the secretory response to hypophysiotrophic hormones. The authors conclude that bacterial AC toxin can rapidly elevate cAMP levels in anterior pituitary cells and that it is the response that explains the subsequent acceleration of hormone release

  12. Effects of Clostridium perfringens iota toxin in the small intestine of mice.

    Science.gov (United States)

    Redondo, Leandro M; Redondo, Enzo A; Dailoff, Gabriela C; Leiva, Carlos L; Díaz-Carrasco, Juan M; Bruzzone, Octavio A; Cangelosi, Adriana; Geoghegan, Patricia; Fernandez-Miyakawa, Mariano E

    2017-12-01

    Iota toxin is a binary toxin solely produced by Clostridium perfringens type E strains, and is structurally related to CDT from C. difficile and CST from C. spiroforme. As type E causes hemorrhagic enteritis in cattle, it is usually assumed that associated diseases are mediated by iota toxin, although evidence in this regard has not been provided. In the present report, iota toxin intestinal effects were evaluated in vivo using a mouse model. Histological damage was observed in ileal loops treated with purified iota toxin after 4 h of incubation. Luminal iota toxin induced fluid accumulation in the small intestine in a dose dependent manner, as determined by the enteropooling and the intestinal loop assays. None of these changes were observed in the large intestine. These results suggest that C. perfringens iota toxin alters intestinal permeability, predominantly by inducing necrosis and degenerative changes in the mucosal epithelium of the small intestine, as well as changes in intestinal motility. The obtained results suggest a central role for iota toxin in the pathogenesis of C. perfringens type E hemorrhagic enteritis, and contribute to remark the importance of clostridial binary toxins in digestive diseases. Published by Elsevier Ltd.

  13. Inhibition of the adenylyl cyclase toxin, edema factor, from Bacillus anthracis by a series of 18 mono- and bis-(M)ANT-substituted nucleoside 5'-triphosphates.

    Science.gov (United States)

    Taha, Hesham; Dove, Stefan; Geduhn, Jens; König, Burkhard; Shen, Yuequan; Tang, Wei-Jen; Seifert, Roland

    2012-01-01

    Bacillus anthracis causes anthrax disease and exerts its deleterious effects by the release of three exotoxins, i.e. lethal factor, protective antigen and edema factor (EF), a highly active calmodulin-dependent adenylyl cyclase (AC). Conventional antibiotic treatment is ineffective against either toxaemia or antibiotic-resistant strains. Thus, more effective drugs for anthrax treatment are needed. Our previous studies showed that EF is differentially inhibited by various purine and pyrimidine nucleotides modified with N-methylanthraniloyl (MANT)- or anthraniloyl (ANT) groups at the 2'(3')-O-ribosyl position, with the unique preference for the base cytosine (Taha et al., Mol Pharmacol 75:693 (2009)). MANT-CTP was the most potent EF inhibitor (K (i), 100 nM) among 16 compounds studied. Here, we examined the interaction of EF with a series of 18 2',3'-O-mono- and bis-(M)ANT-substituted nucleotides, recently shown to be very potent inhibitors of the AC toxin from Bordetella pertussis, CyaA (Geduhn et al., J Pharmacol Exp Ther 336:104 (2011)). We analysed purified EF and EF mutants in radiometric AC assays and in fluorescence spectroscopy studies and conducted molecular modelling studies. Bis-MANT nucleotides inhibited EF competitively. Propyl-ANT-ATP was the most potent EF inhibitor (K (i), 80 nM). In contrast to the observations made for CyaA, introduction of a second (M)ANT-group decreased rather than increased inhibitor potency at EF. Activation of EF by calmodulin resulted in effective fluorescence resonance energy transfer (FRET) from tryptophan and tyrosine residues located in the vicinity of the catalytic site to bis-MANT-ATP, but FRET to bis-MANT-CTP was only small. Mutations N583Q, K353A and K353R differentially altered the inhibitory potencies of bis-MANT-ATP and bis-MANT-CTP. The nucleotide binding site of EF accommodates bulky bis-(M)ANT-substituted purine and pyrimidine nucleotides, but the fit is suboptimal compared to CyaA. These data provide a basis

  14. Vaccine-induced protection against anthrax in cheetah (Acinonyx jubatus) and black rhinoceros (Diceros bicornis).

    Science.gov (United States)

    Turnbull, P C B; Tindall, B W; Coetzee, J D; Conradie, C M; Bull, R L; Lindeque, P M; Huebschle, O J B

    2004-09-03

    Institution of a policy of vaccination in endangered species with a vaccine not previously administered to it cannot be undertaken lightly. This applies even more in the case of cheetah (Acinonyx jubatus) with their unusually monomorphic gene pool and the potential restrictions this places on their immune responses. However, the recently observed mortalities from anthrax in these animals in the Etosha National Park, Namibia, made it imperative to evaluate vaccination. Black rhinoceros (Diceros bicornis), another endangered species in the park, have been vaccinated for over three decades but the effectiveness of this has never been evaluated. Passive protection tests in A/J mice using sera from 12 cheetahs together with enzyme immunoassay indicated that cheetah are able to mount seemingly normal primary and secondary humoral immune responses to the Sterne 34F2 live spore livestock vaccine. Overall protection rates in mice injected with the sera rose and fell in concert with rises and declines in antibody titres, although fine analysis showed that the correlation between titre and protection was complex. Once a high level of protection (96% of mice 1 month after a second booster in the cheetahs) had been achieved, the duration of substantial protection appeared good (60% of the mice 5 months after the second booster). Protection conferred on mice by sera from three of four vaccinated rhino was almost complete, but, obscurely, none of the mice receiving serum from the fourth rhino were protected. Sera from three park lions with naturally acquired high antibody titres, included as controls, also conferred high levels of protection. For the purposes of wildlife management, the conclusions were that vaccination of cheetah with the standard animal anthrax vaccine causes no observable ill effect in the animals and does appear to confer protective immunity. At least one well-separated booster does appear to be desirable. Vaccination of rhino also appears to be justified

  15. Comparative genomics evidence that only protein toxins are tagging bad bugs

    Directory of Open Access Journals (Sweden)

    Kalliopi eGeorgiades

    2011-10-01

    Full Text Available The term toxin was introduced by Roux and Yersin and describes macromolecular substances that, when produced during infection or when introduced parenterally or orally, cause an impairment of physiological functions that lead to disease or to the death of the infected organism. Long after the discovery of toxins, early genetic studies on bacterial virulence demonstrated that removing a certain number of genes from pathogenic bacteria decreases their capacity to infect hosts. Each of the removed factors was therefore referred to as a virulence factor, and it was speculated that non-pathogenic bacteria lack such supplementary factors. However, many recent comparative studies demonstrate that the specialization of bacteria to eukaryotic hosts is associated with massive gene loss. We recently demonstrated that the only features that seem to characterize 12 epidemic bacteria are toxin-antitoxin (TA modules, which are addiction molecules in host bacteria. In this study, we investigated if protein toxins are indeed the only molecules specific to pathogenic bacteria by comparing 14 epidemic bacterial killers (bad bugs with their 14 closest non-epidemic relatives (controls. We found protein toxins in significantly more elevated numbers in all of the bad bugs. For the first time, statistical principal components analysis, including genome size, GC%, TA modules, restriction enzymes and toxins, revealed that toxins are the only proteins other than TA modules that are correlated with the pathogenic character of bacteria. Moreover, intracellular toxins appear to be more correlated with the pathogenic character of bacteria than secreted toxins. In conclusion, we hypothesize that the only truly identifiable phenomena, witnessing the convergent evolution of the most pathogenic bacteria for humans are the loss of metabolic activities, i.e., the outcome of the loss of regulatory and transcription factors and the presence of protein toxins, alone or coupled as TA

  16. Anti-idiotypic antibodies that protect cells against the action of diphtheria toxin

    Energy Technology Data Exchange (ETDEWEB)

    Rolf, J.M.; Gaudin, H.M.; Tirrell, S.M.; MacDonald, A.B.; Eidels, L.

    1989-03-01

    An anti-idiotypic serum prepared against the combining site (idiotype) of specific anti-diphtheria toxoid antibodies was characterized with respect to its interaction with highly diphtheria toxin-sensitive Vero cells. Although the anti-idiotypic serum protected Vero cells against the cytotoxic action of diphtheria toxin, it did not prevent the binding of /sup 125/I-labeled diphtheria toxin to the cells but did inhibit the internalization and degradation of /sup 125/I-labeled toxin. This anti-idiotypic serum immunoprecipitated a cell-surface protein from radiolabeled Vero cells with an apparent Mr of approximately 15,000. These results are consistent with the hypothesis that the anti-idiotypic serum contains antibodies that carry an internal image of an internalization site on the toxin and that a cell-surface protein involved in toxin internalization possesses a complementary site recognized by both the toxin and the anti-idiotypic antibodies.

  17. EFFECT OF MARINE TOXINS ON THERMOREGULATION IN MICE.

    Science.gov (United States)

    Marine algal toxins are extremely toxic and can represent a major health problem to humans and animals. Temperature regulation is one of many processes to be affected by exposure to these toxins. Mice and rats become markedly hypothermic when subjected to acute exposure to the ma...

  18. EFEKTIFITAS TOXIN BOTULLINUM UNTUK MANAJEMEN BLEFAROSPASME ESSENSIAL DAN SPASME HEMIFASIAL

    Directory of Open Access Journals (Sweden)

    Hendriati Hendriati

    2010-09-01

    Full Text Available AbstrakUntuk mengukur efektifikas toxin Botullinum pada kasus-kasus okuloplastik (blefarospasme essensial dan spasme hemifasial.Laporan kasus 16 pasien yang terdiri dari 14 kasus spasme hemifasial dan 2 kasus blefarospasme essensial. Digunakan 6 vial toxin Botullinum. Vial pertama digunakan untuk pasien spasme hemifasial dan 1 pasien blefasrospasme di minggu berikutnya. vial kedua dan ketiga masing-masing digunakan untuk 2 pasien spasme hemifasial. Vial keempat digunakan untuk pasien blefarospasme yang menggunakan vial pertama (setelah 6 bulan, dan 1 pasien spasme hemifasial yang menggunakan vial kedua ( setelah 4 bulan dan 1 pasien spasme hemifasial baru. Setelah 1 minggu, toxin Botullinum vial keempat digunakan untuk 6 pasien spasme hemifasial dan 1 pasien blefarospasme essensial yang menggunakan vial pertama 8 hari berikutnya (setelah 7 bulan.Terdapat 16 pasien pada studi ini ; 14 spasme hemifasial dan 2 blefarospasme essensial. Pada 5 pasien dilakukan injeksi ulangan dengan jangka waktu yang berbeda. Tidak ditemukan efek samping pada pasien-pasien ini.Toxin Botulinum efektif untuk manajemen spasme hemifasial dan blefarospasme essensial tetapi efeknya temporer. Pada studi ini, jangka waktu injeksi ulangan bervariasi sekitar 4 – 7 bulan pada 5 pasien.Kata Kunci : Toxin Botulinum toxin, spasme hemifasial, blefarospasmeAbstractTo asses Botulinum Toxin efficacy in oculoplastic cases (blepharospasm and hemifacial spasm.A case report on 16 patients consisted of 14 hemifacial spasms and 2 essential blepharospasm. Six vials of botulinum toxin were used. First vial was used for two patients of hemifacial spasm and one blepharospasm patient one week later. Second and third vials were used each for two patients of hemifacial spasms. Fourth vial was used for one blepharospasm patient from first vial user (after six month, one hemifacial spasm from second vial user (after four months and one new hemifacial spasm. After one week, Botulinum toxin from

  19. Bacterial toxin-antitoxin systems: more than selfish entities?

    Science.gov (United States)

    Van Melderen, Laurence; Saavedra De Bast, Manuel

    2009-03-01

    Bacterial toxin-antitoxin (TA) systems are diverse and widespread in the prokaryotic kingdom. They are composed of closely linked genes encoding a stable toxin that can harm the host cell and its cognate labile antitoxin, which protects the host from the toxin's deleterious effect. TA systems are thought to invade bacterial genomes through horizontal gene transfer. Some TA systems might behave as selfish elements and favour their own maintenance at the expense of their host. As a consequence, they may contribute to the maintenance of plasmids or genomic islands, such as super-integrons, by post-segregational killing of the cell that loses these genes and so suffers the stable toxin's destructive effect. The function of the chromosomally encoded TA systems is less clear and still open to debate. This Review discusses current hypotheses regarding the biological roles of these evolutionarily successful small operons. We consider the various selective forces that could drive the maintenance of TA systems in bacterial genomes.

  20. Bacterial toxin-antitoxin systems: more than selfish entities?

    Directory of Open Access Journals (Sweden)

    Laurence Van Melderen

    2009-03-01

    Full Text Available Bacterial toxin-antitoxin (TA systems are diverse and widespread in the prokaryotic kingdom. They are composed of closely linked genes encoding a stable toxin that can harm the host cell and its cognate labile antitoxin, which protects the host from the toxin's deleterious effect. TA systems are thought to invade bacterial genomes through horizontal gene transfer. Some TA systems might behave as selfish elements and favour their own maintenance at the expense of their host. As a consequence, they may contribute to the maintenance of plasmids or genomic islands, such as super-integrons, by post-segregational killing of the cell that loses these genes and so suffers the stable toxin's destructive effect. The function of the chromosomally encoded TA systems is less clear and still open to debate. This Review discusses current hypotheses regarding the biological roles of these evolutionarily successful small operons. We consider the various selective forces that could drive the maintenance of TA systems in bacterial genomes.

  1. Botulinum toxin for treatment of the focal dystonia.

    Science.gov (United States)

    Nakamura, Yusaku

    2017-07-29

    Dystonia is defined as a movement disorder characterized by sustained or intermittent muscles contraction causing abnormal, often repetitive, movements, postures, or both. Dystonic movements are typically patterned and twisting, and may be tremulous. The precis diagnosis of dystonia is difficult for physicians because neurological brain imaging does not provide enough practical information. The diagnosis is depend on clinical experience of physicians. Botulinum toxin treatment is the accepted standard of care for patients with focal dystonia. Botulinum toxin treatment results in significant improvement of decreasing the symptom of dystonia. The success of treatment is dependent on muscle selection for treating involved muscles. Usually performance of botulinum toxin treatment is injected according to clinical experience of surface anatomy or clinical location method. However, the benefit of guidance of botulinum toxin treatment is improve outcome in dystonia. Injection techniques with ultra sound echogram or EMG guidance to identify dystonic muscles can be more benefit for patients.

  2. Occurrence and sequestration of toxins in food chains.

    Science.gov (United States)

    Mebs, D

    1998-11-01

    Animals may acquire toxicity by absorbing toxic compounds from their food, e.g. from plants or other animals. Sequestration and accumulation of toxins may provide protection from predators, which learn to avoid this prey because of unpleasant experiences such as bitter taste. This is a common phenomenon in marine as well as in terrestrial ecosystems. Moreover, toxins may enter food chains where they accumulate reaching high, often lethal concentrations. Palytoxin which had been primarily detected in marine zoanthids (Palythoa sp.), occurs also in a wide range of other animals, e.g. in sponges, corals, shellfish, polychaetes and crustaceans, but also in fish, which feed on crustaceans and zoanthids as well. These animals exhibit a high resistance to the toxin's action. The mechanisms which protect the Na+, K+-ATPase of their cell membranes, the primary target of palytoxin, is unknown. Sequestration of the toxin by other animals may cause health problems due to food poisoning.

  3. Botulinum toxin treatment for facial palsy: A systematic review.

    Science.gov (United States)

    Cooper, Lilli; Lui, Michael; Nduka, Charles

    2017-06-01

    Facial palsy may be complicated by ipsilateral synkinesis or contralateral hyperkinesis. Botulinum toxin is increasingly used in the management of facial palsy; however, the optimum dose, treatment interval, adjunct therapy and performance as compared with alternative treatments have not been well established. This study aimed to systematically review the evidence for the use of botulinum toxin in facial palsy. The Cochrane central register of controlled trials (CENTRAL), MEDLINE(R) (1946 to September 2015) and Embase Classic + Embase (1947 to September 2015) were searched for randomised studies using botulinum toxin in facial palsy. Forty-seven studies were identified, and three included. Their physical and patient-reported outcomes are described, and observations and cautions are discussed. Facial asymmetry has a strong correlation to subjective domains such as impairment in social interaction and perception of self-image and appearance. Botulinum toxin injections represent a minimally invasive technique that is helpful in restoring facial symmetry at rest and during movement in chronic, and potentially acute, facial palsy. Botulinum toxin in combination with physical therapy may be particularly helpful. Currently, there is a paucity of data; areas for further research are suggested. A strong body of evidence may allow botulinum toxin treatment to be nationally standardised and recommended in the management of facial palsy. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  4. Special issue: engineering toxins for 21st-century therapies: introduction.

    Science.gov (United States)

    Acharya, K Ravi

    2011-12-01

    This special issue on 'Engineering toxins for 21st century therapies' provides a critical review of the current state of multifaceted aspects of toxin research by some of the leading researchers in the field. It also highlights the clinical potential and challenges for development of novel biologics based on engineered toxin derived products. © 2011 The Author Journal compilation © 2011 FEBS.

  5. Using Common Spatial Distributions of Atoms to Relate Functionally Divergent Influenza Virus N10 and N11 Protein Structures to Functionally Characterized Neuraminidase Structures, Toxin Cell Entry Domains, and Non-Influenza Virus Cell Entry Domains

    Science.gov (United States)

    Weininger, Arthur; Weininger, Susan

    2015-01-01

    The ability to identify the functional correlates of structural and sequence variation in proteins is a critical capability. We related structures of influenza A N10 and N11 proteins that have no established function to structures of proteins with known function by identifying spatially conserved atoms. We identified atoms with common distributed spatial occupancy in PDB structures of N10 protein, N11 protein, an influenza A neuraminidase, an influenza B neuraminidase, and a bacterial neuraminidase. By superposing these spatially conserved atoms, we aligned the structures and associated molecules. We report spatially and sequence invariant residues in the aligned structures. Spatially invariant residues in the N6 and influenza B neuraminidase active sites were found in previously unidentified spatially equivalent sites in the N10 and N11 proteins. We found the corresponding secondary and tertiary structures of the aligned proteins to be largely identical despite significant sequence divergence. We found structural precedent in known non-neuraminidase structures for residues exhibiting structural and sequence divergence in the aligned structures. In N10 protein, we identified staphylococcal enterotoxin I-like domains. In N11 protein, we identified hepatitis E E2S-like domains, SARS spike protein-like domains, and toxin components shared by alpha-bungarotoxin, staphylococcal enterotoxin I, anthrax lethal factor, clostridium botulinum neurotoxin, and clostridium tetanus toxin. The presence of active site components common to the N6, influenza B, and S. pneumoniae neuraminidases in the N10 and N11 proteins, combined with the absence of apparent neuraminidase function, suggests that the role of neuraminidases in H17N10 and H18N11 emerging influenza A viruses may have changed. The presentation of E2S-like, SARS spike protein-like, or toxin-like domains by the N10 and N11 proteins in these emerging viruses may indicate that H17N10 and H18N11 sialidase-facilitated cell

  6. Determination of low tetanus or diphtheria antitoxin titers in sera by a toxin neutralization assay and a modified toxin-binding inhibition test

    Directory of Open Access Journals (Sweden)

    M.H. Sonobe

    2007-01-01

    Full Text Available A method for the screening of tetanus and diphtheria antibodies in serum using anatoxin (inactivated toxin instead of toxin was developed as an alternative to the in vivo toxin neutralization assay based on the toxin-binding inhibition test (TOBI test. In this study, the serum titers (values between 1.0 and 19.5 IU measured by a modified TOBI test (Modi-TOBI test and toxin neutralization assays were correlated (P < 0.0001. Titers of tetanus or diphtheria antibodies were evaluated in serum samples from guinea pigs immunized with tetanus toxoid, diphtheria-tetanus or triple vaccine. For the Modi-TOBI test, after blocking the microtiter plates, standard tetanus or diphtheria antitoxin and different concentrations of guinea pig sera were incubated with the respective anatoxin. Twelve hours later, these samples were transferred to a plate previously coated with tetanus or diphtheria antitoxin to bind the remaining anatoxin. The anatoxin was then detected using a peroxidase-labeled tetanus or diphtheria antitoxin. Serum titers were calculated using a linear regression plot of the results for the corresponding standard antitoxin. For the toxin neutralization assay, L+/10/50 doses of either toxin combined with different concentrations of serum samples were inoculated into mice for anti-tetanus detection, or in guinea pigs for anti-diphtheria detection. Both assays were suitable for determining wide ranges of antitoxin levels. The linear regression plots showed high correlation coefficients for tetanus (r² = 0.95, P < 0.0001 and for diphtheria (r² = 0.93, P < 0.0001 between the in vitro and the in vivo assays. The standardized method is appropriate for evaluating titers of neutralizing antibodies, thus permitting the in vitro control of serum antitoxin levels.

  7. Fidaxomicin Inhibits Clostridium difficile Toxin A-Mediated Enteritis in the Mouse Ileum

    Science.gov (United States)

    Koon, Hon Wai; Ho, Samantha; Hing, Tressia C.; Cheng, Michelle; Chen, Xinhua; Ichikawa, Yoshi; Kelly, Ciarán P.

    2014-01-01

    Clostridium difficile infection (CDI) is a common, debilitating infection with high morbidity and mortality. C. difficile causes diarrhea and intestinal inflammation by releasing two toxins, toxin A and toxin B. The macrolide antibiotic fidaxomicin was recently shown to be effective in treating CDI, and its beneficial effect was associated with fewer recurrent infections in CDI patients. Since other macrolides possess anti-inflammatory properties, we examined the possibility that fidaxomicin alters C. difficile toxin A-induced ileal inflammation in mice. The ileal loops of anesthetized mice were injected with fidaxomicin (5, 10, or 20 μM), and after 30 min, the loops were injected with purified C. difficile toxin A or phosphate-buffered saline alone. Four hours after toxin A administration, ileal tissues were processed for histological evaluation (epithelial cell damage, neutrophil infiltration, congestion, and edema) and cytokine measurements. C. difficile toxin A caused histologic damage, evidenced by increased mean histologic score and ileal interleukin-1β (IL-1β) protein and mRNA expression. Treatment with fidaxomicin (20 μM) or its primary metabolite, OP-1118 (120 μM), significantly inhibited toxin A-mediated histologic damage and reduced the mean histology score and ileal IL-1β protein and mRNA expression. Both fidaxomicin and OP-1118 reduced toxin A-induced cell rounding in human colonic CCD-18Co fibroblasts. Treatment of ileal loops with vancomycin (20 μM) and metronidazole (20 μM) did not alter toxin A-induced histologic damage and IL-1β protein expression. In addition to its well known antibacterial effects against C. difficile, fidaxomicin may possess anti-inflammatory activity directed against the intestinal effects of C. difficile toxins. PMID:24890583

  8. Alpha-Toxin Promotes Mucosal Biofilm Formation by Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Michele J Anderson

    2012-05-01

    Full Text Available Staphylococcus aureus causes numerous diseases in humans ranging from the mild skin infections to serious, life-threatening, superantigen-mediated Toxic Shock Syndrome (TSS. S. aureus may also be asymptomatically carried in the anterior nares, vagina or on the skin, which serve as reservoirs for infection. Pulsed-field gel electrophoresis clonal type USA200 is the most widely disseminated colonizer and a major cause of TSS. Our prior studies indicated that α-toxin was a major epithelial proinflammatory exotoxin produced by TSS S. aureus USA200 isolates. It also facilitated the penetration of TSS Toxin-1 (TSST-1 across vaginal mucosa. However, the majority of menstrual TSS isolates produce low α-toxin due to a nonsense point mutation at codon 113, designated hly, suggesting mucosal adaptation. The aim of this study was to characterize the differences between TSS USA200 strains [high (hla+ and low (hly+ α-toxin producers] in their abilities to infect and disrupt vaginal mucosal tissue. A mucosal model was developed using ex vivo porcine vaginal mucosa, LIVE/DEAD® staining and confocal microscropy to characterize biofilm formation and tissue viability of TSS USA 200 isolates CDC587 and MN8, which contain the α-toxin pseudogene (hly, MNPE (hla+ and MNPE isogenic hla knockout (hlaKO. All TSS strains grew to similar bacterial densities (1-5 x 108 CFU on the mucosa and were proinflammatory over 3 days. However, MNPE formed biofilms with significant reductions in the mucosal viability whereas neither CDC587, MN8 (hly+, or MNPE hlaKO, formed biofilms and were less cytotoxic. The addition of exogenous, purified α-toxin to MNPE hlaKO restored the biofilm phenotype. Our studies suggest α-toxin affects S. aureus phenotypic growth on vaginal mucosa, by promoting tissue disruption and biofilm formation; and α–toxin mutants (hly are not benign colonizers, but rather form a different type of infection, which we have termed high density pathogenic

  9. AdE-1, a new inotropic Na(+) channel toxin from Aiptasia diaphana, is similar to, yet distinct from, known anemone Na(+) channel toxins.

    Science.gov (United States)

    Nesher, Nir; Shapira, Eli; Sher, Daniel; Moran, Yehu; Tsveyer, Liora; Turchetti-Maia, Ana Luiza; Horowitz, Michal; Hochner, Binyamin; Zlotkin, Eliahu

    2013-04-01

    Heart failure is one of the most prevalent causes of death in the western world. Sea anemone contains a myriad of short peptide neurotoxins affecting many pharmacological targets, several of which possess cardiotonic activity. In the present study we describe the isolation and characterization of AdE-1 (ion channel modifier), a novel cardiotonic peptide from the sea anemone Aiptasia diaphana, which differs from other cnidarian toxins. Although AdE-1 has the same cysteine residue arrangement as sea anemone type 1 and 2 Na(+) channel toxins, its sequence contains many substitutions in conserved and essential sites and its overall homology to other toxins identified to date is low (Anemonia viridis toxin II), AdE-1 markedly inhibits Na(+) current inactivation with no significant effect on current activation, suggesting a similar mechanism of action. However, its effects on twitch relaxation velocity, action potential amplitude and on the time to peak suggest that this novel toxin affects cardiomyocyte function via a more complex mechanism. Additionally, Av2's characteristic delayed and early after-depolarizations were not observed. Despite its structural differences, AdE-1 physiologic effectiveness is comparable with Av2 with a similar ED(50) value to blowfly larvae. This finding raises questions regarding the extent of the universality of structure-function in sea anemone Na(+) channel toxins.

  10. Lysionotin attenuates Staphylococcus aureus pathogenicity by inhibiting α-toxin expression.

    Science.gov (United States)

    Teng, Zihao; Shi, Dongxue; Liu, Huanyu; Shen, Ziying; Zha, Yonghong; Li, Wenhua; Deng, Xuming; Wang, Jianfeng

    2017-09-01

    α-Toxin, one of the best known pore-forming proteins produced by Staphylococcus aureus (S. aureus), is a critical virulence factor in multiple infections. The necessity of α-toxin for S. aureus pathogenicity suggests that this toxin is an important target for the development of a potential treatment strategy. In this study, we showed that lysionotin, a natural compound, can inhibit the hemolytic activity of culture supernatants by S. aureus by reducing α-toxin expression. Using real-time PCR analysis, we showed that transcription of hla (the gene encoding α-toxin) and agr (the locus regulating hla) was significantly inhibited by lysionotin. Lactate dehydrogenase and live/dead assays indicated that lysionotin effectively protected human alveolar epithelial cells against S. aureus, and in vivo studies also demonstrated that lysionotin can protect mice from pneumonia caused by S. aureus. These findings suggest that lysionotin is an efficient inhibitor of α-toxin expression and shows significant protection against S. aureus in vitro and in vivo. This study supports a potential strategy for the treatment of S. aureus infection by inhibiting the expression of virulence factors and indicates that lysionotin may be a potential treatment for S. aureus pneumonia.

  11. T-2 Toxin-induced Toxicity in Pregnant Mice and Rats

    Directory of Open Access Journals (Sweden)

    Shinya Sehata

    2008-11-01

    Full Text Available T-2 toxin is a cytotoxic secondary fungal metabolite that belongs to the trichothecene mycotoxin family. This mycotoxin is a well known inhibitor of protein synthesis through its high binding affinity to peptidyl transferase, which is an integral part of the ribosomal 60s subunit, and it also inhibits the synthesis of DNA and RNA, probably secondary to the inhibition of protein synthesis. In addition, T-2 toxin is said to induce apoptosis in many types of cells bearing high proliferating activity. T-2 toxin readily passes the placenta and is distributed to embryo/fetal tissues, which include many component cells bearing high proliferating activity. This paper reviews the reported data related to T-2 toxin-induced maternal and fetal toxicities in pregnant mice and rats. The mechanisms of T-2 toxin-induced apoptosis in maternal and fetal tissues are also discussed in this paper.

  12. Toxins and derivatives in molecular pharmaceutics: Drug delivery and targeted therapy.

    Science.gov (United States)

    Zhan, Changyou; Li, Chong; Wei, Xiaoli; Lu, Wuyuan; Lu, Weiyue

    2015-08-01

    Protein and peptide toxins offer an invaluable source for the development of actively targeted drug delivery systems. They avidly bind to a variety of cognate receptors, some of which are expressed or even up-regulated in diseased tissues and biological barriers. Protein and peptide toxins or their derivatives can act as ligands to facilitate tissue- or organ-specific accumulation of therapeutics. Some toxins have evolved from a relatively small number of structural frameworks that are particularly suitable for addressing the crucial issues of potency and stability, making them an instrumental source of leads and templates for targeted therapy. The focus of this review is on protein and peptide toxins for the development of targeted drug delivery systems and molecular therapies. We summarize disease- and biological barrier-related toxin receptors, as well as targeted drug delivery strategies inspired by those receptors. The design of new therapeutics based on protein and peptide toxins is also discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Prevalence and Toxin Characteristics of Bacillus thuringiensis Isolated from Organic Vegetables.

    Science.gov (United States)

    Kim, Jung-Beom; Choi, Ok-Kyung; Kwon, Sun-Mok; Cho, Seung-Hak; Park, Byung-Jae; Jin, Na Young; Yu, Yong Man; Oh, Deog-Hwan

    2017-08-28

    The prevalence and toxin characteristics of Bacillus thuringiensis isolated from 39 organic vegetables were investigated. B. thuringiensis was detected in 30 out of the 39 organic vegetables (76.9%) with a mean value of 2.60 log CFU/g. Twenty-five out of the 30 B. thuringiensis isolates (83.3%) showed insecticidal toxicity against Spodoptera exigua . The hblCDA, nheABC , and entFM genes were found to be the major toxin genes, but the ces gene was not detected in any of the tested B. thuringiensis isolates. The hemolysin BL enterotoxin was detected in all 30 B. thuringiensis isolates (100%). The non-hemolytic enterotoxin complex was found in 27 out of 30 B. thuringiensis isolates (90.0%). The B. thuringiensis tested in this study had similar toxin gene characteristics to B. cereus , which possessed more than one toxin gene. B. thuringiensis could have the potential risk of foodborne illness based on the toxin genes and toxin-producing ability.

  14. Mechanism of Shiga Toxin Clustering on Membranes

    DEFF Research Database (Denmark)

    Pezeshkian, Weria; Gao, Haifei; Arumugam, Senthil

    2017-01-01

    between them. The precise mechanism by which this clustering occurs remains poorly defined. Here, we used vesicle and cell systems and computer simulations to show that line tension due to curvature, height, or compositional mismatch, and lipid or solvent depletion cannot drive the clustering of Shiga...... toxin molecules. By contrast, in coarse-grained computer simulations, a correlation was found between clustering and toxin nanoparticle-driven suppression of membrane fluctuations, and experimentally we observed that clustering required the toxin molecules to be tightly bound to the membrane surface...... molecules (several nanometers), and persist even beyond. This force is predicted to operate between manufactured nanoparticles providing they are sufficiently rigid and tightly bound to the plasma membrane, thereby suggesting a route for the targeting of nanoparticles to cells for biomedical applications....

  15. Update on botulinum toxin and dermal fillers.

    Science.gov (United States)

    Berbos, Zachary J; Lipham, William J

    2010-09-01

    The art and science of facial rejuvenation is an ever-evolving field of medicine, as evidenced by the continual development of new surgical and nonsurgical treatment modalities. Over the past 10 years, the use of botulinum toxin and dermal fillers for aesthetic purposes has risen sharply. Herein, we discuss properties of several commonly used injectable products and provide basic instruction for their use toward the goal of achieving facial rejuvenation. The demand for nonsurgical injection-based facial rejuvenation products has risen enormously in recent years. Used independently or concurrently, botulinum toxin and dermal filler agents offer an affordable, minimally invasive approach to facial rejuvenation. Botulinum toxin and dermal fillers can be used to diminish facial rhytides, restore facial volume, and sculpt facial contours, thereby achieving an aesthetically pleasing, youthful facial appearance.

  16. Treatment of proctalgia fugax with botulinum A toxin.

    Science.gov (United States)

    Katsinelos, P; Kalomenopoulou, M; Christodoulou, K; Katsiba, D; Tsolkas, P; Pilpilidis, I; Papagiannis, A; Kapitsinis, I; Vasiliadis, I; Souparis, T

    2001-11-01

    Two recent studies described a temporal association between a high-amplitude and high-frequency myoelectrical activity of the anal sphincter and the occurrence of proctalgia, which suggest that paroxysmal hyperkinesis of the anus may cause proctalgia fugax. We describe a single case of proctalgia fugax responding to anal sphincter injection of Clostridium botulinum type A toxin. The presumed aetiology of proctalgia fugax is discussed and the possible mechanism of action of botulinum toxin (BTX) in this condition is outlined. Botulinum A toxin seems to be a promising treatment for patients with proctalgia fugax, and further trials appear to be worthwhile for this condition, which has been described as incurable.

  17. Nanoporous biomaterials for uremic toxin adsorption in artificial kidney systems: A review.

    Science.gov (United States)

    Cheah, Wee-Keat; Ishikawa, Kunio; Othman, Radzali; Yeoh, Fei-Yee

    2017-07-01

    Hemodialysis, one of the earliest artificial kidney systems, removes uremic toxins via diffusion through a semipermeable porous membrane into the dialysate fluid. Miniaturization of the present hemodialysis system into a portable and wearable device to maintain continuous removal of uremic toxins would require that the amount of dialysate used within a closed-system is greatly reduced. Diffused uremic toxins within a closed-system dialysate need to be removed to maintain the optimum concentration gradient for continuous uremic toxin removal by the dialyzer. In this dialysate regenerative system, adsorption of uremic toxins by nanoporous biomaterials is essential. Throughout the years of artificial kidney development, activated carbon has been identified as a potential adsorbent for uremic toxins. Adsorption of uremic toxins necessitates nanoporous biomaterials, especially activated carbon. Nanoporous biomaterials are also utilized in hemoperfusion for uremic toxin removal. Further miniaturization of artificial kidney system and improvements on uremic toxin adsorption capacity would require high performance nanoporous biomaterials which possess not only higher surface area, controlled pore size, but also designed architecture or structure and surface functional groups. This article reviews on various nanoporous biomaterials used in current artificial kidney systems and several emerging nanoporous biomaterials. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1232-1240, 2017. © 2016 Wiley Periodicals, Inc.

  18. Clostridium botulinum C2 toxin. Identification of the binding site for chloroquine and related compounds and influence of the binding site on properties of the C2II channel.

    Science.gov (United States)

    Neumeyer, Tobias; Schiffler, Bettina; Maier, Elke; Lang, Alexander E; Aktories, Klaus; Benz, Roland

    2008-02-15

    Clostridium botulinum C2 toxin belongs to the family of binary AB type toxins that are structurally organized into distinct enzyme (A, C2I) and binding (B, C2II) components. The proteolytically activated 60-kDa C2II binding component is essential for C2I transport into target cells. It oligomerizes into heptamers and forms channels in lipid bilayer membranes. The C2II channel is cation-selective and can be blocked by chloroquine and related compounds. Residues 303-330 of C2II contain a conserved pattern of alternating hydrophobic and hydrophilic residues, which has been implicated in the formation of two amphipathic beta-strands involved in membrane insertion and channel formation. In the present study, C2II mutants created by substitution of different negatively charged amino acids by alanine-scanning mutagenesis were analyzed in artificial lipid bilayer membranes. The results suggested that most of the C2II mutants formed SDS-resistant oligomers (heptamers) similar to wild type. The mutated negatively charged amino acids did not influence channel properties with the exception of Glu(399) and Asp(426), which are probably localized in the vestibule near the channel entrance. These mutants show a dramatic decrease in their affinity for binding of chloroquine and its analogues. Similarly, F428A, which represents the Phi-clamp in anthrax protective antigen, was mutated in C2II in several other amino acids. The C2II mutants F428A, F428D, F428Y, and F428W not only showed altered chloroquine binding but also had drastically changed single channel properties. The results suggest that amino acids Glu(399), Asp(426), and Phe(428) have a major impact on the function of C2II as a binding protein for C2I delivery into target cells.

  19. Addressing the Federal-State-Local Interface Issues During a Catastrophic Event Such as an Anthrax Attack

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Steven L.; Lesperance, Ann M.; Upton, Jaki F.

    2010-02-01

    On October 9, 2008, federal, state and local policy makers, emergency managers, and medical and public health officials convened in Seattle, Washington, for a workshop on Addressing the Federal-State-Local Interface Issues During a Catastrophic Event Such as an Anthrax Attack. The day-long symposium was aimed at generating a dialogue about recovery and restoration through a discussion of the associated challenges that impact entire communities, including people, infrastructure, and critical systems. The Principal Federal Official (PFO) provided an overview of the role of the PFO in a catastrophic event. A high-level summary of an anthrax scenario was presented. The remainder of the day was focused on interactive discussions among federal, state and local emergency management experts in the areas of: • Decision-making, prioritization, and command and control • Public health/medical services • Community resiliency and continuity of government. Key topics and issues that resulted from discussions included: • Local representation in the Joint Field Office (JFO) • JFO transition to the Long-Term Recovery Office • Process for prioritization of needs • Process for regional coordination • Prioritization - process and federal/military intervention • Allocation of limited resources • Re-entry decision and consistency • Importance of maintaining a healthy hospital system • Need for a process to establish a consensus on when it is safe to re-enter. This needs to be across all jurisdictions including the military. • Insurance coverage for both private businesses and individuals • Interaction between the government and industry. The symposium was sponsored by the Interagency Biological Restoration Demonstration, a collaborative regional program jointly funded by the U.S. Department of Homeland Security and the U.S. Department of Defense. To aid the program’s efforts and inform the development of blueprint for recovery from a biological incident

  20. Potency of a human monoclonal antibody to diphtheria toxin relative to equine diphtheria anti-toxin in a guinea pig intoxication model.

    Science.gov (United States)

    Smith, Heidi L; Cheslock, Peter; Leney, Mark; Barton, Bruce; Molrine, Deborah C

    2016-08-17

    Prompt administration of anti-toxin reduces mortality following Corynebacterium diphtheriae infection. Current treatment relies upon equine diphtheria anti-toxin (DAT), with a 10% risk of serum sickness and rarely anaphylaxis. The global DAT supply is extremely limited; most manufacturers have ceased production. S315 is a neutralizing human IgG1 monoclonal antibody to diphtheria toxin that may provide a safe and effective alternative to equine DAT and address critical supply issues. To guide dose selection for IND-enabling pharmacology and toxicology studies, we dose-ranged S315 and DAT in a guinea pig model of diphtheria intoxication based on the NIH Minimum Requirements potency assay. Animals received a single injection of antibody premixed with toxin, were monitored for 30 days, and assigned a numeric score for clinical signs of disease. Animals receiving ≥ 27.5 µg of S315 or ≥ 1.75 IU of DAT survived whereas animals receiving ≤ 22.5 µg of S315 or ≤ 1.25 IU of DAT died, yielding a potency estimate of 17 µg S315/IU DAT (95% CI 16-21) for an endpoint of survival. Because some surviving animals exhibited transient limb weakness, likely a systemic sign of toxicity, DAT and S315 doses required to prevent hind limb paralysis were also determined, yielding a relative potency of 48 µg/IU (95% CI 38-59) for this alternate endpoint. To support advancement of S315 into clinical trials, potency estimates will be used to evaluate the efficacy of S315 versus DAT in an animal model with antibody administration after toxin exposure, more closely modeling anti-toxin therapy in humans.

  1. Association of Bordetella dermonecrotic toxin with the extracellular matrix

    Directory of Open Access Journals (Sweden)

    Miyake Masami

    2010-09-01

    Full Text Available Abstract Background Bordetella dermonecrotic toxin (DNT causes the turbinate atrophy in swine atrophic rhinitis, caused by a Bordetella bronchiseptica infection of pigs, by inhibiting osteoblastic differentiation. The toxin is not actively secreted from the bacteria, and is presumed to be present in only small amounts in infected areas. How such small amounts can affect target tissues is unknown. Results Fluorescence microscopy revealed that DNT associated with a fibrillar structure developed on cultured cells. A cellular component cross-linked with DNT conjugated with a cross-linker was identified as fibronectin by mass spectrometry. Colocalization of the fibronectin network on the cells with DNT was also observed by fluorescence microscope. Several lines of evidence suggested that DNT interacts with fibronectin not directly, but through another cellular component that remains to be identified. The colocalization was observed in not only DNT-sensitive cells but also insensitive cells, indicating that the fibronectin network neither serves as a receptor for the toxin nor is involved in the intoxicating procedures. The fibronectin network-associated toxin was easily liberated when the concentration of toxin in the local environment decreased, and was still active. Conclusions Components in the extracellular matrix are known to regulate activities of various growth factors by binding and liberating them in response to alterations in the extracellular environment. Similarly, the fibronectin-based extracellular matrix may function as a temporary storage system for DNT, enabling small amounts of the toxin to efficiently affect target tissues or cells.

  2. Antiradiation Vaccine: Immunological neutralization of Radiation Toxins at Acute Radiation Syndromes.

    Science.gov (United States)

    Popov, Dmitri; Maliev, Slava

    Introduction: Current medical management of the Acute Radiation Syndromes (ARS) does not include immune prophylaxis based on the Antiradiation Vaccine. Existing principles for the treatment of acute radiation syndromes are based on the replacement and supportive therapy. Haemotopoietic cell transplantation is recomended as an important method of treatment of a Haemopoietic form of the ARS. Though in the different hospitals and institutions, 31 pa-tients with a haemopoietic form have previously undergone transplantation with stem cells, in all cases(100%) the transplantants were rejected. Lethality rate was 87%.(N.Daniak et al. 2005). A large amount of biological substances or antigens isolated from bacterias (flagellin and derivates), plants, different types of venom (honeybees, scorpions, snakes) have been studied. This biological active substances can produce a nonspecific stimulation of immune system of mammals and protect against of mild doses of irradiation. But their radioprotection efficacy against high doses of radiation were not sufficient. Relative radioprotection characteristics or adaptive properties of antioxidants were expressed only at mild doses of radiation. However antioxidants demonstrated a very low protective efficacy at high doses of radiation. Some ex-periments demonstrated even a harmful effect of antioxidants administered to animals that had severe forms of the ARS. Only Specific Radiation Toxins roused a specific antigenic stim-ulation of antibody synthesis. An active immunization by non-toxic doses of radiation toxins includes a complex of radiation toxins that we call the Specific Radiation Determinant (SRD). Immunization must be provided not less than 24 days before irradiation and it is effective up to three years and more. Active immunization by radiation toxins significantly reduces the mortality rate (100%) and improves survival rate up to 60% compare with the 0% sur-vival rate among the irradiated animals in control groups

  3. Alternaria Toxins: Potential Virulence Factors and Genes Related to Pathogenesis

    Directory of Open Access Journals (Sweden)

    Mukesh Meena

    2017-08-01

    Full Text Available Alternaria is an important fungus to study due to their different life style from saprophytes to endophytes and a very successful fungal pathogen that causes diseases to a number of economically important crops. Alternaria species have been well-characterized for the production of different host-specific toxins (HSTs and non-host specific toxins (nHSTs which depend upon their physiological and morphological stages. The pathogenicity of Alternaria species depends on host susceptibility or resistance as well as quantitative production of HSTs and nHSTs. These toxins are chemically low molecular weight secondary metabolites (SMs. The effects of toxins are mainly on different parts of cells like mitochondria, chloroplast, plasma membrane, Golgi complex, nucleus, etc. Alternaria species produce several nHSTs such as brefeldin A, tenuazonic acid, tentoxin, and zinniol. HSTs that act in very low concentrations affect only certain plant varieties or genotype and play a role in determining the host range of specificity of plant pathogens. The commonly known HSTs are AAL-, AK-, AM-, AF-, ACR-, and ACT-toxins which are named by their host specificity and these toxins are classified into different family groups. The HSTs are differentiated on the basis of bio-statistical and other molecular analyses. All these toxins have different mode of action, biochemical reactions and signaling mechanisms to cause diseases. Different species of Alternaria produced toxins which reveal its biochemical and genetic effects on itself as well as on its host cells tissues. The genes responsible for the production of HSTs are found on the conditionally dispensable chromosomes (CDCs which have been well characterized. Different bio-statistical methods like basic local alignment search tool (BLAST data analysis used for the annotation of gene prediction, pathogenicity-related genes may provide surprising knowledge in present and future.

  4. MHC Class II and Non-MHC Class II Genes Differentially Influence Humoral Immunity to Bacillus anthracis Lethal Factor and Protective Antigen

    OpenAIRE

    Garman, Lori; Dumas, Eric K.; Kurella, Sridevi; Hunt, Jonathan J.; Crowe, Sherry R.; Nguyen, Melissa L.; Cox, Philip M.; James, Judith A.; Farris, A. Darise

    2012-01-01

    Anthrax Lethal Toxin consists of Protective Antigen (PA) and Lethal Factor (LF), and current vaccination strategies focus on eliciting antibodies to PA. In human vaccination, the response to PA can vary greatly, and the response is often directed toward non-neutralizing epitopes. Variable vaccine responses have been shown to be due in part to genetic differences in individuals, with both MHC class II and other genes playing roles. Here, we investigated the relative contribution of MHC class I...

  5. Crystal structure of Bacillus anthracis virulence regulator AtxA and effects of phosphorylated histidines on multimerization and activity

    OpenAIRE

    Hammerstrom, Troy G.; Horton, Lori B.; Swick, Michelle C.; Joachimiak, Andrzej; Osipiuk, Jerzy; Koehler, Theresa M.

    2014-01-01

    The Bacillus anthracis virulence regulator AtxA controls transcription of the anthrax toxin genes and capsule biosynthesis operon. AtxA activity is elevated during growth in media containing glucose and CO2/bicarbonate, and there is a positive correlation between the CO2/bicarbonate signal, AtxA activity, and homomultimerization. AtxA activity is also affected by phosphorylation at specific histidines. We show that AtxA crystallizes as a dimer. Distinct folds associated with predicted DNA-bin...

  6. Securing Nuclear and Radiological Material in the Homeland

    Science.gov (United States)

    2007-03-01

    Gorge in order to continue efforts to produce anthrax bacteria, ricin, and botulinum toxin. 3- Jan -05 French Government “Al-Qaeda Made Biological...claim that the amount of uranium was insufficient for the construction of a nuclear device. 25- Jan -04 German government Craig Whitlock, “Germnay...Mass Destruction and Al- Qa’ida,” Al- Akhbar (Cairo),18 January 2004. 1/23/2004 Chemical U.S. forces found 3kg of cyanide at the Baghdad house of

  7. Vth Pan American Symposium on Animal, Plant and Microbial Toxins

    National Research Council Canada - National Science Library

    Ownby, Charlotte

    1996-01-01

    .... Presentations on arthropod toxins included work on scorpion neurotoxins, K+ channel-blocking peptides, lice and wasp proteins, stinging insect venom allergens and Australian funnel-web spider toxins...

  8. K2 killer toxin-induced physiological changes in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Orentaite, Irma; Poranen, Minna M; Oksanen, Hanna M; Daugelavicius, Rimantas; Bamford, Dennis H

    2016-03-01

    Saccharomyces cerevisiae cells produce killer toxins, such as K1, K2 and K28, that can modulate the growth of other yeasts giving advantage for the killer strains. Here we focused on the physiological changes induced by K2 toxin on a non-toxin-producing yeast strain as well as K1, K2 and K28 killer strains. Potentiometric measurements were adjusted to observe that K2 toxin immediately acts on the sensitive cells leading to membrane permeability. This correlated with reduced respiration activity, lowered intracellular ATP content and decrease in cell viability. However, we did not detect any significant ATP leakage from the cells treated by killer toxin K2. Strains producing heterologous toxins K1 and K28 were less sensitive to K2 than the non-toxin producing one suggesting partial cross-protection between the different killer systems. This phenomenon may be connected to the observed differences in respiratory activities of the killer strains and the non-toxin-producing strain at low pH. This might also have practical consequences in wine industry; both as beneficial ones in controlling contaminating yeasts and non-beneficial ones causing sluggish fermentation. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Toxin studies using an integrated biophysical and structural biology approach.

    Energy Technology Data Exchange (ETDEWEB)

    Last, Julie A.; Schroeder, Anne E.; Slade, Andrea Lynn; Sasaki, Darryl Yoshio; Yip, Christopher M. (University of Toronto, Toronto, Ontario, Canada); Schoeniger, Joseph S. (Sandia National Laboratories, Livermore, CA)

    2005-03-01

    Clostridial neurotoxins, such as botulinum and tetanus, are generally thought to invade neural cells through a process of high affinity binding mediated by gangliosides, internalization via endosome formation, and subsequent membrane penetration of the catalytic domain activated by a pH drop in the endosome. This surface recognition and internalization process is still not well understood with regard to what specific membrane features the toxins target, the intermolecular interactions between bound toxins, and the molecular conformational changes that occur as a result of pH lowering. In an effort to elucidate the mechanism of tetanus toxin binding and permeation through the membrane a simple yet representative model was developed that consisted of the ganglioside G{sub tlb} incorporated in a bilayer of cholesterol and DPPC (dipalmitoylphosphatidyl choline). The bilayers were stable over time yet sensitive towards the binding and activity of whole toxin. A liposome leakage study at constant pH as well as with a pH gradient, to mimic the processes of the endosome, was used to elucidate the effect of pH on the toxin's membrane binding and permeation capability. Topographic imaging of the membrane surface, via in situ tapping mode AFM, provided nanoscale characterization of the toxin's binding location and pore formation activity.

  10. Regulating Toxin-Antitoxin Expression: Controlled Detonation of Intracellular Molecular Timebombs

    Directory of Open Access Journals (Sweden)

    Finbarr Hayes

    2014-01-01

    Full Text Available Genes for toxin-antitoxin (TA complexes are widely disseminated in bacteria, including in pathogenic and antibiotic resistant species. The toxins are liberated from association with the cognate antitoxins by certain physiological triggers to impair vital cellular functions. TAs also are implicated in antibiotic persistence, biofilm formation, and bacteriophage resistance. Among the ever increasing number of TA modules that have been identified, the most numerous are complexes in which both toxin and antitoxin are proteins. Transcriptional autoregulation of the operons encoding these complexes is key to ensuring balanced TA production and to prevent inadvertent toxin release. Control typically is exerted by binding of the antitoxin to regulatory sequences upstream of the operons. The toxin protein commonly works as a transcriptional corepressor that remodels and stabilizes the antitoxin. However, there are notable exceptions to this paradigm. Moreover, it is becoming clear that TA complexes often form one strand in an interconnected web of stress responses suggesting that their transcriptional regulation may prove to be more intricate than currently understood. Furthermore, interference with TA gene transcriptional autoregulation holds considerable promise as a novel antibacterial strategy: artificial release of the toxin factor using designer drugs is a potential approach to induce bacterial suicide from within.

  11. Two enzymes involved in biosynthesis of the host-selective phytotoxin HC-toxin

    International Nuclear Information System (INIS)

    Walton, J.D.

    1987-01-01

    Cochliobolus carbonum race 1 produces a cyclic tetrapeptide HC-toxin, which is necessary for its exceptional virulence on certain varieties of maize. Previous genetic analysis of HC-toxin production by the fungus has indicated that a single genetic locus controls HC-toxin production. Enzymes involved in the biosynthesis of HC-toxin have been sought by following the precedents established for the biosynthetic enzymes of cyclic peptide antibiotics. Two enzymatic activities from C. carbonum race 1 were found, a D-alanine- and an L-proline-dependent ATP/PP/sub i/ exchange, which by biochemical and genetic criteria were shown to be involved in the biosynthesis of HC-toxin. These two activities were present in all tested race 1 isolates of C. carbonum, which produce HC-toxin, and in none of the tested race 2 and race 3 isolates, which do not produce the toxin. In a genetic cross between two isolates of C. carbonum differing at the tox locus, all tox + progeny had both activities, and all tox - progeny lacked both activities

  12. Recent advances in the medicinal chemistry of polyamine toxins

    DEFF Research Database (Denmark)

    Strømgaard, K; Andersen, K; Krogsgaard-Larsen, P

    2001-01-01

    This review describes the recent developments in the field of polyamine toxins, with focus on structure activity relationship investigations, including studies of importance of the polyamine moiety for biological activity, photolabeling studies using polyamine toxins as templates, as well as use ...

  13. An insecticidal toxin from Nephila clavata spider venom.

    Science.gov (United States)

    Jin, Lin; Fang, Mingqian; Chen, Mengrou; Zhou, Chunling; Ombati, Rose; Hakim, Md Abdul; Mo, Guoxiang; Lai, Ren; Yan, Xiuwen; Wang, Yumin; Yang, Shilong

    2017-07-01

    Spiders are the most successful insect predators given that they use their venom containing insecticidal peptides as biochemical weapons for preying. Due to the high specificity and potency of peptidic toxins, discoveries of insecticidal toxins from spider venom have provided an opportunity to obtain natural compounds for agricultural applications without affecting human health. In this study, a novel insecticidal toxin (μ-NPTX-Nc1a) was identified and characterized from the venom of Nephila clavata. Its primary sequence is GCNPDCTGIQCGWPRCPGGQNPVMDKCVSCCPFCPPKSAQG which was determined by automated Edman degradation, cDNA cloning, and MS/MS analysis. BLAST search indicated that Nc1a shows no similarity with known peptides or proteins, indicating that Nc1a belongs to a novel family of insecticidal peptide. Nc1a displayed inhibitory effects on Na V and K V channels in cockroach dorsal unpaired median neurons. The median lethal dose (LD50) of Nc1a on cockroach was 573 ng/g. Herein, a study that identifies a novel insecticidal toxin, which can be a potential candidate and/or template for the development of bioinsecticides, is presented.

  14. Development of a recombinant toxin fragment vaccine for Clostridium difficile infection.

    Science.gov (United States)

    Karczewski, Jerzy; Zorman, Julie; Wang, Su; Miezeiewski, Matthew; Xie, Jinfu; Soring, Keri; Petrescu, Ioan; Rogers, Irene; Thiriot, David S; Cook, James C; Chamberlin, Mihaela; Xoconostle, Rachel F; Nahas, Debbie D; Joyce, Joseph G; Bodmer, Jean-Luc; Heinrichs, Jon H; Secore, Susan

    2014-05-19

    Clostridium difficile infection (CDI) is the major cause of antibiotic-associated diarrhea and pseudomembranous colitis, a disease associated with significant morbidity and mortality. The disease is mostly of nosocomial origin, with elderly patients undergoing anti-microbial therapy being particularly at risk. C. difficile produces two large toxins: Toxin A (TcdA) and Toxin B (TcdB). The two toxins act synergistically to damage and impair the colonic epithelium, and are primarily responsible for the pathogenesis associated with CDI. The feasibility of toxin-based vaccination against C. difficile is being vigorously investigated. A vaccine based on formaldehyde-inactivated Toxin A and Toxin B (toxoids) was reported to be safe and immunogenic in healthy volunteers and is now undergoing evaluation in clinical efficacy trials. In order to eliminate cytotoxic effects, a chemical inactivation step must be included in the manufacturing process of this toxin-based vaccine. In addition, the large-scale production of highly toxic antigens could be a challenging and costly process. Vaccines based on non-toxic fragments of genetically engineered versions of the toxins alleviate most of these limitations. We have evaluated a vaccine assembled from two recombinant fragments of TcdB and explored their potential as components of a novel experimental vaccine against CDI. Golden Syrian hamsters vaccinated with recombinant fragments of TcdB combined with full length TcdA (Toxoid A) developed high titer IgG responses and potent neutralizing antibody titers. We also show here that the recombinant vaccine protected animals against lethal challenge with C. difficile spores, with efficacy equivalent to the toxoid vaccine. The development of a two-segment recombinant vaccine could provide several advantages over toxoid TcdA/TcdB such as improvements in manufacturability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Strong Antibody Responses Induced by Protein Antigens Conjugated onto the Surface of Lecithin-Based Nanoparticles

    Science.gov (United States)

    Sloat, Brian R.; Sandoval, Michael A.; Hau, Andrew M.; He, Yongqun; Cui, Zhengrong

    2009-01-01

    An accumulation of research over the years has demonstrated the utility of nanoparticles as antigen carriers with adjuvant activity. Herein we defined the adjuvanticity of a novel lecithin-based nanoparticle engineered from emulsions. The nanoparticles were spheres of around 200 nm. Model protein antigens, bovine serum albumin (BSA) or Bacillus anthracis protective antigen (PA) protein, were covalently conjugated onto the nanoparticles. Mice immunized with the BSA-conjugated nanoparticles developed strong anti-BSA antibody responses comparable to that induced by BSA adjuvanted with incomplete Freund's adjuvant and 6.5-fold stronger than that induced by BSA adsorbed onto aluminum hydroxide. Immunization of mice with the PA-conjugated nanoparticles elicited a quick, strong, and durable anti-PA antibody response that afforded protection of the mice against a lethal dose of anthrax lethal toxin challenge. The potent adjuvanticity of the nanoparticles was likely due to their ability to move the antigens into local draining lymph nodes, to enhance the uptake of the antigens by antigen-presenting cells (APCs), and to activate APCs. This novel nanoparticle system has the potential to serve as a universal protein-based vaccine carrier capable of inducing strong immune responses. PMID:19729045

  16. Changes in intestinal fluid and mucosal immune responses to cholera toxin in Giardia muris infection and binding of cholera toxin to Giardia muris trophozoites.

    Science.gov (United States)

    Ljungström, I; Holmgren, J; Svennerholm, A M; Ferrante, A

    1985-10-01

    The effect of Giardia muris infection on the diarrheal response and gut mucosal antibody response to cholera toxin was examined in mice. The results obtained showed that the fluid accumulation in intestinal loops exposed to cholera toxin was increased in mice infected with a low number (5 X 10(4) ) of G. muris cysts compared with the response in noninfected mice. This effect was associated with a marked reduction in absorption of oral rehydration fluid from the intestine. In contrast, mice infected with a high dose (2 X 10(5) ) of cysts showed a marked decrease in fluid accumulation in response to the toxin. This decrease might be related to the finding that both G. muris and Giardia lamblia trophozoites can bind significant amounts of cholera toxin. Evidence is presented which suggests that the gut mucosal antibody response, mainly immunoglobulin A but also immunoglobulin G, to an immunization course with perorally administered cholera toxin was depressed in mice infected with G. muris. The reduction in antibody levels was particularly evident when the primary immunization was made very early after infection. The serum antitoxin antibodies to the oral immunization with cholera toxin were, however, not affected. Likewise, the delayed-type hypersensitivity response against sheep erythrocytes in animals primed subcutaneously with sheep erythrocytes was not modified during the course of G. muris infection.

  17. The cytolethal distending toxin contributes to microbial virulence and disease pathogenesis by acting as a tri-perditious toxin

    Directory of Open Access Journals (Sweden)

    Monika D Scuron

    2016-12-01

    Full Text Available This review summarizes the current status and recent advances in our understanding of the role that the cytolethal distending toxin (Cdt plays as a virulence factor in promoting disease by toxin-producing pathogens. A major focus of this review is on the relationship between structure and function of the individual subunits that comprise the AB2 Cdt holotoxin. In particular, we concentrate on the molecular mechanisms that characterize this toxin and which account for the ability of Cdt to intoxicate multiple cell types by utilizing a ubiquitous binding partner on the cell membrane. Furthermore, we propose a paradigm shift for the molecular mode of action by which the active Cdt subunit, CdtB, is able to block a key signaling cascade and thereby lead to outcomes based upon programming and the role of the phosphatidylinositol 3-kinase (PI-3K in a variety of cells. Based upon the collective Cdt literature, we now propose that Cdt is a unique and potent virulence factor capable of acting as a tri-perditious toxin that impairs host defenses by: 1 disrupting epithelial barriers; 2 suppressing acquired immunity; 3 promoting pro-inflammatory responses. Thus Cdt plays a key role in facilitating the early stages of infection and the later stages of disease progression by contributing to persistence and impairing host elimination.

  18. Analysis of the mechanisms that underlie absorption of botulinum toxin by the inhalation route.

    Science.gov (United States)

    Al-Saleem, Fetweh H; Ancharski, Denise M; Joshi, Suresh G; Elias, M; Singh, Ajay; Nasser, Zidoon; Simpson, Lance L

    2012-12-01

    Botulinum toxin is a highly potent oral and inhalation poison, which means that the toxin must have an efficient mechanism for penetration of epithelial barriers. To date, three models for toxin passage across epithelial barriers have been proposed: (i) the toxin itself undergoes binding and transcytosis; (ii) an auxiliary protein, HA35, transports toxin from the apical to the basal side of epithelial cells; and (iii) an auxiliary protein, HA35, acts on the basal side of epithelial cells to disrupt tight junctions, and this permits paracellular flux of toxin. These models were evaluated by studying toxin absorption following inhalation exposure in mice. Three types of experiments were conducted. In the first, the potency of pure neurotoxin was compared with that of progenitor toxin complex, which contains HA35. The results showed that the rate and extent of toxin absorption, as well as the potency of absorbed toxin, did not depend upon, nor were they enhanced by, the presence of HA35. In the second type of experiment, the potencies of pure neurotoxin and progenitor toxin complex were compared in the absence or presence of antibodies on the apical side of epithelial cells. Antibodies directed against the neurotoxin protected against challenge, but antibodies against HA35 did not. In the final type of experiment, the potency of pure neurotoxin and toxin complex was compared in animals pretreated to deliver antibodies to the basal side of epithelial cells. Once again, antibodies directed against the neurotoxin provided resistance to challenge, but antibodies directed against HA35 did not. Taken collectively, the data indicate that the toxin by itself is capable of crossing epithelial barriers. The data do not support any hypothesis in which HA35 is essential for toxin penetration of epithelial barriers.

  19. Guidelines for safe handling of toxins. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Szilagyi, M.

    1995-11-01

    Toxins are highly toxic chemicals which cause illness through all routes of entry into the body. This technical note has been prepared to ensure that preparation, handling, and disposal of toxins does not constitute a greater occupational hazard than is necessary. It includes hazards that may be encountered and the precautions that should be taken against such hazards.

  20. Detection of Shiga toxins genes by Multiplex PCR in clinical samples

    Directory of Open Access Journals (Sweden)

    2013-09-01

    Full Text Available Background: Different methods have been used for detection of shiga toxins; such as,  cell culture, ELISA, and RFPLA. However, all of these methods suffer from high cost, time-consumption and relatively low sensitivity. In this study we used Multiplex PCR method for detection of genes encoding shiga toxins. Material and Methods: In this study, 63 clinical samples were obtained from positive cultures of Shigella and E. coli O157, from Bahman 1391 until Ordibehesht 1392 in Mazandaran province. Initial confirmation of shiga toxins producing bacteria was performed by biochemical and serological methods. After DNA extraction, detection of stx1 and stx2 genes was accomplished by multiplex PCR.  For confirmation of the PCR amplicon, DNA sequencing was used. Antibiotic sensitivity tests were performed by disk diffusion method. Results:  Among the positive strains, 13 strains contained stx2 genes, 4 strains contained Stx/Stx1 genes and 4 strains harbored both Stx/Stx1 and Stx2. The DNA extracted from other Gram-negative bacteria was not protected by the relevant parts of these toxins. Sequencing of the amplified fragments indicated the correct toxin sequences.  The sensitivity for identification of Stx/Stx1 gene was 1.56 pg/ µl and for Stx2 was 1.08 pg/µl. The toxin positive strains were all sensitive to Cefixime, Gentamicin, Amikacin, Ceftriaxone, and Nitrofurantoin. Conclusion: This method is fast and accurate for detection of bacteria producing shiga toxin and can be used to identify different types of shiga toxin.

  1. Technical Report for DE-FG02-03ER46029 Sugar-Coated PPEs, Novel Nanomaterials and Sensing Modules for Disease and Bioterrorism Related Threats

    Energy Technology Data Exchange (ETDEWEB)

    Uwe Bunz

    2003-08-27

    The detection and sensing of biological warfare agents (Ricin, Anthrax toxin), of disease agents (cholera, botulinum and tetanus toxins, influenza virus etc) and of biologically active species is important for national security and disease control. A premiere goal would be the simple colorimetric or fluorimetric detection of such toxins by a dipstick test. It would be desirable to sense 5,000-10,000 toxin molecules, i.e. 10-100 fg of a toxin contained 1-5 mL of sample. Fluorescent conjugated polymers should be particularly interesting in this regard, because they can carry multiple identical and/or different recognition units. Such an approach is particularly valuable for the detection of lectin toxins, because these bind to oligomeric carbohydrate displays. Lectins bind multivalently to sugars, i.e. several covalently connected sugar moieties have to be exposed to the lectin at the same time to obtain binding. The requirement of multivalency of the lectin-sugar interactions should allow a very sensitive detection of lectins with sugar coated conjugated polymers in an agglutination type assay, where the fluorescence of the PPEs disappears upon binding to the lectins. High molecular weights of the used PPEs would mean high sensitivity. Herein we present our progress towards that goal up to date.

  2. Diversification of Type VI Secretion System Toxins Reveals Ancient Antagonism among Bee Gut Microbes

    Directory of Open Access Journals (Sweden)

    Margaret I. Steele

    2017-12-01

    Full Text Available Microbial communities are shaped by interactions among their constituent members. Some Gram-negative bacteria employ type VI secretion systems (T6SSs to inject protein toxins into neighboring cells. These interactions have been theorized to affect the composition of host-associated microbiomes, but the role of T6SSs in the evolution of gut communities is not well understood. We report the discovery of two T6SSs and numerous T6SS-associated Rhs toxins within the gut bacteria of honey bees and bumble bees. We sequenced the genomes of 28 strains of Snodgrassella alvi, a characteristic bee gut microbe, and found tremendous variability in their Rhs toxin complements: altogether, these strains appear to encode hundreds of unique toxins. Some toxins are shared with Gilliamella apicola, a coresident gut symbiont, implicating horizontal gene transfer as a source of toxin diversity in the bee gut. We use data from a transposon mutagenesis screen to identify toxins with antibacterial function in the bee gut and validate the function and specificity of a subset of these toxin and immunity genes in Escherichia coli. Using transcriptome sequencing, we demonstrate that S. alvi T6SSs and associated toxins are upregulated in the gut environment. We find that S. alvi Rhs loci have a conserved architecture, consistent with the C-terminal displacement model of toxin diversification, with Rhs toxins, toxin fragments, and cognate immunity genes that are expressed and confer strong fitness effects in vivo. Our findings of T6SS activity and Rhs toxin diversity suggest that T6SS-mediated competition may be an important driver of coevolution within the bee gut microbiota.

  3. Higher-Order Structure in Bacterial VapBC Toxin-Antitoxin Complexes

    DEFF Research Database (Denmark)

    Bendtsen, Kirstine L; Brodersen, Ditlev E

    2017-01-01

    Toxin-antitoxin systems are widespread in the bacterial kingdom, including in pathogenic species, where they allow rapid adaptation to changing environmental conditions through selective inhibition of key cellular processes, such as DNA replication or protein translation. Under normal growth...... that allow auto-regulation of transcription by direct binding to promoter DNA. In this chapter, we review our current understanding of the structural characteristics of type II toxin-antitoxin complexes in bacterial cells, with a special emphasis on the staggering variety of higher-order architecture...... conditions, type II toxins are inhibited through tight protein-protein interaction with a cognate antitoxin protein. This toxin-antitoxin complex associates into a higher-order macromolecular structure, typically heterotetrameric or heterooctameric, exposing two DNA binding domains on the antitoxin...

  4. ADP-ribosylation of membrane components by pertussis and cholera toxin

    International Nuclear Information System (INIS)

    Ribeiro-Neto, F.A.P.; Mattera, F.; Hildebrandt, J.D.; Codina, J.; Field, J.B.; Birnbaumer, L.; Sekura, R.D.

    1985-01-01

    Pertussis and cholera toxins are important tools to investigate functional and structural aspects of the stimulatory (N/sub s/) and inhibitory (N/sub i/) regulatory components of adenylyl cyclase. Cholera toxin acts on N/sub s/ by ADP-ribosylating its α/sub s/ subunit; pertussis toxin acts on N/sub i/ by ADP-ribosylating its α; subunit. By using [ 32 P]NAD + and determining the transfer of its [ 32 P]ADP-ribose moiety to membrane components, it is possible to obtain information on N/sub s/ and N/sub i/. A set of protocols is presented that can be used to study simultaneously and comparatively the susceptibility of N/sub s/ and N/sub i/ to be ADP-ribosylated by cholera and pertussis toxin

  5. First evidence of "paralytic shellfish toxins" and cylindrospermopsin in a Mexican freshwater system, Lago Catemaco, and apparent bioaccumulation of the toxins in "tegogolo" snails (Pomacea patula catemacensis).

    Science.gov (United States)

    Berry, John P; Lind, Owen

    2010-05-01

    Exposure to cyanobacterial toxins in freshwater systems, including both direct (e.g., drinking water) and indirect (e.g., bioaccumulation in food webs) routes, is emerging as a potentially significant threat to human health. We investigated cyanobacterial toxins, specifically cylindrospermopsin (CYN), the microcystins (MCYST) and the "paralytic shellfish toxins" (PST), in Lago Catemaco (Veracruz, Mexico). Lago Catemaco is a tropical lake dominated by Cylindrospermopsis, specifically identified as Cylindrospermopsis catemaco and Cylindrospermopsis philippinensis, and characterized by an abundant, endemic species of snail (Pomacea patula catemacensis), known as "tegogolos," that is both consumed locally and commercially important. Samples of water, including dissolved and particulate fractions, as well as extracts of tegogolos, were screened using highly specific and sensitive ELISA. ELISA identified CYN and PST at low concentrations in only one sample of seston; however, both toxins were detected at appreciable quantities in tegogolos. Calculated bioaccumulation factors (BAF) support bioaccumulation of both toxins in tegogolos. The presence of CYN in the phytoplankton was further confirmed by HPLC-UV and LC-MS, following concentration and extraction of algal cells, but the toxin could not be confirmed by these methods in tegogolos. These data represent the first published evidence for CYN and the PST in Lago Catemaco and, indeed, for any freshwater system in Mexico. Identification of the apparent bioaccumulation of these toxins in tegogolos may suggest the need to further our understanding of the transfer of cyanobacterial toxins in freshwater food webs as it relates to human health. Copyright 2009 Elsevier Ltd. All rights reserved.

  6. Uremic Toxins Enhance Statin-Induced Cytotoxicity in Differentiated Human Rhabdomyosarcoma Cells

    Directory of Open Access Journals (Sweden)

    Hitoshi Uchiyama

    2014-09-01

    Full Text Available The risk of myopathy and rhabdomyolysis is considerably increased in statin users with end-stage renal failure (ESRF. Uremic toxins, which accumulate in patients with ESRF, exert cytotoxic effects that are mediated by various mechanisms. Therefore, accumulation of uremic toxins might increase statin-induced cytotoxicity. The purpose of this study was to determine the effect of four uremic toxins—hippuric acid, 3-carboxy-4-methyl-5-propyl-2-furanpropionate, indole-3-acetic acid, and 3-indoxyl sulfate—on statin-induced myopathy. Differentiated rhabdomyosarcoma cells were pre-treated with the uremic toxins for seven days, and then the cells were treated with pravastatin or simvastatin. Cell viability and apoptosis were assessed by viability assays and flow cytometry. Pre-treatment with uremic toxins increased statin- but not cisplatin-induced cytotoxicity (p < 0.05 vs. untreated. In addition, the pre-treatment increased statin-induced apoptosis, which is one of the cytotoxic factors (p < 0.05 vs. untreated. However, mevalonate, farnesol, and geranylgeraniol reversed the effects of uremic toxins and lowered statin-induced cytotoxicity (p < 0.05 vs. untreated. These results demonstrate that uremic toxins enhance statin-induced apoptosis and cytotoxicity. The mechanism underlying this effect might be associated with small G-protein geranylgeranylation. In conclusion, the increased severity of statin-induced rhabdomyolysis in patients with ESRF is likely due to the accumulation of uremic toxins.

  7. Heterologous Expression of Toxins from Bacterial Toxin-Antitoxin Systems in Eukaryotic Cells: Strategies and Applications

    Science.gov (United States)

    Yeo, Chew Chieng; Abu Bakar, Fauziah; Chan, Wai Ting; Espinosa, Manuel; Harikrishna, Jennifer Ann

    2016-01-01

    Toxin-antitoxin (TA) systems are found in nearly all prokaryotic genomes and usually consist of a pair of co-transcribed genes, one of which encodes a stable toxin and the other, its cognate labile antitoxin. Certain environmental and physiological cues trigger the degradation of the antitoxin, causing activation of the toxin, leading either to the death or stasis of the host cell. TA systems have a variety of functions in the bacterial cell, including acting as mediators of programmed cell death, the induction of a dormant state known as persistence and the stable maintenance of plasmids and other mobile genetic elements. Some bacterial TA systems are functional when expressed in eukaryotic cells and this has led to several innovative applications, which are the subject of this review. Here, we look at how bacterial TA systems have been utilized for the genetic manipulation of yeasts and other eukaryotes, for the containment of genetically modified organisms, and for the engineering of high expression eukaryotic cell lines. We also examine how TA systems have been adopted as an important tool in developmental biology research for the ablation of specific cells and the potential for utility of TA systems in antiviral and anticancer gene therapies. PMID:26907343

  8. Heterologous Expression of Toxins from Bacterial Toxin-Antitoxin Systems in Eukaryotic Cells: Strategies and Applications

    Directory of Open Access Journals (Sweden)

    Chew Chieng Yeo

    2016-02-01

    Full Text Available Toxin-antitoxin (TA systems are found in nearly all prokaryotic genomes and usually consist of a pair of co-transcribed genes, one of which encodes a stable toxin and the other, its cognate labile antitoxin. Certain environmental and physiological cues trigger the degradation of the antitoxin, causing activation of the toxin, leading either to the death or stasis of the host cell. TA systems have a variety of functions in the bacterial cell, including acting as mediators of programmed cell death, the induction of a dormant state known as persistence and the stable maintenance of plasmids and other mobile genetic elements. Some bacterial TA systems are functional when expressed in eukaryotic cells and this has led to several innovative applications, which are the subject of this review. Here, we look at how bacterial TA systems have been utilized for the genetic manipulation of yeasts and other eukaryotes, for the containment of genetically modified organisms, and for the engineering of high expression eukaryotic cell lines. We also examine how TA systems have been adopted as an important tool in developmental biology research for the ablation of specific cells and the potential for utility of TA systems in antiviral and anticancer gene therapies.

  9. Cholera toxin can catalyze ADP-ribosylation of cytoskeletal proteins

    International Nuclear Information System (INIS)

    Kaslow, H.R.; Groppi, V.E.; Abood, M.E.; Bourne, H.R.

    1981-01-01

    Cholera toxin catalyzes transfer of radiolabel from [ 32 P]NAD + to several peptides in particulate preparations of human foreskin fibroblasts. Resolution of these peptides by two-dimensional gel electrophoresis allowed identification of two peptides of M/sub r/ = 42,000 and 52,000 as peptide subunits of a regulatory component of adenylate cyclase. The radiolabeling of another group of peptides (M/sub r/ = 50,000 to 65,000) suggested that cholera toxin could catalyze ADP-ribosylation of cytoskeletal proteins. This suggestion was confirmed by showing that incubation with cholera toxin and [ 32 P]NAD + caused radiolabeling of purified microtubule and intermediate filament proteins

  10. The Regulatory Networks That Control Clostridium difficile Toxin Synthesis

    Science.gov (United States)

    Martin-Verstraete, Isabelle; Peltier, Johann; Dupuy, Bruno

    2016-01-01

    The pathogenic clostridia cause many human and animal diseases, which typically arise as a consequence of the production of potent exotoxins. Among the enterotoxic clostridia, Clostridium difficile is the main causative agent of nosocomial intestinal infections in adults with a compromised gut microbiota caused by antibiotic treatment. The symptoms of C. difficile infection are essentially caused by the production of two exotoxins: TcdA and TcdB. Moreover, for severe forms of disease, the spectrum of diseases caused by C. difficile has also been correlated to the levels of toxins that are produced during host infection. This observation strengthened the idea that the regulation of toxin synthesis is an important part of C. difficile pathogenesis. This review summarizes our current knowledge about the regulators and sigma factors that have been reported to control toxin gene expression in response to several environmental signals and stresses, including the availability of certain carbon sources and amino acids, or to signaling molecules, such as the autoinducing peptides of quorum sensing systems. The overlapping regulation of key metabolic pathways and toxin synthesis strongly suggests that toxin production is a complex response that is triggered by bacteria in response to particular states of nutrient availability during infection. PMID:27187475

  11. Removal of Cholera Toxin from Aqueous Solution by Probiotic Bacteria

    Directory of Open Access Journals (Sweden)

    Jussi A. O. Meriluoto

    2012-06-01

    Full Text Available Cholera remains a serious health problem, especially in developing countries where basic hygiene standards are not met. The symptoms of cholera are caused by cholera toxin, an enterotoxin, which is produced by the bacterium Vibrio cholerae. We have recently shown that human probiotic bacteria are capable of removing cyanobacterial toxins from aqueous solutions. In the present study we investigate the ability of the human probiotic bacteria, Lactobacillus rhamnosus strain GG (ATCC 53103 and Bifidobacterium longum 46 (DSM 14583, to remove cholera toxin from solution in vitro. Lactobacillus rhamnosus strain GG and Bifidobacterium longum 46 were able to remove 68% and 59% of cholera toxin from aqueous solutions during 18 h of incubation at 37 °C, respectively. The effect was dependent on bacterial concentration and L. rhamnosus GG was more effective at lower bacterial concentrations. No significant effect on cholera toxin concentration was observed when nonviable bacteria or bacterial supernatant was used.

  12. Toxins and drug discovery.

    Science.gov (United States)

    Harvey, Alan L

    2014-12-15

    Components from venoms have stimulated many drug discovery projects, with some notable successes. These are briefly reviewed, from captopril to ziconotide. However, there have been many more disappointments on the road from toxin discovery to approval of a new medicine. Drug discovery and development is an inherently risky business, and the main causes of failure during development programmes are outlined in order to highlight steps that might be taken to increase the chances of success with toxin-based drug discovery. These include having a clear focus on unmet therapeutic needs, concentrating on targets that are well-validated in terms of their relevance to the disease in question, making use of phenotypic screening rather than molecular-based assays, and working with development partners with the resources required for the long and expensive development process. Copyright © 2014 The Author. Published by Elsevier Ltd.. All rights reserved.

  13. Characterization of Hemagglutinin Negative Botulinum Progenitor Toxins

    Directory of Open Access Journals (Sweden)

    Suzanne R. Kalb

    2017-06-01

    Full Text Available Botulism is a disease involving intoxication with botulinum neurotoxins (BoNTs, toxic proteins produced by Clostridium botulinum and other clostridia. The 150 kDa neurotoxin is produced in conjunction with other proteins to form the botulinum progenitor toxin complex (PTC, alternating in size from 300 kDa to 500 kDa. These progenitor complexes can be classified into hemagglutinin positive or hemagglutinin negative, depending on the ability of some of the neurotoxin-associated proteins (NAPs to cause hemagglutination. The hemagglutinin positive progenitor toxin complex consists of BoNT, nontoxic non-hemagglutinin (NTNH, and three hemagglutinin proteins; HA-70, HA-33, and HA-17. Hemagglutinin negative progenitor toxin complexes contain BoNT and NTNH as the minimally functional PTC (M-PTC, but not the three hemagglutinin proteins. Interestingly, the genome of hemagglutinin negative progenitor toxin complexes comprises open reading frames (orfs which encode for three proteins, but the existence of these proteins has not yet been extensively demonstrated. In this work, we demonstrate that these three proteins exist and form part of the PTC for hemagglutinin negative complexes. Several hemagglutinin negative strains producing BoNT/A, /E, and /F were found to contain the three open reading frame proteins. Additionally, several BoNT/A-containing bivalent strains were examined, and NAPs from both genes, including the open reading frame proteins, were associated with BoNT/A. The open reading frame encoded proteins are more easily removed from the botulinum complex than the hemagglutinin proteins, but are present in several BoNT/A and /F toxin preparations. These are not easily removed from the BoNT/E complex, however, and are present even in commercially-available purified BoNT/E complex.

  14. Mycosporine-Like Amino Acids and Marine Toxins - The Common and the Different

    Science.gov (United States)

    Klisch, Manfred; Häder, Donat-P.

    2008-01-01

    Marine microorganisms harbor a multitude of secondary metabolites. Among these are toxins of different chemical classes as well as the UV-protective mycosporine-like amino acids (MAAs). The latter form a group of water-soluble, low molecular-weight (generally < 400) compounds composed of either an aminocyclohexenone or an aminocyclohexenimine ring, carrying amino acid or amino alcohol substituents. So far there has been no report of toxicity in MAAs but nevertheless there are some features they have in common with marine toxins. Among the organisms producing MAAs are cyanobacteria, dinoflagellates and diatoms that also synthesize toxins. As in cyclic peptide toxins found in cyanobacteria, amino acids are the main building blocks of MAAs. Both, MAAs and some marine toxins are transferred to other organisms e.g. via the food chains, and chemical modifications can take place in secondary consumers. In contrast to algal toxins, the physiological role of MAAs is clearly the protection from harmful UV radiation by physical screening. However, other roles, e.g. as osmolytes and antioxidants, are also considered. In this paper the common characteristics of MAAs and marine toxins are discussed as well as the differences. PMID:18728764

  15. Mycosporine-Like Amino Acids and Marine Toxins - The Common and the Different

    Directory of Open Access Journals (Sweden)

    Donat P. Häder

    2008-05-01

    Full Text Available Marine microorganisms harbor a multitude of secondary metabolites. Among these are toxins of different chemical classes as well as the UV-protective mycosporinelike amino acids (MAAs. The latter form a group of water-soluble, low molecular-weight (generally < 400 compounds composed of either an aminocyclohexenone or an aminocyclohexenimine ring, carrying amino acid or amino alcohol substituents. So far there has been no report of toxicity in MAAs but nevertheless there are some features they have in common with marine toxins. Among the organisms producing MAAs are cyanobacteria, dinoflagellates and diatoms that also synthesize toxins. As in cyclic peptide toxins found in cyanobacteria, amino acids are the main building blocks of MAAs. Both, MAAs and some marine toxins are transferred to other organisms e.g. via the food chains, and chemical modifications can take place in secondary consumers. In contrast to algal toxins, the physiological role of MAAs is clearly the protection from harmful UV radiation by physical screening. However, other roles, e.g. as osmolytes and antioxidants, are also considered. In this paper the common characteristics of MAAs and marine toxins are discussed as well as the differences.

  16. Effects of cholera toxin on human colon carcinoma cell lines.

    Science.gov (United States)

    Barkla, D H; Whitehead, R H; Hayward, I P

    1992-10-01

    This study reports on changes in morphology and membrane transport in 5 human colon carcinoma cell lines treated with cholera toxin (CT). Three of the cell lines that grew as monolayers (LIM 1215, LIM 1899, LIM 2099) and 1 that grew as floating clumps (LIM 2408) did not show morphological changes after CT treatment. However, cell line LIM 1863 that grows as floating "crypt-like" organoids showed rapid and distinctive changes in morphology and membrane transport after CT treatment. At 1 and 6 hrs after CT treatment, light and transmission electron microscopy revealed rapid dilatation of the central lumen of organoids and the appearance of 2 populations of apical vesicular inclusions. The first population was unusual in being non-membrane bound and limited by fuzzy filamentous material. The second population was membrane bound. Scanning electron microscopy at 1-6 hr after CT treatment showed swelling and loss of surface microvilli on some, but not all, cells. At 24 hr after CT treatment the majority of organoids showed evidence of fluid accumulation and small apical vesicles coalesced to form large single vacuoles that obliterated normal cell morphology. By 48 hr, continued swelling produced extreme attenuation of the plasma membrane with cells taking on an "endothelial cell-like" appearance. The response to CT was dose-dependent. Uptake studies using 86Rubidium and blocking studies using ouabain and amiloride indicated that CT is acting on the Na+/K+ ATPase membrane pump to cause the increased fluid uptake by LIM 1863 cells. This study is the first to report specific morphological changes in intestine-derived cells in response to CT.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Detecting Anthrax, Botulinum Toxin, and Ricin – Immunoassay Test Strips

    Science.gov (United States)

    This assay is listed as Tier I for presumptive analysis of BoNTs in drinking water samples and Tier II for presumptive analysis of BoNTs in other environmental sample types. The lateral flow immunochromatographic assay uses two antibodies in combination to

  18. Efficacy of botulinum toxins on bruxism: an evidence-based review.

    Science.gov (United States)

    Long, Hu; Liao, Zhengyu; Wang, Yan; Liao, Lina; Lai, Wenli

    2012-02-01

    The objective of this study was to assess the efficacy of botulinum toxins on bruxism. Electronic databases (PubMed, Embase and Science Citation Index), websites (Cochrane Central Register of Controlled Trials and ClinicalTrials.gov) and the literature database of SIGLE (System for Information on Grey Literature in Europe) were searched from January 1990 to April 2011 for randomised controlled trials or nonrandomised studies assessing the efficacy of botulinum toxins on bruxism. There was no language restriction. Through a predefined search strategy, we retrieved 28 studies from PubMed, 94 from Embase, 60 from the Science Citation Index, two ongoing clinical trials and two from the Cochrane Central Register of Controlled Trials. Of these, only four studies met our inclusion criteria and were finally included. Of the four included studies, two were randomised controlled trials and two were controlled before-and-after studies. These studies showed that botulinum toxin injections can reduce the frequency of bruxism events, decrease bruxism-induced pain levels and satisfy patients' self-assessment with regard to the effectiveness of botulinum toxins on bruxism. In comparison with oral splint, botulinum toxins are equally effective on bruxism. Furthermore, botulinum toxin injections at a dosage of bruxism and are safe to use. Therefore, they can be used clinically for otherwise healthy patients with bruxism. © 2012 FDI World Dental Federation.

  19. The green vaccine: A global strategy to combat infectious and autoimmune diseases

    Science.gov (United States)

    Davoodi-Semiromi, Abdoreza; Samson, Nalapalli; Daniell, Henry

    2009-01-01

    Plant derived oral green vaccines eliminate expenses associated with fermenters, purification, cold storage/transportation and sterile delivery. Green vaccines are expressed via the plant nuclear or chloroplast genomes. Chloroplast expression has advantages of hyper-expression of therapeutic proteins (10,000 copies of trans-gene per cell), efficient oral delivery and transgene containment via maternal inheritance. To date, 23 vaccine antigens against 16 different bacterial, viral or protozoan pathogens have been expressed in chloroplasts. Mice subcutaneously immunized with the chloroplast derived anthrax protective antigen conferred 100% protection against lethal doses of the anthrax toxin. Oral immunization (ORV) of F1-V antigens without adjuvant conferred greater protection (88%) against 50-fold lethal dose of aerosolized plague (Yersinia pestis) than subcutaneous (SQV) immunization (33%). Oral immunization of malarial vaccine antigens fused to the cholera antigen (CTB-AMA1/CTB-Msp1) conferred prolonged immunity (50% life span), 100% protection against cholera toxin challenge and inhibited proliferation of the malarial parasite. Protection was correlated with antigen-specific titers of intestinal, serum IgA & IgG1 in ORV and only IgG1 in SQV mice, but no other immunoglobulin. High level expression in edible plant chloroplasts ideal for oral delivery and long-term immunity observed should facilitate development of low cost human vaccines for large populations, at times of outbreak. PMID:19430198

  20. Laboratory and Clinical features of EIA Toxin-positive and EIA Toxin-negative Community-acquired Clostridium difficile Infection.

    Science.gov (United States)

    Patel, Hiren; Randhawa, Jeewanjot; Nanavati, Sushant; Marton, L Randy; Baddoura, Walid J; DeBari, Vincent A

    2015-01-01

    Studies have described the clinical course of patients with Clostridium difficile infection (CDI) with positive enzyme immunoassay (EIA) for toxins A and B. Limited information is available for the patients with negative EIA but positive for the toxin B gene (TcdB) by the PCR. The aim of our study is to determine if there are any differences that exist among the clinical and laboratory parameters in the patients tested to be positive by EIA for toxin and those who were negative. This is a retrospective cohort study conducted in a 700-bed teaching hospital. We reviewed charts of the patients with presumptive CDI between January 2006 and July 2013. We divided these patients into two groups, EIA-positive and EIA-negative, based on result of EIA for toxins A and B and the requirement for a positive PCR analysis of the TcdB gene. The EIA-positive group had significantly higher white blood cell counts (p<0.001), with a significantly greater percentage of bands (p<0.0001). Albumin and total protein both exhibit significantly (p<0.0001, both comparisons) lower values in the EIA-positive group. Among clinical findings, the EIA-positive group had significantly longer length of hospital stay (p=0.010). These data suggest that an infection with an EIA-negative strain of C. difficile presents laboratory markers closer to those of healthy subjects and clinical features suggesting considerably less severe than infection with EIA-positive C. difficile. © 2015 by the Association of Clinical Scientists, Inc.

  1. Troublesome toxins: Time to re-think plant-herbivore interactions in vertebrate ecology

    Science.gov (United States)

    Swihart, R.K.; DeAngelis, D.L.; Feng, Z.; Bryant, J.P.

    2009-01-01

    Earlier models of plant-herbivore interactions relied on forms of functional response that related rates of ingestion by herbivores to mechanical or physical attributes such as bite size and rate. These models fail to predict a growing number of findings that implicate chemical toxins as important determinants of plant-herbivore dynamics. Specifically, considerable evidence suggests that toxins set upper limits on food intake for many species of herbivorous vertebrates. Herbivores feeding on toxin-containing plants must avoid saturating their detoxification systems, which often occurs before ingestion rates are limited by mechanical handling of food items. In light of the importance of plant toxins, a new approach is needed to link herbivores to their food base. We discuss necessary features of such an approach, note recent advances in herbivore functional response models that incorporate effects of plant toxins, and mention predictions that are consistent with observations in natural systems. Future ecological studies will need to address explicitly the importance of plant toxins in shaping plant and herbivore communities.

  2. An Overview of Helicobacter pylori VacA Toxin Biology

    Science.gov (United States)

    Foegeding, Nora J.; Caston, Rhonda R.; McClain, Mark S.; Ohi, Melanie D.; Cover, Timothy L.

    2016-01-01

    The VacA toxin secreted by Helicobacter pylori enhances the ability of the bacteria to colonize the stomach and contributes to the pathogenesis of gastric adenocarcinoma and peptic ulcer disease. The amino acid sequence and structure of VacA are unrelated to corresponding features of other known bacterial toxins. VacA is classified as a pore-forming toxin, and many of its effects on host cells are attributed to formation of channels in intracellular sites. The most extensively studied VacA activity is its capacity to stimulate vacuole formation, but the toxin has many additional effects on host cells. Multiple cell types are susceptible to VacA, including gastric epithelial cells, parietal cells, T cells, and other types of immune cells. This review focuses on the wide range of VacA actions that are detectable in vitro, as well as actions of VacA in vivo that are relevant for H. pylori colonization of the stomach and development of gastric disease. PMID:27271669

  3. Susceptibility of Phelipanche and Orobanche species to AAL-toxin.

    Science.gov (United States)

    de Zélicourt, Axel; Montiel, Grégory; Pouvreau, Jean-Bernard; Thoiron, Séverine; Delgrange, Sabine; Simier, Philippe; Delavault, Philippe

    2009-10-01

    Fusarium and Alternaria spp. are phytopathogenic fungi which are known to be virulent on broomrapes and to produce sphinganine-analog mycotoxins (SAMs). AAL-toxin is a SAM produced by Alternaria alternata which causes the inhibition of sphinganine N-acyltransferase, a key enzyme in sphingolipid biosynthesis, leading to accumulation of sphingoid bases. These long chain bases (LCBs) are determinant in the occurrence of programmed cell death (PCD) in susceptible plants. We showed that broomrapes are sensitive to AAL-toxin, which is not common plant behavior, and that AAL-toxin triggers cell death at the apex of the radicle as well as LCB accumulation and DNA laddering. We also demonstrated that three Lag1 homologs, encoding components of sphinganine N-acyltransferase in yeast, are present in the Orobanche cumana genome and two of them are mutated leading to an enhanced susceptibility to AAL-toxin. We therefore propose a model for the molecular mechanism governing broomrape susceptibility to the fungus Alternaria alternata.

  4. Targeting Staphylococcus aureus Toxins: A Potential form of Anti-Virulence Therapy

    Directory of Open Access Journals (Sweden)

    Cin Kong

    2016-03-01

    Full Text Available Staphylococcus aureus is an opportunistic pathogen and the leading cause of a wide range of severe clinical infections. The range of diseases reflects the diversity of virulence factors produced by this pathogen. To establish an infection in the host, S. aureus expresses an inclusive set of virulence factors such as toxins, enzymes, adhesins, and other surface proteins that allow the pathogen to survive under extreme conditions and are essential for the bacteria’s ability to spread through tissues. Expression and secretion of this array of toxins and enzymes are tightly controlled by a number of regulatory systems. S. aureus is also notorious for its ability to resist the arsenal of currently available antibiotics and dissemination of various multidrug-resistant S. aureus clones limits therapeutic options for a S. aureus infection. Recently, the development of anti-virulence therapeutics that neutralize S. aureus toxins or block the pathways that regulate toxin production has shown potential in thwarting the bacteria’s acquisition of antibiotic resistance. In this review, we provide insights into the regulation of S. aureus toxin production and potential anti-virulence strategies that target S. aureus toxins.

  5. Structure of a bacterial toxin-activating acyltransferase.

    Science.gov (United States)

    Greene, Nicholas P; Crow, Allister; Hughes, Colin; Koronakis, Vassilis

    2015-06-09

    Secreted pore-forming toxins of pathogenic Gram-negative bacteria such as Escherichia coli hemolysin (HlyA) insert into host-cell membranes to subvert signal transduction and induce apoptosis and cell lysis. Unusually, these toxins are synthesized in an inactive form that requires posttranslational activation in the bacterial cytosol. We have previously shown that the activation mechanism is an acylation event directed by a specialized acyl-transferase that uses acyl carrier protein (ACP) to covalently link fatty acids, via an amide bond, to specific internal lysine residues of the protoxin. We now reveal the 2.15-Å resolution X-ray structure of the 172-aa ApxC, a toxin-activating acyl-transferase (TAAT) from pathogenic Actinobacillus pleuropneumoniae. This determination shows that bacterial TAATs are a structurally homologous family that, despite indiscernible sequence similarity, form a distinct branch of the Gcn5-like N-acetyl transferase (GNAT) superfamily of enzymes that typically use acyl-CoA to modify diverse bacterial, archaeal, and eukaryotic substrates. A combination of structural analysis, small angle X-ray scattering, mutagenesis, and cross-linking defined the solution state of TAATs, with intermonomer interactions mediated by an N-terminal α-helix. Superposition of ApxC with substrate-bound GNATs, and assay of toxin activation and binding of acyl-ACP and protoxin peptide substrates by mutated ApxC variants, indicates the enzyme active site to be a deep surface groove.

  6. Diffusion, spread, and migration of botulinum toxin.

    Science.gov (United States)

    Ramirez-Castaneda, Juan; Jankovic, Joseph; Comella, Cynthia; Dashtipour, Khashayar; Fernandez, Hubert H; Mari, Zoltan

    2013-11-01

    Botulinum toxin (BoNT) is an acetylcholine release inhibitor and a neuromuscular blocking agent used for the treatment of a variety of neurologic and medical conditions. The efficacy and safety of BoNT depends on accurate selection and identification of intended targets but also may be determined by other factors, including physical spread of the molecule from the injection site, passive diffusion, and migration to distal sites via axonal or hematogenous transport. The passive kinetic dispersion of the toxin away from the injection site in a gradient-dependent manner may also play a role in toxin spread. In addition to unique properties of the various BoNT products, volume and dilution may also influence local and systemic distribution of BoNT. Most of the local and remote complications of BoNT injections are thought to be due to unwanted spread or diffusion of the toxin's biologic activity into adjacent and distal muscles. Despite widespread therapeutic and cosmetic use of BoNT over more than three decades, there is a remarkable paucity of published data on the mechanisms of distribution and its effects on clinical outcomes. The primary aim of this article is to critically review the available experimental and clinical literature and place it in the practical context. © 2013 International Parkinson and Movement Disorder Society.

  7. Topical Botulinum Toxin

    OpenAIRE

    Collins, Ashley; Nasir, Adnan

    2010-01-01

    Nanotechnology is a rapidly growing discipline that capitalizes on the unique properties of matter engineered on the nanoscale. Vehicles incorporating nanotechnology have led to great strides in drug delivery, allowing for increased active ingredient stability, bioavailability, and site-specific targeting. Botulinum toxin has historically been used for the correction of neurological and neuromuscular disorders, such as torticollis, blepharospasm, and strabismus. Recent dermatological indicati...

  8. Photochemical internalisation of a macromolecular protein toxin using a cell penetrating peptide-photosensitiser conjugate.

    Science.gov (United States)

    Wang, Julie T-W; Giuntini, Francesca; Eggleston, Ian M; Bown, Stephen G; MacRobert, Alexander J

    2012-01-30

    Photochemical internalisation (PCI) is a site-specific technique for improving cellular delivery of macromolecular drugs. In this study, a cell penetrating peptide, containing the core HIV-1 Tat 48-57 sequence, conjugated with a porphyrin photosensitiser has been shown to be effective for PCI. Herein we report an investigation of the photophysical and photobiological properties of a water soluble bioconjugate of the cationic Tat peptide with a hydrophobic tetraphenylporphyrin derivative. The cellular uptake and localisation of the amphiphilic bioconjugate was examined in the HN5 human head and neck squamous cell carcinoma cell line. Efficient cellular uptake and localisation in endo/lysosomal vesicles was found using fluorescence detection, and light-induced, rupture of the vesicles resulting in a more diffuse intracellular fluorescence distribution was observed. Conjugation of the Tat sequence with a hydrophobic porphyrin thus enables cellular delivery of an amphiphilic photosensitiser which can then localise in endo/lysosomal membranes, as required for effective PCI treatment. PCI efficacy was tested in combination with a protein toxin, saporin, and a significant reduction in cell viability was measured versus saporin or photosensitiser treatment alone. This study demonstrates that the cell penetrating peptide-photosensitiser bioconjugation strategy is a promising and versatile approach for enhancing the therapeutic potential of bioactive agents through photochemical internalisation. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Pertussis toxin inhibits somatostatin-induced K+ conductance in human pituitary tumor cells

    International Nuclear Information System (INIS)

    Yamashita, N.; Kojima, I.; Shibuya, N.; Ogata, E.

    1987-01-01

    The effect of pertussis toxin on somatostatin-induced K + current was examined in dissociated human pituitary tumor cells obtained from two acromegalic patients. Somatostatin-induced hyperpolarization or K + current was observed in 20 of 23 cells in adenoma 1 and 10 of 11 cells in adenoma 2. After treatment with pertussis toxin for 24 h, these responses were completely suppressed (0/14 in adenoma, 1, 0/10 in adenoma 2). Spontaneous action potentials, K + , Na + , and Ca 2+ currents were well preserved after pertussis toxin treatment. When crude membrane fraction was incubated with [ 32 P]NAD, a 41K protein was ADP-ribosylated by pertussis toxin. Hormone release was inhibited by somatostatin and this inhibition was blocked by pertussis toxin treatment

  10. Physiological effect of the toxin from Xanthomonas retroflexus on ...

    African Journals Online (AJOL)

    Physiological effect of the toxin from Xanthomonas retroflexus on redroot pigweed (Amaranthus retroflexus). Z Sun, M Li, J Chen, Y Li. Abstract. A new toxin from Xanthomonas retroflexus could cause a series of physiological responses on seedlings of redroot pigweed. The experimental results revealed that respiratory ratio ...

  11. 9 CFR 121.3 - VS select agents and toxins.

    Science.gov (United States)

    2010-01-01

    ... genetically modified. (d) VS select agents or toxins that meet any of the following criteria are excluded from... AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS POSSESSION, USE, AND... recombinant organisms: (1) Nucleic acids that can produce infectious forms of any of the select agent viruses...

  12. Retrograde transport of protein toxins through the Golgi apparatus

    DEFF Research Database (Denmark)

    Sandvig, Kirsten; Skotland, Tore; van Deurs, Bo

    2013-01-01

    at the cell surface, and they are endocytosed both by clathrin-dependent and clathrin-independent mechanisms. Sorting to the Golgi and retrograde transport to the endoplasmic reticulum (ER) are common to these toxins, but the exact mechanisms turn out to be toxin and cell-type dependent. In the ER...

  13. Updates on tetanus toxin: a fundamental approach

    Directory of Open Access Journals (Sweden)

    Md. Ahaduzzaman

    2015-03-01

    Full Text Available Clostridium tetani is an anaerobic bacterium that produces second most poisonous protein toxins than any other bacteria. Tetanus in animals is sporadic in nature but difficult to combat even by using antibiotics and antiserum. It is crucial to understand the fundamental mechanisms and signals that control toxin production for advance research and medicinal uses. This review was intended for better understanding the basic patho-physiology of tetanus and neurotoxins (TeNT among the audience of related field.

  14. Monitoring of DSP toxins in small-sized plankton fraction of seawater collected in Mutsu Bay, Japan, by ELISA method: relation with toxin contamination of scallop.

    Science.gov (United States)

    Imai, Ichiro; Sugioka, Hikaru; Nishitani, Goh; Mitsuya, Tadashi; Hamano, Yonekazu

    2003-01-01

    Monitorings were conducted on DSP toxins in mid-gut gland of scallop (mouse assay), cell numbers of toxic dinoflagellate species of Dinophysis, and diarrhetic shellfish poisoning (DSP) toxins in small-sized (0.7-5 microm) plankton fraction of seawater collected from surface (0 m) and 20 m depth at a station in Mutsu Bay, Aomori Prefecture, Japan, in 2000. A specific enzyme-linked immunosorbent assay (ELISA) was employed for the analysis of DSP toxins in small-sized plankton fraction using a mouse monoclonal anti-okadaic acid antibody which recognizes okadaic acid, dinophysistoxin-1, and dinophysistoxin-3. DSP toxins were detected twice in the mid-gut gland of scallops at 1.1-2.3 MU (mouse units) g(-1) on 26 June and at 0.6-1.2 MU g(-1) on 3 July, respectively. Relatively high cell densities of D. fortii were observed on 26 June and 11 September, and may only contribute to the bivalve toxicity during late June to early July. D. acuminata did not appear to be responsible for the toxicity of scallops in Mutsu Bay in 2000. ELISA monitoring of small-sized plankton fraction in seawater could detect DSP toxins two weeks before the detection of the toxin in scallops, and could do so two weeks after the loss of the bivalve toxicity by mouse assay. On 17 July, toxic D. fortii was detected at only small number, <10 cells l(-1), but DSP toxins were detected by the ELISA assay, suggesting a presence of other toxic small-sized plankton in seawater. For the purpose of reducing negative impacts of DSP occurrences, monitorings have been carried out hitherto on DSP toxins of bivalve tissues by mouse assay and on cell densities of "toxic" species of Dinophysis. Here we propose a usefulness of ELISA monitoring of plankton toxicity, especially in small-sized fraction, which are possible foods of mixotrophic Dinophysis, as a practical tool for detecting and predicting DSPs in coastal areas of fisheries grounds of bivalve aquaculture.

  15. Effects of anti-inflammatory drugs on fever and neutrophilia induced by Clostridium difficile toxin B

    Directory of Open Access Journals (Sweden)

    R. A. Cardoso

    1996-01-01

    Full Text Available This study investigated the ability of Clostridium difficile toxin B, isolated from the VPI 10463 strain, to induce fever and neutrophilia in rats. Intravenous injection of toxin B (0.005–0.5 μg/kg evoked a dose-dependent increase in body temperature. The febrile response to 0.5 μg/kg of the toxin started in 2.5 h, peaked at 5 h, and subsided fully within 24 h. Toxin B also induced a dosedependent neutrophilia. Pretreatment with indomethacin (2 mg/kg, i.p. did not affect the neutrophilia induced by toxin B, but significantly reduced the febrile response measured 4 to 8 h after toxin B injection. Dexamethasone (0.5 mg/ kg also markedly diminished the febrile response induced by toxin B. These results show that Clostridium difficile toxin B induced a febrile response susceptible to inhibition by dexamethasone and indomethacin. Furthermore, they suggest that prostaglandins are not involved in the neutrophilia caused by this toxin.

  16. Effect of Cryphonectria parasitica toxin on lipid peroxidation and ...

    African Journals Online (AJOL)

    In order to clarify the responses of different chestnut cultivars to Cp-toxin stress, the effect of Cp-toxin from Cryphonectria parasitica (Murr.) Barr on Castanea mollissima Blume, especially on its cell structure, was examined. Chestnut shoots of both resistant (Beiyu No. 2) and susceptible (Hongguang) cultivars were treated ...

  17. Interaction of the alpha-toxin of Staphylococcus aureus with the liposome membrane.

    Science.gov (United States)

    Ikigai, H; Nakae, T

    1987-02-15

    When the liposome membrane is exposed to the alpha-toxin of Staphylococcus aureus, fluorescence of the tryptophan residue(s) of the toxin molecule increases concomitantly with the degree of toxin-hexamer formation (Ikigai, H., and Nakae, T. (1985) Biochem. Biophys. Res. Commun. 130, 175-181). In the present study, the toxin-membrane interaction was distinguished from the hexamer formation by the fluorescence energy transfer from the tryptophan residue(s) of the toxin molecule to the dansylated phosphatidylethanolamine in phosphatidylcholine liposome. Measurement of these two parameters yielded the following results. The effect of the toxin concentration and phospholipid concentration on these two parameters showed first order kinetics. The effect of liposome size on the energy transfer and the fluorescence increment of the tryptophan residue(s) was only detectable in small liposomes. Under moderately acidic or basic conditions, the fluorescence energy transfer always preceded the fluorescence increment of the tryptophan residue(s). The fluorescence increment at 336 nm at temperatures below 20 degrees C showed a latent period, whereas the fluorescence energy transfer did not. These results were thought to indicate that when alpha-toxin damages the target membrane, the molecule interacts with the membrane first, and then undergoes oligomerization within the membrane.

  18. Saccharomyces boulardii protease inhibits Clostridium difficile toxin A effects in the rat ileum.

    Science.gov (United States)

    Castagliuolo, I; LaMont, J T; Nikulasson, S T; Pothoulakis, C

    1996-01-01

    Saccharomyces boulardii, a nonpathogenic yeast, is effective in treating some patients with Clostridium difficile diarrhea and colitis. We have previously reported that S. boulardii inhibits rat ileal secretion in response to C. difficile toxin A possibly by releasing a protease that digests the intestinal receptor for this toxin (C. Pothoulakis, C. P. Kelly, M. A. Joshi, N. Gao, C. J. O'Keane, I. Castagliuolo, and J. T. LaMont, Gastroenterology 104: 1108-1115, 1993). The aim of this study was to purify and characterize this protease. S. boulardii protease was partially purified by gel filtration on Sephadex G-50 and octyl-Sepharose. The effect of S. boulardii protease on rat ileal secretion, epithelial permeability, and morphology in response to toxin A was examined in rat ileal loops in vivo. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified S. boulardii protease revealed a major band at 54 kDa. Pretreatment of rat ileal brush border (BB) membranes with partially purified protease reduced specific toxin A receptor binding (by 26%). Partially purified protease digested the toxin A molecule and significantly reduced its binding to BB membranes in vitro (by 42%). Preincubation of toxin A with S. boulardii protease inhibited ileal secretion (46% inhibition, P < 0.01), mannitol permeability (74% inhibition, P < 0.01), and histologic damage caused by toxin A. Thus, S. boulardii protease inhibits the intestinal effects of C. difficile toxin A by proteolysis of the toxin and inhibition of toxin A binding to its BB receptor. Our results may be relevant to the mechanism by which S. boulardii exerts its protective effects in C. difficile infection in humans. PMID:8945570

  19. Toxin-Induced Experimental Models of Learning and Memory Impairment.

    Science.gov (United States)

    More, Sandeep Vasant; Kumar, Hemant; Cho, Duk-Yeon; Yun, Yo-Sep; Choi, Dong-Kug

    2016-09-01

    Animal models for learning and memory have significantly contributed to novel strategies for drug development and hence are an imperative part in the assessment of therapeutics. Learning and memory involve different stages including acquisition, consolidation, and retrieval and each stage can be characterized using specific toxin. Recent studies have postulated the molecular basis of these processes and have also demonstrated many signaling molecules that are involved in several stages of memory. Most insights into learning and memory impairment and to develop a novel compound stems from the investigations performed in experimental models, especially those produced by neurotoxins models. Several toxins have been utilized based on their mechanism of action for learning and memory impairment such as scopolamine, streptozotocin, quinolinic acid, and domoic acid. Further, some toxins like 6-hydroxy dopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and amyloid-β are known to cause specific learning and memory impairment which imitate the disease pathology of Parkinson's disease dementia and Alzheimer's disease dementia. Apart from these toxins, several other toxins come under a miscellaneous category like an environmental pollutant, snake venoms, botulinum, and lipopolysaccharide. This review will focus on the various classes of neurotoxin models for learning and memory impairment with their specific mechanism of action that could assist the process of drug discovery and development for dementia and cognitive disorders.

  20. Influence of Selenium on the Production of T-2 Toxin by Fusarium poae.

    Science.gov (United States)

    Cheng, Bolun; Zhang, Yan; Tong, Bei; Yin, Hong

    2017-07-01

    The objective of this study was to investigate the effects of selenium on the production of T-2 toxin by a Fusarium poae strain cultured in a synthetic medium containing different concentrations of selenium. The T-2 toxin contents in fermentative products were evaluated by a high performance liquid chromatography (HPLC). The results showed that the production of T-2 toxin was correlated with the concentration of selenium added to the medium. In all three treatments, the addition of 1 mg/L selenium to the medium resulted in a lower toxin yield than the control (0 mg/L); the yield of the toxin began to increase when selenium concentration was 10 mg/L, while it decreased again at 20 mg/L. In summary, T-2 toxin yield in the fermentative product was affected by the addition of selenium to the medium, and a selenium concentration of 20 mg/L produced the maximum inhibitory effect of T-2 toxin yield in the fermentative product of F. poae.