Žumer, Viljem; Brest, Janez; Pešl, Ivan
2015-01-01
Ant colony optimization is a relatively new approach to solving NP-Hard problems. It is based on the behavior of real ants, which always find the shortest path between their nest and a food source. Such behavior can be transferred into the discrcte world, were real ants are replaced by simple agents. Such simple agents are placed into the environment where different combinatorial problems can be solved In this paper we describe an artificial ant colony capable of solving the travelling salesm...
Zahálka, Jaroslav
2007-01-01
This diploma thesis deals with Ant Colony algorithms and their usage for solving Travelling Salesman Problems and Vehicle Routing Problems. These algorithms are metaheuristics offering new approach to solving NP-hard problems. Work begins with a description of the forementioned tasks including ways to tackle them. Next chapter analyses Ant Colony metaheuristic and its possible usage and variations. The most important part of the thesis is practical and is represented by application Ant Colony...
Ant Colony Optimization: A Review and Comparison
Sundus Shaukat; Riaz Ahmed Bhatti; Khalid Ibrahim Qureshi; Shafqat Ali Shad
2014-01-01
Many optmization algorithms are developed over period of time, among these most famous and widely used is Ant Colony systems (ACA). Ant Colony Systems (ACS) are the collection of different ant colony optimization algorithms. Different algorithms are used for solve the Travelling salesmen Problem (TCP) but ant colony algorithm is more preferred to solve the travelling salesmen problem. In ant colony best solution is found with the help of cooperating agents called ants. Ants cooperate with eac...
Ant colony optimization in continuous problem
Institute of Scientific and Technical Information of China (English)
YU Ling; LIU Kang; LI Kaishi
2007-01-01
Based on the analysis of the basic ant colony optimization and optimum problem in a continuous space,an ant colony optimization (ACO) for continuous problem is constructed and discussed. The algorithm is efficient and beneficial to the study of the ant colony optimization in a continuous space.
Ant Colony Optimization for Control
Van Ast, J.M.
2010-01-01
The very basis of this thesis is the collective behavior of ants in colonies. Ants are an excellent example of how rather simple behavior on a local level can lead to complex behavior on a global level that is beneficial for the individuals. The key in the self-organization of ants is communication
Towards a multilevel ant colony optimization
Lian, Thomas Andreé; Llave, Marilex Rea
2014-01-01
Ant colony optimization is a metaheuristic approach for solving combinatorial optimization problems which belongs to swarm intelligence techniques. Ant colony optimization algorithms are one of the most successful strands of swarm intelligence which has already shown very good performance in many combinatorial problems and for some real applications. This thesis introduces a new multilevel approach for ant colony optimization to solve the NP-hard problems shortest path and traveling salesman....
Liqiang Liu; Yuntao Dai; Jinyu Gao
2014-01-01
Ant colony optimization algorithm for continuous domains is a major research direction for ant colony optimization algorithm. In this paper, we propose a distribution model of ant colony foraging, through analysis of the relationship between the position distribution and food source in the process of ant colony foraging. We design a continuous domain optimization algorithm based on the model and give the form of solution for the algorithm, the distribution model of pheromone, the update rules...
Optic disc detection using ant colony optimization
Dias, Marcy; Monteiro, Fernando C.
2012-01-01
The retinal fundus images are used in the treatment and diagnosis of several eye diseases, such as diabetic retinopathy and glaucoma. This paper proposes a new method to detect the optic disc (OD) automatically, due to the fact that the knowledge of the OD location is essential to the automatic analysis of retinal images. Ant Colony Optimization (ACO) is an optimization algorithm inspired by the foraging behaviour of some ant species that has been applied in image processing for edge detectio...
Ant colony optimization and constraint programming
Solnon, Christine
2013-01-01
Ant colony optimization is a metaheuristic which has been successfully applied to a wide range of combinatorial optimization problems. The author describes this metaheuristic and studies its efficiency for solving some hard combinatorial problems, with a specific focus on constraint programming. The text is organized into three parts. The first part introduces constraint programming, which provides high level features to declaratively model problems by means of constraints. It describes the main existing approaches for solving constraint satisfaction problems, including complete tree search
Optimized Ant Colony Algorithm by Local Pheromone Update
Hui Yu
2013-01-01
Ant colony algorithm, a heuristic simulated algorithm, provides better solutions for non-convex, non-linear and discontinuous optimization problems. For ant colony algorithm, it is frequently to be trapped into local optimum, which might lead to stagnation. This article presents the city-select strategy, local pheromone update strategy, optimum solution prediction strategy and local optimization strategy to optimize ant colony algorithm, provides ant colony algorithm based on local pheromone...
Enhanced ant colony optimization for multiscale problems
Hu, Nan; Fish, Jacob
2016-03-01
The present manuscript addresses the issue of computational complexity of optimizing nonlinear composite materials and structures at multiple scales. Several solutions are detailed to meet the enormous computational challenge of optimizing nonlinear structures at multiple scales including: (i) enhanced sampling procedure that provides superior performance of the well-known ant colony optimization algorithm, (ii) a mapping-based meshing of a representative volume element that unlike unstructured meshing permits sensitivity analysis on coarse meshes, and (iii) a multilevel optimization procedure that takes advantage of possible weak coupling of certain scales. We demonstrate the proposed optimization procedure on elastic and inelastic laminated plates involving three scales.
Ant Colony Optimization and Hypergraph Covering Problems
Pat, Ankit
2011-01-01
Ant Colony Optimization (ACO) is a very popular metaheuristic for solving computationally hard combinatorial optimization problems. Runtime analysis of ACO with respect to various pseudo-boolean functions and different graph based combinatorial optimization problems has been taken up in recent years. In this paper, we investigate the runtime behavior of an MMAS*(Max-Min Ant System) ACO algorithm on some well known hypergraph covering problems that are NP-Hard. In particular, we have addressed the Minimum Edge Cover problem, the Minimum Vertex Cover problem and the Maximum Weak- Independent Set problem. The influence of pheromone values and heuristic information on the running time is analysed. The results indicate that the heuristic information has greater impact towards improving the expected optimization time as compared to pheromone values. For certain instances of hypergraphs, we show that the MMAS* algorithm gives a constant order expected optimization time when the dominance of heuristic information is ...
Liu, Liqiang; Dai, Yuntao; Gao, Jinyu
2014-01-01
Ant colony optimization algorithm for continuous domains is a major research direction for ant colony optimization algorithm. In this paper, we propose a distribution model of ant colony foraging, through analysis of the relationship between the position distribution and food source in the process of ant colony foraging. We design a continuous domain optimization algorithm based on the model and give the form of solution for the algorithm, the distribution model of pheromone, the update rules of ant colony position, and the processing method of constraint condition. Algorithm performance against a set of test trials was unconstrained optimization test functions and a set of optimization test functions, and test results of other algorithms are compared and analyzed to verify the correctness and effectiveness of the proposed algorithm. PMID:24955402
Optic disc detection using ant colony optimization
Dias, Marcy A.; Monteiro, Fernando C.
2012-09-01
The retinal fundus images are used in the treatment and diagnosis of several eye diseases, such as diabetic retinopathy and glaucoma. This paper proposes a new method to detect the optic disc (OD) automatically, due to the fact that the knowledge of the OD location is essential to the automatic analysis of retinal images. Ant Colony Optimization (ACO) is an optimization algorithm inspired by the foraging behaviour of some ant species that has been applied in image processing for edge detection. Recently, the ACO was used in fundus images to detect edges, and therefore, to segment the OD and other anatomical retinal structures. We present an algorithm for the detection of OD in the retina which takes advantage of the Gabor wavelet transform, entropy and ACO algorithm. Forty images of the retina from DRIVE database were used to evaluate the performance of our method.
Model Specification Searches Using Ant Colony Optimization Algorithms
Marcoulides, George A.; Drezner, Zvi
2003-01-01
Ant colony optimization is a recently proposed heuristic procedure inspired by the behavior of real ants. This article applies the procedure to model specification searches in structural equation modeling and reports the results. The results demonstrate the capabilities of ant colony optimization algorithms for conducting automated searches.
Ant Colony Optimization for Capacity Problems
Directory of Open Access Journals (Sweden)
Tad Gonsalves
2015-01-01
Full Text Available This paper deals with the optimization of the capac ity of a terminal railway station using the Ant Colony Optimization algorithm. The capacity of the terminal station is defined as the number of trains that depart from the station in un it interval of time. The railway capacity optimization problem is framed as a typical symmetr ical Travelling Salesman Problem (TSP, with the TSP nodes representing the train arrival / departure events and the TSP total cost representing the total time-interval of the schedul e. The application problem is then optimized using the ACO algorithm. The simulation experiments validate the formulation of the railway capacity problem as a TSP and the ACO algorithm pro duces optimal solutions superior to those produced by the domain experts.
Runtime analysis of the 1-ANT ant colony optimizer
DEFF Research Database (Denmark)
Doerr, Benjamin; Neumann, Frank; Sudholt, Dirk;
2011-01-01
The runtime analysis of randomized search heuristics is a growing field where, in the last two decades, many rigorous results have been obtained. First runtime analyses of ant colony optimization (ACO) have been conducted only recently. In these studies simple ACO algorithms such as the 1-ANT are...... investigated. The influence of the evaporation factor in the pheromone update mechanism and the robustness of this parameter w.r.t. the runtime behavior have been determined for the example function OneMax.This work puts forward the rigorous runtime analysis of the 1-ANT on the example functions Leading......Ones and BinVal. With respect to Evolutionary Algorithms (EAs), such analyses were essential to develop methods for the analysis on more complicated problems. The proof techniques required for the 1-ANT, unfortunately, differ significantly from those for EAs, which means that a new reservoir of methods has...
Loading pattern optimization using ant colony algorithm
Energy Technology Data Exchange (ETDEWEB)
Hoareau, Fabrice [EDF R and D, Clamart (France)
2008-07-01
Electricite de France (EDF) operates 58 nuclear power plants (NPP), of the Pressurized Water Reactor type. The loading pattern optimization of these NPP is currently done by EDF expert engineers. Within this framework, EDF R and D has developed automatic optimization tools that assist the experts. LOOP is an industrial tool, developed by EDF R and D and based on a simulated annealing algorithm. In order to improve the results of such automatic tools, new optimization methods have to be tested. Ant Colony Optimization (ACO) algorithms are recent methods that have given very good results on combinatorial optimization problems. In order to evaluate the performance of such methods on loading pattern optimization, direct comparisons between LOOP and a mock-up based on the Max-Min Ant System algorithm (a particular variant of ACO algorithms) were made on realistic test-cases. It is shown that the results obtained by the ACO mock-up are very similar to those of LOOP. Future research will consist in improving these encouraging results by using parallelization and by hybridizing the ACO algorithm with local search procedures. (author)
Loading pattern optimization using ant colony algorithm
International Nuclear Information System (INIS)
Electricite de France (EDF) operates 58 nuclear power plants (NPP), of the Pressurized Water Reactor type. The loading pattern optimization of these NPP is currently done by EDF expert engineers. Within this framework, EDF R and D has developed automatic optimization tools that assist the experts. LOOP is an industrial tool, developed by EDF R and D and based on a simulated annealing algorithm. In order to improve the results of such automatic tools, new optimization methods have to be tested. Ant Colony Optimization (ACO) algorithms are recent methods that have given very good results on combinatorial optimization problems. In order to evaluate the performance of such methods on loading pattern optimization, direct comparisons between LOOP and a mock-up based on the Max-Min Ant System algorithm (a particular variant of ACO algorithms) were made on realistic test-cases. It is shown that the results obtained by the ACO mock-up are very similar to those of LOOP. Future research will consist in improving these encouraging results by using parallelization and by hybridizing the ACO algorithm with local search procedures. (author)
Automatic Programming with Ant Colony Optimization
Green, Jennifer; Jacqueline L. Whalley; Johnson, Colin G.
2004-01-01
Automatic programming is the use of search techniques to find programs that solve a problem. The most commonly explored automatic programming technique is genetic programming, which uses genetic algorithms to carry out the search. In this paper we introduce a new technique called Ant Colony Programming (ACP) which uses an ant colony based search in place of genetic algorithms. This algorithm is described and compared with other approaches in the literature.
Electricity Consumption Prediction Based on SVR with Ant Colony Optimization
Haijiang Wang; Shanlin Yang
2013-01-01
Accurate forecasting of electric load has always been the most important issues in the electricity industry, particularly for developing countries. Due to the various influences, electric load forecasting reveals highly nonlinear characteristics. This paper creates a system for power load forecasting using support vector machine and ant colony optimization. The method of colony optimization is employed to process large amount of data and eliminate. The SVR model with ant colony optimization i...
Robustness of Ant Colony Optimization to Noise.
Friedrich, Tobias; Kötzing, Timo; Krejca, Martin S; Sutton, Andrew M
2016-01-01
Recently, ant colony optimization (ACO) algorithms have proven to be efficient in uncertain environments, such as noisy or dynamically changing fitness functions. Most of these analyses have focused on combinatorial problems such as path finding. We rigorously analyze an ACO algorithm optimizing linear pseudo-Boolean functions under additive posterior noise. We study noise distributions whose tails decay exponentially fast, including the classical case of additive Gaussian noise. Without noise, the classical [Formula: see text] EA outperforms any ACO algorithm, with smaller [Formula: see text] being better; however, in the case of large noise, the [Formula: see text] EA fails, even for high values of [Formula: see text] (which are known to help against small noise). In this article, we show that ACO is able to deal with arbitrarily large noise in a graceful manner; that is, as long as the evaporation factor [Formula: see text] is small enough, dependent on the variance [Formula: see text] of the noise and the dimension n of the search space, optimization will be successful. We also briefly consider the case of prior noise and prove that ACO can also efficiently optimize linear functions under this noise model. PMID:26928850
Tuning PID Controller Using Multiobjective Ant Colony Optimization
Pierre Borne; Noureddine Liouane; Ibtissem Chiha
2012-01-01
This paper treats a tuning of PID controllers method using multiobjective ant colony optimization. The design objective was to apply the ant colony algorithm in the aim of tuning the optimum solution of the PID controllers (Kp, Ki, and Kd) by minimizing the multiobjective function. The potential of using multiobjective ant algorithms is to identify the Pareto optimal solution. The other methods are applied to make comparisons between a classic approach based on the “Ziegler-Nichols” method an...
Optimization Planning based on Improved Ant Colony Algorithm for Robot
Xin Zhang; Zhanwen Wu
2014-01-01
As the ant colony algorithm has the defects in robot optimization path planning such as that low convergence cause local optimum, an improved ant colony algorithm is proposed to apply to the planning of path finding for robot. This algorithm uses the search way of exhumation ant to realize the complementation of advantages and accelerate the convergence of algorithm. The experimental result shows that the algorithm of this paper make the optimization planning of robot more reasonable
Ant Colony Optimization for Inferring Key Gene Interactions
Raza, Khalid; Kohli, Mahish
2014-01-01
Inferring gene interaction network from gene expression data is an important task in systems biology research. The gene interaction network, especially key interactions, plays an important role in identifying biomarkers for disease that further helps in drug design. Ant colony optimization is an optimization algorithm based on natural evolution and has been used in many optimization problems. In this paper, we applied ant colony optimization algorithm for inferring the key gene interactions f...
Protein structure optimization with a "Lamarckian" ant colony algorithm.
Oakley, Mark T; Richardson, E Grace; Carr, Harriet; Johnston, Roy L
2013-01-01
We describe the LamarckiAnt algorithm: a search algorithm that combines the features of a "Lamarckian" genetic algorithm and ant colony optimization. We have implemented this algorithm for the optimization of BLN model proteins, which have frustrated energy landscapes and represent a challenge for global optimization algorithms. We demonstrate that LamarckiAnt performs competitively with other state-of-the-art optimization algorithms. PMID:24407312
Determining the Optimum Section of Tunnels Using Ant Colony Optimization
S. Talatahari
2013-01-01
Ant colony optimization is developed to determine optimum cross sections of tunnel structures. Tunnel structures are expensive infrastructures in terms of material, construction, and maintenance and the application of optimization methods has a great role in minimizing their costs. This paper presents the formulation of objective function and constraints of the problem for the first time, and the ant colony optimization, as a developed metaheuristic approach, has been used to solve the proble...
Experiment Study of Entropy Convergence of Ant Colony Optimization
Pang, Chao-Yang; Wang, Chong-Bao; Hu, Ben-Qiong
2009-01-01
Ant colony optimization (ACO) has been applied to the field of combinatorial optimization widely. But the study of convergence theory of ACO is rare under general condition. In this paper, the authors try to find the evidence to prove that entropy is related to the convergence of ACO, especially to the estimation of the minimum iteration number of convergence. Entropy is a new view point possibly to studying the ACO convergence under general condition. Key Words: Ant Colony Optimization, Conv...
A critical analysis of parameter adaptation in ant colony optimization
PELLEGRINI, Paola; Stützle, Thomas; Birattari, Mauro
2012-01-01
Applying parameter adaptation means operating on parameters of an algorithm while it is tackling an instance. For ant colony optimization, several parameter adaptation methods have been proposed. In the literature, these methods have been shown to improve the quality of the results achieved in some particular contexts. In particular, they proved to be successful when applied to novel ant colony optimization algorithms for tackling problems that are not a classical testbed for optimization alg...
Data transmission optimal routing in WSN using ant colony algorithm
Jun, Su; Yatskiv, Vasyl; Sachenko, Anatoly; Yatskiv, Nataliya
2012-01-01
Ant colony algorithm to search an optimal route of data transmission in Wireless Sensor Network was explored. Correspondent software was designed and the dynamics and the decision search time was investigated for the given network topology.
Ant Colony Optimization for Train Scheduling: An Analysis
Sudip Kumar Sahana; Aruna Jain; Prabhat Kumar Mahanti
2014-01-01
This paper deals on cargo train scheduling between source station and destination station in Indian railways scenario. It uses Ant Colony Optimization (ACO) technique which is based on ant’s food finding behavior. Iteration wise convergence process and the convergence time for the algorithm are studied and analyzed. Finally, the run time analysis of Ant Colony Optimization Train Scheduling (ACOTS) and Standard Train Scheduling (STS) algorithm has been performed.
Generating and prioritizing optimal paths using ant colony optimization
Directory of Open Access Journals (Sweden)
Mukesh Mann
2015-03-01
Full Text Available The assurance of software reliability partially depends on testing. Numbers of approaches for software testing are available with their proclaimed advantages and limitations, but accessibility of any one of them is a subject dependent. Time is a critical factor in deciding cost of any project. A deep insight has shown that executing test cases are time consuming and tedious activity. Thus stress has been given to develop algorithms which can suggest better pathways for testing. One such algorithm called Path Prioritization -Ant Colony Optimization (PP-ACO has been suggested in this paper which is inspired by real Ant's foraging behavior to generate optimal paths sequence of a decision to decision (DD path of a graph. The algorithm does full path coverage and suggests the best optimal sequences of path in path testing and prioritizes them according to path strength.
An ant colony optimization algorithm for job shop scheduling problem
Edson Flórez; Wilfredo Gómez; MSc. Lola Bautista
2013-01-01
The nature has inspired several metaheuristics, outstanding among these is Ant Colony Optimization (ACO), which have proved to be very effective and efficient in problems of high complexity (NP-hard) in combinatorial optimization. This paper describes the implementation of an ACO model algorithm known as Elitist Ant System (EAS), applied to a combinatorial optimization problem called Job Shop Scheduling Problem (JSSP). We propose a method that seeks to reduce delays designating th...
Optimization of PID Controllers Using Ant Colony and Genetic Algorithms
Ünal, Muhammet; Topuz, Vedat; Erdal, Hasan
2013-01-01
Artificial neural networks, genetic algorithms and the ant colony optimization algorithm have become a highly effective tool for solving hard optimization problems. As their popularity has increased, applications of these algorithms have grown in more than equal measure. While many of the books available on these subjects only provide a cursory discussion of theory, the present book gives special emphasis to the theoretical background that is behind these algorithms and their applications. Moreover, this book introduces a novel real time control algorithm, that uses genetic algorithm and ant colony optimization algorithms for optimizing PID controller parameters. In general, the present book represents a solid survey on artificial neural networks, genetic algorithms and the ant colony optimization algorithm and introduces novel practical elements related to the application of these methods to process system control.
Heuristic Ant Colony Optimization with Applications in Communication Systems
Directory of Open Access Journals (Sweden)
Mateus de P. Marques
2014-05-01
Full Text Available This work explores the heuristic optimization algorithm based on ant colonies (ACO, deployed on complex optimization problems, aiming to achieve an iterative and feasible method which is able to solve NP and NP-Hard problems related to wireless networks. Furthermore, the convergence and performance of the Ant Colony Optimization algorithm for continuous domains are addressed through dozens of benchmark functions, which in turn, differ on each other regarding the number of dimensions and the difficulty w.r.t. the optimization (number of local optima. Finally, the applicability of the ACO is depicted in an minimum power control problem for CDMA networks.
Determining the Optimum Section of Tunnels Using Ant Colony Optimization
Directory of Open Access Journals (Sweden)
S. Talatahari
2013-01-01
Full Text Available Ant colony optimization is developed to determine optimum cross sections of tunnel structures. Tunnel structures are expensive infrastructures in terms of material, construction, and maintenance and the application of optimization methods has a great role in minimizing their costs. This paper presents the formulation of objective function and constraints of the problem for the first time, and the ant colony optimization, as a developed metaheuristic approach, has been used to solve the problem. The results and comparisons based on numerical examples show the efficiency of the algorithm.
Application of ant colony optimization in NPP classification fault location
International Nuclear Information System (INIS)
Nuclear Power Plant is a highly complex structural system with high safety requirements. Fault location appears to be particularly important to enhance its safety. Ant Colony Optimization is a new type of optimization algorithm, which is used in the fault location and classification of nuclear power plants in this paper. Taking the main coolant system of the first loop as the study object, using VB6.0 programming technology, the NPP fault location system is designed, and is tested against the related data in the literature. Test results show that the ant colony optimization can be used in the accurate classification fault location in the nuclear power plants. (authors)
Ant Colony Optimization and the Minimum Cut Problem
DEFF Research Database (Denmark)
Kötzing, Timo; Lehre, Per Kristian; Neumann, Frank;
2010-01-01
Ant Colony Optimization (ACO) is a powerful metaheuristic for solving combinatorial optimization problems. With this paper we contribute to the theoretical understanding of this kind of algorithm by investigating the classical minimum cut problem. An ACO algorithm similar to the one that was proved...
PARAMETER ESTIMATION OF VALVE STICTION USING ANT COLONY OPTIMIZATION
Directory of Open Access Journals (Sweden)
S. Kalaivani
2012-07-01
Full Text Available In this paper, a procedure for quantifying valve stiction in control loops based on ant colony optimization has been proposed. Pneumatic control valves are widely used in the process industry. The control valve contains non-linearities such as stiction, backlash, and deadband that in turn cause oscillations in the process output. Stiction is one of the long-standing problems and it is the most severe problem in the control valves. Thus the measurement data from an oscillating control loop can be used as a possible diagnostic signal to provide an estimate of the stiction magnitude. Quantification of control valve stiction is still a challenging issue. Prior to doing stiction detection and quantification, it is necessary to choose a suitable model structure to describe control-valve stiction. To understand the stiction phenomenon, the Stenman model is used. Ant Colony Optimization (ACO, an intelligent swarm algorithm, proves effective in various fields. The ACO algorithm is inspired from the natural trail following behaviour of ants. The parameters of the Stenman model are estimated using ant colony optimization, from the input-output data by minimizing the error between the actual stiction model output and the simulated stiction model output. Using ant colony optimization, Stenman model with known nonlinear structure and unknown parameters can be estimated.
Response Ant Colony Optimization of End Milling Surface Roughness
Ahmed N. Abd Alla; M. M. Noor; K. Kadirgama
2010-01-01
Metal cutting processes are important due to increased consumer demands for quality metal cutting related products (more precise tolerances and better product surface roughness) that has driven the metal cutting industry to continuously improve quality control of metal cutting processes. This paper presents optimum surface roughness by using milling mould aluminium alloys (AA6061-T6) with Response Ant Colony Optimization (RACO). The approach is based on Response Surface Method (RSM) and Ant C...
Tasks Scheduling using Ant Colony Optimization
Directory of Open Access Journals (Sweden)
A. P. Shanthi
2012-01-01
Full Text Available Problem statement: Efficient scheduling of the tasks to heterogeneous processors for any application is critical in order to achieve high performance. Finding a feasible schedule for a given task set to a set of heterogeneous processors without exceeding the capacity of the processors, in general, is NP-Hard. Even if there are many conventional approaches available, people have been looking at unconventional approaches for solving this problem. This study uses a paradigm using Ant Colony Optimisation (ACO for arriving at a schedule. Approach: An attempt is made to arrive at a feasible schedule of a task set on heterogeneous processors ensuring load balancing across the processors. The heterogeneity of the processors is modelled by assuming different utilisation times for the same task on different processors. ACO, a bio-inspired computing paradigm, is used for generating the schedule. Results: For a given instance of the problem, ten runs are conducted based on an ACO algorithm and the average wait time of all tasks is computed. Also the average utilisation of each processor is calculated. For the same instance, the two parameters: average wait time of tasks and utilisation of processors are computed using the First Come First Served (FCFS. The results are tabulated and compared and it is found that ACO performs better than the FCFS with respect to the wait time. Although the processor utilisation is more for some processors using FCFS algorithm, it is found that the load is better balanced among the processors in ACO. There is a marginal increase in the time for arriving at a schedule in ACO compared to FCFS algorithm. Conclusion: This approach to the tasks assignment problem using ACO performs better with respect to the two parameters used compared to the FCFS algorithm but the time taken to come up with the schedule using ACO is slightly more than that of FCFS.
AN IMPROVED ANT COLONY ALGORITHM IN CONTINUOUS OPTIMIZATION
Institute of Scientific and Technical Information of China (English)
Ling CHEN; Jie SHEN; Ling QIN; Hongjian CHEN
2003-01-01
A modified ant colony algorithm for solving optimization problem with continuous parameters is presented. In the method, groups of candidate values of the components are constructed, and each value in the group has its trail information. In each iteration of the ant colony algorithm, the method first chooses initial values of the components using the trail information. Then GA operations of crossover and mutation can determine the values of the components in the solution. Our experimental results on the problem of nonlinear programming show that our method has a much higher convergence speed and stability than those of simulated annealing (SA) and GA.
All-Optical Implementation of the Ant Colony Optimization Algorithm
Hu, Wenchao; Wu, Kan; Shum, Perry Ping; Zheludev, Nikolay I.; Soci, Cesare
2016-05-01
We report all-optical implementation of the optimization algorithm for the famous “ant colony” problem. Ant colonies progressively optimize pathway to food discovered by one of the ants through identifying the discovered route with volatile chemicals (pheromones) secreted on the way back from the food deposit. Mathematically this is an important example of graph optimization problem with dynamically changing parameters. Using an optical network with nonlinear waveguides to represent the graph and a feedback loop, we experimentally show that photons traveling through the network behave like ants that dynamically modify the environment to find the shortest pathway to any chosen point in the graph. This proof-of-principle demonstration illustrates how transient nonlinearity in the optical system can be exploited to tackle complex optimization problems directly, on the hardware level, which may be used for self-routing of optical signals in transparent communication networks and energy flow in photonic systems.
Global path planning approach based on ant colony optimization algorithm
Institute of Scientific and Technical Information of China (English)
WEN Zhi-qiang; CAI Zi-xing
2006-01-01
Ant colony optimization (ACO) algorithm was modified to optimize the global path. In order to simulate the real ant colonies, according to the foraging behavior of ant colonies and the characteristic of food, conceptions of neighboring area and smell area were presented. The former can ensure the diversity of paths and the latter ensures that each ant can reach the goal. Then the whole path was divided into three parts and ACO was used to search the second part path. When the three parts pathes were adjusted,the final path was found. The valid path and invalid path were defined to ensure the path valid. Finally, the strategies of the pheromone search were applied to search the optimum path. However, when only the pheromone was used to search the optimum path, ACO converges easily. In order to avoid this premature convergence, combining pheromone search and random search, a hybrid ant colony algorithm(HACO) was used to find the optimum path. The comparison between ACO and HACO shows that HACO can be used to find the shortest path.
PRACTICAL APPLICATION OF POPULATION BASED ANT COLONY OPTIMIZATION ALGORITHM
Valeeva, A.; Goncharova, Yu
2013-01-01
In this paper we consider the Split Delivery Vehicle Routing Problem, which has a wide practical application. The SDVRP is NP-hard problem. We propose a population based ant colony optimization algorithm for solving the SDVRP. Computational experiments for developed algorithm are reported.
A Hybrid Optimization Algorithm based on Genetic Algorithm and Ant Colony Optimization
Zainudin Zukhri; Irving Vitra Paputungan
2013-01-01
In optimization problem, Genetic Algorithm (GA) and Ant Colony Optimization Algorithm (ACO) have been known as good alternative techniques. GA is designed by adopting the natural evolution process, while ACO is inspired by the foraging behaviour of ant species. This paper presents a hybrid GA-ACO for Travelling Salesman Problem (TSP), called Genetic Ant Colony Optimization (GACO). In this method, GA will observe and preserve the fittest ant in each cycle in every generation and on...
Apriori and Ant Colony Optimization of Association Rules
Anshuman Singh Sadh; Nitin Shukla
2013-01-01
Association Rule mining is one of the important and most popular data mining technique. Association rule mining can be efficiently used in any decision making processor decision based rule generation. In this paper we present an efficient mining based optimization techniques for rule generation. By using apriori algorithm we find the positive and negative association rules. Then we apply ant colony optimization algorithm (ACO) for optimizing the association rules. Our results show the effecti...
SWARM INTELLIGENCE FROM NATURAL TO ARTIFICIAL SYSTEMS: ANT COLONY OPTIMIZATION
Directory of Open Access Journals (Sweden)
O. Deepa
2016-03-01
Full Text Available Successful applications coming from biologically inspired algorithm like Ant Colony Optimization (ACO based on artificial swarm intelligence which is inspired by the collective behavior of social insects. ACO has been inspired from natural ants system, their behavior, team coordination, synchronization for the searching of optimal solution and also maintains information of each ant. At present, ACO has emerged as a leading metaheuristic technique for the solution of combinatorial optimization problems which can be used to find shortest path through construction graph. This paper describe about various behavior of ants, successfully used ACO algorithms, applications and current trends. In recent years, some researchers have also focused on the application of ACO algorithms to design of wireless communication network, bioinformatics problem, dynamic problem and multi-objective problem.
DATA MINING UNTUK KLASIFIKASI PELANGGAN DENGAN ANT COLONY OPTIMIZATION
Directory of Open Access Journals (Sweden)
Maulani Kapiudin
2007-01-01
Full Text Available In this research the system for potentially customer classification is designed by extracting rule based classification from raw data with certain criteria. The searching process uses customer database from a bank with data mining technic by using ant colony optimization. A test based on min_case_per_rule variety and phenomene updating were done on a certain period of time. The result are group of customer class which base on rules built by ant and by modifying the pheromone updating, the area of the case is getting bigger. Prototype of the software is coded with C++ 6 version. The customer database master is created by using Microsoft Access. This paper gives information about potential customer of bank that can be classified by prototype of the software. Abstract in Bahasa Indonesia : Pada penelitian untuk sistem klasifikasi potensial customer ini didesain dengan melakukan ekstrak rule berdasarkan klasifikasi dari data mentah dengan kriteria tertentu. Proses pencarian menggunakan database pelanggan dari suatu bank dengan teknik data mining dengan ant colony optimization. Dilakukan percobaan dengan min_case_per_rule variety dan phenomene updating pada periode waktu tertentu. Hasilnya adalah sekelompok class pelanggan yang didasarkan dari rules yang dibangun dengan ant dan dengan dimodifikasi dengan pheromone updating, area permasalahan menjadi lebih melebar. Prototype dari software ini menggunakan C++ versi 6. Database pelanggan dibangun dengan Microsoft Access. Paper ini memberikan informasi mengenai potensi pelanggan dari bank, sehingga dapat diklasifikasikan dengan prototype dari software. Kata kunci: ant colony optimization, classification, min_case_per_rule, term, pheromone updating
Implementation of Travelling Salesman Problem Using ant Colony Optimization
Directory of Open Access Journals (Sweden)
Gaurav Singh,
2014-04-01
Full Text Available Within the Artificial Intelligence community, there is great need for fast and accurate traversal algorithms, specifically those that find a path from a start to goal with minimum cost. Cost can be distance, time, money, energy, etc. Travelling salesman problem (TSP is a combinatorial optimization problem. TSP is the most intensively studied problem in the area of optimization. Ant colony optimization (ACO is a population-based metaheuristic that can be used to find approximate solutions to difficult optimization problems. There have been many efforts in the past to provide time efficient solutions for the problem, both exact and approximate. This paper demonstrates the implementation of TSP using ant colony optimization(ACO.The solution to this problem enjoys wide applicability in a variety of practical fields.TSP in its purest form has several applications such as planning, logistics, and manufacture of microchips, military and traffic.
Li Hui; Zhang Jingxiao; Ren Lieyan; Shi Zhen
2013-01-01
In this paper, the basic theory and procedure for working out solutions of ant colony genetic algorithm were first introduced; the optimization, constraints and objectives of construction project scheduling were described; then a basic model for optimization of construction project scheduling was established; and an improved ant colony genetic algorithm for solving the basic model was put forward. Performance of ant colony genetic algorithm was analyzed and evaluated from the aspect of schedu...
A Hybrid Ant Colony Algorithm for Loading Pattern Optimization
Hoareau, F.
2014-06-01
Electricité de France (EDF) operates 58 nuclear power plant (NPP), of the Pressurized Water Reactor (PWR) type. The loading pattern (LP) optimization of these NPP is currently done by EDF expert engineers. Within this framework, EDF R&D has developed automatic optimization tools that assist the experts. The latter can resort, for instance, to a loading pattern optimization software based on ant colony algorithm. This paper presents an analysis of the search space of a few realistic loading pattern optimization problems. This analysis leads us to introduce a hybrid algorithm based on ant colony and a local search method. We then show that this new algorithm is able to generate loading patterns of good quality.
Antenna synthesis based on the ant colony optimization algorithm
Slyusar, V. I.; Ermolaev, S. Y.
2009-01-01
This report are described the versions and the synthesis results of new designs of electrically small antenna based on ant colony optimization algorithms. To study the parameters of the frame and non-loopback vibrators MMANA package was used. Geometric forms that were obtained might be used as contour lines of printed, slot antenna or as forming surface of the crystal dielectric resonator antenna. A constructive meta-heuristic search algorithm for optimization of the antennas form...
Response Ant Colony Optimization of End Milling Surface Roughness
Directory of Open Access Journals (Sweden)
Ahmed N. Abd Alla
2010-03-01
Full Text Available Metal cutting processes are important due to increased consumer demands for quality metal cutting related products (more precise tolerances and better product surface roughness that has driven the metal cutting industry to continuously improve quality control of metal cutting processes. This paper presents optimum surface roughness by using milling mould aluminium alloys (AA6061-T6 with Response Ant Colony Optimization (RACO. The approach is based on Response Surface Method (RSM and Ant Colony Optimization (ACO. The main objectives to find the optimized parameters and the most dominant variables (cutting speed, feedrate, axial depth and radial depth. The first order model indicates that the feedrate is the most significant factor affecting surface roughness.
Ant Colony Optimization With Combining Gaussian Eliminations for Matrix Multiplication.
Zhou, Yuren; Lai, Xinsheng; Li, Yuanxiang; Dong, Wenyong
2013-02-01
One of the main unsolved problems in computer algebra is to determine the minimal number of multiplications which is necessary to compute the product of two matrices. For practical value, the small format is of special interest. This leads to a combinatorial optimization problem which is unlikely solved in polynomial time. In this paper, we present a method called combining Gaussian eliminations to reduce the number of variables in this optimization problem and use heuristic ant colony algorithm to solve the problem. The results of experiments on 2 × 2 case show that our algorithm achieves significant performance gains. Extending this algorithm from 2 × 2 case to 3 × 3 case is also discussed. Index Terms—Ant colony optimization (ACO), evolutionary algorithms, Gaussian eliminations, matrix multiplication, multiplicative complexity, Strassen's algorithm. PMID:22835561
Multiple-Agent Task Allocation Algorithm Utilizing Ant Colony Optimization
Kai Zhao
2013-01-01
Task allocation in multiple agent system has been widely applied many application fields, such as unmanned aerial vehicle, multi-robot system and manufacturing system et al. Therefore, it becomes one of the hot topics in distributed artificial intelligence research field for several years. Therefore, in this paper, we propose a novel task allocation algorithm in multiple agent systems utilizing ant colony optimization. Firstly, the basic structure of agent organization is described, which inc...
Ant colony optimization approach to estimate energy demand of Turkey
International Nuclear Information System (INIS)
This paper attempts to shed light on the determinants of energy demand in Turkey. Energy demand model is first proposed using the ant colony optimization (ACO) approach. It is multi-agent systems in which the behavior of each ant is inspired by the foraging behavior of real ants to solve optimization problem. ACO energy demand estimation (ACOEDE) model is developed using population, gross domestic product (GDP), import and export. All equations proposed here are linear and quadratic. QuadraticACOEDE provided better-fit solution due to fluctuations of the economic indicators. The ACOEDE model plans the energy demand of Turkey until 2025 according to three scenarios. The relative estimation errors of the ACOEDE model are the lowest when they are compared with the Ministry of Energy and Natural Resources (MENR) projection
An Ant Colony Optimization Algorithm for Microwave Corrugated Filters Design
Mantilla-Gaviria, Ivan A.; Alejandro Díaz-Morcillo; Balbastre-Tejedor, Juan V.
2013-01-01
A practical and useful application of the Ant Colony Optimization (ACO) method for microwave corrugated filter design is shown. The classical, general purpose ACO method is adapted to deal with the microwave filter design problem. The design strategy used in this paper is an iterative procedure based on the use of an optimization method along with an electromagnetic simulator. The designs of high-pass and band-pass microwave rectangular waveguide filters working in the C-band and X-band, res...
Applying Data Clustering Feature to Speed Up Ant Colony Optimization
Chao-Yang Pang; Ben-Qiong Hu; Jie Zhang; Wei Hu; Zheng-Chao Shan
2013-01-01
Ant colony optimization (ACO) is often used to solve optimization problems, such as traveling salesman problem (TSP). When it is applied to TSP, its runtime is proportional to the squared size of problem $N$ so as to look less efficient. The following statistical feature is observed during the authors’ long-term gene data analysis using ACO: when the data size $N$ becomes big, local clustering appears frequently. That is, some data cluster tightly in a small area and form a class, and the cor...
Binary-Coding-Based Ant Colony Optimization and Its Convergence
Institute of Scientific and Technical Information of China (English)
Tian-Ming Bu; Song-Nian Yu; Hui-Wei Guan
2004-01-01
Ant colony optimization(ACO for short)is a meta-heuristics for hard combinatorial optimization problems.It is a population-based approach that uses exploitation of positive feedback as well as greedy search.In this paper,genetic algorithm's(GA for short)ideas are introduced into ACO to present a new binary-coding based ant colony optimization.Compared with the typical ACO,the algorithm is intended to replace the problem's parameter-space with coding-space,which links ACO with GA so that the fruits of GA can be applied to ACO directly.Furthermore,it can not only solve general combinatorial optimization problems,but also other problems such as function optimization.Based on the algorithm,it is proved that if the pheromone remainder factor ρ is under the condition of ρ≥ 1,the algorithm can promise to converge at the optimal,whereas if 0 ＜ρ＜ 1,it does not.
Operations planning for agricultural harvesters using ant colony optimization
Directory of Open Access Journals (Sweden)
A. Bakhtiari
2013-07-01
Full Text Available An approach based on ant colony optimization for the generation for optimal field coverage plans for the harvesting operations using the optimal track sequence principle B-patterns was presented. The case where the harvester unloads to a stationary facility located out of the field area, or in the field boundary, was examined. In this operation type there are capacity constraints to the load that a primary unit, or a harvester in this specific case, can carry and consequently, it is not able to complete the task of harvesting a field area and therefore it has to leave the field area, to unload, and return to continue the task one or more times. Results from comparing the optimal plans with conventional plans generated by operators show reductions in the in-field nonworking distance in the range of 19.3-42.1% while the savings in the total non-working distance were in the range of 18-43.8%. These savings provide a high potential for the implementation of the ant colony optimization approach for the case of harvesting operations that are not supported by transport carts for the out-of-the-field removal of the crops, a practice case that is normally followed in developing countries, due to lack of resources.
A HYBRID OPTIMIZATION ALGORITHM BASED ON GENETIC ALGORITHM AND ANT COLONY OPTIMIZATION
Directory of Open Access Journals (Sweden)
Zainudin Zukhri
2013-09-01
Full Text Available In optimization problem, Genetic Algorithm (GA and Ant Colony Optimization Algorithm (ACO have been known as good alternative techniques. GA is designed by adopting the natural evolution process, while ACO is inspired by the foraging behaviour of ant species. This paper presents a hybrid GA-ACO for Travelling Salesman Problem (TSP, called Genetic Ant Colony Optimization (GACO. In this method, GA will observe and preserve the fittest ant in each cycle in every generation and only unvisited cities will be assessed by ACO. From experimental result, GACO performance is significantly improved and its time complexity is fairly equal compared to the GA and ACO.
Ant Colony Algorithm for the Weighted Item Layout Optimization Problem
Xu, Yi-Chun; Liu, Yong; Xiao, Ren-Bin; Amos, Martyn
2010-01-01
This paper discusses the problem of placing weighted items in a circular container in two-dimensional space. This problem is of great practical significance in various mechanical engineering domains, such as the design of communication satellites. Two constructive heuristics are proposed, one for packing circular items and the other for packing rectangular items. These work by first optimizing object placement order, and then optimizing object positioning. Based on these heuristics, an ant colony optimization (ACO) algorithm is described to search first for optimal positioning order, and then for the optimal layout. We describe the results of numerical experiments, in which we test two versions of our ACO algorithm alongside local search methods previously described in the literature. Our results show that the constructive heuristic-based ACO performs better than existing methods on larger problem instances.
An ant colony optimization method for generalized TSP problem
Institute of Scientific and Technical Information of China (English)
Jinhui Yang; Xiaohu Shi; Maurizio Marchese; Yanchun Liang
2008-01-01
Focused on a variation of the euclidean traveling salesman problem (TSP), namely, the generalized traveling salesman problem (GTSP), this paper extends the ant colony optimization method from TSP to this field. By considering the group influence, an improved method is further improved. To avoid locking into local minima, a mutation process and a local searching technique are also introduced into this method. Numerical results show that the proposed method can deal with the GTSP problems fairly well, and the developed mutation process and local search technique are effective.
Multiple-Agent Task Allocation Algorithm Utilizing Ant Colony Optimization
Directory of Open Access Journals (Sweden)
Kai Zhao
2013-11-01
Full Text Available Task allocation in multiple agent system has been widely applied many application fields, such as unmanned aerial vehicle, multi-robot system and manufacturing system et al. Therefore, it becomes one of the hot topics in distributed artificial intelligence research field for several years. Therefore, in this paper, we propose a novel task allocation algorithm in multiple agent systems utilizing ant colony optimization. Firstly, the basic structure of agent organization is described, which include context-aware module, information processing module, the executing module, decision-making and intelligent control module, knowledge base and task table. Based the above agent structure, these module utilize the knowledge in the external environment to process the information in agent communicating. Secondly, we point out that task allocation process in multiple agent systems can be implement by creating the space to the mapping of the multi-agent organization. Thirdly, a modified multiple agent system oriented ant colony optimization algorithm is given, which contain pre-processing steps and the task allocation results are obtained by executing the trust region sqp algorithm in local solver. Finally, performance evaluation is conducted by experiments comparing with Random strategy and Instant optimal strategy, and very positive results are obtained
Ant Colony Optimization (ACO) refers to the family of algorithms inspired by the behavior of real ants and used to solve combinatorial problems such as the Traveling Salesman Problem (TSP).Optimal Foraging Theory (OFT) is an evolutionary principle wherein foraging organisms or insect parasites seek ...
Wavelet phase estimation using ant colony optimization algorithm
Wang, Shangxu; Yuan, Sanyi; Ma, Ming; Zhang, Rui; Luo, Chunmei
2015-11-01
Eliminating seismic wavelet is important in seismic high-resolution processing. However, artifacts may arise in seismic interpretation when the wavelet phase is inaccurately estimated. Therefore, we propose a frequency-dependent wavelet phase estimation method based on the ant colony optimization (ACO) algorithm with global optimization capacity. The wavelet phase can be optimized with the ACO algorithm by fitting nearby-well seismic traces with well-log data. Our proposed method can rapidly produce a frequency-dependent wavelet phase and optimize the seismic-to-well tie, particularly for weak signals. Synthetic examples demonstrate the effectiveness of the proposed ACO-based wavelet phase estimation method, even in the presence of a colored noise. Real data example illustrates that seismic deconvolution using an optimum mixed-phase wavelet can provide more information than that using an optimum constant-phase wavelet.
A New Technique to Increase the Working Performance of the Ant Colony Optimization Algorithm
Reena Jindal; Dr.Samidha D.Sharma,; Prof.Manoj Sharma,
2013-01-01
The DBSCALE [1] algorithm is a popular algorithm in Data Mining field as it has the ability to mine the noiseless arbitrary shape Clusters in an elegant way. Such meta-heuristic algorithms include Ant Colony Optimization Algorithms, Particle Swarm Optimizations and Genetic Algorithm has received increasing attention in recent years. Ant Colony Optimization (ACO) is a technique that was introduced in the early 1990’s and it is inspired by the foraging behavior of ant colonies. .This paper pres...
Using Ant Colony Optimization for Routing in VLSI Chips
Arora, Tamanna; Moses, Melanie
2009-04-01
Rapid advances in VLSI technology have increased the number of transistors that fit on a single chip to about two billion. A frequent problem in the design of such high performance and high density VLSI layouts is that of routing wires that connect such large numbers of components. Most wire-routing problems are computationally hard. The quality of any routing algorithm is judged by the extent to which it satisfies routing constraints and design objectives. Some of the broader design objectives include minimizing total routed wire length, and minimizing total capacitance induced in the chip, both of which serve to minimize power consumed by the chip. Ant Colony Optimization algorithms (ACO) provide a multi-agent framework for combinatorial optimization by combining memory, stochastic decision and strategies of collective and distributed learning by ant-like agents. This paper applies ACO to the NP-hard problem of finding optimal routes for interconnect routing on VLSI chips. The constraints on interconnect routing are used by ants as heuristics which guide their search process. We found that ACO algorithms were able to successfully incorporate multiple constraints and route interconnects on suite of benchmark chips. On an average, the algorithm routed with total wire length 5.5% less than other established routing algorithms.
Kochem Vendramin, Ana Cristina; Munaretto, Anelise; Regattieri Delgado, Myriam; Carneiro Viana, Aline
2011-01-01
This paper presents a new prediction-based forwarding protocol for the complex and dynamic Delay Tolerant Networks (DTN). The proposed protocol is called GrAnt (Greedy Ant) as it uses a greedy transition rule for the Ant Colony Optimization (ACO) metaheuristic to select the most promising forwarder nodes or to provide the exploitation of good paths previously found. The main motivation for the use of ACO is to take advantage of its population-based search and of the rapid adaptation of its le...
Ant colony optimization as a method for strategic genotype sampling.
Spangler, M L; Robbins, K R; Bertrand, J K; Macneil, M; Rekaya, R
2009-06-01
A simulation study was carried out to develop an alternative method of selecting animals to be genotyped. Simulated pedigrees included 5000 animals, each assigned genotypes for a bi-allelic single nucleotide polymorphism (SNP) based on assumed allelic frequencies of 0.7/0.3 and 0.5/0.5. In addition to simulated pedigrees, two beef cattle pedigrees, one from field data and the other from a research population, were used to test selected methods using simulated genotypes. The proposed method of ant colony optimization (ACO) was evaluated based on the number of alleles correctly assigned to ungenotyped animals (AK(P)), the probability of assigning true alleles (AK(G)) and the probability of correctly assigning genotypes (APTG). The proposed animal selection method of ant colony optimization was compared to selection using the diagonal elements of the inverse of the relationship matrix (A(-1)). Comparisons of these two methods showed that ACO yielded an increase in AK(P) ranging from 4.98% to 5.16% and an increase in APTG from 1.6% to 1.8% using simulated pedigrees. Gains in field data and research pedigrees were slightly lower. These results suggest that ACO can provide a better genotyping strategy, when compared to A(-1), with different pedigree sizes and structures. PMID:19220227
A hybrid ant colony algorithm for loading pattern optimization
International Nuclear Information System (INIS)
EDF (Electricity of France) operates 58 nuclear power plant (NPP), all of the Pressurized Water Reactor (PWR) type. The loading pattern (LP) optimization of these NPP is currently done by EDF expert engineers. Within this framework, EDF has developed automatic optimization tools that assist the experts. This paper presents firstly a description of the LP optimization problem listing its constraints. Secondly, a study of the search space is performed using the 'landscape fitness analysis' paradigm. Lastly, a hybrid algorithm based on ant colony and a local search method, is introduced to take advantage of the features of the problem. Tests have been performed on realistic cases. This hybrid algorithm has turned out to give very encouraging results when compared to a randomized local search method
Mobile Anonymous Trust Based Routing Using Ant Colony Optimization
Directory of Open Access Journals (Sweden)
R. Kalpana
2012-01-01
Full Text Available Problem statement: Ad hoc networks are susceptible to malicious attacks through denial of services, traffic analysis and spoofing. The security of the ad hoc routing protocol depends upon encryption, authentication, anonymity and trust factors. End-to-end security of data is provided by encryption and authentication, topology information of the nodes can be obtained by studying traffic and routing data. This security problem of ad hoc network is addressed by the use of anonymity mechanisms and trust levels. Identification information like traffic flow, network topology, paths from malicious attackers is hidden in anonymous networks. Similarly, trust plays a very important role in the intermediate node selection in ad hoc networks. Trust is essential as selfish and malicious nodes not only pose a security issue but also decreases the Quality of Service. Approach: In this study, a routing to address anonymous routing with a trust which improves the overall security of the ad hoc network was proposed. A new approach for an on demand ad-hoc routing algorithm, which was based on swarm intelligence. Ant colony algorithms were a subset of swarm intelligence and considered the ability of simple ants to solve complex problems by cooperation. The interesting point was, that the ants do not need any direct communication for the solution process, instead they communicate by stigmergy. The notion of stigmergy means the indirect communication of individuals through modifying their environment. Several algorithms which were based on ant colony problems were introduced in recent years to solve different problems, e.g., optimization problems. Results and Conclusion: It is observed that the overall security in the network improves when the trust factor is considered. It is seen that non performing nodes are not considered due to the proposed ACO technique.
Collective Intelligence for Optimal Power Flow Solution Using Ant Colony Optimization
Directory of Open Access Journals (Sweden)
Boumediène ALLAOUA
2008-12-01
Full Text Available This paper presents the performance ant collective intelligence efficiency for electrical network. Solutions for Optimal Power Flow (OPF problem of a power system deliberate via an ant colony optimization metaheuristic method. The objective is to minimize the total fuel cost of thermal generating units and also conserve an acceptable system performance in terms of limits on generator real and reactive power outputs, bus voltages, shunt capacitors/reactors, transformers tap-setting and power flow of transmission lines. Simulation results on the IEEE 30-bus electrical network show that the ant colony optimization method converges quickly to the global optimum.
The analysis of the convergence of ant colony optimization algorithm
Institute of Scientific and Technical Information of China (English)
ZHU Qingbao; WANG Lingling
2007-01-01
The ant colony optimization algorithm has been widely studied and many important results have been obtained.Though this algorithm has been applied to many fields.the analysis about its convergence is much less,which will influence the improvement of this algorithm.Therefore,the convergence of this algorithm applied to the traveling salesman problem(TSP)was analyzed in detail.The conclusion that this algorithm will definitely converge to the optimal solution under the condition of 0＜q0＜1 was proved true.In addition,the influence on its convergence caused by the properties of the closed path,heuristic functions,the pheromone and q0 was analyzed.Based on the above-mentioned,some conclusions about how to improve the speed of its convergence are obtained.
An Ant Colony Optimization Algorithm for Microwave Corrugated Filters Design
Directory of Open Access Journals (Sweden)
Ivan A. Mantilla-Gaviria
2013-01-01
Full Text Available A practical and useful application of the Ant Colony Optimization (ACO method for microwave corrugated filter design is shown. The classical, general purpose ACO method is adapted to deal with the microwave filter design problem. The design strategy used in this paper is an iterative procedure based on the use of an optimization method along with an electromagnetic simulator. The designs of high-pass and band-pass microwave rectangular waveguide filters working in the C-band and X-band, respectively, for communication applications, are shown. The average convergence performance of the ACO method is characterized by means of Monte Carlo simulations and compared with that obtained with the well-known Genetic Algorithm (GA. The overall performance, for the simulations presented herein, of the ACO is found to be better than that of the GA.
Electromagnetic Wave Propagation Modeling Using the Ant Colony Optimization Algorithm
Directory of Open Access Journals (Sweden)
P. Pechac
2002-09-01
Full Text Available The Ant Colony Optimization algorithm - a multi-agent approach tocombinatorial optimization problems - is introduced for a simple raytracing performed on only an ordinary bitmap describing atwo-dimensional scenario. This bitmap can be obtained as a simple scanwhere different colors represent different mediums or obstacles. It isshown that using the presented algorithm a path minimizing the wavetraveling time can be found according to the Fermat's principle. Anexample of practical application is a simple ray tracing performed ononly an ordinary scanned bitmap of the city map. Together with theBerg's recursive model a non-line-of-sight path loss could becalculated without any need of building database. In this way thecoverage predictions for urban microcells could become extremely easyand fast to apply.
Routing in Ad Hoc Network Using Ant Colony Optimization
Khanpara, Pimal; Valiveti, Sharada; Kotecha, K.
The ad hoc networks have dynamic topology and are infrastructure less. So it is required to implement a new network protocol for providing efficient end to end communication based on TCP/IP structure. There is a need to re-define or modify the functions of each layer of TCP/IP model to provide end to end communication between nodes. The mobility of the nodes and the limited resources are the main reason for this change. The main challenge in ad hoc networks is routing. Due to the mobility of the nodes in the ad hoc networks, routing becomes very difficult. Ant based algorithms are suitable for routing in ad hoc networks due to its dynamic nature and adaptive behavior. There are number of routing algorithms based on the concept of ant colony optimizations. It is quite difficult to determine the best ant based algorithm for routing as these algorithms perform differently under various circumstances such as the traffic distribution and network topology. In this paper, the overview of such routing algorithms is given.
DETECTION OF MASSES IN MAMMOGRAM IMAGES USING ANT COLONY OPTIMIZATION
Directory of Open Access Journals (Sweden)
Varsha Patankar
2014-04-01
Full Text Available This paper proposes the advances in edge detection techniques, which is used for the mammogram images for cancer diagnosis. It compares the evaluation of edge detection with the proposed method ant colony optimization. The study shows that the edge detection technique is applied on the mammogram images because it will clearly identify the masses in mammogram images. This will help to identify the type of cancer at the early stage. ACO edge detector is best in detecting the edges when compared to the other edge detectors. The quality of various edge detectors is calculated based on the parameters such as Peak signal to noise ratio (PSNR and Mean square error (MSE.
A Survey Paper on Solving TSP using Ant Colony Optimization on GPU
Khushbu khatri; Vinit Kumar Gupta
2014-01-01
Ant Colony Optimization (ACO) is meta-heuristic algorithm inspired from nature to solve many combinatorial optimization problem such as Travelling Salesman Problem (TSP). There are many versions of ACO used to solve TSP like, Ant System, Elitist Ant System, Max-Min Ant System, Rank based Ant System algorithm. For improved performance, these methods can be implemented in parallel architecture like GPU, CUDA architecture. Graphics Processing Unit (GPU) provides highly parallel and f...
CACONET: Ant Colony Optimization (ACO) Based Clustering Algorithm for VANET
Bajwa, Khalid Bashir; Khan, Salabat; Chaudary, Nadeem Majeed; Akram, Adeel
2016-01-01
A vehicular ad hoc network (VANET) is a wirelessly connected network of vehicular nodes. A number of techniques, such as message ferrying, data aggregation, and vehicular node clustering aim to improve communication efficiency in VANETs. Cluster heads (CHs), selected in the process of clustering, manage inter-cluster and intra-cluster communication. The lifetime of clusters and number of CHs determines the efficiency of network. In this paper a Clustering algorithm based on Ant Colony Optimization (ACO) for VANETs (CACONET) is proposed. CACONET forms optimized clusters for robust communication. CACONET is compared empirically with state-of-the-art baseline techniques like Multi-Objective Particle Swarm Optimization (MOPSO) and Comprehensive Learning Particle Swarm Optimization (CLPSO). Experiments varying the grid size of the network, the transmission range of nodes, and number of nodes in the network were performed to evaluate the comparative effectiveness of these algorithms. For optimized clustering, the parameters considered are the transmission range, direction and speed of the nodes. The results indicate that CACONET significantly outperforms MOPSO and CLPSO. PMID:27149517
CACONET: Ant Colony Optimization (ACO) Based Clustering Algorithm for VANET.
Aadil, Farhan; Bajwa, Khalid Bashir; Khan, Salabat; Chaudary, Nadeem Majeed; Akram, Adeel
2016-01-01
A vehicular ad hoc network (VANET) is a wirelessly connected network of vehicular nodes. A number of techniques, such as message ferrying, data aggregation, and vehicular node clustering aim to improve communication efficiency in VANETs. Cluster heads (CHs), selected in the process of clustering, manage inter-cluster and intra-cluster communication. The lifetime of clusters and number of CHs determines the efficiency of network. In this paper a Clustering algorithm based on Ant Colony Optimization (ACO) for VANETs (CACONET) is proposed. CACONET forms optimized clusters for robust communication. CACONET is compared empirically with state-of-the-art baseline techniques like Multi-Objective Particle Swarm Optimization (MOPSO) and Comprehensive Learning Particle Swarm Optimization (CLPSO). Experiments varying the grid size of the network, the transmission range of nodes, and number of nodes in the network were performed to evaluate the comparative effectiveness of these algorithms. For optimized clustering, the parameters considered are the transmission range, direction and speed of the nodes. The results indicate that CACONET significantly outperforms MOPSO and CLPSO. PMID:27149517
M. A. El-dosuky
2013-01-01
Large-scale problems are nonlinear problems that need metaheuristics, or global optimization algorithms. This paper reviews nature-inspired metaheuristics, then it introduces a framework named Competitive Ant Colony Optimization inspired by the chemical communications among insects. Then a case study is presented to investigate the proposed framework for large-scale global optimization.
Optimal Power Flow of the Algerian Electrical Network using an Ant Colony Optimization Method
Directory of Open Access Journals (Sweden)
Tarek BOUKTIR
2005-06-01
Full Text Available This paper presents solution of optimal power flow (OPF problem of a power system via an Ant Colony Optimization Meta-heuristic method. The objective is to minimize the total fuel cost of thermal generating units and also conserve an acceptable system performance in terms of limits on generator real and reactive power outputs, bus voltages, shunt capacitors/reactors, transformers tap-setting and power flow of transmission lines. Simulation results on the Algerian Electrical Network show that the Ant Colony Optimization method converges quickly to the global optimum.
Collective Intelligence for Optimal Power Flow Solution Using Ant Colony Optimization
Boumediène ALLAOUA; Abdellah LAOUFI
2008-01-01
This paper presents the performance ant collective intelligence efficiency for electrical network. Solutions for Optimal Power Flow (OPF) problem of a power system deliberate via an ant colony optimization metaheuristic method. The objective is to minimize the total fuel cost of thermal generating units and also conserve an acceptable system performance in terms of limits on generator real and reactive power outputs, bus voltages, shunt capacitors/reactors, transformers tap-setting and power ...
Reliability optimization using multiobjective ant colony system approaches
International Nuclear Information System (INIS)
The multiobjective ant colony system (ACS) meta-heuristic has been developed to provide solutions for the reliability optimization problem of series-parallel systems. This type of problems involves selection of components with multiple choices and redundancy levels that produce maximum benefits, and is subject to the cost and weight constraints at the system level. These are very common and realistic problems encountered in conceptual design of many engineering systems. It is becoming increasingly important to develop efficient solutions to these problems because many mechanical and electrical systems are becoming more complex, even as development schedules get shorter and reliability requirements become very stringent. The multiobjective ACS algorithm offers distinct advantages to these problems compared with alternative optimization methods, and can be applied to a more diverse problem domain with respect to the type or size of the problems. Through the combination of probabilistic search, multiobjective formulation of local moves and the dynamic penalty method, the multiobjective ACSRAP, allows us to obtain an optimal design solution very frequently and more quickly than with some other heuristic approaches. The proposed algorithm was successfully applied to an engineering design problem of gearbox with multiple stages
Pixel-based ant colony algorithm for source mask optimization
Kuo, Hung-Fei; Wu, Wei-Chen; Li, Frederick
2015-03-01
Source mask optimization (SMO) was considered to be one of the key resolution enhancement techniques for node technology below 20 nm prior to the availability of extreme-ultraviolet tools. SMO has been shown to enlarge the process margins for the critical layer in SRAM and memory cells. In this study, a new illumination shape optimization approach was developed on the basis of the ant colony optimization (ACO) principle. The use of this heuristic pixel-based ACO method in the SMO process provides an advantage over the extant SMO method because of the gradient of the cost function associated with the rapid and stable searching capability of the proposed method. This study was conducted to provide lithographic engineers with references for the quick determination of the optimal illumination shape for complex mask patterns. The test pattern used in this study was a contact layer for SRAM design, with a critical dimension and a minimum pitch of 55 and 110 nm, respectively. The optimized freeform source shape obtained using the ACO method was numerically verified by performing an aerial image investigation, and the result showed that the optimized freeform source shape generated an aerial image profile different from the nominal image profile and with an overall error rate of 9.64%. Furthermore, the overall average critical shape difference was determined to be 1.41, which was lower than that for the other off-axis illumination exposure. The process window results showed an improvement in exposure latitude (EL) and depth of focus (DOF) for the ACO-based freeform source shape compared with those of the Quasar source shape. The maximum EL of the ACO-based freeform source shape reached 7.4% and the DOF was 56 nm at an EL of 5%.
Zhang, Gexiang; Cheng, Jixiang; Gheorghe, Marian; Research Group on Natural Computing (Universidad de Sevilla) (Coordinador)
2010-01-01
This paper proposes an approximate optimization algorithm combining P systems with ant colony optimization, called ACOPS, to solve traveling salesman prob- lems, which are well-known and extensively studied NP-complete combinatorial optimization problems. ACOPS uses the pheromone model and pheromone update rules defined by ant colony optimization algorithms, and the hierarchical membrane structure and transformation/communication rules of P systems. First, the parameter setting of...
Ant colony Optimization: A Solution of Load balancing in Cloud
Directory of Open Access Journals (Sweden)
Ratan Mishra
2012-05-01
Full Text Available As the cloud computing is a new style of computing over internet. It has many advantages along with some crucial issues to be resolved in order to improve reliability of cloud environment. These issues are related with the load management, fault tolerance and different security issues in cloud environment. In this paper the main concern is load balancing in cloud computing. The load can be CPU load, memory capacity, delay or network load. Load balancing is the process of distributing the load among various nodes of adistributed system to improve both resource utilization and job response time while also avoiding a situation where some of the nodes are heavily loaded while other nodes are idle or doing very little work. Load balancing ensures that all the processor in the system or every node in the network does approximately the equal amount of work at any instant of time. Many methods to resolve this problem has been came into existence like Particle Swarm Optimization, hash method, genetic algorithms and severalscheduling based algorithms are there. In this paper we are proposing a method based on Ant Colony optimization to resolve the problem of load balancing in cloud environment.
Applying Data Clustering Feature to Speed Up Ant Colony Optimization
Directory of Open Access Journals (Sweden)
Chao-Yang Pang
2014-01-01
Full Text Available Ant colony optimization (ACO is often used to solve optimization problems, such as traveling salesman problem (TSP. When it is applied to TSP, its runtime is proportional to the squared size of problem N so as to look less efficient. The following statistical feature is observed during the authors’ long-term gene data analysis using ACO: when the data size N becomes big, local clustering appears frequently. That is, some data cluster tightly in a small area and form a class, and the correlation between different classes is weak. And this feature makes the idea of divide and rule feasible for the estimate of solution of TSP. In this paper an improved ACO algorithm is presented, which firstly divided all data into local clusters and calculated small TSP routes and then assembled a big TSP route with them. Simulation shows that the presented method improves the running speed of ACO by 200 factors under the condition that data set holds feature of local clustering.
Study on ant colony optimization for fuel loading pattern problem
International Nuclear Information System (INIS)
Modified ant colony optimization (ACO) was applied to the in-core fuel loading pattern (LP) optimization problem to minimize the power peaking factor (PPF) in the modeled 1/4 symmetry PWR core. Loading order was found to be important in ACO. Three different loading orders with and without the adjacent effect between fuel assemblies (FAs) were compared, and it was found that the loading order from the central core is preferable because many selections of FAs to be inserted are available in the core center region. LPs were determined from pheromone trail and heuristic information, which is a priori knowledge based on the feature of the problem. Three types of heuristic information were compared to obtain the desirable performance of searching LPs with low PPF. Moreover, mutation operation, such as the genetic algorithm (GA), was introduced into the ACO algorithm to avoid searching similar LPs because heuristic information used in ACO tends to localize the searching space in the LP problem. The performance of ACO with some improvement was compared with those of simulated annealing and GA. In conclusion, good performance can be achieved by setting proper heuristic information and mutation operation parameter in ACO. (author)
Vishal Arora; Vadlamani Ravi
2013-01-01
Ant Colony Optimization (ACO) is gaining popularity as data mining technique in the domain of Swarm Intelligence for its simple, accurate and comprehensive nature of classification. In this paper the authors propose a novel advanced version of the original ant colony based miner (Ant-Miner) in order to extract classification rules from data. They call this Advanced ACO-Miner (ADACOM). The main goal of ADACOM is to explore the flexibility of using a different knowledge extraction heuristic app...
Enhanced ant colony optimization for inventory routing problem
Wong, Lily; Moin, Noor Hasnah
2015-10-01
The inventory routing problem (IRP) integrates and coordinates two important components of supply chain management which are transportation and inventory management. We consider a one-to-many IRP network for a finite planning horizon. The demand for each product is deterministic and time varying as well as a fleet of capacitated homogeneous vehicles, housed at a depot/warehouse, delivers the products from the warehouse to meet the demand specified by the customers in each period. The inventory holding cost is product specific and is incurred at the customer sites. The objective is to determine the amount of inventory and to construct a delivery routing that minimizes both the total transportation and inventory holding cost while ensuring each customer's demand is met over the planning horizon. The problem is formulated as a mixed integer programming problem and is solved using CPLEX 12.4 to get the lower and upper bound (best integer) for each instance considered. We propose an enhanced ant colony optimization (ACO) to solve the problem and the built route is improved by using local search. The computational experiments demonstrating the effectiveness of our approach is presented.
Improved Ant Colony Optimization Algorithm based Expert System on Nephrology
Directory of Open Access Journals (Sweden)
Sri.N.V.Ramana Murty
2010-07-01
Full Text Available Expert system Nephrology is a computer program that exhibits, within a specific domain, a degree of expertise in problem solving that is comparable to that of a human expert. The knowledge base consistsof information about a particular problem area. This information is collected from domain experts (doctors. This system mainly contains two modules one is Information System and the other is Expert Advisory system. The Information System contains the static information about different diseases and drugs in the field of Nephrology. This information system helps the patients /users to know about the problems related to kidneys. The Nephrology Advisory system helps the Patients /users to get the required and suitable advice depending on their queries. This medical expert system is developedusing Java Server Pages (JSP as front-end and MYSQL database as Backend in such a way that all the activities are carried out in a user-friendly manner. Improved Ant Colony Optimization Algorithm (ACO along with RETE algorithm is also used for better results.
Ant colony optimization-based firewall anomaly mitigation engine.
Penmatsa, Ravi Kiran Varma; Vatsavayi, Valli Kumari; Samayamantula, Srinivas Kumar
2016-01-01
A firewall is the most essential component of network perimeter security. Due to human error and the involvement of multiple administrators in configuring firewall rules, there exist common anomalies in firewall rulesets such as Shadowing, Generalization, Correlation, and Redundancy. There is a need for research on efficient ways of resolving such anomalies. The challenge is also to see that the reordered or resolved ruleset conforms to the organization's framed security policy. This study proposes an ant colony optimization (ACO)-based anomaly resolution and reordering of firewall rules called ACO-based firewall anomaly mitigation engine. Modified strategies are also introduced to automatically detect these anomalies and to minimize manual intervention of the administrator. Furthermore, an adaptive reordering strategy is proposed to aid faster reordering when a new rule is appended. The proposed approach was tested with different firewall policy sets. The results were found to be promising in terms of the number of conflicts resolved, with minimal availability loss and marginal security risk. This work demonstrated the application of a metaheuristic search technique, ACO, in improving the performance of a packet-filter firewall with respect to mitigating anomalies in the rules, and at the same time demonstrated conformance to the security policy. PMID:27441151
Chaudhuri, Arindam
2013-01-01
We present a dynamic algorithm for solving the Longest Common Subsequence Problem using Ant Colony Optimization Technique. The Ant Colony Optimization Technique has been applied to solve many problems in Optimization Theory, Machine Learning and Telecommunication Networks etc. In particular, application of this theory in NP-Hard Problems has a remarkable significance. Given two strings, the traditional technique for finding Longest Common Subsequence is based on Dynamic Programming which cons...
Giancarlo Mauri; Citrolo, Andrea G.
2013-01-01
The hydrophobic-polar (HP) model has been widely studied in the field of protein structure prediction (PSP) both for theoretical purposes and as a benchmark for new optimization strategies. In this work we introduce a new heuristics based on Ant Colony Optimization (ACO) and Markov Chain Monte Carlo (MCMC) that we called Hybrid Monte Carlo Ant Colony Optimization (HMCACO). We describe this method and compare results obtained on well known HP instances in the 3 dimensional cubic lattice to tho...
Routing in Wireless Sensor Networks Using an Ant Colony Optimization (ACO) Router Chip
Dervis Karaboga; Selcuk Okdem
2009-01-01
Wireless Sensor Networks consisting of nodes with limited power are deployed to gather useful information from the field. In WSNs it is critical to collect the information in an energy efficient manner. Ant Colony Optimization, a swarm intelligence based optimization technique, is widely used in network routing. A novel routing approach using an Ant Colony Optimization algorithm is proposed for Wireless Sensor Networks consisting of stable nodes. Illustrative examples, detailed descriptions a...
Continuous function optimization using hybrid ant colony approach with orthogonal design scheme
Zhang, J.; Chen, W.; Zhong, J.; Tan, X.; Li, Y.
2006-01-01
A hybrid Orthogonal Scheme Ant Colony Optimization (OSACO) algorithm for continuous function optimization (CFO) is presented in this paper. The methodology integrates the advantages of Ant Colony Optimization (ACO) and Orthogonal Design Scheme (ODS). OSACO is based on the following principles: a) each independent variable space (IVS) of CFO is dispersed into a number of random and movable nodes; b) the carriers of pheromone of ACO are shifted to the nodes; c) solution path can be obtained by ...
Optimization design of drilling string by screw coal miner based on ant colony algorithm
Institute of Scientific and Technical Information of China (English)
ZHANG Qiang; MAO Jun; DING Fei
2008-01-01
It took that the weight minimum and drive efficiency maximal were as double optimizing target, the optimization model had built the drilling string, and the optimization solution was used of the ant colony algorithm to find in progress. Adopted a two-layer search of the continuous space ant colony algorithm with overlapping or variation global ant search operation strategy and conjugated gradient partial ant search operation strat-egy. The experiment indicates that the spiral drill weight reduces 16.77% and transports the efficiency enhance 7.05% through the optimization design, the ant colony algorithm application on the spiral drill optimized design has provided the basis for the system re-search screw coal mine machine.
Optimization design of drilling string by screw coal miner based on ant colony algorithm
Institute of Scientific and Technical Information of China (English)
ZHANG Qiang; MAO Jun; DING Fei
2008-01-01
It took that the weight minimum and drive efficiency maximal were as double optimizing target,the optimization model had built the drilling string,and the optimization solution was used of the ant colony algorithm to find in progress.Adopted a two-layer search of the continuous space ant colony algorithm with overlapping or variation global ant search operation strategy and conjugated gradient partial ant search operation strategy.The experiment indicates that the spiral drill weight reduces 16.77% and transports the efficiency enhance 7.05% through the optimization design,the ant colony algorithm application on the spiral drill optimized design has provided the basis for the system research screw coal mine machine.
An improved ant colony optimization (ACO) formulation for the allocation of crops and water to different irrigation areas is developed. The formulation enables dynamic adjustment of decision variable options and makes use of visibility factors (VFs, the domain knowledge that can be used to identify ...
Ant Colony Optimization ACO For The Traveling Salesman Problem TSP Using Partitioning
Alok Bajpai; Raghav Yadav
2015-01-01
Abstract An ant colony optimization is a technique which was introduced in 1990s and which can be applied to a variety of discrete combinatorial optimization problem and to continuous optimization. The ACO algorithm is simulated with the foraging behavior of the real ants to find the incremental solution constructions and to realize a pheromone laying-and-following mechanism. This pheromone is the indirect communication among the ants. In this paper we introduces the partitioning technique ba...
Feng, Yinda
2010-01-01
The aim of this work is to investigate Ant Colony Algorithm for the traveling salesman problem (TSP). Ants of the artificial colony are able to generate successively shorter feasible tours by using information accumulated in the form of a pheromone trail deposited on the edges of the TSP graph. This paper is based on the ideas of ant colony algorithm and analysis the main parameters of the ant colony algorithm. Experimental results for solving TSP problems with ant colony algorithm show great...
The optimal time-frequency atom search based on a modified ant colony algorithm
Institute of Scientific and Technical Information of China (English)
GUO Jun-feng; LI Yan-jun; YU Rui-xing; ZHANG Ke
2008-01-01
In this paper,a new optimal time-frequency atom search method based on a modified ant colony algorithm is proposed to improve the precision of the traditional methods.First,the discretization formula of finite length time-frequency atom is inferred at length.Second; a modified ant colony algorithm in continuous space is proposed.Finally,the optimal timefrequency atom search algorithm based on the modified ant colony algorithm is described in detail and the simulation experiment is carried on.The result indicates that the developed algorithm is valid and stable,and the precision of the method is higher than that of the traditional method.
Novel Approach to Nonlinear PID Parameter Optimization Using Ant Colony Optimization Algorithm
Institute of Scientific and Technical Information of China (English)
Duan Hai-bin; Wang Dao-bo; Yu Xiu-fen
2006-01-01
This paper presents an application of an Ant Colony Optimization (ACO) algorithm to optimize the parameters in the design of a type of nonlinear PID controller. The ACO algorithm is a novel heuristic bionic algorithm, which is based on the behaviour of real ants in nature searching for food. In order to optimize the parameters of the nonlinear PID controller using ACO algorithm,an objective function based on position tracing error was constructed, and elitist strategy was adopted in the improved ACO algorithm. Detailed simulation steps are presented. This nonlinear PID controller using the ACO algorithm has high precision of control and quick response.
Using nonlinear optical networks for optimization: primer of the ant colony algorithm
Hu, W; Wu, K; Shum, P. P.; Zheludev, N. I.; Soci, C.; Adamo, G.
2014-01-01
Using nonlinear Erbium doped optical fiber network we have implemented an optimization algorithm for the famous problem of finding the shortest path on the map for the ant colony to travel to the foraging area.
Ant Colony Optimization Analysis on Overall Stability of High Arch Dam Basis of Field Monitoring
Peng Lin; Xiaoli Liu; Hong-Xin Chen; Jinxie Kim
2014-01-01
A dam ant colony optimization (D-ACO) analysis of the overall stability of high arch dams on complicated foundations is presented in this paper. A modified ant colony optimization (ACO) model is proposed for obtaining dam concrete and rock mechanical parameters. A typical dam parameter feedback problem is proposed for nonlinear back-analysis numerical model based on field monitoring deformation and ACO. The basic principle of the proposed model is the establishment of the objective function o...
Clarifying Cutting and Sewing Processes with Due Windows Using an Effective Ant Colony Optimization
Rong-Hwa Huang; Shun-Chi Yu
2013-01-01
The cutting and sewing process is a traditional flow shop scheduling problem in the real world. This two-stage flexible flow shop is often commonly associated with manufacturing in the fashion and textiles industry. Many investigations have demonstrated that the ant colony optimization (ACO) algorithm is effective and efficient for solving scheduling problems. This work applies a novel effective ant colony optimization (EACO) algorithm to solve two-stage flexible flow shop scheduling problems...
A Survey Paper on Solving TSP using Ant Colony Optimization on GPU
Directory of Open Access Journals (Sweden)
Khushbu Khatri
2014-12-01
Full Text Available Ant Colony Optimization (ACO is meta-heuristic algorithm inspired from nature to solve many combinatorial optimization problem such as Travelling Salesman Problem (TSP. There are many versions of ACO used to solve TSP like, Ant System, Elitist Ant System, Max-Min Ant System, Rank based Ant System algorithm. For improved performance, these methods can be implemented in parallel architecture like GPU, CUDA architecture. Graphics Processing Unit (GPU provides highly parallel and fully programmable platform. GPUs which have many processing units with an off-chip global memory can be used for general purpose parallel computation. This paper presents a survey on different solving TSP using ACO on GPU.
Soleimani-Pouri, Mohammad; Rezvanian, Alireza; Meybodi, Mohammad Reza
2013-01-01
Interaction between users in online social networks plays a key role in social network analysis. One on important types of social group is full connected relation between some users, which known as clique structure. Therefore finding a maximum clique is essential for some analysis. In this paper, we proposed a new method using ant colony optimization algorithm and particle swarm optimization algorithm. In the proposed method, in order to attain better results, it is improved process of pherom...
Optimal Power Flow of the Algerian Electrical Network using an Ant Colony Optimization Method
Tarek BOUKTIR; Linda SLIMANI
2005-01-01
This paper presents solution of optimal power flow (OPF) problem of a power system via an Ant Colony Optimization Meta-heuristic method. The objective is to minimize the total fuel cost of thermal generating units and also conserve an acceptable system performance in terms of limits on generator real and reactive power outputs, bus voltages, shunt capacitors/reactors, transformers tap-setting and power flow of transmission lines. Simulation results on the Algerian Electrical Network show that...
Optimal Reservoir Rule Curves Considering Conditional Ant Colony Optimization with Simulation Model
Chetthaphan Lokham; Anongrit Kangrang
2013-01-01
Reservoir rule curves are guideline for long term operation of multi-purpose reservoir that affected from severe flood and drought situations. This study proposed an alternative technique for searching optimal rule curves of multi-purpose reservoir. The proposed model consists of a Conditional Ant Colony Optimization (CACO) and a reservoir simulation model. Monthly rule curves of the Lampao Reservoir located in the northeast of Thailand was considered in this study. Four hundred samples of ge...
Karla Vittori; Alexandre C B Delbem; Pereira, Sérgio L
2008-01-01
We propose a new distance algorithm for phylogenetic estimation based on Ant Colony Optimization (ACO), named Ant-Based Phylogenetic Reconstruction (ABPR). ABPR joins two taxa iteratively based on evolutionary distance among sequences, while also accounting for the quality of the phylogenetic tree built according to the total length of the tree. Similar to optimization algorithms for phylogenetic estimation, the algorithm allows exploration of a larger set of nearly optimal solutions. We appl...
A Hybrid Ant Colony Optimization for the Prediction of Protein Secondary Structure
Institute of Scientific and Technical Information of China (English)
Chao CHEN; Yuan Xin TIAN; Xiao Yong ZOU; Pei Xiang CAI; Jin Yuan MO
2005-01-01
Based on the concept of ant colony optimization and the idea of population in genetic algorithm, a novel global optimization algorithm, called the hybrid ant colony optimization (HACO), is proposed in this paper to tackle continuous-space optimization problems. It was compared with other well-known stochastic methods in the optimization of the benchmark functions and was also used to solve the problem of selecting appropriate dilation efficiently by optimizing the wavelet power spectrum of the hydrophobic sequence of protein, which is thc key step on using continuous wavelet transform (CWT) to predict a-helices and connecting peptides.
An adaptive ant colony system algorithm for continuous-space optimization problems
Institute of Scientific and Technical Information of China (English)
李艳君; 吴铁军
2003-01-01
Ant colony algorithms comprise a novel category of evolutionary computation methods for optimization problems, especially for sequencing-type combinatorial optimization problems. An adaptive ant colony algorithm is proposed in this paper to tackle continuous-space optimization problems, using a new objective-function-based heuristic pheromone assignment approach for pheromone update to filtrate solution candidates. Global optimal solutions can be reached more rapidly by self-adjusting the path searching behaviors of the ants according to objective values. The performance of the proposed algorithm is compared with a basic ant colony algorithm and a Square Quadratic Programming approach in solving two benchmark problems with multiple extremes. The results indicated that the efficiency and reliability of the proposed algorithm were greatly improved.
An adaptive ant colony system algorithm for continuous-space optimization problems
Institute of Scientific and Technical Information of China (English)
李艳君; 吴铁军
2003-01-01
Ant colony algorithms comprise a novel category of evolutionary computation methods for optimization problems, especially for sequencing-type combinatorial optimization problems. An adaptive ant colony algorithm is proposed in this paper to tackle continuous-space optimization problems, using a new objective-function-based heuristic pheromone assignment approach for pheromone update to filtrate solution candidates.Global optimal solutions can be reached more rapidly by self-adjusting the path searching behaviors of the ants according to objective values. The performance of the proposed algorithm is compared with a basic ant colony algorithm and a Square Quadratic Programming approach in solving two benchmark problems with multiple extremes. The results indicated that the efficiency and reliability of the proposed algorithm were greatly improved.
Identification of Dynamic Parameters Based on Pseudo-Parallel Ant Colony Optimization Algorithm
Institute of Scientific and Technical Information of China (English)
ZHAO Feng-yao; MA Zhen-yue; ZHANG Yun-liang
2007-01-01
For the parameter identification of dynamic problems, a pseudo-parallel ant colony optimization (PPACO) algorithm based on graph-based ant system (AS) was introduced. On the platform of ANSYS dynamic analysis, the PPACO algorithm was applied to the identification of dynamic parameters successfully. Using simulated data of forces and displacements, elastic modulus E and damping ratio ξ was identified for a designed 3D finite element model, and the detailed identification step was given. Mathematical example and simulation example show that the proposed method has higher precision, faster convergence speed and stronger antinoise ability compared with the standard genetic algorithm and the ant colony optimization (ACO) algorithms.
An Improved Ant Colony Optimization Approach for Optimization of Process Planning
JinFeng Wang; XiaoLiang Fan; Haimin Ding
2014-01-01
Computer-aided process planning (CAPP) is an important interface between computer-aided design (CAD) and computer-aided manufacturing (CAM) in computer-integrated manufacturing environments (CIMs). In this paper, process planning problem is described based on a weighted graph, and an ant colony optimization (ACO) approach is improved to deal with it effectively. The weighted graph consists of nodes, directed arcs, and undirected arcs, which denote operations, precedence constraints among oper...
Zhang, B.; Qi, H.; Ren, Y. T.; Sun, S. C.; Ruan, L. M.
2014-01-01
As a heuristic intelligent optimization algorithm, the Ant Colony Optimization (ACO) algorithm was applied to the inverse problem of a one-dimensional (1-D) transient radiative transfer in present study. To illustrate the performance of this algorithm, the optical thickness and scattering albedo of the 1-D participating slab medium were retrieved simultaneously. The radiative reflectance simulated by Monte-Carlo Method (MCM) and Finite Volume Method (FVM) were used as measured and estimated value for the inverse analysis, respectively. To improve the accuracy and efficiency of the Basic Ant Colony Optimization (BACO) algorithm, three improved ACO algorithms, i.e., the Region Ant Colony Optimization algorithm (RACO), Stochastic Ant Colony Optimization algorithm (SACO) and Homogeneous Ant Colony Optimization algorithm (HACO), were developed. By the HACO algorithm presented, the radiative parameters could be estimated accurately, even with noisy data. In conclusion, the HACO algorithm is demonstrated to be effective and robust, which had the potential to be implemented in various fields of inverse radiation problems.
International Nuclear Information System (INIS)
As a heuristic intelligent optimization algorithm, the Ant Colony Optimization (ACO) algorithm was applied to the inverse problem of a one-dimensional (1-D) transient radiative transfer in present study. To illustrate the performance of this algorithm, the optical thickness and scattering albedo of the 1-D participating slab medium were retrieved simultaneously. The radiative reflectance simulated by Monte-Carlo Method (MCM) and Finite Volume Method (FVM) were used as measured and estimated value for the inverse analysis, respectively. To improve the accuracy and efficiency of the Basic Ant Colony Optimization (BACO) algorithm, three improved ACO algorithms, i.e., the Region Ant Colony Optimization algorithm (RACO), Stochastic Ant Colony Optimization algorithm (SACO) and Homogeneous Ant Colony Optimization algorithm (HACO), were developed. By the HACO algorithm presented, the radiative parameters could be estimated accurately, even with noisy data. In conclusion, the HACO algorithm is demonstrated to be effective and robust, which had the potential to be implemented in various fields of inverse radiation problems. -- Highlights: • The ACO-based algorithms were firstly applied to the inverse transient radiation problem. • Three ACO-based algorithms were developed based on the BACO algorithm for continuous domain problem. • HACO shows a robust performance for simultaneous estimation of the radiative properties
Distribution system minimum loss reconfiguration in the Hyper-Cube Ant Colony Optimization framework
Energy Technology Data Exchange (ETDEWEB)
Carpaneto, Enrico; Chicco, Gianfranco [Dipartimento di Ingegneria Elettrica, Politecnico di Torino, corso Duca degli Abruzzi 24, I-10129 Torino (Italy)
2008-12-15
This paper presents an original application of the Ant Colony Optimization concepts to the optimal reconfiguration of distribution systems, with the objective of minimizing the distribution system losses in the presence of a set of structural and operational constraints. The proposed algorithm starts from the current configuration of the system and proceeds by progressively introducing variations in the configuration according to local and global heuristic rules developed within the Hyper-Cube Ant Colony Optimization framework. Results of numerical tests carried out on a classical system and on a large real urban distribution system are presented to show the effectiveness of the proposed approach. (author)
International Nuclear Information System (INIS)
The first three guidelines in the Maanshan SAMG were respectively evaluated for the effects in the SBO incident. The MAAP5 code was used to simulate the sequence of events and physical phenomena in the plant. The results show that the priority optimization should be carried out at two separated scenarios, i.e. the power recovered prior or after hot-leg creep rupture. The performance indices in the ant colony optimization could be the vessel life and the hydrogen generation from core for ant colony optimization. (author)
Energy Technology Data Exchange (ETDEWEB)
Tsai, C.-M.; Wang, S.-J. [Inst. of Nuclear Energy Research, Taiwan (China)
2011-07-01
The first three guidelines in the Maanshan SAMG were respectively evaluated for the effects in the SBO incident. The MAAP5 code was used to simulate the sequence of events and physical phenomena in the plant. The results show that the priority optimization should be carried out at two separated scenarios, i.e. the power recovered prior or after hot-leg creep rupture. The performance indices in the ant colony optimization could be the vessel life and the hydrogen generation from core for ant colony optimization. (author)
Dynamic Load Balancing Strategy for Cloud Computing with Ant Colony Optimization
Ren Gao; Juebo Wu
2015-01-01
How to distribute and coordinate tasks in cloud computing is a challenging issue, in order to get optimal resource utilization and avoid overload. In this paper, we present a novel approach on load balancing via ant colony optimization (ACO), for balancing the workload in a cloud computing platform dynamically. Two strategies, forward-backward ant mechanism and max-min rules, are introduced to quickly find out the candidate nodes for load balancing. We formulate pheromone initialization and p...
A Multi Ant Colony Optimization algorithm for a Mixed Car Assembly Line
Pulido, Raúl; García Sánchez, Álvaro; Diego, Francisco Javier; Andrés-Romano, Carlos
2013-01-01
This paper presents an ant colony optimization algorithm to sequence the mixed assembly lines considering the inventory and the replenishment of components. This is a NP-problem that cannot be solved to optimality by exact methods when the size of the problem growth. Groups of specialized ants are implemented to solve the different parts of the problem. This is intended to differentiate each part of the problem. Different types of pheromone structures are created to identify good car sequence...
A Graph-based Ant Colony Optimization Approach for Integrated Process Planning and Scheduling
Institute of Scientific and Technical Information of China (English)
Jinfeng Wang; Xiaoliang Fan; Chaowei Zhang; Shuting Wan
2014-01-01
This paper considers an ant colony optimization algorithm based on AND/OR graph for integrated process planning and scheduling (IPPS). General y, the process planning and scheduling are studied separately. Due to the complexity of manufacturing system, IPPS combining both process planning and scheduling can depict the real situation of a manufacturing system. The IPPS is represented on AND/OR graph consisting of nodes, and undirected and directed arcs. The nodes denote operations of jobs, and undirected/directed arcs denote possible visiting path among the nodes. Ant colony goes through the necessary nodes on the graph from the starting node to the end node to obtain the optimal solution with the objective of minimizing makespan. In order to avoid local convergence and low convergence, some improved strategy is incorporated in the standard ant colony optimiza-tion algorithm. Extensive computational experiments are carried out to study the influence of various parameters on the system performance.
Application of Modified Ant Colony Optimization (MACO for Multicast Routing Problem
Directory of Open Access Journals (Sweden)
Sudip Kumar Sahana
2016-04-01
Full Text Available It is well known that multicast routing is combinatorial problem finds the optimal path between source destination pairs. Traditional approaches solve this problem by establishment of the spanning tree for the network which is mapped as an undirected weighted graph. This paper proposes a Modified Ant Colony Optimization (MACO algorithm which is based on Ant Colony System (ACS with some modification in the configuration of starting movement and in local updation technique to overcome the basic limitations of ACS such as poor initialization and slow convergence rate. It is shown that the proposed Modified Ant Colony Optimization (MACO shows better convergence speed and consumes less time than the conventional ACS to achieve the desired solution.
Km. Shweta; Alka Singh
2013-01-01
Ant Colony optimization has proved suitable to solve a wide range of combinatorial optimization(or NP-hard) problems as the Travelling Salesman Problem (TSP). The first step of ACO algorithm is to setthe parameters that drive the algorithm. The parameter has an important impact on the performance of theant colony algorithm. The basic parameters that are used in ACO algorithms are; the relative importance (orweight) of pheromone, the relative importance of heuristics value, initial pheromone v...
Srinivasan, Thenmozhi; Palanisamy, Balasubramanie
2015-01-01
Clusters of high-dimensional data techniques are emerging, according to data noisy and poor quality challenges. This paper has been developed to cluster data using high-dimensional similarity based PCM (SPCM), with ant colony optimization intelligence which is effective in clustering nonspatial data without getting knowledge about cluster number from the user. The PCM becomes similarity based by using mountain method with it. Though this is efficient clustering, it is checked for optimization using ant colony algorithm with swarm intelligence. Thus the scalable clustering technique is obtained and the evaluation results are checked with synthetic datasets. PMID:26495413
Srinivasan, Thenmozhi; Palanisamy, Balasubramanie
2015-01-01
Clusters of high-dimensional data techniques are emerging, according to data noisy and poor quality challenges. This paper has been developed to cluster data using high-dimensional similarity based PCM (SPCM), with ant colony optimization intelligence which is effective in clustering nonspatial data without getting knowledge about cluster number from the user. The PCM becomes similarity based by using mountain method with it. Though this is efficient clustering, it is checked for optimization using ant colony algorithm with swarm intelligence. Thus the scalable clustering technique is obtained and the evaluation results are checked with synthetic datasets. PMID:26495413
An Ant Colony Optimization Based Dimension Reduction Method for High-Dimensional Datasets
Institute of Scientific and Technical Information of China (English)
Ying Li; Gang Wang; Huiling Chen; Lian Shi; Lei Qin
2013-01-01
In this paper,a bionic optimization algorithm based dimension reduction method named Ant Colony Optimization -Selection (ACO-S) is proposed for high-dimensional datasets.Because microarray datasets comprise tens of thousands of features (genes),they are usually used to test the dimension reduction techniques.ACO-S consists of two stages in which two well-known ACO algorithms,namely ant system and ant colony system,are utilized to seek for genes,respectively.In the first stage,a modified ant system is used to filter the nonsignificant genes from high-dimensional space,and a number of promising genes are reserved in the next step.In the second stage,an improved ant colony system is applied to gene selection.In order to enhance the search ability of ACOs,we propose a method for calculating priori available heuristic information and design a fuzzy logic controller to dynamically adjust the number of ants in ant colony system.Furthermore,we devise another fuzzy logic controller to tune the parameter (q0) in ant colony system.We evaluate the performance of ACO-S on five microarray datasets,which have dimensions varying from 7129 to 12000.We also compare the performance of ACO-S with the results obtained from four existing well-known bionic optimization algorithms.The comparison results show that ACO-S has a notable ability to generate a gene subset with the smallest size and salient features while yielding high classification accuracy.The comparative results generated by ACO-S adopting different classifiers are also given.The proposed method is shown to be a promising and effective tool for mining high-dimension data and mobile robot navigation.
Orthogonal Methods Based Ant Colony Search for Solving Continuous Optimization Problems
Institute of Scientific and Technical Information of China (English)
Xiao-Min Hu; Jun Zhang; Yun Li
2008-01-01
Research into ant colony algorithms for solving continuous optimization problems forms one of the most significant and promising areas in swarm computation. Although traditional ant algorithms are designed for combinatorial optimization, they have shown great potential in solving a wide range of optimization problems, including continuous optimization. Aimed at solving continuous problems effectively, this paper develops a novel ant algorithm termed "continuous orthogonal ant colony" (COAC), whose pheromone deposit mechanisms would enable ants to search for solutions collaboratively and effectively. By using the orthogonal design method, ants in the feasible domain can explore their chosen regions rapidly and efficiently. By implementing an "adaptive regional radius" method, the proposed algorithm can reduce the probability of being trapped in local optima and therefore enhance the global search capability and accuracy. An elitist strategy is also employed to reserve the most valuable points. The performance of the COAC is compared with two other ant algorithms for continuous optimization -- API and CACO by testing seventeen functions in the continuous domain. The results demonstrate that the proposed COAC algorithm outperforms the others.
Convergence results for continuous-time dynamics arising in ant colony optimization
Bliman, Pierre-Alexandre; Bhaya, Amit; Kaszkurewicz, Eugenius; Jayadeva
2014-01-01
This paper studies the asymptotic behavior of several continuous-time dynamical systems which are analogs of ant colony optimization algorithms that solve shortest path problems. Local asymptotic stability of the equilibrium corresponding to the shortest path is shown under mild assumptions. A complete study is given for a recently proposed model called EigenAnt: global asymptotic stability is shown, and the speed of convergence is calculated explicitly and shown to be proportional to the dif...
ACOustic: A Nature-Inspired Exploration Indicator for Ant Colony Optimization
Rafid Sagban; Ku Ruhana Ku-Mahamud; Muhamad Shahbani Abu Bakar
2015-01-01
A statistical machine learning indicator, ACOustic, is proposed to evaluate the exploration behavior in the iterations of ant colony optimization algorithms. This idea is inspired by the behavior of some parasites in their mimicry to the queens’ acoustics of their ant hosts. The parasites’ reaction results from their ability to indicate the state of penetration. The proposed indicator solves the problem of robustness that results from the difference of magnitudes in the distance’s matrix, esp...
Directory of Open Access Journals (Sweden)
Puneet Rai
2014-02-01
Full Text Available Ant Colony Optimization (ACO is nature inspired algorithm based on foraging behavior of ants. The algorithm is based on the fact how ants deposit pheromone while searching for food. ACO generates a pheromone matrix which gives the edge information present at each pixel position of image, formed by ants dispatched on image. The movement of ants depends on local variance of image's intensity value. This paper proposes an improved method based on heuristic which assigns weight to the neighborhood. Thus by assigning the weights or priority to the neighboring pixels, the ant decides in which direction it can move. The method is applied on Medical images and experimental results are provided to support the superior performance of the proposed approach and the existing method.
ACOustic: A Nature-Inspired Exploration Indicator for Ant Colony Optimization.
Sagban, Rafid; Ku-Mahamud, Ku Ruhana; Abu Bakar, Muhamad Shahbani
2015-01-01
A statistical machine learning indicator, ACOustic, is proposed to evaluate the exploration behavior in the iterations of ant colony optimization algorithms. This idea is inspired by the behavior of some parasites in their mimicry to the queens' acoustics of their ant hosts. The parasites' reaction results from their ability to indicate the state of penetration. The proposed indicator solves the problem of robustness that results from the difference of magnitudes in the distance's matrix, especially when combinatorial optimization problems with rugged fitness landscape are applied. The performance of the proposed indicator is evaluated against the existing indicators in six variants of ant colony optimization algorithms. Instances for travelling salesman problem and quadratic assignment problem are used in the experimental evaluation. The analytical results showed that the proposed indicator is more informative and more robust. PMID:25954768
Leite, Walter L.; Huang, I-Chan; Marcoulides, George A.
2008-01-01
This article presents the use of an ant colony optimization (ACO) algorithm for the development of short forms of scales. An example 22-item short form is developed for the Diabetes-39 scale, a quality-of-life scale for diabetes patients, using a sample of 265 diabetes patients. A simulation study comparing the performance of the ACO algorithm and…
Ant colony optimization analysis on overall stability of high arch dam basis of field monitoring.
Lin, Peng; Liu, Xiaoli; Chen, Hong-Xin; Kim, Jinxie
2014-01-01
A dam ant colony optimization (D-ACO) analysis of the overall stability of high arch dams on complicated foundations is presented in this paper. A modified ant colony optimization (ACO) model is proposed for obtaining dam concrete and rock mechanical parameters. A typical dam parameter feedback problem is proposed for nonlinear back-analysis numerical model based on field monitoring deformation and ACO. The basic principle of the proposed model is the establishment of the objective function of optimizing real concrete and rock mechanical parameter. The feedback analysis is then implemented with a modified ant colony algorithm. The algorithm performance is satisfactory, and the accuracy is verified. The m groups of feedback parameters, used to run a nonlinear FEM code, and the displacement and stress distribution are discussed. A feedback analysis of the deformation of the Lijiaxia arch dam and based on the modified ant colony optimization method is also conducted. By considering various material parameters obtained using different analysis methods, comparative analyses were conducted on dam displacements, stress distribution characteristics, and overall dam stability. The comparison results show that the proposal model can effectively solve for feedback multiple parameters of dam concrete and rock material and basically satisfy assessment requirements for geotechnical structural engineering discipline. PMID:25025089
Ant Colony Optimization Analysis on Overall Stability of High Arch Dam Basis of Field Monitoring
Directory of Open Access Journals (Sweden)
Peng Lin
2014-01-01
Full Text Available A dam ant colony optimization (D-ACO analysis of the overall stability of high arch dams on complicated foundations is presented in this paper. A modified ant colony optimization (ACO model is proposed for obtaining dam concrete and rock mechanical parameters. A typical dam parameter feedback problem is proposed for nonlinear back-analysis numerical model based on field monitoring deformation and ACO. The basic principle of the proposed model is the establishment of the objective function of optimizing real concrete and rock mechanical parameter. The feedback analysis is then implemented with a modified ant colony algorithm. The algorithm performance is satisfactory, and the accuracy is verified. The m groups of feedback parameters, used to run a nonlinear FEM code, and the displacement and stress distribution are discussed. A feedback analysis of the deformation of the Lijiaxia arch dam and based on the modified ant colony optimization method is also conducted. By considering various material parameters obtained using different analysis methods, comparative analyses were conducted on dam displacements, stress distribution characteristics, and overall dam stability. The comparison results show that the proposal model can effectively solve for feedback multiple parameters of dam concrete and rock material and basically satisfy assessment requirements for geotechnical structural engineering discipline.
Shen, Meie; Chen, Wei-Neng; Zhang, Jun; Chung, Henry Shu-Hung; Kaynak, Okyay
2013-04-01
The optimal selection of parameters for time-delay embedding is crucial to the analysis and the forecasting of chaotic time series. Although various parameter selection techniques have been developed for conventional uniform embedding methods, the study of parameter selection for nonuniform embedding is progressed at a slow pace. In nonuniform embedding, which enables different dimensions to have different time delays, the selection of time delays for different dimensions presents a difficult optimization problem with combinatorial explosion. To solve this problem efficiently, this paper proposes an ant colony optimization (ACO) approach. Taking advantage of the characteristic of incremental solution construction of the ACO, the proposed ACO for nonuniform embedding (ACO-NE) divides the solution construction procedure into two phases, i.e., selection of embedding dimension and selection of time delays. In this way, both the embedding dimension and the time delays can be optimized, along with the search process of the algorithm. To accelerate search speed, we extract useful information from the original time series to define heuristics to guide the search direction of ants. Three geometry- or model-based criteria are used to test the performance of the algorithm. The optimal embeddings found by the algorithm are also applied in time-series forecasting. Experimental results show that the ACO-NE is able to yield good embedding solutions from both the viewpoints of optimization performance and prediction accuracy. PMID:23144038
A Graph-Based Ant Colony Optimization Approach for Process Planning
2014-01-01
The complex process planning problem is modeled as a combinatorial optimization problem with constraints in this paper. An ant colony optimization (ACO) approach has been developed to deal with process planning problem by simultaneously considering activities such as sequencing operations, selecting manufacturing resources, and determining setup plans to achieve the optimal process plan. A weighted directed graph is conducted to describe the operations, precedence constraints between operatio...
An improved ant colony optimization approach for optimization of process planning.
Wang, JinFeng; Fan, XiaoLiang; Ding, Haimin
2014-01-01
Computer-aided process planning (CAPP) is an important interface between computer-aided design (CAD) and computer-aided manufacturing (CAM) in computer-integrated manufacturing environments (CIMs). In this paper, process planning problem is described based on a weighted graph, and an ant colony optimization (ACO) approach is improved to deal with it effectively. The weighted graph consists of nodes, directed arcs, and undirected arcs, which denote operations, precedence constraints among operation, and the possible visited path among operations, respectively. Ant colony goes through the necessary nodes on the graph to achieve the optimal solution with the objective of minimizing total production costs (TPCs). A pheromone updating strategy proposed in this paper is incorporated in the standard ACO, which includes Global Update Rule and Local Update Rule. A simple method by controlling the repeated number of the same process plans is designed to avoid the local convergence. A case has been carried out to study the influence of various parameters of ACO on the system performance. Extensive comparative experiments have been carried out to validate the feasibility and efficiency of the proposed approach. PMID:25097874
A Preliminary Study of Automatic Delineation of Eyes on CT Images Using Ant Colony Optimization
Institute of Scientific and Technical Information of China (English)
LI Yong-jie; XIE Wei-fu; YAO De-zhong
2007-01-01
Eyes are important organs-at-risk (OARs) that should be protected during the radiation treatment of those head tumors. Correct delineation of the eyes on CT images is one of important issues for treatment planning to protect the eyes as much as possible. In this paper, we propose a new method, named ant colony optimization (ACO), to delineate the eyes automatically.In the proposed algorithm, each ant tries to find a closed path, and some pheromone is deposited on the visited path when the ant finds a path. After all ants finish a circle, the best ant will lay some pheromone to enforce the best path. The proposed algorithm is verified on several CT images, and the preliminary results demonstrate the feasibility of ACO for the delineation problem.
Liu Xinyu; Wang Yupeng; Robbins Kelly; Rekaya Romdhane
2010-01-01
Abstract Background Epistatic interactions of multiple single nucleotide polymorphisms (SNPs) are now believed to affect individual susceptibility to common diseases. The detection of such interactions, however, is a challenging task in large scale association studies. Ant colony optimization (ACO) algorithms have been shown to be useful in detecting epistatic interactions. Findings AntEpiSeeker, a new two-stage ant colony optimization algorithm, has been developed for detecting epistasis in ...
Multi-view 3D scene reconstruction using ant colony optimization techniques
International Nuclear Information System (INIS)
This paper presents a new method performing high-quality 3D object reconstruction of complex shapes derived from multiple, calibrated photographs of the same scene. The novelty of this research is found in two basic elements, namely: (i) a novel voxel dissimilarity measure, which accommodates the elimination of the lighting variations of the models and (ii) the use of an ant colony approach for further refinement of the final 3D models. The proposed reconstruction procedure employs a volumetric method based on a novel projection test for the production of a visual hull. While the presented algorithm shares certain aspects with the space carving algorithm, it is, nevertheless, first enhanced with the lightness compensating image comparison method, and then refined using ant colony optimization. The algorithm is fast, computationally simple and results in accurate representations of the input scenes. In addition, compared to previous publications, the particular nature of the proposed algorithm allows accurate 3D volumetric measurements under demanding lighting environmental conditions, due to the fact that it can cope with uneven light scenes, resulting from the characteristics of the voxel dissimilarity measure applied. Besides, the intelligent behavior of the ant colony framework provides the opportunity to formulate the process as a combinatorial optimization problem, which can then be solved by means of a colony of cooperating artificial ants, resulting in very promising results. The method is validated with several real datasets, along with qualitative comparisons with other state-of-the-art 3D reconstruction techniques, following the Middlebury benchmark. (paper)
Ant-cuckoo colony optimization for feature selection in digital mammogram.
Jona, J B; Nagaveni, N
2014-01-15
Digital mammogram is the only effective screening method to detect the breast cancer. Gray Level Co-occurrence Matrix (GLCM) textural features are extracted from the mammogram. All the features are not essential to detect the mammogram. Therefore identifying the relevant feature is the aim of this work. Feature selection improves the classification rate and accuracy of any classifier. In this study, a new hybrid metaheuristic named Ant-Cuckoo Colony Optimization a hybrid of Ant Colony Optimization (ACO) and Cuckoo Search (CS) is proposed for feature selection in Digital Mammogram. ACO is a good metaheuristic optimization technique but the drawback of this algorithm is that the ant will walk through the path where the pheromone density is high which makes the whole process slow hence CS is employed to carry out the local search of ACO. Support Vector Machine (SVM) classifier with Radial Basis Kernal Function (RBF) is done along with the ACO to classify the normal mammogram from the abnormal mammogram. Experiments are conducted in miniMIAS database. The performance of the new hybrid algorithm is compared with the ACO and PSO algorithm. The results show that the hybrid Ant-Cuckoo Colony Optimization algorithm is more accurate than the other techniques. PMID:24783812
A graph-based ant colony optimization approach for process planning.
Wang, JinFeng; Fan, XiaoLiang; Wan, Shuting
2014-01-01
The complex process planning problem is modeled as a combinatorial optimization problem with constraints in this paper. An ant colony optimization (ACO) approach has been developed to deal with process planning problem by simultaneously considering activities such as sequencing operations, selecting manufacturing resources, and determining setup plans to achieve the optimal process plan. A weighted directed graph is conducted to describe the operations, precedence constraints between operations, and the possible visited path between operation nodes. A representation of process plan is described based on the weighted directed graph. Ant colony goes through the necessary nodes on the graph to achieve the optimal solution with the objective of minimizing total production costs (TPC). Two cases have been carried out to study the influence of various parameters of ACO on the system performance. Extensive comparative experiments have been conducted to demonstrate the feasibility and efficiency of the proposed approach. PMID:24995355
Directory of Open Access Journals (Sweden)
Khaled Loukhaoukha
2013-01-01
Full Text Available We present a new optimal watermarking scheme based on discrete wavelet transform (DWT and singular value decomposition (SVD using multiobjective ant colony optimization (MOACO. A binary watermark is decomposed using a singular value decomposition. Then, the singular values are embedded in a detailed subband of host image. The trade-off between watermark transparency and robustness is controlled by multiple scaling factors (MSFs instead of a single scaling factor (SSF. Determining the optimal values of the multiple scaling factors (MSFs is a difficult problem. However, a multiobjective ant colony optimization is used to determine these values. Experimental results show much improved performances of the proposed scheme in terms of transparency and robustness compared to other watermarking schemes. Furthermore, it does not suffer from the problem of high probability of false positive detection of the watermarks.
Novel Voltage Scaling Algorithm Through Ant Colony Optimization for Embedded Distributed Systems
Institute of Scientific and Technical Information of China (English)
ZHANG Li-sheng; DING Dan
2007-01-01
Dynamic voltage scaling (DVS), supported by many DVS-enabled processors, is an efficient technique for energy-efficient embedded systems. Many researchers work on DVS and have presented various DVS algorithms, some with quite good results . However, the previous algorithms either have a large time complexity or obtain results sensitive to the count of the voltage modes. Fine-grained voltage modes lead to optimal results, but coarse-grained voltage modes cause less optimal one. A new algorithm is presented, which is based on ant colony optimization, called ant colony optimization voltage and task scheduling (ACO-VTS) with a low time complexity implemented by parallelizing and its linear time approximation algo rithm. Both of them generate quite good results, saving up to 30% more energy than that of the previous ones under coarse-grained modes, and their results don't depend on the number of modes available.
Intercluster Ant Colony Optimization Algorithm for Wireless Sensor Network in Dense Environment
Jung-Yoon Kim; Tripti Sharma; Brijesh Kumar; Tomar, G. S.; Karan Berry; Won-Hyung Lee
2014-01-01
Wireless sensor networks have grown rapidly with the innovation in Information Technology. Sensor nodes are distributed and deployed over the area for gathering requisite information. Sensor nodes possess a negative characteristic of limited energy which pulls back the network from exploiting its peak capabilities. Hence, it is necessary to gather and transfer the information in an optimized way which reduces the energy dissipation. Ant Colony Optimization (ACO) is being widely used in optimi...
A Schedule Optimization Model on Multirunway Based on Ant Colony Algorithm
Yu Jiang; Zhaolong Xu; Xinxing Xu; Zhihua Liao; Yuxiao Luo
2014-01-01
In order to make full use of the slot of runway, reduce flight delay, and ensure fairness among airlines, a schedule optimization model for arrival-departure flights is established in the paper. The total delay cost and fairness among airlines are two objective functions. The ant colony algorithm is adopted to solve this problem and the result is more efficient and reasonable when compared with FCFS (first come first served) strategy. Optimization results show that the flight delay and fair d...
Adaptive Edge Detection Using Adjusted ANT Colony Optimization
Davoodianidaliki, M.; Abedini, A.; Shankayi, M.
2013-09-01
Edges contain important information in image and edge detection can be considered a low level process in image processing. Among different methods developed for this purpose traditional methods are simple and rather efficient. In Swarm Intelligent methods developed in last decade, ACO is more capable in this process. This paper uses traditional edge detection operators such as Sobel and Canny as input to ACO and turns overall process adaptive to application. Magnitude matrix or edge image can be used for initial pheromone and ant distribution. Image size reduction is proposed as an efficient smoothing method. A few parameters such as area and diameter of travelled path by ants are converted into rules in pheromone update process. All rules are normalized and final value is acquired by averaging.
Routing in Wireless Sensor Networks Using an Ant Colony Optimization (ACO) Router Chip.
Okdem, Selcuk; Karaboga, Dervis
2009-01-01
Wireless Sensor Networks consisting of nodes with limited power are deployed to gather useful information from the field. In WSNs it is critical to collect the information in an energy efficient manner. Ant Colony Optimization, a swarm intelligence based optimization technique, is widely used in network routing. A novel routing approach using an Ant Colony Optimization algorithm is proposed for Wireless Sensor Networks consisting of stable nodes. Illustrative examples, detailed descriptions and comparative performance test results of the proposed approach are included. The approach is also implemented to a small sized hardware component as a router chip. Simulation results show that proposed algorithm provides promising solutions allowing node designers to efficiently operate routing tasks. PMID:22399947
Routing in Wireless Sensor Networks Using an Ant Colony Optimization (ACO Router Chip
Directory of Open Access Journals (Sweden)
Dervis Karaboga
2009-02-01
Full Text Available Wireless Sensor Networks consisting of nodes with limited power are deployed to gather useful information from the field. In WSNs it is critical to collect the information in an energy efficient manner. Ant Colony Optimization, a swarm intelligence based optimization technique, is widely used in network routing. A novel routing approach using an Ant Colony Optimization algorithm is proposed for Wireless Sensor Networks consisting of stable nodes. Illustrative examples, detailed descriptions and comparative performance test results of the proposed approach are included. The approach is also implemented to a small sized hardware component as a router chip. Simulation results show that proposed algorithm provides promising solutions allowing node designers to efficiently operate routing tasks.
Automated Software Testing Using Metahurestic Technique Based on An Ant Colony Optimization
Srivastava, Praveen Ranjan
2011-01-01
Software testing is an important and valuable part of the software development life cycle. Due to time, cost and other circumstances, exhaustive testing is not feasible that's why there is a need to automate the software testing process. Testing effectiveness can be achieved by the State Transition Testing (STT) which is commonly used in real time, embedded and web-based type of software systems. Aim of the current paper is to present an algorithm by applying an ant colony optimization technique, for generation of optimal and minimal test sequences for behavior specification of software. Present paper approach generates test sequence in order to obtain the complete software coverage. This paper also discusses the comparison between two metaheuristic techniques (Genetic Algorithm and Ant Colony optimization) for transition based testing
An ant colony optimization based algorithm for identifying gene regulatory elements.
Liu, Wei; Chen, Hanwu; Chen, Ling
2013-08-01
It is one of the most important tasks in bioinformatics to identify the regulatory elements in gene sequences. Most of the existing algorithms for identifying regulatory elements are inclined to converge into a local optimum, and have high time complexity. Ant Colony Optimization (ACO) is a meta-heuristic method based on swarm intelligence and is derived from a model inspired by the collective foraging behavior of real ants. Taking advantage of the ACO in traits such as self-organization and robustness, this paper designs and implements an ACO based algorithm named ACRI (ant-colony-regulatory-identification) for identifying all possible binding sites of transcription factor from the upstream of co-expressed genes. To accelerate the ants' searching process, a strategy of local optimization is presented to adjust the ants' start positions on the searched sequences. By exploiting the powerful optimization ability of ACO, the algorithm ACRI can not only improve precision of the results, but also achieve a very high speed. Experimental results on real world datasets show that ACRI can outperform other traditional algorithms in the respects of speed and quality of solutions. PMID:23746735
Minakshi,; Monika Bansal
2015-01-01
Aco is a well –known metahuristic in which a colony of artificial ants cooperates in explain Good solution to a combinational optimization problem. Wireless sensor consisting of nodes with limited power is deployed to gather useful information From the field. In wireless sensor network it is critical to collect the information in an energy efficient Manner.ant colony optimization, a swarm intelligence based optimization technique, is widely used In network routing. A novel rout...
Co-evolutionary design of discrete structures based on the ant colony optimization
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
In order to optimize the sizing and topology of discrete structures together and resist the combinatorial explosion of the solution space, a co-evolutionary design (CED) method based on ant colony optimization (ACO) for discrete structures is proposed. The tailored ant colony optimization for the sizing of structures (TACO-SS) and the tailored ant colony optimization for the topology of structures (TACO-TS) are implemented respectively. Theoretical analysis shows that the computation complexity of each sub-process in CED based on ACO above is polynomial and it guarantees the efficiency of this method. After the parameter settings in TACO-SS and TACO-TS are discussed, the convergence history of a sub-process is studied through an instance in detail. Finally, according to the design examples of the 10-bar and 15-bar trusses under different cases, the effectiveness of the CED based on ACO is validated and the effects of the loads and the deflection constraints on the co-evolutionary design are discussed.
Apply Local Clustering Method to Improve the Running Speed of Ant Colony Optimization
Pang, Chao-Yang; Hu, Wei; Li, Xia; Hu, Be-Qiong
2009-01-01
Ant Colony Optimization (ACO) has time complexity O(t*m*N*N), and its typical application is to solve Traveling Salesman Problem (TSP), where t, m, and N denotes the iteration number, number of ants, number of cities respectively. Cutting down running time is one of study focuses, and one way is to decrease parameter t and N, especially N. For this focus, the following method is presented in this paper. Firstly, design a novel clustering algorithm named Special Local Clustering algorithm (SLC...
Gis-Based Route Finding Using ANT Colony Optimization and Urban Traffic Data from Different Sources
Davoodi, M.; Mesgari, M. S.
2015-12-01
Nowadays traffic data is obtained from multiple sources including GPS, Video Vehicle Detectors (VVD), Automatic Number Plate Recognition (ANPR), Floating Car Data (FCD), VANETs, etc. All such data can be used for route finding. This paper proposes a model for finding the optimum route based on the integration of traffic data from different sources. Ant Colony Optimization is applied in this paper because the concept of this method (movement of ants in a network) is similar to urban road network and movements of cars. The results indicate that this model is capable of incorporating data from different sources, which may even be inconsistent.
Ant colony optimization approach for test scheduling of system on chip
Institute of Scientific and Technical Information of China (English)
CHEN Ling; PAN Zhong-liang
2009-01-01
It is necessary to perform the test of system on chip, the test scheduling determines the test start and finishing time of every core in the system on chip such that the overall test time is minimized. A new test scheduling approach based on chaotic ant colony algorithm is presented in this paper. The optimization model of test scheduling was studied, the model uses the information such as the scale of test sets of both cores and user defined logic. An approach based on chaotic ant colony algorithm was proposed to solve the optimization model of test scheduling. The test of signal integrity faults such as crosstalk were also investigated when performing the test scheduling. Experimental results on many circuits show that the proposed approach can be used to solve test scheduling problems.
A nuclear reactor core fuel reload optimization using Artificial-Ant-Colony Connective Networks
International Nuclear Information System (INIS)
A Pressurized Water Reactor core must be reloaded every time the fuel burnup reaches a level when it is not possible to sustain nominal power operation. The nuclear core fuel reload optimization consists in finding a burned-up and fresh-fuel-assembly pattern that maximizes the number of full operational days. This problem is NP-hard, meaning that complexity grows exponentially with the number of fuel assemblies in the core. Besides that, the problem is non-linear and its search space is highly discontinual and multimodal. In this work a parallel computational system based on Ant Colony System (ACS) called Artificial-Ant-Colony Networks is introduced to solve the nuclear reactor core fuel reload optimization problem. ACS is a system based on artificial agents that uses the reinforcement learning technique and was originally developed to solve the Traveling Salesman Problem, which is conceptually similar to the nuclear fuel reload problem. (author)
Structural Damage Detection Based on Modal Parameters Using Continuous Ant Colony Optimization
Aditi Majumdar; Bharadwaj Nanda; Dipak Kumar Maiti; Damodar Maity
2014-01-01
A method is presented to detect and quantify structural damages from changes in modal parameters (such as natural frequencies and mode shapes). An inverse problem is formulated to minimize the objective function, defined in terms of discrepancy between the vibration data identified by modal testing and those computed from analytical model, which then solved to locate and assess the structural damage using continuous ant colony optimization algorithm. The damage is formulated as stiffness redu...
Thenmozhi Srinivasan; Balasubramanie Palanisamy
2015-01-01
Clusters of high-dimensional data techniques are emerging, according to data noisy and poor quality challenges. This paper has been developed to cluster data using high-dimensional similarity based PCM (SPCM), with ant colony optimization intelligence which is effective in clustering nonspatial data without getting knowledge about cluster number from the user. The PCM becomes similarity based by using mountain method with it. Though this is efficient clustering, it is checked for optimizatio...
Ant colony optimization applied to route planning using link travel time predictions
Claes, Rutger; Holvoet, Tom
2011-01-01
Finding the shortest path in a road network is a well known problem. Various proven static algorithms such as Dijkstra and A* are extensively evaluated and implemented. When confronted with dynamic costs, such as link travel time predictions, alternative route planning algorithms have to be applied. This paper applies Ant Colony Optimization combined with link travel time predictions to find routes that reduce the time spend by travels by taking into account link travel time predictions. The ...
Fonooni, Benjamin; Jevtić, Aleksandar; Hellström, Thomas; Janlert, Lars-Erik
2015-01-01
International audience In domains where robots carry out human’s tasks, the ability to learn new behaviors easily and quickly plays an important role. Two major challenges with Learning from Demonstration (LfD) are to identify what information in a demonstrated behavior requires attention by the robot, and to generalize the learned behavior such that the robot is able to perform the same behavior in novel situations.The main goal of this paper is to incorporate Ant Colony Optimization (ACO...
Nourelfath, M.; Nahas, N.; Montreuil, B.
2007-12-01
This article uses a hybrid optimization approach to solve the discrete facility layout problem (FLP), modelled as a quadratic assignment problem (QAP). The idea of this approach design is inspired by the ant colony meta-heuristic optimization method, combined with the extended great deluge (EGD) local search technique. Comparative computational experiments are carried out on benchmarks taken from the QAP-library and from real life problems. The performance of the proposed algorithm is compared to construction and improvement heuristics such as H63, HC63-66, CRAFT and Bubble Search, as well as other existing meta-heuristics developed in the literature based on simulated annealing (SA), tabu search and genetic algorithms (GAs). This algorithm is compared also to other ant colony implementations for QAP. The experimental results show that the proposed ant colony optimization/extended great deluge (ACO/EGD) performs significantly better than the existing construction and improvement algorithms. The experimental results indicate also that the ACO/EGD heuristic methodology offers advantages over other algorithms based on meta-heuristics in terms of solution quality.
Adaptive Search Protocol Based on Optimized Ant Colony Algorithm in Peer-to-Peer Network
Directory of Open Access Journals (Sweden)
Chun-Ying Liu
2013-04-01
Full Text Available In order to solve the low searching efficiency in the peer-to-peer (P2P network, introduce the ant colony algorithm with the particle swarm optimization in searching procedure. Present a new adaptive search protocol (SACASP based on the ant colony algorithm with the particle swarm optimization in the Peer-to-Peer Network. The approach simulates the process of the ants’ searching food, and can direct the query routing efficiently according to the adaptive strategy and the positive feedback principle of the pheromone. Decrease the blindness of the messages transmitting in early searching stage by adding the particle swarm optimization to the ant colony algorithm. Give the adaptive P2P search model based on the fusion algorithm, and design the data structure and steps of the model. The simulation experiment shows, PSACASP can effectively shorten the time and reduce the search query packets comparing with the other search algorithms, and it can achieve better search performance and decrease the network loads.
A Stochastic Inversion Method for Potential Field Data: Ant Colony Optimization
Liu, Shuang; Hu, Xiangyun; Liu, Tianyou
2014-07-01
Simulating natural ants' foraging behavior, the ant colony optimization (ACO) algorithm performs excellently in combinational optimization problems, for example the traveling salesman problem and the quadratic assignment problem. However, the ACO is seldom used to inverted for gravitational and magnetic data. On the basis of the continuous and multi-dimensional objective function for potential field data optimization inversion, we present the node partition strategy ACO (NP-ACO) algorithm for inversion of model variables of fixed shape and recovery of physical property distributions of complicated shape models. We divide the continuous variables into discrete nodes and ants directionally tour the nodes by use of transition probabilities. We update the pheromone trails by use of Gaussian mapping between the objective function value and the quantity of pheromone. It can analyze the search results in real time and promote the rate of convergence and precision of inversion. Traditional mapping, including the ant-cycle system, weaken the differences between ant individuals and lead to premature convergence. We tested our method by use of synthetic data and real data from scenarios involving gravity and magnetic anomalies. The inverted model variables and recovered physical property distributions were in good agreement with the true values. The ACO algorithm for binary representation imaging and full imaging can recover sharper physical property distributions than traditional linear inversion methods. The ACO has good optimization capability and some excellent characteristics, for example robustness, parallel implementation, and portability, compared with other stochastic metaheuristics.
Optimization of travel salesman problem using the ant colony system and Greedy search
International Nuclear Information System (INIS)
In this paper we present some results obtained during the development of optimization systems that can be used to design refueling and patterns of control rods in a BWR. These systems use ant colonies and Greedy search. The first phase of this project is to be familiar with these optimization techniques applied to the problem of travel salesman problem (TSP). The utility of TSP study is that, like the refueling design and pattern design of control rods are problems of combinative optimization. Even, the similarity with the problem of the refueling design is remarkable. It is presented some results for the TSP with the 32 state capitals of Mexico country. (Author)
Zhang, Hong; Sun, Yanfeng; Zhai, Bing; Wang, Yiding
2013-07-01
This paper studies on the image registration of the medical images. Wavelet transform is adopted to decompose the medical images because the resolution of the medical image is high and the computational amount of the registration is large. Firstly, the low frequency sub-images are matched. Then source images are matched. The image registration was fulfilled by the ant colony optimization algorithm to search the extremum of the mutual information. The experiment result demonstrates the proposed approach can not only reduce calculation amount, but also skip from the local extremum during optimization process, and search the optimization value.
Event Space-Correlation Analysis Algorithm Based on Ant Colony Optimization
Directory of Open Access Journals (Sweden)
Mingsheng Hu
2013-03-01
Full Text Available Historical disaster events are taken as a case for space-correlation analysis, three-dimensional disasters space-time network are modeled and chain relationship of disaster nodes are mined by looking for similar space vector in network. Then transformed the vector discover problem into a path optimization problem and solved by using ant colony algorithm, where the pheromone parameter in the process of optimal-path finding is concerned as the algorithm result, in order to solve the problem of path competition which existed when only to solve the optimal path. Experimental results of MATLAB show that this method has high accuracy and practicality.
Ant colony system algorithm for the optimization of beer fermentation control
Institute of Scientific and Technical Information of China (English)
肖杰; 周泽魁; 张光新
2004-01-01
Beer fermentation is a dynamic process that must be guided along a temperature profile to obtain the desired results. Ant colony system algorithm was applied to optimize the kinetic model of this process. During a fixed period of fermentation time, a series of different temperature profiles of the mixture were constructed. An optimal one was chosen at last. Optimal temperature profile maximized the final ethanol production and minimized the byproducts concentration and spoilage risk. The satisfactory results obtained did not require much computation effort.
Search tree-based approach for the p-median problem using the ant colony optimization algorithm
Gabriel Bodnariuc; Sergiu Cataranciuc
2014-01-01
In this paper we present an approximation algorithm for the $p$-median problem that uses the principles of ant colony optimization technique. We introduce a search tree that keeps the partial solutions during the solution process of the $p$-median problem. An adaptation is proposed that allows ant colony optimization algorithm to perform on this tree and obtain good results in short time.
Gao, Wei
2016-05-01
The objective function of displacement back analysis for rock parameters in underground engineering is a very complicated nonlinear multiple hump function. The global optimization method can solve this problem very well. However, many numerical simulations must be performed during the optimization process, which is very time consuming. Therefore, it is important to improve the computational efficiency of optimization back analysis. To improve optimization back analysis, a new global optimization, immunized continuous ant colony optimization, is proposed. This is an improved continuous ant colony optimization using the basic principles of an artificial immune system and evolutionary algorithm. Based on this new global optimization, a new displacement optimization back analysis for rock parameters is proposed. The computational performance of the new back analysis is verified through a numerical example and a real engineering example. The results show that this new method can be used to obtain suitable parameters of rock mass with higher accuracy and less effort than previous methods. Moreover, the new back analysis is very robust.
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
A novel method based on ant colony optimization (ACO), algorithm for solving the ill-conditioned linear systems of equations is proposed. ACO is a parallelized bionic optimization algorithm which is inspired from the behavior of real ants. ACO algorithm is first introduced, a kind of positive feedback mechanism is adopted in ACO. Then, the solution problem of linear systems of equations was reformulated as an unconstrained optimization problem for solution by an ACO algorithm. Finally, the ACO with other traditional methods is applied to solve a kind of multi-dimensional Hilbert ill-conditioned linear equations. The numerical results demonstrate that ACO is effective, robust and recommendable in solving ill-conditioned linear systems of equations.
Directory of Open Access Journals (Sweden)
Hiba Al-Zurba
2011-07-01
Full Text Available This paper studies the suitability of using a meta-heuristic ant colony technique in routing multimediacontent over wireless sensor networks. The presented technique is both energy and QoS-aware. Ant colonyalgorithm is used to find the optimal routing path. Optimality is in the sense of minimizing energyconsumption and increasing link quality and reliability. The proposed approach results in minimizingenergy consumption and prolonging the lifetime of the network. Moreover, the optimal path has a high linkquality and reliability which enhances video frame quality and ensures high probability of successfuldelivery of video frames. The importance given to energy consumption, link quality, and link reliabilitymetrics can be varied depending on the multimedia application requirements.
A Multi-pipe Path Planning by Modified Ant Colony Optimization
Institute of Scientific and Technical Information of China (English)
QU Yan-feng; JIANG Dan; LIU Bin
2011-01-01
Path planning in 3D geometry space is used to find an optimal path in the restricted environment, according to a certain evaluation criteria. To solve the problem of long searching time and slow solving speed in 3D path planning, a modified ant colony optimization is proposed in this paper. Firstly, the grid method for environment modeling is adopted. Heuristic information is connected with the planning space. A semi-iterative global pheromone update mechanism is proposed. Secondly, the optimal ants mutate the paths to improve the diversity of the algorithm after a defined iterative number. Thirdly, co-evolutionary algorithm is used. Finally, the simulation result shows the effectiveness of the proposed algorithm in solving the problem of 3D pipe path planning.
GRID SCHEDULING USING ENHANCED ANT COLONY ALGORITHM
Mr. P.Mathiyalagan; U.R. Dhepthie; S.N. Sivanandam
2010-01-01
Grid computing is a high performance computing used to solve larger scale computational demands. Task scheduling is a major issue in grid computing systems. Scheduling of tasks is the NP hard problem. The heuristic approach provides optimal solution for NP hard problems .The ant colony algorithm provides optimal solution. The existing ant colony algorithm takes more time to schedule the tasks. In this paper ant colony algorithm improved by enhancing pheromone updating rule such that it schedu...
A nuclear reactor core fuel reload optimization using artificial ant colony connective networks
Energy Technology Data Exchange (ETDEWEB)
Lima, Alan M.M. de [Universidade Federal do Rio de Janeiro, PEN/COPPE - UFRJ, Ilha do Fundao s/n, CEP 21945-970 Rio de Janeiro (Brazil)], E-mail: alanmmlima@yahoo.com.br; Schirru, Roberto [Universidade Federal do Rio de Janeiro, PEN/COPPE - UFRJ, Ilha do Fundao s/n, CEP 21945-970 Rio de Janeiro (Brazil)], E-mail: schirru@lmp.ufrj.br; Carvalho da Silva, Fernando [Universidade Federal do Rio de Janeiro, PEN/COPPE - UFRJ, Ilha do Fundao s/n, CEP 21945-970 Rio de Janeiro (Brazil)], E-mail: fernando@con.ufrj.br; Medeiros, Jose Antonio Carlos Canedo [Universidade Federal do Rio de Janeiro, PEN/COPPE - UFRJ, Ilha do Fundao s/n, CEP 21945-970 Rio de Janeiro (Brazil)], E-mail: canedo@lmp.ufrj.br
2008-09-15
The core of a nuclear Pressurized Water Reactor (PWR) may be reloaded every time the fuel burn-up is such that it is not more possible to maintain the reactor operating at nominal power. The nuclear core fuel reload optimization problem consists in finding a pattern of burned-up and fresh-fuel assemblies that maximize the number of full operational days. This is an NP-Hard problem, meaning that complexity grows exponentially with the number of fuel assemblies in the core. Moreover, the problem is non-linear and its search space is highly discontinuous and multi-modal. Ant Colony System (ACS) is an optimization algorithm based on artificial ants that uses the reinforcement learning technique. The ACS was originally developed to solve the Traveling Salesman Problem (TSP), which is conceptually similar to the nuclear core fuel reload problem. In this work a parallel computational system based on the ACS, called Artificial Ant Colony Networks is introduced to solve the core fuel reload optimization problem.
A nuclear reactor core fuel reload optimization using artificial ant colony connective networks
International Nuclear Information System (INIS)
The core of a nuclear Pressurized Water Reactor (PWR) may be reloaded every time the fuel burn-up is such that it is not more possible to maintain the reactor operating at nominal power. The nuclear core fuel reload optimization problem consists in finding a pattern of burned-up and fresh-fuel assemblies that maximize the number of full operational days. This is an NP-Hard problem, meaning that complexity grows exponentially with the number of fuel assemblies in the core. Moreover, the problem is non-linear and its search space is highly discontinuous and multi-modal. Ant Colony System (ACS) is an optimization algorithm based on artificial ants that uses the reinforcement learning technique. The ACS was originally developed to solve the Traveling Salesman Problem (TSP), which is conceptually similar to the nuclear core fuel reload problem. In this work a parallel computational system based on the ACS, called Artificial Ant Colony Networks is introduced to solve the core fuel reload optimization problem
Optimization of China Crude Oil Transportation Network with Genetic Ant Colony Algorithm
Directory of Open Access Journals (Sweden)
Yao Wang
2015-08-01
Full Text Available Taking into consideration both shipping and pipeline transport, this paper first analysed the risk factors for different modes of crude oil import transportation. Then, based on the minimum of both transportation cost and overall risk, a multi-objective programming model was established to optimize the transportation network of crude oil import, and the genetic algorithm and ant colony algorithm were employed to solve the problem. The optimized result shows that VLCC (Very Large Crude Carrier is superior in long distance sea transportation, whereas pipeline transport is more secure than sea transport. Finally, this paper provides related safeguard suggestions on crude oil import transportation.
Ant colony optimization for bearings-only maneuvering target tracking in sensors network
Institute of Scientific and Technical Information of China (English)
Benlian XU; Zhiquan WANG; Zhengyi WU
2007-01-01
In this paper, the problem of bearings-only maneuvering target tracking in sensors network is investigated.Two objectives are proposed and optimized by the ant colony optimization (ACO), then two kinds of node searching strategies of the ACO algorithm are presented. On the basis of the nodes determined by the ACO algorithm, the interacting multiple models extended Kalman filter (IMMEKF) for the multi-sensor bearings-only maneuvering target tracking is introduced. Simulation results indicate that the proposed ACO algorithm performs better than the Closest Nodes method.Furthermore, the Strategy 2 of the two given strategies is preferred in terms of the requirement of real time.
Directory of Open Access Journals (Sweden)
Milinkovitch Michel C
2007-11-01
Full Text Available Abstract Background Distance matrix methods constitute a major family of phylogenetic estimation methods, and the minimum evolution (ME principle (aiming at recovering the phylogeny with shortest length is one of the most commonly used optimality criteria for estimating phylogenetic trees. The major difficulty for its application is that the number of possible phylogenies grows exponentially with the number of taxa analyzed and the minimum evolution principle is known to belong to the NP MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGacaGaaiaabeqaaeqabiWaaaGcbaWenfgDOvwBHrxAJfwnHbqeg0uy0HwzTfgDPnwy1aaceaGae8xdX7Kaeeiuaafaaa@3888@-hard class of problems. Results In this paper, we introduce an Ant Colony Optimization (ACO algorithm to estimate phylogenies under the minimum evolution principle. ACO is an optimization technique inspired from the foraging behavior of real ant colonies. This behavior is exploited in artificial ant colonies for the search of approximate solutions to discrete optimization problems. Conclusion We show that the ACO algorithm is potentially competitive in comparison with state-of-the-art algorithms for the minimum evolution principle. This is the first application of an ACO algorithm to the phylogenetic estimation problem.
GRID SCHEDULING USING ENHANCED ANT COLONY ALGORITHM
Directory of Open Access Journals (Sweden)
P. Mathiyalagan
2010-10-01
Full Text Available Grid computing is a high performance computing used to solve larger scale computational demands. Task scheduling is a major issue in grid computing systems. Scheduling of tasks is the NP hard problem. The heuristic approach provides optimal solution for NP hard problems .The ant colony algorithm provides optimal solution. The existing ant colony algorithm takes more time to schedule the tasks. In this paper ant colony algorithm improved by enhancing pheromone updating rule such that it schedules the tasks efficiently and better resource utilization. The simulation results prove that proposed method reduces the execution time of tasks compared to existing ant colony algorithm.
Biomedical Image Edge Detection using an Ant Colony Optimization Based on Artificial Neural Networks
Directory of Open Access Journals (Sweden)
Javad Rahebi
2011-12-01
Full Text Available Ant colony optimization (ACO is the algorithm that has inspired from natural behavior of ants life, which the ants leaved pheromone to search food on the ground. In this paper, ACO is introduced for resolving the edge detection in the biomedical image. Edge detection method based on ACO is able to create a matrix pheromone that shows information of available edge in each location of edge pixel which is created based on the movements of a number of ants on the biomedical image. Moreover, the movements of these ants are created by local fluctuation of biomedical image intensity values. The detected edge biomedical images have low quality rather than detected edge biomedical image resulted of a classic mask and won’t result application of these masks to edge detection biomedical image obtained of ACO. In proposed method, we use artificial neuralnetwork with supervised learning along with momentum to improve edge detection based on ACO. The experimental results shows that make use neural network are very effective in edge detection based on ACO.
Improved multi-objective ant colony optimization algorithm and its application in complex reasoning
Wang, Xinqing; Zhao, Yang; Wang, Dong; Zhu, Huijie; Zhang, Qing
2013-09-01
The problem of fault reasoning has aroused great concern in scientific and engineering fields. However, fault investigation and reasoning of complex system is not a simple reasoning decision-making problem. It has become a typical multi-constraint and multi-objective reticulate optimization decision-making problem under many influencing factors and constraints. So far, little research has been carried out in this field. This paper transforms the fault reasoning problem of complex system into a paths-searching problem starting from known symptoms to fault causes. Three optimization objectives are considered simultaneously: maximum probability of average fault, maximum average importance, and minimum average complexity of test. Under the constraints of both known symptoms and the causal relationship among different components, a multi-objective optimization mathematical model is set up, taking minimizing cost of fault reasoning as the target function. Since the problem is non-deterministic polynomial-hard(NP-hard), a modified multi-objective ant colony algorithm is proposed, in which a reachability matrix is set up to constrain the feasible search nodes of the ants and a new pseudo-random-proportional rule and a pheromone adjustment mechinism are constructed to balance conflicts between the optimization objectives. At last, a Pareto optimal set is acquired. Evaluation functions based on validity and tendency of reasoning paths are defined to optimize noninferior set, through which the final fault causes can be identified according to decision-making demands, thus realize fault reasoning of the multi-constraint and multi-objective complex system. Reasoning results demonstrate that the improved multi-objective ant colony optimization(IMACO) can realize reasoning and locating fault positions precisely by solving the multi-objective fault diagnosis model, which provides a new method to solve the problem of multi-constraint and multi-objective fault diagnosis and
Structural Damage Detection Based on Modal Parameters Using Continuous Ant Colony Optimization
Directory of Open Access Journals (Sweden)
Aditi Majumdar
2014-01-01
Full Text Available A method is presented to detect and quantify structural damages from changes in modal parameters (such as natural frequencies and mode shapes. An inverse problem is formulated to minimize the objective function, defined in terms of discrepancy between the vibration data identified by modal testing and those computed from analytical model, which then solved to locate and assess the structural damage using continuous ant colony optimization algorithm. The damage is formulated as stiffness reduction factor. The study indicates potentiality of the developed code to solve a wide range of inverse identification problems.
Ant Colony Optimization In Multi-Agent Systems With NetLogo
Directory of Open Access Journals (Sweden)
Mustafa Tüker
2013-02-01
Full Text Available Multi-agent systems (MAS offer an effective way to model and solve complex optimization problems. In this study, MAS and ant colonies have been used together to solve the Travelling Salesmen Problem (TSP. System simulation has been realized with NetLogo which is an agent-based programming environment. It has been explained in detail with code examples that how to use NetLogo for modeling and simulation of the problem. Algorithm has been tested for different numbers of nodes and obtained results have been discussed.
ENHANCEMENT AND COMPARISON OF ANT COLONY OPTIMIZATION FOR SOFTWARE RELIABILITY MODELS
Directory of Open Access Journals (Sweden)
Latha Shanmugam
2013-01-01
Full Text Available In Common parlance, the traditional software reliability estimation methods often rely on assumptions like statistical distributions that are often dubious and unrealistic. The ability to predict the number of faults during development phase and a proper testing process helps in specifying timely release of software and efficient management of project resources. In the Present Study Enhancement and Comparison of Ant Colony Optimization Methods for Software Reliability Models are studied and the estimation accuracy was calculated. The Enhanced method shows significant advantages in finding the goodness of fit for software reliability model such as finite and infinite failure Poisson model and binomial models.
Integration of GPS and DinSAR for Deformation Monitoring Based on Ant Colony Optimization
Shi, Guoqiang; He, Xiufeng; Xiao, Ruya
2014-11-01
To acquire three-dimensional earth surface deformation, a measurement method based on ant colony optimization (ACO) is proposed. It highly integrates high-accuracy GPS observations from sparse ground points with InSAR line-of-sight (LOS) direction information. Two constraints, GPS and DInSAR observations, are employed in constructing the energy function whose minimum value will be searched by the ACO operated in continuous space. Compared with conventional interpolation algorithms, the proposed method increases the three-dimensional deformation observation accuracy, especially showing the improvement in the up direction.
Ant Colony Algorithm and Optimization of Test Conditions in Analytical Chemistry
Institute of Scientific and Technical Information of China (English)
丁亚平; 吴庆生; 苏庆德
2003-01-01
The research for the new algorithm is in the forward position and an issue of general interest in chemometrics all along.A novel chemometrics method,Chemical Ant Colony Algorithm,has first been developed.In this paper,the basic principle,theevaluation function,and the parameter choice were discussed.This method has been successfully applied to the fitting of nonlinear multivariate function and the optimization of test conditions in chrome-azure-S-Al spctrophotometric system.The sum of residual square of the results is 0.0009,which has reached a good convergence result.
DANTE - The combination between an ant colony optimization algorithm and a depth search method
Cardoso, Pedro J. S.; Jesus, Mário Carlos Machado; Marquez, A.
2008-01-01
The ε-DANTE method is an hybrid meta-heuristic. In combines the evolutionary Ant Colony Optimization (ACO) algorithms with a limited Depth Search. This Depth Search is based in the pheromone trails used by the ACO, which allows it to be oriented to the more promising areas of the search space. Some results are presented for the multiple objective k-Degree Spanning Trees problem, proving the effectiveness of the method when compared with other already tested evolutionary methods. © 2008 IEEE.
Directory of Open Access Journals (Sweden)
Kanchan Singla
2014-06-01
Full Text Available MC CDMA is a rising candidate for future generation broadband wireless communication and gained great attention from researchers. It provides benefits of both OFDM and CDMA. Main challenging problem of MC CDMA is high PAPR. It occurs in HPA and reduces system efficiency. There are many PAPR reduction techniques for MC CDMA. In this paper we proposed Ant colony optimization algorithm to reduce PAPR with different number of user using BPSK and QPSK modulation. ACO is a metaheuristic technique and based on the foraging behavior of real ants. It provides solution to many complex problems. Simulation result proves that ACO using BPSK modulation is effective for reducing PAPR in MC CDMA.
Scalable unit commitment by memory-bounded ant colony optimization with A{sup *} local search
Energy Technology Data Exchange (ETDEWEB)
Saber, Ahmed Yousuf; Alshareef, Abdulaziz Mohammed [Department of Electrical and Computer Engineering, King Abdulaziz University, P.O. Box 80204, Jeddah 21589 (Saudi Arabia)
2008-07-15
Ant colony optimization (ACO) is successfully applied in optimization problems. Performance of the basic ACO for small problems with moderate dimension and searching space is satisfactory. As the searching space grows exponentially in the large-scale unit commitment problem, the basic ACO is not applicable for the vast size of pheromone matrix of ACO in practical time and physical computer-memory limit. However, memory-bounded methods prune the least-promising nodes to fit the system in computer memory. Therefore, the authors propose memory-bounded ant colony optimization (MACO) in this paper for the scalable (no restriction for system size) unit commitment problem. This MACO intelligently solves the limitation of computer memory, and does not permit the system to grow beyond a bound on memory. In the memory-bounded ACO implementation, A{sup *} heuristic is introduced to increase local searching ability and probabilistic nearest neighbor method is applied to estimate pheromone intensity for the forgotten value. Finally, the benchmark data sets and existing methods are used to show the effectiveness of the proposed method. (author)
Kavitha, Ganesan; Ramakrishnan, Swaminathan
2010-01-01
Optic disc and retinal vasculature are important anatomical structures in the retina of the eye and any changes observed in these structures provide vital information on severity of various diseases. Digital retinal images are shown to provide a meaningful way of documenting and assessing some of the key elements inside the eye including the optic nerve and the tiny retinal blood vessels. In this work, an attempt has been made to detect and differentiate abnormalities of the retina using Digital image processing together with Optimization based segmentation and Artificial Neural Network methods. The retinal fundus images were recorded using standard protocols. Ant Colony Optimization is employed to extract the most significant objects namely the optic disc and blood vessel. The features related to these objects are obtained and corresponding indices are also derived. Further, these features are subjected to classification using Radial Basis Function Neural Networks and compared with conventional training algorithms. Results show that the Ant Colony Optimization is efficient in extracting useful information from retinal images. The features derived are effective for classification of normal and abnormal images using Radial basis function networks compared to other methods. As Optic disc and blood vessels are significant markers of abnormality in retinal images, the method proposed appears to be useful for mass screening. In this paper, the objectives of the study, methodology and significant observations are presented. PMID:20467104
Solving optimum operation of single pump unit problem with ant colony optimization (ACO) algorithm
International Nuclear Information System (INIS)
For pumping stations, the effective scheduling of daily pump operations from solutions to the optimum design operation problem is one of the greatest potential areas for energy cost-savings, there are some difficulties in solving this problem with traditional optimization methods due to the multimodality of the solution region. In this case, an ACO model for optimum operation of pumping unit is proposed and the solution method by ants searching is presented by rationally setting the object function and constrained conditions. A weighted directed graph was constructed and feasible solutions may be found by iteratively searching of artificial ants, and then the optimal solution can be obtained by applying the rule of state transition and the pheromone updating. An example calculation was conducted and the minimum cost was found as 4.9979. The result of ant colony algorithm was compared with the result from dynamic programming or evolutionary solving method in commercial software under the same discrete condition. The result of ACO is better and the computing time is shorter which indicates that ACO algorithm can provide a high application value to the field of optimal operation of pumping stations and related fields.
Directory of Open Access Journals (Sweden)
Minakshi
2015-06-01
Full Text Available Aco is a well –known metahuristic in which a colony of artificial ants cooperates in explain Good solution to a combinational optimization problem. Wireless sensor consisting of nodes with limited power is deployed to gather useful information From the field. In wireless sensor network it is critical to collect the information in an energy efficient Manner.ant colony optimization, a swarm intelligence based optimization technique, is widely used In network routing. A novel routing approach using an ant colony optimization algorithm is proposed for wireless sensor Network consisting of stable nodes illustrative example details description and cooperative performance test result the proposed approach are included. The approach is also implementing to a small sized hardware component as a router chip simulation result show that proposed algorithm Provides promising solution allowing node designers to efficiency operate routing tasks.
Directory of Open Access Journals (Sweden)
Karla Vittori
2008-12-01
Full Text Available We propose a new distance algorithm for phylogenetic estimation based on Ant Colony Optimization (ACO, named Ant-Based Phylogenetic Reconstruction (ABPR. ABPR joins two taxa iteratively based on evolutionary distance among sequences, while also accounting for the quality of the phylogenetic tree built according to the total length of the tree. Similar to optimization algorithms for phylogenetic estimation, the algorithm allows exploration of a larger set of nearly optimal solutions. We applied the algorithm to four empirical data sets of mitochondrial DNA ranging from 12 to 186 sequences, and from 898 to 16,608 base pairs, and covering taxonomic levels from populations to orders. We show that ABPR performs better than the commonly used Neighbor-Joining algorithm, except when sequences are too closely related (e.g., population-level sequences. The phylogenetic relationships recovered at and above species level by ABPR agree with conventional views. However, like other algorithms of phylogenetic estimation, the proposed algorithm failed to recover expected relationships when distances are too similar or when rates of evolution are very variable, leading to the problem of long-branch attraction. ABPR, as well as other ACO-based algorithms, is emerging as a fast and accurate alternative method of phylogenetic estimation for large data sets.
双种群改进蚁群算法%Dual population ant colony optimization algorithm
Institute of Scientific and Technical Information of China (English)
郏宣耀; 滕少华
2006-01-01
基本蚁群优化(Basic Ant Colony Optimization,BACO)算法在进化中容易出现停滞,其根源是蚁群算法中信息的正反馈. 在大量蚂蚁选择相同路径后,该路径上的信息素浓度远高于其他路径,算法很难再搜索到邻域空间中的其他优良解. 对此,提出一种双种群改进蚁群(Dual Population Ant Colony Optimization,DPACO)算法. 借鉴遗传算法中个体多样性特点,将蚁群算法中的蚂蚁分成两个群体分别独立进行进化,并定期进行信息交换. 这一方法缓解了因信息素浓度失衡而造成的局部收敛,有效改进算法的搜索性能,实验结果表明该算法有效可行.
Adaptive tracking and compensation of laser spot based on ant colony optimization
Yang, Lihong; Ke, Xizheng; Bai, Runbing; Hu, Qidi
2009-05-01
Because the effect of atmospheric scattering and atmospheric turbulence on laser signal of atmospheric absorption,laser spot twinkling, beam drift and spot split-up occur ,when laser signal transmits in the atmospheric channel. The phenomenon will be seriously affects the stability and the reliability of laser spot receiving system. In order to reduce the influence of atmospheric turbulence, we adopt optimum control thoughts in the field of artificial intelligence, propose a novel adaptive optical control technology-- model-free optimized adaptive control technology, analyze low-order pattern wave-front error theory, in which an -adaptive optical system is employed to adjust errors, and design its adaptive structure system. Ant colony algorithm is the control core algorithm, which is characteristic of positive feedback, distributed computing and greedy heuristic search. . The ant colony algorithm optimization of adaptive optical phase compensation is simulated. Simulation result shows that, the algorithm can effectively control laser energy distribution, improve laser light beam quality, and enhance signal-to-noise ratio of received signal.
Optimization of fuel reloads for a BWR using the ant colony system
International Nuclear Information System (INIS)
In this work some results obtained during the development of optimization systems are presented, which are employees for the fuel reload design in a BWR. The systems use the ant colony optimization technique. As first instance, a system is developed that was adapted at travel salesman problem applied for the 32 state capitals of Mexican Republic. The purpose of this implementation is that a similarity exists with the design of fuel reload, since the two problems are of combinatorial optimization with decision variables that have similarity between both. The system was coupled to simulator SIMULATE-3, obtaining good results when being applied to an operation cycle in equilibrium for reactors of nuclear power plant of Laguna Verde. (Author)
International Nuclear Information System (INIS)
This paper presents Turkey's net electricity energy generation and demand based on economic indicators. Forecasting model for electricity energy generation and demand is first proposed by the ant colony optimization (ACO) approach. It is multi-agent system in which the behavior of each ant is inspired by the foraging behavior of real ants to solve optimization problem. Ant colony optimization electricity energy estimation (ACOEEE) model is developed using population, gross domestic product (GDP), import and export. All equations proposed here are linear electricity energy generation and demand (linearACOEEGE and linear ACOEEDE) and quadratic energy generation and demand (quadraticACOEEGE and quadratic ACOEEDE). Quadratic models for both generation and demand provided better fit solution due to the fluctuations of the economic indicators. The ACOEEGE and ACOEEDE models indicate Turkey's net electricity energy generation and demand until 2025 according to three scenarios. (author)
Energy Technology Data Exchange (ETDEWEB)
Toksari, M. Duran [Engineering Faculty, Industrial Engineering Department, Erciyes University, 38039 Kayseri (Turkey)
2009-03-15
This paper presents Turkey's net electricity energy generation and demand based on economic indicators. Forecasting model for electricity energy generation and demand is first proposed by the ant colony optimization (ACO) approach. It is multi-agent system in which the behavior of each ant is inspired by the foraging behavior of real ants to solve optimization problem. Ant colony optimization electricity energy estimation (ACOEEE) model is developed using population, gross domestic product (GDP), import and export. All equations proposed here are linear electricity energy generation and demand (linear{sub A}COEEGE and linear ACOEEDE) and quadratic energy generation and demand (quadratic{sub A}COEEGE and quadratic ACOEEDE). Quadratic models for both generation and demand provided better fit solution due to the fluctuations of the economic indicators. The ACOEEGE and ACOEEDE models indicate Turkey's net electricity energy generation and demand until 2025 according to three scenarios. (author)
Energy Technology Data Exchange (ETDEWEB)
Toksari, M. Duran [Engineering Faculty, Industrial Engineering Department, Erciyes University, 38039 Kayseri (Turkey)], E-mail: dtoksari@erciyes.edu.tr
2009-03-15
This paper presents Turkey's net electricity energy generation and demand based on economic indicators. Forecasting model for electricity energy generation and demand is first proposed by the ant colony optimization (ACO) approach. It is multi-agent system in which the behavior of each ant is inspired by the foraging behavior of real ants to solve optimization problem. Ant colony optimization electricity energy estimation (ACOEEE) model is developed using population, gross domestic product (GDP), import and export. All equations proposed here are linear electricity energy generation and demand (linear{sub A}COEEGE and linear ACOEEDE) and quadratic energy generation and demand (quadratic{sub A}COEEGE and quadratic ACOEEDE). Quadratic models for both generation and demand provided better fit solution due to the fluctuations of the economic indicators. The ACOEEGE and ACOEEDE models indicate Turkey's net electricity energy generation and demand until 2025 according to three scenarios.
International Nuclear Information System (INIS)
This paper presents Turkey's net electricity energy generation and demand based on economic indicators. Forecasting model for electricity energy generation and demand is first proposed by the ant colony optimization (ACO) approach. It is multi-agent system in which the behavior of each ant is inspired by the foraging behavior of real ants to solve optimization problem. Ant colony optimization electricity energy estimation (ACOEEE) model is developed using population, gross domestic product (GDP), import and export. All equations proposed here are linear electricity energy generation and demand (linearACOEEGE and linear ACOEEDE) and quadratic energy generation and demand (quadraticACOEEGE and quadratic ACOEEDE). Quadratic models for both generation and demand provided better fit solution due to the fluctuations of the economic indicators. The ACOEEGE and ACOEEDE models indicate Turkey's net electricity energy generation and demand until 2025 according to three scenarios
K. G. Santhiya; Arumugam, N.
2012-01-01
Energy aware reliable routing in mobile ad hoc networks is an astonishing task and in this paper we propose to design, develop such protocol which will be a good solution. For developing such protocol EARRP, two swarm intelligence techniques are involved namely ant colony optimization and bee colony foraging behavior. For optimization, we proposed adaptive solutions in order to estimate MAC overhead, link eminence and residual energy. After estimating the above said metrics, the fitness funct...
Ant colony optimization and neural networks applied to nuclear power plant monitoring
Energy Technology Data Exchange (ETDEWEB)
Santos, Gean Ribeiro dos; Andrade, Delvonei Alves de; Pereira, Iraci Martinez, E-mail: gean@usp.br, E-mail: delvonei@ipen.br, E-mail: martinez@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)
2015-07-01
A recurring challenge in production processes is the development of monitoring and diagnosis systems. Those systems help on detecting unexpected changes and interruptions, preventing losses and mitigating risks. Artificial Neural Networks (ANNs) have been extensively used in creating monitoring systems. Usually the ANNs created to solve this kind of problem are created by taking into account only parameters as the number of inputs, outputs, and hidden layers. The result networks are generally fully connected and have no improvements in its topology. This work intends to use an Ant Colony Optimization (ACO) algorithm to create a tuned neural network. The ACO search algorithm will use Back Error Propagation (BP) to optimize the network topology by suggesting the best neuron connections. The result ANN will be applied to monitoring the IEA-R1 research reactor at IPEN. (author)
Chang, Yung-Chia; Li, Vincent C.; Chiang, Chia-Ju
2014-04-01
Make-to-order or direct-order business models that require close interaction between production and distribution activities have been adopted by many enterprises in order to be competitive in demanding markets. This article considers an integrated production and distribution scheduling problem in which jobs are first processed by one of the unrelated parallel machines and then distributed to corresponding customers by capacitated vehicles without intermediate inventory. The objective is to find a joint production and distribution schedule so that the weighted sum of total weighted job delivery time and the total distribution cost is minimized. This article presents a mathematical model for describing the problem and designs an algorithm using ant colony optimization. Computational experiments illustrate that the algorithm developed is capable of generating near-optimal solutions. The computational results also demonstrate the value of integrating production and distribution in the model for the studied problem.
Ant colony optimization and neural networks applied to nuclear power plant monitoring
International Nuclear Information System (INIS)
A recurring challenge in production processes is the development of monitoring and diagnosis systems. Those systems help on detecting unexpected changes and interruptions, preventing losses and mitigating risks. Artificial Neural Networks (ANNs) have been extensively used in creating monitoring systems. Usually the ANNs created to solve this kind of problem are created by taking into account only parameters as the number of inputs, outputs, and hidden layers. The result networks are generally fully connected and have no improvements in its topology. This work intends to use an Ant Colony Optimization (ACO) algorithm to create a tuned neural network. The ACO search algorithm will use Back Error Propagation (BP) to optimize the network topology by suggesting the best neuron connections. The result ANN will be applied to monitoring the IEA-R1 research reactor at IPEN. (author)
Construction of Learning Path Using Ant Colony Optimization from a Frequent Pattern Graph
Sengupta, Souvik; Dasgupta, Ranjan
2012-01-01
In an e-Learning system a learner may come across multiple unknown terms, which are generally hyperlinked, while reading a text definition or theory on any topic. It becomes even harder when one tries to understand those unknown terms through further such links and they again find some new terms that have new links. As a consequence they get confused where to initiate from and what are the prerequisites. So it is very obvious for the learner to make a choice of what should be learnt before what. In this paper we have taken the data mining based frequent pattern graph model to define the association and sequencing between the words and then adopted the Ant Colony Optimization, an artificial intelligence approach, to derive a searching technique to obtain an efficient and optimized learning path to reach to a unknown term.
Parallel Methods of Solving of Supply Problem Using Ant Colony Optimization
Directory of Open Access Journals (Sweden)
Stanislav Piecka
2013-03-01
Full Text Available Presented work focuses on solving of the vehicle routingproblem, which is considered as a basic supply problem.The main motivation is to achieve high quality solutions ofthe vehicle routing problem in the shortest possible time.It tries to achieve this goal via parallelization of the antcolony optimization metaheuristics, which is suitable forcalculating of combinatorial problems. The vehicle rout-ing problem is an NP-complete problem, therefore usageof heuristics is the only way to solve it on large instances.The author proposes and compares dierent settings andsolving methods of the vehicle routing problem using theant colony optimization in sequence and parallel execu-tion. He determines appropriate application of the lo-cal search methods, which improves solution quality andapplies the elite approach. On selected communicationtopology, he proposes and compares several synchroniza-tion and communication strategies, all from achieved qual-ity and speedup point of view, on dierent number ofmulti-core processors.The author presents his own optimization tool, which isbased on execution of the ant colony optimization in a pa-rallel environment. The author applies proposed parallelmethod to the very large scale vehicle routing probleminstances with as many as 1200 customers.
International Nuclear Information System (INIS)
Using concepts and principles of the quantum computation, as the quantum bit and superposition of states, coupled with the biological metaphor of a colony of ants, used in the Ant Colony Optimization algorithm (ACO), Wang et al developed the Quantum Ant Colony Optimization (QACO). In this paper we present a modification of the algorithm proposed by Wang et al. While the original QACO was used just for simple benchmarks functions with, at the most, two dimensions, QACOAlfa was developed for application where the original QACO, due to its tendency to converge prematurely, does not obtain good results, as in complex multidimensional functions. Furthermore, to evaluate its behavior, both algorithms are applied to the real problem of identification of accidents in PWR nuclear power plants. (author)
Energy Technology Data Exchange (ETDEWEB)
Silva, Marcio H.; Schirru, Roberto; Medeiros, Jose A.C.C., E-mail: marciohenrique@lmp.ufrj.b, E-mail: schirru@lmp.ufrj.b, E-mail: canedo@lmp.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Nuclear. Lab. de Monitoramento de Processos
2009-07-01
Using concepts and principles of the quantum computation, as the quantum bit and superposition of states, coupled with the biological metaphor of a colony of ants, used in the Ant Colony Optimization algorithm (ACO), Wang et al developed the Quantum Ant Colony Optimization (QACO). In this paper we present a modification of the algorithm proposed by Wang et al. While the original QACO was used just for simple benchmarks functions with, at the most, two dimensions, QACO{sub A}lfa was developed for application where the original QACO, due to its tendency to converge prematurely, does not obtain good results, as in complex multidimensional functions. Furthermore, to evaluate its behavior, both algorithms are applied to the real problem of identification of accidents in PWR nuclear power plants. (author)
Dhriti Sundar Maity; Subhrananda Goswami
2015-01-01
This paper represents The Ant Colony Optimization for MTSP and Swarm Inspired Multipath Data Transmission with Congestion Control in MANET using Total Queue Length based on the behavioral nature in the biological ants. We consider the problem of congestion control for multicast traffic in wireless networks. MANET is multi hop wireless network in which the network components such as PC, mobile phones are mobile in nature. The components can communicate with each other without going through its...
Implementasi Algoritma Ant Colony System Dalam Menentukan Optimisasi Network Routing .
Lubis, Dini Anggraini
2011-01-01
Ant Colony System is an algorithm that adapt from ants biologic behavior which the ant colony can hold to find shortest path. Ant Colony System can implement for several optimization problems and one of them is in network routing. Ant colony system that talked in this paper is about optimization cases in network routing called AntNet. The purpose of AntNet is to search shortest path between source node to destination node based the table routing read by AntNet. In this research, it implemente...
Optic disc detection in color fundus images using ant colony optimization.
Pereira, Carla; Gonçalves, Luís; Ferreira, Manuel
2013-03-01
Diabetic retinopathy has been revealed as the most common cause of blindness among people of working age in developed countries. However, loss of vision could be prevented by an early detection of the disease and, therefore, by a regular screening program to detect retinopathy. Due to its characteristics, the digital color fundus photographs have been the easiest way to analyze the eye fundus. An important prerequisite for automation is the segmentation of the main anatomical features in the image, particularly the optic disc. Currently, there are many works reported in the literature with the purpose of detecting and segmenting this anatomical structure. Though, none of them performs as needed, especially when dealing with images presenting pathologies and a great variability. Ant colony optimization (ACO) is an optimization algorithm inspired by the foraging behavior of some ant species that has been applied in image processing with different purposes. In this paper, this algorithm preceded by anisotropic diffusion is used for optic disc detection in color fundus images. Experimental results demonstrate the good performance of the proposed approach as the optic disc was detected in most of all the images used, even in the images with great variability. PMID:23160896
Directory of Open Access Journals (Sweden)
Jiang Ting
2010-01-01
Full Text Available We optimize the cluster structure to solve problems such as the uneven energy consumption of the radar sensor nodes and random cluster head selection in the traditional clustering routing algorithm. According to the defined cost function for clusters, we present the clustering algorithm which is based on radio-free space path loss. In addition, we propose the energy and distance pheromones based on the residual energy and aggregation of the radar sensor nodes. According to bionic heuristic algorithm, a new ant colony-based clustering algorithm for radar sensor networks is also proposed. Simulation results show that this algorithm can get a better balance of the energy consumption and then remarkably prolong the lifetime of the radar sensor network.
An approach using quantum ant colony optimization applied to the problem of nuclear reactors reload
Energy Technology Data Exchange (ETDEWEB)
Silva, Marcio H.; Lima, Alan M.M. de; Schirru, Roberto; Medeiros, J.A.C.C., E-mail: marciohenrique@lmp.ufrj.b, E-mail: schirru@lmp.ufrj.b, E-mail: canedo@lmp.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Nuclear. Lab. de Monitoramento de Processos
2009-07-01
The basic concept behind the nuclear reactor fuel reloading problem is to find a configuration of new and used fuel elements, to keep the plant working at full power by the largest possible duration, within the safety restrictions. The main restriction is the power peaking factor, which is the limit value for the preservation of the fuel assembly. The QACO{sub A}lfa algorithm is a modified version of Quantum Ant Colony Optimization (QACO) proposed by Wang et al, which uses a new actualization method and a pseudo evaporation step. We examined the QACO{sub A}lfa behavior associated to physics of reactors code RECNOD when applied to this problem. Although the QACO have been developed for continuous functions, the binary model used in this work allows applying it to discrete problems, such as the mentioned above. (author)
A convenient and robust edge detection method based on ant colony optimization
Liu, Xiaochen; Fang, Suping
2015-10-01
Edge detection is usually used as a preprocessing operation in many machine vision industrial applications. Recently, ant colony optimization (ACO) as a relatively new meta-heuristic approach has been used to tackle the edge detection problem. In this work, a convenient and robust method for edge detection based on ACO is proposed, which employs a new heuristic function, adopts a user-defined threshold in pheromone update process and provides a group of suitable parameter values. Experimental results clearly demonstrated the effectiveness of the proposed method, and at the same time, in the presence of noise, the proposed approach outperforms other two ACO-based edge detection techniques and four conventional edge detectors.
An approach using quantum ant colony optimization applied to the problem of nuclear reactors reload
International Nuclear Information System (INIS)
The basic concept behind the nuclear reactor fuel reloading problem is to find a configuration of new and used fuel elements, to keep the plant working at full power by the largest possible duration, within the safety restrictions. The main restriction is the power peaking factor, which is the limit value for the preservation of the fuel assembly. The QACOAlfa algorithm is a modified version of Quantum Ant Colony Optimization (QACO) proposed by Wang et al, which uses a new actualization method and a pseudo evaporation step. We examined the QACOAlfa behavior associated to physics of reactors code RECNOD when applied to this problem. Although the QACO have been developed for continuous functions, the binary model used in this work allows applying it to discrete problems, such as the mentioned above. (author)
Ant colony optimization algorithm and its application to Neuro-Fuzzy controller design
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
An adaptive ant colony algorithm is proposed based on dynamically adjusting the strategy of updating trail information.The algorithm can keep good balance between accelerating convergence and averting precocity and stagnation.The results of function optimization show that the algorithm has good searching ability and high convergence speed.The algorithm is employed to design a neuro-fuzzy controller for real-time control of an inverted pendulum.In order to avoid the combinatorial explosion of fuzzy.rules due to multivariable inputs,a state variable synthesis scheme is emploved to reduce the number of fuzzy rules greatly.The simulation results show that the designed controller can control the inverted pendulum successfully.
The Lobe Fissure Tracking by the Modified Ant Colony Optimization Framework in CT Images
Directory of Open Access Journals (Sweden)
Chii-Jen Chen
2014-11-01
Full Text Available Chest computed tomography (CT is the most commonly used technique for the inspection of lung lesions. However, the lobe fissures in lung CT is still difficult to observe owing to its imaging structure. Therefore, in this paper, we aimed to develop an efficient tracking framework to extract the lobe fissures by the proposed modified ant colony optimization (ACO algorithm. We used the method of increasing the consistency of pheromone on lobe fissure to improve the accuracy of path tracking. In order to validate the proposed system, we had tested our method in a database from 15 lung patients. In the experiment, the quantitative assessment shows that the proposed ACO method achieved the average F-measures of 80.9% and 82.84% in left and right lungs, respectively. The experiments indicate our method results more satisfied performance, and can help investigators detect lung lesion for further examination.
Energy Technology Data Exchange (ETDEWEB)
Tippachon, Wiwat; Rerkpreedapong, Dulpichet [Department of Electrical Engineering, Kasetsart University, 50 Phaholyothin Rd., Ladyao, Jatujak, Bangkok 10900 (Thailand)
2009-07-15
This paper presents a multiobjective optimization methodology to optimally place switches and protective devices in electric power distribution networks. Identifying the type and location of them is a combinatorial optimization problem described by a nonlinear and nondifferential function. The multiobjective ant colony optimization (MACO) has been applied to this problem to minimize the total cost while simultaneously minimize two distribution network reliability indices including system average interruption frequency index (SAIFI) and system interruption duration index (SAIDI). Actual distribution feeders are used in the tests, and test results have shown that the algorithm can determine the set of optimal nondominated solutions. It allows the utility to obtain the optimal type and location of devices to achieve the best system reliability with the lowest cost. (author)
Apply Local Clustering Method to Improve the Running Speed of Ant Colony Optimization
Pang, Chao-Yang; Li, Xia; Hu, Be-Qiong
2009-01-01
Ant Colony Optimization (ACO) has time complexity O(t*m*N*N), and its typical application is to solve Traveling Salesman Problem (TSP), where t, m, and N denotes the iteration number, number of ants, number of cities respectively. Cutting down running time is one of study focuses, and one way is to decrease parameter t and N, especially N. For this focus, the following method is presented in this paper. Firstly, design a novel clustering algorithm named Special Local Clustering algorithm (SLC), then apply it to classify all cities into compact classes, where compact class is the class that all cities in this class cluster tightly in a small region. Secondly, let ACO act on every class to get a local TSP route. Thirdly, all local TSP routes are jointed to form solution. Fourthly, the inaccuracy of solution caused by clustering is eliminated. Simulation shows that the presented method improves the running speed of ACO by 200 factors at least. And this high speed is benefit from two factors. One is that class ha...
Performance Evaluation of Different Network Topologies Based On Ant Colony Optimization
Directory of Open Access Journals (Sweden)
Joydip Dhar
2010-11-01
Full Text Available All networks tend to become more and more complicated. They can be wired, with lots of routers, orwireless, with lots of mobile node. The problem remains the same, in order to get the best from thenetwork; there is a need to find the shortest path. The more complicated the network is, the more difficultit is to manage the routes and indicate which one is the best. The Nature gives us a solution to find theshortest path. The ants, in their necessity to find food and brings it back to the nest, manage not only toexplore a vast area, but also to indicate to their peers the location of the food while bringing it back tothe nest. Most of the time, they will find the shortest path and adapt to ground changes, hence provingtheir great efficiency toward this difficult task. The purpose of this paper is to evaluate the performanceof different network topologies based on Ant Colony Optimization Algorithm. Simulation is done in NS-2.
Automatic boiling water reactor loading pattern design using ant colony optimization algorithm
International Nuclear Information System (INIS)
An automatic boiling water reactor (BWR) loading pattern (LP) design methodology was developed using the rank-based ant system (RAS), which is a variant of the ant colony optimization (ACO) algorithm. To reduce design complexity, only the fuel assemblies (FAs) of one eight-core positions were determined using the RAS algorithm, and then the corresponding FAs were loaded into the other parts of the core. Heuristic information was adopted to exclude the selection of the inappropriate FAs which will reduce search space, and thus, the computation time. When the LP was determined, Haling cycle length, beginning of cycle (BOC) shutdown margin (SDM), and Haling end of cycle (EOC) maximum fraction of limit for critical power ratio (MFLCPR) were calculated using SIMULATE-3 code, which were used to evaluate the LP for updating pheromone of RAS. The developed design methodology was demonstrated using FAs of a reference cycle of the BWR6 nuclear power plant. The results show that, the designed LP can be obtained within reasonable computation time, and has a longer cycle length than that of the original design.
Automatic boiling water reactor loading pattern design using ant colony optimization algorithm
Energy Technology Data Exchange (ETDEWEB)
Wang, C.-D. [Department of Engineering and System Science, National Tsing Hua University, 101, Section 2 Kuang Fu Road, Hsinchu 30013, Taiwan (China); Nuclear Engineering Division, Institute of Nuclear Energy Research, No. 1000, Wenhua Rd., Jiaan Village, Longtan Township, Taoyuan County 32546, Taiwan (China)], E-mail: jdwang@iner.gov.tw; Lin Chaung [Department of Engineering and System Science, National Tsing Hua University, 101, Section 2 Kuang Fu Road, Hsinchu 30013, Taiwan (China)
2009-08-15
An automatic boiling water reactor (BWR) loading pattern (LP) design methodology was developed using the rank-based ant system (RAS), which is a variant of the ant colony optimization (ACO) algorithm. To reduce design complexity, only the fuel assemblies (FAs) of one eight-core positions were determined using the RAS algorithm, and then the corresponding FAs were loaded into the other parts of the core. Heuristic information was adopted to exclude the selection of the inappropriate FAs which will reduce search space, and thus, the computation time. When the LP was determined, Haling cycle length, beginning of cycle (BOC) shutdown margin (SDM), and Haling end of cycle (EOC) maximum fraction of limit for critical power ratio (MFLCPR) were calculated using SIMULATE-3 code, which were used to evaluate the LP for updating pheromone of RAS. The developed design methodology was demonstrated using FAs of a reference cycle of the BWR6 nuclear power plant. The results show that, the designed LP can be obtained within reasonable computation time, and has a longer cycle length than that of the original design.
Runtime analysis of ant colony optimization on dynamic shortest path problems
DEFF Research Database (Denmark)
Lissovoi, Andrei; Witt, Carsten
2015-01-01
A simple ACO algorithm called lambda-MMAS for dynamic variants of the single-destination shortest paths problem is studied by rigorous runtime analyses. Building upon previous results for the special case of 1-MMAS, it is studied to what extent an enlarged colony using lambda ants per vertex helps...... in tracking an oscillating optimum. It is shown that easy cases of oscillations can be tracked by a constant number of ants. However, the paper also identifies more involved oscillations that with overwhelming probability cannot be tracked with any polynomial-size colony. Finally, parameters of...
Runtime analysis of ant colony optimization on dynamic shortest path problems
DEFF Research Database (Denmark)
Lissovoi, Andrei; Witt, Carsten
2013-01-01
A simple ACO algorithm called λ-MMAS for dynamic variants of the single-destination shortest paths problem is studied by rigorous runtime analyses. Building upon previous results for the special case of 1-MMAS, it is studied to what extent an enlarged colony using $\\lambda$ ants per vertex helps in...... tracking an oscillating optimum. It is shown that easy cases of oscillations can be tracked by a constant number of ants. However, the paper also identifies more involved oscillations that with overwhelming probability cannot be tracked with any polynomial-size colony. Finally, parameters of dynamic...
Research of Ant Colony Optimized Adaptive Control Strategy for Hybrid Electric Vehicle
Directory of Open Access Journals (Sweden)
Linhui Li
2014-01-01
Full Text Available Energy management control strategy of hybrid electric vehicle has a great influence on the vehicle fuel consumption with electric motors adding to the traditional vehicle power system. As vehicle real driving cycles seem to be uncertain, the dynamic driving cycles will have an impact on control strategy’s energy-saving effect. In order to better adapt the dynamic driving cycles, control strategy should have the ability to recognize the real-time driving cycle and adaptively adjust to the corresponding off-line optimal control parameters. In this paper, four types of representative driving cycles are constructed based on the actual vehicle operating data, and a fuzzy driving cycle recognition algorithm is proposed for online recognizing the type of actual driving cycle. Then, based on the equivalent fuel consumption minimization strategy, an ant colony optimization algorithm is utilized to search the optimal control parameters “charge and discharge equivalent factors” for each type of representative driving cycle. At last, the simulation experiments are conducted to verify the accuracy of the proposed fuzzy recognition algorithm and the validity of the designed control strategy optimization method.
蚁群算法参数分析%Parametric Study of Ant Colony Optimization
Institute of Scientific and Technical Information of China (English)
陈一昭; 姜麟
2011-01-01
The basic principle of Ant Colony algorithm and main parameters about this algorithm are determined are described. These parameters which greatly influence the ant colony algorithm' capacity of searching optimal so-lution comprise the inspired factor (e), the expectation inspired factor β, ant population m, information strength Q and the pheromone volatilization factor ρ. Employing the Travelling Salesman problem (TSP) as an example, dif-ferent combined conditions about these parameters are studied. Firstly, according to the result of numerical exam-ples, selects [(e),β,m,Q,ρ] =[1.5, 4.2, 30,200,0.5], Secondly, 4 parameters of them, Conducts numerical experiments by changing the remaining parameter value are fixed. Through getting (e) ∈ [0. 7,1.1],β ∈ [3.8, 4. 5] ,Q ∈ [400,950] and ρ ∈ [0. 7,0. 9] , the stable global optimal solution could be achieved.%介绍了蚁群算法的基本原理.确定了蚁群算法中的主要参数,这些参数对蚁群算法的寻优能力的影响非常之大,有启发因子δ,期望启发因子β,蚁群数量m,信息强度Q和信息素会发因子ρ等参数,以旅行商问题为例优化以上参数,研究这些参数的组合情况.首先根据数值试验选定[δ,β,m,Q,p]=[1.5,4.2,30,200,0.5].固定四个参数,改变一个参数进行数值试验.得到δ∈ [0.7,1.1],β∈[3.8,4.5],Q∈ [400,950]和p∈[0.7,0.9]能得到稳定的全局最优解.
Multiple ant-bee colony optimization for load balancing in packet-switched networks
Mehdi Kashefi Kia; Nasser Nemat bakhsh; Reza Askari Moghadam
2011-01-01
One of the important issues in computer networks is “Load Balancing” which leads to efficient use of the network resources. To achieve a balanced network it is necessary to find different routes between the source and destination. In the current paper we propose a new approach to find different routes using swarm intelligence techniques and multi colony algorithms. In the proposed algorithm that is an improved version of MACO algorithm, we use different colonies of ants and bees and appoint t...
Directory of Open Access Journals (Sweden)
P. Mathiyalagan
2013-10-01
Full Text Available As grid is a heterogeneous environment, finding an optimal schedule for the job is always a complex task. In this paper, a hybridization technique using intelligent water drops and Ant colony optimization which are nature-inspired swarm intelligence approaches are used to find the best resource for the job. Intelligent water drops involves in finding out all matching resources for the job requirements and the routing information (optimal path to reach those resources. Ant Colony optimization chooses the best resource among all matching resources for the job. The objective of this approach is to converge to the optimal schedule faster, minimize the make span of the job, improve load balancing of resources and efficient utilization of available resources.
Evaluation of Anaerobic Biofilm Reactor Kinetic Parameters Using Ant Colony Optimization.
Satya, Eswari Jujjavarapu; Venkateswarlu, Chimmiri
2013-09-01
Fixed bed reactors with naturally attached biofilms are increasingly used for anaerobic treatment of industry wastewaters due their effective treatment performance. The complex nature of biological reactions in biofilm processes often poses difficulty in analyzing them experimentally, and mathematical models could be very useful for their design and analysis. However, effective application of biofilm reactor models to practical problems suffers due to the lack of knowledge of accurate kinetic models and uncertainty in model parameters. In this work, an inverse modeling approach based on ant colony optimization is proposed and applied to estimate the kinetic and film thickness model parameters of wastewater treatment process in an anaerobic fixed bed biofilm reactor. Experimental data of pharmaceutical industry wastewater treatment process are used to determine the model parameters as a consequence of the solution of the rigorous mathematical models of the process. Results were evaluated for different modeling configurations derived from the combination of mathematical models, kinetic expressions, and optimization algorithms. Analysis of results showed that the two-dimensional mathematical model with Haldane kinetics better represents the pharmaceutical wastewater treatment in the biofilm reactor. The mathematical and kinetic modeling of this work forms a useful basis for the design and optimization of industry wastewater treating biofilm reactors. PMID:24065871
Cardiff, M. A.; Kitanidis, P. K.
2005-12-01
In this presentation we revisit the problem of semivariogram estimation and present a modular, reusable, and encapsulated set of MATLAB programs that use a hybrid Ant Colony Optimization (ACO) heuristic to solve the "optimal fit" problem. Though the ACO heuristic involves a stochastic component, advantages of the heuristic over traditional gradient-search methods, like the Gauss-Newton method, include the ability to estimate model semivariogram parameters accurately without initial guesses input by the user. The ACO heuristic is also superiorly suited for strongly nonlinear optimization over spaces that may contain several local minima. The presentation will focus on the application of ACO to existing weighted least squares and restricted maximum likelihood estimation methods with a comparison of results. The presentation will also discuss parameter uncertainty, particularly in the context of restricted maximum likelihood and Bayesian methods. We compare the local linearized parameter estimates (or Cramer-Rao lower bounds) with modern Monte Carlo methods, such as acceptance-rejection. Finally, we present ensemble kriging in which conditional realizations are generated in a way that uncertainty in semi-variogram parameters is fully accounted for. Results for a variety of sample problems will be presented along with a discussion of solution accuracy and computational efficiency.
Optimal management of substrates in anaerobic co-digestion: An ant colony algorithm approach.
Verdaguer, Marta; Molinos-Senante, María; Poch, Manel
2016-04-01
Sewage sludge (SWS) is inevitably produced in urban wastewater treatment plants (WWTPs). The treatment of SWS on site at small WWTPs is not economical; therefore, the SWS is typically transported to an alternative SWS treatment center. There is increased interest in the use of anaerobic digestion (AnD) with co-digestion as an SWS treatment alternative. Although the availability of different co-substrates has been ignored in most of the previous studies, it is an essential issue for the optimization of AnD co-digestion. In a pioneering approach, this paper applies an Ant-Colony-Optimization (ACO) algorithm that maximizes the generation of biogas through AnD co-digestion in order to optimize the discharge of organic waste from different waste sources in real-time. An empirical application is developed based on a virtual case study that involves organic waste from urban WWTPs and agrifood activities. The results illustrate the dominate role of toxicity levels in selecting contributions to the AnD input. The methodology and case study proposed in this paper demonstrate the usefulness of the ACO approach in supporting a decision process that contributes to improving the sustainability of organic waste and SWS management. PMID:26868846
Protein folding in hydrophobic-polar lattice model: a flexible ant colony optimization approach
Hu, X-M.; Zhang, J.(High Energy Physics Division, Argonne National Laboratory, Argonne, IL, USA); Xiao, J.; Li, Y.
2008-01-01
This paper proposes a flexible ant colony (FAC) algorithm for solving protein folding problems based on the hydrophobic-polar square lattice model. Collaborations of novel pheromone and heuristic strategies in the proposed algorithm make it more effective in predicting structures of proteins compared with other state-of-the-art algorithms.
Protein folding in hydrophobic-polar lattice model: a flexible ant-colony optimization approach.
Hu, Xiao-Min; Zhang, Jun; Xiao, Jing; Li, Yun
2008-01-01
This paper proposes a flexible ant colony (FAC) algorithm for solving protein folding problems based on the hydrophobic-polar square lattice model. Collaborations of novel pheromone and heuristic strategies in the proposed algorithm make it more effective in predicting structures of proteins compared with other state-of-the-art algorithms. PMID:18537736
Ant Colony Optimization: Implementace a testování biologicky inspirované optimalizační metody
Havlík, Michal
2015-01-01
Havlík, M. Ant Colony Optimization: Implementation and testing of bio-inspired optimization method. Diploma thesis. Brno, 2015. This thesis deals with the implementation and testing of algorithm Ant Colony Optimization as a representative of the family of bio-inspired opti-mization methods. A given algorithm is described, analyzed and subsequently put into context with the problems which can be solved. Based on the collec-ted information is designed implementation that solves the Traveling sa...
Gilani, Seyed-Omid; Sattarvand, Javad
2016-02-01
Meeting production targets in terms of ore quantity and quality is critical for a successful mining operation. In-situ grade uncertainty causes both deviations from production targets and general financial deficits. A new stochastic optimization algorithm based on ant colony optimization (ACO) approach is developed herein to integrate geological uncertainty described through a series of the simulated ore bodies. Two different strategies were developed based on a single predefined probability value (Prob) and multiple probability values (Pro bnt), respectively in order to improve the initial solutions that created by deterministic ACO procedure. Application at the Sungun copper mine in the northwest of Iran demonstrate the abilities of the stochastic approach to create a single schedule and control the risk of deviating from production targets over time and also increase the project value. A comparison between two strategies and traditional approach illustrates that the multiple probability strategy is able to produce better schedules, however, the single predefined probability is more practical in projects requiring of high flexibility degree.
Fuzzy Random λ-Mean SAD Portfolio Selection Problem: An Ant Colony Optimization Approach
Thakur, Gour Sundar Mitra; Bhattacharyya, Rupak; Mitra, Swapan Kumar
2010-10-01
To reach the investment goal, one has to select a combination of securities among different portfolios containing large number of securities. Only the past records of each security do not guarantee the future return. As there are many uncertain factors which directly or indirectly influence the stock market and there are also some newer stock markets which do not have enough historical data, experts' expectation and experience must be combined with the past records to generate an effective portfolio selection model. In this paper the return of security is assumed to be Fuzzy Random Variable Set (FRVS), where returns are set of random numbers which are in turn fuzzy numbers. A new λ-Mean Semi Absolute Deviation (λ-MSAD) portfolio selection model is developed. The subjective opinions of the investors to the rate of returns of each security are taken into consideration by introducing a pessimistic-optimistic parameter vector λ. λ-Mean Semi Absolute Deviation (λ-MSAD) model is preferred as it follows absolute deviation of the rate of returns of a portfolio instead of the variance as the measure of the risk. As this model can be reduced to Linear Programming Problem (LPP) it can be solved much faster than quadratic programming problems. Ant Colony Optimization (ACO) is used for solving the portfolio selection problem. ACO is a paradigm for designing meta-heuristic algorithms for combinatorial optimization problem. Data from BSE is used for illustration.
International Nuclear Information System (INIS)
This paper presents some results of the implementation of several optimization algorithms based on ant colonies, applied to the fuel reload design in a Boiling Water Reactor. The system called Azcaxalli is constructed with the following algorithms: Ant Colony System, Ant System, Best-Worst Ant System and MAX-MIN Ant System. Azcaxalli starts with a random fuel reload. Ants move into reactor core channels according to the State Transition Rule in order to select two fuel assemblies into a 1/8 part of the reactor core and change positions between them. This rule takes into account pheromone trails and acquired knowledge. Acquired knowledge is obtained from load cycle values of fuel assemblies. Azcaxalli claim is to work in order to maximize the cycle length taking into account several safety parameters. Azcaxalli's objective function involves thermal limits at the end of the cycle, cold shutdown margin at the beginning of the cycle and the neutron effective multiplication factor for a given cycle exposure. Those parameters are calculated by CM-PRESTO code. Through the Haling Principle is possible to calculate the end of the cycle. This system was applied to an equilibrium cycle of 18 months of Laguna Verde Nuclear Power Plant in Mexico. The results show that the system obtains fuel reloads with higher cycle lengths than the original fuel reload. Azcaxalli results are compared with genetic algorithms, tabu search and neural networks results.
Energy Technology Data Exchange (ETDEWEB)
Esquivel-Estrada, Jaime, E-mail: jaime.esquivel@fi.uaemex.m [Facultad de Ingenieria, Universidad Autonoma del Estado de Mexico, Cerro de Coatepec S/N, Toluca de Lerdo, Estado de Mexico 50000 (Mexico); Instituto Nacional de Investigaciones Nucleares, Carr. Mexico Toluca S/N, Ocoyoacac, Estado de Mexico 52750 (Mexico); Ortiz-Servin, Juan Jose, E-mail: juanjose.ortiz@inin.gob.m [Instituto Nacional de Investigaciones Nucleares, Carr. Mexico Toluca S/N, Ocoyoacac, Estado de Mexico 52750 (Mexico); Castillo, Jose Alejandro; Perusquia, Raul [Instituto Nacional de Investigaciones Nucleares, Carr. Mexico Toluca S/N, Ocoyoacac, Estado de Mexico 52750 (Mexico)
2011-01-15
This paper presents some results of the implementation of several optimization algorithms based on ant colonies, applied to the fuel reload design in a Boiling Water Reactor. The system called Azcaxalli is constructed with the following algorithms: Ant Colony System, Ant System, Best-Worst Ant System and MAX-MIN Ant System. Azcaxalli starts with a random fuel reload. Ants move into reactor core channels according to the State Transition Rule in order to select two fuel assemblies into a 1/8 part of the reactor core and change positions between them. This rule takes into account pheromone trails and acquired knowledge. Acquired knowledge is obtained from load cycle values of fuel assemblies. Azcaxalli claim is to work in order to maximize the cycle length taking into account several safety parameters. Azcaxalli's objective function involves thermal limits at the end of the cycle, cold shutdown margin at the beginning of the cycle and the neutron effective multiplication factor for a given cycle exposure. Those parameters are calculated by CM-PRESTO code. Through the Haling Principle is possible to calculate the end of the cycle. This system was applied to an equilibrium cycle of 18 months of Laguna Verde Nuclear Power Plant in Mexico. The results show that the system obtains fuel reloads with higher cycle lengths than the original fuel reload. Azcaxalli results are compared with genetic algorithms, tabu search and neural networks results.
Yang, Jing; Xu, Mai; Zhao, Wei; Xu, Baoguo
2010-01-01
For monitoring burst events in a kind of reactive wireless sensor networks (WSNs), a multipath routing protocol (MRP) based on dynamic clustering and ant colony optimization (ACO) is proposed. Such an approach can maximize the network lifetime and reduce the energy consumption. An important attribute of WSNs is their limited power supply, and therefore some metrics (such as energy consumption of communication among nodes, residual energy, path length) were considered as very important criteria while designing routing in the MRP. Firstly, a cluster head (CH) is selected among nodes located in the event area according to some parameters, such as residual energy. Secondly, an improved ACO algorithm is applied in the search for multiple paths between the CH and sink node. Finally, the CH dynamically chooses a route to transmit data with a probability that depends on many path metrics, such as energy consumption. The simulation results show that MRP can prolong the network lifetime, as well as balance of energy consumption among nodes and reduce the average energy consumption effectively. PMID:22399890
Directory of Open Access Journals (Sweden)
Jing Yang
2010-05-01
Full Text Available For monitoring burst events in a kind of reactive wireless sensor networks (WSNs, a multipath routing protocol (MRP based on dynamic clustering and ant colony optimization (ACO is proposed.. Such an approach can maximize the network lifetime and reduce the energy consumption. An important attribute of WSNs is their limited power supply, and therefore some metrics (such as energy consumption of communication among nodes, residual energy, path length were considered as very important criteria while designing routing in the MRP. Firstly, a cluster head (CH is selected among nodes located in the event area according to some parameters, such as residual energy. Secondly, an improved ACO algorithm is applied in the search for multiple paths between the CH and sink node. Finally, the CH dynamically chooses a route to transmit data with a probability that depends on many path metrics, such as energy consumption. The simulation results show that MRP can prolong the network lifetime, as well as balance of energy consumption among nodes and reduce the average energy consumption effectively.
A Novel Approach for Medical Image Stitching Using Ant Colony Optimization
Directory of Open Access Journals (Sweden)
Amrita
2014-05-01
Full Text Available Image stitching is one of important technologies in medical image processing field. In digital radiography oversized images have to be assembled from multiple exposures as the flat panel of an X-ray system cannot cover all part of a body. The stitching of X-ray images is carried out by employing two basic steps: Registration and Blending. The classical registration methods such as SIFT and SURF search for all the pixels to get the best registration. These methods are slow and cannot perform well for high resolution X-ray images. Therefore a fast and accurate feature based technique using ant colony optimization is implemented in the present work. This technique not only saves time but also gives the accuracy to stitch the image. This technique is also used for finding the edges for land marking and features of different X-ray images. Correlation is found between landmarks to check the alignment between the images and RANSAC algorithm is used to eliminate the spurious feature points. Finally alpha- blending technique is used to stitch the images.
An ant colony optimization based feature selection for web page classification.
Saraç, Esra; Özel, Selma Ayşe
2014-01-01
The increased popularity of the web has caused the inclusion of huge amount of information to the web, and as a result of this explosive information growth, automated web page classification systems are needed to improve search engines' performance. Web pages have a large number of features such as HTML/XML tags, URLs, hyperlinks, and text contents that should be considered during an automated classification process. The aim of this study is to reduce the number of features to be used to improve runtime and accuracy of the classification of web pages. In this study, we used an ant colony optimization (ACO) algorithm to select the best features, and then we applied the well-known C4.5, naive Bayes, and k nearest neighbor classifiers to assign class labels to web pages. We used the WebKB and Conference datasets in our experiments, and we showed that using the ACO for feature selection improves both accuracy and runtime performance of classification. We also showed that the proposed ACO based algorithm can select better features with respect to the well-known information gain and chi square feature selection methods. PMID:25136678
A modified ant colony optimization to solve multi products inventory routing problem
Wong, Lily; Moin, Noor Hasnah
2014-07-01
This study considers a one-to-many inventory routing problem (IRP) network consisting of a manufacturer that produces multi products to be transported to many geographically dispersed customers. We consider a finite horizon where a fleet of capacitated homogeneous vehicles, housed at a depot/warehouse, transport products from the warehouse to meet the demand specified by the customers in each period. The demand for each product is deterministic and time varying and each customer requests a distinct product. The inventory holding cost is product specific and is incurred at the customer sites. The objective is to determine the amount on inventory and to construct a delivery schedule that minimizes both the total transportation and inventory holding costs while ensuring each customer's demand is met over the planning horizon. The problem is formulated as a mixed integer programming problem and is solved using CPLEX 12.4 to get the lower and upper bound (best integer solution) for each problem considered. We propose a modified ant colony optimization (ACO) to solve the problem and the built route is improved by using local search. ACO performs better on large instances compared to the upper bound.