Anomalous magnetic moment of anyons
Gat, G; Gat, Gil; Ray, Rashmi
1994-01-01
The anomalous magnetic moment of anyons is calculated to leading order in a 1/N expansion. It is shown that the gyromagnetic ratio g remains 2 to the leading order in 1/N. This result strongly supports that obtained in \\cite{poly}, namely that g=2 is in fact exact.
Minimal muon anomalous magnetic moment
Biggio, Carla
2014-01-01
We classify all possible one-particle (scalar and fermion) extensions of the Standard Model that can contribute to the anomalous magnetic moment of leptons. We review the cases already discussed in the literature and complete the picture by performing the calculation for a fermionic doublet with hypercharge -3/2. We conclude that, out of the listed possibilities, only two scalar leptoquarks and the pseudoscalar of a peculiar two-Higgs-doublet model could be the responsibles for the muon anomalous magnetic moment discrepancy. Were this the case, this particles could be seen in the next LHC run. To this aim, especially to test the leptoquark hypothesis, we suggest to look for final states with tops and muons.
On the photon anomalous magnetic moment
Villalba, S; Villalba, Selym; Rojas, Hugo Perez
2006-01-01
It is shown that due to radiative corrections a photon having a non vanishing component of its momentum perpendicular to it, bears a non-zero magnetic moment. All modes of propagation of the polarization operator in one loop approximation are discussed and in this field regime the dispersion equation and the corresponding magnetic moment are derived. Near the first thresholds of cyclotron resonance the photon magnetic moment has a peak larger than the electron anomalous magnetic moment. Related to this magnetic moment, the arising of some sort of photon "dynamical mass" and a gyromagnetic ratio are discussed. These latter results might be interesting in an astrophysical context.
Anomalous magnetic moment with heavy virtual leptons
Kurz, Alexander [Karlsruher Institut fuer Technologie (Germany). Inst. fuer Theoretische Teilchenphysik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Liu, Tao; Steinhauser, Matthias [Karlsruher Institut fuer Technologie (Germany). Inst. fuer Theoretische Teilchenphysik; Marquard, Peter [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)
2013-11-15
We compute the contributions to the electron and muon anomalous magnetic moment induced by heavy leptons up to four-loop order. Asymptotic expansion is applied to obtain three analytic expansion terms which show rapid convergence.
A note on the anomalous magnetic moment of the muon
Palle, Davor
2016-01-01
The anomalous magnetic moment of the muon is an important observable that tests radiative corrections of all three observed local gauge forces: electromagnetic, weak and strong interactions. High precision measurements reveal some discrepancy with the most accurate theoretical evaluations of the anomalous magnetic moment. We show in this note that the UV finite theory cannot resolve this discrepancy. We believe that more reliable estimate of the nonperturbative hadronic contribution and the new measurements can resolve the problem.
Anomalous magnetic moment and Compton wavelength
Heyrovska, Raji
2004-01-01
The relativistic and quantum theoretical explanations of the magnetic moment anomaly of the electron (or proton) show that it is a complicated function of the fine structure constant. In this work, a simple non-relativistic approach shows that the translational motion of the particle during its spin is responsible for the observed effects.
Anomalous Magnetic Moments and Quark Orbital Angular Momentum
Burkardt, M.; Schnell, G.(University of the Basque Country UPV/EHU, 48080 Bilbao, Spain)
2005-01-01
We derive an inequality for the distribution of quarks with non-zero orbital angular momentum, and thus demonstrate, in a model-independent way, that a non-vanishing anomalous magnetic moment requires both a non-zero size of the target as well as the presence of wave function components with quark orbital angular momentum L_z>0.
Composite scalar contributions to the anomalous magnetic moments
It is shown that the composite scalars recently introduced to explain the high Z0 → e+e-γ rate contribute too much to the lepton anomalous magnetic moments, unless one uses very accurate chiral symmetry or composite models with two preonic scales. (Author)
Tau anomalous magnetic moment in γγ colliders
Peressutti, Javier; Sampayo, Oscar A.
2012-08-01
We investigate the possibility of setting model independent limits for a nonstandard anomalous magnetic moment aτNP of the tau lepton, in future γγ colliders based on Compton backscattering. For a hypothetical collider we find that, at various levels of confidence, the limits for aτNP could be improved, compared to previous studies based on LEP1, LEP2 and SLD data. We show the results for a realistic range of the center of mass energy of the e+e- collider. As a more direct application, we also present the results of the simulation for the photon collider at the TESLA project.
Lepton anomalous magnetic moments from twisted mass fermions
Burger, Florian; Jansen, Karl; Petschlies, Marcus
2014-01-01
We present our results for the leading-order hadronic quark-connected contributions to the electron, the muon, and the tau anomalous magnetic moments obtained with four dynamical quarks. Performing the continuum limit and an analysis of systematic effects, full agreement with phenomenological results is found. To estimate the impact of omitting the quark-disconnected contributions to the hadronic vacuum polarisation we investigate them on one of the four-flavour ensembles. Additionally, the light quark contributions on the four-flavour sea are compared to the values obtained for $N_f=2$ physically light quarks. In the latter case different methods to fit the hadronic vacuum polarisation function are tested.
Precision Measurement of the Anomalous Magnetic Moment of the Muon
Ozben, C S
2002-01-01
The muon g-2 experiment at Brookhaven National Laboratory measures the anomalous magnetic moment of the muon, $a_\\mu$, very precisely. This measurement tests the Standard Model theory. The analysis for the data collected in 2000 (a $\\mu^+$ run) is completed and the accuracy on $a_\\mu$ is improved to 0.7 ppm, including statistical and systematic errors. The data analysis was performed blindly between the precession frequency and the field analysis groups in order to prevent a possible bias in the $a_\\mu$ result. The observed difference between the theory and our most recent experimental result is quite important for further studies of the Standard Model theory. In 2001, we ran for the first time with $\\mu^-$ and the analysis of this data will provide $a_\\mu$ with similar statistical power.
Rosenbluth scattering and Pauli's approach to anomalous magnetic moments
In standard QED particle interactions are evaluated using minimal coupling, coupling the particles solely through their (electric monopole) charges. The Direc Hamiltonian is used to describe the interaction of a single spin-1/2 particle with an electromagnetic field. Pauli suggested the addition of a further gauge-invariant term to the Dirac Hamiltonian where the coupling constant for this extra term should not be directly linked to the particle's electric charge. We study some of the effects of this additional term and show that for the scattering of electrons off protons, the first-order Pauli-Dirac analysis has at least as good agreement with experiment as previous analyses based on the Dirac Hamiltonian. We show that Rosenbluth used the incorrect sign on the anomalous magnetic moment of the proton. (author)
New Physics Contributions to the Muon Anomalous Magnetic Moment
Queiroz, Farinaldo S
2014-01-01
We consider the contributions of individual new particles to the anomalous magnetic moment of the muon, utilizing the generic framework of simplified models. We also present analytic results for all possible one-loop contributions, allowing easy application of these results for more complete models which predict more than one particle capable of correcting the muon magnetic moment. Additionally, we provide a Mathematica code to allow the reader straightforwardly compute any 1-loop contribution. Furthermore, we derive bounds on each new particle considered, assuming either the absence of other significant contributions to $a_\\mu$ or that the anomaly has been resolved by some other mechanism. In summary we found the following particles capable of explaining the current discrepancy, assuming unit couplings: $2$TeV ($0.3$TeV) neutral scalar with pure scalar (chiral) couplings, $4$TeV doubly charged scalar with pure pseudoscalar coupling, $0.3-1$TeV neutral vector boson depending on what couplings are used (vector...
Millicharged neutrino with anomalous magnetic moment in rotating magnetized matter
Studenikin, Alexander
2014-01-01
We consider a millicharged neutrino with nonzero magnetic moment in the presence of rotating and magnetized background matter. The exact solution of the corresponding modified Dirac equation for the neutrino wave function is found. The neutrino energy spectrum is obtained and the effect of neutrino energy quantization is discussed in details. We introduce a new kind of spin operator which is a superposition of longitudinal and transverse polarizations operators for description of the neutrino spin properties in the considered background environment. Within the quasi-classical approach to the problem, radius of the neutrino orbits is derived and the effective "matter induced Lorentz force" is introduced. It is shown that in the considered environment, and also in matter with nonzero gradient of density, neutrino moves with acceleration. In this case a new type of the electromagnetic neutrino radiation (termed "light of millicharged neutrino") can be produced. The considered problem is of interest for astrophys...
Progress in analytical calculations for the anomalous magnetic moment of the muon
Baikov, P.A. [Moscow State Univ. (Russian Federation). Skobeltsyn Inst. of Nuclear Physics; Maier, A. [Technische Univ. Muenchen (Germany). Physik Dept. T31; Marquard, P. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)
2013-11-15
We present results for certain classes of diagrams contributing to the anomalous magnetic moment of the muon at five-loop order. Our method is based on first constructing an approximating function for the vacuum polarization function of the photon at four loop order which later can be numerically integrated to obtain the anomalous magnetic moment of the muon.
The matrix 8-component Dirac-like form of the P-odd equations for boson fields of spin 1 and 0 are obtained and the GL(2,c) symmetry group of the equations is derived. We found exact solutions of the field equation for vector particles with arbitrary electric and magnetic moments in external constant and uniform electromagnetic fields. The differential probability of pair production of vector particles with electric dipole moments and anomalous magnetic moments by an external constant and uniform electromagnetic field has been found using exact solutions. We have calculated the imaginary and real parts of the electromagnetic field Lagrangian that takes into account the vacuum polarization of vector particles. (orig.)
Composite Higgs Models, Technicolor and The Muon Anomalous Magnetic Moment
Doff, A.(Universidade Tecnológica Federal do Paraná – UTFPR – DAFIS, Av. Monteiro Lobato Km 04, 84016-210 Ponta Grossa, PR, Brazil); Clarissa Siqueira
2015-01-01
We revisit the muon magnetic moment (g-2) in the context of Composite Higgs models and Technicolor, and provide general analytical expressions for computing the muon magnetic moment stemming from new fields such as, neutral gauge bosons, charged gauge bosons, neutral scalar, charged scalars, and exotic charged leptons type of particles. Under general assumptions we assess which particle content could address the $g-2_{\\mu}$ excess. Moreover, we take a conservative approach and derive stringen...
Kisel, V V; Red'kov, V M
2011-01-01
Tensor 50-component form of the first order relativistic wave equation for a particle with spin 2 and anomalous magnetic moment is extended to the case of an arbitrary curved space-time geometry. An additional parameter considered in the presence of only electromagnetic field as related to anomalous magnetic moment, turns to determine additional interaction terms with external geometrical background through Ricci R_{kl} and Riemann R_{klmn} tensors.
Composite Higgs Models, Technicolor and The Muon Anomalous Magnetic Moment
Doff, A
2015-01-01
We revisit the muon magnetic moment (g-2) in the context of Composite Higgs models and Technicolor, and provide general analytical expressions for computing the muon magnetic moment stemming from new fields such as, neutral gauge bosons, charged gauge bosons, neutral scalar, charged scalars, and exotic charged leptons type of particles. Under general assumptions we assess which particle content could address the $g-2_{\\mu}$ excess. Moreover, we take a conservative approach and derive stringent limits on the particle masses in case the anomaly is otherwise resolved and comment on electroweak and collider bounds. Lastly, for concreteness we apply our results to a particular Technicolor model.
Semiclassical description of anomalous magnetic moment and chiral anomaly
It is shown that the same term of a modified Bargmann-Michel-Telegdi equation which explains the first-order radiative correction to the electronic magnetic moment accounts for the helicity variation in the infinite momentum limit. (author). 6 refs
Light-by-light scattering and muon's anomalous magnetic moment
implications of these results for mesons in both the light-quark sector and the charm-quark sector. In the second part of this thesis we develop the formalism to provide an improved estimate for the hadronic light-by-light (HLbL) correction to the muon's anomalous magnetic moment aμ, by considering single meson contributions beyond the leading pseudo-scalar mesons. This is motivated by the present 3σ deviation between the measurement of aμ and its estimate in the Standard Model. Furthermore, a forthcoming new experiment at Fermilab aims to improve the experimental precision by a factor of 4 which also requires a similar theoretical improvement. We incorporate available experimental input as well as constraints from light-by-light scattering sum rules to estimate the effects of axial-vector, scalar, and tensor mesons. We give numerical evaluations for the HLbL contribution of these states to aμ. The presented formalism allows to further improve on these estimates, once new data for such meson states will become available. In the last part of this work, we present a new dispersion formalism developed for the HLbL contribution to aμ and test the formalism for the case of scalar field theory. The new framework opens a unique possibility for a consistent incorporation of data from e+e- colliders for single- as well as multi-meson contributions. Furthermore, it allows to systematically control the HLbL uncertainty in the aμ which is a crucial step in searches of new physics using this precision quantity.
Anomalous-Magnetic-Moment Effects in a Strongly Magnetized and Dense Medium
Ferrer, E J; Paret, D Manreza; Martínez, A Pérez
2013-01-01
We investigate the quantum corrections of the anomalous magnetic moment (AMM) for fermions in the presence of a strong magnetic field using the Ritus's approach. At strong fields the particles get different AMM's depending on the LL's. This result is different from what is obtained with the Schwinger's approximation at weak field where the AMM is independent of the LL. We analyze the significance of the AMM contribution to the Equation of State (EoS) of the magnetized system, in the weak and strong field approximations.
Anomalous Temperature Dependence of Magnetic Moment in Monodisperse Antiferromagnetic Nanoparticles
Gillaspie, Dane; Gu, B.; Wang, W.; Shen, J.
2005-03-01
1 Condensed Matter Sciences Division, Oak Ridge National Laboratory*, TN 37831 2 Department of Physics and Astronomy, The University of Tennessee, TN 37996 3 Environmental Sciences Division, Oak Ridge National Laboratory*, TN 37831 Recent experiments [1] and theory [2] from AFM nanoparticles showed that they exhibit sizable net magnetization, which increases with increasing temperature. In order to further understand such peculiar temperature dependence, we have measured the magnetic properties of monodisperse hematite (α-Fe2O3) nanoparticles, grown using a microemulsion precipitation technique, which minimizes the impact of the particle moment distribution on the measured properties of the samples. Our measured results indicate that the net magnetization of these nanoparticles, when small, indeed increases linearly with increasing temperature. This is in sharp contrast to the bulk-like behavior of α-Fe2O3, which was observed in particles with size larger than 120 nm. [1] M. Seehra et al, Phys. Rev. B 61, 3513 (2000) [2] S. Mørup, C. Frandsen, Phys. Rev. Lett. 92, 217201 (2004) *Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Dept. of Energy under contract DE-AC05-00OR22725
The QED vacuum polarization function at four loops and the anomalous magnetic moment at five loops
The anomalous magnetic moment of the muon is one of the most fundamental observables. It has been measured experimentally with a very high precision and on theory side the contributions from perturbative QED have been calculated up to five-loop level by numerical methods. Contributions to the muon anomalous magnetic moment from certain diagram classes are also accessible by alternative methods. In this paper we present the evaluation of contributions to the QED corrections due to insertions of the vacuum polarization function at five-loop level
Gisin, B V [Department of Electrical Engineering - Physical Electronics, Faculty of Engineering, Tel-Aviv University Tel-Aviv 69978 (Israel)
2002-08-01
We consider the anomalous magnetic moment from an 'optical viewpoint' using an analogy between the motion of a particle with a magnetic moment in a magnetic field and the propagation of an optical pulse through an electro-optical crystal in an electric field. We show that an optical experiment similar to electron magnetic resonance is possible in some electro-optical crystals possessing the Faraday effect. This phenomenon is described by an analogue of the Pauli equation extracted from the Maxwell equation in the slowly varied amplitude approximation. In such an experiment the modulation by rotating fields plays a significant role. From the optical viewpoint the modulation assumes introducing the concept of a point rotation frame with the rotation axis at every point originated from the concept of the optical indicatrix (index ellipsoid). We discuss the connection between the non-classical transformation by transition from one such frame to another and an anomalous magnetic moment.
Leading-order hadronic contributions to the electron and tau anomalous magnetic moments
Burger, Florian; Jansen, Karl; Petschlies, Marcus
2015-01-01
The leading hadronic contributions to the anomalous magnetic moments of the electron and the $\\tau$-lepton are determined by a four-flavour lattice QCD computation with twisted mass fermions. The continuum limit is taken and systematic uncertainties are quantified. Full agreement with results obtained by phenomenological analyses is found.
Leading-order hadronic contributions to the electron and tau anomalous magnetic moments
Burger, Florian; Hotzel, Grit [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Petschlies, Marcus [The Cyprus Institute, Nicosia (Cyprus)
2015-01-15
The leading hadronic contributions to the anomalous magnetic moments of the electron and the τ-lepton are determined by a four-flavour lattice QCD computation with twisted mass fermions. The continuum limit is taken and systematic uncertainties are quantified. Full agreement with results obtained by phenomenological analyses is found.
Constraining Natural SUSY via the Higgs Coupling and the Muon Anomalous Magnetic Moment Measurements
Li, Tianjun; Wang, Kechen
2016-01-01
We use the Higgs coupling and the muon anomalous magnetic moment measurements to constrain the parameter space of the natural supersymmetry (SUSY) in the Generalized Minimal Supergravity (GmSUGRA) model. We scan the parameter space of the GmSUGRA model with small electroweak fine-tuning measure ($\\Delta_{\\rm EW} \\leq 100$). The parameter space after applying various sparticle mass bounds, Higgs mass bounds, B-physics bounds, the muon magnetic moment constraint, and the Higgs coupling constraint from measurements at HL-LHC, ILC, and CEPC, is shown in the planes of various interesting model parameters and sparticle masses. Our study indicates that the Higgs coupling and muon anomalous magnetic moment measurements can constrain the parameter space effectively. It is shown that $\\Delta_{\\rm EW}\\sim$ 30, consistence with all constraints, and having supersymmetric contributions to the muon anomalous magnetic moment within 1$\\sigma$ can be achieved. The precision of $k_b$ and $k_{\\tau}$ measurements at CEPC can boun...
Constraining natural SUSY via the Higgs coupling and the muon anomalous magnetic moment measurements
Li, Tianjun; Raza, Shabbar; Wang, Kechen
2016-03-01
We use the Higgs coupling and the muon anomalous magnetic moment measurements to constrain the parameter space of the natural supersymmetry in the generalized minimal supergravity (GmSUGRA) model. We scan the parameter space of the GmSUGRA model with small electroweak fine-tuning measure (ΔEW≤100 ). The parameter space after applying various sparticle mass bounds; Higgs mass bounds; B-physics bounds; the muon magnetic moment constraint; and the Higgs coupling constraint from measurements at HL-LHC, ILC, and CEPC is shown in the planes of various interesting model parameters and sparticle masses. Our study indicates that the Higgs coupling and muon anomalous magnetic moment measurements can constrain the parameter space effectively. It is shown that ΔEW˜30 , consistent with all constraints, and having supersymmetric contributions to the muon anomalous magnetic moment within 1 σ can be achieved. The precision of kb and kτ measurements at CEPC can bound mA to be above 1.2 TeV and 1.1 TeV respectively. The combination of the Higgs coupling measurement and muon anomalous magnetic moment measurement constrain the e˜R mass to be in the range from 0.6 TeV to 2 TeV. The range of both e˜L and ν˜e masses is 0.4 TeV-1.2 TeV. In all cases, the χ˜10 mass needs to be small (mostly ≤400 GeV ). The comparison of bounds in the tan β -mA plane shows that the Higgs coupling measurement is complementary to the direct collider searches for heavy Higgs when constraining the natural SUSY. A few mass spectra in the typical region of parameter space after applying all constraints are shown as well.
Pitschmann, M.; A. N. Ivanov
2012-01-01
The Dirac equation for charged and neutral fermions with anomalous magnetic moments is solved in a uniform magnetic field. We find the relativistic wave functions and energy spectra. In the non-relativistic limit the wave functions and energy spectra of charged fermions agree with the known solutions of the Schroedinger equation.
Bubnov, Andrey; Gubina, Nadezda; Zhukovsky, Vladimir
2016-05-01
We study vacuum polarization effects in the model of Dirac fermions with additional interaction of an anomalous magnetic moment with an external magnetic field and fermion interaction with an axial-vector condensate. The proper time method is used to calculate the one-loop vacuum corrections with consideration for different configurations of the characteristic parameters of these interactions.
Finite-volume effects in the muon anomalous magnetic moment on the lattice
Aubin, Christopher; Blum, Thomas; Chau, Peter; Golterman, Maarten; Peris, Santiago; Tu, Cheng
2016-03-01
We investigate finite-volume effects in the hadronic vacuum polarization, with an eye toward the corresponding systematic error in the muon anomalous magnetic moment. We consider both recent lattice data as well as lowest-order, finite-volume chiral perturbation theory, in order to get a quantitative understanding. Even though leading-order chiral perturbation theory does not provide a good description of the hadronic vacuum polarization, it turns out that it gives a good representation of finite-volume effects. We find that finite-volume effects cannot be ignored when the aim is a few percent level accuracy for the leading-order hadronic contribution to the muon anomalous magnetic moment, even when using ensembles with mπL ≳4 and mπ˜200 MeV .
Finite-volume effects in the muon anomalous magnetic moment on the lattice
Aubin, Christopher; Chau, Peter; Golterman, Maarten; Peris, Santiago; Tu, Cheng
2015-01-01
We investigate finite-volume effects in the hadronic vacuum polarization, with an eye toward the corresponding systematic error in the muon anomalous magnetic moment. We consider both recent lattice data as well as lowest-order, finite-volume chiral perturbation theory, in order to get a quantitative understanding. Even though leading-order chiral perturbation theory does not provide a good description of the hadronic vacuum polarization, it turns out that it gives a reasonably good representation of finite-volume effects. We find that finite-volume effects cannot be ignored when the aim is a few percent level accuracy for the leading-order hadronic contribution to the muon anomalous magnetic moment, even when using ensembles with $m_\\pi L> 4$ and $m_\\pi \\sim 200$ MeV.
The spin and the anomalous magnetic moment of the electron in stochastic electrodynamics
It is proposed that the zitterbewegung induced on a harmonically bound electron by the zero-point radiation field accounts for the spin of the electron. Assuming that the measurement of a spin projection may be taken into account phenomenologically by considering the action of only the subensemble of the zero-point field with the corresponding circular polarization, the theory gives a satisfactory account of both the spin projection and the anomalous magnetic moment. (orig.)
Spin and the anomalous magnetic moment of the electron in stochastic electrodynamics
Jauregui, A.; de la Pena, L. (Universidad Nacional Autonoma de Mexico, Mexico City. Inst. de Fisica)
1981-11-23
It is proposed that the zitterbewegung induced on a harmonically bound electron by the zero-point radiation field accounts for the spin of the electron. Assuming that the measurement of a spin projection may be taken into account phenomenologically by considering the action of only the subensemble of the zero-point field with the corresponding circular polarization, the theory gives a satisfactory account of both the spin projection and the anomalous magnetic moment.
N=2-Maxwell-Chern-Simons model with anomalous magnetic moment coupling via dimensional reduction
An N=1-supersymmetric version of the Cremmer-Scherk-Kalb-Ramond model with non-minimal coupling to matter is built up both in terms of superfields and in a component field formalism. By adopting a dimensional reduction procedure, the N=2-D=3 counterpart of the model comes out, with two main features: a genuine (diagonal) Chern-Simons term and an anomalous magnetic moment coupling between matter and the gauge potential. (author)
Leading-order hadronic contributions to the lepton anomalous magnetic moments from the lattice
Burger, Florian [OakLabs GmbH, Hennigsdorf (Germany); Feng, Xu [Columbia University, New York, NY (United States). Dept. of Physics; Jansen, Karl [DESY Zeuthen (Germany). NIC; Petschlies, Marcus [Bonn Univ. (Germany). Inst. fuer Strahlen- und Kernphysik; Pientka, Grit [Humboldt-Univ. Berlin (Germany). Inst. fuer Physik; Renner, Dru B. [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
2015-11-15
The hadronic leading-order (hlo) contribution to the lepton anomalous magnetic moments a{sup hlo}{sub l} of the Standard Model leptons still accounts for the dominant source of the uncertainty of the Standard Model estimates. We present the results of an investigation of the hadronic leading order anomalous magnetic moments of the electron, muon and tau lepton from first principles in twisted mass lattice QCD. With lattice data for multiple pion masses in the range 230 MeV
Leading-order hadronic contributions to the lepton anomalous magnetic moments from the lattice
Burger, Florian; Feng, Xu; Jansen, Karl; Petschlies, Marcus; Pientka, Grit; Renner, Dru B.
2016-04-01
The hadronic leading-order (hlo) contribution to the lepton anomalous magnetic moments alhlo of the Standard Model leptons still accounts for the dominant source of the uncertainty of the Standard Model estimates. We present the results of an investigation of the hadronic leading order anomalous magnetic moments of the electron, muon and tau lepton from first principles in twisted mass lattice QCD. With lattice data for multiple pion masses in the range 230MeV ≲ mPS ≲ 490 MeV, multiple lattice volumes and three lattice spacings we perform the extrapolation to the continuum and to the physical pion mass and check for all systematic uncertainties in the lattice calculation. As a result we calculate alhlo for the three Standard Model leptons with controlled statistical and systematic error in agreement with phenomenological determinations using dispersion relations and experimental data. In addition, we also give a first estimate of the hadronic leading order anomalous magnetic moments from simulations directly at the physical value of the pion mass.
Kruglov, S I
2001-01-01
The matrix, 8-component Dirac-like form of P-odd equations for boson fields of spins 1 and 0 are obtained and the GL(2,c) symmetry group of equations is derived. We found exact solutions of the field equation for vector particles with arbitrary electric and magnetic moments in external constant and uniform electromagnetic fields. The differential probability of pair production of vector particles with the EDM and AMM by an external constant and uniform electromagnetic field has been found using the exact solutions. We have calculated the imaginary and real parts of the electromagnetic field Lagrangian that takes into account the vacuum polarization of vector particles.
Kruglov, S. I.
2001-01-01
The matrix, 8-component Dirac-like form of P-odd equations for boson fields of spins 1 and 0 are obtained and the GL(2,c) symmetry group of equations is derived. We found exact solutions of the field equation for vector particles with arbitrary electric and magnetic moments in external constant and uniform electromagnetic fields. The differential probability of pair production of vector particles with the EDM and AMM by an external constant and uniform electromagnetic field has been found usi...
Abyaneh Mehran Zahiri; Bijnens Johan
2012-01-01
We give a short overview of the theory of the muon anomalous magnetic moment with emphasis on the hadronic light-by-light and the pion loop contribution. We explain the difference between the hidden local symmetry and full VMD pion loop and discuss leading logarithms in the anomalous sector of 2-flavour chiral perturbation theory.
Abyaneh Mehran Zahiri
2012-12-01
Full Text Available We give a short overview of the theory of the muon anomalous magnetic moment with emphasis on the hadronic light-by-light and the pion loop contribution. We explain the difference between the hidden local symmetry and full VMD pion loop and discuss leading logarithms in the anomalous sector of 2-flavour chiral perturbation theory.
Higgs mass and muon anomalous magnetic moment in the U(1) extended MSSM
Endo, Motoi; Iwamoto, Sho; Nakayama, Kazunori; Yokozaki, Norimi
2011-01-01
We study phenomenological aspects of the MSSM with extra U(1) gauge symmetry. We find that the lightest Higgs boson mass can be increased up to 125GeV without introducing a large SUSY scale or large A-terms, in the frameworks of the CMSSM and gauge mediated SUSY breaking (GMSB) models. This scenario can simultaneously explain the discrepancy of the muon anomalous magnetic moment (muon g-2) at the 1 sigma / 2 sigma level for U(1)-extended CMSSM / GMSB models. In the CMSSM case, the dark matter abundance can also be explained.
Influence of the electron's anomalous magnetic dipole moment on high-atomic number atoms
Super heavy atoms ( Z > 100 ) are usually studied in the context of the so-called Quantum Electrodynamics of Strong Fields. In this theory the problem of the singularity in the electron energy whenever Z > 137 is overcome. This is done by considering the finite size of the nucleus and leads to interesting phenomena, such as the spontaneous production of positrons. Here, we show that, taking into account the contribution from the Anomalous Magnetic Dipole Moment of the electron ( by means of an effective theory ), within a point nucleus model, is a sufficient condition to obtain regular wave functions and physically acceptable energy values for Z > 137. (author)
Hadronic contribution to the muon anomalous magnetic moment to next-to-next-to-leading order
We compute the next-to-next-to-leading order hadronic contribution to the muon anomalous magnetic moment originating from the photon vacuum polarization. The corresponding three-loop kernel functions are calculated using asymptotic expansion techniques which lead to analytic expressions. Our final result, aμhad,NNLO=1.24±0.01×10−10, has the same order of magnitude as the current uncertainty of the leading order hadronic contribution and should thus be included in future analyses
Muon Anomalous Magnetic Moment and Gauge Symmetry in the Standard Model
Tsai, Er-Cheng
2014-01-01
No gauge invariant regularization is available for the perturbative calculation of the standard model. One has to add finite counter terms to restore gauge symmetry for the renormalized amplitudes. The muon anomalous magnetic moment can be accurately measured but the experimental result does not entirely agree with the theoretical calculation from the standard model. This paper is to compute the contributions to the muon gyromagnetic ratio $g_{\\mu}$ due to the finite counter terms. The result obtained is found to be far from sufficient to explain the discrepancy between theory and experiment.
Topcolour-assisted technicolour models and the muon anomalous magnetic moment
We discuss and estimate the contributions of the new particles predicted by topcolour-assisted technicolour (TC2) models to the muon anomalous magnetic moment aμ. Our results show that the contributions of pseudo-Goldstone bosons are very small and can be safely ignored. The main contributions come from the ETC gauge boson xμ and topcolour gauge boson Z'. If we demand that the mass of Z' is consistent with other experimental constraints, its contributions are smaller than that of xμ. With reasonable values of the parameters in TC2 models, the observed BNL results for aμ could be explained. (author)
Charged spin half particle with anomalous magnetic moment in a plane wave field
Vaidya, Arvind Narayan [Universidade Federal do Rio de Janeiro, RJ (Brazil); Silva Filho, Pedro Barbosa da [Universidade Federal da Paraiba, Cajazeiras, PB (Brazil)
2000-07-01
Full text follows: The Dirac-Pauli equation for a charged spin half particle with anomalous magnetic moment in the presence of a plane wave external electromagnetic field is solved by an algebraic method and the solutions are shown to be simply related to the free particle ones.We also discuss the relationship of our results with the work of other authors. We show that our solutions are equivalent to those of Chakrabarti. We also show that the different results of Barut and Duru are in error. (author)
Lattice Calculation of Hadronic Light-by-Light Contribution to the Muon Anomalous Magnetic Moment
Blum, Thomas; Hayakawa, Masashi; Izubuchi, Taku; Jin, Luchang; Lehner, Christoph
2016-01-01
The quark-connected part of the hadronic light-by-light scattering contribution to the muon's anomalous magnetic moment is computed using lattice QCD with chiral fermions. We report several significant algorithmic improvements and demonstrate their effectiveness through specific calculations which show a reduction in statistical errors by more than an order of magnitude. The most realistic of these calculations is performed with a near-physical, $171$ MeV pion mass on a $(4.6\\;\\mathrm{fm})^3$ spatial volume using the $32^3\\times 64$ Iwasaki+DSDR gauge ensemble of the RBC/UKQCD Collaboration.
Lattice calculation of hadronic light-by-light contribution to the muon anomalous magnetic moment
Blum, Thomas; Christ, Norman; Hayakawa, Masashi; Izubuchi, Taku; Jin, Luchang; Lehner, Christoph
2016-01-01
The quark-connected part of the hadronic light-by-light scattering contribution to the muon's anomalous magnetic moment is computed using lattice QCD with chiral fermions. We report several significant algorithmic improvements and demonstrate their effectiveness through specific calculations which show a reduction in statistical errors by more than an order of magnitude. The most realistic of these calculations is performed with a near-physical 171 MeV pion mass on a (4.6 fm )3 spatial volume using the 323×64 Iwasaki +DSDR gauge ensemble of the RBC/UKQCD Collaboration.
Inverted effective SUSY with combined Z' and gravity mediation, and muon anomalous magnetic moment
Kim, Jihn E.
2012-01-01
Effective supersymmetry(SUSY) where stop is the lightest squark may run into a two-loop tachyonic problem in some Z' mediation models. In addition, a large A term or/and a large stop mass are needed to have about a 126 GeV Higgs boson with three families of quarks and leptons. Thus, we suggest an inverted effective SUSY(IeffSUSY) where stop mass is larger compared to those of the first two families. In this case, it is possible to have a significant correction to the anomalous magnetic moment...
Blum, T; Izubuchi, T; Jin, L; Jüttner, A; Lehner, C; Maltman, K; Marinkovic, M; Portelli, A; Spraggs, M
2015-01-01
We report the first lattice QCD calculation of the hadronic vacuum polarization disconnected contribution to the muon anomalous magnetic moment at physical pion mass. The calculation uses a refined noise-reduction technique which enabled the control of statistical uncertainties at the desired level with modest computational effort. Measurements were performed on the $48^3 \\times 96$ physical-pion-mass lattice generated by the RBC and UKQCD collaborations. We find $a_\\mu^{\\rm HVP~(LO)~DISC} = -9.6(3.3)(2.3)\\times 10^{-10}$, where the first error is statistical and the second systematic.
Blum, T.; Boyle, P. A.; Izubuchi, T.; Jin, L.; Jüttner, A.; Lehner, C.; Maltman, K.; Marinkovic, M.; Portelli, A.; Spraggs, M.; Rbc; Ukqcd Collaborations
2016-06-01
We report the first lattice QCD calculation of the hadronic vacuum polarization (HVP) disconnected contribution to the muon anomalous magnetic moment at physical pion mass. The calculation uses a refined noise-reduction technique that enables the control of statistical uncertainties at the desired level with modest computational effort. Measurements were performed on the 483×96 physical-pion-mass lattice generated by the RBC and UKQCD Collaborations. We find the leading-order hadronic vacuum polarization aμHVP (LO )disc=-9.6 (3.3 )(2.3 )×10-10 , where the first error is statistical and the second systematic.
Electric and anomalous magnetic dipole moments of the muon in the MSSM
We study the electric dipole moment (EDM) and the anomalous magnetic dipole moment (MDM) of the muon in the CP-violating Minimal Supersymmetric extension of the Standard Model (MSSM). We take into account the contributions from the chargino- and neutralino-mediated one-loop graphs and the dominant two-loop Higgs-mediated Barr-Zee diagrams. We improve earlier calculations by incorporating CP-violating Higgs-boson mixing effects and the resummed threshold corrections to the Yukawa couplings of the charged leptons as well as that of the bottom quark. The analytic correlation between the muon EDM and MDM is explicitly presented at one- and two-loop levels and, through several numerical examples, we illustrate its dependence on the source of the dominant contributions. We have implemented the analytic expressions for the muon EDM and MDM in an updated version of the public code CPsuperH2.0.
Electric and anomalous magnetic dipole moments of the muon in the MSSM
Cheung, Kingman; Lee Jae Sik
2009-01-01
We study the electric dipole moment (EDM) and the anomalous magnetic dipole moment (MDM) of the muon in the CP-violating Minimal Supersymmetric extension of the Standard Model (MSSM). We take into account the contributions from the chargino- and neutralino-mediated one-loop graphs and the dominant two-loop Higgs-mediated Barr-Zee diagrams. We improve earlier calculations by incorporating CP-violating Higgs-boson mixing effects and the resummed threshold corrections to the Yukawa couplings of the charged leptons as well as that of the bottom quark. The analytic correlation between the muon EDM and MDM is explicitly presented at one- and two-loop levels and, through several numerical examples, we illustrate its dependence on the source of the dominant contributions. We have implemented the analytic expressions for the muon EDM and MDM in an updated version of the public code CPsuperH2.0.
In this paper we analyse the effect of the anomalous magnetic moment on the non-relativistic quantum motion of a neutral particle in magnetic and electric fields produced by linear sources of constant current and charge density, respectively. (author)
Leading-order hadronic contributions to the lepton anomalous magnetic moments from the lattice
Burger, Florian; Jansen, Karl; Petschlies, Marcus; Pientka, Grit; Renner, Dru B
2015-01-01
The hadronic leading-order (hlo) contribution to the lepton anomalous magnetic moments $a_l^\\mathrm{hlo}$ of the Standard Model leptons still accounts for the dominant source of the uncertainty of the Standard Model estimates. We present the results of an investigation of the hadronic leading order anomalous magnetic moments of the electron, muon and tau lepton from first principles in twisted mass lattice QCD. With lattice data for multiple pion masses in the range $230 \\mathrm{~MeV} \\lesssim m_{PS} \\lesssim 490 \\mathrm{~MeV}$, multiple lattice volumes and three lattice spacings we perform the extrapolation to the continuum and to the physical pion mass and check for all systematic uncertainties in the lattice calculation. As a result we calculate $a_{l}^\\mathrm{hlo}$ for the three Standard Model leptons with controlled statistical and systematic error in agreement with phenomenological determinations using dispersion relations and experimental data. In addition, we also give a first estimate of the hadronic...
Roshanzamir-Nikou, M.; Goudarzi, H.
2016-02-01
A strong magnetic field significantly affects the intrinsic magnetic moment of fermions. In quantum electrodynamics, it was shown that the anomalous magnetic moment of an electron arises kinematically, while it results from a dynamical interaction with an external magnetic field for hadrons (proton). Taking the anomalous magnetic moment of a fermion into account, we find an exact expression for the boundstate energy and the corresponding eigenfunctions of a two-dimensional nonrelativistic spin-1/2 harmonic oscillator with a centripetal barrier (known as the isotonic oscillator) including an Aharonov-Bohm term in the presence of a strong magnetic field. We use the Laplace transform method in the calculations. We find that the singular solution contributes to the phase of the wave function at the origin and the phase depends on the spin and magnetic flux.
New Measurement of the Anomalous Magnetic Moment of the Positive Muon
The muon anomalous magnetic moment has been measured in a new experiment at Brookhaven. Polarized muons were stored in a superferric ring, and the angular frequency difference, ωa , between the spin precession and orbital frequencies was determined by measuring the time distribution of high-energy decay positrons. The ratio R of ωa to the Larmor precession frequency of free protons, ωp , in the storage-ring magnetic field was measured. We find R=3.707 220(48)x10-3 . With μμ/μp=3.183 345 47(47) this gives aμ+=1 165 925(15)x10-9 (±13 ppm ), in good agreement with the previous CERN measurements for μ+ and μ- and of approximately the same precision. copyright 1999 The American Physical Society
We propose a simple parameterization of the two-point correlator of hadronic electromagnetic currents for the evaluation of the hadronic contributions to the muon anomalous magnetic moment. The parameterization is explicitly done in the Euclidean domain. The model function contains a phenomenological parameter which provides an infrared cutoff to guarantee the smooth behavior of the correlator at the origin in accordance with experimental data in e+e- annihilation. After fixing a numerical value for this parameter from the leading order hadronic contribution to the muon anomalous magnetic moment, the next-to-leading order results related to the vacuum polarization function are accurately reproduced. The properties of the four-point correlator of hadronic electromagnetic currents as for instance the so-called light-by-light scattering amplitude relevant for the calculation of the muon anomalous magnetic moment are briefly discussed. (orig.)
Relativistic energy correction of the hydrogen atom with an anomalous magnetic moment
The electron is known to possess an anomalous magnetic moment, which interacts with the gradient of the electric field. This makes it necessary to compute its effects on the energy spectrum. Even though the Coulomb Dirac equation can be solved in closed form, this is no longer possible when the anomalous magnetic moment is included. In fact the interaction due to this term is so strong that it changes the domain of the Hamiltonian. From a differential equation point of view, the anomalous magnetic moment term is strongly singular near the origin. As usual, one has to resort to perturbation theory. This, however, only makes sense if the eigenvalues are stable. To prove stability is therefore a challenge one has to face before actually computing the energy shifts. The first stability results in this line were shown by Behncke for angular momenta κ≥3, because the eigenfunctions of the unperturbed Hamiltonian decay fast enough near the origin. He achieved this by decoupling the system and then using the techniques available for second order differential equations. Later, Kalf and Schmidt extended Behncke's results basing their analysis on the Pruefer angle technique and a comparison result for first order differential equations. The Pruefer angle method is particularly useful because it shows a better stability and because it obeys a first order differential equation. Nonetheless, Kalf and Schmidt had to exclude some coupling constants for κ>0. This I believe is an artefact of their method. In this study, I make increasing use of asymptotic integration, a method which is rather well adapted to perturbation theory and is known to give stability results to any level of accuracy. Together with the Pruefer angle technique, this lead to a more general stability result and even allows for an energy shifts estimate. Hamiltonians traditionally treated in physics to describe the spin-orbit effect are not self adjoint i.e. they are not proper observables in quantum
Four-Flavour Leading Hadronic Contribution To The Muon Anomalous Magnetic Moment
Burger, Florian; Hotzel, Grit; Jansen, Karl; Petschlies, Marcus; Renner, Dru B
2013-01-01
We present a four-flavour lattice calculation of the leading-order hadronic vacuum polarisation contribution to the anomalous magnetic moment of the muon, $a_{\\mu}^{\\rm hvp}$, arising from quark-connected Feynman graphs. It is based on ensembles featuring $N_f=2+1+1$ dynamical twisted mass fermions generated by the European Twisted Mass Collaboration (ETMC). Several light quark masses are used in order to yield a controlled extrapolation to the physical pion mass. We employ three lattice spacings to examine lattice artefacts and several different volumes to check for finite-size effects. Including the complete first two generations of quarks allows for a direct comparison with phenomenological determinations of $a_{\\mu}^{\\rm hvp}$. Our final result involving an estimate of the systematic uncertainty $$a_{\\mathrm{\\mu}}^{\\rm hvp} = 6.74(21)(18) \\cdot 10^{-8}$$ shows a good overall agreement with these computations.
Four-flavour leading hadronic contribution to the muon anomalous magnetic moment
Burger, Florian; Hotzel, Grit [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Feng, Xu [KEK National High Energy Physics, Tsukuba (Japan); Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Cyprus Univ. Nicosia (Cyprus). Dept. of Physics; Petschlies, Marcus [The Cyprus Institute, Nicosia (Cyprus); Renner, Dru B. [Jefferson Lab, Newport News, VA (United States)
2013-11-15
We present a four-flavour lattice calculation of the leading-order hadronic vacuum polarisation contribution to the anomalous magnetic moment of the muon, a{sup hvp}{sub {mu}}, arising from quark-connected Feynman graphs. It is based on ensembles featuring N{sub f}=2+1+1 dynamical twisted mass fermions generated by the European Twisted Mass Collaboration (ETMC). Several light quark masses are used in order to yield a controlled extrapolation to the physical pion mass. We employ three lattice spacings to examine lattice artefacts and several different volumes to check for finite-size effects. Including the complete first two generations of quarks allows for a direct comparison with phenomenological determinations of a{sup hvp}{sub {mu}}. Our final result involving an estimate of the systematic uncertainty a{sup hvp}{sub {mu}}=6.74(21)(18) x 10{sup -8} shows a good overall agreement with these computations.
MeV scale leptonic force for cosmic neutrino spectrum and muon anomalous magnetic moment
Araki, Takeshi; Ota, Toshihiko; Sato, Joe; Shimomura, Takashi
2015-01-01
Characteristic patterns of cosmic neutrino spectrum reported by the IceCube collaboration and long-standing inconsistency between theory and experiment in muon anomalous magnetic moment are simultaneously explained by an extra leptonic force mediated by a gauge field with a mass of the MeV scale. With different assumptions for redshift distribution of cosmic neutrino sources, diffuse neutrino flux is calculated with the scattering between cosmic neutrino and cosmic neutrino background through the new leptonic force. Our analysis sheds light on a relation among lepton physics at the three different scales, PeV, MeV, and eV, and provides possible clues to the distribution of sources of cosmic neutrino and also to neutrino mass spectrum.
Muon anomalous magnetic moment in a $SU(4) \\otimes U(1)_N$ model without exotic electric charges
Cogollo, D
2014-01-01
We study an electroweak gauge extension of the standard model, so called 3-4-1 model, which does not contain exotic electric charges and it is anomaly free. We discuss phenomenological constraints of the model and compute all the corrections to the muon magnetic moment. Mainly, we discuss different mass regimes and their impact on this correction, deriving for the first time direct limits on the masses of the neutral fermions and charged vector bosons. Interestingly, the model could address the reported muon anomalous magnetic moment excess, however it would demands a rather low scale of symmetry breaking, far below the current electroweak constraints on the model. Thus, if this excess is confirmed in the foreseeable future by the g-2 experiment at FERMILAB, this 3-4-1 model can be decisively ruled out since the model cannot reproduce a sizeable and positive contribution to the muon anomalous magnetic moment consistent with current electroweak limits.
Chakraborty, Bipasha; Davies, C. T. H.; Koponen, J.; Lepage, G. P.; Peardon, M. J.; Ryan, S. M.
2016-04-01
The quark-line disconnected diagram is a potentially important ingredient in lattice QCD calculations of the hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon. It is also a notoriously difficult one to evaluate. Here, for the first time, we give an estimate of this contribution based on lattice QCD results that have a statistically significant signal, albeit at one value of the lattice spacing and an unphysically heavy value of the u /d quark mass. We use HPQCD's method of determining the anomalous magnetic moment by reconstructing the Adler function from time moments of the current-current correlator at zero spatial momentum. Our results lead to a total (including u , d and s quarks) quark-line disconnected contribution to aμ of -0.15 % of the u /d hadronic vacuum polarization contribution with an uncertainty which is 1% of that contribution.
Chakraborty, Bipasha; Koponen, J; Lepage, G P; Peardon, M J; Ryan, S M
2015-01-01
The quark-line disconnected diagram is a potentially important ingredient in lattice QCD calculations of the hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon. It is also a notoriously difficult one to evaluate. Here, for the first time, we give an estimate of this contribution based on lattice QCD results that have a statistically significant signal, albeit at one value of the lattice spacing and an unphysically heavy value of the $u/d$ quark mass. We use HPQCD's method of determining the anomalous magnetic moment by reconstructing the Adler function from time-moments of the current-current correlator at zero spatial momentum. Our results lead to a total (including $u$, $d$ and $s$ quarks) quark-line disconnected contribution to $a_{\\mu}$ of $-0.15\\%$ of the $u/d$ hadronic vacuum polarization contribution with an uncertainty which is 1\\% of that contribution.
New evaluation of hadronic contributions to the anomalous magnetic moment of charged leptons
A re-evaluation of the lowest-order hagronic vacuum-polarization contribution to the anomalous magnetic moment of the electron, muon and tau-lepton with a higher precision in comparison with previous estimates is carried out. The latter is achieved because new data on some exclusive processes have appeared recently, more accomplished models for a description of the pion and kaon electromagnetic structure have been developed and the revised (due to a new value of the coefficient of the third power of αs) QCD formula for R=σtot (e+e-→had)/σtot (e+e-→μ+μ-) with electroweak corrections has been applied to analyze all existing data in a proper way. The final results are ae(2)had=(1.810±0.011±0.002)x10-12 aμ(2)had=(6.986±0.042±0.016)x10-8 and aτ(2)had=(3.436±0.024±0.024)x10-6. 19 refs.; 2 figs.; 3 tabs
An upper limit on the anomalous magnetic moment of the $\\tau$ lepton
Ackerstaff, K; Allison, J; Altekamp, N; Anderson, K J; Anderson, S; Arcelli, S; Asai, S; Ashby, S F; Axen, D A; Azuelos, Georges; Ball, A H; Barberio, E; Barlow, R J; Bartoldus, R; Batley, J Richard; Baumann, S; Bechtluft, J; Behnke, T; Bell, K W; Bella, G; Bentvelsen, Stanislaus Cornelius Maria; Bethke, Siegfried; Betts, S; Biebel, O; Biguzzi, A; Bird, S D; Blobel, Volker; Bloodworth, Ian J; Bobinski, M; Bock, P; Bonacorsi, D; Boutemeur, M; Braibant, S; Brigliadori, L; Brown, R M; Burckhart, Helfried J; Burgard, C; Bürgin, R; Capiluppi, P; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Chrisman, D; Clarke, P E L; Cohen, I; Conboy, J E; Cooke, O C; Couyoumtzelis, C; Coxe, R L; Cuffiani, M; Dado, S; Dallapiccola, C; Dallavalle, G M; Davis, R; De Jong, S; del Pozo, L A; de Roeck, A; Desch, Klaus; Dienes, B; Dixit, M S; Doucet, M; Duchovni, E; Duckeck, G; Duerdoth, I P; Eatough, D; Estabrooks, P G; Etzion, E; Evans, H G; Evans, M; Fabbri, Franco Luigi; Fanfani, A; Fanti, M; Faust, A A; Feld, L; Fiedler, F; Fierro, M; Fischer, H M; Fleck, I; Folman, R; Fong, D G; Foucher, M; Fürtjes, A; Futyan, D I; Gagnon, P; Gary, J W; Gascon, J; Gascon-Shotkin, S M; Geddes, N I; Geich-Gimbel, C; Geralis, T; Giacomelli, G; Giacomelli, P; Giacomelli, R; Gibson, V; Gibson, W R; Gingrich, D M; Glenzinski, D A; Goldberg, J; Goodrick, M J; Gorn, W; Grandi, C; Gross, E; Grunhaus, Jacob; Gruwé, M; Hajdu, C; Hanson, G G; Hansroul, M; Hapke, M; Hargrove, C K; Hart, P A; Hartmann, C; Hauschild, M; Hawkes, C M; Hawkings, R; Hemingway, Richard J; Herndon, M; Herten, G; Heuer, R D; Hildreth, M D; Hill, J C; Hillier, S J; Hobson, P R; Höcker, Andreas; Homer, R James; Honma, A K; Horváth, D; Hossain, K R; Howard, R; Hüntemeyer, P; Hutchcroft, D E; Igo-Kemenes, P; Imrie, D C; Ishii, K; Jawahery, A; Jeffreys, P W; Jeremie, H; Jimack, Martin Paul; Joly, A; Jones, C R; Jones, M; Jost, U; Jovanovic, P; Junk, T R; Kanzaki, J I; Karlen, D A; Kartvelishvili, V G; Kawagoe, K; Kawamoto, T; Kayal, P I; Keeler, Richard K; Kellogg, R G; Kennedy, B W; Kirk, J; Klier, A; Kluth, S; Kobayashi, T; Kobel, M; Koetke, D S; Kokott, T P; Kolrep, M; Komamiya, S; Kowalewski, R V; Kress, T; Krieger, P; Von Krogh, J; Kyberd, P; Lafferty, G D; Lahmann, R; Lai, W P; Lanske, D; Lauber, J; Lautenschlager, S R; Lawson, I; Layter, J G; Lazic, D; Lee, A M; Lefebvre, E; Lellouch, Daniel; Letts, J; Levinson, L; List, B; Lloyd, S L; Loebinger, F K; Long, G D; Losty, Michael J; Ludwig, J; Liu, D; Macchiolo, A; MacPherson, A L; Mannelli, M; Marcellini, S; Markopoulos, C; Markus, C; Martin, A J; Martin, J P; Martínez, G; Mashimo, T; Mättig, P; McDonald, W J; McKenna, J A; McKigney, E A; McMahon, T J; McPherson, R A; Meijers, F; Menke, S; Merritt, F S; Mes, H; Meyer, J; Michelini, Aldo; Mikenberg, G; Miller, D J; Mincer, A; Mir, R; Mohr, W; Montanari, A; Mori, T; Mihara, S; Nagai, K; Nakamura, I; Neal, H A; Nellen, B; Nisius, R; O'Neale, S W; Oakham, F G; Odorici, F; Ögren, H O; Oh, A; Oldershaw, N J; Oreglia, M J; Orito, S; Pálinkás, J; Pásztor, G; Pater, J R; Patrick, G N; Patt, J; Pérez-Ochoa, R; Petzold, S; Pfeifenschneider, P; Pilcher, J E; Pinfold, J L; Plane, D E; Poffenberger, P R; Poli, B; Posthaus, A; Rembser, C; Robertson, S; Robins, S A; Rodning, N L; Roney, J M; Rooke, A M; Rossi, A M; Routenburg, P; Rozen, Y; Runge, K; Runólfsson, O; Ruppel, U; Rust, D R; Sachs, K; Saeki, T; Sahr, O; Sang, W M; Sarkisyan-Grinbaum, E; Sbarra, C; Schaile, A D; Schaile, O; Scharf, F; Scharff-Hansen, P; Schieck, J; Schleper, P; Schmitt, B; Schmitt, S; Schöning, A; Schröder, M; Schumacher, M; Schwick, C; Scott, W G; Shears, T G; Shen, B C; Shepherd-Themistocleous, C H; Sherwood, P; Sieberg, R P B; Siroli, G P; Sittler, A; Skillman, A; Skuja, A; Smith, A M; Snow, G A; Sobie, Randall J; Söldner-Rembold, S; Springer, R W; Sproston, M; Stephens, K; Steuerer, J; Stockhausen, B; Stoll, K; Strom, D; Ströhmer, R; Szymanski, P; Tafirout, R; Talbot, S D; Taras, P; Tarem, S; Teuscher, R; Thiergen, M; Thomson, M A; Von Törne, E; Torrence, E; Towers, S; Trigger, I; Trócsányi, Z L; Tsur, E; Turcot, A S; Turner-Watson, M F; Ueda, I; Utzat, P; Van Kooten, R; Vannerem, P; Verzocchi, M; Vikas, P; Vokurka, E H; Voss, H; Wäckerle, F; Wagner, A; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wermes, N; White, J S; Wilson, G W; Wilson, J A; Wyatt, T R; Yamashita, S; Yekutieli, G; Zacek, V; Zer-Zion, D
1998-01-01
Using radiative Z^0 -> \\tau^+ \\tau^- \\gamma events collected with the OPAL detector at LEP at \\sqrt{s}=M_Z during 1990-95, a direct study of the electromagnetic current at the \\tau\\gamma vertex has been performed in terms of the anomalous magnetic form factor F_2 of the \\tau lepton. The analysis is based on a data sample of 1429 e^+ e^- -> \\tau^+ \\tau^- \\gamma events which are examined for a deviation from the expectation with F_2 = 0. From the non-observation of anomalous \\tau^+ \\tau^- \\gamma production a limit of -0.068 < F_2 < 0.065 is obtained. This can also be interpreted as a limit on the electric dipole form factor F_3 as -3.8 x 10^-16 e-cm < eF_3 < 3.6 x 10^-16 e-cm. The above ranges are valid at the 95% confidence level.
Light-by-light-type corrections to the muon anomalous magnetic moment at four-loop order
Kurz, Alexander [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. fuer Theoretische Teilchenphysik; Liu, Tao; Steinhauser, Matthias [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. fuer Theoretische Teilchenphysik; Marquard, Peter [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Smirnov, Alexander V. [Moscow State Univ. (Russian Federation). Scientific Research Computing Center; Smirnov, Vladimir A. [Moscow State Univ. (Russian Federation). Skobeltsyn Inst. of Nuclear Physics
2015-08-15
The numerically dominant QED contributions to the anomalous magnetic moment of the muon stem from Feynman diagrams with internal electron loops. We consider such corrections and present a calculation of the four-loop light-by-light-type corrections where the external photon couples to a closed electron or muon loop. We perform an asymptotic expansion in the ratio of electron and muon mass and reduce the resulting integrals to master integrals which we evaluate using analytical and numerical methods. We confirm the results present in the literature which are based on different computational methods.
Light-by-light-type corrections to the muon anomalous magnetic moment at four-loop order
The numerically dominant QED contributions to the anomalous magnetic moment of the muon stem from Feynman diagrams with internal electron loops. We consider such corrections and present a calculation of the four-loop light-by-light-type corrections where the external photon couples to a closed electron or muon loop. We perform an asymptotic expansion in the ratio of electron and muon mass and reduce the resulting integrals to master integrals which we evaluate using analytical and numerical methods. We confirm the results present in the literature which are based on different computational methods.
Jin, Luchang; Christ, Norman; Hayakawa, Masashi; Izubuchi, Taku; Lehner, Christoph
2015-01-01
The anomalous magnetic moment of muon, $g-2$, is a very precisely measured quantity. However, the current measurement disagrees with standard model by about 3 standard deviations. Hadronic vacuum polarization and hadronic light by light are the two types of processes that contribute most to the theoretical uncertainty. I will describe how lattice methods are well-suited to provide a first-principle's result for the hadronic light by light contribution, the various numerical strategies that are presently being used to evaluate it, our current results and the important remaining challenges which must be overcome.
Koponen, Jonna; Davies, Christine T H; Donald, Gordon; Dowdall, Rachel; de Oliveira, Pedro Goncalves; Lepage, G Peter; Teubner, Thomas
2014-01-01
We describe a new technique (published in Phys. Rev. D89 114501) to determine the contribution to the anomalous magnetic moment of the muon coming from the hadronic vacuum polarisation using lattice QCD. Our method uses Pad\\'e approximants to reconstruct the Adler function from its derivatives at $q^2=0$. These are obtained simply and accurately from time-moments of the vector current-current correlator at zero spatial momentum. We test the method using strange quark correlators calculated on MILC Collaboration's $n_f = 2+1+1$ HISQ ensembles at multiple values of the lattice spacing, multiple volumes and multiple light sea quark masses (including physical pion mass configurations). We find the (connected) contribution to the anomalous moment from the strange quark vacuum polarisation to be $a^s_\\mu=53.41(59)\\times 10^{-10}$, and the contribution from charm quarks to be $a^c_\\mu=14.42(39)\\times 10^{-10}$ - 1% accuracy is achieved for the strange quark contribution. The extension of our method to the light quar...
For the system consisting of a neutral Dirac particle with anomalous magnetic moment, interacting with a fixed magnetic monopole, zero-energy bound states are constructed for each possible value of the total angular momentum. Results of Kazama and Yang for the charge--monopole system are used to deduce the existence of other bound states for this system, when the mass of the bound particle is nonzero. In the zero-mass case, there are no other bound states, but there are resonant states, and these are determined exactly. A noncompact, so(3,2) symmetry algebra of the zero-energy bound states is given for the finite-mass case and for the zero-mass case. In each case the infinite number of such states is associated with an irreducible Majorana representation of the algebra
Khalilov, V. R.
The scattering of a nonrelativistic neutral massive fermion having the anomalous magnetic moment (AMM) in an electric field of a uniformly charged long conducting thread aligned perpendicularly to the fermion motion is considered to study the so-called Aharonov-Casher (AC) effect by taking into account the particle spin. For this solution, the nonrelativistic Dirac-Pauli equation for a neutral massive fermion with AMM in (3+1) dimensions is found, which takes into account explicitly the particle spin and interaction between AMM of moving fermion and the electric field. Expressions for the scattering amplitude and the cross-section are obtained for spin-polarized massive neutral fermion scattered off the above conducting thread. We conclude that the scattering amplitude and cross-section of spin-polarized massive neutral fermions are influenced by the interaction of AMM of moving neutral fermions with the electric field as well as by the polarization of fermion beam in the initial state.
Porter, Frank C
2013-01-01
The BaBar collaboration has an extensive program of studying hadronic cross sections in low-energy e+e- collisions, accessible via initial-state radiation. Our measurements allow significant improvements in the precision of the predicted value of the muon anomalous magnetic moment. These improvements are necessary for illuminating the current ~3.6 sigma difference between the predicted and the experimental values. We have published results on a number of processes with two to six hadrons in the final state. We report here the results of recent studies with final states that constitute the main contribution to the hadronic cross section in the energy region between 1 and 3 GeV, as e+e- to K+K-, pi+pi-, and e+e- to 4 hadrons.
Requiring the two-Higgs-doublet model II to accommodate the 3σ deviation in the muon anomalous magnetic moment imposes specific constraints on the Higgs spectrum. We analyze the combination of all the relevant available constraints on the model parameter space. The use of constraints from b→sγ, the precision electroweak measurements of Rb, and the ρ parameter, together with exclusions from direct searches at CERN LEP, gives extremely severe restrictions on the model parameters. That is 'almost enough' to destroy the model altogether. The exclusion would be even stronger if the direct searches could be optimized to complement the other constraints, as will be discussed in detail in this work
The BABAR collaboration has an extensive program of studying hadronic cross sections in low-energy e+e- collisions, accessible via initial-state radiation. Our measurements allow significant improvements in the precision of the predicted value of the muon anomalous magnetic moment. These improvements are necessary for illuminating the current 3.6 sigma difference between the predicted and the experimental values. We have published results on a number of processes with two to six hadrons in the final state. We report here the results of recent studies with final states that constitute the main contribution to the hadronic cross section in the energy region between 1 and 3 GeV, as e+e- → K+K-, π+π-, and e+e- → 4 hadrons
Baryshevsky, V G
2016-01-01
The degree of depolarization of neutral particles in crystals can reach tens of percents over the crystal length of several centimeters, which can be the basis for possible experimental application of the depolarization effect for measuring anomalous magnetic moments of short-lived neutral hyperons.
CeRh3B2: A ferromagnet with anomalously large Ce 5d spin and orbital magnetic moments
We report a high-energy magnetic-Compton-scattering study performed on the ferromagnet CeRh3B2. This technique solely measures the electron spin magnetic moments. In contrast to a number of Ce intermetallics with nonmagnetic elements, the Ce 5d spin moment is found to be large and parallel to the Ce 4f spin moment. Therefore the Kondo effect does not play a key role for CeRh3B2. The inferred large Ce 5d orbital magnetic moment is a signature of the strong spin-orbit interaction for the Ce 5d band. copyright 1998 The American Physical Society
Ferrer, E J; Paret, D Manreza; Martinez, A Perez; Sanchez, A
2015-01-01
We investigate the effects of the anomalous magnetic moment (AMM) in the equation of state (EoS) of a system of charged fermions at finite density in the presence of a magnetic field. In the region of strong magnetic fields (eB>m^2) the AMM is found from the one-loop fermion self-energy. In contrast to the weak-field AMM found by Schwinger, in the strong magnetic field region the AMM depends on the Landau level and decreases with it. The effects of the AMM in the EoS of a dense medium are investigated at strong and weak fields using the appropriate AMM expression for each case. In contrast with what has been reported in other works, we find that the AMM of charged fermions makes no significant contribution to the EoS at any field value.
Anomalous magnetic moments in Fe-Pt and Fe-Pd Invar alloys under high pressure
Magnetization measurements have been carried out for disordered Fe72Pt28, Fe66Pd34, and Fe68Pd32 Invar alloys under high pressure using a technique combining a pressure-clamp-type Drickamer cell and a pulse magnet. In Fe72Pt28 at room temperature, the magnetization decreased rapidly with increasing pressure up to 2.5 GPa, but above 2.5 GPa the rate of decrease became small and remained at a small value up to 5.6 GPa. In Fe-Pd Invar alloys at room temperature, the magnetization decreased linearly with increasing pressure. But, at 4.2 K, the change of magnetization with pressure was small in Fe66Pd34, which means that Fe66Pd34 behaves as a strong ferromagnet
A to Z of the Muon Anomalous Magnetic Moment in the MSSM with Pati-Salam at the GUT scale
Belyaev, Alexander S; King, Steve F; Miller, David J; Morais, António P; Schaefers, Patrick B
2016-01-01
We analyse the low energy predictions of the minimal supersymmetric standard model (MSSM) arising from a GUT scale Pati-Salam gauge group further constrained by an $A_4 \\times Z_5$ family symmetry, resulting in four soft scalar masses at the GUT scale: one left-handed soft mass $m_0$ and three right-handed soft masses $m_1,m_2,m_3$, one for each generation. We demonstrate that this model, which was initially developed to describe the neutrino sector, can explain collider and non-collider measurements such as the dark matter relic density, the Higgs boson mass and, in particular, the anomalous magnetic moment of the muon $(g-2)_\\mu$. Since about two decades, $(g-2)_\\mu$ suffers a puzzling about 3$\\,\\sigma$ excess of the experimentally measured value over the theoretical prediction, which our model is able to fully resolve. As the consequence of this resolution, our model predicts specific regions of the parameter space with the specific properties including light smuons and neutralinos, which could also potent...
Anomalous magnetic moments in Fe-Pt and Fe-Pd Invar alloys under high pressure
Matsushita, M; Endo, S; Ishizuka, M; Kindo, K; Ono, F
2002-01-01
Magnetization measurements have been carried out for disordered Fe sub 7 sub 2 Pt sub 2 sub 8 , Fe sub 6 sub 6 Pd sub 3 sub 4 , and Fe sub 6 sub 8 Pd sub 3 sub 2 Invar alloys under high pressure using a technique combining a pressure-clamp-type Drickamer cell and a pulse magnet. In Fe sub 7 sub 2 Pt sub 2 sub 8 at room temperature, the magnetization decreased rapidly with increasing pressure up to 2.5 GPa, but above 2.5 GPa the rate of decrease became small and remained at a small value up to 5.6 GPa. In Fe-Pd Invar alloys at room temperature, the magnetization decreased linearly with increasing pressure. But, at 4.2 K, the change of magnetization with pressure was small in Fe sub 6 sub 6 Pd sub 3 sub 4 , which means that Fe sub 6 sub 6 Pd sub 3 sub 4 behaves as a strong ferromagnet.
The Reaction e+e− → π+ π− And Its Relation To The Anomalous Magnetic Moment Of The Muon
The hadronic contribution to the vacuum polarization in the nonperturbative regime of QCD is a crucial issue for the interpretation of the recent measurements of the anomalous magnetic moment of positive and negative muons in Brookhaven to allow for a precision test of the standard model. The present status of the hadronic contribution is reviewed with particular emphasis on recent results with the general purpose detector KLOE at the electron positron collider DAΦNE in Frascati. (author)
This paper reports the values of contributions to the electron g-2 from 300 Feynman diagrams of the gauge-invariant Set III(a) and 450 Feynman diagrams of the gauge-invariant Set III(b). The evaluation is carried out in two versions. Version A is to start from the sixth-order magnetic anomaly M6 obtained in the previous work. The mass-independent contributions of Set III(a) and Set III(b) are 2.1275(2) and 3.3271(6) in units of (α/π)5, respectively. Version B is based on the recently developed automatic code generation scheme. This method yields 2.1271(3) and 3.3271(8) in units of (α/π)5, respectively. They are in excellent agreement with the results of the first method within the uncertainties of numerical integration. Combining these results as statistically independent we obtain the best values, 2.1273(2), and 3.3271(5) times (α/π)5, for the mass-independent contributions of the Set III(a) and Set III(b), respectively. We have also evaluated mass-dependent contributions of diagrams containing muon and/or tau-particle loop. Including them the total contribution of Set III(a) is 2.1349(2) and that of Set III(b) is 3.3299(5) in units of (α/π)5. The total contributions to the muon g-2 of various leptonic vacuum-polarization loops of Set III(a) and Set III(b) are 112.418(32) and 15.407(5) in units of (α/π)5, respectively.
Carey, R.M.; Lynch, K.R.; Miller, J.P.; Roberts, B.L.; Morse, W.M.; Semertzides, Y.K.; Druzhinin, V.P.; Khazin, B.I.; Koop, I.A.; Logashenko, I.; Redin, S.I.; /Boston U. /Brookhaven /Novosibirsk, IYF /Cornell U., CIHEP /Fermilab /Frascati /Illinois U., Urbana /James Madison U. /Groningen, KVI /KEK, Tsukuba /Kentucky U.
2009-02-01
We propose to measure the muon anomalous magnetic moment, a{sub {mu}}, to 0.14 ppm-a fourfold improvement over the 0.54 ppm precision obtained in the BNL experiment E821. The muon anomaly is a fundamental quantity and its precise determination will have lasting value. The current measurement was statistics limited, suggesting that greater precision can be obtained in a higher-rate, next-generation experiment. We outline a plan to use the unique FNAL complex of proton accelerators and rings to produce high-intensity bunches of muons, which will be directed into the relocated BNL muon storage ring. The physics goal of our experiment is a precision on the muon anomaly of 16 x 10{sup -11}, which will require 21 times the statistics of the BNL measurement, as well a factor of 3 reduction in the overall systematic error. Our goal is well matched to anticipated advances in the worldwide effort to determine the standard model (SM) value of the anomaly. The present comparison, {Delta}a{sub {mu}} (Expt: -SM) = (295 {+-} 81) x 10{sup -11}, is already suggestive of possible new physics contributions to the muon anomaly. Assuming that the current theory error of 51 x 10{sup -11} is reduced to 30 x 10{sup -11} on the time scale of the completion of our experiment, a future {Delta}a{sub {mu}} comparison would have a combined uncertainty of {approx} 34 x 10{sup -11}, which will be a sensitive and complementary benchmark for proposed standard model extensions. The experimental data will also be used to improve the muon EDM limit by up to a factor of 100 and make a higher-precision test of Lorentz and CPT violation. We describe in this Proposal why the FNAL complex provides a uniquely ideal facility for a next-generation (g-2) experiment. The experiment is compatible with the fixed-target neutrino program; indeed, it requires only the unused Booster batch cycles and can acquire the desired statistics in less than two years of running. The proton beam preparations are largely aligned
Noncommutative QED and anomalous dipole moments
We study QED on noncommutative spaces, NCQED. In particular we present the detailed calculation for the noncommutative electron-photon vertex and show that the Ward identity is satisfied. We discuss that in the noncommutative case moving electron will show electric dipole effects. In addition, we work out the electric and magnetic dipole moments up to one loop level. For the magnetic moment we show that noncommutative electron has an intrinsic (spin independent) magnetic moment. (author)
Burger, Florian; Hotzel, Grit; Jansen, Karl; Petschlies, Marcus; Renner, Dru B
2013-01-01
We present results for the leading order QCD correction to the anomalous magnetic moment of the muon including the first two generations of quarks as dynamical degrees of freedom. Several light quark masses are examined in order to yield a controlled extrapolation to the physical pion mass. We analyse ensembles for three different lattice spacings and several volumes in order to investigate lattice artefacts and finite-size effects, respectively. We also provide preliminary results for this quantity for two flavours of mass-degenerate quarks at the physical value of the pion mass.
Volkov, S A
2015-01-01
A new subtraction procedure for removal both ultraviolet and infrared divergences in Feynman integrals is proposed. This method is developed for computation of QED corrections to the electron anomalous magnetic moment. The procedure is formulated in the form of a forest formula with linear operators that are applied to Feynman amplitudes of UV-divergent subgraphs. The contribution of each Feynman graph that contains propagators of electrons and photons is represented as a finite Feynman-parametric integral. Application of the developed method to the calculation of 2-loop and 3-loop contributions is described.
Burger, Florian [Humboldt U. Berlin; Feng, Xu [KEK; Hotzel, Grit [Humboldt U. Berlin; Jansen, Karl [DESY; Petschlies, Marcus [The Cyprus Institute; Renner, Dru B. [JLAB
2013-11-01
We present results for the leading order QCD correction to the anomalous magnetic moment of the muon including the first two generations of quarks as dynamical degrees of freedom. Several light quark masses are examined in order to yield a controlled extrapolation to the physical pion mass. We analyse ensembles for three different lattice spacings and several volumes in order to investigate lattice artefacts and finite-size effects, respectively. We also provide preliminary results for this quantity for two flavours of mass-degenerate quarks at the physical value of the pion mass.
Burger, Florian; Hotzel, Grit [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Feng, Xu [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Petschlies, Marcus [The Cyprus Institute, Nicosia (Cyprus); Renner, Dru B. [Jefferson Lab, Newport News, VA (United States)
2013-12-15
We present results for the leading order QCD correction to the anomalous magnetic moment of the muon including the first two generations of quarks as dynamical degrees of freedom. Several light quark masses are examined in order to yield a controlled extrapolation to the physical pion mass. We analyse ensembles for three different lattice spacings and several volumes in order to investigate lattice artefacts and finite-size effects, respectively. We also provide preliminary results for this quantity for two flavours of mass-degenerate quarks at the physical value of the pion mass.
Using new experimental data, the contribution to the anomalous magnetic moment of the muon from the π0γ and ηγ intermediate states in the vacuum polarization is calculated with high precision taking into account the correction for using the trapezoidal rule: αμ(π0γ) + αμ(ηγ) = (53.1 ± 1.5) x 10-11. It is found the small contribution from e+e-π0, e+e-η and μ+μ-π0 intermediate states equal to 0.5 x 10-11
Ortenzi, L.; Gretarsson, H.; Kasahara, S.; Matsuda, Y.; Shibauchi, T.; Finkelstein, K. D.; Wu, W.; Julian, S. R.; Kim, Young-June; Mazin, I. I.; Boeri, L.
2015-01-01
We report a combination of Fe K β x-ray emission spectroscopy and density functional reduced Stoner theory calculations to investigate the correlation between structural and magnetic degrees of freedom in CaFe2(As1-xPx) 2 . The puzzling temperature behavior of the local moment found in rare earth-doped CaFe2As2 [H. Gretarsson et al., Phys. Rev. Lett. 110, 047003 (2013)] is also observed in CaFe2(As1-xPx) 2 . We explain this phenomenon based on first-principles calculations with scaled magnetic interaction. One scaling parameter is sufficient to describe quantitatively the magnetic moments in both CaFe2(As1-xPx) 2 (x =0.055 ) and Ca0.78La0.22Fe2As2 at all temperatures. The anomalous growth of the local moments with increasing temperature can be understood from the observed large thermal expansion of the c -axis lattice parameter combined with strong magnetoelastic coupling. These effects originate from the strong tendency to form As-As dimers across the Ca layer in the CaFe2As2 family of materials. Our results emphasize the dual local-itinerant character of magnetism in Fe pnictides.
Chakraborty, Bipasha; Donald, Gordon; Dowdall, Rachel; de Oliveira, Pedro Gonçalves; Koponen, Jonna; Lepage, G Peter; Teubner, T
2014-01-01
We describe a new technique (presented in arXiv:1403.1778) to determine the contribution to the anomalous magnetic moment (g-2) of the muon coming from the hadronic vacuum polarisation using lattice QCD. Our method uses Pad\\'{e} approximants to reconstruct the Adler function from its derivatives at $q^2=0$. These are obtained simply and accurately from time-moments of the vector current-current correlator at zero spatial momentum. We test the method using strange quark correlators calculated on MILC Collaboration's $n_f$ = 2+1+1 HISQ ensembles at multiple values of the lattice spacing, multiple volumes and multiple light sea quark masses (including physical pion mass configurations).
Kaluza—Klein Corrections to the μ Anomalous Magnetic Moment in the Appelquist—Cheng—Dobrescu Model
Applying the effective Lagrangian method, we analyze the radiative contributions of the Kaluza—Klein (KK) modes to the muon magnetic dipole moments in the Appelquist—Cheng—Dobrescu model. Summing over the infinite series composed by the KK towers, we verify the final results satisfying the decoupling theorem in the limit R−1 → ∞. For the compactification scale R−1 = 300 GeV, we obtain the electroweak radiative corrections from the KK modes to the muon MDM amount to 6.72 × 10−12 at one loop level
Gonzalez-Martin, Gustavo R; Gonzalez, Javier G
2004-01-01
The magnetic moment of the proton is calculated using a geometric unified theory. The geometry determines a generalized Pauli equation showing anomalous terms due to the triplet proton structure. The theoretical result gives a bare anomalous Lande gyromagnetic g-factor close to the experimental value. The necessary radiative corrections should be included in the actual theoretical dressed value. The first order correction raises the value to 2(2.7796). Similarly we obtain for the neutron gyromagnetic g-factor the value 2(1.9267).
Porter, Frank C. [Caltech, Pasadena, CA (United States). Physics Dept.
2015-04-29
The BABAR collaboration has an extensive program of studying hadronic cross sections in low-energy e^{+}e^{-} collisions, accessible via initial-state radiation. Our measurements allow significant improvements in the precision of the predicted value of the muon anomalous magnetic moment. These improvements are necessary for illuminating the current 3.6 sigma difference between the predicted and the experimental values. We have published results on a number of processes with two to six hadrons in the final state. We report here the results of recent studies with final states that constitute the main contribution to the hadronic cross section in the energy region between 1 and 3 GeV, as e^{+}e^{-} → K^{+}K^{-}, π^{+}π^{-}, and e^{+}e^{-} → 4 hadrons
Gutiérrez-Rodríguez, A
2000-01-01
We discuss the production of charged bosons in deep inelastic e-p- scattering, in the context of an electroweak model, in which the vector boson self interactions may be different from those prescribed by the electroweak standard model. We present results which show the strong dependence of the cross section on the anomalous magnetic dipole moment kappa of the W/sup +or-/. We show that even small deviations from the standard model value of kappa ( kappa =1) implies an observable deviation in the W/sup +or-/-production rates at CERN LEP/LHC energies. We also show that for the analysis of the charged boson production via e/sup -/p collisions at LEP/LHC energies will be very important to include the contribution from heavy boson exchange diagrams to the cross section rates. (25 refs).
New method of determining the magnetic moment of the electron
Sokolov, A.A.; Pavlenko, Y.G.
1977-11-01
The Pauli equation is solved for electrons moving in crossed magnetic and electrostatic fields of two different configurations. It is shown that the frequency shift of radiative dipole transitions is related to the anomalous magnetic moment. This fact can be used to determine experimentally the anomalous magnetic moment of the electron.
Gray, F E
2003-01-01
The anomalous magnetic moment of the positive muon has been measured to a precision of 0.7 parts per million in an experiment at Brookhaven National Laboratory. The standard model prediction for this quantity can be calculated with a similar uncertainty, although there are currently inconsistent results for one crucial part of this evaluation. Comparison of the theoretical and experimental values tests the standard model and probes for physics beyond it, including supersymmetry, for which a large signal is expected from many models. This thesis describes the principle of the experiment and the status of the theoretical evaluations. It concentrates on the details of an energy-binned method of determining the anomalous precession frequency from the recorded data. The result that is obtained, after combination with previous measurements, is aexp;avgm=11659203 8×10- 10, to be compared with the present standard model predictions aSM;e+e- m =11659168.87.7×10 -10and aSM;tm=11659193.2 6.8&...
Search for anomalous weak dipole moments of the $\\tau$ lepton
Heister, A; Barate, R; De Bonis, I; Décamp, D; Goy, C; Lees, J P; Merle, E; Minard, M N; Pietrzyk, B; Bravo, S; Casado, M P; Chmeissani, M; Crespo, J M; Fernández, E; Fernández-Bosman, M; Garrido, L; Martínez, M; Pacheco, A; Ruiz, H; Colaleo, A; Creanza, D; De Palma, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Azzurri, P; Buchmüller, O L; Cattaneo, M; Cerutti, F; Clerbaux, B; Drevermann, H; Forty, R W; Frank, M; Gianotti, F; Hansen, J B; Harvey, J; Hutchcroft, D E; Janot, P; Jost, B; Kado, M; Mato, P; Moutoussi, A; Ranjard, F; Rolandi, Luigi; Schlatter, W D; Schneider, O; Sguazzoni, G; Tejessy, W; Teubert, F; Valassi, Andrea; Videau, I; Ward, J; Badaud, F; Falvard, A; Gay, P; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Kyriakis, A; Markou, C; Simopoulou, Errietta; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Rougé, A; Rumpf, M; Swynghedauw, M; Verderi, M; Videau, H L; Ciulli, V; Focardi, E; Parrini, G; Antonelli, A; Antonelli, M; Bencivenni, G; Bossi, F; Capon, G; Chiarella, V; Laurelli, P; Mannocchi, G; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Lynch, J G; Negus, P; O'Shea, V; Raine, C; Thompson, A S; Wasserbaech, S R; Cavanaugh, R J; Geweniger, C; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Stenzel, H; Tittel, K; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, P J; Girone, M; Marinelli, N; Sedgbeer, J K; Thompson, J C; Ghete, V M; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Bouhova-Thacker, E; Bowdery, C K; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Pearson, M R; Robertson, N A; Jakobs, K; Kleinknecht, K; Renk, B; Sander, H G; Wachsmuth, H W; Zeitnitz, C; Bonissent, A; Coyle, P; Leroy, O; Payre, P; Rousseau, D; Talby, M; Ragusa, F; David, A; Dietl, H; Ganis, G; Hüttmann, K; Lütjens, G; Männer, W; Moser, H G; Settles, Ronald; Wolf, G; Boucrot, J; Callot, O; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacholkowska, A; Lefrançois, J; Veillet, J J; Yuan, C; Bagliesi, G; Boccali, T; Foà, L; Giammanco, A; Giassi, A; Ligabue, F; Messineo, A; Palla, Fabrizio; Sanguinetti, G; Sciabà, A; Tenchini, Roberto; Venturi, A; Verdini, P G; Blair, G A; Cowan, G; Green, M G; Medcalf, T; Misiejuk, A; Strong, J A; Teixeira-Dias, P; Clifft, R W; Edgecock, T R; Norton, P R; Tomalin, I R; Bloch-Devaux, B; Colas, P; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Schuller, J P; Vallage, B; Konstantinidis, N P; Litke, A M; Taylor, G; Booth, C N; Cartwright, S L; Combley, F; Lehto, M H; Thompson, L F; Böhrer, A; Brandt, S; Grupen, Claus; Ngac, A; Prange, G; Giannini, G; Rothberg, J E; Armstrong, S R; Berkelman, K; Cranmer, K; Ferguson, D P S; Gao, Y; Gonzáles, S; Hayes, O J; Hu, H; Jin, S; Kile, J; McNamara, P A; Nielsen, J; Pan, Y B; Von Wimmersperg-Töller, J H; Wiedenmann, W; Wu, J; Wu Sau Lan; Wu, X; Zobernig, G; Dissertori, G
2003-01-01
The anomalous weak dipole moments of the $\\tau$ lepton are measured in a data sample collected by ALEPH from 1990 to 1995 corresponding to an integrated luminosity of 155~pb$^{-1}$. Tau leptons produced in the reaction $e^+ e^- \\rightarrow \\tau^+ \\tau^-$ at energies close to the ${\\rm Z}$ mass are studied using their semileptonic decays to $\\pi$, $\\rho$, $a_1 \\rightarrow \\pi 2\\pi^0$ or $a_1 \\rightarrow 3 \\pi$. The real and imaginary components of both the anomalous weak magnetic dipole moment and the CP-violating anomalous weak electric dipole moment, $ {\\rm Re}\\,\\mu_{\\tau}$, ${\\rm Im}\\,\\mu_{\\tau}$, ${\\rm Re}\\,d_{\\tau}$ and ${\\rm Im}\\,d_{\\tau}$, are measured simultaneously by means of a likelihood fit built from the full differential cross section. No evidence of new physics is found. The following bounds are obtained (95\\% CL): $|{\\rm Re}\\, \\mu_{\\tau} | < 1.14 \\times 10^{-3}$, $|{\\rm Im}\\, \\mu_{\\tau} | < 2.65 \\times 10^{-3}$, $|{\\rm Re}\\, d_{\\tau} | < 0.91 \\times 10^{-3}$, and $|{\\rm Im}\\, d_{\\tau} ...
I would like to discuss the problem of a neutrino magnetic moment which is of interest since it deals with the probable time anticorrelation of the solar v flux with the Sun magnetic activity. (author). 19 refs, 2 figs, 1 tab
This paper reports the tenth-order contributions to the g-2 of the electron ae and those of the muon aμ from the gauge-invariant Set II(c), which consists of 36 Feynman diagrams, and Set II(d), which consists of 180 Feynman diagrams. Both sets are obtained by insertion of sixth-order vacuum-polarization diagrams in the fourth-order anomalous magnetic moment. The mass-independent contributions from Set II(c) and Set II(d) are -0.116 489 (32)(α/π)5 and -0.243 00 (29)(α/π)5, respectively. The leading contributions to aμ, which involve electron loops only, are -3.888 27 (90)(α/π)5 and 0.4972 (65)(α/π)5 for Set II(c) and Set II(d), respectively. The total contributions of the electron, muon, and tau-lepton loops to ae are -0.116 874 (32)(α/π)5 for the Set II(c), and -0.243 10 (29)(α/π)5 for the Set II(d), respectively. The contributions of the electron, muon, and tau-lepton loop to aμ are -5.5594 (11)(α/π)5 for the Set II(c) and 0.2465 (65)(α/π)5 for the Set II(d), respectively.
Biswas, Anirban; Khan, Sarif
2016-01-01
The observation of neutrino masses, mixing and the existence of dark matter are amongst the most important signatures of physics beyond the Standard Model (SM). In this paper, we propose to extend the SM by a local $L_\\mu - L_\\tau$ gauge symmetry, two additional complex scalars and three right-handed neutrinos. The $L_\\mu - L_\\tau$ gauge symmetry is broken spontaneously when one of the scalars acquires a vacuum expectation value. The $L_\\mu - L_\\tau$ gauge symmetry is known to be anomaly free and can explain the beyond SM measurement of the anomalous muon $({\\rm g-2})$ through additional contribution arising from the extra $Z_{\\mu\\tau}$ mediated diagram. Small neutrino masses are explained naturally through the Type-I seesaw mechanism, while the mixing angles are predicted to be in their observed ranges due to the broken $L_\\mu-L_\\tau$ symmetry. The second complex scalar is shown to be stable and becomes the dark matter candidate in our model. We show that while the $Z_{\\mu\\tau}$ portal is ineffective for the...
Impulse approximation and pion-exchange current contributions to the trinucleon magnetic moments are calculated using wave functions generated by solving the configuration-space Faddeev equations for a variety of nucleon-nucleon force models. Careful attention is paid to the origin of important exchange current contributions. Numerical results are compared with previously published calculations and with the experimental data. An attempt is made to isolate and understand sources of discrepancy between our results and those previously published. Calculations which include both impulse and pion-exchange current contributions are in fairly good agreement with experiment, whereas calculations which include only the impulse approximation term are not
We propose to measure the muon anomalous magnetic moment, aμ, to 0.14 ppm-a fourfold improvement over the 0.54 ppm precision obtained in the BNL experiment E821. The muon anomaly is a fundamental quantity and its precise determination will have lasting value. The current measurement was statistics limited, suggesting that greater precision can be obtained in a higher-rate, next-generation experiment. We outline a plan to use the unique FNAL complex of proton accelerators and rings to produce high-intensity bunches of muons, which will be directed into the relocated BNL muon storage ring. The physics goal of our experiment is a precision on the muon anomaly of 16 x 10-11, which will require 21 times the statistics of the BNL measurement, as well a factor of 3 reduction in the overall systematic error. Our goal is well matched to anticipated advances in the worldwide effort to determine the standard model (SM) value of the anomaly. The present comparison, Δaμ (Expt: -SM) = (295 ± 81) x 10-11, is already suggestive of possible new physics contributions to the muon anomaly. Assuming that the current theory error of 51 x 10-11 is reduced to 30 x 10-11 on the time scale of the completion of our experiment, a future Δaμ comparison would have a combined uncertainty of ∼ 34 x 10-11, which will be a sensitive and complementary benchmark for proposed standard model extensions. The experimental data will also be used to improve the muon EDM limit by up to a factor of 100 and make a higher-precision test of Lorentz and CPT violation. We describe in this Proposal why the FNAL complex provides a uniquely ideal facility for a next-generation (g-2) experiment. The experiment is compatible with the fixed-target neutrino program; indeed, it requires only the unused Booster batch cycles and can acquire the desired statistics in less than two years of running. The proton beam preparations are largely aligned with the new Mu2e experimental requirements. The (g-2) experiment
Strange magnetic moments of octet baryons under SU(3) breaking
CAO Lu; WANG Biao; CHEN Hong
2012-01-01
Magnetic moments of octet baryons are parameterized to all orders of the flavor SU(3) breaking with the irreducible tensor technique in order to extract the contribution of each flavor quark to the magnetic moments of the octet baryons.The not-yet measured magnetic moment of Σ0 is predicted to be 0.649 μN.Our parameterized forms for the magnetic moments are explicitly flavor-dependent,and hence each flavor component of the magnetic moments can be evaluated directly via the flavor projection operator.It is fouud that the strange magnetic moment of the nucleon is suppressed due to the small isoscalar anomalous magnetic moment of the nucleon.In particular,the strange magnetic form factor of the nucleon turns out to be positive,(G(s)N) (0) =0.428 μN,which is consistent with recent data.
Measurement of the electric dipole moment and magnetic moment anomaly of the muon
Onderwater, CJG
2005-01-01
The experimental precision of the anomalous magnetic moment of the muon has been improved to 0.5 part-per-million by the Brookhaven E821 experiment, similar to the theoretical uncertainty. In the same experiment, a new limit on the electric dipole moment of 2.8 x 10(-19) e-cm (95% CL) was set. The e
2002-01-01
Experiment IS358 uses the intense and pure beams of copper isotopes provided by the ISOLDE RILIS (resonance ionization laser ion source). The isotopes are implanted and oriented in the low temperature nuclear orientation set-up NICOLE. Magnetic moments are measured by $\\beta$-NMR. Copper (Z=29), with a single proton above the proton-magic nickel isotopes provides an ideal testground for precise shell model calculations of magnetic moments and their experimental verification. In the course of our experiments we already determined the magnetic moments of $^{67}$Ni, $^{67}$Cu, $^{68g}$Cu, $^{69}$Cu and $^{71}$Cu which provide important information on the magicity of the N=40 subshell closure. In 2001 we plan to conclude our systematic investigations by measuring the magnetic moment of the neutron-deficient isotope $^{59}$Cu. This will pave the way for a subsequent study of the magnetic moment of $^{57}$Cu with a complementary method.
Hyperon polarization and magnetic moments
Inclusively produced hyperons with significant polarization were first observed at Fermilab about seventeen years ago. This and subsequent experiments showed that Λ degree were produced polarized while bar Λ degree had no polarization in the same kinematical region. This set the stage for many experiments which showed that most hyperons are produced polarized. Recent Fermilab experiments have showed that this phenomena is even more complex and theoretical understanding is still lacking. Nevertheless polarized hyperon beams have been an extremely useful experimental tool in measuring hyperon magnetic moments. Recently, magnetic moment precession of channeled particles in bent crystals has been observed. This opens the possibility of measuring the magnetic moments of charmed baryons
Quantization of Spinning Particle with Anomalous Magnetic Momentum
Gitman, D. M.; Saa, A. V.
1992-01-01
A generalization of the pseudoclassical action of a spinning particle in the presence of an anomalous magnetic moment is given. The leading considerations, to write the action, are gotten from the path integral representation for the causal Green's function of the generalized (by Pauli) Dirac equation for the particle with anomalous magnetic momentum in an external electromagnetic field. The action can be written in reparametrization and supergauge invariant form. Both operator (Dirac) and pa...
In the nonrelativistic case it has been found that whenever the relation mc2/e2 m) is satisfied, where α is a flux, gm is magnetic moment, and X(α,gm) is some function that is nonzero only for gm>2, then the matter is unstable against formation of the flux α. The result persists down to gm=2 provided the Aharonov-Bohm potential is supplemented with a short range attractive potential. The results are obtained by calculating the change of the density of states induced by the Aharonov-Bohm potential. The Krein-Friedel formula for this long-ranged potential is shown to be valid when supplemented with zeta function regularization. (author). 23 refs
We examine both anomalous magnetic and dipole moment type couplings of a heavy quark via its single production with subsequent dominant standard model decay modes at the compact linear collider (CLIC). The signal and background cross sections are analyzed for heavy quark masses 600 and 700 GeV. We make the analysis to delimitate these couplings as well as to find the attainable integrated luminosities for 3σ observation limit
Lagrangian magnetic moment from polarization
Braghin, Fabio L
2016-01-01
An effective Lagrangian term for the electron magnetic moment, and more generally electromagnetic form factors, is calculated by considering the background field method. Two Fierz transformations are performed for a one-photon exchange interaction, and the ambiguity in doing such transformations is exploited. The resulting effective interaction may exhibit an approximated rotational chiral symmetry either for the scalar-pseudoscalar currents interaction or for the vector-axial currents interaction. The leading terms in the expansion of the fermion determinant yield the leading QED effective action with the complete one loop electromagnetic form factors. A model is proposed to produce the tree level magnetic moment term.
Updating neutrino magnetic moment constraints
B.C. Cañas
2016-02-01
Full Text Available In this paper we provide an updated analysis of the neutrino magnetic moments (NMMs, discussing both the constraints on the magnitudes of the three transition moments Λi and the role of the CP violating phases present both in the mixing matrix and in the NMM matrix. The scattering of solar neutrinos off electrons in Borexino provides the most stringent restrictions, due to its robust statistics and the low energies observed, below 1 MeV. Our new limit on the effective neutrino magnetic moment which follows from the most recent Borexino data is 3.1×10−11μB at 90% C.L. This corresponds to the individual transition magnetic moment constraints: |Λ1|≤5.6×10−11μB, |Λ2|≤4.0×10−11μB, and |Λ3|≤3.1×10−11μB (90% C.L., irrespective of any complex phase. Indeed, the incoherent admixture of neutrino mass eigenstates present in the solar flux makes Borexino insensitive to the Majorana phases present in the NMM matrix. For this reason we also provide a global analysis including the case of reactor and accelerator neutrino sources, presenting the resulting constraints for different values of the relevant CP phases. Improved reactor and accelerator neutrino experiments will be needed in order to underpin the full profile of the neutrino electromagnetic properties.
Supersymmetric magnetic moments sum rules and spontaneous supersymmetry breaking
In supersymmetry the anomalous magnetic moment of particles belonging to the same supermultiplet is related by simple sum rules. We study the modification of these sum rules in the case of the spontaneously broken N=1 global supersymmetry. (author). 9 refs, 3 figs
New Experiments to Measure the Muon Anomalous Gyromagnetic Moment
Eads, M
2015-01-01
The magnetic moment is a fundamental property of particles. The measurement of these magnetic moments and the comparison with the values predicted by the standard model of particle physics is a way to test our understanding of the fundamental building blocks of our world. In some cases, such as for the electron, this comparison has resulted in confirmation of the standard model with incredible precision. In contrast, the magnetic moment of the muon has shown a long-standing disagreement in the measured and the predicted value. There is currently a tantalizing three-standard-deviation difference between the current best measurement (with a precision of 0.54 ppm) and the state-of-the-art standard model prediction. This represents one of the very few experimental hints for physics beyond the standard model. There are currently two major experimental efforts underway to improve the precision of the muon magnetic moment measurement. The first is an evolution of the E-821 experiment, originally located at Brookhave...
Magnetic moment and electric dipole moment of the τ-lepton
Limits on the anomalous magnetic moment and the electric dipole moment of the τ lepton are calculated through the reaction e+e- → τ+τ- γ at the Z1-pole and in the framework of a left-right symmetric model. The results are based on the recent data reported by the L3 Collaboration at CERN LEP. Due to the stringent limit of the model mixing angle φ, the effect of this angle on the dipole moments is quite small
Neutrino magnetic moment and the solar neutrino problem
For a relativistic particle of mass m, energy E and anomalous magnetic moment μ, the spin-flip angle in a magnetic field B after a length L is φ=(2μBL)/hc((mc2)/E) in ultrarelativistic limit. Contrary to recent assertions, a magnetic moment of μ=10-10μO for the neutrino cannot solve the solar neutrino puzzle by spin-flip in a simple way. The reflection coefficient and other possible effects are also discussed. (author). 11 refs
HELMHOLTZ COILS FOR MEASURING MAGNETIC MOMENTS
P. N. Dobrodeyev
2013-01-01
Full Text Available The optimal configuration of the double Helmholtz coils for measuring of the magnetic dipole moments was defined. It was determined that measuring coils should have round shape and compensative coils – the square one. Analytically confirmed the feasibility of the proposed configuration of these coils as primary transmitters of magnetic dipole moments.
Quantized Anomalous Hall Effect in Magnetic Topological Insulators
YU Rui
2011-01-01
The Hall effect, the anomalous Hall effect （AHE） and the spin Hall effect are thndamental transport processes in solids arising from the Lorentz force and the spin-orbit coupling respectively. The AHE, in which a voltage transverse to the electric current appears even in the absence of an external magnetic field, was first detected in ferromagnetic （FM） metals in 1881 and later found to arise from the spin-orbit coupling （SOC） between the current and magnetic moments.
Quantization of Spinning Particle with Anomalous Magnetic Momentum
Gitman, D M
1993-01-01
A generalization of the pseudoclassical action of a spinning particle in the presence of an anomalous magnetic moment is given. The leading considerations, to write the action, are gotten from the path integral representation for the causal Green's function of the generalized (by Pauli) Dirac equation for the particle with anomalous magnetic momentum in an external electromagnetic field. The action can be written in reparametrization and supergauge invariant form. Both operator (Dirac) and path-integral (BFV) quantization are discussed. The first one leads to the Dirac-Pauli equation, whereas the second one gives the corresponding propagator. One of the nontrivial points in this case is that both quantizations schemes demand for consistency to take into account an operators ordering problem.
Theory of nuclear magnetic moments - LT-35
The purpose of these notes is to give an account of some attempts at interpreting the observed values of nuclear magnetic moments. There is no attempt at a complete summary of the field as that would take much more space than is used here. In many cases the arguments are only outlined and references are given for those interested in further details. A discussion of the theory of nuclear magnetic moments necessitates many excursions into the details of the nuclear models because the magnetic moments have a direct bearing on the validity of these models. However the main emphasis here is on those features which tend to explain the magnetic moments and other evidence is not discussed unless it has a direct bearing on the problem. In the first part of the discussion the Shell Model of the nucleus is used, as this model seems to correlate a large body of data relating to the heavier nuclei. Included here are the modifications proposed to explain the fact that the experimental magnetic moments do not fit quantitatively with the exact predictions of the Shell Model. The next sections deal with some of the more drastic modifications introduced to explain the large nuclear quadrupole moments and the effect of these modifications on the magnetic moments. Finally we turn to more detailed investigations of the light nuclei, in particular the - Conjugate nuclei. (author)
How to Introduce the Magnetic Dipole Moment
Bezerra, M.; Kort-Kamp, W. J. M.; Cougo-Pinto, M. V.; Farina, C.
2012-01-01
We show how the concept of the magnetic dipole moment can be introduced in the same way as the concept of the electric dipole moment in introductory courses on electromagnetism. Considering a localized steady current distribution, we make a Taylor expansion directly in the Biot-Savart law to obtain, explicitly, the dominant contribution of the…
Magnetic moment measurement of magnetic nanoparticles using atomic force microscopy
Magnetic moment per unit mass of magnetic nanoparticles was found by using the atomic force microscope (AFM). The mass of the nanoparticles was acquired from the resonance frequency shift of the particle-attached AFM probe and magnetic force measurement was also carried out with the AFM. Combining with magnetic field strength, the magnetic moment per unit mass of the nanoparticles was determined as a function of magnetic field strength. (technical design note)
Quantized Anomalous Hall Effect in Magnetic Topological Insulators
YU Rui
2011-01-01
@@ The Hall effect, the anomalous Hall effect (AHE) and the spin Hall effect are fundamental transport processes in solids arising from the Lorentz force and the spin-orbit coupling respectively.The AHE, in which a voltage transverse to the electric current appears even in the absence of an external magnetic field, was first detected in ferromagnetic (FM) metals in 1881 and later found to arise from the spin-orbit coupling (SOC) between the current and magnetic moments.Recent progress on the mechanism of AHE has established a link between the AHE and the topological nature of the Hall current by adopting the Berry-phase concepts in close analogy to the intrinsic spin Hall effect.Given the experimental discovery of the quantum Hall and the quantum spin Hall effects, it is natural to ask whether the AHE can also be quantized.In a quantized anomalous Hall (QAH) insulator, spontaneous magnetic moments and spin-orbit coupling combine to give rise to a topologically non-trivial electronic structure, leading to the quantized Hall effect without any external magnetic field.
Magnetic moment of the Roper resonance
Bauer, T. [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet, D-55099 Mainz (Germany); Gegelia, J., E-mail: gegelia@kph.uni-mainz.de [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet, D-55099 Mainz (Germany); Institut fuer Theoretische Physik II, Ruhr-Universitaet Bochum, 44780 Bochum (Germany); High Energy Physics Institute of TSU, 0186 Tbilisi, Georgia (United States); Scherer, S. [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet, D-55099 Mainz (Germany)
2012-08-29
The magnetic moment of the Roper resonance is calculated in the framework of a low-energy effective field theory of the strong interactions. A systematic power-counting procedure is implemented by applying the complex-mass scheme.
An experimental review of hyperon magnetic moments
Hyperon magnetic moments are important probes for studying the structure of baryons. In this talk, I shall briefly describe how the measurements are made and discuss the current status of the determinations
Magnetic moment of the Roper resonance
Bauer, T.; Gegelia, J.; Scherer, S.
2012-01-01
The magnetic moment of the Roper resonance is calculated in the framework of a low-energy effective field theory of the strong interactions. A systematic power-counting procedure is implemented by applying the complex-mass scheme.
Rapid Characterization of Magnetic Moment of Cells for Magnetic Separation
Ooi, Chinchun; Earhart, Christopher M.; Wilson, Robert J.; Wang, Shan X.
2013-01-01
NCI-H1650 lung cancer cell lines labeled with magnetic nanoparticles via the Epithelial Cell Adhesion Molecule (EpCAM) antigen were previously shown to be captured at high efficiencies by a microfabricated magnetic sifter. If fine control and optimization of the magnetic separation process is to be achieved, it is vital to be able to characterize the labeled cells’ magnetic moment rapidly. We have thus adapted a rapid prototyping method to obtain the saturation magnetic moment of these cells....
Estimation of particle magnetic moment distribution for antiferromagnetic ferrihydrite nanoparticles
Magnetization as a function of applied magnetic field at different temperatures for antiferromagnetic nanoparticles of ferrihydrite is measured and analyzed considering a distribution in particle magnetic moment. We find that the magnetization of this nanoparticle system is affected by the presence of particle magnetic moment distribution. This particle magnetic moment distribution is estimated at different temperatures. - Highlights: • Magnetic behavior of a nanoparticle system is affected by the presence of particle magnetic moment distribution. • One can not get correct and physically meaningful fit parameters if the particle magnetic moment distribution is ignored. • This particle magnetic moment distribution using the magnetization data is estimated for 2 nm antiferromagnetic ferrihydrite particles
Electric and Magnetic Dipole Moments
CERN. Geneva
2005-01-01
The stringent limit on the electric dipole moment of the neutron forced the issue on the strong CP-problem. The most elegant solution of which is the axion field proposed by Peccei and Quinn. The current limit on the QCD parameter theta coming from the limit on the neutron EDM is of order 10-10. I am going to describe the present status on the neutron EDM searches and further prospects on getting down to theta_qcd sensitivity of 10-13 with the new deuteron EDM in storage rings proposal. For completeness the current status and prospects of the muon g-2 experiment will also be given.
Anomalous magnetoresistance in magnetized topological insulator cylinders
Siu, Zhuo Bin, E-mail: a0018876@nus.edu.sg [NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456 (Singapore); Data Storage Institute, Agency for Science, Technology and Research, Singapore 117608 (Singapore); Jalil, Mansoor B. A. [NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456 (Singapore)
2015-05-07
The close coupling between the spin and momentum degrees of freedom in topological insulators (TIs) presents the opportunity for the control of one to manipulate the other. The momentum can, for example, be confined on a curved surface and the spin influenced by applying a magnetic field. In this work, we study the surface states of a cylindrical TI magnetized in the x direction perpendicular to the cylindrical axis lying along the z direction. We show that a large magnetization leads to an upwards bending of the energy bands at small |k{sub z}|. The bending leads to an anomalous magnetoresistance where the transmission between two cylinders magnetized in opposite directions is higher than when the cylinders are magnetized at intermediate angles with respect to each other.
Near-Field Magnetic Dipole Moment Analysis
Harris, Patrick K.
2003-01-01
This paper describes the data analysis technique used for magnetic testing at the NASA Goddard Space Flight Center (GSFC). Excellent results have been obtained using this technique to convert a spacecraft s measured magnetic field data into its respective magnetic dipole moment model. The model is most accurate with the earth s geomagnetic field cancelled in a spherical region bounded by the measurement magnetometers with a minimum radius large enough to enclose the magnetic source. Considerably enhanced spacecraft magnetic testing is offered by using this technique in conjunction with a computer-controlled magnetic field measurement system. Such a system, with real-time magnetic field display capabilities, has been incorporated into other existing magnetic measurement facilities and is also used at remote locations where transport to a magnetics test facility is impractical.
Nucleon Magnetic Moments and Electric Polarizabilities
W Detmold, B C Tiburzi, A Walker-Loud
2010-06-01
Electromagnetic properties of the nucleon are explored with lattice QCD using a novel technique. Focusing on background electric fields, we show how the electric polarizability can be extracted from nucleon correlation functions. A crucial step concerns addressing contributions from the magnetic moment, which affects the relativistic propagation of nucleons in electric fields. By properly handing these contributions, we can determine both magnetic moments and electric po larizabilities. Lattice results from anisotropic clover lattices are presented. Our method is not limited to the neutron; we show results for the proton as well.
Neutrino masses, magnetic moments, and horizontal symmetries
We investigate the general structure of the neutrino mass and magnetic matrices in the presence of an unbroken horizontal symmetry. In particular, we study the compatibility of masslessness induced by such a symmetry and a non-zero magnetic moment. We show that in this case at least two of the charged leptons must have equal masses. Furthermore, we give a general definition of Dirac neutrinos and demonstrate that they are not necessarily associated with a lepton number. (Author) 15 refs
Status and perspectives of neutrino magnetic moments
Studenikin, Alexander
2016-01-01
Basic theoretical and experimental aspects of neutrino magnetic moments are reviewed, including the present best upper bounds from reactor experiments and astrophysics. An interesting effect of neutrino spin precession and oscillations induced by the background matter transversal current or polarization is also discussed.
Transition radiation of the neutrino magnetic moment
Sakuda, M.; Kurihara, Y
1994-01-01
If the neutrino has a finite mass and a magnetic moment it would produce transition radiation when crossing the interface between two media. We found that the probability of transition radiation is larger by an order of magnitude using the quantum theory than that recently reported by one of us using classical electrodynamics, and that the energy spectrum of the radiation is nearly uniform.
Nuclear Bag Model and Nuclear Magnetic Moments
Liu, Liang-Gang
1999-01-01
In 1991, we proposed a model in which nucleus is treated as a spherical symmetric MIT bag and nucleon satisfies the MIT bag model boundary condition. The model was employed to calculate nuclear magnetic moments. The results are in good agreement with experiment data. Now, we found this model is still interesting and illuminating.
Interpreting magnetic data by integral moments
Tontini, F. Caratori; Pedersen, L. B.
2008-09-01
The use of the integral moments for interpreting magnetic data is based on a very elegant property of potential fields, but in the past it has not been completely exploited due to problems concerning real data. We describe a new 3-D development of previous 2-D results aimed at determining the magnetization direction, extending the calculation to second-order moments to recover the centre of mass of the magnetization distribution. The method is enhanced to reduce the effects of the regional field that often alters the first-order solutions. Moreover, we introduce an iterative correction to properly assess the errors coming from finite-size surveys or interaction with neighbouring anomalies, which are the most important causes of the failing of the method for real data. We test the method on some synthetic examples, and finally, we show the results obtained by analysing the aeromagnetic anomaly of the Monte Vulture volcano in Southern Italy.
Magnetic moment of iron in metallic environments
Rare-earth iron nitrides are emerging as an important class of magnetic materials. In certain rare-earth iron compounds, the insertion of small atoms such as nitrogen and boron has resulted in significant changes in the magnetic properties in the form of higher Curie temperatures, enhanced magnetic moments, and stronger anisotropies. In an attempt to understand some of the above, we have focused on two nitride phases of Fe, namely Fe4N (cubic) and Fe16N2 (tetragonal). For the Fe16N2 phase, the average Fe moment reported by different experimental groups varies over a wide range of values, from 2.3μB to 3.5μB. We will discuss some of the recent experiments and examine some related theoretical questions with regard to Fe having such an unusually large moment in a metallic environment. Employing a Hubbard-Stoner-like model in addition to local-density results, it is shown that an unusually large on-site Coulomb repulsion is necessary if one is to obtain a moment as large as 3.5μB. (c) 2000 The American Physical Society
Anomalous Josephson Hall effect in magnet/triplet superconductor junctions
Yokoyama, Takehito
2015-01-01
We investigate anomalous Hall effect in a magnet coupled to a triplet superconductor under phase gradient. It is found that the anomalous Hall supercurrent arises from non-trivial structure of the magnetization. The magnetic structure manifested in the Hall supercurrent is characterized by even order terms of the exchange coupling, essentially different from that discussed in the context of anomalous Hall effect, reflecting the disspationless nature of supercurrent. We also discuss a possible...
Anomalous magnetic properties of VOx multiwall nanotubes
Demishev, S. V.; Chernobrovkin, A. L.; Glushkov, V. V.; Goodilin, E. A.; Grigorieva, A. V.; Ishchenko, T. V.; Kuznetsov, A. V.; Sluchanko, N. E.; Tretyakov, Yu D.; Semeno, A. V.
2010-01-01
Basing on the high frequency (60 GHz) electron spin resonance (ESR) and magnetic susceptibility study of the VOx multiwall nanotubes (VOx-NTs) in the range 4.2-300 K we report the ESR evidence of the presence of the antiferromagnetic V4+ dimers in VOx-NTs and the observation of an anomalous low temperature (T<50 K) growth of the magnetic susceptibility for V4+ quasi-free spins, which obey power law χ(T)~1/Tα with the exponent αapprox0.6. The estimates of the concentrations for various spin species (clusters) indicate that the non-interacting dimers should be an essential element in the VOx-NTs structure. The possibility of the disorder driven quantum critical regime in VOx-NTs is discussed.
Instantaneous Power Radiated from Magnetic Dipole Moments
Morley, Peter D
2014-01-01
We compute the power radiated per unit solid angle of a moving magnetic dipole moment, and its instantaneous radiated power, both non-relativistically and relativistically. This is then applied to various interesting situations: solar neutrons, electron synchrotrons and cosmological Dirac neutrinos. Concerning the latter, we show that hypothesized early-universe Big Bang conditions allow for neutrino radiation cooling and provide an energy loss-mechanism for subsequent neutrino condensation.
Neutrino Moments and the Magnetic Primakoff Effect
Domokos, G.; Kovesi-Domokos, S.
1996-01-01
If different species of neutrinos possess transition magnetic moments, a conversion between species can occur in the Coulomb field of a nucleus. In the case of Dirac neutrinos this corresponds to an active to sterile conversion, whereas in the case of Majorana neutrinos, the conversion takes place between active species. The conversion cross sections grow with the energy of the incident neutrino. The formalism is also applied to a new type of experiment designed to test the existence of the `...
Neutrino moments and the magnetic Primakoff effect
Domokos, Gabor K
1997-01-01
If different species of neutrinos possess transition magnetic moments, a conversion between species can occur in the Coulomb field of a nucleus. In the case of Dirac neutrinos this corresponds to an active to sterile conversion, whereas in the case of Majorana neutrinos, the conversion takes place between active species. The conversion cross sections grow with the energy of the incident neutrino. The formalism is also applied to a new type of experiment designed to test the existence of the ``KARMEN anomaly''.
Neutrino moments and the magnetic Primakoff effect
If different species of neutrinos possess transition magnetic moments, a conversion between species can occur in the Coulomb field of a nucleus. The conversion cross sections grow with the energy of the incident neutrino. The formalism is also applied to a new type of experiment designed to test the existence of the open-quotes KARMEN anomaly.close-quote close-quote copyright 1997 The American Physical Society
Bouten, M. (Limburgs Universitair Centrum (Belgium)); Bouten, M.C. (Centre d' Etude de l' Energie Nucleaire, Mol (Belgium))
1982-01-01
The dependence of the magnetic moment of /sup 11/B on the characteristics of the nucleon-nucleon interaction is investigated in the framework of the shell model. This leads to the construction of a new central two-body interaction for use in variational calculations for nuclei in the second half of the p shell. An intermediate-coupling calculation in a projected Hartree-Fock basis for the ground state of /sup 11/B is carried out using the new interaction.
Measurement of Short Living Baryon Magnetic Moment using Bent Crystals at SPS and LHC
Burmistrov, L; Ivanov, Yu; Massacrier, L; Robbe, P; Scandale, W; Stocchi, A
2016-01-01
The magnetic moments of baryons containing u,d and s quarks have been extensively studied and measured. The experimental results are all obtained by a well-assessed method that consists in measuring the polarisation vector of the incoming particles and the precession angle when the particle is travelling through an intense magnetic field. The polarization is evaluated by analysing the angular distribution of the decay products. No measurement of magnetic moments of charm or beauty baryons (and τ leptons) has been performed so far. The main reason is the lifetimes of charm/beauty baryons, too short to measure the magnetic moment by standard techniques. Historically, the prediction of baryon magnetic moments was one of the striking successes of the quark model. The importance of the measurement of heavy quark magnetic moment is to test the possibility that the charmed and/or beauty quarks has an anomalous magnetic moment, arising if those quarks are composite objects. Measurements on magnetic moments of heav...
The photon magnetic moment problem revisited
The photon magnetic moment for radiation propagating in magnetized vacuum is defined as a pseudotensor quantity, proportional to the external electromagnetic field tensor. After expanding the eigenvalues of the polarization operator in powers of k2, we obtain approximate dispersion equations (cubic in k2), and analytic solutions for the photon magnetic moment, valid for low momentum and/or large magnetic field. The paramagnetic photon experiences a redshift, with opposite sign to the gravitational one, which differs for parallel and perpendicular polarizations. It is due to the drain of photon transverse momentum and energy by the external field. By defining an effective transverse momentum, the constancy of the speed of light orthogonal to the field is guaranteed. We conclude that the propagation of the photon non-parallel to the magnetic direction behaves as if there is a quantum compression of the vacuum or a warp of space-time in an amount depending on its angle with regard to the field. (orig.)
Unstable magnetic moments in Ce compounds
The problems which are connected with the appearance or disappearance of local moments in metals are well reflected in the magnetic behaviour of Ce intermetallic compounds. This work describes experiments on two Ce compounds which are typical examples of unstable moment systems. The first of these is CeAl2 which at low temperatures, shows coexistence of antiferromagnetic order and the Kondo effect. Measurements are presented of the magnetization and the susceptibility in different magnetic field and temperature regions. An analysis of these measurements, using a model for the crystal field effects, shows the agreement between the measurements and the calculations to be reasonably good for CeAl2, but this agreement becomes worse upon decreasing Ce concentration. A phenomenological description of the observations is given. The second compound reported on is CeCu2Si2, the first 'heavy-fermion' superconductor to be investigated. The superconducting state is possibly formed by the quasi-particles of a non-magnetic many body singlet state, and not simply by the (sd) conduction electrons. This being a novel phenomenon, a number of experiments were performed to test this picture and to obtain a detailed description of the behaviour of CeCu2Si2. Measurements of the Meissner volume, confirmed the superconductivity to be intrinsic. (Auth.)
The peak in anomalous magnetic viscosity
Anomalous magnetic viscosity, where the magnetization as a function of time exhibits non-monotonic behaviour, being seen to increase, reach a peak, and then decrease, is observed on recoil lines in bulk amorphous ferromagnets, for certain magnetic prehistories. A simple geometrical approach based on the motion of the state line on the Preisach plane gives a theoretical framework for interpreting non-monotonic behaviour and explains the origin of the peak. This approach gives an expression for the time taken to reach the peak as a function of the applied (or holding) field. The theory is applied to experimental data for bulk amorphous ferromagnet alloys of composition Nd60−xFe30Al10Dyx, x = 0, 1, 2, 3 and 4, and it gives a reasonable description of the observed behaviour. The role played by other key magnetic parameters, such as the intrinsic coercivity and fluctuation field, is also discussed. When the non-monotonic behaviour of the magnetization of a number of alloys is viewed in the context of the model, features of universal behaviour emerge, that are independent of alloy composition. - Highlights: • Development of a simple geometrical model based on the Preisach model which gives a complete explanation of the peak in the magnetic viscosity. • Geometrical approach is extended by considering equations that govern the motion of the state line. • The model is used to deduce the relationship between the holding field and the time it takes to reach the peak. • The model is tested with experimental results for a range of Nd–Fe–Al–Dy bulk amorphous ferromagnets. • There is good agreement between the model and the experimental data
Porsev, S G; Flambaum, V V
2010-01-01
We have considered a mechanism for inducing a time-reversal violating electric dipole moment (EDM) in atoms through the interaction of a nuclear EDM (d_N) with the hyperfine interaction, the "magnetic moment effect". We have derived the operator for this interaction and presented analytical formulas for the matrix elements between atomic states. Induced EDMs in the diamagnetic atoms 129Xe, 171Yb, 199Hg, 211Rn, and 225Ra have been calculated numerically. From the experimental limits on the atomic EDMs of 129Xe and 199Hg, we have placed the following constraints on the nuclear EDMs, |d_N(129Xe)|< 1.1 * 10^{-21} |e|cm and |d_N(199Hg)|< 2.8 * 10^{-24} |e|cm.
Shuffle dislocation induced magnetic moment in graphene
Graphene, a honeycomb arrangement of carbon atoms, is a promising material for nanoelectronics applications due to its unusual electronic properties. Recent experiments performed on suspended graphene indicate the existence of intrinsic defects on the samples. It is known that lattice defects such as vacancies or voids leaving unpaired atoms, lead to the formation of local magnetic moments (Vozmediano et al., 2005). The existence and ordering of these moments is largely determined by the bipartite character of the honeycomb lattice seen as two interpenetrating triangular sublattices. Dislocations made by pentagon-heptagon pairs or octagons with an unpaired atom have been studied recently and found to be stable in the graphene lattice (Carpio et al., 2008). These defects frustrate the sublattice structure and affect the magnetic properties of graphene. We study the magnetic properties of graphene in the presence of these defects. The system is described by a pz tight-binding model with electron-electron interactions modelled by a Hubbard term. Spin-polarized mean-field solutions are investigated within an unrestricted Hartree-Fock approximation.
Shuffle dislocation induced magnetic moment in graphene
Lopez-Sancho, M.P., E-mail: pilar@icmm.csic.e [Instituto de Ciencia de Materiales de Madrid-CSIC, C/Sor Juana Ines de la Cruz 3, 28049 Madrid (Spain); Juan, F. de; Vozmediano, M.A.H. [Instituto de Ciencia de Materiales de Madrid-CSIC, C/Sor Juana Ines de la Cruz 3, 28049 Madrid (Spain)
2010-05-15
Graphene, a honeycomb arrangement of carbon atoms, is a promising material for nanoelectronics applications due to its unusual electronic properties. Recent experiments performed on suspended graphene indicate the existence of intrinsic defects on the samples. It is known that lattice defects such as vacancies or voids leaving unpaired atoms, lead to the formation of local magnetic moments (Vozmediano et al., 2005). The existence and ordering of these moments is largely determined by the bipartite character of the honeycomb lattice seen as two interpenetrating triangular sublattices. Dislocations made by pentagon-heptagon pairs or octagons with an unpaired atom have been studied recently and found to be stable in the graphene lattice (Carpio et al., 2008). These defects frustrate the sublattice structure and affect the magnetic properties of graphene. We study the magnetic properties of graphene in the presence of these defects. The system is described by a p{sub z} tight-binding model with electron-electron interactions modelled by a Hubbard term. Spin-polarized mean-field solutions are investigated within an unrestricted Hartree-Fock approximation.
Huang, S.; Ma, Y. Q.; Xu, S. T.
2015-12-01
Well-dispersed uniform cobalt ferrite nanoparticles were synthesized by thermal decomposition of a metal-organic salt in organic solvent with a high boiling point, and characterized by XRD, TEM and detailed magnetic measurements. The moments of CoFe2O4 nanoparticles consist of the core and canted surface moments below 200 K, and the exchange-coupling between the surface and core spins enhanced the remanence (Mr) to saturation (Ms) magnetization ratio (Mr/Ms) at the temperature of 10 K. Interestingly, the anomalous memory effect was observed in a broad temperature range which can be attributed to the relaxation of surface spins below 200 K and the one from the moments of magnetically ordered entity larger than one particle above 200 K.
Abdallah, J; Adam, W; Adzic, P; Albrecht, T; Alderweireld, T; Alemany-Fernandez, R; Allmendinger, T; Allport, P P; Amaldi, Ugo; Amapane, N; Amato, S; Anashkin, E; Andreazza, A; Andringa, S; Anjos, N; Antilogus, P; Apel, W D; Arnoud, Y; Ask, S; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Ballestrero, A; Bambade, P; Barbier, R; Bardin, Dimitri Yuri; Barker, G; Baroncelli, A; Battaglia, Marco; Baubillier, M; Becks, K H; Begalli, M; Behrmann, A; Ben-Haim, E; Benekos, N C; Benvenuti, Alberto C; Bérat, C; Berggren, M; Berntzon, L; Bertrand, D; Besançon, M; Besson, N; Bloch, D; Blom, M; Bluj, M; Bonesini, M; Boonekamp, M; Booth, P S L; Borisov, G; Botner, O; Bouquet, B; Bowcock, T J V; Boyko, I; Bracko, M; Brenner, R; Brodet, E; Brückman, P; Brunet, J M; Bugge, L; Buschmann, P; Calvi, M; Camporesi, T; Canale, V; Carena, F; Castro, N; Cavallo, F R; Chapkin, M M; Charpentier, P; Checchia, P; Chierici, R; Shlyapnikov, P; Chudoba, J; Chung, S U; Cieslik, K; Collins, P; Contri, R; Cosme, G; Cossutti, F; Costa, M J; Crennell, D J; Cuevas-Maestro, J; D'Hondt, J; Dalmau, J; Da Silva, T; Da Silva, W; Della Ricca, G; De Angelis, A; de Boer, Wim; De Clercq, C; De Lotto, B; De Maria, N; De Min, A; De Paula, L S; Di Ciaccio, L; Di Simone, A; Doroba, K; Drees, J; Dris, M; Eigen, G; Ekelöf, T J C; Ellert, M; Elsing, M; Espirito-Santo, M C; Fanourakis, G K; Fassouliotis, D; Feindt, M; Fernández, J; Ferrer, A; Ferro, F; Flagmeyer, U; Föth, H; Fokitis, E; Fulda-Quenzer, F; Fuster, J A; Gandelman, M; García, C; Gavillet, P; Gazis, E N; Gokieli, R; Golob, B; Gómez-Ceballos, G; Gonçalves, P; Graziani, E; Grosdidier, G; Grzelak, K; Guy, J; Haag, C; Hallgren, A; Hamacher, K; Hamilton, K; Haug, S; Hauler, F; Hedberg, V; Hennecke, M; Herr, H; Hoffman, J; Holmgren, S O; Holt, P J; Houlden, M A; Hultqvist, K; Jackson, J N; Jarlskog, G; Jarry, P; Jeans, D; Johansson, E K; Johansson, P D; Jonsson, P; Joram, C; Jungermann, L; Kapusta, F; Katsanevas, S; Katsoufis, E C; Kernel, G; Kersevan, B P; Kerzel, U; Kiiskinen, A P; King, B T; Kjaer, N J; Kluit, P; Kokkinias, P; Kourkoumelis, C; Kuznetsov, O; Krumshtein, Z; Kucharczyk, M; Lamsa, J; Leder, G; Ledroit, F; Leinonen, L; Leitner, R; Lemonne, J; Lepeltier, V; Lesiak, T; Liebig, W; Liko, D; Lipniacka, A; Lopes, J H; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J; Malek, A; Maltezos, S; Mandl, F; Marco, J; Marco, R; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Masik, J; Mastroyiannopoulos, N; Matorras, F; Matteuzzi, C; Mazzucato, F; Mazzucato, M; McNulty, R; Meroni, C; Migliore, E; Mitaroff, W A; Mjörnmark, U; Moa, T; Moch, M; Mönig, K; Monge, R; Montenegro, J; Moraes, D; Moreno, S; Morettini, P; Müller, U; Münich, K; Mulders, M; Mundim, L; Murray, W; Muryn, B; Myatt, G; Myklebust, T; Nassiakou, M; Navarria, Francesco Luigi; Nawrocki, K; Nicolaidou, R; Nikolenko, M; Oblakowska-Mucha, A; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, R; Österberg, K; Ouraou, A; Oyanguren, A; Paganoni, M; Paiano, S; Palacios, J P; Palka, H; Papadopoulou, T D; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Passon, O; Peralta, L; Perepelitsa, V F; Perrotta, A; Petrolini, A; Piedra, J; Pieri, L; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Poireau, V; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Pukhaeva, N; Pullia, Antonio; Rames, J; Ramler, L; Read, A; Rebecchi, P; Rehn, J; Reid, D; Reinhardt, R; Renton, P B; Richard, F; Rídky, J; Rivero, M; Rodríguez, D; Romero, A; Ronchese, P; Roudeau, P; Rovelli, T; Ruhlmann-Kleider, V; Ryabtchikov, D; Sadovskii, A; Salmi, L; Salt, J; Savoy-Navarro, A; Schwickerath, U; Segar, A; Sekulin, R L; Siebel, M; Sissakian, A N; Smadja, G; Smirnova, O G; Sokolov, A; Sopczak, A; Sosnowski, R; Spassoff, Tz; Stanitzki, M; Stocchi, A; Strauss, J; Stugu, B; Szczekowski, M; Szeptycka, M; Szumlak, T; Tabarelli de Fatis, T; Taffard, A C; Tegenfeldt, F; Timmermans, J; Tkatchev, L G; Tobin, M; Todorovova, S; Tomé, B; Tonazzo, A; Tortosa, P; Travnicek, P; Treille, D; Tristram, G; Trochimczuk, M; Troncon, C; Turluer, M L; Tyapkin, I A; Tyapkin, P; Tzamarias, S; Uvarov, V; Valenti, G; van Dam, P; Van Eldik, J; Van Lysebetten, A; Van Remortel, N; Van Vulpen, I; Vegni, G; Veloso, F; Venus, W A; Verdier, P; Verzi, V; Vilanova, D; Vitale, L; Vrba, V; Wahlen, H; Washbrook, A J; Weiser, C; Wicke, D; Wickens, J H; Wilkinson, G; Winter, M; Witek, M; Yushchenko, O P; Zalewska-Bak, A; Zalewski, P; Zavrtanik, D; Zhuravlov, V; Zimin, N I; Zintchenko, A; Zupan, M
2004-01-01
Tau-pair production in the process e+e- -> e+e-tau+tau- was studied using data collected by the DELPHI experiment at LEP2 during the years 1997 - 2000. The corresponding integrated luminosity is 650 pb^{-1}. The values of the cross-section obtained are found to be in agreement with QED predictions. Limits on the anomalous magnetic and electric dipole moments of the tau lepton are deduced.
Development of a Thin Film Magnetic Moment Reference Material.
Pappas, D P; Halloran, S T; Owings, R R; da Silva, F C S
2008-01-01
In this paper we present the development of a magnetic moment reference material for low moment magnetic samples. We first conducted an inter-laboratory comparison to determine the most useful sample dimensions and magnetic properties for common instruments such as vibrating sample magnetometers (VSM), SQUIDs, and alternating gradient field magnetometers. The samples were fabricated and then measured using a vibrating sample magnetometer. Their magnetic moments were calibrated by tracing back to the NIST YIG sphere, SRM 2853. PMID:27096108
Magnetic resonance signal moment determination using the Earth's magnetic field
Fridjonsson, Einar Orn
2015-03-01
We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth\\'s magnetic field system.
Quantum tunneling of the magnetic moment in a free nanoparticle
We study tunneling of the magnetic moment in a particle that has full rotational freedom. Exact energy levels are obtained and the ground-state magnetic moment is computed for a symmetric rotor. The effect of mechanical freedom on spin tunneling manifests itself in a strong dependence of the magnetic moment on the moments of inertia of the rotor. The energy of the particle exhibits quantum phase transitions between states with different values of the magnetic moment. Particles of various shapes are investigated and the quantum phase diagram is obtained. - Highlights: ► We obtain an exact analytical solution of a tunneling spin in a mechanical rotator. ► The quantum phase diagram shows magnetic moment dependence on rotator shape and size. ► Our work explains magnetic properties of free atomic clusters and magnetic molecules.
Energy of magnetic moment of superconducting current in magnetic field
Gurtovoi, V.L.; Nikulov, A.V., E-mail: nikulov@iptm.ru
2015-09-15
Highlights: • Quantization effects observed in superconducting loops are considered. • The energy of magnetic moment in magnetic field can not be deduced from Hamiltonian. • This energy is deduced from a history of the current state in the classical case. • It can not be deduced directly in the quantum case. • Taking this energy into account demolishes agreement between theory and experiment. - Abstract: The energy of magnetic moment of the persistent current circulating in superconducting loop in an externally produced magnetic field is not taken into account in the theory of quantization effects because of identification of the Hamiltonian with the energy. This identification misleads if, in accordance with the conservation law, the energy of a state is the energy expended for its creation. The energy of magnetic moment is deduced from a creation history of the current state in magnetic field both in the classical and quantum case. But taking this energy into account demolishes the agreement between theory and experiment. Impartial consideration of this problem discovers the contradiction both in theory and experiment.
Energy of magnetic moment of superconducting current in magnetic field
Highlights: • Quantization effects observed in superconducting loops are considered. • The energy of magnetic moment in magnetic field can not be deduced from Hamiltonian. • This energy is deduced from a history of the current state in the classical case. • It can not be deduced directly in the quantum case. • Taking this energy into account demolishes agreement between theory and experiment. - Abstract: The energy of magnetic moment of the persistent current circulating in superconducting loop in an externally produced magnetic field is not taken into account in the theory of quantization effects because of identification of the Hamiltonian with the energy. This identification misleads if, in accordance with the conservation law, the energy of a state is the energy expended for its creation. The energy of magnetic moment is deduced from a creation history of the current state in magnetic field both in the classical and quantum case. But taking this energy into account demolishes the agreement between theory and experiment. Impartial consideration of this problem discovers the contradiction both in theory and experiment
Anomalous transport effects in magnetically-confined plasma columns
The evolution of density structure in a magnetized plasma column is analyzed accounting for anomalous diffusion due to the lower hybrid drift instability. The plasma column is found to be divided into regions of classical, anomalous, and intermediate diffusivity. The bulk behavior, described in terms of radial confinement time, depends most sensitively upon the particle line density (ion/cm). For broad plasmas (large line density), the transport is characteristic of classical diffusion, and for slender plasmas (small line density) the transport is characteristic of anomalous diffusion. For intermediate line densities, the transport undertakes a rapid transition from classical to anomalous. Correlations between the theoretical results and past experiments are described
Morales-Casique, E.; Lezama-Campos, J. L.; Guadagnini, A.; Neuman, S. P.
2013-05-01
Modeling tracer transport in geologic porous media suffers from the corrupt characterization of the spatial distribution of hydrogeologic properties of the system and the incomplete knowledge of processes governing transport at multiple scales. Representations of transport dynamics based on a Fickian model of the kind considered in the advection-dispersion equation (ADE) fail to capture (a) the temporal variation associated with the rate of spreading of a tracer, and (b) the distribution of early and late arrival times which are often observed in field and/or laboratory scenarios and are considered as the signature of anomalous transport. Elsewhere we have presented exact stochastic moment equations to model tracer transport in randomly heterogeneous aquifers. We have also developed a closure scheme which enables one to provide numerical solutions of such moment equations at different orders of approximations. The resulting (ensemble) average and variance of concentration fields were found to display a good agreement against Monte Carlo - based simulation results for mildly heterogeneous (or well-conditioned strongly heterogeneous) media. Here we explore the ability of the moment equations approach to describe the distribution of early arrival times and late time tailing effects which can be observed in Monte-Carlo based breakthrough curves (BTCs) of the (ensemble) mean concentration. We show that BTCs of mean resident concentration calculated at a fixed space location through higher-order approximations of moment equations display long tailing features of the kind which is typically associated with anomalous transport behavior and are not represented by an ADE model with constant dispersive parameter, such as the zero-order approximation.
Sigma-lambda transition magnetic moment
The Primakoff effect was utilized in a measurement of the Σ0-Λ transition magnetic moment at the Fermilab neutral hyperon facility. A beam containing Λ's with average momenta of 150 GeV/c passed through a target. A small fraction of them interacted with the Coulomb field of the target nuclei to produce a Σ0 which subsequently decayed via the process:Σ0 → Λγ. A sample of 5 x 105 Λγ events were analyzed for 7 different targets, and yielded a total of 2028 +/- 139 Coulomb-produced Σ0's. The total Primakoff cross sections for Λ on beryllium, tin, and lead were determined to be σ/sub Be/ = 0.033 +/- 0.022 mb, σ/sub Sn/ = 3.28 +/- 0.34 mb, and σ/sub Pb/ = 9.20 +/- 0.81 mb. There is an additional 7% systematic uncertainty. The Primakoff formalism predicts σ proportional to Z2 μ/sub ΣΛ/ 2, where μ/sub Σλ/ is the Σ0-Λ transition magnetic moment. A least-squares fit of the experimental cross sections to this functional form yielded absolute value of μ/sub ΣΛ/ = (1.59 +/- 0.05 +/- 0.05) nuclear magnetons. This corresponds to a Σ0 lifetime of tau = (0.76 +/- 0.05 +/- 0.05) x 10-19 seconds or a radiative width of Gamma = (8.6 +/- 0.6 +/- 0.6) keV, where the uncertainties are statistical and systematic, respectively. An additional uncertainty due to approximations in the Primakoff formalism applies to these derived quantities: <5% on tau and Gamma, and <2.5% on absolute value of μ/sub ΣΛ/
Anomalous transport model study of chiral magnetic effects in heavy ion collisions
Sun, Yifeng; Li, Feng
2016-01-01
Using an anomalous transport model for massless quarks, we study the effect of magnetic field on the elliptic flows of quarks and antiquarks in relativistic heavy ion collisions. With initial conditions from a blast wave model and assuming that the strong magnetic field produced in non-central heavy ion collisions can last for a sufficiently long time, we obtain an appreciable electric quadrupole moment in the transverse plane of a heavy ion collision, which subsequently leads to a splitting between the elliptic flows of quarks and antiquarks as expected from the chiral magnetic wave formed in the produced QGP and observed in experiments at the Relativistic Heavy Ion Collider (RHIC).
Anomalous electron trapping by magnetic flux tubes and electric current vortices
Bentosela, F.; Exner, P.; Zagrebnov, V. A.
1998-01-01
We consider an electron with an anomalous magnetic moment, g>2, confined to a plane and interacting with a nonhomogeneous magnetic field B, and investigate the corresponding Pauli Hamiltonian. We prove a lower bound on the number of bound states for the case when B is of a compact support and the related flux is $N+\\epsilon, \\epsilon\\in(0,1]$. In particular, there are at least N+1 bound states if B does not change sign. We also consider the situation where the magnetic field is due to a local...
Bounds on radii and magnetic dipole moments of quarks and leptons from LEP, SLC and HERA
Leptons, quarks and gauge bosons are assumed to be pointlike particles in the Standard Model. Stringent bounds on the radii of quarks and leptons and their weak anomalous magnetic moments can be derived from the high-precision measurements at LEP and SLC. We find a model-independent bound of R-17 cm for quark and lepton radii. HERA will provide complementary information on the electromagnetic static properties of the quarks and the parameters of the charged quark currents. (orig.)
Magnetic moment non-conservation in magnetohydrodynamic turbulence models
Dalena, S; Rappazzo, A F; Mace, R L; Matthaeus, W H
2012-01-01
The fundamental assumptions of the adiabatic theory do not apply in presence of sharp field gradients as well as in presence of well developed magnetohydrodynamic turbulence. For this reason in such conditions the magnetic moment $\\mu$ is no longer expected to be constant. This can influence particle acceleration and have considerable implications in many astrophysical problems. Starting with the resonant interaction between ions and a single parallel propagating electromagnetic wave, we derive expressions for the magnetic moment trapping width $\\Delta \\mu$ (defined as the half peak-to-peak difference in the particle magnetic moment) and the bounce frequency $\\omega_b$. We perform test-particle simulations to investigate magnetic moment behavior when resonances overlapping occurs and during the interaction of a ring-beam particle distribution with a broad-band slab spectrum. We find that magnetic moment dynamics is strictly related to pitch angle $\\alpha$ for a low level of magnetic fluctuation, $\\delta B/B_0...
Numerical modeling of higher order magnetic moments in UXO discrimination
Sanchez, V.; Yaoguo, L.; Nabighian, M.N.; Wright, D.L.
2008-01-01
The surface magnetic anomaly observed in unexploded ordnance (UXO) clearance is mainly dipolar, and consequently, the dipole is the only magnetic moment regularly recovered in UXO discrimination. The dipole moment contains information about the intensity of magnetization but lacks information about the shape of the target. In contrast, higher order moments, such as quadrupole and octupole, encode asymmetry properties of the magnetization distribution within the buried targets. In order to improve our understanding of magnetization distribution within UXO and non-UXO objects and to show its potential utility in UXO clearance, we present a numerical modeling study of UXO and related metallic objects. The tool for the modeling is a nonlinear integral equation describing magnetization within isolated compact objects of high susceptibility. A solution for magnetization distribution then allows us to compute the magnetic multipole moments of the object, analyze their relationships, and provide a depiction of the anomaly produced by different moments within the object. Our modeling results show the presence of significant higher order moments for more asymmetric objects, and the fields of these higher order moments are well above the noise level of magnetic gradient data. The contribution from higher order moments may provide a practical tool for improved UXO discrimination. ?? 2008 IEEE.
Electron Orbital Magnetic Moments in the Armchair Carbon Nanotubes
CHEN Jing-Zhe; CHEN Xing; LIU Guang-Nua; HAN Ru-Shan
2008-01-01
@@ Based on the density functional theory, we calculate the band structure of an armchair carbon nanotube in an axial magnetic field. The result shows that there are two kinds of magnetic moments with different symmetries. One is the Aharonov Bohm-type magnetic moment which can be easily understood with classical picture, the other belonging to the valence, and conduction sub-bands should be explained by quantum mechanics. We use an effective mass model to analyse the magnetic moments and by comparing with the result of first-principle calculation, we conclude that the effective mass model is reasonable to estimate the change of the band gap in magnetic fields.
Magnetic Moment Formulas of Baryons Determined by Quantum Numbers
Chang, Yi-Fang
2008-01-01
We propose that the magnetic moment formulas of baryons may be determined by quantum numbers, and obtain three formulas. This is a new type of magnetic moment formula, and agrees better with the experimental values. It is also similar to corresponding mass formulas of hadrons.
Octet baryon magnetic moments in light cone QCD sum rules
Aliev, T M; Özpineci, A
2002-01-01
Octet baryon magnetic moments are calculated in framework of the light cone QCD sum rules. The analysis is carried for the general form of the interpolating currents for octet baryons. A comparison of our results on the magnetic moments of octet baryons with the predictions of other approaches and experimental data is presented.
Anomalous magnetic field effects on graphene
Full text: Graphene exhibits anomalous properties in externally applied magnetic field. The orbital susceptibility of graphene has a singularity expressed as a delta function in Fermi energy EF, which diverges at Dirac point (EF =0) and vanishes otherwise. The singular diamagnetism is modified by various external factors such as the disorder potential [1], and the band gap opening [2,3], the finite-size effect [4] and the multilayer stacking [5], and studying those effects give deeper insights into the origin of the diamagnetic singularity of Dirac electron. The delta-function singularity is generally weakened by the electronic coupling between different graphene layers. In usual AB-stacked multilayer graphite, the interlayer coupling changes monlayer's linear band to quadratic, and then the susceptibility peak is broadened into a less singular logarithmic curve [5]. In a turbostratic (randomly-stacked) graphene multilayer, on the other hand, the diamagnetism generally becomes much stronger than in AB-stacked graphite, because the interlayer coupling is significantly reduced in misoriented lattice structure. There the external magnetic field is significantly screened inside the sample in low temperatures, and even a perfect screening is achieved at zero temperature in an ideal sample [4]. When the stacking angle between two graphene layers becomes as small as a few degree, the electronic structure is strongly modified by the long-period lattice structure with a Moire pattern. In increasing magnetic field, the spectrum gradually evolves into a fractal band structure called Hofstadter's butterfly, where the Hall conductivity exhibits a nonmonotonic behavior as a function of Fermi energy [6]. In finite-sized graphene system such as graphene ribbon and graphene nano-islands, the finite-size effect also changes the singular diamagnetism.[4] At T=0, the susceptibility χ(EF) oscillates between diamagnetism and paramagnetism in accordance with the subband structure formed
Magnetic moments of charm baryons in chiral perturbation theory
Magnetic moments of the charm baryons of the sextet and of the 3*-plet are re-evaluated in the framework of Heavy Hadron Chiral Perturbation Theory (HHCPT). NRQM and broken SU(4) unitary symmetry model are used to obtain tree-level magnetic moments. Calculations of a unitary symmetry part of one-loop contributions to magnetic moments of the charm baryons are performed in detail in terms of the SU(4) couplings of charm baryons to Goldstone bosons. The relations between the magnetic moments of the sextet 1/2 baryons with the one-loop corrections are shown to coincide with the NRQM relations. The correspondence between HHCPT results and those of NRQM and unitary symmetry model is discussed. It is shown that one-loop corrections can effectively be absorbed into the tree-level formulae for the magnetic moments of the charm baryons in the broken SU(4) unitary symmetry model and partially in the NRQM. (author)
Numerical modeling of magnetic moments for UXO applications
Sanchez, V.; Li, Y.; Nabighian, M.; Wright, D.
2006-01-01
The surface magnetic anomaly observed in UXO clearance is mainly dipolar and, consequently, the dipole is the only magnetic moment regularly recovered in UXO applications. The dipole moment contains information about intensity of magnetization but lacks information about shape. In contrast, higher-order moments, such as quadrupole and octupole, encode asymmetry properties of the magnetization distribution within the buried targets. In order to improve our understanding of magnetization distribution within UXO and non-UXO objects and its potential utility in UXO clearance, we present a 3D numerical modeling study for highly susceptible metallic objects. The basis for the modeling is the solution of a nonlinear integral equation describing magnetization within isolated objects. A solution for magnetization distribution then allows us to compute magnetic moments of the object, analyze their relationships, and provide a depiction of the surface anomaly produced by different moments within the object. Our modeling results show significant high-order moments for more asymmetric objects situated at depths typical of UXO burial, and suggest that the increased relative contribution to magnetic gradient data from these higher-order moments may provide a practical tool for improved UXO discrimination.
Object representation and magnetic moments in thin alkali films
Garrett, Douglas C.
2008-10-01
impurities 1/taus and their magnetic cross section sigmas are calculated. We find that single V surface impurities are magnetic while single Mo and Co impurities are non-magnetic. Co surface clusters are magnetic. In chapter 7, thin films of Na, K, Rb and Cs are quench condensed, then covered with 1/100 of a mono-layer of Ti and finally covered with the original host. The magnetization of the films is measured by means of the anomalous Hall effect. An anomalous Hall resistance RAHE is observed for Ti on the surface of K, Rb and Cs and for Ti inside of Cs. Essentially the RAHE varies linearly with the magnetic field and is inversely proportional to the inverse temperature. A small non-linearity of RAHE suggests a Ti moment of about 1microB.
Neutral fermion with magnetic moment in external electromagnetic fields
The Dirac-Pauli equation describes interaction of a substantial neutral fermion having μ magnetic dipole moment with the external electromagnetic field. One determined the precise solutions of that equation and the relevant spectrum of energies for the external magnetic field with axial symmetry. The spin-orbital interaction of a neutral fermion with magnetic moment is shown to govern both the specific features of quantum states and the spectrum of fermion energies. These are the bound states of neutral fermion with magnetic moment in some external electrical fields even if the Dirac-Pauli equation does not have a member with fermion mass
Bounds on the anomalous magnetic moment and the electric dipole moment of the τ neutrino are calculated through the reaction e+e-→νν-barγ at the Z1 pole, and in the framework of a left-right symmetric model. The results are based on the recent data reported by the L3 Collaboration at CERN e+e- collider LEP. We find that the bounds are almost independent of the mixing angle φ of the model in the allowed experimental range for this parameter. In addition, the analytical and numerical results for the cross section have never been reported in the literature before
Pseudoclassical Model of Spinning Particle with Anomalous Magnetic Momentum
Gitman, D M
1993-01-01
A generalization of the pseudoclassical action of a spinning particle in the presence of an anomalous magnetic momentum is given. The action is written in reparametrization and supergauge invariant form. The Dirac quantization, based on the Hamiltonian analyses of the model, leads to the Dirac-Pauli equation for a particle with an anomalous magnetic momentum in an external electromagnetic field. Due to the structure of first-class constraints in that case, the Dirac quantization demands for consistency to take into account an operators ordering problem.
Fits combining hyperon semileptonic decays and magnetic moments and CVC
We have performed a test of CVC by determining the baryon charges and magnetic moments from the hyperon semileptonic data. Then CVC was applied in order to make a joint fit of all baryon semileptonic decay data and baryon magnetic moments for the spectrum generating group (SG) model as well as for the conventional (cabibbo and magnetic moments in nuclear magnetons) model. The SG model gives a very good fit with chi2/n/sub D/ = 25/20 approximately equals 21% C.L. whereas the conventional model gives a fit with chi2/n/sub D/ = 244/20
Magnetic moment distributions in α-Fe nanowire array
LI; Fashen; (李发伸); REN; Liyuan; (任立元); NIU; Ziping; (牛紫平); WANG; Haixin; (王海新); WANG; Tao; (王涛)
2003-01-01
α-Fe nanowire array has been electrodeposited into anodic aluminum oxide template. The magnetic moment distributions, in the interior and near the extremities of α-Fe nanowire with 60 nm in diameter, have been studied by means of transmission Mossbauer spectroscopy (MS), conversion electron Mossbauer spectroscopy (CEMS) and micromagnetic simulation. Transmission Mossbauer spectrum (MS) shows that the magnetic moments, inside the α-Fe nanowire array, are well parallel to nanowire, while conversion electron Mossbauer spectrum (CEMS) reveals that the magnetic moments, near the extremities of nanowire, diverge from the long axis of wire, and the average diverging angle calculated by the intensity ratio ofthe 2,5 peaks is about 24.0°. Moreover, the magnetic moment distributions of different depths to the top of wire are counted using micromagnetic simulation, which indicates that, the interior magnetic moments are strictly parallel to nanowire, and the closer the magnetic moment to the top of wire, the larger the diverging angle. Magnetic measurement shows that this α-Fe nanowire array represents a strong magnetic anisotropy.
Lunar magnetic field - Permanent and induced dipole moments
Russell, C. T.; Coleman, P. J., Jr.; Schubert, G.
1974-01-01
Apollo 15 subsatellite magnetic field observations have been used to measure both the permanent and the induced lunar dipole moments. Although only an upper limit of 1.3 x 10 to the 18th gauss-cubic centimeters has been determined for the permanent dipole moment in the orbital plane, there is a significant induced dipole moment which opposes the applied field, indicating the existence of a weak lunar ionosphere.
Spacecraft Attitude Stabilization with Piecewise-Constant Magnetic Dipole Moment
Celani, Fabio
2016-05-01
In actual implementations of magnetic control laws for spacecraft attitude stabilization, the time in which Earth magnetic field is measured must be separated from the time in which magnetic dipole moment is generated. The latter separation translates into the constraint of being able to genere only piecewise-constant magnetic dipole moment. In this work we present attitude stabilization laws using only magnetic actuators that take into account of the latter aspect. Both a state feedback and an output feedback are presented, and it is shown that the proposed design allows for a systematic selection of the sampling period.
Hernando, Antonio; Crespo, Patricia [Instituto de Magnetismo Aplicado, UCM-CSIC-ADIF, Las Rozas. P.O. Box 155, 28230 Madrid (Spain); Dept. Fisica de Materiales, Universidad Complutense, Madrid (Spain); Garcia, Miguel Angel [Instituto de Ceramica y Vidrio, CSIC, C/ Kelsen, 5, Madrid 28049 (Spain); Coey, Michael [Trinity College Dublin, Dublin (Ireland); Ayuela, Andres; Echenique, Pedro Miguel [Centro de Fisica de Materiales, CFM-MPC CSIC-UPV/EHU, Donostia International Physics Center (DIPC), 20018 San Sebastian (Spain); Departamento de Fisica de Materiales, Fac. de Quimicas, Universidad del Pais Vasco UPV-EHU, 20018 San Sebastian (Spain)
2011-10-15
In this article we review the exotic magnetism of nanoparticles (NPs) formed by substances that are not magnetic in bulk as described with generality in Section 1. In particular, the intrinsic character of the magnetism observed on capped Au and ZnO NPs is analysed. X-ray magnetic circular dichroism (XMCD) analysis has shown that the magnetic moments are intrinsic and lie in the Au and Zn atoms, respectively, as analysed in Section 2, where the general theoretical ideas are also revisited. Since impurity atoms bonded to the surface act as donor or acceptor of electrons that occupy the surface states, the anomalous magnetic response is analysed in terms of the surface band in Section 3. Finally, Section 4 summarizes our last theoretical proposal. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Birefringence Determination of Magnetic Moments of Magnetotactic Bacteria
Rosenblatt, Charles; de Araujo, F. Flavio Torres; Frankel, Richard B.
1982-01-01
A birefringence technique is used to determine the average magnetic moments of magnetotactic bacteria in culture. Differences in are noted between live and dead bacteria, as well as between normal density and high density samples of live bacteria.
Neutrino Magnetic Moment Contribution to the Neutrino-Deuteron Reaction
Tsuji, K.; Nakamura, S.; Sato, T.; Kubodera, K.; Myhrer, F.
2004-01-01
We study the effect of the neutrino magnetic moment on the neutrino-deuteron breakup reaction, using a method called the standard nuclear physics approach, which has already been well tested for several electroweak processes involving the deuteron.
Magnetic dipole moments of the heavy tensor mesons in QCD
The magnetic dipole moments of the D2, and DS2, B2, and BS2 heavy tensor mesons are estimated in framework of the light cone QCD sum rules. It is observed that the magnetic dipole moments for the charged mesons are larger than that of its neutral counterpart. It is found that the SU(3) flavor symmetry violation is about 10 % in both b and c sectors
Magnetic dipole moments of the heavy tensor mesons in QCD
The magnetic dipole moments of the D2, and DS2, B2, and BS2 heavy tensor mesons are estimated in framework of the light cone QCD sum rules. It is observed that the magnetic dipole moments for the charged mesons are larger than that of its neutral counterpart. It is found that the SU(3) flavor symmetry violation is about 10 % in both b and c sectors. (orig.)
Magnetic dipole moments of the heavy tensor mesons in QCD
Aliev, T. M., E-mail: taliev@metu.edu.tr [Physics Department, Middle East Technical University, 06531, Ankara (Turkey); Institute of Physics, Baku (Azerbaijan); Barakat, T., E-mail: tbarakat@KSU.EDU.SA [Physics Department, Middle East Technical University, 06531, Ankara (Turkey); Physics and Astronomy Department, King Saud University, Riyadh (Saudi Arabia); Savcı, M., E-mail: savci@metu.edu.tr [Physics Department, Middle East Technical University, 06531, Ankara (Turkey)
2015-11-03
The magnetic dipole moments of the D{sub 2}, and D{sub S{sub 2}}, B{sub 2}, and B{sub S{sub 2}} heavy tensor mesons are estimated in framework of the light cone QCD sum rules. It is observed that the magnetic dipole moments for the charged mesons are larger than that of its neutral counterpart. It is found that the SU(3) flavor symmetry violation is about 10 % in both b and c sectors.
Magnetic dipole moments of the heavy tensor mesons in QCD
Aliev, T M; Savcı, M
2015-01-01
The magnetic dipole moments of the ${\\cal D}_2$, and ${\\cal D}_{S_2}$, ${\\cal B}_2$, and ${\\cal B}_{S_2}$ heavy tensor mesons are estimated in framework of the light cone QCD sum rules. It is observed that the magnetic dipole moments for the charged mesons are larger than that of its neutral counterpart. It is found that the $SU(3)$ flavor symmetry violation is about 10\\% in both $b$ and $c$ sectors.
Magnetic Instability in Accretion Disks with Anomalous Viscosity
ZHOU Ai-Ping; LI Xiao-Qing
2004-01-01
@@ Using the new model of anomalous viscosity, we investigate the magnetic instability in the accretion disks and give the dispersion formula. On the basis of the dispersion relation obtained, it is numerically shown that the instability condition of viscous accretion disk is well consistent with that of the ideal accretion disk, namely there would be magneto-rotational instability in the presence of a vertical weak magnetic field. For a given distance R from the centre of the disk, the growth rate in the anomalous case deviates from the ideal case more greatly when the vertical magnetic field is smaller. The large viscosity limits to the instability. In the two cases, the distributions of growth rate with wave number k approach each other when the magnetic field increases. It greatly represses the effect of viscosity.
Parreno, Assumpta; Tiburzi, Brian C; Wilhelm, Jonas; Chang, Emmanuel; Detmold, William; Orginos, Kostas
2016-01-01
Lattice QCD calculations with background magnetic fields are used to determine the magnetic moments of the octet baryons. Computations are performed at the physical value of the strange quark mass, and two values of the light quark mass, one corresponding to the SU(3) flavor-symmetric point, where the pion mass is ~ 800 MeV, and the other corresponding to a pion mass ~ 450 MeV. The moments are found to exhibit only mild pion-mass dependence when expressed in terms of appropriately chosen magneton units---the natural baryon magneton. This suggests that simple extrapolations can be used to determine magnetic moments at the physical point, and extrapolated results are found to agree with experiment within uncertainties. A curious pattern is revealed among the anomalous baryon magnetic moments which is linked to the constituent quark model, however, careful scrutiny exposes additional features. Relations expected to hold in the large-Nc limit of QCD are studied; and, in one case, the quark model prediction is sig...
The Standard Model Prediction of the Muon Anomalous Magnetic Moment
Passera, M.
2004-01-01
This article reviews and updates the Standard Model prediction of the muon g-2. QED, electroweak and hadronic contributions are presented, and open questions discussed. The theoretical prediction deviates from the present experimental value by 2-3 standard deviations, if e+e- annihilation data are used to evaluate the leading hadronic term.
Standard Model Prediction of the Muon Anomalous Magnetic Moment
Prades, Joaquim
2009-01-01
Comment: 10 pages. Invited talk by J.P. at Topical FLAVIAnet Workshop on "Low Energy Constraints on Extensions of the Standard Model", July 24-26 2009, Kazimierz, Poland. v5: updated g-2 experimental value, 3.2 sigmas discrepancy
Magnetic dipole moment estimates for an ancient lunar dynamo
Anderson, K. A.
1983-01-01
The four measured planetary magnetic moments combined with a recent theoretical prediction for dynamo magnetic fields suggests that no dynamo exists in the moon's interior today. For the moon to have had a magnetic moment in the past of sufficient strength to account for at least some of the lunar rock magnetism, the rotation would have been about twenty times faster than it is today and the radius of the fluid, conducting core must have been about 750 km. The argument depends on the validity of the Busse solution to the validity of the MHD problem of planetary dynamos.
Zhou, X.; Ma, L.; Shi, Z.; Fan, W. J.; Evans, R. F. L.; Zheng, Jian-Guo; Chantrell, R. W.; Mangin, S.; Zhang, H. W.; Zhou, S. M.
2015-03-01
In this work, disordered-IrMn3/insulating-Y3Fe5O12 exchange-biased bilayers are studied. The behavior of the net magnetic moment ΔmAFM in the antiferromagnet is directly probed by anomalous and planar Hall effects, and anisotropic magnetoresistance. The ΔmAFM is proved to come from the interfacial uncompensated magnetic moment. We demonstrate that the exchange bias and rotational hysteresis loss are induced by partial rotation and irreversible switching of the ΔmAFM. In the athermal training effect, the state of the ΔmAFM cannot be recovered after one cycle of hysteresis loop. This work highlights the fundamental role of the ΔmAFM in the exchange bias and facilitates the manipulation of antiferromagnetic spintronic devices.
Quantum Anomalous Hall Effect in Magnetic Insulator Heterostructure
Xu, Gang; Jing WANG; FELSER, CLAUDIA; Qi, Xiao-Liang; Zhang, Shou-Cheng
2014-01-01
Based on ab initio calculations, we predict that a monolayer of Cr-doped (Bi,Sb)2Te3 and GdI2 heterostructure is a quantum anomalous Hall insulator with a non-trivial band gap up to 38 meV. The principle behind our prediction is that the band inversion between two topologically trivial ferromagnetic insulators can result in a non-zero Chern number, which offers a better way to realize the quantum anomalous Hall state without random magnetic doping. In addition, a simple effective model is pre...
Magnetic susceptibility, magnetization, magnetic moment and characterization of Carancas meteorite
Rosales, Domingo
2015-01-01
On September, 15th, 2007, in the community of Carancas (Puno, Peru) a stony meteorite formed a crater explosive type with a mean diameter of 13.5 m. some samples meteorite fragments were collected. The petrologic analysis performed corresponds to a meteorite ordinary chondrite H 4-5. In this paper we have analyzed the magnetic properties of a meteorite fragment with a proton magnetometer. Also in order to have a complete characterization of the Carancas meteorite and its crater, from several papers, articles and reports, we have made a compilation of the most important characteristics and properties of this meteorite.
Dynamic interaction between localized magnetic moments in carbon nanotubes
Costa, A T; Muniz, R B [Instituto de FIsica, Universidade Federal Fluminense, 24210-346 Niteroi, RJ (Brazil); Ferreira, M S [School of Physics, Trinity College Dublin, Dublin 2 (Ireland)], E-mail: antc@if.uff.br, E-mail: bechara@if.uff.br, E-mail: ferreirm@tcd.ie
2008-06-15
Magnetic moments dilutely dispersed in a metallic host tend to be coupled through the conduction electrons of the metal. This indirect exchange coupling (IEC), known to occur for a variety of magnetic materials embedded in several different metallic structures, is of rather long range, especially for low-dimensional structures like carbon nanotubes. Motivated by recent claims that the indirect coupling between magnetic moments in precessional motion has a much longer range than its static counterpart, we consider here how magnetic atoms adsorbed to the walls of a metallic nanotube respond to a time-dependent perturbation that induces their magnetic moments to precess. By calculating the frequency-dependent spin susceptibility, we are able to identify resonant peaks whose respective widths provide information about the dynamic aspect of the IEC. We show that by departing from a purely static representation to another in which the moments are allowed to precess, we change from what is already considered a long-range interaction to another whose range is far superior. In other words, localized magnetic moments embedded in a metallic structure can feel each other's presence more easily when they are set in precessional motion. We argue that such an effect can have useful applications leading to large-scale spintronics devices.
Dynamic interaction between localized magnetic moments in carbon nanotubes
Magnetic moments dilutely dispersed in a metallic host tend to be coupled through the conduction electrons of the metal. This indirect exchange coupling (IEC), known to occur for a variety of magnetic materials embedded in several different metallic structures, is of rather long range, especially for low-dimensional structures like carbon nanotubes. Motivated by recent claims that the indirect coupling between magnetic moments in precessional motion has a much longer range than its static counterpart, we consider here how magnetic atoms adsorbed to the walls of a metallic nanotube respond to a time-dependent perturbation that induces their magnetic moments to precess. By calculating the frequency-dependent spin susceptibility, we are able to identify resonant peaks whose respective widths provide information about the dynamic aspect of the IEC. We show that by departing from a purely static representation to another in which the moments are allowed to precess, we change from what is already considered a long-range interaction to another whose range is far superior. In other words, localized magnetic moments embedded in a metallic structure can feel each other's presence more easily when they are set in precessional motion. We argue that such an effect can have useful applications leading to large-scale spintronics devices
Magnetic Moment of Vector Mesons in the Background Field Method
Lee, F X; Wilcox, Walter
2007-01-01
We report some results for the magnetic moments of vector mesons extracted from mass shifts in the presence of static external magnetic fields. The calculations are done on $24^4$ quenched lattices using standard Wilson actions, with $\\beta$=6.0 and pion mass down to 500 MeV. The results are compared to those from the form factor method.
Resonances and dipole moments in dielectric, magnetic, and magnetodielectric cylinders
Dirksen, A.; Arslanagic, Samel; Breinbjerg, Olav
2011-01-01
An eigenfunction solution to the problem of plane wave scattering by dielectric, magnetic, and magnetodielectric cylinders is used for a systematic investigation of their resonances. An overview of the resonances with electric and magnetic dipole moments, needed in, e.g., the synthesis of...
A new measurement of the Σ+ magnetic moment
A new measurement of the Σ+ magnetic moment is reported. The measurement stems from 12 000 events of the reaction K-p→Σ+π- produced at beam momenta around 460 MeV/c in HYBUC, the hydrogen bubble chamber with an 11.5 T magnetic field. These events represent about 15% of the final statistics. The results from opposite field directions are in close agreement and yield an average value of 2.95 +- 0.31 nuclear magnetons for the total Σ+ magnetic moment. (Auth.)
Determination of the magnetic moment of $^{140}$Pr
Kowalska, M; Kreim, K D; Krieger, A R; Litvinov, Y
We propose to measure the nuclear magnetic moment of the neutron-deficient isotope $^{140}$Pr using collinear laser spectroscopy at the COLLAPS experiment. This nuclide is one of two nuclear systems for which a modulated electron capture decay has been observed in hydrogen-like ions in a storage ring. The firm explanation of the observed phenomenon is still missing but some hypotheses suggest an interaction of the unpaired electron with the surrounding magnetic fields of the ring. In order to verify or discard these hypotheses the magnetic moment of $^{140}$Pr is required since this determines the energy of the 1s hyperfine splitting.
Magnetic dipole moment determination by near-field analysis
Eichhorn, W. L.
1972-01-01
A method for determining the magnetic moment of a spacecraft from magnetic field data taken in a limited region of space close to the spacecraft. The spacecraft's magnetic field equations are derived from first principles. With measurements of this field restricted to certain points in space, the near-field equations for the spacecraft are derived. These equations are solved for the dipole moment by a least squares procedure. A method by which one can estimate the magnitude of the error in the calculations is also presented. This technique was thoroughly tested on a computer. The test program is described and evaluated, and partial results are presented.
The permanent and induced magnetic dipole moment of the moon
Russell, C. T.; Coleman, P. J., Jr.; Lichtenstein, B. R.; Schubert, G.
1974-01-01
Magnetic field observations with the Apollo 15 subsatellite have been used to deduce the components of both the permanent and induced lunar dipole moments in the orbital plane. The present permanent lunar magnetic dipole moment in the orbital plane is less than 1.3 times ten to the eighteenth power gauss-cu cm. Any uniformly magnetized near surface layer is therefore constrained to have a thickness-magnetization product less than 2.5 emu-cm per g. The induced moment opposes the external field, implying the existence of a substantial lunar ionosphere with a permeability between 0.63 and 0.85. Combining this with recent measures of the ratio of the relative field strength at the ALSEP and Explorer 35 magnetometers indicates that the global lunar permeability relative to the plasma in the geomagnetic tail lobes is between 1.008 and 1.03.
Anomalous Hall Effect in Geometrically Frustrated Magnets
D. Boldrin
2012-01-01
space mechanism based on spin chirality that was originally applied to the pyrochlore Nd2Mo2O7 appears unsatisfactory. Recently, an orbital description based on the Aharonov-Bohm effect has been proposed and applied to both the ferromagnetic pyrochlores Nd2Mo2O7 and Pr2Ir2O7; the first of which features long-ranged magnetic order while the latter is a chiral spin liquid. Two further examples of geometrically frustrated conducting magnets are presented in this paper—the kagome-like Fe3Sn2 and the triangular PdCrO2. These possess very different electronic structures to the 3-dimensional heavy-metal pyrochlores and provide new opportunities to explore the different origins of the AHE. This paper summarises the experimental findings in these materials in an attempt to unite the conflicting theoretical arguments.
Searches for Magnetic Monopoles and Anomalously Charged Objects with ATLAS
Katre, Akshay; The ATLAS collaboration
2016-01-01
Results of searches for highly ionising particles and particles with anomalously high electric charge produced in proton-proton collisions in the ATLAS detector are presented. Such signatures, encompassing particles with charges from 10 to 60 times the electron charge, involve high levels of ionization in the ATLAS detector and can arise from magnetic monopoles or models involving technicolor, doubly charged Higgs bosons or composite dark matter models.
Variational master equation approach to dynamics of magnetic moments
Bogolubov, N. N.; Soldatov, A. V.
2016-07-01
Non-equilibrium properties of a model system comprised of a subsystem of magnetic moments strongly coupled to a selected Bose field mode and weakly coupled to a heat bath made of a plurality of Bose field modes was studied on the basis of non-equilibrium master equation approach combined with the approximating Hamiltonian method. A variational master equation derived within this approach is tractable numerically and can be readily used to derive a set of ordinary differential equations for various relevant physical variables belonging to the subsystem of magnetic moments. Upon further analysis of the thus obtained variational master equation, an influence of the macroscopic filling of the selected Bose field mode at low enough temperatures on the relaxation dynamics of magnetic moments was revealed.
The magnetic moments of the hidden-charm pentaquark states
Wang, Guang-Juan; Ma, Li; Liu, Xiang; Zhu, Shi-Lin
2016-01-01
The magnetic moment of a baryon state is an equally important dynamical observable as its mass, which encodes crucial information of its underlying structure. According to the different color-flavor structure, we have calculated the magnetic moments of the hidden-charm pentaquark states with $J^P={\\frac{1}{2}}^{\\pm}$, ${\\frac{3}{2}}^{\\pm}$, ${\\frac{5}{2}}^{\\pm}$ and ${\\frac{7}{2}}^{+}$ in the molecular model, the diquark-triquark model and the diquark-diquark-antiquark model respectively. Although a good description for the pentaquark mass spectrum and decay patterns has been obtained in all the three models, different color-flavor structures lead to different magnetic moments, which can be used to pin down their inner structures and distinguish various models.
Variational master equation approach to dynamics of magnetic moments
Non-equilibrium properties of a model system comprised of a subsystem of magnetic moments strongly coupled to a selected Bose field mode and weakly coupled to a heat bath made of a plurality of Bose field modes were studied on the basis of non-equilibrium master equation approach combined with the approximating Hamiltonian method. A variational master equation derived within this approach is tractable numerically and can be readily used to derive a set of ordinary differential equations for various relevant physical variables belonging to the subsystem of magnetic moments. Upon further analysis of the thus obtained variational master equation, an influence of the macroscopic filling of the selected Bose field mode at low enough temperatures on the relaxation dynamics of magnetic moments was revealed.
Neutrino emission in neutron matter from magnetic moment interactions
Jaikumar, P; Gale, C; Jaikumar, Prashanth; Gale, Charles
2004-01-01
Neutrino emission drives neutron star cooling for the first several hundreds of years after its birth. Given the low energy ($\\sim$ keV) nature of this process, one expects very few nonstandard particle physics contributions which could affect this rate. Requiring that any new physics contributions involve light degrees of freedom, one of the likely candidates which can affect the cooling process would be a nonzero magnetic moment for the neutrino. To illustrate, we compute the emission rate for neutrino pair bremsstrahlung in neutron-neutron scattering through photon-neutrino magnetic moment coupling. We also present analogous differential rates for neutrino scattering off nucleons and electrons that determine neutrino opacities in supernovae. Employing current upper bounds from collider experiments on the tau magnetic moment, we find that the neutrino emission rate can exceed the rate through neutral current electroweak interaction by a factor two, signalling the importance of new particle physics input to ...
Neutral current induced π0 production and neutrino magnetic moment
We have studied the total cross section, Q2, momentum and angular distributions for pions in the ν(ν) induced π0 production from nucleons. The calculations have been done for the weak production induced by the neutral current in the standard model and the electromagnetic production induced by neutrino magnetic moment. It has been found that with the present experimental limits on the muon neutrino magnetic moment μνμ, the electromagnetic contribution to the cross section for the π0 production is small. The neutrino induced neutral current production of π0, while giving an alternative method to study the magnetic moment of neutrino μνμ, does not provide any improvement over the present experimental limit on μνμ from the observation of this process in future experiments at T2K and NOνA.
Magnetic moment of a bound electron
Theoretical predictions underlying determinations of the fine structure constant α and the electron-to-proton mass ratio me/mp are reviewed, with the emphasis on the bound electron magnetic anomaly g-2. The theory of the interaction of hydrogen-like ions with a magnetic field is discussed. The status of efforts aimed at the determination of O(α(Zα)5) and O(α2(Zα)5) corrections to the g factor is presented. The reevaluation of analogous corrections to the Lamb shift and the hyperfine splitting is summarized.
Effective particle magnetic moment of multi-core particles
Ahrentorp, Fredrik; Astalan, Andrea; Blomgren, Jakob; Jonasson, Christian [Acreo Swedish ICT AB, Arvid Hedvalls backe 4, SE-411 33 Göteborg (Sweden); Wetterskog, Erik; Svedlindh, Peter [Department of Engineering Sciences, Uppsala University, Box 534, SE-751 21 Uppsala (Sweden); Lak, Aidin; Ludwig, Frank [Institute of Electrical Measurement and Fundamental Electrical Engineering, TU Braunschweig, D‐38106 Braunschweig Germany (Germany); IJzendoorn, Leo J. van [Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Westphal, Fritz; Grüttner, Cordula [Micromod Partikeltechnologie GmbH, D ‐18119 Rostock (Germany); Gehrke, Nicole [nanoPET Pharma GmbH, D ‐10115 Berlin Germany (Germany); Gustafsson, Stefan; Olsson, Eva [Department of Applied Physics, Chalmers University of Technology, SE-412 96 Göteborg (Sweden); Johansson, Christer, E-mail: christer.johansson@acreo.se [Acreo Swedish ICT AB, Arvid Hedvalls backe 4, SE-411 33 Göteborg (Sweden)
2015-04-15
In this study we investigate the magnetic behavior of magnetic multi-core particles and the differences in the magnetic properties of multi-core and single-core nanoparticles and correlate the results with the nanostructure of the different particles as determined from transmission electron microscopy (TEM). We also investigate how the effective particle magnetic moment is coupled to the individual moments of the single-domain nanocrystals by using different measurement techniques: DC magnetometry, AC susceptometry, dynamic light scattering and TEM. We have studied two magnetic multi-core particle systems – BNF Starch from Micromod with a median particle diameter of 100 nm and FeraSpin R from nanoPET with a median particle diameter of 70 nm – and one single-core particle system – SHP25 from Ocean NanoTech with a median particle core diameter of 25 nm.
Effective particle magnetic moment of multi-core particles
Ahrentorp, Fredrik; Astalan, Andrea; Blomgren, Jakob; Jonasson, Christian; Wetterskog, Erik; Svedlindh, Peter; Lak, Aidin; Ludwig, Frank; van IJzendoorn, Leo J.; Westphal, Fritz; Grüttner, Cordula; Gehrke, Nicole; Gustafsson, Stefan; Olsson, Eva; Johansson, Christer
2015-04-01
In this study we investigate the magnetic behavior of magnetic multi-core particles and the differences in the magnetic properties of multi-core and single-core nanoparticles and correlate the results with the nanostructure of the different particles as determined from transmission electron microscopy (TEM). We also investigate how the effective particle magnetic moment is coupled to the individual moments of the single-domain nanocrystals by using different measurement techniques: DC magnetometry, AC susceptometry, dynamic light scattering and TEM. We have studied two magnetic multi-core particle systems - BNF Starch from Micromod with a median particle diameter of 100 nm and FeraSpin R from nanoPET with a median particle diameter of 70 nm - and one single-core particle system - SHP25 from Ocean NanoTech with a median particle core diameter of 25 nm.
Fractional impurity moments in two-dimensional noncollinear magnets.
Wollny, Alexander; Fritz, Lars; Vojta, Matthias
2011-09-23
We study dilute magnetic impurities and vacancies in two-dimensional frustrated magnets with noncollinear order. Taking the triangular-lattice Heisenberg model as an example, we use quasiclassical methods to determine the impurity contributions to the magnetization and susceptibility. Most importantly, each impurity moment is not quantized but receives nonuniversal screening corrections due to local relief of frustration. At finite temperatures, where bulk long-range order is absent, this implies an impurity-induced magnetic response of Curie form, with a prefactor corresponding to a fractional moment per impurity. We also discuss the behavior in an applied magnetic field, where we find a singular linear-response limit for overcompensated impurities. PMID:22026900
From magnetic moment to general spin-isospin modes
Study of nuclear magnetic moments is historically reviewed. The first and second order configuration mixings, exhange currents, their interference and isobar currents are discussed. A unified view of the configuration mixings and the exchange currents is presented in connection with a single particle effective magnetic moment operator used in the shell model. Discussion is extended to general nuclear spin-isospin modes with finite energy momentum transfer. Emphasis is on the spin-isospin modes in the quasifree scattering region. Analyses of 40Ca(p→,p→) and 12C(p,n) at Ep = 500 MeV are reported. (orig.)
Magnetic dipole moments of the heavy tensor mesons in QCD
Aliev, T.M. [Middle East Technical University, Physics Department, Ankara (Turkey); Institute of Physics, Baku (Azerbaijan); Barakat, T. [Middle East Technical University, Physics Department, Ankara (Turkey); King Saud University, Physics and Astronomy Department, Riyadh (Saudi Arabia); Savci, M. [Middle East Technical University, Physics Department, Ankara (Turkey)
2015-11-15
The magnetic dipole moments of the D{sub 2}, and D{sub S{sub 2}}, B{sub 2}, and B{sub S{sub 2}} heavy tensor mesons are estimated in framework of the light cone QCD sum rules. It is observed that the magnetic dipole moments for the charged mesons are larger than that of its neutral counterpart. It is found that the SU(3) flavor symmetry violation is about 10 % in both b and c sectors. (orig.)
Quantum anomalous Hall effect in magnetic topological insulators
Jing WANG; Lian, Biao; Zhang, Shou-Cheng
2014-01-01
The search for topologically non-trivial states of matter has become an important goal for condensed matter physics. Here, we give a theoretical introduction to the quantum anomalous Hall (QAH) effect based on magnetic topological insulators in two-dimension (2D) and three-dimension (3D). In 2D topological insulators, magnetic order breaks the symmetry between the counter-propagating helical edge states, and as a result, the quantum spin Hall effect can evolve into the QAH effect. In 3D, magn...
Neutrinos with Magnetic Moment Depolarization Rate in Plasma
Elmfors, P; Raffelt, G G; Sigl, G; Elmfors, Per; Enqvist, Kari; Raffelt, Georg
1997-01-01
Neutrinos with a magnetic moment $\\mu$ change their helicity when interacting with an electromagnetic field. Various aspects of this effect have been described as spin precession, spin-flip scattering, and magnetic Cherenkov radiation. These perspectives are unified in an expression for the electromagnetic field distribution. Our general formula corrects a previous result and generalizes it to the case where the fields cannot be viewed as classical and where the momentum transfers need not be small. We evaluate our result explicitly for a relativistic QED plasma and determine the depolarization rate to leading order in the fine structure constant. Assuming that big-bang nucleosynthesis constraints do not allow a right-handed neutrino in equilibrium we derive the limit $\\mu<6.2\\EE{-11}\\mu_B$ on the neutrino magnetic moment. Bounds on $\\mu$ from a possible large scale magnetic fields are found to be more stringent even for very weak fields.
One-Particle Measurement of the Antiproton Magnetic Moment
DiSciacca, J; Marable, K; Gabrielse, G; Ettenauer, S; Tardiff, E; Kalra, R; Fitzakerley, D W; George, M C; Hessels, E A; Storry, C H; Weel, M; Grzonka, D; Oelert, W; Sefzick, T
2013-01-01
The antiproton $(\\bar{p})$ magnetic moment $\\mu \\bar{p} = \\mu_{\\bar{p}} S/(\\bar{h}/2)$ is proportional to its spin $S$. A single trapped $\\bar{p}$ is used for the first time to measure the $\\bar{p}$ magnetic moment in nuclear magnetons, giving $\\mu_\\bar{p}/\\mu N = -2.792 845 \\pm 0.000 012$. The 4.4 parts per million (ppm) uncertainty is 680 times smaller than previously realized. Comparing to the proton moment $\\mu_{p} = \\mu_{p} S/\\bar{h}/2)$ measured using the same method and trap electrodes gives $\\mu_{\\bar{p}}/\\mu_{p} = -1.000 000 \\pm 0.000 005$ to 5 ppm, consistent with the prediction of the CPT theorem.
Baryon magnetic moments in the effective quark Lagrangian approach
Simonov, YA; Tjon, JA; Weda, J; Simonov, Yu A.
2002-01-01
An effective quark Lagrangian is derived from first principles through bilocal gluon field correlators. It is used to write down equations for baryons, containing both perturbative and nonperturbative fields. As a result one obtains magnetic moments of octet and decuplet baryons without the introduc
Octet magnetic Moments and their sum rules in statistical model
Batra, M
2013-01-01
The statistical model is implemented to find the magnetic moments of all octet baryons. The well-known sum rules like GMO and CG sum rules has been checked in order to check the consistency of our approach. The small discrepancy between the results suggests the importance of breaking in SU(3) symmetry.
Neutrino emission in neutron matter from magnetic moment interactions
Neutrino emission drives neutron star cooling for the first several hundreds of years after its birth. Given the low-energy (∼keV) nature of this process, one expects very few nonstandard particle-physics contributions which could affect this rate. Requiring that any new physics contributions involve light degrees of freedom, one of the likely candidates which can affect the cooling process would be a nonzero magnetic moment for the neutrino. To illustrate, we compute the emission rate for neutrino pair bremsstrahlung in neutron-neutron scattering through photon-neutrino magnetic moment coupling. We also present analogous differential rates for neutrino scattering off nucleons and electrons that determine neutrino opacities in supernovae. Employing current upper bounds from collider experiments on the τ magnetic moment, we find that the neutrino emission rate can exceed the rate through neutral current electroweak interaction by a factor 2, signaling the importance of new particle physics input to a standard calculation of relevance to neutron star cooling. However, astrophysical bounds on the neutrino magnetic moment imply smaller effects
Electromagnetic soliton-particle with spin and magnetic moment
Chernitskii, Alexander A.
2012-01-01
Electromagnetic soliton-particle with both quasi-static and quick-oscillating wave parts is considered. Its mass, spin, charge, and magnetic moment appear naturally when the interaction with distant solitons is considered. The substantiation of Dirac equation for the wave part of the interacting soliton-particle is given.
Examination of the strangeness contribution to the nucleon magnetic moment
Chen, XS; Timmermans, RGE; Sun, WM; Zong, HS; Wang, F
2004-01-01
We examine the nucleon strangeness magnetic moment mu(s) with a lowest order meson cloud model. We observe that (1) strangeness in the nucleon is a natural requirement of the empirical relation mu(p)/mu(n)similar or equal to-3/2, which favors an SU(3) octet meson cloud instead of merely the SU(2) pi
Six-quark bag, exchange currents and trinucleon magnetic moments
The magnetic moments of 3H and 3He are reexamined in the Karl-Miller-Rafelski model of six-quark bag formation. Realistic three-nucleon wavefunctions are taken, and long-range one-pion exchange current corrections are included. It is concluded that the model is compatible with the data. (orig.)
Probabilistic naturalness measure for dipole moments due to new physics
アカマ, ケイイチ; ハットリ, タカシ; カツウラ, カズオ /; Keiichi, Akama; Takashi, Hattori; Kazuo, KATSUURA
2006-01-01
We introduce a probabilistic measure of naturalness (naturalness level) to fix naturalness bounds quantitatively. It is applied to the anomalous magnetic moments and the electric dipole moments due to new physics.
Probabilistic Naturalness Measure for Dipole Moments due to New Physics
Akama, Keiichi; Hattori, Takashi; Katsuura, Kazuo
2003-01-01
We introduce a probabilistic measure of naturalness (naturalness level) to fix naturalness bounds quantitatively. It is applied to the anomalous magnetic moments and the electric dipole moments due to new physics.
In this document, I use some results of my research activities of the last ten years to show the power of x-ray magnetic dichroism for determining magnetic properties of thin layers, multilayers and nano-structures. The use of sum rules for x-ray dichroism allows a quantitative determination of the spin and orbital contributions to the magnetic moment, for each element of a heterogeneous material separately. Used in a qualitative way, x-ray dichroism allows monitoring the magnetization of the different layers in a multilayer material as a function of applied field. In combination with the temporal structure of synchrotron radiation, it is possible to study fast magnetization reversal with element selectivity, which is important for devices like spin valves and magnetic tunnel junctions. Adding the spatial resolution of a photoelectron emission microscope (PEEM), it becomes possible to study all the details of the fast magnetization reversal in complex magnetic systems. (author)
Gate-dependent orbital magnetic moments in carbon nanotubes
Jespersen, Thomas Sand; Grove-Rasmussen, Kasper; Flensberg, Karsten;
2011-01-01
We investigate how the orbital magnetic moments of electron and hole states in a carbon nanotube quantum dot depend on the number of carriers on the dot. Low temperature transport measurements are carried out in a setup where the device can be rotated in an applied magnetic field, thus enabling...... accurate alignment with the nanotube axis. The field dependence of the level structure is measured by excited state spectroscopy and excellent correspondence with a single-particle calculation is found. In agreement with band structure calculations we find a decrease of the orbital magnetic moment with...... increasing electron or hole occupation of the dot, with a scale given by the band gap of the nanotube....
Nonadiabatic behavior of the magnetic moment of a charged particle in a dipole magnetic field
Murakami, Sadayoshi; Sato, Tetsuya; Hasegawa, Akira
1990-01-01
This paper investigates the dynamic behavior of the magnetic moment of a particle confined in a magnetic dipole field in the presence of a low-frequency electrostatic wave. It is shown that there exist two kinds of resonances (the bounce-E x B drift resonance and the wave-drift resonance) by which the adiabaticity of the magnetic moment is broken. The unstable conditions obtained by theoretical considerations showed good agreement with the numerical results.
Mogi, M., E-mail: mogi@cmr.t.u-tokyo.ac.jp; Yoshimi, R.; Yasuda, K.; Kozuka, Y. [Department of Applied Physics and Quantum Phase Electronics Center (QPEC), University of Tokyo, Tokyo 113-8656 (Japan); Tsukazaki, A. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); PRESTO, Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo 102-0075 (Japan); Takahashi, K. S. [RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198 (Japan); Kawasaki, M.; Tokura, Y. [Department of Applied Physics and Quantum Phase Electronics Center (QPEC), University of Tokyo, Tokyo 113-8656 (Japan); RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198 (Japan)
2015-11-02
Quantum anomalous Hall effect (QAHE), which generates dissipation-less edge current without external magnetic field, is observed in magnetic-ion doped topological insulators (TIs) such as Cr- and V-doped (Bi,Sb){sub 2}Te{sub 3}. The QAHE emerges when the Fermi level is inside the magnetically induced gap around the original Dirac point of the TI surface state. Although the size of gap is reported to be about 50 meV, the observable temperature of QAHE has been limited below 300 mK. We attempt magnetic-Cr modulation doping into topological insulator (Bi,Sb){sub 2}Te{sub 3} films to increase the observable temperature of QAHE. By introducing the rich-Cr-doped thin (1 nm) layers at the vicinity of both the surfaces based on non-Cr-doped (Bi,Sb){sub 2}Te{sub 3} films, we have succeeded in observing the QAHE up to 2 K. The improvement in the observable temperature achieved by this modulation-doping appears to be originating from the suppression of the disorder in the surface state interacting with the rich magnetic moments. Such a superlattice designing of the stabilized QAHE may pave a way to dissipation-less electronics based on the higher-temperature and zero magnetic-field quantum conduction.
Quantum anomalous Hall effect (QAHE), which generates dissipation-less edge current without external magnetic field, is observed in magnetic-ion doped topological insulators (TIs) such as Cr- and V-doped (Bi,Sb)2Te3. The QAHE emerges when the Fermi level is inside the magnetically induced gap around the original Dirac point of the TI surface state. Although the size of gap is reported to be about 50 meV, the observable temperature of QAHE has been limited below 300 mK. We attempt magnetic-Cr modulation doping into topological insulator (Bi,Sb)2Te3 films to increase the observable temperature of QAHE. By introducing the rich-Cr-doped thin (1 nm) layers at the vicinity of both the surfaces based on non-Cr-doped (Bi,Sb)2Te3 films, we have succeeded in observing the QAHE up to 2 K. The improvement in the observable temperature achieved by this modulation-doping appears to be originating from the suppression of the disorder in the surface state interacting with the rich magnetic moments. Such a superlattice designing of the stabilized QAHE may pave a way to dissipation-less electronics based on the higher-temperature and zero magnetic-field quantum conduction
Quantum anomalous Hall effect in magnetic topological insulators
Wang, Jing; Lian, Biao; Zhang, Shou-Cheng
2015-12-01
The search for topologically non-trivial states of matter has become an important goal for condensed matter physics. Here, we give a theoretical introduction to the quantum anomalous Hall (QAH) effect based on magnetic topological insulators in two-dimensions (2D) and three-dimensions (3D). In 2D topological insulators, magnetic order breaks the symmetry between the counter-propagating helical edge states, and as a result, the quantum spin Hall effect can evolve into the QAH effect. In 3D, magnetic order opens up a gap for the topological surface states, and chiral edge state has been predicted to exist on the magnetic domain walls. We present the phase diagram in thin films of a magnetic topological insulator and review the basic mechanism of ferromagnetic order in magnetically doped topological insulators. We also review the recent experimental observation of the QAH effect. We discuss more recent theoretical work on the coexistence of the helical and chiral edge states, multi-channel chiral edge states, the theory of the plateau transition, and the thickness dependence in the QAH effect.
Magnetic moments of odd-odd spherical nuclei
Achakovskiy, O I; Saperstein, E E; Tolokonnikov, S V
2013-01-01
Magnetic moments of more than one hundred odd-odd spherical nuclei in ground and excited states are calculated within the self-consistent TFFS based on the EDF method by Fayans {\\it et al}. We limit ourselves to nuclei with a neutron and a proton particle (hole) added to the magic or semimagic core. A simple model of no interaction between the odd nucleons is used. In most the cases we analyzed, a good agreement with the experimental data is obtained. Several cases are considered where this simple model does not work and it is necessary to go beyond. The unknown values of magnetic moments of many unstable odd and odd-odd nuclei are predicted including sixty values for excited odd-odd nuclei.
Magnetic moment of delta baryons with extended sea
In this we have constructed the baryon wave function with suitable quark-gluon Fock states for delta particles. In our study, the sea may be consisting of two gluons or a quark-antiquark pair along with a gluon. In our study, we constrain the sea with spin 0,1,2 and color singlet state for simplicity. We have calculated the magnetic moments for delta particles, after modification in valence quark wave function with due addition of sea component
Nuclear magnetic and electric dipole moments of neon-19
This thesis presents a detailed discussion of a series of experiments designed to measure the magnetic and electric dipole moments of the β-emitting nucleus 19Ne. The 19Ne is generated in the reaction 19F(p,n)19Ne and is polarized by a ''stern-Gerlach'' magnet in a rare gas atomic beams machine. The atoms are stored in a cell for many seconds without depolarizing. The parity violating asymmetry in the β angular distribution is used to monitor the nuclear polarization. The polarized atoms are stored in a cell in a uniform magnetic field. The β-asymmetry is monitored by a pair of β-detectors located on either side of the cell. Transitions between the M/sub J/ = +1/2 and M/sub J/ = -1/2 spin states are induced by an rf field generated by a small Helmholtz coil pair surrounding the cell. Nuclear magnetic resonance lines are observed and the magnetic moment of 19Ne measured to be μ(19Ne) = -1.88542(8)μ/sub N/. A new magnet, cell and detectors were designed to give narrow resonance lines. The equipment is described in detail and several resonance line shapes are discussed. The narrowest resonance line achieved with this system was 0.043 Hz FWHM. This width is primarily due to the 19Ne lifetime. Pulsed NMR lineshapes were also observed. The narrow NMR lines observed in the previous experiment were then used as a probe to look for an electric dipole moment (EDM) in 19Ne. Any shift in the resonance frequency correlated with changes in an externally applied electric field would be evidence for an EDM. The EDM of the 19Ne atom was measured to (7.2 +/- 6.2 X 10-22 e-cm. This experiment and possible improvements are discussed in detail
Magnetic Topological Insulators and Quantum Anomalous Hall Effect
Kou, Xufeng
The engineering of topological surface states is a key to realize applicable devices based on topological insulators (TIs). Among various proposals, introducing magnetic impurities into TIs has been proven to be an effective way to open a surface gap and integrate additional ferromagnetism with the original topological order. In this Dissertation, we study both the intrinsic electrical and magnetic properties of the magnetic TI thin films grown by molecular beam epitaxy. By doping transition element Cr into the host tetradymite-type V-VI semiconductors, we achieve robust ferromagnetic order with a strong perpendicular magnetic anisotropy. With additional top-gating capability, we realize the electric-field-controlled ferromagnetism in the magnetic TI systems, and demonstrate such magneto-electric effects can be effectively manipulated, depending on the interplays between the band topology, magnetic exchange coupling, and structural engineering. Most significantly, we report the observation of quantum anomalous Hall effect (QAHE) in the Cr-doped (BiSb)2Te3 samples where dissipationless chiral edge conduction is realized in the macroscopic millimeter-size devices without the presence of any external magnetic field, and the stability of the quantized Hall conductance of e2/h is well-maintained as the film thickness varies across the 2D hybridization limit. With additional quantum confinement, we discover the metal-to-insulator switching between two opposite QAHE states, and reveal the universal QAHE phase diagram in the thin magnetic TI samples. In addition to the uniform magnetic TIs, we further investigate the TI/Cr-doped TI bilayer structures prepared by the modulation-doped growth method. By controlling the magnetic interaction profile, we observe the Dirac hole-mediated ferromagnetism and develop an effective way to manipulate its strength. Besides, the giant spin-orbit torque in such magnetic TI-based heterostructures enables us to demonstrate the current
Strange Quark Magnetic Moment of the Nucleon at Physical Point
Sufian, Raza Sabbir; Alexandru, Andrei; Draper, Terrence; Liu, Keh-Fei; Liang, Jian
2016-01-01
We report a lattice QCD calculation of the strange quark contribution to the proton's magnetic moment and charge radius. This analysis presents the first direct determination of strange electromagnetic form factors including the physical pion mass with chiral fermions. We perform a model-independent extraction of the strange magnetic moment and the strange charge radius from the electromagnetic form factors in the momentum transfer range of $0.051 \\,\\text{GeV}^2 \\lesssim Q^2 \\lesssim 1.31 \\,\\text{GeV}^2 $. The finite lattice spacing and finite volume corrections are included in a global fitting with $17$ valence quark masses on three lattices with different lattice spacings, different volumes, and three sea quark masses including one at the physical pion mass. We obtain the strange magnetic moment $G^s_M(0) = - 0.073(17)(08)\\, \\mu_N$. The 4-sigma precision in statistics is achieved partly due to the low-mode averaging of the quark loop and low-mode substitution of the nucleon source to improve the statistics ...
Magnetic moments of mirror nuclei with tilted-foil polarization
Lindroos, M; Broude, C; Goldring, G; Haas, H; Hass, M; Muellere, L; Pearson, M R; Weissman, L
2000-01-01
We report here on an ongoing experimental program initiated at the ISOLDE facility at CERN for the measurement of magnetic moments of short-lived radionuclides, with the emphasis on magnetic moments of mirror nuclei in far-from-stability regions. The nuclei are polarized by the tilted foil technique and the resulting 0-180 degrees beta asymmetry is monitored as a function of RF frequency applied in an NMR setup. In order to achieve sufficiently high energy for transmission through the foils, the experimental setup is mounted on a high voltage platform. The first experiment in this program was the measurement of the beta asymmetry and the NMR resonance for the ground state of /sup 23/Mg (I=3/2, T/sub 1/2 /=11 3 S), yielding mu =-0.533(6) nm. Improvements to the experimental setup are presently being designed, to be used in conjunction with the new developments at ISOLDE for obtaining high charge-state ions from the EBIS (REX- ISOLDE) ion source. This will help pave the way for measurements of magnetic moments ...
Magnetic moments and non-Fermi-liquid behavior in quasicrystals
Andrade, Eric
Motivated by the intrinsic non-Fermi-liquid behavior observed in the heavy-fermion quasicrystal Au51Al34Yb15, we study the low-temperature behavior of dilute magnetic impurities placed in metallic quasicrystals. We find that a large fraction of the magnetic moments are not quenched down to very low temperatures, leading to a power-law distribution of Kondo temperatures, accompanied by a non-Fermi-liquid behavior, in a remarkable similarity to the Kondo-disorder scenario found in disordered heavy-fermion metals. This work was supported by FAPESP (Brazil) Grant No. 2013/00681-8.
Nuclear magnetic moments measured by nuclear magnetic resonance on oriented nuclei
The configurations of nuclei near the shell closures N=40 and Z=40 were studied. The nuclear magnetic moments have been measured by nuclear magnetic resonance on oriented nuclei (NMR/ON). We have determined the ground state spin of 73Se and magnetic moments of isotopes 73Se(9/2+), 77Br3/2-) and 74Brm(4). The 9/2+ spin and parity assignment to the parent state of 73Se is perfectly compatible with the systematics of N + 39 and N = 41 isotones. The bromine moments around the shell closure N = 40, show a change in protonic configuration. In the second part of this work a precise hyperfine field value of zinc in iron has been determined. The relaxation constant of Zn in iron is established. The new hyperfine field value of zinc in iron allows a more precise reevaluation of the magnetic moments of 69Znm and 71Znm measured with NMR/ON
The secular variation of pulsar magnetic dipole moments
The time dependences of the inertia tensor and of a dissipative torque caused by the nonleptonic weak interaction have been investigated for a certain class of pulsars with no solid core. Early in the life of the pulsar, the angular velocity vector is predicted to move with respect to fixed body axes in such a way that it becomes perpendicular to the magnetic dipole moment. During this motion, the solid outer shell suffers plastic deformation so that the dipole moment becomes approximately collinear with a principal axis. After 104 or 105 yr, the dissipative torque is negligibly small compared with the electromagnetic torque, the Euler equations are those for a simple rigid body, and alignment of spin and dipole moment occurs. If the dipole moment discussed by Lyne et al. (1975) is interpreted as being equal to the component perpendicular to the spin, its secular decay is a natural property of this model and is not a consequence of field decay through electrical resistivity. (Auth.)
The muon magnetic moment in the ${\\rm{2HDM}}$: complete two-loop result
Cherchiglia, Adriano; Stöckinger, Dominik; Stöckinger-Kim, Hyejung
2016-01-01
We study the ${\\rm{2HDM}}$ contribution to the muon anomalous magnetic moment $a_\\mu$ and present the complete two-loop result, particularly for the bosonic contribution. We focus on the Aligned ${\\rm{2HDM}}$, which has general Yukawa coupling constants and is more general than the type I, II, X, Y models. The result is expressed with physical parameters: three Higgs boson masses, Yukawa couplings, two mixing angles, and one quartic potential parameter. We show that the result can be split into several parts, each of which has a simple parameter dependence, and we document the general behavior. Taking into account constraints on parameters, we find that the full ${\\rm{2HDM}}$ contribution to $a_\\mu$ can accommodate the current experimental value, and the complete two-loop bosonic result contribution can amount to $(2\\cdots 4)\\times 10^{-10}$, more than the future experimental uncertainty.
Calculated magnetic moments of Nd2Fe14B
Nordström, Lars; Johansson, Börje; Brooks, M. S. S.
1991-04-01
A self-consistent spin-polarized band-structure calculation has been performed for the technically important permanent magnet compound Nd2Fe14B. In contrast to earlier calculations, the localized 4f states on the Nd sites are treated in a consistent way. They are not allowed to contribute to the bonding, but they produce a local exchange field, felt by the valence electrons, which is calculated from first-principles local density theory. Assuming a Russel-Saunders coupled Nd 4f moment of 3.3μB/atom, the total magnetic moment is calculated to be 38.1μB/formula unit, to be compared with the experimental value 37.1μB/formula unit [Givord, Li, and Perrier de la Bathie, Solid State Commun. 51, 857 (1984)]. The calculated local Fe moments are quite different on the different crystallographic sites, varying from 2.1μB to 2.9μB/atom.
Calculated magnetic moments of Nd2Fe14B
A self-consistent spin-polarized band-structure calculation has been performed for the technically important permanent magnet compound Nd2Fe14B. In contrast to earlier calculations, the localized 4f states on the Nd sites are treated in a consistent way. They are not allowed to contribute to the bonding, but they produce a local exchange field, felt by the valence electrons, which is calculated from first-principles local density theory. Assuming a Russel--Saunders coupled Nd 4f moment of 3.3μB/atom, the total magnetic moment is calculated to be 38.1μB/formula unit, to be compared with the experimental value 37.1μB/formula unit [Givord, Li, and Perrier de la Bathie, Solid State Commun. 51, 857 (1984)]. The calculated local Fe moments are quite different on the different crystallographic sites, varying from 2.1μB to 2.9μB/atom