WorldWideScience

Sample records for annual effective dose

  1. Effectance, committed effective dose equivalent and annual limits on intake: what are the changes?

    International Nuclear Information System (INIS)

    Kendall, G.M.; Stather, J.W.; Phipps, A.W.

    1990-01-01

    This paper outlines the concept of effectance, compares committed effectance with the old committed effective dose equivalent and goes on to discuss changes in the annual limits on intakes and the maximum organ doses which would result from an intake of an ALI (Annual Limit of Intake). It is shown that committed effectance is usually, but not always, higher than committed effective dose equivalent. ALIS are usually well below those resulting from the ICRP Publication 30 scheme. However, if the ALI were based only on a limit on effectance it would imply a high dose to specific organs for certain nuclides. In order to control maximum organ doses an explicit limit could be introduced. However, this would destroy some of the attractive features of the new scheme. An alternative would be a slight modification to some of the weighting factors. (author)

  2. Radon continuous monitoring in Altamira Cave (northern Spain) to assess user's annual effective dose

    International Nuclear Information System (INIS)

    Lario, J.; Sanchez-Moral, S.; Canaveras, J.C.; Cuezva, S.; Soler, V.

    2005-01-01

    In this work, we present the values of radon concentration, measured by continuous monitoring during a complete annual cycle in the Polychromes Hall of Altamira Cave in order to undertake more precise calculations of annual effective dose for guides and visitors in tourist caves. The 222 Rn levels monitored inside the cave ranges from 186 Bq m -3 to 7120 Bq m -3 , with an annual average of 3562 Bq m -3 . In order to more accurately estimate effective dose we use three scenarios with different equilibrium factors (F=0.5, 0.7 and 1.0) together with different dose conversion factors proposed in the literature. Neither effective dose exceeds international recommendations. Moreover, with an automatic radon monitoring system the time remaining to reach the maximum annual dose recommended could be automatically updated

  3. Annual effective dose due to natural radioactivity in drinking water

    International Nuclear Information System (INIS)

    Padma Savithri, P.; Srivastava, S.K.; Balbudhe, A.Y.; Vishwa Prasad, K.; Ravi, P.M.; Tripathi, R.M.

    2014-01-01

    Natural radioactivity concentration in drinking water supply in and round Hyderabad, Secunderabad was determined. The observed gross alpha activity found in water samples vary from 0.027±0.014 Bq/L to 0.042±0.015 Bq/L with average 0.035 Bq/L while beta activity in all the samples are less than 0.076 Bq/l. Contributions of the drinking water samples to total annual effective dose equivalent from 238 U, 234 U, 230 Th, 26 Ra, 210 Po, 232 Th, 228 Th 210 Pb and 228 Ra are 1.14, 1.24, 5.30, 7.07, 30.3, 5.81, 1.82, 38.3 and 38.3 μSvy -1 for adults. The results indicate that the annual effective doses are below the WHO recommended reference level for α and β in food and drinking samples. (author)

  4. Annual radiation dose in thermoluminescence dating

    International Nuclear Information System (INIS)

    Li Huhou

    1988-01-01

    The annual radiation dose in thermoluminescence dating has been discussed. The autor gives an entirely new concept of the enviromental radiation in the thermoluminescence dating. Methods of annual dose detemination used by author are dating. Methods of annual dose determination used by author are summed up, and the results of different methods are compared. The emanium escapiug of three radioactive decay serieses in nature has been considered, and several determination methods are described. The contribution of cosmic rays for the annual radiation dose has been mentioned

  5. Annual radiation dose in thermoluminescence dating

    Energy Technology Data Exchange (ETDEWEB)

    Huhou, Li [Chinese Academy of Social Sciences, Beijing, BJ (China). Inst. of Archaeology

    1988-11-01

    The annual radiation dose in thermoluminescence dating has been discussed. The autor gives an entirely new concept of the enviromental radiation in the thermoluminescence dating. Methods of annual dose detemination used by author are dating. Methods of annual dose determination used by author are summed up, and the results of different methods are compared. The emanium escapiug of three radioactive decay serieses in nature has been considered, and several determination methods are described. The contribution of cosmic rays for the annual radiation dose has been mentioned.

  6. ASSESSMENT OF THE AVERAGE ANNUAL EFFECTIVE DOSES FOR THE INHABITANTS OF THE SETTLEMENTS LOCATED IN THE TERRITORIES CONTAMINATED DUE TO THE CHERNOBYL ACCIDENT

    Directory of Open Access Journals (Sweden)

    N. G. Vlasova

    2012-01-01

    Full Text Available Catalogue of the average annual effective exposure doses of the inhabitants of the territories contaminated due to the Chernobul accident had been developed according to the method of the assessment of the average annual effective exposure doses of the settlements inhabitants. The cost-efficacy of the use of the average annual effective dose assessment method was 250 000 USD for the current 5 years. Average annual effective dose exceeded 1 mSv/year for 191 Belarus settlements from 2613. About 50 000 persons are living in these settlements.

  7. Radiation doses to Norwegian heart-transplanted patients undergoing annual coronary angiography

    International Nuclear Information System (INIS)

    Seierstad, T.; Friberg, E. G.; Lervag, C.; Widmark, A.; Wilhelmsen, N.; Stranden, E.

    2012-01-01

    Heart-transplanted patients in Norway undergo annual coronary angiography (CA). The aims of this study were to establish a conversion factor between dose-area product and effective dose for these examinations and to use this to evaluate the accumulated radiation dose and risks associated with annual CA. An experienced cardiac interventionist performed a simulated examination on an Alderson phantom loaded with thermoluminescence dosemeters. The simulated CA examination yielded a dose-area product of 17 Gy cm 2 and an effective dose of 3.4 mSv: the conversion factor between dose-area product and effective dose was 0.20 mSv Gy cm -2 . Dose-area product values from 200 heart-transplanted patients that had undergone 906 CA examinations between 2001 and 2008 were retrieved from the institutional database. Mean dose-area product from annual CA was 25 Gy cm 2 , ranging from 2 to 140 Gy cm 2 . Mean number of CA procedure was 8 (range, 1-23). Mean accumulated effective dose for Norwegian heart-transplanted patients between 2001 and 2008 was 34 mSv (range, 5-113 mSv). Doses and radiation risks for heart-transplanted patients are generally low, because most heart transplantations are performed on middle-aged patients with limited life expectancy. Special concern should however be taken to reduce doses for young heart-transplanted patients who are committed to lifelong follow-up of their transplanted heart. (authors)

  8. Assessment of Annual Effective Dose for Natural Radioactivity of Gamma Emitters in Biscuit Samples in Iraq.

    Science.gov (United States)

    Abojassim, Ali Abid; Al-Alasadi, Lubna A; Shitake, Ahmed R; Al-Tememie, Faeq A; Husain, Afnan A

    2015-09-01

    Biscuits are an important type of food, widely consumed by babies in Iraq and other countries. This work uses gamma spectroscopy to measure the natural radioactivity due to long-lived gamma emitters in children's biscuits; it also estimates radiation hazard indices, that is, the radium equivalent activity, the representative of gamma level index, the internal hazard index, and the annual effective dose in children. Ten samples were collected from the Iraqi market from different countries of origin. The average specific activities for (226)Ra, (232)Th, and (40)K were 9.390, 3.1213, and 214.969 Bq/kg, respectively, but the average of the radium equivalent activity and the internal hazard index were 33.101 Bq/kg and 0.107, respectively. The total average annual effective dose from consumption by adults, children, and infants is estimated to be 0.655, 1.009, and 0.875 mSv, respectively. The values found for specific activity, radiation hazard indices, and annual effective dose in all samples in this study were lower than worldwide median values for all groups; therefore, these values are found to be safe.

  9. 40 CFR Appendix B to Part 191 - Calculation of Annual Committed Effective Dose

    Science.gov (United States)

    2010-07-01

    ... SPENT NUCLEAR FUEL, HIGH-LEVEL AND TRANSURANIC RADIOACTIVE WASTES Pt. 191, App. B Appendix B to Part 191... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Calculation of Annual Committed Effective Dose B Appendix B to Part 191 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...

  10. The analysis of annual dose distributions for radiation workers

    International Nuclear Information System (INIS)

    Mill, A.J.

    1984-05-01

    The system of dose limitation recommended by the ICRP includes the requirement that no worker shall exceed the current dose limit of 50mSv/a. Continuous exposure at this limit corresponds to an annual death rate comparable with 'high risk' industries if all workers are continuously exposed at the dose limit. In practice, there is a distribution of doses with an arithmetic mean lower than the dose limit. In its 1977 report UNSCEAR defined a reference dose distribution for the purposes of comparison. However, this two parameter distribution does not show the departure from log-normality normally observed for actual distributions at doses which are a significant proportion of the annual limit. In this report an alternative model is suggested, based on a three parameter log-normal distribution. The third parameter is an ''effective dose limit'' and such a model fits very well the departure from log-normality observed in actual dose distributions. (author)

  11. Effective doses in paediatric radiology

    International Nuclear Information System (INIS)

    Iacob, Olga; Diaconescu, Cornelia; Roca, Antoaneta

    2001-01-01

    Because of their longer life expectancy, the risk of late manifestations of detrimental radiation effects is greater in children than in adults and, consequently, paediatric radiology gives ground for more concern regarding radiation protection than radiology of adults. The purpose of our study is to assess in terms of effective doses the magnitude of paediatric patient exposure during conventional X-ray examinations, selected for their high frequency or their relatively high doses to the patient. Effective doses have been derived from measurements of dose-area product (DAP) carried out on over 900 patients undergoing X-ray examinations, in five paediatric units. The conversion coefficients for estimating effective doses are those calculated by the NRPB using Monte-Carlo technique on a series of 5 mathematical phantoms representing 0, 1, 5, 10 and 15 year old children. The annual frequency of X-ray examinations necessary for collective dose calculation are those reported in our last national study on medical exposure, conducted in 1995. The annual effective doses from all medical examinations for the average paediatric patient are as follows: 1.05 mSv for 0 year old, 0.98 mSv for 1 year old, 0.53 mSv for 5 year old, 0.65 mSv for 10 year old and 0.70 mSv for 15 year old. The resulting annual collective effective dose was evaluated at 625 man Sv with the largest contribution of pelvis and hip examinations (34%). The annual collective effective associated with paediatric radiology in Romania represent 5% of the annual value resulting from all diagnostic radiology. Examination of the chest is by far the most frequent procedure for children, accounting for about 60 per cent of all annually performed X-ray conventional examinations. Knowledge of real level of patient dose is an essential component of quality assurance programs in paediatric radiology. (authors)

  12. Determination of indoor radon concentration levels and the associated annual effective dose rate in some Ghanaian dwellings

    International Nuclear Information System (INIS)

    Nsiah-Akoto, I.

    2010-01-01

    Radon and its decay products in indoor air are the main source of natural internal irradiation of man. In this present work, the indoor radon concentration, the annual exposure, the annual effective dose and the annual dose equivalent to the lung received by the population were estimated in the dwellings at Dome in the Ga-East District of the Greater Accra Region, Ghana using time-integrated passive radon detectors; LR-115 Type II solid state nuclear track detector (SSNTD) technique. The primary objective of this project was to assess the annual effective dose rate due to the indoor radon concentration levels and the associated level of risk. Measurements were carried out from December 2009 to March 2010. After the 3 months exposure, the detectors were subjected to chemical etching in a 2.5M analytical grade sodium hydroxide solution at (60 ±1) o C, for 90mins in a constant temperature water bath to enlarge the latent tracks produced by alpha particles from the decay of radon. The etched tracks were magnified using the microfiche reader and counted with a tally counter. The mean indoor radon concentration was found to be (466.9±1.2) Bqm -3 and the mean annual exposure was (2.03±0.08) WLM. Assuming an indoor occupancy factor of 0.4 and 0.4 for equilibrium factor for radon indoors, we found out that the mean Rn-222 effective dose rate and the annual equivalent dose rate to the lung in the present study dwellings was (14.13±0.22)mSvy -1 and (3.74 E-07 ±3.50 E-06)Svy -1 respectively. The mean values of radon concentrations at Dome, Kwabenya, Biakpa, and South-Eastern part of Ghana, Prestea and Kassena-Nakana District in the previous research ranged from (9.4±0.5) to (518.7±4.0) Bqm -3 . The mean annual exposure, annual effective dose rate and the annual equivalent for the previous work ranged from (0.04±0.03)WLM to (0.58±0.05)WLM, (0.28±0.08) to (15.54±0.69mSvy -1 ), (8.23E-12±4.33E-07) to (4.15E-07± 1.13E-04) respectively. Odds ratios (ORs) for lung

  13. Annual effective dose of 210Po from sea food origin (Oysters and Mussels) in Korea

    International Nuclear Information System (INIS)

    Cho, Bo Eum; Hong, Gi Hoon; Kim, Suk Hyun; Lee, Hyun Mi

    2016-01-01

    Ingestion of 210 Po laden seafood accounts for a substantial amount of the effective dose of 210 Po. Among seafood items, mollusks, especially domestically produced oysters and mussels, are highly enriched in 210 Po and are consumed in large quantities in Korea. Oysters and mussels around the Korean coasts were collected from major farm areas in November 2013. Samples were spiked with an aliquot of 210 Po as a yield tracer, and they were digested with 6 mol·L -1 HNO 3 and H 2 O 2 . The 210 Po and 209 Po were spontaneously deposited onto a silver disc in an acidic solution of 0.5 mol·L -1 HCl and measured using an alpha spectrometer. The activity concentrations of 210 Pb and 210 Po were decay corrected to the sampling date, accounting for the possible in-growth and decay of 210 Po. 210 Po activity concentrations in oysters were in a range from 41.3 to 206 Bq·(kg-ww -1 and mussels in a range from 42.9 to 46.7 Bq·(kg-ww) -1 . The 210 Po activity concentration of oysters in the turbid Western coast was higher than the Southern coast. The 210 Po activity concentration of the oysters was positively correlated (R2=0.89) with those of the suspended particulate matter in the surface water. The calculated annual effective dose of 210 Po from oysters and mussels consumed by the Korean population was 21-104 and 5.01-5.46 μSv·y -1 . The combined effective dose due to the consumption of oysters and mussels appears to account for about 35±19% of that arising from seafood consumption in the Korean population. The annual effective dose of 210 Po for oysters in the Korean population was found to be higher than other countries. The total annual effective dose of 210Po 210 Po due to consumption of oysters and mussels consumed in Korea was found to be 76±42 μSv·y -1 , accounting for 28±16% of the total effective dose of 210 Po from food in Korea

  14. Evaluation of annual effective dose from indoor radon concentration in Eastern Province, Dammam, Saudi Arabia

    Science.gov (United States)

    Abuelhia, E.

    2017-11-01

    The aim of this study is to determine the indoor radon concentration and to evaluate the annual effective dose received by the inhabitants in Dammam, Al-Khobar, and compare it with new premises built at university of dammam. The research has been carried out by using active detection method; Electronic Radon Detector (RAD-7) a solid state α-detector with its special accessories. The indoor radon concentration measured varies from 10.2 Bqm-3 to 25.8 Bqm-3 with an average value of 18.8 Bqm-3 and 19.7 Bqm-3 to 23.5 Bqm-3 with an average value of 21.7 Bqm-3, in Dammam and Al-khobar dwellings, respectively. In university of dammam the radon concentration varies from 7.4 Bqm-3 to 15.8 Bqm-3 with an average value of 9.02 Bqm-3. The values of annual effective doses were found to be 0.47mSv/y, 0.55mSv/y, and 0.23mSv/y, in Dammam, Al-khobar and university new premises, respectively. The average radon concentration in the old dwellings was two times compared to that in the new premises and it was 25.4 Bqm-3 lower than the world average value of 40 Bqm-3 reported by the UNSCEAR. The annual effective doses in the old dwellings was found to be (0.55mSv/y) two times the doses received at the new premises, and below the world wide average of 1.15mSv/y reported by ICRP (2010). The indoor radon concentration in the study region is safe as far as health hazard is concerned.

  15. Change of annual collective dose equivalent of radiation workers at KURRI

    International Nuclear Information System (INIS)

    Okamoto, Kenichi

    1994-01-01

    The change of exposure dose equivalent of radiation workers at KURRI (Kyoto University Research Reactor Institute) in the past 30 years is reported together with the operational accomplishments. The reactor achieved criticality on June 24, 1964 and reached the normal power of 1000 kW on August 17 of the same year, and the normal power was elevated to 5000 kW on July 16, 1968 until today. The change of the annual effective dose equivalent, the collective dose equivalent, the average annual dose equivalent and the maximum dose equivalent are indicated in the table and the figure. The chronological table on the activities of the reactor is added. (T.H.)

  16. Annual effective dose of {sup 210}Po from sea food origin (Oysters and Mussels) in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Bo Eum; Hong, Gi Hoon; Kim, Suk Hyun; Lee, Hyun Mi [Korea Institute of Ocean Science and Technology, Ansan (Korea, Republic of)

    2016-09-15

    Ingestion of {sup 210}Po laden seafood accounts for a substantial amount of the effective dose of {sup 210}Po. Among seafood items, mollusks, especially domestically produced oysters and mussels, are highly enriched in {sup 210}Po and are consumed in large quantities in Korea. Oysters and mussels around the Korean coasts were collected from major farm areas in November 2013. Samples were spiked with an aliquot of {sup 210}Po as a yield tracer, and they were digested with 6 mol·L{sup -1} HNO{sub 3} and H{sub 2}O{sub 2}. The {sup 210}Po and {sup 209}Po were spontaneously deposited onto a silver disc in an acidic solution of 0.5 mol·L{sup -1} HCl and measured using an alpha spectrometer. The activity concentrations of {sup 210}Pb and {sup 210}Po were decay corrected to the sampling date, accounting for the possible in-growth and decay of {sup 210}Po. {sup 210}Po activity concentrations in oysters were in a range from 41.3 to 206 Bq·(kg-ww{sup -1} and mussels in a range from 42.9 to 46.7 Bq·(kg-ww){sup -1}. The {sup 210}Po activity concentration of oysters in the turbid Western coast was higher than the Southern coast. The {sup 210}Po activity concentration of the oysters was positively correlated (R2=0.89) with those of the suspended particulate matter in the surface water. The calculated annual effective dose of {sup 210}Po from oysters and mussels consumed by the Korean population was 21-104 and 5.01-5.46 μSv·y{sup -1}. The combined effective dose due to the consumption of oysters and mussels appears to account for about 35±19% of that arising from seafood consumption in the Korean population. The annual effective dose of {sup 210}Po for oysters in the Korean population was found to be higher than other countries. The total annual effective dose of 210Po{sup 210}Po due to consumption of oysters and mussels consumed in Korea was found to be 76±42 μSv·y{sup -1}, accounting for 28±16% of the total effective dose of {sup 210}Po from food in Korea.

  17. Natural radionuclides in the South Indian foods and their annual dose

    International Nuclear Information System (INIS)

    Shanthi, G.; Thampi Thanka Kumaran, J.; Gnana Raj, G. Allan; Maniyan, C.G

    2010-01-01

    The study was carried out to evaluate the radioactivity concentration in the food crops grown in high-level natural radioactive area (HLNRA) in south west India. Food samples collected were analysed by means of a gamma spectroscopy and estimated annual dietary intakes of the radioisotopes 226 Ra, 228 Ra, 228 Th and 40 K. The annual intake of the food stuffs was estimated on the basis of their average annual consumption. Calculations were also made to determine the effective dose to an individual consuming such diets. The intakes of these radionuclides were calculated using the concentrations in south Indian foods and daily consumption rates of these foods. Daily intakes of these radionuclides were as follows: 226 Ra, 0.001-1.87; 228 Ra, 0.0023-1.26, 228 Th, 0.01-14.09 40 K, 0.46-49.39 Bq/day. The daily internal dose resulting from ingestion of radionuclides in food was 4.92 μSv/day and the annual dose was 1.79 mSv/yr. The radionuclides with highest consumption is 40 K.

  18. Annual average equivalent dose of workers form health area

    International Nuclear Information System (INIS)

    Daltro, T.F.L.; Campos, L.L.

    1992-01-01

    The data of personnel monitoring during 1985 and 1991 of personnel that work in health area were studied, obtaining a general overview of the value change of annual average equivalent dose. Two different aspects were presented: the analysis of annual average equivalent dose in the different sectors of a hospital and the comparison of these doses in the same sectors in different hospitals. (C.G.C.)

  19. Annual dose at the exclusion area boundary of a multi-unit CANDU site

    International Nuclear Information System (INIS)

    Gagnon, N.; Bobb, C.R.; Tsang, K.T.

    1997-01-01

    The annual dose to members of the public from CANDU nuclear power stations is dominated by the contribution from airborne effluents. The principal radionuclides contributing to the annual dose are tritium, carbon-14 and noble gases. The tritium is released as tritiated heavy-water vapour; the carbon-14 is released principally as carbon dioxide. To demonstrate compliance with the public dose limit, AECL has calculated the annual dose from airborne emissions from 10 CANDU units at an extended Wolsong site. The analysis has used the treatment of atmospheric dispersion described in the US Regulatory Guide 1.111 and programmed in the code XOQDOQ. The analysis has then modelled the transport of these airborne emissions through the environment as they expose the critical group using the US Regulatory Guide 1.109. the study takes account of the different annual emissions from each unit to reflect the different design features of the units. This study also includes a treatment of topography and makes allowances for building wake effects

  20. Radon in the Underground Workplaces; Assessment of the Annual Effective Dose due to Inhaled Radon for the Seoul Subway Station Staffs

    Energy Technology Data Exchange (ETDEWEB)

    Song, Myeong Han; Chang, Byung Uck; Kim, Yong Jae [University of Science and Technology, Daejeon (Korea, Republic of); Lee, Hwa Yong [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Heo, Dong Hey [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2010-12-15

    The effective dose of the Seoul subway staffs due to inhaled radon ({sup 222}Rn) in their workplace was investigated depended on radon concentration exposed at each workplace, and working hours and working types of the staffs. Annual average radon concentrations ranged from 16.5 to 93.0 Bq·m{sup -3}. The staffs commonly spend 2,304 hours in the underground spaces a year. With the radon concentrations and the working hours of the staffs, estimated annual effective doses ranged from 0.23 to 0.73 mSv·y{sup -1}.

  1. Radon in the Underground Workplaces; Assessment of the Annual Effective Dose due to Inhaled Radon for the Seoul Subway Station Staffs

    International Nuclear Information System (INIS)

    Song, Myeong Han; Chang, Byung Uck; Kim, Yong Jae; Lee, Hwa Yong; Heo, Dong Hey

    2010-01-01

    The effective dose of the Seoul subway staffs due to inhaled radon ( 222 Rn) in their workplace was investigated depended on radon concentration exposed at each workplace, and working hours and working types of the staffs. Annual average radon concentrations ranged from 16.5 to 93.0 Bq·m -3 . The staffs commonly spend 2,304 hours in the underground spaces a year. With the radon concentrations and the working hours of the staffs, estimated annual effective doses ranged from 0.23 to 0.73 mSv·y -1

  2. Radiation dose to technologists per nuclear medicine examination and estimation of annual dose.

    Science.gov (United States)

    Bayram, Tuncay; Yilmaz, A Hakan; Demir, Mustafa; Sonmez, Bircan

    2011-03-01

    Conventional diagnostic nuclear medicine applications have been continuously increasing in most nuclear medicine departments in Turkey, but to our knowledge no one has studied the doses to technologists who perform nuclear medicine procedures. Most nuclear medicine laboratories do not have separate control rooms for technologists, who are quite close to the patient during data acquisition. Technologists must therefore stay behind lead shields while performing their task if they are to reduce the radiation dose received. The aim of this study was to determine external radiation doses to technologists during nuclear medicine procedures with and without a lead shield. Another aim was to investigate the occupational annual external radiation doses to Turkish technologists. This study used a Geiger-Müller detector to measure dose rates to technologists at various distances from patients (0.25, 0.50, 1, and 2 m and behind a lead shield) and determined the average time spent by technologists at these distances. Deep-dose equivalents to technologists were obtained. The following conventional nuclear medicine procedures were considered: thyroid scintigraphy performed using (99m)Tc pertechnetate, whole-body bone scanning performed using (99m)Tc-methylene diphosphonate, myocardial perfusion scanning performed using (99m)Tc-methoxyisobutyl isonitrile, and (201)Tl (thallous chloride) and renal scanning performed using (99m)Tc-dimercaptosuccinic acid. The measured deep-dose equivalent to technologists per procedure was within the range of 0.13 ± 0.05 to 0.43 ± 0.17 μSv using a lead shield and 0.21 ± 0.07 to 1.01 ± 0.46 μSv without a lead shield. Also, the annual individual dose to a technologist performing only a particular scintigraphic procedure throughout a year was estimated. For a total of 95 clinical cases (71 patients), effective external radiation doses to technologists were found to be within the permissible levels. This study showed that a 2-mm lead shield

  3. radioactivity analysis in food-stuffs and evaluation of annual effective doses from intakes of radionuclides through daily diets

    International Nuclear Information System (INIS)

    Alam, M.N.; Chowdhury, M. I.; Kamal, M.; Ghose, S.; Islam, M. N.; Mustafa, M. N.; Islam, Al Amin S.

    1996-01-01

    The concentrations of natural and anthropogenic gamma emitting radionuclides in different vegetables, grains,fishes, sugar and common salt samples were measured by using high purity germanium ( HPGe ) detector coupled with Personal Computer Analyzer ( PCA ) and thereby the effective doses from the consumption of these diet were evaluated. The activities of 232 Th in vegetable, grains, salt, sugar and fish samples ranged from 0.13±0.02 to 1.49±0.32 Bq. kg -1 . The concentration of 238 U in these food-stuffs ranged from 0.07±0.01 to 0.95±0.26 Bq Kg -1 . The observed activity of 40 K ranged between 5.04±1.05 and 196.60±41.0 Bq Kg -1 . Caesium was not detected in any of the samples, Assessment of annual intake of these radionuclides has been made on the basis of the average annual intake of these food-stuffs by the population of Bangladesh.The annual effective dose equivalent due to ingestion of different naturally occurring radionuclides ( 232 Th, 238 U, and 40 K) by intake food-stuffs ranged from 0.2 to 113.62 μ Sv. y'-1. The annual effective doses observed in the present study for various types of food-stuffs were less than the ICRP-60 (1990) recommendation, which is 1 m Sv. y -1 for the members of the public. The result and knowledge of this study, would be helpful in making a yardstick comparing with which an appropriate radiation control limit may be imposed on food materials for public consumption in Bangladesh. 1 fig., 2 tables, 13 refs. (Author)

  4. Measurement of annual dose on porcelain using surface TLD method

    International Nuclear Information System (INIS)

    Xia Junding; Wang Weida; Leung, P.L.

    2001-01-01

    In order to improve accuracy of TL authentication test for porcelain, a method of measurement of annual dose using ultrathin (CaSO 4 :Tm) dosage layer on porcelain was studied. The TLD was placed on the part of porcelain without glaze. A comparison of measurement of annual dose for surface TLD, inside TLD and alpha counting on porcelain was made. The results show that this technique is suitable for measuring annual dose and improving accuracy of TL authentication test for both porcelain and pottery

  5. UV-radiation and skin cancer dose effect curves

    International Nuclear Information System (INIS)

    Henriksen, T.; Dahlback, A.; Larsen, S.H.

    1988-08-01

    Norwegian skin cancer data were used in an attempt to arrive at the dose effect relationship for UV-carcinogenesis. The Norwegian population is relatively homogenous with regard to skin type and live in a country where the annual effective UV-dose varies by approximately 40 percent. Four different regions of the country, each with a broadness of 1 o in latitude (approximately 111 km), were selected . The annual effective UV-doses for these regions were calculated assuming normal ozone conditions throughout the year. The incidence of malignant melanoma and non-melanoma skin cancer (mainly basal cell carcinoma) in these regions were considered and compared to the annual UV-doses. For both these types of cancer a quadratic dose effect curve seems to be valid. Depletions of the ozone layer results in larger UV-doses which in turn may yield more skin cancer. The dose effect curves suggest that the incidence rate will increase by an ''amplification factor'' of approximately 2

  6. Natural radionuclides in the South Indian foods and their annual dose

    Energy Technology Data Exchange (ETDEWEB)

    Shanthi, G., E-mail: shanthidickson@gmail.co [Department of Physics, Women' s Christian College, Nagercoil 629001, Tamil Nadu (India); Thampi Thanka Kumaran, J. [Department of Physics, NM Christian College, Marthandam 629165, Tamil Nadu (India); Gnana Raj, G. Allan [Department of Chemistry and Research Centre, Scott Christian College, Nagercoil 629003, Tamil Nadu (India); Maniyan, C.G [Health Physics Unit, Indian Rare Earths, Manavalakurichi 629252, Tamil Nadu (India)

    2010-07-21

    The study was carried out to evaluate the radioactivity concentration in the food crops grown in high-level natural radioactive area (HLNRA) in south west India. Food samples collected were analysed by means of a gamma spectroscopy and estimated annual dietary intakes of the radioisotopes {sup 226}Ra, {sup 228}Ra, {sup 228}Th and {sup 40}K. The annual intake of the food stuffs was estimated on the basis of their average annual consumption. Calculations were also made to determine the effective dose to an individual consuming such diets. The intakes of these radionuclides were calculated using the concentrations in south Indian foods and daily consumption rates of these foods. Daily intakes of these radionuclides were as follows: {sup 226}Ra, 0.001-1.87; {sup 228}Ra, 0.0023-1.26, {sup 228}Th, 0.01-14.09 {sup 40}K, 0.46-49.39 Bq/day. The daily internal dose resulting from ingestion of radionuclides in food was 4.92 {mu}Sv/day and the annual dose was 1.79 mSv/yr. The radionuclides with highest consumption is {sup 40}K.

  7. Organ or tissue doses, effective dose and collective effective dose from X-ray diagnosis, in Japan

    International Nuclear Information System (INIS)

    Murayama, Takashi; Nishizawa, Kanae; Noda, Yutaka; Kumamoto, Yoshikazu; Iwai, Kazuo.

    1996-01-01

    Effective doses and collective effective doses from X-ray diagnostic examinations were calculated on the basis of the frequency of examinations estimated by a nationwide survey and the organ or tissue doses experimentally determined. The average organ or tissue doses were determined with thermoluminescence dosimeters put at various sites of organs or tissues in an adult and a child phantom. Effective doses (effective dose equivalents) were calculated as the sum of the weighted equivalent doses in all the organs or tissues of the body. As the examples of results, the effective doses per radiographic examination were approximately 7 mGy for male, and 9 mGy for female angiocardiography, and about 3 mGy for barium meal. Annual collective effective dose from X-ray diagnostic examinations in 1986 were about 104 x 10 3 person Sv from radiography and 118 x 10 3 person Sv from fluoroscopy, with the total of 222 x 10 3 person Sv. (author)

  8. Evaluation of indoor radon equilibrium factor using CFD modeling and resulting annual effective dose

    Science.gov (United States)

    Rabi, R.; Oufni, L.

    2018-04-01

    The equilibrium factor is an important parameter for reasonably estimating the population dose from radon. However, the equilibrium factor value depended mainly on the ventilation rate and the meteorological factors. Therefore, this study focuses on investigating numerically the influence of the ventilation rate, temperature and humidity on equilibrium factor between radon and its progeny. The numerical results showed that ventilation rate, temperature and humidity have significant impacts on indoor equilibrium factor. The variations of equilibrium factor with the ventilation, temperature and relative humidity are discussed. Moreover, the committed equivalent doses due to 218Po and 214Po radon short-lived progeny were evaluated in different tissues of the respiratory tract of the members of the public from the inhalation of indoor air. The annual effective dose due to radon short lived progeny from the inhalation of indoor air by the members of the public was investigated.

  9. Assessment of the Annual Additional Effective Doses amongst Minamisoma Children during the Second Year after the Fukushima Daiichi Nuclear Power Plant Disaster.

    Science.gov (United States)

    Tsubokura, Masaharu; Kato, Shigeaki; Morita, Tomohiro; Nomura, Shuhei; Kami, Masahiro; Sakaihara, Kikugoro; Hanai, Tatsuo; Oikawa, Tomoyoshi; Kanazawa, Yukio

    2015-01-01

    An assessment of the external and internal radiation exposure levels, which includes calculation of effective doses from chronic radiation exposure and assessment of long-term radiation-related health risks, has become mandatory for residents living near the nuclear power plant in Fukushima, Japan. Data for all primary and secondary children in Minamisoma who participated in both external and internal screening programs were employed to assess the annual additional effective dose acquired due to the Fukushima Daiichi nuclear power plant disaster. In total, 881 children took part in both internal and external radiation exposure screening programs between 1st April 2012 to 31st March 2013. The level of additional effective doses ranged from 0.025 to 3.49 mSv/year with the median of 0.70 mSv/year. While 99.7% of the children (n = 878) were not detected with internal contamination, 90.3% of the additional effective doses was the result of external radiation exposure. This finding is relatively consistent with the doses estimated by the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). The present study showed that the level of annual additional effective doses among children in Minamisoma has been low, even after the inter-individual differences were taken into account. The dose from internal radiation exposure was negligible presumably due to the success of contaminated food control.

  10. Activity concentrations and mean annual effective dose from gamma-emitting radionuclides in the Lebanese diet

    International Nuclear Information System (INIS)

    Nasreddine, L.; Hwalla, N.; El Samad, O.; Baydoun, R.; Hamze, M.; Parent-Massin, D.

    2008-01-01

    Since the primary factor contributing to the internal effective dose in the human organism is contaminated food, the control of radionuclides in food represents the most important means of protection. This study was conducted to determine the levels of the dietary exposure of the Lebanese population to gamma-emitting radioisotopes. The activity concentrations of gamma-emitting radioisotopes have been measured in food samples that represent the market basket of an adult urban population in Lebanon. The artificial radionuclide 137 Cs was measured above detection limits in only fish, meat and milk-based deserts. The most abundant natural radionuclide was 40 K (31-121 Bq kg -1 ), with the highest content in fish and meat samples. The annual mean effective dose contributed by 40 K in the reference typical diet was estimated equal to 186 μSv y -1 , a value reasonably consistent with findings reported by several other countries. (authors)

  11. Annual and life-time doses from acute and chronic intakes of 239Pu

    International Nuclear Information System (INIS)

    Bhati, Sharda; Rudran, Kamala

    1994-01-01

    A procedure to estimate annual, committed and life time doses from acute and chronic intakes of a long-lived radionuclide 239 Pu, is described. Annual dose computations, presented for 239 Pu of 5μm activity median aerodynamic diameter (AMAD), takes into account contribution from previous years intakes. Annual limits on intakes (ALI) for W and Y class of 239 Pu are computed as per the new internal dose limitation system of ICRP-61. Life time doses, corresponding to chronic intakes of 1 ALI/y for working periods of 40 and 50 years are presented for life span of 70 years of a radiation worker. These results are useful in assigning annual doses for occupational workers handling 239 Pu. (author). 5 refs., 2 tabs

  12. The estimation of radiation effective dose from diagnostic medical procedures in general population of northern Iran

    International Nuclear Information System (INIS)

    Shabestani Monfared, A.; Abdi, R.

    2006-01-01

    The risks of low-dose Ionizing radiation from radiology and nuclear medicine are not clearly determined. Effective dose to population is a very important factor in risk estimation. The study aimed to determine the effective dose from diagnostic radiation medicine in a northern province of Iran. Materials and Methods: Data about various radiologic and nuclear medicine procedures were collected from all radiology and nuclear medicine departments In Mazandaran Province (population = 2,898,031); and using the standard dosimetry tables, the total dose, dose per examination, and annual effective dose per capita as well as the annual gonadal dose per capita were estimated. Results: 655,730 radiologic examinations in a year's period, lead to 1.45 mSv, 0.33 mSv and 0.31 mGy as average effective dose per examination, annual average effective dose to member of the public, and annual average gonadal dose per capita, respectively. The frequency of medical radiologic examinations was 2,262 examinations annually per 10,000 members of population. However, the total number of nuclear medicine examinations in the same period was 7074, with 4.37 mSv, 9.6 μSv and 9.8 μGy, as average effective dose per examination, annual average effective dose to member of the public and annual average gonadal dose per caput, respectively. The frequency of nuclear medicine examination was 24 examinations annually per 10,000 members of population. Conclusion: The average effective dose per examination was nearly similar to other studies. However, the average annual effective dose and annual average gonadal dose per capita were less than the similar values in other reports, which could be due to lesser number of radiation medicine examinations in the present study

  13. Assessment of annual effective dose from 238U and 226Ra due to consumption of foodstuffs by inhabitants of Tehran city (IR)

    International Nuclear Information System (INIS)

    Hosseini, T.; Fathivand, A. A.; Abbasisiar, F.; Karimi, M.; Barati, H.

    2006-01-01

    The concentrations of 238 U and 226 Ra were determined in different foodstuffs purchased from markets in Tehran. Determinations of the radionuclides have been carried out using alpha spectrometry technique, on samples of egg, lentil, potato, rice, soya, spinach, tea and wheat. Average concentrations of natural radionuclides and foodstuff consumption rate were used to assess annual intake and based on intake values, the annual effective ingestion dose has been estimated for Tehran city residents. The measurement results show that soya has the maximum concentration of 238 U equal to 15.6 ± 2.6 mBq kg -1 and tea has the maximum concentration of 226 Ra equal to 1153.3 ± 265.3 mBq kg -1 . Besides, the maximum annual effective dose from 238 U and 226 Ra were assessed to be 2.88 x 10 -2 ±7.20 x 10 -3 and 2.15 ± 0.54 μSv, respectively, from wheat samples. (authors)

  14. Trends in examination frequency and collective effective doses from computed tomography (CT) procedures in Sudan

    International Nuclear Information System (INIS)

    Yousif, S. B. I.

    2011-01-01

    This study was carried out to estimate the examination frequency and collective dose to population from CT procedures in Sudan. To calculate the annual collective dose from CT examinations a survey was done at 10 hospitals providing data of examinations frequency per day. The data of effective dose have been obtained from pervious study on effective dose per CT examination in Sudan. Then the annual examination frequency and annual collective effective dose had been calculated and discussed providing that the annual collective effective dose from CT examinations is (1482 man.Sv). The highest percentage examination frequency was for head examination (40%). The highest percentage contribution to the total collective dose from CT examinations was for abdomen examinations (32%). The calculated annual examination frequency and annual collective effective dose had been compared with the results of literature and international studies to evaluate the estimated values. The calculated annual collective dose from CT examinations is much lower comparing with the results presented in the literature. The study offers an insight on the examination frequency and the percentage of the risk from different standard radiographic examination within the country. (Author)

  15. Ambient radioactivity levels and radiation doses. Annual report 2011

    International Nuclear Information System (INIS)

    Bernhard-Stroel, Claudia; Hachenburger, Claudia; Trugenberger-Schnabel, Angela; Peter, Josef

    2013-07-01

    The annual report 2011 on ambient radioactivity levels and radiation doses covers the following issues: Part A: Natural environmental radioactivity, artificial radioactivity in the environment, occupational radiation exposure, radiation exposure from medical applications, the handling of radioactive materials and sources of ionizing radiation, non-ionizing radiation. Part B; Current data and their evaluation: Natural environmental radioactivity, artificial radioactivity in the environment, occupational radiation exposure, radiation exposure from medical applications, the handling of radioactive materials and sources of ionizing radiation, non-ionizing radiation. The Appendix includes Explanations of terms, radiation doses and related units, external and internal radiation exposure, stochastic and deterministic radiation effects, genetic radiation effects, induction of malignant neoplasm, risk assessment, physical units and glossary, laws, ordinances, guidelines, recommendations and other regulations concerning radiation protection, list of selected radionuclides.

  16. Biological UV-doses and the effect on an ozone layer depletion

    International Nuclear Information System (INIS)

    Dahlback, A.; Henriksen, T.

    1988-08-01

    Effective UV-doses were calculated based on the integrated product of the biological action spectrum and the solar radiation. The calculations included absorption and scattering of UV-radiation in the atmosphere, both for normal ozone conditions as well as for a depleted ozone layer. The effective annual UV-dose increases by approximately 4% per degree of latitude towards the equator. An ozone depletion of 1% increases the annual UV-dose by approximately 1% at 60 o N. A large depletion of 50% over Scandinavia (60 o N) would give this region an effective UV-dose similar to that obtained, with normal ozone conditions, at a latitude of 40 o N (California or the Mediterranean countries). The Antarctic ozone hole increases the annual UV-dose by 20 to 25% which is a similar increase as that attained by moving 5 to 6 degrees of latitude nearer the equator. The annual UV-dose on higher latitudes is mainly determined by the summer values of ozone. Both the ozone values and the effective UV-doses vary from one year to another (within ±4%). No positive or negative trend is observed for Scandinavia from 1978 to 1988

  17. Direct measurement of annual β dose using TLD on porcelain

    International Nuclear Information System (INIS)

    Leung, P.L.; Stokes, M.J.; Xia Junding; Wang Weida; Zhou Zhixin

    1999-01-01

    In order to improve accuracy of TL authentication test for porcelain, a method of direct measurement of annual β dose using ultrathin TLD (CaSO 4 :Tm) on porcelain was studied. Since the TLD was placed into a hole left after sampling for the TL measurement, the method will not cause any new damage to the studied object. The results show that the technique is suitable for measuring annual β dose and improving accuracy of TL authentication test for both porcelain and pottery

  18. The Alpha value decrease when the annual individual effective dose decreases?

    International Nuclear Information System (INIS)

    Sordi, Gian M.; Marchiusi, Thiago; Sousa, Jefferson de J.

    2008-01-01

    A recent IAEA publication tells that a few entities took different alpha values for maxima individual doses. Beyond to disregard the international agencies, that recommend only one alpha value for each country, the alpha values decreases when the individual doses decreases and the practice happens exactly the conversely as we will show in this paper. We will prove that the alpha value increase when the maximum individual doses decreases in a four different manner. The first one we call the theoretical conception and it is linked to the emergent of the ALARA policy and to the purpose that led to the 3/10 of the annual limits, for to decrease the individual doses as a first resort and a 1/10 as a last resort. The second prove will be based in a small mine example used in the ICRP publication number 55 concerning to the optimization and the quantitative decision-aiding techniques in radiological protection where we will determine the alpha value ranges in which each radiological protection options becomes the analytical solution. The third prove will be based in the determination of the optimized thickness example of a plane shielding for a radiation source exposed in the ICRP publication number 37. We will use, also, the numerical example provided there. Eventually, as four prove we will show that the alpha value dos not only increases with the maximum individual dose decrease, but also, with the shielding geometry. (author)

  19. Specific Activities of Natural Radionuclides and Annual Effective Dose Due to the Intake of Some Types of Children Powdered Milk Available in Baghdad Markets

    Directory of Open Access Journals (Sweden)

    Basim Khalaf Rejah

    2017-09-01

    Full Text Available In this research the specific activity of natural radionuclides 226Ra, 232Th and 40K were determined by sodium iodide enhanced by thallium NaI(TI detector and assessed the annual effective dose in Dielac 1 and 2 and Nactalia 1 and 2 for children of less than 1 year which are available in Baghdad markets. The specific activity of 40K has the greater value in all the types which is in the range of allowed levels globally that suggested by UNSCEAR. The mean value of annual effective doses were 2.92, 4.005 and 1.6325 mSv/y for 226Ra, 232Th and 40K respectively.

  20. Estimation of annual effective dose from 226Ra and 228Ra due to consumption of foodstuffs by inhabitants of Ramsar city, Iran

    International Nuclear Information System (INIS)

    Asefi, M.; Fathivand, A. A.; Amidi, J.

    2005-01-01

    226 Ra and 228 Ra contents in foodstuffs of Ramsar which is a coastal city in the northern part of lran were determined by gamma spectrometry. Measurement results together with food consumption rates were used to estimate annual effective dose from 226 Ra and 228 Ra, due to consumption of food stuffs by inhabitants of Ramsar city. Materials and methods: a total of 33 samples from 11 different foodstuffs including root vegetables (beetroot), leafy vegetables (lettuce, parsley and spinach) and tea, meat, chicken, pea, broad bean, rice, and cheese were purchased from markets of Ramsar city and were analyzed for their 226 Ra and 228 Ra concentration. 1-8 kg of fresh weight sample was placed in Marinnelli beaker and sealed. The measurement of natural radioactivity levels as performed by gamma-spectrometry system, using a high purity germanium detector with 40% relative efficiency. Results: The highest concentrations of 226 Ra and 228 Ra were determined in tea samples with 1570 and 1140 mBq/kg, respectively, and the lowest concentration of 226 Ra was in pea, cheese, chicken, broad bean, and beetroot. Conclusion:The maximum estimated annual effective dose from 226 Ra and 228 Ra due to consumption, foodstuffs were determined to be 19.22 and 0.71 mSv from rice and meat samples respectively, where as, minimum estimated annual effective dose for 226 Ra was 0.017, 0.018 and 0.019 mSv from beetroot, cheese and pea samples respectively

  1. Annual individual hygienic assessment of natural exposure doses of the Altai territory model areas population

    Directory of Open Access Journals (Sweden)

    N. Yu. Potseluev

    2016-01-01

    Full Text Available The goal is to determine ionizing radiation natural sources exposure regularities of Altai Territory model areas population. The materials and methods. 11376 radon measurements, 1247 gamma radiation meas-urements in an open area and in residential and office buildings were performed, selection of 189 drinking water tests was carried out. Results. Complex radiation and hygienic examination of the region with the most large municipalities number with model areas allocation was conducted. The assessment of the Altai Territory population’s individual annual radiation doses from natural radionuclides has revealed a number of the regularities depending on the terrain’s ecological and geographical type. Following the research results, ranging the region territories taking into account of annual effective doses of the population from natural sources for 2009-2015 was carried out. The annual individual effective dose of the Altai Territory upland areas population presented by the highest values and ranges from 7.36 mSv / year to 8.19 mSv / year. Foothill regions of Altai and in Salair ridge are characterized by increased population exposure from natural sources. Here the dose ranges from 5.09 mSv / year to 6.22 mSv / year. Steppe and forest-steppe territories are characterized by the lowest level of the natural radiation which is ranging from 3.23 mSv / year to 4.11 mSv / year, that doesn’t exceed the all-Russian levels. Most of the hygienic radon equivalent equilibrium volume activity standards exceedances were registered in mountain and foothill areas buildings. A number of radon anomalies is revealed also in steppe areas. Med exceedances ranged from 203 ± 17.8 Bq / m3 to 480 ± 37.9 Bq / m3. Given the fact that most of these buildings belong to the administrative or educational institutions with an eight-hour working day, the dose of radiation for people there can be up to 10 mSv / year. Conclusion. Spreading of individual annual effective

  2. Annual individual doses for personnel dealing with ionizing radiation sources

    International Nuclear Information System (INIS)

    Poplavskij, K.K.

    1982-01-01

    Data on annual individual doses for personnel of national economy enterprises, research institutes, high schools, medical establishments dealing with ionizing radiation sources are presented. It is shown that radiation dose for the personnel constitutes only shares of standards established by sanitary legislation. Numeral values of individual doses of the personnel are determined by the type, character and scope of using ionizing radiation sources

  3. Annual dose distribution of Nuclear Malaysia radiation workers for monitoring period from year 2003 to 2007

    International Nuclear Information System (INIS)

    Hairul Nizam Idris; Azimawati Ahmad; Norain Ab Rahman

    2008-08-01

    Estimation of radiation dose (external exposure) received by Nuklear Malaysia's radiation workers are measured by using personal dosimetry device which are provided by SSDL-Nuklear Malaysia. Dose assessment report for monitoring period from year 2003 - 2007 shows that almost all radiation workers received annual doses less than 20 mSv, only in very small percentage of radiation workers received annual doses between 20.1 to 50 mSv and none of the workers received doses higher than 50 mSv/year. Exposure dose below 20 mSv/year (the new annual dose limit to be used in Malaysia soon) could be fully achieved by improving the compliance with the safety regulations and enhancing the awareness about radiation safety among the workers. (Author)

  4. Activity concentrations and mean annual effective dose of foodstuffs on the island of Tenerife (Spain))

    International Nuclear Information System (INIS)

    Hernandez, F.; Hernandez-Armas, J.; Catalan, A.; Fernandez-Aldecoa, J. C.; Landeras, M. I.

    2004-01-01

    A total of 26 different food types and 12 elaborated diets were analysed by low-level gamma spectrometry to measure their content of 238 U( 234 Th), 228 Ra( 228 Ac), 226 Ra( 214 Pb), 210 Pb, 137 Cs and 40 K. The concentrations of these radionuclides measured in some imported foodstuffs were compared with those measured in some locally produced ones. Moreover, the concentrations found in the analysed foodstuffs and composite diets were compared with the data available in literature from other locations, such as Egypt (Brazil)) (Poland)) and Hong Kong. 40 K contributed highest to the daily dose produced by the intake of comestibles. The largest 40 K concentrations were measured in the chickpeas and beans with 380 ± 30 and 380 ± 20 Bq kg -1 fresh weights, respectively. The artificial radionuclide 137 Cs was measured only above detection limits in the potatoes and sweet potatoes. A mean annual effective dose of 362 μSv with a standard deviation of 110 μSv was calculated from the composite diets. (authors)

  5. Collective effective dose equivalent, population doses and risk estimates from occupational exposures in Japan

    International Nuclear Information System (INIS)

    Maruyama, Takashi; Nishizawa, Kanae; Kumamoto, Yoshikazu; Iwai, Kazuo; Mase, Naomichi.

    1993-01-01

    Collective dose equivalent and population dose from occupational exposures in Japan, 1988 were estimated on the basis of a nationwide survey. The survey was conducted on annual collective dose equivalents by sex, age group and type of radiation work for about 0.21 million workers except for the workers in nuclear power stations. The data on the workers in nuclear power stations were obtained from the official report of the Japan Nuclear Safety Commission. The total number of workers including nuclear power stations was estimated to be about 0.26 million. Radiation works were subdivided as follows: medical works including dental; non-atomic energy industry; research and education; atomic energy industry and nuclear power station. For the determination of effective dose equivalent and population dose, organ or tissue doses were measured with a phantom experiment. The resultant doses were compared with the doses previously calculated using a chord length technique and with data from ICRP publications. The annual collective effective dose equivalent were estimated to be about 21.94 person·Sv for medical workers, 7.73 person·Sv for industrial workers, 0.75 person·Sv for research and educational workers, 2.48 person·Sv for atomic energy industry and 84.4 person ·Sv for workers in nuclear power station. The population doses were calculated to be about 1.07 Sv for genetically significant dose, 0.89 Sv for leukemia significant dose and 0.42 Sv for malignant significant dose. The population risks were estimated using these population doses. (author)

  6. A study on the annual equivalent doses received by cardiologists in a UK hospital

    International Nuclear Information System (INIS)

    Fong, R.Y.L.; Ryan, E.; Alonso-Arrizabalaga, S.

    2001-01-01

    A dose assessment study was carried out to determine the likely annual equivalent doses received by various parts of a cardiologist's body. High sensitivity GR-200 thermoluminescent dosemeters were attached to cardiologists' foreheads, little fingers, wrists, elbows, knees and ankles. Three common cardiology procedures were investigated, namely, percutaneous transluminal coronary angioplasty (PTCA), permanent pacemaker insertion (PPM) and left heart catheterisation (LHC). Dose monitoring was done on a case-by-case basis. Data on ten cases of each procedure were gathered. The projected annual equivalent doses were computed by averaging the ten doses measured at each site for each examination type and finding out from the cardiologists how many cases of PTCA, PPM and LHC they do in a year. Results in this study show that for the lens of the eye, the projected annual equivalent dose is below 10 mSv and for the other body parts, it is below 100 mSv per year. The study demonstrated that the methodology used can help to optimise radiation protection in diagnostic radiology. (author)

  7. Estimating the whole-body exposure annual dose of radiation workers of petroleum nuclear well logging

    International Nuclear Information System (INIS)

    Tian Yizong; Gao Jianzheng; Liu Wenhong

    2006-01-01

    Objective: By imitating experiment of radioactive sources being installed, to estimate the annual whole-body exposure dose of radiation workers of petroleum nuclear determining wells; Methods: To compre the values of the theory, imitating experiment and γ individual dose monitor calculations. Results: The three values measured above tally with one anather. Conclusion: The annual whole-body exposure doses of radiation workers of petroleum nuclear determining wells are no more than 5 mSv. (authors)

  8. Assessment of annual effective dose from natural radioactivity intake through wheat grain produced in Faisalabad, Pakistan

    International Nuclear Information System (INIS)

    Tufail, M.; Sabiha-Javied; Akhtar, N.; Akhter, J.

    2010-01-01

    Wheat is staple food of the people of Pakistan. Phosphate fertilizers, used to increase the yield of wheat, enhance the natural radioactivity in the agricultural fields from where radionuclides are transferred to wheat grain. A study was, therefore, carried out to investigate the uptake of radioactivity by wheat grain and to determine radiation doses received by human beings from the intake of foodstuffs made of wheat grain. Wheat was grown in a highly fertilized agricultural research farm at the Nuclear Institute of Agriculture and Biology (NIAB), Faisalabad, Pakistan. The activity concentration of 40 K, 226 Ra and 232 Th was measured in soil, single superphosphate (SSP) fertilizer, and wheat grain using an HPGe-based gamma-ray spectrometer. Soil to wheat grain transfer factors determined for 40 K, 226 Ra and 232 Th were 0.118 ± 0.021, 0.022 ± 0.004 and 0.036 ± 0.007, respectively, and the annual effective dose received by an adult person from the intake of wheat products was estimated to be 217 μSv. (author)

  9. Average annual doses, lifetime doses and associated risk of cancer death for radiation workers in various fuel fabrication facilities in India

    International Nuclear Information System (INIS)

    Iyer, P.S.; Dhond, R.V.

    1980-01-01

    Lifetime doses based on average annual doses are estimated for radiation workers in various fuel fabrication facilities in India. For such cumulative doses, the risk of radiation-induced cancer death is computed. The methodology for arriving at these estimates and the assumptions made are discussed. Based on personnel monitoring records from 1966 to 1978, the average annual dose equivalent for radiation workers is estimated as 0.9 mSv (90 mrem), and the maximum risk of cancer death associated with this occupational dose as 1.35x10 -5 a -1 , as compared with the risk of death due to natural causes of 7x10 -4 a -1 and the risk of death due to background radiation alone of 1.5x10 -5 a -1 . (author)

  10. The effects of different nitrogen doses on herbage and seed yields of ...

    African Journals Online (AJOL)

    The effects of different nitrogen doses on herbage and seed yields of annual ... 250, 270 and 290 kg ha-1) of and some agricultural characteristics of annual ryegrass cv. ... doses are observed to be important for all properties of herbage yield and ... It was obtained for the seed production that the highest number of tiller (626 ...

  11. The issue concerning the use of an annual as opposed to a committed dose limit for internal radiation protection

    International Nuclear Information System (INIS)

    Skrable, K.W.; Chabot, G.E.; Alexander, E.L.; French, C.S.

    1985-01-01

    The scientific, technical, practical, and ethical considerations that relate to the use of an annual as opposed to a committed dose limitation system for internal radiation protection are evaluated and presented. The concerns about problems associated with the more recent ICRP committed dose recommendations that have been expressed by persons who are currently operating under an annual dose limitation system are reviewed and discussed in terms of the radiation protection programme elements that are required for an effective ALARA programme. We include in this and a follow-up article a comparison of how these alternative dose limitation systems affect the economic and professional livelihood of radiation workers and the requirements that they impose upon employers. Finally, we recommend the use of an ICRP based committed dose limitation system that provides protection of workers over an entire occupational lifetime without undue impact on their livelihood and without undue requirements for employers. (author)

  12. MEASUREMENT OF RADON EXHALATION RATE, RADIUM ACTIVITY AND ANNUAL EFFECTIVE DOSE FROM BRICKS AND CEMENT SAMPLES COLLECTED FROM DERA ISMAIL KHAN

    OpenAIRE

    Nisar Ahmad; Mohamad Suhaimi Jaafar; Sohail Aziz Khan; Tabassum Nasir; Sajjad Ahmad; Muhammad Rahim

    2014-01-01

    Radon concentration, exhalation rate, radium activity and annual effective dose have been measured from baked and unbaked bricks and cement samples commonly used as construction material in the dwellings of Dera Ismail Khan City, Pakistan. CR-39 based NRPB radon dosimeters and RAD7 have been used as passive and active devises. The values of radon concentration for baked, unbaked bricks and cements obtained from passive and active techniques were found in good agreement. Average values of rado...

  13. A method for assessing the annual dose to the most exposed individual from tritium and 14C reactor discharges to atmosphere

    International Nuclear Information System (INIS)

    Nair, S.

    1979-10-01

    A method is described for assessing the annual dose to the most exposed individual from routine releases of tritium and 14 C to the atmosphere during normal reactor operations. A detailed assessment has been made of the resulting equilibrium contamination levels in a range of foodstuffs typical of an average UK diet and of the annual doses resulting from a chronic intake of tritium and 14 C via inhalation, ingestion and, additionally, in the case of tritium, via skin absorption. Equilibrium annual doses from the global circulation of tritium and 14 C have also been calculated. Upper limits to the effective annual dose-equivalents to the most exposed individual were found to be 0.6 rem.yr -1 and 100 rem.yr -1 per Ci.yr -1 release of tritium and 14 C respectively, with the ingestion pathway contributing significantly to the overall exposure. The most exposed individual was found to be a Reference 10 year old child. The methods outlined for calculating the ingestion dose from tritium and 14 C releases hav been incorporated into the more generally applicable code FOODDOSE. The code may be used to make more realistic dose calculations to the individuals based on site-specific surveys of variables such as local meteorology, local diet and local land use for agriculture, which may lead to doses smaller than the upper limit values quoted by factors of 20 and 200 for tritium and 14 C respectively. (author)

  14. Effective dose to radon considering people's activities

    International Nuclear Information System (INIS)

    Shimo, M.; Seki, K.; Kikuchi, I.

    1992-01-01

    The tidal volume was estimated for evaluating the effective dose due to radon concentration in the atmosphere. In this study regional population was separated to vocation and non-vocation. The occupancy time and the breathing rate for both vocation and non-vocation groups were estimated, and the annual tidal volume for both groups were calculated. Human actions were separated to 18 activities in the process for estimating the breathing rate. It was clear that the breathing rate depended on human activity and that the human activity changed with its age, so the breathing rate varied with age. Finally the effective doses due to radon and radon progeny indoors and outdoors were evaluated. The maximum annual effective dose was estimated to be 1.2 mSv, minimum 0.2 mSv, and mean 0.51 mSv for vocation. For non-vocation, the male maximum value 0.43 mSv was obtained at the 16 age and the minimum 0.12 mSv at the 70 age, whereas female maximum 0.26 mSv was obtained at the 12 age and the minimum 0.11 mSv at the 70 age. In addition in this study objective areas are Aichi, Gifu, and Mie prefectures for vocation and only Aichi prefecture for non-vocation. (author)

  15. Determination of radon concentration in drinking water resources of villages nearby Lalehzar fault and evaluation the annual effective dose

    International Nuclear Information System (INIS)

    Mohammad Malakootian; Zahra Darabi Fard; Mojtaba Rahimi

    2015-01-01

    The radon concentration has been measured in 44 drinking water resources, in villages nearby Lalehzar fault in winter 2014. Some samples showed a higher concentration of radon surpassing limit set by EPA. Further, a sample was taken from water distribution networks for these sources of water. Soluble radon concentration was measured by RAD7 device. Range radon concentration was 26.88 and 0.74 BqL -1 respectively. The maximum and minimum annual effective dose for adults was estimated at 52.7 and 2.29 µSvY -1 , respectively. Reducing radon from water before use is recommended to improve public health. (author)

  16. Extremity doses of medical staff involved in interventional radiology and cardiology: Correlations and annual doses (hands and legs)

    International Nuclear Information System (INIS)

    Krim, S.; Brodecki, M.; Carinou, E.; Donadille, L.; Jankowski, J.; Koukorava, C.; Dominiek, J.; Nikodemova, D.; Ruiz-Lopez, N.; Sans-Merce, M.; Struelens, L.; Vanhavere, F.

    2011-01-01

    An intensive measurement campaign was launched in different hospitals in Europe within work package 1 of the ORAMED project (Optimization of RAdiation protection for MEDical staff). Its main objective was to obtain a set of standardized data on extremity and eye lens doses for staff in interventional radiology (IR) and cardiology (IC) and to optimize staff protection. The monitored procedures were divided in three main categories: cardiac, general angiography and endoscopic retrograde cholangio-pancreatography(ERCP) procedures. Using a common measurement protocol, information such as the protective equipment used (lead table curtain, transparent lead glass ceiling screen, patient shielding, whole body shielding or special cabin etc.) as well as Kerma Area Product (KAP) values and access of the catheter were recorded. This study was performed with a final database of more than 1300 procedures performed in 34 European hospitals. Its objectives were firstly to determine if the measured extremity doses could be correlated to the KAP values; secondly to check if the doses to the eyes could be linked to the doses to the hands (finger or wrist positions) and finally if the doses to the fingers could be estimated based on the doses to the wrists. General correlations were very difficult to find and their strength was mostly influenced by three main parameters: the X-ray tube configuration, the room collective radioprotective equipment and the access of the catheter. The KAP value can provide a simple mean to estimate the extremity doses of the operator given that it is assessed correctly for the operator when he is actually using the X-ray tube. Moreover, this study showed that the doses to the left finger are strongly correlated to the doses to the left wrist when no ceiling shield is used. It is also possible to estimate the doses to the eyes given the doses to the left finger or left wrist but the X-ray tube configuration and the access have to be considered. The annual

  17. The Annual Dose for Qena Generative Population Due to Consume the Animal Products

    International Nuclear Information System (INIS)

    Harb, S.; Sahalel Din, K.; Abbady, A.; Saad, N.

    2010-01-01

    Several kinds of cattle and poultry fodder samples collected from South Valley University and Qena governorate farm, Qena, Upper Egypt were estimated for their natural radioactivity concentrations due to Ra-226, Ra-228, Th-232 and K-40 radionuclides. Twenty nine fodder samples were analyzed by using low-level gamma-spectrometric. Based on radionuclides concentrations in animal fodder and annual consumption rate, the human health risk from irradiation due to indirect ingestion can be assessed. The annual effective dose from these radionuclides, which may reach the local consumer through beef, milk, poultry and eggs consumption have been estimated as 2.7 E +00, 1.4 E +01, 1.0 E -01 and 1.4 E -01 μSv/y, respectively

  18. Estimation of outdoor and indoor effective dose and excess lifetime cancer risk from Gamma dose rates in Gonabad, Iran

    Energy Technology Data Exchange (ETDEWEB)

    Jafaria, R.; Zarghania, H.; Mohammadia, A., E-mail: rvzreza@gmail.com [Paramedical faculty, Birjand University of Medical Sciences, Birjand (Iran, Islamic Republic of)

    2017-07-01

    Background gamma irradiation in the indoor and outdoor environments is a major concern in the world. The study area was Gonabad city. Three stations and buildings for background radiation measurement of outdoor and indoor were randomly selected and the Geiger-Muller detector (X5C plus) was used. All dose rates on display of survey meter were recorded and mean of all data in each station and buildings was computed and taken as measured dose rate of that particular station. The average dose rates of background radiation were 84.2 nSv/h for outdoor and 108.6 nSv/h for indoor, maximum and minimum dose rates were 88.9 nSv/h and 77.7 nSv/h for outdoor measurements and 125.4 nSv/h and 94.1 nSv/h for indoor measurements, respectively. Results show that the annual effective dose is 0.64 mSv, which compare to global level of the annual effective dose 0.48 mSv is high. Estimated excess lifetime cancer risk was 2.24×10{sup -3} , indicated that it is large compared to the world average value of 0.25×10{sup -3}. (author)

  19. On the use of age-specific effective dose coefficients in radiation protection of the public

    International Nuclear Information System (INIS)

    Kocher, D.C.; Eckerman, K.F.

    1998-01-01

    Current radiation protection standards for the public include a limit on effective dose in any year for individuals in critical groups. This paper considers the question of how the annual dose limit should be applied in controlling routine exposures of populations consisting of individuals of all ages. We assume that the fundamental objective of radiation protection is limitation of lifetime risk and, therefore, that standards for controlling routine exposures of the public should provide a reasonable correspondence with lifetime risk, taking into account the age dependence of intakes and doses and the variety of radionuclides and exposure pathways of concern. Using new calculations of the per capita (population-averaged) risk of cancer mortality per unit activity inhaled or ingested in the U.S. Environmental Protection Agency's Federal Guidance Report No. 13, we show that applying a limit on annual effective dose only to adults, which was the usual practice in radiation protection of the public before the development of age-specific effective dose coefficients, provides a considerably better correspondence with lifetime risk that applying the annual dose limit to the critical group of any age. (author)

  20. On the use of age-specific effective dose coefficients in radiation protection of the public

    International Nuclear Information System (INIS)

    Kocher, D.C.; Eckerman, K.F.

    1998-01-01

    Current radiation protection standards for the public include a limit on effective dose in any year for individuals in critical groups. This paper considers the question of how the annual dose limit should be applied in controlling routine exposures of populations consisting of individuals of all ages. The authors assume that the fundamental objective of radiation protection is limitation of lifetime risk and, therefore, that standards for controlling routine exposures of the public should provide a reasonable correspondence with lifetime risk, taking into account the age dependence of intakes and doses and the variety of radionuclides and exposure pathways of concern. Using new calculations of the per capita (population-averaged) risk of cancer mortality per unit activity inhaled or ingested in the US Environmental Protection Agency's Federal Guidance Report No. 13, the authors show that applying a limit on annual effective dose only to adults, which was the usual practice in radiation protection of the public before the development of age-specific effective dose coefficients, provides a considerably better correspondence with lifetime risk than applying the annual dose limit to the critical group of any age

  1. The estimation of occupational effective dose in diagnostic radiology with two dosimeters

    International Nuclear Information System (INIS)

    Niklason, L.T.; Marx, M.V.; Chan, Heang-Ping

    1994-01-01

    Annual effective dose limits have been proposed by national and international radiation protection committees. Radiation protection agencies must decide upon a method of converting the radiation dose measured from dosimeters to an estimate of effective dose. A proposed method for the estimation of effective dose from the radiation dose to two dosimeters is presented. Correction factors are applied to an over-apron collar dose and an under-apron dose to estimate the effective dose. Correction factors are suggested for two cases, both with and without a thyroid shield. Effective dose may be estimated by the under-apron dose plus 6% of the over-collar dose if a thyroid shield is not worn or plus 2% of the over-collar dose if a thyroid shield is worn. This method provides a reasonable estimate of effective dose that is independent of lead apron thickness and accounts for the use of a thyroid shield. 17 refs., 3 tabs

  2. Algorithm for assessment of mean annual gonad dose and genetically significant dose from the data of personal dosimetry

    International Nuclear Information System (INIS)

    Tomasevic, M.; Radovanovic, R.

    1986-01-01

    During one year more than 40,000 items of information on radiation exposure of personnel involved in the handling of radiation sources and more than 5,000,000 items on irradiation of other people are collected in the authors' laboratory. Considerable progress in assessment of mean annual gonad dose of genetically sifnificant dose was attained by means of an algorithm for a personal computer. This simple and inexpensive system has led to a higher accuracy in the application of protective measures. (author)

  3. Determination of Radon Level in Drinking Water in Mehriz Villages and Evaluation the Annual Effective Absorbed Dose

    Directory of Open Access Journals (Sweden)

    Mohammad Malakootian

    2015-03-01

    Results: Radon concentrations of samples ranged from 0.187 BqL-1 to 14.8 BqL-1.These results were related to samples No.12 and 9 and also to aqueducts of Tang-e-chenar and Malekabad village respectively. Based on the amount of radon in the sample, the lowest annual effective absorbed dose through drinking water or breathing(In an environment where water was used was 0.0005msv/y and the maximum amount was 0.04msv/y. Conclusion: Apart from samples No.9 and 16 that were elated to the aqueduct of Malekabad village and a private well in Dare Miankoohvillagehaving48 persons as total population, Radon concentrations of other samples used by people of Mehriz villages as drinking water was low and less than permitted limit set by the Environmental Protection Agency of United States of America.

  4. Effective Dose Calculation Program (EDCP) for the usage of NORM-added consumer product.

    Science.gov (United States)

    Yoo, Do Hyeon; Lee, Jaekook; Min, Chul Hee

    2018-04-09

    The aim of this study is to develop the Effective Dose Calculation Program (EDCP) for the usage of Naturally Occurring Radioactive Material (NORM) added consumer products. The EDCP was developed based on a database of effective dose conversion coefficient and the Matrix Laboratory (MATLAB) program to incorporate a Graphic User Interface (GUI) for ease of use. To validate EDCP, the effective dose calculated with EDCP by manually determining the source region by using the GUI and that by using the reference mathematical algorithm were compared for pillow, waist supporter, eye-patch and sleeping mattress. The results show that the annual effective dose calculated with EDCP was almost identical to that calculated using the reference mathematical algorithm in most of the assessment cases. With the assumption of the gamma energy of 1 MeV and activity of 1 MBq, the annual effective doses of pillow, waist supporter, sleeping mattress, and eye-patch determined using the reference algorithm were 3.444 mSv year -1 , 2.770 mSv year -1 , 4.629 mSv year -1 , and 3.567 mSv year -1 , respectively, while those calculated using EDCP were 3.561 mSv year -1 , 2.630 mSv year -1 , 4.740 mSv year -1 , and 3.780 mSv year -1 , respectively. The differences in the annual effective doses were less than 5%, despite the different calculation methods employed. The EDCP can therefore be effectively used for radiation protection management in the context of the usage of NORM-added consumer products. Additionally, EDCP can be used by members of the public through the GUI for various studies in the field of radiation protection, thus facilitating easy access to the program. Copyright © 2018. Published by Elsevier Ltd.

  5. Mean annual and collective radiation doses of Perm' province personnel

    International Nuclear Information System (INIS)

    Poplavskij, K.K.; Rotenberg, L.I.

    1978-01-01

    The average annual and collective doses of radiation received by personnel of radiologic facilities and by the population of the region under study as a whole are estimated. Tabular data on radiation loads are presented according to the age and sex of personnel and to the type of radiation sources used. The procedure employed in this study allows one to evaluate objectively the conditions of work with sources of ionizing radiation

  6. Residual radioactive contamination from decommissioning: Technical basis for translating contamination levels to annual dose

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.; Peloquin, R.A.

    1990-01-01

    This document describes the generic modeling of the total effective dose equivalent (TEDE) to an individual in a population from a unit concentration of residual radioactive contamination. Radioactive contamination inside buildings and soil contamination are considered. Unit concentration TEDE factors by radionuclide, exposure pathway, and exposure scenario are calculated. Reference radiation exposure scenarios are used to derive unit concentration TEDE factors for about 200 individual radionuclides and parent-daughter mixtures. For buildings, these unit concentration factors list the annual TEDE for volume and surface contamination situations. For soil, annual TEDE factors are presented for unit concentrations of radionuclides in soil during residential use of contaminated land and the TEDE per unit total inventory for potential use of drinking water from a ground-water source. Because of the generic treatment of potentially complex ground-water systems, the annual TEDE factors for drinking water for a given inventory may only indicate when additional site data or modeling sophistication are warranted. Descriptions are provided of the models, exposure pathways, exposure scenarios, parameter values, and assumptions used. An analysis of the potential annual TEDE resulting from reference mixtures of residual radionuclides is provided to demonstrate application of the TEDE factors. 62 refs., 5 figs., 66 tabs

  7. 137Cs and 40K concentrations on imported powder milk and its contribution to the annual effective dose by ingestion for children

    International Nuclear Information System (INIS)

    Vargas, D.; Borrell Munnoz, J. L.; D'Alessandro, K.; Gelen Rudnikas, A.; Diaz Rizo, O.; Martinez Herrera, E.; Gonzales Mesa, A.; Marrero Arias, L.; Hilda Zambrano, M.

    2013-01-01

    Low Background Gamma Spectrometry was used to determine activity concentrations of 137 Cs and 40 K on different powder milk samples imported in Cuba for local consumption. Radionuclide concentration has been evaluated using a high-purity germanium (HPGe) detector (2.04 keV of FWHM and 30% of relative efficiency coupled to a low background system. A relative procedure, using the Certified Reference Materials (CRM) IAEA-152 and 154, was implemented. Samples were dried at 105 o C, macerated and sieved at 125 μm using standardized procedures . Results show that radionuclide activities is strongly dependent on milk type (full and skimmed milk) and on its origin, showing in all samples an activity concentration for 137 Cs is from 1.30 to 2.69 Bq kg -1 only in the 54.7 % of them. Annual effective dose committed by powder milk ingestion for children has been estimated as 9.3x10 -3 mSv y -1 , beneath the permissible dose regulated by the Cuban authorities based on doses reported worldwide for population affected only by global fallout. (Author)

  8. Annual dose of Taiwanese from the ingestion of 210Po in oysters.

    Science.gov (United States)

    Lee, Hsiu-wei; Wang, Jeng-Jong

    2013-03-01

    Oysters around the coast of Taiwan were collected, dried, spiked with a (209)Po tracer for yield, digested with concentrated HNO(3) and H(2)O(2), and finally dissolved in 0.5 N HCl. The polonium was then spontaneously deposited onto a silver disc, and the activity of (210)Po was measured using an alpha spectrum analyzer equipped with a silicon barrier detector. Meanwhile, the internal effective dose of (210)Po coming from the intake of oysters by Taiwanese was evaluated. The results of the present study indicate that (210)Po average activity concentrations ranged from 23.4 ± 0.4 to 126 ± 94 Bq kg(-1) of fresh oysters. The oysters coming from Penghu island and Kinmen island regions contain higher concentrations of (210)Po in comparison with oysters from other regions of Taiwan. The value of (210)Po weighted average activity concentrations for all oyster samples studied is 25.9 Bq kg(-1). The annual effective dose of Taiwanese due to the ingestion of (210)Po in oysters was estimated to be 4.1 × 10(-2) mSv y(-1). Copyright © 2013. Published by Elsevier Ltd.

  9. Estimation of effective dose to public from external exposure to natural background radiation in saudi arabia

    International Nuclear Information System (INIS)

    Khalid, A. A.

    2003-01-01

    The effective dose values in sixteen cities in Saudi Arabia due to external exposure to natural radiation were evaluated. These doses are based on natural background components including external exposure to terrestrial radiation and cosmic rays. The importance of evaluating the effective dose to the public due to external exposure to natural background radiation lies in its epidemiological and dosimetric importance and in forming a basis for the assessment of the level of radioactive contamination or pollution in the environment in the future. The exposure to terrestrial radiation was measured using thermoluminescent dosimeters (TLD). The exposure from cosmic radiation was determined using empirical correlation. The values evaluated for the total annual effective dose in all cities were within the world average values. The highest total annual effective dose measured in Al-Khamis city was 802 μSv/y, as compared to 305 μSv/y in Dammam city, which was considered the lowest value

  10. The Effective Dose Due to Radionuclides Intake Via Ingestion in Poland in 1986-1999

    International Nuclear Information System (INIS)

    Grabowski, D.; Kurowski, W.; Muszynski, W.; Rubel, B.; Swietochowska, J.

    2001-01-01

    Full text: One of the pathways of radiation exposure in humans is consumption of contaminated food. The composition of an average diet is diversified for various groups within the population and depends on age, sex, consumption habit and performed work. To asses the dose obtained by people due to ingestion of contaminated food, the activity of main products of Polish diet has been analysed for period 1986 - 1999. The samples of milk, meat, vegetables, fruit and cereals were collected all over the territory of Poland to determine the activity of caesium isotopes. In the first two-year after the Chernobyl accident the differences in contamination were observed in various regions. Later on the differences were less pronounced except in milk and meat. The calculation of an average annual intake of caesium isotopes was based on statistical data consumption and contamination of certain product important in daily diet. Annual intake of caesium was different among regions. Mean annual effective dose related to the ingestion of contaminated food of 137 Cs was assessed on 54μSv in 1986 and 28μSv in 1987 and of 134 Cs on 34μSv and 13μSv respectively. In next years the dose was diminishing and from 1993 the average annual effective dose from 137 Cs has been on level 6-7 μSv. (author)

  11. Effective dose and cancer risk in PET/CT exams

    International Nuclear Information System (INIS)

    Pinto, Gabriella M.; Sa, Lidia Vasconcellos de

    2013-01-01

    Due to the use of radiopharmaceutical positron-emitting in PET exam and realization of tomography by x-ray transmission in CT examination, an increase of dose with hybrid PET/CT technology is expected. However, differences of doses have been reported in many countries for the same type of procedure. It is expected that the dose is an influent parameter to standardize the protocols of PET/CT. This study aimed to estimate the effective doses and absorbed in 65 patients submitted to oncological Protocol in a nuclear medicine clinic in Rio de Janeiro, considering the risk of induction of cancer from the scan. The CT exam-related doses were estimated with a simulator of PMMA and simulated on the lmPACT resistance, which for program effective dose, were considered the weight factors of the lCRP 103. The PET exam doses were estimated by multiplying the activity administered to the patient with the ICRP dose 80 factors. The radiological risk for cancer incidence were estimated according to the ICRP 103. The results showed that the effective dose from CT exam is responsible for 70% of the effective total in a PET/CT scan. values of effective dose for the PET/CT exam reached average values of up to 25 mSv leading to a risk of 2, 57 x 10 -4 . Considering that in staging of oncological diseases at least four tests are performed annually, the total risk comes to 1,03x 10 -3

  12. Annual absorbed dose rate at the surface of 38 hot and mineral springs in Iran

    Energy Technology Data Exchange (ETDEWEB)

    Bahreyni Toosi, M.; Orougi, M.H.; Sadeghzadeh, A.; Aghamir, A.; Jomehzadeh, A.; Zare, H. [Mashhad Univ. of Medical Sciences, Medical Physics Dep., Faculty of Medicine (Iran, Islamic Republic of)

    2006-07-01

    Full text of publication follows: Measurement of background radiation is very important from different points of view especially to human health. In some cases exposure rate near hot and mineral springs are higher than those of normal areas. The high background radiation of hot and mineral springs is primarily due to the presence of very high amounts of Ra 226 and its decay products. In this research, environmental gamma radiation of hot and mineral springs in Khorasan, Mazandaran and Sareeyn town in Ardabil province have been measured. Equipment used in this work included: a survey meter (R.D.S. -110), a tripod and an aluminium frame to hold the survey meter horizontally.R.D.S. -110 is a microprocessor controlled detector. This survey meter has been designed for monitoring X and rays and radiation. Measurements were carried out at one meter above water level in the vicinity of hot and mineral springs. Dose rates were recorded for one hour. The average of all recorded dose rates over one hour period was taken as the exposure rate for each station. The results indicate that in Khorasan province the highest and lowest annual absorbed dose rates were equal to 10.80 mSv/y at Shanigarmab and 0.52 mSv/y at Nasradin source respectively. In Mazandaran province maximum and minimum exposure rates equal to 54.4 and 0.53 mSv/y were obtained at the surface of Talleshmahalleh and Ghormerz sources. Exposure rates at the vicinity of Sarein sources were not very different and ranged from 1.39 to 1.59 mSv/y. The results indicate that in Khorasan province Shahingarmab hot spring has the highest annual absorbed dose rate (10.80 mSv/y) and Nasraddin in Sarbisheh has the lowest level of radiation (0.62 mSv/y). In Mazandaran province Taleshmahalleh hot mineral spring has the highest annual absorbed dose rate (54.41 mSv/y) and Ghormerz mineral spring has the lowest radiation level (0.53 mSv/y). Also in Sareeyn (in Ardabil province) Abechashm source has the highest annual absorbed dose

  13. Effective dose evaluation of NORM-added consumer products using Monte Carlo simulations and the ICRP computational human phantoms

    International Nuclear Information System (INIS)

    Lee, Hyun Cheol; Yoo, Do Hyeon; Testa, Mauro; Shin, Wook-Geun; Choi, Hyun Joon; Ha, Wi-Ho; Yoo, Jaeryong; Yoon, Seokwon; Min, Chul Hee

    2016-01-01

    The aim of this study is to evaluate the potential hazard of naturally occurring radioactive material (NORM) added consumer products. Using the Monte Carlo method, the radioactive products were simulated with ICRP reference phantom and the organ doses were calculated with the usage scenario. Finally, the annual effective doses were evaluated as lower than the public dose limit of 1 mSv y"−"1 for 44 products. It was demonstrated that NORM-added consumer products could be quantitatively assessed for the safety regulation. - Highlights: • Consumer products considered that NORM would be included should be regulated. • 44 products were collected and its gamma activities were measured with HPGe detector. • Through Monte Carlo simulation, organ equivalent doses and effective doses on human phantom were calculated. • All annual effective doses for the products were evaluated as lower than dose limit for the public.

  14. Annual effective dose due to residential radon progeny in Sweden: Evaluations based on current risk projections models and on risk estimates from a nation-wide Swedish epidemiological study

    Energy Technology Data Exchange (ETDEWEB)

    Doi, M [National Inst. of Radiological Sciences, Chiba (Japan); Lagarde, F [Karolinska Inst., Stockholm (Sweden). Inst. of Environmental Medicine; Falk, R; Swedjemark, G A [Swedish Radiation Protection Inst., Stockholm (Sweden)

    1996-12-01

    Effective dose per unit radon progeny exposure to Swedish population in 1992 is estimated by the risk projection model based on the Swedish epidemiological study of radon and lung cancer. The resulting values range from 1.29 - 3.00 mSv/WLM and 2.58 - 5.99 mSv/WLM, respectively. Assuming a radon concentration of 100 Bq/m{sup 3}, an equilibrium factor of 0.4 and an occupancy factor of 0.6 in Swedish houses, the annual effective dose for the Swedish population is estimated to be 0.43 - 1.98 mSv/year, which should be compared to the value of 1.9 mSv/year, according to the UNSCEAR 1993 report. 27 refs, tabs, figs.

  15. Annual effective dose due to residential radon progeny in Sweden: Evaluations based on current risk projections models and on risk estimates from a nation-wide Swedish epidemiological study

    International Nuclear Information System (INIS)

    Doi, M.; Lagarde, F.

    1996-12-01

    Effective dose per unit radon progeny exposure to Swedish population in 1992 is estimated by the risk projection model based on the Swedish epidemiological study of radon and lung cancer. The resulting values range from 1.29 - 3.00 mSv/WLM and 2.58 - 5.99 mSv/WLM, respectively. Assuming a radon concentration of 100 Bq/m 3 , an equilibrium factor of 0.4 and an occupancy factor of 0.6 in Swedish houses, the annual effective dose for the Swedish population is estimated to be 0.43 - 1.98 mSv/year, which should be compared to the value of 1.9 mSv/year, according to the UNSCEAR 1993 report. 27 refs, tabs, figs

  16. Quantification of individual of individual annual doses to the public due to Embalse NPP operation

    International Nuclear Information System (INIS)

    Salas, Carlos

    2008-01-01

    This paper compares the individual annual doses to the public produced during Embalse NPP operation and the natural radiation doses absorbed in everyday life by the same individuals. The basic idea is to show several examples that allow the comparison. Therefore, everybody will get a clear picture of the radiological contamination that surrounds us and the actual influence that Embalse NPP's operation has in the environment. The first concept to be considered is that the human body cells cannot distinguish whether radiation comes from a natural or an artificial source (a source created by man). This is of great importance in the case of the popular myth that says that radiation coming from artificial sources is the only damaging radiation, and that other types of radiation are innocuous, and represent no hazard to human health. We can preliminarily state that when considering the same dose, the effects of both kinds of radiation in human body are equal. (author)

  17. Occupational Doses and the Contribution to the Population Dose in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seung Jae; Kyu, Hwan Jeong [KINS, Daejeon (Korea, Republic of)

    2016-05-15

    The purpose of this study is to evaluate the occupational exposure records in terms of the control of exposure for radiation workers and dose reduction. The study includes the estimates of the number of people exposed occupationally, the effective collective doses and mean doses to those exposed. In addition, the study includes an estimate of the contribution of occupational exposure to the Korean population dose. The exposure of radiation workers in occupational field includes medical radiology, industrial applications such as radiography, nuclear power, and some research activities. Occupational exposure from medical radiology practices includes the contributions from diagnostic x-ray procedures, dental radiography, nuclear medicine and radiation therapy. The control of exposure for radiation workers, and the measures necessary to maintain radiation exposure as low as reasonably achievable (ALARA) are specified in Subparagraph 3 and Subparagraph 4 of Article 91 (1) of the Korea Nuclear Safety Act (KNSA), respectively. Therefore, from a regulatory perspective, the exposure data of the workers are primarily for verification of the adequacy of the control of exposure, radiation protection and implementation of ALARA. The number of people exposed occupationally, the effective collective doses and mean doses to those exposed, and average effective doses from occupational exposure during the period of 2009 to 2013 have been evaluated. In general, radiation workers were increasing in number annually, but the mean doses for those exposed each year showed the control of exposures were mostly considered met within the dose limit in KNSA. Nevertheless, it was shown that the continuous efforts would be needed to reduce doses and thus to implement ALARA regulatory requirements. In radiation occupations, the application of ICRP radiation protection principles will ensure good practice and decreasing exposures. Over the period of 5 years, the contributions of the annual

  18. Occupational Doses and the Contribution to the Population Dose in Korea

    International Nuclear Information System (INIS)

    Han, Seung Jae; Kyu, Hwan Jeong

    2016-01-01

    The purpose of this study is to evaluate the occupational exposure records in terms of the control of exposure for radiation workers and dose reduction. The study includes the estimates of the number of people exposed occupationally, the effective collective doses and mean doses to those exposed. In addition, the study includes an estimate of the contribution of occupational exposure to the Korean population dose. The exposure of radiation workers in occupational field includes medical radiology, industrial applications such as radiography, nuclear power, and some research activities. Occupational exposure from medical radiology practices includes the contributions from diagnostic x-ray procedures, dental radiography, nuclear medicine and radiation therapy. The control of exposure for radiation workers, and the measures necessary to maintain radiation exposure as low as reasonably achievable (ALARA) are specified in Subparagraph 3 and Subparagraph 4 of Article 91 (1) of the Korea Nuclear Safety Act (KNSA), respectively. Therefore, from a regulatory perspective, the exposure data of the workers are primarily for verification of the adequacy of the control of exposure, radiation protection and implementation of ALARA. The number of people exposed occupationally, the effective collective doses and mean doses to those exposed, and average effective doses from occupational exposure during the period of 2009 to 2013 have been evaluated. In general, radiation workers were increasing in number annually, but the mean doses for those exposed each year showed the control of exposures were mostly considered met within the dose limit in KNSA. Nevertheless, it was shown that the continuous efforts would be needed to reduce doses and thus to implement ALARA regulatory requirements. In radiation occupations, the application of ICRP radiation protection principles will ensure good practice and decreasing exposures. Over the period of 5 years, the contributions of the annual

  19. Age-dependent dose factors and dose limits of annual radioactivity uptake with unsealed radioactive substances by occupationally exposed persons

    International Nuclear Information System (INIS)

    Kaul, A.; Nosske, D; Elsasser, U; Roedler, H.D.; Henrichs, K.

    1986-01-01

    The dose factors have been calculated on the basis of the ICRP models for dosimetric and metabolistic assessment, and are laid open in accordance with Annex XI ( to sec. 45 sub-section (2)) of the amended version of the Radiation Protection Ordinance. The contribution in hand explains the scientific fundamentals and results of the calculations of dose factors relating to inhalation and ingestion of unsealed radioactive substances by adult reference man, and age-dependent factors calculated for children and adolescents. Further, annual limits of uptake by occupationally exposed persons, as calculated on the basis of primary dose limits pursunant to the draft amendment presented by the Federal Interior Minister, are compared with relevant data given by the ICRP and EC institutions. (orig./DG) [de

  20. Estimation of effective collective doses to population of Balti city with health risk assessment by means of medical radiodiagnostic irradiation

    International Nuclear Information System (INIS)

    Chislari, V.

    2009-01-01

    In this work the equivalent of effective collective dose, average annual of radio diagnostic researches in medicine for one habitant Belti city during 2006-2008 and a tendency was exposed to multiplying a dose due to multiplying the number of radiological researches was calculated. As compared to indexes for Republic of Moldova annual equivalent of effective dose is increased in 3 times. A potential risk of a medical radiation makes in 2006 - 7 cases of cancer, in 2007 - 8 cases and in 2009 - 9 cases. (author)

  1. An assessment of effective dose to staff in external beam radiotherapy

    International Nuclear Information System (INIS)

    Rawlings, D.J.; Nicholson, L.

    1997-01-01

    Radiation safety in external beam radiotherapy is governed by national legislation. Annual doses recorded by radiographers and others associated with external beam radiotherapy are typically much lower than the relevant dose limit. However, it is possible that larger doses might be received as a result of an accidental irradiation. In the event of a significant exposure resulting in a dose at or near a relevant dose limit, an accurate conversion has to be made from the dose meter reading to the limiting quantity. A method was devised to demonstrate ratios of effective dose to personal dose equivalent which might be anticipated in the even of an individual other than the patient being irradiated within a radiotherapy treatment room consisting of a linear accelerator. The variation of ratios obtained under different conditions is discussed. (author)

  2. Improvement on the KFOOD code for more realistic assessment of the annual food chain radiation dose due to operating nuclear facilities

    International Nuclear Information System (INIS)

    Choi, Yong Ho; Lee, Chang Woo; Kim, Jin Kyu; Lee, Myung Ho; Lee, Jeong Ho

    1993-01-01

    More realistic calculation models for evaluating man's annual intakes of radionuclides released from operating nuclear facilities were established. For the application of these models, the harvest years of food and feed crops consumed in the year of dose assessment and every year's average concentrations of a radionuclide in air and in water for the whole period of real operation had to be taken into account. KFOOD, an existing equilibrium food chain computer code for the Korean dose assessment, was modified according to the models. Sample runs of the modified code on the assumption of a constant release during 10 years' operation were made with three kinds of the input data files enabling the dose assessment in the improved method, the KFOOD method and another existing method, respectively, and the results were compared. Annual committed effective doses to Korean adult by intakes of Mn-54, Co-60, Sr-90, I-131 and Cs-137 calculated in the improved method were about 11, 2, 5, 60 and 3 %, respectively, lower than the corresponding KFOOD dose. To the intakes of the radionuclides except Sr-90 evaluated in the improved method, foliar uptake contributed much more than root uptake did but, in the case of Sr-90, the result was opposite. (Author)

  3. Contribution of maternal radionuclide burdens to prenatal radiation doses: Relationships between annual limits on intake and prenatal doses

    International Nuclear Information System (INIS)

    Sikov, M.R.; Hui, T.E.

    1993-10-01

    This addendum describes approaches for calculating and expressing radiation doses to the embryo/fetus from maternal intakes of radionuclides at levels corresponding to fractions or multiples of the Annual Limits on Intake (ALI). Information, concerning metabolic or dosimetric characteristics and the placental transfer of selected, occupationally significant radionuclides was presented in NUREG/CR-5631, Revision 1. That information was used to estimate levels of radioactivity in the embryo/fetus as a function of stage of pregnancy and time after entry. Extension of MIRD methodology to accommodate gestational-stage-dependent characteristics allowed dose calculations for the simplified situation based on introduction of 1 μCi into the woman's transfer compartment (blood). The expanded scenarios in this addendum include repeated or chronic ingestion or inhalation intakes by a woman during pregnancy and body burdens at the beginning of pregnancy. Tables present dose equivalent to the embryo/fetus relative to intakes of these radionuclides in various chemical or physical forms and from preexisting maternal burdens corresponding to ALI; complementary intake values (fraction of an ALI and μCi) that yield a dose equivalent of 0.05 rem are included. Similar tables give these measures of dose equivalency to the uterus from intakes of radionuclides for use as surrogates for embryo/fetus dose when biokinetic information is not available

  4. An effective dose assessment technique with NORM added consumer products using skin-point source on computational human phantom

    International Nuclear Information System (INIS)

    Yoo, Do Hyeon; Shin, Wook-Geun; Lee, Hyun Cheol; Choi, Hyun Joon; Testa, Mauro; Lee, Jae Kook; Yeom, Yeon Soo; Kim, Chan Hyeong; Min, Chul Hee

    2016-01-01

    The aim of this study is to develop the assessment technique of the effective dose by calculating the organ equivalent dose with a Monte Carlo (MC) simulation and a computational human phantom for the naturally occurring radioactive material (NORM) added consumer products. In this study, we suggests the method determining the MC source term based on the skin-point source enabling the convenient and conservative modeling of the various type of the products. To validate the skin-point source method, the organ equivalent doses were compared with that by the product modeling source of the realistic shape for the pillow, waist supporter, sleeping mattress etc. Our results show that according to the source location, the organ equivalent doses were observed as the similar tendency for both source determining methods, however, it was observed that the annual effective dose with the skin-point source was conservative than that with the modeling source with the maximum 3.3 times higher dose. With the assumption of the gamma energy of 1 MeV and product activity of 1 Bq g"−"1, the annual effective doses of the pillow, waist supporter and sleeping mattress with skin-point source was 3.09E-16 Sv Bq"−"1 year"−"1, 1.45E-15 Sv Bq"−"1 year"−"1, and 2,82E-16 Sv Bq"−"1 year"−"1, respectively, while the product modeling source showed 9.22E-17 Sv Bq"−"1 year"−"1, 9.29E-16 Sv Bq"−"1 year"−"1, and 8.83E-17 Sv Bq"−"1 year"−"1, respectively. In conclusion, it was demonstrated in this study that the skin-point source method could be employed to efficiently evaluate the annual effective dose due to the usage of the NORM added consumer products. - Highlights: • We evaluate the exposure dose from the usage of NORM added consumer products. • We suggest the method determining the MC source term based on the skin-point source. • To validate the skin-point source, the organ equivalent doses were compared with that the modeling source. • The skin-point source could

  5. The Global Programme to Eliminate Lymphatic Filariasis: History and achievements with special reference to annual single-dose treatment with diethylcarbamazine in Samoa and Fiji.

    Science.gov (United States)

    Kimura, Eisaku

    2011-03-01

    Diethylcarbamazine (DEC), first introduced in 1947, was shown to have strong efficacy and safety for treatment of human lymphatic filariasis, which is caused mostly by a species Wuchereria bancrofti. Many studies to optimize the dosage and treatment schedule of DEC followed, and, based on the results, control programs with various regimens were implemented in different endemic areas/countries. By the mid 1970s, with endorsement by the WHO Expert Committee on Filariasis (3rd report, 1974), the standard DEC regimen for W. bancrofti infection in mass treatment had been established in principle: a total dose of 72 mg/kg of body weight given in 12 divided doses, once weekly or monthly, at 6 mg/kg each. Not long after the committee report, the efficacy of annual single-dose treatment at 6 mg/kg, which is only one twelfth of the WHO-recommended dose in a year, was reported effective in French Polynesia (study period: 1973-78), and later in Samoa (study period: 1979-81). These results were published between 1978 and 1985 in the Bulletin of WHO but received little attention. In the mid 1980s, the efficacy of ivermectin, the first-choice drug for onchocerciasis, against lymphatic filariae came to light. Since the effect at a single dose was remarkable, and often better than DEC, it was predicted that the newly introduced drug would replace DEC. Treatment experiments with ivermectin increased quickly in number. Meanwhile, annual single-dose mass drug administration (MDA) with DEC at 6 mg/kg was under scrutiny in Samoa and Fiji. In the early 1990s, the Samoan study, which covered the entire population of 160,000 with 3 annual MDAs, reported a significant reduction in microfilaria (mf) prevalence and mean mf density, while in Fiji, the efficacy of 5 rounds of annual MDA (total dose, 30 mg/kg) was shown to be as effective as 28 multi-dose MDA spread over 2 years (6 weekly plus 22 monthly treatments at 5 mg/kg; total dose, 140 mg/kg). Several additional studies carried out in

  6. Determination of radon activity concentration in drinking water and evaluation of the annual effective dose in Hassan district, Karnataka state, India

    International Nuclear Information System (INIS)

    Srinivasa, E.; Rangaswamy, D.R.; Sannappa, J.

    2015-01-01

    The radon concentration has been determined in 27 drinking water samples of Hassan district and was estimated by using emanometry technique and physicochemical parameters were estimated using standard techniques. The 222 Rn concentrations in water are varying from 0.85 ± 0.2 to 60.74 ± 2.5 Bq l -1 with an average value of 26.5 ± 1.65 Bq l -1 . This study reveals that 66 % of the drinking water samples have radon concentration level in excess of the EPA recommended maximum contamination level of 11.1 Bq l -1 . There is no significant correlation noted between radon concentration and physicochemical parameters. The mean annual effective ingestion doses received from all samples are lower than 0.1 mSv y -1 . (author)

  7. Lifetime Effective Dose Assessment Based on Background Outdoor Gamma Exposure in Chihuahua City, Mexico

    Directory of Open Access Journals (Sweden)

    Sergio Luevano-Gurrola

    2015-09-01

    Full Text Available Determining ionizing radiation in a geographic area serves to assess its effects on a population’s health. The aim of this study was to evaluate the spatial distribution of the background environmental outdoor gamma dose rates in Chihuahua City. This study also estimated the annual effective dose and the lifetime cancer risks of the population of this city. To determine the outdoor gamma dose rate in air, the annual effective dose and the lifetime cancer risk, 48 sampling points were randomly selected in Chihuahua City. Outdoor gamma dose rate measurements were carried out by using a Geiger-Müller counter. Outdoor gamma dose rates ranged from 113 to 310 nGy·h−1. At the same sites, 48 soil samples were taken to obtain the activity concentrations of 226Ra, 232Th and 40K and to calculate their terrestrial gamma dose rates. Radioisotope activity concentrations were determined by gamma spectrometry. Calculated gamma dose rates ranged from 56 to 193 nGy·h−1. Results indicated that the lifetime effective dose of the inhabitants of Chihuahua City is on average 19.8 mSv, resulting in a lifetime cancer risk of 0.001. In addition, the mean of the activity concentrations in soil were 52, 73 and 1097 Bq·kg−1, for 226Ra, 232Th and 40K, respectively. From the analysis, the spatial distribution of 232Th, 226Ra and 40K is to the north, to the north-center and to the south of city, respectively. In conclusion, the natural background gamma dose received by the inhabitants of Chihuahua City is high and mainly due to the geological characteristics of the zone. From the radiological point of view, this kind of study allows us to identify the importance of manmade environments, which are often highly variable and difficult to characterize.

  8. Lifetime Effective Dose Assessment Based on Background Outdoor Gamma Exposure in Chihuahua City, Mexico.

    Science.gov (United States)

    Luevano-Gurrola, Sergio; Perez-Tapia, Angelica; Pinedo-Alvarez, Carmelo; Carrillo-Flores, Jorge; Montero-Cabrera, Maria Elena; Renteria-Villalobos, Marusia

    2015-09-30

    Determining ionizing radiation in a geographic area serves to assess its effects on a population's health. The aim of this study was to evaluate the spatial distribution of the background environmental outdoor gamma dose rates in Chihuahua City. This study also estimated the annual effective dose and the lifetime cancer risks of the population of this city. To determine the outdoor gamma dose rate in air, the annual effective dose and the lifetime cancer risk, 48 sampling points were randomly selected in Chihuahua City. Outdoor gamma dose rate measurements were carried out by using a Geiger-Müller counter. Outdoor gamma dose rates ranged from 113 to 310 nGy·h(-1). At the same sites, 48 soil samples were taken to obtain the activity concentrations of (226)Ra, (232)Th and (40)K and to calculate their terrestrial gamma dose rates. Radioisotope activity concentrations were determined by gamma spectrometry. Calculated gamma dose rates ranged from 56 to 193 nGy·h(-1). Results indicated that the lifetime effective dose of the inhabitants of Chihuahua City is on average 19.8 mSv, resulting in a lifetime cancer risk of 0.001. In addition, the mean of the activity concentrations in soil were 52, 73 and 1097 Bq·kg(-1), for (226)Ra, (232)Th and (40)K, respectively. From the analysis, the spatial distribution of (232)Th, (226)Ra and (40)K is to the north, to the north-center and to the south of city, respectively. In conclusion, the natural background gamma dose received by the inhabitants of Chihuahua City is high and mainly due to the geological characteristics of the zone. From the radiological point of view, this kind of study allows us to identify the importance of manmade environments, which are often highly variable and difficult to characterize.

  9. Lifetime Effective Dose Assessment Based on Background Outdoor Gamma Exposure in Chihuahua City, Mexico

    Science.gov (United States)

    Luevano-Gurrola, Sergio; Perez-Tapia, Angelica; Pinedo-Alvarez, Carmelo; Carrillo-Flores, Jorge; Montero-Cabrera, Maria Elena; Renteria-Villalobos, Marusia

    2015-01-01

    Determining ionizing radiation in a geographic area serves to assess its effects on a population’s health. The aim of this study was to evaluate the spatial distribution of the background environmental outdoor gamma dose rates in Chihuahua City. This study also estimated the annual effective dose and the lifetime cancer risks of the population of this city. To determine the outdoor gamma dose rate in air, the annual effective dose and the lifetime cancer risk, 48 sampling points were randomly selected in Chihuahua City. Outdoor gamma dose rate measurements were carried out by using a Geiger-Müller counter. Outdoor gamma dose rates ranged from 113 to 310 nGy·h−1. At the same sites, 48 soil samples were taken to obtain the activity concentrations of 226Ra, 232Th and 40K and to calculate their terrestrial gamma dose rates. Radioisotope activity concentrations were determined by gamma spectrometry. Calculated gamma dose rates ranged from 56 to 193 nGy·h−1. Results indicated that the lifetime effective dose of the inhabitants of Chihuahua City is on average 19.8 mSv, resulting in a lifetime cancer risk of 0.001. In addition, the mean of the activity concentrations in soil were 52, 73 and 1097 Bq·kg−1, for 226Ra, 232Th and 40K, respectively. From the analysis, the spatial distribution of 232Th, 226Ra and 40K is to the north, to the north-center and to the south of city, respectively. In conclusion, the natural background gamma dose received by the inhabitants of Chihuahua City is high and mainly due to the geological characteristics of the zone. From the radiological point of view, this kind of study allows us to identify the importance of manmade environments, which are often highly variable and difficult to characterize. PMID:26437425

  10. Trends and the determination of effective doses for standard X-ray procedures

    International Nuclear Information System (INIS)

    Johnson, H.M.; Neduzak, C.; Gallet, J.; Sandeman, J.

    2001-01-01

    Trends in the entrance skin exposures (air kerma) for standard x-ray imaging procedures are reported for the Province of Manitoba, Canada. Average annual data per procedure using standard phantoms and standard ion chambers have been recorded since 1981. For example, chest air kerma (backscatter included) has decreased from 0.14 to 0.09 mGy. Confounding factors may negate the gains unless facility quality control programs are maintained. The data were obtained for a quality assurance and regulatory compliance program. Quoting such data for risk evaluation purposes lacks rigor hence a compartment model for organ apportioning, using organ absorbed doses and weighting factors, has been applied to determine effective dose per procedure. The effective doses for the standard procedures are presented, including the value of 0.027 mSv (1999) calculated for the effective dose in PA chest imaging. (author)

  11. Effective dose and cancer risk in PET/CT exams; Dose efetiva e risco de cancer em exames de PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Gabriella M.; Sa, Lidia Vasconcellos de, E-mail: montezano@ird.gov.br, E-mail: Iidia@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    Due to the use of radiopharmaceutical positron-emitting in PET exam and realization of tomography by x-ray transmission in CT examination, an increase of dose with hybrid PET/CT technology is expected. However, differences of doses have been reported in many countries for the same type of procedure. It is expected that the dose is an influent parameter to standardize the protocols of PET/CT. This study aimed to estimate the effective doses and absorbed in 65 patients submitted to oncological Protocol in a nuclear medicine clinic in Rio de Janeiro, considering the risk of induction of cancer from the scan. The CT exam-related doses were estimated with a simulator of PMMA and simulated on the lmPACT resistance, which for program effective dose, were considered the weight factors of the lCRP 103. The PET exam doses were estimated by multiplying the activity administered to the patient with the ICRP dose 80 factors. The radiological risk for cancer incidence were estimated according to the ICRP 103. The results showed that the effective dose from CT exam is responsible for 70% of the effective total in a PET/CT scan. values of effective dose for the PET/CT exam reached average values of up to 25 mSv leading to a risk of 2, 57 x 10{sup -4}. Considering that in staging of oncological diseases at least four tests are performed annually, the total risk comes to 1,03x 10{sup -3}.

  12. Estimation of individual doses from external exposures and dose-group classification of cohort members in high background radiation area in Yangjiang, China

    International Nuclear Information System (INIS)

    Yuan Yongling; Shen Hong; Sun Quanfu; Wei Luxin

    1999-01-01

    Objective: In order to estimate annual effective doses from external exposures in the high background radiation area (HBRA) and in the control area (CA) , the authors measured absorbed dose rates in air from terrestrial gamma radiation with different dosimeters. A dose group classification was an important step for analyzing the dose effects relationship among the cohort members in the investigated areas. The authors used the hamlet specific average annual effective doses of all the 526 hamlets in the investigated areas. A classification of four dose groups was made for the cohort members (high, moderate, low and control) . Methods: For the purpose of studying the dose effect relationships among the cohort members in HBRA and CA, it would be ideal that each subject has his own record of individual accumulated doses received before the evaluation. However, rt is difficult to realize it in practice (each of 106517 persons should wear TLD for a long time) . Thus the authors planned two sets of measurements. Firstly, to measure the environmental dose rates (outdoor, indoor, over the bed) in every hamlet of the investigated area (526 hamlets) , considering the occupancy factors for males and females of different age groups to convert to the annual effective dose from the data of dose rates. Secondly, to measure the individual cumulative dose with TLD for part of the subjects in the investigated areas. Results: Based on the two sets of measurements, the estimates of average annual effective doses in HBRA were 211.86 and 206.75 x 10 -5 Sv/a, respectively, 68.60 and 67.11 x 10 -5 Sv/a, respectively(gamma radiation only) . The intercomparison between these two sets of measurement showed that they were in good correlation. Thus the authors are able to yield the equations of linear regression: Y = 0.9937 + 6.0444, r = 0.9949. Conclusions: The authors took the value obtained from direct measurement as 'standard' , and 15 % for uncertainty of measurement. Since the estimates of

  13. Assessment of Effective Dose Equivalent of Indoor 222Rn Daughters in Inchass

    International Nuclear Information System (INIS)

    Ali, E.M.; Taha, T.M.; Gomaa, M.A.; El-Hussein, A.M.; Ahmad, A.A.

    2000-01-01

    The dominant component of natural radiation dose for the general population comes from the radon gas 222 Rn and its short-lived decay products, Ra A ( 214 Po), Ra B ( 214 Pb), Ra C ( 214 Bi), Ra C( 214 Po) in the breathing air. The objective of the present work is to assess the affective dose equivalent of the inhalation exposure of indoor 222 Rn for occupational workers. Average indon concentrations (Bqm -3 ) were monitored in several departments in Nuclear Research Center by radon monitor. We have calculated the lung dose equivalent and the effective dose equivalent for the Egyptian workers due to inhalation exposure of an equilibrium equivalent concentrations of radon daughters which varies from 0.27 to 2.5 mSvy -1 and 0.016 to 0.152mSvy -1 respectively. The annual effective doses obtained are within the accepted range of ICRP recommendations

  14. Dose in a house built with contaminated wood

    International Nuclear Information System (INIS)

    Thomassin, A.

    2006-01-01

    This paper aims to assess the annual effective dose which could be received by a person living in a house built in France with wood from Belarus and contaminated by cesium 137 from Chernobylsk accident fallout. After the context be specified and the potential levels of radioactivity presented, an assessment of the annual effective dose is performed, based on an as realistic as possible scenario. After calculations it appears that the annual effective dose by external exposure potentially received by an inhabitant living in a house build with contaminated wood (pine or birch) at 1,000 Bq/kg is of the order of 1 mSv, due to external exposure to walls. This dose is not negligible, and could even be much more higher if wood from highly contaminated Belarusian areas is used for building houses. Projects of such wooden buildings should be studied with a particular attention to the characterization of the contamination. (N.C.)

  15. Dose in a house built with contaminated wood

    Energy Technology Data Exchange (ETDEWEB)

    Thomassin, A. [Institut de Radioprotection et de Surete Nucleaire (IRSN), 92 - Fontenay aux Roses (France)

    2006-07-01

    This paper aims to assess the annual effective dose which could be received by a person living in a house built in France with wood from Belarus and contaminated by cesium 137 from Chernobylsk accident fallout. After the context be specified and the potential levels of radioactivity presented, an assessment of the annual effective dose is performed, based on an as realistic as possible scenario. After calculations it appears that the annual effective dose by external exposure potentially received by an inhabitant living in a house build with contaminated wood (pine or birch) at 1,000 Bq/kg is of the order of 1 mSv, due to external exposure to walls. This dose is not negligible, and could even be much more higher if wood from highly contaminated Belarusian areas is used for building houses. Projects of such wooden buildings should be studied with a particular attention to the characterization of the contamination. (N.C.)

  16. Effective collective dose imparted by a medicine nuclear service to Cordoba and Jaen populations

    International Nuclear Information System (INIS)

    Arias, M.C.; Galvez, M.; Torres, M.

    1997-01-01

    The application of diagnostic techniques in nuclear medicine is ever growing as part of clinical daily routine. Although the diagnostic procedures carry a negligible clinical risk, the introduction of radioactive substances into the patient makes it imperative to determine the effective dose to minimize the stochastic effects to the patient thus establishing the collective dose to the community. The aim of our work is to study the collective effective dose imparted by Nuclear Medicine Service during 1997 to Cordoba and Jaen inhabitants (1 448 988). The nuclear medicine techniques of bone exploration with 11 454 mSv-person (4,6 mSv/exploration) and thyroid scintigraphy with 6181 mSv-person (7,0 mSv /exploration) are the main techniques implicated in the relative contribution to the total annual effective collective dose of 35 901.2 mSv-person

  17. Doses to patients from diagnostic radiology in Romania

    International Nuclear Information System (INIS)

    Iacob, O.; Diaconescu, C.

    2001-01-01

    Effective doses to over 2400 patients undergoing 20 of the most important types of X-ray examinations have been estimated from entrance surface doses or dose-area products, measured in 27 X-ray departments, and the appropriate conversion coefficients calculated by the NRPB for six mathematical phantoms representing 0, 1, 5, 10, 15 year old children and the adult. The patient-weighted mean effective dose from X-ray examinations performed annually in Romania is 1.32 mSv, with 1.40 mSv for the average adult patient and 0,59 mSv for the average paediatric patient. The corresponding annual collective effective dose is about 13,430 man Sv, with the main contribution belonging to adult patients (95%), the remainder of 5 percent - to paediatric patients. (author)

  18. Annual dose measurements and TL-dating of ancient Egyptian pottery

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Wahab, M S; El-Fiki, S A; Abdel-Kariem, S; El-Faramawy, N [Ain Shams University, Cairo (Egypt). Faculty of Science; EL-Fiki, M A [National Institute of Standards, Cairo (Egypt); Gomaa, M [Atomic Energy Establishment, Cairo (Egypt). Nuclear Research Center

    1996-05-01

    In the course of the dating of ancient Egyptian pottery, pottery sherds were collected from three archaeological tombs in Nazlet El Samman region, Giza zone (Egypt). The annual dose from natural background was measured by gamma spectrosocopic technique as well as thermoluminescence (TL) measurements. The results of both methods are in good agreement with a consistency of 99.69%. The extracted quartz exhibited TL dating peaks at about (305 {+-} 5){sup o}C. The TL dating shows an age of 4301 {+-} 100 years for the examined pottery which belongs to the ``Fourth Dynasty`` in the ``OlKingdom`` . The uncertainties in TL dating using the additive method are much lower than that of archaeologists. (author).

  19. Annual dose measurements and TL-dating of ancient Egyptian pottery

    Science.gov (United States)

    Abdel-Wahab, M. S.; El-Fiki, S. A.; El-Fiki, M. A.; Gomaa, M.; Abdel-Kariem, S.; El-Faramawy, N.

    1996-05-01

    In the course of the dating of ancient Egyptian pottery, pottery sherds were collected from three archaeological tombs in Nazlet El Samman region, Giza zone (Egypt). The annual dose from natural background was measured by gamma spectroscopic technique as well as thermoluminescence (TL) measurements. The results of both methods are in good agreement with a consistency of 99.69%. The extracted quartz exhibited TL dating peaks at about(305 ± 5|4)°C. The TL dating shows an age of 4301 ± 100 years for the examined pottery which belongs to the "Fourth Dynasty" in the "Old Kingdom". The uncertainties in TL dating using the additive method are much lower than that of archeologists.

  20. Annual dose measurements and TL-dating of ancient Egyptian pottery

    International Nuclear Information System (INIS)

    Abdel-Wahab, M.S.; El-Fiki, S.A.; Abdel-Kariem, S.; El-Faramawy, N.; Gomaa, M.

    1996-01-01

    In the course of the dating of ancient Egyptian pottery, pottery sherds were collected from three archaeological tombs in Nazlet El Samman region, Giza zone (Egypt). The annual dose from natural background was measured by gamma spectrosocopic technique as well as thermoluminescence (TL) measurements. The results of both methods are in good agreement with a consistency of 99.69%. The extracted quartz exhibited TL dating peaks at about (305 ± 5) o C. The TL dating shows an age of 4301 ± 100 years for the examined pottery which belongs to the ''Fourth Dynasty'' in the ''OlKingdom'' . The uncertainties in TL dating using the additive method are much lower than that of archaeologists. (author)

  1. New Stochastic Annual Limits on Intake for Selected Radionuclides

    International Nuclear Information System (INIS)

    Carbaugh, Eugene H.

    2009-01-01

    Annual limits on intake (ALI) have historically been tabulated by the International Commission on Radiological Protection (e.g., ICRP 1979, 1961) and also by the Environmental Protection Agency (EPA 1988). These compilations have been rendered obsolete by more recent ICRP dosimetry methods, and, rather than provide new ALIs, the ICRP has opted instead to provide committed dose coefficients from which an ALI can be determined by a user for a specific set of conditions. The U.S. Department of Energy historically has referenced compilations of ALIs and has defined their method of calculation in its radiation protection regulation (10 CFDR 835), but has never provided a specific compilation. Under June 2007 amendments to 10 CFR 835, ALIs can be calculated by dividing an appropriate dose limit, either 5-rem (0.05 Sv) effective dose or 50 rem (0.5 Sv) equivalent dose to an individual organ or tissue, by an appropriate committed dose coefficient. When based on effective dose, the ALI is often referred to as a stochastic annual limit on intake (SALI), and when based on the individual organ or tissue equivalent limit, it has often been called a deterministic annual limit on intake (DALI).

  2. THE AVERAGE ANNUAL EFFECTIVE DOSES FOR THE POPULATION IN THE SETTLEMENTS OF THE RUSSIAN FEDERATION ATTRIBUTED TO ZONES OF RADIOACTIVE CONTAMINATION DUE TO THE CHERNOBYL ACCIDENT (FOR ZONATION PURPOSES, 2014

    Directory of Open Access Journals (Sweden)

    G. Ja. Bruk

    2015-01-01

    Full Text Available The Chernobyl accident in 1986 is one of the most large-scale radiation accidents in the world. It led to radioactive contamination of large areas in the European part of the Russian Federation and at the neighboring countries. Now, there are more than 4000 settlements with the total population of 1.5 million in the radioactively contaminated areas of the Russian Federation. The Bryansk region is the most intensely contaminated region. For example, the Krasnogorskiy district still has settlements with the level of soil contamination by cesium-137 exceeding 40 Cu/km2. The regions of Tula, Kaluga and Orel are also significantly affected. In addition to these four regions, there are 10 more regions with the radioactively contaminated settlements. After the Chernobyl accident, the affected areas were divided into zones of radioactive contamination. The attribution of the settlements to a particular zone is determined by the level of soil contamination with 137Cs and by a value of the average annual effective dose that could be formed in the absence of: 1 active measures for radiation protection, and 2 self-limitation in consumption of the local food products. The main regulatory document on this issue is the Federal law № 1244-1 (dated May, 15,1991 «On the social protection of the citizens who have been exposed to radiation as a result of the accident at the Chernobyl nuclear power plant». The law extends to the territories, where, since 1991: – The average annual effective dose for the population exceeds 1 mSv (the value of effective dose that could be formed in the absence of active radiation protection measures and self-limitation in consumption of the local food products; – Soil surface contamination with cesium-137 exceeds 1 Cu/km2. The paper presents results of calculations of the average effective doses in 2014. The purpose was to use the dose values (SGED90 in zonation of contaminated territories. Therefore, the

  3. Estimation of frequency, population doses and stochastic risks in brachytherapy in Japan, 1983

    International Nuclear Information System (INIS)

    Maruyama, Takashi; Kumamoto, Yoshikazu; Noda, Yutaka; Nishizawa, Kanae; Furuya, Yoshiro; Iwai, Kazuo.

    1988-01-01

    Based on the replies to a questionnaire distributed throughout Japan in 1983, genetically significant dose (GSD), per Caput mean bone marrow dose (CMD), leukemogenically significant dose (LSD), malignantly significant dose (MSD), and per Caput effective dose equivalent (EDE) from using small sealed radiation sources for radiotherapy were estimated. Annual frequencies of brachytherapy were estimated to be 2.6 x 10 3 for men and 36.3 x 10 3 for women, with a total of 38.9 x 10 3 . The annual frequencies of using afterloading technique were 0.3 x 10 3 for men and 18.8 x 10 3 for women, with a total of 19.1 x 10 3 . The annual population doses per person were 7.9 nGy for GSD, 118 μGy for CMD, 19.3 μGy for LSD, 172 μGy for MSD, and 428 μGy for EDE. The annual collective effective dose equivalent was estimated to be 5.13 x 10 4 man Sv. (Namekawa, K.)

  4. Effective dose of individuals from the surrounding public to the facilities of the Abadia de Goiás radioactive waste disposal

    International Nuclear Information System (INIS)

    Ribeiro, E.; Borges, A.F. de Almeida; Camargos, K.M.; Santos, E.E. dos; Correa, R. da S.; Ferreira, N.C.; Ribeiro, N.V.

    2017-01-01

    The study presents the level of effective annual dose that individuals from the public - surrounding the repository of wastes with Cs-137, located in Abadia de Goiás, GO, Brazil - have received, according to analyzes carried out from June 2015 to July 2016. It was considered reference to the annual effective radiation dose limit of 0.3 mSv / year established by the National Nuclear Energy Commission (CNEN) for the impact of repositories on individuals in the public. Cs-137 activity determinations were performed on samples of surface water (ASU), groundwater (ASB), river bottom sediments (SED), soil (SOL) and vegetation (VEG). With these results, the effective doses were estimated for ASU and BSA consumption of 6.64 x 10 -4 mSv / year and for SED exposure, 3.92 x 10 - 6 mSv / year and for ASB use, 6.22 x 10 -3 mSv / year. For SOL and VEG, activity values of Cs-137 were used as indicators of contamination. It was observed that the effective annual doses were below the limit established by the norms, which can be inferred that the installation has been operating safely, without causing a radiological impact to the environment and individuals of the public

  5. Public effective doses from environmental natural gamma exposures indoors and outdoors in Iran

    International Nuclear Information System (INIS)

    Sohrabi, Mehdi; Roositalab, Jalil; Mohammadi, Jahangir

    2015-01-01

    The effective doses of public in Iran due to external gamma exposures from terrestrial radionuclides and from cosmic radiation indoors and outdoors of normal natural background radiation areas were determined by measurements and by calculations. For direct measurements, three measurement methods were used including a NaI(TI) scintillation survey meter for preliminary screening, a pressurised ionising chamber for more precise measurements and early warning measurement equipment systems. Measurements were carried out in a large number of locations indoors and outdoors ∼1000 houses selected randomly in 36 large cities of Iran. The external gamma doses of public from living indoors and outdoors were also calculated based on the radioactivity measurements of samples taken from soil and building materials by gamma spectrometry using a high-resolution HPGe system. The national mean background gamma dose rates in air indoors and outdoors based on measurements are 126.9±24.3 and 111.7±17.72 nGy h -1 , respectively. When the contribution from cosmic rays was excluded, the values indoors and outdoors are 109.2±20.2 and 70.2±20.59.4 nGy h -1 , respectively. The dose rates determined for indoors and outdoors by calculations are 101.5±9.2 and 72.2±9.4 nGy h -1 , respectively, which are in good agreement with directly measured dose rates within statistical variations. By considering a population-weighted mean for terrestrial radiation, the ratio of indoor to outdoor dose rates is 1.55. The mean annual effective dose of each individual member of the public from terrestrial radionuclides and cosmic radiation, indoors and outdoors, is 0.86±0.16 mSv y -1 by measurements and 0.8±0.2 mSv y -1 by calculations. The results of this national survey of public annual effective doses from national natural background external gamma radiation determined by measurements and calculations indoors and outdoors of 1000 houses in 36 cities of Iran are presented and discussed. (authors)

  6. Estimation of annual effective dose from 226Ra 228Ra due to consumption of foodstuffs by inhabitants of high level natural radiation of Ramsar, Iran

    International Nuclear Information System (INIS)

    Fathivand, A.A.; Asefi, M.; Amidi, A.

    2005-01-01

    Full text: A knowledge of natural radioactivity in man and his environment is important since naturally occurring radionuclides are the major source of radiation exposure to man. Radioactive nuclides present in the natural environment enter the human body mainly through food and water.Besides, measurement of naturally occurring radionuclides in the environment can be used not only as a reference when routine releases from nuclear installation or accidental radiation exposures are assessed, but also as a baseline to evaluate the impact caused by non-nuclear activities. In Iran, measurement of natural and artificial radionuclides in environmental samples in normal and high-background radiation areas have been performed by some investigators but no information has been available on 226 Ra and 228 Ra in foodstuffs. Therefore we have started measurements of 226 Ra and 228 Ra in foodstuffs of Ramsar which is a coastal city in the north part of Iran and has been known as one of the world's high level natural radiation areas, using low level gamma spectrometry measurement system .The results from our measurements and food consumption rates for inhabitants of Ramsar city have been used for the estimation of annual effective dose due to consumption of foodstuffs by inhabitants of Ramsar city. A total of 33 samples from 11 different foodstuffs including root vegetables (beetroot), leafy vegetables (lettuce, parsley and spinach) and tea, meat,chicken, pea,broad bean, rice, and cheese were purchased from markets and were analyzed for their 226 Ra and 228 Ra concentrations. The highest concentrations of 226 Ra and 228 Ra were determined in tea samples with 1570 and 1140 mBq kg -1 respectively and the maximum estimated annual effective dose from 226 Ra and Ra due to consumption foodstuffs were determined to be 19.22 and 0.71 μSv from rice and meat samples respectively

  7. Dose assessments for SFR 1

    International Nuclear Information System (INIS)

    Bergstroem, Ulla; Avila, Rodolfo; Ekstroem, Per-Anders; Cruz, Idalmis de la

    2008-05-01

    Following a review by the Swedish regulatory authorities of the safety analysis of the SFR 1 disposal facility for low and intermediate level waste, SKB has prepared an updated safety analysis, SAR-08. This report presents estimations of annual doses to the most exposed groups from potential radionuclide releases from the SFR 1 repository for a number of calculation cases, selected using a systematic approach for identifying relevant scenarios for the safety analysis. The dose estimates can be used for demonstrating that the long term safety of the repository is in compliance with the regulatory requirements. In particular, the mean values of the annual doses can be used to estimate the expected risks to the most exposed individuals, which can then be compared with the regulatory risk criteria for human health. The conversion from doses to risks is performed in the main report. For one scenario however, where the effects of an earthquake taking place close to the repository are analysed, risk calculations are presented in this report. In addition, prediction of concentrations of radionuclides in environmental media, such as water and soil, are compared with concentration limits suggested by the Erica-project as a base for estimating potential effects on the environment. The assessment of the impact on non-human biota showed that the potential impact is negligible. Committed collective dose for an integration period of 10,000 years for releases occurring during the first thousand years after closure are also calculated. The collective dose commitment was estimated to be 8 manSv. The dose calculations were carried out for a period of 100,000 years, which was sufficient to observe peak doses in all scenarios considered. Releases to the landscape and to a well were considered. The peaks of the mean annual doses from releases to the landscape are associated with C-14 releases to a future lake around year 5,000 AD. In the case of releases to a well, the peak annual doses

  8. Dose assessments for SFR 1

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, Ulla (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)); Avila, Rodolfo; Ekstroem, Per-Anders; Cruz, Idalmis de la (Facilia AB, Bromma (Sweden))

    2008-06-15

    Following a review by the Swedish regulatory authorities of the safety analysis of the SFR 1 disposal facility for low and intermediate level waste, SKB has prepared an updated safety analysis, SAR-08. This report presents estimations of annual doses to the most exposed groups from potential radionuclide releases from the SFR 1 repository for a number of calculation cases, selected using a systematic approach for identifying relevant scenarios for the safety analysis. The dose estimates can be used for demonstrating that the long term safety of the repository is in compliance with the regulatory requirements. In particular, the mean values of the annual doses can be used to estimate the expected risks to the most exposed individuals, which can then be compared with the regulatory risk criteria for human health. The conversion from doses to risks is performed in the main report. For one scenario however, where the effects of an earthquake taking place close to the repository are analysed, risk calculations are presented in this report. In addition, prediction of concentrations of radionuclides in environmental media, such as water and soil, are compared with concentration limits suggested by the Erica-project as a base for estimating potential effects on the environment. The assessment of the impact on non-human biota showed that the potential impact is negligible. Committed collective dose for an integration period of 10,000 years for releases occurring during the first thousand years after closure are also calculated. The collective dose commitment was estimated to be 8 manSv. The dose calculations were carried out for a period of 100,000 years, which was sufficient to observe peak doses in all scenarios considered. Releases to the landscape and to a well were considered. The peaks of the mean annual doses from releases to the landscape are associated with C-14 releases to a future lake around year 5,000 AD. In the case of releases to a well, the peak annual doses

  9. Analysis of workers' dose records from the Greek Dose Registry Information System

    International Nuclear Information System (INIS)

    Kamenopoulou, V.; Dimitriou, P.; Proukakis, Ch.

    1995-01-01

    The object of this work is the study of the individual film badge annual dose information of classified workers in Greece, monitored and assessed by the central dosimetry service of the Greek Atomic Energy Commission. Dose summaries were recorded and processed by the Dose Registry Information System. The statistical analysis refers to the years 1989-93 and deals with the distribution of individuals in the occupational groups, the mean annual dose, the collective dose, the distribution of the dose over the different specialties and the number of workers that have exceeded any of the established dose limits. Results concerning the annual dose summaries, demonstrate a year-by-year reduction in the mean individual dose to workers in the health sector. Conversely, exposures in the industrial sector did not show any decreasing tendency during the period under consideration. (Author)

  10. A comparison of individual doses for continuous annual unit releases of tritium and activation products into brackish water and lake-river ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Edlund, O.; Aquilonius, K.

    1995-12-31

    The annual effective doses to critical group from potential unit releases of tritium and activation products (32 nuclides) from a hypothetical fusion reactor into two aquatic environments, one with brackish water and the other with fresh water, are assessed. Unit continuous releases (1 Bq/year during 50 years) for each relevant activation product are analyzed, and the effective dose rate is calculated for each nuclide. The transfer of released activity is simulated by compartment models using first-order linear differential equations for the transport. The rate constants for the brackish-water ecosystem are based on measurements. Four exposure pathways are considered in the brackish water system, the Tvaeren Bay, (a) consumption of fish, (b) consumption of milk, (c) consumption of meat, and (d) exposure from swimming. For the freshwater system, five additional pathways are considered, namely consumption of (e) water, (f) vegetables, (g) cereals, and (h) root vegetables and (i) external exposure from contaminated ground. The paper presents the compartment models used and a description of how the exposure pathways are treated, especially the pathways via food consumption. The dominating exposure pathways are for most of the nuclides consumption of fish and water. For Ag-isotopes other exposure pathways, such as ground-shine, cereals and meat, are of importance. The results of this study show that individual annual effective doses attributed to unit releases of most of the nuclides to the lake-river system become 1.3-60 times lower than those released to the brackish-water system. The niobium isotopes, however, give a factor 2.5-4.8 higher dose. The reason to that is that the values of the bioaccumulation factor for these isotopes are higher in fresh water than in marine water. An uncertainty analysis is performed on each ecosystem and the results are obtained in the form of distributions. 38 refs, 29 tabs.

  11. A comparison of individual doses for continuous annual unit releases of tritium and activation products into brackish water and lake-river ecosystems

    International Nuclear Information System (INIS)

    Edlund, O.; Aquilonius, K.

    1995-01-01

    The annual effective doses to critical group from potential unit releases of tritium and activation products (32 nuclides) from a hypothetical fusion reactor into two aquatic environments, one with brackish water and the other with fresh water, are assessed. Unit continuous releases (1 Bq/year during 50 years) for each relevant activation product are analyzed, and the effective dose rate is calculated for each nuclide. The transfer of released activity is simulated by compartment models using first-order linear differential equations for the transport. The rate constants for the brackish-water ecosystem are based on measurements. Four exposure pathways are considered in the brackish water system, the Tvaeren Bay, (a) consumption of fish, (b) consumption of milk, (c) consumption of meat, and (d) exposure from swimming. For the freshwater system, five additional pathways are considered, namely consumption of e) water, f) vegetables, g) cereals, and h) root vegetables and i) external exposure from contaminated ground. The paper presents the compartment models used and a description of how the exposure pathways are treated, especially the pathways via food consumption. The dominating exposure pathways are for most of the nuclides consumption of fish and water. For Ag-isotopes other exposure pathways, such as ground-shine, cereals and meat, are of importance. The results of this study show that individual annual effective doses attributed to unit releases of most of the nuclides to the lake-river system become 1.3-60 times lower than those released to the brackish-water system. The niobium isotopes, however, give a factor 2.5-4.8 higher dose. The reason to that is that the values of the bioaccumulation factor for these isotopes are higher in fresh water than in marine water. An uncertainty analysis is performed on each ecosystem and the results are obtained in the form of distributions. 38 refs, 29 tabs

  12. A comparison of individual doses for continuous annual unit releases of tritium and activation products into brackish water and lake-river ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Edlund, O; Aquilonius, K

    1996-12-31

    The annual effective doses to critical group from potential unit releases of tritium and activation products (32 nuclides) from a hypothetical fusion reactor into two aquatic environments, one with brackish water and the other with fresh water, are assessed. Unit continuous releases (1 Bq/year during 50 years) for each relevant activation product are analyzed, and the effective dose rate is calculated for each nuclide. The transfer of released activity is simulated by compartment models using first-order linear differential equations for the transport. The rate constants for the brackish-water ecosystem are based on measurements. Four exposure pathways are considered in the brackish water system, the Tvaeren Bay, (a) consumption of fish, (b) consumption of milk, (c) consumption of meat, and (d) exposure from swimming. For the freshwater system, five additional pathways are considered, namely consumption of (e) water, (f) vegetables, (g) cereals, and (h) root vegetables and (i) external exposure from contaminated ground. The paper presents the compartment models used and a description of how the exposure pathways are treated, especially the pathways via food consumption. The dominating exposure pathways are for most of the nuclides consumption of fish and water. For Ag-isotopes other exposure pathways, such as ground-shine, cereals and meat, are of importance. The results of this study show that individual annual effective doses attributed to unit releases of most of the nuclides to the lake-river system become 1.3-60 times lower than those released to the brackish-water system. The niobium isotopes, however, give a factor 2.5-4.8 higher dose. The reason to that is that the values of the bioaccumulation factor for these isotopes are higher in fresh water than in marine water. An uncertainty analysis is performed on each ecosystem and the results are obtained in the form of distributions. 38 refs, 29 tabs.

  13. Plain radiography procedures in Sudan: examination frequency and collective dose

    International Nuclear Information System (INIS)

    Musa, B. E. Y.

    2010-12-01

    According to the previous studies diagnostic examinations are the largest man-made source to collective dose (CED) in world. It was observed that, despite of the large number of medical x-ray installations in Sudan and in particular conventional x-ray procedures, studies aimed at estimating collective effective dose in diagnostic radiology were lacking. The purpose of this study was to estimate the annual frequency of plain radiography examinations and to estimate the annual collective effective dose to Sudanese population due to plain radiography examinations, selected by their high frequencies or their relatively high doses delivered to patient. To have an idea about the typical examinations frequencies, data were collected from a sample of ten hospitals in Khartoum. The collected data provided information about the x-ray machine manufacture, year of installation and frequency of some examinations per day. The annual collective doses from all medical examinations to the population are: 441, 166, 630, 544, 276, 525, 30, 9, 12 and 161 man Sv from abdomen AP, chest AP, pelvis, lumbar spine PA, lumbar spain PA, lumbar- sacral joints, Skull AP, Skull LAT, Skull PA and from others examination, respectively. The resulting annual collective effective dose was evaluated 2793 man Sv, with the largest contribution of pelvis and LS examinations and lowest contribution of skull examinations. Collective effective dose resulting from the use of plain radiography examinations in the Sudan is small compared with global results. But that dose not negate the need to conduct radiological surveys in frequent intervals to meet the increase of successive x-ray equipment to try to estimate and reduce the doses of patients and the public. (Author)

  14. Assessment of the population effective dose from the diagnostic use of radiopharmaceuticals in Cuba

    International Nuclear Information System (INIS)

    Brigido, O.; Montalvan, A.

    2008-01-01

    In an attempt to estimate the effective collective dose imparted to the population of Camaguey, Ciego de Avila, Las Tunas and Holguin territory, Cuba, has been made use of statistic from nuclear medicine examinations given to a population of 1.1 million inhabitants for the years 1995 through 1999. The average annual frequency of examinations was estimated to be 3.82 per 1000 population. The results show that nuclear medicine techniques of thyroid explorations with 43.73% and iodide uptake with 43.36% are the main techniques implicated in the relative contribution to the total annual effective collective dose which averaged 54.43 man·Sv for the studied period. Radiation risks for the Camaguey-Ciego de Avila population caused by nuclear medicine examinations in the period studied were calculated: the total number of fatal and non-fatal cancers was 16.33 and the number of serious hereditary disturbance was 3.54 as a result of 21073 nuclear medicine procedures. (author)

  15. Estimation of annual radiation dose received by some industrial workers

    International Nuclear Information System (INIS)

    Garg, Ajay; Chauhan, R.P.; Kumar, Sushil

    2013-01-01

    Radon and its progeny in the atmosphere, soil, ground water, oil and gas deposits contributes the largest fraction of the natural radiation dose to populations, enhanced interest exhibited in tracking its concentration is thus fundamental for radiation protection. The combustion of coal in various industrial units like thermal power plants. National fertilizer plants, paper mill etc. results in the release of some natural radioactivity to the atmosphere through formation of fly ash and bottom ash or slag. This consequent increases the radioactivity in soil, water and atmosphere around thermal power plants. Keeping this in mind the measurements of radon, thoron and their progeny concentration in the environment of some industrial units has been carried out using solid state nuclear track detectors (SSNTD). The specially designed twin cup dosimeter used here consists two chambers of cylindrical geometry separated by a wall in the middle with each having length of 4.5 cm and radius of 3.1 cm. This dosimeter employs three SSNTDs out of which two detectors were placed in each chamber and a third one was placed on the outer surface of the dosimeter. One chamber is fitted with glass fiber filter so that radon and thoron both can diffuse into the chamber while in other chamber, a semi permeable membrane is used. The membrane mode measures the radon concentration alone as it can diffuse through the membrane but suppresses the thoron. The twin cup dosimeter also has a provision for bare mode enabling it to register tracks due to radon, thoron and their progeny in total. Therefore, using this dosimeter we can measure the individual concentration of radon, thoron, and their progeny at the same time. The annual effective doses received by the workers in some industrial units has been calculated. The results indicate some higher levels in coal handling and fly ash area of the plants. (author)

  16. Estimation of Collective Effective Dose Due to Cosmic Ray Exposures to Members of The Public and to Airline Passenger

    International Nuclear Information System (INIS)

    Sayed, N.S.; Salah Eldin, T.; Gomaa, M.A.; El Dosoky, T.M.

    2011-01-01

    Using UNSCEAR 2000 report to United Nation General Assembly and its appendices, Annual collective dose to Egyptian members of the public (75097301). Was estimated to be 252.5 man Sv , hence the average collective effective dose to air line passenger for 10 million is estimated as 25.25 micro Sievert. Furthermore using hypothetical approach for Egyptian passengers who fly locally, regionally and internationally, the collective dose was estimated to be 252.5 man Sv , hence the average average collective effective dose for Egyptian passenger is due to Aviation is 3.36 micro Sievert

  17. Analysis of records of external occupational dose records in Brazil; Analise dos registros de dose ocupacional externa no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Mauricio, Claudia L.P.; Silva, Herica L.R. da, E-mail: claudia@ird.gov.br, E-mail: herica@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ),Rio de Janeiro, RJ (Brazil); Silva, Claudio Ribeiro da, E-mail: claudio@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2014-07-01

    Brazil, a continental country, with actually more than 150,000 workers under individual monitoring for ionizing radiation, has implemented in 1987 a centralized system for storage of external occupational dose. This database has been improved over the years and is now a web-based information system called Brazilian External Occupational Dose Management Database System - GDOSE. This paper presents an overview of the Brazilian external occupational dose over the years. The estimated annual average effective dose shows a decrease from 2.4 mSv in 1987 to about 0.6 mSv, having been a marked reduction from 1987 to 1990. Analyzing by type of controlled practice, one sees that the medical and dental radiology is the area with the largest number of users of individual monitors (70%); followed by education practices (8%) and the industrial radiography (7%). Additionally to photon whole body monitoring; neutron monitors are used in maintenance (36%), reactor (30%) and education (27%); and extremity monitors, in education (27%), nuclear medicine (22%) and radiology (19%). In terms of collective dose, the highest values are also found in conventional radiology, but the highest average dose values are those of interventional radiology. Nuclear medicine, R and D and radiotherapy also have average annual effective dose higher than 1 mSv. However, there is some very high dose values registered in GDOSE that give false information. This should be better analyzed in the future. Annual doses above 500 are certainly not realistic. (author)

  18. Variation of annual effective dose due to radon level in indoor air in Marwar region of Rajasthan, India

    Energy Technology Data Exchange (ETDEWEB)

    Rani, Asha, E-mail: ashasachdeva78@gmail.com [Department of Applied Science, Ferozepur College of Engineering and Technology, Farozshah, Ferozepur-142052, Punjab (India); Mittal, Sudhir, E-mail: sudhirmittal03@gmail.com [Department of Applied Sciences, Punjab Technical University, Jalandhar-144601, Punjab (India); Mehra, Rohit [Department of Physics, Dr. B.R.Ambedkar National Institute of Technology, Jalandhar-144011 (India)

    2015-08-28

    In the present work, indoor radon and thoron measurements have been carried out from different locations of Jodhpur and Nagaur districts of Northern Rajasthan, India using RAD7, a solid state alpha detector. The radon and thoron concentration in indoor air varies from 8.75 to 61.25 Bq m{sup −3} and 32.7 to 147.2 Bq m{sup −3} with the mean value of 32 and 73 Bq m{sup −3} respectively. The observed indoor radon concentration values are well below the action level recommended by International Commission on Radiological Protection (200-300 Bq m{sup −3}) and Environmental Protection Agency (148 Bq m{sup −3}). The survey reveals that the thoron concentration values in the indoor air are well within the International Commission on Radiological Protection (2005). The calculated total annual effective dose due to radon level in indoor air varies from 0.22 to 1.54 mSv y{sup −1} with the mean value of 0.81 mSv y{sup −1} which is less than even the lower limit of action level 3-10 mSv y{sup −1} recommended by International Commission on Radiological Protection (2005)

  19. Internal 40K radiation dose to Indians

    International Nuclear Information System (INIS)

    Ranganathan, S.; Someswara Rao, M.; Nagaratnam, A.; Mishra, U.C.

    2002-01-01

    A group of 350 Indians from both sexes (7-65 years) representing different regions of India was studied for internal 40 K radiation dose from the naturally occurring body 40 K, which was measured in the National Institute of Nutrition (NIN) whole-body counter. Although the 40 K radioactivity reached a peak value by 18 years in female (2,412 Bq) and by 20 years in male (3,058 Bq) and then varied inversely with age in both sexes, the radiation dose did not show such a trend. Boys and girls of 11 years had annual effective dose of nearly 185 mSv, which decreased during adolescence (165 mSv), increased to 175 mSv by 18-20 years in adults and decreased progressively on further ageing to 99 mSv in males and 69 mSv in females at 65 years. The observed annual effective dose (175 mSv) of the young adults was close to that of the ICRP Reference Man (176 mSv) and Indian Reference Man (175 mSv). With a mean specific activity of 55 Bq/kg for the subjects and a conversion coefficient close to 3 mSv per annum per Bq/kg, the average annual effective dose from the internal 40 K turned out to be 165 mSv for Indians. (author)

  20. THE RESULTS OF INDIVIDUAL DOSE CONTROL OF HEALTH INSTITUTIONS STAFF

    Directory of Open Access Journals (Sweden)

    E. N. Shleenkova

    2014-01-01

    Full Text Available The  work  provides  comparative  assessment  of  the  levels  of  occupational  exposure  of  Saint-Petersburg health institutions staff. The analysis was carried out of the 891 individual doses measurement results which have  being  obtained  during  5  years  investigations  (2009-2013.  The  comparing  of  the  average  annual effective doses was carried out for 4 groups of medical specialists: x-ray laboratory assistant, radiotherapist, radiographer of dental clinics and X-ray surgery staff (surgeons, anesthesiologists and surgical nurses who are working close to irradiation source. It is shown that the annual effective dose average value is about 0.5 mSv for the first three groups of medical specialists. The same value for X-ray surgery staff is 1.6 mSv. Individual  annual  exposure  doses  have  not  exceeded  the  main  dose  limits  required  by  Radiation  Safety Standard 99/2009. The issues are considered of the estimation exactness of the effective dose basing on the results of individual dose equivalent measurement. 

  1. Plutonium dose-effect relationship

    International Nuclear Information System (INIS)

    Matsuoka, Osamu

    1976-01-01

    Dose in internal exposure to Pu was investigated, and dose-effect relationship was discussed. Dose-effect relationship in internal exposure was investigated by means of two methods, which were relationship between dose and its effect (relationship between μ Ci/Kg and its effect), and exposure dose and its effects (rad-effect), and merits and demerits of two methods were mentioned. Problems in a indication method such as mean dose were discussed with respect to the dose in skeleton, the liver and the lung. Pu-induced osteosarcoma in mice rats, and beagles was described, and differences in its induction between animals were discussed. Pulmonary neoplasma induced by 239 PuO 2 inhalation in beagles was reported, and description was made as to differences in induction of lung cancer between animals when Pu was inhaled and was taken into the lung. A theoretical and experimental study of a extrapolation of the results of the animal experiment using Pu to human cases is necessary. (Serizawa, K.)

  2. External effective radiation dose to workers in the restricted area of the Fukushima Daiichi Nuclear Power Plant during the third year after the Great East Japan Earthquake

    International Nuclear Information System (INIS)

    Sakumi, Akira; Miyagawa, Ryu; Tamari, Yuki; Nawa, Kanabu; Sakura, Osamu; Nakagawa, Keiichi

    2016-01-01

    Since the Great East Japan Earthquake on 11 March 2011, Iitate Village has continued to be classified as a deliberate evacuation area, in which residents are estimated to receive an annual additional effective radiation dose of >20 mSv. Some companies still operate in Iitate Village, with a special permit from the Cabinet Office Team in Charge of Assisting the Lives of Disaster Victims. In this study, we measured the annual effective radiation dose to workers in Iitate Village from 15 January to 13 December 2013. The workers stayed in Iitate for 10 h and left the village for the remaining 14 h each working day. They worked for 5 days each week in Iitate Village, but stayed outside of the village for the remaining 2 days each week. We found that the effective radiation dose of 70% of the workers was <2 mSv, including natural radiation; the maximum dose was 3.6 mSv. We estimated the potential annual additional effective radiation dose if people returned full-time to Iitate. Our analysis supports the plan for people to return to their home village at the end of 2017

  3. Radiation dose to physicians’ eye lens during interventional radiology

    International Nuclear Information System (INIS)

    Bahruddin, N A; Hashim, S; Karim, M K A; Ang, W C; Salehhon, N; Sabarudin, A; Bakar, K A

    2016-01-01

    The demand of interventional radiology has increased, leading to significant risk of radiation where eye lens dose assessment becomes a major concern. In this study, we investigate physicians' eye lens doses during interventional procedures. Measurement were made using TLD-100 (LiF: Mg, Ti) dosimeters and was recorded in equivalent dose at a depth of 0.07 mm, Hp(0.07). Annual Hp(0.07) and annual effective dose were estimated using workload estimation for a year and Von Boetticher algorithm. Our results showed the mean Hp(0.07) dose of 0.33 mSv and 0.20 mSv for left and right eye lens respectively. The highest estimated annual eye lens dose was 29.33 mSv per year, recorded on left eye lens during fistulogram procedure. Five physicians had exceeded 20 mSv dose limit as recommended by international commission of radiological protection (ICRP). It is suggested that frequent training and education on occupational radiation exposure are necessary to increase knowledge and awareness of the physicians’ thus reducing dose during the interventional procedure. (paper)

  4. Dose analysis in Brjansk region during the restoration period of nuclear accident and effects of dose reduction methods in Chernobyl

    International Nuclear Information System (INIS)

    Ramzaev, V.; Kovalenko, V.; Krivonsov, S.

    1999-01-01

    The exposure pathways to the people in this area were analysed and some decontamination methods and techniques were explained. The spatial dose rate, whole-body dose and external exposure of four kinds of classes such as pensioner, jobless person, outdoor laborer, indoor laborer and child were measured. New whole-body counter used can decrease the effect of external dose on 661 keV γ-ray. The relation coefficient between the soil contamination level and the external exposure was 0.99, but that between the cesium 137 content in soil and the internal exposure was -0.2, showing no correlation. Main source of cesium 137 in body was milk from private cow in each village. The concentration of radioactive cesium of 40% milk samples were more than 370 Bq/l. More than 75% mushroom and strawberry showed 600 Bq/kg and over. Other foods indicated less cesium content than that of above foods. The decontamination methods of roof, garden, milk and improved manure of grass were carried out in Smajalch. The most effective method seemed to be the filtration of milk. Each method came into effect to reduce the average annual dose to 1 mSv until the next year. (S.Y.)

  5. Determination of organ doses and effective doses in radiooncology

    International Nuclear Information System (INIS)

    Roth, J.; Martinez, A.E.

    2007-01-01

    Background and Purpose: With an increasing chance of success in radiooncology, it is necessary to estimate the risk from radiation scatter to areas outside the target volume. The cancer risk from a radiation treatment can be estimated from the organ doses, allowing a somewhat limited effective dose to be estimated and compared. Material and Methods: The doses of the radiation-sensitive organs outside the target volume can be estimated with the aid of the PC program PERIDOSE developed by van der Giessen. The effective doses are determined according to the concept of ICRP, whereby the target volume and the associated organs related to it are not taken into consideration. Results: Organ doses outside the target volume are generally < 1% of the dose in the target volume. In some cases, however, they can be as high as 3%. The effective doses during radiotherapy are between 60 and 900 mSv, depending upon the specific target volume, the applied treatment technique, and the given dose in the ICRU point. Conclusion: For the estimation of the radiation risk, organ doses in radiooncology can be calculated with the aid of the PC program PERIDOSE. While evaluating the radiation risk after ICRP, for the calculation of the effective dose, the advanced age of many patients has to be considered to prevent that, e.g., the high gonad doses do not overestimate the effective dose. (orig.)

  6. Occupational dose assessment in interventional cardiology in Serbia

    International Nuclear Information System (INIS)

    Kaljevic, J.; Ciraj-Bjelac, O.; Stankovic, J.; Arandjic, D.; Bozovic, P.; Antic, V.

    2016-01-01

    The objective of this work is to assess the occupational dose in interventional cardiology in a large hospital in Belgrade, Serbia. A double-dosimetry method was applied for the estimation of whole-body dose, using thermoluminescent dosemeters, calibrated in terms of the personal dose equivalent H p (10). Besides the double-dosimetry method, eye dose was also estimated by means of measuring ambient dose equivalent, H*(10), and doses per procedure were reported. Doses were assessed for 13 physicians, 6 nurses and 10 radiographers, for 2 consequent years. The maximum annual effective dose assessed was 4.3, 2.1 and 1.3 mSv for physicians, nurses and radiographers, respectively. The maximum doses recorded by the dosemeter worn at the collar level (over the apron) were 16.8, 11.9 and 4.5 mSv, respectively. This value was used for the eye lens dose assessment. Estimated doses are in accordance with or higher than annual dose limits for the occupational exposure. (authors)

  7. Normal tissue dose-effect models in biological dose optimisation

    International Nuclear Information System (INIS)

    Alber, M.

    2008-01-01

    Sophisticated radiotherapy techniques like intensity modulated radiotherapy with photons and protons rely on numerical dose optimisation. The evaluation of normal tissue dose distributions that deviate significantly from the common clinical routine and also the mathematical expression of desirable properties of a dose distribution is difficult. In essence, a dose evaluation model for normal tissues has to express the tissue specific volume effect. A formalism of local dose effect measures is presented, which can be applied to serial and parallel responding tissues as well as target volumes and physical dose penalties. These models allow a transparent description of the volume effect and an efficient control over the optimum dose distribution. They can be linked to normal tissue complication probability models and the equivalent uniform dose concept. In clinical applications, they provide a means to standardize normal tissue doses in the face of inevitable anatomical differences between patients and a vastly increased freedom to shape the dose, without being overly limiting like sets of dose-volume constraints. (orig.)

  8. Staff and patient absorbed doses due to diagnostic nuclear medicine procedures

    International Nuclear Information System (INIS)

    Tabei, F.; Neshandar Asli, I.; Aghamiri, S.M.; Arbabi, K.

    2004-01-01

    Background: annual patient effective dose equivalent can be considered as a quantitative physical parameter describing the activities performed in each nuclear medicine department. annual staff dose equivalent could be also considered as a parameter describing the amount of radiation risk for performing the activities. We calculated the staff to patient dose equivalent ratio to be used as a physical parameter for quantification of ALARA law in nuclear medicine department. Materials and methods: as a part of nationwide study, this paper reports the staff and patient absorbed dose equivalents from diagnostic nuclear medicine examinations performed in four nuclear medicine department during 1999-2002. The type and frequency of examinations in each department were determined directly from hospital medical reports. Staff absorbed doses equivalents were calculated from regular personal dosimeter reports. Results: the total number of examinations increased by 16.7 % during these years. Annual patient collective dose equivalent increased about 13.0 % and the mean effective dose equivalent per exam was 3.61 ± 0.07 mSv. Annual total staff absorbed dose equivalent (total of 24 radiation workers) in four departments increased from 40.45 mSv to 47.81 mSv during four years that indicates an increase of about 20.6 %. The average of annual ratios of staff to patient effective dose equivalents in four departments were 1.83 x 10 -3 , 1.04 x 10 -3 , 3.28 x 10 -3 and 3.24 x 10 -3 , respectively, within a range of 0.9 x 10 -3 - 4.17 x 10 -3 . The mean value of ratios in four years was about 2.24 x 10 -3 ± 1.09 x 10 -3 that indicates the staff dose of about two 1000 th of patient dose. Conclusion: The mean value of ratios in four years was about 1.89 x 10 -3 ± 0.95 x 10 -3 indicating the staff dose of about one 1000 th of the patient dose. The staff to patient absorbed dose equivalent ratio could be used as a quantitative parameter for describing ALARA law in radiation protection and

  9. RADIATION HYGIENIC MONITORING AND ASSESSMENT OF POPULATION DOSES IN RADIOACTIVELY CONTAMINATED AREAS OF TULA REGION

    Directory of Open Access Journals (Sweden)

    T. M. Chichura

    2016-01-01

    Full Text Available The goal. The analyses of radiation hygienic monitoring conducted in Tula region territories affected by the Chernobyl NPP accident regarding cesium-137 and strontium- 90 in the local foodstuffs and the analyses of populational annual effective dose. The materials and methods. The survey was conducted in Tula Region since 1997 to 2015. Over that period, more than fifty thousand samples of the main foodstuffs from the post-Chernobyl contaminated area were analyzed. Simultaneously with that, the external gamma - radiation dose rate was measured in the fixed control points. The dynamics of cesium -137 and strontium-90 content in foodstuffs were assessed along with the maximum values of the mean annual effective doses to the population and the contribution of the collective dose from medical exposures into the structure of the annual effective collective dose to the population. The results. The amount of cesium-137 and strontium -90 in the local foodstuffs was identified. The external gamma- radiation dose rate values were found to be stable and not exceeding the natural fluctuations range typical for the middle latitudes of Russia’s European territory. The maximum mean annual effective dose to the population reflects the stable radiation situation and does not exceed the permissible value of 1 mSv. The contribution of the collective dose from medical exposures of the population has been continuously reducing as well as the average individual dose to the population per one medical treatment under the annual increase of the medical treatments quantities. The conclusion. There is no exceedance of the admissible levels of cesium-137 and strontium- 90 content in the local foodstuffs. The mean annual effective dose to the population has decreased which makes it possible to transfer the settlements affected by the Chernobyl NPP accident to normal life style. This is covered by the draft concept of the settlements’ transfer to normal life style.

  10. Survey of CT practice in Japan and collective effective dose estimation

    International Nuclear Information System (INIS)

    Nishizawa, Kanae; Maruyama, Takashi; Matsumoto, Masaki; Iwai, Kazuo

    2004-01-01

    Computed tomography (CT) has been established as an important diagnostic tool in clinical medicine and has become a major source of medical exposure. A nationwide survey regarding CT examinations was carried out in Japan in 2000. CT units per million people in Japan numbered 87.8. The annual number of examinations was 0.1 million in those 0-14 years old, 3.54 million for those 15 years old and above, and 3.65 million in total. Eighty percent of examinations for those 0-14 years old were examinations of the head, as were 40% for those 15 years old and above. The number of examinations per 1000 population was 290. The collective effective dose was 295 x 10 3 person·Sv, and the effective dose per caput was evaluated as 2.3 mSv. (author)

  11. Occupational Radiation Dose for Medical Workers at a University Hospital

    Directory of Open Access Journals (Sweden)

    M.H. Nassef

    2017-11-01

    Full Text Available Occupational radiation doses for medical workers from the departments of diagnostic radiology, nuclear medicine, and radiotherapy at the university hospital of King Abdul-Aziz University (KAU were measured and analysed. A total of 100 medical radiation workers were monitored to determine the status of their average annual effective dose. The analysis and the calibration procedures of this study were carried out at the Center for Radiation Protection and Training-KAU. The monitored workers were classified into subgroups, namely, medical staff/supervisors, technicians, and nurses, according to their responsibilities and specialties. The doses were measured using thermo luminescence dosimeters (TLD-100 (LiF:Mg,Ti placed over the lead apron at the chest level in all types of workers except for those in the cath lab, for whom the TLD was placed at the thyroid protective collar. For nuclear medicine, a hand dosimeter was used to measure the hand dose distribution. The annual average effective doses for diagnostic radiology, nuclear medicine, and radiotherapy workers were found to be 0.66, 1.56, and 0.28 mSv, respectively. The results of the measured annual dose were well below the international recommended dose limit of 20 mSv. Keywords: Occupational radiation dose, radiation workers, TLD, radiation protection

  12. Annual mean effective dose of Slovak population due to natural radioactivity of building materials

    International Nuclear Information System (INIS)

    Cabanekova, H.

    2006-01-01

    volume of the samples. For the typical building materials of Slovak construction industry has been estimated the average volume activity (brick: 40 K: 660.1 Bq.kg-1, 226 Ra: 63.5 Bq.kg-1, 232 Th: 71.3 Bq.kg-1, A ekv : 216.3 Bq.kg-1; concrete: 40 K: 322.6 Bq.kg-1, 226 Ra: 46.1 Bq.kg-1, 232 Th: 29.0 Bq.kg-1, A ekv : 216,3 Bq.kg-1). Indoor radiation exposure of the population due to external exposure from natural radionuclides has been determined for a standard room (5 x 5 x 2.8 m) and for assuming that the mean occupancy indoors is 80%. Using a special calculation model there was received the annual mean effective dose from natural radionuclides in two typical Slovak dwellings for brick houses: 0.87 mSv.y-1 and for houses from concrete panels: 0.31 mSv.y-1. (author)

  13. Radioactivity Risk Assessment of Radon and Gamma Dose at One Uranium Tailings Pond in China

    Science.gov (United States)

    Lou, Yalong; Liu, Yong; Peng, Guowen; Zhao, Guodong; Zhang, Yan; Yang, Zhu

    2018-01-01

    A year-long monitoring of gamma radiation effective dose rate and radon concentration had been done in the reservoir area of one uranium tailings pond in Hunan province (The monitoring area included indoor and outdoor area of residential buildings and workshops, tailings dam slope). Afterwards, the annual effective radiation dose of the people in that radiation environment had been calculated based on the results of monitoring, as well as a radiation risk assessment. According to the assessment, gamma radiation effective dose rate and radon concentration in the monitoring area were low, and the annual effective radiation dose was far below the international standard (30mSv), which showed that the radiation would not put the people’s health at risk. However, the annual effective radiation dose of gamma was far above that of radon in the area of uranium tailings pond; therefore, it’s advisable to take quarantine measures in in the area of uranium tailings pond to keep the surrounding residents away from unnecessary ionizing radiation.

  14. Radioactivity content of Shiraz water supplies and its related effective dose

    International Nuclear Information System (INIS)

    Mehdizadeh, S.; Derakhshan, Sh.

    2004-01-01

    We are exposed naturally to ionizing radiation from cosmic rays and natural radionuclides in the air, ground, food and drinking water. When invested, naturally and radionuclides are distributed among body organs. The average concentrations of naturally occurring radionuclides in drinking water are used to estimated the annual effective dose equivalents. In this work, during October of 2002 to October of 2003, 37 samples from 29 different wells and Doroodzan dam were gathered in winter and summer and the gross Alfa and Beta, total uranium and Ra-226 activity in each sample were determined. The activity of Ra-226 was measured by Radon Emanation method and total uranium was determined using laser Fluorimetry. The mean concentration of Ra-226 was higher in summer but the uranium had higher concentration in winter. The mean concentration of Ra-226 and Uranium were 15.72±1.12 mBq.1 -1 and 9.44±1.14μg.1 -1 in winter ±μ and 29.46 2.18 mBq.1 -1 and 7.37 1.1 g.1 -1 in summer respectively. The average annual effective doses (Ra-226) of different age groups (Adults, children and infants) were equal to 2.37± 0.22, 5.42 ±0.43, 2.66±0.24, mSv.y 1 -1 and 0.136±0.02, 0.18±0.027 and 0.171±0.026 mSv.y -1 due to existence of uranium in drinking water. The results of this survey showed that the radioactive concentration of the radionuclides and their related effective doses are in the normal range and permissible levels. These results are comparable with those found by Atomic Energy Organization of Iran but different with the results of the limited project done during 1999 at Shiraz

  15. Population dose due to natural radiation in Hong Kong

    International Nuclear Information System (INIS)

    Tso, M.Y.W.; Leung, J.K.C.

    2000-01-01

    In densely populated cities such as Hong Kong where people live and work in high-rise buildings that are all built with concrete, the indoor gamma dose rate and indoor radon concentration are not wide ranging. Indoor gamma dose rates (including cosmic rays) follow a normal distribution with an arithmetic mean of 0.22 ± 0.04 (micro)Gy h -1 , whereas indoor radon concentrations follow a log-normal distribution with geometric means of 48 ± 1 Bq m -3 and 90 ± 2 Bq m -3 for the two main categories of buildings: residential and non-residential. Since different occupations result in different occupancy in different categories of buildings, the annual total dose [indoor and outdoor radon effective dose + indoor and outdoor gamma absorbed dose (including cosmic ray)] to the population in Hong Kong was estimated based on the number of people for each occupation; the occupancy of each occupation; indoor radon concentration distribution and indoor gamma dose rate distribution for each category of buildings; outdoor radon concentration and gamma dose rate; and indoor and outdoor cosmic ray dose rates. The result shows that the annual doses for every occupation follow a log-normal distribution. This is expected since the total dose is dominated by radon effective dose, which has a log-normal distribution. The annual dose to the population of Hong Kong is characterized by a log-normal distribution with a geometric mean of 2.4 mSv and a geometric standard deviation of 1.3 mSv

  16. Radiation policy monitoring. Annual report, 2004. Emissions and doses from processing industries; Emissies en doses door procesindustrie. Jaarrapport 2004. Beleidsmonitoring straling

    Energy Technology Data Exchange (ETDEWEB)

    Eleveld, H.; Tanzi, C.P.; Van Dijk, J.W.E.

    2005-07-01

    The radiation dose for the Dutch population due to discharges and emissions from processing industries has decreased substantially since 1994. However, the processing industry still makes the largest industrial contribution to the radiation dose. Nuclear installations and medical institutions contribute much less. There was a considerable decrease up to 2000, when two fertilizer enterprises stopped their activities in the Netherlands. Although the reported discharges of radioactive substances to water show a sharp decrease, the collective dose due to emissions to air has shown slight increases since 2001. The policy to reduce discharges in water has led to enterprises investing in wastewater treatment systems. Enterprises also take the radiological consequences into account when purchasing raw materials containing natural occurring radioactive material. The cost of the raw material obviously also influences the decision. Occupational exposure in processing plants was investigated using the data of the National Dose Registration and Information System (NDRIS). Often, employees' inhalation doses can amount to over 1 mSv per annum (i.e. 40% of the average annual radiation dose per capita of the Dutch population), but the dose limit of 6 mSv was not exceeded in any of the cases. We have developed and applied the chain model for regular emissions for assessing the radiation dose. Current dose assessments based on the chain model were found to fit with dose assessments based on measurements. The yearly variation in meteorological factors can affect the radiation dose for members of the public for 25% at locations close to the source when compared to calculations based on decade averaged meteorology. [Dutch] Voor de Nederlandse bevolking is de stralingsdosis door lozingen van radioactieve stoffen door de procesindustrie fors afgenomen tussen 1994 en 2000. Vooral de gerapporteerde lozingen in water vertonen een sterke daling, mede door sluitingen van twee

  17. Radiation policy monitoring. Annual report 2004. Emissions and doses from processing industries; Emissies en doses door procesindustrie. Jaarrapport 2004. Beleidsmonitoring straling

    Energy Technology Data Exchange (ETDEWEB)

    Eleveld, H.; Tanzi, C.P.; Van Dijk, J.W.E. [Nuclear Research and consultancy Group NRG, Petten (Netherlands)

    2005-07-01

    The radiation dose for the Dutch population due to discharges and emissions from processing industries has decreased substantially since 1994. However, the processing industry still makes the largest industrial contribution to the radiation dose. Nuclear installations and medical institutions contribute much less. There was a considerable decrease up to 2000, when two fertilizer enterprises stopped their activities in the Netherlands. Although the reported discharges of radioactive substances to water show a sharp decrease, the collective dose due to emissions to air has shown slight increases since 2001. The policy to reduce discharges in water has led to enterprises investing in wastewater treatment systems. Enterprises also take the radiological consequences into account when purchasing raw materials containing natural occurring radioactive material. The cost of the raw material obviously also influences the decision. Occupational exposure in processing plants was investigated using the data of the National Dose Registration and Information System (NDRIS). Often, employees' inhalation doses can amount to over 1 mSv per annum (i.e. 40% of the average annual radiation dose per capita of the Dutch population), but the dose limit of 6 mSv was not exceeded in any of the cases. We have developed and applied the chain model for regular emissions for assessing the radiation dose. Current dose assessments based on the chain model were found to fit with dose assessments based on measurements. The yearly variation in meteorological factors can affect the radiation dose for members of the public for 25% at locations close to the source when compared to calculations based on decennial averaged meteorology. [Dutch] Voor de Nederlandse bevolking is de stralingsdosis door lozingen van radioactieve stoffen door de procesindustrie fors afgenomen tussen 1994 en 2000. Vooral de gerapporteerde lozingen in water vertonen een sterke daling, mede door sluitingen van twee

  18. Radon survey and soil gamma doses in primary schools of Batman, Turkey.

    Science.gov (United States)

    Damla, Nevzat; Aldemir, Kamuran

    2014-06-01

    A survey was conducted to evaluate levels of indoor radon and gamma doses in 42 primary schools located in Batman, southeastern Anatolia, Turkey. Indoor radon measurements were carried out using CR-39 solid-state nuclear track detector-based radon dosimeters. The overall mean annual (222)Rn activity in the surveyed area was found to be 49 Bq m(-3) (equivalent to an annual effective dose of 0.25 mSv). However, in one of the districts (Besiri) the maximum radon value turned out to be 307 Bq m(-3). The estimated annual effective doses are less than the recommended action level (3-10 mSv). It is found that the radon concentration decreases with increasing floor number. The concentrations of natural and artificial radioisotopes were determined using gamma-ray spectroscopy for soil samples collected in close vicinity of the studied schools. The mean gamma activity concentrations in the soil samples were 31, 25, 329 and 12 Bq kg(-1) for (226)Ra, (232)Th, (40)K and (137)Cs, respectively. The radiological parameters such as the absorbed dose rate in air and the annual effective dose equivalent were calculated. These radiological parameters were evaluated and compared with the internationally recommended values.

  19. A comparison of the angular dependence of effective dose and effective dose equivalent

    International Nuclear Information System (INIS)

    Sitek, M.A.; Gierga, D.P.; Xu, X.G.

    1996-01-01

    In ICRP (International Commission on Radiological Protection) Publication 60, the set of critical organs and their weighing factors were changed, defining the quantity effective dose, E. This quantity replaced the effective dose equivalent, H E , as defined by ICRP 26. Most notably, the esophagus was added to the list of critical organs. The Monte Carlo neutron/photon transport code MCNP was used to determine the effective dose to sex-specific anthropomorphic phantoms. The phantoms, developed in previous research, were modified to include the esophagus. Monte Carlo simulations were performed for monoenergetic photon beams of energies 0.08 MeV, 0.3 MeV, and 1.0 MeV for various azimuthal and polar angles. Separate organ equivalent doses were determined for male and female phantoms. The resulting organ equivalent doses were calculated from arithmetic mean averages. The angular dependence of effective dose was compared with that of effective dose equivalent reported in previous research. The differences between the two definitions and possible implications to regulatory agencies were summarized

  20. Dose evaluation for the public around the Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Takeishi, Minoru; Furuta, Sadaaki; Miyabe, Kenjiro; Shinohara, Kunihiko

    2007-01-01

    The dose evaluations for the public around the Tokai Reprocessing Plant (TRP) have been carried out by using the mathematical models, because the effects on the environmental radiation due to the operation of the TRP are too small to separate from the background level. The models were developed by the site-specific investigations of the environment and reviewed in several times based on the latest scientific knowledge. The maximum annual effective dose through the whole period of the operation of the TRP was evaluated as 1.4 μSv with the data of the discharge monitoring and the meteorological observation in 1992. The evaluated doses revealed to be kept as far below the annual dose limit for the public as 1 mSv. (author)

  1. Natural radiation level and doses to population in Anhui province

    International Nuclear Information System (INIS)

    1985-01-01

    The absorbed dose rates in air 1 m above the ground from natural radiation and terrestrial gamma radiation in Anhui Province were surveyed. One measurement was made in every area of 90 km 2 . The absorbed dose rates in air from terrestrial radiation range from 54 to 90 nGy.h -1 with an average of 70 nGy.h -1 . The ratios of indoors-to-outdoors and of roads-to-outdoors are 1.5 and 0.9 respectively. The annual effective dose equivalent from external radiation is 0.68-1.05 mSv. The population-weighted average values for mountain area, plain, hilly land, and the Changjiang River basin as well as the annual collective effective dose equivalent were calculated

  2. Radon Concentration in Caves of Croatia - Assesing Effective Radon Doses for Occupational Workers and Visitors

    International Nuclear Information System (INIS)

    Radolic, V.; Miklavcic, I.; Poje, M.; Stanic, D.; Vukovic, B.; Paar, D.

    2011-01-01

    Radon monitoring at potentially highly radioactive location such as caves is important to assess the radiological hazards to occupational workers and occasional visitors. In its Publication 65 the ICRP has produced recommendations dealing with exposure to elevated background radiation, in particular, the risk associated with the inhalation of radon and radon progeny. Recommended annual effective dose from radon 222Rn and its short-lived progeny for workers should not exceed 20 mSv and for occasional users (visitors) the same recommendation is 1 mSv. Measurements were performed with series of track etched detectors (LR115 - type II) in several caves in Croatia. The obtained values for the radon concentration ranged from ambient values up to several thousand Bq m -3 . Radon concentration was measured in about 20 caves of Velebit and Zumberak mountains and the highest radon concentration was in Lubuska jama (3.8 kBq m -3 ) and cave Dolaca (21.8 kBq m -3 ), respectively. Djurovica cave is especially interesting because of its huge tourist potential due to its location bellow Dubrovnik airport. Its mean annual radon concentration of 17.6 kBq m -3 classifies Djurovica cave among caves with high radon concentration. A visitor during half an hour visit at summer time would receive an effective dose of 30.6 μSv. Calculated mean dose rate of 44 μSv/h means that workers (mainly tourist guides) should limit their time inside cave to 454 hours per year. Manita pec is the only cave open for tourists on the territory of Paklenica National Park. The preliminary radon measurements performed during summer 2010, gave an average radon concentration of 1.1 kBq m -3 . An exposure to average dose rate of 3.7 μSv/h means that the tourist guides would receive an effective dose of 0.42 mSv during summer period according to their working schedule. A visitor during half an hour visits would receive an effective dose of 1.86 μSv. (author)

  3. Doses from Medical Radiation Sources

    Science.gov (United States)

    ... Medical Radiation Sources Michael G. Stabin, PhD, CHP Introduction Radiation exposures from diagnostic medical examinations are generally ... of exposure annually to natural background radiation. Plain Film X Rays Single Radiographs Effective Dose, mSv Skull ( ...

  4. Estimate on external effective doses received by the Iranian population from environmental gamma radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    Roozitalab, J.; Reza deevband, M.; Rastkhah, N. [National Radiation Protection Dept. Atomic Energy Organization (Iran, Islamic Republic of); Sohrabi, M. [Intenatinal atomic Energy Agency, Vienna (Austria)

    2006-07-01

    Concentration of natural radioactive materials, especially available U 238, Ra 226, Th 232, and K 40 in construction materials and soil, as well as absorb dose from cosmic rays, is the most important source of the people for effective doses from the environment radiation. In order to evaluate external effective dose, it has been carried out more than 1000 measurements in 36 cities by sensitive dosimeters to environmental gamma radiation for indoor and outdoor conditions in residential areas; which its results show that range of gamma exposure for inside of buildings in Iran is 8.7-20.5 {mu}R/h, and outdoor environments of different cities is 7.9-20.6 {mu}R/h, which their mean value are 14.33 and 12.62 {mu}R/h respectively. Meanwhile, it has been estimated that beam-absorbing ratio between indoor and outdoor in measured environments is 1.55, except contribution of cosmic rays. This studies show that average effective dose for each Iranian person from environmental gamma is 96.9 n Sv/h, and annually effective dose for every person is 0.848 mSv. (authors)

  5. Estimate on external effective doses received by the Iranian population from environmental gamma radiation sources

    International Nuclear Information System (INIS)

    Roozitalab, J.; Reza deevband, M.; Rastkhah, N.; Sohrabi, M.

    2006-01-01

    Concentration of natural radioactive materials, especially available U 238, Ra 226, Th 232, and K 40 in construction materials and soil, as well as absorb dose from cosmic rays, is the most important source of the people for effective doses from the environment radiation. In order to evaluate external effective dose, it has been carried out more than 1000 measurements in 36 cities by sensitive dosimeters to environmental gamma radiation for indoor and outdoor conditions in residential areas; which its results show that range of gamma exposure for inside of buildings in Iran is 8.7-20.5 μR/h, and outdoor environments of different cities is 7.9-20.6 μR/h, which their mean value are 14.33 and 12.62 μR/h respectively. Meanwhile, it has been estimated that beam-absorbing ratio between indoor and outdoor in measured environments is 1.55, except contribution of cosmic rays. This studies show that average effective dose for each Iranian person from environmental gamma is 96.9 n Sv/h, and annually effective dose for every person is 0.848 mSv. (authors)

  6. A study on gamma dose rate in Seoul (I)

    International Nuclear Information System (INIS)

    Kim, You Hyun; Kim, Chang Kyun; Choi, Jong Hak; Kim, Jeong Min

    2001-01-01

    This study was conducted to find out gamma dose rate in Seoul, from January to December in 2000, and the following results were achieved : The annual gamma dose rate in Seoul was 17.24 μR/hr as average. The annual gamma dose rate in subway of Seoul was 14.96 μR/hr as average. The highest annual gamma dose rate was Dong-daemon ku. Annual gamma dose rate in Seoul was higher autumn than winter

  7. Monitoring of radiation exposure. Annual report 2000

    International Nuclear Information System (INIS)

    Rantanen, E.

    2001-03-01

    At the end of 2000, there were 1,779 valid safety licenses in Finland for the use of radiation. In addition, there were 2,038 responsible parties for dental x-ray diagnostics. The registry Radiation and Nuclear Safety Authority (STUK) listed 13,754 radiation sources and 270 radionuclide laboratories. In the year 2000 360 inspections were made concerning the safety licences and 53 concerning dental x-ray diagnostics. The import of radioactive substances amounted to 175,836 GBq and export to 74,420 GBq. Short-lived radionuclides produced in Finland amounted to 55,527 GBq. In the year 2000 there were 10,846 workers monitored for radiation exposure at 1,171 work sites. Of these employees, 27% received an annual dose exceeding the recording level. The annual effective dose limit was not exceeded. The total dose recorded in the dose registry(sum of the individual dosemeter readings) was 6.5 Sv in 2000

  8. Natural radiation doses for cosmic and terrestrial components in Costa Rica

    International Nuclear Information System (INIS)

    Mora, Patricia; Picado, Esteban; Minato, Susumu

    2007-01-01

    A study of external natural radiation, cosmic and terrestrial components, was carried out with in situ measurements using NaI scintillation counters while driving along the roads in Costa Rica for the period July 2003-July 2005. The geographical distribution of the terrestrial air-absorbed dose rates and the total effective dose rates (including cosmic) are represented on contour maps. Information on the population density of the country permitted the calculation of the per capita doses. The average effective dose for the total cosmic component was 46.88±18.06 nSv h -1 and the average air-absorbed dose for the terrestrial component was 29.52±14.46 nGy h -1 . The average total effective dose rate (cosmic plus terrestrial components) was 0.60±0.18 mSv per year. The effective dose rate per capita was found to be 83.97 nSv h -1 which gives an annual dose of 0.74 mSv. Assuming the world average for the internal radiation component, the natural radiation dose for Costa Rica will be 2.29 mSv annually

  9. Analysis of occupational doses of workers on the dose registry of the Federal Radiation Protection Service in 2000 and 2001

    International Nuclear Information System (INIS)

    Ogundare, F.O.; Balogun, F.A.

    2003-01-01

    In 2000 and 2001 about 279 and 221 radiation workers, respectively, were monitored by the Federal Radiation Protection Service, University of Ibadan, in Nigeria. The distribution of the occupational doses shows that the majority of workers received doses below 4 mSv in each of the two years. The radiation workers in the two years are classified into two occupational categories: medicine and industry. The mean annual effective doses, collective doses and the collective dose distribution ratios for workers in each category and the entire monitored workers were calculated. The mean annual effective doses were compared with their corresponding worldwide values quoted by UNSCEAR. In each of the two years, a few workers in industry received doses higher than 50 mSv. The collective dose distribution ratio was found to be about 0.49, which is very close to the highest value of 0.5 in the range of values considered by UNSCEAR as normal for this parameter. This suggests that extra measures have to be taken, particularly in industry, to ensure that the proportion of workers at risk does not go outside this normal range. The occupational doses were also modelled by both the log-normal and Weibull distributions. Both distributions were found to describe the data in almost the same way. (author)

  10. Annual environmental monitoring report, January--December 1976

    International Nuclear Information System (INIS)

    1977-05-01

    Environmental monitoring results continue to demonstrate that, except for penetrating radiation, environmental radiological impact due to SLAC operation is not distinguishable from natural environmental sources. During 1976 the maximum neutron dose near the site boundary was 3.4 mrem. This represents about 3.4% of the annual dose from natural sources at this elevation and 0.68% of the technical standard of 500 mrem per person annually. There have been no measurable increases in radioactivity in ground water attributable to SLAC operations. Airborne radioactivity released from SLAC also continues to make only a negligible environmental impact and result in a site boundary annual dose of less than 0.01 mrem, which represents less than 0.01% of the annual dose from the natural radiation environment and about 0.002% of the technical standard

  11. Health effect of low dose/low dose rate radiation

    International Nuclear Information System (INIS)

    Kodama, Seiji

    2012-01-01

    The clarified and non-clarified scientific knowledge is discussed to consider the cause of confusion of explanation of the title subject. The low dose is defined roughly lower than 200 mGy and low dose rate, 0.05 mGy/min. The health effect is evaluated from 2 aspects of clinical symptom/radiation hazard protection. In the clinical aspect, the effect is classified in physical (early and late) and genetic ones, and is classified in stochastic (no threshold value, TV) and deterministic (with TV) ones from the radioprotection aspect. Although the absence of TV in the carcinogenic and genetic effects has not been proved, ICRP employs the stochastic standpoint from the safety aspect for radioprotection. The lowest human TV known now is 100 mGy, meaning that human deterministic effect would not be generated below this dose. Genetic deterministic effect can be observable only in animal experiments. These facts suggest that the practical risk of exposure to <100 mGy in human is the carcinogenesis. The relationship between carcinogenic risk in A-bomb survivors and their exposed dose are found fitted to the linear no TV model, but the epidemiologic data, because of restriction of subject number analyzed, do not always mean that the model is applicable even below the dose <100 mGy. This would be one of confusing causes in explanation: no carcinogenic risk at <100 mGy or risk linear to dose even at <100 mGy, neither of which is scientifically conclusive at present. Also mentioned is the scarce risk of cancer in residents living in the high background radiation regions in the world in comparison with that in the A-bomb survivors exposed to the chronic or acute low dose/dose rate. Molecular events are explained for the low-dose radiation-induced DNA damage and its repair, gene mutation and chromosome aberration, hypothesis of carcinogenesis by mutation, and non-targeting effect of radiation (bystander effect and gene instability). Further researches to elucidate the low dose

  12. Occupational radiation doses in Portugal from 1994 to 1998

    International Nuclear Information System (INIS)

    Alves, J.G.; Martins, M.B.; Amaral, E.M.

    2000-01-01

    This work reports on the occupational radiation doses for external radiation received in 1994-1998 by the radiation workers monitored by the Radiological Protection and Nuclear Safety Department (DPRSN) in Portugal. Individual monitoring for external radiation is carried out in Portugal by DPRSN since the 60s, and the workers are monitored on a monthly or quarterly bases. In 1995 DPRSN monitored approximately 8000 people and was the only laboratory carrying out this sort of activity in Portugal. In 1998 the number of monitored people increased to nearly 8500 from 860 facilities, which leads us to state that the results shown in this work are well representative of the universe of radiation workers in Portugal. Until 1996, the dose measurement procedure was based only on film dosimetry and the results reported for the 1994-1995 period were obtained with this methodology. Since 1996, thermoluminescent dosimetry (TLD) was gradually introduced and since then an effort has been made to transfer the monitored workers from film to TLD. In 1998, both film and TLD dosimetry systems were running simultaneously, with average numbers of 4500 workers monitored with film dosimetry, while 4000 were monitored with TLD. The data presented from 1996 to 1998 were obtained with both methodologies. This work reports the annual mean effective doses received from external radiation, for the monitored and exposed workers in the different fields of activity, namely, industry, research laboratories, health and mining. The distribution of the annual effective dose by dose intervals is also reported. The collective annual dose by field of activity is estimated and the contribution to the total annual collective dose is determined. The collective dose estimates for the period 1994 to 1998 demonstrated that the health sector is the most representative exposed group in Portugal. (author)

  13. Risks and radiation doses due to residential radon in Germany

    International Nuclear Information System (INIS)

    Beck, T.R.

    2017-01-01

    The population-averaged risk rate and the annual average effective dose due to residential radon in Germany were calculated. The calculations were based on an epidemiological approach taking into account the age- and gender-specific lung cancer incidence rates for the German population and the excess relative risk of 0.16 per 100 Bq.m"-"3 for residential radon. In addition, the risk estimates adjusted for the smoking habits were determined. The population-averaged risk rate for the whole population was estimated with 4.1.10"-"5 y"-"1 (95% confidence interval (CI) 1.4.10"-"5 - 7.6.10"-"5 y"-"1). Residential radon causes a detriment per year of 3.3.10"-"5 y"-"1 (95% CI 1.1.10"-"5 - 6.0.10"-"5 y"-"1), which corresponds to an annual average effective dose of 0.6 mSv (95% CI 0.2-1.1 mSv). Annually, ∼3400 lung cancer incidences are attributed to residential radon. The results from the epidemiological approach exercised in this study are considerably lower than the effective dose, which would be obtained from the dose conversion coefficient calculated using biokinetic and dosimetric models. (author)

  14. Review on patients radiation dose and frequency of procedures during medical exposure in Sudan

    International Nuclear Information System (INIS)

    Abu Baker, Samah Mohamed Nasr

    2015-09-01

    The aim of this study was to estimate patient dose, the annual frequency and the number of staff and devices in the medical applications of ionizing radiation in Sudan. Survey was conducted on diagnostic radiology, nuclear medicine and radiotherapy. With respect to diagnostic radiology, only patient radiation dose was estimated. The data for diagnostic radiology was obtained from 24 peer reviewed scientific published literatures during the years ( 2006 - 2015). The collected publications included about 64 Sudanese hospitals covering different types of diagnostic exams. A values of the effective dose for pediatrics and adult patients were within the ranges of similar worldwide values published by UNSCEAR report in 2008 with exceptional to fluoroscopy hysterosalpingography for adult patients. For nuclear medicine procedures, questionnaires were distributed to five hospitals representing the whole existing NM department in Sudan at the time of of study. The estimated total annual frequency of diagnostic procedures was 0.2 per 1000 population. The estimated total annual collective and annual per caput effective dose from all NM procedures were 16.268 man Sv and 0.5 μSv, respectively. Comparing the annual per caput effective dose with UNSCEAR value our results was less than the worldwide value and greater than the value for heath care level 111-1 v countries. Questionnaires were also distributed to collect data on radiotherapy procedures performed in the two existing radioisotopes Sudanese hospitals. The prescribed dose and the number of fractions were comparable between the two hospitals. The minimum prescribed dose was 20 Gy with 5 fractions for nasopharynx (NPH) palliative and the maximum prescribed dose was 64 Gy with 32 fractions for prostate.(Author)

  15. An environmental dose experiment

    Science.gov (United States)

    Peralta, Luis

    2017-11-01

    Several radiation sources worldwide contribute to the delivered dose to the human population. This radiation also acts as a natural background when detecting radiation, for instance from radioactive sources. In this work a medium-sized plastic scintillation detector is used to evaluate the dose delivered by natural radiation sources. Calibration of the detector involved the use of radioactive sources and Monte Carlo simulation of the energy deposition per disintegration. A measurement of the annual dose due to background radiation to the body was then estimated. A dose value compatible with the value reported by the United Nations Scientific Committee on the Effects of Atomic Radiation was obtained.

  16. An environmental dose experiment

    International Nuclear Information System (INIS)

    Peralta, Luis

    2017-01-01

    Several radiation sources worldwide contribute to the delivered dose to the human population. This radiation also acts as a natural background when detecting radiation, for instance from radioactive sources. In this work a medium-sized plastic scintillation detector is used to evaluate the dose delivered by natural radiation sources. Calibration of the detector involved the use of radioactive sources and Monte Carlo simulation of the energy deposition per disintegration. A measurement of the annual dose due to background radiation to the body was then estimated. A dose value compatible with the value reported by the United Nations Scientific Committee on the Effects of Atomic Radiation was obtained. (paper)

  17. Estimation of radiation risks at low dose

    International Nuclear Information System (INIS)

    1990-04-01

    The report presents a review of the effects caused by radiation in low doses, or at low dose rates. For the inheritable (or ''genetic''), as well as for the cancer producing effects of radiation, present evidence is consistent with: (a) a non-linear relationship between the frequency of at least some forms of these effects, with comparing frequencies caused by doses many times those received annually from natural sources, with those caused by lower doses; (b) a probably linear relationship, however, between dose and frequency of effects for dose rates in the region of that received from natural sources, or at several times this rate; (c) no evidence to indicate the existence of a threshold dose below which such effects are not produced, and a strong inference from the mode of action of radiation on cells at low dose rates that no such thresholds are likely to apply to the detrimental, cancer-producing or inheritable, effects resulting from unrepaired damage to single cells. 19 refs

  18. Application of maximum values for radiation exposure and principles for the calculation of radiation dose

    International Nuclear Information System (INIS)

    2000-01-01

    The guide sets out the mathematical definitions and principles involved in the calculation of the equivalent dose and the effective dose, and the instructions concerning the application of the maximum values of these quantities. further, for monitoring the dose caused by internal radiation, the guide defines the limits derived from annual dose limits (the Annual Limit on Intake and the Derived Air Concentration). Finally, the guide defines the operational quantities to be used in estimating the equivalent dose and the effective dose, and also sets out the definitions of some other quantities and concepts to be used in monitoring radiation exposure. The guide does not include the calculation of patient doses carried out for the purposes of quality assurance

  19. Application of maximum values for radiation exposure and principles for the calculation of radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The guide sets out the mathematical definitions and principles involved in the calculation of the equivalent dose and the effective dose, and the instructions concerning the application of the maximum values of these quantities. further, for monitoring the dose caused by internal radiation, the guide defines the limits derived from annual dose limits (the Annual Limit on Intake and the Derived Air Concentration). Finally, the guide defines the operational quantities to be used in estimating the equivalent dose and the effective dose, and also sets out the definitions of some other quantities and concepts to be used in monitoring radiation exposure. The guide does not include the calculation of patient doses carried out for the purposes of quality assurance.

  20. Analysis of records of external occupational dose records in Brazil

    International Nuclear Information System (INIS)

    Mauricio, Claudia L.P.; Silva, Herica L.R. da; Silva, Claudio Ribeiro da

    2014-01-01

    Brazil, a continental country, with actually more than 150,000 workers under individual monitoring for ionizing radiation, has implemented in 1987 a centralized system for storage of external occupational dose. This database has been improved over the years and is now a web-based information system called Brazilian External Occupational Dose Management Database System - GDOSE. This paper presents an overview of the Brazilian external occupational dose over the years. The estimated annual average effective dose shows a decrease from 2.4 mSv in 1987 to about 0.6 mSv, having been a marked reduction from 1987 to 1990. Analyzing by type of controlled practice, one sees that the medical and dental radiology is the area with the largest number of users of individual monitors (70%); followed by education practices (8%) and the industrial radiography (7%). Additionally to photon whole body monitoring; neutron monitors are used in maintenance (36%), reactor (30%) and education (27%); and extremity monitors, in education (27%), nuclear medicine (22%) and radiology (19%). In terms of collective dose, the highest values are also found in conventional radiology, but the highest average dose values are those of interventional radiology. Nuclear medicine, R and D and radiotherapy also have average annual effective dose higher than 1 mSv. However, there is some very high dose values registered in GDOSE that give false information. This should be better analyzed in the future. Annual doses above 500 are certainly not realistic. (author)

  1. Collective dose of egyptian atomic energy workers during the period 1991-1995

    Energy Technology Data Exchange (ETDEWEB)

    Gomaa, M A; Youssef, S K [Reactor Division, and Radiation Protect. Dept., Nuclear Reseach Center Atomic Energy Authority, Cairo (Egypt)

    1997-12-31

    The collective dose to egyptian atomic energy authority workers during the period from 1991 - 1995 were statistically evaluated. The personnel dosimetry in use since 1957 for evaluating external exposure doses was mainly the Harwell blue badge and kodak radiation monitoring film for X and Gamma photons. The calibration sensitivity of the badge system was evaluated under the `AL` and/or `Pb/Sn alloy` filters. The results of calibration showed 15% errors in the predicted values for whole body effective doses. The statistical survey showed that the annual collective dose ranged between 0.83-1.54 man Sv. The annual limit of exposure presented 25-58% of the recommended annual limit by ICRP- 60 (1991). Details of the study will be considered in the text. 4 tabs.

  2. Effective dose evaluation of NORM-added consumer products using Monte Carlo simulations and the ICRP computational human phantoms.

    Science.gov (United States)

    Lee, Hyun Cheol; Yoo, Do Hyeon; Testa, Mauro; Shin, Wook-Geun; Choi, Hyun Joon; Ha, Wi-Ho; Yoo, Jaeryong; Yoon, Seokwon; Min, Chul Hee

    2016-04-01

    The aim of this study is to evaluate the potential hazard of naturally occurring radioactive material (NORM) added consumer products. Using the Monte Carlo method, the radioactive products were simulated with ICRP reference phantom and the organ doses were calculated with the usage scenario. Finally, the annual effective doses were evaluated as lower than the public dose limit of 1mSv y(-1) for 44 products. It was demonstrated that NORM-added consumer products could be quantitatively assessed for the safety regulation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Estimation of Radionuclide Concentrations and Average Annual Committed Effective Dose due to Ingestion for the Population in the Red River Delta, Vietnam.

    Science.gov (United States)

    Van, Tran Thi; Bat, Luu Tam; Nhan, Dang Duc; Quang, Nguyen Hao; Cam, Bui Duy; Hung, Luu Viet

    2018-02-16

    Radioactivity concentrations of nuclides of the 232 Th and 238 U radioactive chains and 40 K, 90 Sr, 137 Cs, and 239+240 Pu were surveyed for raw and cooked food of the population in the Red River delta region, Vietnam, using α-, γ-spectrometry, and liquid scintillation counting techniques. The concentration of 40 K in the cooked food was the highest compared to those of other radionuclides ranging from (23 ± 5) (rice) to (347 ± 50) Bq kg -1 dw (tofu). The 210 Po concentration in the cooked food ranged from its limit of detection (LOD) of 5 mBq kg -1  dw (rice) to (4.0 ± 1.6) Bq kg -1  dw (marine bivalves). The concentrations of other nuclides of the 232 Th and 238 U chains in the food were low, ranging from LOD of 0.02 Bq kg -1  dw to (1.1 ± 0.3) Bq kg -1  dw. The activity concentrations of 90 Sr, 137 Cs, and 239+240 Pu in the food were minor compared to that of the natural radionuclides. The average annual committed effective dose to adults in the study region was estimated and it ranged from 0.24 to 0.42 mSv a -1 with an average of 0.32 mSv a -1 , out of which rice, leafy vegetable, and tofu contributed up to 16.2%, 24.4%, and 21.3%, respectively. The committed effective doses to adults due to ingestion of regular diet in the Red River delta region, Vietnam are within the range determined in other countries worldwide. This finding suggests that Vietnamese food is safe for human consumption with respect to radiation exposure.

  4. Annual environmental monitoring report, January--December 1975

    International Nuclear Information System (INIS)

    1976-04-01

    Environmental monitoring results continue to demonstrate that, except for penetrating radiation, environmental radiological impact due to SLAC operation is not distinguishable from natural environmental sources. During 1975 the maximum neutron dose near the site boundary was 15.8 mrem. This represents about 16 percent of the annual dose from natural sources at this elevation and 3.2 percent of the technical standard of 500 mrem per person annually. There have been no measurable increases in radioactivity in ground water attributable to SLAC operations. Airborne radioactivity released from SLAC also continues to make only a negligible environmental impact and results in a site boundary annual dose of less than 2.4 mrem, which represents less than 2.4 percent of the annual dose from the natural radiation environment and about 0.5 percent of the technical standard

  5. Assessments of internal doses by ingestion of radioactive foodstuffs in Bangladesh

    International Nuclear Information System (INIS)

    Mollah, A.S.

    1996-01-01

    The internal radiation dose to a man from the consumption of foodstuffs was estimated an the basis of the measured radioactivities in the foodstuffs in Bangladesh. The total annual internal effective dose equivalent was found to be 454.56 μSv. The dose from intake of radionuclides by foodstuffs (ingestion dose) in general is so low that no harmful effects will occur directly. (author)

  6. Low doses effects

    International Nuclear Information System (INIS)

    Tubiana, M.

    1997-01-01

    In this article is asked the question about a possible carcinogens effect of low dose irradiation. With epidemiological data, knowledge about the carcinogenesis, the professor Tubiana explains that in spite of experiments made on thousand or hundred of thousands animals it has not been possible to bring to the fore a carcinogens effect for low doses and then it is not reasonable to believe and let the population believe that low dose irradiation could lead to an increase of neoplasms and from this point of view any hardening of radiation protection standards could in fact, increase anguish about ionizing radiations. (N.C.)

  7. Effective dose equivalent

    International Nuclear Information System (INIS)

    Huyskens, C.J.; Passchier, W.F.

    1988-01-01

    The effective dose equivalent is a quantity which is used in the daily practice of radiation protection as well as in the radiation hygienic rules as measure for the health risks. In this contribution it is worked out upon which assumptions this quantity is based and in which cases the effective dose equivalent can be used more or less well. (H.W.)

  8. Gonad, bone marrow and effective dose to the population of more than 90 towns and cities of Iran, arising from environmental gamma radiation

    International Nuclear Information System (INIS)

    Bahreyni Toossi, M. T.; Bayani, Sh.; Yarahmadi, M.; Aghamir, A.; Jomehzadeh, A.; Hagh Parast, M.; Tamjidi, A.

    2009-01-01

    Since 1996 the assessment of environmental gamma radiation dose in residential areas of Iranian towns and cities has been accomplished for 10 counties. As a practical method and based on the results of a pilot study, in order to attribute the final results to the whole residential area of a town five stations were selected for every town. The location of individual station was studied closely to comply with recommended conditions in the literature. Materials and Methods: RDS-110 was employed to measure gamma dose rate for one hour. Average annual dose rates plus conversion coefficients were employed to estimate gonad, bone marrow, equivalent and effective dose. Result: Minimum and maximum annual bone marrow and gonad dose equivalent attributed to environmental gamma are 0.24 mSvy -1 (for both tissues) and 1.44 and 1.46 mSvy -l , respectively. Conclusion: Average gonad and bone marrow doses for North Khorasan, Boshehr and Hormozgan provinces were less than the corresponding values for normal area.

  9. Estimated radiation exposure of German commercial airline cabin crew in the years 1960-2003 modeled using dose registry data for 2004-2015.

    Science.gov (United States)

    Wollschläger, Daniel; Hammer, Gaël Paul; Schafft, Thomas; Dreger, Steffen; Blettner, Maria; Zeeb, Hajo

    2018-05-01

    Exposure to ionizing radiation of cosmic origin is an occupational risk factor in commercial aircrew. In a historic cohort of 26,774 German aircrew, radiation exposure was previously estimated only for cockpit crew using a job-exposure matrix (JEM). Here, a new method for retrospectively estimating cabin crew dose is developed. The German Federal Radiation Registry (SSR) documents individual monthly effective doses for all aircrew. SSR-provided doses on 12,941 aircrew from 2004 to 2015 were used to model cabin crew dose as a function of age, sex, job category, solar activity, and male pilots' dose; the mean annual effective dose was 2.25 mSv (range 0.01-6.39 mSv). In addition to an inverse association with solar activity, exposure followed age- and sex-dependent patterns related to individual career development and life phases. JEM-derived annual cockpit crew doses agreed with SSR-provided doses for 2004 (correlation 0.90, 0.40 mSv root mean squared error), while the estimated average annual effective dose for cabin crew had a prediction error of 0.16 mSv, equaling 7.2% of average annual dose. Past average annual cabin crew dose can be modeled by exploiting systematic external influences as well as individual behavioral determinants of radiation exposure, thereby enabling future dose-response analyses of the full aircrew cohort including measurement error information.

  10. Statistics and assessment of individual dose from occupational exposure in nuclear industry (1985-1990)

    International Nuclear Information System (INIS)

    Wang Yunfang; Yang Lianzhen

    1993-01-01

    The summary and main results of individual dose monitoring (1985-1990) from occupational exposure in nuclear industry are presented. The statistical results show that the annual collective dose equivalent from external exposure to workers in six plants and institutes in 1985-1990 are 29.88, 26.95, 19.16, 14.26, 9.08 and 9.22 man · Sv, respectively. The annual average dose equivalent are 4.98, 4.66, 3.65, 2.79, 2.40 and 2,27 mSv, respectively. The general situation for individual dose monitoring from internal exposure is briefly introduced. The internal exposure dose from uranium, plutonium and tritium in some facilities are given. The annual average committed effective dose equivalent are less than 5.0 mSv. The individual dose monitoring results for occupational exposure from uranium mining are depicted. The individual dose monitoring data are analysed preliminarily

  11. Daily radionuclide ingestion and internal radiation doses in Aomori prefecture, Japan.

    Science.gov (United States)

    Ohtsuka, Yoshihito; Kakiuchi, Hideki; Akata, Naofumi; Takaku, Yuichi; Hisamatsu, Shun'ichi

    2013-10-01

    To assess internal annual dose in the general public in Aomori Prefecture, Japan, 80 duplicate cooked diet samples, equivalent to the food consumed over a 400-d period by one person, were collected from 100 volunteers in Aomori City and the village of Rokkasho during 2006–2010 and were analyzed for 11 radionuclides. To obtain average rates of ingestion of radionuclides, the volunteers were selected from among office, fisheries, agricultural, and livestock farm workers. Committed effective doses from ingestion of the diet over a 1-y period were calculated from the analytical results and from International Commission on Radiological Protection dose coefficients; for 40K, an internal effective dose rate from the literature was used. Fisheries workers had significantly higher combined internal annual dose than the other workers, possibly because of high rates of ingestion of marine products known to have high 210Po concentrations. The average internal dose rate, weighted by the numbers of households in each worker group in Aomori Prefecture, was estimated at 0.47 mSv y-1. Polonium-210 contributed 49% of this value. The sum of committed effective dose rates for 210Po, 210Pb, 228Ra, and 14C and the effective dose rate of 40K accounted for approximately 99% of the average internal dose rate.

  12. Gonad, bone marrow and effective dose to the population of more than 90 towns and cities of Iran, arising from environmental gamma radiation

    International Nuclear Information System (INIS)

    Bahreyni Toossi, M.T.; Bayani, S.H.; Abdolrahimi, A.; Yarahmadi, M.; Aghamir, A.; Jomehzadeh, A.; Hagh Parast, M.; Tamjidi, A.

    2008-01-01

    Natural radiation environment and it's biological impacts on human life has not received appreciable attention in Iran. Before 1996 only a few sporadic studies had been carried out, but no systematic study of normal back ground had been conducted. Since 1996 assessment of environmental gamma radiation dose in residential areas of Iranian towns and cities was defined as a long term goal in our center. Till now measurements of annual dose rates have been accomplished for 10 counties. As a practical method and based on the results of a pilot study, in order to attribute the final results to the whole residential area of a town five stations were selected for every town. The location of individual station was studied closely to comply with recommended conditions in the literature. RDS-110 was employed to measure gamma dose rate for one hour. Practically huge numbers of dose rate figures were recorded, they were substantially summarized to estimate average dose rate. Average annual dose rates plus conversion coefficients were employed to estimate gonad, bone marrow, equivalent and effective dose. In the vast studied area average out-door gamma dose rate is varying from 35 nSvh -1 to 205 nSvh -1 . Minimum and maximum annual bone marrow and gonad dose equivalent attributed to environmental gamma are 0.24 mSvy -1 (for both tissues) and 1.44 and 1.46 mSvy -1 respectively. Effective dose of inhabitants arising from out-door gamma is varying by 6 folds from 0.21 to 1.26 mSvy -1 . The largest and smallest population weighted dose are equal to 0.35 and 1.00 mSvy -1 . Average gonad and bone marrow doses for north Khorasan, Boshehr and Hormozgan are less than the corresponding values for normal area. On the other hand inhabitants of the studied area receive a dose higher than the world average, except those who live in Hormozgan and Boshehr. (author)

  13. 238U-series radionuclides in Finnish groundwater-based drinking water and effective doses

    International Nuclear Information System (INIS)

    Vesterbacka, P.

    2005-09-01

    The thesis deals with the occurrence of 238 U-series radionuclides and particle-bound 210 Pb and 210 Po in Finnish groundwater-based drinking water, methods used for removing 234 U, 238 U, 210 Pb and 210 Po, and the annual effective doses caused by 238 U-series radionuclides in drinking water. In order to reduce radiation exposure and avoid high doses, it is important to examine the activity levels of natural radionuclides in groundwater. In this work, the activity concentrations of radon ( 222 Rn), radium ( 226 Ra), uranium ( 238 U and 234 U), lead ( 210 Pb) and polonium ( 210 Po) were determined from 472 private wells, which were selected randomly from across Finland. On the basis of the results, the activity concentrations in groundwater and the radiation exposure from drinking water of people living outside the public water supply in Finland was specified. The efficiency of 238 U, 234 U, 210 Pb and 210 Po removal from drinking water was examined at ten private homes. In order to obtain accurate results and correct estimates of effective doses, attention was paid to the sampling of 222 Rn and 210 Pb, and the determination of 210 Pb. The results revealed that the median activity concentrations of natural radionuclides were as much as ten times higher in drilled wells than in wells dug in soil. The average activity concentration of 222 Rn in drilled wells was 460 Bq/l and in dug wells 50 Bq/l. The highest activity concentrations were found in Southern Finland. In addition, occasional high activity concentrations were found all over Finland. The average activity concentrations of 234 U and 238 U in drilled wells were 0.35 and 0.26 Bq/l and in dug wells 0.020 and 0.015 Bq/l, respectively. The spatial distribution of 234 U, 238 U, 210 Pb and 210 Po was essentially similar to that of 222 Rn. In contrast to other natural radionuclides, the highest 226 Ra activity concentrations were found in coastal areas, since drilled well water near the sea has a higher salinity

  14. Radiation dose from cigarette tobacco

    International Nuclear Information System (INIS)

    Papastefanou, Constantin

    2008-01-01

    The radioactivity in tobacco leaves collected from 15 different regions of Greece before cigarette production was studied in order to estimate the effective dose from cigarette tobacco due to the naturally occurring primordial radionuclides, such as 226 Ra and 210 Pb of the uranium series and 228 Ra of the thorium series and or man-made produced radionuclides, such as 137 Cs of Chernobyl origin. Gamma-ray spectrometry was applied using Ge planar and coaxial type detectors of high resolution and high efficiency. It was concluded that the annual effective dose due to inhalation for adults (smokers) for 226 Ra varied from 42.5 to 178.6 μSv y -1 (average 79.7 μSv y -1 ), while for 228 Ra from 19.3 to 116.0 μSv y -1 (average 67.1 μSv y -1 ) and for 210 Pb from 47.0 to 134.9 μSv y -1 (average 104.7 μSv y -1 ), that is the same order of magnitude for each radionuclide. The sum of the effective dose of the three natural radionuclides varied from 151.9 to 401.3 μSv y -1 (average 251.5 μSv y -1 ). The annual effective dose from 137 Cs of Chernobyl origin was three orders of magnitude lower as it varied from 70.4 to 410.4 μSv y -1 (average 199.3 μSv y -1 ). (author)

  15. Measurement of activity concentrations of {sup 40}K, 2{sup 32T}h and {sup 238}U in TSP aerosols and the associated inhalation annual effective radiation dose to the public in Gosan site, Jeju

    Energy Technology Data Exchange (ETDEWEB)

    Han, Chung Hun; Park, Youn Hyun; Park, Jae Woo [Jeju National University, Jeju (Korea, Republic of)

    2016-10-15

    Gamma radiation emitted from naturally occurring radioisotopes, such as 40K and the radionuclides from the {sup 232}Th and {sup 238}U series and their decay products, which exist at trace levels in all ground formations, represents the main external source of irradiation to the human body. The objective of the current study is to determine the activity concentrations of 40K, {sup 232}Th and {sup 238}U in airborne TSP and the associated internal radiation dose to the public due to inhalation in Gosan site, Jeju Island, Korea. The atmospheric total suspended particulates (TSP) aerosols were collected at Gosan site of Jeju Island, which is one of the background sites of Korea, during January to April 2013. This study analyzed using ICP-DRC-MS the concentrations of potassium, uranium and thorium, and evaluated the annual effective dose by breathing from the results. The correlations between the studied natural isotopes is a good positive correlation between {sup 232}Th and {sup 238}U, supporting the conclusion that they originated from the same source, mostly the crust. The backward trajectory analysis has confirmed that the 40K, {sup 238}U and {sup 232}Th are delivered as the air masses have moved from the China continent. The inhalation annual effective radiation dose (default mode F) to the public due to natural isotopes of the airborne TSP was in the range 16.195 - 77.051 nSv/y, depending on the age group. Jeju Island with less pollution source and low population density is also one of the best places as a background area in Asia.

  16. Annual dose equivalents estimation received by Cienfuegos population due medical practice

    International Nuclear Information System (INIS)

    Usagaua R, Z.; Santander I, E.

    1996-01-01

    This study represents the first evaluation of the effective equivalent dose that receives the population of the Cienfuegos province in Cuba because of medical practice. The evaluation is based on the tables of doses depending on several parameters that influence over these ones, and also based on large diagnostic examinations statistics of all medical institutions over a 9 years period. Values of examinations frequency, contribution to total dose from radiography, fluoroscopy, dental radiography and nuclear medicine, and other characteristics of the last ones are offered. A comparative reflection dealing with received doses by radiography and fluoroscopy techniques is also included. (authors). 4 refs

  17. Effects of proton radiation dose, dose rate and dose fractionation on hematopoietic cells in mice

    International Nuclear Information System (INIS)

    Ware, J.H.; Rusek, A.; Sanzari, J.; Avery, S.; Sayers, C.; Krigsfeld, G.; Nuth, M.; Wan, X.S.; Kennedy, A.R.

    2010-01-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05-0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals were used as controls. The results demonstrate a dose-dependent loss of white blood cells (WBCs) and lymphocytes by up to 61% and 72%, respectively, in mice irradiated with protons at doses up to 2 Gy. The results also demonstrate that the dose rate, fractionation pattern and energy of the proton radiation did not have significant effects on WBC and lymphocyte counts in the irradiated animals. These results suggest that the acute effects of proton radiation on WBC and lymphocyte counts are determined mainly by the radiation dose, with very little contribution from the dose rate (over the range of dose rates evaluated), fractionation and energy of the protons.

  18. Effects of proton radiation dose, dose rate and dose fractionation on hematopoietic cells in mice.

    Science.gov (United States)

    Ware, J H; Sanzari, J; Avery, S; Sayers, C; Krigsfeld, G; Nuth, M; Wan, X S; Rusek, A; Kennedy, A R

    2010-09-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05-0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals were used as controls. The results demonstrate a dose-dependent loss of white blood cells (WBCs) and lymphocytes by up to 61% and 72%, respectively, in mice irradiated with protons at doses up to 2 Gy. The results also demonstrate that the dose rate, fractionation pattern and energy of the proton radiation did not have significant effects on WBC and lymphocyte counts in the irradiated animals. These results suggest that the acute effects of proton radiation on WBC and lymphocyte counts are determined mainly by the radiation dose, with very little contribution from the dose rate (over the range of dose rates evaluated), fractionation and energy of the protons.

  19. Analysis of data on radon monitoring and dose estimates for uranium mines

    International Nuclear Information System (INIS)

    Khan, A.H.; Srivastava, G.K.; Jha, Shankar; Sagar, D.V.

    1994-01-01

    Radon progeny are the major contributors to the radiation dose to uranium miners. Monitoring for radon and gamma radiation is an integral part of radiation protection in such mines. Data for equilibrium equivalent radon and the estimated mean annual doses are presented in this paper for Jaduguda uranium mine from 1986 to 1992. The 1992 data for Jaduguda and Bhatin mines are compared. The average annual effective dose for uranium miners is estimated at around 15.5 mSv. (author). 1 ref., 2 figs

  20. Health effects of low doses at low dose rates: dose-response relationship modeling in a cohort of workers of the nuclear industry

    International Nuclear Information System (INIS)

    Metz-Flamant, Camille

    2011-01-01

    The aim of this thesis is to contribute to a better understanding of the health effects of chronic external low doses of ionising radiation. This work is based on the French cohort of CEA-AREVA NC nuclear workers. The mains stages of this thesis were (1) conducting a review of epidemiological studies on nuclear workers, (2) completing the database and performing a descriptive analysis of the cohort, (3) quantifying risk by different statistical methods and (4) modelling the exposure-time-risk relationship. The cohort includes monitored workers employed more than one year between 1950 and 1994 at CEA or AREVA NC companies. Individual annual external exposure, history of work, vital status and causes of death were reconstructed for each worker. Standardized mortality ratios using French national mortality rates as external reference were computed. Exposure-risk analysis was conducted in the cohort using the linear excess relative risk model, based on both Poisson regression and Cox model. Time dependent modifying factors were investigated by adding an interaction term in the model or by using exposure time windows. The cohort includes 36, 769 workers, followed-up until age 60 in average. During the 1968- 2004 period, 5, 443 deaths, 2, 213 cancers, 62 leukemia and 1, 314 cardiovascular diseases were recorded. Among the 57% exposed workers, the mean cumulative dose was 21.5 milli-sieverts (mSv). A strong Healthy Worker Effect is observed in the cohort. Significant elevated risks of pleura cancer and melanoma deaths were observed in the cohort but not associated with dose. No significant association was observed with solid cancers, lung cancer and cardiovascular diseases. A significant dose-response relationship was observed for leukemia excluding chronic lymphatic leukemia, mainly for doses received less than 15 years before and for yearly dose rates higher than 10 mSv. This PhD work contributes to the evaluation of risks associated to chronic external radiation

  1. Analysis of dose record and epidemiology for radiation workers in Korea

    International Nuclear Information System (INIS)

    Choi, S.Y.; Kim, T.H.

    2003-01-01

    This study presents data on the externally received doses and preliminary results of epidemiological survey for radiation workers. The statistical analysis was carried out in order to understand better the occupational radiation doses in Korea. Records containing dose information from 1984 to 1999 for 64,518 persons were extracted from the National Dose Registry of Korea (Korea Radioisotope Association's personal dose record). The total number of workers registered from 1984 to 1999 was 64,518. The number of workers steadily increased and the accumulated dose somewhat increased. The proportion of radiation workers by occupation was 38.4% for nuclear power plant, 20.3% for industrial organization and 12.4% for non-destructive industry, respectively. The collective annual dose of radiation workers was 31.72 man Sv in 1999. The mean annual dose by sex was 1.49 mSv for male and 0.56 mSv for female. The mean annual dose for workers was 1.41 mSv with the highest mean dose being received by non-destructive industry (3.53 mSv). Very few workers(0.8%) received more than 20 mSv and only one more than 50 mSv, the legal limit for an annual dose. There has been a steady decline in the mean dose since 1984, showing a significant decrease in dose with time. The data showed that radiation protection in Korea was improving, though annual doses were still higher than other countries. Nevertheless, this finding brings to light the necessity of the workers to pay more careful attention to radiation protection procedures and practices, and suggest the need for continuous effort to implement procedures. We are carrying out epidemiological survey in order to evaluate radiation effects on Korean workers based on radiation dose data from the year of 2000. Follow-up is carrying out in order to detect and measure directly the risks of cancer using the Korean Mortality Data, Cancer Registry and individual investigation

  2. Dose estimate of exposure to radioisotopes in molecular and cellular biology

    International Nuclear Information System (INIS)

    Onado, C.; Faretta, M.; Ubezio, P.

    1999-01-01

    A method for prospectively evaluating the annual equivalent doses and effective dose to biomedical researchers working with unsealed radioisotopes, and their classification, is presented here. Simplified formulae relate occupational data to a reasonable overestimate of the annual effective dose, and the equivalent doses to the hands and to the skin. The procedure, up to the classification of personnel and laboratories, can be made fully automatic, using a common spreadsheet on a personal computer. The method is based on occupational data, accounting for the amounts of each radioisotope used by a researcher, the time of exposure and the overall amounts employed in the laboratories where experiments are performed. The former data serve to forecast a contribution to the dose arising from a researcher's own work, the latter to a forecast of an 'environmental' contribution deriving simply from the presence in a laboratory where other people are working with radioisotopes. The estimates of the doses due to one's own radioisotope handling and to 'environment' were corrected for accidental exposure, considered as a linear function of the manipulated activity or of the time spent in the laboratories respectively, and summed up to give the effective dose. The effective dose associated with some common experiments in molecular and cellular biology is pre-evaluated by this method. (author)

  3. Doses to the Norwegian population from naturally occuring radiation and from the Chernobyl fallout

    International Nuclear Information System (INIS)

    Strand, T.

    1987-01-01

    The doses to the Norwegian population from naturally occuring radiation are extensively reviewed. The annual population weighted average dose equivalent to the Norwegian population from 222 Rn and its daughters is estimated to be between 3.5 and 4.5 mSv. The average concentration of 220 Rn daughters in Norwegian dwellings is most probably between 1.0 and 1.5 Bq m -3 . The corresponding effective dose equivalent for 220 Rn and its daughters is estimated to be between 0.4 and 0.6 mSv. The total annual collective dose equivalent from naturally occuring radiation in Norway is found to be between 21000 and 27000 man Sv. The doses to the Norwegian population from the Chernobyl fallout are briefly discussed. Based on the results of a ''food basket'' project and supplementary data from about 30000 measurements on food samples the first year after the reactor accident, the total annual effective dose equivalent from foodstuffs to an average Norwegian consumer during this first year is estimated to be 0.15 +-0.002 m Sv at the 95% confidence level. The per caput effective dose equivalent from external fallout gamma radiation in the first year after the Chernobyl accident, is approximately 82 μSv in Norway

  4. Nuclear medicine external individual occupational doses in Rio de Janeiro

    International Nuclear Information System (INIS)

    Mauricio, Claudia L.P.; Lima, Ana Luiza S.; Silva, Herica L.R. da; Santos, Denison Souza; Silva, Claudio Ribeiro da

    2009-01-01

    According to the Brazilian National Database there are about 300 Nuclear Medicine Services (NMS) in Brazil, 44 of them located in the State of Rio de Janeiro (RJ). Individual dose measurements are an important input for the evaluation of occupational exposure in order to demonstrate the effectiveness of radioprotection implementation and to keep individual doses as low as possible. In Brazil, most nuclear medicine (NM) staff is routinely monitored for external dose. The internal committed dose is estimated only in abnormal conditions. This paper makes a statistics analysis of all the RJ NMS annual external occupational doses in year 2005. A study of the evolution of monthly external individual doses higher than 4.00 mSv from 2004 to 2008 is also presented. The number of registered thorax monthly dose higher than 4.0 mSv is increasing, as its value. In this period the highest dose measured reaches 56.9 mSv, in one month, in 2008. About 50% of the annual doses are smaller than the monthly record level of 0.20 mSv. In 2005, around 100 professionals of RJ NMS received annual doses higher than 4.0 mSv, considering only external doses, but no one receives doses higher than 20.0 mSv. Extremities dosimeters are used by about 15% of the staff. In some cases, these doses are more than 10 times higher than the dose in thorax. This study shows the importance to improve radiation protection procedures in NM. (author)

  5. Effective dose of individuals from the surrounding public to the facilities of the Abadia de Goiás radioactive waste disposal; Dose efetiva dos indivíduos do público circunvizinho às instalações dos repositórios de rejeitos radioativos de Abadia de Goiás

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, E.; Borges, A.F. de Almeida; Camargos, K.M.; Santos, E.E. dos; Correa, R. da S., E-mail: rcorrea@cnen.gov.br [Centro Regional de Ciências Nucleares do Centro-Oeste (CRCN-CO/CNEN-GO), Abadia de Goiás, GO (Brazil); Ferreira, N.C., E-mail: nclferreira@gmail.com [Universidade Federal de Goias (UFG), Goiânia, GO (Brazil). Escola de Engenharia Civil e Ambiental; Ribeiro, N.V., E-mail: noely.ribeiro@uol.com.br [Universidade Federal de Goias (UFG), Goiânia, GO (Brazil). Instituto de Estudos Socioambientais

    2017-07-01

    The study presents the level of effective annual dose that individuals from the public - surrounding the repository of wastes with Cs-137, located in Abadia de Goiás, GO, Brazil - have received, according to analyzes carried out from June 2015 to July 2016. It was considered reference to the annual effective radiation dose limit of 0.3 mSv / year established by the National Nuclear Energy Commission (CNEN) for the impact of repositories on individuals in the public. Cs-137 activity determinations were performed on samples of surface water (ASU), groundwater (ASB), river bottom sediments (SED), soil (SOL) and vegetation (VEG). With these results, the effective doses were estimated for ASU and BSA consumption of 6.64 x 10{sup -4} mSv / year and for SED exposure, 3.92 x 10{sup -}6 mSv / year and for ASB use, 6.22 x 10{sup -3} mSv / year. For SOL and VEG, activity values of Cs-137 were used as indicators of contamination. It was observed that the effective annual doses were below the limit established by the norms, which can be inferred that the installation has been operating safely, without causing a radiological impact to the environment and individuals of the public.

  6. New dose limits and distribution of annual doses for controlled groups

    International Nuclear Information System (INIS)

    Vukcevic, M.; Stankovic, S.; Kovacevic, M.

    1993-01-01

    The new calculations of neutron doses received by the population of Hiroshima and Nagasaki, as well as the epidemiological data on the incidence of fatal cancers in the survivors, had led to the conclusion that the risk estimates should be raised by the factor 2 or 3. In this work, the distribution of monthly doses for occupationals was analysed in order to determine the percent of workers who might be considered as overexposed, on the basis of the new dose limits. (author)

  7. Low doses effects and gamma radiations low dose rates

    International Nuclear Information System (INIS)

    Averbeck, D.

    1999-01-01

    This expose wishes for bringing some definitions and base facts relative to the problematics of low doses effects and low dose rates effects. It shows some already used methods and some actual experimental approaches by focusing on the effects of ionizing radiations with a low linear energy transfer. (N.C.)

  8. Individual radiation doses. Annual report 1995

    International Nuclear Information System (INIS)

    Bergman, L.

    1995-05-01

    During the year we measured whole body doses on 10226 bearers, distributed as follows: 0-0,5 mSv on 8816 persons, 0,6-1,0 mSv on 693 persons, 1,1-5,0 on 678 persons, >5 mSv on 39 persons. At higher dose than 4 mSv/4 weeks, the reason to the irradiation will be investigated. 2 figs, 2 tabs

  9. Ambient radioactivity levels and radiation doses. Annual report 2014; Umweltradioaktivitaet und Strahlenbelastung. Jahresbericht 2014

    Energy Technology Data Exchange (ETDEWEB)

    Trugenberger-Schnabel, Angela; Loebke-Reinl, Angelika; Peter, Josef (comps.) [Bundesamt fuer Strahlenschutz, Salzgitter (Germany)

    2016-08-15

    The annual report 2014 on ambient radioactivity levels and radiation doses covers the following topics: (1) Actual data and their evaluation: natural environmental radioactivity, artificial environmental radioactivity, occupational radiation exposure, radiation exposures from medical applications, handling of radioactive materials and sources of ionizing radiation, non-ionizing radiation. (2) Fundamentals and general information: legal basis and explanations, basic information on natural environmental radioactivity, basic information on artificial radioactivity in the environment, basic information on occupational radiation exposure, basic information on radiation exposures from medical applications, basic information on the handling of radioactive materials and sources of ionizing radiation, basic information on non-ionizing radiation. (3) Tables.

  10. Levels of external natural radiation and doses to population in Heilongjiang province

    International Nuclear Information System (INIS)

    Liang Yicheng; He Yongjiang; Wang Lu

    1985-01-01

    The external natural radiation level in Heilongjiang Province was measured by using China-made FD-71 scintillation radiometers and RSS-111 high pressure ionization chambers. The doses of external radiation to population were also calculated. The population-weighted average value of the absorbed dose rate from terrestrial γ-radiation was 7.2 x 10 -8 Gy.h -1 for outdoors, and 10.8 x 10 -8 Gy.h -1 for indoors. The population-weighted average absorbed dose rate in air from cosmic rays was 3.3 x 10 -8 Gy.h -1 . The annual population-weighted average effective dose equivalent and the annual collective effective dose equivalent from the environmental γ-radiation were 620 μSv and 20.1 x 10 3 man.Sv, respectively. The corresponding figures from cosmic rays were 260 μSv and 8.7 x 10 3 man.Sv, respectively

  11. Annual environmental monitoring report, January--December 1978

    International Nuclear Information System (INIS)

    1979-04-01

    Environmental monitoring results continue to demonstrate that, except for penetrating radiation, environmental radiological impact due to SLAC operation is not distinguishable from natural environmental sources. During 1978, the maximum neutron dose near the site boundary was 6.6 mrem. This represents about 6.6% of the annual dose from natural sources at this elevation, and 1.3% of the technical standard of 500 mrem per person annually. There have been no measurable increases in radioactivity in ground water attributable to SLAC operations since 1966. Because of major new construction, well water samples were not collected and analyzed during 1978. Construction activities have also temporarily placed our sampling stations for the sanitary and storm sewers out of service. They will be re-established as soon as construction activities permit. Airborne radioactivity released from SLAC continues to make only a negligible environmental impact, and results in a site boundary annual dose of less than 0.01 mrem; this represents less than 0.01% of the annual dose from the natural radiation environment, and about 0.002% of the technical standard

  12. Estimation of radiation dose in Sakkara area

    International Nuclear Information System (INIS)

    Hussein, A.Z.; Hussein, M.I.; Abd El-Hady, M.L.

    1998-01-01

    Radon levels seem to be relatively high in some deeply seated caves at various sites in Egypt, apparently due to the U and Th contents in the rocks lining the burial places that are situated deep in the ground. The Sakkara area was examined, and a survey of the exposure rates, effective doses, radon daughter concentrations, and annual doses is presented in the tabular form. (P.A.)

  13. The preparation and characterization of a loess sediment reference material for QC/QA of the annual radiation dose determination in luminescence dating

    International Nuclear Information System (INIS)

    De Corte, F.; De Wispelaere, A.; Vandenberghe, D.; Hossain, S.M.; Van den haute, P.

    2005-01-01

    Of crucial importance for obtaining reliable results in the luminescence dating of sediments, is the accurate and precise assessment of both the palaeodose and the annual radiation dose [cf the age equation: luminescence-age (ka) = palaeodose (Gray)/annual radiation dose (Gray.ka -1 )]. Clearly, for QC/QA of the annual radiation dose determination, a sediment reference material - not readily available up to now - would be highly useful. Therefore, in the present work a loess sediment was prepared and characterized with well-defined K, Th and U contents (the radiation dose being built up mainly by 40 K, and by 232 Th and 235,238 U and their decay daughters) and - otherwise expressed - alpha, beta, gamma and total radiation dose-rates. The material, a fine-grained aeolian loess sediment deposited in the Young-Pleistocene (Weichselian), a part of the Quaternary, was collected at Volkegem, Belgium. At the sampling site, NaI(Tl) field gamma-ray spectrometry was performed, yielding - via comparison with the 'Heidelberg calibration block' - concentrations (wet loess weight) for K, Th and U. About 14 kg material was brought to the laboratory and kept for ∼1 week at 110 degree C until constant weight (water content ≅14%). Then, the dried loess was subject to agate ball milling so as to pass through a 50 μm sieve. The ∼12 kg powder obtained in this way was homogenized both in a turbula mixer and manually. For the thus prepared loess material, good homogeneity for its K, Th and U content was found, as investigated via k 0 -INAA. For the final concentration and radiation dose-rate characterization, use was made of (next to NaI(Tl) field gamma-ray spectrometry and k 0 -INAA): extended energy-range low-background Ge gamma-ray spectrometry (also showing that the 232 Th and 238 U decay series were in secular equilibrium), thick source ZnS alpha-counting and GM beta-counting. For the latter', the conversion factors 'beta count-rate mutually implies radiation dose-rate' were

  14. Annual Percentage Rate and Annual Effective Rate: Resolving Confusion in Intermediate Accounting Textbooks

    Science.gov (United States)

    Vicknair, David; Wright, Jeffrey

    2015-01-01

    Evidence of confusion in intermediate accounting textbooks regarding the annual percentage rate (APR) and annual effective rate (AER) is presented. The APR and AER are briefly discussed in the context of a note payable and correct formulas for computing each is provided. Representative examples of the types of confusion that we found is presented…

  15. Dose level of occupational exposure in China

    International Nuclear Information System (INIS)

    Tian, Y.; Zhang, L.; Ju, Y.

    2008-01-01

    This paper discusses the dose level of Chinese occupational exposures during 1986-2000. Data on occupational exposures from the main categories in nuclear fuel cycle (uranium enrichment and conversion, fuel fabrication, reactor operation, waste management and research activity, except for uranium mining and milling because of the lack of data), medical uses of radiation (diagnostic radiation, nuclear medicine and radiotherapy) and industrial uses of radiation (industrial radiography and radioisotope production) are presented and summarised in detail. These are the main components of occupational exposures in China. In general, the average annual effective doses show a steady decreasing trend over periods: from 2.16 to 1.16 mSv in medical uses of radiation during 1990-2000; from 1.92 to 1.18 mSv in industrial radiography during 1990-2000; from 8.79 to 2.05 mSv in radioisotope production during the period 1980-2000. Almost all the average annual effective doses in discussed occupations were lower than 5 mSv in recent years (except for well-logging: 6.86 mSv in 1999) and no monitored workers were found to have received the occupational exposure exceeding 50 mSv in a single year or 100 mSv in a five-year period. So the Chinese protection status of occupation exposure has been improved in recent years. However, the average annual effective doses in some occupations, such as diagnostic radiology and coal mining, were still much higher than that of the whole world. There are still needs for further improvement and careful monitoring of occupational exposure to protect every worker from excessive occupational exposure, especially for the workers who were neglected before. (authors)

  16. Feasibility study for the assessment of the exposed dose with TENORM added in consumer products

    International Nuclear Information System (INIS)

    Yoo, Do Hyeon; Lee, Hyun Cheol; Shin, Wook-Geun; Min, Chul Hee; Ha, Wi-Ho; Yoo, Jae Ryong; Yoon, Seok-Won; Lee, Jiyon; Choi, Won-Chul

    2015-01-01

    Consumer products including naturally occurring radioactive material have been distributed widely in human life. The potential hazard of the excessively added technically enhanced naturally occurring radioactive material (TENORM) in consumer products should be assessed. The aim of this study is to evaluate the organ equivalent dose and the annual effective dose with the usage of the TENORM added in paints. The activities of gammas emitted from natural radionuclides in the five types of paints were measured with the high-purity germanium detector, and the annual effective dose was assessed with the computational human phantom and the Monte Carlo method. The results show that uranium and thorium series were mainly measured over the five paints. Based on the exposure scenario of the paints in the room, the highest effective dose was evaluated as <1 mSv y -1 of the public dose limit. (authors)

  17. Screening for early lung cancer with low-dose spiral computed tomography: results of annual follow-up examinations in asymptomatic smokers

    International Nuclear Information System (INIS)

    Diederich, Stefan; Thomas, Michael; Semik, Michael; Lenzen, Horst; Roos, Nikolaus; Weber, Anushe; Heindel, Walter; Wormanns, Dag

    2004-01-01

    The aim of this study was analysis of incidence results in a prospective one-arm feasibility study of lung cancer screening with low-radiation-dose spiral computed tomography in heavy smokers. Eight hundred seventeen smokers (≥40 years, ≥20 pack years of smoking history) underwent baseline low-dose CT. Biopsy was recommended in nodules >10 mm with CT morphology suggesting malignancy. In all other lesions follow-up with low-dose CT was recommended. Annual repeat CT was offered to all study participants. Six hundred sixty-eight (81.8%) of the 817 subjects underwent annual repeat CT with a total of 1735 follow-up years. Follow-up of non-calcified nodules present at baseline CT demonstrated growth in 11 of 792 subjects. Biopsy was performed in 8 of 11 growing nodules 7 of which represented lung cancer. Of 174 new nodules, 3 represented lung cancer. The 10 screen-detected lung cancers were all non-small cell cancer (6 stage IA, 1 stage IB, 1 stage IIIA, 2 stage IV). Five symptom-diagnosed cancers (2 small cell lung cancer: 1 limited disease, 1 extensive disease, 3 central/endobronchial non-small cell lung cancer, 2 stage IIIA, 1 stage IIIB) were diagnosed because of symptoms in the 12-month interval between two annual CT scans. Incidence of lung cancer was lower than prevalence, screen-detected cancers were smaller, and stage I was found in 70% (7 of 10) of screen-detected tumors. Only 27% (4 of 15) of invasive procedures was performed for benign lesions; however, 33% (5 of 15) of all cancers diagnosed in the population were symptom-diagnosed cancers (3 central NSCLC, all stage III, 2 SCLC) demonstrating the limitations of CT screening. (orig.)

  18. Central index of dose information

    International Nuclear Information System (INIS)

    1991-01-01

    The Central Index of Dose Information (CIDI) is a national database of occupational exposure to radiation operated by the NRPB as agent for the Health and Safety Executive. It receives summarised information on the radiation doses to classified persons in Great Britain annually from Approved Dosimetry Services. This document is the first annual CIDI summary of the data, giving statistics for 1986. (UK)

  19. Radiation dose in cardiac SPECT/CT: An estimation of SSDE and effective dose

    International Nuclear Information System (INIS)

    Abdollahi, Hamid; Shiri, Isaac; Salimi, Yazdan; Sarebani, Maghsoud; Mehdinia, Reza; Deevband, Mohammad Reza; Mahdavi, Seied Rabi; Sohrabi, Ahmad; Bitarafan-Rajabi, Ahmad

    2016-01-01

    Aims: The dose levels for Computed Tomography (CT) localization and attenuation correction of Single Photon Emission Computed Tomography (SPECT) are limited and reported as Volume Computed Tomography Dose Index (CTDIvol) and Dose-Length Product (DLP). This work presents CT dose estimation from Cardiac SPECT/CT based on new American Association of Physicists in Medicine (AAPM) Size Specific Dose Estimation (SSDE) parameter, effective dose, organ doses and also emission dose from nuclear issue. Material and methods: Myocardial perfusion SPECT/CT for 509 patients was included in the study. SSDE, effective dose and organ dose were calculated using AAPM guideline and Impact-Dose software. Data were analyzed using R and SPSS statistical software. Spearman-Pearson correlation test and linear regression models were used for finding correlations and relationships among parameters. Results: The mean CTDIvol was 1.34 mGy ± 0.19 and the mean SSDE was 1.7 mGy ± 0.16. The mean ± SD of effective dose from emission, CT and total dose were 11.5 ± 1.4, 0.49 ± 0.11 and 12.67 ± 1.73 (mSv) respectively. The mean ± SD of effective dose from emission, CT and total dose were 11.5 ± 1.4, 0.49 ± 0.11 and 12.67 ± 1.73 (mSv) respectively. The spearman test showed that correlation between body size and organ doses is significant except thyroid and red bone marrow. CTDIvol was strongly dependent on patient size, but SSDE was not. Emission dose was strongly dependent on patient weight, but its dependency was lower to effective diameter. Conclusion: The dose parameters including CTDIvol, DLP, SSDE, effective dose values reported here are very low and below the reference level. This data suggest that appropriate CT acquisition parameters in SPECT/CT localization and attenuation correction are very beneficial for patients and lowering cancer risks.

  20. Radiation dose in cardiac SPECT/CT: An estimation of SSDE and effective dose

    Energy Technology Data Exchange (ETDEWEB)

    Abdollahi, Hamid, E-mail: Hamid_rbp@yahoo.com [Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Shiri, Isaac [Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Salimi, Yazdan [Biomedical Engineering and Medical Physics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Sarebani, Maghsoud; Mehdinia, Reza [Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Deevband, Mohammad Reza [Biomedical Engineering and Medical Physics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Mahdavi, Seied Rabi [Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Radiation Biology Research Center, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Sohrabi, Ahmad [Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Bitarafan-Rajabi, Ahmad, E-mail: bitarafan@hotmail.com [Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Nuclear Medicine, Rajaei Cardiovascular, Medical and Research Center, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2016-12-15

    Aims: The dose levels for Computed Tomography (CT) localization and attenuation correction of Single Photon Emission Computed Tomography (SPECT) are limited and reported as Volume Computed Tomography Dose Index (CTDIvol) and Dose-Length Product (DLP). This work presents CT dose estimation from Cardiac SPECT/CT based on new American Association of Physicists in Medicine (AAPM) Size Specific Dose Estimation (SSDE) parameter, effective dose, organ doses and also emission dose from nuclear issue. Material and methods: Myocardial perfusion SPECT/CT for 509 patients was included in the study. SSDE, effective dose and organ dose were calculated using AAPM guideline and Impact-Dose software. Data were analyzed using R and SPSS statistical software. Spearman-Pearson correlation test and linear regression models were used for finding correlations and relationships among parameters. Results: The mean CTDIvol was 1.34 mGy ± 0.19 and the mean SSDE was 1.7 mGy ± 0.16. The mean ± SD of effective dose from emission, CT and total dose were 11.5 ± 1.4, 0.49 ± 0.11 and 12.67 ± 1.73 (mSv) respectively. The mean ± SD of effective dose from emission, CT and total dose were 11.5 ± 1.4, 0.49 ± 0.11 and 12.67 ± 1.73 (mSv) respectively. The spearman test showed that correlation between body size and organ doses is significant except thyroid and red bone marrow. CTDIvol was strongly dependent on patient size, but SSDE was not. Emission dose was strongly dependent on patient weight, but its dependency was lower to effective diameter. Conclusion: The dose parameters including CTDIvol, DLP, SSDE, effective dose values reported here are very low and below the reference level. This data suggest that appropriate CT acquisition parameters in SPECT/CT localization and attenuation correction are very beneficial for patients and lowering cancer risks.

  1. Dose trend analysis of the PWR nuclear power plants

    International Nuclear Information System (INIS)

    Cernilogar Radez, M.; Janzekovic, H.; Krizman, M.

    2002-01-01

    The analyses of occupational dose trends in Krsko NPP in the period from 1995 to 2001 are given in comparison to the worldwide data. The Central Dose Register of Workers in Nuclear Installations at the Slovenian Nuclear Safety Administration enables the comprehensive dose trend analysis of the occupational doses in Krsko NPP. The time dose trend of the collective annual effective dose at the Krsko NPP shows somehow different trend than the trends of the ISOE data [1]. The performance indicators describing dose data distributions related to the radiation protection standards [2, 3] are discussed.(author)

  2. Epidemiological methods for assessing dose-response and dose-effect relationships

    DEFF Research Database (Denmark)

    Kjellström, Tord; Grandjean, Philippe

    2007-01-01

    Selected Molecular Mechanisms of Metal Toxicity and Carcinogenicity General Considerations of Dose-Effect and Dose-Response Relationships Interactions in Metal Toxicology Epidemiological Methods for Assessing Dose-Response and Dose-Effect Relationships Essential Metals: Assessing Risks from Deficiency......Description Handbook of the Toxicology of Metals is the standard reference work for physicians, toxicologists and engineers in the field of environmental and occupational health. This new edition is a comprehensive review of the effects on biological systems from metallic elements...... access to a broad range of basic toxicological data and also gives a general introduction to the toxicology of metallic compounds. Audience Toxicologists, physicians, and engineers in the fields of environmental and occupational health as well as libraries in these disciplines. Will also be a useful...

  3. Determination of 210Po in leafy vegetables and annual effective dose assessment to the inhabitants of Mumbai city, India

    International Nuclear Information System (INIS)

    Dubey, J.S.; Sahoo, S.K.; Mohapatra, S.; Patra, A.C.; Lenka, P.; Ravi, P.M.; Tripathi, R.M.; Nair, A.

    2014-01-01

    Present study deals with the measurement of activity concentration of 210 Po in leafy vegetable of Mumbai city and corresponding ingestion dose assessment to the population. 210 Po activity levels ranged from 44.5-183.3 with an average value of 81.8 mBq/kg. Minimum activity of 210 Po was found in shepu and maximum in methi. The concentration reported here is slightly more than the UNSCEAR value. The estimated total effective dose was found to vary from 0.3 - 1.4 with an average value of 0.6 μSv/y, which is about 1% of global average total ingestion dose due to 210 Po. (author)

  4. Bayesian estimation of dose rate effectiveness

    International Nuclear Information System (INIS)

    Arnish, J.J.; Groer, P.G.

    2000-01-01

    A Bayesian statistical method was used to quantify the effectiveness of high dose rate 137 Cs gamma radiation at inducing fatal mammary tumours and increasing the overall mortality rate in BALB/c female mice. The Bayesian approach considers both the temporal and dose dependence of radiation carcinogenesis and total mortality. This paper provides the first direct estimation of dose rate effectiveness using Bayesian statistics. This statistical approach provides a quantitative description of the uncertainty of the factor characterising the dose rate in terms of a probability density function. The results show that a fixed dose from 137 Cs gamma radiation delivered at a high dose rate is more effective at inducing fatal mammary tumours and increasing the overall mortality rate in BALB/c female mice than the same dose delivered at a low dose rate. (author)

  5. A study of indoor radon levels and radon effective dose in dwellings of some cities of Gezira State in Sudan

    Directory of Open Access Journals (Sweden)

    Elzain Abd-Elmoniem Ahmed

    2014-01-01

    Full Text Available Exposure to natural sources of radiation, especially 222Rn and its short-lived daughter products has become an important issue throughout the world because sustained exposure of humans to indoor radon may cause lung cancer. The indoor radon concentration level and radon effective dose rate were carried out in the dwellings of Medani, El Hosh, Elmanagil, Haj Abd Allah, and Wad Almahi cities, Gezira State - Central Sudan, in 393 measurements, using passive integrated solid-state nuclear track devices containing allyl diglycol carbonate plastic detectors. The radon concentration in the corresponding dwellings was found to vary from (57 ± 8 Bq/m3 in Medani to 41 ± 9 Bq/m3 in Wad Almahi, with an average of 49 ± 10 Bq/m3. Assuming an indoor occupancy factor of 0.8 and 0.4 for the equilibrium factor of radon indoors, we found that the annual effective dose rate from 222Rn in the studied dwellings ranges from 1.05 to 1.43 mSv per year and the relative lung cancer risk for radon exposure was 1.044%. In this research, we also correlated the relationship of radon concentration and building age. From our study, it is clear that the annual effective dose rate is larger than the “normal” background level as quoted by UNSCEAR, lower than the recommended action level of ICRP, and less than the maximum permissible dose defined by the International Atomic Energy Agency.

  6. Level of terrestrial gamma radiation and doses to population in Jiangsu province

    International Nuclear Information System (INIS)

    1985-01-01

    In this paper the results of investigation of terrestrial gamma radiation level in Jiangsu Province are reported and the population doses due to this radiation are estimated. The sketch map of the geographical distribution of the terrestrial gamma radiation level is given. In this investigation FD-71 portable scintillation counters and RSS-111 high pressure ionization chambers were used. The results showed that the terrestrial gamma absorbed dose rates in air for indoors and outdoors were 10.7 x 10 -8 Gy/h and 6.5 x 10 -8 Gy/h (weighted values) respectively. The indoors-to-outdoors ratio was 1.65. The total (indoor plus outdoor) annual effective dose equivalent from terrestrial gamma radiation, averaged over the population in this province, was 6.0 x 10 -4 Sv. The collective annual effective dose equivalent was 3.6 x 10 4 man.Sv. Therefore, the absorbed dose to population in Jiangsu Province is in the range of the normal background

  7. Exponentially increasing incidences of cutaneous malignant melanoma in Europe correlate with low personal annual UV doses and suggests 2 major risk factors.

    Science.gov (United States)

    Merrill, Stephen J; Ashrafi, Samira; Subramanian, Madhan; Godar, Dianne E

    2015-01-01

    For several decades the incidence of cutaneous malignant melanoma (CMM) steadily increased in fair-skinned, indoor-working people around the world. Scientists think poor tanning ability resulting in sunburns initiate CMM, but they do not understand why the incidence continues to increase despite the increased use of sunscreens and formulations offering more protection. This paradox, along with lower incidences of CMM in outdoor workers, although they have significantly higher annual UV doses than indoor workers have, perplexes scientists. We found a temporal exponential increase in the CMM incidence indicating second-order reaction kinetics revealing the existence of 2 major risk factors. From epidemiology studies, we know one major risk factor for getting CMM is poor tanning ability and we now propose the other major risk factor may be the Human Papilloma Virus (HPV) because clinicians find β HPVs in over half the biopsies. Moreover, we uncovered yet another paradox; the increasing CMM incidences significantly correlate with decreasing personal annual UV dose, a proxy for low vitamin D3 levels. We also discovered the incidence of CMM significantly increased with decreasing personal annual UV dose from 1960, when it was almost insignificant, to 2000. UV and other DNA-damaging agents can activate viruses, and UV-induced cytokines can hide HPV from immune surveillance, which may explain why CMM also occurs in anatomical locations where the sun does not shine. Thus, we propose the 2 major risk factors for getting CMM are intermittent UV exposures that result in low cutaneous levels of vitamin D3 and possibly viral infection.

  8. Estimation of radiation dose in Sakkara area

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, A Z; Hussein, M I [National Centre for Nuclear Safety and Radiation Control, Atomic Energy Authority, Cairo (Egypt); Abd El-Hady, M L [Physics Department, Faculty of Science, El Minia University, El-Minia (Egypt)

    1999-12-31

    Radon levels seem to be relatively high in some deeply seated caves at various sites in Egypt, apparently due to the U and Th contents in the rocks lining the burial places that are situated deep in the ground. The Sakkara area was examined, and a survey of the exposure rates, effective doses, radon daughter concentrations, and annual doses is presented in the tabular form. (P.A.) 1 tab., 6 refs.

  9. Cytogenetic effects of low-dose radiation

    International Nuclear Information System (INIS)

    Metalli, P.

    1983-01-01

    The effects of ionizing radiation on chromosomes have been known for several decades and dose-effect relationships are also fairly well established in the mid- and high-dose and dose-rate range for chromosomes of mammalian cells. In the range of low doses and dose rates of different types of radiation few data are available for direct analysis of the dose-effect relationships, and extrapolation from high to low doses is still the unavoidable approach in many cases of interest for risk assessment. A review is presented of the data actually available and of the attempts that have been made to obtain possible generalizations. Attention is focused on some specific chromosomal anomalies experimentally induced by radiation (such as reciprocal translocations and aneuploidies in germinal cells) and on their relevance for the human situation. (author)

  10. Level of natural radiation and doses to population in Shanxi province

    International Nuclear Information System (INIS)

    Yang Yi; Hao Hailiang; Wang Quanlu

    1985-01-01

    The exposure rates from natural radiation measured from August 1982 to January 1984 with a FD-71 Scintillation Radiometer in Shanxi Province are reported. The average absorbed dose rate in air of 1,842 open field sites was (10.78 +- 1.41) x 10 -8 Gy.h -1 . The mean value of area-weighted outdoor absorbed dose rates in air was 6.8 x 10 -8 Gy.h -1 . The average absorbed dose rate in air from natural external radiation of 3,446 indoor sites was (14.02 +- 2.09) x 10 -8 Gy.h -1 and the indoor area-weighted dose rate from natural radiation was 10.48 x 10 -8 Gy.h -1 . The annual individual average effective dose equivalant to population in this province was 0.88 mSv, and the annual collective dose equivalent was 21,626.83 man.Sv

  11. Occupational dose estimates for a monitored retrievable storage facility

    International Nuclear Information System (INIS)

    Harty, R.; Stoetzel, G.A.

    1986-06-01

    Occupational doses were estimated for radiation workers at the monitored retrievable storage (MRS) facility. This study provides an estimate of the occupational dose based on the current MRS facility design, examines the extent that various design parameters and assumptions affect the dose estimates, and identifies the areas and activities where exposures can be reduced most effectively. Occupational doses were estimated for both the primary storage concept and the alternate storage concept. The dose estimates indicate the annual dose to all radiation workers will be below the 5 rem/yr federal dose equivalent limit. However, the estimated dose to most of the receiving and storage crew (the workers responsible for the receipt, storage, and surveillance of the spent fuel and its subsequent retrieval), to the crane maintenance technicians, and to the cold and remote maintenance technicians is above the design objective of 1 rem/yr. The highest annual dose is received by the riggers (4.7 rem) in the receiving and storage crew. An indication of the extent to which various design parameters and assumptions affect the dose estimates was obtained by changing various design-based assumptions such as work procedures, background dose rates in radiation zones, and the amount of fuel received and stored annually. The study indicated that a combination of remote operations, increased shielding, and additional personnel (for specific jobs) or changes in operating procedures will be necessary to reduce worker doses below 1.0 rem/yr. Operations that could be made at least partially remote include the removal and replacement of the tiedowns, impact limiters, and personnel barriers from the shipping casks and the removal or installation of the inner closure bolts. Reductions of the background dose rates in the receiving/shipping and the transfer/discharge areas may be accomplished with additional shielding

  12. Enjebi Island dose assessment

    International Nuclear Information System (INIS)

    Robison, W.L.; Conrado, C.L.; Phillips, W.A.

    1987-07-01

    We have updeated the radiological dose assessment for Enjebi Island at Enewetak Atoll using data derived from analysis of food crops grown on Enjebi. This is a much more precise assessment of potential doses to people resettling Enjebi Island than the 1980 assessment in which there were no data available from food crops on Enjebi. Details of the methods and data used to evaluate each exposure pathway are presented. The terrestrial food chain is the most significant potential exposure pathway and 137 Cs is the radionuclide responsible for most of the estimated dose over the next 50 y. The doses are calculated assuming a resettlement date of 1990. The average wholebody maximum annual estimated dose equivalent derived using our diet model is 166 mremy;the effective dose equivalent is 169 mremy. The estimated 30-, 50-, and 70-y integral whole-body dose equivalents are 3.5 rem, 5.1 rem, and 6.2 rem, respectively. Bone-marrow dose equivalents are only slightly higher than the whole-body estimates in each case. The bone-surface cells (endosteal cells) receive the highest dose, but they are a less sensitive cell population and are less sensitive to fatal cancer induction than whole body and bone marrow. The effective dose equivalents for 30, 50, and 70 y are 3.6 rem, 5.3 rem, and 6.6 rem, respectively. 79 refs., 17 figs., 24 tabs

  13. Radon activity concentrations and effective doses in ancient Egyptian tombs of the Valley of the Kings

    International Nuclear Information System (INIS)

    Hafez, A.F.; Hussein, A.S.

    2001-01-01

    Radon concentrations and equilibrium factors were measured in three pharaonic tombs during the year 1998. The tombs, which are open to the public are located in a limestone wadi on the West Bank of the River Nile at Luxor, 650 km south of Cairo. The radon activity concentration and equilibrium factor were measured monthly by two-integral nuclear track detectors (bare and diffusion detectors). Seasonal variation of radon concentrations, with summer maximum and winter minimum were observed in all tombs investigated. The yearly mean radon activity concentrations inside the tombs ranged from 540 to 3115 Bq m -3 . The mean equilibrium factor over a year was found to be 0.25 and 0.32 inside and at the entrance, respectively. Estimated annual effective doses to tour guides ranged from 0.33 to 1.90 mSv, visitors receive doses from 0.65 to 3.80 μSv per visit. The effective dose to tomb workers did not exceed the 20 mSv yr -1 limit

  14. Radon activity concentrations and effective doses in ancient Egyptian tombs of the Valley of the Kings.

    Science.gov (United States)

    Hafez, A F; Hussein, A S

    2001-09-01

    Radon concentrations and equilibrium factors were measured in three pharaonic tombs during the year 1998. The tombs, which are open to the public are located in a limestone wadi on the West Bank of the River Nile at Luxor, 650 km south of Cairo. The radon activity concentration and equilibrium factor were measured monthly by two-integral nuclear track detectors (bare and diffusion detectors). Seasonal variation of radon concentrations, with summer maximum and winter minimum were observed in all tombs investigated. The yearly mean radon activity concentrations insidc the tombs ranged from 540 to 3115 Bq m(-3). The mean equilibrium factor over a year was found to be 0.25 and 0.32 inside and at the entrance, respectively. Estimated annual effective doses to tour guides ranged from 0.33 to 1.90 mSv, visitors receive doses from 0.65 to 3.80 microSv per visit. The effective dose to tomb workers did not exceed the 20 mSv yr(-1) limit.

  15. Radon activity concentrations and effective doses in ancient Egyptian tombs of the Valley of the Kings

    Energy Technology Data Exchange (ETDEWEB)

    Hafez, A F; Hussein, A S

    2001-09-01

    Radon concentrations and equilibrium factors were measured in three pharaonic tombs during the year 1998. The tombs, which are open to the public are located in a limestone wadi on the West Bank of the River Nile at Luxor, 650 km south of Cairo. The radon activity concentration and equilibrium factor were measured monthly by two-integral nuclear track detectors (bare and diffusion detectors). Seasonal variation of radon concentrations, with summer maximum and winter minimum were observed in all tombs investigated. The yearly mean radon activity concentrations inside the tombs ranged from 540 to 3115 Bq m{sup -3}. The mean equilibrium factor over a year was found to be 0.25 and 0.32 inside and at the entrance, respectively. Estimated annual effective doses to tour guides ranged from 0.33 to 1.90 mSv, visitors receive doses from 0.65 to 3.80 {mu}Sv per visit. The effective dose to tomb workers did not exceed the 20 mSv yr{sup -1} limit.

  16. Economic consequences of incident disease: the effect on loss of annual income

    DEFF Research Database (Denmark)

    Rayce, Signe L; Christensen, Ulla; Hougaard, Charlotte Ø

    2008-01-01

    AIMS: To estimate the effect of incident disease on loss of annual income on an individual level, to analyse whether loss of job mediates the effect on loss of annual income, to analyse whether an association is modified by socioeconomic position, and to determine whether the effect on annual inc...... on annual income. This might be interpreted as a buffering effect of the welfare policies in relation to the more discriminating demands of the labour market.......AIMS: To estimate the effect of incident disease on loss of annual income on an individual level, to analyse whether loss of job mediates the effect on loss of annual income, to analyse whether an association is modified by socioeconomic position, and to determine whether the effect on annual...... with an increased and equally strong risk for experiencing a loss of annual income corresponding to one income decile (>25,000 DKK) in the year following disease (odds ratio (OR) from 1.37 (95% confidence interval (CI) 1.09-1.72) to 1.57 (95% CI 1.21-2.04)). No significant effect of female AMI was found...

  17. Annual environmental monitoring report, January--December 1977

    International Nuclear Information System (INIS)

    1978-05-01

    Environmental monitoring results continue to demonstrate that, except for penetrating radiation, environmental radiological impact due to SLAC operation is not distinguishable from natural environmantal sources. During 1977, the maximum neutron dose near the site boundary was 8.2 mrem. This represents about 8.2% of the annual dose from natural sources at this elevation, and 1.6% of the technical standard of 500 mrem per person annually

  18. The D1 method: career dose estimation from a combination of historical monitoring data and a single year's dose data

    International Nuclear Information System (INIS)

    Sont, W.N.

    1995-01-01

    A method is introduced to estimate career doses from a combination of historical monitoring data and a single year's dose data. This method, called D1 eliminates the bias arising from incorporating historical dose data from times when occupational doses were generally much higher than they are today. Doses calculated by this method are still conditional on the preservation of the status quo in the effectiveness of radiation protection. The method takes into account the variation of the annual dose, and of the probability of being monitored, with the time elapsed since the start of a career. It also allows for the calculation of a standard error of the projected career dose. Results from recent Canadian dose data are presented. (author)

  19. Low-dose effect on blood chromosomes

    International Nuclear Information System (INIS)

    Pohl-Rueling, J.

    1992-01-01

    Linear dose response relationships of biological effects at low doses are experimentally and theoretically disputed. Structural chromosome aberration rates at doses ranging from normal background exposures up to about 30 mGy/yr in vivo and up to 50 mGy in vitro were investigated by the author and other scientists. Results are comparable and dose effect curves reveal following shapes; within the normal burden and up to 2-10 mGy/yr in vivo rates they increase sharply to about 3-6 times the lowest values; subsequent doses either from natural, occupational or accidental exposures up to about 30 mGy/yr yield either constant aberration rates, assuming a plateau, or perhaps even a decrease. In vitro experiments show comparable results up to 50 mGy. Other biological effects seem to have similar dose dependencies. The non-linearity of low-dose effects can be explained by induction of repair enzymes at certain damage to the DNA. This hypothesis is sustained experimentally and theoretically by several papers in literature. (author). 14 refs., 5 figs

  20. Natural background radiation and population dose in China

    Energy Technology Data Exchange (ETDEWEB)

    Guangzhi, C. (Ministry of Public Health, Beijing, BJ (China)); Ziqiang, P.; Zhenyum, H.; Yin, Y.; Mingqiang, G.

    On the basis of analyzing the data for the natural background radiation level in China, the typical values for indoor and outdoor terrestrial gamma radiation and effective dose equivalents from radon and thoron daughters are recommended. The annual effective dose equivalent from natural radiation to the inhabitant is estimated to be 2.3 mSv, in which 0.54 mSv is from terrestrial gamma radiation and about 0,8 mSv is from radon and its short-lived daughters. 55 Refs.

  1. The evaluation of radiation level and dose of workers in Guangzhou metro line 1

    International Nuclear Information System (INIS)

    Zhang Lin; Hu Canyun; Meng Xiaolian; He Zhan

    2006-01-01

    Objective: To find out the level of radiation and effective dose of workers in Guangzhou Metro line 1. Methods: In metro stations, external Gamma-ray exposure rates were obtained by FD-71A radiance measurer, 222 Rn and 220 Rn concentrations were obtained by using Rn-Tn solid state nuclear track detectors developed by The National Institute for Radiological Protection and Nuclear Safety, Chinese Centre for Disease Control. The annual Effective dose from Gamma, 222 Rn and 220 Rn were calculated. Results: The external Gamma-ray exposure average rate is 17.74 x 10 -8 Gy/h. The average concentration of 222 Rn is 59.8 Bq/m 3 . The average concentration of 220 Rn is 32.1 Bq/m 3 . The total annual effective dose from Gamma, 222 Rn and 220 Rn is 2.878 mSv/a. Conclusion: In the stations of Guangzhou in metro line 1, no more effective radiation dose to the workers has measured. (authors)

  2. Effective dose and dose to crystalline lens during angiographic procedures

    International Nuclear Information System (INIS)

    Pages, J.

    1998-01-01

    The highest radiation doses levels received by radiologists are observed during interventional procedures. Doses to forehead and neck received by a radiologist executing angiographic examinations at the department of radiology at the academic hospital (AZ-VUB) have been measured for a group of 34 examinations. The doses to crystalline lens and the effective doses for a period of one year have been estimated. For the crystalline lens the maximum dose approaches the ICRP limit, that indicates the necessity for the radiologist to use leaded glasses. (N.C.)

  3. Estimation of internal exposure dose caused by 3H releasted at QNPP base

    International Nuclear Information System (INIS)

    Liang Meiyan; Ma Yongfu; Ni Shiying; Zhang Xinyu

    2010-01-01

    QNPP III is the first heavy water reactors nuclear power plant in China, with its 1, 2 units generating electricity in November 2002 and June 2003, respectively. This paper, based on the monitoring data of tritium concentration in environmental samples at Xiajiawan, Yangliucun, Qinlian, Qinshanzheng and Wuyuanzheng (sampling points) in the external environment around QNPP Base, in combination with the study on living and eating habits of residents around QNPP Base, presents estimated annual tritium intake of air, drinking water and food for residents (not including the organic combination tritium). In accordance with the new dose coefficient at different ages recommended by ICRP 72 Publication, it is calculated that the tritium annual intake by various approaches for infants, children and adults (at the Xiajiawan resident point) are 5.75, 9.59, 15.7 kBq/a, respectively; the annual committed effective dose are 0.33, 0.18, 0.23 μSv/a respectively. The infant group would receive the largest committed effective dose from tritium, 0.33/μSv/a, but this is only less than 1% of the effective target dose (0.05 mSv). In all, the tritium impact on surrounding areas of QNPP Phase III is very small under the normal and safe operation of HWR. (authors)

  4. Collective dose commitments from nuclear power programmes

    International Nuclear Information System (INIS)

    Beninson, D.

    1977-01-01

    The concepts of collective dose and collective dose commitment are discussed, particularly regarding their use to compare the relative importance of the exposure from several radiation sources and to predict future annual doses from a continuing practice. The collective dose commitment contributions from occupational exposure and population exposure due to the different components of the nuclear power fuel cycle are evaluated. A special discussion is devoted to exposures delivered over a very long time by released radionuclides of long half-lives and to the use of the incomplete collective dose commitment. The maximum future annual ''per caput'' doses from present and projected nuclear power programmes are estimated

  5. Gamma dose rate effect on JFET transistors

    International Nuclear Information System (INIS)

    Assaf, J.

    2011-04-01

    The effect of Gamma dose rate on JFET transistors is presented. The irradiation was accomplished at the following available dose rates: 1, 2.38, 5, 10 , 17 and 19 kGy/h at a constant dose of 600 kGy. A non proportional relationship between the noise and dose rate in the medium range (between 2.38 and 5 kGy/h) was observed. While in the low and high ranges, the noise was proportional to the dose rate as the case of the dose effect. This may be explained as follows: the obtained result is considered as the yield of a competition between many reactions and events which are dependent on the dose rate. At a given values of that events parameters, a proportional or a non proportional dose rate effects are generated. No dependence effects between the dose rate and thermal annealing recovery after irradiation was observed . (author)

  6. Health effects of low doses at low dose rates: dose-response relationship modeling in a cohort of workers of the nuclear industry; Effets sanitaires des faibles doses a faibles debits de dose: modelisation de la relation dose-reponse dans une cohorte de travailleurs du nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Metz-Flamant, Camille

    2011-09-19

    The aim of this thesis is to contribute to a better understanding of the health effects of chronic external low doses of ionising radiation. This work is based on the French cohort of CEA-AREVA NC nuclear workers. The mains stages of this thesis were (1) conducting a review of epidemiological studies on nuclear workers, (2) completing the database and performing a descriptive analysis of the cohort, (3) quantifying risk by different statistical methods and (4) modelling the exposure-time-risk relationship. The cohort includes monitored workers employed more than one year between 1950 and 1994 at CEA or AREVA NC companies. Individual annual external exposure, history of work, vital status and causes of death were reconstructed for each worker. Standardized mortality ratios using French national mortality rates as external reference were computed. Exposure-risk analysis was conducted in the cohort using the linear excess relative risk model, based on both Poisson regression and Cox model. Time dependent modifying factors were investigated by adding an interaction term in the model or by using exposure time windows. The cohort includes 36, 769 workers, followed-up until age 60 in average. During the 1968- 2004 period, 5, 443 deaths, 2, 213 cancers, 62 leukemia and 1, 314 cardiovascular diseases were recorded. Among the 57% exposed workers, the mean cumulative dose was 21.5 milli-sieverts (mSv). A strong Healthy Worker Effect is observed in the cohort. Significant elevated risks of pleura cancer and melanoma deaths were observed in the cohort but not associated with dose. No significant association was observed with solid cancers, lung cancer and cardiovascular diseases. A significant dose-response relationship was observed for leukemia excluding chronic lymphatic leukemia, mainly for doses received less than 15 years before and for yearly dose rates higher than 10 mSv. This PhD work contributes to the evaluation of risks associated to chronic external radiation

  7. A study on seasonal variations of indoor gamma dose in Bangladesh

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2005-01-01

    Monthly variation of gamma dose rate measured in indoor air of buildings of Bangladesh was found to vary cosinusoidally through a period of 1 year. Significant seasonal variations were observed. Maximum dose rate, however, was observed in January and a minimum in July. Dose rate in January was 32% higher than the annual average, whereas dose rate in July was 50% lower. Seasonally varied ventilation and air exchange rates of the houses might play an important role in the observed variation. The average reduction with respect to winter dose was 59% in summer. Because of lower ventilation and air exchange rates between indoor and outdoor atmosphere, it is expected that the indoor dose rate would be higher in basements than that of upper floors. Monthly dose rate was also found to be influenced by the meteorological conditions. Correlations between dose rate and temperature (r 2 =0.85), rainfall (r=-0.83) and atmospheric pressure (r=0.92) were obtained, but no significant correlation (r=-0.45) was seen between dose rate and humidity. The results show that the seasonal variations of indoor dose rates should be taken into account to estimate annual effective dose equivalent. (author)

  8. Ingestion dose from 210Po due to the consumption of packaged drinking water

    International Nuclear Information System (INIS)

    Nair, Madhu G.; Rao, D.D.; Sreejith, Sathyapriya R.; Sarka, P.K.

    2013-01-01

    Humans are chronically exposed to naturally occurring radionuclides from uranium and thorium series via inhalation and ingestion. With increased interest in radiological assessment a study was taken up for assessing natural radioactivity in drinking water. Drinking water is an important route of intake of naturally occurring 210 Po. 210 Po being a very important radionuclide from Uranium series with high specific activity causes significant internal dose. In our study 210 Po in PDW was concentrated with calcium phosphate and spontaneously deposited onto silver planchette and subsequently measured by alpha spectrometry. The concentration of 210 Po in the bottled water ranged from 0.11 mBq.l -1 to 2.9 mBq.l -1 . The highest concentration was observed in that sample that was reportedly sourced from mountain regions. Based on the concentration of 210 Po in each water sample, the annual intake rate (1.68L/d), and the Dose Coefficient (1.2 X 10 -6 Vs./Bq) recommended by the International Commission on Radiological Protection (ICRP, 1996), the annual committed effective doses to the adult population was estimated. The annual effective doses ranged between 0.10-2.16 μSv/yr. (author)

  9. Dose and Dose-Rate Effectiveness Factor (DDREF); Der Dosis- und Dosisleistungs-Effektivitaetsfaktor (DDREF)

    Energy Technology Data Exchange (ETDEWEB)

    Breckow, Joachim [Fachhochschule Giessen-Friedberg, Giessen (Germany). Inst. fuer Medizinische Physik und Strahlenschutz

    2016-08-01

    For practical radiation protection purposes it is supposed that stochastic radiation effects a determined by a proportional dose relation (LNT). Radiobiological and radiation epidemiological studies indicated that in the low dose range a dependence on dose rates might exist. This would trigger an overestimation of radiation risks based on the LNT model. OCRP had recommended a concept to combine all effects in a single factor DDREF (dose and dose-Rate effectiveness factor). There is still too low information on cellular mechanisms of low dose irradiation including possible repair and other processes. The Strahlenschutzkommission cannot identify a sufficient scientific justification for DDREF and recommends an adaption to the actual state of science.

  10. The estimation of doses to the inhabitants arising from natural radiation source in the high background radiation area of Yangjiang, China

    International Nuclear Information System (INIS)

    Yuan Yongling; Shen Hong; Morishima, H.; Wei Lvxin; Jian Yuannu

    2004-01-01

    Objective: The purposes is to estimate the average annual effective dose of the inhabitants and absorbed dose in some human tissues and organs arising from natural radiation sources in the High Background Radiation Area (HBRA) of Yangjiang and in the neighboring Control Area (CA). In order to provide more effective evidence for analyzing the dose-effect relationships among the cohort members in the investigated areas, authors divided the local inhabitant into different dose-groups. Methods: The authors measured the environmental gamma external radiation levels and individual accumulated doses of 5293 people in the investigated areas. The concentrations for 222 Rn, 220 Rn and their decay products in air were also surveyed. The authors estimated the internal doses of natural radionuclides based on the results obtained from measurements in food, in drinking water, in human teeth, in several human tissues, in human placenta, and in activity concentration of exhaled 222 Rn and 220 Rn of the residents living in the investigated areas. Results: The estimation of average annual effective doses in HBRA and CA based on the data of environmental measurements of radiation level respectively are 2.12 ± 0.29 mSv a -1 and 0.69 ± 0.09 mSv a -1 . The sources of higher background radiation in HBRA are mainly contributed from terrestrial gamma radiation. The estimation of average annual effective doses to the residents arising from inhalation of 222 Rn, 220 Rn and their decay products was 3.28 mSv a -1 in HBRA, while that in CA was 1.03 mSv a -1 . The values of the absorbed dose of the residents in their trachea-bronchial tree and lung in HBRA arising from inhalation of 222 Rn, 220 Rn and their decay products are 5.40 mGy a -1 and 1.08 mGy a -1 respectively, which are about four times of the values of the absorbed dose in CA. The estimation of average annual effective doses to the inhabitants caused by 226 Ra and 228 Ra in HBRA and CA were 281.88 μSv a -1 and 84.54 μSv a -1

  11. Organ dose and effective dose with the EOS scanner in spine deformity surgery

    DEFF Research Database (Denmark)

    Heide Pedersen, Peter; Petersen, Asger Greval; Eiskjær, Søren Peter

    2016-01-01

    Organ dose and effective dose with the EOS scanner in spine deformity surgery. A study on anthropomorphic phantoms describing patient radiation exposure in full spine examinations. Authors: Peter Heide Pedersen, Asger Greval Petersen, Søren Peter Eiskjær. Background: Ionizing radiation potentially...... quality images while at the same time reducing radiation dose. At our institution we use the EOS for pre- and postoperative full spine examinations. Purpose: The purpose of the study is to make first time organ dose and effective dose evaluations with micro-dose settings in full spine examinations. Our...... hypothesis is that organ dose and effective doses can be reduced 5-10 times compared to standard settings, without too high image-quality trade off, resulting in a theoretical reduction of radiation induced cancer. Methods: Patient dosimetry is performed on anthropomorphic child phantoms, representing a 5...

  12. Trends of the effective dose distribution of occupational exposures in medical and research departments for KIRAMS in Republic of Korea

    International Nuclear Information System (INIS)

    Park, M.; Kim, G. S.; Ji, Y. H.; Jung, M. S.; Kim, K. B.; Jung, H.

    2014-01-01

    This work proposes the basic reference data of occupational dose management and statistical dose distribution with the classification of radiation work groups though analysis of occupational dose distribution. Data on occupational radiation exposure from medical and scientific usage of radiation in Korea Institute of Radiological and Medical Sciences for the years 2002-11 are presented and evaluated with the characteristic tendency of radiation working groups. The results of occupational radiation exposure were measured by personal dosemeters. The monitored occupational exposure dose data were evaluated according to the average effective dose and collective dose. The most annual average effective dose for all occupational radiation workers was under 1 mSv. Considering the dose distribution of each department, most overexposure workers worked in radiopharmaceutical product facilities, nuclear medicine department and radiation oncology department. In addition, no monitored workers were found to have received an occupational exposure over 50 mSv in single year or 100 mSv in this period. Although the trend of occupational exposure was controlled <1 mSv after 2007 and the radiation protection status was sufficient, it was consistently necessary to optimise and reduce the occupational radiation exposure. (authors)

  13. Effective dose in abdominal digital radiography: Patient factor

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Ji Sung; Koo, Hyun Jung; Park, Jung Hoon; Cho, Young Chul; Do, Kyung Hyun [Dept. of Radiology, and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul(Korea, Republic of); Yang, Hyung Jin [Dept. of Medical Physics, Korea University, Seoul (Korea, Republic of)

    2017-08-15

    To identify independent patient factors associated with an increased radiation dose, and to evaluate the effect of patient position on the effective dose in abdominal digital radiography. We retrospectively evaluated the effective dose for abdominal digital radiography in 222 patients. The patients were divided into two groups based on the cut-off dose value of 0.311 mSv (the upper third quartile of dose distribution): group A (n = 166) and group B (n = 56). Through logistic regression, independent factors associated with a larger effective dose were identified. The effect of patient position on the effective dose was evaluated using a paired t-test. High body mass index (BMI) (≥ 23 kg/m2), presence of ascites, and spinal metallic instrumentation were significantly associated with a larger effective dose. Multivariate logistic regression analysis revealed that high BMI [odds ratio (OR), 25.201; p < 0.001] and ascites (OR, 25.132; p < 0.001) were significantly associated with a larger effective dose. The effective dose was significantly lesser (22.6%) in the supine position than in the standing position (p < 0.001). High BMI and ascites were independent factors associated with a larger effective dose in abdominal digital radiography. Significant dose reduction in patients with these factors may be achieved by placing the patient in the supine position during abdominal digital radiography.

  14. Late effects of low doses and dose rates

    International Nuclear Information System (INIS)

    Paretzke, H.G.

    1980-01-01

    This paper outlines the spectrum of problems and approaches used in work on the derivation of quantitative prognoses of late effects in man of low doses and dose rates. The origins of principal problems encountered in radiation risks assessments, definitions and explanations of useful quantities, methods of deriving risk factors from biological and epidemiological data, and concepts of risk evaluation and problems of acceptance are individually discussed

  15. Individual dose monitoring of occupational exposure in nuclear industry system (1991-2000)

    International Nuclear Information System (INIS)

    Yang Lianzhen; Ma Jizeng; Li Taosheng

    2005-01-01

    The summary and main results of individual dose monitoring (1990-2000) from occupational exposure in China Nuclear Industry System are presented in this paper. During ten years, the external collective effective dose to workers in seven plants (not uranium mines and processing mills) and institutes is 98.48 person ·Sv, the per capita effective dose is 1.97 mSv. The general situation for individual dose monitoring from internal exposure is also introduced. The annual average committed effective dose is less than 5.0 mSv. The individual dose monitoring results (1991-1992) for occupational exposure from Uranium mines and processing mills are depicted. In the end, the individual dose monitoring data in nuclear industry system are preliminarily analysed. (authors)

  16. An updated dose assessment for Rongelap Island

    Energy Technology Data Exchange (ETDEWEB)

    Robison, W.L.; Conrado, C.L.; Bogen, K.T.

    1994-07-01

    We have updated the radiological dose assessment for Rongelap Island at Rongelap Atoll using data generated from field trips to the atoll during 1986 through 1993. The data base used for this dose assessment is ten fold greater than that available for the 1982 assessment. Details of each data base are presented along with details about the methods used to calculate the dose from each exposure pathway. The doses are calculated for a resettlement date of January 1, 1995. The maximum annual effective dose is 0.26 mSv y{sup {minus}1} (26 mrem y{sup {minus}1}). The estimated 30-, 50-, and 70-y integral effective doses are 0.0059 Sv (0.59 rem), 0.0082 Sv (0.82 rem), and 0.0097 Sv (0.97 rem), respectively. More than 95% of these estimated doses are due to 137-Cesium ({sup 137}Cs). About 1.5% of the estimated dose is contributed by 90-Strontium ({sup 90}Sr), and about the same amount each by 239+240-Plutonium ({sup 239+240}PU), and 241-Americium ({sup 241}Am).

  17. Level of radon and its daughters, and internal exposure doses in Shaanxi province

    International Nuclear Information System (INIS)

    Fan Xin; Zhang Yawei; Yu Huilian

    1992-01-01

    About 4500 indoor and outdoor air samples were collected with FDT-84 sampler throughout Shaanxi Province in various seasons, and the concentrations of radon and its daughters in the air were determined with FD-3016 scintillator. Meanwhile, the diurnal, seasonal and altitudinal variation of radon and its progeny in Xi'an area were observed. The annual effective dose equivalent for individual adult resident was estimated to be 1.73 mSv·a -1 and the annual collective effective dose equivalent for the residents- in the whole province was estimated to be 5.09 ± 10 4 man.Sv·a -1 . The concentration levels and the doses are within the range of the data published in UNSCEAR reports in recent years, and all of them are in the normal range of the natural background

  18. Monte Carlo simulations of the secondary neutron ambient and effective dose equivalent rates from surface to suborbital altitudes and low Earth orbit.

    Science.gov (United States)

    El-Jaby, Samy; Richardson, Richard B

    2015-07-01

    Occupational exposures from ionizing radiation are currently regulated for airline travel (Earth orbit (∼300-400 km). Aircrew typically receive between 1 and 6 mSv of occupational dose annually, while aboard the International Space Station, the area radiation dose equivalent measured over just 168 days was 106 mSv at solar minimum conditions. It is anticipated that space tourism vehicles will reach suborbital altitudes of approximately 100 km and, therefore, the annual occupational dose to flight crew during repeated transits is expected to fall somewhere between those observed for aircrew and astronauts. Unfortunately, measurements of the radiation environment at the high altitudes reached by suborbital vehicles are sparse, and modelling efforts have been similarly limited. In this paper, preliminary MCNPX radiation transport code simulations are developed of the secondary neutron flux profile in air from surface altitudes up to low Earth orbit at solar minimum conditions and excluding the effects of spacecraft shielding. These secondary neutrons are produced by galactic cosmic radiation interacting with Earth's atmosphere and are among the sources of radiation that can pose a health risk. Associated estimates of the operational neutron ambient dose equivalent, used for radiation protection purposes, and the neutron effective dose equivalent that is typically used for estimates of stochastic health risks, are provided in air. Simulations show that the neutron radiation dose rates received at suborbital altitudes are comparable to those experienced by aircrew flying at 7 to 14 km. We also show that the total neutron dose rate tails off beyond the Pfotzer maximum on ascension from surface up to low Earth orbit. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  19. Cone-beam computed tomography imaging: therapeutic staff dose during chemoembolisation procedure

    International Nuclear Information System (INIS)

    Paul, Jijo; Vogl, Thomas J; Chacko, Annamma; Mbalisike, Emmanuel C

    2014-01-01

    Cone-beam computed tomography (CBCT) imaging is an important requirement to perform real-time therapeutic image-guided procedures on patients. The purpose of this study is to estimate the personal-dose-equivalent and annual-personal-dose from CBCT imaging during transarterial chemoembolisation (TACE). Therapeutic staff doses (therapeutic and assistant physician) were collected during 200 patient (65  ±  15 years, range: 40–86) CBCT examinations over six months. Absorbed doses were assessed using thermo-luminescent dosimeters during patient hepatic TACE therapy. We estimated personal-dose-equivalent (PDE) and annual-personal-dose (APD) from absorbed dose based on international atomic energy agency protocol. APD for therapeutic procedure was calculated (therapeutic physician: 5.6 mSv; assistant physician: 5.08 mSv) based on institutional work load. Regarding PDE, the hands of the staff members received a greater dose compared to other anatomical locations (therapeutic physician: 56 mSv, 72 mSv; assistant physician: 12 mSv, 14 mSv). Annual radiation doses to the eyes and hands of the staff members were lower compared to the prescribed limits by the International Commission on Radiological Protection (ICRP). PDE and APD of both therapeutic staff members were within the recommended ICRP-103 annual limit. Dose to the assistant physician was lower than the dose to the therapeutic physician during imaging. Annual radiation doses to eye-lenses and hands of both staff members were lower than prescribed limits. (paper)

  20. Assessment of absorbed dose rate from terrestrial gamma radiation in Red Sea State

    International Nuclear Information System (INIS)

    Abdalrahman, H. E. K.

    2012-09-01

    This study is primarily conducted to contribute in the overall strategic objective of producing Sudan radiation map which will include natural radiation levels and the resultant absorbed dose rate in air. The part covered by this study is the Red Sea State. Soil samples were collected from locations lie between latitudes 17.03 ° and the 20.18 ° N and longitudes 36.06 ° E during September 2007. Activity concentrations of the primordial radionuclides, 226 Ra, 232 Th, and 40 K in the samples were measured using gamma-ray spectrometry equipped with Nal (Tl) detector. Absorbed dose rates in air a height of 1 from the ground level and the corresponding annual effective doses were calculated from the measured activities using Dose Rate Conversion Factors (DRCFs). On the average, the activity concentrations were 19.22±13.13 Bq kg -1 ( 232 Th), 17.91±15.44 Bq kg -1 ( 226 Ra) and (507.13±161.67) Bq kg -1 for 40 K. The obtained results were found to be within the global values reported in the UNSCEAR publication for normal background areas with the exception of the samples taken from Arbaat area. The absorbed dose rate in air as calculated using UNSCEAR conversion factor averaged 40.93 n Gy h -1 which corresponds to annual effective dose of 50.23 μSvy -1 . The major contribution to the total absorbed dose rate comes from 40 K, which amounts to 53.36%. Using Geographical Information System (GIS), predication maps for activity concentrations levels of the measured radionuclides in the Red Sea state was prepared to show their respective spatial distributions. Similarly, GIS predictive map was produced for annual effective dose.(Author)

  1. Committed effective dose from naturally occuring radionuclides in shellfish

    International Nuclear Information System (INIS)

    Khandaker, Mayeen Uddin; Wahib, Norfadira Binti; Amin, Yusoff Mohd.; Bradley, D.A.

    2013-01-01

    Recognizing their importance in the average Malaysian daily diet, the radioactivity concentrations in mollusc- and crustacean-based food have been determined for key naturally occuring radionuclides. Fresh samples collected from various maritime locations around peninsular Malaysia have been processed using standard procedures; the radionuclide concentrations being determined using an HPGe γ-ray spectrometer. For molluscs, assuming secular equilibrium, the range of activities of 238 U ( 226 Ra), 232 Th ( 228 Ra) and 40 K were found to be 3.28±0.35 to 5.34±0.52, 1.20±0.21 to 2.44±0.21 and 118±6 to 281±14 Bq kg −1 dry weight, respectively. The respective values for crustaceans were 3.02±0.57 to 4.70±0.52, 1.38±0.21 to 2.40±0.35 and 216±11 to 316±15 Bq kg −1 . The estimated average daily intake of radioactivity from consumption of molluscs are 0.37 Bq kg −1 for 238 U ( 226 Ra), 0.16 Bq kg −1 for 232 Th ( 228 Ra) and 18 Bq kg −1 for 40 K; the respective daily intake values from crustaceans are 0.36 Bq kg −1 , 0.16 Bq kg −1 and 23 Bq kg −1 . Associated annual committed effective doses from molluscs are estimated to be in the range 21.3 to 34.7 μSv for 226 Ra, 19.3 to 39.1 μSv for 228 Ra and 17.0 to 40.4 μSv for 40 K. For crustaceans, the respective dose ranges are 19.6 to 30.5 μSv, 22.0 to 38.4 μSv and 31.1 to 45.5 μSv, being some several times world average values. - Highlights: ► Activity concentrations of naturally occuring radionuclides were assessed for shellfish. ► 238 U, 232 Th, 40 K intake via shellfish showed several times higher than world averages. ► Committed effective doses due to the ingestions of 238 U, 232 Th, 40 K are the first report in Malaysia. ► Estimated committed effective dose also showed higher values than the world average

  2. Biological Effects of Low-Dose Exposure

    CERN Document Server

    Komochkov, M M

    2000-01-01

    On the basis of the two-protection reaction model an analysis of stochastic radiobiological effects of low-dose exposure of different biological objects has been carried out. The stochastic effects are the results published in the last decade: epidemiological studies of human cancer mortality, the yield of thymocyte apoptosis of mice and different types of chromosomal aberrations. The results of the analysis show that as dependent upon the nature of biological object, spontanous effect, exposure conditions and radiation type one or another form dose - effect relationship is realized: downwards concave, near to linear and upwards concave with the effect of hormesis included. This result testifies to the incomplete conformity of studied effects of 1990 ICRP recomendations based on the linear no-threshold hypothesis about dose - effect relationship. Because of this the methodology of radiation risk estimation recomended by ICRP needs more precisian and such quantity as collective dose ought to be classified into...

  3. Assessment of annual whole-body occupational radiation exposure in education, research and industrial sectors in Ghana (2000-09)

    International Nuclear Information System (INIS)

    Hasford, F.; Owusu-banahene, J.; Otoo, F.; Adu, S.; Sosu, E. K.; Amoako, J. K.; Darko, E. O.; Emi-reynolds, G.; Nani, E. K.; Boadu, M.; Arwui, C. C.; Yeboah, J.

    2008-01-01

    Institutions in the education, research and industrial sectors in Ghana are quite few in comparison to the medical sector. Occupational exposure to radiation in the education, research and industrial sectors in Ghana have been analysed for a 10 y period between 2000 and 2009, by extracting dose data from the database of the Radiation Protection Inst. (Ghana)) Atomic Energy Commission. Thirty-four institutions belonging to the three sectors were monitored out of which ∼65 % were in the industrial sector. During the 10 y study period, monitored institutions ranged from 18 to 23 while the exposed workers ranged from 246 to 156 between 2000 and 2009. Annual collective doses received by all the exposed workers reduced by a factor of 2 between 2000 and 2009. This is seen as a reduction in annual collective doses in education/research and industrial sectors by ∼39 and ∼62 %, respectively, for the 10 y period. Highest and least annual collective doses of 182.0 man mSv and 68.5 man mSv were all recorded in the industrial sector in 2000 and 2009, respectively. Annual average values for dose per institution and dose per exposed worker decreased by 49 and 42.9 %, respectively, between 2000 and 2009. Average dose per exposed worker for the 10 y period was least in the industrial sector and highest in the education/research sector with values 0.6 and 3.7 mSv, respectively. The mean of the ratio of annual occupationally exposed worker (OEW) doses for the industrial sector to the annual OEW doses for the education/research sector was 0.67, a suggestion that radiation protection practices are better in the industrial sector than they are in the education/research sector. Range of institutional average effective doses within the education/research and industrial sectors were 0.059-6.029, and 0.110-2.945 mSv, respectively. An average dose per all three sectors of 11.87 mSv and an average dose per exposed worker of 1.12 mSv were realised for the entire study period. The entire

  4. 222Rn alpha dose to organs other than lung

    International Nuclear Information System (INIS)

    Harley, N.H.; Robbins, E.S.

    1991-01-01

    The alpha dose to cells in tissues or organs other theft the lung has been calculated using the solubility coefficients for 222 Rn measured in human tissue. The annual alpha dose equivalent f rom 222 Rn and decay products in most tissues is a maximum of 30% of the annual average natural background dose equivalent (1 mSv) for external and internally deposited nuclides. The dose to the small population of lymphocytes located in or under the bronchial epithelium is a special case and their annual dose equivalent is essentially the same as that to basal cells in bronchial epithelium (200 mSv) for continuous exposure to 200 Bq M -3 . The significance of this dose is uncertain because the only excess cancer observed in follow up studies of underground miners with high 222 Rn exposure is bronchogenic carcinoma

  5. We can do better than effective dose for estimating or comparing low-dose radiation risks

    International Nuclear Information System (INIS)

    Brenner, D.J.

    2012-01-01

    The effective dose concept was designed to compare the generic risks of exposure to different radiation fields. More commonly these days, it is used to estimate or compare radiation-induced cancer risks. For various reasons, effective dose represents flawed science: for instance, the tissue-specific weighting factors used to calculate effective dose are a subjective mix of different endpoints; and the marked and differing age and gender dependencies for different health detriment endpoints are not taken into account. This paper suggests that effective dose could be replaced with a new quantity, ‘effective risk’, which, like effective dose, is a weighted sum of equivalent doses to different tissues. Unlike effective dose, where the tissue-dependent weighting factors are a set of generic, subjective committee-defined numbers, the weighting factors for effective risk are simply evaluated tissue-specific lifetime cancer risks per unit equivalent dose. Effective risk, which has the potential to be age and gender specific if desired, would perform the same comparative role as effective dose, be just as easy to estimate, be less prone to misuse, be more directly understandable, and would be based on solid science. An added major advantage is that it gives the users some feel for the actual numerical values of the radiation risks they are trying to control.

  6. Biochemical and cellular mechanisms of low-dose effects

    International Nuclear Information System (INIS)

    Feinendegen, L.E.; Booz, J.; Muehlensiepen, H.

    1988-01-01

    The question of health effects from small radiation doses remains open. Individual cells, when being hit by single elemental doses - in low-dose irradiation - react acutely and temporarily by altering control of enzyme activity, as is demonstrated for the case of thymidine kinase. This response is not constant in that it provides a temporary protection of enzyme activity against a second irradiation, by a mechanism likely to be via improved detoxification of intracellular radicals. It must be considered that in the low-dose region radiation may also exert protection against other challenges involving radicals, causing a net beneficial effect by temporarily shielding the hit cell against radicals produced by metabolism. Since molecular alterations leading to late effects are considered a consequence of the initial cellular response, late effects from small radiation doses do not necessarily adhere to a linear dose-effect relationship. The reality of the linear relationship between the risk of late effects from high doses to small doses is an assumption, for setting dose limits, but it must not be taken for predicting health detriment from low doses. (author)

  7. Some aspects of dose evaluation, 3

    International Nuclear Information System (INIS)

    Yoshida, Yoshikazu

    1979-01-01

    This paper describes methods of calculating the radioiodine releases and resultant doses in the ''Guide for calculation of doses to man from routine releases of effluents from light-water-cooled nuclear power plants for evaluating compliance with dose objectives around a site of LWRs'' by the Japan Nuclear Safety Commission. Examples of dose calculation in the design stage of plants and releases of radioiodine from operating plants are also given. The thyroid dose objective from radioiodine in reactor effluents was determined to be 15 mrem per year by the AEC of Japan in 1975. In the guide, models and parameters are given as most realistic on the basis of current knowledge and experience; in cases involving unknown factors these are on conservative side. Calculations of annual average releases of gaseous and liquid effluents are made using the models and parameters established through operational experiences of the LWR plants. Annual thyroid doses are calculated from inhalation and ingestion of leafy vegetable and cow's milk for gaseous effluents and ingestion of marine food for liquid effluents. In calculation of the thyroid dose, fw = 0.2 is used instead of = 0.3 in ICRP publ. 2 for ingestion of foods excluding seaweed and the specific activity method for ingestion of foods including seaweed. It is because Japanese take foods with much stable iodine. Calculated annual releases of 131 I in gaseous effluents of typical BWR (1100 MWe) and PWR (800 MWe) are about 2 Ci and 0.7 Ci per year per plant and the annual thyroid doses are about 4 mrem and 9 mrem per year, respectively. Actually, however, releases of 131 I in gaseous effluents from the operating LWR plants are about less than one tenth of the above figures. (author)

  8. Total effective dose equivalent associated with fixed uranium surface contamination

    International Nuclear Information System (INIS)

    Bogard, J.S.; Hamm, R.N.; Ashley, J.C.; Turner, J.E.; England, C.A.; Swenson, D.E.; Brown, K.S.

    1997-04-01

    This report provides the technical basis for establishing a uranium fixed-contamination action level, a fixed uranium surface contamination level exceeding the total radioactivity values of Appendix D of Title 10, Code of Federal Regulations, part 835 (10CFR835), but below which the monitoring, posting, and control requirements for Radiological Areas are not required for the area of the contamination. An area of fixed uranium contamination between 1,000 dpm/100 cm 2 and that level corresponding to an annual total effective dose equivalent (TEDE) of 100 mrem requires only routine monitoring, posting to alert personnel of the contamination, and administrative control. The more extensive requirements for monitoring, posting, and control designated by 10CFR835 for Radiological Areas do not have to be applied for these intermediate fixed-contamination levels

  9. Patient and staff dose during hysterosalpinography

    International Nuclear Information System (INIS)

    Buls, N.; Osteaux, M.

    2001-01-01

    Hysterosalpingography (HSG) is a useful and widely employed technique which uses X-ray fluoroscopy to investigate the female genital tract. Fluoroscopy is assessed by a gynaecologist, a physician who is not always trained to work with ionising radiation. Dose-area product measurements in a group of 34 patients allowed an estimation of the median effective dose (0,83 mSv) and the median dose to the ovaries (1,63 mGy) of the patient per procedure. The dose to the staff was estimated using thermoluminescent dosimetry. The following median entrance surface doses were estimated per procedure: 0,22 mGy to the lens of the eye, 0,15 mGy to the neck at thyroid level and 0,19 mGy to the back of the hand. The annual eye dose limit could be exceeded if the gynaecologist is a member of the public. (author)

  10. Annual environmental monitoring report, January-December 1982

    International Nuclear Information System (INIS)

    1983-03-01

    Environmental monitoring results continue to demonstrate that environmental radiological impact due to SLAC operation is not distinguishable from natural environmental sources. During 1982, the maximum measured neutron dose near the site boundary was not distinguishable from the cosmic ray neutron background. There have been no measurable increases in radioactivity in ground water attributable to SLAC operations since operation began in 1966. Airborne radioactivity released from SLAC continues to make only a negligible environmental impact, and results in a site boundary annual dose of less than 0.3 mrem; this represents less than 0.3% of the annual dose from the natural radiation environment, and about 0.06% of the technical standard

  11. Equine scintigraphy: assessment of the dose received by the personnel; Scintigraphie equine: estimation de la dose recue par le personnel

    Energy Technology Data Exchange (ETDEWEB)

    Clairand, I.; Bottollier, J.F.; Trompier, F. [Institut de Radioprotection et de Surete Nucleaire IRSN, 92 - Fontenay aux Roses (France)

    2003-03-01

    Following a request from the Permanent Secretary of the French Commission for Artificial Radioelements (CIREA) engaged to investigate a request for a licence related to a new scintigraphy unit dedicated to equidae, a dosimetric assessment concerning the personnel attending the examination was carried out. This scintigraphy unit depends on the Goustranville Centre for Imaging and Research on the Locomotive Diseases of Equidae (CIRALE) in the Calvados region. The dosimetric assessment was carried out for the different operators during the successive stages of the scintigraphic examination. Assuming 150 examinations per year, the annual equivalent dose to the fingers skin is 150 mSv maximum for the technologist and 2 mSv for the veterinary surgeon; the annual effective dose ranges from 0.15 to 0.45 mSv, depending on the operators. (authors)

  12. Age-dependent conversion coefficients for organ doses and effective doses for external neutron irradiation

    International Nuclear Information System (INIS)

    Nishizaki, Chihiro; Endo, Akira; Takahashi, Fumiaki

    2006-06-01

    To utilize dose assessment of the public for external neutron irradiation, conversion coefficients of absorbed doses of organs and effective doses were calculated using the numerical simulation technique for six different ages (adult, 15, 10, 5 and 1 years and newborn), which represent the member of the public. Calculations were performed using six age-specific anthropomorphic phantoms and a Monte Carlo radiation transport code for two irradiation geometries, anterior-posterior and rotational geometries, for 20 incident energies from thermal to 20 MeV. Effective doses defined by the 1990 Recommendation of ICRP were calculated from the absorbed doses in 21 organs. The calculated results were tabulated in the form of absorbed doses and effective doses per unit neutron fluence. The calculated conversion coefficients are used for dose assessment of the public around nuclear facilities and accelerator facilities. (author)

  13. Realistic retrospective dose assessments to members of the public around Spanish nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, M.A., E-mail: majg@csn.es [Consejo de Seguridad Nuclear (CSN), Pedro Justo Dorado Dellmans 11, E-28040 Madrid (Spain); Martin-Valdepenas, J.M.; Garcia-Talavera, M.; Martin-Matarranz, J.L.; Salas, M.R.; Serrano, J.I.; Ramos, L.M. [Consejo de Seguridad Nuclear (CSN), Pedro Justo Dorado Dellmans 11, E-28040 Madrid (Spain)

    2011-11-15

    In the frame of an epidemiological study carried out in the influence areas around the Spanish nuclear facilities (ISCIII-CSN, 2009. Epidemiological Study of The Possible Effect of Ionizing Radiations Deriving from The Operation of Spanish Nuclear Fuel Cycle Facilities on The Health of The Population Living in Their Vicinity. Final report December 2009. Ministerio de Ciencia e Innovacion, Instituto de Salud Carlos III, Consejo de Seguridad Nuclear. Madrid. Available from: (http://www.csn.es/images/stories/actualidad{sub d}atos/especiales/epidemiologico/epidemiological{sub s}tudy.pdf)), annual effective doses to public have been assessed by the Spanish Nuclear Safety Council (CSN) for over 45 years using a retrospective realistic-dose methodology. These values are compared with data from natural radiation exposure. For the affected population, natural radiation effective doses are in average 2300 times higher than effective doses due to the operation of nuclear installations (nuclear power stations and fuel cycle facilities). When considering the impact on the whole Spanish population, effective doses attributable to nuclear facilities represent in average 3.5 x 10{sup -5} mSv/y, in contrast to 1.6 mSv/y from natural radiation or 1.3 mSv/y from medical exposures. - Highlights: > Most comprehensive dose assessment to public by nuclear facilities ever done in Spain. > Dose to public is dominated by liquid effluent pathways for the power stations. > Dose to public is dominated by Rn inhalation for milling and mining facilities. > Average annual doses to public in influence areas are negligible (10 {mu}Sv/y or less). > Doses from facilities average 3.5 x 10{sup -2} {mu}Sv/y per person onto whole Spanish population.

  14. Realistic retrospective dose assessments to members of the public around Spanish nuclear facilities

    International Nuclear Information System (INIS)

    Jimenez, M.A.; Martin-Valdepenas, J.M.; Garcia-Talavera, M.; Martin-Matarranz, J.L.; Salas, M.R.; Serrano, J.I.; Ramos, L.M.

    2011-01-01

    In the frame of an epidemiological study carried out in the influence areas around the Spanish nuclear facilities (ISCIII-CSN, 2009. Epidemiological Study of The Possible Effect of Ionizing Radiations Deriving from The Operation of Spanish Nuclear Fuel Cycle Facilities on The Health of The Population Living in Their Vicinity. Final report December 2009. Ministerio de Ciencia e Innovacion, Instituto de Salud Carlos III, Consejo de Seguridad Nuclear. Madrid. Available from: (http://www.csn.es/images/stories/actualidad_datos/especiales/epidemiologico/epidemiological_study.pdf)), annual effective doses to public have been assessed by the Spanish Nuclear Safety Council (CSN) for over 45 years using a retrospective realistic-dose methodology. These values are compared with data from natural radiation exposure. For the affected population, natural radiation effective doses are in average 2300 times higher than effective doses due to the operation of nuclear installations (nuclear power stations and fuel cycle facilities). When considering the impact on the whole Spanish population, effective doses attributable to nuclear facilities represent in average 3.5 x 10 -5 mSv/y, in contrast to 1.6 mSv/y from natural radiation or 1.3 mSv/y from medical exposures. - Highlights: → Most comprehensive dose assessment to public by nuclear facilities ever done in Spain. → Dose to public is dominated by liquid effluent pathways for the power stations. → Dose to public is dominated by Rn inhalation for milling and mining facilities. → Average annual doses to public in influence areas are negligible (10 μSv/y or less). → Doses from facilities average 3.5 x 10 -2 μSv/y per person onto whole Spanish population.

  15. Ionizing radiation population doses at Sao Paulo city, Brazil: open-pit gamma dose measurement

    International Nuclear Information System (INIS)

    Oliveira, Raimundo Enoch Rodrigues

    2001-01-01

    The effects of ionizing radiation to the human beings are well known for high and intermediate doses. As far as low level) radiation doses are concerned, there is no consensus. In order to get a better understanding of such effects it is necessary to assess the low doses with better accuracy. In this work, it was made an estimate of the annual ambient dose equivalent (H * (10)) to which the people are exposed in the city of Sao Paulo. Until now there are no data about it available in the literature. For the purpose of this evaluation, a map with various routes covering the largest and more representative area of the city was designed. The choice of points for data collection was made taking into account mainly the occupancy of the region. A portable gamma spectrometry system was used. It furnishes the rate of H * (10) and the measured gamma spectrum (in the range from 50 to 1670 keV) in the place of interest. The measurements were performed in a short time interval, since the gamma radiation arrives from a great extent of soil. Each measurement was done 1 m above the soil during 300 s. The rates of H * (10) varied from 33.1 to 152.3 nSv.h -1 , net values, obtained after subtraction of the cosmic rays contribution. The standard deviation was 22 n Sv.h -1 for an average for the city of Sao Paulo of 96.1(24) nSv.h -1 . In addition, average values of H * (10) rates for the city Health Divisions were calculated. Those values are not statistically equivalent and the whole set of data could not be treated as one, as the statistical Student test indicated a non homogeneity of the group of data. Hence it is necessary the accomplishment of a more detailed survey in order to verify the origin of the discrepancy. The mean value of H * (10) rate obtained for the city of Sao Paulo as converted to effective dose. in order to be compared with other places results It could be noticed that the annual average of effective dose for the city of Sao Paulo, 0.522(13) mSv, is superior to

  16. The concept of the effective dose

    International Nuclear Information System (INIS)

    Jacobi, W.

    1975-01-01

    Irradiation of the human body by external or internal sources leads mostly to a simultaneous exposure of several organs. However, so far no clear and consistent recommendations for the combination of organ doses and the assessment of an exposure limit under such irradiation conditions are available. Following a proposal described in ICRP-publication 14 one possible concept for the combination of organ doses is discussed in this paper. This concept is based on the assumption that at low doses the total radiation detriment to the exposed person is given by the sum of radiation detriments to the single organs. Taking into account a linear dose-risk relationship, the sum of weighted organ doses leads to the definition of an 'Effective Dose'. The applicability and consequences of this 'Effective Dose Concept' are discussed especially with regard to the assessment of the maximum permissible intake of radionuclides into the human body and the combination of external and internal exposure. (orig.) [de

  17. Effective radiation dose and eye lens dose in dental cone beam CT: effect of field of view and angle of rotation.

    Science.gov (United States)

    Pauwels, R; Zhang, G; Theodorakou, C; Walker, A; Bosmans, H; Jacobs, R; Bogaerts, R; Horner, K

    2014-10-01

    To quantify the effect of field of view (FOV) and angle of rotation on radiation dose in dental cone beam CT (CBCT) and to define a preliminary volume-dose model. Organ and effective doses were estimated using 148 thermoluminescent dosemeters placed in an anthropomorphic phantom. Dose measurements were undertaken on a 3D Accuitomo 170 dental CBCT unit (J. Morita, Kyoto, Japan) using six FOVs as well as full-rotation (360°) and half-rotation (180°) protocols. For the 360° rotation protocols, effective dose ranged between 54 µSv (4 × 4 cm, upper canine) and 303 µSv (17 × 12 cm, maxillofacial). An empirical relationship between FOV dimension and effective dose was derived. The use of a 180° rotation resulted in an average dose reduction of 45% compared with a 360° rotation. Eye lens doses ranged between 95 and 6861 µGy. Significant dose reduction can be achieved by reducing the FOV size, particularly the FOV height, of CBCT examinations to the actual region of interest. In some cases, a 180° rotation can be preferred, as it has the added value of reducing the scan time. Eye lens doses should be reduced by decreasing the height of the FOV rather than using inferior FOV positioning, as the latter would increase the effective dose considerably. The effect of the FOV and rotation angle on the effective dose in dental CBCT was quantified. The dominant effect of FOV height was demonstrated. A preliminary model has been proposed, which could be used to predict effective dose as a function of FOV size and position.

  18. Effects of low doses; Effet des faibles doses

    Energy Technology Data Exchange (ETDEWEB)

    Le Guen, B. [Electricite de France (EDF-LAM-SCAST), 93 - Saint-Denis (France)

    2001-07-01

    Actually, even though it is comfortable for the risk management, the hypothesis of the dose-effect relationship linearity is not confirmed for any model. In particular, in the area of low dose rate delivered by low let emitters. this hypothesis is debated at the light of recent observations, notably these ones relative to the mechanisms leading to genetic instability and induction eventuality of DNA repair. The problem of strong let emitters is still to solve. (N.C.)

  19. Occupational dose measurement in interventional cardiology, dosimetry comparison study

    International Nuclear Information System (INIS)

    Ahmad, A.M.A.

    2008-05-01

    The number of cardiology interventional procedures has significantly increased recently. This is due to the reliability of the diagnostic equipment to diagnose many heart disease. In the procedures the x-ray used results in increasing radiation doses to the staff. The cardiologists and other staff members in interventional cardiology are usually working close to the area under examination and receive the dose primarily from scattered radiation from the patient. Therefore workers in interventional cardiology are expected to receive high doses. This study overviews the status of occupational exposure at the three cardiology centers at three different hospitals in Khartoum compared with that received by workers at other medical practices (radiotherapy, nuclear medicine and diagnostic radiology) in the Institute of Nuclear and Technology (INMO) at El Gezira. The TLD Harshaw 6600 reader was used in the assessment of effective dose for Hp (10). Two TLDs were used by each worker at the three cardiology centres, one worn under a protective apron and the other worn outside and above the apron as specified by the ICRP. Each worker at the other sections was facilitated with one dosimeter to be worn on the chest. The annual doses received by 14 cardiologists, 13 nurses and 9 technologists at the three cardiology centres were in the range: (0.84-4.77), (0.15-2.08), (0.32-1.10) mSv respectively. In the INMO the annual doses received by 7 doctors, 5 nurses and 14 technologists were in the range: (0.12-0.51), (0.11-0.65), (0.03-1.39) mSv respectively. The results showed that the annual doses received by the workers do not exceed 20 mSv. The study also indicated that doses received by workers in interventional cardiology, in particular the cardiologists are high compared to that received at the other medical sections.(Author)

  20. Therapeutic effects of low radiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Trott, K.R. (Dept. of Radiation Biology, St. Bartholomew' s Medical College, London (United Kingdom))

    1994-01-01

    This editorial explores the scientific basis of radiotherapy with doses of < 1 Gy for various non-malignant conditions, in particular dose-effect relationships, risk-benefit considerations and biological mechanisms. A review of the literature, particularly clinical and experimental reports published more than 50 years ago was conducted to clarify the following problems. 1. The dose-response relationships for the therapeutic effects on three groups of conditions: non-malignant skin disease, arthrosis and other painful degenerative joint disorders and anti-inflammatory radiotherapy; 2. risks after radiotherapy and after the best alternative treatments; 3. the biological mechanisms of the different therapeutic effects. Radiotherapy is very effective in all three groups of disease. Few dose-finding studies have been performed, all demonstrating that the optimal doses are considerable lower than the generally recommended doses. In different conditions, risk-benefit analysis of radiotherapy versus the best alternative treatment yields very different results: whereas radiotherapy for acute postpartum mastitis may not be justified any more, the risk-benefit ratio of radiotherapy of other conditions and particularly so in dermatology and some anti-inflammatory radiotherapy appears to be more favourable than the risk-benefit ratio of the best alternative treatments. Radiotherapy can be very effective treatment for various non-malignant conditions such as eczema, psoriasis, periarthritis humeroscapularis, epicondylitis, knee arthrosis, hydradenitis, parotitis and panaritium and probably be associated with less acute and long-term side effects than similarly effective other treatments. Randomized clinical studies are required to find the optimal dosage which, at present, may be unnecessarily high.

  1. Manual on internal dose computation and reporting

    International Nuclear Information System (INIS)

    Sawant, Pramilla D.; Sawant, Jyoti V.; Gurg, R.P.; Rudran, Kamala; Gupta, V.K.; Abani, M.C.

    1999-05-01

    Whole body counting and bioassay measurement are carried out for estimation of radioactivity content in the whole body or in a particular organ/tissue of interest. These measurements are routinely carried out for occupational workers at nuclear power plants, reprocessing plants, radiochemical laboratories, radioisotope laboratories and radioactive waste management facilities to evaluate individual internal dose due to 3 H, 60 Co, 90 Sr, 137 Cs, transuranics and other isotopes of interest. This manual is prepared to provide guidelines for computation of intake, committed equivalent dose and committed effective dose from direct measurement of tissue and/or body content of radioactivity for 60 Co, 131 I, and 137 Cs employing in-vivo monitoring procedures and/or bioassay measurements only. Bioassay measurements are used for determination of 90 Sr in the body since it is a pure beta emitter. This manual can be used as a ready reckoner for assessment of radiation dose due to internal contamination of occupational workers as estimated using above techniques in the middle and back-end of the nuclear fuel cycle operations. The methodology used in computation of dose is based on the principles and biokinetic models given by ICRP. Recording level recommended in the manual is 0.6 mSv for both, routine as well as special monitoring, which is lower than 1 mSv recommended by ICRP (ICRP-75, 1997) for individual routine monitoring and 0.66 mSv for special monitoring. The Annual Limit on Intake is taken equivalent to Annual Effective Dose Limit of 20 mSv as prescribed by the Atomic Energy Regulatory Board (AERB), India. (author)

  2. A randomized controlled trial of increased dose and frequency of albendazole with standard dose DEC for treatment of Wuchereria bancrofti microfilaremics in Odisha, India.

    Science.gov (United States)

    Kar, Shantanu Kumar; Dwibedi, Bhagirathi; Kerketa, Anna Salomi; Maharana, Antaryami; Panda, Sudanshu S; Mohanty, Prafulla Chandra; Horton, John; Ramachandran, Cherubala P

    2015-03-01

    Although current programmes to eliminate lymphatic filariasis have made significant progress it may be necessary to use different approaches to achieve the global goal, especially where compliance has been poor and 'hot spots' of continued infection exist. In the absence of alternative drugs, the use of higher or more frequent dosing with the existing drugs needs to be explored. We examined the effect of higher and/or more frequent dosing with albendazole with a fixed 300 mg dose of diethylcarbamazine in a Wuchereria bancrofti endemic area in Odisha, India. Following screening, 104 consenting adults were randomly assigned to treatment with the standard regimen annually for 24 months (S1), or annually with increased dose (800 mg albendazole)(H1) or with increased frequency (6 monthly) with either standard (S2) or increased (H2) dose. Pre-treatment microfilaria counts (GM) ranged from 348 to 459 mf/ml. Subjects were followed using microfilaria counts, OG4C3 antigen levels and ultrasound scanning for adult worm nests. Microfilarial counts tended to decrease more rapidly with higher or more frequent dosing at all time points. At 12 months, Mf clearance was marginally greater with the high dose regimens, while by 24 months, there was a trend to higher Mf clearance in the arm with increased frequency and 800 mg of albendazole (76.9%) compared to other arms, (S1:64%, S2:69.2% & H1:73.1%). Although higher and/or more frequent dosing showed a trend towards a greater decline in antigenemia and clearance of "nests", all regimens demonstrated the potential macrofilaricidal effect of the combination. The higher doses of albendazole did not result in a greater number or more severe side effects. The alternative regimens could be useful in the later stages of existing elimination programmes or achieving elimination more rapidly in areas where programmes have yet to start.

  3. Effects of small doses of ionising radiation

    International Nuclear Information System (INIS)

    Doll, R.

    1998-01-01

    Uncertainty remains about the quantitative effects of doses of ionising radiation less than 0.2 Sv. Estimates of hereditary effects, based on the atomic bomb survivors, suggest that the mutation doubling dose is about 2 Sv for acute low LET radiation, but the confidence limits are wide. The idea that paternal gonadal irradiation might explain the Seascale cluster of childhood leukaemia has been disproved. Fetal irradiation may lead to a reduction in IQ and an increase in seizures in childhood proportional to dose. Estimates that doses to a whole population cause a risk of cancer proportional to dose, with 0.1 Sv given acutely causing a risk of 1%, will need to be modified as more information is obtained, but the idea that there is a threshold for risk above this level is not supported by observations on the irradiated fetus or the effect of fallout. The idea, based on ecological observations, that small doses protect against the development of cancer is refuted by the effect of radon in houses. New observations on the atomic bomb survivors have raised afresh the possibility that small doses may also have other somatic effects. (author)

  4. Annual report on the present state and activities of the radiation protection division, JNC Tokai Works in fiscal 2003

    International Nuclear Information System (INIS)

    2004-10-01

    This annual report summarizes the activities, such as radiation control in the radiation facilities, personnel monitoring, monitoring of gas and liquid waste effluents, environmental monitoring, instrumentation, safety research, and technical support, undertaken by the Radiation Protection Division at JNC Tokai Works in fiscal 2003. The major radiation facilities in the Tokai Works are the Tokai Reprocessing Plant (TRP), three MOX fuel fabrication facilities, the Chemical Processing Facility (CPF), and various other radioisotope and uranium research laboratories. The Radiation Protection Division is responsible for radiation control in and around these radiation facilities, including personnel monitoring, workplace monitoring, consultation on radiological work planning and evaluation, monitoring of gas and liquid waste effluents, environmental monitoring, instrumentation, calibration, quality assurance, and safety research. The Division also provides technical support and cooperation to other international and domestic institutes in the radiation protection field. In fiscal 2003, the results of radiological monitoring showed the situation to be normal, and no radiological incident or accident occurred. The maximum annual effective dose to radiation workers was 6.2 mSv and the mean annual effective dose was 0.1 mSv. Individual doses were kept within the annual dose limit specified in the safety regulations. The estimated effective dose caused by gas and liquid effluents form the TRP to members of the public around the Tokai Works was 4.2 x 10 -4 mSv. Environmental monitoring and effluent control were performed appropriately in compliance with safety regulation and standards. In addition, the various preparations were made for introduction of the quality assurance to regulation since fiscal 2004. (author)

  5. Gamma radiation dose from radionuclides in Kong Kong soil

    International Nuclear Information System (INIS)

    Leung, K.C.

    1990-01-01

    Calculations have been made of the γ dose rate at one metre above ground from the results of measurements of radionuclide concentrations in soil at various locations in Hong Kong and prior to the Chernobyl accident. The average dose rate is found to be 0.076 μGy h -1 , or 0.67 mGy year -1 . The contribution from fallout nuclides to the annual dose is shown to be small, at about 0.4% of the total. The calculated dose rate in this work is about 80% higher than the world average given by the United Nations Scientific Committee on the Effects of Atomic Radiation, in Ionizing Radiation: Sources and Biological Effects, Annex B (Exposure to natural radiation sources). A United Nations Publication, 1982. (author)

  6. Three years of seasonal dose assessment from outdoors gamma exposure in Sao Paulo city, Brazil

    International Nuclear Information System (INIS)

    Carneiro, Janete C.G.G.; Sanches, Matias P.; Betti, Flavio; Pecequilo, Brigitte R.S.

    2011-01-01

    Measurements of external (outdoors) gamma exposure from natural background radiation have been used to estimate the average annual doses in Sao Paulo city. Twelve monitoring stations were placed in different regions of the town including both urban (where building materials are present) and outskirts areas. Seasonally surveys observing the four seasons from 2008 to 2010 have been carried out. The data were drawn from a 3-month sampling using the thermoluminescent dosimetry. The effective doses values are quite similar (slightly higher during the winter), so it can be considered that these results are not under significant influence (or variability) of seasonal environmental conditions like temperature, wind or rain. Dose values over the three years period, from Vila Carrao district, exclusively an urban location with mostly no green areas, present the highest values, while the lower values were always obtained for Tucuruvi district, near the biggest urban forest, Parque Estadual da Cantareira. Over the assessed period, the mean of the average annual effective doses was 1.3 ± 0.1 mSv.y -1 . For the same period, the average annual background from nuclear and radioactive facility at IPEN was 0.75 ± 0.12 mSv.y -1 . (author)

  7. Three years of seasonal dose assessment from outdoors gamma exposure in Sao Paulo city, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, Janete C.G.G.; Sanches, Matias P.; Betti, Flavio; Pecequilo, Brigitte R.S., E-mail: janetegc@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Measurements of external (outdoors) gamma exposure from natural background radiation have been used to estimate the average annual doses in Sao Paulo city. Twelve monitoring stations were placed in different regions of the town including both urban (where building materials are present) and outskirts areas. Seasonally surveys observing the four seasons from 2008 to 2010 have been carried out. The data were drawn from a 3-month sampling using the thermoluminescent dosimetry. The effective doses values are quite similar (slightly higher during the winter), so it can be considered that these results are not under significant influence (or variability) of seasonal environmental conditions like temperature, wind or rain. Dose values over the three years period, from Vila Carrao district, exclusively an urban location with mostly no green areas, present the highest values, while the lower values were always obtained for Tucuruvi district, near the biggest urban forest, Parque Estadual da Cantareira. Over the assessed period, the mean of the average annual effective doses was 1.3 {+-} 0.1 mSv.y{sup -1}. For the same period, the average annual background from nuclear and radioactive facility at IPEN was 0.75 {+-} 0.12 mSv.y{sup -1}. (author)

  8. Hand Dose in Nuclear Medicine Staff Members

    International Nuclear Information System (INIS)

    Taha, T.M.; Shahein, A.Y.; Hassan, R.

    2009-01-01

    Measurement of the hand dose during preparation and injection of radiopharmaceuticals is useful in the assessment of the extremity doses received by nuclear medicine personnel. Hand radiation doses to the occupational workers that handling 99m Tc-labeled compounds, 131 I for diagnostic in nuclear medicine were measured by thermoluminescence dosimetry. A convenient method is to use a TLD ring dosimeter for measuring doses of the diagnostic units of different nuclear medicine facilities . Their doses were reported in millisieverts that accumulated in 4 weeks. The radiation doses to the hands of nuclear medicine staff at the hospitals under study were measured. The maximum expected annual dose to the extremities appeared to be less than the annual limit (500 mSv/y) because all of these workers are on rotation and do not constantly handle radioactivity throughout the year

  9. Risk assessment of occupational radiation dose at the teletherapy facility of the Korle-Bu Teaching Hospital, Ghana

    International Nuclear Information System (INIS)

    Gollo, Selasie Richie Valens Kweku

    2016-07-01

    The National centre for Radiotherapy and Nuclear Medicine at the Korle-bu Teaching Hospital in Ghana uses a Theratron Equinox 100 Cobalt-60 teletherapy machine that was commissioned in 2014 with a source activity of 370.4TBq. The prime objective of this research was to estimate the risk and probability of cancer induction to workers and also to evaluate the level of radiation safety at the facility. Data was collected by means of TLDs and personal dose records available between the periods February 2010 and April 2016. The results from 2010-2016 were used to compute the mean annual dose, mean annual collective dose as well as risk assessments using the ICRP 1990 and 2007 recommendations. Ambient dose rate measurements were also done using a Thermo electron survey meter. The Results showed that mean effective dose recorded from TLDs used in this research ranged from 0.08mSv-0.36mSv whiles dose records from 2010-2016 showed mean annual effective doses ranged between 0.23mSv-0.65mSv. Mean annual collective dose was 0.09 mSv. Annual cancer risk estimates also showed that workers probability of developing cancers had a mean value of 2.37 x 10"-"2±7.75 x 10"-"3 whiles risk of passing hereditary traits to offspring born after exposure showed a mean value 3.96 x 10"-"3± 1.29 x 10"-"3 according to the ICRP 1990 recommendations and ICRP 2007 showed that possibility of cancer induction to workers showed a mean value of 2.03 x 10"-"2±1.61 x 10"-"3. Mean annual dose rates did not exceed 14.8mSv/a,5mSv/a and 0.74mSv/a for the treatment room, control console room and the controlled area respectively. This shows that workers at the facility are not likely to exceed the recommended dose limit within a year while working at the facility. Ambient dose rates did not exceed 7.39μSv/hr, 2.80μSv/hr and 0.37μSv/hr for the treatment room, control console room and the controlled area respectively. These values obtained are below the recommended limit of 20μSv/hr. (au)

  10. Dose received by radiation workers in Australia, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Morris, N D

    1994-07-01

    Exposure to radiation can cause genetic defects or cancer. People who use sources of radiation as part of their employment are potentially at a greater risk than others owing to the possibility of their being continually exposed to small radiation doses over a long period. In Australia, the National Health and Medical Research Council has established radiation protection standards and set annual effective dose limits for radiation workers in order to minimise the chance of adverse effects occurring. These standards are based on the the recommendations of the International Commission on Radiological Protection (ICRP 1990). In order to ensure that the prescribed limits are not exceeded and to ensure that doses are kept to a minimum, some sort of monitoring is necessary. The primary purpose of this report is to provide data on the distribution of effective doses for different occupational categories of radiation worker in Australia. The total collective effective dose was found to be of the order of 4.9 Sv for a total of 34750 workers. 9 refs., 16 tabs., 6 figs.

  11. Dose received by radiation workers in Australia, 1991

    International Nuclear Information System (INIS)

    Morris, N.D.

    1994-07-01

    Exposure to radiation can cause genetic defects or cancer. People who use sources of radiation as part of their employment are potentially at a greater risk than others owing to the possibility of their being continually exposed to small radiation doses over a long period. In Australia, the National Health and Medical Research Council has established radiation protection standards and set annual effective dose limits for radiation workers in order to minimise the chance of adverse effects occurring. These standards are based on the the recommendations of the International Commission on Radiological Protection (ICRP 1990). In order to ensure that the prescribed limits are not exceeded and to ensure that doses are kept to a minimum, some sort of monitoring is necessary. The primary purpose of this report is to provide data on the distribution of effective doses for different occupational categories of radiation worker in Australia. The total collective effective dose was found to be of the order of 4.9 Sv for a total of 34750 workers. 9 refs., 16 tabs., 6 figs

  12. Level of natural background radiation and dose to population in Zhejiang Province

    International Nuclear Information System (INIS)

    Zhao Yifang; Chen Guopei; Wang Zanxin; Ma Mingqiang

    1994-01-01

    The natural background radiation in Zhejiang Province was measured and the dose to population was estimated. The results showed that the population-weighted average values of the absorbed dose rate in air from cosmic ray ionization were 3.0 x 10 -8 Gy·h -1 outdoors and 2.7 x 10 -8 Gy·h -1 indoors. The average absorbed dose rates in air from terrestrial γ-radiation were 9.1 x 10 -8 Gy·h -1 outdoors and 14.9 x 10 -8 Gy·h -1 indoors. The average values of radon in air were 17.2 Bq· -3 indoors and 12.7 Bq·m -8 outdoors. The contents of natural radionuclides in food and water were measured. The total annual individual average effective dose from natural background radiation was about 2.0 mSv. The contributions of cosmic rays, terrestrial radiation radon and thoron daughters exposure in air and internal exposure within the body were about 0.24, 0.77, 0.67 and 0.35 mSv, respectively. The annual collective effective dose to population in the province was estimated to be 8.5 x 10 4 man Sv·a -1

  13. Determination of 137Cs and 90sr in Human Food and Effective Dose Assessment due to Food Consumption in the Environment of Region Uzice

    International Nuclear Information System (INIS)

    Arsic, V.; Bogojevic, S.; Eremic-Savkovic, M.; Ilic, J.; Javorina, Lj.; Tanaskovic, I.

    2013-01-01

    This paper provides the data on activity measurements of 137Cs and 90Sr in the foodstuff characteristic for the nutrition of the population: vegetables, fruit, meat, crops, dairy products and milk in 2007, 2008 and 2011 in the environment of region Užice. This region was the most contaminated region of Serbia after the Chernobyl accident. The 137Cs activity concentrations were determined by gamma-spectrometry while 90Sr was determined after radiochemistry separations, using αβ proportional counter. Based on the presented results of the 137Cs and 90Sr activity concentration measurements, the effective doses received by the population through food intake were estimated. The annual effective doses due to 137Cs and 90Sr activity in the human food were 2.00 μSv (for 137Cs) and 1.32 μSv (for 90Sr) in 2007, 1.02 μSv (for 137Cs) and 0.45 μSv (for 90Sr) in 2008, 1.25 μSv (for 137Cs) and 1.07 μSv (for 90Sr) in 2011. They were well below recommended individual annual dose limit.(author)

  14. Relation between dose of bendrofluazide, antihypertensive effect, and adverse biochemical effects

    DEFF Research Database (Denmark)

    Carlsen, J E; Køber, L; Torp-Pedersen, C

    1990-01-01

    OBJECTIVE--To determine the relevant dose of bendrofluazide for treating mild to moderate hypertension. DESIGN--Double blind parallel group trial of patients who were given placebo for six weeks and then randomly allocated to various doses of bendrofluazide (1.25, 2.5, 5, or 10 mg daily) or place...... of bendrofluazide to treat mild to moderate hypertension is 1.25-2.5 mg a day. Higher doses caused more pronounced adverse biochemical effects including adverse lipid effects. Previous trials with bendrofluazide have used too high doses....... relations between dose and effect were shown for potassium, urate, glucose, total cholesterol, and apolipoprotein B concentrations. The 1.25 mg dose increased only urate concentrations, whereas the 10 mg dose affected all the above biochemical variables. CONCLUSION--The relevant range of doses...

  15. Determining absorbed dose of Ramsar people from natural radioactivity

    International Nuclear Information System (INIS)

    Ismaieli; Abdolreza

    1999-01-01

    Radiation exposure versus natural resources of environment is in external form. Especially, in some regions of the world radionuclides assembling in soils caused background of high radioactivity. Ramsar is one of these regions. The main purpose is to estimate gamma radiation exposure inside and outside of residential buildings in Ramsar and the suburbs and to present exposure map of Ramsar; also estimating internal exposure of radon gas and obtaining effective dose of Ramsar population. There for, SAPOS 90M gamma monitor and RSS-112 and Na I(Tl) scintillator were used. To determine the concentration of 226 Ra, 232 Th, 40 K in soil and building materials gamma spectrometer and Germanium detector were used. In addition to exposure rate of different sections of Ramsar and its suburbs, 200 residential houses with high exposure rate and more than 600 ones with normal exposure rate were determined. The results of measurement were respectively 11μRh -1 to 3 μRh -1 in indoor region and 11μRh -1 to 2μR -1 in indoor regions. Annual gamma exposure was 5.99+-18.01 mSv. Maximum of annual gamma exposure rate of this region is 131 mSv. The estimated radon dose, through previous measurement is approximated to 14.67+-39.14 mSv annually. normal exposure is respectively 8μRh -1 to 17μRh -1 in outdoor regions and 10μRh -1 to 130μRh -1 in indoor regions. Annual exposure rate of gamma radiation is 0.68+-0.01 mSv and estimated radon gas from indoor and outdoor exposure for effective dose is 2.34+ 0 .02 mSv

  16. Assessment of annual intake of thorium from animal origin food consumed by population residing in monazite rich area of southern India

    International Nuclear Information System (INIS)

    Sathyapriya, R.S.; Bhabha Atomic Research Centre, Trombay, Mumbai; Prabhath, R.K.; Rao, D.D.; Acharya, R.

    2017-01-01

    Thorium ( 232 Th) concentration was determined by Instrumental Neutron Activation Analysis (INAA) in animal origin food groups widely consumed by population residing in monazite rich area of Tamil Nadu, India. The annual intake was evaluated based on market basket study method for female and male population for different age groups. Annual committed effective dose due to 232 Th intake from the ingestion was evaluated for different age groups of individuals, using the ICRP ingestion dose coefficients and annual consumption rate obtained from National Nutrition Monitoring Bureau (NNMB). Annual intake values of 232 Th for adult members of the population were obtained from food items as, fish from 0.2 to 0.8; flesh food (meat, beef and chicken), from 0.03 to 0.12; and milk from 0.2 to 0.3 Bq year -1 . The total annual internal dose resulting from ingestion of radioisotope in these food groups was 0.2 µSv year -1 for male adult population. (author)

  17. Effect of edema, relative biological effectiveness, and dose heterogeneity on prostate brachytherapy

    International Nuclear Information System (INIS)

    Wang, Jian Z.; Mayr, Nina A.; Nag, Subir; Montebello, Joseph; Gupta, Nilendu; Samsami, Nina; Kanellitsas, Christos

    2006-01-01

    Many factors influence response in low-dose-rate (LDR) brachytherapy of prostate cancer. Among them, edema, relative biological effectiveness (RBE), and dose heterogeneity have not been fully modeled previously. In this work, the generalized linear-quadratic (LQ) model, extended to account for the effects of edema, RBE, and dose heterogeneity, was used to assess these factors and their combination effect. Published clinical data have shown that prostate edema after seed implant has a magnitude (ratio of post- to preimplant volume) of 1.3-2.0 and resolves exponentially with a half-life of 4-25 days over the duration of the implant dose delivery. Based on these parameters and a representative dose-volume histogram (DVH), we investigated the influence of edema on the implant dose distribution. The LQ parameters (α=0.15 Gy -1 and α/β=3.1 Gy) determined in earlier studies were used to calculate the equivalent uniform dose in 2 Gy fractions (EUD 2 ) with respect to three effects: edema, RBE, and dose heterogeneity for 125 I and 103 Pd implants. The EUD 2 analysis shows a negative effect of edema and dose heterogeneity on tumor cell killing because the prostate edema degrades the dose coverage to tumor target. For the representative DVH, the V 100 (volume covered by 100% of prescription dose) decreases from 93% to 91% and 86%, and the D 90 (dose covering 90% of target volume) decrease from 107% to 102% and 94% of prescription dose for 125 I and 103 Pd implants, respectively. Conversely, the RBE effect of LDR brachytherapy [versus external-beam radiotherapy (EBRT) and high-dose-rate (HDR) brachytherapy] enhances dose effect on tumor cell kill. In order to balance the negative effects of edema and dose heterogeneity, the RBE of prostate brachytherapy was determined to be approximately 1.2-1.4 for 125 I and 1.3-1.6 for 103 Pd implants. These RBE values are consistent with the RBE data published in the literature. These results may explain why in earlier modeling studies

  18. Dosimetry in Interventional Radiology - Effective Dose Estimation

    International Nuclear Information System (INIS)

    Miljanic, S.; Buls, N.; Clerinx, P.; Jarvinen, H.; Nikodemova, D.; Ranogajec-Komor, M; D'Errico, F.

    2008-01-01

    Interventional radiological procedures can lead to significant radiation doses to patients and to staff members. In order to evaluate the personal doses with respect to the regulatory dose limits, doses measured by dosimeters have to be converted to effective doses (E). Measurement of personal dose equivalent Hp(10) using a single unshielded dosimeter above the lead apron can lead to significant overestimation of the effective dose, while the measurement with dosimeter under the apron can lead to underestimation. To improve the accuracy, measurements with two dosimeters, one above and the other under the apron have been suggested ( d ouble dosimetry ) . The ICRP has recommended that interventional radiology departments develop a policy that staff should wear two dosimeters. The aim of this study was to review the double dosimetry algorithms for the calculation of effective dose in high dose interventional radiology procedures. The results will be used to develop general guidelines for personal dosimetry in interventional radiology procedures. This work has been carried out by Working Group 9 (Radiation protection dosimetry of medical staff) of the CONRAD project, which is a Coordination Action supported by the European Commission within its 6th Framework Program.(author)

  19. Equivalent dose, effective dose and risk assessment from cephalometric radiography to critical organs

    International Nuclear Information System (INIS)

    Kang, Seong Sook; Cho, Bon Hae; Kim, Hyun Ja

    1995-01-01

    In head and neck region, the critical organ and tissue doses were determined, and the risks were estimated from lateral, posteroanterial and basilar cephalometric radiography. For each cephalometric radiography, 31 TLDs were placed in selected sites (18 internal and 13 external sites) in a tissue-equivalent phantom and exposed, then read-out in the TLD reader. The following results were obtained; 1. From lateral cephalometric radiography, the highest effective dose recorded was that delivered to the salivary gland (3.6 μSv) and the next highest dose was that received by the bone marrow (3 μSv). 2. From posteroanterial cephalometric radiography, the highest effective dose recorded was that delivered to the salivary gland (2 μSv) and the next highest dose was that received by the bone marrow (1.8 μSv). 3. From basilar cephalometric radiography, the highest effective dose recorded was that delivered to the thyroid gland (31.4 μSv) and the next highest dose was that received by the salivary gland (13.3 μSv). 4. The probabilities of stochastic effect from lateral, posteroanterial and basilar cephalometric radiography were 0.72 X 10 -6 , 0.49 X 10 -6 and 3.51 X 10 -6 , respectively.

  20. Measurement of 131I activity in thyroid of nuclear medical staff and internal dose assessment in a Polish nuclear medical hospital

    International Nuclear Information System (INIS)

    Brudecki, K.; Mietelski, J.W.; Kowalska, A.; Szczodry, A.; Zagrodzki, P.; Mroz, T.; Janowski, P.

    2017-01-01

    This paper presents results of 131 I thyroid activity measurements in 30 members of the nuclear medicine personnel of the Department of Endocrinology and Nuclear Medicine Holy Cross Cancer Centre in Kielce, Poland. A whole-body spectrometer equipped with two semiconductor gamma radiation detectors served as the basic research instrument. In ten out of 30 examined staff members, the determined 131 I activity was found to be above the detection limit (DL = 5 Bq of 131 I in the thyroid). The measured activities ranged from (5 ± 2) Bq to (217 ± 56) Bq. The highest activities in thyroids were detected for technical and cleaning personnel, whereas the lowest values were recorded for medical doctors. Having measured the activities, an attempt has been made to estimate the corresponding annual effective doses, which were found to range from 0.02 to 0.8 mSv. The highest annual equivalent doses have been found for thyroid, ranging from 0.4 to 15.4 mSv, detected for a cleaner and a technician, respectively. The maximum estimated effective dose corresponds to 32% of the annual background dose in Poland, and to circa 4% of the annual limit for the effective dose due to occupational exposure of 20 mSv per year, which is in compliance with the value recommended by the International Commission on Radiological Protection. (orig.)

  1. Effective dose: a radiation protection quantity

    CERN Document Server

    Menzel, H G

    2012-01-01

    Modern radiation protection is based on the principles of justification, limitation, and optimisation. Assessment of radiation risks for individuals or groups of individuals is, however, not a primary objective of radiological protection. The implementation of the principles of limitation and optimisation requires an appropriate quantification of radiation exposure. The International Commission on Radiological Protection (ICRP) has introduced effective dose as the principal radiological protection quantity to be used for setting and controlling dose limits for stochastic effects in the regulatory context, and for the practical implementation of the optimisation principle. Effective dose is the tissue weighted sum of radiation weighted organ and tissue doses of a reference person from exposure to external irradiations and internal emitters. The specific normalised values of tissue weighting factors are defined by ICRP for individual tissues, and used as an approximate age- and sex-averaged representation of th...

  2. Indoor gamma dose measurements in Gudalore (India) using TLD

    International Nuclear Information System (INIS)

    Sivakumar, R.; Selvasekarapandian, S.; Mugunthamanikandan, N.; Raghunath, V.M.

    2002-01-01

    Indoor gamma radiation dose rates were measured inside residential buildings in Gudalore using a CaSO 4 : Dy thermoluminescent dosimeter for 1 year . Significant seasonal variations are observed. The highest dose rate is observed during summer and the lowest in winter. The dose rates observed are between 77.9 and 229.3 nGy h -1 and may be attributed to the type of building materials used in the dwellings monitored. The calculated mean annual effective dose equivalent rates range between 477.6 μSv y -1 , for the inhabitants of mud houses to 1406.3 μSv y -1 , for those living in terrace houses made of cement and brick

  3. Low-dose effects of hormones and endocrine disruptors.

    Science.gov (United States)

    Vandenberg, Laura N

    2014-01-01

    Endogenous hormones have effects on tissue morphology, cell physiology, and behaviors at low doses. In fact, hormones are known to circulate in the part-per-trillion and part-per-billion concentrations, making them highly effective and potent signaling molecules. Many endocrine-disrupting chemicals (EDCs) mimic hormones, yet there is strong debate over whether these chemicals can also have effects at low doses. In the 1990s, scientists proposed the "low-dose hypothesis," which postulated that EDCs affect humans and animals at environmentally relevant doses. This chapter focuses on data that support and refute the low-dose hypothesis. A case study examining the highly controversial example of bisphenol A and its low-dose effects on the prostate is examined through the lens of endocrinology. Finally, the chapter concludes with a discussion of factors that can influence the ability of a study to detect and interpret low-dose effects appropriately. © 2014 Elsevier Inc. All rights reserved.

  4. Going beyond the most exposed people in a dose assessment

    Energy Technology Data Exchange (ETDEWEB)

    Hjerpe, Thomas; Broed, Robert [Facilia AB, Gustavslundsvaegen 151C, SE-167 51 Bromma (Sweden); Ikonen, Ari T.K. [Environmental Research and Assessment, EnviroCase, Ltd., Hallituskatu 1 D 4, FI-28 100 Pori (Finland)

    2014-07-01

    The dose assessment in a long-term radiation safety assessment often focus on assessing dose of a representative person to be used for determining compliance with a radiation dose constraint. This representative person is often assumed to receive a dose that is representative of the most exposed people, i.e., the more highly exposed individuals in the population. This is not always sufficient, the Finnish regulations for disposal of nuclear waste has radiation dose constraint to the most exposed people as well as for larger groups of exposed people. This work presents the methodology to assessing dose of a representative person for a larger group of exposed people as applied by Posiva in the TURVA-2012 safety case for the spent nuclear fuel disposal at Olkiluoto. In addition, annual doses from the set of biosphere calculation cases analysed in TURVA-2012 are presented and discussed. Special focus is given on explaining the differences in exposure levels and exposure routes between the estimated annual doses to representative persons for most exposed people and a larger exposed group. The results show that the annual doses to a larger group of people ranges from one to three orders of magnitude below the annual doses to the most exposed people. Furthermore, the exposure route related to food ingestion is less significant for the larger group of people compared to the most exposed people and that the exposure route related to water ingestion shows the opposite behaviour. (authors)

  5. The relative biological effectiveness of out-of-field dose

    International Nuclear Information System (INIS)

    Balderson, Michael; Koger, Brandon; Kirkby, Charles

    2016-01-01

    Purpose: using simulations and models derived from existing literature, this work investigates relative biological effectiveness (RBE) for out-of-field radiation and attempts to quantify the relative magnitudes of different contributing phenomena (spectral, bystander, and low dose hypersensitivity effects). Specific attention is paid to external beam radiotherapy treatments for prostate cancer. Materials and methods: using different biological models that account for spectral, bystander, and low dose hypersensitivity effects, the RBE was calculated for different points moving radially out from isocentre for a typical single arc VMAT prostate case. The RBE was found by taking the ratio of the equivalent dose with the physical dose. Equivalent doses were calculated by determining what physical dose would be necessary to produce the same overall biological effect as that predicted using the different biological models. Results: spectral effects changed the RBE out-of-field less than 2%, whereas response models incorporating low dose hypersensitivity and bystander effects resulted in a much more profound change of the RBE for out-of-field doses. The bystander effect had the largest RBE for points located just outside the edge of the primary radiation beam in the cranial caudal (z-direction) compared to low dose hypersensitivity and spectral effects. In the coplanar direction, bystander effect played the largest role in enhancing the RBE for points up to 8.75 cm from isocentre. Conclusions: spectral, bystander, and low dose hypersensitivity effects can all increase the RBE for out-of-field radiation doses. In most cases, bystander effects seem to play the largest role followed by low dose hypersensitivity. Spectral effects were unlikely to be of any clinical significance. Bystander, low dose hypersensitivity, and spectral effect increased the RBE much more in the cranial caudal direction (z-direction) compared with the coplanar directions. (paper)

  6. Estimated radiation dose from timepieces containing tritium

    International Nuclear Information System (INIS)

    McDowell-Boyer, L.M.

    1980-01-01

    Luminescent timepieces containing radioactive tritium, either in elemental form or incorporated into paint, are available to the general public. The purpose of this study was to estimate potential radiation dose commitments received by the public annually as a result of exposure to tritium which may escape from the timepieces during their distribution, use, repair, and disposal. Much uncertainty is associated with final dose estimates due to limitations of empirical data from which exposure parameters were derived. Maximum individual dose estimates were generally less than 3 μSv/yr, but ranged up to 2 mSv under worst-case conditions postulated. Estimated annual collective (population) doses were less than 5 person/Sv per million timepieces distributed

  7. Dose-effect studies with inhaled plutonium nitrate in dogs

    International Nuclear Information System (INIS)

    Dagle, G.E.; Cannon, W.C.; Case, A.C.; Madison, R.M.; McShane, J.F.; Stevens, D.L.; Rowe, S.E.; Ragan, H.A.; Schirmer, R.E.

    1980-01-01

    Beagle dogs given a single inhalation exposure to 239 Pu(NO 3 ) 4 , and observed for life-span dose-effect relationship, died from radiation pneumonitis (four of five at the highest dosage level, in 14 to 25 mo postexposure; 1 of 20 at the medium-high dosage level, at 34 mo postexposure). There were also indications in these dogs of radiation osteosis, characterized by peritrabecular fibrosis. One dog, at 39 mo postexposure, has radiographic evidence of an osteosarcoma. Leukopenia, lymphopenia, neutropenia and decreased numbers of circulating monocytes and eosinophils occurred at the two highest dosage levels, as previously reported (Annual Report, 1978). Twelve dogs given a single inhalation exposure to 238 Pu(NO 3 ) 4 showed a more rapid translocation of 238 Pu(NO 3 ) 4 to bone and liver than was observed for 239 Pu(NO 3 ) 4 , but at 1 yr postexposure the percentage of the final body burden in bone and liver were similar for the two isotopes

  8. [Radon risk in healthcare facilities: environmental monitoring and effective dose].

    Science.gov (United States)

    Cammarota, B; Cascone, Maria Teresa; De Paola, L; Schillirò, F; Del Prete, U

    2009-01-01

    Radon, the second cause of lung cancer after smoking (WHO- IARC), is a natural, radioactive gas, which originates from the soil and pollutes indoor air, especially in closed or underground spaces. The purpose of this study was to determine the concentration of radon gas, its effective dose, and the measurement of microclimatic degrees C; U.R. % and air velocity in non-academic intensive care units of public hospitals in the Naples area. The annual average concentrations of radon gas were detected with EIC type ionization electret chambers, type LLT with exposure over four 3-month periods. The concentrations varied for all health facilities between 186 and 1191 Bq/m3. Overall, the effective dose of exposure to radon gas of 3mSv/a recommended by Italian legislation was never exceeded. The concentration of radon gas showed a decreasing trend starting from the areas below ground level to those on higher floors; such concentrations were also influenced by natural and artificial ventilation of the rooms, building materials used for walls, and by the state of maintenance and improvements of the building (insulation of floors and walls). The data obtained confirmed the increased concentration of radionuclides in the yellow tuff of volcanic origin in the Campania Region and the resulting rate of release of radon gas, whereas the reinforced concrete structure (a hospital located on the hillside), which had the lowest values, proved to provide good insulation against penetration and accumulation of radon gas.

  9. Assessment of patient doses and image quality in X-ray diagnostics in Norway

    International Nuclear Information System (INIS)

    Olerud, H.M.

    1998-01-01

    Results from other industrialized countries indicate that the annual number of diagnostic procedures approaches one for every member of the population, and in many cases the individual radiation doses are higher than from any other human activity. Furthermore, the doses to patients for the same type of examination differ widely from place to place, suggesting that there is a considerable potential for dose reduction. This motivated an investigation of the diagnostic use of X-rays in Norway. The trends in the number of X-ray examinations performed annually have been studied. The patient doses (all diagnostics) and image quality (mammography and computed tomography) have been assessed for various radiological procedures. This form the basis for the assessment of total collective effective dose (CED) from X-rays in Norway, and further risk estimates. The radiological practice has then been evaluated according to the radiation protection principles of justification and optimisation. Based on the 1993 examination frequency, the total CED was assessed to 3400 manSv (0.78 mSv/inhabitant). It is estimated that this radiation burden may cause about 100 excess cancer deaths annually. The frequency of CT examination has doubled every fifth year, and did in 1993 represent 7% of the total number of examinations and 30% of the total CED. 129 refs

  10. Assessment of patient doses and image quality in X-ray diagnostics in Norway

    Energy Technology Data Exchange (ETDEWEB)

    Olerud, H M

    1998-06-01

    Results from other industrialized countries indicate that the annual number of diagnostic procedures approaches one for every member of the population, and in many cases the individual radiation doses are higher than from any other human activity. Furthermore, the doses to patients for the same type of examination differ widely from place to place, suggesting that there is a considerable potential for dose reduction. This motivated an investigation of the diagnostic use of X-rays in Norway. The trends in the number of X-ray examinations performed annually have been studied. The patient doses (all diagnostics) and image quality (mammography and computed tomography) have been assessed for various radiological procedures. This form the basis for the assessment of total collective effective dose (CED) from X-rays in Norway, and further risk estimates. The radiological practice has then been evaluated according to the radiation protection principles of justification and optimisation. Based on the 1993 examination frequency, the total CED was assessed to 3400 manSv (0.78 mSv/inhabitant). It is estimated that this radiation burden may cause about 100 excess cancer deaths annually. The frequency of CT examination has doubled every fifth year, and did in 1993 represent 7% of the total number of examinations and 30% of the total CED. 129 refs.

  11. Effects of low doses

    International Nuclear Information System (INIS)

    Le Guen, B.

    2001-01-01

    Actually, even though it is comfortable for the risk management, the hypothesis of the dose-effect relationship linearity is not confirmed for any model. In particular, in the area of low dose rate delivered by low let emitters. this hypothesis is debated at the light of recent observations, notably these ones relative to the mechanisms leading to genetic instability and induction eventuality of DNA repair. The problem of strong let emitters is still to solve. (N.C.)

  12. Dose and dose-rate effects of ionizing radiation: a discussion in the light of radiological protection

    Energy Technology Data Exchange (ETDEWEB)

    Ruehm, Werner [Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Institute of Radiation Protection, Neuherberg (Germany); Woloschak, Gayle E. [Northwestern University, Department of Radiation Oncology, Feinberg School of Medicine, Chicago, IL (United States); Shore, Roy E. [Radiation Effects Research Foundation (RERF), Hiroshima City (Japan); Azizova, Tamara V. [Southern Urals Biophysics Institute (SUBI), Ozyorsk, Chelyabinsk Region (Russian Federation); Grosche, Bernd [Federal Office for Radiation Protection, Oberschleissheim (Germany); Niwa, Ohtsura [Fukushima Medical University, Fukushima (Japan); Akiba, Suminori [Kagoshima University Graduate School of Medical and Dental Sciences, Department of Epidemiology and Preventive Medicine, Kagoshima City (Japan); Ono, Tetsuya [Institute for Environmental Sciences, Rokkasho, Aomori-ken (Japan); Suzuki, Keiji [Nagasaki University, Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki (Japan); Iwasaki, Toshiyasu [Central Research Institute of Electric Power Industry (CRIEPI), Radiation Safety Research Center, Nuclear Technology Research Laboratory, Tokyo (Japan); Ban, Nobuhiko [Tokyo Healthcare University, Faculty of Nursing, Tokyo (Japan); Kai, Michiaki [Oita University of Nursing and Health Sciences, Department of Environmental Health Science, Oita (Japan); Clement, Christopher H.; Hamada, Nobuyuki [International Commission on Radiological Protection (ICRP), PO Box 1046, Ottawa, ON (Canada); Bouffler, Simon [Public Health England (PHE), Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot (United Kingdom); Toma, Hideki [JAPAN NUS Co., Ltd. (JANUS), Tokyo (Japan)

    2015-11-15

    The biological effects on humans of low-dose and low-dose-rate exposures to ionizing radiation have always been of major interest. The most recent concept as suggested by the International Commission on Radiological Protection (ICRP) is to extrapolate existing epidemiological data at high doses and dose rates down to low doses and low dose rates relevant to radiological protection, using the so-called dose and dose-rate effectiveness factor (DDREF). The present paper summarizes what was presented and discussed by experts from ICRP and Japan at a dedicated workshop on this topic held in May 2015 in Kyoto, Japan. This paper describes the historical development of the DDREF concept in light of emerging scientific evidence on dose and dose-rate effects, summarizes the conclusions recently drawn by a number of international organizations (e.g., BEIR VII, ICRP, SSK, UNSCEAR, and WHO), mentions current scientific efforts to obtain more data on low-dose and low-dose-rate effects at molecular, cellular, animal and human levels, and discusses future options that could be useful to improve and optimize the DDREF concept for the purpose of radiological protection. (orig.)

  13. Estimated effects on radiation doses from alternatives in a spent fuel transportation system

    International Nuclear Information System (INIS)

    Schneider, K.J.; Ross, W.A.; Smith, R.I.

    1988-07-01

    This paper contains the results of a study of estimated radiation doses to the public and workers from the transport of spent fuel from commercial nuclear power reactors to a geologic repository. A postulated reference rail/legal-weight truck transportation system is defined that would use current transportation technology, and provide a breakdown of activities and time/distance/dose-rate estimates for each activity within the system. Collective doses are estimated for each of the major activities at the reactor site, in transit, and at the repository receiving facility. Annual individual doses to the maximally exposed individuals or groups of individuals are also estimated. The dose-reduction potentials and costs are estimated for a total of 17 conceptual alternatives and subalternatives to the postulated reference system. Most of the alternatives evaluated are estimated to provide both cost and dose reductions. The major conclusion is that the potential exists for significant future reductions in radiation doses to the public and workers and for reductions in costs compared to those based on a continuation of past practices in the US

  14. Estimated effects on radiation doses from alternatives in a spent fuel transportation system

    International Nuclear Information System (INIS)

    Schneider, K.J.; Ross, W.A.; Smith, R.I.

    1988-01-01

    This paper contains the results of a study of estimated radiation doses to the public and workers from the transport of spent fuel from commercial nuclear power reactors to a geologic repository. A postulated reference rail/legal-weight truck transportation system is defined that would use current transportation technology, and provide a breakdown of activities and time/distance/dose-rate estimates for each activity within the system. Collective doses are estimated for each of the major activities at the reactor site, in transit, and at the repository receiving facility. Annual individual doses to the maximally exposed individuals or groups of individuals also estimated. The dose-reduction potentials and costs are estimated for a total of 17 conceptual alternatives and subalternatives to the postulated reference system. Most of the alternatives evaluated are estimated to provide both cost and dose reductions. The major conclusion is that the potential exists for significant future reductions in radiation doses to the public and workers and for reductions in costs compared to those based on a continuation of past practices in the U.S

  15. Measurement of {sup 131}I activity in thyroid of nuclear medical staff and internal dose assessment in a Polish nuclear medical hospital

    Energy Technology Data Exchange (ETDEWEB)

    Brudecki, K.; Mietelski, J.W. [Polish Academy of Sciences, Institute of Nuclear Physics, Krakow (Poland); Kowalska, A.; Szczodry, A. [Holy Cross Cancer Center, Department of Endocrinology and Nuclear Medicine, Kielce (Poland); Zagrodzki, P. [Polish Academy of Sciences, Institute of Nuclear Physics, Krakow (Poland); Jagiellonian University, Department of Food Chemistry and Nutrition, Medical College, Krakow (Poland); Mroz, T. [Pedagogical University in Cracow, Krakow (Poland); Janowski, P. [AGH University of Science and Technology, Krakow (Poland)

    2017-03-15

    This paper presents results of {sup 131}I thyroid activity measurements in 30 members of the nuclear medicine personnel of the Department of Endocrinology and Nuclear Medicine Holy Cross Cancer Centre in Kielce, Poland. A whole-body spectrometer equipped with two semiconductor gamma radiation detectors served as the basic research instrument. In ten out of 30 examined staff members, the determined {sup 131}I activity was found to be above the detection limit (DL = 5 Bq of {sup 131}I in the thyroid). The measured activities ranged from (5 ± 2) Bq to (217 ± 56) Bq. The highest activities in thyroids were detected for technical and cleaning personnel, whereas the lowest values were recorded for medical doctors. Having measured the activities, an attempt has been made to estimate the corresponding annual effective doses, which were found to range from 0.02 to 0.8 mSv. The highest annual equivalent doses have been found for thyroid, ranging from 0.4 to 15.4 mSv, detected for a cleaner and a technician, respectively. The maximum estimated effective dose corresponds to 32% of the annual background dose in Poland, and to circa 4% of the annual limit for the effective dose due to occupational exposure of 20 mSv per year, which is in compliance with the value recommended by the International Commission on Radiological Protection. (orig.)

  16. Calculation of the annual radiation dose to the population in the vicinity of nuclear installations due to liquid effluents

    International Nuclear Information System (INIS)

    Gans, I.

    1991-01-01

    Since 1974, assessments of radiation exposure due to the emission of radioactive substances with liquid effluents have been done by the Institut fuer Wasser-, Boden- und Lufhygiene of the Federal Health Office and data have bee published in the annual reports in the series 'Umweltradioaktivitaet und Strahlenbelastung'. The paper explaines the radioecological models of ABG and AVV as far as they relate to the wastewater pathway, as well as the required modifications. Individual aspects of computation are explained referring to the dose calculations for 1989. (orig./DG) [de

  17. Application of maximum values for radiation exposure and principles for the calculation of radiation doses

    International Nuclear Information System (INIS)

    2007-08-01

    The guide presents the definitions of equivalent dose and effective dose, the principles for calculating these doses, and instructions for applying their maximum values. The limits (Annual Limit on Intake and Derived Air Concentration) derived from dose limits are also presented for the purpose of monitoring exposure to internal radiation. The calculation of radiation doses caused to a patient from medical research and treatment involving exposure to ionizing radiation is beyond the scope of this ST Guide

  18. Lateral topography for reducing effective dose in low-dose chest CT.

    Science.gov (United States)

    Bang, Dong-Ho; Lim, Daekeon; Hwang, Wi-Sub; Park, Seong-Hoon; Jeong, Ok-man; Kang, Kyung Wook; Kang, Hohyung

    2013-06-01

    The purposes of this study were to assess radiation exposure during low-dose chest CT by using lateral topography and to compare the lateral topographic findings with findings obtained with anteroposterior topography alone and anteroposterior and lateral topography combined. From November 2011 to February 2012, 210 male subjects were enrolled in the study. Age, weight, and height of the men were recorded. All subjects were placed into one of three subgroups based on the type of topographic image obtained: anteroposterior topography, lateral topography, and both anteroposterior and lateral topography. Imaging was performed with a 128-MDCT scanner. CT, except for topography, was the same for all subjects. A radiologist analyzed each image, recorded scan length, checked for any insufficiencies in the FOV, and calculated the effective radiation dose. One-way analysis of variance and multiple comparisons were used to compare the effective radiation exposure and scan length between groups. The mean scan length in the anteroposterior topography group was significantly greater than that of the lateral topography group and the combined anteroposterior and lateral topography group (p topography group (0.735 ± 0.033 mSv) was significantly lower than that for the anteroposterior topography group (0.763 ± 0.038 mSv) and the combined anteroposterior and lateral topography group (0.773 ± 0.038) (p < 0.001). Lateral topographic low-dose CT was associated with a lower effective radiation dose and scan length than either anteroposterior topographic low-dose chest CT or low-dose chest CT with both anteroposterior and lateral topograms.

  19. Biological effects of low doses of radiation at low dose rate

    International Nuclear Information System (INIS)

    1996-05-01

    The purpose of this report was to examine available scientific data and models relevant to the hypothesis that induction of genetic changes and cancers by low doses of ionizing radiation at low dose rate is a stochastic process with no threshold or apparent threshold. Assessment of the effects of higher doses of radiation is based on a wealth of data from both humans and other organisms. 234 refs., 26 figs., 14 tabs

  20. Dose Consumptions of NSC KIPT Personnel during the Work that Includes Uranium

    International Nuclear Information System (INIS)

    Kurilo, Yu.P.; Mazilov, A.V.; Razsukovanny, B.N.

    2007-01-01

    The analysis of mean annual and maximal annual uranium concentrations in the air of NSC KIPT working premises is carried out in this paper; the high limit of possible external radiation of category A personnel engaged on works with uranium since 1961 to 2003 has been calculated. The numerical values of effective doses of internal and external radiation of personnel are determined on the basis of data acquired. It is shown that despite of breaking the principal of non excess that has taken place to be in the some years the mean value of total (external+internal) radiation during the given period of time did not exceed the effective dose limit established in Norms of radiating safety of Ukraine and that is equal to 20 mSv per year

  1. Low doses effects and gamma radiations low dose rates; Les effets des faibles doses et des faibles debits de doses de rayons gamma

    Energy Technology Data Exchange (ETDEWEB)

    Averbeck, D [Institut Curie, CNRS UMR 2027, 75 - Paris (France)

    1999-07-01

    This expose wishes for bringing some definitions and base facts relative to the problematics of low doses effects and low dose rates effects. It shows some already used methods and some actual experimental approaches by focusing on the effects of ionizing radiations with a low linear energy transfer. (N.C.)

  2. Studying and measuring the gamma radiation doses in Homs city

    International Nuclear Information System (INIS)

    Sofaan, A. H.

    2001-01-01

    The gamma radiation dose was measured in Homs city by using many portable dosimeters (electronic dosimeter and Geiger-Muller). The measurements were carried out in the indoor and outdoor buildings, for different time period, through one year (1999-2000). High purity germanium detector with low back ground radiation (HpGe) was used to determine radiation element contained in some building and the surrounding soil. The statistical analysis laws were applied to make sure that the measured dose distribution around average value is normal distribution. The measurement indicates that the gamma indoor dose varies from 312μSv/y to 511μSv/y, with the average annual dose of 385μSv/y. However the gamma outdoor dose rate varies from 307μSv/y to 366μSv/y with an average annual dose 385μSv/y. The annual outdoor gamma radiation dose is about %16 lower than the outdoor dose in Homs City. These measurements have indicated that environmental gamma doses in Homs City are relatively low. This is because that most of the soils and rocks in the area are limestone. (author)

  3. Use of high-dose, twice-yearly albendazole and ivermectin to suppress Wuchereria bancrofti microfilarial levels.

    Science.gov (United States)

    Dembele, Benoit; Coulibaly, Yaya I; Dolo, Housseini; Konate, Siaka; Coulibaly, Siaka Y; Sanogo, Dramane; Soumaoro, Lamine; Coulibaly, Michel E; Doumbia, Salif Seriba; Diallo, Abdallah A; Traore, Sekou F; Diaman Keita, Adama; Fay, Michael P; Nutman, Thomas B; Klion, Amy D

    2010-12-01

    Annual mass treatment with albendazole and ivermectin is the mainstay of current strategies to interrupt transmission of Wuchereria bancrofti in Africa. More-effective microfilarial suppression could potentially reduce the time necessary to interrupt transmission, easing the economic burden of mass treatment programs in countries with limited resources. To determine the effect of increased dose and frequency of albendazole-ivermectin treatment on microfilarial clearance, 51 W. bancrofti microfilaremic residents of an area of W. bancrofti endemicity in Mali were randomized to receive 2 doses of annual, standard-dose albendazole-ivermectin therapy (400 mg and 150 μg/kg; n = 26) or 4 doses of twice-yearly, increased-dose albendazole-ivermectin therapy (800 mg and 400 μg/kg; n = 25). Although microfilarial levels decreased significantly after therapy in both groups, levels were significantly lower in the high-dose, twice-yearly group at 12, 18, and 24 months. Furthermore, there was complete clearance of detectable microfilariae at 12 months in the 19 patients in the twice-yearly therapy group with data available at 12 months, compared with 9 of 21 patients in the annual therapy group (P < .001, by Fisher's exact test). This difference between the 2 groups was sustained at 18 and 24 months, with no detectable microfilariae in the patients receiving twice-yearly treatment. Worm nests detectable by ultrasonography and W. bancrofti circulating antigen levels, as measured by enzyme-linked immunosorbent assay, were decreased to the same degree in both groups at 24 months, compared with baseline. These findings suggest that increasing the dosage and frequency of albendazole-ivermectin treatment enhances suppression of microfilariae but that this effect may not be attributable to improved adulticidal activity.

  4. Notes on the effect of dose uncertainty

    International Nuclear Information System (INIS)

    Morris, M.D.

    1987-01-01

    The apparent dose-response relationship between amount of exposure to acute radiation and level of mortality in humans is affected by uncertainties in the dose values. It is apparent that one of the greatest concerns regarding the human data from Hiroshima and Nagasaki is the unexpectedly shallow slope of the dose response curve. This may be partially explained by uncertainty in the dose estimates. Some potential effects of dose uncertainty on the apparent dose-response relationship are demonstrated

  5. Radiation dose to the global flying population

    International Nuclear Information System (INIS)

    Alvarez, Luis E; Eastham, Sebastian D; Barrett, Steven R H

    2016-01-01

    Civil airliner passengers and crew are exposed to elevated levels of radiation relative to being at sea level. Previous studies have assessed the radiation dose received in particular cases or for cohort studies. Here we present the first estimate of the total radiation dose received by the worldwide civilian flying population. We simulated flights globally from 2000 to 2013 using schedule data, applying a radiation propagation code to estimate the dose associated with each flight. Passengers flying in Europe and North America exceed the International Commission on Radiological Protection annual dose limits at an annual average of 510 or 420 flight hours per year, respectively. However, this falls to 160 or 120 h on specific routes under maximum exposure conditions. (paper)

  6. Topics on study of low dose-effect relationship

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Takeshi [Toho Univ., School of Medicine, Tokyo (Japan); Ohyama, Harumi

    1999-09-01

    It is not exceptional but usually observed that a dose-effect relationship in biosystem is not linear. Sometimes, the low dose-effect relationship appears entirely contrary to the expectation from high dose-effect. This is called a 'hormesis' phenomena. A high dose irradiation inflicts certainly an injury on biosystem. No matter how low the dose may be, an irradiation might inflict some injury on biosystem according to Linear Non-Threshold hypothesis(LNT). On the contrary to the expectation, a low dose irradiation stimulates immune system, and promotes cell proliferation. This is called 'radiation hormesis'. The studies of the radiation hormesis are made on from four points of view as follows: (1) radiation adaptive response, (2) revitalization caused by a low dose stimulation, (3) a low dose response unexpected from the LNT hypothesis, (4) negation of the LNT hypothesis. The various empirical proofs of radiation hormesis are introduced in the report. (M . Suetake)

  7. Topics on study of low dose-effect relationship

    International Nuclear Information System (INIS)

    Yamada, Takeshi; Ohyama, Harumi

    1999-01-01

    It is not exceptional but usually observed that a dose-effect relationship in biosystem is not linear. Sometimes, the low dose-effect relationship appears entirely contrary to the expectation from high dose-effect. This is called a 'hormesis' phenomena. A high dose irradiation inflicts certainly an injury on biosystem. No matter how low the dose may be, an irradiation might inflict some injury on biosystem according to Linear Non-Threshold hypothesis(LNT). On the contrary to the expectation, a low dose irradiation stimulates immune system, and promotes cell proliferation. This is called 'radiation hormesis'. The studies of the radiation hormesis are made on from four points of view as follows: (1) radiation adaptive response, (2) revitalization caused by a low dose stimulation, (3) a low dose response unexpected from the LNT hypothesis, (4) negation of the LNT hypothesis. The various empirical proofs of radiation hormesis are introduced in the report. (M . Suetake)

  8. Indoor gamma dose measurements in Gudalore (India) using TLD

    Energy Technology Data Exchange (ETDEWEB)

    Sivakumar, R.; Selvasekarapandian, S. E-mail: spandian@bharathi.ernet.in; Mugunthamanikandan, N.; Raghunath, V.M

    2002-06-01

    Indoor gamma radiation dose rates were measured inside residential buildings in Gudalore using a CaSO{sub 4} : Dy thermoluminescent dosimeter for 1 year . Significant seasonal variations are observed. The highest dose rate is observed during summer and the lowest in winter. The dose rates observed are between 77.9 and 229.3 nGy h{sup -1} and may be attributed to the type of building materials used in the dwellings monitored. The calculated mean annual effective dose equivalent rates range between 477.6 {mu}Sv y{sup -1}, for the inhabitants of mud houses to 1406.3 {mu}Sv y{sup -1}, for those living in terrace houses made of cement and brick.

  9. Radiobiological modelling of dose-gradient effects in low dose rate, high dose rate and pulsed brachytherapy

    International Nuclear Information System (INIS)

    Armpilia, C; Dale, R G; Sandilos, P; Vlachos, L

    2006-01-01

    This paper presents a generalization of a previously published methodology which quantified the radiobiological consequences of dose-gradient effects in brachytherapy applications. The methodology uses the linear-quadratic (LQ) formulation to identify an equivalent biologically effective dose (BED eq ) which, if applied uniformly to a specified tissue volume, would produce the same net cell survival as that achieved by a given non-uniform brachytherapy application. Multiplying factors (MFs), which enable the equivalent BED for an enclosed volume to be estimated from the BED calculated at the dose reference surface, have been calculated and tabulated for both spherical and cylindrical geometries. The main types of brachytherapy (high dose rate (HDR), low dose rate (LDR) and pulsed (PB)) have been examined for a range of radiobiological parameters/dimensions. Equivalent BEDs are consistently higher than the BEDs calculated at the reference surface by an amount which depends on the treatment prescription (magnitude of the prescribed dose) at the reference point. MFs are closely related to the numerical BED values, irrespective of how the original BED was attained (e.g., via HDR, LDR or PB). Thus, an average MF can be used for a given prescribed BED as it will be largely independent of the assumed radiobiological parameters (radiosensitivity and α/β) and standardized look-up tables may be applicable to all types of brachytherapy treatment. This analysis opens the way to more systematic approaches for correlating physical and biological effects in several types of brachytherapy and for the improved quantitative assessment and ranking of clinical treatments which involve a brachytherapy component

  10. Annual report on the present state and activities of the radiation protection division, JNC Tokai Works in fiscal 2004

    International Nuclear Information System (INIS)

    2005-09-01

    This annual report summarizes the activities on radiation control in the radiation facilities, personnel monitoring, monitoring of gas and liquid waste effluents, environmental monitoring, instrumentation, safety research, and technical support, undertaken by the Radiation Protection Division at JNC Tokai Works in fiscal 2004. The major radiation facilities in the Tokai Works are the Tokai Reprocessing Plant (TRP), three MOX fuel fabrication facilities, the Chemical Processing Facility (CPF), and various other radioisotope and uranium research laboratories. The Radiation Protection Division is responsible for radiation control in and around these radiation facilities, including personnel monitoring, workplace monitoring, consultation on radiological work planning and evaluation, monitoring of gas and liquid waste effluents, environmental monitoring, instrumentation, calibration, quality assurance, and safety research. The Division also provides technical support and cooperation to other international and domestic institutes in the radiation protection field. In fiscal 2004, the results of radiological monitoring showed the situation to be normal, and no radiological incident or accident occurred. The maximum annual effective dose to radiation workers was 6.1 mSv and the mean annual effective dose was 0.1 mSv. Individual doses were kept within the annual dose limit specified in the safety regulations. The estimated effective dose caused by gas and liquid effluents from the TRP to members of the public around the Tokai Works was 4.4x10 -4 mSv. Environmental monitoring and effluent control were performed appropriately in compliance with safety regulation and standards. Research and development on radiation protection in nuclear fuel cycle are also performed actively. Safety audit and Nuclear Safety Inspection were made in accordance with the quality assurance system which had been introduced to safety regulation since fiscal 2004. (author)

  11. Terrestrial gamma dose rate in Pahang state Malaysia

    International Nuclear Information System (INIS)

    Gabdo, H.T.; Federal College of Education, Yola; Ramli, A.T.; Sanusi, M.S.; Saleh, M.A.; Garba, N.N.; Ahmadu Bello University, Zaria

    2014-01-01

    Environmental terrestrial gamma radiations (TGR) were measured in Pahang state Malaysia between January and April 2013. The TGR dose rates ranged from 26 to 750 nGy h -1 . The measurements were done based on geology and soil types of the area. The mean TGR dose rate was found to be 176 ± 5 nGy h -1 . Few areas of relatively enhanced activity were located in Raub, Temerloh, Bentong and Rompin districts. These areas have external gamma dose rates of between 500 and 750 nGy h -1 . An Isodose map of the state was produced using ArcGIS9 software version 9.3. To evaluate the radiological hazard due to terrestrial gamma dose, the annual effective dose equivalent and the mean population weighted dose rate were calculated and found to be 0.22 mSv year -1 and 168 nGy h -1 respectively. (author)

  12. LLNL NESHAPs 2014 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bertoldo, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gallegos, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); MacQueen, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wegrecki, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-07-01

    Lawrence Livermore National Security, LLC operates facilities at Lawrence Livermore National Laboratory (LLNL) where radionuclides are handled and stored. These facilities are subject to the U.S. Environmental Protection Agency (EPA) National Emission Standards for Hazardous Air Pollutants (NESHAPs) in Code of Federal Regulations (CFR) Title 40, Part 61, Subpart H, which regulates radionuclide emissions to air from Department of Energy (DOE) facilities. Specifically, NESHAPs limits the emission of radionuclides to the ambient air to levels resulting in an annual effective dose equivalent of 10 mrem (100 μSv) to any member of the public. Using measured and calculated emissions, and building-specific and common parameters, LLNL personnel applied the EPA-approved computer code, CAP88-PC, Version 4.0.1.17, to calculate the dose to the maximally exposed individual member of the public for the Livermore Site and Site 300.

  13. Equine scintigraphy: assessment of the dose received by the personnel

    International Nuclear Information System (INIS)

    Clairand, I.; Bottollier, J.F.; Trompier, F.

    2003-01-01

    Following a request from the Permanent Secretary of the French Commission for Artificial Radioelements (CIREA) engaged to investigate a request for a licence related to a new scintigraphy unit dedicated to equidae, a dosimetric assessment concerning the personnel attending the examination was carried out. This scintigraphy unit depends on the Goustranville Centre for Imaging and Research on the Locomotive Diseases of Equidae (CIRALE) in the Calvados region. The dosimetric assessment was carried out for the different operators during the successive stages of the scintigraphic examination. Assuming 150 examinations per year, the annual equivalent dose to the fingers skin is 150 mSv maximum for the technologist and 2 mSv for the veterinary surgeon; the annual effective dose ranges from 0.15 to 0.45 mSv, depending on the operators. (authors)

  14. Assessment of organ equivalent doses and effective doses from diagnostic X-ray examinations

    International Nuclear Information System (INIS)

    Park, Sang Hyun

    2003-02-01

    The MIRD-type adult male, female and age 10 phantoms were constructed to evaluate organ equivalent dose and effective dose of patient due to typical diagnostic X-ray examination. These phantoms were constructed with external and internal dimensions of Korean. The X-ray energy spectra were generated with SPEC78. MCNP4B ,the general-purposed Monte Carlo code, was used. Information of chest PA , chest LAT, and abdomen AP diagnostic X-ray procedures was collected on the protocol of domestic hospitals. The results showed that patients pick up approximate 0.02 to 0.18 mSv of effective dose from a single chest PA examination, and 0.01 to 0.19 mSv from a chest LAT examination depending on the ages. From an abdomen AP examination, patients pick up 0.17 to 1.40 mSv of effective dose. Exposure time, organ depth from the entrance surface and X-ray beam field coverage considerably affect the resulting doses. Deviation among medical institutions is somewhat high, and this indicated that medical institutions should interchange their information and the need of education for medical staff. The methodology and the established system can be applied, with some expansion, to dose assessment for other medical procedures accompanying radiation exposure of patients like nuclear medicine or therapeutic radiology

  15. Lung doses from radon in dwellings and influencing factors

    International Nuclear Information System (INIS)

    Stranden, E.

    1980-01-01

    The radon concentration in Norwegian dwellings and the lung doses received by the Norwegian population are reported. The biological effects of these doses are discussed. The mean value of radon-daughters in Norwegian dwellings was found to be about 7x10 -3 WL (working levels). This corresponds to an annual exposure of about 0.3 WLM (working level months). From studies of the lung cancer statistics of Norway, this exposure may account for about 10% of the annual lung cancer cases in Norway. The variations in the radon concentration inside dwellings are discussed, and the influence of exhalation, ventilation and meteorological parameters upon the respiratory dosage is studied. From the risk estimates performed, the consequences of an increased indoor radon concentration due to reduced ventilation or introduction of building materials with high radium concentrations are discussed. From comparison of the population doses from different sources of radiation, it is evident that a possible future increase in the radon concentration in dwellings is one of the most serious radiation protection problems of our time. (author)

  16. Exposures at low doses and biological effects of ionizing radiations

    International Nuclear Information System (INIS)

    Masse, R.

    2000-01-01

    Everyone is exposed to radiation from natural, man-made and medical sources, and world-wide average annual exposure can be set at about 3.5 mSv. Exposure to natural sources is characterised by very large fluctuations, not excluding a range covering two orders of magnitude. Millions of inhabitants are continuously exposed to external doses as high as 10 mSv per year, delivered at low dose rates, very few workers are exposed above the legal limit of 50 mSv/year, and referring to accidental exposures, only 5% of the 116 000 people evacuated following the Chernobyl disaster encountered doses above 100 mSv. Epidemiological survey of accidentally, occupationally or medically exposed groups have revealed radio-induced cancers, mostly following high dose-rate exposure levels, only above 100 mSv. Risk coefficients were derived from these studies and projected into linear models of risk (linear non-threshold hypothesis: LNT), for the purpose of risk management following exposures at low doses and low dose-rates. The legitimacy of this approach has been questioned, by the Academy of sciences and the Academy of medicine in France, arguing: that LNT was not supported by Hiroshima and Nagasaki studies when neutron dose was revisited; that linear modelling failed to explain why so many site-related cancers were obviously nonlinearly related to the dose, and especially when theory predicted they ought to be; that no evidence could be found of radio-induced cancers related to natural exposures or to low exposures at the work place; and that no evidence of genetic disease could be shown from any of the exposed groups. Arguments were provided from cellular and molecular biology helping to solve this issue, all resulting in dismissing the LNT hypothesis. These arguments included: different mechanisms of DNA repair at high and low dose rate; influence of inducible stress responses modifying mutagenesis and lethality; bystander effects allowing it to be considered that individual

  17. Radiation dose contribution from coal-slag from the Ajka region used as structural building material

    Energy Technology Data Exchange (ETDEWEB)

    Somali, J.; Kanyar, B.; Lendvai, Z.; Nemeth, C.; Bodnar, R. [Veszpremi Egyetem, Veszprem (Hungary). Radiokemia Tanszek

    1997-10-01

    A significant dose contribution on the population could be derived from coal slags used as material in buildings. Extremely high natural activities are measured in the coal slag from the region of Ajka, Hungary. The main conclusions based on the results of the monitoring of the gamma-dose rate and the radon concentration in the air in nearly 240 houses are as follows: (1) for individuals, such as children, spending a long time at home (19.2 h/day) the external annual dose is 1.7-4.5 mSv; (2) in the majority of houses with local slag the estimated annual average value of indoor-radon concentration was above 400 Bq/m{sup 3}, and in several cases there were buildings with values over 1200 Bq/m{sup 3}. In these cases the internal annual dose of the dwellers can be estimated between 6-20 mSv; (3) due to the elevated gamma-exposure and the radon concentration in the dwellings the total annual dose was estimated as 8-24 mSv, more than 5-10 times the world average value; and (4) some of the houses were built after the 1960s, when the use of slags from the region of Ajka as building material was already banned by the authorities. In addition to the regulations an effective radiological control should be introduced and a practice for testing the use of slag as building material.

  18. Health effects of daily airborne particle dose in children: Direct association between personal dose and respiratory health effects

    International Nuclear Information System (INIS)

    Buonanno, Giorgio; Marks, Guy B.; Morawska, Lidia

    2013-01-01

    Air pollution is a widespread health problem associated with respiratory symptoms. Continuous exposure monitoring was performed to estimate alveolar and tracheobronchial dose, measured as deposited surface area, for 103 children and to evaluate the long-term effects of exposure to airborne particles through spirometry, skin prick tests and measurement of exhaled nitric oxide (eNO). The mean daily alveolar deposited surface area dose received by children was 1.35 × 10 3 mm 2 . The lowest and highest particle number concentrations were found during sleeping and eating time. A significant negative association was found between changes in pulmonary function tests and individual dose estimates. Significant differences were found for asthmatics, children with allergic rhinitis and sensitive to allergens compared to healthy subjects for eNO. Variation is a child's activity over time appeared to have a strong impact on respiratory outcomes, which indicates that personal monitoring is vital for assessing the expected health effects of exposure to particles. -- Highlights: •Particle dose was estimated through personal monitoring on more than 100 children. •We focused on real-time daily dose of particle alveolar deposited surface area. •Spirometry, skin prick and exhaled Nitric Oxide tests were performed. •Negative link was found between changes in pulmonary functions and individual doses. •A child's lifestyle appeared to have a strong impact on health respiratory outcomes. -- The respiratory health effects of daily airborne particle dose on children through personal monitoring

  19. Low-dose computed tomography for lung cancer screening: comparison of performance between annual and biennial screen

    Energy Technology Data Exchange (ETDEWEB)

    Sverzellati, Nicola; Silva, M. [University of Parma, Radiology, Department of Surgical Sciences, Parma (Italy); Calareso, G.; Marchiano, A. [Fondazione IRCCS Istituto Nazionale dei Tumori, Department of Radiology, Milan (Italy); Galeone, C. [University of Milano-Bicocca, Department of Statistics and Quantitative Methods, Division of Biostatistics, Epidemiology and Public Health, Laboratory of Healthcare Research and Pharmacoepidemiology, Milan (Italy); Sestini, S.; Pastorino, U. [Fondazione IRCCS Istituto Nazionale dei Tumori, Department of Surgery, Section of Thoracic Surgery, Milan (Italy); Sozzi, G. [Fondazione IRCCS Istituto Nazionale dei Tumori, Tumor Genomics Unit, Department of Experimental Oncology and Molecular Medicine, Milan (Italy)

    2016-11-15

    To compare the performance metrics of two different strategies of lung cancer screening by low-dose computed tomography (LDCT), namely, annual (LDCT1) or biennial (LDCT2) screen. Recall rate, detection rate, interval cancers, sensitivity, specificity, positive and negative predictive values (PPV and NPV, respectively) were compared between LDCT1 and LDCT2 arms of the MILD trial over the first seven (T0-T6; median follow-up 7.3 years) and four rounds (T0-T3; median follow-up 7.3 years), respectively. 1152 LDCT1 and 1151 LDCT2 participants underwent a total of 6893 and 4715 LDCT scans, respectively. The overall recall rate was higher in LDCT2 arm (6.97 %) than in LDCT1 arm (5.81 %) (p = 0.01), which was counterbalanced by the overall lower number of LDCT scans. No difference was observed for the overall detection rate (0.56 % in both arms). The two LDCT arms had similar specificity (99.2 % in both arms), sensitivity (73.5 %, in LDCT2 vs. 68.5 % in LDCT1, p = 0.62), PPV (42.4 %, in LDCT2, vs. 40.6 %, in LDCT1, p = 0.83) and NPV (99.8 %, in LDCT2 vs. 99.7 %, in LDCT1, p = 0.71). Biennial screen may save about one third of LDCT scans with similar performance indicators as compared to annual screening. (orig.)

  20. Low-dose computed tomography for lung cancer screening: comparison of performance between annual and biennial screen

    International Nuclear Information System (INIS)

    Sverzellati, Nicola; Silva, M.; Calareso, G.; Marchiano, A.; Galeone, C.; Sestini, S.; Pastorino, U.; Sozzi, G.

    2016-01-01

    To compare the performance metrics of two different strategies of lung cancer screening by low-dose computed tomography (LDCT), namely, annual (LDCT1) or biennial (LDCT2) screen. Recall rate, detection rate, interval cancers, sensitivity, specificity, positive and negative predictive values (PPV and NPV, respectively) were compared between LDCT1 and LDCT2 arms of the MILD trial over the first seven (T0-T6; median follow-up 7.3 years) and four rounds (T0-T3; median follow-up 7.3 years), respectively. 1152 LDCT1 and 1151 LDCT2 participants underwent a total of 6893 and 4715 LDCT scans, respectively. The overall recall rate was higher in LDCT2 arm (6.97 %) than in LDCT1 arm (5.81 %) (p = 0.01), which was counterbalanced by the overall lower number of LDCT scans. No difference was observed for the overall detection rate (0.56 % in both arms). The two LDCT arms had similar specificity (99.2 % in both arms), sensitivity (73.5 %, in LDCT2 vs. 68.5 % in LDCT1, p = 0.62), PPV (42.4 %, in LDCT2, vs. 40.6 %, in LDCT1, p = 0.83) and NPV (99.8 %, in LDCT2 vs. 99.7 %, in LDCT1, p = 0.71). Biennial screen may save about one third of LDCT scans with similar performance indicators as compared to annual screening. (orig.)

  1. Occupational doses in medical staff during hemodynamic procedures

    International Nuclear Information System (INIS)

    Alonso, Thessa C.; Silva, Teogenes A. da

    2008-01-01

    The main objective of an occupational radiation program for workers is to keep radiation exposures under control and to assure that radiation protection principles are followed. Due to different types of interventionist medical exams, usually the medical staffs are highly exposed to radiation, which it emphasizes that it is required safety procedures for dose reduction. In this work, studies were concerned with individual doses of medical staff that are directly engaged to interventionist procedures at hemodynamic services. Dose values from a data bank of the CDTN Individual Monitoring Service (IMS) were analyzed and measurements with film type and thermoluminescent (TL) dosimeters were performed for comparison purposes. Additionally, the influence of the use of a lead apron on the individual dose was investigated. Results suggested that the medical staff does not care about wearing the routine personal dosimeter and that the registered doses may not be representative to the actual annual effective doses. They also showed that effective doses are highly dependent on the characteristics and conditions of the lead apron that is worn by the medical staff. It is concluded that it is important to have personal dosimetric system up-graded for reliable measurements, to define an adequate algorithm for determining the effective dose and to train the medical staff to follow the basic radiation protection principle of optimization. (author)

  2. Gamma ray doses proceeding from natural occurring radionuclides in closed environments

    International Nuclear Information System (INIS)

    Aguiar, Vitor Angelo P. de; Medina, Nilberto H.; Silveira, Marcilei A. Guazzelli da; Moreira, Ramon H.

    2009-01-01

    In this work we report on the application of gamma-ray spectrometry in the study of the effective dose coming from terrestrial natural elements present in building materials such as sand, cement, lime (CaO) and milled granitic stones. The major contribution to annual gamma-ray radiation effective dose is due to the natural occurring radionuclides 40 K, 232 Th and 238 U. Two spectrometry systems were employed to measure the gamma radiation: one with a 60% efficient GeHP detector and the second one with a 2''x2'' NaI(Tl) scintillator. The estimated effective dose coming from the three reference rooms assumed is 0.63 mSv/yr, proceeding from terrestrial natural elements. The principal gamma radiation sources are cement, sand and bricks. (author)

  3. Dose rate effect on low-dose hyper-radiosensitivity with cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon-Min; Kim, Eun-Hee [Seoul National University, Seoul (Korea, Republic of)

    2016-10-15

    Low-dose hyper-radiosensitivity (HRS) is the phenomenon that mammalian cells exhibit higher sensitivity to radiation at low doses (< 0.5 Gy) than expected by the linear-quadratic model. At doses above 0.5Gy, the cellular response is recovered to the level expected by the linear-quadratic model. This transition is called the increased radio-resistance (IRR). HRS was first verified using Chinese hamster V79 cells in vitro by Marples and has been confirmed in studies with other cell lines including human normal and tumor cells. HRS is known to be induced by inactivation of ataxia telangiectasia-mutated (ATM), which plays a key role in repairing DNA damages. Considering the connection between ATM and HRS, one can infer that dose rate may affect cellular response regarding HRS at low doses. In this study, we quantitated the effect of dose rate on HRS by clonogenic assay with normal and tumor cells. The HRS of cells at low dose exposures is a phenomenon already known. In this study, we observed HRS of rat normal diencephalon cells and rat gliosarcoma cells at doses below 1 Gy. In addition, we found that dose rate mattered. HRS occurred at low doses, but only when total dose was delivered at a rate below certain level.

  4. Estimation of the collective ionizing dose in the Portuguese population for the years 2011 and 2012, due to nuclear medicine exams.

    Science.gov (United States)

    Costa, F; Teles, P; Nogueira, A; Barreto, A; Santos, A I; Carvalho, A; Martins, B; Oliveira, C; Gaspar, C; Barros, C; Neves, D; Costa, D; Rodrigues, E; Godinho, F; Alves, F; Cardoso, G; Cantinho, G; Conde, I; Vale, J; Santos, J; Isidoro, J; Pereira, J; Salgado, L; Rézio, M; Vieira, M; Simãozinho, P; Almeida, P; Castro, R; Parafita, R; Pintão, S; Lúcio, T; Reis, T; Vaz, P

    2015-01-01

    In 2009-2010 a Portuguese consortium was created to implement the methodologies proposed by the Dose Datamed II (DDM2) project, aiming to collect data from diagnostic X-ray and nuclear medicine (NM) procedures, in order to determine the most frequently prescribed exams and the associated ionizing radiation doses for the Portuguese population. The current study is the continuation of this work, although it focuses only on NM exams for the years 2011 and 2012. The annual frequency of each of the 28 selected NM exams and the average administered activity per procedure was obtained by means of a nationwide survey sent to the 35 NM centres in Portugal. The results show a reduction of the number of cardiac exams performed in the last two years compared with 2010, leading to a reduction of the annual average effective dose of Portuguese population due to NM exams from 0.08 mSv ± 0.017 mSv/caput to 0.059 ± 0.011 mSv/caput in 2011 and 0.054 ± 0.011 mSv/caput in 2012. Portuguese total annual average collective effective dose due to medical procedures was estimated to be 625.6 ± 110.9 manSv in 2011 and 565.1 ± 117.3 manSv in 2012, a reduction in comparison with 2010 (840.3 ± 183.8 manSv). The most frequent exams and the ones that contributed the most for total population dose were the cardiac and bone exams, although a decrease observed in 2011 and in 2012 was verified. The authors intend to perform this study periodically to identify trends in the annual Portuguese average effective dose and to help to raise awareness about the potential dose optimization. Copyright © 2014 Elsevier España, S.L.U. and SEMNIM. All rights reserved.

  5. Annual environmental monitoring report, January-December 1983

    International Nuclear Information System (INIS)

    1984-03-01

    Environmental monitoring results continue to demonstrate that environmental radiological impact due to SLAC operation is not easily distinguishable from natural environmental sources. During 1983, the maximum approximated neutron dose near the site boundary was 5 mrem. There have been no measurable increases in radioactivity in ground water attributable to SLAC operations since operation began in 1966. We have never found any evidence of radioactivity in ground water in excess of natural background radioactivity from uranium and thorium decay chains and potassium-40. Airborne radioactivity released from SLAC continues to make only a negligible environmental impact, and results in a site-boundary annual dose of less than 0.3 mrem; this represents less than 0.3% of the annual dose from the natural radiation environment, and about 0.06% of the technical standard. 8 references, 5 figures, 4 tables

  6. Estimates of effective dose in adult CT examinations

    International Nuclear Information System (INIS)

    Mohamed, Mustafa Awad Elhaj.

    2015-12-01

    The goal of study was to estimate effective dose (E) in adult CT examinations for Toshiba X64 slice using CT. Exp version 2.5 software in Sudan. Using of CT in medical diagnosis delivers radiation doses to patients that are higher than those from other radiological procedures. lack of optimized protocols could be an additional source of increased dose in developing countries. In order to achieve these objectives, data of CT-scanner has been collected from three hospitals ( ANH, ZSH and MMH). Data collected included equipment information and scan parameters for individual patients, who were used to asses. 300 adult patients underwent head, chest, abdomen-pelvis and peivis CT examinations. The CT1_w , CTD1_vol, DLP, patient effective dos and organ doses were estimated, using CT exposure parameters and CT Exp version 2.5 software. A large variation of mean effective dose and organ doses among hospitals was observed for similar CT examinations. These variations largely originated from different CT scanning protocols used in different hospitals and scan length. The mean effective dose in this study in the Brain, PNS, Chest, pulmonary, Abdomen-pelvis, Pelvis, KUB and CTU were 3.2 mSv, 2.6 mSv, 18.9 mSv 17.6 mSv 27.1 mSv, 11.2 mSv, 9.6 mSv and 23.7 mSv respectively, and organ equivalent, doses presented in this study in this study for the eye lens (for head), lungs and thymus ( for chest) , liver, kidney and small intest ( for abdomen t-pelvis), bladder, uterus and gonads ( for pelvis), were 62.9 mSv, 39.5 mSv, 34.1 mSv, 53.9 mSv, 52.6 mSv, 58.1 mSv, 37 mSv, and 34.6 mSv, respectively. These values were mostly comparable to and slightly higher than the values of effective doses reported from similar studies the United Kingdom, Tanzania, Australia, Canada and Sudan. It was concluded that patient effective dose and organ doses could be substantially minimized through careful selection of scanning parameters based on clinical indications of study, patient size, and body

  7. Comparative study of radiological impact of nuclear power plant and coal-fired power plant: estimation of radiation dose to public from nuclear power plant and coal-fired power plant generation

    International Nuclear Information System (INIS)

    Umbara, Heru; Yatim, Sofyan

    1998-01-01

    Radiation impact assessment of Nuclear Power Plant and Coal-Fired Power Plant in Muria Penninsula was carried out. The computation of radionuclide releases to the atmosphere subjects to gaussian plume model, on the other hand, the radionuclide transfer model between environmental compartment (pathway) follow concentration factor methods. Both models are compiled in GENII-The Hanford Environmental Radiation Dosimetry Software System, which is used in the assessment. Most of all input data for GENII package are site specific, such as meteorological data, stack flow, stack height, population, local consumption except the transfer factor data are taken from the GENII package. The results show that during operation of NPP the maximal exposed individual received annual effective dose 150 nSv at 300 -700 m from the site toward east otherwise in operation of CPP the maximal exposed individual received annual effective dose 410 nSv in the same distance and direction. Both results of the maximal exposed individual received annual effective dose about 0,003 % and 0,008 % of whole body annual dose limit for members of public for NPP and CPP. (author)

  8. Baseline studies of terrestrial outdoor gamma dose rate levels in Nigeria

    International Nuclear Information System (INIS)

    Farai, I.P.; Jibiri, N.N.

    2000-01-01

    The outdoor γ radiation exposure dose rates due to the radioactivity concentration of 40 K, 238 U and 232 Th in the soil across different environments in Nigeria have been carried out using the low-cost method of in situ γ ray spectrometry. Measurements were made in 18 cities, spread across the three major zones of the country. The radioactivity concentrations of these radionuclides in the soil were used to determine their γ radiation absorbed dose rates in the air. The range of average total dose rate due to the three radionuclides in the Eastern zone is between 0.025 and 0.081 μGy.h -1 with an average of 0.040 ± 0.006 μGy.h -1 , 0.041 and 0.214 μGy.h -1 with a mean of 0.089 ± 0.014 μGy.h -1 for the Western zone and between 0.066 and 0.222 μGy.h -1 with a mean of 0.102 ± 0.032 μGy.h -1 for the Northern zone. The average annual outdoor effective dose equivalents of 51 ± 8 μSv.y -1 , 114 ± 18 μSv.y -1 and 130 ± 41 μSv.y -1 have been estimated for the Eastern, Western and Northern zones, respectively. The average annual effective dose equivalent for the country has been estimated to be 98 ± 15 μSv.y -1 and the collective effective dose equivalent as 9.7 x 103 man.Sv.y -1 . Measurements have been taken as representing the baseline values of natural radioactivity as no artificial radionuclide was detected at any of the sites surveyed. (author)

  9. Maximum skin dose assessment in interventional cardiology: large area detectors and calculation methods

    International Nuclear Information System (INIS)

    Quail, E.; Petersol, A.

    2002-01-01

    Advances in imaging technology have facilitated the development of increasingly complex radiological procedures for interventional radiology. Such interventional procedures can involve significant patient exposure, although often represent alternatives to more hazardous surgery or are the sole method for treatment. Interventional radiology is already an established part of mainstream medicine and is likely to expand further with the continuing development and adoption of new procedures. Between all medical exposures, interventional radiology is first of the list of the more expansive radiological practice in terms of effective dose per examination with a mean value of 20 mSv. Currently interventional radiology contribute 4% to the annual collective dose, in spite of contributing to total annual frequency only 0.3% but considering the perspectives of this method can be expected a large expansion of this value. In IR procedures the potential for deterministic effects on the skin is a risk to be taken into account together with stochastic long term risk. Indeed, the International Commission on Radiological Protection (ICRP) in its publication No 85, affirms that the patient dose of priority concern is the absorbed dose in the area of skin that receives the maximum dose during an interventional procedure. For the mentioned reasons, in IR it is important to give to practitioners information on the dose received by the skin of the patient during the procedure. In this paper maximum local skin dose (MSD) is called the absorbed dose in the area of skin receiving the maximum dose during an interventional procedure

  10. Comparison of two dose and three dose human papillomavirus vaccine schedules: cost effectiveness analysis based on transmission model.

    Science.gov (United States)

    Jit, Mark; Brisson, Marc; Laprise, Jean-François; Choi, Yoon Hong

    2015-01-06

    To investigate the incremental cost effectiveness of two dose human papillomavirus vaccination and of additionally giving a third dose. Cost effectiveness study based on a transmission dynamic model of human papillomavirus vaccination. Two dose schedules for bivalent or quadrivalent human papillomavirus vaccines were assumed to provide 10, 20, or 30 years' vaccine type protection and cross protection or lifelong vaccine type protection without cross protection. Three dose schedules were assumed to give lifelong vaccine type and cross protection. United Kingdom. Males and females aged 12-74 years. No, two, or three doses of human papillomavirus vaccine given routinely to 12 year old girls, with an initial catch-up campaign to 18 years. Costs (from the healthcare provider's perspective), health related utilities, and incremental cost effectiveness ratios. Giving at least two doses of vaccine seems to be highly cost effective across the entire range of scenarios considered at the quadrivalent vaccine list price of £86.50 (€109.23; $136.00) per dose. If two doses give only 10 years' protection but adding a third dose extends this to lifetime protection, then the third dose also seems to be cost effective at £86.50 per dose (median incremental cost effectiveness ratio £17,000, interquartile range £11,700-£25,800). If two doses protect for more than 20 years, then the third dose will have to be priced substantially lower (median threshold price £31, interquartile range £28-£35) to be cost effective. Results are similar for a bivalent vaccine priced at £80.50 per dose and when the same scenarios are explored by parameterising a Canadian model (HPV-ADVISE) with economic data from the United Kingdom. Two dose human papillomavirus vaccine schedules are likely to be the most cost effective option provided protection lasts for at least 20 years. As the precise duration of two dose schedules may not be known for decades, cohorts given two doses should be closely

  11. Low dose radiation enhance the anti-tumor effect of high dose radiation on human glioma cell U251

    International Nuclear Information System (INIS)

    Wang Chang; Wang Guanjun; Tan Yehui; Jiang Hongyu; Li Wei

    2008-01-01

    Objective: To detect the effect on the growth of human glioma cell U251 induced by low dose irradiation and low dose irradiation combined with large dose irradiation. Methods: Human glioma cell line U251 and nude mice carried with human glioma were used. The tumor cells and the mice were treated with low dose, high dose, and low dose combined high dose radiation. Cells growth curve, MTT and flow cytometry were used to detect the proliferation, cell cycle and apoptosis of the cells; and the tumor inhibition rate was used to assess the growth of tumor in vivo. Results: After low dose irradiation, there was no difference between experimental group and control group in cell count, MTT and flow cytometry. Single high dose group and low dose combined high dose group both show significantly the suppressing effect on tumor cells, the apoptosis increased and there was cell cycle blocked in G 2 period, but there was no difference between two groups. In vivo apparent anti-tumor effect in high dose radiation group and the combining group was observed, and that was more significant in the combining group; the prior low dose radiation alleviated the injury of hematological system. There was no difference between single low dose radiation group and control. Conclusions: There is no significant effect on human glioma cell induced by low dose radiation, and low dose radiation could not induce adaptive response. But in vivo experience, low dose radiation could enhance the anti-tumor effect of high dose radiation and alleviated the injury of hematological system. (authors)

  12. Trends in population dose and examples of occupational dose reduction

    International Nuclear Information System (INIS)

    Shaw, K.B.; Hughes, J.S.; McDonough, L.; Gelder, R.

    1989-01-01

    The recent review by NRPB of the exposure of the UK population shows the average annual dose to the population from all sources of radiation to be 2.5 mSv(1). Natural radiation gives rise to 87% of this with radon daughters accounting for the largest single contribution of 1.2 mSv. Medical irradiation remains the most significant contributor to the dose from man-made sources: the current estimate for all diagnostic uses is 0.3 mSv per annum. (author)

  13. Annual report on radioactive discharges and monitoring of the environment 1991. V. 1

    International Nuclear Information System (INIS)

    1992-01-01

    This Annual Report supplements and updates British Nuclear Fuel plc's Health and Safety and the Environment Annual Report by providing more detailed information on radioactive discharges, monitoring of the environment and critical groups doses. BNFL has published Annual Reports on Radioactive Discharges and Monitoring of the Environment since 1977. This year the report is again sub-divided into two complementary volumes. Volume I includes, for each of the Company's sites, annual data on radioactive discharges into the environment and the associated environmental monitoring programmes. Critical groups doses for each site are presented in summary tables at the beginning of each chapter. (author)

  14. Annual effective dose equivalents arising from inhalation of 222Rn, 220Rn and their decay products in high background radiation area in China

    International Nuclear Information System (INIS)

    Zhang Zhonghou

    1985-01-01

    The author presents the data of on-the-sport investigations in the high background radiation area in Yangjiang County in 1975 and 1981. Monazite sand is contained in the soil of this area. The average concentrations of 222 Rn in the air indoors and out doors of the high background radiation area are 31.8 and 16.4 Bqm -3 respectively, which are equal to 2.9 and 1.5 times the average concentrations in the control area. The average concentrations of 220 Rn in the air indoors and outdoors of the high background area are 167.5 and 18.4 Bqm -3 , corresponding to 9.6 and 4.8 times those of the control area respectively. The average potential alpha energy concentrations for daughters of 222 Rn indoors and outdoors are 0.1 and 0.097 μJm -3 , which are equal to 2.6 and 2.2 times those of the control are respectively. The average potential alpha energy concentrations for daughters of 220 Rn indoors and outdoors are 0.255 and 0.053 μJm -3 , corresponding to 3.7 and 2.7 times those of the control area respectively. The average annual effective dose equivalents arising from inhalation of 222 Rn, 220 Rn and their decay products in high background radiation area are estimated to be 2.8 mSv per caput, in which 40.5% arise from 220 Rn and its decay products. This result is about 3 times that in the neighboring control area

  15. A PC program for estimating organ dose and effective dose values in computed tomography

    International Nuclear Information System (INIS)

    Kalender, W.A.; Schmidt, B.; Schmidt, M.; Zankl, M.

    1999-01-01

    Dose values in CT are specified by the manufacturers for all CT systems and operating conditions in phantoms. It is not trivial, however, to derive dose values in patients from this information. Therefore, we have developed a PC-based program which calculates organ dose and effective dose values for arbitrary scan parameters and anatomical ranges. Values for primary radiation are derived from measurements or manufacturer specifications; values for scattered radiation are derived from Monte Carlo calculations tabulated for standard anthropomorphic phantoms. Based on these values, organ doses can be computed by the program for arbitrary scan protocols in conventional and in spiral CT. Effective dose values are also provided, both with ICRP 26 and ICRP 60 tissue-weighting coefficients. Results for several standard CT protocols are presented in tabular form in this paper. In addition, potential for dose reduction is demonstrated, for example, in spiral CT and in quantitative CT. Providing realistic patient dose estimates for arbitrary CT protocols is relevant both for the physician and the patient, and it is particularly useful for educational and training purposes. The program, called WinDose, is now in use at the Erlangen University hospitals (Germany) as an information tool for radiologists and patients. Further extensions are planned. (orig.)

  16. Absorbed dose thresholds and absorbed dose rate limitations for studies of electron radiation effects on polyetherimides

    Science.gov (United States)

    Long, Edward R., Jr.; Long, Sheila Ann T.; Gray, Stephanie L.; Collins, William D.

    1989-01-01

    The threshold values of total absorbed dose for causing changes in tensile properties of a polyetherimide film and the limitations of the absorbed dose rate for accelerated-exposure evaluation of the effects of electron radiation in geosynchronous orbit were studied. Total absorbed doses from 1 kGy to 100 MGy and absorbed dose rates from 0.01 MGy/hr to 100 MGy/hr were investigated, where 1 Gy equals 100 rads. Total doses less than 2.5 MGy did not significantly change the tensile properties of the film whereas doses higher than 2.5 MGy significantly reduced elongation-to-failure. There was no measurable effect of the dose rate on the tensile properties for accelerated electron exposures.

  17. Hanford Dose Overview Program. Comparison of AIRDOS-EPA and Hanford site dose codes

    International Nuclear Information System (INIS)

    Aaberg, R.L.; Napier, B.A.

    1985-11-01

    Radiation dose commitments for persons in the Hanford environs calculated using AIRDOS-EPA were compared with those calculated using a suite of Hanford codes: FOOD, PABLM, DACRIN, and KRONIC. Dose commitments to the population and to the maximally exposed individual (MI) based on annual releases of eight radionuclides from the N-Reactor, were calculated by these codes. Dose commitments from each pathway to the total body, lung, thyroid, and lower large intestine (LLI) are given for the population and MI, respectively. 11 refs., 25 tabs

  18. Towards a new dose and dose-rate effectiveness factor (DDREF)? Some comments.

    Science.gov (United States)

    Chadwick, K H

    2017-06-26

    The aim of this article is to offer a broader, mechanism-based, analytical tool than that used by (Rühm et al 2016 Ann. ICRP 45 262-79) for the interpretation of cancer induction relationships. The article explains the limitations of this broader analytical tool and the implications of its use in view of the publications by Leuraud et al 2015 (Lancet Haematol. 2 e276-81) and Richardson et al 2015 (Br. Med. J. 351 h5359). The publication by Rühm et al 2016 (Ann. ICRP 45 262-79), which is clearly work in progress, reviews the current status of the dose and dose-rate effectiveness factor (DDREF) as recommended by the ICRP. It also considers the issues which might influence a reassessment of both the value of the DDREF as well as its application in radiological protection. In this article, the problem is approached from a different perspective and starts by commenting on the limited scientific data used by Rühm et al 2016 (Ann. ICRP 45 262-79) to develop their analysis which ultimately leads them to use a linear-quadratic dose effect relationship to fit solid cancer mortality data from the Japanese life span study of atomic bomb survivors. The approach taken here includes more data on the induction of DNA double strand breaks and, using experimental data taken from the literature, directly relates the breaks to cell killing, chromosomal aberrations and somatic mutations. The relationships are expanded to describe the induction of cancer as arising from radiation induced cytological damage coupled to cell killing since the cancer mutated cell has to survive to express its malignant nature. Equations are derived for the induction of cancer after both acute and chronic exposure to sparsely ionising radiation. The equations are fitted to the induction of cancer in mice to illustrate a dose effect relationship over the total dose range. The 'DDREF' derived from the two equations varies with dose and the DDREF concept is called into question. Although the equation for

  19. Biological effective dose studies in carcinoma of uterine cervix

    International Nuclear Information System (INIS)

    Yadav, Poonam; Ramasubramanian, V.

    2008-01-01

    Cancer of cervix is the second most common cancer worldwide among women. Several treatments related protocols of radiotherapy have been followed over few decades in its treatment for evaluating the response. These physical doses varying on the basics of fractionation size, dose rate and total dose needed to be indicated as biological effective dose (BED) to rationalize these treatments. The curative potential of radiation therapy in the management of carcinoma of the cervix is greatly enhanced by the use of intracavitary brachytherapy. Successful brachytherapy requires the high radiation dose to be delivered to the tumor where as minimum radiation dose reach to surrounding normal tissue. Present study is aimed to evaluate biologically effective dose in patients receiving high dose-rate brachytherapy plus external beam radiotherapy based on tumor cell proliferation values in cancer of the cervix patients. The study includes 30 patients' data as a retrospective analysis. In addition determine extent of a dose-response relationship existing between the biological effective dose at Point A and the bladder and rectum and the clinical outcomes

  20. Biological effects of low-dose ionizing radiation exposure

    International Nuclear Information System (INIS)

    Reinoehl-Kompa, Sabine; Baldauf, Daniela; Heller, Horst

    2009-01-01

    The report on the meeting of the Strahlenschutzkommission 2007 concerning biological effects of low-dose ionizing radiation exposure includes the following contributions: Adaptive response. The importance of DNA damage mechanisms for the biological efficiency of low-energy photons. Radiation effects in mammography: the relative biological radiation effects of low-energy photons. Radiation-induced cataracts. Carcinomas following prenatal radiation exposure. Intercellular apoptosis induction and low-dose irradiation: possible consequences for the oncogenesis control. Mechanistic models for the carcinogenesis with radiation-induced cell inactivation: application to all solid tumors in the Japanese atomic bomb survivors. Microarrays at low radiation doses. Mouse models for the analysis of biological effects of low-dose ionizing radiation. The bystander effect: observations, mechanisms and implications. Lung carcinoma risk of Majak workers - modeling of carcinogenesis and the bystander effect. Microbeam studies in radiation biology - an overview. Carcinogenesis models with radiation-induced genomic instability. Application to two epidemiological cohorts.

  1. Determination of effective dose of antimalarial from Cassia ...

    African Journals Online (AJOL)

    However, further investigation is required to determine an effective dose of the administered extract for a higher inhibitory effect and increasing effectiveness of the extract. Material and Methods: To determine the effective dose of ethanol extract of C. spectabilis leaves, a "4-day suppressive test"of Peter was performed with ...

  2. Dose-rate effects in external beam radiotherapy redux

    International Nuclear Information System (INIS)

    Ling, C. Clifton; Gerweck, Leo E.; Zaider, Marco; Yorke, Ellen

    2010-01-01

    Recent developments in external beam radiotherapy, both in technical advances and in clinical approaches, have prompted renewed discussions on the potential influence of dose-rate on radio-response in certain treatment scenarios. We consider the multiple factors that influence the dose-rate effect, e.g. radical recombination, the kinetics of sublethal damage repair for tumors and normal tissues, the difference in α/β ratio for early and late reacting tissues, and perform a comprehensive literature review. Based on radiobiological considerations and the linear-quadratic (LQ) model we estimate the influence of overall treatment time on radio-response for specific clinical situations. As the influence of dose-rate applies to both the tumor and normal tissues, in oligo-fractionated treatment using large doses per fraction, the influence of delivery prolongation is likely important, with late reacting normal tissues being generally more sensitive to the dose-rate effect than tumors and early reacting tissues. In conventional fractionated treatment using 1.8-2 Gy per fraction and treatment times of 2-10 min, the influence of dose-rate is relatively small. Lastly, the dose-rate effect in external beam radiotherapy is governed by the overall beam-on-time, not by the average linac dose-rate, nor by the instantaneous dose-rate within individual linac pulses which could be as high as 3 x 10 6 MU/min.

  3. Annual report on occupational safety 1983

    International Nuclear Information System (INIS)

    1984-08-01

    The 1983 Annual Report on occupational safety at BNFL is presented. Data for whole-body radiation doses and skin and extremity doses are given for BNFL employees together with 1982 data for comparison. Similarly, accidental deaths and major injuries are recorded. Finally information on the frequency of both nuclear and non-nuclear incidents reported to the Health and Safety Executive is given. (U.K.)

  4. Health effects of low dose exposures to external ionizing radiation in the French cohort of nuclear workers CEA-AREVA-EDF - 5287

    International Nuclear Information System (INIS)

    Leuraud, K.; Fournier, L.; Samson, E.; Caer-Lorho, S.; Laurier, D.; Laroche, P.; Le Guen, B.

    2015-01-01

    Populations of nuclear workers are particularly relevant to study health effects of low dose and low dose-rate exposures to ionizing radiation. In France, a cohort of nuclear workers employed by CEA, AREVA NC, or EDF, and badge-monitored for radiation exposure, has been followed-up. Annual exposure to penetrating photons was reconstructed for each worker. Standardized mortality ratios were calculated using national mortality rates as the reference. Estimates of radiation dose-mortality associations were obtained using a linear excess relative risk (ERR) model. A total of 59,004 workers were followed-up between 1968 and 2004, for an average of 25 years. The mean cumulative photons dose was 16.1 mSv. At the end of the follow-up, workers were 56 years old and 6,310 workers had died. A strong healthy worker effect was observed. Positive but imprecise estimates of ERR/Sv were observed for all solid cancers and leukemia excluding chronic lymphocytic leukemia. A significant ERR/Sv was found for myeloid leukemia. This cohort study is the most informative ever conducted in France among nuclear workers. Results confirmed a healthy worker effect due to selection at hiring and health monitoring from occupational medicine. Observed dose-risk relationships were consistent with risks estimated in other studies, even if they remained associated to a large uncertainty. (authors)

  5. Effective dose for patient in multimode panoramic radiography

    International Nuclear Information System (INIS)

    Yasaki, Shiro; Daibo, Motoji

    1999-01-01

    In recent years, multimode panoramic radiography has had various functions, such as the auto exposure function, auto focus function (auto function), TMJ radiography and tomogram radiography functions. The purpose of this study was to estimate the effective dose for patients in each mode of the new multimode panoramic radiography (J. MORITA MFG. CORP. Dental Panorama X-ray Apparatus: Veraview Scope X 600). The absorbed doses in important organs involved in the causation of stochastic effects were measured by a thermoluminescent dosimeter using RANDO phantom. The effective doses were calculated using modified tissue weighting factors recommended by the International Commission on Radiological Protection (ICRP) in 1999. The mean field size over skin in typical panoramic and tomographic examinations was about 3% and 0.4% of the total body surface area of 15000 cm 2 . Assuming that the incidence of skin cancer is proportional to the area of skin exposed to ionizing radiation, the tissue weighting factor of skin can be estimated to be about 0.0003 and 0.00004. The estimate in effective dose was lower (5.3 μSv) in the panoramic auto function mode (an average exposure condition of 69 kV 7 mA) than that (6.5-13.8 μSv) in the linear tomogram modes. Since the linear tomogram mode requires a scout view, such as standard panoramic radiography, the dose in the linear tomogram mode becomes higher than other modes. A percentage of gonad doses in effective doses was negligible. (author)

  6. Application of the ELDO approach to assess cumulative eye lens doses for interventional cardiologists

    International Nuclear Information System (INIS)

    Farah, J.; Jacob, S.; Clairand, I.; Struelens, L.; Vanhavere, F.; Auvinen, A.; Koukorava, C.; Schnelzer, M.

    2015-01-01

    In preparation of a large European epidemiological study on the relation between eye lens dose and the occurrence of lens opacities, the European ELDO project focused on the development of practical methods to estimate retrospectively cumulative eye lens dose for interventional medical professionals exposed to radiation. The present paper applies one of the ELDO approaches, correlating eye lens dose to whole-body doses, to assess cumulative eye lens dose for 14 different Finnish interventional cardiologists for whom annual whole-body dose records were available for their entire working period. The estimated cumulative left and right eye lens dose ranged from 8 to 264 mSv and 6 to 225 mSv, respectively. In addition, calculations showed annual eye lens doses sometimes exceeding the new ICRP annual limit of 20 mSv. The work also highlights the large uncertainties associated with the application of such an approach proving the need for dedicated dosimetry systems in the routine monitoring of the eye lens dose. (authors)

  7. Effective dose to patients from thoracic spine examinations with tomosynthesis

    International Nuclear Information System (INIS)

    Svalkvist, Angelica; Baath, Magnus; Soederman, Christina

    2016-01-01

    The purposes of the present work were to calculate the average effective dose to patients from lateral tomosynthesis examinations of the thoracic spine, compare the results with the corresponding conventional examination and to determine a conversion factor between dose-area product (DAP) and effective dose for the tomosynthesis examination. Thoracic spine examinations from 17 patients were included in the study. The registered DAP and information about the field size for each projection radiograph were, together with patient height and mass, used to calculate the effective dose for each projection radiograph. The total effective doses for the tomosynthesis examinations were obtained by adding the effective doses from the 60 projection radiographs included in the examination. The mean effective dose was 0.47 mSv (range 0.24-0.81 mSv) for the tomosynthesis examinations and 0.20 mSv (range 0.07-0.29 mSv) for the corresponding conventional examinations (anteroposterior + left lateral projection). For the tomosynthesis examinations, a conversion factor between total DAP and effective dose of 0.092 mSv Gycm -2 was obtained. (authors)

  8. Single event effects and total ionizing dose effects of typical VDMOSFET devices

    International Nuclear Information System (INIS)

    Lou Jianshe; Cai Nan; Liu Jiaxin; Wu Qinzhi; Wang Jia

    2012-01-01

    In this work, single event effects and total ionizing dose effects of typical VDMOSFET irradiated by 60 Co γ-rays and 252 Cf source were studied. The single event burnout and single event gate rupture (SEB/SEGR) effects were investigated, and the relationship between drain-source breakdown voltage and ionizing dose was obtained. The results showed that the VDMOSFET devices were sensitive to SEB and SEGR, and measures to improve their resistance to SEB and SEGR should be considered seriously for their space applications. The drain-source breakdown voltage was sensitive to total ionizing dose effects as the threshold voltage. In assessing the devices' resistance to the total ionizing dose effects, both the threshold voltage and the drain-source breakdown voltage should be taken into account. (authors)

  9. Estimation of the Radon-induced Dose for Russia's Population: Methods and Results

    International Nuclear Information System (INIS)

    Marenny, A.M.; Savkin, M.N.; Shinkarev, S.M.

    2000-01-01

    A model is proposed for inferring the radon-induced annual average collective and personal doses, as well as the dose distribution of the population, all over Russia from selective radon monitoring in some regions of Russia. The model assumptions and the selective radon monitoring results that underlie the numerical estimates obtained for different population groups are presented. The current estimate of the collective radon-induced dose received by the population of Russia (148,100,000 as of 1996) is about 130,000 man Sv, of which 55,000 man Sv is for the rural population (27% of the total population) and 75,000 man Sv for the urban population (73% of the total). The average radon-induced personal dose in Russia is estimated to be about 0.87 mSv. About 1,000,000 people receive annual doses above 10 mSv, including some 200,000 people who receive doses above 20 mSv annually. The ways of making the current estimates more accurate are outlined. (author)

  10. Estimates of the radiation dose from phospho-gypsum plaster-board if used in domestic buildings

    International Nuclear Information System (INIS)

    O'Brien, R.S.; Peggie, J.R.; Leith, I.S.

    1991-02-01

    This report presents the results of a study carried out to estimate the annual effective dose equivalent contribution from phospho-gypsum plaster-board if it were used as an internal lining in buildings. The study considered four sources of radiation exposure that would arise in such use, such as inhalation of 222 Rn and its daughters, inhalation of phospho-gypsum dust and exposure to beta and gamma radiation. Measurements of the 22 6Ra content and 222 Rn exhalation rate were made for a number of samples of phospho-gypsum plaster-board, and the behaviour of 222 Rn and its daughters in a typical building was modelled. The results of the study suggest that, for building ventilation rates greater than approximately 0.5 air changes per hour, the contribution to the total annual effective dose equivalent from inhalation of radon ( 222 Rn) and its daughters ( 218 Po, 214 Pb, 214 Po) exhaled from the phospho-gypsum plaster-board should be well below the recommended limit of 1 milli-Sievert for members of the public. The total annual effective dose equivalent from all these sources should be less than 0.6 milli-Sieverts, provided reasonable work practices are observed during installation of the phospho-gypsum plaster-board and the ventilation rate is kept above approximately 0.5 air changes per hour. 31 refs., 12 tabs., 5 figs

  11. Effective dose from direct and indirect digital panoramic units

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gun Sun; Kim, Jin Soo; Seo, Yo Seob; Kim, Jae Duk [School of Dentistry, Oral Biology Research Institute, Chosun University, Gwangju (Korea, Republic of)

    2013-06-15

    This study aimed to provide comparative measurements of the effective dose from direct and indirect digital panoramic units according to phantoms and exposure parameters. Dose measurements were carried out using a head phantom representing an average man (175 cm tall, 73.5 kg male) and a limbless whole body phantom representing an average woman (155 cm tall, 50 kg female). Lithium fluoride thermoluminescent dosimeter (TLD) chips were used for the dosimeter. Two direct and 2 indirect digital panoramic units were evaluated in this study. Effective doses were derived using 2007 International Commission on Radiological Protection (ICRP) recommendations. The effective doses of the 4 digital panoramic units ranged between 8.9 {mu}Sv and 37.8 {mu}Sv. By using the head phantom, the effective doses from the direct digital panoramic units (37.8 {mu}Sv, 27.6 {mu}Sv) were higher than those from the indirect units (8.9 {mu}Sv, 15.9 {mu}Sv). The same panoramic unit showed the difference in effective doses according to the gender of the phantom, numbers and locations of TLDs, and kVp. To reasonably assess the radiation risk from various dental radiographic units, the effective doses should be obtained with the same numbers and locations of TLDs, and with standard hospital exposure. After that, it is necessary to survey the effective doses from various dental radiographic units according to the gender with the corresponding phantom.

  12. Final report of evaluation of dose and measurement of radon concentration

    International Nuclear Information System (INIS)

    1998-03-01

    A mean annual exposure to radon daughters in indoor air was estimated on the basis of measurement of radon concentration in indoor air in Japan from fiscal 1992 to 1996. Doses were estimated by UNSCEAR method. The representative values in this report show the mean values in whole Japan. Each dose in the local area was different reflecting the different concentration of radon daughters. However, the same parameters were used in each area. When mean annual dose of radon daughters was estimated, we used 15.5 Bq m -3 mean annual exposure to radon daughters in indoor air, 5 Bq m -3 that in outdoor air, 0.4 the equilibrium factor indoor, 0.6 the equilibrium factor outdoor and 0.9 of P. The model of UNSCEAR based on these above values gave 0.46 mSv y -1 mean annual dose of radon daughters which were consisted of from 0.38 mSv y -1 in Kanto district to 0.52 mSv y -1 Kyushu, Okinawa district. (S.Y.)

  13. Final report of evaluation of dose and measurement of radon concentration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    A mean annual exposure to radon daughters in indoor air was estimated on the basis of measurement of radon concentration in indoor air in Japan from fiscal 1992 to 1996. Doses were estimated by UNSCEAR method. The representative values in this report show the mean values in whole Japan. Each dose in the local area was different reflecting the different concentration of radon daughters. However, the same parameters were used in each area. When mean annual dose of radon daughters was estimated, we used 15.5 Bq m{sup -3} mean annual exposure to radon daughters in indoor air, 5 Bq m{sup -3} that in outdoor air, 0.4 the equilibrium factor indoor, 0.6 the equilibrium factor outdoor and 0.9 of P. The model of UNSCEAR based on these above values gave 0.46 mSv y{sup -1} mean annual dose of radon daughters which were consisted of from 0.38 mSv y{sup -1} in Kanto district to 0.52 mSv y{sup -1} Kyushu, Okinawa district. (S.Y.)

  14. Dose-rate effects on mammalian cells exposed to ionizing radiation

    International Nuclear Information System (INIS)

    Mitchell, J.B.

    1978-01-01

    The effect of irradiation on the life cycle and on cell survival was studied for a range of different dose rates. Log phase, plateau phase and synchronized cultures of different mammalian cells were used. Cell cycle redistribution during the radiation exposure was found to be a very important factor in determining the overall dose-rate effect for log phase and synchronized cells. In fact, cell cycle redistribution during the exposure, in some instances, resulted in a lower dose rate being more effective in cell killing per unit dose than a higher dose rate. For plateau phase cultures, where cell cycle times are greatly lengthened, the effects of redistribution in regard to cell killing was virtually eliminated. Both fed and unfed plateau phase cultures exhibited a dose-rate effect, but it was found that below dose rates of 154 rad/h there is no further loss in effectiveness

  15. Dose Rate Effects in Linear Bipolar Transistors

    Science.gov (United States)

    Johnston, Allan; Swimm, Randall; Harris, R. D.; Thorbourn, Dennis

    2011-01-01

    Dose rate effects are examined in linear bipolar transistors at high and low dose rates. At high dose rates, approximately 50% of the damage anneals at room temperature, even though these devices exhibit enhanced damage at low dose rate. The unexpected recovery of a significant fraction of the damage after tests at high dose rate requires changes in existing test standards. Tests at low temperature with a one-second radiation pulse width show that damage continues to increase for more than 3000 seconds afterward, consistent with predictions of the CTRW model for oxides with a thickness of 700 nm.

  16. Estimation of effective dose equivalente from external irradiations

    International Nuclear Information System (INIS)

    Wakabayashi, T.

    1985-07-01

    A methodology for computing effective dose equivalent, derived from the computer code ALGAM: Monte Carlo Estimation of Internal Dose from Gamma-ray Sources in a Phantom Man, developed at Oak Ridge National Laboratory, is presented. The modified code was run for 12 different photon energy levels, from 0,010 Mev to 4.0 Mev, which provides computing the absorved dose, for these energy levels, in each one of the 97 organs of the original code. The code also was run for the principal energy levels used in the calibration of the dosimetric films. The results of the absorved doses per photon obtained for these levels of energy have been transformed in effective dose equivalents. (M.A.C.) [pt

  17. Implications of effects ''adaptive response'', ''low-dose hypersensitivity'' und ''bystander effect'' for cancer risk at low doses and low dose rates

    International Nuclear Information System (INIS)

    Jacob, P

    2006-01-01

    A model for carcinogenesis (the TSCE model) was applied in order to examine the effects of ''Low-dose hypersensitivity (LDH)'' and the ''Bystander effect (BE)'' on the derivation of radiation related cancer mortality risks. LDH has been discovered to occur in the inactivation of cells after acute exposure to low LET radiation. A corresponding version of the TSCE model was applied to the mortality data on the Abomb survivors from Hiroshima and Nagasaki. The BE has been mainly observed in cells after exposure to high LET radiation. A Version of the TSCE model which included the BE was applied to the data on lung cancer mortality from the workers at the Mayak nuclear facilities who were exposed to Plutonium. In general an equally good description of the A-bomb survivor mortality data (for all solid, stomach and lung tumours) was found for the TSCE model and the (conventional) empirical models but fewer parameters were necessary for the TSCE model. The TSCE model which included the effects of radiation induced cell killing resulted in non-linear dose response curves with excess relative risks after exposure at young ages that were generally lower than in the models without cell killing. The main results from TSCE models which included cell killing described by either conventional survival curves or LDH were very similar. A sub multiplicative effect from the interaction of smoking and exposure to plutonium was found to result from the analysis of the Mayak lung cancer mortality data. All models examined resulted in the predominant number of Mayak lung cancer deaths being ascribed to smoking. The interaction between smoking and plutonium exposures was found to be the second largest effect. The TSCE model resulted in lower estimates for the lung cancer excess relative risk per unit plutonium dose than the empirical risk model, but this difference was not found to be statistically significant. The excess relative risk dose responses were linear in the empirical model and

  18. Proposition for restriction dose levels for occupational exposition in medical practices; Propuesta de niveles de restriccion de dosis para la exposicion ocupacional en las practicas medicas

    Energy Technology Data Exchange (ETDEWEB)

    Callis, Ernesto; Cornejo, Nestor; Lopez, Gladys; Capote, Eduardo; Diaz Bernal, Efren [Centro de Proteccion y Higiene de las Radiaciones, La Habana (Cuba)]. E-mail: ernesto@cphr.edu.cu; Domenech, Haydee

    2001-07-01

    A study was carried out in order to propose restriction levels for occupational exposures in nuclear medicine and teletherapy. The initial data were the annual doses of occupational exposed workers reported by external dosimetry of 23 institutions since 1990 to 1999, which were analyzed by statistical processing to obtain the variation ranges of this magnitude. Dose values corresponding to the 75-percentile were then considered in this study. Simultaneously, a model of the exposure scenarios was used for the estimation of the annual effective doses, this estimation was supported with measurements of dose rates carried out in the institutions. The restriction levels were obtained by multiplying the sum of the annual doses (normal and potential) by a reserve coefficient defined in the present work. The determined restriction levels are in the range of those obtained by other similar studies. (author)

  19. Application of atomic energy in agriculture. Annual report, 1975

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    Activities over the year 1975 are reviewed in the annual report for the entire research programme comprising: primary radiation effects in inert and biological material, dose fractionation effect in Saintpaulia, adventitious bud technique in mutation breeding, mutation research in potatoes, protein improvements in peas and maize, disease resistance in tomatoes, pepper, wheat and barley, food preservation, radiation genetics of insect pests, genetics of higher plants, soil-plant studies, element behaviour in the soil and water environment, heavy metals in plants and soils, development of methods and instruments.

  20. Application of atomic energy in agriculture (Annual Report 1974)

    International Nuclear Information System (INIS)

    1975-01-01

    Activities and results over the year 1974 are reviewed in the annual report for the entire research programme comprising: lyoluminescence, perspex dosemeters, primary radiation effects in biological materials, dose fractionation effect in Saintpaulia, adventitious bud technique in mutation breeding, mutation research in potatoes, protein improvement in peas, disease resistance in tomatoes, wheat, peas and barley, food preservation, genetic pest control, genetics of higher plants, soil-plant studies, element behaviour in soils and groundwater, heavy metals in plants, liquid waste reuse after irradiation, development of methods and instruments

  1. Application of atomic energy in agriculture, annual report 1975

    International Nuclear Information System (INIS)

    1976-01-01

    Activities over the year 1975 are reviewed in the annual report for the entire research programme comprising: primary radiation effects in inert and biological material, dose fractionation effect in Saintpaulia, adventitious bud technique in mutation breeding, mutation research in potatoes, protein improvements in peas and maize, disease resistance in tomatoes, pepper, wheat and barley, food preservation, radiation genetics of insect pests, genetics of higher plants, soil-plant studies, element behaviour in the soil and water environment, heavy metals in plants and soils, development of methods and instruments

  2. Occupational radiation doses among diagnostic radiation workers in South Korea, 1996-2006

    International Nuclear Information System (INIS)

    Lee, W. J.; Cha, E. S.; Ha, M.; Jin, Y. W.; Hwang, S. S.; Kong, K. A.; Lee, S. W.; Lee, H. K.; Lee, K. Y.; Kim, H. J.

    2009-01-01

    This study details the distribution and trends of doses of occupational radiation among diagnostic radiation workers by using the national dose registry between 1996 and 2006 by the Korea Food and Drug Administration. Dose measurements were collected quarterly by the use of thermoluminescent dosemeter personal monitors. A total of 61 732 workers were monitored, including 18 376 radiologic technologists (30%), 13 762 physicians (22%), 9858 dentists (16%) and 6114 dental hygienists (9.9%). The average annual effective doses of all monitored workers decreased from 1.75 to 0.80 mSv over the study period. Among all diagnostic radiation workers, radiologic technologists received both the highest effective and collective doses. Male radiologic technologists aged 30-49 y composed the majority of workers receiving more than 5 mSv in a quarter. More intensive monitoring of occupational radiation exposure and investigation into its health effects on diagnostic radiation workers are required in South Korea. (authors)

  3. Estimating effective doses to children from CT examinations

    International Nuclear Information System (INIS)

    Heron, J.C.L.

    2000-01-01

    Full text: Assessing doses to patients in diagnostic radiology is an integral part of implementing optimisation of radiation protection. Sources of normalised data are available for estimating doses to adults undergoing CT examinations, but for children this is not the case. This paper describes a simple method for estimating effective doses arising from paediatric CT examinations. First the effective dose to an adult is calculated, having anatomically matched the scanned regions of the child and the adult and also matched the irradiation conditions. A conversion factor is then applied to the adult effective dose, based on the region of the body being scanned - head, upper or lower trunk. This conversion factor is the child-to-adult ratio of the ratios of effective dose per entrance air kerma (in the absence of the patient) at the FAD. The values of these conversion factors were calculated by deriving effective dose per entrance air kerma at the FAD for new-born, 1, 5, 10, 15 and adult phantoms using four projections (AP, PA, left and right laterals) over a range of beam qualities and FADs.The program PCXMC was used for this purpose. Results to date suggest that the conversion factors to give effective doses for children undergoing CT examinations of the upper trunk are approximately 1.3, 1.2, 1.15, 1.1 and 1.05 for ages 0, 1, 5, 10 and 15 years respectively; CT of the lower trunk - 1.4, 1.3, 1.2, 1.2, 1.1; and CT of the head - 2.3, 2.0, 1.5, 1.3, 1.1. The dependence of these factors on beam quality (HVL from 4 to 10 mm Al) is less than 10%, with harder beams resulting in slightly smaller conversion factors. Dependence on FAD is also less than 10%. Major sources of uncertainties in the conversion factors include matching anatomical regions across the phantoms, and the presence of beam divergence in the z-direction when deriving the factors. The method described provides a simple means of estimating effective doses arising from paediatric CT examinations with

  4. Medical and occupational dose reduction in pediatric barium meal procedures

    Science.gov (United States)

    Filipov, D.; Schelin, H. R.; Denyak, V.; Paschuk, S. A.; Ledesma, J. A.; Legnani, A.; Bunick, A. P.; Sauzen, J.; Yagui, A.; Vosiak, P.

    2017-11-01

    Doses received in pediatric Barium Meal procedure can be rather high. It is possible to reduce dose values following the recommendations of the European Communities (EC) and the International Commission on Radiological Protection (ICRP). In the present work, the modifications of radiographic techniques made in a Brazilian hospital according to the EC and the ICRP recommendations and their influence on medical and occupational exposure are reported. The procedures of 49 patients before and 44 after the optimization were studied and air kerma-area product (PK,A) values and the effective doses were evaluated. The occupational equivalent doses were measured next to the eyes, under the thyroid shield and on each hand of both professionals who remained inside the examination room. The implemented modifications reduced by 70% and 60% the PK,A and the patient effective dose, respectively. The obtained dose values are lower than approximately 75% of the results from similar studies. The occupational annual equivalent doses for all studied organs became lower than the limits set by the ICRP. The equivalent doses in one examination were on average below than 75% of similar studies.

  5. Radon dose assessment in underground mines in Brazil

    International Nuclear Information System (INIS)

    Santos, T.O.; Rocha, Z.; Cruz, P.; Gouvea, V.A.; Siqueira, J.B.; Oliveira, A.H.

    2014-01-01

    Underground miners are internally exposed to radon, thoron and their short-lived decay products during the mineral processing. There is also an external exposure due to the gamma emitters present in the rock and dust of the mine. However, the short-lived radon decay products are recognised as the main radiation health risk. When inhaled, they are deposited in the respiratory system and may cause lung cancer. To address this concern, concentration measurements of radon and its progeny were performed, the equilibrium factor was determined and the effective dose received was estimated in six Brazilian underground mines. The radon concentration was measured by using E-PERM, AlphaGUARD and CR-39 detectors. The radon progeny was determined by using DOSEman. The annual effective dose for the miners was estimated according to United Nations Scientific Committee on the Effects of Atomic Radiation methodologies. The mean value of the equilibrium factor was 0.4. The workers' estimated effective dose ranged from 1 to 21 mSv a -1 (mean 9 mSv a -1 ). (authors)

  6. Mathematical model for evaluation of dose-rate effect on biological responses to low dose γ-radiation

    International Nuclear Information System (INIS)

    Ogata, H.; Kawakami, Y.; Magae, J.

    2003-01-01

    Full text: To evaluate quantitative dose-response relationship on the biological response to radiation, it is necessary to consider a model including cumulative dose, dose-rate and irradiation time. In this study, we measured micronucleus formation and [ 3 H] thymidine uptake in human cells as indices of biological response to gamma radiation, and analyzed mathematically and statistically the data for quantitative evaluation of radiation risk at low dose/low dose-rate. Effective dose (ED x ) was mathematically estimated by fitting a general function of logistic model to the dose-response relationship. Assuming that biological response depends on not only cumulative dose but also dose-rate and irradiation time, a multiple logistic function was applied to express the relationship of the three variables. Moreover, to estimate the effect of radiation at very low dose, we proposed a modified exponential model. From the results of fitting curves to the inhibition of [ 3 H] thymidine uptake and micronucleus formation, it was obvious that ED 50 in proportion of inhibition of [ 3 H] thymidine uptake increased with longer irradiation time. As for the micronuclei, ED 30 also increased with longer irradiation times. These results suggest that the biological response depends on not only total dose but also irradiation time. The estimated response surface using the three variables showed that the biological response declined sharply when the dose-rate was less than 0.01 Gy/h. These results suggest that the response does not depend on total cumulative dose at very low dose-rates. Further, to investigate the effect of dose-rate within a wider range, we analyzed the relationship between ED x and dose-rate. Fitted curves indicated that ED x increased sharply when dose-rate was less than 10 -2 Gy/h. The increase of ED x signifies the decline of the response or the risk and suggests that the risk approaches to 0 at infinitely low dose-rate

  7. EFFECTIVE DOSE TO PATIENTS FROM THORACIC SPINE EXAMINATIONS WITH TOMOSYNTHESIS.

    Science.gov (United States)

    Svalkvist, Angelica; Söderman, Christina; Båth, Magnus

    2016-06-01

    The purposes of the present work were to calculate the average effective dose to patients from lateral tomosynthesis examinations of the thoracic spine, compare the results with the corresponding conventional examination and to determine a conversion factor between dose-area product (DAP) and effective dose for the tomosynthesis examination. Thoracic spine examinations from 17 patients were included in the study. The registered DAP and information about the field size for each projection radiograph were, together with patient height and mass, used to calculate the effective dose for each projection radiograph. The total effective doses for the tomosynthesis examinations were obtained by adding the effective doses from the 60 projection radiographs included in the examination. The mean effective dose was 0.47 mSv (range 0.24-0.81 mSv) for the tomosynthesis examinations and 0.20 mSv (range 0.07-0.29 mSv) for the corresponding conventional examinations (anteroposterior + left lateral projection). For the tomosynthesis examinations, a conversion factor between total DAP and effective dose of 0.092 mSv Gycm(-2) was obtained. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Dose assessment of natural radioactivity in fly ash and environmental materials from Morupule a coal-fired power station in Botswana

    International Nuclear Information System (INIS)

    Mudiwa, J

    2015-01-01

    This study has been undertaken to estimate the occupational and public radiation doses due to natural radioactivity at Morupule, a Coal-Fired Power Station and its environs. The radiation doses were reconstructed to include 60 year period from 1985 to 2045. Direct gamma ray spectroscopy was used to determine the natural radionuclides Th-232, U-238, and K-40 both qualitatively and quantitatively for fly ash, coal, soil and water (from the fly ash ponds) samples. The average activity concentrations for Th-232, U-238, and K-40 in fly ash samples were 64.54 Bq/kg, 49.37 Bq/kg and 40.08 Bq/kg respectively. In the case of coal, the corresponding average activity concentrations for Th-232, U-238, and K-40 were 27.43 Bq/kg, 18.10 Bq/kg and 17.38 Bq/kg respectively. For soil samples, the average activity concentrations for Th-232, U-238, and K-40 were 10.11 Bq/kg, 6.76 Bq/kg and 118.03 Bq/kg respectively. In water samples, the average activity concentrations for Th-232, U-238, and K-40 were 0.79 Bq/l, 0.32 Bq/l and 1.01 Bq/l respectively. These average activity concentrations were generally comparable to the average world activity concentrations in the case of coal samples, but were generally lower than the average world activity concentrations in the case of fly ash, soil and water samples. The average annual effective doses for the study area were estimated as 0.320 mSv, 0.126 mSv, 0.069 mSv and 0.003 mSv for fly ash, coal, soil and water samples respectively. Dose reconstruction modelling estimated the average fly ash annual effective doses for the years 1985, 1995, 2005, 2015, 2025, 2035 and 2045 to be 0.182 mSv, 0.459 mSv, 0.756 mSv, 0.320 mSv, 0.183 mSv, 0.137 mSv and 0.124 mSv respectively. The reconstructed average coal annual effective doses for similar years were 0.070 mSv, 0.182 mSv, 0.303 mSv, 0.126 mSv, 0.070 mSv, 0.060 mSv and 0.046 mSv respectively. The dose reconstruction modelling also estimated the average soil annual effective doses for the same years as

  9. Comparison of two techniques for natural dose measurements

    International Nuclear Information System (INIS)

    Ekdal, E.; Ege, A.; Goekce, M.; Karali, T.; Derin, Z.

    2006-01-01

    In the study of luminescence dating, age of an archaeological sample is calculated by the ratio of total exposed dose to annual dose resulted from the environmental radioactivity. Determination of the annual dose level of an archaeological area is one of the most important parameter in calculating the archaeological age of the sample using luminescence techniques. Therefore, the knowledge of the concentrations of the natural radionuclides is important since naturally occurring radioactivity provides major contribution to the annual dose. The natural radioactivity is originated from natural radionuclides consisting mainly of 2 38U, 2 32Th and 4 0K isotopes together with their daughters in soils. In this study, annual dose level of the archaeological site was determined with two different methods: an indirect method that is determining the concentrations of the naturally occurring radioactive elements using gamma spectroscopy and a direct method that uses thermoluminescence dosimeters. Soil samples were collected from the Yesilova Hoeyuek archaeological site located in Izmir City at the Aegean Region of Turkey. The concentrations of the natural radioactivity ( 2 38U, 2 32Th and 4 0K) in soil samples were determined using 3 x 3 N aI (Tl) γ-ray spectrometry system. In direct method, Al 2 O 3 :C thermoluminescence dosimeters (TLD's) were used. These dosimeters were chosen because of their sensitivity and usability in dating studies. They were buried in same archaeological site, 30 cm depth from the soil surface for 30 days period. The luminescence intensity of Al 2 O 3 :C dosimeters was measured by a TLD reader and the dose level was calculated by the luminescence signals emitted by the dosimeters. The results obtained from natural radionuclides and Al 2 O 3 :C thermoluminescence dosimeters were compared and the source of the differences between two methods were discussed

  10. Smoking habits in the randomised Danish Lung Cancer Screening Trial with low-dose CT

    DEFF Research Database (Denmark)

    Ashraf, Haseem; Saghir, Zaigham; Dirksen, Asger

    2014-01-01

    BACKGROUND: We present the final results of the effect of lung cancer screening with low-dose CT on the smoking habits of participants in a 5-year screening trial. METHODS: The Danish Lung Cancer Screening Trial (DLCST) was a 5-year screening trial that enrolled 4104 subjects; 2052 were randomised...... to annual low-dose CT (CT group) and 2052 received no intervention (control group). Participants were current and ex-smokers (≥4 weeks abstinence from smoking) with a tobacco consumption of ≥20 pack years. Smoking habits were determined annually. Missing values for smoking status at the final screening...... round were handled using two different models. RESULTS: There were no statistically significant differences in annual smoking status between the CT group and control group. Overall the ex-smoker rates (CT + control group) significantly increased from 24% (baseline) to 37% at year 5 of screening (p

  11. Analysis of the occupational doses of female radiation workers in India

    Energy Technology Data Exchange (ETDEWEB)

    Pardasani, P B; Joshi, V D; Awari, J M; Kher, R K [Bhabha Atomic Research Centre, Mumbai (India). Radiation Protection Services Div.

    1994-04-01

    Basis for control of occupational exposures of women are same as that of men except for pregnant women. Analysis of annual and cumulative occupational doses of female radiation workers as a group has been done. The average annual dose data in the four broad categories and age wise dose distribution is presented. The average working period for female radiation workers is about 3 to 5 years which is same as that of all the radiation workers on our records. The average cumulative dose for female workers is about 3 mSv. (author). 4 refs., 4 tabs.

  12. Analysis of the occupational doses of female radiation workers in India

    International Nuclear Information System (INIS)

    Pardasani, P.B.; Joshi, V.D.; Awari, J.M.; Kher, R.K.

    1994-01-01

    Basis for control of occupational exposures of women are same as that of men except for pregnant women. Analysis of annual and cumulative occupational doses of female radiation workers as a group has been done. The average annual dose data in the four broad categories and age wise dose distribution is presented. The average working period for female radiation workers is about 3 to 5 years which is same as that of all the radiation workers on our records. The average cumulative dose for female workers is about 3 mSv. (author). 4 refs., 4 tabs

  13. Cocaine and Pavlovian fear conditioning: dose-effect analysis.

    Science.gov (United States)

    Wood, Suzanne C; Fay, Jonathan; Sage, Jennifer R; Anagnostaras, Stephan G

    2007-01-25

    Emerging evidence suggests that cocaine and other drugs of abuse can interfere with many aspects of cognitive functioning. The authors examined the effects of 0.1-15mg/kg of cocaine on Pavlovian contextual and cued fear conditioning in mice. As expected, pre-training cocaine dose-dependently produced hyperactivity and disrupted freezing. Surprisingly, when the mice were tested off-drug later, the group pre-treated with a moderate dose of cocaine (15mg/kg) displayed significantly less contextual and cued memory, compared to saline control animals. Conversely, mice pre-treated with a very low dose of cocaine (0.1mg/kg) showed significantly enhanced fear memory for both context and tone, compared to controls. These results were not due to cocaine's anesthetic effects, as shock reactivity was unaffected by cocaine. The data suggest that despite cocaine's reputation as a performance-enhancing and anxiogenic drug, this effect is seen only at very low doses, whereas a moderate dose disrupts hippocampus and amygdala-dependent fear conditioning.

  14. Annual environmental monitoring report, January-December 1979

    International Nuclear Information System (INIS)

    1980-05-01

    Environmental monitoring results continue to demonstrate that, except for penetrating radiation, environmental radiological impact due to SLAC operation is not distinguishable from natural environmental sources. During 1979, the maximum measured neutron dose near the site boundary was not distinguishable from the cosmic ray neutron background. There have been no measurable increases in radioactivity in ground water attributable to SLAC operations since 1966. Because of major new construction, well water samples were not collected and analyzed during 1979. Construction activities have also temporarily placed our sampling stations for the sanitary and storm sewers out of service. They will be reestablished as soon as construction activities permit (mid 1980). Airborne radioactivity released from SLAC continues to make only a negligible environmental impact, and results in a site boundary annual dose of less than 0.3 mrem; this represents less than 0.3% of the annual dose from the natural radiation environment, and about 0.06% of the technical standard

  15. Assessment of population external irradiation doses with consideration of Rospotrebnadzor bodies equipment for monitoring of photon radiation dose

    Directory of Open Access Journals (Sweden)

    I. P. Stamat

    2016-01-01

    Full Text Available This paper provides review of equipment and methodology for measurement of photon radiation dose; analysis of possible reasons for considerable deviation between the Russian Federation population annual effective external irradiation doses and the relevant average global value. Data on Rospotrebnadzor bodies dosimetry equipment used for measurement of gamma radiation dose are collected and systematized. Over 60 kinds of dosimeters are used for monitoring of population external irradiation doses. Most of dosimeters used in the country have gas-discharge detectors (Geiger-Mueller counters, minor biochemical annunciators, etc. which have higher total values of own background level and of space radiation response than the modern dosimeters with scintillation detectors. This feature of dosimeters is apparently one of most plausible reasons of a bit overstating assessment of population external irradiation doses. The options for specification of population external irradiation doses assessment are: correction of gamma radiation dose measurement results with consideration of dosimeters own background level and space radiation response, introduction of more up-to-date dosimeters with scintillation detectors, etc. The most promising direction of research in verification of population external irradiation doses assessment is account of dosimetry equipment.

  16. An updated dose assesment for resettlement options at Bikini atoll - A US nuclear test site

    International Nuclear Information System (INIS)

    Robison, W.L.; Bogen, K.T.; Conrado, C.L.

    1997-01-01

    There has been a continuing effort since 1977 to refine dose assessments for resettlement options at Bikini Atoll. Here we provide a radiological dose assessment for the main residence island, Bikini, using extensive radio nuclide concentration data derived from analysis of food crops, ground water, cistern water, fish and other marine species, animals, air, and soil collected at Bikini Island as part of our continuing research and monitoring program that began in 1978. The unique composition of coral soil greatly alters the relative contribution of 137 Cs and 90 Sr to the total estimated dose relative to expectations based on North American and European soils. Without counter measures, 137 Cs produces 96% of the estimated dose for returning residents, mostly through uptake from the soil to terrestrial food crops but also from external gamma exposure. The doses are calculated assuming a resettlement date of 1999. The estimated maximum annual effective dose for current island conditions is 4.0 mSv when imported foods, which are now an established part of the diet, are available. The 30-, 50-, and 70-y integral effective doses are 91 mSv, 130 mSv, and 150 mSv, respectively. A detailed uncertainty analysis for these dose estimates is presented in a companion paper in this issue. We have evaluated various countermeasures to reduce 137 Cs in food crops. Treatment with potassium reduces the uptake of 137 Cs into food crops, and therefore the ingestion dose, to about 5 % of pretreatment levels and has essentially no negative environmental consequences. We have calculated the dose for the rehabilitation scenario where the top 40 cm of soil is removed in the housing and village area, and the rest of the island is treated with potassium fertilizer; the maximum annual effective dose is 0.41 mSv and the 30-, 50-, and 70-y integral effective doses are 9.8 mSv, 14 mSv, and 16 mSv, respectively. 44 refs., 3 figs., 11 tabs

  17. Estimation and comparison of effective dose (E) in standard chest CT by organ dose measurements and dose-length-product methods and assessment of the influence of CT tube potential (energy dependency) on effective dose in a dual-source CT

    International Nuclear Information System (INIS)

    Paul, Jijo; Banckwitz, Rosemarie; Krauss, Bernhard; Vogl, Thomas J.; Maentele, Werner; Bauer, Ralf W.

    2012-01-01

    Highlights: ► The dual-energy protocol delivers the lowest effective dose of the investigated protocols for standard chest CT examinations, thus enabling functional imaging (like dual-energy perfusion) and can produce weighted images without dose penalty. ► The high-pitch protocol goes along with a 16% increase in dose compared to the standard 120 kV protocol and thus should preferably be used in pediatric, acute care settings (e.g. pulmonary embolism, aortic dissection and the like) or restless patients. ► The difference in effective dose estimates between ICRP 60 and 103 is minimal. ► Tube potential definitely has an effect on estimates of effective dose. - Abstract: Purpose: To determine effective dose (E) during standard chest CT using an organ dose-based and a dose-length-product-based (DLP) approach for four different scan protocols including high-pitch and dual-energy in a dual-source CT scanner of the second generation. Materials and methods: Organ doses were measured with thermo luminescence dosimeters (TLD) in an anthropomorphic male adult phantom. Further, DLP-based dose estimates were performed by using the standard 0.014 mSv/mGycm conversion coefficient k. Examinations were performed on a dual-source CT system (Somatom Definition Flash, Siemens). Four scan protocols were investigated: (1) single-source 120 kV, (2) single-source 100 kV, (3) high-pitch 120 kV, and (4) dual-energy with 100/Sn140 kV with equivalent CTDIvol and no automated tube current modulation. E was then determined following recommendations of ICRP publication 103 and 60 and specific k values were derived. Results: DLP-based estimates differed by 4.5–16.56% and 5.2–15.8% relatively to ICRP 60 and 103, respectively. The derived k factors calculated from TLD measurements were 0.0148, 0.015, 0.0166, and 0.0148 for protocol 1, 2, 3 and 4, respectively. Effective dose estimations by ICRP 103 and 60 for single-energy and dual-energy protocols show a difference of less than 0.04 m

  18. SUDOQU, a new dose-assessment methodology for radiological surface contamination.

    Science.gov (United States)

    van Dillen, Teun; van Dijk, Arjan

    2018-06-12

    A new methodology has been developed for the assessment of the annual effective dose resulting from removable and fixed radiological surface contamination. It is entitled SUDOQU (SUrface DOse QUantification) and it can for instance be used to derive criteria for surface contamination related to the import of non-food consumer goods, containers and conveyances, e.g., limiting values and operational screening levels. SUDOQU imposes mass (activity)-balance equations based on radioactive decay, removal and deposition processes in indoor and outdoor environments. This leads to time-dependent contamination levels that may be of particular importance in exposure scenarios dealing with one or a few contaminated items only (usually public exposure scenarios, therefore referred to as the 'consumer' model). Exposure scenarios with a continuous flow of freshly contaminated goods also fall within the scope of the methodology (typically occupational exposure scenarios, thus referred to as the 'worker model'). In this paper we describe SUDOQU, its applications, and its current limitations. First, we delineate the contamination issue, present the assumptions and explain the concepts. We describe the relevant removal, transfer, and deposition processes, and derive equations for the time evolution of the radiological surface-, air- and skin-contamination levels. These are then input for the subsequent evaluation of the annual effective dose with possible contributions from external gamma radiation, inhalation, secondary ingestion (indirect, from hand to mouth), skin contamination, direct ingestion and skin-contact exposure. The limiting effective surface dose is introduced for issues involving the conservatism of dose calculations. SUDOQU can be used by radiation-protection scientists/experts and policy makers in the field of e.g. emergency preparedness, trade and transport, exemption and clearance, waste management, and nuclear facilities. Several practical examples are worked

  19. Work management practices that reduce dose and improve efficiency

    International Nuclear Information System (INIS)

    Miller, D.W.; Hulin, M.

    1998-01-01

    Work management practices at nuclear power plants can dramatically affect the outcome of annual site dose goals and outage costs. This presentation discusses global work management practices that contribute to dose reduction including work philosophy, work selection, work planning, work scheduling, worker training, work implementation and worker feedback. The presentation is based on a two-year international effort (sponsored by NEA/IAEA ISOE) to study effective work practices that reduce dose. Experts in this area believe that effective work selection and planning practices can substantially reduce occupational dose during refueling outages. For example, some plants represented in the expert group complete refueling outages in 12-18 days (Finland) with doses below 0,90 person-Sv. Other plants typically have 50-75 day outages with substantially higher site doses. The fundamental reasons for longer outages and higher occupational doses are examined. Good work management principles that have a proven track record of reducing occupational dose are summarized. Practical methods to reduce work duration and dose are explained. For example, scheduling at nuclear power plants can be improved by not only sequencing jobs on a time line but also including zone and resource-based considerations to avoid zone congestion and manpower delays. An ongoing, global, benchmarking effort is described which provides current duration and dose information for repetitive jobs to participating utilities world-wide. (author)

  20. Post-closure radiation dose assessment for Yucca Mountain repository

    International Nuclear Information System (INIS)

    Jia Mingyan; Zhang Xiabin; Yang Chuncai

    2006-01-01

    A brief introduction of post-closure long-term radiation safety assessment results was represented for the yucca mountain high-level waste geographic disposal repository. In 1 million years after repository closure, for the higher temperature repository operating mode, the peak annual dose would be 150 millirem (120 millirem under the lower-temperature operating mode) to a reasonably maximally exposed individual approximately 18 kilometers (11 miles) from the repository. The analysis of a drilling intrusion event occurring at 30,000 years indicated a peak of the mean annual dose to the reasonably maximally exposed individual approximately 18 kilometers (11 miles) downstream of the repository would be 0.002 millirem. The analysis of an igneous activity scenario, including a volcanic eruption event and igneous intrusion event indicated a peak of the mean annual dose to the reasonably maximally exposed individual approximately 18 kilometers downstream of the repository would be 0.1 millirem. (authors)

  1. Adult head CT scans: the uncertainties of effective dose estimates

    International Nuclear Information System (INIS)

    Gregory, Kent J.; Bibbo, Giovanni; Pattison, John E.

    2008-01-01

    Full Text: CT scanning is a high dose imaging modality. Effective dose estimates from CT scans can provide important information to patients and medical professionals. For example, medical practitioners can use the dose to estimate the risk to the patient, and judge whether this risk is outweighed by the benefits of the CT examination, while radiographers can gauge the effect of different scanning protocols on the patient effective dose, and take this into consideration when establishing routine scan settings. Dose estimates also form an important part of epidemiological studies examining the health effects of medical radiation exposures on the wider population. Medical physicists have been devoting significant effort towards estimating patient radiation doses from diagnostic CT scans for some years. The question arises: How accurate are these effective dose estimates? The need for a greater understanding and improvement of the uncertainties in CT dose estimates is now gaining recognition as an important issue (BEIR VII 2006). This study is an attempt to analyse and quantify the uncertainty components relating to effective dose estimates from adult head CT examinations that are calculated with four commonly used methods. The dose estimation methods analysed are the Nagel method, the ImpaCT method, the Wellhoefer method and the Dose-Length Product (DLP) method. The analysis of the uncertainties was performed in accordance with the International Standards Organisation's Guide to the Expression of Uncertainty in Measurement as discussed in Gregory et al (Australas. Phys. Eng. Sci. Med., 28: 131-139, 2005). The uncertainty components vary, depending on the method used to derive the effective dose estimate. Uncertainty components in this study include the statistical and other errors from Monte Carlo simulations, uncertainties in the CT settings and positions of patients in the CT gantry, calibration errors from pencil ionization chambers, the variations in the organ

  2. Dose and dose rate effects of whole-body gamma-irradiation: II. Hematological variables and cytokines

    Science.gov (United States)

    Gridley, D. S.; Pecaut, M. J.; Miller, G. M.; Moyers, M. F.; Nelson, G. A.

    2001-01-01

    The goal of part II of this study was to evaluate the effects of gamma-radiation on circulating blood cells, functional characteristics of splenocytes, and cytokine expression after whole-body irradiation at varying total doses and at low- and high-dose-rates (LDR, HDR). Young adult C57BL/6 mice (n = 75) were irradiated with either 1 cGy/min or 80 cGy/min photons from a 60Co source to cumulative doses of 0.5, 1.5, and 3.0 Gy. The animals were euthanized at 4 days post-exposure for in vitro assays. Significant dose- (but not dose-rate-) dependent decreases were observed in erythrocyte and blood leukocyte counts, hemoglobin, hematocrit, lipopolysaccharide (LPS)-induced 3H-thymidine incorporation, and interleukin-2 (IL-2) secretion by activated spleen cells when compared to sham-irradiated controls (p < 0.05). Basal proliferation of leukocytes in the blood and spleen increased significantly with increasing dose (p < 0.05). Significant dose rate effects were observed only in thrombocyte counts. Plasma levels of transforming growth factor-beta 1 (TGF-beta 1) and splenocyte secretion of tumor necrosis factor-alpha (TNF-alpha) were not affected by either the dose or dose rate of radiation. The data demonstrate that the responses of blood and spleen were largely dependent upon the total dose of radiation employed and that an 80-fold difference in the dose rate was not a significant factor in the great majority of measurements.

  3. Estimation of effective doses to cavers based on radon measurements carried out in seven caves of the Bakony Mountains in Hungary

    International Nuclear Information System (INIS)

    Kavasi, Norbert; Somlai, Janos; Szeiler, Gabor; Szabo, Balazs; Schafer, Istvan; Kovacs, Tibor

    2010-01-01

    Nowadays, as the practice of extreme sports is spreading, potholing is becoming more and more popular. As a result, both the number of cavers and the time spent in the caves have been on the rise. There are some cavers known to have spent some 5000 h in caves over a span of 10 years. In poorly ventilated caves, radon exhalated from cave rocks and deposits may accumulate and cause significant doses to cavers. In this study, the radon concentration in seven caves in the Bakony Mountains, Hungary, was measured by continuous and integrated measurement devices. Measured values for the different caves were rather different, and varied between 50 and 24,000 Bq m -3 . The average radon concentration over the measurement period was approximately 10,000 Bq m -3 in five of the seven caves inspected. By assuming an average of 470 h year -1 spent in caves, effective doses to cavers were estimated. The expected annual effective dose, in case of an equilibrium factor of 0.6, was 19.7 mSv.

  4. A cross section study on low-dose lonization radiation and health effects in different sex subgroups of occupational population

    International Nuclear Information System (INIS)

    Li Jiayuan; Yang Fei; Huang Zhonghang; Lu Xiaoqing; Liu Hui; Jiang Di; Yang Yuan

    2009-01-01

    Objective: To explore the relationship between long-time exposure to low-dose ionization radiation and health effects. Methods: 1052 occupational subjects exposed to ionization radiation in Chengdu city were recruited in monitoring cohort in 2007, including 785 men (74.62%) and 267 women (25.38%). Individual exposure dose were monitored by Thermoluminescent Measurement. Health effects include blood routine examination, Chromosomal aberration, eye lens test, etc. Variance Analysis (ANOVA), χ 2 Test and Univariate Procedure of General Liner Model (Covariance Analysis) were implemented to test the difference among subgroups with SPSS 13.0 software. Results: Annual average of exposure dose of male and female were (0.76 ± 0.65) mSv and (0.75 ± 0.64) mSv. There is no statistical significant between sex subgroups (F= (0.136, P = 0.712). In females subgroup, the frequencies and ratios with low WBC, Low platelet, high RBC and high HGB were 30 (11.2%), 45(16.9%), 4(1.5%) and 3(1.1%) respectively. And in male subgroup, frequencies and ratios of above index were 32 (4.1%), 147 (18.7%), 64 (8.2%) and 115 (14.6%) respectively. Except low platelet, the distribution differences of the rest three blood indexes between sex subgroups were statistically significant (χ 2 test, P<0.01). Either in male or in female subgroups, no statistically significant difference of all health indexes(RBC, WBC, Platelet, HGB, and Chromosomal aberration) was observed in different radiation dose teams. Conclusion: In this monitoring cohort, the health effects were related to hormesis and adaptive response as well as radiation damage accumulation effect of low-dose ionization radiation. Females were the sensitive group to suffer adverse effects, while blood indexes were the sensitive indexes for monitoring radiation exposure. (authors)

  5. Radioactivity in drilled and dug well drinking water of Ogun state Southwestern Nigeria and consequent dose estimates.

    Science.gov (United States)

    Ajayi, O S; Achuka, J

    2009-07-01

    Activity concentrations of (40)K, (226)Ra, (228)Ac and (235)U were measured in 11 dug and 9 drilled well water samples from 3 large cities in Ogun state, Southwestern Nigeria, consumed by the population living in the cities. The measurement was done using co-axial type high-purity germanium (HPGe) detector (Canberra Industries Inc.). The measured activity concentrations in the water samples ranged from 1.74 +/- 1.83 to 4.69 +/- 0.17 Bq l(-1); 2.89 +/- 0.62 to 7.79 +/- 7.22 Bq l(-1); 0.35 +/- 0.07 to 1.17 +/- 0.40 Bq l(-1) and 0.18 +/- 0.05 to 4.77 +/- 0.34 Bq l(-1) for (40)K, (226)Ra, (228)Ac and (235)U, respectively. Total annual effective dose rates from the ingestion of these radionuclides in the untreated wells were estimated using measured activity concentrations in the radionuclides and their ingested dose conversion factors. Estimated annual effective dose rates ranged from 0.04 to 6.82; 0.01 to 1.36 and 0.01 to 1.49 mSv y(-1) for age groups or =17 y, respectively. Committed dose for age group > or =17 y ranged from 8.8 x 10(-4) to 8.9 x 10(-2) Sv. The calculated annual effective dose values due to the ingestion of (226)Ra in the Awujale, Ake, Saboab, Alagbon, Alapora and Totoro samples exceeded International Commission on Radiological Protection limit of 1.0 mSv y(-1) for individual public exposure. These wells are recommended for treatment that would remove radium from their waters.

  6. The MLC tongue-and-groove effect on IMRT dose distributions

    Energy Technology Data Exchange (ETDEWEB)

    Deng Jun [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305 (United States). E-mail: jun@reyes.stanford.edu; Pawlicki, Todd; Chen Yan; Li Jinsheng; Jiang, Steve B.; Ma, C.-M. [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305 (United States)

    2001-04-01

    We have investigated the tongue-and-groove effect on the IMRT dose distributions for a Varian MLC. We have compared the dose distributions calculated using the intensity maps with and without the tongue-and-groove effect. Our results showed that, for one intensity-modulated treatment field, the maximum tongue-and-groove effect could be up to 10% of the maximum dose in the dose distributions. For an IMRT treatment with multiple gantry angles ({>=} 5), the difference between the dose distributions with and without the tongue-and-groove effect was hardly visible, less than 1.6% for the two typical clinical cases studied. After considering the patient setup errors, the dose distributions were smoothed with reduced and insignificant differences between plans with and without the tongue-and-groove effect. Therefore, for a multiple-field IMRT plan ({>=} 5), the tongue-and-groove effect on the IMRT dose distributions will be generally clinically insignificant due to the smearing effect of individual fields. The tongue-and-groove effect on an IMRT plan with small number of fields (<5) will vary depending on the number of fields in a plan (coplanar or non-coplanar), the MLC leaf sequences and the patient setup uncertainty, and may be significant (>5% of maximum dose) in some cases, especially when the patient setup uncertainty is small ({<=} 2 mm). (author)

  7. Oak Ridge Reservation Environmental Protection Rad Neshaps Radionuclide Inventory Web Database and Rad Neshaps Source and Dose Database.

    Science.gov (United States)

    Scofield, Patricia A; Smith, Linda L; Johnson, David N

    2017-07-01

    The U.S. Environmental Protection Agency promulgated national emission standards for emissions of radionuclides other than radon from US Department of Energy facilities in Chapter 40 of the Code of Federal Regulations (CFR) 61, Subpart H. This regulatory standard limits the annual effective dose that any member of the public can receive from Department of Energy facilities to 0.1 mSv. As defined in the preamble of the final rule, all of the facilities on the Oak Ridge Reservation, i.e., the Y-12 National Security Complex, Oak Ridge National Laboratory, East Tennessee Technology Park, and any other U.S. Department of Energy operations on Oak Ridge Reservation, combined, must meet the annual dose limit of 0.1 mSv. At Oak Ridge National Laboratory, there are monitored sources and numerous unmonitored sources. To maintain radiological source and inventory information for these unmonitored sources, e.g., laboratory hoods, equipment exhausts, and room exhausts not currently venting to monitored stacks on the Oak Ridge National Laboratory campus, the Environmental Protection Rad NESHAPs Inventory Web Database was developed. This database is updated annually and is used to compile emissions data for the annual Radionuclide National Emission Standards for Hazardous Air Pollutants (Rad NESHAPs) report required by 40 CFR 61.94. It also provides supporting documentation for facility compliance audits. In addition, a Rad NESHAPs source and dose database was developed to import the source and dose summary data from Clean Air Act Assessment Package-1988 computer model files. This database provides Oak Ridge Reservation and facility-specific source inventory; doses associated with each source and facility; and total doses for the Oak Ridge Reservation dose.

  8. Effect of chronic low dose natural radiation in human peripheral blood mononuclear cells: Evaluation of DNA damage and repair using the alkaline comet assay

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P.R. Vivek, E-mail: prvkumar06@gmail.com [Low Level Radiation Research Laboratory, Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, IRE Campus, Beach Road, Kollam 691 001, Kerala (India); Seshadri, M. [Low Level Radiation Research Section, Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Jaikrishan, G. [Low Level Radiation Research Laboratory, Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, IRE Campus, Beach Road, Kollam 691 001, Kerala (India); Das, Birajalaxmi [Low Level Radiation Research Section, Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2015-05-15

    Highlights: • Effect of chronic low dose natural radiation in radio adaptive response studied. • PBMCs of subjects from NLNRA and HLNRA were challenged with gamma radiation. • DNA damage and repair in PBMCs was compared using the alkaline comet assay. • Significant reduction in DNA damage in subjects of high dose group from HLNRA noted. • Probable induction of an in vivo radio adaptive response in subjects from HLNRA. - Abstract: This study investigates whether peripheral blood mononuclear cells (PBMCs) from inhabitants of Kerala in southwest India, exposed to chronic low dose natural radiation in vivo (>1 mSv year{sup −1}), respond with a radioadaptive response to a challenging dose of gamma radiation. Toward this goal, PBMCs isolated from 77 subjects from high-level natural radiation areas (HLNRA) and 37 subjects from a nearby normal level natural radiation area (NLNRA) were challenged with 2 Gy and 4 Gy gamma radiation. Subjects from HLNRA were classified based on the mean annual effective dose received, into low dose group (LDG) and high dose group (HDG) with mean annual effective doses of 2.69 mSv (N = 43, range 1.07 mSv year{sup −1} to 5.55 mSv year{sup −1}) and 9.62 mSv (N = 34, range 6.07 mSv year{sup −1} to17.41 mSv year{sup −1}), respectively. DNA strand breaks and repair kinetics (at 7 min, 15 min and 30 min after 4 Gy) were evaluated using the alkaline single cell gel electrophoresis (comet) assay. Initial levels of DNA strand breaks observed after either a 2 Gy or a 4 Gy challenging dose were significantly lower in subjects of the HDG from HLNRA compared to subjects of NLNRA (2 Gy, P = 0.01; 4 Gy, P = 0.02) and LDG (2 Gy P = 0.01; 4 Gy, P = 0.05). Subjects of HDG from HLNRA showed enhanced rejoining of DNA strand breaks (HDG/NLNRA, P = 0.06) during the early stage of repair (within 7 min). However at later times a similar rate of rejoining of strand breaks was observed across the groups (HDG, LDG and NLNRA). Preliminary results from

  9. Pb-210 concentrations in cigarettes tobaccos and radiation doses to the smokers

    International Nuclear Information System (INIS)

    Tahir, S.N.A.; Alaamer, A.S.

    2008-01-01

    Cigarette smoking is a source of radiation exposure due to the concentrations of natural radionuclides in the tobacco leaves. From the health point of view, measurement of 210 Pb and 210 Po contents in cigarette tobacco is important to assess the radiological effects associated with the tobacco smoking for the smokers. In the present study, activity concentrations of 210 Pb, which is a 210 Po precursor in the 238 U-decay series, were measured in cigarette tobaccos. Samples of nine different commonly sold brands of cigarette tobaccos were analysed by employing a planar high purity germanium (HPGe) low background detector. Activity concentrations of 210 Pb were measured from its gamma peak at 47 keV. Mean activity concentration of 210 Pb was measured to be 13 ± 4 Bq kg -1 from all samples analysed. The annual committed effective dose for a smoker and the collective committed effective dose corresponding to annual cigarettes production were estimated to be 64 ± 20 μSv and 0.6 x 10 2 man-Sv, respectively. (authors)

  10. Doses resulting from intrusion into uranium tailings areas

    International Nuclear Information System (INIS)

    Walsh, M.L.

    1986-02-01

    In the future, it is conceivable that institutional controls of uranium tailings areas may cease to exist and individuals may intrude into these areas unaware of the potential radiation hazards. The objective of this study was to estimate the potential doses to the intruders for a comprehensive set of intrusion scenarios. Reference tailings areas in the Elliot Lake region of northern Ontario and in northern Saskatchewan were developed to the extent required to calculate radiation exposures. The intrusion scenarios for which dose calculations were performed, were categorized into the following classes: habitation of the tailings, agricultural activities, construction activities, and recreational activities. Realistic exposure conditions were specified and annual doses were calculated by applying standard dose conversion factors. The exposure estimates demonstrated that the annual doses resulting from recreational activities and from construction activities would be generally small, less than twenty millisieverts, while the habitational and agricultural activities could hypothetically result in doses of several hundred millisieverts. However, the probability of occurrence of these latter classes of scenarios is considered to be much lower than scenarios involving either construction or recreational activities

  11. Measurements of the Cosmic Rays Dose at Different Altitudes of Iran

    International Nuclear Information System (INIS)

    Faghihi, R.; Mehdizadeh, S.; Jafarizadeh, M.; Sina, S.; Zehtabian, M.; Taheri, M.

    2012-01-01

    The amount of cosmic rays varies widely with the altitude, latitude and longitude in each region. In this study, the radiation doses due to the cosmic rays were estimated in two steps: in the first step, the neutron and gamma components of the radiation dose were measured for a roundtrip flight on 3 flight routes (Shiraz-Asaluye, Asaluye-Rasht and Shiraz-Mashhad) using a gamma-tracer photon detector and a Thyac 190 N, neutron detector. The minimum values of the measured gamma and neutron doses of 0.15 and 0.04μSv were measured on the Asaluyeh-Shiraz route at the lowest altitude of 19000 ft, while for Rasht-Asaluyeh route at an altitude of 35000 ft those values were found to be 2.52 and 1.09 mSv, respectively. In the second step, a number of air crew members were equipped with thermoluminescence dosimeters (TLD cards) for evaluating the gamma dose and polycarbonate dosimeters (SSNTD) for assessing the neutron dose for one year. The measured value of the annual effective dose received by the crew ranged between 0.5 mSv/y and 1.16 mSv/y, with an average of 0.9 mSv/y for the gamma component and between 0.37 mSv/y and 0.77 mSv/y with an average of 0.61 mSv/y for the neutron component. The results of this investigation are comparable with the investigations that have been conducted in other countries. For instance in UK, the reported annual effective dose of air crew is about 2 mSv, and in Canada, it is estimated to be between 1 to 5 mSv, depending on the flight situations (such as the latitude and longitude of the cities, the flight altitude, etc).

  12. Radioactivity in foodstuffs and doses to the Norwegian population from the Chernobyl fall-out

    International Nuclear Information System (INIS)

    Strand, T.; Strand, P.; Baarli, J.

    1987-01-01

    The doses to the Norwegian population from foodstuffs after the fall-out from the Chernobyl accident are discussed. Based on the results of a 'food basket' project and supplementary data from the approx. 30,000 measurements on food samples during the first year after the accident, the total annual effective dose equivalent from foodstuffs to an average Norwegian consumer during the first year after the accident was estimated to be 0.15 ± 0.02 mSv at the 95% confidence level. The contribution from 131 I was estimated to be less than 3% of the total effective dose equivalent in the first year. The individual doses, however, depend very much on dietary habits. The southern Lapps are probably the population receiving the highest doses. Individual reindeer-breeding Lapps, neglecting some of the dietary guidelines from the health authorities, may have received an effective dose equivalent of 20-30 mSv in the first year after the accident. (author)

  13. A study of dose equivalent for the nurses in Hirosaki University Hospital

    International Nuclear Information System (INIS)

    Kon, Masanori; Abe, Katsumi

    2001-01-01

    The annual relationships in 1997-1999 between exposure dose of those nurses engaging in full-time radiological works and the number of patients subjected to radiological examinations were investigated in authors' hospital. The annual number of those patients was rather constant. Exposure was measured by film-, carrot- and ring-badges. Eight to nine nurses engaged in radiological examinations like CT, fluoroscopy, urinary tract fluoroscopy and angiography, and other 8 nurses, therapy with sealed 137 Cs and 192 Ir and unsealed 131 I as well. No significant changes in exposure dose were observed in the former group of nurses and in the latter. The dose decreased annually to the level of the former due to skill advancement. (K.H.)

  14. Ionizing radiation dose due to the use of agricultural fertilizers

    International Nuclear Information System (INIS)

    Umisedo, Nancy Kuniko

    2007-01-01

    Among several agents that exist in the environment which can expose to different risks and effects, there is the ionizing radiation whose knowledge of dose is of importance to the effective control and prevention of possible damages to human beings and to the environment. The transfer of radionuclides from fertilizers to/and soils to the foodstuffs can result as an increment in the internal dose when they are consumed by the human beings. This work evaluates the contribution of fertilizers to the ionizing radiation dose in the environment and in the human being. Samples of fertilizers, soils and vegetables produced in fertilized soils were analysed through gamma spectrometry with the use of a hyper pure germanium detector. Measurements of ambient dose with thermoluminescent dosimeters were also performed. In the fertilized soil samples values of specific activities from 36 to 342 Bq/kg for K-40, from 42 to 142 Bq/kg for U-238 and from 36 to 107 Bq/kg for Th-232 were obtained. In the vegetables the values varied from 21 to 118 Bq/kg for K-40 and for the elements of uranium and thorium series the values were less than 2 Bq/kg. In fertilizers the maximum value of 5800 Bq/kg was obtained for K-40, 430 Bq/kg for U-238 and 230 Bq/kg for Th-232. The average values of soil to plant transfer factor were not significantly different among the types of vegetables. The annual committed effective dose of 0.882 μSv due to the ingestion of K-40 from the analysed vegetables is very small if compared to the reference value of 170 μv given by United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR, 2000). The thermoluminescent dosimetry provided the annual ambient dose equivalent from 1.5 to 1.8 mSv without differences between cultivated and non cultivated fields. Through the results obtained, it was not observed a significant transfer of radionuclides from fertilizers to soils and to foodstuffs in the conditions adopted in this work and consequently there

  15. Organ doses and effective doses in some medical and industrial applications

    International Nuclear Information System (INIS)

    Keshavkumar, Biju

    2000-01-01

    The ICRP recommends radiation protection standards for the safe use of radiation and also prescribes the radiation protection quantities and periodically reviews them. In this context, the quantities like organ doses and effective doses are defined by ICRP. In this work we calculate these quantities and hence the conversion functions for the industrial radiation sources and those for CT and diagnostic X-ray exposures. Workers who are occupationally exposed to radiation are regularly monitored to evaluate the radiation dose received by them. It is quite possible that in an accident situation, the worker involved in the accident might not have worn a personal monitor, popularly known as the monitoring badge. In addition, even some non radiation workers (who are obviously not monitored) may also have received exposure. Under these circumstances, the persons involved are interviewed, the accident site inspected, and on the basis of realistic assumptions, the likely doses received by the exposed persons are estimated

  16. Doses of external exposure in Jordan house due to gamma-emitting natural radionuclides in building materials.

    Science.gov (United States)

    Al-Jundi, J; Ulanovsky, A; Pröhl, G

    2009-10-01

    The use of building materials containing naturally occurring radionuclides as (40)K, (232)Th, and (238)U and their progeny results in external exposures of the residents of such buildings. In the present study, indoor dose rates for a typical Jordan concrete room are calculated using Monte Carlo method. Uniform chemical composition of the walls, floor and ceiling as well as uniform mass concentrations of the radionuclides in walls, floor and ceiling are assumed. Using activity concentrations of natural radionuclides typical for the Jordan houses and assuming them to be in secular equilibrium with their progeny, the maximum annual effective doses are estimated to be 0.16, 0.12 and 0.22 mSv a(-1) for (40)K, (232)Th- and (238)U-series, respectively. In a total, the maximum annual effective indoor dose due to external gamma-radiation is 0.50 mSv a(-1). Additionally, organ dose coefficients are calculated for all organs considered in ICRP Publication 74. Breast, skin and eye lenses have the maximum equivalent dose rate values due to indoor exposures caused by the natural radionuclides, while equivalent dose rates for uterus, colon (LLI) and small intestine are found to be the smallest. More specifically, organ dose rates (nSv a(-1)per Bq kg(-1)) vary from 0.044 to 0.060 for (40)K, from 0.44 to 0.60 for radionuclides from (238)U-series and from 0.60 to 0.81 for radionuclides from (232)Th-series. The obtained organ and effective dose conversion coefficients can be conveniently used in practical dose assessment tasks for the rooms of similar geometry and varying activity concentrations and local-specific occupancy factors.

  17. Measurement and assessment of doses from external radiations required for revised radiation protection regulations

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, Norio; Kojima, Noboru; Hayashi, Naomi [Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan)

    2001-06-01

    Radiation protection regulations based on the 1990 recommendations of ICRP have been revised and will take effect from Apr., 2001. The major changes concerning on the measurement and assessment of doses from external radiations are as follows. (1) Personal dose equivalent and ambient dose equivalent stated in ICRP Publication 74 are introduced as quantities to be measured with personal dosimeters and survey instruments, respectively. (2) For multiple dosimetry for workers, the compartment weighting factors used for a realistic assessment of effective dose are markedly changed. In advance of the introduction of the new radiation protection regulations, the impacts on workplace and personal monitoring for external radiations by these revisions were investigated. The following results were obtained. (1) A new ambient dose equivalent to neutrons is higher with a factor of 1.2 than the old one for moderated fission neutron spectra. Therefore, neutron dose equivalent monitors for workplace monitoring at MOX fuel for facilities should be recalibrated for measurement of the new ambient dose equivalent. (2) Annual effective doses of workers were estimated by applying new calibration factors to readings of personal dosimeters, worn by workers. Differences between effective doses and effective dose equivalents are small for workers engaged in the fabrication process of MOX fuel. (author)

  18. Measurement and assessment of doses from external radiations required for revised radiation protection regulations

    International Nuclear Information System (INIS)

    Tsujimura, Norio; Kojima, Noboru; Hayashi, Naomi

    2001-01-01

    Radiation protection regulations based on the 1990 recommendations of ICRP have been revised and will take effect from Apr., 2001. The major changes concerning on the measurement and assessment of doses from external radiations are as follows. (1) Personal dose equivalent and ambient dose equivalent stated in ICRP Publication 74 are introduced as quantities to be measured with personal dosimeters and survey instruments, respectively. (2) For multiple dosimetry for workers, the compartment weighting factors used for a realistic assessment of effective dose are markedly changed. In advance of the introduction of the new radiation protection regulations, the impacts on workplace and personal monitoring for external radiations by these revisions were investigated. The following results were obtained. (1) A new ambient dose equivalent to neutrons is higher with a factor of 1.2 than the old one for moderated fission neutron spectra. Therefore, neutron dose equivalent monitors for workplace monitoring at MOX fuel for facilities should be recalibrated for measurement of the new ambient dose equivalent. (2) Annual effective doses of workers were estimated by applying new calibration factors to readings of personal dosimeters, worn by workers. Differences between effective doses and effective dose equivalents are small for workers engaged in the fabrication process of MOX fuel. (author)

  19. Extremity doses to interventional radiologists

    International Nuclear Information System (INIS)

    Wihtby, M.; Martin, C. J.

    2002-01-01

    Radiologists performing interventional procedures are often required to stand close to the patient's side when carrying out manipulations under fluoroscopic control. This can result in their extremities receiving a high radiation dose, due to scattered radiation. These doses are sometimes high enough to warrant that the radiologist in question be designated a classified radiation worker. Classification in the UK is a result of any worker receiving or likely to receive in the course of their duties in excess of 3/10ths of any annual dose limit (500mSv to extremities, skin). The doses to the legs of radiologists have received less attention than those to the hands, however the doses may be high, due to the proximity of the legs and feet to scattered radiation. The legs can be exposed to a relatively high level of scattered radiation as the radiation in produced from scatter of the un attenuated beam from the bottom of the patient couch. The routine monitoring of extremity doses in interventional radiology is difficult due to several factors. Firstly a wide range of interventional procedures in undertaken in every radiology department, and these procedures require many different techniques, equipment and skills. This means that the position the radiologist adopts in relation to scattering medium and therefore their exposure, depends heavily on the type of procedure. As the hands which manipulate the catheters within the patient are often located close to the patients side and to the area under irradiation, the distribution of dose across the hands can be variable, with very high localised doses, making routine monitoring difficult. The purpose of this study was to determine the magnitude and distribution of dose to the hands and legs of interventional radiologists carrying out a wide range of both diagnostic and therapeutic interventional procedures. To ascertain the most effective method of monitoring the highest dose in accordance with the Basic safety standards

  20. Analysis of the external doses received by workers involved in the mitigation of the Goiania radiological accident

    Energy Technology Data Exchange (ETDEWEB)

    Mauricio, C.L.P., E-mail: claudia@ird.gov.br [Instituto de Radioproteção e Dosimetria, Rio de Janeiro, RJ (Brazil). Div. de Dosimetria

    2017-07-01

    In 1987, after identification that a stolen head of a Cs-137 radiotherapy irradiator was violated, it starts, in Goiania, the screening of the involved persons, the decontamination and the collection of the radiative waste. The contaminated areas were isolated and the professionals who worked within these areas received individual film monitors and TLD rings, provided by the Instituto de Radioproteção e Dosimetria (IRD), to evaluate their external dose. The aim of this paper is to present a statistical analysis of the external occupational doses received by this intervention staff. The used data were extracted from the Goiania accident database, maintained by IRD. A total of 1091 workers were monitored, some for only a few days and others for almost one year. All the total external occupational doses, received during these works, including the management of the radiative waste, were lower than the individual annual dose limit of 50 mSv for practices. Only one dose exceeded the value of 20 mSv. Their estimated mean effective doses were about 1.0 mSv, which is the annual dose limit for public exposure. About 80% of the doses were lower than this value. (author)

  1. Year 2006. GRNC's appreciation of the dose estimates presented in the annual environmental monitoring report of Areva-NC La Hague facility. Forth GRNC viewpoint. Detailed report

    International Nuclear Information System (INIS)

    2007-01-01

    The 'Groupe Radioecologie Nord Cotentin' (GRNC) has carried out a very thorough evaluation of the assessment of doses due to discharges from the Cap de la Hague nuclear site carried out by Areva NC, the site operators. The group has looked at all aspects of the assessment methods and data to ensure that they agree with the results presented in the 2006 annual environmental report of the operator. The computer tool, ACADIE, developed to assess the doses, has been used by the GRNC members to carry out their own calculations. This document comprises the detailed report of the GRNC and its synthesis. The detailed report includes: 1 - a critical analysis of the 2006 source term; a note about the uranium content in liquid effluents; the data transmitted by Areva NC (status of atmospheric effluents, status of liquid effluents at sea, fuel data); the data transmitted by the IRSN - the French institute of radiation protection and nuclear safety (status of the radioactive effluents of Areva La Hague facility); the history of liquid and gaseous effluents between 1966 and 2006; 2 - detailed comparison between model and 2006 measurements; critical analysis of 14 C and tritium data available for the Nord Cotentin and the English Channel area; 3 - detail of the 2006 efficient dose calculations; presentation of the environmental dispersion of tritium and of its effects on living organisms. (J.S.)

  2. Environment annual report 1993

    International Nuclear Information System (INIS)

    1994-01-01

    In the 1993 Environment Annual Report for BNFL, data are presented for radioactive discharges to the environment and their associated doses to the criteria group members of the public in the vicinity of Sellafield, Drigg, Chapelcross, Springfields and Capenhurst. Similarly, data are also presented for non-radioactive discharges to water and air for each site. (UK)

  3. [Dose rate-dependent cellular and molecular effects of ionizing radiation].

    Science.gov (United States)

    Przybyszewski, Waldemar M; Wideł, Maria; Szurko, Agnieszka; Maniakowski, Zbigniew

    2008-09-11

    The aim of radiation therapy is to kill tumor cells while minimizing damage to normal cells. The ultimate effect of radiation can be apoptotic or necrotic cell death as well as cytogenetic damage resulting in genetic instability and/or cell death. The destructive effects of radiation arise from direct and indirect ionization events leading to peroxidation of macromolecules, especially those present in lipid-rich membrane structures as well as chromatin lipids. Lipid peroxidative end-products may damage DNA and proteins. A characteristic feature of radiation-induced peroxidation is an inverse dose-rate effect (IDRE), defined as an increase in the degree of oxidation(at constant absorbed dose) accompanying a lower dose rate. On the other hand, a low dose rate can lead to the accumulation of cells in G2, the radiosensitive phase of the cell cycle since cell cycle control points are not sensitive to low dose rates. Radiation dose rate may potentially be the main factor improving radiotherapy efficacy as well as affecting the intensity of normal tissue and whole-body side effects. A better understanding of dose rate-dependent biological effects may lead to improved therapeutic intervention and limit normal tissue reaction. The study reviews basic biological effects that depend on the dose rate of ionizing radiation.

  4. Dose and dose rate effects on coherent-to-incoherent transition of precipitates upon irradiation

    Institute of Scientific and Technical Information of China (English)

    LI Zhengchao

    2006-01-01

    A typical precipitation hardened alloy, Cu-Co dilute alloy was selected to study the precipitation behavior and irradiation effect on precipitates. It is found that the principal effect of ion irradiation on the coherent precipitates is loss of coherency, and TEM cross-section observations show that the fraction of the incoherent precipitates is dependent on dose but not on dose rate during heavy ion irradiation.

  5. Attributability of health effects at low radiation doses

    International Nuclear Information System (INIS)

    Gonzalez, Abel

    2008-01-01

    Full text: A controversy still persists on whether health effects can be alleged from radiation exposure situations involving low radiation doses (e.g. below the international dose limits for the public). Arguments have evolved around the validity of the dose-response representation that is internationally used for radiation protection purposes, namely the so-called linear-non-threshold (LNT) model. The debate has been masked by the intrinsic randomness of radiation interaction at the cellular level and also by gaps in the relevant scientific knowledge on the development and expression of health effects. There has also been a vague use, abuse, and misuse of radiation-related risk concepts and quantities and their associated uncertainties. As a result, there is some ambiguity in the interpretation of the phenomena and a general lack of awareness of the implications for a number of risk-causation qualities, namely its attributes and characteristics. In particular, the LNT model has been used not only for protection purposes but also for blindly attributing actual effects to specific exposure situations. The latter has been discouraged as being a misuse of the model, but the supposed incorrectness has not been clearly proven. The paper will endeavour to demonstrate unambiguously the following thesis in relation to health effects due to low radiation doses: 1) Their existence is highly plausible. A number of epidemiological statistical assessments of sufficiently large exposed populations show that, under certain conditions, the prevalence of the effects increases with dose. From these assessments, it can be hypothesized that the occurrence of the effects at any dose, however small, appears decidedly worthy of belief. While strictly the evidence does not allow to conclude that a threshold dose level does not exist either. In fact, a formal quantitative uncertainty analysis, combining the different uncertain components of estimated radiation-related risk, with and

  6. Attributability of Health Effects at Low Radiation Doses

    International Nuclear Information System (INIS)

    Gonzalez, A.J.

    2011-01-01

    Full text: A controversy still persists on whether health effects can be alleged from radiation exposure situations involving low radiation doses (e.g. below the international dose limits for the public). Arguments have evolved around the validity of the dose response representation that is internationally used for radiation protection purposes, namely the so-called linear-non-threshold (LNT) model. The debate has been masked by the intrinsic randomness of radiation interaction at the cellular level and also by gaps in the relevant scientific knowledge on the development and expression of health effects. There has also been a vague use, abuse, and misuse of radiation-related risk concepts and quantities and their associated uncertainties. As a result, there is some ambiguity in the interpretation of the phenomena and a general lack of awareness of the implications for a number of risk-causation qualities, namely its attributes and characteristics. In particular, the LNT model has been used not only for protection purposes but also for blindly attributing actual effects to specific exposure situations. The latter has been discouraged as being a misuse of the model, but the supposed incorrectness has not been clearly proven. The paper will endeavour to demonstrate unambiguously the following thesis in relation to health effects due to low radiation doses: (i) Their existence is highly plausible. A number of epidemiological statistical assessments of sufficiently large exposed populations show that, under certain conditions, the prevalence of the effects increases with dose. From these assessments, it can be hypothesized that the occurrence of the effects at any dose, however small, appears decidedly worthy of belief. While strictly the evidence does not allow to conclude that a threshold dose level does not exist either In fact, a formal quantitative uncertainty analysis, combining the different uncertain components of estimated radiation-related risk, with and

  7. Medical irradiation and the use of the ''effective dose equivalent'' concept

    International Nuclear Information System (INIS)

    Persson, B.R.R.

    1980-01-01

    The aim of this paper is to demonstrate the use of the effective dose for all kinds of medical irradiation. In order to estimate the 'somatic effective dose' the weighting factors recommended by ICRP 26 have been separated into those for somatic effects and for genetic effects. Calculation of the effective dose in diagnostic radiology procedures must consider the various technical parameters which determine the absorbed dose in the various organs, i.e. beam quality, typical entrance dose and the number of films of each view. Knowledge about these parameters is not always well established and therefore the effective dose estimates are very uncertain. The average dose absorbed by various organs in the case of administration of radionuclides to the body depends to a much higher degree on biological parameters than in the case of external irradiation. In contrast to the variability and lack of reliability of biological data, the physical methods for internal dose calculation are quite elaborate. However, these methods have to be extended to involve the target dose from the radioactivity distributed within the remaining parts of the body. An attempt was made to estimate the somatic effective dose for the most common diagnostic X-ray and nuclear medicine procedures. This would make it possible to compare the risk of X-ray and nuclear medicine techniques on a more equitable basis. The collective effective dose from medical irradiation is estimated for various countries on the basis of reported statistical data. (H.K.)

  8. Genetic and mean bone-marrow doses from medical use of unsealed radioisotopes

    International Nuclear Information System (INIS)

    Keam, D.W.

    1980-06-01

    Annual genetically significant and mean bone-marrow doses to the Australian population arising from the medical use of unsealed radioisotopes are derived for the year 1970 using the results of a survey carried out at that time and published data on doses to individuals resulting from such use. Values of 3.9 and 38 microgray for the annual (per capita) genetic and mean bone-marrow doses respectively are reported, which are similar to those reported for other countries at about that time

  9. Eye lens dosimetry for fluoroscopically guided clinical procedures: practical approaches to protection and dose monitoring

    International Nuclear Information System (INIS)

    Martin, Colin J.

    2016-01-01

    Doses to the eye lenses of clinicians undertaking fluoroscopically guided procedures can exceed the dose annual limit of 20 mSv, so optimisation of radiation protection is essential. Ceiling-suspended shields and disposable radiation absorbing pads can reduce eye dose by factors of 2-7. Lead glasses that shield against exposures from the side can lower doses by 2.5-4.5 times. Training in effective use of protective devices is an essential element in achieving good protection and acceptable eye doses. Effective methods for dose monitoring are required to identify protection issues. Dosemeters worn adjacent to the eye provide the better option for interventional clinicians, but an unprotected dosemeter worn at the neck will give an indication of eye dose that is adequate for most interventional staff. Potential requirements for protective devices and dose monitoring can be determined from risk assessments using generic values for dose linked to examination workload. (author)

  10. Radioactivity in drilled and dug well drinking water of Ogun state Southwestern Nigeria and consequent dose estimates

    International Nuclear Information System (INIS)

    Ajayi, O. S.; Achuka, J.

    2009-01-01

    Activity concentrations of 40 K, 226 Ra, 228 Ac and 235 U were measured in 11 dug and 9 drilled well water samples from 3 large cities in Ogun state, Southwestern Nigeria, consumed by the population living in the cities. The measurement was done using co-axial type high-purity germanium (HPGe) detector (Canberra Industries Inc.). The measured activity concentrations in the water samples ranged from 1.74 ± 1.83 to 4.69 ± 0.17 Bq l -1 ; 2.89 ± 0.62 to 7.79 ± 7.22 Bq l -1 ; 0.35 ± 0.07 to 1.17 ± 0.40 Bq l -1 and 0.18 ± 0.05 to 4.77 ± 0.34 Bq l -1 for 40 K, 226 Ra, 228 Ac and 235 U, respectively. Total annual effective dose rates from the ingestion of these radionuclides in the untreated wells were estimated using measured activity concentrations in the radionuclides and their ingested dose conversion factors. Estimated annual effective dose rates ranged from 0.04 to 6.82; 0.01 to 1.36 and 0.01 to 1.49 mSv y -1 for age groups -4 to 8.9 x 10 -2 Sv. The calculated annual effective dose values due to the ingestion of 226 Ra in the Awujale, Ake, Saboab, Alagbon, Alapora and Totoro samples exceeded International Commission on Radiological Protection limit of 1.0 mSv y -1 for individual public exposure. These wells are recommended for treatment that would remove radium from their waters. (authors)

  11. Collective effective dose in Europe from x-ray and nuclear medicine procedures

    International Nuclear Information System (INIS)

    Bly, R.; Jaervinen, H.; Jahnen, A.; Olerud, H.; Vassileva, J.; Vogiatzi, S.

    2015-01-01

    Population doses from radiodiagnostic (X-ray and nuclear medicine) procedures in Europe were estimated based on data collected from 36 European countries. For X-ray procedures in EU and EFTA countries (except Liechtenstein) the collective effective dose is 547 500 man Sv, resulting in a mean effective dose of 1.06 mSv per caput. For all European countries included in the survey the collective effective dose is 605 000 man Sv, resulting in a mean effective dose of 1.05 mSv per caput. For nuclear medicine procedures in EU countries and EFTA (except Liechtenstein) countries the collective effective dose is 30 700 man Sv, resulting in a mean effective dose of 0.06 mSv per caput. For all European countries included in the survey the collective effective dose is 31 100 man Sv, resulting in a mean effective dose of 0.05 mSv per caput. (authors)

  12. Evaluation of collective doses on the European scale arising from atmospheric discharges

    International Nuclear Information System (INIS)

    Despres, A.; Le Grand, J.; Bouville, A.; Guezengar, J.-M.

    1980-01-01

    The aim of this work is the calculation of annual collective doses received by the population of the European Community as a result of routine atmospheric releases from a nuclear plant. The annual release is broken down into 12-hour steps and the calculation carried out for each of these steps. Summing the contribution from each step allow: one to calculate the time integrated annual atmospheric concentration in each point of a grid covering Western Europe. The collective doses due to external irradiation and to inhalation are then obtained by superimposing the population distribution over the same area. The computer model comprises the following three steps: Calculation of the trajectories followed by the polluant, derived from the meteorological data; the individual trajectories do not follow a straight line as they are corrected every 6 hours. Calculation of the atmospheric concentrations associated with those trajectories. Calculation of the collective doses from external irradiation and from inhalation, using the population grid. This computer model is applied to hypothetical discharges of 85 Kr, 13 +H1I, and 239 Pu, from the Centre d'Etudes Nucleaires de Saclay for the years 1975 and 1976. The comparison of the results obtained from the three radionuclides allows one to assess the influence of the radioactive half-life and of the dry deposition effects on the collective doses. The results were also compared to those obtained using the usual model in which the pollutant trajectory is a straight line. Finally: the releases were classified according to the wind direction at the point of emission in order to study the variation of the collective dose as a function of that parameter. (H.K.)

  13. Biological effect of Pulsed Dose Rate brachytherapy with stepping sources

    International Nuclear Information System (INIS)

    Limbergen, Erik F.M. van; Fowler, Jack F.

    1996-01-01

    Purpose: To explore the possible increase of radiation effect in tissues irradiated by pulsed brachytherapy (PDR), for local tissue dose-rates between those 'averaged over the whole pulse' and the instantaneous high dose rates close to the dwell positions. An earlier publication (Fowler and Mount 1992) had shown that, for dose rates (averaged for the duration of the pulse) up to 3 Gy/h, little change of isoeffect doses from continuous low dose rate (CLDR) are expected, unless larger doses per fraction than 1 Gy are used, and especially if components of very rapid repair are present with half-times of less than about 0.5 hours. However, local and transient dose rates close to stepping sources can be up to several Gy per minute. Methods: Calculations were done assuming the linear quadratic formula for radiation damage, in which only the dose-squared term is subject to repair, at a constant exponential rate. The formula developed by Dale for fractionated low-dose-rate radiotherapy was used. A constant overall time of 140 hours and constant total dose of 70 Gy were assumed throughout, the continuous low dose-rate of 0.5 Gy/h (CLDR) providing the unitary standard effects for each PDR condition. Effects of dose-rates ranging from 4 Gy/h to 120 Gy/h (HDR at 2 Gy/min) were studied, and T (1(2)) from 4 minutes to 1.5 hours. Results: Curves are presented relating the ratio of increased biological effect (proportional to log cell kill) calculated for PDR relative to CLDR. Ratios as high as 1.5 can be found for large doses per pulse (> 1 Gy) at high instantaneous dose-rates if T (1(2)) in tissues is as short as a few minutes. The major influences on effect are dose per pulse, half-time of repair in the tissue, and - when T (1(2)) is short - the instantaneous dose-rate. Maximum ratios of PDR/CLDR effect occur when the dose-rate is such that pulse duration is approximately equal to T (1(2)) of repair. Results are presented for late-responding tissues, the differences from CLDR

  14. Fluence to Effective Dose and Effective Dose Equivalent Conversion Coefficients for Photons from 50 KeV to 10 GeV

    International Nuclear Information System (INIS)

    Ferrari, A.; Pelliccioni, M.; Pillon, M.

    1996-07-01

    Effective dose equivalent and effective dose per unit photon fluence have been calculated by the FLUKA code for various geometrical conditions of irradiation of an anthropomorphic phantom placed in a vacuum. Calculations have been performed for monoenergetic photons of energy ranging from 50 keV to 10 GeV. The agreement with the results of other authors, when existing, is generally very satisfactory

  15. Cost-effectiveness of reduction of off-site dose

    International Nuclear Information System (INIS)

    McGrath, J.J.; Macphee, R.; Arbeau, N.; Miskin, J.; Scott, C.K.; Winters, E.

    1988-03-01

    Since the early 1970's, nuclear power plants have been designed and operated with a target of not releasing more than one percent of the licensed limits (derived emission limits) in liquid and gaseous effluents. The AECB initiated this study of the cost-effectiveness of the reduction of off-site doses as part of a review to determine if further measures to reduce off-site doses might be reasonably achievable. Atlantic Nuclear has estimated the cost of existing technology options that can be applied for a further reduction of radioactive effluents from future CANDU nuclear power plants. Detritiation, filtration, ion exchange and evaporation are included in the assessment. The costs are presented in 1987 Canadian dollars, and include capital and operating costs for a reference 50 year plant life. Darlington NGS and Point Lepreau NGS are the reference nuclear power plant types and locations. The effect resulting from the hypothetical application of each technology has been calculated as the resulting reduction in world collective radiation dose detriment. The CSA N288.1 procedure was used for local pathway analysis and the global dispersion model developed by the NEA (OECD) group of experts was used for dose calculations. The reduction in the 'collective effective dose equivalent commitment' was assumed to exist for 10,000 years, the expected life-span of solid waste repositories. No attempt was made to model world population dynamics. The collective dose reductions were calculated for a nominal world population of 10 billion persons. The estimated cost and effect of applying the technology options are summarized in a tabular form for input to further consideration of 'reasonably achievable off-site dose levels'

  16. Chest X ray effective doses estimation in computed radiography

    International Nuclear Information System (INIS)

    Abdalla, Esra Abdalrhman Dfaalla

    2013-06-01

    Conventional chest radiography is technically difficult because of wide in tissue attenuations in the chest and limitations of screen-film systems. Computed radiography (CR) offers a different approach utilizing a photostimulable phosphor. photostimulable phosphors overcome some image quality limitations of chest imaging. The objective of this study was to estimate the effective dose in computed radiography at three hospitals in Khartoum. This study has been conducted in radiography departments in three centres Advanced Diagnostic Center, Nilain Diagnostic Center, Modern Diagnostic Center. The entrance surface dose (ESD) measurement was conducted for quality control of x-ray machines and survey of operators experimental techniques. The ESDs were measured by UNFORS dosimeter and mathematical equations to estimate patient doses during chest X rays. A total of 120 patients were examined in three centres, among them 62 were males and 58 were females. The overall mean and range of patient dosed was 0.073±0.037 (0.014-0.16) mGy per procedure while the effective dose was 3.4±01.7 (0.6-7.0) mSv per procedure. This study compared radiation doses to patients radiographic examinations of chest using computed radiology. The radiation dose was measured in three centres in Khartoum- Sudan. The results of the measured effective dose showed that the dose in chest radiography was lower in computed radiography compared to previous studies.(Author)

  17. Annual report on radioactive discharges and monitoring of the environment 1992. V. 1

    International Nuclear Information System (INIS)

    1993-01-01

    This Annual Report supplements and updates the Company's Environment Annual Report by providing more detailed information on radioactive discharges, monitoring of the environment and critical group doses. BNFL has published Annual Reports on Radioactive Discharges and Monitoring of the Environment since 1977. This year the report is again sub-divided into two complementary volumes. Volume I consists of site papers, one for each of the Company's sites and includes annual data on radioactive discharges into the environment and the associated environmental monitoring programmes. Critical group doses for each site are presented in summary tables at the beginning of each Site paper. Volume II reproduces the Certificates of Authorisation regulating the Company's discharges and the statutory environmental monitoring programmes which relate to them. (Author)

  18. Reappraisal of the reference dose distribution in the UNSCEAR 1977 report

    International Nuclear Information System (INIS)

    Kumazawa, Shigeru

    2008-01-01

    This paper provides the update of the reference dose distribution proposed by G.A.M. Web and D. Beninson in Annex E to the UNSCEAR 1977 Report. To demonstrate compliance with regulatory obligations regarding doses to individuals, they defined it with the following properties: 1) The distribution of annual doses is log-normal; 2) The mean of the annual dose distribution is 5 m Gy (10% of the ICRP 1977 dose limit); 3) The proportion of workers exceeding 50 m Gy is 0.1%. The concept of the reference dose distribution is still important to understand the inherent variation of individual doses to workers controlled by source-related and individual-related efforts of best dose reduction. In the commercial nuclear power plant, the dose distribution becomes the more apart from the log-normal due to the stronger ALARA efforts and the revised dose limits. The monitored workers show about 1 m Sv of annual mean and far less than 0.1% of workers above 20 m Sv. The updated models of dose distribution consist of log-normal (no feedback on dose X) ln(X)∼N(μ,σ 2 ), hybrid log-normal (feedback on higher X by ρ) hyb(ρX)=ρX+ln(ρX)∼N(μ,σ 2 ), hybrid S B (feedback on higher dose quotient X/(D-X) not close to D by ρ) hyb[ρX/(D.X)]∼N(μ,σ 2 ) and Johnson's S B (limit to D) ln[X/(D-X)]∼N(μ,σ 2 ). These models afford interpreting the degree of dose control including dose constraint/limit to the reference distribution. Some of distributions are examined to characterize the variation of doses to members of the public with uncertainty. (author)

  19. Annual intake of 137Cs and 90Sr from ingestion of main foodstuffs in Taiwan

    International Nuclear Information System (INIS)

    Wang, Chih-Jung; Lai, Shu-Ying; Huang, Ching-Chung; Lin, Yu-ming

    1996-01-01

    The radioactivities of eight main foodstuffs were investigated during 1985-1994 to evaluate the annual intake from the ingestion of 137 Cs and 90 Sr for the residents of Taiwan. The evaluation of annual intake was based on the results of radiochemical analysis of 90 Sr and gamma-ray spectrometry of 137 Cs as well as annual consumption rates of those foodstuffs in Taiwan. The annual intake 90 Sr and 137 Cs per capita is 13 and 60 Bq, respectively. Among the eight foodstuffs, fruit contributed the most to the annual intake of 90 Sr, vegetable second, rice the third and egg the least. For 137 Cs, rice contributed the most, then fruit, meat the third and flour the least. Based on the new conversion factors from ICRP 60, the annual committed effective doses of Taiwanese due to the ingestion of radionuclides 90 Sr and 137 Cs were estimated to be 3.7 x 10 -7 and 7.8 x 10 -7 Sv, respectively. (author)

  20. LLNL NESHAPs 2015 Annual Report - June 2016

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, K. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gallegos, G. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); MacQueen, D. H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wegrecki, A. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-06-01

    Lawrence Livermore National Security, LLC operates facilities at Lawrence Livermore National Laboratory (LLNL) in which radionuclides are handled and stored. These facilities are subject to the U.S. Environmental Protection Agency (EPA) National Emission Standards for Hazardous Air Pollutants (NESHAPs) in Code of Federal Regulations (CFR) Title 40, Part 61, Subpart H, which regulates radionuclide emissions to air from Department of Energy (DOE) facilities. Specifically, NESHAPs limits the emission of radionuclides to the ambient air to levels resulting in an annual effective dose equivalent of 10 mrem (100 μSv) to any member of the public. Using measured and calculated emissions, and building-specific and common parameters, LLNL personnel applied the EPA-approved computer code, CAP88-PC, Version 4.0.1.17, to calculate the dose to the maximally exposed individual member of the public for the Livermore Site and Site 300.

  1. Review of time-dose effects in radiation therapy

    International Nuclear Information System (INIS)

    Peschel, R.E.; Fischer, J.J.

    1980-01-01

    A historical review of conventional fractionation offers little confidence that such treatment is optimal for all tumors. Thus manipulation of time-dose schedules may provide a relatively inexpensive yet potentially useful technique for improving therapeutic results in radiation therapy. Consideration of basic radiobiological principles and animal model data illustrates the complex and heterogeneous nature of normal tissue and tumor response to time-dose effects and supports the hypothesis that better time-dose prescriptions can be found in clinical practice. The number of possible time-dose prescriptions is very large, and a review of the clinical trials using nonconventional fractionation demonstrates that the sampled portion of the total three-dimensional space of time, fraction number, and dose has been very small. Only carefully designed clinical trials can establish the therapeutic advantage of a new treatment schedule, and methods for selecting the most promising schedules are discussed. The use of simple data reduction formulas for time-dose effects should be discarded since they ignore the very complexity and heterogeneity of tissues and tumors which may form the basis of improved clinical results

  2. Environmental monitoring in the vicinity of the Savannah River Plant. Annual report, 1980

    International Nuclear Information System (INIS)

    1980-01-01

    An extensive surveillance program has been continuously maintained since 1951 to determine the concentrations of radonuclides in a 1200-square-mile area in the environs of the plant and the radiation exposure of the population resulting from SRP operations. The results of this monitoring program are reported annually to the public. This document summarizes the 1980 results. The radiation dose at the plant perimeter and the population dose in the region from SRP operations is very small relative to the dose received from naturally occurring radiation. The annual average dose in 1980 from atmospheric releases of radioactive materials from SRP was 0.7 millirem at the plant perimeter. The maximum dose at the plant perimeter was 1.01 mrem, which is 0.2% of the Department of Energy limit for offsite exposures. The population dose to people living within 80 km of the center of SRP was 99.7 man-rems. During 1980, this same population received a radiation dose of 54,400 man-rems from natural radiation and an additional dose of 47,000 man-rems from medical x-rays. An individual consuming river water downstream from SRP would receive a maximum calculated dose in 1980 of 0.22 mrem which includes dose contributions from consumer products produced using Savannah River water. Air and water are the major dispersal media for radioactive emissions. Samples representing most segments of the environment that may conceivably be affected by these emissions were monitored to ensure a safe environment. Releases of radioactivity from SRP had an inconsequential effect on living plants and animals. With a few exceptions, concentrations outside the plant boundary were too low to distinguish from the natural radioactive background and continuing worldwide fallout from nuclear weapons tests

  3. Effect of low dose radiation on apoptosis in mouse spleen

    International Nuclear Information System (INIS)

    Chen Dong; Liu Jiamei; Chen Aijun; Liu Shuzheng

    1999-01-01

    Objective: To study the effect of whole body irradiation (WBI) with different doses of X-ray on apoptosis in mouse spleen. Methods: Time course changes and dose-effect relationship of apoptosis in mouse spleen induced by WBI were observed with transmission electron microscopy (TEM) qualitatively and TUNEL method semi-quantitatively. Results: Many typical apoptotic lymphocytes were found by TEM in mouse spleen after WBI with 2 Gy. No marked alterations of ultrastructure were found following WBI with 0.075 Gy. It was observed by TUNEL that the apoptosis of splenocytes increased after high dose radiation and decreased following low dose radiation (LDR). The dose-effect relationship of radiation-induced apoptosis showed a J-shaped curve. Conclusion: The effect of different doses of ionizing radiation on apoptosis in mouse spleen was distinct. And the decrease of apoptosis after LDR is considered a manifestation of radiation hormesis

  4. Evaluation of the effective dose and image quality of low-dose multi-detector CT for orthodontic treatment planning

    International Nuclear Information System (INIS)

    Chung, Gi Chung; Han, Won Jeong; Kim, Eun Kyung

    2010-01-01

    This study was designed to compare the effective doses from low-dose and standard-dose multi-detector CT (MDCT) scanning protocols and evaluate the image quality and the spatial resolution of the low-dose MDCT protocols for clinical use. 6-channel MDCT scanner (Siemens Medical System, Forschheim, Germany), was used for this study. Protocol of the standard-dose MDCT for the orthodontic analysis was 130 kV, 35 mAs, 1.25 mm slice width, 0.8 pitch. Those of the low-dose MDCT for orthodontic analysis and orthodontic surgery were 110 kV, 30 mAs, 1.25 mm slice width, 0.85 pitch and 110 kV, 45 mAs, 2.5 mm slice width, 0.85 pitch. Thermoluminescent dosimeters (TLDs) were placed at 31 sites throughout the levels of adult female ART head and neck phantom. Effective doses were calculated according to ICRP 1990 and 2007 recommendations. A formalin-fixed cadaver and AAPM CT performance phantom were scanned for the evaluation of subjective image quality and spatial resolution. Effective doses in μSv (E2007) were 699.1, 429.4 and 603.1 for standard-dose CT of orthodontic treatment, low-dose CT of orthodontic analysis, and low-dose CT of orthodontic surgery, respectively. The image quality from the low-dose protocol were not worse than those from the standard-dose protocol. The spatial resolutions of both standard-dose and low-dose CT images were acceptable. From the above results, it can be concluded that the low-dose MDCT protocol is preferable in obtaining CT images for orthodontic analysis and orthodontic surgery.

  5. Evaluation of the effective dose and image quality of low-dose multi-detector CT for orthodontic treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Gi Chung; Han, Won Jeong; Kim, Eun Kyung [Department of Oral and Maxillofacial Radiology, School of Dentistry, Dankook University, Cheonan (Korea, Republic of)

    2010-03-15

    This study was designed to compare the effective doses from low-dose and standard-dose multi-detector CT (MDCT) scanning protocols and evaluate the image quality and the spatial resolution of the low-dose MDCT protocols for clinical use. 6-channel MDCT scanner (Siemens Medical System, Forschheim, Germany), was used for this study. Protocol of the standard-dose MDCT for the orthodontic analysis was 130 kV, 35 mAs, 1.25 mm slice width, 0.8 pitch. Those of the low-dose MDCT for orthodontic analysis and orthodontic surgery were 110 kV, 30 mAs, 1.25 mm slice width, 0.85 pitch and 110 kV, 45 mAs, 2.5 mm slice width, 0.85 pitch. Thermoluminescent dosimeters (TLDs) were placed at 31 sites throughout the levels of adult female ART head and neck phantom. Effective doses were calculated according to ICRP 1990 and 2007 recommendations. A formalin-fixed cadaver and AAPM CT performance phantom were scanned for the evaluation of subjective image quality and spatial resolution. Effective doses in {mu}Sv (E2007) were 699.1, 429.4 and 603.1 for standard-dose CT of orthodontic treatment, low-dose CT of orthodontic analysis, and low-dose CT of orthodontic surgery, respectively. The image quality from the low-dose protocol were not worse than those from the standard-dose protocol. The spatial resolutions of both standard-dose and low-dose CT images were acceptable. From the above results, it can be concluded that the low-dose MDCT protocol is preferable in obtaining CT images for orthodontic analysis and orthodontic surgery.

  6. Medical effects of low doses of ionising radiation

    International Nuclear Information System (INIS)

    Coggle, J.E.

    1990-01-01

    Ionising radiation is genotoxic and causes biological effects via a chain of events involving DNA strand breaks and 'multiply damaged sites' as critical lesions that lead to cell death. The acute health effects of radiation after doses of a few gray, are due to such cell death and consequent disturbance of cell population kinetics. Because of cellular repair and repopulation there is generally a threshold dose of about 1-2 Gy below which such severe effects are not inducible. However, more subtle, sub-lethal mutational DNA damage in somatic cells of the body and the germ cells of the ovary and testis cause the two major low dose health risks -cancer induction and genetic (heritable) effects. This paper discusses some of the epidemiological and experimental evidence regarding radiation genetic effects, carcinogenesis and CNS teratogenesis. It concludes that current risk estimates imply that about 3% of all cancers; 1% of genetic disorders and between 0% and 0.3% of severe mental subnormality in the UK is attributable to the ubiquitous background radiation. The health risks associated with the medical uses of radiation are smaller, whilst the nuclear industry causes perhaps 1% of the health detriment attributable to background doses. (author)

  7. Status of annual plant species in the Baneberry fallout pattern first and sixth years after initial irradiation

    International Nuclear Information System (INIS)

    Rhoads, W.A.

    1977-01-01

    At Project Baneberry on December 18, 1970, there was an accidental venting of radioactive debris into the environment which resulted in the irradiation of vegetation about 1.5 km to the north with doses estimated to reach a maximum of 6.2 K rads, beta plus gamma. At the highest doses, 35 percent of the dominant shrub in the area, Coleogyne (black brush), were killed and 65% severely damaged; and at lesser doses there was correspondingly less damage. Other species of shrubs were also affected. Grayia spinosa showed a low frequency of stem fasciation at the higher doses as well as other manifestations of radiation damage. In June 1971, the annual plant species which were probably small seedlings at fallout time were more frequently absent from the higher radiation areas than in the lower. At the same time, there was a greater frequency of higher dry weights produced by annuals at the higher radiation exposures. The frequency of occurrence of annuals varied from means of 8.5/m 2 at the higher doses to 24.3/m 2 at the lower doses. In June 1976, five years after irradiation, there were 300 to 400 plants/m 2 . By extrapolating the plants/m 2 against dose back to zero plants/m 2 , some indication of radiation doses which might destroy all annuals was derived

  8. Personal dose estimations for Olympic Dam's first year of production

    International Nuclear Information System (INIS)

    Sonter, M.; Hondros, J.

    1989-01-01

    Underground development activities have been underway at Olympic Dam since 1983; commercial ore extraction commenced in early 1988; and the metallurgical treatment plant commenced operation in mid 1988. Detailed and extensive radiation monitoring programs have been in place since commencement of activities and have enabled detailed individual assessment of personal doses. Results are shown, in histogram form, of doses to full and part-time underground mine workers pre-1988 and for calendar 1988; and projected annual doses to treatment plant workers for the period July 1988 to July 1989. Comments are included on the dose calculation assumptions applying in mine and mill and on the degree of conservatism of these assumptions. The doses presented show compliance with the limits quoted in the Australian code of practice; they compare well with other underground uranium mines, and they indicate effective pursuit of the 'alara' principle. 7 figs., 1 tab

  9. Committed dose equivalent in the practice of radiological protection

    International Nuclear Information System (INIS)

    Nenot, J.C.; Piechowski, J.

    1985-01-01

    In the case of internal exposure, the dose is not received at the moment of exposure, as happens with external exposure, since the incorporated radionuclide irradiates the various organs and tissues during the time it is present in the body. By definition, the committed dose equivalent corresponds to the received dose integrated over 50 years from the date of intake. In order to calculate it, one has to know the intake activity and the value of the committed dose equivalent per unit of intake activity. The uncertainties of the first parameter are such that the committed dose equivalent can only be regarded as an order of magnitude and not as a very accurate quantity. The use of it is justified, however, for, like the dose equivalent for external exposure, it expresses the risk of stochastic effects for the individual concerned since these effects, should they appear, would do so only after a latent period which is generally longer than the dose integration time. Moreover, the use of the committed dose equivalent offers certain advantages for dosimetric management, especially when it is simplified. A practical problem which may arise is that the annual dose limit is apparently exceeded by virtue of the fact that one is taking account, in the first year, of doses which will actually be received only in the following years. These problems are rare enough in practice to be dealt with individually in each case. (author)

  10. Polonium-210 concentration of cigarettes traded in Cuba and their estimated dose contribution due to smoking

    International Nuclear Information System (INIS)

    Brigido Flores, O.; Montalvan Estrada, A.; Fabelo Bonet, O.; Barreras Caballero, A.

    2015-01-01

    Cigarette smoking is one of the pathways that might contribute significantly to the increase in the radiation dose reaching man, due to the relatively large concentrations of polonium-210 found in tobacco leaves. The results of 200 Po determination on the 11 most frequently smoked brands of cigarettes and cigars which constitute over 75% of the total cigarette consumption in Cuba are presented and discussed. Moreover, the polonium content in cigarette smoke was estimated on the basis of its activity in cigarettes, ash, fresh filters and post-smoking filters. 210 Po was determined by gas flow proportional detector after spontaneous deposition of 210 Po on a high copper-content disk. The annual committed equivalent dose for lungs and the annual effective dose for smokers between 12-17 years old and for adults were calculated on the basis of the 210 Po inhalation through cigarette smoke. The results showed concentration ranging from 9.3 to 14.4 mBq per cigarette with a mean value of 11.8 ± 0.6 mBq.Cig -1 . the results of this work indicate that Cuban smokers who smoke one pack (20 cigarettes) per day inhale from 62 to 98 mBq.d -1 of 210 Po and smokers between 12-17 years old who consume 10 cigarettes daily inhale from 30-50 mBq.d -1 . The average committed equivalent dose for lungs is estimated to be 466 ± 36 and 780 ± 60 μSv.year -1 for young and adult smokers, respectively and annual committed effective dose is calculated to be 60 ± 5 and 100 ± 8 μSv for these two groups of smokers, respectively. (Author)

  11. Methodological Study on Dose Reconstruction for Uranium Miners in China (invited paper)

    International Nuclear Information System (INIS)

    Zhang, Y.; Yang, J.; Ma, J.; Zhou, J.; Li, X.; Yang, M.; Wang, W.

    1998-01-01

    Occupational exposure of uranium miners is very important in the nuclear industry. The individual dose to the miners in the earlier times in China suffers from a lack of information. To reconstruct the individual doses of uranium miners, a retrospective method was developed, the integration of annual effective working time and annual average alpha potential energy in working areas is used to calculate the individual dose to the miner by this method. In order to verify the validation of the method, some experiments were carried out in a uranium mine. Both internal and external individual doses received by the selected miners were monitored with individual dosemeters, area monitoring was also conducted: meanwhile, the working time and working places of the selected miners were recorded clearly. The result shows that the retrospective method can be used to estimate the collective dose and the dose level of miners with an unfixed working area in the mine, but there is a large difference between the results of the retrospective method and the monitoring result when the method is used to estimate the individual dose of miners with a relatively fixed working area. On the other hand, the collective dose and individual dose estimated according to the clearly recorded working history of the miners and alpha potential energy closely agree with the individual monitoring result. Based on the result, the importance of clearly recording the working history of the miners and area monitoring has been indicated when the individual monitoring of miners is inadequate. A simplified method with acceptable uncertainty has also been suggested to estimate the individual dose of uranium miners. (author)

  12. Estimate of the annual effective dose for natural radionuclides of anthropogenic origin in the Bay of Cadiz

    International Nuclear Information System (INIS)

    Rodrigo, J. F.; Martinez-Ramos, C.; Barbero, L.; Casas-Ruiz, M.

    2011-01-01

    Knowledge of radioactivity levels in soils has a double interest: on the one hand, allows you to set the reference values ??(base Linne) from a region or geographic area, and secondly, to evaluate the external radiation dose received by the population and biota, through appropriate dosimetric model. The natural radioactivity, especially the radionuclides in the natural series. The aim of this study is to determine the levels of gamma emitting radionuclides in marine sediments of the Bay of Cadiz, and dose rates from external radiation received in the areas studied. (Author)

  13. ANDOSE: a computer code for calculating annual doses to man from routine releases of LWR effluents for the purpose of evaluating compliance with JAEC's guide for doseobjectives

    International Nuclear Information System (INIS)

    Iijima, Toshinori; Shiraishi, Tadao

    1979-10-01

    For environmental doses from routine releases of LWRs effluents to meet the Criterion 'As Low As is Practicable (ALAP)', Japan Atomic Energy Commission (JAEC) established a series of guides, the first for 'Dose Objectives' (May 1975), the second for models and parameters for calculating the environmental doses to compare with the 'Dose Objectives' (September 1976), and the third providing onsite meteorological programs, statistics of the data obtained and atmospheric dispersion models (June 1977). JAERI has developed a computer code, designated as ANDOSE, for calculating annual releases of radioactive gaseous and liquid effluents and, then, total body doses and thyroid doses to individuals around sites on the basis of these guides. The total body doses are from radioactive noble gases as well as from radioactive materials taken with marine food. For the calculation of thyroid doses are taken into account exposure pathways via inhalation and ingestion of leafy vegetables, cow's milk and marine food. The age-specific thyroid doses are evaluated. The doses are summed up when multisource or multisite conditions need to be evaluated (Nuclear Safety Bureau's requirement). In the present report, are described source-term models, environmental transport models and dose models used in the code, of which most are provided in the guides but some are complemented by the authors, the functions of ANDOSE and the manual for users of the code. The program lists and the latter two guides mentioned above are included in the appendices. (author)

  14. Patient and population doses of x-ray diagnostics in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Rannikko, S; Karila, K T.K.; Toivonen, M

    1997-09-01

    Periodic surveys of patient and population doses are important because of the large contribution of x-ray diagnostics to the artificial population dose. Measured entrance surface doses and dose-area products are the main quantities used for monitoring patient doses in hospitals, and most population dose studies have been derived from these quantities and from the frequences of x-ray examinations. This study is based on the radiation, exposure geometry, and patient parameters recorded by experienced radiographers and postgraduated students. The software used in the work (ODS-60 of Rados Technology) suits the determination of effective and organ doses from such detailed data using a human-like patient phantom which can be adapted for sex and size. The program, together with the very detailed input data, made it possible to determine organ equivalent and effective doses for complicated dynamic x-ray examinations and interventions in more detail than in previous studies. Collective organ and effective doses were derived for 50 examination types. The annual collective dose from diagnostic x-ray examinations in 1994 was 0.5 mSv per capita in Finland. The five groups of examinations or examinations that had greatest contributions to the collective dose were CT, barium enema: double contrast, lumbar spine, carotid angiography, and intestinal transit. Together they represented for about 60 % of the total dose. The highest dose-area products (about 2000 Gy cm{sup 2}) were obtained from certain angiographic and interventional examinations. A literature survey showed that Finland patient doses are at the same average level as in other countries of a high standard of health care. (orig.). 125 refs.

  15. Patient and population doses of x-ray diagnostics in Finland

    International Nuclear Information System (INIS)

    Rannikko, S.; Karila, K.T.K.; Toivonen, M.

    1997-09-01

    Periodic surveys of patient and population doses are important because of the large contribution of x-ray diagnostics to the artificial population dose. Measured entrance surface doses and dose-area products are the main quantities used for monitoring patient doses in hospitals, and most population dose studies have been derived from these quantities and from the frequences of x-ray examinations. This study is based on the radiation, exposure geometry, and patient parameters recorded by experienced radiographers and postgraduated students. The software used in the work (ODS-60 of Rados Technology) suits the determination of effective and organ doses from such detailed data using a human-like patient phantom which can be adapted for sex and size. The program, together with the very detailed input data, made it possible to determine organ equivalent and effective doses for complicated dynamic x-ray examinations and interventions in more detail than in previous studies. Collective organ and effective doses were derived for 50 examination types. The annual collective dose from diagnostic x-ray examinations in 1994 was 0.5 mSv per capita in Finland. The five groups of examinations or examinations that had greatest contributions to the collective dose were CT, barium enema: double contrast, lumbar spine, carotid angiography, and intestinal transit. Together they represented for about 60 % of the total dose. The highest dose-area products (about 2000 Gy cm 2 ) were obtained from certain angiographic and interventional examinations. A literature survey showed that Finland patient doses are at the same average level as in other countries of a high standard of health care. (orig.)

  16. Measurement of the natural radioactivity in building materials used in Ankara and assessment of external doses.

    Science.gov (United States)

    Turhan, S; Baykan, U N; Sen, K

    2008-03-01

    A total of 183 samples of 20 different commonly used structural and covering building materials were collected from housing and other building construction sites and from suppliers in Ankara to measure the natural radioactivity due to the presence of (226)Ra, (232)Th and (40)K. The measurements were carried out using gamma-ray spectrometry with two HPGe detectors. The specific activities of the different building materials studied varied from 0.5 +/- 0.1 to 144.9 +/- 4.9 Bq kg(-1), 0.6 +/- 0.2 to 169.9 +/- 6.6 Bq kg(-1) and 2.0 +/- 0.1 to 1792.3 +/- 60.8 Bq kg(-1) for (226)Ra, (232)Th and (40)K, respectively. The results show that the lowest mean values of the specific activity of (226)Ra, (232)Th and (40)K are 0.8 +/- 0.5, 0.9 +/- 0.4 and 4.1 +/- 1.4 Bq kg(-1), respectively, measured in travertine tile while the highest mean values of the specific activity of the same radionuclides are 78.5 +/- 18.1 (ceramic wall tile), 77.4 +/- 53.0 (granite tile) and 923.4 +/- 161.0 (white brick), respectively. The radium equivalent activity (Ra(eq)), the gamma-index, the indoor absorbed dose rate and the corresponding annual effective dose were evaluated to assess the potential radiological hazard associated with these building materials. The mean values of the gamma-index and the estimated annual effective dose due to external gamma radiation inside the room for structural building materials ranged from 0.15 to 0.89 and 0.2 to 1.1 mSv, respectively. Applying criteria recently recommended for building materials in the literature, four materials meet the exemption annual dose criterion of 0.3 mSv, five materials meet the annual dose limit of 1 mSv and only one material slightly exceeds this limit. The mean values of the gamma-index for all building materials were lower than the upper limit of 1.

  17. Work practices and occupational radiation dose among radiologic technologists in Korea

    International Nuclear Information System (INIS)

    Cha, Eun Shil; Lee, Won Jin; Ha, Mina; Hwang, Seung Sik; Lee, Kyoung Mu; Jeong, Mee Seon

    2013-01-01

    Radiologic technologists are one of the occupational groups exposed to the highest dose of radiation worldwide. In Korea, radiologic technologists occupy the largest group (about 33%) among medical radiation workers and they are exposed to the highest dose of occupational dose of radiation as well (1). Although work experience with diagnostic radiation procedure of U.S. radiologic technologists was reported roughly (2), few studies have been conducted for description of overall work practices and the change by calendar year and evaluation of related factors on occupational radiation dose. The aims of the study are to describe work practices and to assess risk factors for occupational radiation dose among radiologic technologists in Korea. This study showed the work practices and occupational radiation dose among representative sample of radiologic technologists in Korea. The annual effective dose among radiologic technologists in Korea remains higher compared with those of worldwide average and varied according to demographic factors, year began working, and duration of working

  18. Effects of low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Masse, R.

    2006-01-01

    Several groups of human have been irradiated by accidental or medical exposure, if no gene defect has been associated to these exposures, some radioinduced cancers interesting several organs are observed among persons exposed over 100 to 200 mSv delivered at high dose rate. Numerous steps are now identified between the initial energy deposit in tissue and the aberrations of cell that lead to tumors but the sequence of events and the specific character of some of them are the subject of controversy. The stake of this controversy is the risk assessment. From the hypothesis called linear relationship without threshold is developed an approach that leads to predict cancers at any tiny dose without real scientific foundation. The nature and the intensity of biological effects depend on the quantity of energy absorbed in tissue and the modality of its distribution in space and time. The probability to reach a target (a gene) associated to the cancerating of tissue is directly proportional to the dose without any other threshold than the quantity of energy necessary to the effect, its probability of effect can be a more complex function and depends on the quality of the damage produced as well as the ability of the cell to repair the damage. These two parameters are influenced by the concentration of initial injuries in the target so by the quality of radiation and by the dose rate. The mechanisms of defence explain the low efficiency of radiation as carcinogen and then the linearity of effects in the area of low doses is certainly the least defensible scientific hypothesis for the prediction of the risks. (N.C.)

  19. Dose reconstruction in deforming lung anatomy: Dose grid size effects and clinical implications

    International Nuclear Information System (INIS)

    Rosu, Mihaela; Chetty, Indrin J.; Balter, James M.; Kessler, Marc L.; McShan, Daniel L.; Ten Haken, Randall K.

    2005-01-01

    In this study we investigated the accumulation of dose to a deforming anatomy (such as lung) based on voxel tracking and by using time weighting factors derived from a breathing probability distribution function (p.d.f.). A mutual information registration scheme (using thin-plate spline warping) provided a transformation that allows the tracking of points between exhale and inhale treatment planning datasets (and/or intermediate state scans). The dose distributions were computed at the same resolution on each dataset using the Dose Planning Method (DPM) Monte Carlo code. Two accumulation/interpolation approaches were assessed. The first maps exhale dose grid points onto the inhale scan, estimates the doses at the 'tracked' locations by trilinear interpolation and scores the accumulated doses (via the p.d.f.) on the original exhale data set. In the second approach, the 'volume' associated with each exhale dose grid point (exhale dose voxel) is first subdivided into octants, the center of each octant is mapped to locations on the inhale dose grid and doses are estimated by trilinear interpolation. The octant doses are then averaged to form the inhale voxel dose and scored at the original exhale dose grid point location. Differences between the interpolation schemes are voxel size and tissue density dependent, but in general appear primarily only in regions with steep dose gradients (e.g., penumbra). Their magnitude (small regions of few percent differences) is less than the alterations in dose due to positional and shape changes from breathing in the first place. Thus, for sufficiently small dose grid point spacing, and relative to organ motion and deformation, differences due solely to the interpolation are unlikely to result in clinically significant differences to volume-based evaluation metrics such as mean lung dose (MLD) and tumor equivalent uniform dose (gEUD). The overall effects of deformation vary among patients. They depend on the tumor location, field

  20. Radiation effects of high and low doses

    International Nuclear Information System (INIS)

    El-Naggar, A.M.

    1998-01-01

    The extensive proliferation of the uses and applications of atomic and nuclear energy resulted in possible repercussions on human health. The prominent features of the health hazards that may be incurred after exposure to high and low radiation doses are discussed. The physical and biological factors involved in the sequential development of radiation health effects and the different cellular responses to radiation injury are considered. The main criteria and features of radiation effects of high and low doses are comprehensively outlined

  1. Outdoor γ-ray dose rate in Shariki Village and environmental factors affecting outdoor γ-ray dose rate in IES

    International Nuclear Information System (INIS)

    Iyogi, Takashi; Hisamatsu, Shun'ichi; Inaba, Jiro

    2000-01-01

    Previously, we surveyed the outdoor γ-ray dose rate throughout Aomori Prefecture from 1992 to 1995, and found an annual mean dose rate of 51 nGy h -1 . Relatively high dose rates were also observed in several areas (municipalities) of the survey locations. In this study, we examined the detailed distribution of the γ-ray dose rate in one such high dose rate area, Shariki Village. Glass dosemeters were used for the monitoring of cumulative γ-ray dose rate at 10 locations in the village. The dose rate from each radioactive nuclide in the ground at the monitoring locations was measured by using an in situ γ-ray spectrometer with a Ge detector. The results obtained with the glass dosemeters showed that the γ-ray dose rates in Shariki Village varied from 49 to 55 nGy h -1 . Although the dose rates were generally higher than the mean dose in Aomori Prefecture (1992-1995), the rates were lower than other high dose rate areas which had already been measured. The in situ γ-ray spectrometry revealed that these relatively high dose rates were mainly caused by 40 K and Th series radionuclides in the village. The effect of meteorological conditions on the γ-ray dose rate was studied at a monitoring station in the IES site. The dose rate was continuously recorded by a DBM NaI(Tl) scintillation detector system. The mean dose rate obtained when precipitation was sensed was 27 nGy h -1 and higher than when no precipitation was sensed (25 nGy h -1 ). (author)

  2. Outdoor γ-ray dose rate in Mutsu city and environmental factors affecting outdoor γ-ray dose rate in IES

    International Nuclear Information System (INIS)

    Iyogi, Takashi; Hisamatsu, Shun'ichi; Inaba, Jiro

    2001-01-01

    Previously, we surveyed outdoor γ-ray dose rates throughout Aomori Prefecture from 1992 to 1995, and found a mean annual dose rate of 28 nGy h -1 . Relatively high dose rates were also observed in several areas (municipalities) of the survey locations. In this study, we examined the detailed distribution of the γ-ray dose rate in one such high dose rate area, Mutsu City. Glass dosemeters were used for the monitoring of cumulative γ-ray dose rate at 10 locations in the city. The dose rate from each radioactive nuclide in the ground at the monitoring locations was measured by using an in situ γ-ray spectrometer with a Ge detector. The results obtained with the glass dosemeters showed that the γ-ray dose rates in Mutsu City varied from 17 to 32 nGy h -1 . Although the dose rates were almost the same as the mean dose in Aomori Prefecture (1992-1995), the rates were lower than other high dose rate areas which had already been measured. The in situ γ-ray spectrometry revealed that these relatively high dose rates were mainly caused by 40 K and Th series radionuclides in the local ground. The effect of meteorological conditions on the γ-ray dose rate was studied at a monitoring station in the IES site. The dose rate was continuously recorded by a DBM NaI(Tl) scintillation detector system. The mean dose rate obtained when precipitation was sensed was 26 nGy h -1 and higher than when no precipitation was sensed (24 nGy h -1 ). (author)

  3. [Optimizing staff radiation protection in radiology by minimizing the effective dose].

    Science.gov (United States)

    von Boetticher, H; Lachmund, J; Hoffmann, W; Luska, G

    2006-03-01

    In the present study the optimization of radiation protection devices is achieved by minimizing the effective dose of the staff members since the stochastic radiation effects correlate to the effective dose. Radiation exposure dosimetry was performed with TLD measurements using one Alderson Phantom in the patient position and a second phantom in the typical position of the personnel. Various types of protective clothing as well as fixed shields were considered in the calculations. It was shown that the doses of the unshielded organs (thyroid, parts of the active bone marrow) contribute significantly to the effective dose of the staff. Therefore, there is no linear relationship between the shielding factors for protective garments and the effective dose. An additional thyroid protection collar reduces the effective dose by a factor of 1.7 - 3.0. X-ray protective clothing with a 0.35 mm lead equivalent and an additional thyroid protection collar provides better protection against radiation than an apron with a 0.5 mm lead equivalent but no collar. The use of thyroid protection collars is an effective preventive measure against exceeding occupational organ dose limits, and a thyroid shield also considerably reduces the effective dose. Therefore, thyroid protection collars should be a required component of anti-X protection.

  4. Dose-rate effects of low-dropout voltage regulator at various biases

    International Nuclear Information System (INIS)

    Wang Yiyuan; Zheng Yuzhan; Gao Bo; Chen Rui; Fei Wuxiong; Lu Wu; Ren Diyuan

    2010-01-01

    A low-dropout voltage regulator, LM2941, was irradiated by 60 Co γ-rays at various dose rates and biases for investigating the total dose and dose rate effects. The radiation responses show that the key electrical parameters, including its output and dropout voltage, and the maximum output current, are sensitive to total dose and dose rates, and are significantly degraded at low dose rate and zero bias. The integrated circuits damage change with the dose rates and biases, and the dose-rate effects are relative to its electric field. (authors)

  5. Anthropogenic materials and products containing natural radionuclides. Pt. 2. Examination of radiation doses resulting from occupational exposure

    International Nuclear Information System (INIS)

    Reichelt, A.; Lehmann, K.H.

    1993-11-01

    The radiation doses are determined on the basis of dosimetric scanning of the materials and products and measurement of the ambient dose rates and inhaled doses at the place of work. For all places and conditions exmined, the average annual effective dose (ICRP) is of the order of 20mSv/annum. The substances and products examined are phosphate fertilizers. thoriated tungsten electrodes, or glass gas hoods, respectively, dental material containing uranium, and dental ceramics containing zirconium sands. The report also gives information on the occupational exposure in drinking-water conditioning plants. (Orig./DG) [de

  6. Radiation doses and correlated late effects in diagnostic radiology

    International Nuclear Information System (INIS)

    Gustafsson, M.

    1980-04-01

    Patient irradiation in diagnostic radiology was estimated from measurements of absorbed doses in different organs, assessment of the energy imparted and retrospective calculations based on literature data. Possible late biological effects, with special aspects on children, were surveyed. The dose to the lens of the eye and the possibility of shielding in carotid angiography was studied as was the absorbed dose to the thyroid gland at cardiac catheterization and angiocardiography in children. Calculations of the mean bone marrow dose and gonad doses were performed in children with chronic skeletal disease revealing large contributions from examinations of organs other than the skeleton. The dose distribution in the breast in mammography was investigated. Comparison of the energy imparted in common roentgen examinations in 1960 and 1975 showed an unexpected low decrease in spite of technical improvements. Reasons for the failing decrease are discussed. The energy imparted to children in urological examinations was reduced significantly due to introduction of high sensitivity screens and omission of dose demanding projections. Contributions to the possible late effects were estimated on the basis of the organ doses assessed. (author)

  7. Environmental monitoring at the Savannah River Plant. Annual report, 1979

    International Nuclear Information System (INIS)

    Ashley, C.; Zeigler, C.C.; Culp, P.A.; Smith, D.L.

    1982-11-01

    An extensive surveillance program has been maintained since 1951 to determine the concentrations of radionuclides in a 1200 square mile area in the environs of the plant and the radiation exposure of the population resulting from SRP operations. This document summarizes the 1979 results. The radiation dose at the plant perimeter and the population dose in the region from SRP operations are very small relative to the dose recieved from naturally occurring radiation. The annual average dose in 1979 from atmospheric releases of radioactive materials was 0.71 mrem at the perimeter (1% of natural background). The maximum dose at the plant perimeter was 0.97 mrem. Air and water are the major dispersal media for radioactive emissions. Samples representing most segments of the environment were monitored. Releases of radioactivity from SRP had a very small effect on living plants and animals and were too minute to be detectable, and with a few exceptions, concentrations outside the plant boundary were too low to distinguish from the natural radioactive background and continuing worldwide fallout from nuclear weapons tests. 40 figures, 60 tables. (MF)

  8. Effective doses to family members of patients treated with radioiodine-131

    International Nuclear Information System (INIS)

    Kocovska, M Zdraveska; Vaskova, O; Majstorov, V; Kuzmanovska, S; Gjorceva, D Pop; Jokic, V Spasic

    2011-01-01

    The purpose of this study was to evaluate the effective dose to family members of thyroid cancer and hyperthyroid patients treated with radioiodine-131, and also to compare the results with dose constraints proposed by the International Commission of Radiological Protection (ICRP) and the Basic Safety Standards (BSS) of the International Atomic Energy Agency (IAEA). For the estimation of the effective doses, sixty family members of sixty patients, treated with radioiodine-131, and thermoluminiscent dosimeters (Model TLD 100) were used. Thyroid cancer patients were hospitalized for three days, while hyperthyroid patients were treated on out-patient basis. The family members wore TLD in front of the torso for seven days. The radiation doses to family members of thyroid cancer patients were well below the recommended dose constraint of 1 mSv. The mean value of effective dose was 0.21 mSv (min 0.02 - max 0.51 mSv). Effective doses, higher than 1 mSv, were detected for 11 family members of hyperthyroid patients. The mean value of effective dose of family members of hyperthyroid patients was 0.87 mSv (min 0.12 - max 6.79). The estimated effective doses to family members of hyperthyroid patients were higher than the effective doses to family members of thyroid carcinoma patients. These findings may be considered when establishing new national guidelines concerning radiation protection and release of patients after a treatment with radioiodine therapy.

  9. Hygienic estimation of population doses due to stratospheric fallout

    International Nuclear Information System (INIS)

    Marej, A.N.; Knizhnikov, V.A.

    1980-01-01

    The hygienic estimation of external and internal irradiation of the USSR population due to stratospheric global fallouts of fission products after nuclear explosions and weapon tests, is carried out. Numerical values which characterize the dose-effect dependence in the case of radiation of marrow, bone tissue and whole body are presented. Values of mean individual and population doses of irradiation due to global fallouts within 1963-1975, types of injury and the number of mortal cases due to malignant neoplasms are presented. A conclusion is made that the contribution of radiation due to stratospheric fallouts in the mortality due to malignant neoplasms is insignificant. Annual radiation doses, conditioned by global fallouts within the period of 1963-1975 constitute but several percent from the dose of radiation of the natural radiation background. Results of estimation of genetic consequences of irradiation due to atmospheric fallouts are presented

  10. Editor's choice--Use of disposable radiation-absorbing surgical drapes results in significant dose reduction during EVAR procedures.

    Science.gov (United States)

    Kloeze, C; Klompenhouwer, E G; Brands, P J M; van Sambeek, M R H M; Cuypers, P W M; Teijink, J A W

    2014-03-01

    Because of the increasing number of interventional endovascular procedures with fluoroscopy and the corresponding high annual dose for interventionalists, additional dose-protecting measures are desirable. The purpose of this study was to evaluate the effect of disposable radiation-absorbing surgical drapes in reducing scatter radiation exposure for interventionalists and supporting staff during an endovascular aneurysm repair (EVAR) procedure. This was a randomized control trial in which 36 EVAR procedures were randomized between execution with and without disposable radiation-absorbing surgical drapes (Radpad: Worldwide Innovations & Technologies, Inc., Kansas City, US, type 5511A). Dosimetric measurements were performed on the interventionalist (hand and chest) and theatre nurse (chest) with and without the use of the drapes to obtain the dose reduction and effect on the annual dose caused by the drapes. Use of disposable radiation-absorbing surgical drapes resulted in dose reductions of 49%, 55%, and 48%, respectively, measured on the hand and chest of the interventionalist and the chest of the theatre nurse. The use of disposable radiation-absorbing surgical drapes significantly reduces scatter radiation exposure for both the interventionalist and the supporting staff during EVAR procedures. Copyright © 2013 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  11. Doses to nuclear technicians in a dedicated PET/CT centre utilising 18F fluorodeoxyglucose (FDG)

    International Nuclear Information System (INIS)

    Seierstad, T.; Stranden, E.; Bjering, K.; Evensen, M.; Holt, A.; Michalsen, H. M.; Wetteland, O.

    2007-01-01

    The first dedicated PET/CT centre in Norway was established at the Norwegian Radiumhospital in Oslo in 2005. Knowing that the introductions of PET-isotopes in nuclear medicine give increased occupational radiation dose to the technicians, a study was carried out in order to map the doses to staff members during different working operations and to see if any dose reducing measures were needed. The results of the study are in good agreement with other studies, and a technician dose of 20-25 nSv per injected MBq of 18 F seems to be representative for such centres. For an average injected activity of 350 MBq per patient, the dose limit is reached after handling around 3000 patients annually. For an annual number of less than 500 patients at the centre and rotation of the staff, an annual individual dose for the technicians would realistically be less than 2-3 mSv. Even a major increase in the number of patients will not result in individual doses near the ICRP dose limit. (authors)

  12. Analysis of dose delivery patterns to Kozloduy NPP personnel

    Energy Technology Data Exchange (ETDEWEB)

    Khristova, M; Karadzhov, A; Shopov, N [National Centre of Radiobiology and Radiation Protection, Sofia (Bulgaria); Aleksiev, A; Vylchev, G; Todorov, N [Kombinat Atomna Energetika, Kozloduj (Bulgaria)

    1996-12-31

    Basic characteristics of occupational exposures of Kozloduy NPP workers in the period 1974-1993 are presented. The total collective dose accumulated since the beginning of the Kozloduy NPP operation is 165 man-Sv for the six reactors (73 reactor years in total). The average collective dose per GWh is 1.2 man-Sv/GWh in the 70`s and then decreases. The average collective dose per reactor in the initial years has been between 2 and 3.5 man-Sv and after 1987 it is in general lower than 2 man-Sv. These values are compared to data from other European countries and USA. Summarized data on personal annual doses for 1987-1992 are presented. The average dose per person is in the range 4-8 mSv/a. For 1993 the average personal annual doses are 1.3 mSv/a for the Kozloduy-5 and the Kozloduy-6 and 5.5 mSv/a for the Kozloduy units 1 to 4. 1 ref., 2 figs., 3 tabs.

  13. Attached, unattached fraction of progeny concentrations and equilibrium factor for dose assessments from {sup 222}Rn and {sup 220}Rn

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Parminder; Saini, Komal; Bajwa, Bikramjit Singh [Guru Nanak Dev University, Department of Physics, Amritsar, Punjab (India); Mishra, Rosaline; Sahoo, Bijay Kumar [Bhabha Atomic Research Centre, Radiological Physics and Advisory Division, Mumbai (India)

    2016-08-15

    In this study, measurements of indoor radon ({sup 222}Rn), thoron ({sup 220}Rn) and their equilibrium equivalent concentration (EEC) were carried out in 96 dwellings from 22 different villages situated in Hamirpur district, Himachal Pradesh, India, by using LR-115 type II-based pinhole twin cup dosimeters and deposition-based progeny sensors (DRPS/DTPS). The annual average indoor {sup 222}Rn and {sup 220}Rn concentrations observed in these dwellings were 63.82 and 89.59 Bq/m{sup 3}, respectively, while the average EEC (attached + unattached) for {sup 222}Rn and {sup 220}Rn was 29.28 and 2.74 Bq/m{sup 3}. For {sup 222}Rn (f{sub Rn}) and {sup 220}Rn (f{sub Tn}), the average values of unattached fraction were 0.11 and 0.09, respectively. The equilibrium factors for radon (F{sub Rn}) and thoron (F{sub Tn}) varied from 0.12 to 0.77 with an average of 0.50, and from 0.01 to 0.34 with an average of 0.05, respectively. The annual inhalation dose due to mouth and nasal breathing was calculated using dose conversion factors and unattached fractions. The indoor annual effective doses for {sup 222}Rn (AEDR) and {sup 220}Rn (AEDT) were found to be 1.92 and 0.83 mSv a{sup -1}, respectively. The values of {sup 222}Rn/{sup 220}Rn concentrations and annual effective doses obtained in the present study are within the safe limits as recommended by the International Commission on Radiological Protection for indoor dwelling exposure conditions. (orig.)

  14. Low-Dose Chest Computed Tomography for Lung Cancer Screening Among Hodgkin Lymphoma Survivors: A Cost-Effectiveness Analysis

    International Nuclear Information System (INIS)

    Wattson, Daniel A.; Hunink, M.G. Myriam; DiPiro, Pamela J.; Das, Prajnan; Hodgson, David C.; Mauch, Peter M.; Ng, Andrea K.

    2014-01-01

    Purpose: Hodgkin lymphoma (HL) survivors face an increased risk of treatment-related lung cancer. Screening with low-dose computed tomography (LDCT) may allow detection of early stage, resectable cancers. We developed a Markov decision-analytic and cost-effectiveness model to estimate the merits of annual LDCT screening among HL survivors. Methods and Materials: Population databases and HL-specific literature informed key model parameters, including lung cancer rates and stage distribution, cause-specific survival estimates, and utilities. Relative risks accounted for radiation therapy (RT) technique, smoking status (>10 pack-years or current smokers vs not), age at HL diagnosis, time from HL treatment, and excess radiation from LDCTs. LDCT assumptions, including expected stage-shift, false-positive rates, and likely additional workup were derived from the National Lung Screening Trial and preliminary results from an internal phase 2 protocol that performed annual LDCTs in 53 HL survivors. We assumed a 3% discount rate and a willingness-to-pay (WTP) threshold of $50,000 per quality-adjusted life year (QALY). Results: Annual LDCT screening was cost effective for all smokers. A male smoker treated with mantle RT at age 25 achieved maximum QALYs by initiating screening 12 years post-HL, with a life expectancy benefit of 2.1 months and an incremental cost of $34,841/QALY. Among nonsmokers, annual screening produced a QALY benefit in some cases, but the incremental cost was not below the WTP threshold for any patient subsets. As age at HL diagnosis increased, earlier initiation of screening improved outcomes. Sensitivity analyses revealed that the model was most sensitive to the lung cancer incidence and mortality rates and expected stage-shift from screening. Conclusions: HL survivors are an important high-risk population that may benefit from screening, especially those treated in the past with large radiation fields including mantle or involved-field RT. Screening

  15. Low-Dose Chest Computed Tomography for Lung Cancer Screening Among Hodgkin Lymphoma Survivors: A Cost-Effectiveness Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wattson, Daniel A., E-mail: dwattson@partners.org [Harvard Radiation Oncology Program, Boston, Massachusetts (United States); Hunink, M.G. Myriam [Departments of Radiology and Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands and Center for Health Decision Science, Harvard School of Public Health, Boston, Massachusetts (United States); DiPiro, Pamela J. [Department of Imaging, Dana-Farber Cancer Institute, Boston, Massachusetts (United States); Das, Prajnan [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Hodgson, David C. [Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Mauch, Peter M.; Ng, Andrea K. [Department of Radiation Oncology, Brigham and Women' s Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts (United States)

    2014-10-01

    Purpose: Hodgkin lymphoma (HL) survivors face an increased risk of treatment-related lung cancer. Screening with low-dose computed tomography (LDCT) may allow detection of early stage, resectable cancers. We developed a Markov decision-analytic and cost-effectiveness model to estimate the merits of annual LDCT screening among HL survivors. Methods and Materials: Population databases and HL-specific literature informed key model parameters, including lung cancer rates and stage distribution, cause-specific survival estimates, and utilities. Relative risks accounted for radiation therapy (RT) technique, smoking status (>10 pack-years or current smokers vs not), age at HL diagnosis, time from HL treatment, and excess radiation from LDCTs. LDCT assumptions, including expected stage-shift, false-positive rates, and likely additional workup were derived from the National Lung Screening Trial and preliminary results from an internal phase 2 protocol that performed annual LDCTs in 53 HL survivors. We assumed a 3% discount rate and a willingness-to-pay (WTP) threshold of $50,000 per quality-adjusted life year (QALY). Results: Annual LDCT screening was cost effective for all smokers. A male smoker treated with mantle RT at age 25 achieved maximum QALYs by initiating screening 12 years post-HL, with a life expectancy benefit of 2.1 months and an incremental cost of $34,841/QALY. Among nonsmokers, annual screening produced a QALY benefit in some cases, but the incremental cost was not below the WTP threshold for any patient subsets. As age at HL diagnosis increased, earlier initiation of screening improved outcomes. Sensitivity analyses revealed that the model was most sensitive to the lung cancer incidence and mortality rates and expected stage-shift from screening. Conclusions: HL survivors are an important high-risk population that may benefit from screening, especially those treated in the past with large radiation fields including mantle or involved-field RT. Screening

  16. Low-dose chest computed tomography for lung cancer screening among Hodgkin lymphoma survivors: a cost-effectiveness analysis.

    Science.gov (United States)

    Wattson, Daniel A; Hunink, M G Myriam; DiPiro, Pamela J; Das, Prajnan; Hodgson, David C; Mauch, Peter M; Ng, Andrea K

    2014-10-01

    Hodgkin lymphoma (HL) survivors face an increased risk of treatment-related lung cancer. Screening with low-dose computed tomography (LDCT) may allow detection of early stage, resectable cancers. We developed a Markov decision-analytic and cost-effectiveness model to estimate the merits of annual LDCT screening among HL survivors. Population databases and HL-specific literature informed key model parameters, including lung cancer rates and stage distribution, cause-specific survival estimates, and utilities. Relative risks accounted for radiation therapy (RT) technique, smoking status (>10 pack-years or current smokers vs not), age at HL diagnosis, time from HL treatment, and excess radiation from LDCTs. LDCT assumptions, including expected stage-shift, false-positive rates, and likely additional workup were derived from the National Lung Screening Trial and preliminary results from an internal phase 2 protocol that performed annual LDCTs in 53 HL survivors. We assumed a 3% discount rate and a willingness-to-pay (WTP) threshold of $50,000 per quality-adjusted life year (QALY). Annual LDCT screening was cost effective for all smokers. A male smoker treated with mantle RT at age 25 achieved maximum QALYs by initiating screening 12 years post-HL, with a life expectancy benefit of 2.1 months and an incremental cost of $34,841/QALY. Among nonsmokers, annual screening produced a QALY benefit in some cases, but the incremental cost was not below the WTP threshold for any patient subsets. As age at HL diagnosis increased, earlier initiation of screening improved outcomes. Sensitivity analyses revealed that the model was most sensitive to the lung cancer incidence and mortality rates and expected stage-shift from screening. HL survivors are an important high-risk population that may benefit from screening, especially those treated in the past with large radiation fields including mantle or involved-field RT. Screening may be cost effective for all smokers but possibly not

  17. Dose rate-dependent marrow toxicity of TBI in dogs and marrow sparing effect at high dose rate by dose fractionation.

    Science.gov (United States)

    Storb, R; Raff, R F; Graham, T; Appelbaum, F R; Deeg, H J; Schuening, F G; Sale, G; Seidel, K

    1999-01-01

    We evaluated the marrow toxicity of 200 and 300 cGy total-body irradiation (TBI) delivered at 10 and 60 cGy/min, respectively, in dogs not rescued by marrow transplant. Additionally, we compared toxicities after 300 cGy fractionated TBI (100 cGy fractions) to that after single-dose TBI at 10 and 60 cGy/min. Marrow toxicities were assessed on the basis of peripheral blood cell count changes and mortality from radiation-induced pancytopenia. TBI doses studied were just below the dose at which all dogs die despite optimal support. Specifically, 18 dogs were given single doses of 200 cGy TBI, delivered at either 10 (n=13) or 60 (n=5) cGy/min. Thirty-one dogs received 300 cGy TBI at 10 cGy/min, delivered as either single doses (n=21) or three fractions of 100 cGy each (n=10). Seventeen dogs were given 300 cGy TBI at 60 cGy/min, administered either as single doses (n=5) or three fractions of 100 cGy each (n=10). Within the limitations of the experimental design, three conclusions were drawn: 1) with 200 and 300 cGy single-dose TBI, an increase of dose rate from 10 to 60 cGy/min, respectively, caused significant increases in marrow toxicity; 2) at 60 cGy/min, dose fractionation resulted in a significant decrease in marrow toxicities, whereas such a protective effect was not seen at 10 cGy/min; and 3) with fractionated TBI, no significant differences in marrow toxicity were seen between dogs irradiated at 60 and 10 cGy/min. The reduced effectiveness of TBI when a dose of 300 cGy was divided into three fractions of 100 cGy or when dose rate was reduced from 60 cGy/min to 10 cGy/min was consistent with models of radiation toxicity that allow for repair of sublethal injury in DNA.

  18. Late effects of various dose-fractionation regimens

    International Nuclear Information System (INIS)

    Turesson, I.; Notter, G.

    1983-01-01

    These clinical investigations of various dose-fractionation regimens on human skin show that: The late reactions cannot be predicted from the early reactions; The dose-response curves for late reactions are much steeper than for early reactions; Equivalent doses for various fractionation schedules concerning late effects can be calculated by means of a corrected CRE (NSD) formula; the correction must be considered preliminary because further follow-up is needed. A clinical fractionation study of this type requires: Extremely careful dosimetry; Study of the same anatomical region; Very long follow-up; Studies at different effect levels; Skin reaction is the only end point we have studied systematically for different fractionation regimens. Experience with the CRE formula as a model for calculating isoeffect doses for different fractionation schedules in routine clinical use can be summarized as follows: The CRE formula has been used prospectively since 1972 in all patients; CRE-equivalent weekly doses to 5 x 2.0 Gy per week has been used. (Although the fractionation schedule is changed, the overall treatment time is still the same); The CRE range was 18 to 21 for curative radiotherapy on carcinomas; No irradiation was applied during pronounced acute reactions. No unexpected complications have been observed under these conditions

  19. Dose dependence on stochastic radiobiological effect in radiation risk estimation

    International Nuclear Information System (INIS)

    Komochkov, M.M.

    1999-01-01

    The analysis of the results in dose -- effect relationship observation has been carried out on the cell and organism levels, with the aim to obtain more precise data on the risk coefficients at low doses. The results are represented by two contrasting groups of dose dependence on effect: a downwards concave and a J-shaped curve. Both types of dependence are described by the equation solutions of an assumed unified protective mechanism, which comprises two components: constitutive and adaptive or inducible ones. The latest data analysis of the downwards concave dependence curves shows a considerable underestimation of radiation risk in all types of cancer, except leukemia, for a number of critical groups in a population, at low doses comparing to the ICRP recommendations. With the dose increase, the decrease of the effect value per dose unit is observed. It may be possibly related to the switching of the activity of the adaptive protective mechanism, with some threshold dose values being exceeded

  20. Estimation of effective dose during hysterosalpingography procedures

    International Nuclear Information System (INIS)

    Alzimamil, K.; Babikir, E.; Alkhorayef, M.; Sulieman, A.; Alsafi, K.; Omer, H.

    2014-08-01

    Hysterosalpingography (HSG) is the most frequently used diagnostic tool to evaluate the endometrial cavity and fallopian tube by using conventional x-ray or fluoroscopy. Determination of the patient radiation doses values from x-ray examinations provides useful guidance on where best to concentrate efforts on patient dose reduction in order to optimize the protection of the patients. The aims of this study were to measure the patients entrance surface air kerma doses (ESA K), effective doses and to compare practices between different hospitals in Sudan. ESA K were measured for patient using calibrated thermo luminance dosimeters (TLDs, Gr-200A). Effective doses were estimated using National Radiological Protection Board (NRPB) software. This study was conducted in five radiological departments: Two Teaching Hospitals (A and D), two private hospitals (B and C) and one University Hospital (E). The mean ESD was 20.1 mGy, 28.9 mGy, 13.6 mGy, 58.65 mGy, 35.7, 22.4 and 19.6 mGy for hospitals A,B,C,D, and E), respectively. The mean effective dose was 2.4 mSv, 3.5 mSv, 1.6 mSv, 7.1 mSv and 4.3 mSv in the same order. The study showed wide variations in the ESDs with three of the hospitals having values above the internationally reported values. Number of x-ray images, fluoroscopy time, operator skills x-ray machine type and clinical complexity of the procedures were shown to be major contributors to the variations reported. Results demonstrated the need for standardization of technique throughout the hospital. The results also suggest that there is a need to optimize the procedures. Local DRLs were proposed for the entire procedures. (author)

  1. Occupational doses in pediatric barium meal procedures

    International Nuclear Information System (INIS)

    Filipov, D.; Schelin, H.R.; Denyak, V.; Legnani, A.; Ledesma, J.A.; Paschuk, S.A.; Sauzen, J.; Yagui, A.; Hoff, G.; Khoury, H.J.

    2015-01-01

    Ionizing radiation has become an indispensable tool when it comes to diagnosis and therapy. However, its use should happen in a rational manner, taking into account the risks to which the staff is being exposed. Barium meal (BM), or upper gastrointestinal (GI) studies, using fluoroscopy, are widely used for gastroesophageal reflux disease diagnostic in children and professionals are required to stay inside the examination room to position and immobilize pediatric patients during the procedure. Therefore, it is very important that proffessionals strictly follow the technical standards of radiation protection. According to the ICRP and the NCRP recommendations, the annual limit equivalent doses for eyes, thyroid and hands are, espectively, 20 mSv, 150 mSv and 500 mSv. Based on those data, the aim of the current study is to estimate the annual equivalent dose for eyes, thyroid and hands of professionals who perform BM procedures in children. This was done using properly package LiF:Mg,Cu,P thermoluminescent dosimeters in 37 procedures; 2 pairs were positioned near each staff´s eye, 2 pairs on each professional´s neck (on and under the lead protector) and 2 pairs on both staff´s hands. The range of the estimative annual equivalent doses, for eyes, thyroid and hands, are, respectively: 14 – 36 mSv, 7 – 22 mSv and 14 – 58 mSv. Only the closest staff to the patient exceeded the annual equivalent doses in the eyes (around 80% higher than the limit set by ICRP). However, the results from this study, for hands and thyroid, compared to similar studies, show higher values. Therefore, the optimization implementation is necessary, so that the radiation levels can be reduced. (authors)

  2. A study on the radon concentrations in water in Jeddah (Saudi Arabia) and the associated health effects

    International Nuclear Information System (INIS)

    Tayyeb, Z.A.; Kinsara, A.R.; Farid, S.M.

    1998-01-01

    Several studies have shown that water-borne 222 Rn contributes to indoor air concentrations. A passive radon measurement method was employed to determine radon activity concentrations in the water of Jeddah city (Saudi Arabia). Tap water, flushing water and drinking water, including natural mineral water, artificial mineral water and distilled water, have been investigated for their radon concentrations. It is observed that the radon concentration in natural mineral water samples is the highest and that in flush water, it is the lowest. From these measurements, the corresponding annual effective dose for the stomach and the lung are determined. It is found that the annual effective dose resulting from direct consumption of water is far greater than that due to inhalation of radon emanated from tap water and flushing water. Moreover, it is also seen that the annual effective dose resulting from inhalation of radon emanated from tap water and flushing water is negligible compared to the total annual effective dose for indoor radon in Jeddah. (author)

  3. Survey on the frequency of typical X-Ray examinations and estimation of associated population doses in the Republic of Macedonia

    International Nuclear Information System (INIS)

    Gershan, V.; Stikova, E.

    2013-01-01

    Purpose: Medical X-ray exposures have been the largest man-made source of population exposure to ionizing radiation in developed countries for many years. It is therefore important for radiation protection and health care authorities in each country to regularly assess the magnitude and the distribution of this large and increasing source of population exposure. The purpose of this paper is to present results from the survey on the number of typical X-ray examination procedures in the Republic of Macedonia for 2010, the distribution of examination procedures by type per modality for adults and pediatric patients, the annual frequency per 1000 population and the collective effective dose per 1000 population from the X-ray examination procedures performed in the Republic of Macedonia in 2010. Materials and methods: In the beginning of 2011, a survey was initiated in the Republic of Macedonia for collecting data on the number of typical X-ray examination procedures conducted in 2010 as a basis for estimating frequency of these procedures and associated population doses. The survey was initiated within a Dose Data Med project launched by the European Commission to study population doses from medical exposures within the Union. The Republic of Macedonia was invited to participate in this project as a test country. Typical X-ray examination procedures encompass those that are recognized to be the most important for the total population dose, referred to as TOP20 X-ray procedures. The survey was based on a specific questionnaire being prepared and distributed to the 87 X-ray departments in the Republic of Macedonia intended to cover the data for the year of 2010. The data was collected and summarized. Based on data gathered, the total number of examination procedures, annual frequency and their distribution by modality were calculated. Thereafter, the annual collective effective dose per 1000 population for each examination procedure in the TOP20 group and collective

  4. Alternate day treatment and late effects: The concept of an effective dose per fraction

    International Nuclear Information System (INIS)

    Courdi, A.; Hery, M.; Gabillat, J.M.

    1990-01-01

    Although most institutions treat all fields each day, some radiotherapists continue to adopt an alternate day schedule. The resulting daily variations of the dose per fraction in laterally located targets have been analyzed using the linear-quadratic model. Patients with breast carcinoma treated with definitive radiotherapy in 1974-1975 with one field a day were studied. An effective dose per fraction was derived, with a value higher than the average dose per fraction received by the reference point. The greater the fluctuations between the doses per fraction on successive days, the higher the effective dose per fraction. The corresponding cell survival due to alternate treatment as compared to survival with daily treatment depends on the alpha/beta ratio. For a late effect with low alpha/beta ratio, an alternate treatment may lead to almost 10-fold increase in cell kill in these lateral targets such as those responsible for subcutaneous sclerosis as compared to daily treatment of all fields with the same total dose. Taking the average effective dose per fraction in our series, the increase in cell kill was 4-fold. Acute effects would suffer less damage due to alternate treatment because of a high alpha/beta ratio. Treatment on an alternate schedule should be restricted to palliative radiotherapy

  5. Savannah River Site dose control

    International Nuclear Information System (INIS)

    Smith, L.S.

    1992-01-01

    Health physicists from the Brookhaven National Laboratory (BNL) visited the Savannah River Site (SRS) as one of 12 facilities operated by the Department of Energy (DOE) contractors with annual collective dose equivalents greater than 100 person-rem (100 person-cSv). Their charter was to review, evaluate and summarize as low as reasonably achievable (ALARA) techniques, methods and practices as implemented. This presentation gives an overview of the two selected ALARA practices implemented at the SRS: Administrative Exposure Limits and Goal Setting. These dose control methods are used to assure that individual and collective occupational doses are ALARA and within regulatory limits

  6. Effective doses to family members of patients treated with radioiodine 131

    International Nuclear Information System (INIS)

    Kocovska, Marina Zdravevska; Ristevska, Svetlana Micevska; Nikolovski, Sasho; Jokic, Vesna Spasic

    2010-01-01

    The purpose of this study was to evaluate the effective dose to family members of thyroid cancer and hyperthyroid patients treated with radioiodine 131; also to compare the results with dose constraints proposed by International Commission of Radiological Protection (ICRP) and Basic Safety Standards (BSS) of the International Atomic Energy Agency (IAEA). Material and methods: for estimation of effective doses at sixty family members of thirty thyroid cancer and thirty hyperthyroid patients treated with radioiodine 131, the thermoluminescent dosimeters, Model TLD 100, were used. Thyroid cancer patients were hospitalized for three days, while hyperthyroid patients were treated on out-patient basis. The family members wore thermoluminescent dosimeter in front of the torso for seven days. Results: The radiation doses to family members of thyroid cancer patients were well below recommended dose constraint of 1 mSv. The mean value of effective dose was 0.21 mSv (min 0.02 - max 0.51 mSv). Effective doses, higher than 1 mSv, were detected at 11 family members of hyperthyroid patients.. The mean value of effective dose at family members of hyperthyroid patients was 0.87 mSv (min 0.12 - max 6.79) Conclusion: After three days of hospitalization and detailed given oral and written instruction, thyroid carcinoma patients maintain not to exceed the proposed dose limits. Hyperthyroid patients present a greater radiation hazard than thyroid carcinoma patients. The estimated effective doses were higher than the effective doses at family members of thyroid carcinoma patients. These findings may be considered when establishing new national guidelines concerning radiation protection and release of patients after a treatment with radioiodine therapy.(Author)

  7. Development of Real-Time Measurement of Effective Dose for High Dose Rate Neutron Fields

    CERN Document Server

    Braby, L A; Reece, W D

    2003-01-01

    Studies of the effects of low doses of ionizing radiation require sources of radiation which are well characterized in terms of the dose and the quality of the radiation. One of the best measures of the quality of neutron irradiation is the dose mean lineal energy. At very low dose rates this can be determined by measuring individual energy deposition events, and calculating the dose mean of the event size. However, at the dose rates that are normally required for biology experiments, the individual events can not be separated by radiation detectors. However, the total energy deposited in a specified time interval can be measured. This total energy has a random variation which depends on the size of the individual events, so the dose mean lineal energy can be calculated from the variance of repeated measurements of the energy deposited in a fixed time. We have developed a specialized charge integration circuit for the measurement of the charge produced in a small ion chamber in typical neutron irradiation exp...

  8. CARCINOGENIC EFFECTS OF LOW DOSES OF IONIZING RADIATION

    Science.gov (United States)

    Carcinogenic Effects of Low Doses of Ionizing RadiationR Julian Preston, Environmental Carcinogenesis Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711The form of the dose-response curve for radiation-induced cancers, particu...

  9. Effects of low doses of ionizing radiation; Effets des faibles doses de rayonnements ionisants

    Energy Technology Data Exchange (ETDEWEB)

    Masse, R. [Office de Protection contre les Rayonnements Ionisants, 78 - le Vesinet (France)

    2006-07-01

    Several groups of human have been irradiated by accidental or medical exposure, if no gene defect has been associated to these exposures, some radioinduced cancers interesting several organs are observed among persons exposed over 100 to 200 mSv delivered at high dose rate. Numerous steps are now identified between the initial energy deposit in tissue and the aberrations of cell that lead to tumors but the sequence of events and the specific character of some of them are the subject of controversy. The stake of this controversy is the risk assessment. From the hypothesis called linear relationship without threshold is developed an approach that leads to predict cancers at any tiny dose without real scientific foundation. The nature and the intensity of biological effects depend on the quantity of energy absorbed in tissue and the modality of its distribution in space and time. The probability to reach a target (a gene) associated to the cancerating of tissue is directly proportional to the dose without any other threshold than the quantity of energy necessary to the effect, its probability of effect can be a more complex function and depends on the quality of the damage produced as well as the ability of the cell to repair the damage. These two parameters are influenced by the concentration of initial injuries in the target so by the quality of radiation and by the dose rate. The mechanisms of defence explain the low efficiency of radiation as carcinogen and then the linearity of effects in the area of low doses is certainly the least defensible scientific hypothesis for the prediction of the risks. (N.C.)

  10. Radionuclide content in some building materials and gamma dose rate in dwellings in Cuba

    International Nuclear Information System (INIS)

    Brigido, Oslvaldo; Montalvan, Adelmo; Rosa, Ramon; Hernandez, Alberto

    2008-01-01

    Naturally occurring radionuclides in building materials are one of the sources of radiation exposure of the population. This study was undertaken with the purpose of determining radioactivity in some Cuban building materials and for assessing the annual effective dose to Cuban population due external gamma exposure in dwellings for typical Cuban room model. Forty four samples of raw materials and building products were collected in some Cuban provinces. The activity concentrations of natural radionuclides were determined by gamma ray spectrometry using a p-type coaxial high purity germanium detector and their mean values are in the ranges: 9 to 857 Bq.kg -1 for 40 K; 6 to 57 Bq.kg -1 for 226 Ra; and 1.2 to 22 Bq.kg -1 for 232 Th. The radium equivalent activity in the 44 samples varied from 4 Bq.kg -1 (wood) to 272 Bq.kg -1 (brick). A high pressure ionisation chamber was used for measuring of the indoor absorbed dose rate in 543 dwellings and workplaces in five Cuban provinces. The average absorbed dose rates in air ranged from 43 n Gy.h -1 (Holguin) to 73 n Gy.h -1 (Camaguey) and the corresponding population-weighted annual effective dose due to terrestrial gamma radiation was estimated to be 145 ± 40 μSv. This dose value is 16% higher than the calculated value for typical room geometry of Cuban house. (author)

  11. Estimation of effective dose for children in interventional cardiology

    Directory of Open Access Journals (Sweden)

    S. S. Sarycheva

    2017-01-01

    Full Text Available This study is devoted to the estimation of effective dose for children undergoing interventional cardiology examinations. The conversion coefficients (CC from directly measured dose area product (DAP value to effective dose (ED were calculated within the approved effective dose assessment methodology (Guidelines 2.6.1. 2944-11. The CC, Ed K , [mSv / (Gy • cm2] for newborn infants and children of 1, 5, 10 and 15 years old (main(range were calculated as 2.5 (1.8-3.2; 1.1 (0.8-1.3; 0.6 (0.4-0.7; 0.4 (0.3-0.5; and 0,22 (0,18-0,30 respectively. A special Finnish computer program PCXMC 2.0 was used for calculating the dose CC. The series of calculations were made for different values of the physical and geometrical parameters based on their real-existing range of values. The value of CC from DAP to ED were calculated for all pediatric age groups. This work included 153 pediatric interventional studies carried out in two hospitals of the city of St. Petersburg for the period of one year from the summer of 2015. The dose CC dependency from the patient’s age and parameters of the examinations were under the study. The dependence from the beam quality (filtration and tube voltage and age of the patient were found. The younger is the patient, stronger is the filtration and higher is the voltage, the higher is the CC value. The CC in the younger (newborn and older (15 years age groups are different by the factor of 10. It was shown that the changes of the geometric parameters (in the scope of their real existing range have small effect on the value of the effective dose, not exceed 30-50% allowable for radiation protection purpose. The real values of effective doses of children undergoing cardiac interventions were estimated. In severe cases, the values of ED can reach several tens of mSv.

  12. Committed effective dose from thoron daughters inhalation

    International Nuclear Information System (INIS)

    Campos, M.P.; Pecequilo, B.R.S.

    2000-01-01

    Mankind's interest in natural radiation exposure levels has increased over the past fifty years and it is now recognized that the most significant contributors to human irradiation by natural sources are the short-lived decay products of radon ( 222 Rn) and thoron ( 220 Rn). Despite the thoron short half-life of 55 s, effective dose from inhalation of thoron an its progeny ( 212 Pb and 212 Bi) must be considered, owing to the high thorium background in countries like Brazil, China and India, for example. The indoor committed effective dose was assessed by air sampling at the thorium purification plant and the nuclear materials storage site of the Instituto de Pesquisas Energeticas e Nucleares; Sao Paulo, Brazil. A total of 21 glass fiber filter samples was analyzed by high resolution gamma ray spectrometry in order to obtain the 212 Pb and 212 Bi activities. The equilibrium equivalent concentration (EEC) varied from 0.3 Bq/m 3 to 6.8 Bq/m 3 for the storage site air samples and from 9.9 Bq/m 3 to 249.8 Bq/m 3 for the thorium purification plant air samples. As retention studies indicate a biological half-life of a few hours inhaled thoron progeny in the human lungs, the main fraction of the potential alpha energy (PAEC) deposited is absorbed in the lungs, meaning negligible to the effective dose the contribution of the dose in other times. The committed effective dose due thoron progeny was performed by compartimental analysis following the ICRP 66 lung compartimental model and ICRP 67 lead compartimental model. The values obtained varied from 0.03 mSv/a to 0.67 mSv/a for the storage site air samples and from 0.12 mSv/a to 6.00 mSv/a for the thorium purification plant air samples. (author)

  13. Center of cancer systems biology second annual workshop--tumor metronomics: timing and dose level dynamics.

    Science.gov (United States)

    Hahnfeldt, Philip; Hlatky, Lynn; Klement, Giannoula Lakka

    2013-05-15

    Metronomic chemotherapy, the delivery of doses in a low, regular manner so as to avoid toxic side effects, was introduced over 12 years ago in the face of substantial clinical and preclinical evidence supporting its tumor-suppressive capability. It constituted a marked departure from the classic maximum-tolerated dose (MTD) strategy, which, given its goal of rapid eradication, uses dosing sufficiently intense to require rest periods between cycles to limit toxicity. Even so, upfront tumor eradication is frequently not achieved with MTD, whereupon a de facto goal of longer-term tumor control is often pursued. As metronomic dosing has shown tumor control capability, even for cancers that have become resistant to the same drug delivered under MTD, the question arises whether it may be a preferable alternative dosing approach from the outset. To date, however, our knowledge of the coupled dynamics underlying metronomic dosing is neither sufficiently well developed nor widely enough disseminated to establish its actual potential. Meeting organizers thus felt the time was right, armed with new quantitative approaches, to call a workshop on "Tumor Metronomics: Timing and Dose Level Dynamics" to explore prospects for gaining a deeper, systems-level appreciation of the metronomics concept. The workshop proved to be a forum in which experts from the clinical, biologic, mathematical, and computational realms could work together to clarify the principles and underpinnings of metronomics. Among other things, the need for significant shifts in thinking regarding endpoints to be used as clinical standards of therapeutic progress was recognized. ©2013 AACR.

  14. Pediatric Obesity: Pharmacokinetic Alterations and Effects on Antimicrobial Dosing.

    Science.gov (United States)

    Natale, Stephanie; Bradley, John; Nguyen, William Huy; Tran, Tri; Ny, Pamela; La, Kirsten; Vivian, Eva; Le, Jennifer

    2017-03-01

    Limited data exist for appropriate drug dosing in obese children. This comprehensive review summarizes pharmacokinetic (PK) alterations that occur with age and obesity, and these effects on antimicrobial dosing. A thorough comparison of different measures of body weight and specific antimicrobial agents including cefazolin, cefepime, ceftazidime, daptomycin, doripenem, gentamicin, linezolid, meropenem, piperacillin-tazobactam, tobramycin, vancomycin, and voriconazole is presented. PubMed (1966-July 2015) and Cochrane Library searches were performed using these key terms: children, pharmacokinetic, obesity, overweight, body mass index, ideal body weight, lean body weight, body composition, and specific antimicrobial drugs. PK studies in obese children and, if necessary, data from adult studies were summarized. Knowledge of PK alterations stemming from physiologic changes that occur with age from the neonate to adolescent, as well as those that result from increased body fat, become an essential first step toward optimizing drug dosing in obese children. Excessive amounts of adipose tissue contribute significantly to body size, total body water content, and organ size and function that may modify drug distribution and clearance. PK studies that evaluated antimicrobial dosing primarily used total (or actual) body weight (TBW) for loading doses and TBW or adjusted body weight for maintenance doses, depending on the drugs' properties and dosing units. PK studies in obese children are imperative to elucidate drug distribution, clearance, and, consequently, the dose required for effective therapy in these children. Future studies should evaluate the effects of both age and obesity on drug dosing because the incidence of obesity is increasing in pediatric patients. © 2017 Pharmacotherapy Publications, Inc.

  15. Effective dose calculation in CT using high sensitivity TLDs

    International Nuclear Information System (INIS)

    Brady, Z.; Johnston, P.N.

    2010-01-01

    Full text: To determine the effective dose for common paediatric CT examinations using thermoluminescence dosimetry (TLD) mea surements. High sensitivity TLD chips (LiF:Mg,Cu,P, TLD-IOOH, Thermo Fisher Scientific, Waltham, MA) were calibrated on a linac at an energy of 6 MY. A calibration was also performed on a superricial X-ray unit at a kilovoltage energy to validate the megavoltage cali bration for the purpose of measuring doses in the diagnostic energy range. The dose variation across large organs was assessed and a methodology for TLD placement in a 10 year old anthropomorphic phantom developed. Effective dose was calculated from the TLD measured absorbed doses for typical CT examinations after correcting for the TLD energy response and taking into account differences in the mass energy absorption coefficients for different tissues and organs. Results Using new tissue weighting factors recommended in ICRP Publication 103, the effective dose for a CT brain examination on a 10 year old was 1.6 millisieverts (mSv), 4.9 mSv for a CT chest exa ination and 4.7 mSv for a CT abdomen/pelvis examination. These values are lower for the CT brain examination, higher for the CT chest examination and approximately the same for the CT abdomen/ pelvis examination when compared with effective doses calculated using ICRP Publication 60 tissue weighting factors. Conclusions High sensitivity TLDs calibrated with a radiotherapy linac are useful for measuring dose in the diagnostic energy range and overcome limitations of output reproducibility and uniformity asso ciated with traditional TLD calibration on CT scanners or beam quality matched diagnostic X-ray units.

  16. Estimating the population dose from nuclear medicine examinations towards establishing diagnostic reference levels

    International Nuclear Information System (INIS)

    Niksirat, Fatemeh; Monfared, Ali Shabestani; Deevband, Mohammad Reza; Amiri, Mehrangiz; Gholami, Amir

    2016-01-01

    This study conducted a review on nuclear medicine (NM) services in Mazandaran Province with a view to establish adult diagnostic reference levels (DRLs) and provide updated data on population radiation exposure resulting from diagnostic NM procedures. The data were collected from all centers in all cities of Mazandaran Province in the North of Iran from March 2014 to February 2015. The 75 th percentile of the distribution and the average administered activity (AAA) were calculated and the average effective dose per examination, collective effective dose to the population and annual effective dose per capita were estimated using dose conversion factors. The gathered data were analyzed via SPSS (version 18) software using descriptive statistics. Based on the data of this study, the collective effective dose was 95.628 manSv, leading to a mean effective dose of 0.03 mSv per capita. It was also observed that the myocardial perfusion was the most common procedure (50%). The 75 th percentile of the distribution of administered activity (AA) represents the DRL. The AAA and the 75 th percentile of the distribution of AA are slightly higher than DRL of most European countries. Myocardial perfusion is responsible for most of the collective effective dose and it is better to establish national DRLs for myocardial perfusion and review some DRL values through the participation of NM specialists in the future

  17. The health effects of low-dose ionizing radiation

    International Nuclear Information System (INIS)

    Dixit, A.N.; Dixit, Nishant

    2012-01-01

    It has been established by various researches, that high doses of ionizing radiation are harmful to health. There is substantial controversy regarding the effects of low doses of ionizing radiation despite the large amount of work carried out (both laboratory and epidemiological). Exposure to high levels of radiation can cause radiation injury, and these injuries can be relatively severe with sufficiently high radiation doses. Prolonged exposure to low levels of radiation may lead to cancer, although the nature of our response to very low radiation levels is not well known at this time. Many of our radiation safety regulations and procedures are designed to protect the health of those exposed to radiation occupationally or as members of the public. According to the linear no-threshold (LNT) hypothesis, any amount, however small, of radiation is potentially harmful, even down to zero levels. The threshold hypothesis, on the other hand, emphasizes that below a certain threshold level of radiation exposure, any deleterious effects are absent. At the same time, there are strong arguments, both experimental and epidemiological, which support the radiation hormesis (beneficial effects of low-level ionizing radiation). These effects cannot be anticipated by extrapolating from harmful effects noted at high doses. Evidence indicates an inverse relationship between chronic low-dose radiation levels and cancer incidence and/or mortality rates. Examples are drawn from: 1) state surveys for more than 200 million people in the United States; 2) state cancer hospitals for 200 million people in India; 3) 10,000 residents of Taipei who lived in cobalt-60 contaminated homes; 4) high-radiation areas of Ramsar, Iran; 5) 12 million person-years of exposed and carefully selected control nuclear workers; 6) almost 300,000 radon measurements of homes in the United States; and 7) non-smokers in high-radon areas of early Saxony, Germany. This evidence conforms to the hypothesis that

  18. Estimation of natural radiation background level and population dose in China

    International Nuclear Information System (INIS)

    Pan Ziqiang

    1992-01-01

    The authors describe in general the natural radiation background level in China, and based on available data present an estimated annual effective dose equivalent of the population to natural radiation that is some 2.3 mSv, of which about 0.54 mSv is from original γ radiation and about 0.8 mSv from radon and its short-lived daughters

  19. Terrestrial gamma radiation dose rates and radiological mapping of Terengganu state, Malaysia

    International Nuclear Information System (INIS)

    Garba, N.N.

    2015-01-01

    Measurement of terrestrial gamma radiation dose (TGRD) rates in Terengganu state, Malaysia was carried out from 145 different locations using NaI[Tl] micro roentgen survey meter. The measured TGRD rates ranged from 35 to 340 nGy h -1 with mean value of 150 nGy h -1 . The annual effective dose to population was found to be 0.92 mSv y -1 . The data obtained were used in constructing the gamma isodose map using ArcGis 9.3 which shows the distribution of TGRD rates across the state. (author)

  20. Doses and population irradiation factors for Canadian radiation technologists (1978 to 1988)

    International Nuclear Information System (INIS)

    Huda, W.; Bews, J.; Gordon, K.; Sutherland, J.B.; Sont, W.N.; Ashmore, J.P.

    1991-01-01

    Individual and collective radiation doses received by Canadian radiation technologists (RTs) working in diagnostic radiology, nuclear medicine and radiotherapy are summarized for the period 1978 to 1988. The data were obtained directly from the National Dose Registry, Department of National Health and Welfare. Over the 11-year study period the mean annual dose equivalent fluctuated around 0.2, 1.8 and 1.1 mSv for RTs working in diagnostic radiology, nuclear medicine and radiotherapy respectively. Over the same period the occupational collective dose equivalent decreased in diagnostic radiology by 44% and radiotherapy by 35%, and increased in nuclear medicine by 45%. Approximately 10 000 RTs are monitored each year, with an estimated total occupational collective dose equivalent of about 3.6 person-sievert. Analysis of dose distribution data showed that only 1.3% of all monitored RTs received an annual whole-body dose equivalent greater than the current legal limit for members of the public (5 mSv). Approximately half of the RTs working in nuclear medicine and radiotherapy received an annual dose equivalent in excess of 0.5 mSv; only 7.3% of their diagnostic radiology counterparts exceeded this level. Demographic data showed a high preponderance of young women in all three RT classifications, and an analysis of the radiation risks to this occupational group revealed increases of up to 12% above the risk associated with a 'standard' adult working population exposed to the same collective dose equivalent. (20 refs., 4 tabs., fig.)

  1. Radiation doses from coal-fired plants in Oxfordshire and Berkshire

    International Nuclear Information System (INIS)

    Wan, S.L.; Wrixon, A.D.

    1988-12-01

    This report contains an assessment of the radiation doses to members of the public living in Oxfordshire and Berkshire from the releases to atmosphere of natural radioactivity from Didcot Power Station and the coal-fired boilers that operate at the Atomic Weapons Establishment (AWE) at Aldermaston and the Harwell Laboratory of UKAEA. The calculated annual effective dose equivalents to adults from the emissions from Didcot Power Station and the coal-fired plants at AWE, Aldermaston, and UKAEA, Harwell, at 5 km from the sites are, respectively, 0.3, 0.06 and 0.01 μSv. The dose to red bone marrow are broadly comparable with these values. The doses to the other age groups considered (1-year-old and 10-year-old children) are similar to those to the adults. The conclusion is therefore drawn that the discharges from the coal-fired plants make a negligible contribution to the total radiation doses received by the population living around the sites. (author)

  2. 8. annual report of RADMIL 1992/93

    International Nuclear Information System (INIS)

    1993-01-01

    The eighth RADMIL (Radioactivity monitoring in Lancashire) annual report covers the period 1992-1993. It is self-contained, with data on monitoring systems held in the text rather than referenced. It summarizes the UK radiological protection system and the standards against which public exposure is assessed. It uses the data from RADMIL monitoring to indicate doses to Lancastrians from all sources (environmental gamma dose rate, atmospheric particulates, seafood and seaweed monitoring, other food monitoring, intertidal sediment and house, and external dust) and discusses risk and estimates doses to specific groups in relation to occupations and personal habits. (UK)

  3. Natural radioactivity and external dose assessment of surface soils in Vietnam

    International Nuclear Information System (INIS)

    Huy, N. Q.; Hien, P. D.; Luyen, T. V.; Hoang, D. V.; Hiep, H. T.; Quang, N. H.; Long, N. Q.; Nhan, D. D.; Binh, N. T.; Hai, P. S.; Ngo, N. T.

    2012-01-01

    In this study, natural radioactivity in surface soils of Vietnam and external dose assessment to human population, deduced from activities of 226 Ra, 232 Th and 40 K nuclides, were determined. From 528 soil samples collected in 63 provinces of Vietnam, including five centrally governed cities, the average activities were obtained and equal to 42.77 ± 18.15 Bq kg -1 for 226 Ra, 59.84 ± 19.81 Bq kg -1 for 232 Th and 411.93 ± 230.69 Bq kg -1 for 40 K. The outdoor absorbed dose rates (OADRs) in air at 1 m above the ground level for 63 provinces were calculated, and their average value was 71.72 ± 24.72 nGy h -1 , with a range from 17.45 to 149.40 nGy h -1 . The population-weighted OADR of Vietnam was 66.70 nGy h -1 , which lies in the range of 18-93 nGy h -1 found in the World. From the OADRs obtained, it was estimated that the outdoor annual effective dose and indoor annual effective dose to the population were 0.082 and 0.458 mSv, which are higher than the corresponding values 0.07 and 0.41 mSv, respectively, of the World. The radium equivalent activity Ra eq and the external hazard index H ex of surface soils of Vietnam are lower than the corresponding permissible limits of 370 Bq kg -1 and 1, respectively. Therefore, soil from Vietnam is safe for the human population when it is used as a building material. (authors)

  4. Natural Radioactivity and External Dose Assessment of Surface Soils in Vietnam

    International Nuclear Information System (INIS)

    Huy, N.Q.; Hien, P.D.; Hoang, D.V.; Quang, N.H.; Long, N.Q.; Binh, N.T.; Hai, P.S.

    2012-01-01

    In this study, natural radioactivity in surface soils of Vietnam and external dose assessment to human population, deduces from activities of 226 Ra, 232 Th and 40 K nuclides, were determined. From 528 soil samples collected in 63 provinces of Vietnam, including five centrally governed cities, the average activities were obtained and equal to 42.77 ± 18.15 Bq kg -1 for 226 Ra, 59.84 ± 19.81 Bq kg -1 for 232 Th and 411.93 ± 230.69 Bq kg -1 for 40 K. The outdoor absorbed dose rates (OADRs) in air at 1 m above the ground level for 63 provinces were calculated, and their average value was 71.72 ± 24.72 nGy h -1 , with a range from 17.45 to 149.40 nGy h -1 . The population-weighted OADR of Vietnam was 66.70 nGy h -1 , which lies in the range of 18-93 nGy h -1 found in the World. From the OADR obtained, it was estimated that the outdoor annual effective dose and indoor annual effective dose to the population were 0.082 and 0.458 mSv, which are higher than the corresponding values 0.07 and 0.41 mSv, respectively, of the World. The radium equivalent activity Ra eq and the external hazard index H ex of surface soils of Vietnam are lower than the corresponding permissible limits of 370 Bq kg -1 and 1, respectively. Therefore, soil from Vietnam is safe for the human population when it used as a building material. (author)

  5. Committed effective dose from naturally occuring radionuclides in shellfish

    Science.gov (United States)

    Khandaker, Mayeen Uddin; Wahib, Norfadira Binti; Amin, Yusoff Mohd.; Bradley, D. A.

    2013-07-01

    Recognizing their importance in the average Malaysian daily diet, the radioactivity concentrations in mollusc- and crustacean-based food have been determined for key naturally occuring radionuclides. Fresh samples collected from various maritime locations around peninsular Malaysia have been processed using standard procedures; the radionuclide concentrations being determined using an HPGe γ-ray spectrometer. For molluscs, assuming secular equilibrium, the range of activities of 238U (226Ra), 232Th (228Ra) and 40K were found to be 3.28±0.35 to 5.34±0.52, 1.20±0.21 to 2.44±0.21 and 118±6 to 281±14 Bq kg-1 dry weight, respectively. The respective values for crustaceans were 3.02±0.57 to 4.70±0.52, 1.38±0.21 to 2.40±0.35 and 216±11 to 316±15 Bq kg-1. The estimated average daily intake of radioactivity from consumption of molluscs are 0.37 Bq kg-1 for 238U (226Ra), 0.16 Bq kg-1 for 232Th (228Ra) and 18 Bq kg-1 for 40K; the respective daily intake values from crustaceans are 0.36 Bq kg-1, 0.16 Bq kg-1 and 23 Bq kg-1. Associated annual committed effective doses from molluscs are estimated to be in the range 21.3 to 34.7 μSv for 226Ra, 19.3 to 39.1 μSv for 228Ra and 17.0 to 40.4 μSv for 40K. For crustaceans, the respective dose ranges are 19.6 to 30.5 μSv, 22.0 to 38.4 μSv and 31.1 to 45.5 μSv, being some several times world average values.

  6. Dose-Dependent Protective Effect of Inhalational Anesthetics Against Postoperative Respiratory Complications

    DEFF Research Database (Denmark)

    Grabitz, Stephanie D; Farhan, Hassan N; Ruscic, Katarina J

    2017-01-01

    OBJECTIVES: Inhalational anesthetics are bronchodilators with immunomodulatory effects. We sought to determine the effect of inhalational anesthetic dose on risk of severe postoperative respiratory complications. DESIGN: Prospective analysis of data on file in surgical cases between January 2007...... with endotracheal intubation. INTERVENTIONS: Median effective dose equivalent of inhalational anesthetics during surgery (derived from mean end-tidal inhalational anesthetic concentrations). MEASUREMENTS AND MAIN RESULTS: Postoperative respiratory complications occurred in 6,979 of 124,497 cases (5.61%). High...... inhalational anesthetic dose of 1.20 (1.13-1.30) (median [interquartile range])-fold median effective dose equivalent versus 0.57 (0.45-0.64)-fold median effective dose equivalent was associated with lower odds of postoperative respiratory complications (odds ratio, 0.59; 95% CI, 0.53-0.65; p

  7. Rainfall effects on rare annual plants

    Science.gov (United States)

    Levine, J.M.; McEachern, A.K.; Cowan, C.

    2008-01-01

    Variation in climate is predicted to increase over much of the planet this century. Forecasting species persistence with climate change thus requires understanding of how populations respond to climate variability, and the mechanisms underlying this response. Variable rainfall is well known to drive fluctuations in annual plant populations, yet the degree to which population response is driven by between-year variation in germination cueing, water limitation or competitive suppression is poorly understood.We used demographic monitoring and population models to examine how three seed banking, rare annual plants of the California Channel Islands respond to natural variation in precipitation and their competitive environments. Island plants are particularly threatened by climate change because their current ranges are unlikely to overlap regions that are climatically favourable in the future.Species showed 9 to 100-fold between-year variation in plant density over the 5–12 years of censusing, including a severe drought and a wet El Niño year. During the drought, population sizes were low for all species. However, even in non-drought years, population sizes and per capita growth rates showed considerable temporal variation, variation that was uncorrelated with total rainfall. These population fluctuations were instead correlated with the temperature after the first major storm event of the season, a germination cue for annual plants.Temporal variation in the density of the focal species was uncorrelated with the total vegetative cover in the surrounding community, suggesting that variation in competitive environments does not strongly determine population fluctuations. At the same time, the uncorrelated responses of the focal species and their competitors to environmental variation may favour persistence via the storage effect.Population growth rate analyses suggested differential endangerment of the focal annuals. Elasticity analyses and life table response

  8. Profiles of doses to the population living in the high background radiation areas in Kerala, India

    Energy Technology Data Exchange (ETDEWEB)

    Chougaonkar, M.P. E-mail: mpckar@hotmail.com; Eappen, K.P.; Ramachandran, T.V.; Shetty, P.G.; Mayya, Y.S.; Sadasivan, S.; Venkat Raj, V

    2004-07-01

    A sample study of the profiles of radiation exposures to the populations living in the high background radiation areas (HBRAs) of the monazite-bearing region in Kerala, India, has been conducted by monitoring 200 dwellings selected from two villages in this region. Each of these dwellings was monitored for 1 year and the study lasted for a period of 2 years. The indoor gamma ray dose measurements were carried out using thermo luminescent dosimeters (TLDs) and the inhalation doses due to radon, thoron and their progenies were monitored using solid-state nuclear track detector (SSNTD) based twin-cup dosimeters. Outdoor gamma ray dose measurements were carried out using Geiger Muller (GM) tube based survey meters. Annual effective doses were computed, using occupancy factors of 0.8 and 0.2, respectively, for indoor and outdoor, by adding the three components. Occupants of 41.6% of the houses surveyed were observed to receive the annual effective doses ranging between 0.5 and 5 mSv/a, 41.6% between 5 and 10 mSv/a, 10.2% between 10 and 15 mSv/a and 6.6% greater than 15 mSv/a. The inhalation component was generally smaller than the external gamma ray component and on an average it was found to constitute about 30% of the total dose. The paper presents the details of the methodology adopted and the analysis of the results.

  9. Problems Concerning Dose Assessments in Epidemiology of High Background Radiation Areas of Yangjiang, China (invited paper)

    International Nuclear Information System (INIS)

    Wei, L.X.; Yuan, Y.L.

    1998-01-01

    The purpose of this study on radiation levels and dose assessments in the epidemiology of a high background radiation area (HBRA) and the control area (CA) is to respond to the needs of epidemiology in these areas, where the inhabitants are continuously exposed to low dose, low dose rate ionising radiation. A brief description is given of how the research group evaluated the feasibility of the investigation by analysing the population size and the radiation levels, how simple reliable methods were used to get the individual annual dose for every cohort member, and how the cohort members were classified into various dose groups for dose-effect relationship analysis. Finally, the use of dose group classification for cancer mortality studies is described. (author)

  10. Estimates of radiation doses from various sources of exposure

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter provides an overview of radiation doses to individuals and to the collective US population from various sources of ionizing radiation. Summary tables present doses from various sources of ionizing radiation. Summary tables present doses from occupational exposures and annual per capita doses from natural background, the healing arts, nuclear weapons, nuclear energy and consumer products. Although doses from non-ionizing radiation are not as yet readily available in a concise form, the major sources of non-ionizing radiation are listed

  11. Biological effects of low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Gonzalez, A.J.

    1994-01-01

    Few weeks ago, when the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) submitted to the U.N. General Assembly the UNSCEAR 1994 report, the international community had at its disposal a broad view of the biological effects of low doses of ionizing radiation. The 1994 report (272 pages) specifically addressed the epidemiological studies of radiation carcinogenesis and the adaptive responses to radiation in cells and organisms. The report was aimed to supplement the UNSCEAR 1993 report to the U.N. General Assembly- an extensive document of 928 pages-which addressed the global levels of radiation exposing the world population, as well as some issues on the effects of ionizing radiation, including: mechanisms of radiation oncogenesis due to radiation exposure, influence of the level of dose and dose rate on stochastic effects of radiation, hereditary effects of radiation effects on the developing human brain, and the late deterministic effects in children. Those two UNSCEAR reports taken together provide an impressive overview of current knowledge on the biological effects of ionizing radiation. This article summarizes the essential issues of both reports, although it cannot cover all available information. (Author)

  12. Age-dependent effective doses for radionuclides uniformly distributed in air

    International Nuclear Information System (INIS)

    Hung, Tran Van

    2014-01-01

    Age-dependent effective doses for external exposure to photons emitted by radionuclides uniformly distributed in air are reported. The calculations were performed for 160 radionuclides, which are important for safety assessment of nuclear facilities. The energies and intensities of photons emitted from radionuclides were taken from the decay data DECDC used for dose calculations. The results are tabulated in the form of effective dose per unit concentration and time (Sv per Bq s m -3 ) for 6 age groups: newborn, 1, 5, 10 and 15 years-old and adult. The effective doses for the adult are also compared to values given in the literature.

  13. Radiation dose associated with CT-guided drain placement for pediatric patients

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Cody J.; Isaacson, Ari J.; Fordham, Lynn Ansley; Ivanovic, Marija; Dixon, Robert G. [University of North Carolina at Chapel Hill, Department of Radiology, UNC Health Care, Chapel Hill, NC (United States); Taylor, J.B. [University of North Carolina at Chapel Hill, Environment, Health and Safety, Chapel Hill, NC (United States)

    2017-05-15

    To date, there are limited radiation dose data on CT-guided procedures in pediatric patients. Our goal was to quantify the radiation dose associated with pediatric CT-guided drain placement and follow-up drain evaluations in order to estimate effective dose. We searched the electronic medical record and picture archiving and communication system (PACS) to identify all pediatric (<18 years old) CT-guided drain placements performed between January 2008 and December 2013 at our institution. We compiled patient data and radiation dose information from CT-guided drain placements as well as pre-procedural diagnostic CTs and post-procedural follow-up fluoroscopic abscess catheter injections (sinograms). Then we converted dose-length product, fluoroscopy time and number of acquisitions to effective doses using Monte Carlo simulations and age-appropriate conversion factors based on annual quality-control testing. Fifty-two drainages were identified with mean patient age of 11.0 years (5 weeks to 17 years). Most children had diagnoses of appendicitis (n=23) or inflammatory bowel disease (n=11). Forty-seven patients had diagnostic CTs, with a mean effective dose of 7.3 mSv (range 1.1-25.5 mSv). Drains remained in place for an average of 16.9 days (range 0-75 days), with an average of 0.9 (0-5) sinograms per patient in follow-up. The mean effective dose for all drainages and follow-up exams was 5.3 mSv (0.7-17.1) and 62% (32/52) of the children had effective doses less than 5 mSv. The majority of pediatric patients who have undergone CT-guided drain placements at our institution have received total radiation doses on par with diagnostic ranges. This information could be useful when describing the dose of radiation to parents and providers when CT-guided drain placement is necessary. (orig.)

  14. Radiation dose associated with CT-guided drain placement for pediatric patients

    International Nuclear Information System (INIS)

    Schwartz, Cody J.; Isaacson, Ari J.; Fordham, Lynn Ansley; Ivanovic, Marija; Dixon, Robert G.; Taylor, J.B.

    2017-01-01

    To date, there are limited radiation dose data on CT-guided procedures in pediatric patients. Our goal was to quantify the radiation dose associated with pediatric CT-guided drain placement and follow-up drain evaluations in order to estimate effective dose. We searched the electronic medical record and picture archiving and communication system (PACS) to identify all pediatric (<18 years old) CT-guided drain placements performed between January 2008 and December 2013 at our institution. We compiled patient data and radiation dose information from CT-guided drain placements as well as pre-procedural diagnostic CTs and post-procedural follow-up fluoroscopic abscess catheter injections (sinograms). Then we converted dose-length product, fluoroscopy time and number of acquisitions to effective doses using Monte Carlo simulations and age-appropriate conversion factors based on annual quality-control testing. Fifty-two drainages were identified with mean patient age of 11.0 years (5 weeks to 17 years). Most children had diagnoses of appendicitis (n=23) or inflammatory bowel disease (n=11). Forty-seven patients had diagnostic CTs, with a mean effective dose of 7.3 mSv (range 1.1-25.5 mSv). Drains remained in place for an average of 16.9 days (range 0-75 days), with an average of 0.9 (0-5) sinograms per patient in follow-up. The mean effective dose for all drainages and follow-up exams was 5.3 mSv (0.7-17.1) and 62% (32/52) of the children had effective doses less than 5 mSv. The majority of pediatric patients who have undergone CT-guided drain placements at our institution have received total radiation doses on par with diagnostic ranges. This information could be useful when describing the dose of radiation to parents and providers when CT-guided drain placement is necessary. (orig.)

  15. Estimating Effective Dose of Radiation From Pediatric Cardiac CT Angiography Using a 64-MDCT Scanner: New Conversion Factors Relating Dose-Length Product to Effective Dose.

    Science.gov (United States)

    Trattner, Sigal; Chelliah, Anjali; Prinsen, Peter; Ruzal-Shapiro, Carrie B; Xu, Yanping; Jambawalikar, Sachin; Amurao, Maxwell; Einstein, Andrew J

    2017-03-01

    The purpose of this study is to determine the conversion factors that enable accurate estimation of the effective dose (ED) used for cardiac 64-MDCT angiography performed for children. Anthropomorphic phantoms representative of 1- and 10-year-old children, with 50 metal oxide semiconductor field-effect transistor dosimeters placed in organs, underwent scanning performed using a 64-MDCT scanner with different routine clinical cardiac scan modes and x-ray tube potentials. Organ doses were used to calculate the ED on the basis of weighting factors published in 1991 in International Commission on Radiological Protection (ICRP) publication 60 and in 2007 in ICRP publication 103. The EDs and the scanner-reported dose-length products were used to determine conversion factors for each scan mode. The effect of infant heart rate on the ED and the conversion factors was also assessed. The mean conversion factors calculated using the current definition of ED that appeared in ICRP publication 103 were as follows: 0.099 mSv · mGy -1 · cm -1 , for the 1-year-old phantom, and 0.049 mSv · mGy -1 · cm -1 , for the 10-year-old phantom. These conversion factors were a mean of 37% higher than the corresponding conversion factors calculated using the older definition of ED that appeared in ICRP publication 60. Varying the heart rate did not influence the ED or the conversion factors. Conversion factors determined using the definition of ED in ICRP publication 103 and cardiac, rather than chest, scan coverage suggest that the radiation doses that children receive from cardiac CT performed using a contemporary 64-MDCT scanner are higher than the radiation doses previously reported when older chest conversion factors were used. Additional up-to-date pediatric cardiac CT conversion factors are required for use with other contemporary CT scanners and patients of different age ranges.

  16. A Monte Carlo estimation of effective dose in chest tomosynthesis

    International Nuclear Information System (INIS)

    Sabol, John M.

    2009-01-01

    Purpose: The recent introduction of digital tomosynthesis imaging into routine clinical use has enabled the acquisition of volumetric patient data within a standard radiographic examination. Tomosynthesis requires the acquisition of multiple projection views, requiring additional dose compared to a standard projection examination. Knowledge of the effective dose is needed to make an appropriate decision between standard projection, tomosynthesis, and CT for thoracic x-ray examinations. In this article, the effective dose to the patient of chest tomosynthesis is calculated and compared to a standard radiographic examination and to values published for thoracic CT. Methods: Radiographic technique data for posterior-anterior (PA) and left lateral (LAT) radiographic chest examinations of medium-sized adults was obtained from clinical sites. From these data, the average incident air kerma for the standard views was determined. A commercially available tomosynthesis system was used to define the acquisition technique and geometry for each projection view. Using Monte Carlo techniques, the effective dose of the PA, LAT, and each tomosynthesis projection view was calculated. The effective dose for all projections of the tomosynthesis sweep was summed and compared to the calculated PA and LAT values and to the published values for thoracic CT. Results: The average incident air kerma for the PA and left lateral clinical radiographic examinations were found to be 0.10 and 0.40 mGy, respectively. The effective dose for the PA view of a patient of the size of an average adult male was determined to be 0.017 mSv (ICRP 60) [0.018 mSv (ICRP 103)]. For the left lateral view of the same sized patient, the effective dose was determined to be 0.039 mSv (ICRP 60) [0.050 mSv (ICRP 103)]. The cumulative mA s for a tomosynthesis examination is recommended to be ten times the mA s of the PA image. With this technique, the effective dose for an average tomosynthesis examination was

  17. A simple method for estimating the effective dose in dental CT. Conversion factors and calculation for a clinical low-dose protocol

    International Nuclear Information System (INIS)

    Homolka, P.; Kudler, H.; Nowotny, R.; Gahleitner, A.; Wien Univ.

    2001-01-01

    An easily appliable method to estimate effective dose including in its definition the high radio-sensitivity of the salivary glands from dental computed tomography is presented. Effective doses were calculated for a markedly dose reduced dental CT protocol as well as for standard settings. Data are compared with effective doses from the literature obtained with other modalities frequently used in dental care. Methods: Conversion factors based on the weighted Computed Tomography Dose Index were derived from published data to calculate effective dose values for various CT exposure settings. Results: Conversion factors determined can be used for clinically used kVp settings and prefiltrations. With reduced tube current an effective dose for a CT examination of the maxilla of 22 μSv can be achieved, which compares to values typically obtained with panoramic radiography (26 μSv). A CT scan of the mandible, respectively, gives 123 μSv comparable to a full mouth survey with intraoral films (150 μSv). Conclusion: For standard CT scan protocols of the mandible, effective doses exceed 600 μSv. Hence, low dose protocols for dental CT should be considered whenever feasable, especially for paediatric patients. If hard tissue diagnoses is performed, the potential of dose reduction is significant despite the higher image noise levels as readability is still adequate. (orig.) [de

  18. An updated dose assessment for resettlement options at Bikini Atoll--a U.S. nuclear test site.

    Science.gov (United States)

    Robison, W L; Bogen, K T; Conrado, C L

    1997-07-01

    On 1 March 1954, a nuclear weapon test, code-named BRAVO, conducted at Bikini Atoll in the northern Marshall Islands contaminated the major residence island. There has been a continuing effort since 1977 to refine dose assessments for resettlement options at Bikini Atoll. Here we provide a radiological dose assessment for the main residence island, Bikini, using extensive radionuclide concentration data derived from analysis of food crops, ground water, cistern water, fish and other marine species, animals, air, and soil collected at Bikini Island as part of our continuing research and monitoring program that began in 1978. The unique composition of coral soil greatly alters the relative contribution of 137Cs and 90Sr to the total estimated dose relative to expectations based on North American and European soils. Without counter measures, 137Cs produces 96% of the estimated dose for returning residents, mostly through uptake from the soil to terrestrial food crops but also from external gamma exposure. The doses are calculated assuming a resettlement date of 1999. The estimated maximum annual effective dose for current island conditions is 4.0 mSv when imported foods, which are now an established part of the diet, are available. The 30-, 50-, and 70-y integral effective doses are 91 mSv, 130 mSv, and 150 mSv, respectively. A detailed uncertainty analysis for these dose estimates is presented in a companion paper in this issue. We have evaluated various countermeasures to reduce 137Cs in food crops. Treatment with potassium reduces the uptake of 137Cs into food crops, and therefore the ingestion dose, to about 5% of pretreatment levels and has essentially no negative environmental consequences. We have calculated the dose for the rehabilitation scenario where the top 40 cm of soil is removed in the housing and village area, and the rest of the island is treated with potassium fertilizer; the maximum annual effective dose is 0.41 mSv and the 30-, 50-, and 70-y

  19. Review of low dose-rate epidemiological studies and biological mechanisms of dose-rate effects on radiation induced carcinogenesis

    International Nuclear Information System (INIS)

    Iwasaki, Toshiyasu; Otsuka, Kensuke; Yoshida, Kazuo

    2015-01-01

    Radiation protection system adopts the linear non-threshold model with using dose and dose-rate effectiveness factor (DDREF). The dose-rate range where DDREF is applied is below 100 mGy per hour, and it is regarded that there are no dose-rate effects at very low dose rate, less than of the order of 10 mGy per year, even from the biological risk evaluation model based on cellular and molecular level mechanisms for maintenance of genetic integrity. Among low dose-rate epidemiological studies, studies of residents in high natural background areas showed no increase of cancer risks at less than about 10 mGy per year. On the other hand, some studies include a study of the Techa River cohort suggested the increase of cancer risks to the similar degree of Atomic bomb survivor data. The difference of those results was supposed due to the difference of dose rate. In 2014, International Commission on Radiological Protection opened a draft report on stem cell biology for public consultations. The report proposed a hypothesis based on the new idea of stem cell competition as a tissue level quality control mechanism, and suggested that it could explain the dose-rate effects around a few milligray per year. To verify this hypothesis, it would be needed to clarify the existence and the lowest dose of radiation-induced stem cell competition, and to elucidate the rate of stem cell turnover and radiation effects on it. As for the turnover, replenishment of damaged stem cells would be the important biological process. It would be meaningful to collect the information to show the difference of dose rates where the competition and the replenishment would be the predominant processes. (author)

  20. Evaluation of effective dose equivalent from environmental gamma rays

    International Nuclear Information System (INIS)

    Saito, K.; Tsutsumi, M.; Moriuchi, S.; Petoussi, N.; Zankl, M.; Veit, R.; Jacob, P.; Drexler, G.

    1991-01-01

    Organ doses and effective dose equivalents for environmental gamma rays were calculated using human phantoms and Monte Carlo methods accounting rigorously the environmental gamma ray fields. It was suggested that body weight is the dominant factor to determine organ doses. The weight function expressing organ doses was introduced. Using this function, the variation in organ doses due to several physical factors were investigated. A detector having gamma-ray response similar to that of human bodies has been developed using a NaI(Tl) scintillator. (author)