CMB Constraints On The Thermal WIMP Annihilation Cross Section
Steigman, Gary
2015-01-01
A thermal relic, often referred to as a weakly interacting massive particle (WIMP),is a particle produced during the early evolution of the Universe whose relic abundance (e.g., at present) depends only on its mass and its thermally averaged annihilation cross section (annihilation rate factor) sigma*v_ann. Late time WIMP annihilation has the potential to affect the cosmic microwave background (CMB) power spectrum. Current observational constraints on the absence of such effects provide bounds on the mass and the annihilation cross section of relic particles that may, but need not be dark matter candidates. For a WIMP that is a dark matter candidate, the CMB constraint sets an upper bound to the annihilation cross section, leading to a lower bound to their mass that depends on whether or not the WIMP is its own antiparticle. For a self-conjugate WIMP, m_min = 50f GeV, where f is an electromagnetic energy efficiency factor. For a non self-conjugate WIMP, the minimum mass is a factor of two larger. For a WIMP t...
Jet cross sections in electron-positron annihilation
There are few, if any, detailed tests of QCD at present. I disucss the problems associated with testing QCD and argue that the three jet angular distribution in electron-positron annihilation is a good quantity to use because it minimizes the sensitivity to nonperturbative effects and provides a test of the detailed structure of QCD. However, for such a test to be possible, the perturbation expansion must be well behaved. I present a calculation of the perturbative corrections using two different generalizations of the Sterman-Weinberg two-jet cross section. I argue that because of the uncertainties in our understanding of hadronization it is necessary that the corrections to both these cross sections be small. In presenting the results I use the recent proof of Mukti and Sterman that all the logarithms can be resummed. I find that at Z-factory energies there is a substantial region of parameters defining the jets for which the correction is small, but that there is no such region at PEP/PETRA energies. This problem at PEP/PETRA energies is made worse by the results of a study of the effects of hadronization. Using a simple model I find very significant effects at PEP/PETRA energies that would make a test difficult. These effects do not, however, present problems at Z-factory energies. I conclude that, even if there are further theoretical advances, testing QCD at PEP/PETRA energies using the three-jet angular distribution will be very difficult. However, this distribution can be used to test QCD in a detailed way at Z-factory energies. The corrected results, furthermore, show a systematic difference from the lowest order result that may be measurable at Z-factory energies. If this effect could be measured it would provide a yet more detailed test of QCD, testing, for example, the three gluon coupling. 66 references
First measurement of the antiproton-nucleus annihilation cross section at 125 keV
Aghai-Khozani, H; Corradini, M; De Salvador, D; Hayano, R; Hori, M; Kobayashi, T; Leali, M; Lodi-Rizzini, E; Mascagna, V; Prest, M; Seiler, D; Soter, A; Todoroki, K; Vallazza, E; Venturelli, L
2015-01-01
The first observation of in-flight antiproton-nucleus annihilation at ∼130 keV obtained with the ASACUSA detector has demonstrated that the measurement of the cross section of the process is feasible at such extremely low energies Aghai-Khozani, H., et al., Eur. Phys. J. Plus 127, 55 (2012). Here we present the results of the data analysis with the evaluations of the antiproton annihilation cross sections on carbon, palladium and platinum targets at 125 keV.
The annihilation cross section of dark matter which is driven by scalar unparticle
Iltan, E. O.
2012-01-01
We analyze the annihilation cross section of dark matter which interacts with the standard model sector over the scalar unparticle propagator. We observe that the annihilation cross section of dark matter pair is sensitive to the dark matter mass and the scaling dimension of scalar unparticle. We estimate a range for the dark matter mass and the scaling dimension of scalar unparticle by using the current dark matter abundance.
Hadronic cross sections in electron-positron annihilation with tagged photon
We consider events with tagged photons in the process of electron-positron annihilation into hadrons. We propose to use the initial state radiation at meson factories to scan with the energy the hadronic cross section. QED radiative corrections are taken into account and the corresponding results for the total and partial cross sections are given in analytic form. Some numerical estimates are also given
We analyze 2.8-yr data of 1–100 GeV photons for clusters of galaxies, collected with the Large Area Telescope onboard the Fermi satellite. By analyzing 49 nearby massive clusters located at high Galactic latitudes, we find no excess gamma-ray emission towards directions of the galaxy clusters. Using flux upper limits, we show that the Fornax cluster provides the most stringent constraints on the dark matter annihilation cross section. Stacking a large sample of nearby clusters does not help improve the limit for most dark matter models. This suggests that a detailed modeling of the Fornax cluster is important for setting robust limits on the dark matter annihilation cross section based on clusters. We therefore perform the detailed mass modeling and predict the expected dark matter annihilation signals from the Fornax cluster, by taking into account effects of dark matter contraction and substructures. By modeling the mass distribution of baryons (stars and gas) around a central bright elliptical galaxy, NGC 1399, and using a modified contraction model motivated by numerical simulations, we show that the dark matter contraction boosts the annihilation signatures by a factor of 4. For dark matter masses around 10 GeV, the upper limit obtained on the annihilation cross section times relative velocity is (σν)∼−25 cm3 s−1, which is within a factor of 10 from the value required to explain the dark matter relic density. This effect is more robust than the annihilation boost due to substructure, and it is more important unless the mass of the smallest subhalos is much smaller than that of the Sun
Zhao, Yi; Bi, Xiao-Jun; Jia, Huan-Yu; Yin, Peng-Fei; Zhu, Feng-Rong
2016-04-01
The γ -ray observation of dwarf spheroidal satellites (dSph's) is an ideal approach for probing the dark matter (DM) annihilation signature. The latest Fermi-LAT dSph searches have set stringent constraints on the velocity independent annihilation cross section in the small DM mass range, which gives very strong constraints on the scenario to explain the AMS-02 positron excess by DM annihilation. However, the dSph constraints would change in the velocity dependent annihilation scenarios, because the velocity dispersion in the dSph's varies from that in the Milky Way. In this work, we use a likelihood map method to set constraints on the velocity dependent annihilation cross section from the Fermi-LAT observation of six dSph's. We consider three typical forms of the annihilation cross section, i.e. p-wave annihilation, Sommerfeld enhancement, and Breit-Wigner resonance. For the p-wave annihilation and Sommerfeld enhancement, the dSph limits would become much weaker and stronger compared with those for the velocity independent annihilation, respectively. For the Breit-Wigner annihilation, the dSph limits would vary depending on the model parameters. We show that the scenario to explain the AMS-02 positron excess by DM annihilation is still viable in the velocity dependent cases.
Factorization of the dijet cross section with the Georgi jet algorithm in $e^+ e^-$ annihilation
Chay, Junegone
2015-01-01
We consider the dijet cross section in $e^+ e^-$ annihilation using the Georgi jet algorithm, or the maximizing jet algorithm. The cross section is factorized into the hard, collinear and soft parts. Each factorized function is computed to next-to-leading order, and is shown to be infrared finite. The large logarithms are resummed at next-to-leading logarithmic accuracy. By analyzing the phase space for the jet algorithm, the Georgi algorithm turns out to be equivalent to the Sterman-Weinberg and the cone-type algorithms.
Cross sections for five jet production above the W+W- threshold in e+e- annihilation
We describe the calculation of five jet production from the W+W- intermediate state in e+e- annihilation in lowest order quantum chromodynamics. Some results for integrated Cross-sections are presented. (author)
Cross sections for inelastic meson-meson scattering via quark-antiquark annihilation
Shen, Zhen-Yu; Xu, Xiao-Ming; Weber, H. J.
2016-08-01
We study inelastic meson-meson scattering that is governed by quark-antiquark annihilation and creation involving a quark and an antiquark annihilating into a gluon, and subsequently the gluon creating another quark-antiquark pair. The resultant hadronic reactions include for I =1 : π π →ρ ρ , K K ¯→K*K¯*, K K¯*→K*K¯*, K*K ¯→K*K¯*, as well as π π →K K ¯, π ρ →K K¯*, π ρ →K*K ¯, and K K ¯→ρ ρ . In each reaction, one or two Feynman diagrams are involved in the Born approximation. We derive formulas for the unpolarized cross section, the transition amplitude, and the transition potential for quark-antiquark annihilation and creation. The unpolarized cross sections for the reactions are calculated at six temperatures, and prominent temperature dependence is found. It is due to differences among mesonic temperature dependence in hadronic matter.
Beam Diagnostics for Measurements of Antiproton Annihilation Cross Sections at Ultra-low Energy
Todoroki K.
2014-03-01
Full Text Available The ASACUSA (Atomic Spectroscopy And Collisions Using Slow Antiprotons collaboration of CERN is currently attempting to measure the antiproton-nucleus in-flight annihilation cross sections on thin target foils of C, Pd, and Pt at 130 keV of kinetic energy. The low-energy antiprotons were supplied by the Antiproton Decelerator (AD and a radio-frequency quadrupole decelerator. For this measurement, a beam profile monitor based on secondary electron emission was developed. Data from this monitor was used to ensure that antiprotons were precisely tuned to the position of an 80-mm-diameter experimental target, by measuring the spatial profile of 200-ns-long beam pulses containing 105 − 106 antiprotons with an active area of 40 mm × 40 mm and a spatial resolution of 4 mm. By using this monitor, we succeeded in finely tuning antiproton beams on the target, and observed some annihilation events originating from the target.
Zhao, Yi; Jia, Huan-Yu; Yin, Peng-Fei; Zhu, Feng-Rong
2016-01-01
The gamma-ray observation of dwarf spheroidal satellites (dSphs) is an ideal approach for probing the dark matter (DM) annihilation signature. The latest Fermi-LAT dSph searches have set stringent constraints on the velocity independent annihilation cross section in the small DM mass range, which gives very strong constraints on the scenario to explain the the AMS-02 positron excess by DM annihilation. However, the dSph constraints would change in the velocity dependent annihilation scenarios, because the velocity dispersion in the dSphs varies from that in the Milky Way. In this work, we use a likelihood map method to set constraints on the velocity dependent annihilation cross section from the Fermi-LAT observation of six dSphs. We consider three typical forms of the annihilation cross section, i.e. p-wave annihilation, Sommerfeld enhancement, and Breit-Wigner resonance. For the p-wave annihilation and Sommerfeld-enhancement, the dSph limits would become much weaker and stronger compared with those for the ...
Physics cross sections and event generation of e+e- annihilations at the CEPC
Mo, Xin; Li, Gang; Ruan, Man-Qi; Lou, Xin-Chou
2016-03-01
The cross sections of the Higgs production and the corresponding backgrounds of e+e- annihilations at the CEPC (Circular Electron and Positron Collider) are calculated by a Monte-Carlo method, and the beamstrahlung effect at the CEPC is carefully investigated. The numerical results and the expected number of events for the CEPC are provided. Supported by CAS/SAFEA International Partnership Program for Creative Research Teams, and funding from CAS and IHEP for the Thousand Talent and Hundred Talent programs, as well as grants from the State Key Laboratory of Nuclear Electronics and Particle Detectors
Measurement of the hadronic cross section in electron-positron annihilation
This thesis describes the most precise measurement to date of the ratio R, the hadronic cross section in lowest order electron-positron annihilation to the cross section for muon pair production in lowest order electron-positron annihilation. This experiment is of interest because R is a fundamental parameter that tests in a model independent way the basic assumptions of strong interaction theories. According to the assumptions of one of these theories the value of R is determined simply from the electric charges, spin, and color assignments of the produced quark-pairs. The experiment was carried out with the MAgnetic Calorimeter using collisions of 14.5 GeV electrons and positrons at the 2200m circumference PEP storage ring at SLAC. The MAC detector is one of the best-suited collider detectors for measuring R due to its nearly complete coverage of the full angular range. The data for this experiment were accumulated between February 1982 and April 1983 corresponding to a total event sample of about 40,000 hadronic events. About 5% of the data were taken with 14 GeV beams and the rest of the data were taken with 14.5 GeV beams. A description of particle interactions and experimental considerations is given
Total cross section for hadron production by e+e- annihilation at PETRA energies
The cross section for the process e+e- → multihadrons has been measured at the highest PETRA energies. We measure R (the total cross-section in units of the point-like e+e- → μ+μ- cross-section) to be 2.9 +- 0.7, 4.0 +- 0.5, 4.6 +- 0.4 and 4.2 +- 0.6 at √s of 22, 27.7, 30 and 31.6 GeV respectively. The observed average multiplicity, together with existing low energy data, indicate a rapid increase in multiplicity with increasing energy. (orig.)
Higher order perturbative QCD calculation of jet cross sections in e+e- annihilation
We present in detail the analytic calculation of the Sterman-Weinberg type 3-jet cross section to order αsub(s)2. The fit to recent PLUTO data gives in the MS scheme αsub(s) = 0.17 which corresponds to Λ = 0.24 GeV in the 1-loop approximation. (orig.)
The anti np total and annihilation cross sections have been measured from near anti NN threshold (1880 MeV) to 1940 MeV with RMS resolution ranging from 0.08 MeV (1880 MeV) to 6.7 MeV (1940 MeV). No significant narrow meson structures were seen, with 90% CL upper limits of 40-180 mb-MeV on sigmaGAMMA for states with width less than our resolution. Combined with increasing unitarity bounds on sigma as one approaches threshold, these limits confine widths of possible predicted states below 1900 MeV to less than proportional1 MeV. (orig.)
A comparison of measured jet cross sections with QCD calculations for e sup + e sup - annihilation
Magnussen, N.; Bartel, W.; Felst, R.; Haidt, D.; Kado, H.; Knies, G.; Krehbiel, H.; Meinke, R.; Meyer, H.; Olsson, J.; Ramcke, R.; Schmidt, D.; Steffen, P. (Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany, F.R.)); Smolik, L.; Ambrus, K.; Bethke, S.; Dieckmann, A.; Eckerlin, G.; Elsen, E.; Heintze, J.; Hellenbrand, K.H.; Komamiya, S.; Krogh, J. v.; Rieseberg, H.; Schmitt, H. von der; Spitzer, J.; Wagner, A.; Zimmer, M. (Heidelberg Univ. (Germany, F.R.). Physikalisches Inst.); Allison, J.; Barlow, R.J.; Chrin, J.; Duerdoth, I.P.; Loebinger, F.K.; Macbeth, A.A.; Murphy, P.G.; Stephens, K. (Manchester Univ. (UK)); Bowdery, C.K.; Finch, A.J.; Foster, F.; Hughes, G.; Nye, J.M.; Walker, I.W. (Lancaster Univ. (UK)); Cartwright, S.L.; Clarke, D.; Marshall, R.; Middleton, R.P. (Rutherford Appleton Lab., Chilton (UK)); Greenshaw, T.; Hagemann, J.; Heinzelmann, G.; Kleinwort, C.; Kuhlen, M.; Naroska, B.; Ould-Saada, F.; Pitzl, D.D.; Schneekloth, U.; Weber, G. (Hamburg Univ. (Germany; JADE Collaboration
1991-01-01
The cross sections for 2-, 3- and 4-jet production have been determined with the JADE detector, sited on the e{sup +}e{sup -}-storage ring PETRA. Data at {radical}s=14, 22, 35 and 44 GeV were compared to two O({alpha}{sub s}{sup 2})QCD calculations. A first analysis was performed with uncorrected data using the O({alpha}{sub s}{sup 2}) 3-jet matrix element calculation of Ellis, Ross and Terrano and the Lund String Monte Carlo program. In a second analysis the calculation of Kramer and Lampe was compared to corrected data. Both approaches gave a poor description of the data when the square of the momentum transfer Q{sup 2}=s was used as the scale of the running coupling constant. The description improved when the renormalization scale was adjusted to the process studied. The data were used to fix the best renormalization scale. (orig.).
Essig, Rouven; /SLAC; Sehgal, Neelima; Strigari, Louis E.; /KIPAC, Menlo Park
2009-06-19
We provide conservative bounds on the dark matter cross-section and lifetime from final state radiation produced by annihilation or decay into charged leptons, either directly or via an intermediate particle {phi}. Our analysis utilizes the experimental gamma-ray flux upper limits from four Milky Way dwarf satellites: HESS observations of Sagittarius and VERITAS observations of Draco, Ursa Minor, and Willman 1. Using 90% confidence level lower limits on the integrals over the dark matter distributions, we find that these constraints are largely unable to rule out dark matter annihilations or decays as an explanation of the PAMELA and ATIC/PPB-BETS excesses. However, if there is an additional Sommerfeld enhancement in dwarfs, which have a velocity dispersion {approx} 10 to 20 times lower than that of the local Galactic halo, then the cross-sections for dark matter annihilating through {phi}'s required to explain the excesses are very close to the cross-section upper bounds from Willman 1. Dark matter annihilation directly into {tau}'s is also marginally ruled out by Willman 1 as an explanation of the excesses, and the required cross-section is only a factor of a few below the upper bound from Draco. Finally, we make predictions for the gamma-ray flux expected from the dwarf galaxy Segue 1 for the Fermi Gamma-ray Space Telescope. We find that for a sizeable fraction of the parameter space in which dark matter annihilation into charged leptons explains the PAMELA excess, Fermi has good prospects for detecting a gamma-ray signal from Segue 1 after one year of observation.
Cronin-Hennessy, D; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Zweber, P; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A G; Libby, J; Powell, A; Wilkinson, G; Ecklund, K M; Love, W; Savinov, V; López, A; Méndez, H; Ramírez, J; Ge, J Y; Miller, D H; Shipsey, I P J; Xin, B; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Hu, D; Moziak, B; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Yang, F; Artuso, M; Blusk, S; Khalil, S; Li, J; Mountain, R; Nisar, S; Randrianarivony, K; Sultana, N; Skwarnicki, T; Stone, S; Wang, J C; Zhang, L M; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Rademacker, J; Asner, D M; Edwards, K W; Naik, P; Reed, J; Briere, R A; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L; Alexander, J P; Cassel, D G; Duboscq, J E; Ehrlich, R; Fields, L; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Mohapatra, D; Onyisi, P U E; Patterson, J R; Peterson, D; Riley, D; Ryd, A; Sadoff, A J; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Athar, S B; Patel, R; Yelton, J; Rubin, P; Eisenstein, B I; Karliner, I; Mehrabyan, S; Lowrey, N; Selen, M; White, E J; Wiss, J; Mitchell, R E; Shepherd, M R; Besson, D; Pedlar, T K
2008-01-01
Using the CLEO-c detector at the Cornell Electron Storage Ring, we have measured inclusive and exclusive cross sections for the production of D+, D0 and Ds+ mesons in e+e- annihilations at thirteen center-of-mass energies between 3.97 and 4.26 GeV. Exclusive cross sections are presented for final states consisting of two charm mesons (DD, D*D, D*D*, Ds+Ds-, Ds*+Ds-, and Ds*+Ds*-) and for processes in which the charm-meson pair is accompanied by a pion. No enhancement in any final state is observed at the energy of the Y(4260).
Ahnen, M. L.; et al.
2016-02-01
We present the first joint analysis of gamma-ray data from the MAGIC Cherenkov telescopes and the Fermi Large Area Telescope (LAT) to search for gamma-ray signals from dark matter annihilation in dwarf satellite galaxies. We combine 158 hours of Segue 1 observations with MAGIC with 6-year observations of 15 dwarf satellite galaxies by the Fermi-LAT. We obtain limits on the annihilation cross-section for dark matter particle masses between 10 GeV and 100 TeV - the widest mass range ever explored by a single gamma-ray analysis. These limits improve on previously published Fermi-LAT and MAGIC results by up to a factor of two at certain masses. Our new inclusive analysis approach is completely generic and can be used to perform a global, sensitivity-optimized dark matter search by combining data from present and future gamma-ray and neutrino detectors.
Ahnen, M L; Antonelli, L A; Antoranz, P; Babic, A; Banerjee, B; Bangale, P; de Almeida, U Barres; Barrio, J A; González, J Becerra; Bednarek, W; Bernardini, E; Biasuzzi, B; Biland, A; Blanch, O; Bonnefoy, S; Bonnoli, G; Borracci, F; Bretz, T; Carmona, E; Carosi, A; Chatterjee, A; Clavero, R; Colin, P; Colombo, E; Contreras, J L; Cortina, J; Covino, S; Da Vela, P; Dazzi, F; De Angelis, A; De Lotto, B; Wilhelmi, E de Oña; Mendez, C Delgado; Di Pierro, F; D.,; Prester, Dominis; Dorner, D; Doro, M; Einecke, S; Glawion, D Eisenacher; Elsaesser, D; Fernández-Barral, A; Fidalgo, D; Fonseca, M V; Font, L; Frantzen, K; Fruck, C; Galindo, D; López, R J García; Garczarczyk, M; Terrats, D Garrido; Gaug, M; Giammaria, P; Godinović, N; Muñoz, A González; Guberman, D; Hahn, A; Hanabata, Y; Hayashida, M; Herrera, J; Hose, J; Hrupec, D; Hughes, G; Idec, W; Kodani, K; Konno, Y; Kubo, H; Kushida, J; La Barbera, A; Lelas, D; Lindfors, E; Lombardi, S; Longo, F; López, M; López-Coto, R; López-Oramas, A; Lorenz, E; Majumdar, P; Makariev, M; Mallot, K; Maneva, G; Manganaro, M; Mannheim, K; Maraschi, L; Marcote, B; Mariotti, M; Martínez, M; Mazin, D; Menzel, U; Miranda, J M; Mirzoyan, R; Moralejo, A; Moretti, E; Nakajima, D; Neustroev, V; Niedzwiecki, A; Rosillo, M Nievas; Nilsson, K; Nishijima, K; Noda, K; Orito, R; Overkemping, A; Paiano, S; Palacio, J; Palatiello, M; Paneque, D; Paoletti, R; Paredes, J M; Paredes-Fortuny, X; Persic, M; Poutanen, J; Moroni, P G Prada; Prandini, E; Puljak, I; Rhode, W; Ribó, M; Rico, J; Garcia, J Rodriguez; Saito, T; Satalecka, K; Schultz, C; Schweizer, T; Shore, S N; Sillanpää, A; Sitarek, J; Snidaric, I; Sobczynska, D; Stamerra, A; Steinbring, T; Strzys, M; Takalo, L; Takami, H; Tavecchio, F; Temnikov, P; Terzić, T; Tescaro, D; Teshima, M; Thaele, J; Torres, D F; Toyama, T; Treves, A; Verguilov, V; Vovk, I; Ward, J E; Will, M; Wu, M H; Zanin, R; Aleksić, J; Wood, M; Anderson, B; Bloom, E D; Cohen-Tanugi, J; Drlica-Wagner, A; Mazziotta, M N; Sánchez-Conde, M; Strigari, L
2016-01-01
We present the first joint analysis of gamma-ray data from the MAGIC Cherenkov telescopes and the Fermi Large Area Telescope (LAT) to search for gamma-ray signals from dark matter annihilation in dwarf satellite galaxies. We combine 158 hours of Segue 1 observations with MAGIC with 6-year observations of 15 dwarf satellite galaxies by the Fermi-LAT. We obtain limits on the annihilation cross-section for dark matter particle masses between 10 GeV and 100 TeV - the widest mass range ever explored by a single gamma-ray analysis. These limits improve on previously published Fermi-LAT and MAGIC results by up to a factor of two at certain masses. Our new inclusive analysis approach is completely generic and can be used to perform a global, sensitivity-optimized dark matter search by combining data from present and future gamma-ray and neutrino detectors.
Differential 3-jet cross sections have been measured in e+e--annihilation at an average c.m. energy of 33.8 GeV and were compared to 1st and 2nd-order predictions of QCD and of a QED-like Abelian vector theory. QCD provides a good description of the observed distributions. The inclusion of 2nd-order effects reduced the observed quark gluon coupling strength by about 20% to αsub(s) = 0.16 +- 0.015 (stat.) +- 0.03 (system.). The Abelian vector theory is found to be incompatible with the data. (orig.)
Differential three-jet cross sections have been measured in e+e- annihilation at an average CM energy of 33.8 GeV and were compared to first- and second-order predictions of QCD and of a QED-like abelian vector theory. QCD provides a good description of the observed distributions. The inclusion of second-order effects reduced in the observed quark-gluon coupling strength by about 20% to αsub(s)=0.16+-O.015 (stat.)+-0.03 (syst.). The abelian vector theory is found to be incompatible with the data. (orig.)
Richter, B.
1976-01-01
The review of total hadron electroproduction cross sections, the new states, and the muon--electron events includes large amount of information on hadron structure, nine states with width ranging from 10's of keV to many MeV, the principal decay modes and quantum numbers of some of the states, and limits on charm particle production. 13 references. (JFP)
Measurement of the total hadronic cross section in e sup + e minus annihilation at radical s =29 GeV
von Zanthier, C.; de Boer, W.; Grindhammer, G.; Hylen, J.; Harral, B.; Hearty, C.; Labarga, L.; Matthews, J.; Schaad, M.; Abrams, G.; Adolphsen, C.E.; Akerlof, C.; Alexander, J.P.; Alvarez, M.; Baden, A.R.; Ballam, J.; Barish, B.C.; Barklow, T.; Barnett, B.A.; Bartelt, J.; Blockus, D.; Bonvicini, G.; Boyarski, A.; Boyer, J.; Brabson, B.; Breakstone, A.; Brom, J.M.; Bulos, F.; Burchat, P.R.; Burke, D.L.; Butler, F.; Calvino, F.; Cence, R.J.; Chapman, J.; Cords, D.; Coupal, D.P.; DeStaebler, H.C.; Dorfan, D.E.; Dorfan, J.M.; Drell, P.S.; Feldman, G.J.; Fernandez, E.; Field, R.C.; Ford, W.T.; Fordham, C.; Frey, R.; Fujino, D.; Gan, K.K.; Gidal, G.; Glanzman, T.; Goldhaber, G.; Green, A.; Grosse-Wiesmann, P.; Haggerty, J.; Hanson, G.; Harr, R.; Harris, F.A.; Hawkes, C.M.; Hayes, K.; Herrup, D.; Heusch, C.A.; Himel, T.; Hoenk, M.; Hutchinson, D.; Innes, W.R.; Jaffre, M.; Jaros, J.A.; Juricic, I.; Kadyk, J.A.; Karlen, D.; Kent, J.; Klein, S.R.; Koska, W.; Kozanecki, W.; Lankford, A.J.; Larse
1991-01-01
A precise measurement of the ratio {ital R} of the total cross section {ital e}{sup +}{ital e{minus}}{r arrow}hadrons to the pointlike cross section {ital e}{sup +}{ital e{minus}}{r arrow}{mu}{sup +}{mu}{sup {minus}} at a center-of-mass energy of 29.0 GeV is presented. The data were taken with the upgraded Mark II detector at the SLAC storage ring PEP. The result is {ital R}=3.92{plus minus}0.05{plus minus}0.09. The luminosity has been determined with three independent luminosity monitors measuring Bhabha scattering at different angular intervals. Recent calculations of higher-order QED radiative corrections are used to estimate the systematic error due to missing higher-order radiative corrections in the Monte Carlo event generators.
Measurement of the total hadronic cross section in e+e- annihilation at √s =29 GeV
A precise measurement of the ratio R of the total cross section e+e-→hadrons to the pointlike cross section e+e-→μ+μ- at a center-of-mass energy of 29.0 GeV is presented. The data were taken with the upgraded Mark II detector at the SLAC storage ring PEP. The result is R=3.92±0.05±0.09. The luminosity has been determined with three independent luminosity monitors measuring Bhabha scattering at different angular intervals. Recent calculations of higher-order QED radiative corrections are used to estimate the systematic error due to missing higher-order radiative corrections in the Monte Carlo event generators
Measurement of the Total Hadronic Cross Section in e+e- Annihilations below 10.56 GeV
Besson, D; Cronin-Hennessy, D; Gao, K Y; Hietala, J; Klein, T; Kubota, Y; Lang, B W; Poling, R; Scott, A W; Smith, A; Zweber, P; Dobbs, S; Metreveli, Z V; Seth, K K; Tomaradze, A G; Ernst, J; Ecklund, K M; Severini, H; Dytman, S A; Love, W; Savinov, V; Aquines, O; López, A; Mehrabyan, S; Méndez, H; Ramírez, J; Huang, G S; Miller, D H; Pavlunin, V; Sanghi, B; Shipsey, I P J; Xin, B; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Hu, D; Moziak, B; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Yang, F; Artuso, M; Blusk, S; Butt, J; Li, J; Menaa, N; Mountain, R; Nisar, S; Randrianarivony, K; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, K; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Asner, D M; Edwards, K W; Naik, P; Briere, R A; Ferguson, T; Tatishvili, G T; Vogel, H; Watkins, M E; Rosner, J L; Adam, N E; Alexander, J P; Berkelman, K; Cassel, D G; Duboscq, J E; Ehrlich, R; Fields, L; Galik, R S; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Mohapatra, D; Onyisi, P U E; Patterson, J R; Peterson, D; Pivarski, J; Riley, D; Ryd, A; Sadoff, A J; Schwarthoff, H; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Athar, S B; Patel, R; Potlia, V; Yelton, J; Rubin, P; Cawlfield, C; Eisenstein, B I; Karliner, I; Kim, D; Lowrey, N; Selen, M; White, E J; Wiss, J; Mitchell, R E; Shepherd, M R
2007-01-01
Using the CLEO III detector, we measure absolute cross sections for e+e- --> hadrons at seven center-of-mass energies between 6.964 and 10.538 GeV. The values of the strong coupling constant of alpha_s(s) derived from our data are compatible with QCD predictions and imply an average QCD energy scale Lambda = 0.31^{+0.09 +0.29}_{-0.08 -0.21} GeV and an average alpha_s(M_{Z}^2) = 0.126 +/- 0.005 ^{+0.015}_{-0.011}, where the uncertainties are statistical and systematic, respectively.
Cross Sections and Lorentz Violation
Colladay, Don; Kostelecky, Alan
2001-01-01
The derivation of cross sections and decay rates in the Lorentz-violating standard-model extension is discussed. General features of the physics are described, and some conceptual and calculational issues are addressed. As an illustrative example, the cross section for the specific process of electron-positron pair annihilation into two photons is obtained.
Abdesselam, A; Adamczyk, K; Aihara, H; Said, S Al; Arinstein, K; Arita, Y; Asner, D M; Aso, T; Aulchenko, V; Aushev, T; Ayad, R; Aziz, T; Babu, V; Badhrees, I; Bahinipati, S; Bakich, A M; Bala, A; Ban, Y; Bansal, V; Barberio, E; Barrett, M; Bartel, W; Bay, A; Bedny, I; Behera, P; Belhorn, M; Belous, K; Bhardwaj, V; Bhuyan, B; Bischofberger, M; Biswal, J; Bloomfield, T; Blyth, S; Bobrov, A; Bondar, A; Bonvicini, G; Bookwalter, C; Bozek, A; Bračko, M; Breibeck, F; Brodzicka, J; Browder, T E; Červenkov, D; Chang, M -C; Chang, P; Chao, Y; Chekelian, V; Chen, A; Chen, K -F; Chen, P; Cheon, B G; Chilikin, K; Chistov, R; Cho, K; Chobanova, V; Choi, S -K; Choi, Y; Cinabro, D; Crnkovic, J; Dalseno, J; Danilov, M; Di Carlo, S; Dingfelder, J; Doležal, Z; Drásal, Z; Drutskoy, A; Dubey, S; Dutta, D; Dutta, K; Eidelman, S; Epifanov, D; Esen, S; Farhat, H; Fast, J E; Feindt, M; Ferber, T; Frey, A; Frost, O; Fujikawa, M; Fulsom, B G; Gaur, V; Gabyshev, N; Ganguly, S; Garmash, A; Getzkow, D; Gillard, R; Giordano, F; Glattauer, R; Goh, Y M; Golob, B; Perdekamp, M Grosse; Grygier, J; Grzymkowska, O; Guo, H; Haba, J; Hamer, P; Han, Y L; Hara, K; Hara, T; Hasegawa, Y; Hasenbusch, J; Hayasaka, K; Hayashii, H; He, X H; Heck, M; Hedges, M; Heffernan, D; Heider, M; Heller, A; Higuchi, T; Himori, S; Horiguchi, T; Hoshi, Y; Hoshina, K; Hou, W -S; Hsiung, Y B; Hsu, C -L; Huschle, M; Hyun, H J; Igarashi, Y; Iijima, T; Imamura, M; Inami, K; Inguglia, G; Ishikawa, A; Itagaki, K; Itoh, R; Iwabuchi, M; Iwasaki, M; Iwasaki, Y; Iwashita, T; Iwata, S; Jacobs, W W; Jaegle, I; Jones, M; Joo, K K; Julius, T; Kah, D H; Kakuno, H; Kang, J H; Kang, K H; Kapusta, P; Kataoka, S U; Katayama, N; Kato, E; Kato, Y; Katrenko, P; Kawai, H; Kawasaki, T; Kichimi, H; Kiesling, C; Kim, B H; Kim, D Y; Kim, H J; Kim, J B; Kim, J H; Kim, K T; Kim, M J; Kim, S H; Kim, S K; Kim, Y J; Kinoshita, K; Kleinwort, C; Klucar, J; Ko, B R; Kobayashi, N; Koblitz, S; Kodyš, P; Koga, Y; Korpar, S; Kouzes, R T; Križan, P; Krokovny, P; Kronenbitter, B; Kuhr, T; Kumar, R; Kumita, T; Kurihara, E; Kuroki, Y; Kuzmin, A; Kvasnička, P; Kwon, Y -J; Lai, Y -T; Lange, J S; Lee, D H; Lee, I S; Lee, S -H; Leitgab, M; Leitner, R; Lewis, P; Li, H; Li, J; Li, X; Li, Y; Gioi, L Li; Libby, J; Limosani, A; Liu, C; Liu, Y; Liu, Z Q; Liventsev, D; Loos, A; Louvot, R; Lukin, P; MacNaughton, J; Masuda, M; Matvienko, D; Matyja, A; McOnie, S; Mikami, Y; Miyabayashi, K; Miyachi, Y; Miyake, H; Miyata, H; Miyazaki, Y; Mizuk, R; Mohanty, G B; Mohanty, S; Mohapatra, D; Moll, A; Moon, H K; Mori, T; Moser, H -G; Müller, T; Muramatsu, N; Mussa, R; Nagamine, T; Nagasaka, Y; Nakahama, Y; Nakamura, I; Nakamura, K; Nakano, E; Nakano, H; Nakano, T; Nakao, M; Nakayama, H; Nakazawa, H; Nanut, T; Natkaniec, Z; Nayak, M; Nedelkovska, E; Negishi, K; Neichi, K; Ng, C; Niebuhr, C; Niiyama, M; Nisar, N K; Nishida, S; Nishimura, K; Nitoh, O; Nozaki, T; Ogawa, A; Ogawa, S; Ohshima, T; Okuno, S; Olsen, S L; Ono, Y; Onuki, Y; Ostrowicz, W; Oswald, C; Ozaki, H; Pakhlov, P; Pakhlova, G; Pal, B; Palka, H; Panzenböck, E; Park, C -S; Park, C W; Park, H; Park, H K; Park, K S; Peak, L S; Pedlar, T K; Peng, T; Pesantez, L; Pestotnik, R; Peters, M; Petrič, M; Piilonen, L E; Poluektov, A; Prasanth, K; Prim, M; Prothmann, K; Pulvermacher, C; Purohit, M; Reisert, B; Ribežl, E; Ritter, M; Röhrken, M; Rorie, J; Rostomyan, A; Rozanska, M; Ryu, S; Sahoo, H; Saito, T; Sakai, K; Sakai, Y; Sandilya, S; Santel, D; Santelj, L; Sanuki, T; Sasao, N; Sato, Y; Savinov, V; Schneider, O; Schnell, G; Schönmeier, P; Schram, M; Schwanda, C; Schwartz, A J; Schwenker, B; Seidl, R; Sekiya, A; Semmler, D; Senyo, K; Seon, O; Seong, I S; Sevior, M E; Shang, L; Shapkin, M; Shebalin, V; Shen, C P; Shibata, T -A; Shibuya, H; Shinomiya, S; Shiu, J -G; Shwartz, B; Sibidanov, A; Simon, F; Singh, J B; Sinha, R; Smerkol, P; Sohn, Y -S; Sokolov, A; Soloviev, Y; Solovieva, E; Stanič, S; Starič, M; Steder, M; Stypula, J; Sugihara, S; Sugiyama, A; Sumihama, M; Sumisawa, K; Sumiyoshi, T; Suzuki, K; Suzuki, S; Suzuki, S Y; Suzuki, Z; Takeichi, H; Tamponi, U; Tanaka, M; Tanaka, S; Tanida, K; Taniguchi, N; Tatishvili, G; Taylor, G N; Teramoto, Y; Tikhomirov, I; Trabelsi, K; Trusov, V; Tse, Y F; Tsuboyama, T; Uchida, M; Uchida, T; Uchida, Y; Uehara, S; Ueno, K; Uglov, T; Unno, Y; Uno, S; Urquijo, P; Ushiroda, Y; Usov, Y; Vahsen, S E; Van Hulse, C; Vanhoefer, P; Varner, G; Varvell, K E; Vervink, K; Vinokurova, A; Vorobyev, V; Vossen, A; Wagner, M N; Wang, C H; Wang, J; Wang, M -Z; Wang, P; Wang, X L; Watanabe, M; Watanabe, Y; Wedd, R; Wehle, S; White, E; Wiechczynski, J; Williams, K M; Won, E; Yabsley, B D; Yamada, S; Yamamoto, H; Yamaoka, J; Yamashita, Y; Yamauchi, M; Yashchenko, S; Ye, H; Yelton, J; Yook, Y; Yuan, C Z; Yusa, Y; Zhang, C C; Zhang, L M; Zhang, Z P; Zhao, L; Zhilich, V; Zhulanov, V; Ziegler, M; Zivko, T; Zupanc, A; Zwahlen, N; Zyukova, O
2015-01-01
We present an extraction of azimuthal correlations between two pairs of charged pions detected in opposite jets from electron-positron annihilation. These correlations may arise from the dependence of the di-pion fragmentation on the polarization of the parent quark in the process $e^+e^- \\rightarrow q \\bar{q}$. Due to the correlation of the quark polarizations, the cross-section of di-pion pair production, in which the pion pairs are detected in opposite jets in a dijet event, exhibits a modulation in the azimuthal angles of the planes containing the hadron pairs with respect to the production plane. The measurement of this modulation allows access to combinations of fragmentation functions that are sensitive to the quark's transverse polarization and helicity. Within our uncertainties we do not observe a significant signal from the previously unmeasured helicity dependent fragmentation function $G_1^\\perp$. This measurement uses a dataset of 938~fb$^{-1}$ collected by the Belle experiment at or near $\\sqrt{...
Ablikim, M; Ban, Y; Cai, X; Chen, H F; Chen, H S; Chen, H X; Chen, J C; Chen, Jin; Chen, Y B; Chu, Y P; Dai, Y S; Diao, L Y; Deng, Z Y; Dong, Q F; Du, S X; Fang, J; Fang, S S; Fu, C D; Gao, C S; Gao, Y N; Gu, S D; Gu, Y T; Guo, Y N; He, K L; He, M; Heng, Y K; Hou, J; Hu, H M; Hu, J H; Hu, T; Huang, X T; Ji, X B; Jiang, X S; Jiang, X Y; Jiao, J B; Jin, D P; Jin, S; Lai, Y F; Li, G; Li, H B; Li, J; Li, R Y; Li, S M; Li, W D; Li, W G; Li, X L; Li, X N; Li, X Q; Liang, Y F; Liao, H B; Liu, B J; Liu, C X; Liu, F; Fang Liu; Liu, H H; Liu, H M; Liu, J; Liu, J B; Liu, J P; Jian Liu; Liu, Q; Liu, R G; Liu, Z A; Lou, Y C; Lu, F; Lu, G R; Lu, J G; Luo, C L; Ma, F C; Ma, H L; Ma, L L; Ma, Q M; Mao, Z P; Mo, X H; Nie, J; Ping, R G; Qi, N D; Qin, H; Qiu, J F; Ren, Z Y; Rong, G; Ruan, X D; Shan, L Y; Shang, L; Shen, D L; Shen, X Y; Sheng, H Y; Sun, H S; Sun, S S; Sun, Y Z; Sun, Z J; Tang, X; Tong, G L; Wang, D Y; Wang, L; Wang, L L; Wang, L S; Wang, M; Wang, P; Wang, P L; Wang, Y F; Wang, Z; Wang, Z Y; Wang, Zheng; Wei, C L; Wei, D H; Weng, Y; Wu, N; Xia, X M; Xie, X X; Xu, G F; Xu, X P; Xu, Y; Yan, M L; Yang, H X; Yang, Y X; Ye, M H; Ye, Y X; Yu, G W; Yuan, C Z; Yuan, Y; Zang, S L; Zeng, Y; Zhang, B X; Zhang, B Y; Zhang, C C; Zhang, D H; Zhang, H Q; Zhang, H Y; Zhang, J W; Zhang, J Y; Zhang, S H; Zhang, X Y; Zhang, Yiyun; Zhang, Z X; Zhang, Z P; Zhao, D X; Zhao, J W; Zhao, M G; Zhao, P P; Zhao, W R; Zhao, Z G; Zheng, H Q; Zheng, J P; Zheng, Z P; Zhou, L; Zhu, K J; Zhu, Q M; Zhu, Y C; Zhu, Y S; Zhu, Z A; Zhuang, B A; Zhuang, X A; Zou, B S
2007-01-01
By analyzing the data sets of 17.3 pb$^{-1}$ taken at $\\sqrt{s}=3.773$ GeV and 6.5 pb$^{-1}$ taken at $\\sqrt{s}=3.650$ GeV with the BESII detector at the BEPC collider, we have measured the observed cross sections for 12 exclusive light hadron final states produced in $e^+e^-$ annihilation at the two energy points. We have also set the upper limits on the observed cross sections and the branching fractions for $\\psi(3770)$ decay to these final states at 90% C.L.
We calculate the cross section for e+e- → rhoππ on the basis of partial-wave dispersion relations in the ππ channel taking proper account of anomalous singularity contributions. The appearance of anomalous thresholds is due to the fact that the vertex γsub(ν)rho(ππ) becomes internally unstable as the virtual photon mass is increased. Reasonable agreement with existing data is found. The anomalous singularity contributions provide by far the dominant part of the cross section which is a warning to using naive vector dominance extrapolations in estimating the electron-positron cross section. (orig.)
Differential cross sections have been measured for the interactions anti pp→π-π+ and anti pp→K-K+ over a centre of mass angular range -0.95-π+ and 300 K-K+ events were obtained at each momentum. Results are compared with those from related experiments. (Auth.)
S. Ando; E. Komatsu
2013-01-01
Annihilation of dark matter particles in cosmological halos (including the halo of the Milky Way) contributes to the diffuse gamma-ray background (DGRB). As this contribution will appear anisotropic in the sky, one can use the angular power spectrum of anisotropies in the DGRB to constrain the prope
First results from the magnetic detector PLUTO at the new e+e- storage ring PETRA are shown. The ratio R of the cross section for hadron production to that for μ-pair production has been measured to be R = 5.0 +- 0.5 at 13 GeV and 4.3 +- 0.5 at 17 GeV. Both values have an additional systematic error of 20%. The events show a typical 2-jet structure. The mean transverse momentum approaches a constant value with increasing energy implying a shrinkage of the jet opening angle. (orig.)
We have measured the total normalized cross section R for the process e+e- → hadrons at centre-of-mass energies between 14.0 and 46.8 GeV based on an integrated luminosity of 60.3 pb-1. The data are well described by the standard SU(3)cxSU(2)LxU(1) model with the production of the five known quarks. No open production of a sixth quark with charge 2/3 or 1/3 occurs below a centre-of-mass energy of 46.6 or 46.3 GeV, respectively. A fitting procedure which takes the correlations between measurements into account was used to determine the electroweak mixing angle sin2θw and the strong coupling constant αs(s) in second-order QCD. We applied this procedure to the CELLO data and in addition included the data from other experiments at PETRA and PEP. Both fits give consistent results. The fit to the combined data yields αs(342 GeV2) = 0.165 ± 0.030, and sin2θw = 0.236 ± 0.020. Fixing sin2θw at the world average value of 0.23 yields αs(342 GeV2) = 0.169 ± 0.025. (orig.)
Minnesota Department of Natural Resources — FEMA Cross Sections are required for any Digital Flood Insurance Rate Map database where cross sections are shown on the Flood Insurance Rate Map (FIRM). Normally...
Siegrist, James L. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Schwitters, R. F. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Alam, M. S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Boyarski, A. M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Breidenbach, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Bulos, F. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Dakin, J. T. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Dorfan, J. M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Feldman, G. J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Fryberger, D. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hanson, G. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Jaros, J. A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Jean-Marie, B. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Larsen, R. R. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Lüth, V. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Lynch, H. L. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Lyon, D. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Morehouse, C. C. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Perl, M. L. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Peruzzi, I. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Piccolo, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Pun, T. P. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Rapidis, P. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Richter, B. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Schindler, R. H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Tanenbaum, W. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Vannucci, F. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Chinowsky, W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Abrams, G. S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Briggs, D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Carithers, W. C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cooper, S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); DeVoe, R. G. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Friedberg, C. E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Goldhaber, G. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hollebeek, R. J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Johnson, A. D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kadyk, J. A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Litke, A. M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Madaras, R. J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Nguyen, H. K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Pierre, F. M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sadoulet, B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Trilling, G. H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Whitaker, J. S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wiss, J. E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
1982-09-01
Measurements of multihadron production in e⁺e⁻ annihilation at center-of-mass energies between 2.6 and 7.8 GeV are presented. Aside from the narrow resonances ψ(3095) and ψ(3684), the total hadronic cross section is found to be approximately 2.7 times the cross section for the production of muon pairs at c.m. energies below 3.7 GeV and 4.3 times the muon-pair cross section at c.m. energies above 5.5 GeV. Complicated structure is found at intermediate energies. Charged-particle multiplicities and inclusive momentum distributions are presented.
Capture cross-section of threading dislocations in thin films
Highlights: ► We study the effect of film stress on capture cross-section of interacting threads. ► Capture cross-section area diverges near film channeling stress. ► Thread interactions are much more likely when local stress is near critical stress. - Abstract: The capture cross section for annihilation of two threads with opposite Burgers vectors moving on orthogonal slip planes in a thin film is examined using a numerical model. The initial configurations of threads that lead to annihilation are mapped out for a range of applied film stresses. The area of the region of initial configurations that lead to annihilation at a given stress and thickness is the capture cross-section. The size of the capture cross-section is shown to be highly sensitive to the applied stress relative to the critical stress for dislocation motion imposed by the film thickness.
G. GiacomelliBologna University and INFN
2014-01-01
The measurements of the hadron-hadron total cross sections are the first measurements performed when a new hadron accelerator opens up a new energy region; the measurements were made as function of the incoming beam momentum or c.m. energy and have often been repeated with improved accuracy and finer energy spacing.
Photoneutron cross sections for the silicon isotopes
The photoneutron cross sections for 28Si, 29Si, and 30Si have been measured up to 33 MeV with monoenergetic photons from the annihilation in flight of fast positrons, using neutron multiplicity counting. Average neutron energies were obtained simultaneously with the cross-section data by the ring-ratio technique. The giant dipole resonance for 28Si and 30Si exhibit appreciable fragmentation; that for 29Si does not. The (γ,2n) cross section for 30Si is large; that for 29Si is consistent with zero. The (γ,1n) cross section for 30Si decreases sharply with energy to values near zero as the (γ,2n) cross section grows, then increases to appreciable values as the (γ,2n) cross section diminishes; this extreme behavior, although never seen before, is attributable to the competition between the (γ,n), (γ,2n), and (γ,pn) decay channels. Some properties of the isospin components of the giant resonance are inferred. Other features of the data, including the integrated cross sections, are found to be similar in many respects to corresponding results for the oxygen and magnesium isotopes. The 28Si nucleus is found to be a better core for 29Si and 30Si than might have been expected from previous descriptions of its open-shell character
Gollapinni, Sowjanya
2016-01-01
The study of neutrino-nucleus interactions has recently received renewed attention due to their importance in interpreting the neutrino oscillation data. Over the past few years, there has been continuous disagreement between neutrino cross section data and predictions due to lack of accurate nuclear models suitable for modern experiments which use heavier nuclear targets. Also, the current short and long-baseline neutrino oscillation experiments focus in the few GeV region where several distinct neutrino processes come into play resulting in complex nuclear effects. Despite recent efforts, more experimental input is needed to improve nuclear models and reduce neutrino interaction systematics which are currently dominating oscillation searches together with neutrino flux uncertainties. A number of new detector concepts with diverse neutrino beams and nuclear targets are currently being developed to provide necessary inputs required for next generation oscillation experiments. This paper summarizes these effor...
Group cross sections calculations
Just a few methods have been developped to compute multigroup cross-sections from ENDF data. We have developped an original method in order to get accuracy and to reduce the number of discretization points in the same time; this is why we have tried to use polynomial integration. In this paper, we describe this method: in the first part, we recall some physical hypothesis generally used to solve the linear Boltzmann equation: that is the frame in which the numerical method has been developped. Polynomial methods are really powerfull only if discretization points are suitably chosen. This choice is explained in the next part of this paper. In conclusion, some numerical results are given to illustrate our method
Diffractive and rising cross sections
The energy dependence of the diffractive component of the proton-proton cross section is discussed and its contribution to the rise of the total cross section at high energies is examined. 17 refs., 9 figs
[Fast neutron cross section measurements
This paper discusses the following topics: 14 MeV pulsed neutron facility; detection and measurement system; 238U capture cross sections at 23 and 964 keV using photon neutron sources; capture cross sections of Au-197 at 23 and 964 keV; and yttrium nuclear cross section measurement
Most of the fission products and a few of the actinides in ENDF/B-V do not have (n,2n) cross sections. A complete set of these cross sections is presented in the multigroup structure defined. These were constructed for future use in the DANDE Code System
XCOM: Photon Cross Sections Database
SRD 8 XCOM: Photon Cross Sections Database (Web, free access) A web database is provided which can be used to calculate photon cross sections for scattering, photoelectric absorption and pair production, as well as total attenuation coefficients, for any element, compound or mixture (Z <= 100) at energies from 1 keV to 100 GeV.
The photonuclear absorption cross section of Pb, σ(TOT:Esub(γ), is studied in the 145-440 MeV Δ resonance range using a quasi-monochromatic photon beam obtained by monoenergetic positon in-flight annihilation. This study is deduced of the cross section measurement for at least j neutron emission σsup(j))Esub(γ). The cross sections of reactions with 1 or 0 neutron are evaluated as the same values as the experimental errors. The variation of the photonuclear absorption cross section for a nuclear σ(TOT:Esub(γ)/A is mass independent for A<=4-6. It seems that the damping between σ(TOT:Esub(γ)/A and the cross section of the free nucleon is caused by the Fermi movement of the nucleons. In conclusion: it seems that the excitation of the nucleus in the Δ resonance region is produced on free nucleons and there are no collective states
Measurement of fission cross sections
A review is presented on the recent progress in the experiment of fission cross section measurement, including recent activity in Japan being carried out under the project of nuclear data measurement. (author)
R. Vogt
2007-01-01
We assess the theoretical uncertainties on the total charm cross section. We discuss the importance of the quark mass, the scale choice and the parton densities on the estimate of the uncertainty. We conclude that due to the small charm quark mass, which amplifies the effect of the other parameters in the calculation, the uncertainty on the total charm cross section is difficult to quantify.
Revolutionizing Cross-sectional Imaging
Fan, Yifang; Luo, Liangping; Lin, Wentao; Li, Zhiyu; Zhong, Xin; Shi, Changzheng; Newman, Tony; Zhou, Yi; Lv, Changsheng; Fan, Yuzhou
2014-01-01
Cross-sectional imaging is so important that, six Nobel Prizes have been awarded to the field of nuclear magnetic resonance alone because it revolutionized clinical diagnosis. The BigBrain project supported by up to 1 billion euro each over a time period of 10 years predicts to "revolutionize our ability to understand internal brain organization" (Evan 2013). If we claim that cross-sectional imaging diagnosis is only semi-quantitative, some may believe because no doctor would ever tell their patient that we can observe the changes of this cross-sectional image next time. If we claim that BigBrain will make no difference in clinical medicine, then few would believe because no doctor would ever tell their patient to scan this part of the image and compare it with that from the BigBrain. If we claim that the BigBrain Project and the Human Brain Project have defects in their key method, one might believe it. But this is true. The key lies in the reconstruction of any cross-sectional image along any axis. Using Ga...
Terahertz radar cross section measurements
Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd
2010-01-01
We perform angle- and frequency-resolved radar cross section (RCS) measurements on objects at terahertz frequencies. Our RCS measurements are performed on a scale model aircraft of size 5-10 cm in polar and azimuthal configurations, and correspond closely to RCS measurements with conventional radar...
Cross sections for nuclear astrophysics
General properties of low-energy cross sections and of reaction rates are presented. We describe different models used in nuclear astrophysics: microscopic models, the potential model, and the R-matrix method. Two important reactions, 7Be(p,γ)8B and 12C(α,γ)16O, are then briefly discussed. (author)
Measurement of antiproton-proton cross sections at low momenta
The present thesis describes an experiment which serves for the study of the antiproton-proton interaction at laboratory momenta between 150 MeV/c and 600 MeV/c. The arrangement permits the measurement of differential cross sections of the elastic scattering and the charge-exchange reaction as well as the cross section of the annihilation into charged and neutral pions. By the availability of an intense beam with low momentum uncertainty from the LEAR storage ring for low energy antiprotons at CERN a clear improvement of the measurement accuracy compared to earlier experiments at separated antiproton beams can be reached. A prototype of the antineutron calorimeter used for the measurement of the angular distribution of the charge-exchange reaction was subjected to a careful test in a separated beam. The results were compared with the results of a Monte-Carlo simulation of the antineutron detection. The cross sections measured in two beam periods in November and December 1983 are consistent with the published data in the hitherto available momentum range above about 350 MeV/c. Especially in the cross section of the annihilation into charged pions a statistically significant signal at a mass of 1937 MeV/c2 appears. However further measurements are necessary to study all systematic causes of errors. (orig.)
Neutrino annihilation in hot plasma
We consider neutrino annihilation in a heat bath, including annihilation via the photon. We show that the annihilation cross section has high and narrow peaks corresponding to a plasmon resonance. This yields an enormous enhancement factor of O(108) in the differential cross section as compared with the purely weak contribution. We also evaluate numerically the thermally averaged neutrino annihilation rate per particle in the heat bath of the early universe to be +e-)>≅2.93GF2T2. We have accounted for the final-state blocking factors as well as for the fact that the center-of-mass frame of collisions is not necessarily the rest frame of the heat bath. Despite the resonances, electromagnetic processes represent only a minor effect in the averaged annihilation rate. (orig.)
Neutrino annihilation in hot plasma
We consider neutrino annihilation in a heat bath, including annihilation via the photon. We show that the annihilation cross section has high and narrow peaks corresponding to a plasmon resonance. This yields an enormous enhancement factor of O(108) in the differential cross section as compared with the purely weak contribution. We also evaluate numerically the thermally averaged neutrino annihilation rate per particle in the heat bath of the early Universe to be +e-)> ≅ 2.93GF2T2. We have accounted for the final state blocking factors as well as for the fact that the center-of-mass frame of collisions is not necessarily the rest frame of the heat bath. Despite the resonances, electromagnetic processes represent only a minor effect in the averaged annihilation rate. (orig.)
Metonymy and Cross Section Demand
Evstigneev, Igor V.; Hildenbrand, Werner; Jerison, Michael
1996-01-01
Cross section consumer expenditure data are frequently used to make conclusions about consumer demand behavior. Such conclusions, however, can only be justified under certain assumptions, which are often left unstated in the empirical demand literature. An assumption of this type, the metonymy hypothesis, was stated rigorously and then exploited by Hardle, Hildenbrand and Jerison when analyzing the monotonicity property of aggregate demand functions. The purpose of the present paper is to exa...
Wind Turbine Radar Cross Section
David Jenn; Cuong Ton
2012-01-01
The radar cross section (RCS) of a wind turbine is a figure of merit for assessing its effect on the performance of electronic systems. In this paper, the fundamental equations for estimating the wind turbine clutter signal in radar and communication systems are presented. Methods of RCS prediction are summarized, citing their advantages and disadvantages. Bistatic and monostatic RCS patterns for two wind turbine configurations, a horizontal axis three-blade design and a vertical axi...
New activation cross section data
New nuclear cross section libraries (known as USACT92) have been created for activation calculations. A point-wise file was created from merging the previous version of the activation library, the U.S. Nuclear Data Library (ENDF/B-VI), and the European Activation File (EAF-2). 175 and 99 multi-group versions were also created. All the data are available at the National Energy Research Supercomputer Center
Microscopic cross sections: An utopia?
Hilaire, S. [CEA Bruyeres-le-Chatel, DIF 91 (France); Koning, A.J. [Nuclear Research and Consultancy Group, PO Box 25, 1755 ZG Petten (Netherlands); Goriely, S. [Institut d' Astronomie et d' Astrophysique, Universite Libre de Bruxelles, Campus de la Plaine, CP 226, 1050 Brussels (Belgium)
2010-07-01
The increasing need for cross sections far from the valley of stability poses a challenge for nuclear reaction models. So far, predictions of cross sections have relied on more or less phenomenological approaches, depending on parameters adjusted to available experimental data or deduced from systematical relations. While such predictions are expected to be reliable for nuclei not too far from the experimentally known regions, it is clearly preferable to use more fundamental approaches, based on sound physical bases, when dealing with very exotic nuclei. Thanks to the high computer power available today, all major ingredients required to model a nuclear reaction can now be (and have been) microscopically (or semi-microscopically) determined starting from the information provided by a nucleon-nucleon effective interaction. We have implemented all these microscopic ingredients in the TALYS nuclear reaction code, and we are now almost able to perform fully microscopic cross section calculations. The quality of these ingredients and the impact of using them instead of the usually adopted phenomenological parameters will be discussed. (authors)
[Fast neutron cross section measurements
In this report, we outline the progress achieved in two distinct under the DOE-sponsored cross section project: the initial results obtained from the pulsed 14 MeV neutron facility, and a cooperative effort with Argonne National Laboratory in the measurement of fast neutron cross sections in yttrium. In the 14 MeV neutron laboratory, this year has seen the maturation of the project into one in which initial scattering measurements are now underway. We have improved the accelerator and ion source in several significant ways, so that neutron intensities have now been proven to be adequate for our series of elastic scattering angular distribution measurements outlined in our initial proposal of two years ago. We have successfully tested all components of the time-of-flight spectrometer and recorded initial neutron spectra from the ring targets that we have obtained for our first angular distribution measurements. Examples of the time-of-flight spectra that have been obtained are given later in this report. At the present time, the accelerator is operating with the highest degree of reliability that we have experienced since installing the pulsing system. Improvements made over the past year have not only increased the available neutron intensity, but also increased our capability to deal with inevitable component failures that require repair or replacement. The measurements carried out in conjunction with Argonne have contributed significantly to the available database on fast neutron interactions in yttrium. Results indicate that the cross section for the 89 Y(n,p)89Sr reaction is substantially higher than represented in ENDF/B-VI
Wind Turbine Radar Cross Section
David Jenn
2012-01-01
Full Text Available The radar cross section (RCS of a wind turbine is a figure of merit for assessing its effect on the performance of electronic systems. In this paper, the fundamental equations for estimating the wind turbine clutter signal in radar and communication systems are presented. Methods of RCS prediction are summarized, citing their advantages and disadvantages. Bistatic and monostatic RCS patterns for two wind turbine configurations, a horizontal axis three-blade design and a vertical axis helical design, are shown. The unique electromagnetic scattering features, the effect of materials, and methods of mitigating wind turbine clutter are also discussed.
Annihilation cross section of Kaluza Klien dark matter
Sharma, Rakesh, E-mail: rakesh-sharma-ujn@yahoo.co.in [Northern India Textile Research Association Technical Campus Ghaziabad U.P. 201002 (India); Upadhyaya, G. K., E-mail: gopalujjain@yahoo.co.in; Sharma, S. [School of Studies in Physics, Vikram University Ujjain, M.P. 456010 India (India)
2015-07-31
The question as to how this universe came into being and as to how it has evolved to its present stage, is an old question. The answer to this question unfolds many secrets regarding fundamental particles and forces between them. Theodor Kaluza proposed the concept that the universe is composed of more than four space-time dimensions. In his work, electromagnetism is united with gravity. Various extra dimension formulations have been proposed to solve a variety of problems. Recently, the idea of more than four space time dimensions is applied to the search for particle identity of dark matter (DM). Signature of dark matter can be revealed by analysis of very high energy electrons which are coming from outer space. We investigate recent advancement in the field of dark matter search with reference to very high energy electrons from outer space [1-8].
Annihilation cross section of Kaluza Klien dark matter
The question as to how this universe came into being and as to how it has evolved to its present stage, is an old question. The answer to this question unfolds many secrets regarding fundamental particles and forces between them. Theodor Kaluza proposed the concept that the universe is composed of more than four space-time dimensions. In his work, electromagnetism is united with gravity. Various extra dimension formulations have been proposed to solve a variety of problems. Recently, the idea of more than four space time dimensions is applied to the search for particle identity of dark matter (DM). Signature of dark matter can be revealed by analysis of very high energy electrons which are coming from outer space. We investigate recent advancement in the field of dark matter search with reference to very high energy electrons from outer space [1-8
[Fast neutron cross section measurements
In the 14 MeV Neutron Laboratory, we have continued the development of a facility that is now the only one of its kind in operation in the United States. We have refined the klystron bunching system described in last year's report to the point that 1.2 nanosecond pulses have been directly measured. We have tested the pulse shape discrimination capability of our primary NE 213 neutron detector. We have converted the RF sweeper section of the beamline to a frequency of 1 MHz to replace the function of the high voltage pulser described in last year's report which proved to be difficult to maintain and unreliable in its operation. We have also overcome several other significant experimental difficulties, including a major problem with a vacuum leak in the main accelerator column. We have completed additional testing to prove the remainder of the generation and measurement systems, but overcoming some of these experimental difficulties has delayed the start of actual data taking. We are now in a position to begin our first series of ring geometry elastic scattering measurements, and these will be underway before the end of the current contract year. As part of our longer term planning, we are continuing the conceptual analysis of several schemes to improve the intensity of our current pulsed beam. These include the provision of a duoplasmatron ion source and/or the provision of preacceleration bunching. Additional details are given later in this report. A series of measurements were carried out at the Tandem Dynamatron Facility involving the irradiation of a series of yttrium foils and the determination of activation cross sections using absolute counting techniques. The experimental work has been completed, and final analysis of the cross section data will be completed within several months
Electron-Impact Ionization Cross Section Database
SRD 107 Electron-Impact Ionization Cross Section Database (Web, free access) This is a database primarily of total ionization cross sections of molecules by electron impact. The database also includes cross sections for a small number of atoms and energy distributions of ejected electrons for H, He, and H2. The cross sections were calculated using the Binary-Encounter-Bethe (BEB) model, which combines the Mott cross section with the high-incident energy behavior of the Bethe cross section. Selected experimental data are included.
Evaluation of cross section for 103Rh
A completely new evaluation for the neutron cross sections is presented. The experimental data mainly referred to EXFOR, and the recommended cross sections are compared with ENDF/B-6, BROND-2, JENDL-3.2 and JEF-2
On e+e- annihilation to fire photons
The cross section of electron and positron annihilation at high energy equalling 5 photons is calculated using the method of spiral amplitudes. Kinematics corresponding to the events when in the beam inertia center system the angles between photon pulses and beam axes are not small, is considered. Validation of total cross section of multiphoton annihilation of a pair at high energies are presented. Annihilation channels of orthopositronium with 3 and 5 photons are considered. Exact expression for spiral amplitudes is presented
Photoproduction total cross section and shower development
Cornet, F.; García Canal, C. A.; Grau, A.; Pancheri, G.; Sciutto, S. J.
2015-12-01
The total photoproduction cross section at ultrahigh energies is obtained using a model based on QCD minijets and soft-gluon resummation and the ansatz that infrared gluons limit the rise of total cross sections. This cross section is introduced into the Monte Carlo system AIRES to simulate extended air showers initiated by cosmic ray photons. The impact of the new photoproduction cross section on common shower observables, especially those related to muon production, is compared with previous results.
Photoproduction total cross section and shower development
Cornet, F; Grau, A; Pancheri, G; Sciutto, S J
2015-01-01
The total photoproduction cross section at ultra-high energies is obtained using a model based on QCD minijets and soft-gluon resummation and the ansatz that infrared gluons limit the rise of total cross sections. This cross section is introduced into the Monte Carlo system AIRES to simulate extended air-showers initiated by cosmic ray photons. The impact of the new photoproduction cross section on common shower observables, especially those related to muon production, is compared with previous results.
JENDL gas-production cross section file
The JENDL gas-production cross section file was compiled by taking cross-section data from JENDL-3 and by using the ENDF-5 format. The data were given to 23 nuclei or elements in light nuclei and structural materials. Graphs of the cross sections and brief description on their evaluation methods are given in this report. (author)
[Fast neutron cross section measurements
From its inception, the Nuclear Data Project at the University of Michigan has concentrated on two major objectives: (1) to carry out carefully controlled nuclear measurements of the highest possible reliability in support of the national nuclear data program, and (2) to provide an educational opportunity for students with interests in experimental nuclear science. The project has undergone a successful transition from a primary dependence on our photoneutron laboratory to one in which our current research is entirely based on a unique pulsed 14 MeV fast neutron facility. The new experimental facility is unique in its ability to provide nanosecond bursts of 14 MeV neutrons under conditions that are ''clean'' and as scatter-free as possible, and is the only one of its type currently in operation in the United States. It has been designed and put into operation primarily by graduate students, and has met or exceeded all of its important initial performance goals. We have reached the point of its routine operation, and most of the data are now in hand that will serve as the basis for the first two doctoral dissertations to be written by participating graduate students. Our initial results on double differential neutron cross sections will be presented at the May 1993 Fusion Reactor Technology Workshop. We are pleased to report that, after investing several years in equipment assembly and optimization, the project has now entered its ''data production'' phase
SNL RML recommended dosimetry cross section compendium
Griffin, P.J.; Kelly, J.G.; Luera, T.F. [Sandia National Labs., Albuquerque, NM (United States); VanDenburg, J. [Science and Engineering Associates, Inc., Albuquerque, NM (United States)
1993-11-01
A compendium of dosimetry cross sections is presented for use in the characterization of fission reactor spectrum and fluence. The contents of this cross section library are based upon the ENDF/B-VI and IRDF-90 cross section libraries and are recommended as a replacement for the DOSCROS84 multigroup library that is widely used by the dosimetry community. Documentation is provided on the rationale for the choice of the cross sections selected for inclusion in this library and on the uncertainty and variation in cross sections presented by state-of-the-art evaluations.
Recent fission cross section standards measurements
Wasson, O.A.
1985-01-01
The /sup 235/U(n,f) reaction is the standard by which most neutron induced fission cross sections are determined. Most of these cross sections are derived from relatively easy ratio measurements to /sup 235/U. However, the more difficult /sup 235/U(n,f) cross section measurements require the use of advanced neutron detectors for the determination of the incident neutron fluence. Examples of recent standard cross section measurements are discussed, various neutron detectors are described, and the status of the /sup 235/U(n,f) cross section standard is assessed. 23 refs., 8 figs., 4 tabs.
Recent fission cross section standards measurements
The 235U(n,f) reaction is the standard by which most neutron induced fission cross sections are determined. Most of these cross sections are derived from relatively easy ratio measurements to 235U. However, the more difficult 235U(n,f) cross section measurements require the use of advanced neutron detectors for the determination of the incident neutron fluence. Examples of recent standard cross section measurements are discussed, various neutron detectors are described, and the status of the 235U(n,f) cross section standard is assessed. 23 refs., 8 figs., 4 tabs
Antineutron-nucleus annihilation
Botta, E
2001-01-01
The n-nucleus annihilation process has been studied by the OBELIX experiment at the CERN Low Energy Antiproton Ring (LEAR) in the (50-400) MeV/c projectile momentum range on C, Al, Cu, Ag, Sn, and Pb nuclear targets. A systematic survey of the annihilation cross- section, sigma /sub alpha /(A, p/sub n/), has been performed, obtaining information on its dependence on the target mass number and on the incoming n momentum. For the first time the mass number dependence of the (inclusive) final state composition of the process has been analyzed. Production of the rho vector meson has also been examined. (13 refs).
First Limits on the Dark Matter Cross Section with the HAWC Observatory
Proper, Megan Longo; Dingus, Brenda
2015-01-01
The High Altitude Water Cherenkov (HAWC) gamma-ray observatory is a wide field-of-view observatory sensitive to 100 GeV - 100 TeV gamma rays and cosmic rays. The HAWC observatory is also sensitive to diverse indirect searches for dark matter annihilation, including annihilation from extended dark matter sources, the diffuse gamma-ray emission from dark matter annihilation, and gamma-ray emission from non-luminous dark matter subhalos. Among the most promising classes of objects for the indirect detection of dark matter are dwarf spheroidal galaxies. These objects are expected to have few astrophysical sources of gamma rays but high dark matter content, making them ideal candidates for an indirect dark matter detection with gamma rays. Here we present independent limits on the annihilation cross section for 14 dwarf spheroidal galaxies within the HAWC field-of-view, as well as their combined limit. These are the first limits on the annihilation cross section using data collected with HAWC.
Shirasaki, Masato; Macias, Oscar; Horiuchi, Shunsaku; Shirai, Satoshi; Yoshida, Naoki
2016-01-01
We derive constraints on dark matter (DM) annihilation cross section and decay lifetime from cross-correlation analyses of the data from Fermi-LAT and weak lensing surveys that cover a wide area of $\\sim660$ squared degrees in total. We improve upon our previous analyses by using an updated extragalactic $\\gamma$-ray background data reprocessed with the Fermi Pass 8 pipeline, and by using well-calibrated shape measurements of about twelve million galaxies in the Canada-France-Hawaii Lensing S...
Background-cross-section-dependent subgroup parameters
A new set of subgroup parameters was derived that can reproduce the self-shielded cross section against a wide range of background cross sections. The subgroup parameters are expressed with a rational equation which numerator and denominator are expressed as the expansion series of background cross section, so that the background cross section dependence is exactly taken into account in the parameters. The advantage of the new subgroup parameters is that they can reproduce the self-shielded effect not only by group basis but also by subgroup basis. Then an adaptive method is also proposed which uses fitting procedure to evaluate the background-cross-section-dependence of the parameters. One of the simple fitting formula was able to reproduce the self-shielded subgroup cross section by less than 1% error from the precise evaluation. (author)
Vertically stabilized elongated cross-section tokamak
Sheffield, George V.
1977-01-01
This invention provides a vertically stabilized, non-circular (minor) cross-section, toroidal plasma column characterized by an external separatrix. To this end, a specific poloidal coil means is added outside a toroidal plasma column containing an endless plasma current in a tokamak to produce a rectangular cross-section plasma column along the equilibrium axis of the plasma column. By elongating the spacing between the poloidal coil means the plasma cross-section is vertically elongated, while maintaining vertical stability, efficiently to increase the poloidal flux in linear proportion to the plasma cross-section height to achieve a much greater plasma volume than could be achieved with the heretofore known round cross-section plasma columns. Also, vertical stability is enhanced over an elliptical cross-section plasma column, and poloidal magnetic divertors are achieved.
Measurements of neutron capture cross sections
A review of measurement techniques for the neutron capture cross sections is presented. Sell transmission method, activation method, and prompt gamma-ray detection method are described using examples of capture cross section measurements. The capture cross section of 238U measured by three different prompt gamma-ray detection methods (large liquid scintillator, Moxon-Rae detector, and pulse height weighting method) are compared and their discrepancies are resolved. A method how to derive the covariance is described. (author)
Compilation of cross-sections. Pt. 2
A compilation of integrated cross-sections for hadronic reactions is presented. This is an updated version of CERN/HERA 79-1, 79-2, 79-3. It contains all data published up to the beginning of 1982, but some more recent data have also been included. Plots of the cross sections versus incident laboratory momentum are also given. This volume II contains cross-sections for K+ and K- induced reactions. (orig.)
Cross Sections for Electron Collisions with Methane
Song, Mi-Young, E-mail: mysong@nfri.re.kr; Yoon, Jung-Sik [Plasma Technology Research Center, National Fusion Research Institute, 814-2 Osikdo-dong, Gunsan, Jeollabuk-do 573-540 (Korea, Republic of); Cho, Hyuck [Department of Physics, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Itikawa, Yukikazu [Institute of Space and Astronautical Science, Sagamihara 252-5210 (Japan); Karwasz, Grzegorz P. [Faculty of Physics, Astronomy and Applied Informatics, University Nicolaus Copernicus, Grudziadzka 5, 87100 Toruń (Poland); Kokoouline, Viatcheslav [Department of Physics, University of Central Florida, Orlando, Florida 32816 (United States); Nakamura, Yoshiharu [6-1-5-201 Miyazaki, Miyamae, Kawasaki 216-0033 (Japan); Tennyson, Jonathan [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)
2015-06-15
Cross section data are compiled from the literature for electron collisions with methane (CH{sub 4}) molecules. Cross sections are collected and reviewed for total scattering, elastic scattering, momentum transfer, excitations of rotational and vibrational states, dissociation, ionization, and dissociative attachment. The data derived from swarm experiments are also considered. For each of these processes, the recommended values of the cross sections are presented. The literature has been surveyed through early 2014.
Ion and electron impact ionization cross sections
Several current projects are described in which cross sections of interest to radiation physics are being measured. These include total and multiple ionization cross sections for protons on several gases covering a wide energy range, the measurement of cross sections differential in the angle and energy of ejected electrons for several gases including water vapor, and a review of proton ionization data. The work on water vapor has also been extended to electron and neutral hydrogen impact. A brief discussion is also given of some systematics of ionization cross sections. 13 references
Improved Empirical Parametrization of Fragmentation Cross Sections
Sümmerer, Klaus
2012-01-01
A new version is proposed for the universal empirical formula, EPAX, which describes fragmentation cross sections in high-energy heavy-ion reactions. The new version, EPAX 3, can be shown to yield cross sections that are in better agreement with experimental data for the most neutron-rich fragments than the previous version. At the same time, the very good agreement of EPAX 2 with data on the neutron-deficient side has been largely maintained. Comparison with measured cross sections show that the bulk of the data is reproduced within a factor of about 2, for cross sections down to the pico-barn range.
Damage cross section library (DAMSIG77)
The damage cross sections of various materials are converted to a data format, which can be used as library for the program SAND-II. The materials available in this library are graphite, stainless steel, aluminium, silicium, chromium, iron, nickel, copper, zirconium, molybdenum, tungsten, vanadium and niobium. A number of these materials have more than one cross section set, originating from different evaluations. Cross sections for some activation reactions, commonly used to determine thermal and fast neutron fluences have been included too. Moreover, also some artificial cross sections are introduced in this library which can be used to derive values for some physical quantities which may characterize neutron spectra
Compilation of cross-sections. Pt. 4
This is the fourth volume in our series of data compilations on integrated cross-sections for weak, electromagnetic, and strong interaction processes. This volume covers data on reactions induced by photons, neutrinos, hyperons, and KL0. It contains all data published up to June 1986. Plots of the cross-sections versus incident laboratory momentum are also given. (orig.)
Compilation of cross-sections. Pt. 1
A compilation of integral cross-sections for hadronic reactions is presented. This is an updated version of CERN/HERA 79-1, 79-2, 79-3. It contains all data published up to the beginning of 1982, but some more recent data have also been included. Plots of the cross-sections versus incident laboratory momentum are also given. (orig.)
Nucleon-XcJ Dissociation Cross Sections
冯又层; 许晓明; 周代翠
2002-01-01
Nucleon-XcJ dissociation cross sections are calculated in a constituent interexchange model in which quark-quark potential is derived from the Buchmüller-Tye quark-anti-quark potential. These new cross sections for dominant reaction channels depend on the centre-of-mass energy of the nucleon and the charmonium.
Fission cross section calculations for Pa isotopes
Based on the recently measured cross-section values for the neutron-induced fission of 231Pa and our experience gained with other isotopes, new self consistent neutron cross section calculations for n+231Pa have been performed up to 30 MeV. The results are quite different to the existing evaluations, especially above the first chance fission threshold. (authors)
Comparative analysis among several cross section sets
Critical parameters were calculated using the one dimensional multigroup transport theory for several cross section sets. Calculations have been performed for water mixtures of uranium metal, plutonium metal and uranium-thorium oxide, and for metallics systems, to determine the critical dimensions of geometries (sphere and cylinder). For this aim, the following cross section sets were employed: 1) multigroup cross section sets obtained from the GAMTEC-II code; 2) the HANSEN-ROACH cross section sets; 3) cross section sets from the ENDF/B-IV, processed by the NJOY code. Finally, we have also calculated the corresponding critical radius using the one dimensional multigroup transport DTF-IV code. The numerical results agree within a few percent with the critical values obtained in the literature (where the greatest discrepancy occured in the critical dimensions of water mixtures calculated with the values generated by the NJOY code), a very good results in comparison with similar works. (Author)
Photoproton cross section for 17O
The measurement of the 17O(γ,p)16N reaction from threshold to an excitation energy of 44 MeV is presented. These results have been summed with the previously measured total photoneutron cross section to provide an approximation to the total photoabsorption cross section of 17O. The magnitude of the 17O photoabsorption cross section at the peak of the Giant Dipole Resonance is considerably less than the equivalent value for the photoabsorption cross sections of 16O and 18O. In addition, the integrated total photoabsorption cross section for 17O (up to 40 MeV) exhausts only about 58% of the sum rule; the values for the cases of 16O and 18O are significantly larger than this. The present data along with results from other reaction channels of this nucleus, were used to make spin, parity, and isospin assignments for several states in 17O. 48 refs., 4 tabs., 7 figs
Recommended evaluation procedure for photonuclear cross section
Lee, Young-Ouk; Chang, Jonghwa; Fukahori, Tokio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1998-03-01
In order to generate photonuclear cross section library for the necessary applications, data evaluation is combined with theoretical evaluation, since photonuclear cross sections measured cannot provide all necessary data. This report recommends a procedure consisting of four steps: (1) analysis of experimental data, (2) data evaluation, (3) theoretical evaluation and, if necessary, (4) modification of results. In the stage of analysis, data obtained by different measurements are reprocessed through the analysis of their discrepancies to a representative data set. In the data evaluation, photonuclear absorption cross sections are evaluated via giant dipole resonance and quasi-deutron mechanism. With photoabsorption cross sections from the data evaluation, theoretical evaluation is applied to determine various decay channel cross sections and emission spectra using equilibrium and preequilibrium mechanism. After this, the calculated results are compared with measured data, and in some cases the results are modified to better describe measurements. (author)
The 42Ca photoneutron cross section
The measurement of the 42Ca(γ,nsub(t)) is reported here over the energy range 10.5 - 28 MeV. Bremsstrahlung radiation from the 35 MeV Betatron at this University was used to measure a yield curve of photoneutrons, from which the (γ,nsub(t)) cross section was derived. Since proton and neutron emission are the major decay modes of the giant dipole resonance, summing these cross sections approximates the photo-absorption cross section. With this information the theoretical predictions can be checked
Compilation of cross-sections. Pt. 3
A compilation of integrated cross-sections for hadronic reactions is presented. This is an updated version of CERN/HERA 79-1, 79-2, 79-3. It contains all data published up to the beginning of 1982, but some more recent data, particularly those from the CERN Collider, have also been included. Plots of the cross-sections versus incident laboratory momentum are also given. This volume III contains cross-sections for p and anti p induced reactions. (orig.)
Screening corrections to the Rutherford cross section
Differential cross sections for elastic p-Au scattering were measured in the energy range between 0.2 and 0.8 MeV for scattering angles from 300 to 1500 in order to determine corrections to the Rutherford cross section due to the screening of the nuclear charge by the atomic electrons. Furthermore, differential cross sections have been calculated in the weakly screening region using various screening functions. A simple analytical expression has been derived for the representation of both experimental and theoretical results. (orig.)
A nuclear cross section data handbook
Fisher, H.O.M.
1989-12-01
Isotopic information, reaction data, data availability, heating numbers, and evaluation information are given for 129 neutron cross-section evaluations, which are the source of the default cross sections for the Monte Carlo code MCNP. Additionally, pie diagrams for each nuclide displaying the percent contribution of a given reaction to the total cross section are given at 14 MeV, 1 MeV, and thermal energy. Other information about the evaluations and their availability in continuous-energy, discrete-reaction, and multigroup forms is provided. The evaluations come from ENDF/B-V, ENDL85, and the Los Alamos Applied Nuclear Science Group T-2. Graphs of all neutron and photon production cross-section reactions for these nuclides have been categorized and plotted. 21 refs., 5 tabs.
Differential cross sections of positron hydrogen collisions
于荣梅; 濮春英; 黄晓玉; 殷复荣; 刘旭焱; 焦利光; 周雅君
2016-01-01
We make a detailed study on the angular differential cross sections of positron–hydrogen collisions by using the momentum-space coupled-channels optical (CCO) method for incident energies below the H ionization threshold. The target continuum and the positronium (Ps) formation channels are included in the coupled-channels calculations via a complex equivalent-local optical potential. The critical points, which show minima in the differential cross sections, as a function of the scattering angle and the incident energy are investigated. The resonances in the angular differential cross sections are reported for the first time in this energy range. The effects of the target continuum and the Ps formation channels on the different cross sections are discussed.
Systematics of (n,2n) Cross Sections
2008-01-01
<正>The experimental data of (n, 2n) cross sections were collected and evaluated as complete as possible. There are 640 sets of experimental data for 130 nuclei. The data were fitted to the expressions that describe the
Photoneutron cross section of 34S
Using an enriched 34S target, the reaction 34S(γ,sn)33S has been measured from below threshold (10.4 MeV) to 28 MeV by directly counting the photoneutrons as a function of bremsstrahlung energy. The resultant cross section shows gross splitting in the GDR region. The integrated cross section is discussed in the light of the systematics of similar nuclei having two neutrons outside a doubly closed shell/sub-shell core
Photoneutron cross section of 34S
Using an enriched 34S target, the reaction 34S(γ, sn) has been measured from below threshold (10.4 MeV) to 28 MeV by directly counting the photoneutrons as a function of bremsstrahlung energy. The resultant cross section shows gross splitting in the GDR region. The integrated cross section is discussed in the light of the systematics of similar nuclei having two neutrons outside a doubly closed shell/sub-shell core. (orig.)
Neutron capture cross sections from Surrogate measurements
Scielzo N.D.; Dietrich F.S.; Escher J.E.
2010-01-01
The prospects for determining cross sections for compound-nuclear neutron-capture reactions from Surrogate measurements are investigated. Calculations as well as experimental results are presented that test the Weisskopf-Ewing approximation, which is employed in most analyses of Surrogate data. It is concluded that, in general, one has to go beyond this approximation in order to obtain (n,γ) cross sections of sufficient accuracy for most astrophysical and nuclear-energy applications.
Neutron capture cross sections from Surrogate measurements
Scielzo N.D.
2010-03-01
Full Text Available The prospects for determining cross sections for compound-nuclear neutron-capture reactions from Surrogate measurements are investigated. Calculations as well as experimental results are presented that test the Weisskopf-Ewing approximation, which is employed in most analyses of Surrogate data. It is concluded that, in general, one has to go beyond this approximation in order to obtain (n,γ cross sections of sufficient accuracy for most astrophysical and nuclear-energy applications.
Evaluation methods for neutron cross section standards
Methods used to evaluate the neutron cross section standards are reviewed and their relative merits, assessed. These include phase-shift analysis, R-matrix fit, and a number of other methods by Poenitz, Bhat, Kon'shin and the Bayesian or generalized least-squares procedures. The problems involved in adopting these methods for future cross section standards evaluations are considered, and the prospects for their use, discussed. 115 references, 5 figures, 3 tables
Methods for calculating anisotropic transfer cross sections
The Legendre moments of the group transfer cross section, which are widely used in the numerical solution of the transport calculation can be efficiently and accurately constructed from low-order (K = 1--2) successive partial range moments. This is convenient for the generation of group constants. In addition, a technique to obtain group-angle correlation transfer cross section without Legendre expansion is presented. (author)
Radiative corrections to the hadronic cross-section measurement at DAΦNE
The hadronic invariant mass distribution for the process of electron--positron annihilation into a pair of charged pions accompanied by a photon radiated from the initial state has been studied for the region of DAΦNE energies. The Born cross-section and the electromagnetic radiative corrections to it are calculated for realistic conditions of the KLOE detector. The dependence on the physical parameters which define the event selection is obtained
Radiative corrections to the hadronic cross-section measurement at DA{phi}NE
Khoze, V.A. [Durham Univ. of Durham, Durham (United Kingdom). Dept. of Physics; Konchatnij, M.I.; Merenkov, NP.; Shekhovzova, O.N. [National Science Centre Kharkov Institute of Physics and Technology, Karkhov (Ukraine); Pancheri, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, Frascati, RM (Italy); Trentadue, L. [Parma Univ., Parma (Italy). Dipt. di Fisica
2000-07-01
The hadronic invariant mass distribution for the process of electron--positron annihilation into a pair of charged pions accompanied by a photon radiated from the initial state has been studied for the region of DA{phi}NE energies. The Born cross-section and the electromagnetic radiative corrections to it are calculated for realistic conditions of the KLOE detector. The dependence on the physical parameters which define the event selection is obtained.
Positronium formation cross-sections for Xe, CO2 and N-2
Cooke, D. A.; Murtagh, D. J.; Laricchia, G
2010-01-01
The positronium formation cross-sections for Xe, CO2 and N-2 have been measured using coincidences between gamma-rays from positronium self-annihilation and the resultant ion. In the case of Xe, there is excellent agreement with previous experimental determinations. For CO2 there is broad agreement in magnitude with previous measurements in contrast with N-2 where good shape agreement at low energies (
Photoproton cross section for 14C
Using bremsstrahlung, the 14C(γ,p) reaction cross section has been measured from threshold to 29 MeV. The integrated cross section up to 30 MeV is 18±3 MeV mb. Above 23.5 MeV, the reported cross section includes a contribution, estimated at 3.5 MeV mb, due to the 14C(γ,d) and 14Cγ,pn) reactions. Essentially the entire 14C(γ,p) cross section results from decay of T> dipole states. From knowledge of other decay channels estimates of the cross section, integrated to 30 MeV for the T and T> components of the giant resonance (GDR) of 81 MeV mb and 43 MeV mb are obtained. The splitting of the mean energies of the GDR isospin components is 8.5 MeV. Comparisons with several shell-model calculations are made with the data, and general agreement is found. A comparison of photonuclear absorption cross sections for 12,1314C and 16,17,18 O shows dramatic redistribution of dipole strength as neutrons are added to the core nuclei. 41 refs., 1 tab., 7 figs
abo-cross: Hydrogen broadening cross-section calculator
Barklem, P. S.; Anstee, S. D.; O'Mara, B. J.
2015-07-01
Line broadening cross sections for the broadening of spectral lines by collisions with neutral hydrogen atoms have been tabulated by Anstee & O'Mara (1995), Barklem & O'Mara (1997) and Barklem, O'Mara & Ross (1998) for s-p, p-s, p-d, d-p, d-f and f-d transitions. abo-cross, written in Fortran, interpolates in these tabulations to make these data more accessible to the end user. This code can be incorporated into existing spectrum synthesis programs or used it in a stand-alone mode to compute line broadening cross sections for specific transitions.
Shirasaki, Masato; Horiuchi, Shunsaku; Shirai, Satoshi; Yoshida, Naoki
2016-01-01
We derive constraints on dark matter (DM) annihilation cross section and decay lifetime from cross-correlation analyses of the data from Fermi-LAT and weak lensing surveys that cover a wide area of $\\sim660$ squared degrees in total. We improve upon our previous analyses by using an updated extragalactic $\\gamma$-ray background data reprocessed with the Fermi Pass 8 pipeline, and by using well-calibrated shape measurements of about twelve million galaxies in the Canada-France-Hawaii Lensing Survey (CFHTLenS) and Red-Cluster-Sequence Lensing Survey (RCSLenS). We generate a large set of full-sky mock catalogs from cosmological $N$-body simulations and use them to estimate statistical errors accurately. The measured cross correlation is consistent with null detection, which is then used to place strong cosmological constraints on annihilating and decaying DM. For leptophilic DM, the constraints are improved by a factor of $\\sim100$ in the mass range of O(1) TeV when including contributions from secondary $\\gamma...
A Pebble Bed Reactor cross section methodology
A method is presented for the evaluation of microscopic cross sections for the Pebble Bed Reactor (PBR) neutron diffusion computational models during convergence to an equilibrium (asymptotic) fuel cycle. This method considers the isotopics within a core spectral zone and the leakages from such a zone as they arise during reactor operation. The randomness of the spatial distribution of fuel grains within the fuel pebbles and that of the fuel and moderator pebbles within the core, the double heterogeneity of the fuel, and the indeterminate burnup of the spectral zones all pose a unique challenge for the computation of the local microscopic cross sections. As prior knowledge of the equilibrium composition and leakage is not available, it is necessary to repeatedly re-compute the group constants with updated zone information. A method is presented to account for local spectral zone composition and leakage effects without resorting to frequent spectrum code calls. Fine group data are pre-computed for a range of isotopic states. Microscopic cross sections and zone nuclide number densities are used to construct fine group macroscopic cross sections, which, together with fission spectra, flux modulation factors, and zone buckling, are used in the solution of the slowing down balance to generate a new or updated spectrum. The microscopic cross-sections are then re-collapsed with the new spectrum for the local spectral zone. This technique is named the Spectral History Correction (SHC) method. It is found that this method accurately recalculates local broad group microscopic cross sections. Significant improvement in the core eigenvalue, flux, and power peaking factor is observed when the local cross sections are corrected for the effects of the spectral zone composition and leakage in two-dimensional PBR test problems.
Measurement of proton-induced target fragmentation cross sections in carbon
Matsushita, K.; Nishio, T.; Tanaka, S.; Tsuneda, M.; Sugiura, A.; Ieki, K.
2016-02-01
In proton therapy, positron emitter nuclei are generated via the target nuclear fragmentation reactions between irradiated proton and nuclei constituting a human body. The proton-irradiated volume can be confirmed with measurement of annihilation γ-rays from the generated positron emitter nuclei. To achieve the high accuracy of proton therapy, in vivo dosimetry, i.e., evaluation of the irradiated dose during the treatment is important. To convert the measured activity distribution to irradiated dose, cross-sectional data for positron emitter production is necessary, which is currently insufficient in the treatment area. The purpose of this study is to collect cross-sectional data of 12C (p , pn)11C and 12C (p , p 2 n)10C reactions between the incident proton and carbon nuclei, which are important target nuclear fragmentation reactions, to estimate the range and exposure dose distribution in the patient's body. Using planar-type PET capable of measuring annihilation γ-rays at high positional resolution and thick polyethylene target, we measured cross-sectional data in continuous wide energy range. The cross section of 12C (p , pn)11C is in good agreement with existing experimental data. The cross section of 12C (p , p 2 n)10C is reported for the first data in the low-energy range of 67.6-10.5 MeV near the Bragg peak of proton beam.
CMB constraint on dark matter annihilation after Planck 2015
Masahiro Kawasaki
2016-05-01
Full Text Available We update the constraint on the dark matter annihilation cross section by using the recent measurements of the CMB anisotropy by the Planck satellite. We fully calculate the cascade of dark matter annihilation products and their effects on ionization, heating and excitation of the hydrogen, hence do not rely on any assumption on the energy fractions that cause these effects.
CMB constraint on dark matter annihilation after Planck 2015
Masahiro Kawasaki; Kazunori Nakayama; Toyokazu Sekiguchi
2016-01-01
We update the constraint on the dark matter annihilation cross section by using the recent measurements of the CMB anisotropy by the Planck satellite. We fully calculate the cascade of dark matter annihilation products and their effects on ionization, heating and excitation of the hydrogen, hence do not rely on any assumption on the energy fractions that cause these effects.
CMB Constraint on Dark Matter Annihilation after Planck 2015
Kawasaki, Masahiro; Sekiguchi, Toyokazu
2015-01-01
We update the constraint on the dark matter annihilation cross section by using the recent measurements of the CMB anisotropy by the Planck satellite. We fully calculate the cascade of dark matter annihilation products and their effects on ionization, heating and excitation of the hydrogen, hence do not rely on any assumption on the energy fractions that cause these effects.
CMB constraint on dark matter annihilation after Planck 2015
Kawasaki, Masahiro; Nakayama, Kazunori; Sekiguchi, Toyokazu
2016-05-01
We update the constraint on the dark matter annihilation cross section by using the recent measurements of the CMB anisotropy by the Planck satellite. We fully calculate the cascade of dark matter annihilation products and their effects on ionization, heating and excitation of the hydrogen, hence do not rely on any assumption on the energy fractions that cause these effects.
Reduction Methods for Total Reaction Cross Sections
Gomes, P. R. S.; Mendes Junior, D. R.; Canto, L. F.; Lubian, J.; de Faria, P. N.
2016-03-01
The most frequently used methods to reduce fusion and total reaction excitation functions were investigated in a very recent paper Canto et al. (Phys Rev C 92:014626, 2015). These methods are widely used to eliminate the influence of masses and charges in comparisons of cross sections for weakly bound and tightly bound systems. This study reached two main conclusions. The first is that the fusion function method is the most successful procedure to reduce fusion cross sections. Applying this method to theoretical cross sections of single channel calculations, one obtains a system independent curve (the fusion function), that can be used as a benchmark to fusion data. The second conclusion was that none of the reduction methods available in the literature is able to provide a universal curve for total reaction cross sections. The reduced single channel cross sections keep a strong dependence of the atomic and mass numbers of the collision partners, except for systems in the same mass range. In the present work we pursue this problem further, applying the reduction methods to systems within a limited mass range. We show that, under these circumstances, the reduction of reaction data may be very useful.
Neutron cross section of methane hydrate
Kiyanagi, Y.; Date, S.; Horikawa, T.; Takamine, J.; Iwasa, H.; Kamiyama, T. [Graduate School of Eng., Hokkaido Univ., Sapporo (Japan); Uchida, T.; Ebinuma, T.; Narrita, H. [National Inst. of Advanced Industrial Science, Tsukisamu, Sapporo (Japan); Bennington, S.M. [ISIS Dept., Rutherford Appleton, Chilton, Didcot, Oxon (United Kingdom)
2004-03-01
To estimate the neutronic characteristics of methane hydrate and also to synthesize cross section data for simulation we need neutron scattering data ranging wide energy and momentum region. We performed inelastic neutron scattering experiments to get information about the neutron cross section on methane hydrate. It was found that at high momentum transfer region rotational mode as well as vibration mode showed recoil like behavior. On the other hand, at low momentum region, as well known, free rotation like energy levels were observed. The energy level of ice in methane hydrate was very similar to normal ice. The results suggest that the rough expression of the cross section of the methane hydrate is presented by linear combination of the methane and ice. (orig.)
Prospects for Precision Neutrino Cross Section Measurements
Harris, Deborah A. [Fermilab
2016-01-28
The need for precision cross section measurements is more urgent now than ever before, given the central role neutrino oscillation measurements play in the field of particle physics. The definition of precision is something worth considering, however. In order to build the best model for an oscillation experiment, cross section measurements should span a broad range of energies, neutrino interaction channels, and target nuclei. Precision might better be defined not in the final uncertainty associated with any one measurement but rather with the breadth of measurements that are available to constrain models. Current experience shows that models are better constrained by 10 measurements across different processes and energies with 10% uncertainties than by one measurement of one process on one nucleus with a 1% uncertainty. This article describes the current status of and future prospects for the field of precision cross section measurements considering the metric of how many processes, energies, and nuclei have been studied.
Radiation pressure cross section for fluffy aggregates
We apply the discrete dipole approximation (DDA) to estimate the radiation pressure cross section for fluffy aggregates by computing the asymmetry parameter and the cross sections for extinction and scattering. The ballistic particle-cluster aggregate and the ballistic cluster-cluster aggregate consisting of either dielectric or absorbing material are considered to represent naturally existing aggregates. We show that the asymmetry parameter perpendicular to the direction of wave propagation is maximized where the wavelength is comparable to the aggregate size, which may be characterized by the area-equivalent radius or the radius of gyration rather than the volume-equivalent radius. The asymmetry parameter for the aggregate depends on the morphology of the particle, but not on the constituent material. Therefore, the dependence of the radiation pressure cross section on the material composition arises mainly from that of the extinction and scattering cross sections, in other words, the single-scattering albedo. We find that aggregates consisting of high-albedo material show a large deviation of radiation pressure from the direction of incident radiation. When the aggregates are illuminated by blackbody radiation, the deviation of the radiation pressure increases with increasing temperature of the blackbody. Since the parallel component of the radiation pressure cross section for the aggregates is smaller than that for the volume-equivalent spheres at the size parameter close to unity, the Planck-mean radiation pressure cross section for the aggregates having radius comparable to the effective wavelength of radiation shows a lower value, compared with the volume-equivalent sphere. Consequently, the slope of the radiation pressure force per mass of the particle as a function of particle mass shows a lower maximum for the aggregates than for compact spherical particles. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)
Charged particle reaction cross sections and nucleosynthesis
The role of proton and α-particle induced reactions in carbon, neon, oxygen and silicon burning in massive stars is surveyed. The problems associated with determining thermonuclear reaction rates for reactions with widely spaced resonances and with closely spaced or overlapping resonances are discussed and the associated experimental approaches are reviewed. Experimental techniques which have been used in the measurement of reaction cross sections are discussed and their strengths and weaknesses are identified. Recent developments in attempts to establish reliable statistical-model codes for calculation of reaction cross sections are presented and discussed. The results of experimental tests of statistical model codes are summarised and evaluated
Neutron capture cross sections from surrogate measurements
The prospects for determining cross sections for compound-nuclear neutron-capture reactions from Surrogate measurements are investigated. Calculations as well as experimental results are presented that test the Weisskopf-Ewing approximation, which is employed in most analyses of Surrogate data. The method is applied to the 155Gd(n,γ) reaction. It is concluded that, in general, one has to go beyond this approximation in order to obtain (n,γ) cross sections of sufficient accuracy for most astrophysical and nuclear-energy applications. (authors)
Precise neutron inelastic cross section measurements
Negret, Alexandru
2012-11-01
The design of a new generation of nuclear reactors requires the development of a very precise neutron cross section database. Ongoing experiments performed at dedicated facilities aim to the measurement of such cross sections with an unprecedented uncertainty of the order of 5% or even smaller. We give an overview of such a facility: the Gamma Array for Inelastic Neutron Scattering (GAINS) installed at the GELINA neutron source of IRMM, Belgium. Some of the most challenging difficulties of the experimental approach are emphasized and recent results are shown.
Optical Model and Cross Section Uncertainties
Herman,M.W.; Pigni, M.T.; Dietrich, F.S.; Oblozinsky, P.
2009-10-05
Distinct minima and maxima in the neutron total cross section uncertainties were observed in model calculations using spherical optical potential. We found this oscillating structure to be a general feature of quantum mechanical wave scattering. Specifically, we analyzed neutron interaction with 56Fe from 1 keV up to 65 MeV, and investigated physical origin of the minima.We discuss their potential importance for practical applications as well as the implications for the uncertainties in total and absorption cross sections.
Saturation Effects in Hadronic Cross Sections
Shoshi, Arif I.; Steffen, Frank D.
2002-01-01
We compute total and differential elastic cross sections of high-energy hadronic collisions in the loop-loop correlation model that provides a unified description of hadron-hadron, photon-hadron, and photon-photon reactions. The impact parameter profiles of pp and gamma*p collisions are calculated. For ultra-high energies the hadron opacity saturates at the black disc limit which tames the growth of the hadronic cross sections in agreement with the Froissart bound. We compute the impact param...
Covariance Evaluation Methodology for Neutron Cross Sections
Herman,M.; Arcilla, R.; Mattoon, C.M.; Mughabghab, S.F.; Oblozinsky, P.; Pigni, M.; Pritychenko, b.; Songzoni, A.A.
2008-09-01
We present the NNDC-BNL methodology for estimating neutron cross section covariances in thermal, resolved resonance, unresolved resonance and fast neutron regions. The three key elements of the methodology are Atlas of Neutron Resonances, nuclear reaction code EMPIRE, and the Bayesian code implementing Kalman filter concept. The covariance data processing, visualization and distribution capabilities are integral components of the NNDC methodology. We illustrate its application on examples including relatively detailed evaluation of covariances for two individual nuclei and massive production of simple covariance estimates for 307 materials. Certain peculiarities regarding evaluation of covariances for resolved resonances and the consistency between resonance parameter uncertainties and thermal cross section uncertainties are also discussed.
Atlas of neutron capture cross sections
This report describes neutron capture cross sections in the range 10-5 eV - 20 MeV as evaluated and compiled in recent activation libraries. The selected subset comprise the (n,γ) cross sections for a total of 739 targets for the elements H (Z = 1, Z = 1) to Cm (Z = 96, A = 238) totaling 972 reactions. Plots of the point-wise data are shown and comparisons are made with the available experimental values at thermal energy, 30 keV and 14.5 MeV. 10 refs, 7 tabs
Verification of important cross section data
Full text: Continuing efforts in nuclear data development have made the design of a fusion power system less uncertain. The fusion evaluated nuclear data library (FENDL) development effort since 1987 under the leadership of the IAEA Nuclear Data Section has provided a credible international library for the investigation and design of the International Thermonuclear Engineering Reactor (ITER). Integral neutronics experiments are being carried out for ITER and fusion power plant blanket and shield assemblies to validate the available nuclear database and to identify deficiencies for further improvement. Important cross section data need experimental verifications if these data are evaluated based on physics model calculations and there are no measured data points available. A particular reaction cross section is Si28(n,x)Al27, which is the important cross section to determine whether the low activation SiC composite structure can be qualified as low level nuclear waste after life time exposure in the first wall neutron environment in a fusion power plant. Measurements of helium production data for candidate fusion materials are also needed, particularly at energies above 14 MeV for the assessment of materials damage in the IFMIF neutron spectrum. To a less extent, it appears that V51(n,x)Ti50 reaction cross section also needs to be measured to further confirm a recent new evaluation of vanadium for ENDF/B-VII. (author)
Annihilating Asymmetric Dark Matter
Bell, Nicole F; Shoemaker, Ian M
2014-01-01
The relic abundance of particle and antiparticle dark matter (DM) need not be vastly different in thermal asymmetric dark matter (ADM) models. By considering the effect of a primordial asymmetry on the thermal Boltzmann evolution of coupled DM and anti-DM, we derive the requisite annihilation cross section. This is used in conjunction with CMB and Fermi-LAT gamma-ray data to impose a limit on the number density of anti-DM particles surviving thermal freeze-out. When the extended gamma-ray emission from the Galactic Center is reanalyzed in a thermal ADM framework, we find that annihilation into $\\tau$ leptons prefer anti-DM number densities 1-4$\\%$ that of DM while the $b$-quark channel prefers 50-100$\\%$.
Fusion cross sections and the new dynamics
The prediction of the need for an extra push over the interaction barrier in order to make the heavier nuclei fuse is made the basis of a simple algebraic theory for the energy-dependence of the fusion cross-section. A comparison with recent experiments promises to provide a quantitative test of the New Dynamics
LSP-Nucleus Elastic Scattering Cross Sections
Vergados, J. D.; Kosmas, T. S.
1997-01-01
We calculate LSP-nucleus elastic scattering cross sections using some representative input in the restricted SUSY parameter space. The coherent matrix elements are computed throughout the periodic table while the spin matrix elements for the proposed $^{207}Pb$ target which has a rather simple nuclear structure. The results are compared to those given from other cold dark matter detection targets.
Electron impact excitation cross sections for carbon
Ganas, P. S.
1981-04-01
A realistic analytic atomic independent particle model is used to generate wave functions for the valence and excited states of carbon. Using these wave functions in conjunction with the Born approximation and the Russell-Saunders LS-coupling scheme, we calculate generalized oscillator strengths and integrated cross sections for various excitations from the 2p 2( 3P O) valence state.
Electron impact excitation cross sections for carbon
A realistic analytic atomic independent particle model is used to generate wave functions for the valence and excited states of carbon. Using these wave functions in conjunction with the Born approximation and the Russell-Saunders LS-coupling scheme, we calculate generalized oscillator strengths and integrated cross sections for various excitations from the 2p2(3P0) valence state. (orig.)
Top quark cross sections and differential distributions
Kidonakis, Nikolaos
2011-01-01
I present results for the top quark pair total cross section and the top quark transverse momentum distribution at Tevatron and LHC energies. I also present results for single top quark production. All calculations include NNLO corrections from NNLL threshold resummation.
Neutron cross sections of importance to astrophysics
Neutron reactions of importance to the various stellar burning cycles are discussed. The role of isomeric states in the branched s-process is considered for particular cases. Neutron cross section needs for the 187Re-187Os, 87Rb-87Sr clocks for nuclear cosmochronology are discussed. Other reactions of interest to astrophysical processes are presented. 35 references
Modelisation of the fission cross section
The neutron cross sections of four nuclear systems (n+235U, n+233U, n+241Am and n+237Np) are studied in the present document. The target nuclei of the first case, like 235U and 239Pu, have a large fission cross section after the absorption of thermal neutrons. These nuclei are called 'fissile' nuclei. The other type of nuclei, like 237Np and 241Am, fission mostly with fast neutrons, which exceed the fission threshold energy. These types of nuclei are called 'fertile'. The compound nuclei of the fertile nuclei have a binding energy higher than the fission barrier, while for the fissile nuclei the binding energy is lower than the fission barrier. In this work, the neutron induced cross sections for both types of nuclei are evaluated in the fast energy range. The total, reaction and shape-elastic cross sections are calculated by the coupled channel method of the optical model code ECIS, while the compound nucleus mechanism are treated by the statistical models implemented in the codes STATIS, GNASH and TALYS. The STATIS code includes a refined model of the fission process. Results from the theoretical calculations are compared with data retrieved from the experimental data base EXFOR. (author)
Neutron Capture Cross Sections for Radioactive Nuclei
Tonchev, Anton; Bedrossian, Peter; Escher, Jutta; Scielzo, Nicholas
2015-10-01
Accurate neutron-capture cross sections for radioactive nuclei near or far away from the line of beta stability are crucial for understanding the nucleosynthesis of heavy elements. However, neutron-capture cross sections for short-lived radionuclides are difficult to measure due to the fact that the measurements require both highly radioactive samples and intense neutron sources. Essential ingredients for describing the γ decays following neutron capture are the γ-ray strength function and level densities. We will compare different indirect approaches for obtaining observables that can constrain Hauser-Feshbach statistical model calculations of capture cross sections. Specifically, we will consider photon scattering, transfer reactions, and beta-delayed neutron emission. Challenges that exist on the path to obtaining neutron-capture cross sections for reactions on isotopes far from stability will be discussed. This work was performed under the auspices of US DOE by LLNL under contract DE-AC52-07NA27344. Funding was provided via the LDRD-ERD-069 project.
Symmetric charge transfer cross section of uranium
Symmetric charge transfer cross section of uranium was calculated under consideration of reaction paths. In the charge transfer reaction a d3/2 electron in the U atom transfers into the d-electron site of U+(4I9/2) ion. The J value of the U atom produced after the reaction is 6, 5, 4 or 3, at impact energy below several tens eV, only resonant charge transfer in which the product atom is ground state (J=6) takes place. Therefore, the cross section is very small (4-5 x 10-15 cm2) compared with that considered so far. In the energy range of 100-1000eV the cross section increases with the impact energy because near resonant charge transfer in which an s-electron in the U atom transfers into the d-electron site of U+ ion. Charge transfer cross section between U+ in the first excited state (289 cm-1) and U in the ground state was also obtained. (author)
Measurement cross sections for radioisotopes production
New radioactive isotopes for nuclear medicine can be produced using particle accelerators. This is one goal of Arronax, a high energy - 70 MeV - high intensity - 2*350 μA - cyclotron set up in Nantes. A priority list was established containing β- - 47Sc, 67Cu - β+ - 44Sc, 64Cu, 82Sr/82Rb, 68Ge/68Ga - and α emitters - 211At. Among these radioisotopes, the Scandium 47 and the Copper 67 have a strong interest in targeted therapy. The optimization of their productions required a good knowledge of their cross-sections but also of all the contaminants created during irradiation. We launched on Arronax a program to measure these production cross-sections using the Stacked-Foils' technique. It consists in irradiating several groups of foils - target, monitor and degrader foils - and in measuring the produced isotopes by γ-spectrometry. The monitor - natCu or natNi - is used to correct beam loss whereas degrader foils are used to lower beam energy. We chose to study the natTi(p,X)47Sc and 68Zn(p,2p)67Cu reactions. Targets are respectively natural Titanium foil - bought from Goodfellow - and enriched Zinc 68 deposited on Silver. In the latter case, Zn targets were prepared in-house - electroplating of 68Zn - and a chemical separation between Copper and Gallium isotopes has to be made before γ counting. Cross-section values for more than 40 different reactions cross-sections have been obtained from 18 MeV to 68 MeV. A comparison with the Talys code is systematically done. Several parameters of theoretical models have been studied and we found that is not possible to reproduce faithfully all the cross-sections with a given set of parameters. (author)
Virtual amplitudes and threshold behaviour of hadronic top-quark pair-production cross sections
We present the two-loop virtual amplitudes for the production of a top-quark pair in gluon fusion. The evaluation method is based on a numerical solution of differential equations for master integrals in function of the quark velocity and scattering angle starting from a boundary at high-energy. The results are given for the renormalized infrared finite remainders on a large grid and have recently been used in the calculation of the total cross sections at the next-to-next-to-leading order. For convenience, we also give the known results for the quark annihilation case on the same grid. Outside of the kinematical range covered by the grid, we provide threshold and high-energy expansions. From expansions of the two-loop virtual amplitudes, we determine the threshold behavior of the total cross sections at next-to-next-to-leading order for the quark annihilation and gluon fusion channels including previously unknown constant terms. In our analysis of the quark annihilation channel, we uncover the presence of a velocity enhanced logarithm of Coulombic origin, which was missed in a previous study
Efficiency Calibration for Measuring the 12C(n, 2n)11C Cross Section
Eckert, Thomas; Gula, August; Vincett, Laurel; Yuly, Mark; Padalino, Stephen; Russ, Megan; Bienstock, Mollie; Simone, Angela; Ellison, Drew; Desmitt, Holly; Sangster, Craig; Regan, Sean; Fitzgerald, Ryan
2015-11-01
One possible inertial confinement fusion diagnostic involves tertiary neutron activation via the 12C(n, 2n)11C reaction. A recent experiment to measure this reaction cross-section involved coincidence counting the annihilation gamma rays produced by the positron decay of 11C. This requires an accurate value for the full-peak coincidence efficiency of the NaI detector system. The GEANT 4 toolkit was used to develop a Monte Carlo simulation of the detector system which can be used to calculate the required efficiencies. For validation, simulation predictions have been compared with the results of two experiments. In the first, full-peak coincidence positron annihilation efficiencies were measured for 22Na decay positrons that annihilate in a small plastic scintillator. In the second, a NIST-calibrated 68Ge source was used. A comparison of calculated with measured efficiencies, as well as 12C(n, 2n)11C cross sections are presented. Funded in part by a grant from the DOE through the Laboratory for Laser Energetics.
A New Neutrino Cross Section Data Ressource
Whalley, M R
2005-01-01
We describe a new web based data resource being developed to provide access to accurate and validated cross sections of low energy neutrino and antineutrino interactions. The proposed content of this database are outlined which cover total and differential cross from inclusive, quasi-elastic and exclusive pion production processes from charged and neutral current interactions. Efforts to obtain these data, which come mainly from old bubble chamber experiments, are described as well as the implementation of an embryonic web site to make the resource generally accessible.
We are developing a method of (n,α) cross section measurement using gaseous samples in a gridded ionization chamber (GIC). This method enables cross section measurements in large solid angle without the distortion by the energy loss in a sample, but requires a method to estimate the detection efficiency. We solve this problem by using GIC signals and a tight neutron collimation. The validity of this method was confirmed through the 12C(n,α0)9Be measurement. We applied this method to the 16O(n,α)13C cross section around 14.1 MeV. (author)
Sanami, Toshiya; Baba, Mamoru; Saito, Keiichiro; Ibara, Yasutaka; Hirakawa, Naohiro [Tohoku Univ., Sendai (Japan). Faculty of Engineering
1997-03-01
We are developing a method of (n,{alpha}) cross section measurement using gaseous samples in a gridded ionization chamber (GIC). This method enables cross section measurements in large solid angle without the distortion by the energy loss in a sample, but requires a method to estimate the detection efficiency. We solve this problem by using GIC signals and a tight neutron collimation. The validity of this method was confirmed through the {sup 12}C(n,{alpha}{sub 0}){sup 9}Be measurement. We applied this method to the {sup 16}O(n,{alpha}){sup 13}C cross section around 14.1 MeV. (author)
Structured ion impact: Doubly differential cross sections
The electron emission in coincidence with a projectile that has been ionized has been measured, thus making it possible to separate and identify electrons resulting from these various mechanisms. In 1985, coincidence doubly differential cross sections were measured for 400 to 750 keV/atomic mass unit (amu) He+ impact on He, Ne, Ar, Kr, and H2O. Cross sections were measured for selected angles and for electron energies ranging from 10 to 1000 eV. Because of the coincidence mode of measurement, the total electron emission was subdivided into its target emission and its projectile emission components. The most interesting findings were that target ionization does not account for the electron emission spectrum at lower electron energies. A sizable percentage of these low-energy electrons were shown to originate as a result of simultaneous projectile/target ionizations. Similar features were observed for all targets and impact energies that were studied
Elliptical cross section fuel rod study II
In this paper it is continued the behavior analysis and comparison between cylindrical fuel rods of circular and elliptical cross sections. Taking into account the accepted models in the literature, the fission gas swelling and release were studied. An analytical comparison between both kinds of rod reveals a sensible gas release reduction in the elliptical case, a 50% swelling reduction due to intragranular bubble coalescence mechanism and an important swelling increase due to migration bubble mechanism. From the safety operation point of view, for the same linear power, an elliptical cross section rod is favored by lower central temperatures, lower gas release rates, greater gas store in ceramic matrix and lower stored energy rates. (author). 6 refs., 8 figs., 1 tab
Jet cross sections and PDF constraints
CMS Collaboration
2012-01-01
A measurement of inclusive jet and dijet production cross sections is presented. Data from LHC proton-proton collisions at $\\sqrt{s}=7\\TeV$, corresponding to $4.67\\fbinv$ of integrated luminosity, have been collected with the CMS detector. Jets are reconstructed with the anti-$k_T$ clustering algorithm of size parameter $R=0.7$, extending to rapidity $|y|=2.5$, transverse momentum $\\pt=2\\TeV$, and dijet invariant mass $M_{JJ}=5\\TeV$. The measured cross sections are corrected for detector effects and compared to perturbative QCD predictions at next-to-leading order, using various sets of parton distribution functions.
The photoneutron cross section of 20Ne
The photoneutron cross section of 20Ne has been measured over a photon energy range 16 to 29 MeV in steps of 100 keV. The giant dipole resonance is resolved into three strong peaks below 21 MeV and at least two broader resonances at higher excitations. This structure is consistent with earlier measurements of poorer resolution and shows a correlation with the recent calculations of Schmid and Do Dang. Comparisons with high resolution neutron time-of-flight and electron scattering data indicate that there appear to exist in the giant resonance of 20Ne, regions of structure roughly 2-3 MeV wide which exhibit localised characteristics related to the excitation mechanisms. The role of deformation and configuration splitting effects in the cross section are discussed and possible directions of further study are noted which might clarify the situation more fully
Electron capture cross sections for stellar nucleosynthesis
Giannaka, P G
2015-01-01
In the first stage of this work, we perform detailed calculations for the cross sections of the electron capture on nuclei under laboratory conditions. Towards this aim we exploit the advantages of a refined version of the proton-neutron quasi-particle random-phase approximation (pn-QRPA) and carry out state-by-state evaluations of the rates of exclusive processes that lead to any of the accessible transitions within the chosen model space. In the second stage of our present study, we translate the above mentioned $e^-$-capture cross sections to the stellar environment ones by inserting the temperature dependence through a Maxwell-Boltzmann distribution describing the stellar electron gas. As a concrete nuclear target we use the $^{66}Zn$ isotope, which belongs to the iron group nuclei and plays prominent role in stellar nucleosynthesis at core collapse supernovae environment.
Cross-section analysis for TRADE fuel
The TRIGA core includes bounded hydrogen in Zirconium hydride in its fuel meat allowing for fast reactivity transients. The inherent safety mechanism is based on the immediate increase of neutron up-scattering by the hydrogen as a result of a fuel temperature increase. The temperature dependent resonance absorption is the second safety feature. The special fuel type together with the introduction of an external source within it for the TRADE project necessitates an accurate evaluation of the bounded hydrogen cross section generation technique as well as of the resonance treatment. By comparing deterministic tools and Monte Carlo solution methods the generated bounded isotopes cross sections are analysed. Further, the importance of the Doppler and the thermal up-scattering effects are quantified and the sensitivities to the solution method are discussed. (authors)
Measurements of neutron spallation cross section. 2
Kim, E.; Nakamura, T. [Tohoku Univ., Sendai (Japan). Cyclotron and Radioisotope Center; Imamura, M.; Nakao, N.; Shibata, S.; Uwamino, Y.; Nakanishi, N.; Tanaka, Su.
1997-03-01
Neutron spallation cross section of {sup 59}Co(n,xn){sup 60-x}Co, {sup nat}Cu(n,sp){sup 56}Mn, {sup nat}Cu(n,sp){sup 58}Co, {sup nat}Cu(n,xn){sup 60}Cu, {sup nat}Cu(n,xn){sup 61}Cu and {sup nat}Cu(n,sp){sup 65}Ni was measured in the quasi-monoenergetic p-Li neutron fields in the energy range above 40 MeV which have been established at three AVF cyclotron facilities of (1) INS of Univ. of Tokyo, (2) TIARA of JAERI and (3) RIKEN. Our experimental data were compared with the ENDF/B-VI high energy file data by Fukahori and the calculated cross section data by Odano. (author)
Reinforced concrete columns of variable cross section
Brant, N.F.A.
1984-01-01
The results of a series of 19 full scale tests carried out on pin-ended reinforced concrete columns are reported. The columns tested had either tapered rectangular sections along the length or octagonal cross sections. All columns, except the last 6, were subjected to uniaxial eccentricities at one of the ends (the stronger end), and a nominally concentric load at the other end. For the case of the last six columns the loading applied at the stronger end was biaxially eccentric. For each of t...
Neutron capture cross section measurement techniques
A review of currently-used techniques to measure neutron capture cross sections is presented. Measurements involving use of total absorption and Moxon-Rae detectors are based on low-resolution detection of the prompt γ-ray cascades following neutron captures. In certain energy ranges activation methods are convenient and useful. High resolution γ-ray measurements with germanium detectors can give information on the parameters of resonance capture states. The use of these techniques is described. (U.S.)
Fusion cross sections at deep subbarrier energies
Hagino, K.; Rowley, N.; Dasgupta, M
2003-01-01
A recent publication reports that heavy-ion fusion cross sections at extreme subbarrier energies show a continuous change of their logarithmic slope with decreasing energy, resulting in a much steeper excitation function compared with theoretical predictions. We show that the energy dependence of this slope is partly due to the asymmetric shape of the Coulomb barrier, that is its deviation from a harmonic shape. We also point out that the large low-energy slope is consistent with the surprisi...
How to calculate colourful cross sections efficiently
Gleisberg, Tanju; Krauss, Frank
2008-01-01
Different methods for the calculation of cross sections with many QCD particles are compared. To this end, CSW vertex rules, Berends-Giele recursion and Feynman-diagram based techniques are implemented as well as various methods for the treatment of colours and phase space integration. We find that typically there is only a small window of jet multiplicities, where the CSW technique has efficiencies comparable or better than both of the other two methods.
Jet cross sections in leptoproduction from QCD
We have calculated the longitudinal and other polarization dependent cross sections for jet production in deep inelastic ep, νp and anti νp scattering up to order αsub(s) of the quark-gluon coupling constant. Fragmentation of final state partons into hadrons is taken into account. Distributions in thrust, p2sub(Tin) and p2sub(Tout) are predicted for all three reactions and various values of W and Q. (orig.)
Measurements of Fission Cross Sections of Actinides
Wiescher, M; Cox, J; Dahlfors, M
2002-01-01
A measurement of the neutron induced fission cross sections of $^{237}$Np, $^{241},{243}$Am and of $^{245}$Cm is proposed for the n_TOF neutron beam. Two sets of fission detectors will be used: one based on PPAC counters and another based on a fast ionization chamber (FIC). A total of 5x10$^{18}$ protons are requested for the entire fission measurement campaign.
Neutron cross section standards and instrumentation
1992-09-01
This report from the National Institute of Standards and Technology contains a summary of the accomplishments of the Neutron Cross Section Standards and Instrumentation Project during the second year of a three-year interagency agreement. This program includes a broad range of data measurements and evaluations. An emphasis has been focused on the (sup 10)B cross sections where serious discrepancies in the nuclear data base remain. In particular, there are important problems with the interpretation of the helium gas production associated with diagnostic measurements of interest in nuclear technology. The enhanced use of this isotope for medical treatment is also of significance. New measurements of neutron reaction cross sections for (sup 10)B are in progress in collaboration with scientists at the Oak Ridge National Laboratory. New experiments are in progress on the important dosimetry standards (sup 237)Np(n,f) and (sup 239)Pu(n,f) below 1 MeV neutron energy. In addition, new measurements of charged-particle production in basic biological elements for medical applications are underway. Further measurements are planned or in progress in collaborations which include fission fragment energy and angular distributions, and neutron energy spectra and angular distributions from neutron-induced fission. Also measurements of angular distributions of neutrons from scattering on protons, and determinations of capture cross section of gold are planned for a later time. Data evaluation will shift to include a unified international effort to motivate new measurements and evaluations. In response to the requests of the measurement community, NIST is beginning the formation of a national depository for fissionable isotope mass standards. This action will preserve for future measurements the valuable and irreplaceable critical samples whose masses and composition have been carefully determined and documented over the past 30 years of the nuclear program.
Electron collision cross sections and radiation chemistry
A survey is given of the cross section data needs in radiation chemistry, and of the recent progress in electron impact studies on dissociative excitation of molecules. In the former some of the important target species, processes, and collision energies are presented, while in the latter it is demonstrated that radiation chemistry is a source of new ideas and information in atomic collision research. 37 references, 4 figures
Atomic-process cross section data, 1
Compiled by the Data Study Group, the data are intended for fusion plasma physics research. Cross sections of the latest experimental and theoretic studies cover the processes involving H,D,T as principal plasma materials as well as photons and electrons: emission and absorption of electromagnetic wave, electron collision, ion collision, recombination, neutral atom mutual collision, etc. Edition is so made to enable the future renewal by users. (J.P.N.)
Cross section of the CMS solenoid
Tejinder S. Virdee, CERN
2005-01-01
The pictures show a cross section of the CMS solenoid. One can see four layers of the superconducting coil, each of which contains the superconductor (central part, copper coloured - niobium-titanium strands in a copper coating, made into a "Rutherford cable"), surrounded by an ultra-pure aluminium as a magnetic stabilizer, then an aluminium alloy as a mechanical stabilizer. Besides the four layers there is an aluminium mechanical piece that includes pipes that transport the liquid helium.
Neutron cross section standards and instrumentation
This report from the National Institute of Standards and Technology contains a summary of the accomplishments of the Neutron Cross Section Standards and Instrumentation Project during the second year of a three-year interagency agreement. This program includes a broad range of data measurements and evaluations. An emphasis has been focused on the 10B cross sections where serious discrepancies in the nuclear data base remain. In particular, there are important problems with the interpretation of the helium gas production associated with diagnostic measurements of interest in nuclear technology. The enhanced use of this isotope for medical treatment is also of significance. New measurements of neutron reaction cross sections for 10B are in progress in collaboration with scientists at the Oak Ridge National Laboratory. New experiments are in progress on the important dosimetry standards 237Np(n,f) and 239Pu(n,f) below 1 MeV neutron energy. In addition, new measurements of charged-particle production in basic biological elements for medical applications are underway. Further measurements are planned or in progress in collaborations which include fission fragment energy and angular distributions, and neutron energy spectra and angular distributions from neutron-induced fission. Also measurements of angular distributions of neutrons from scattering on protons, and determinations of capture cross section of gold are planned for a later time. Data evaluation will shift to include a unified international effort to motivate new measurements and evaluations. In response to the requests of the measurement community, NIST is beginning the formation of a national depository for fissionable isotope mass standards. This action will preserve for future measurements the valuable and irreplaceable critical samples whose masses and composition have been carefully determined and documented over the past 30 years of the nuclear program
The Pa-233 fission cross section
The energy dependent neutron-induced fission cross section of 233Pa has for the first time been measured directly with mono-energetic neutrons. This isotope is produced in the thorium fuel cycle and serves as an intermediate step between the 232Th source material and the 233U fuel material. Four neutron energies between 1.0 and 3.0 MeV have been measured in a first campaign. Some preliminary results are presented and compared to literature. (author)
Fusion cross sections measurements with MUSIC
Carnelli, P. F. F.; Fernández Niello, J. O.; Almaraz-Calderon, S.; Rehm, K. E.; Albers, M.; Digiovine, B.; Esbensen, H.; Henderson, D.; Jiang, C. L.; Nusair, O.; Palchan-Hazan, T.; Pardo, R. C.; Ugalde, C.; Paul, M.; Alcorta, M.; Bertone, P. F.; Lai, J.; Marley, S. T.
2014-09-01
The interaction between exotic nuclei plays an important role for understanding the reaction mechanism of the fusion processes as well as for the energy production in stars. With the advent of radioactive beams new frontiers for fusion reaction studies have become accessible. We have performed the first measurements of the total fusion cross sections in the systems 10 , 14 , 15C + 12C using a newly developed active target-detector system (MUSIC). Comparison of the obtained cross sections with theoretical predictions show a good agreement in the energy region accessible with existing radioactive beams. This type of comparison allows us to calibrate the calculations for cases that cannot be studied in the laboratory with the current experimental capabilities. The high efficiency of this active detector system will allow future measurements with even more neutron-rich isotopes. The interaction between exotic nuclei plays an important role for understanding the reaction mechanism of the fusion processes as well as for the energy production in stars. With the advent of radioactive beams new frontiers for fusion reaction studies have become accessible. We have performed the first measurements of the total fusion cross sections in the systems 10 , 14 , 15C + 12C using a newly developed active target-detector system (MUSIC). Comparison of the obtained cross sections with theoretical predictions show a good agreement in the energy region accessible with existing radioactive beams. This type of comparison allows us to calibrate the calculations for cases that cannot be studied in the laboratory with the current experimental capabilities. The high efficiency of this active detector system will allow future measurements with even more neutron-rich isotopes. This work is supported by the U.S. DOE Office of Nuclear Physics under Contract No. DE-AC02-06CH11357 and the Universidad Nacional de San Martin, Argentina, Grant SJ10/39.
Inclusive jet cross section at D0
Bhattacharjee, M. [Delhi Univ. (India). Dept. of Physics and Astrophysics
1996-09-01
Preliminary measurement of the central ({vert_bar}{eta}{vert_bar} {<=} 0.5) inclusive jet cross sections for jet cone sizes of 1.0, 0.7, and 0.5 at D{null} based on the 1992-1993 (13.7 {ital pb}{sup -1}) and 1994-1995 (90 {ital pb}{sup -1}) data samples are presented. Comparisons to Next-to-Leading Order (NLO) Quantum Chromodynamics (QCD) calculations are made.
Total neutron cross section for 181Ta
Schilling K.-D.
2010-10-01
Full Text Available The neutron time of flight facility nELBE, produces fast neutrons in the energy range from 0.1 MeV to 10 MeV by impinging a pulsed relativistic electron beam on a liquid lead circuit [1]. The short beam pulses (∼10 ps and a small radiator volume give an energy resolution better than 1% at 1 MeV using a short flight path of about 6 m, for neutron TOF measurements. The present neutron source provides 2 ⋅ 104 n/cm2s at the target position using an electron charge of 77 pC and 100 kHz pulse repetition rate. This neutron intensity enables to measure neutron total cross section with a 2%–5% statistical uncertainty within a few days. In February 2008, neutron radiator, plastic detector [2] and data acquisition system were tested by measurements of the neutron total cross section for 181Ta and 27Al. Measurement of 181Ta was chosen because lack of high quality data in an anergy region below 700 keV. The total neutron cross – section for 27Al was measured as a control target, since there exists data for 27Al with high resolution and low statistical error [3].
Cross-section reconstruction during uniaxial loading
The inelastic response of materials to applied uniaxial loading is typically measured using tensile or compressive specimens of an initially circular cross-section. Under deformation, this cross-section may become elliptical due to anisotropic material behaviour. An optical technique for measuring the elliptical deformation of anisotropic, homogeneous cylindrical specimens undergoing uniaxial deformation is presented. It enables the quantification of anisotropic deformation in situ and provides data for material characterization. Three or more silhouette views of a specimen are obtained using multiple cameras or mirrored views. The positions of the edges are computed using a sub-pixel edge detection method, and 3D tangent rays from the camera through these positions are calculated. These bounding tangents are used as the basis for an elliptical fit by least squares at cross-sections along the length of the specimen. Stochastic error estimates are performed by simulation of the experiment. Error estimates, for the experimental set-up used, are also calculated by reconstructing elliptical prisms of precisely measured dimensions. Example reconstructions from specimens of rolled titanium deformed plastically in tension at quasi-static (7 × 10−4 s−1) and high strain rates (3 × 103 s−1) are presented
Black Hole Window into p-Wave Dark Matter Annihilation.
Shelton, Jessie; Shapiro, Stuart L; Fields, Brian D
2015-12-01
We present a new method to measure or constrain p-wave-suppressed cross sections for dark matter (DM) annihilations inside the steep density spikes induced by supermassive black holes. We demonstrate that the high DM densities, together with the increased velocity dispersion, within such spikes combine to make thermal p-wave annihilation cross sections potentially visible in γ-ray observations of the Galactic center (GC). The resulting DM signal is a bright central point source with emission originating from DM annihilations in the absence of a detectable spatially extended signal from the halo. We define two simple reference theories of DM with a thermal p-wave annihilation cross section and establish new limits on the combined particle and astrophysical parameter space of these models, demonstrating that Fermi Large Area Telescope is currently sensitive to thermal p-wave DM over a wide range of possible scenarios for the DM distribution in the GC. PMID:26684108
Averaging cross section data so we can fit it
Brown, D. [Brookhaven National Lab. (BNL), Upton, NY (United States). NNDC
2014-10-23
The ^{56}Fe cross section we are interested in have a lot of fluctuations. We would like to fit the average of the cross section with cross sections calculated within EMPIRE. EMPIRE is a Hauser-Feshbach theory based nuclear reaction code, requires cross sections to be smoothed using a Lorentzian profile. The plan is to fit EMPIRE to these cross sections in the fast region (say above 500 keV).
Averaging cross section data so we can fit it
The 56Fe cross section we are interested in have a lot of fluctuations. We would like to fit the average of the cross section with cross sections calculated within EMPIRE. EMPIRE is a Hauser-Feshbach theory based nuclear reaction code, requires cross sections to be smoothed using a Lorentzian profile. The plan is to fit EMPIRE to these cross sections in the fast region (say above 500 keV).
The promise of e+e- annihilation as an ideal laboratory to test Quantum Chromodynamics, QCD, has been the dominating theme in elementary particle physics during the last several years. An attempt is made to partially survey the subject in deep perturbative region in e+e- annihilation where theoretical ambiguities are minimal. Topics discussed include a review of the renormalization group methods relevant for e+e- annihilation, total hadronic cross section, jets and large-psub(T) phenomena, non-perturbative quark and gluon fragmentation effects and analysis of the jet distributions measured at DORIS, SPEAR and PETRA. My hope is to review realistic tests of QCD in e+e- annihilation - as opposed to the ultimate tests, which abound in literature. (orig.)
Nuclear interaction cross sections for proton radiotherapy
Chadwick, M B; Arendse, G J; Cowley, A A; Richter, W A; Lawrie, J J; Newman, R T; Pilcher, J V; Smit, F D; Steyn, G F; Koen, J W; Stander, J A
1999-01-01
Model calculations of proton-induced nuclear reaction cross sections are described for biologically-important targets. Measurements made at the National Accelerator Centre are presented for double-differential proton, deuteron, triton, helium-3 and alpha particle spectra, for 150 and 200 MeV protons incident on C, N, and O. These data are needed for Monte Carlo simulations of radiation transport and absorbed dose in proton therapy. Data relevant to the use of positron emission tomography to locate the Bragg peak are also described.
Neutron capture cross section of $^{93}$Zr
We propose to measure the neutron capture cross section of the radioactive isotope $^{93}$Zr. This project aims at the substantial improvement of existing results for applications in nuclear astrophysics and emerging nuclear technologies. In particular, the superior quality of the data that can be obtained at n_TOF will allow on one side a better characterization of s-process nucleosynthesis and on the other side a more accurate material balance in systems for transmutation of nuclear waste, given that this radioactive isotope is widely present in fission products.
Charge changing cross sections of relativistic uranium
We report equilibrium charge state distributions of uranium at energies of 962 MeV/nucleon, 437 MeV/nucleon and 200 MeV/nucleon in low Z and high Z targets and the cross sections for U92+ reversible U91+ and U91+ reversible U90+ at 962 MeV/nucleon and 437 MeV/nucleon. Equilibrium thickness Cu targets produce approx. = 5% bare U92+ at 200 MeV/nucleon and 85% U92+ at 962 MeV/nucleon. 7 references, 5 figures
Fission cross section measurements for minor actinides
Fursov, B. [IPPE, Obninsk (Russian Federation)
1997-03-01
The main task of this work is the measurement of fast neutron induced fission cross section for minor actinides of {sup 238}Pu, {sup 242m}Am, {sup 243,244,245,246,247,248}Cm. The task of the work is to increase the accuracy of data in MeV energy region. Basic experimental method, fissile samples, fission detectors and electronics, track detectors, alpha counting, neutron generation, fission rate measurement, corrections to the data and error analysis are presented in this paper. (author)
LEP vacuum chamber, cross-section
1983-01-01
Cross-section of the final prototype for the LEP vacuum chamber. The elliptic main-opening is for the beam. The small channel to the left is for the cooling water, to carry away the heat deposited by the synchrotron radiation. The square channel to the right houses the Non-Evaporable Getter (NEG) pump. The chamber is made from extruded aluminium. Its outside is clad with lead, to stop the synchrotron radiation emitted by the beam. For good adherence between Pb and Al, the Al chamber was coated with a thin layer of Ni. Ni being slightly magnetic, some resulting problems had to be overcome. See also 8301153.
Critical behavior of cross sections at LHC
Dremin, I M
2016-01-01
Recent experimental data on elastic scattering of high energy protons show that the critical regime has been reached at LHC energies. The approach to criticality is demonstrated by increase of the ratio of elastic to total cross sections from ISR to LHC energies. At LHC it reaches the value which can result in principal change of the character of proton interactions. The treatment of new physics of hollowed toroid-like hadrons requires usage of another branch of the unitarity condition. Its further fate is speculated and interpreted with the help of the unitarity condition in combination with present experimental data. The gedanken experiments to distinguish between different possibilities are proposed.
Neutron absorption cross section of uranium-236
U-236 neutron absorption was measured as a function of neutron time-of-flight from 20 eV to 1 MeV. The neutron flux was monitored with a 6Li glass scintillator. Average cross sections from 3 keV to 1 MeV were derived. Estimated uncertainties were less than 5% below 600 keV and increased to 9.5% at 1 MeV. Resonance parametrization from 20 eV to a few keV remains to be done. 17 refs., 5 figs., 3 tabs
30 CFR 779.25 - Cross sections, maps, and plans.
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Cross sections, maps, and plans. 779.25 Section... RESOURCES § 779.25 Cross sections, maps, and plans. (a) The application shall include cross sections, maps..., maps and plans included in a permit application as required by this section shall be prepared by,...
Windowed multipole for cross section Doppler broadening
Josey, C.; Ducru, P.; Forget, B.; Smith, K.
2016-02-01
This paper presents an in-depth analysis on the accuracy and performance of the windowed multipole Doppler broadening method. The basic theory behind cross section data is described, along with the basic multipole formalism followed by the approximations leading to windowed multipole method and the algorithm used to efficiently evaluate Doppler broadened cross sections. The method is tested by simulating the BEAVRS benchmark with a windowed multipole library composed of 70 nuclides. Accuracy of the method is demonstrated on a single assembly case where total neutron production rates and 238U capture rates compare within 0.1% to ACE format files at the same temperature. With regards to performance, clock cycle counts and cache misses were measured for single temperature ACE table lookup and for windowed multipole. The windowed multipole method was found to require 39.6% more clock cycles to evaluate, translating to a 7.9% performance loss overall. However, the algorithm has significantly better last-level cache performance, with 3 fewer misses per evaluation, or a 65% reduction in last-level misses. This is due to the small memory footprint of the windowed multipole method and better memory access pattern of the algorithm.
The Elusive p-air Cross Section
Block, Martin M
2006-01-01
For the $\\pbar p$ and $pp$ systems, we have used all of the extensive data of the Particle Data Group[K. Hagiwara {\\em et al.} (Particle Data Group), Phys. Rev. D 66, 010001 (2002).]. We then subject these data to a screening process, the ``Sieve'' algorithm[M. M. Block, physics/0506010.], in order to eliminate ``outliers'' that can skew a $\\chi^2$ fit. With the ``Sieve'' algorithm, a robust fit using a Lorentzian distribution is first made to all of the data to sieve out abnormally high $\\delchi$, the individual i$^{\\rm th}$ point's contribution to the total $\\chi^2$. The $\\chi^2$ fits are then made to the sieved data. We demonstrate that we cleanly discriminate between asymptotic $\\ln s$ and $\\ln^2s$ behavior of total hadronic cross sections when we require that these amplitudes {\\em also} describe, on average, low energy data dominated by resonances. We simultaneously fit real analytic amplitudes to the ``sieved'' high energy measurements of $\\bar p p$ and $pp$ total cross sections and $\\rho$-values for $\\...
Cross-section measurements for radioactive samples
The measurement of (n,p), (n,α) and (n,γ) cross sections for radioactive nuclei is of interest to both nuclear physics and astrophysics. For example, using these reactions, properties of levels in nuclei at high excitation energies, which are difficult or impossible to study using other reactions, can be investigated. Also, reaction rates for both big-bang and stellar nucleosynthesis can be obtained from these measurements. In the past, the large background associated with the sample activity limited these types of measurements to radioisotopes with very long half-lives. The advent of the low-energy, high-intensity neutron source at the Los Alamos Neutron Scattering CEnter (LANSCE) has greatly increased the number of nuclei which can be studied. Examples of (n,p) measurements on samples with half lives as short as fifty-three days will be given. The nuclear physics and astrophysics to be learned from these data will be discussed. Additional difficulties are encountered when making (n,γ) rather than (n,p) or (n,α) measurements. However, with a properly-designed detector, and the high peak neutron intensities now available, (n,γ) measurements can be made for nuclei with half lives as short as several months. Progress on the Los Alamos (n,γ) cross-section measurement program for radioactive samples will be discussed. 39 refs., 7 figs
Calculation of cross sections for heavy isotopes
In the present work an integrated system of codes for basic neutron data evaluation were assembled and built. Complete evaluations for the isotopes 240Pu, 241Pu, 242Pu and 238Pu were performed. The following cross sections: total, elastic, radiative capture, fission, total inelastic, partial inelastic, (n,2n), (n,3n) and differential elastic were evaluated as well as the average number of neutrons per neutron-induced fission and the average elastic scattering cosine in the lab system.The data for the plutonium isotopes were incorporated into the German KEDAK file. A method was developed for calculating the energy distributions of the second and third secondary neutrons from the A(n,2n) and (n,3n) reactions in the framework of the compound nucleus theory, and utilizing the nuclear data of the nuclei A, A-1, A-2. This method was used to generate the 238U secondary neutron energy distributions in the incident neutron energy range of 6 to 15 MeV. A nuclear data evaluation for 237U in the resolved inelastic scattering range (10-700 keV) was performed. The compound elastic and partial inelastic scattering cross sections were used in the 238U secondary neutron energy distribution calculations. (B.G.)
Vector leptoquark pair production in e+e- annihilation
The cross section for vector leptoquark pair production in e+e-annihilation is calculated for the case of finite anomalous gauge boson couplings κγ,Z and λγ,Z. The minimal cross section is found to behave ∝ β7, leading to weaker mass bounds in the threshold range than in models studied previously. (orig.)
Nuclear excitation in positron-K-electron annihilation
Kaliman, Z.; Pisk, K.; Logan, B.A.
1987-05-01
We have calculated the cross section for nuclear excitation during positron-K-electron annihilation. The calculations allow for the effect of the nuclear Coulomb field and for relativistic effects. The results are compared to earlier predictions which were derived using the Born approximation, and to renormalized Born approximation predictions. Our calculated cross sections are well below the available experimental values.
p-barp annihilation in the dual parton model and perturbative QCD
In the framework of perturbative QCD the contribution to the annihilation cross section resulting from exchange of two gluons in the colour decuplet state is calculated. The result depends essentially on the diquark radius, and is equal to 1-2 mb. This contribution slightly varies with energy and dominates the annihilation cross section in the asymptotics. The preasymptotical mechanism of annihilation is also considered which causes fast decrease in the cross section with energy (∼ 1/√E) at the intermediate energies E < 12 GeV
30 CFR 783.25 - Cross sections, maps, and plans.
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Cross sections, maps, and plans. 783.25 Section... ENVIRONMENTAL RESOURCES § 783.25 Cross sections, maps, and plans. (a) The application shall include cross sections, maps, and plans showing— (1) Elevations and locations of test borings and core samplings;...
Elastic cross sections in an RSIIp scenario
The elastic differential cross section is calculated at low energies (below 100 MeV) for the elements 3He, 20Ne, 40Ar, 14N, 12C, and for the 208Pb using a finite electromagnetic potential, which is obtained by considering a Randall–Sundrum II scenario modified by the inclusion of p compact extra-dimensions. The length scale is adjusted in the potential to compare with known experimental data and to set bounds for the parameter of the model. The effective four-dimensional (4D) electromagnetic potential is produced by a point charge, as seen from the three-brane that contains it, in uniform motion in an RSIIp scenario. (paper)
Lunar Radar Cross Section at Low Frequency
Rodriguez, P.; Kennedy, E. J.; Kossey, P.; McCarrick, M.; Kaiser, M. L.; Bougeret, J.-L.; Tokarev, Y. V.
2002-01-01
Recent bistatic measurements of the lunar radar cross-section have extended the spectrum to long radio wavelength. We have utilized the HF Active Auroral Research Program (HAARP) radar facility near Gakona, Alaska to transmit high power pulses at 8.075 MHz to the Moon; the echo pulses were received onboard the NASA/WIND spacecraft by the WAVES HF receiver. This lunar radar experiment follows our previous use of earth-based HF radar with satellites to conduct space experiments. The spacecraft was approaching the Moon for a scheduled orbit perturbation when our experiment of 13 September 2001 was conducted. During the two-hour experiment, the radial distance of the satellite from the Moon varied from 28 to 24 Rm, where Rm is in lunar radii.
Plasma-based radar cross section reduction
Singh, Hema; Jha, Rakesh Mohan
2016-01-01
This book presents a comprehensive review of plasma-based stealth, covering the basics, methods, parametric analysis, and challenges towards the realization of the idea. The concealment of aircraft from radar sources, or stealth, is achieved through shaping, radar absorbing coatings, engineered materials, or plasma, etc. Plasma-based stealth is a radar cross section (RCS) reduction technique associated with the reflection and absorption of incident electromagnetic (EM) waves by the plasma layer surrounding the structure. A plasma cloud covering the aircraft may give rise to other signatures such as thermal, acoustic, infrared, or visual. Thus it is a matter of concern that the RCS reduction by plasma enhances its detectability due to other signatures. This needs a careful approach towards the plasma generation and its EM wave interaction. The book starts with the basics of EM wave interactions with plasma, briefly discuss the methods used to analyze the propagation characteristics of plasma, and its generatio...
Calculated medium energy fission cross sections
An analysis has been made of medium-energy nucleon induced fission of 238U and 237Np using detailed models of fission, based upon the Bohr-Wheeler formalism. Two principal motivations were associated with these calculations. The first was determination of barrier parameters for proton-rich uranium and neptunium isotopes normally not accessible in lower energy reactions. The second was examination of the consistency between (p,f) experimental data versus new (n,f) data that has recently become available. Additionally, preliminary investigations were also made concerning the effect of fission dynamics on calculated fission cross sections at higher energies where neutron emission times may be significantly less than those associated with fission
Partial cross sections in H- photodetachment
This dissertation reports experimental measurements of partial decay cross sections in the H- photodetachment spectrum. Observed decays of the 1P0 H-**(n) doubly-excitedresonances to the H(N=2) continuum are reported for n=2,3, and 4 from 1990 runs in which the author participated. A recent analysis of 1989 data revealing effects of static electric fields on the partial decay spectrum above 13.5 eV is also presented. The experiments were performed at the High Resolution Atomic Beam Facility. the Los Alamos Meson Physics Facility, with a relativistic H-beam (β=0.842)intersecting a ND:YAG laser. Variation of the intersection angle amounts to Doppler-shifting the photon energy, allowing continuous tuning of the laser energy as viewed from the moving ions' frame
Radar Cross Section of Moving Objects
Gholizade, H
2013-01-01
I investigate the effects of movement on radar cross section calculations. The results show that relativistic effects (the constant velocity case) can change the RCS of moving targets by changing the incident plane wave field vectors. As in the Doppler effect, the changes in the fields are proportional to $\\frac{v}{c}$. For accelerated objects, using the Newtonian equations of motion yields an effective electric field (or effective current density) on the object due to the finite mass of the conducting electrons. The results indicate that the magnetic moment of an accelerated object is different from that of an un-accelerated object, and this difference can change the RCS of the object. Results for moving sphere and non-uniformly rotating sphere are given and compared with static (\\textbf{v}=0) case.
Measurement of Antiproton-proton Cross-Sections at Low Antiproton Momenta
2002-01-01
The experiment is designed to measure four different cross sections in the momentum range 150~MeV/c to 600~MeV/c: 1)~~~~the differential elastic \\\\ \\\\ 2)~~~~the differential charge exchange\\\\ \\\\ 3)~~~~the annihilation into charged and neutral pions\\\\ \\\\ 4)~~~~and the total cross section via the optical theorem. \\\\ \\\\ The experiment allows one to search once again and with good precision for baryonium. Of special interest is the existence of the S-meson, for which a signal of about 20~MeV-mb was found in a 1981 experiment (performed in the East Hall).\\\\ \\\\ A second point of special interest is the momentum region below 300~MeV/c because the cross sections are basically unknown. We will be able to explore the momentum dependence of this region for the first time.\\\\ \\\\ The elastic cross section is measured by a cylindrical multiwire proportional chamber and a scintillator hodoscope placed around a scattering chamber under vacuum. The charge exchange cross section is measured by a ring of 32~anti-neutron detector...
Taasti, Vicki Trier; Knudsen, Helge; Holzscheiter, Michael;
2015-01-01
experimental depth dose curve obtained by the AD-4/ACE collaboration was compared with an earlier version of SHIELD-HIT, but since then inelastic annihilation cross sections for antiprotons have been updated and a more detailed geometric model of the AD-4/ACE experiment was applied. Furthermore, the Fermi...... cross sections, which restores the agreement, but some small deviations still remain. Best agreement is achieved by using the most recent antiproton collision cross sections and the Fermi–Teller Z-law, even if experimental data conclude that the Z-law is inadequately describing annihilation on compounds....... We conclude that more experimental cross section data are needed in the lower energy range in order to resolve this contradiction, ideally combined with more rigorous models for annihilation on compounds....
Sommerfeld enhancement of invisible dark matter annihilation in galaxies and galaxy clusters
Chan, Man Ho
2016-01-01
Recent observations indicate that core-like dark matter structures exist in many galaxies, while numerical simulations reveal a singular dark matter density profile at the center. In this article, I show that if the annihilation of dark matter particles gives invisible sterile neutrinos, the Sommerfeld enhancement of the annihilation cross-section can give a sufficiently large annihilation rate to solve the core-cusp problem. The resultant core density, core radius, and their scaling relation...
Positron and gamma-ray signatures of dark matter annihilation and big-bang nucleosynthesis
The positron excess observed by the PAMELA experiment may come from dark matter annihilation, if the annihilation cross section is large enough. We show that the dark matter annihilation scenarios to explain the positron excess may also be compatible with the discrepancy of the cosmic lithium abundances between theory and observations. The winolike neutralino in the supersymmetric standard model is a good example for it. This scenario may be confirmed by Fermi satellite experiments.
Single-level resonance parameters fit nuclear cross-sections
Drawbaugh, D. W.; Gibson, G.; Miller, M.; Page, S. L.
1970-01-01
Least squares analyses of experimental differential cross-section data for the U-235 nucleus have yielded single level Breit-Wigner resonance parameters that fit, simultaneously, three nuclear cross sections of capture, fission, and total.
Residual diagnostics for cross-section time series regression models
Baum, Christopher F
2001-01-01
These routines support the diagnosis of groupwise heteroskedasticity and cross-sectional correlation in the context of a regression model fit to pooled cross-section time series (xt) data. Copyright 2001 by Stata Corporation.
Photoneutron cross sections measured by Saclay and Livermore
The differences between the Saclay and Livermore photoneutron cross sections are discussed. It is shown that the differences between Saclay and Livermore (γ,n) and (γ,2n) cross sections arise from the neutron multiplicity sorting. (Author)
Electron Elastic-Scattering Cross-Section Database
SRD 64 NIST Electron Elastic-Scattering Cross-Section Database (PC database, no charge) This database provides values of differential elastic-scattering cross sections, corresponding total elastic-scattering cross sections, phase shifts, and transport cross sections for elements with atomic numbers from 1 to 96 and for electron energies between 50 eV and 20,000 eV (in steps of 1 eV).
Total cross sections for neutron-nucleus scattering
Suryanarayana, S. V.; H. Naik; Ganesan, S; Kailas, S; Choudhury, R. K.; Kim, Guinyum
2010-01-01
Systematics of neutron scattering cross sections on various materials for neutron energies up to several hundred MeV are important for ADSS applications. Ramsauer model is well known and widely applied to understand systematics of neutron nucleus total cross sections. In this work, we examined the role of nuclear effective radius parameter (r$_0$) on Ramsauer model fits of neutron total cross sections. We performed Ramsauer model global analysis of the experimental neutron total cross section...
Finite sum expressions for elastic and reaction cross sections
Nuclear cross section calculations are often performed by using the partial wave method or the Eikonal method through Glauber theory. The expressions for the total cross section, total elastic cross section, and total reaction cross section in the partial wave method involve infinite sums and do not utilize simplifying approximations. Conversely, the Eikonal method gives these expressions in terms of integrals but utilizes the high energy and small angle approximations. In this paper, by using the fact that the lth partial wave component of the T-matrix can be very accurately approximated by its Born term, the infinite sums in each of the expressions for the differential cross section, total elastic cross section, total cross section, and total reaction cross section are re-written in terms of finite sums plus closed form expressions. The differential cross sections are compared to the Eikonal results for 16O+16O,12C+12C, and p+12C elastic scattering. Total cross sections, total reaction cross sections, and total elastic cross sections are compared to the Eikonal results for 12C+12C scattering
Cross sections for electron impact excitation of molecules
The discussion in this chapter is restricted to elastic scattering, rotational, vibrational, and electronic excitation and total scattering cross sections in electron molecule collisions. Experimental data on differential, integral and momentum transfer cross sections are surveyed and short remarks are made on experimental techniques and theoretical approaches used for generating cross section data. 11 references, 3 figures
Radar Cross-section Measurement Techniques
V.G. Borkar
2010-03-01
Full Text Available Radar cross-section (RCS is an important study parameter for defence applications specially dealing with airborne weapon system. The RCS parameter guides the detection range for a target and is therefore studied to understand the effectiveness of a weapon system. It is not only important to understand the RCS characteristics of a target but also to look into the diagnostic mode of study where factors contributing to a particular RCS values are studied. This further opens up subject like RCS suppression and stealth. The paper discusses the RCS principle, control, and need of measurements. Classification of RCS in terms of popular usage is explained with detailed theory of RF imaging and inverse synthetic aperture radar (ISAR. The various types of RCS measurement ranges are explained with brief discussion on outdoor RCS measurement range. The RCS calibration plays a critical role in referencing the measurement to absolute values and has been described.The RCS facility at Reseach Centre Imarat, Hyderabad, is explained with some details of different activities that are carried out including RAM evaluation, scale model testing, and diagnostic imaging.Defence Science Journal, 2010, 60(2, pp.204-212, DOI:http://dx.doi.org/10.14429/dsj.60.341
Resonance capture cross section of 207Pb
Domingo-Pardo, C; Aerts, G; Alvarez-Pol, H; Alvarez-Velarde, F; Andrzejewski, J; Andriamonje, Samuel A; Assimakopoulos, P A; Audouin, L; Badurek, G; Baumann, P; Becvar, F; Berthoumieux, E; Bisterzo, S; Calviño, F; Cano-Ott, D; Capote, R; Carrapico, C; Chepel, V; Cennini, P; Chiaveri, Enrico; Colonna, N; Cortés, G; Couture, A; Cox, J; Dahlfors, M; David, S; Dillman, I; Dolfini, R; Dridi, W; Durán, I; Eleftheriadis, C; Embid-Segura, M; Ferrant, L; Ferrari, A; Ferreira-Marques, R; Fitzpatrick, L; Frais-Kölbl, H; Fujii, K; Furman, W; Gallino, R; Gonçalves, I; González-Romero, E M; Goverdovski, A; Gramegna, F; Griesmayer, E; Guerrero, C; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martínez, A; Igashira, M; Isaev, S; Jericha, E; Kadi, Y; Käppeler, F K; Karamanis, D; Karadimos, D; Kerveno, M; Ketlerov, V; Köhler, P; Konovalov, V; Kossionides, E; Krticka, M; Lamboudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marrone, S; Mastinu, P; Mengoni, A; Milazzo, P M; Moreau, C; Mosconi, M; Neves, F; Oberhummer, Heinz; Oshima, M; O'Brien, S; Pancin, J; Papachristodoulou, C; Papadopoulos, C; Paradela, C; Patronis, N; Pavlik, A; Pavlopoulos, P; Perrot, L; Plag, R; Plompen, A; Plukis, A; Poch, A; Pretel, C; Quesada, J; Rauscher, T; Reifarth, R; Rosetti, M; Rubbia, Carlo; Rudolf, G; Rullhusen, P; Salgado, J; Sarchiapone, L; Savvidis, I; Stéphan, C; Tagliente, G; Taín, J L; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A; Villamarín, D; Vincente6, M C; Vlachoudis, V; Vlastou, R; Voss, F; Walter, S; Wendler, H; Wiescher, M; Wisshak, K
2006-01-01
The radiative neutron capture cross section of 207Pb has been measured at the CERN neutron time of flight installation n_TOF using the pulse height weighting technique in the resolved energy region. The measurement has been performed with an optimized setup of two C6D6 scintillation detectors, which allowed us to reduce scattered neutron backgrounds down to a negligible level. Resonance parameters and radiative kernels have been determined for 16 resonances by means of an R-matrix analysis in the neutron energy range from 3 keV to 320 keV. Good agreement with previous measurements was found at low neutron energies, whereas substantial discrepancies appear beyond 45 keV. With the present results, we obtain an s-process contribution of 77(8)% to the solar abundance of 207Pb. This corresponds to an r-process component of 23(8)%, which is important for deriving the U/Th ages of metal poor halo stars.
Production cross sections from phenomenological constraints
Hadronic production cross sections ν sub(n) (s) satisfying exactly the high energy empirical laws known for the first, second and third multiplicity moments are determined. The result is obtained in the form of a second order linear differential equation for ν sub(n) (s) which allows one to calculate explicitly all successive moments. In particular, the fourth moment is in excellent agreement with the data. The asymptotic solution of the equation for ν sub(n) (s) is given analytically. KNO scaling turns out to be an asymptotic property of the solution. The full solution for ν sub(n) (s) is studied numerically and the KNO plot is compared with the data. No free parameters are left to be adjusted except for an overall normalization constant. As expected, KNO scaling sets in rather quickly with increasing n and the agreement with the data is progressively good. This agreement becomes excellent for the whole interval of n/ for which data exist (O) approximately equal to 2. It turns out that the asymptotic solution, given in analytic terms, is an excellent approximation to the data and can thus be used for practical purposes instead of the full solution for calculating ν sub(n) (s). (author)
Differential cross section and related integrals for the Moliere potential
The Moliere potential is widely used in radiation damage simulation studies. It is not much used in analytical transport theory calculations because of the awkward expression for the differential cross section corresponding to the potential. A two step process is followed to obtain a useful cross section: adopting the Lindhard, Nielsen and Scharff (LNS) approximations in order to generate a simpler form of the Moliere cross section and then creating a simple, easy-to-use, fit to that approximate form. Within the framework of the LNS treatment of atomic cross sections, our fit is accurate to 6%. Simple forms for the total cross section and several related quantities are presented. (author)
Effects of Bound States on Dark Matter Annihilation
An, Haipeng; Wise, Mark B.; Zhang, Yue
2016-01-01
We study the impact of bound state formation on dark matter annihilation rates in models where dark matter interacts via a light mediator, the dark photon. We derive the general cross section for radiative capture into all possible bound states, and point out its non-trivial dependence on the dark matter velocity and the dark photon mass. For indirect detection, our result shows that dark matter annihilation inside bound states can play an important role in enhancing signal rates over the rat...
Effects of Bound States on Dark Matter Annihilation
An, Haipeng; Wise, Mark B.; Zhang, Yue
2016-01-01
We study the impact of bound state formation on dark matter annihilation rates in models where dark matter interacts via a light mediator, the dark photon. We derive the general cross section for radiative capture into all possible bound states, and point out its non-trivial dependence on the dark matter velocity and the dark photon mass. For indirect detection, our result shows that dark matter annihilation inside bound states can play an important role in enhancing signal ...
Proton-antiproton reactions via double annihilation of quarks
Exclusive baryon production in low energy panti p reactions is analysed within an internal double annihilation model using SU(6) wave functions. The annihilation is parametrised by intermediate gluon or meson states. We are able to predict several total cross sections for the reactions panti p→Banti B' which are of relevance for future experiments at LEAR. By examining the already existing data we show that the exchanged particle must be of vector type. (orig.)
The Distribution and Annihilation of Dark Matter Around Black Holes
Schnittman, Jeremy D.
2015-01-01
We use a Monte Carlo code to calculate the geodesic orbits of test particles around Kerr black holes, generating a distribution function of both bound and unbound populations of dark matter particles. From this distribution function, we calculate annihilation rates and observable gamma-ray spectra for a few simple dark matter models. The features of these spectra are sensitive to the black hole spin, observer inclination, and detailed properties of the dark matter annihilation cross section a...
Dark Matter Annihilation and the PAMELA, FERMI and ATIC Anomalies
El-Zant, A. A.; Khalil, S.; Okada, H.
2009-01-01
If dark matter (DM) annihilation accounts for the tantalizing excess of cosmic ray electron/positrons, as reported by the PAMELA, ATIC, HESS and FERMI observatories, then the implied annihilation cross section must be relatively large. This results, in the context of standard cosmological models, in very small relic DM abundances that are incompatible with astrophysical observations. We explore possible resolutions to this apparent conflict in terms of non-standard cosmological scenarios; pla...
Graphs of all neutron cross sections and photon production cross sections on the Alternate Monte Carlo Cross Section (AMCCS) library have been plotted along with local neutron heating numbers. The values of ν-bar, the average number of neutrons per fission, are also plotted for appropriate isotopes
Proton-nucleus cross section at high energies
Wibig, Tadeusz; Sobczynska, Dorota
1998-01-01
Cross sections for proton inelastic collision with different nuclei are described within the Glauber and multiple scattering approximations. A significant difference between approximate `Glauber' formula and exact calculations with a geometrical scaling assumption for very high-energy cross section is shown. Experimental values of proton-proton cross sections obtained using extensive air shower data are based on the relationship of proton-proton and respective proton-air absorption cross sect...
Reference solution for cross section parametrization
Core calculations of nuclear reactors are usually performed by core physics codes (e.g. with NEM or FDM solvers) in diffusion or SP3 approximation of the transport equation. For each fuel type parameterized data libraries are prepared by means of a lattice code. The data libraries are burnup dependent, and the parameterization covers the hyperspace of admissible values of all operational parameters (fuel temperature, moderator density, boron concentration etc.) This approach has two weak spots. The first is, that it is difficult to make perfect parameterization of the data library because of relatively broad range of the parameter values and the fact that the parameters' effect on the macroscopic cross-sections are not mutually independent. The second is that even for perfect parameterizations with precise approximations of the data changes with respect to the feedback parameters the so-called history effects are neglected. It is generally difficult to assess the cumulative errors arising due to the approximative parameterization of the data libraries and due to the history effects. It is as well difficult to assess the efficiency of techniques developed in order to incorporate the history effect in the data library (such as time integration). In this paper we present a tool for reference core calculations in which the above stated approximations are eliminated. This paper presents the solution method, its implementation, as well as the results of a demonstration calculation showing the improvement of the calculation results over the traditional approach, assessing the magnitude of history and parameterization effects importance. The most important feature of the presented method is that it provides the perfect parameterization of macroscopic data, allowing the core physics code developers to understand sources of modeling uncertainties by completely removing the parameterization error (including, unlike other approaches, a complete representation of the
New Limits on Thermally annihilating Dark Matter from Neutrino Telescopes
Lopes, José
2016-01-01
We used a consistent and robust solar model to obtain upper limits placed by neutrino telescopes, such as Ice- Cube and Super-Kamiokande, on the Dark Matter-nucleon scattering cross-section, for a general model of Dark Matter with a velocity dependent (p-wave) thermally averaged cross-section. In this picture, the Boltzmann equation for the Dark Matter abundance is numerically solved satisfying the Dark Matter density measured from the Cosmic Microwave Background (CMB). We show that for lower cross-sections and higher masses, the Dark Matter annihilation rate drops sharply, resulting in upper bounds on the scattering cross-section one order of magnitude above those derived from a velocity independent (s-wave) annihilation cross-section. Our results show that upper limits on the scattering cross-section obtained from Dark Matter annihilating in the Sun are sensible to the uncertainty in current standard solar models, fluctuating a maximum of 20 % depending on the annihilation channel.
Color dipole cross section and inelastic structure function
Jeong, Yu Seon; Reno, Mary Hall
2014-01-01
Instead of starting from a theoretically motivated form of the color dipole cross section in the dipole picture of deep inelastic scattering, we start with a parametrization of the deep inelastic structure function for electromagnetic scattering with protons, and then extract the color dipole cross section. Using the Donnachie-Landshoff parametrization of $F_2(x,Q^2)$, we find the dipole cross section from an approximate form of the presumed dipole cross section convoluted with the perturbative photon wave function for virtual photon splitting into a color dipole with massless quarks. The color dipole cross section determined this way works quite well in the massive case, reproducing the original Donnachie-Landshoff structure function for $0.1$ GeV$^2\\leq Q^2\\leq 10$ GeV$^2$. We discuss the large and small form of the dipole cross section and compare with other parameterizations.
Polynomial parameterized representation of macroscopic cross section for PWR reactor
Fiel, Joao Claudio B., E-mail: fiel@ime.eb.br [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Departamento de Engenharia Nuclear
2015-07-01
The purpose of this work is to describe, by means of Tchebychev polynomial, a parameterized representation of the homogenized macroscopic cross section for PWR fuel element as a function of soluble boron concentration, moderator temperature, fuel temperature, moderator density and {sup 235} U {sub 92} enrichment. Analyzed cross sections are: fission, scattering, total, transport, absorption and capture. This parameterization enables a quick and easy determination of the problem-dependent cross-sections to be used in few groups calculations. The methodology presented here will enable to provide cross-sections values to perform PWR core calculations without the need to generate them based on computer code calculations using standard steps. The results obtained by parameterized cross-sections functions, when compared with the cross-section generated by SCALE code calculations, or when compared with K{sub inf}, generated by MCNPX code calculations, show a difference of less than 0.7 percent. (author)
Resonance Averaged Photoionization Cross Sections for Astrophysical Models
Bautista, M A; Pradhan, A K
1997-01-01
We present ground state photoionization cross sections of atoms and ions averaged over resonance structures for photoionization modeling of astrophysical sources. The detailed cross sections calculated in the close-coupling approximation using the R-matrix method, with resonances delineated at thousands of energies, are taken from the Opacity Project database TOPbase and the Iron Project, including new data for the low ionization stages of iron Fe I--V. The resonance-averaged cross sections are obtained by convolving the detailed cross sections with a Gaussian distribution over the autoionizing resonances. This procedure is expected to minimize errors in the derived ionization rates that could result from small uncertainties in computed positions of resonances, while preserving the overall resonant contribution to the cross sections in the important near threshold regions. The detailed photoionization cross sections at low photon energies are complemented by new relativistic distorted-wave calculations for Z1...
Projectile and Lab Frame Differential Cross Sections for Electromagnetic Dissociation
Norbury, John W.; Adamczyk, Anne; Dick, Frank
2008-01-01
Differential cross sections for electromagnetic dissociation in nuclear collisions are calculated for the first time. In order to be useful for three - dimensional transport codes, these cross sections have been calculated in both the projectile and lab frames. The formulas for these cross sections are such that they can be immediately used in space radiation transport codes. Only a limited amount of data exists, but the comparison between theory and experiment is good.
LINX-1: a code for linking polynomial cross section files
The capabilities of the LINX-1 code are described. It was developed for the purpose of linking seperate fuel assembly and reflector node polynomial cross section files, obtained by the POLX-1 code, together into a single reactor polynomial cross section library. The output of the polynomial cross section library can be in either binary or fixed (BCD) format. Input data requirements and the format of the output file generated by LINX-1 are also described. 2 refs
Theoretical estimates of cross sections for neutron-nucleus collisions
Mukhopadhyay, Tapan; Lahiri, Joydev; Basu, D. N.
2010-01-01
We construct an analytical model derived from nuclear reaction theory and having a simple functional form to demonstrate the quantitative agreement with the measured cross sections for neutron induced reactions. The neutron-nucleus total, reaction and scattering cross sections, for energies ranging from 5 to 700 MeV and for several nuclei spanning a wide mass range are estimated. Systematics of neutron scattering cross sections on various materials for neutron energies upto several hundred Me...
Simulation of cross sections for practical ALCHEMI
Full text: Precisely known atomic scattering factors are essential for accurate atom location by channeling enhanced microanalysis (ALCHEMI) based on inner-shell ionization. For ALCHEMI using energy dispersive x-ray analysis (EDX), first principles calculations of ionization cross sections, realistically modelling the 'delocalization' of the ionization interaction, give excellent agreement with experiment. Such calculations are complex and computationally intensive. Hence, simple analytic forms are often assumed to describe the ionization potential. Such an approach assumes that the precise shape of the ionization potential is not important but that at least the half width at half maximum (HWHM) should be accurately estimated, for example using estimates of the HWHM from root-mean-square impact parameters for ionization. However this is generally not a good approximation and we have provided more realistic estimates. These are based on accurate atomic scattering form factors for ionization that have been calculated from first principles using relativistic Hartree-Fock wave functions for bound states and Hartree-Slater wave functions for the continuum states. The effective ionization interaction may be approximated by an equivalent local potential. The scattering factors have been calculated for K-shell ionization for elements in the range Z= 6 (carbon) to Z = 50 (tin) and for Z-shell ionization in the range Z = 20 (calcium) to Z = 60 (neodymium). Accurate values of the scattering factors can be obtained by interpolation for incident electron energies between 50 and 400 keV. The utility of these form factors is illustrated, using some data obtained by Matsumura and coworkers during their project to investigate radiation-induced disordering in magnesium aluminate spinel. High angular resolution electron channeling x-ray spectroscopy was employed to investigate ion displacements in MgOnAl2O3 (n = 1.0 and 2.4) irradiated with 1 MeV Ne+ ions or 900 keV electrons at 873
Neutron-capture Cross Sections from Indirect Measurements
Escher, J E; Burke, J T; Dietrich, F S; Ressler, J J; Scielzo, N D; Thompson, I J
2011-10-18
Cross sections for compound-nuclear reactions play an important role in models of astrophysical environments and simulations of the nuclear fuel cycle. Providing reliable cross section data remains a formidable task, and direct measurements have to be complemented by theoretical predictions and indirect methods. The surrogate nuclear reactions method provides an indirect approach for determining cross sections for reactions on unstable isotopes, which are difficult or impossible to measure otherwise. Current implementations of the method provide useful cross sections for (n,f) reactions, but need to be improved upon for applications to capture reactions.
Fano interference and cross-section fluctuations in molecular photodissociation
We derive an expression for the total photodissociation cross section of a molecule incorporating both direct and indirect processes that proceed through excited resonances, and show that it exhibits generalized Beutler-Fano line shapes. Assuming that the closed system can be modeled by random-matrix theory, we derive the statistical properties of the photodissociation cross section and find that they are significantly affected by the direct processes. In the limit of isolated resonances, we find that direct processes suppress the correlation hole of the cross-section autocorrelation function and lead to a maximum in the cross-section distribution
Positive Scattering Cross Sections using Constrained Least Squares
A method which creates a positive Legendre expansion from truncated Legendre cross section libraries is presented. The cross section moments of order two and greater are modified by a constrained least squares algorithm, subject to the constraints that the zeroth and first moments remain constant, and that the standard discrete ordinate scattering matrix is positive. A method using the maximum entropy representation of the cross section which reduces the error of these modified moments is also presented. These methods are implemented in PARTISN, and numerical results from a transport calculation using highly anisotropic scattering cross sections with the exponential discontinuous spatial scheme is presented
Systematics of fission cross sections at the intermediate energy region
Fukahori, Tokio; Chiba, Satoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1997-03-01
The systematics was obtained with fitting experimental data for proton induced fission cross sections of Ag, {sup 181}Ta, {sup 197}Au, {sup 206,207,208}Pb, {sup 209}Bi, {sup 232}Th, {sup 233,235,238}U, {sup 237}Np and {sup 239}Pu above 20 MeV. The low energy cross section of actinoid nuclei is omitted from systematics study, since the cross section has a complicated shape and strongly depends on characteristic of nucleus. The fission cross sections calculated by the systematics are in good agreement with experimental data. (author)
Positive Scattering Cross Sections using Constrained Least Squares
Dahl, J.A.; Ganapol, B.D.; Morel, J.E.
1999-09-27
A method which creates a positive Legendre expansion from truncated Legendre cross section libraries is presented. The cross section moments of order two and greater are modified by a constrained least squares algorithm, subject to the constraints that the zeroth and first moments remain constant, and that the standard discrete ordinate scattering matrix is positive. A method using the maximum entropy representation of the cross section which reduces the error of these modified moments is also presented. These methods are implemented in PARTISN, and numerical results from a transport calculation using highly anisotropic scattering cross sections with the exponential discontinuous spatial scheme is presented.
On the inclusive annihilation of polarized e+e--pair with two observed hadrons
The general consideration of the inclusive annihilation of polarized e+e--pair with two observed hadrons in final state (e+e-→h1h2X) is carried out. The annihilation cross section is expressed in terms of five structure functions describing the transition γ*→h1h2X. The partial widths of the corresponding decay of a virtual photon for different polarizations of the photon are also introduced and the annihilation cross section is written through these widths. The density matrix of the virtual photon and its polarizational multipole moments are given as well
Revisiting Bremsstrahlung emission associated with Light Dark Matter annihilations
Boehm, C; Uwer, P.
2006-01-01
We compute the single bremsstrahlung emission associated with the pair annihilation of spin-0 particles into electrons and positrons, via the t-channel exchange of a heavy fermion. We compare our result with the work of Beacom et al. . Unlike what is stated in the literature, we show that the Bremsstrahlung cross section is not necessarily given by the tree-level annihilation cross section (for a generalized kinematics) times a factor related to the emission of a soft photon. Such a factoriza...
New data on cross sections for partial and total photoneutron reactions on the isotopes 91,94Zr
Varlamov, V. V.; Makarov, M. A.; Peskov, N. N.; Stepanov, M. E.
2015-07-01
Experimental data on 91,94Zr photodisintegration that were obtained in a beam of quasimonoenergetic annihilation photons by the method of neutron multiplicity sorting are analyzed. It is found that the cross sections for the ( γ, 1 n), ( γ, 2 n), and ( γ, 3 n) reactions on both isotopes do not meet the objective data-reliability criteria formulated earlier. Within the experimental-theoretical method for evaluating partial-reaction cross sections that satisfy these criteria, new data on the cross sections for the aforementioned partial reactions, as well as for the ( γ, sn) = ( γ, 1 n) + ( γ, 2 n) + ( γ, 3 n) +... total photoneutron reaction, are obtained for the isotopes 91,94Zr.
Cross sections for the reaction 197Au(γ, chin)(chi<=12) have been measured for bremsstrahlung end-point energies in the range 60-340 MeV. From these dominant cross sections, the total photon absorption cross section is determined using a cascade-evaporation calculation to account for the missing reaction channels. The enhancement factor for the classical E1 sum rule is found to be 0.93+-0.10. (orig.)
Cross Sections for Inner-Shell Ionization by Electron Impact
An analysis is presented of measured and calculated cross sections for inner-shell ionization by electron impact. We describe the essentials of classical and semiclassical models and of quantum approximations for computing ionization cross sections. The emphasis is on the recent formulation of the distorted-wave Born approximation by Bote and Salvat [Phys. Rev. A 77, 042701 (2008)] that has been used to generate an extensive database of cross sections for the ionization of the K shell and the L and M subshells of all elements from hydrogen to einsteinium (Z = 1 to Z = 99) by electrons and positrons with kinetic energies up to 1 GeV. We describe a systematic method for evaluating cross sections for emission of x rays and Auger electrons based on atomic transition probabilities from the Evaluated Atomic Data Library of Perkins et al. [Lawrence Livermore National Laboratory, UCRL-ID-50400, 1991]. We made an extensive comparison of measured K-shell, L-subshell, and M-subshell ionization cross sections and of Lα x-ray production cross sections with the corresponding calculated cross sections. We identified elements for which there were at least three (for K shells) or two (for L and M subshells) mutually consistent sets of cross-section measurements and for which the cross sections varied with energy as expected by theory. The overall average root-mean-square deviation between the measured and calculated cross sections was 10.9% and the overall average deviation was −2.5%. This degree of agreement between measured and calculated ionization and x-ray production cross sections was considered to be very satisfactory given the difficulties of these measurements
Ni elemental neutron induced reaction cross-section evaluation
A completely new evaluation of the nickel neutron induced reaction cross sections was undertaken as a part of the ENDF/B-V effort. (n,xy) reactions and capture reaction time from threshold to 20 MeV were considered for 5860616264Ni isotopes to construct the corresponding reaction cross section for natural nickel. Both experimental and theoretical calculated results were used in evaluating different partial cross sections. Precompound effects were included in calculating (n,xy) reaction cross sections. Experimentally measured total section data extending from 0.7 MeV to 20 MeV were used to generate smooth cross section. Below 0.7 to MeV elastic and capture cross sections are represented by resonance parameters. Inelastic angular distributions to the discrete isotopic levels and elemental elastic angular distributions are included in the evaluated data file. Gamma production cross sections and energy distribution due to capture and the (n,xy) reactions were evaluated from experimental data. Finally, error files are constructed for all partial cross sections
Neutralino-nucleon cross sections for detection of low-mass dark matter particles
The weakly interacting massive particle (WIMP) is one of the main candidates for the relic dark matter. In the effective low-energy minimal supersymmetric standard model (effMSSM), the neutralino-nucleon spin and scalar cross sections in the low-mass regime were calculated. The calculated cross sections are compared with almost all currently available experimental exclusion curves for spin-dependent WIMP-proton and WIMP-neutron cross sections. It is demonstrated that in general about two-orders-of-magnitude improvement of the current DM experimental sensitivities is needed to reach the effMSSM SUSY predictions. To avoid misleading discrepancies between data and SUSY calculations, it is preferable to use a mixed spin-scalar coupling approach. It is noticed that the DAMA evidence favours the light Higgs coupling approach. It is noticed that the DAMA evidence favours the light Higgs sector in the effMSSM, a high event rate in a 73Ge detector and relatively high upgoing muon fluxes from relic neutralino annihilations on the Earth and the Sun
Modeling and analysis of ground target radiation cross section
SHI Xiang; LOU GuoWei; LI XingGuo
2008-01-01
Based on the analysis of the passive millimeter wave (MMW) radiometer detection, the ground target radiation cross section is modeled as the new token for the target MMW radiant characteristics. Its ap-plication and actual testing are discussed and analyzed. The essence of passive MMW stealth is target radiation cross section reduction.
Analysis of cross sections using various nuclear potential
The relevant astrophysical reaction rates which are derived from the reaction cross sections are necessary input to the reaction network. In this work, we analyse several theoretical models of the nuclear potential which give better prediction of the cross sections for some selected reactions
Total Cross Sections at High Energies - An Update
Fazal-e-Aleem; Sohail Afzal Tahir; M. Alam Saeed; M. Qadeer Afzal
2002-01-01
Current and future measurements for the total cross sections at E-811, PP2PP, CSM, FELIX, and TOTEMhave been analyzed using various models. In the light of this study an attempt has been made to focus on the behaviorof total cross section at very high energies.
Surrogate reaction methods for neutron induced cross-sections
A brief discussion on surrogate reaction methods and some of the recent results on neutron induced fission cross-section measurements carried out by our group and the possibility of extending the measurements for determining (n,g), (n,2n) and (n,p) reaction cross-sections by surrogate reaction method are presented
Cross Sections for Electron Collisions with Carbon Monoxide
Cross section data are collected and reviewed for electron collisions with carbon monoxide. Collision processes included are total scattering, elastic scattering, momentum transfer, excitations of rotational, vibrational and electronic states, ionization, and dissociation. For each process, recommended values of the cross sections are presented, when possible. The literature has been surveyed through to the end of 2013
Applications of the BEam Cross section Analysis Software (BECAS)
Blasques, José Pedro Albergaria Amaral; Bitsche, Robert; Fedorov, Vladimir;
2013-01-01
A newly developed framework is presented for structural design and analysis of long slender beam-like structures, e.g., wind turbine blades. The framework is based on the BEam Cross section Analysis Software – BECAS – a finite element based cross section analysis tool. BECAS is used for the...
Learning of Cross-Sectional Anatomy Using Clay Models
Oh, Chang-Seok; Kim, Ji-Young; Choe, Yeon Hyeon
2009-01-01
We incorporated clay modeling into gross anatomy and neuro-anatomy courses to help students understand cross-sectional anatomy. By making clay models, cutting them and comparing cut surfaces to CT and MR images, students learned how cross-sectional two-dimensional images were created from three-dimensional structure of human organs. Most students…
On the scattering cross section of passive linear arrays
Solymar, L.
1973-01-01
A general formula is derived for the scattering cross section of a passiven-element linear array consisting of isotropic radiators. When all the reactances are tuned out and scattering in the mirror direction is investigated, it is found thatA_{sr}, the relative scattering cross section is equal to...
Simplified polynomial representation of cross sections for reactor calculation
It is shown a simplified representation of a cross section library generated by transport theory using the cell model of Wigner-Seitz for typical PWR fuel elements. The effect of burnup evolution through tables of reference cross sections and the effect of the variation of the reactor operation parameters considered by adjusted polynomials are presented. (M.C.K.)
Parametric equations for calculation of macroscopic cross sections
Botelho, Mario Hugo; Carvalho, Fernando, E-mail: mariobotelho@poli.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear
2015-07-01
Neutronic calculations of the core of a nuclear reactor is one thing necessary and important for the design and management of a nuclear reactor in order to prevent accidents and control the reactor efficiently as possible. To perform these calculations a library of nuclear data, including cross sections is required. Currently, to obtain a cross section computer codes are used, which require a large amount of processing time and computer memory. This paper proposes the calculation of macroscopic cross section through the development of parametric equations. The paper illustrates the proposal for the case of macroscopic cross sections of absorption (Σa), which was chosen due to its greater complexity among other cross sections. Parametric equations created enable, quick and dynamic way, the determination of absorption cross sections, enabling the use of them in calculations of reactors. The results show efficient when compared with the absorption cross sections obtained by the ALPHA 8.8.1 code. The differences between the cross sections are less than 2% for group 2 and less than 0.60% for group 1. (author)
Cross section probability tables in multi-group transport calculations
The use of cross section probability tables in multigroup transport calculations is presented. Emphasis is placed on how probability table parameters are generated in a multigroup cross section processor and how existing transport codes must be modifed to use them. In order to illustrate the accuracy obtained by using probability tables, results are presented for a variety of neutron and photon transport problems
Possibility of spin mechanism of total cross section growth
The possibility of existence of the spin mechanism of total cross section growth is considered. A nucleon-nucleon scattering is studied. The energy dependence of scattering amplitude and possible effects related with the spin mechanism of total cross section growth are studied. It is shown that the considered mechanism can play a great role at high energies
Temperature dependence of the HNO3 UV absorption cross sections
Burkholder, James B.; Talukdar, Ranajit K.; Ravishankara, A. R.; Solomon, Susan
1993-01-01
The temperature dependence of the HNO3 absorption cross sections between 240 and 360 K over the wavelength range 195 to 350 nm has been measured using a diode array spectrometer. Absorption cross sections were determined using both (1) absolute pressure measurements at 298 K and (2) a dual absorption cell arrangement in which the absorption spectrum at various temperatures is measured relative to the room temperature absorption spectrum. The HNO3 absorption spectrum showed a temperature dependence which is weak at short wavelengths but stronger at longer wavelengths which are important for photolysis in the lower stratosphere. The 298 K absorption cross sections were found to be larger than the values currently recommended for atmospheric modeling (DeMore et al., 1992). Our absorption cross section data are critically compared with the previous measurements of both room temperature and temperature-dependent absorption cross sections. Temperature-dependent absorption cross sections of HNO3 are recommended for use in atmospheric modeling. These temperature dependent HNO3 absorption cross sections were used in a two-dimensional dynamical-photochemical model to demonstrate the effects of the revised absorption cross sections on loss rate of HNO3 and the abundance of NO2 in the stratosphere.