WorldWideScience

Sample records for anisn format dot

  1. MARS-ORNL, Processing Program Collection for AMPX, CCCC, ANISN, DOT, MORSE Format Library. LINX, MINX Library Utility, Data Merge. BINX, MINX Utility and SPHINX Utility, BCD to BIN Library Conversion. CINX, MINX Utility and SPHINX Utility, Library Data Collapsing

    International Nuclear Information System (INIS)

    2001-01-01

    Description of problem or function: MARS-ORNL is a selection of computer codes for the generation of problem-dependent multigroup cross section libraries. They are selected modules from the AMPX-2 system for AMPX interface format libraries, LASL codes for CCCC interfaces, and processing codes for libraries to be used by ANISN, DOT, or MORSE codes. The codes in the collection are used in connection with the following DLC data libraries: ZZ-LIB-IV (DLC-0040), ZZ-VITAMIN-C (DLC-0041), VITAMIN-4C (DLC-0053), ZZ-CLEAR/42B (DLC-0042), ZZ-CSRL/43B (DLC-0043), and EPRMASTER (DLC-0052). The functions of these processing codes are briefly described: A. AMPX Modules: AIM: Converts AMPX Master Interface Files from EBCDIC to binary form and back. AJAX: Merges, collects, assembles, re-orders, joins, and copies selected nuclides from AMPX Master Interfaces. BONAMI: Accesses Bondarenko factors from an AMPX Master Library and performs resonance self-shielding calculations. CHOX: Produces a coupled interface library in AMPX format by combining neutron libraries (generated by module XLACS), gamma libraries (generated by module SMUG), and photon production libraries (generated by module LAPHNGAS). CHOXM: Combines self-shielding factors as generated by the code SPHINX (PSR-0129) and an infinite dilution neutron master interface (generated by XLACS) to generate a self-shielded neutron AMPX Interface File. The interface produced by CHOXM is an input to the NITAWL module of AMPX. CHOXM is a modified version of CHOX. COMAND: Collapses ANISN cross section libraries. DIAL: Produces edits from AMPX Master Interfaces. ICE-II: Accepts cross sections from an AMPX working library and produces mixed cross sections in four formats: (1) AMPX working library format; (2) ANISN format; (3) group-independent ANISN format; (4) Monte Carlo processed cross section library format. NITAWL: Produces self-shielded and working cross section libraries in the formats required by the ANISN, DOT, or MORSE codes

  2. Study and application of the ANISN and DOT 3.5 codes to problems in nuclear radiation shielding

    International Nuclear Information System (INIS)

    Otto, A.C.

    1983-01-01

    The application of the Sn transport codes ANISN and DOT 3.5 to problems in radiation shielding is reviewed. In addition, a large array of codes involved in radiation shielding calculations is described and applied in this work. The ANISN and DOT 3.5 codes solve the multigroup transport equation in plane, cylindrical and spherical geometries, the first in one dimension and the second in two dimensions, by using the Sn approximation and were designed to solve coupled neutron-photon transport problems commonly found in reactor shielding calculations. In this work the numerical methods used in these codes are reviewed and their basic application to deep-penetration and void problems is discussed. Benchmark problems are solved by employing the array of codes previously mentioned. In particular, the ability of the ISOFLUXO program coupled to the DOT 3.5 code of mapping contours of regions with approximately the same scalar fluxes is illustrated, showing that they can be efficiently used in shielding analysis. (Author) [pt

  3. DOQDP ADOQ, Discrete Ordinate Quadrature Generator for Programs DOT and ANISN

    International Nuclear Information System (INIS)

    1978-01-01

    1 - Description of problem or function: DOQDP is used to generate direction sets (quadratures used as input to ANISN, DOT, and other related codes). If a fully symmetric quadrature is desired, DOQDP can generate the direction cosines to be used. If other than a fully quadrature is to be generated, the user must supply the appropriate direction cosines. Once the direction cosines are specified, the code will generate the quadrature weights. 2 - Method of solution: To determine point weights, DOQDP solves a set of simultaneous linear equations by Gaussian elimination with error improvement iterations. 3 - Restrictions on the complexity of the problem: None noted

  4. APPLE, Plot of 1-D Multigroup Neutron Flux and Gamma Flux and Reaction Rates from ANISN

    International Nuclear Information System (INIS)

    Kawasaki, Hiromitsu; Seki, Yasushi

    1983-01-01

    A - Description of problem or function: The APPLE-2 code has the following functions: (1) It plots multi-group energy spectra of neutron and/or gamma ray fluxes calculated by ANISN, DOT-3.5, and MORSE. (2) It gives an overview plot of multi-group neutron fluxes calculated by ANISN and DOT-3.5. The scalar neutron flux phi(r,E) is plotted with the spatial parameter r linear along the Y-axis, logE along the X-axis and log phi(r,E) in the Z direction. (3) It calculates the spatial distribution and region volume integrated values of reaction rates using the scalar flux calculated with ANISN and DOT-3.5. (4) Reaction rate distribution along the R or Z direction may be plotted. (5) An overview plot of reaction rates or scalar fluxes summed over specified groups may be plotted. R(ri,zi) or phi(ri,zi) is plotted with spatial parameters r and z along the X- and Y-axes in an orthogonal coordinate system. (6) Angular flux calculated by ANISN is rearranged and a shell source at any specified spatial mesh point may be punched out in FIDO format. The shell source obtained may be employed in solving deep penetration problems with ANISN, when the entire reactor system is divided into two or more parts and the neutron fluxes in two adjoining parts are connected by using the shell source. B - Method of solution: (a) The input data specification is made as simple as possible by making use of the input data required in the radiation transport code. For example, geometry related data in ANISN and DOT are transmitted to APPLE-2 along with scalar flux data so as to reduce duplicity and errors in reproducing these data. (b) Most the input data follow the free form FIDO format developed at Oak Ridge National Laboratory and used in the ANISN code. Furthermore, the mixture specifying method used in ANISN is also employed by APPLE-2. (c) Libraries for some standard response functions required in fusion reactor design have been prepared and are made available to users of the 42-group neutron

  5. Study and application of ANISN and DOT-II nuclear cores in reactor physics problems

    International Nuclear Information System (INIS)

    Dias, Artur Flavio

    1980-01-01

    To solve time-independent neutrons and/or gamma rays transport problems in nuclear reactors, two codes available at IPEN were studied and applied to solve benchmark problems. The ANISN code solves the one-dimensional Boltzmann transport equation for neutrons or gamma rays, in plane, spherical, or cylindrical geometries. The DOT-II code solves the same equation in two-dimensional space for plane, cylindrical and circular geometries. General anisotropic scattering allowed in both codes. Moreover, pointwise convergence criteria, and alternate step function difference equations are also used in order to remove the oscillating flux distributions, sometimes found in discrete ordinates solutions. Basic theories and numerical techniques used in these codes are studied and summarized. Benchmark problems have been solved using these codes. Comparisons of the results show that both codes can be used with confidence in the analysis of nuclear problems. (author)

  6. ANISN-FONTENAY, 1-D Planar, Spherical, Cylindrical Neutron Transport and Gamma Transport with Deep Penetration

    International Nuclear Information System (INIS)

    Devillers, C.

    1973-01-01

    1 - Nature of physical problem solved: The ANISN system treats neutron and gamma transport in one-dimensional plane, spherical and cylinder geometry. The multigroup cross sections prepared by the programs LIANE and SUPERTOG are processed by the program RETTOG, which produces a binary library with Legendre expansions. The binary library can be updated and edited with the program LGR/B. The photon multigroup cross sections are created with the program GAMLEG/A. If the bulk of the data is too large, the program TAPEMA produces a special group-by-group library. The volume sources are calculated from a reduced set of input data and punched in a format suitable for input to ANISN, using the program PRESOU. The program ANISN calculates fluxes by groups, space intervals, angle and any number of reaction rates. The energy and space dependent fluxes are stored on tape and can be reprocessed, edited and plotted with the program ANISEX, which also permits to calculate supplementary reaction rates. The program ANISN can condense cross sections into a reduced number of groups. The ANISN system is used as a reference system for the evaluation of approximation methods (space-diffusion or point- kernel) or for the preparation of multigroup libraries for 2- dimensional transport codes (DOT). In particular it is used for shielding problems with high attenuation in water reactors and fast reactors. 2 - Method of solution: Method of discrete ordinates. The program has been designed to treat deep penetration with detailed calculation of spectrum as function of angle. Tests for pointwise convergence have also been introduced. 3 - Restrictions on the complexity of the problem: The complexity of the problem is limited by the storage size

  7. Computer code ANISN multiplying media and shielding calculation 2. Code description (input/output)

    International Nuclear Information System (INIS)

    Maiorino, J.R.

    1991-01-01

    The new code CCC-0514-ANISN/PC is described, as well as a ''GENERAL DESCRIPTION OF ANISN/PC code''. In addition to the ANISN/PC code, the transmittal package includes an interactive input generation programme called APE (ANISN Processor and Evaluator), which facilitates the work of the user in giving input. Also, a 21 group photon cross section master library FLUNGP.LIB in ISOTX format, which can be edited by an executable file LMOD.EXE, is included in the package. The input and output subroutines are reviewed. 6 refs, 1 fig., 1 tab

  8. Extension of ANISN and DOT 3.5 transport computer codes to calculate heat generation by radiation and temperature distribution in nuclear reactors

    International Nuclear Information System (INIS)

    Torres, L.M.R.; Gomes, I.C.; Maiorino, J.R.

    1986-01-01

    The ANISN and DOT 3.5 codes solve the transport equation using the discrete ordinate method, in one and two-dimensions, respectively. The objectives of the study were to modify these two codes, frequently used in reactor shielding problems, to include nuclear heating calculations due to the interaction of neutrons and gamma-rays with matter. In order to etermine the temperature distribution, a numerical algorithm was developed using the finite difference method to solve the heat conduction equation, in one and two-dimensions, considering the nuclear heating from neutron and gamma-rays, as the source term. (Author) [pt

  9. ZZ FCXSEC, Coupled Cross-Section Library for Shielding from VITAMIN-C in AMPX, ANISN Format

    International Nuclear Information System (INIS)

    1985-01-01

    1 - Description of problem or function: Format: (a) and (b) AMPX, (c) and (d) ANISN; Number of groups: (a) Fine-group 171 neutron and 36 gamma-ray; (b) Broad-group 22 neutron and 21 gamma-ray; (c) Broad-group microscopic (22n-21 gamma); (d) Broad-group macroscopic; Nuclides: Mixtures: H 2 O, Borated water, Concrete, D 2 O, Lithium hydride, Boral, Dry air, Nitric acid, Uranium dioxide, S 3 0 4 , UF 6 TBP in dodecane, Sm 2 O 3 , Eu 2 O 3 , Gd 2 O 3 , Gd(NO 3 ) 3 in water, WB2, Spen fuel oxide, Thorium oxide, Uranium metal, Silver zeolite. Individual materials: C, Na, Al, Fe, Zircaloy, Cd Nb, Mo, Pb, Be, Ti, V, Mn, Co, Cu, Sn, Ta. Origin: VITAMIN-C; Weighting spectrum: From 1.1109+5 eV to 1.7333+7 eV → 239 Pu thermal fission; From 4.1399-1 eV to 1.1109+5 eV → 1/E; From 1.0000-5 eV to 4.1399-1 eV → Maxwellian. FSXSEC is a collection of cross section libraries to be used for nuclear fuel cycle shielding calculations, generated from the pseudo-composition-independent VITAMIN-C cross section library: (a) A composition-dependent self-shielded fine-group library with 171 neutron groups and 36 gamma groups, and a broad-group library with 22 neutron and 21 gamma groups for AMPX. (b) A broad-group microscopic and a broad-group macroscopic library in ANISN format. 2 - Method of solution: To generate library (a), AMPX modules BONAMI, CHOX, and MALOCS were used. To generate library (b), AMPX modules NITAWL and AXMIX were used

  10. COSANI-2, Gamma Doses from SABINE Calculation, Activity from ANISN Flux Calculation

    International Nuclear Information System (INIS)

    Dupont, C.

    1975-01-01

    1 - Nature of physical problem solved: Retrieval of SABINE and/or ANISN results. Calculates in case of SABINE results the individual contributions of capture gamma rays in each region to the total gamma dose and to the total gamma heating may calculate in case of ANISN new activity rates starting from ANISN flux saved on tape and activity cross sections taken on an ANISN binary library tape. The program can draw on a BENSON plotter any of the following quantities: - group flux; - activity rates; - dose rates; - neutron spectra for SABINE; - neutron or gamma direct or adjoint spectra for ANISN; - gamma heating and dose rate for SABINE including individual contributions from each region. Several ANISN and/or SABINE cases can be drawn on the same graph for comparison purposes. 2 - Restrictions on the complexity of the problem: Maximum number of: - tapes containing ANISN and/or SABINE results: 5; - curves per graph: 3; - regions: 40; - points per curve: 500; - energy groups: 200

  11. HETC and ANISN

    International Nuclear Information System (INIS)

    Uwamino, Yoshitomo

    1992-01-01

    For nuclear reaction data and nuclear reaction models, there are very wide engineering demands. Criticality calculation, shielding calculation, heat generation calculation, the evaluation of material damage, the evaluation of the radiation effect on human bodies and so on first come to mind. The circumstances in the neutron energy regions of lower than 15 MeV and higher than 15 MeV are outlined. In this report, the HETC based on intranuclear cascade-evaporation model and the ANISN which is the representative deterministic method are explained, and the results of using these calculation codes are compared. High energy transport code (HETC) is the extension of nucleon-meson transport Monte Carlo code so that it can be applied up to several hundreds GeV, and here, HETC-KFA-2 version incorporated in high energy radiation Monte Carlo elaborate system developed in Germany is discussed. As to the ANISN, the principle and the merit and demerit are described. The example of the calculation for the deep layer penetration of high energy neutrons by both methods is reported. (K.I.)

  12. SPACETRAN, Radiation Leakage from Cylinder with ANISN Flux Calculation

    International Nuclear Information System (INIS)

    Cramer, S.N.; Solomito, M.

    1974-01-01

    1 - Nature of physical problem solved: SPACETRAN is designed to calculate the energy-dependent total flux or some proportional quantity such as kerma, due to the radiation leakage from the surface of a right-circular cylinder at detector positions located at arbitrary distances from the surface. The assumptions are made that the radiation emerging from the finite cylinder has no spatial dependence and that a vacuum surrounds the cylinder. 2 - Method of solution: There are three versions of the program in the code package. SPACETRAN-I uses the surface angular fluxes calculated by the discrete ordinates SN code ANISN, as input. SPACETRAN-II assumes that the surface angular flux for all energies can be represented as a function (Cos(PHI))**N, where PHI is the angle between surface outward normal and radiation direction, and N is an integer specified by the user. For both versions the energy group structure and the number and location of detectors is arbitrary. The flux (or response function) for a given energy group at some detection point is computed by summing the contributions from each surface area element over the entire surface. The surface area elements are defined by input data. SPACETRAN-III uses surface angular fluxes from DOT-3. SPACETRAN-I handles contributions either from a cylinder 'end' or 'side', so the total contributions must be obtained by adding the results of separate end and side runs. ANISN angular fluxes are specified for discrete directions. In general, the direction between the detector and contributing area will not exactly coincide with one of these discrete directions. In this case, the ANISN angular flux for the 'closest' discrete direction is used to approximate the contribution to the detector. SPACETRAN-II handles contributions from both the side and end of a cylinder in a single run. Since the assumed angular distribution is specified by a continuous function, it is not necessary to perform the angle selection described above. For

  13. ZZ DLC-11 RITTS, 121-Group Coupled Cross-Section for ANISN, DOT, MORSE

    International Nuclear Information System (INIS)

    1970-01-01

    A - Nature of physical problem solved: Format: ANISN, DTF-4, DOT and MORSE. Number of groups: 100 neutron energy groups (14.92 MeV to thermal) 21 gamma-ray energy groups (14.0 to 0.01 MeV) Nuclides: H, C, O, N, Na, Mg, P, S, Cl, K, and Ca, (microscopic cross sections) and 9 organic materials including 11-element standard man, 4-element standard man, skin, bone, tissue, brain, lung, red marrow, and muscle (macroscopic cross sections). Origin: ENDF/B for H, C, N, O, Na, and Mg; O5R library for Ca, S, and K; GAM-2 library for Cl; Evaluation by J.J. Ritts for P. Weighting spectrum: 1/E for the top 99 groups and Maxwellian for the thermal group values. DLC-11 data is suitable for neutron, gamma-ray, or coupled neutron and gamma-ray transport calculations. It is intended for use in multigroup discrete ordinates or Monte Carlo transport codes which treat anisotropic scattering by Legendre expansion up to order P3. DLC-11 is a collection of multigroup cross section data which were compiled by J. J. Ritts for use in depth-dose calculations in anthropomorphic phantoms. For convenience the data are grouped as follows - 1. A coupled 121-group (100 neutron, 21 gamma-ray) set of data for the 11 elements H, C, O, N. Na, Mg, P, S, Cl, K, and Ca. This set includes P3 coupled 121-group microscopic cross sections plus 121-group kerma factors for the 11 elements. 2. A 100-group set of neutron cross sections for the 11 elements. 3. A coupled 121-group set of macroscopic cross sections for 9 organic materials including 11-element standard man, 4-element standard man, skin, bone, tissue, brain, lung, red marrow, and muscle. B - Method of solution: The basic data sources were ENDF/B for H, C, N, O, Na, and Mg, the O5R library for Ca, S, and K, the GAM-2 library for Cl and an evaluation by Ritts for P. A 1/E spectrum was assumed for averaging the top 99 groups and a Maxwellian for averaging the thermal group values. The gamma-ray cross sections were computed from DLC-3/HPIC using MUG. The

  14. Computer code ANISN multiplying media and shielding calculation II. Code description (input/output)

    International Nuclear Information System (INIS)

    Maiorino, J.R.

    1990-01-01

    The user manual of the ANISN computer code describing input and output subroutines is presented. ANISN code was developed to solve one-dimensional transport equation for neutron or gamma rays in slab, sphere or cylinder geometry with general anisotropic scattering. The solution technique is the discrete ordinate method. (M.C.K.)

  15. I2D: code for conversion of ISOTXS structured data to DTF and ANISN structured tables

    International Nuclear Information System (INIS)

    Resnik, W.M. II.

    1977-06-01

    The I2D code converts neutron cross-section data written in the standard interface file format called ISOTXS to a matrix structured format commonly called DTF tables. Several BCD and binary output options are available including FIDO (ANISN) format. The I2D code adheres to the guidelines established by the Committee on Computer Code Coordination for standardized code development. Since some machine dependency is inherent regardless of the degree of standardization, provisions have been made in the I2D code for easy implementation on either short-word machines (IBM) or on long-word machines (CDC). 3 figures, 5 tables

  16. BIBGTR: nuclear data libraries for the programs Unimug and Anisn

    International Nuclear Information System (INIS)

    Ono, S.; Caldeira, A.D.

    1989-11-01

    Nuclear data libraries generable by the NJOY for the programs UNIMUG and ANISN, using evaluated data from ENDF/B-IV and ENDF/B-V are described. These libraries will be used by Radioisotope Thermoelectric Generators Project of Instituto de Estudos Avancados. (author) [pt

  17. Calculation of neutron spectra for a 252Cf transport cask using ANISN running on a PC

    International Nuclear Information System (INIS)

    West, L.; Akin, B.P.; Lemley, E.C.

    1995-01-01

    Neutron spectra have been calculated using the ANISN one-dimensional discrete ordinates code for the case of a 152 Cf source in a transport cask of a particular design. All computations were done on personal computers (PCs) (mostly 486 models) with the ANISN-ORNL (486 version) computer code. With a source of 252 Cf fission neutrons, the neutron flux spectrum in the cask cannot be characterized as open-quotes moderated.close quotes Concern about an appropriate choice for the cross-section data set has led to a comparison, for this application, of three different cross-section libraries: DABL, HILO, and BUGLE-80. Although the cross-section sets were not originally designed for PC use, the libraries have been successfully employed for PC computations. Work with yet another data library, BUGLE-93, is incomplete at this stage. From neutron flux spectra on the surface of the cask, personnel dosimetric quantities (such as dose equivalent) have been determined for the DABL, HILO, and BUGLE-80 ANISN calculations

  18. Thermally oxidized formation of new Ge dots over as-grown Ge dots in the Si capping layer

    International Nuclear Information System (INIS)

    Nie Tianxiao; Lin Jinhui; Shao Yuanmin; Wu Yueqin; Yang Xinju; Fan Yongliang; Jiang Zuimin; Chen Zhigang; Zou Jin

    2011-01-01

    A Si-capped Ge quantum dot sample was self-assembly grown via Stranski-Krastanov mode in a molecular beam epitaxy system with the Si capping layer deposited at 300 deg. C. After annealing the sample in an oxygen atmosphere at 1000 deg. C, a structure, namely two layers of quantum dots, was formed with the newly formed Ge-rich quantum dots embedded in the oxidized matrix with the position accurately located upon the as-grown quantum dots. It has been found that the formation of such nanostructures strongly depends upon the growth temperature and oxygen atmosphere. A growth mechanism was proposed to explain the formation of the nanostructure based on the Ge diffusion from the as-grown quantum dots, Ge segregation from the growing oxide, and subsequent migration/agglomeration.

  19. ANISN-L, a CDC-7600 code which solves the one-dimensional, multigroup, time dependent transport equation by the method of discrete ordinates

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, T. P.

    1973-09-20

    The code ANISN-L solves the one-dimensional, multigroup, time-independent Boltzmann transport equation by the method of discrete ordinates. In problems involving a fissionable system, it can calculate the system multiplication or alpha. In such cases, it is also capable of determining isotopic concentrations, radii, zone widths, or buckling in order to achieve a given multiplication or alpha. The code may also calculate fluxes caused by a specified fixed source. Neutron, gamma, and coupled neutron--gamma problems may be solved in either the forward or adjoint (backward) modes. Cross sections describing upscatter, as well as the usual downscatter, may be employed. This report describes the use of ANISN-L; this is a revised version of ANISN which handles both large and small problems efficiently on CDC-7600 computers. (RWR)

  20. Formation of strain-induced quantum dots in gated semiconductor nanostructures

    Directory of Open Access Journals (Sweden)

    Ted Thorbeck

    2015-08-01

    Full Text Available A long-standing mystery in the field of semiconductor quantum dots (QDs is: Why are there so many unintentional dots (also known as disorder dots which are neither expected nor controllable. It is typically assumed that these unintentional dots are due to charged defects, however the frequency and predictability of the location of the unintentional QDs suggests there might be additional mechanisms causing the unintentional QDs besides charged defects. We show that the typical strains in a semiconductor nanostructure from metal gates are large enough to create strain-induced quantum dots. We simulate a commonly used QD device architecture, metal gates on bulk silicon, and show the formation of strain-induced QDs. The strain-induced QD can be eliminated by replacing the metal gates with poly-silicon gates. Thus strain can be as important as electrostatics to QD device operation operation.

  1. Photoemission Studies of Si Quantum Dots with Ge Core: Dots formation, Intermixing at Si-clad/Ge-core interface and Quantum Confinement Effect

    Directory of Open Access Journals (Sweden)

    Yudi Darma

    2008-03-01

    Full Text Available Spherical Si nanocrystallites with Ge core (~20nm in average dot diameter have been prepared by controlling selective growth conditions of low-pressure chemical vapor deposition (LPCVD on ultrathin SiO2 using alternately pure SiH4 and 5% GeH4 diluted with He. XPS results confirm the highly selective growth of Ge on the pregrown Si dots and subsequently complete coverage by Si selective growth on Ge/Si dots. Compositional mixing and the crystallinity of Si dots with Ge core as a function of annealing temperature in the range of 550-800oC has been evaluated by XPS analysis and confirms the diffusion of Ge atoms from Ge core towards the Si clad accompanied by formation of GeOx at the Si clad surface. The first subband energy at the valence band of Si dot with Ge core has been measured as an energy shift at the top of the valence band density of state using XPS. The systematic shift of the valence band maximum towards higher binding energy with progressive deposition in the dot formation indicate the charging effect of dots and SiO2 layer by photoemission during measurements.

  2. Validation of KENO, ANISN and Hansen-Roach cross-section set on plutonium oxide and metal fuel system

    International Nuclear Information System (INIS)

    Matsumoto, Tadakuni; Yumoto, Ryozo; Nakano, Koh.

    1980-01-01

    In the previous report, the authors discussed the validity of KENO, ANISN and Hansen-Roach 16 group cross-section set on the critical plutonium nitrate solution systems with various geometries, absorbers and neutron interactions. The purpose of the present report is to examine the validity of the same calculation systems on the homogeneous plutonium oxide and plutonium-uranium mixed oxide fuels with various density values. Eleven experiments adopted for validation are summarized. First six experiments were performed at Pacific Northwest Laboratory of Battelle Memorial Institute, and the remaining five at Los Alamos Scientific Laboratory. The characteristics of core fuel are given, and the isotopic composition of plutonium, the relation between H/(Pu + U) atomic ratio and fuel density as compared with the atomic ratios of PuO 2 and mixed oxides in powder storage and pellet fabrication processes, and critical core dimensions and reflector conditions are shown. The effective multiplication factors were calculated with the KENO code. In case of the metal fuels with simple sphere geometry, additional calculations with the ANISN code were performed. The criticality calculation system composed of KENO, ANISN and Hansen-Roach cross-section set was found to be valid for calculating the criticality on plutonium oxide, plutonium-uranium mixed oxide, plutonium metal and uranium metal fuel systems as well as on plutonium solution systems with various geometries, absorbers and neutron interactions. There seems to remain some problems in the method for evaluating experimental correction. Some discussions foloow. (Wakatsuki, Y.)

  3. Strain-induced formation of fourfold symmetric SiGe quantum dot molecules.

    Science.gov (United States)

    Zinovyev, V A; Dvurechenskii, A V; Kuchinskaya, P A; Armbrister, V A

    2013-12-27

    The strain field distribution at the surface of a multilayer structure with disklike SiGe nanomounds formed by heteroepitaxy is exploited to arrange the symmetric quantum dot molecules typically consisting of four elongated quantum dots ordered along the [010] and [100] directions. The morphological transition from fourfold quantum dot molecules to continuous fortresslike quantum rings with an increasing amount of deposited Ge is revealed. We examine key mechanisms underlying the formation of lateral quantum dot molecules by using scanning tunneling microscopy and numerical calculations of the strain energy distribution on the top of disklike SiGe nanomounds. Experimental data are well described by a simple thermodynamic model based on the accurate evaluation of the strain dependent part of the surface chemical potential. The spatial arrangement of quantum dots inside molecules is attributed to the effect of elastic property anisotropy.

  4. AXMIX, ANISN Cross-Sections Mixing, Transport Corrections, Data Library Management

    International Nuclear Information System (INIS)

    2002-01-01

    1 - Nature of physical problem solved: Mixing, changing table length, adjoining, making scattering order adjustments (PN delta function subtraction), and transport corrections of ANISN-type cross sections, and management of cross section data sets and libraries. 2 - Method of solution: The number of energy groups which will fit into the core allocated is determined first. If all groups will fit, the solution is straightforward. If not, then the maximum number of groups which will fit is processed repeatedly using direct access I/O and storage disks. 3 - Restrictions on the complexity of the problem: Some flexibility in applying AXMIX is lost when cross sections to be processed contain up-scatter. A special section on up-scatter is therefore included in the report

  5. Optimization of Si–C reaction temperature and Ge thickness in C-mediated Ge dot formation

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Yuhki, E-mail: yu-ki@ecei.tohoku.ac.jp; Itoh, Yuhki; Kawashima, Tomoyuki; Washio, Katsuyoshi

    2016-03-01

    To form Ge dots on a Si substrate, the effect of thermal reaction temperature of sub-monolayer C with Si (100) was investigated and the deposited Ge thickness was optimized. The samples were prepared by solid-source molecular beam epitaxy with an electron-beam gun for C sublimation and a Knudsen cell for Ge evaporation. C of 0.25 ML was deposited on Si (100) at a substrate temperature of 200 °C, followed by a high-temperature treatment at the reaction temperature (T{sub R}) of 650–1000 °C to create Si–C bonds. Ge equivalent to 2 to 5 nm thick was subsequently deposited at 550 °C. Small and dense dots were obtained for T{sub R} = 750 °C but the dot density decreased and the dot diameter varied widely in the case of lower and higher T{sub R}. A dot density of about 2 × 10{sup 10} cm{sup −2} was achieved for Ge deposition equivalent to 3 to 5 nm thick and a standard deviation of dot diameter was the lowest of 10 nm for 5 nm thick Ge. These results mean that C-mediated Ge dot formation was strongly influenced not only by the c(4 × 4) reconstruction condition through the Si–C reaction but also the relationship between the Ge deposition thickness and the exposed Si (100)-(2 × 1) surface area. - Highlights: • The effect of Si–C reaction temperature on Ge dot formation was investigated. • Small and dense dots were obtained for T{sub R} = 750 °C. • The dot density of about 2 × 10{sup 10} cm{sup −2} was achieved for Ge = 3 to 5 nm. • The standard deviation of dot diameter was the lowest of 10 nm at Ge = 5 nm.

  6. Dynamical entanglement formation and dissipation effects in two double quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Contreras-Pulido, L D [Centro de Investigacion CientIfica y de Educacion Superior de Ensenada, Apartado Postal 2732, Ensenada, BC 22860 (Mexico); Rojas, F [Departamento de Fisica Teorica, Centro de Ciencias de la Materia Condensada, Universidad Nacional Autonoma de Mexico, Ensenada, Baja California 22800 (Mexico)

    2006-11-01

    We study the static and dynamic formation of entanglement in charge states of a two double quantum dot array with two mobile electrons under the effect of an external driving field. We include dissipation via contact with a phonon bath. By using the density matrix formalism and an open quantum system approach, we describe the dynamical behaviour of the charge distribution (polarization), concurrence (measure of the degree of entanglement) and Bell state probabilities (two qubit states with maximum entanglement) of such a system, including the role of dot asymmetry and temperature effects. Our results show that it is possible to obtain entangled states as well as a most probable Bell state, which can be controlled by the driving field. We also evaluate how the entanglement formation based on charge states deteriorates as the temperature or asymmetry increases.

  7. Formation of self assembled PbTe quantum dots in CdTe on Si(111)

    Science.gov (United States)

    Felder, F.; Fognini, A.; Rahim, M.; Fill, M.; Müller, E.; Zogg, H.

    2010-01-01

    We describe the growth and formation of self assembled PbTe quantum dots in a CdTe host on a silicon (111) substrate. Annealing yields different photoluminescence spectra depending on initial PbTe layer thickness, thickness of the CdTe cap layer and annealing temperature. Generally two distinct emission peaks at ˜0.3 eV and ˜0.45 eV are visible. Model calculations explaining their temperature dependence are performed. The dot size corresponds well with the estimated sizes from electron microscopy images. The quantum dots may be used as absorber within a mid-infrared detector.

  8. Formation mechanism of dot-line square superlattice pattern in dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Weibo; Dong, Lifang, E-mail: donglfhbu@163.com, E-mail: pyy1616@163.com; Wang, Yongjie; Zhang, Xinpu [College of Physics Science and Technology, Hebei University, Baoding 071002 (China); College of Quality and Technical Supervision, Hebei University, Baoding 071002 (China); Pan, Yuyang, E-mail: donglfhbu@163.com, E-mail: pyy1616@163.com [College of Quality and Technical Supervision, Hebei University, Baoding 071002 (China)

    2014-11-15

    We investigate the formation mechanism of the dot-line square superlattice pattern (DLSSP) in dielectric barrier discharge. The spatio-temporal structure studied by using the intensified-charge coupled device camera shows that the DLSSP is an interleaving of three different subpatterns in one half voltage cycle. The dot square lattice discharges first and, then, the two kinds of line square lattices, which form square grid structures discharge twice. When the gas pressure is varied, DLSSP can transform from square superlattice pattern (SSP). The spectral line profile method is used to compare the electron densities, which represent the amounts of surface charges qualitatively. It is found that the amount of surface charges accumulated by the first discharge of DLSSP is less than that of SSP, leading to a bigger discharge area of the following discharge (lines of DLSSP instead of halos of SSP). The spatial distribution of the electric field of the surface charges is simulated to explain the formation of DLSSP. This paper may provide a deeper understanding for the formation mechanism of complex superlattice patterns in DBD.

  9. Neutron spectra calculation in material in order to compute irradiation damage

    International Nuclear Information System (INIS)

    Dupont, C.; Gonnord, J.; Le Dieu de Ville, A.; Nimal, J.C.; Totth, B.

    1982-01-01

    This short presentation will be on neutron spectra calculation methods in order to compute the damage rate formation in irradiated structure. Three computation schemes are used in the French C.E.A.: (1) 3-dimensional calculations using the line of sight attenuation method (MERCURE IV code), the removal cross section being obtained from an adjustment on a 1-dimensional transport calculation with the discrete ordinate code ANISN; (2) 2-dimensional calculations using the discrete ordinates method (DOT 3.5 code), 20 to 30 group library obtained by collapsing the 100 group a library on fluxes computed by ANISN; (3) 3-dimensional calculations using the Monte Carlo method (TRIPOLI system). The cross sections which originally came from UKNDL 73 and ENDF/B3 are now processed from ENDF B IV. (author)

  10. In-plane nuclear field formation investigated in single self-assembled quantum dots

    Science.gov (United States)

    Yamamoto, S.; Matsusaki, R.; Kaji, R.; Adachi, S.

    2018-02-01

    We studied the formation mechanism of the in-plane nuclear field in single self-assembled In0.75Al0.25As /Al0.3Ga0.7As quantum dots. The Hanle curves with an anomalously large width and hysteretic behavior at the critical transverse magnetic field were observed in many single quantum dots grown in the same sample. In order to explain the anomalies in the Hanle curve indicating the formation of a large nuclear field perpendicular to the photo-injected electron spin polarization, we propose a new model based on the current phenomenological model for dynamic nuclear spin polarization. The model includes the effects of the nuclear quadrupole interaction and the sign inversion between in-plane and out-of-plane components of nuclear g factors, and the model calculations reproduce successfully the characteristics of the observed anomalies in the Hanle curves.

  11. Dotted collar placed around carotid artery induces asymmetric neointimal lesion formation in rabbits without intravascular manipulations

    Directory of Open Access Journals (Sweden)

    Kivelä Antti

    2012-10-01

    Full Text Available Abstract Background Neointimal formation in atherosclerosis has been subject for intense research. However, good animal models mimicking asymmetrical lesion formation in human subjects have been difficult to establish. The aim of this study was to develop a model which would lead to the formation of eccentric lesions under macroscopically intact non-denuded endothelium. Methods We have developed a new collar model where we placed two cushions or dots inside the collar. Arterial lesions were characterized using histology and ultrasound methods. Results When this dotted collar was placed around carotid and femoral arteries it produced asymmetrical pressure on adventitia and a mild flow disturbance, and hence a change in shear stress. Our hypothesis was that this simple procedure would reproducibly produce asymmetrical lesions without any intraluminal manipulations. Intima/media ratio increased towards the distal end of the collar with the direction of blood flow under macroscopically intact endothelium. Macrophages preferentially accumulated in areas of the thickest neointima thus resembling early steps in human atherosclerotic plaque formation. Proliferating cells in these lesions and underlying media were scarce at eight weeks time point. Conclusion The improved dotted collar model produces asymmetrical human-like atherosclerotic lesions in rabbits. This model should be useful in studies regarding the pathogenesis and formation of eccentric atherosclerotic lesions.

  12. DOT 3.5-E (DOT 3.5-E/JEF-1) analysis of the PCA-Replica (H2O/FE) shielding benchmark for the LWR-PV damage prediction

    International Nuclear Information System (INIS)

    Pescarini, M.

    1991-01-01

    The results of a DOT 3.5-E/JEF-1 validation on the (H2O/Fr) PCA-REPLICA (UKAEA-Winfith) low-flux shielding benchmark are presented. The PCA-REPLICA experiments reproduces the excore radial geometry of a PWR and is closely related to LWR safety since it is dedicated to test the accuracy of the calculated neutron exposure parameters (fast fluence and iron displacement rates) in a pressure vessel simulator. The NJOY/THEMIS data processing system is employed to obtain the neutron damage-energy cross sections for the JEF-1 iron file. The SN 1-D ANISN code is used to collapse cross sections from the VITAMIN-J (175 n) shielding library, based on the JEF-1 data, to a 28 group working library for 2-D calculations. A 3-D-equivalent synthesis (X,Y,Z) of 2-D and 1-D DOT 3.5-E SN calculations in a plane geometry, gives the integral and spectral results for comparison with the respective experimental data. The underprediction of the in-vessel dosimeter experimental activities depends probably on an overestimation of the iron inelastic scattering cross section of the JEF-1 file

  13. Dynamic Trap Formation and Elimination in Colloidal Quantum Dots

    KAUST Repository

    Voznyy, O.; Thon, S. M.; Ip, A. H.; Sargent, E. H.

    2013-01-01

    Using first-principles simulations on PbS and CdSe colloidal quantum dots, we find that surface defects form in response to electronic doping and charging of the nanoparticles. We show that electronic trap states in nanocrystals are dynamic entities, in contrast with the conventional picture wherein traps are viewed as stable electronic states that can be filled or emptied, but not created or destroyed. These traps arise from the formation or breaking of atomic dimers at the nanoparticle surface. The dimers' energy levels can reside within the bandgap, in which case a trap is formed. Fortunately, we are also able to identify a number of shallow-electron-affinity cations that stabilize the surface, working to counter dynamic trap formation and allowing for trap-free doping. © 2013 American Chemical Society.

  14. Dynamic Trap Formation and Elimination in Colloidal Quantum Dots

    KAUST Repository

    Voznyy, O.

    2013-03-21

    Using first-principles simulations on PbS and CdSe colloidal quantum dots, we find that surface defects form in response to electronic doping and charging of the nanoparticles. We show that electronic trap states in nanocrystals are dynamic entities, in contrast with the conventional picture wherein traps are viewed as stable electronic states that can be filled or emptied, but not created or destroyed. These traps arise from the formation or breaking of atomic dimers at the nanoparticle surface. The dimers\\' energy levels can reside within the bandgap, in which case a trap is formed. Fortunately, we are also able to identify a number of shallow-electron-affinity cations that stabilize the surface, working to counter dynamic trap formation and allowing for trap-free doping. © 2013 American Chemical Society.

  15. In situ study of the formation kinetics of InSb quantum dots grown in an InAs(Sb) matrix

    International Nuclear Information System (INIS)

    Semenov, A. N.; Lyublinskaya, O. G.; Solov’ev, V. A.; Mel’tser, B. Ya.; Ivanov, S. V.

    2008-01-01

    Formation of InSb quantum dots grown in an InAs matrix by molecular-beam epitaxy that does not involve forced deposition of InSb is studied. Detection of intensity oscillations in the reflection of high-energy electron diffraction patterns was used to study in situ the kinetics of the formation of InSb quantum dots and an InAsSb wetting layer. The effects of the substrate temperature, the shutter operation sequence, and the introduction of growth interruptions on the properties of the array of InSb quantum dots are examined. Introduction of a growth interruption immediately after completing the exposure of the InAs surface to the antimony flux leads to a reduction in the nominal thickness of InSb and to an enhancement in the uniformity of the quantum-dot array. It is shown that, in the case of deposition of submonolayer-thickness InSb/InAs quantum dots, the segregation layer of InAsSb plays the role of the wetting layer. The Sb segregation length and segregation ratio, as well as their temperature dependences, are determined.

  16. AMP (Activity Manipulation Program)

    International Nuclear Information System (INIS)

    Engle, W.W. Jr.

    1976-03-01

    AMP is a FORTRAN IV program written to handle energy-group structured activity factors such as sources, conversion factors, and response functions, as used by ANISN, DOT III, and other nuclear reactor and shielding codes. Activities may be retrieved from ANISN-type cross-section and activity sets found on cards and tapes, and from tabular-type sets on cards. They may be altered by change of group structure, multiplication by a constant, or multiplication by delta E (the group-energy interval), and then output to ANISN-type cards or tape and tabular-type cards. A full edit of input and output activities is always printed by group and activity number

  17. Assessing the occurrence of the dibromide radical (Br{sub 2}{sup -{center_dot}}) in natural waters: Measures of triplet-sensitised formation, reactivity, and modelling

    Energy Technology Data Exchange (ETDEWEB)

    De Laurentiis, Elisa; Minella, Marco; Maurino, Valter; Minero, Claudio [Universita degli Studi di Torino, Dipartimento di Chimica, Via P. Giuria 5, 10125 Torino (Italy); Mailhot, Gilles; Sarakha, Mohamed [Clermont Universite, Universite Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR 6296, ICCF, F-63171 Aubiere (France); Brigante, Marcello, E-mail: marcello.brigante@univ-bpclermont.fr [Clermont Universite, Universite Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR 6296, ICCF, F-63171 Aubiere (France); Vione, Davide, E-mail: davide.vione@unito.it [Universita degli Studi di Torino, Dipartimento di Chimica, Via P. Giuria 5, 10125 Torino (Italy); Universita degli Studi di Torino, Centro Interdipartimentale NatRisk, Via Leonardo da Vinci 44, 10095 Grugliasco (Italy)

    2012-11-15

    The triplet state of anthraquinone-2-sulphonate (AQ2S) is able to oxidise bromide to Br{sup {center_dot}}/Br{sub 2}{sup -{center_dot}}, with rate constant (2-4) Dot-Operator 10{sup 9} M{sup -1} s{sup -1} that depends on the pH. Similar processes are expected to take place between bromide and the triplet states of naturally occurring chromophoric dissolved organic matter ({sup 3}CDOM*). The brominating agent Br{sub 2}{sup -{center_dot}} could thus be formed in natural waters upon oxidation of bromide by both {sup {center_dot}}OH and {sup 3}CDOM*. Br{sub 2}{sup -{center_dot}} would be consumed by disproportionation into bromide and bromine, as well as upon reaction with nitrite and most notably with dissolved organic matter (DOM). By using the laser flash photolysis technique, and phenol as model organic molecule, a second-order reaction rate constant of {approx} 3 Dot-Operator 10{sup 2} L (mg C){sup -1} s{sup -1} was measured between Br{sub 2}{sup -{center_dot}} and DOM. It was thus possible to model the formation and reactivity of Br{sub 2}{sup -{center_dot}} in natural waters, assessing the steady-state [Br{sub 2}{sup -{center_dot}}] Almost-Equal-To 10{sup -13}-10{sup -12} M. It is concluded that bromide oxidation by {sup 3}CDOM* would be significant compared to oxidation by {sup {center_dot}}OH. The {sup 3}CDOM*-mediated process would prevail in DOM-rich and bromide-rich environments, the latter because elevated bromide would completely scavenge {sup {center_dot}}OH. Under such conditions, {sup {center_dot}}OH-assisted formation of Br{sub 2}{sup -{center_dot}} would be limited by the formation rate of the hydroxyl radical. In contrast, the formation rate of {sup 3}CDOM* is much higher compared to that of {sup {center_dot}}OH in most surface waters and would provide a large {sup 3}CDOM* reservoir for bromide to react with. A further issue is that nitrite oxidation by Br{sub 2}{sup -{center_dot}} could be an important source of the nitrating agent {sup {center_dot

  18. Effect of multicomponent InAsSbP matrix surface on formation of InSb quantum dots at MOVPE growth

    International Nuclear Information System (INIS)

    Romanov, V. V.; Dement’ev, P. A.; Moiseev, K. D.

    2016-01-01

    Indium-antimonide quantum dots (7–9 × 10"9 cm"2) are produced on an InAs(001) substrate by metal-organic vapor-phase epitaxy at a temperature of T = 440°C. Epitaxial deposition occurred simultaneously onto an InAs binary matrix and an InAsSbP quaternary alloy matrix layer lattice-matched to the InAs substrate in terms of the lattice parameter. Transformation of the quantum-dot shape and size is studied in relation to the chemical composition of the working matrix surface, onto which the quantum dots are deposited. The use of a multicomponent layer makes it possible to control the lattice parameter of the matrix and the strains produced in the system during the formation of self-assembled quantum dots.

  19. InGaAs/GaAs (110) quantum dot formation via step meandering

    Energy Technology Data Exchange (ETDEWEB)

    Diez-Merino, Laura; Tejedor, Paloma [Department of Nanostructures and Surfaces, Instituto de Ciencia de Materiales de Madrid, CSIC, Sor Juana Ines de la Cruz 3, 28049-Madrid (Spain)

    2011-07-01

    InGaAs (110) semiconductor quantum dots (QDs) offer very promising prospects as a material base for a new generation of high-speed spintronic devices, such as single electron transistors for quantum computing. However, the spontaneous formation of InGaAs QDs is prevented by two-dimensional (2D) layer-by-layer growth on singular GaAs (110) substrates. In this work we have studied, by using atomic force microscopy and photoluminescence spectroscopy (PL), the growth of InGaAs/GaAs QDs on GaAs (110) stepped substrates by molecular beam epitaxy (MBE), and the modification of the adatom incorporation kinetics to surface steps in the presence of chemisorbed atomic hydrogen. The as-grown QDs exhibit lateral dimensions below 100 nm and emission peaks in the 1.35-1.37 eV range. It has been found that a step meandering instability derived from the preferential attachment of In adatoms to [110]-step edges relative to [11n]-type steps plays a key role in the destabilization of 2D growth that leads to 3D mound formation on both conventional and H-terminated vicinal substrates. In the latter case, the driving force for 3D growth via step meandering is enhanced by H-induced upward mass transport in addition to the lower energy cost associated with island formation on H-terminated substrates, which results in a high density array of InGaAs/GaAs dots selectively nucleated on the terrace apices with reduced lateral dimensions and improved PL efficiency relative to those of conventional MBE-grown samples.

  20. InGaAs/GaAs (110) quantum dot formation via step meandering

    International Nuclear Information System (INIS)

    Diez-Merino, Laura; Tejedor, Paloma

    2011-01-01

    InGaAs (110) semiconductor quantum dots (QDs) offer very promising prospects as a material base for a new generation of high-speed spintronic devices, such as single electron transistors for quantum computing. However, the spontaneous formation of InGaAs QDs is prevented by two-dimensional (2D) layer-by-layer growth on singular GaAs (110) substrates. In this work we have studied, by using atomic force microscopy and photoluminescence spectroscopy (PL), the growth of InGaAs/GaAs QDs on GaAs (110) stepped substrates by molecular beam epitaxy (MBE), and the modification of the adatom incorporation kinetics to surface steps in the presence of chemisorbed atomic hydrogen. The as-grown QDs exhibit lateral dimensions below 100 nm and emission peaks in the 1.35-1.37 eV range. It has been found that a step meandering instability derived from the preferential attachment of In adatoms to [110]-step edges relative to [11n]-type steps plays a key role in the destabilization of 2D growth that leads to 3D mound formation on both conventional and H-terminated vicinal substrates. In the latter case, the driving force for 3D growth via step meandering is enhanced by H-induced upward mass transport in addition to the lower energy cost associated with island formation on H-terminated substrates, which results in a high density array of InGaAs/GaAs dots selectively nucleated on the terrace apices with reduced lateral dimensions and improved PL efficiency relative to those of conventional MBE-grown samples.

  1. Stark shifting two-electron quantum dot

    International Nuclear Information System (INIS)

    Dineykhan, M.; Zhaugasheva, S.A.; Duysebaeva, K.S.

    2003-01-01

    Advances in modern technology make it possible to create semiconducting nano-structures (quantum dot) in which a finite number of electrons are 'captured' in a bounded volume. A quantum dot is associated with a quantum well formed at the interface, between two finite-size semiconductors owing to different positions of the forbidden gaps on the energy scale in these semiconductors. The possibility of monitoring and controlling the properties of quantum dots attracts considerable attention to these objects, as a new elemental basis for future generations of computers. The quantum-mechanical effects and image potential play a significant role in the description of the formation mechanism quantum dot, and determined the confinement potential in a two-electron quantum dot only for the spherical symmetric case. In the present talk, we considered the formation dynamics of two-electron quantum dot with violation of spherical symmetry. So, we have standard Stark potential. The energy spectrum two-electron quantum dot were calculated. Usually Stark interactions determined the tunneling phenomena between quantum dots

  2. Quadra-quantum Dots and Related Patterns of Quantum Dot Molecules:

    Directory of Open Access Journals (Sweden)

    Somsak Panyakeow

    2010-10-01

    Full Text Available Abstract Laterally close-packed quantum dots (QDs called quantum dot molecules (QDMs are grown by modified molecular beam epitaxy (MBE. Quantum dots could be aligned and cross hatched. Quantum rings (QRs created from quantum dot transformation during thin or partial capping are used as templates for the formations of bi-quantum dot molecules (Bi-QDMs and quantum dot rings (QDRs. Preferable quantum dot nanostructure for quantum computation based on quantum dot cellular automata (QCA is laterally close-packed quantum dot molecules having four quantum dots at the corners of square configuration. These four quantum dot sets are called quadra-quantum dots (QQDs. Aligned quadra-quantum dots with two electron confinements work like a wire for digital information transmission by Coulomb repulsion force, which is fast and consumes little power. Combination of quadra-quantum dots in line and their cross-over works as logic gates and memory bits. Molecular Beam Epitaxial growth technique called ‘‘Droplet Epitaxy” has been developed for several quantum nanostructures such as quantum rings and quantum dot rings. Quantum rings are prepared by using 20 ML In-Ga (15:85 droplets deposited on a GaAs substrate at 390°C with a droplet growth rate of 1ML/s. Arsenic flux (7–8×10-6Torr is then exposed for InGaAs crystallization at 200°C for 5 min. During droplet epitaxy at a high droplet thickness and high temperature, out-diffusion from the centre of droplets occurs under anisotropic strain. This leads to quantum ring structures having non-uniform ring stripes and deep square-shaped nanoholes. Using these peculiar quantum rings as templates, four quantum dots situated at the corners of a square shape are regrown. Two of these four quantum dots are aligned either or , which are preferable crystallographic directions of quantum dot alignment in general.

  3. Transport theory and codes

    International Nuclear Information System (INIS)

    Clancy, B.E.

    1986-01-01

    This chapter begins with a neutron transport equation which includes the one dimensional plane geometry problems, the one dimensional spherical geometry problems, and numerical solutions. The section on the ANISN code and its look-alikes covers problems which can be solved; eigenvalue problems; outer iteration loop; inner iteration loop; and finite difference solution procedures. The input and output data for ANISN is also discussed. Two dimensional problems such as the DOT code are given. Finally, an overview of the Monte-Carlo methods and codes are elaborated on

  4. Category Formation in Autism: Can Individuals with Autism Form Categories and Prototypes of Dot Patterns?

    Science.gov (United States)

    Gastgeb, Holly Zajac; Dundas, Eva M.; Minshew, Nancy J.; Strauss, Mark S.

    2012-01-01

    There is a growing amount of evidence suggesting that individuals with autism have difficulty with categorization. One basic cognitive ability that may underlie this difficulty is the ability to abstract a prototype. The current study examined prototype and category formation with dot patterns in high-functioning adults with autism and matched…

  5. Quadra-Quantum Dots and Related Patterns of Quantum Dot Molecules: Basic Nanostructures for Quantum Dot Cellular Automata Application

    Directory of Open Access Journals (Sweden)

    Somsak Panyakeow

    2010-10-01

    Full Text Available Laterally close-packed quantum dots (QDs called quantum dot molecules (QDMs are grown by modified molecular beam epitaxy (MBE. Quantum dots could be aligned and cross hatched. Quantum rings (QRs created from quantum dot transformation during thin or partial capping are used as templates for the formations of bi-quantum dot molecules (Bi-QDMs and quantum dot rings (QDRs. Preferable quantum dot nanostructure for quantum computation based on quantum dot cellular automata (QCA is laterally close-packed quantum dot molecules having four quantum dots at the corners of square configuration. These four quantum dot sets are called quadra-quantum dots (QQDs. Aligned quadra-quantum dots with two electron confinements work like a wire for digital information transmission by Coulomb repulsion force, which is fast and consumes little power. Combination of quadra-quantum dots in line and their cross-over works as logic gates and memory bits. Molecular Beam Epitaxial growth technique called 'Droplet Epitaxy' has been developed for several quantum nanostructures such as quantum rings and quantum dot rings. Quantum rings are prepared by using 20 ML In-Ga (15:85 droplets deposited on a GaAs substrate at 390'C with a droplet growth rate of 1ML/s. Arsenic flux (7'8'10-6Torr is then exposed for InGaAs crystallization at 200'C for 5 min. During droplet epitaxy at a high droplet thickness and high temperature, out-diffusion from the centre of droplets occurs under anisotropic strain. This leads to quantum ring structures having non-uniform ring stripes and deep square-shaped nanoholes. Using these peculiar quantum rings as templates, four quantum dots situated at the corners of a square shape are regrown. Two of these four quantum dots are aligned either or, which are preferable crystallographic directions of quantum dot alignment in general.

  6. Formation of carbon quantum dots and nanodiamonds in laser ablation of a carbon film

    Science.gov (United States)

    Sidorov, A. I.; Lebedev, V. F.; Kobranova, A. A.; Nashchekin, A. V.

    2018-01-01

    We have experimentally shown that nanosecond near-IR pulsed laser ablation of a thin amorphous carbon film produces carbon quantum dots with a graphite structure and nanodiamonds with a characteristic size of 20 - 500 nm on the substrate surface. The formation of these nanostructures is confirmed by electron microscopic images, luminescence spectra and Raman spectra. The mechanisms explaining the observed effects are proposed.

  7. Utilities programs for the WIMSD4 code

    International Nuclear Information System (INIS)

    Leszczynski, F.

    1990-01-01

    The WIMSD4 code is widely known around the world. For its better use, it is convenient to count with auxiliary programs. Two of these programs, developed in FORTRAN 77, in the VAX computer of the Bariloche Atomic Center, are herein presented. WINTER (Wims INTERactive) to generate input data of WIMSD4 in an interactive way, and AMICO (Anisn MIx and COndense) to deal with cross sections data of a multigroup data library and of WIMS output to be used in other programs, such as: ANISN, DOT, CITATION, DIPOBAR, etc. (Author) [es

  8. Hubble's View of Little Blue Dots

    Science.gov (United States)

    Kohler, Susanna

    2018-02-01

    The recent discovery of a new type of tiny, star-forming galaxy is the latest in a zoo of detections shedding light on our early universe. What can we learn from the unique little blue dots found in archival Hubble data?Peas, Berries, and DotsGreen pea galaxies identified by citizen scientists with Galaxy Zoo. [Richard Nowell Carolin Cardamone]As telescope capabilities improve and we develop increasingly deeper large-scale surveys of our universe, we continue to learn more about small, faraway galaxies. In recent years, increasing sensitivity first enabled the detection of green peas luminous, compact, low-mass (10 billion solar masses; compare this to the Milky Ways 1 trillion solar masses!) galaxies with high rates of star formation.Not long thereafter, we discovered galaxies that form stars similarly rapidly, but are even smaller only 330 million solar masses, spanning less than 3,000 light-years in size. These tiny powerhouses were termed blueberries for their distinctive color.Now, scientists Debra and Bruce Elmegreen (of Vassar College and IBM Research Division, respectively) report the discovery of galaxies that have even higher star formation rates and even lower masses: little blue dots.Exploring Tiny Star FactoriesThe Elmegreens discovered these unique galaxies by exploring archival Hubble data. The Hubble Frontier Fields data consist of deep images of six distant galaxy clusters and the parallel fields next to them. It was in the archival data for two Frontier Field Parallels, those for clusters Abell 2744 and MAS J0416.1-2403, that the authors noticed several galaxies that stand out as tiny, bright, blue objects that are nearly point sources.Top: a few examples of the little blue dots recently identified in two Hubble Frontier Field Parallels. Bottom: stacked images for three different groups of little blue dots. [Elmegreen Elmegreen 2017]The authors performed a search through the two Frontier Field Parallels, discovering a total of 55 little blue dots

  9. User's guide for ICE

    International Nuclear Information System (INIS)

    Fraley, S.K.

    1976-07-01

    ICE is a cross-section mixing code which will accept cross sections from an AMPX working library and produce mixed cross sections in the AMPX working library format, ANISN format, and the group-independent ANISN format. User input is in the free-form or fixed-form FIDO structure. The code is operable as a module in the AMPX system

  10. Non-adiabatic molecular dynamics investigation of photoionization state formation and lifetime in Mn²⁺-doped ZnO quantum dots.

    Science.gov (United States)

    Fischer, Sean A; Lingerfelt, David B; May, Joseph W; Li, Xiaosong

    2014-09-07

    The unique electronic structure of Mn(2+)-doped ZnO quantum dots gives rise to photoionization states that can be used to manipulate the magnetic state of the material and to generate zero-reabsorption luminescence. Fast formation and long non-radiative decay of this photoionization state is a necessary requirement for these important applications. In this work, surface hopping based non-adiabatic molecular dynamics are used to demonstrate the fast formation of a metal-to-ligand charge transfer state in a Mn(2+)-doped ZnO quantum dot. The formation occurs on an ultrafast timescale and is aided by the large density of states and significant mixing of the dopant Mn(2+) 3dt2 levels with the valence-band levels of the ZnO lattice. The non-radiative lifetime of the photoionization states is also investigated.

  11. ESR investigation of the reactions of glutathione, cysteine and penicillamine thiyl radicals: competitive formation of RSOcenter dot, Rcenter dot, RSSRcenter dot-. , and RSScenter dot

    Energy Technology Data Exchange (ETDEWEB)

    Becker, David; Swarts, Steven; Champagne, Mark; Sevilla, M D

    1988-05-01

    The reactions of cysteine, glutathione and penicillamine thiyl radicals with oxygen and their parent thiols in frozen solutions have been elucidated with e.s.r. The major sulfur radicals observed are: (1) thiyl radicals, RS center dot; (2) disulfide radical anions, RSSR anion radicals; (3) perthiyl radicals, RSS center dot and upon introduction of oxygen; (4) sulfinyl radicals, RSO center dot, where R represents the remainder of the cysteine, glutathione or penicillamine moiety. The radical product observed depends on pH, concentration of thiol, and presence or absence of molecular oxygen. The sulfinyl radical is a ubiquitous intermediate, peroxyl radical attack on thiols may lead to sulfinyl radicals. The authors elaborate the observed reaction sequences that lead to sulfinyl radicals and, using /sup 17/O isotopic substitution studies, demonstrate the oxygen atom in sulfinyl radicals originates from dissolved molecular oxygen. The glutathione radical is found to abstract hydrogen from the ..cap alpha..-carbon position on the cysteine residue of glutathione to form a carbon-centred radical.

  12. Comparative analysis of germanium-silicon quantum dots formation on Si(100), Si(111) and Sn/Si(100) surfaces

    Science.gov (United States)

    Lozovoy, Kirill; Kokhanenko, Andrey; Voitsekhovskii, Alexander

    2018-02-01

    In this paper theoretical modeling of formation and growth of germanium-silicon quantum dots in the method of molecular beam epitaxy (MBE) on different surfaces is carried out. Silicon substrates with crystallographic orientations (100) and (111) are considered. Special attention is paid to the question of growth of quantum dots on the silicon surface covered by tin, since germanium-silicon-tin system is extremely important for contemporary nano- and optoelectronics: for creation of photodetectors, solar cells, light-emitting diodes, and fast-speed transistors. A theoretical approach for modeling growth processes of such semiconductor compounds during the MBE is presented. Both layer-by-layer and island nucleation stages in the Stranski-Krastanow growth mode are described. A change in free energy during transition of atoms from the wetting layer to an island, activation barrier of the nucleation, critical thickness of 2D to 3D transition, as well as surface density and size distribution function of quantum dots in these systems are calculated with the help of the established model. All the theoretical speculations are carried out keeping in mind possible device applications of these materials. In particular, it is theoretically shown that using of the Si(100) surface covered by tin as a substrate for Ge deposition may be very promising for increasing size homogeneity of quantum dot array for possible applications in low-noise selective quantum dot infrared photodetectors.

  13. Neutron-photon energy deposition in CANDU reactor fuel channels: a comparison of modelling techniques using ANISN and MCNP computer codes

    International Nuclear Information System (INIS)

    Bilanovic, Z.; McCracken, D.R.

    1994-12-01

    In order to assess irradiation-induced corrosion effects, coolant radiolysis and the degradation of the physical properties of reactor materials and components, it is necessary to determine the neutron, photon, and electron energy deposition profiles in the fuel channels of the reactor core. At present, several different computer codes must be used to do this. The most recent, advanced and versatile of these is the latest version of MCNP, which may be capable of replacing all the others. Different codes have different assumptions and different restrictions on the way they can model the core physics and geometry. This report presents the results of ANISN and MCNP models of neutron and photon energy deposition. The results validate the use of MCNP for simplified geometrical modelling of energy deposition by neutrons and photons in the complex geometry of the CANDU reactor fuel channel. Discrete ordinates codes such as ANISN were the benchmark codes used in previous work. The results of calculations using various models are presented, and they show very good agreement for fast-neutron energy deposition. In the case of photon energy deposition, however, some modifications to the modelling procedures had to be incorporated. Problems with the use of reflective boundaries were solved by either including the eight surrounding fuel channels in the model, or using a boundary source at the bounding surface of the problem. Once these modifications were incorporated, consistent results between the computer codes were achieved. Historically, simple annular representations of the core were used, because of the difficulty of doing detailed modelling with older codes. It is demonstrated that modelling by MCNP, using more accurate and more detailed geometry, gives significantly different and improved results. (author). 9 refs., 12 tabs., 20 figs

  14. Topography evolution of 500 keV Ar(4+) ion beam irradiated InP(100) surfaces - formation of self-organized In-rich nano-dots and scaling laws.

    Science.gov (United States)

    Sulania, Indra; Agarwal, Dinesh C; Kumar, Manish; Kumar, Sunil; Kumar, Pravin

    2016-07-27

    We report the formation of self-organized nano-dots on the surface of InP(100) upon irradiating it with a 500 keV Ar(4+) ion beam. The irradiation was carried out at an angle of 25° with respect to the normal at the surface with 5 different fluences ranging from 1.0 × 10(15) to 1.0 × 10(17) ions per cm(2). The morphology of the ion-irradiated surfaces was examined by atomic force microscopy (AFM) and the formation of the nano-dots on the irradiated surfaces was confirmed. The average size of the nano-dots varied from 44 ± 14 nm to 94 ± 26 nm with increasing ion fluence. As a function of the ion fluence, the variation in the average size of the nano-dots has a great correlation with the surface roughness, which changes drastically up to the ion fluence of 1.0 × 10(16) ions per cm(2) and attains almost a saturation level for further irradiation. The roughness and the growth exponent values deduced from the scaling laws suggest that the kinetic sputtering and the large surface diffusion steps of the atoms are the primary reasons for the formation of the self-organized nanodots on the surface. X-ray photo-electron spectroscopy (XPS) studies show that the surface stoichiometry changes with the ion fluence. With irradiation, the surface becomes more indium (In)-rich owing to the preferential sputtering of the phosphorus atoms (P) and the pure metallic In nano-dots evolve at the highest ion fluence. The cross-sectional scanning electron microscopy (SEM) analysis of the sample irradiated with the highest fluence showed the absence of the nanostructuring beneath the surface. The surface morphological changes at this medium energy ion irradiation are discussed in correlation with the low and high energy experiments to shed more light on the mechanism of the well separated nano-dot formation.

  15. Production of three-dimensional quantum dot lattice of Ge/Si core-shell quantum dots and Si/Ge layers in an alumina glass matrix.

    Science.gov (United States)

    Buljan, M; Radić, N; Sancho-Paramon, J; Janicki, V; Grenzer, J; Bogdanović-Radović, I; Siketić, Z; Ivanda, M; Utrobičić, A; Hübner, R; Weidauer, R; Valeš, V; Endres, J; Car, T; Jerčinović, M; Roško, J; Bernstorff, S; Holy, V

    2015-02-13

    We report on the formation of Ge/Si quantum dots with core/shell structure that are arranged in a three-dimensional body centered tetragonal quantum dot lattice in an amorphous alumina matrix. The material is prepared by magnetron sputtering deposition of Al2O3/Ge/Si multilayer. The inversion of Ge and Si in the deposition sequence results in the formation of thin Si/Ge layers instead of the dots. Both materials show an atomically sharp interface between the Ge and Si parts of the dots and layers. They have an amorphous internal structure that can be crystallized by an annealing treatment. The light absorption properties of these complex materials are significantly different compared to films that form quantum dot lattices of the pure Ge, Si or a solid solution of GeSi. They show a strong narrow absorption peak that characterizes a type II confinement in accordance with theoretical predictions. The prepared materials are promising for application in quantum dot solar cells.

  16. Multi-Excitonic Quantum Dot Molecules

    Science.gov (United States)

    Scheibner, M.; Stinaff, E. A.; Doty, M. F.; Ware, M. E.; Bracker, A. S.; Gammon, D.; Ponomarev, I. V.; Reinecke, T. L.; Korenev, V. L.

    2006-03-01

    With the ability to create coupled pairs of quantum dots, the next step towards the realization of semiconductor based quantum information processing devices can be taken. However, so far little knowledge has been gained on these artificial molecules. Our photoluminescence experiments on single InAs/GaAs quantum dot molecules provide the systematics of coupled quantum dots by delineating the spectroscopic features of several key charge configurations in such quantum systems, including X, X^+,X^2+, XX, XX^+ (with X being the neutral exciton). We extract general rules which determine the formation of molecular states of coupled quantum dots. These include the fact that quantum dot molecules provide the possibility to realize various spin configurations and to switch the electron hole exchange interaction on and off by shifting charges inside the molecule. This knowledge will be valuable in developing implementations for quantum information processing.

  17. Attenuation analysis of neutrons and photons generated by 52-MeV protons transmitted through shielding materials

    International Nuclear Information System (INIS)

    Uwamino, Y.; Nakamura, T.

    1983-01-01

    Attenuation of neutrons and photons transmitted through grahite, iron, water and ordinary concrete assemblies were studied using gold foils for thermal neutron and an NE-213 organic scintillation detector with an (n-γ) discrimination technique for spectral measurements. Source neutrons and photons were produced by 52-MeV proton bombardment of a 21.4-mm-thick graphite target placed in front of the assembly. The distributions of the light output from the scintillator were unfolded by the revised FERDO code. These experimental results were used as benchmark data on neutron and photon penetration by neutrons energy above 15MeV. Multigroup Monte Carlo, one-dimensional ANISN and two-dimensional DOT-3.5 transport calculations were performed with the DLC-58/HELLO group cross sections to compare with the measurement and to evaluate the cross sections. The DOT code was also used for the estimation of room-scattered neutron and photon contribution to the measured spectra. The results of the ANISN calculation of neutrons and the three-dimensional Monte Carlo calculation agreed with the experimental values except for high energy neutrons transmitted through water and graphite. The agreement of both calculations was well within the accuracy of 7% in the measured attenuation coefficients. For photons, the ANISN calculation gave >20% overestimation of the attenuation coefficients in the case of deep penetration through the medium for which the photon mean-free-path is shorter than that of neutrons, such as in iron and concrete. The result of the DOT calculation of neutrons down to thermal energy agreed well with the gold foil measurement in the absolute value. (author)

  18. Formation of plasmon pulses in the cooperative decay of excitons of quantum dots near a metal surface

    Energy Technology Data Exchange (ETDEWEB)

    Shesterikov, A. B.; Gubin, M. Yu. [Vladimir State University (Russian Federation); Gladush, M. G. [Russian Academy of Sciences, Institute of Spectroscopy (Russian Federation); Prokhorov, A. V., E-mail: avprokhorov33@mail.ru [Vladimir State University (Russian Federation)

    2017-01-15

    The formation of pulses of surface electromagnetic waves at a metal–dielectric boundary is considered in the process of cooperative decay of excitons of quantum dots distributed near a metal surface in a dielectric layer. It is shown that the efficiency of exciton energy transfer to excited plasmons can, in principle, be increased by selecting the dielectric material with specified values of the complex permittivity. It is found that in the mean field approximation, the semiclassical model of formation of plasmon pulses in the system under study is reduced to the pendulum equation with the additional term of nonlinear losses.

  19. Formation of superlattice with aligned plane orientation of colloidal PbS quantum dots

    Science.gov (United States)

    Mukai, Kohki; Fujimoto, Satoshi; Suetsugu, Fumimasa

    2018-04-01

    We investigated a method of forming a perfect quantum dot (QD) superlattice, in which each QD has the same plane orientation, by depositing colloidal PbS QDs with clear facets in solution. QD facets were controlled by adjusting the synthesis temperature. X-ray evaluation showed that the crystal orientations of the film with QDs having clear facets were aligned. The slow deposition promoted this crystal alignment. The red shift of photoluminescence wavelength caused by the film formation was larger with QDs having facets than with spherical QDs, suggesting that the connection of the wave function between QDs was better so that the quantum size effect was further reduced.

  20. Circularly organized quantum dot nanostructures of Ge on Si substrates

    International Nuclear Information System (INIS)

    Cai, Qijia; Chen, Peixuan; Zhong, Zhenyang; Jiang, Zuimin; Lu, Fang; An, Zhenghua

    2009-01-01

    A novel circularly arranged structure of germanium quantum dots has been fabricated by combining techniques including electron beam lithography, wet etching and molecular beam epitaxy. It was observed that both pattern and growth parameters affect the morphology of the quantum dot molecules. Meanwhile, the oxidation mask plays a vital role in the formation of circularly organized quantum dots. The experimental results demonstrate the possibilities of investigating the properties of quantum dot molecules as well as single quantum dots

  1. Formation and properties of selected quantum dots in maize amylopectin matrix

    Energy Technology Data Exchange (ETDEWEB)

    Khachatryan, Karen, E-mail: rrchacza@cyf-kr.edu.pl [Department of Chemistry and Physics, Agricultural University, Balicka Street 122, 30 149 Krakow (Poland); Khachatryan, Gohar; Fiedorowicz, Maciej [Department of Chemistry and Physics, Agricultural University, Balicka Street 122, 30 149 Krakow (Poland); Tomasik, Piotr [Krakow College of Health Promotion, Krowoderska Street 73, 31 158 Krakow (Poland)

    2014-09-01

    Highlights: • Synthesis of quantum dots in aqueous gel of amylopectin. • Generation of quantum dots in non-ionic polysaccharide. • Preparation of CdS, Ga{sub 2}S{sub 3} and ZnS quantum dots of the size below 10 nm. • The amylopectin matrix is not suitable for generation of CaS and Cs{sub 2}S quantum dots. - Abstract: CdS, ZnS, Ga{sub 2}S{sub 3}, CaS and Cs{sub 2}S quantum dots (QDs) were generated in the amylopectin (Ap) matrix. They all emitted a light between 460 (ZnS) and 475 (CdS) nm. Sizes of Ga{sub 2}S{sub 3} and CdS QDs were 7–9 nm and 5–7 nm, respectively. Single ZnS QDs had 6–7 nm but they readily aggregated. The CaS and Cs{sub 2}S appeared mainly as 30–100 nm aggregates. There were no significant interactions between QDs and the Ap matrix. Presented method appeared unsuitable for the generation of CaS and Cs{sub 2}S QDs as they as well as their substrates [Ca(NO{sub 3}){sub 2}] hydrolyzed. Calcium compounds formed complexes with Ap and alkaline solution from CsOH could produce cesium salts of Ap as well as cause oxidation of Ap.

  2. Photoemission Studies of Si Quantum Dots with Ge Core: Dots formation, Intermixing at Si-clad/Ge-core interface and Quantum Confinement Effect

    OpenAIRE

    Yudi Darma

    2008-01-01

    Spherical Si nanocrystallites with Ge core (~20nm in average dot diameter) have been prepared by controlling selective growth conditions of low-pressure chemical vapor deposition (LPCVD) on ultrathin SiO2 using alternately pure SiH4 and 5% GeH4 diluted with He. XPS results confirm the highly selective growth of Ge on the pregrown Si dots and subsequently complete coverage by Si selective growth on Ge/Si dots. Compositional mixing and the crystallinity of Si dots with Ge core as a function of ...

  3. Neutron cross section libraries for analysis of fusion neutronics experiments

    International Nuclear Information System (INIS)

    Kosako, Kazuaki; Oyama, Yukio; Maekawa, Hiroshi; Nakamura, Tomoo

    1988-03-01

    We have prepared two computer code systems producing neutron cross section libraries to analyse fusion neutronics experiments. First system produces the neutron cross section library in ANISN format, i.e., the multi-group constants in group independent format. This library can be obtained by using the multi-group constant processing code system MACS-N and the ANISN format cross section compiling code CROKAS. Second system is for the continuous energy cross section library for the MCNP code. This library can be obtained by the nuclear data processing system NJOY which generates pointwise energy cross sections and the cross section compiling code MACROS for the MCNP library. In this report, we describe the production procedures for both types of the cross section libraries, and show six libraries with different conditions in ANISN format and a library for the MCNP code. (author)

  4. Wannier-Frenkel hybrid exciton in organic-semiconductor quantum dot heterostructures

    International Nuclear Information System (INIS)

    Birman, Joseph L.; Huong, Nguyen Que

    2007-01-01

    The formation of a hybridization state of Wannier Mott exciton and Frenkel exciton in different hetero-structure configurations involving quantum dots is investigated. The hybrid excitons exist at the interfaces of the semiconductors quantum dots and the organic medium, having unique properties and a large optical non-linearity. The coupling at resonance is very strong and tunable by changing the parameters of the systems (dot radius, dot-dot distance, generation of the organic dendrites and the materials of the system etc...). Different semiconductor quantum dot-organic material combination systems have been considered such as a semiconductor quantum dot lattice embedded in an organic host, a semiconductor quantum dot at the center of an organic dendrite, a semiconductor quantum dot coated by an organic shell

  5. FCXSEC: multigroup cross-section libraries for nuclear fuel cycle shielding calculations

    International Nuclear Information System (INIS)

    Ford, W.E. III; Webster, C.C.; Diggs, B.R.; Pevey, R.E.; Croff, A.G.

    1980-05-01

    Starting with the pseudo-composition-independent VITAMIN-C cross-sectin library, composition-dependent fine-(171n-36γ) and broad-group (22n-21γ) self-shielded AMPX master, broad-group microscopic ANISN-formatted, and broad-group macroscopic ANISN-formatted cross-section libraries were generated to be used for nuclear fuel cycle shielding calculations. The specifications for the data and the procedure used to prepare the libraries are described

  6. Real-time observation of FIB-created dots and ripples on GaAs

    International Nuclear Information System (INIS)

    Rose, F; Fujita, H; Kawakatsu, H

    2008-01-01

    We report a phenomenological study of Ga dots and ripples created by a focused ion beam (FIB) on the GaAs(001) surface. Real-time observation of dot diffusion and ripple formation was made possible by recording FIB movies. In the case of FIB irradiation with a 40 nA current of Ga + ions accelerated under 40 kV with an incidence angle of θ = 30 0 , increasing ion dose gives rise to three different regimes. In Regime 1, dots with lateral sizes in the range 50-460 nm are formed. Dots diffuse under continuous sputtering. In Regime 2, dots self-assemble into Bradley and Harper (BH) type ripples with a pseudo-period of λ = 1150 ± 25 nm. In Regime 3, ripples are eroded and the surface topology evolves into microplanes. In the case of normal incidence, FIB sputtering leads only to the formation of dots, without surface rippling

  7. dot-app: a Graphviz-Cytoscape conversion plug-in [version 2; referees: 3 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Braxton Fitts

    2017-07-01

    Full Text Available dot-app is a Cytoscape 3 app that allows Cytoscape to import and export Graphviz (.dot, .gv files, also known as DOT files due to the .dot extension and their conformance to the DOT language syntax. The DOT format was originally created in the early 2000s to represent graph topologies, layouts and formatting. DOT-encoded files are produced and consumed by a number of open-source graph applications, including Graphviz, Gephi, Tulip, and others. While DOT-based graph applications are popular, they emphasize general graph layout and styling over the topological and semantic analysis functions available in domain-focused applications such as Cytoscape. While domain-focused applications have easy access to large networks (10,000 to 100,000 nodes and advanced analysis and formatting, they do not have as many styling options as the Graphviz software suite. dot-app enables the interchange of networks between Cytoscape and DOT-compatible applications so that users can benefit from the features of both. dot-app was first deployed to the Cytoscape App Store in August 2015, has since registered more than 1,200 downloads, and has been highly rated by more than 20 users.

  8. Improvement of characteristics of diffraction gratings in Dot-matrix holograms

    International Nuclear Information System (INIS)

    ZHUMALIEV, K.M.; ISMAILOV, D.A.; ZHEENBEKOV, A.A.; SARYBAEVA, A.A.; KAZAKBAEVA, Z.M.

    2014-01-01

    This paper describes the results of research of the formation and recording of matrix hologram by Dot-matrix (dot-matrix hologram) technology on the photosensitive material of the photoresist. The principle of creating and modifying the characteristics of diffraction gratings of each pixel based on the diffraction efficiency, and recovery of colors and dynamic visual effects in dot-matrix holograms are discussed. An optical schematic diagram of the device and the process of recording dot-matrix holograms are presented. (authors)

  9. dot-app: a Graphviz-Cytoscape conversion plug-in [version 1; referees: 1 approved, 2 approved with reservations

    Directory of Open Access Journals (Sweden)

    Braxton Fitts

    2016-10-01

    Full Text Available dot-app is a Cytoscape 3 app that allows Cytoscape to import and export Graphviz (*.dot, *.gv files, also known as DOT files due to the *.dot extension and their conformance to the DOT language syntax. The DOT format was originally created in the early 2000s to represent graph topologies, layouts and formatting. DOT-encoded files are produced and consumed by a number of open-source graph applications, including GraphViz, Gephi, neato, smyrna, and others. While DOT-based graph applications are popular, they emphasize general graph layout and styling over the topological and semantic analysis functions available in domain-focused applications such as Cytoscape. While domain-focused applications have easy access to large networks (10,000 to 100,000 nodes and advanced analysis and formatting, they do not offer all of the styling options that DOT-based applications (particularly GraphViz do. dot-app enables the interchange of networks between Cytoscape and DOT-based applications so that users can benefit from the features of both. dot-app was first deployed to the Cytoscape App Store in August 2015, has since registered more than 1,200 downloads, and has been highly rated by more than 20 users.

  10. The (Un)Lonely Planet Guide: Formation and Evolution of Planetary Systems from a ``Blue Dots'' Perspective

    Science.gov (United States)

    Meyer, M. R.

    2010-10-01

    In this contribution I summarize some recent successes, and focus on remaining challenges, in understanding the formation and evolution of planetary systems in the context of the Blue Dots initiative. Because our understanding is incomplete, we cannot yet articulate a design reference mission engineering matrix suitable for an exploration mission where success is defined as obtaining a spectrum of a potentially habitable world around a nearby star. However, as progress accelerates, we can identify observational programs that would address fundamental scientific questions through hypothesis testing such that the null result is interesting.

  11. Compact and highly stable quantum dots through optimized aqueous phase transfer

    Science.gov (United States)

    Tamang, Sudarsan; Beaune, Grégory; Poillot, Cathy; De Waard, Michel; Texier-Nogues, Isabelle; Reiss, Peter

    2011-03-01

    A large number of different approaches for the aqueous phase transfer of quantum dots have been proposed. Surface ligand exchange with small hydrophilic thiols, such as L-cysteine, yields the lowest particle hydrodynamic diameter. However, cysteine is prone to dimer formation, which limits colloidal stability. We demonstrate that precise pH control during aqueous phase transfer dramatically increases the colloidal stability of InP/ZnS quantum dots. Various bifunctional thiols have been applied. The formation of disulfides, strongly diminishing the fluorescence QY has been prevented through addition of appropriate reducing agents. Bright InP/ZnS quantum dots with a hydrodynamic diameter <10 nm and long-term stability have been obtained. Finally we present in vitro studies of the quantum dots functionalized with the cell-penetrating peptide maurocalcine.

  12. Preparation and benchmarking of ANSL-V cross sections for advanced neutron source reactor studies

    International Nuclear Information System (INIS)

    Arwood, J.W.; Ford, W.E. III; Greene, N.M.; Petrie, L.M.; Primm, R.T. III; Waddell, M.W.; Webster, C.C.; Westfall, R.M.; Wright, R.Q.

    1987-01-01

    Research and development for the advanced neutron source (ANS) reactor is being funded by the US Dept. of Energy. This reactor is to provide the world's most intense steady-state source of low-energy neutrons for a national experimental user facility. Pseudo-problem-independent, multigroup cross-section libraries were generated to support ANS design work. The libraries, designated ANSL-V, are data bases in AMPX master format for subsequent generation of problem-dependent cross sections for use with codes such as KENO, ANISN, XSDRNPM, VENTURE, DOT, and MORSE. Included in ANSL-V are 123-material P 3 neutron, 46-material P 0 or P 6 secondary gamma-ray production (SGRP), and 34-material P 6 gamma-ray interaction (GRI) libraries

  13. Formation of Ge dot or film in Ge/Si heterostructure by using sub-monolayer carbon deposition on top and in-situ post annealing

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Yuhki, E-mail: itoh.yuhki@ecei.tohoku.ac.jp; Hatakeyama, Shinji; Kawashima, Tomoyuki; Washio, Katsuyoshi

    2016-03-01

    Effects of carbon (C) atoms on solid-phase epitaxial growth of Ge on Si(100) have been studied. C and Ge layers were deposited on Si(100) substrates at low temperature (150–300 °C) by using solid-source molecular beam epitaxy (MBE) system and subsequently annealed at 650 °C in the MBE chamber. The surface morphology after annealing changed depending on deposited amounts of C and deposition temperature of Ge. Ge dots were formed for small amounts of C while smooth Ge films were formed by large amounts of C varying with the Ge deposition temperature. The surface morphology after annealing was also affected by the as-deposited Ge crystallinity. The change in surface morphology depending on the amounts of deposited C was considered to be affected by the formation of Ge–C bonds which relieved the misfit strain between Ge and Si. The crystallinity of Ge deteriorated with increasing C coverage due to the incorporation of insoluble C atoms in the shape of both dots and films. - Highlights: • Effects of carbon on solid-phase epitaxy of C/Ge/Si(100) were studied. • Surface morphology changed depending on C amounts and Ge deposition temperature. • Solid-phase growth of Ge changed from large dots to smooth films with C coverage. • Transition of surface morphology was affected by the formation of Ge–C bonds.

  14. InAs/InP(001) quantum dots and quantum sticks grown by MOVPE: shape, anisotropy and formation process

    International Nuclear Information System (INIS)

    Michon, A.; Patriarche, G.; Sagnes, I.; Beaudoin, G.; Saint-Girons, G.

    2006-01-01

    This contribution presents a thermodynamical analysis of the formation process of InAs/InP(001) quantum dots (QDs) or quantum sticks (QSs) grown by metalorganic vapor phase epitaxy. This study, based on an analytical model of Tersoff et al. adapted to our QD geometry, describes the origin of QD shape anisotropy and size dispersion. It also explains the shape transition from QDs to QSs under As-poor growth conditions. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Fabrication of double-dot single-electron transistor in silicon nanowire

    International Nuclear Information System (INIS)

    Jo, Mingyu; Kaizawa, Takuya; Arita, Masashi; Fujiwara, Akira; Ono, Yukinori; Inokawa, Hiroshi; Choi, Jung-Bum; Takahashi, Yasuo

    2010-01-01

    We propose a simple method for fabricating Si single-electron transistors (SET) with coupled dots by means of a pattern-dependent-oxidation (PADOX) method. The PADOX method is known to convert a small one-dimensional Si wire formed on a silicon-on-insulator (SOI) substrate into a SET automatically. We fabricated a double-dot Si SET when we oxidized specially designed Si nanowires formed on SOI substrates. We analyzed the measured electrical characteristics by fitting the measurement and simulation results and confirmed the double-dot formation and the position of the two dots in the Si wire.

  16. Intracellular distribution of nontargeted quantum dots after natural uptake and microinjection

    Science.gov (United States)

    Damalakiene, Leona; Karabanovas, Vitalijus; Bagdonas, Saulius; Valius, Mindaugas; Rotomskis, Ricardas

    2013-01-01

    Background: The purpose of this study was to elucidate the mechanism of natural uptake of nonfunctionalized quantum dots in comparison with microinjected quantum dots by focusing on their time-dependent accumulation and intracellular localization in different cell lines. Methods: The accumulation dynamics of nontargeted CdSe/ZnS carboxyl-coated quantum dots (emission peak 625 nm) was analyzed in NIH3T3, MCF-7, and HepG2 cells by applying the methods of confocal and steady-state fluorescence spectroscopy. Intracellular colocalization of the quantum dots was investigated by staining with Lysotracker®. Results: The uptake of quantum dots into cells was dramatically reduced at a low temperature (4°C), indicating that the process is energy-dependent. The uptake kinetics and imaging of intracellular localization of quantum dots revealed three accumulation stages of carboxyl-coated quantum dots at 37°C, ie, a plateau stage, growth stage, and a saturation stage, which comprised four morphological phases: adherence to the cell membrane; formation of granulated clusters spread throughout the cytoplasm; localization of granulated clusters in the perinuclear region; and formation of multivesicular body-like structures and their redistribution in the cytoplasm. Diverse quantum dots containing intracellular vesicles in the range of approximately 0.5–8 μm in diameter were observed in the cytoplasm, but none were found in the nucleus. Vesicles containing quantum dots formed multivesicular body-like structures in NIH3T3 cells after 24 hours of incubation, which were Lysotracker-negative in serum-free medium and Lysotracker-positive in complete medium. The microinjected quantum dots remained uniformly distributed in the cytosol for at least 24 hours. Conclusion: Natural uptake of quantum dots in cells occurs through three accumulation stages via a mechanism requiring energy. The sharp contrast of the intracellular distribution after microinjection of quantum dots in comparison

  17. The formation of acetylcholine receptor clusters visualized with quantum dots

    Directory of Open Access Journals (Sweden)

    Peng H Benjamin

    2009-07-01

    Full Text Available Abstract Background Motor innervation of skeletal muscle leads to the assembly of acetylcholine receptor (AChR clusters in the postsynaptic membrane at the vertebrate neuromuscular junction (NMJ. Synaptic AChR aggregation, according to the diffusion-mediated trapping hypothesis, involves the establishment of a postsynaptic scaffold that "traps" freely diffusing receptors into forming high-density clusters. Although this hypothesis is widely cited to explain the formation of postsynaptic AChR clusters, direct evidence at molecular level is lacking. Results Using quantum dots (QDs and live cell imaging, we provide new measurements supporting the diffusion-trap hypothesis as applied to AChR cluster formation. Consistent with published works, experiments on cultured Xenopus myotomal muscle cells revealed that AChRs at clusters that formed spontaneously (pre-patterned clusters, also called hot spots and at those induced by nerve-innervation or by growth factor-coated latex beads were very stable whereas diffuse receptors outside these regions were mobile. Moreover, despite the restriction of AChR movement at sites of synaptogenic stimulation, individual receptors away from these domains continued to exhibit free diffusion, indicating that AChR clustering at NMJ does not involve an active attraction of receptors but is passive and diffusion-driven. Conclusion Single-molecular tracking using QDs has provided direct evidence that the clustering of AChRs in muscle cells in response to synaptogenic stimuli is achieved by two distinct cellular processes: the Brownian motion of receptors in the membrane and their trapping and immobilization at the synaptic specialization. This study also provides a clearer picture of the "trap" that it is not a uniformly sticky area but consists of discrete foci at which AChRs are immobilized.

  18. Designing spatial correlation of quantum dots: towards self-assembled three-dimensional structures

    International Nuclear Information System (INIS)

    Bortoleto, J R R; Zelcovit, J G; Gutierrez, H R; Bettini, J; Cotta, M A

    2008-01-01

    Buried two-dimensional arrays of InP dots were used as a template for the lateral ordering of self-assembled quantum dots. The template strain field can laterally organize compressive (InAs) as well as tensile (GaP) self-assembled nanostructures in a highly ordered square lattice. High-resolution transmission electron microscopy measurements show that the InAs dots are vertically correlated to the InP template, while the GaP dots are vertically anti-correlated, nucleating in the position between two buried InP dots. Finite InP dot size effects are observed to originate InAs clustering but do not affect GaP dot nucleation. The possibility of bilayer formation with different vertical correlations suggests a new path for obtaining three-dimensional pseudocrystals

  19. Quantum size effect and thermal stability of carbon-nanotube-based quantum dot

    International Nuclear Information System (INIS)

    Huang, N.Y.; Peng, J.; Liang, S.D.; Li, Z.B.; Xu, N.S.

    2004-01-01

    Full text: Based on semi-experience quantum chemical calculation, we have investigated the quantum size effect and thermal stability of open-end carbon nanotube (5, 5) quantum dots of 20 to 400 atoms. It was found that there is a gap in the energy band of all carbon nanotube (5, 5) quantum dots although a (5, 5) carbon nanotube is metallic. The energy gap of quantum dots is much dependent of the number of atoms in a dot, as a result of the quantization rules imposed by the finite scales in both radial and axial directions of a carbon nanotube quantum dot. Also, the heat of formation of carbon nanotube quantum dots is dependent of the size of a quantum dot. (author)

  20. PROF-DD, Generator of Multigroup Cross-Sections Library DDX for MORSE-DD, ANISN-DD, DOT-DD

    International Nuclear Information System (INIS)

    Mori, Takamasa; Nakagawa, Masayuki; Ishiguro, Yukio

    2002-01-01

    1 - Description of program or function: The code system PROF-DD generates a multi-group double-differential cross section library DDX from evaluated data in ENDF/B-IV or ENDF/B-V format. The system consists of the following five modules: PROF-DDX is the main module of the system. It calculates the multigroup DDX and stores them on a master PDS file. MCFILEF generates a control file for PROF-DDX, which contains energy group and angle bin structures. SPINPTF prepares an input data file for PROF-DDX by combining the control file with other input data. DDXLIBMK edits a DDX library from the master PDS file for transport calculations. RESENDD performs resonance cross section and Doppler broadening calculations. 2 - Restrictions on the complexity of the problem: The numbers of energy groups and angle bins are less than 150 and 40, respectively

  1. MAIL3.1 : a computer program generating cross section sets for SIMCRI, ANISN-JR, KENO IV, KENO V, MULTI-KENO, MULTI-KENO-2 and MULTI-KENO-3.0

    International Nuclear Information System (INIS)

    Suyama, Kenya; Komuro, Yuichi; Takada, Tomoyuki; Kawasaki, Hiromitsu; Ouchi, Keisuke

    1998-02-01

    This report is a user's manual of the computer program MAIL3.1 which generates various types of cross section sets for neutron transport programs such as SIMCRI, ANISN-JR, KENO IV, KENO V, MULTI-KENO, MULTI-KENO-2 and MULTI-KENO-3.0. MAIL3.1 is a revised version of MAIL3.0 that was opened in 1990. It has all of abilities of MAIL3.0 and has two more functions as shown in following. 1. AMPX-type cross section set generating function for KENO V. 2. Enhanced function for user of 16 group Hansen-Roach library. (author)

  2. MAIL3.1 : a computer program generating cross section sets for SIMCRI, ANISN-JR, KENO IV, KENO V, MULTI-KENO, MULTI-KENO-2 and MULTI-KENO-3.0

    Energy Technology Data Exchange (ETDEWEB)

    Suyama, Kenya; Komuro, Yuichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Takada, Tomoyuki; Kawasaki, Hiromitsu; Ouchi, Keisuke

    1998-02-01

    This report is a user`s manual of the computer program MAIL3.1 which generates various types of cross section sets for neutron transport programs such as SIMCRI, ANISN-JR, KENO IV, KENO V, MULTI-KENO, MULTI-KENO-2 and MULTI-KENO-3.0. MAIL3.1 is a revised version of MAIL3.0 that was opened in 1990. It has all of abilities of MAIL3.0 and has two more functions as shown in following. 1. AMPX-type cross section set generating function for KENO V. 2. Enhanced function for user of 16 group Hansen-Roach library. (author)

  3. Quantum Dots

    Science.gov (United States)

    Tartakovskii, Alexander

    2012-07-01

    Part I. Nanostructure Design and Structural Properties of Epitaxially Grown Quantum Dots and Nanowires: 1. Growth of III/V semiconductor quantum dots C. Schneider, S. Hofling and A. Forchel; 2. Single semiconductor quantum dots in nanowires: growth, optics, and devices M. E. Reimer, N. Akopian, M. Barkelid, G. Bulgarini, R. Heeres, M. Hocevar, B. J. Witek, E. Bakkers and V. Zwiller; 3. Atomic scale analysis of self-assembled quantum dots by cross-sectional scanning tunneling microscopy and atom probe tomography J. G. Keizer and P. M. Koenraad; Part II. Manipulation of Individual Quantum States in Quantum Dots Using Optical Techniques: 4. Studies of the hole spin in self-assembled quantum dots using optical techniques B. D. Gerardot and R. J. Warburton; 5. Resonance fluorescence from a single quantum dot A. N. Vamivakas, C. Matthiesen, Y. Zhao, C.-Y. Lu and M. Atature; 6. Coherent control of quantum dot excitons using ultra-fast optical techniques A. J. Ramsay and A. M. Fox; 7. Optical probing of holes in quantum dot molecules: structure, symmetry, and spin M. F. Doty and J. I. Climente; Part III. Optical Properties of Quantum Dots in Photonic Cavities and Plasmon-Coupled Dots: 8. Deterministic light-matter coupling using single quantum dots P. Senellart; 9. Quantum dots in photonic crystal cavities A. Faraon, D. Englund, I. Fushman, A. Majumdar and J. Vukovic; 10. Photon statistics in quantum dot micropillar emission M. Asmann and M. Bayer; 11. Nanoplasmonics with colloidal quantum dots V. Temnov and U. Woggon; Part IV. Quantum Dot Nano-Laboratory: Magnetic Ions and Nuclear Spins in a Dot: 12. Dynamics and optical control of an individual Mn spin in a quantum dot L. Besombes, C. Le Gall, H. Boukari and H. Mariette; 13. Optical spectroscopy of InAs/GaAs quantum dots doped with a single Mn atom O. Krebs and A. Lemaitre; 14. Nuclear spin effects in quantum dot optics B. Urbaszek, B. Eble, T. Amand and X. Marie; Part V. Electron Transport in Quantum Dots Fabricated by

  4. Verification of ANISN-F by calculating the neutron distribution from a Ra-Be source in water as well as by simple criticality calculations

    International Nuclear Information System (INIS)

    Etemad, M.A.

    1981-04-01

    The one dimensional discrete ordinates code ANISN-F was used to calculate the thermal neutron flux distribution in water from a Ra-Be neutron source. The calculations were performed in order to investigate the different possibilities of the code as well as to verify the results of the calculations in terms of comparisons to corresponding experimental data. Two different group cross section libraries were used in the calculations and conclusions were drawn on the adequacy of these libraries for a fixed source type calculation. Furthermore, critically calculations were performed for an infinite homogeneous slab of multiplying material using different angular and spatial approximations. The results of these calculations were then compared to the corresponding results previously obtained at this department by a different method and a different code. (author)

  5. Atmospheric pressure-MOVPE growth of GaSb/GaAs quantum dots

    Science.gov (United States)

    Tile, Ngcali; Ahia, Chinedu C.; Olivier, Jaco; Botha, Johannes Reinhardt

    2018-04-01

    This study focuses on the growth of GaSb/GaAs quantum dots (QD) using an atmospheric pressure MOVPE system. For the best uncapped dots, the average dot height, base diameter and density are 5 nm, 45 nm and 4.5×1010 cm-2, respectively. Capping of GaSb QDs at high temperatures caused flattening and formation of thin inhomogeneous GaSb layer inside GaAs resulting in no obvious QD PL peak. Capping at low temperatures lead to the formation of dot-like features and a wetting layer (WL) with distinct PL peaks for QD and WL at 1097 nm and 983 nm respectively. Some of the dot-like features had voids. An increase in excitation power caused the QD and WL peaks to shift to higher energies. This is attributed to electrostatic band bending leading to triangular potential wells, typical of type-II alignment between GaAs and strained GaSb. Variable temperature PL measurements of the QD sample showed the decrease in the intensity of the WL peak to be faster than that of the QD peak as the temperature increased.

  6. Growth and temperature dependent photoluminescence of InGaAs quantum dot chains

    International Nuclear Information System (INIS)

    Yang, Haeyeon; Kim, Dong-Jun; Colton, John S.; Park, Tyler; Meyer, David; Jones, Aaron M.; Thalman, Scott; Smith, Dallas; Clark, Ken; Brown, Steve

    2014-01-01

    Highlights: • We examine the optical properties of novel quantum dot chains. • Study shows that platelets evolve into quantum dots during heating of the InGaAs platelets encapsulated with GaAs. • Single stack of quantum dots emits light at room temperature. • Quantum dots are of high quality, confirmed by cross-section TEM images and photoluminescence. • Light emission at room temperature weakens beyond the detection limit when the quantum dots form above the critical annealing temperature. - Abstract: We report a study of growth and photoluminescence from a single stack of MBE-grown In 0.4 Ga 0.6 As quantum dot chains. The InGaAs epilayers were grown at a low temperature so that the resulting surfaces remain flat with platelets even though their thicknesses exceed the critical thickness of the conventional Stranski–Krastanov growth mode. The flat InGaAs layers were then annealed at elevated temperatures to induce the formation of quantum dot chains. A reflection high energy electron diffraction study suggests that, when the annealing temperature is at or below 480 °C, the surface of growth front remains flat during the periods of annealing and growth of a 10 nm thick GaAs capping layer. Surprisingly, transmission electron microscopy images do indicate the formation of quantum dot chains, however, so the dot-chains in those samples may form from precursory platelets during the period of temperature ramping and subsequent capping with GaAs due to intermixing of group III elements. The optical emission from the quantum dot layer demonstrates that there is a critical annealing temperature of 480–500 °C above which the properties of the low temperature growth approach are lost, as the optical properties begin to resemble those of quantum dots produced by the conventional Stranski–Krastanov technique

  7. Precursor concentration and temperature controlled formation of polyvinyl alcohol-capped CdSe-quantum dots

    Directory of Open Access Journals (Sweden)

    Chetan P. Shah

    2010-12-01

    Full Text Available Polyvinyl alcohol-capped CdSe quantum dots, with a size within their quantum confinement limit, were prepared in aqueous solution at room temperature, by a simple and environmentally friendly chemical method. The size of the CdSe quantum dots was found to be dependent on the concentrations of the precursors of cadmium and selenium ions, as well as on the aging time and the reaction temperature; all of which could be used conveniently for tuning the size of the particles, as well as their optical properties. The synthesized quantum dots were characterized by optical absorption spectroscopy, fluorescence spectroscopy, X-ray diffraction, atomic force microscopy and transmission electron microscopy. The samples were fluorescent at room temperature; the green fluorescence was assigned to band edge emission, and the near-infrared fluorescence peaks at about 665 and 865 nm were assigned to shallow and deep trap states emissions, respectively. The quantum dots were fairly stable up to several days.

  8. Chemically Triggered Formation of Two-Dimensional Epitaxial Quantum Dot Superlattices

    NARCIS (Netherlands)

    Walravens, Willem; De Roo, Jonathan; Drijvers, Emile; Ten Brinck, Stephanie; Solano, Eduardo; Dendooven, Jolien; Detavernier, Christophe; Infante, Ivan; Hens, Zeger

    2016-01-01

    Two dimensional superlattices of epitaxially connected quantum dots enable size-quantization effects to be combined with high charge carrier mobilities, an essential prerequisite for highly performing QD devices based on charge transport. Here, we demonstrate that surface active additives known to

  9. Electrically Tunable g Factors in Quantum Dot Molecular Spin States

    Science.gov (United States)

    Doty, M. F.; Scheibner, M.; Ponomarev, I. V.; Stinaff, E. A.; Bracker, A. S.; Korenev, V. L.; Reinecke, T. L.; Gammon, D.

    2006-11-01

    We present a magnetophotoluminescence study of individual vertically stacked InAs/GaAs quantum dot pairs separated by thin tunnel barriers. As an applied electric field tunes the relative energies of the two dots, we observe a strong resonant increase or decrease in the g factors of different spin states that have molecular wave functions distributed over both quantum dots. We propose a phenomenological model for the change in g factor based on resonant changes in the amplitude of the wave function in the barrier due to the formation of bonding and antibonding orbitals.

  10. A fabrication guide for planar silicon quantum dot heterostructures

    Science.gov (United States)

    Spruijtenburg, Paul C.; Amitonov, Sergey V.; van der Wiel, Wilfred G.; Zwanenburg, Floris A.

    2018-04-01

    We describe important considerations to create top-down fabricated planar quantum dots in silicon, often not discussed in detail in literature. The subtle interplay between intrinsic material properties, interfaces and fabrication processes plays a crucial role in the formation of electrostatically defined quantum dots. Processes such as oxidation, physical vapor deposition and atomic-layer deposition must be tailored in order to prevent unwanted side effects such as defects, disorder and dewetting. In two directly related manuscripts written in parallel we use techniques described in this work to create depletion-mode quantum dots in intrinsic silicon, and low-disorder silicon quantum dots defined with palladium gates. While we discuss three different planar gate structures, the general principles also apply to 0D and 1D systems, such as self-assembled islands and nanowires.

  11. Fabrication and evaluation of series-triple quantum dots by thermal oxidation of silicon nanowire

    International Nuclear Information System (INIS)

    Uchida, Takafumi; Jo, Mingyu; Tsurumaki-Fukuchi, Atsushi; Arita, Masashi; Takahashi, Yasuo; Fujiwara, Akira

    2015-01-01

    Series-connected triple quantum dots were fabricated by a simple two-step oxidation technique using the pattern-dependent oxidation of a silicon nanowire and an additional oxidation of the nanowire through the gap of the fine gates attached to the nanowire. The characteristics of multi-dot single-electron devices are obtained. The formation of each quantum dot beneath an attached gate is confirmed by analyzing the electrical characteristics and by evaluating the gate capacitances between all pairings of gates and quantum dots. Because the gate electrode is automatically attached to each dot, the device structure benefits from scalability. This technique promises integrability of multiple quantum dots with individual control gates

  12. THEMIS-4: a coherent punctual and multigroup cross section library for Monte Carlo and SN codes from ENDF/B4

    International Nuclear Information System (INIS)

    Dejonghe, G.; Gonnord, J.; Monnier, A.; Nimal, J.C.

    1983-05-01

    The THEMIS cross section processing system has been developped to produce punctual data for MONTE CARLO and coherent multigroup data for SN codes from ENDF/B. The THEMIS-4 data base has been generated from ENDF/B4 using the system and can be accessed by the 3-D Monte Carlo system TRIPOLI-2 and by the SN codes ANISN and DOT. An interpretation of ORNL fusion shielding benchmark is presented

  13. Cleaved-edge overgrowth of aligned quantum dots on strained layers of InGaAs

    International Nuclear Information System (INIS)

    Wasserman, D.; Lyon, S.A.

    2004-01-01

    Strain aligned InAs quantum dots were grown on the cleaved edges of first growth samples containing strained In x Ga (1-x) As layers of varying thickness and indium fraction. The formation of the cleaved-edge quantum dots was observed by means of atomic force microscopy. 100% linear alignment of InAs quantum dots over the InGaAs strain layers of the first growth sample is demonstrated. Linear density of the aligned dots was found to depend on the properties of the underlying InGaAs strain layers. Vertical alignment of an additional InAs quantum dot layer over the buried, linearly aligned, initial dot layer was observed for thin GaAs spacer layers

  14. Design strategy for terahertz quantum dot cascade lasers.

    Science.gov (United States)

    Burnett, Benjamin A; Williams, Benjamin S

    2016-10-31

    The development of quantum dot cascade lasers has been proposed as a path to obtain terahertz semiconductor lasers that operate at room temperature. The expected benefit is due to the suppression of nonradiative electron-phonon scattering and reduced dephasing that accompanies discretization of the electronic energy spectrum. We present numerical modeling which predicts that simple scaling of conventional quantum well based designs to the quantum dot regime will likely fail due to electrical instability associated with high-field domain formation. A design strategy adapted for terahertz quantum dot cascade lasers is presented which avoids these problems. Counterintuitively, this involves the resonant depopulation of the laser's upper state with the LO-phonon energy. The strategy is tested theoretically using a density matrix model of transport and gain, which predicts sufficient gain for lasing at stable operating points. Finally, the effect of quantum dot size inhomogeneity on the optical lineshape is explored, suggesting that the design concept is robust to a moderate amount of statistical variation.

  15. Synthesis and formation mechanistic investigation of nitrogen-doped carbon dots with high quantum yields and yellowish-green fluorescence

    Science.gov (United States)

    Hou, Juan; Wang, Wei; Zhou, Tianyu; Wang, Bo; Li, Huiyu; Ding, Lan

    2016-05-01

    Heteroatom doped carbon dots (CDs) have received increasing attention due to their unique properties and related applications. However, previously reported CDs generally show strong emission only in the blue-light region, thus restricting their further applications. And the fundamental investigation on the preparation process is always neglected. Herein, we have developed a simple and solvent-free synthetic strategy to fabricate nitrogen-doped CDs (N-CDs) from citric acid and dicyandiamide. The as-prepared N-CDs exhibited a uniform size distribution, strong yellowish-green fluorescence emission and a high quantum yield of 73.2%. The products obtained at different formation stages were detailedly characterized by transmission electron microscopy, X-ray diffraction spectrometer, X-ray photoelectron spectroscopy and UV absorbance spectroscopy. A possible formation mechanism has thus been proposed including dehydration, polymerization and carbonization. Furthermore, the N-CDs could serve as a facile and label-free probe for the detection of iron and fluorine ions with detection limits of 50 nmol L-1 and 75 nmol L-1, respectively.Heteroatom doped carbon dots (CDs) have received increasing attention due to their unique properties and related applications. However, previously reported CDs generally show strong emission only in the blue-light region, thus restricting their further applications. And the fundamental investigation on the preparation process is always neglected. Herein, we have developed a simple and solvent-free synthetic strategy to fabricate nitrogen-doped CDs (N-CDs) from citric acid and dicyandiamide. The as-prepared N-CDs exhibited a uniform size distribution, strong yellowish-green fluorescence emission and a high quantum yield of 73.2%. The products obtained at different formation stages were detailedly characterized by transmission electron microscopy, X-ray diffraction spectrometer, X-ray photoelectron spectroscopy and UV absorbance spectroscopy. A

  16. Imaging and Manipulating Energy Transfer Among Quantum Dots at Individual Dot Resolution.

    Science.gov (United States)

    Nguyen, Duc; Nguyen, Huy A; Lyding, Joseph W; Gruebele, Martin

    2017-06-27

    Many processes of interest in quantum dots involve charge or energy transfer from one dot to another. Energy transfer in films of quantum dots as well as between linked quantum dots has been demonstrated by luminescence shift, and the ultrafast time-dependence of energy transfer processes has been resolved. Bandgap variation among dots (energy disorder) and dot separation are known to play an important role in how energy diffuses. Thus, it would be very useful if energy transfer could be visualized directly on a dot-by-dot basis among small clusters or within films of quantum dots. To that effect, we report single molecule optical absorption detected by scanning tunneling microscopy (SMA-STM) to image energy pooling from donor into acceptor dots on a dot-by-dot basis. We show that we can manipulate groups of quantum dots by pruning away the dominant acceptor dot, and switching the energy transfer path to a different acceptor dot. Our experimental data agrees well with a simple Monte Carlo lattice model of energy transfer, similar to models in the literature, in which excitation energy is transferred preferentially from dots with a larger bandgap to dots with a smaller bandgap.

  17. Fabrication of a complex InAs ring-and-dot structure by droplet epitaxy

    International Nuclear Information System (INIS)

    Noda, Takeshi; Mano, Takaaki

    2008-01-01

    An InAs ring structure accompanying the formation of quantum dots (QDs) was fabricated on (1 0 0)GaAs using droplet epitaxy. The QDs were located in the vicinity of the ring, due to the diffusion of In atoms from the In droplets. In addition, the dots were found to have distributed elliptically and preferentially along the [0 1 1] direction, implying that In itself prefers to diffuse along the [0 1 1] direction, which is the opposite of the favorable diffusion orientation of group III atoms on (1 0 0)GaAs under a commonly used As-stabilized growth condition. This is the first observation of a ring structure accompanying the formation of quantum dots in droplet epitaxy

  18. Self-organized template formation for quantum dot ordering

    International Nuclear Information System (INIS)

    Noetzel, Richard; Mano, Takaaki; Wolter, Joachim H.

    2004-01-01

    Ordered arrays of quantum dots (QDs) are created by self-organized anisotropic strain engineering of (In,Ga)As/GaAs quantum wire (QWR) superlattice (SL) templates on exactly oriented GaAs (100) substrates by molecular beam epitaxy (MBE). The well-defined one-dimensional arrays of (In,Ga)As QDs formed on top of these templates due to local strain recognition are of excellent structural and optical quality up to room temperature. The QD arrays thus allow for fundamental studies and device operation principles based on single- and multiple carrier- and photon-, and coherent quantum interference effects

  19. GaAs structures with InAs and As quantum dots produced in a single molecular beam epitaxy process

    International Nuclear Information System (INIS)

    Nevedomskii, V. N.; Bert, N. A.; Chaldyshev, V. V.; Preobrazhenskii, V. V.; Putyato, M. A.; Semyagin, B. R.

    2009-01-01

    Epitaxial GaAs layers containing InAs semiconductor quantum dots and As metal quantum dots are grown by molecular beam epitaxy. The InAs quantum dots are formed by the Stranskii-Krastanow mechanism, whereas the As quantum dots are self-assembled in the GaAs layer grown at low temperature with a large As excess. The microstructure of the samples is studied by transmission electron microscopy. It is established that the As metal quantum dots formed in the immediate vicinity of the InAs semiconductor quantum dots are larger in size than the As quantum dots formed far from the InAs quantum dots. This is apparently due to the effect of strain fields of the InAs quantum dots upon the self-assembling of As quantum dots. Another phenomenon apparently associated with local strains around the InAs quantum dots is the formation of V-like defects (stacking faults) during the overgrowth of the InAs quantum dots with the GaAs layer by low-temperature molecular beam epitaxy. Such defects have a profound effect on the self-assembling of As quantum dots. Specifically, on high-temperature annealing needed for the formation of large-sized As quantum dots by Ostwald ripening, the V-like defects bring about the dissolution of the As quantum dots in the vicinity of the defects. In this case, excess arsenic most probably diffuses towards the open surface of the sample via the channels of accelerated diffusion in the planes of stacking faults.

  20. Ambient-Processed Colloidal Quantum Dot Solar Cells via Individual Pre-Encapsulation of Nanoparticles

    KAUST Repository

    Debnath, Ratan; Tang, Jiang; Barkhouse, D. Aaron; Wang, Xihua; Pattantyus-Abraham, Andras G.; Brzozowski, Lukasz; Levina, Larissa; Sargent, Edward H.

    2010-01-01

    We report colloidal quantum dot solar cells fabricated under ambient atmosphere with an active area of 2.9 mm2 that exhibit 3.6% solar power conversion efficiency. The devices are based on PbS tuned via the quantum size effect to have a first excitonic peak at 950 nm. Because the formation of native oxides and sulfates on PbS leads to p-type doping and deep trap formation and because such dopants and traps dramatically influence device performance, prior reports of colloidal quantum dot solar cells have insisted on processing under an inert atmosphere. Here we report a novel ligand strategy in which we first encapsulate the quantum dots in the solution phase with the aid of a strongly bound N-2,4,6-trimethylphenyl-N-methyldithiocarbamate ligand. This allows us to carry out film formation and all subsequent device fabrication under an air atmosphere. © 2010 American Chemical Society.

  1. Ambient-Processed Colloidal Quantum Dot Solar Cells via Individual Pre-Encapsulation of Nanoparticles

    KAUST Repository

    Debnath, Ratan

    2010-05-05

    We report colloidal quantum dot solar cells fabricated under ambient atmosphere with an active area of 2.9 mm2 that exhibit 3.6% solar power conversion efficiency. The devices are based on PbS tuned via the quantum size effect to have a first excitonic peak at 950 nm. Because the formation of native oxides and sulfates on PbS leads to p-type doping and deep trap formation and because such dopants and traps dramatically influence device performance, prior reports of colloidal quantum dot solar cells have insisted on processing under an inert atmosphere. Here we report a novel ligand strategy in which we first encapsulate the quantum dots in the solution phase with the aid of a strongly bound N-2,4,6-trimethylphenyl-N-methyldithiocarbamate ligand. This allows us to carry out film formation and all subsequent device fabrication under an air atmosphere. © 2010 American Chemical Society.

  2. A study of the responses of neutron dose equivalent survey meters with computer codes

    International Nuclear Information System (INIS)

    Sartori, D.E.; Beer, G.P. de

    1983-01-01

    The ANISN and DOT discrete-ordinates radiation transport codes for one and two dimensions have been proved as effective and simple techniques to study the response of dose equivalent neutron detectors. Comparisons between results of an experimental calibration of the Harwell 95/0075 survey meter and calculated results rendered satisfactory agreement, considering the different techniques and sources of error involved. Possible improvements in the methods and designs and causes of error are discussed. (author)

  3. Resonant photoionization absorption spectra of spherical quantum dots

    CERN Document Server

    Bondarenko, V

    2003-01-01

    We study theoretically the mid-infrared photon absorption spectra due to bound-free transitions of electrons in individual spherical quantum dots. It is established that change of the dot size in one or two atomic layers or/and number of electrons by one or two can change the peak value of the absorption spectra in orders of magnitude and energy of absorbed photons by tens of millielectronvolts. The reason for this is the formation of specific free states, called resonance states. Numerical calculations are performed for quantum dots (QDs) with radius varying up to 200 A, and one to eight electrons occupying the two lowest bound states. It is supposed that realistic QD systems with resonance states would be of much advantage to design novel infrared QD photo-detectors.

  4. Entangled exciton states in quantum dot molecules

    Science.gov (United States)

    Bayer, Manfred

    2002-03-01

    Currently there is strong interest in quantum information processing(See, for example, The Physics of Quantum Information, eds. D. Bouwmeester, A. Ekert and A. Zeilinger (Springer, Berlin, 2000).) in a solid state environment. Many approaches mimic atomic physics concepts in which semiconductor quantum dots are implemented as artificial atoms. An essential building block of a quantum processor is a gate which entangles the states of two quantum bits. Recently a pair of vertically aligned quantum dots has been suggested as optically driven quantum gate(P. Hawrylak, S. Fafard, and Z. R. Wasilewski, Cond. Matter News 7, 16 (1999).)(M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z.R. Wasilewski, O. Stern, and A. Forchel, Science 291, 451 (2001).): The quantum bits are individual carriers either on dot zero or dot one. The different dot indices play the same role as a "spin", therefore we call them "isospin". Quantum mechanical tunneling between the dots rotates the isospin and leads to superposition of these states. The quantum gate is built when two different particles, an electron and a hole, are created optically. The two particles form entangled isospin states. Here we present spectrocsopic studies of single self-assembled InAs/GaAs quantum dot molecules that support the feasibility of this proposal. The evolution of the excitonic recombination spectrum with varying separation between the dots allows us to demonstrate coherent tunneling of carriers across the separating barrier and the formation of entangled exciton states: Due to the coupling between the dots the exciton states show a splitting that increases with decreasing barrier width. For barrier widths below 5 nm it exceeds the thermal energy at room temperature. For a given barrier width, we find only small variations of the tunneling induced splitting demonstrating a good homogeneity within a molecule ensemble. The entanglement may be controlled by application of electromagnetic field. For

  5. In-situ confined formation of NiFe layered double hydroxide quantum dots in expanded graphite for active electrocatalytic oxygen evolution

    Science.gov (United States)

    Guo, Jinxue; Li, Xiaoyan; Sun, Yanfang; Liu, Qingyun; Quan, Zhenlan; Zhang, Xiao

    2018-06-01

    Development of noble-metal-free catalysts towards highly efficient electrochemical oxygen evolution reaction (OER) is critical but challenging in the renewable energy area. Herein, we firstly embed NiFe LDHs quantum dots (QDs) into expanded graphite (NiFe LDHs/EG) via in-situ confined formation process. The interlayer spacing of EG layers acts as nanoreactors for spatially confined formation of NiFe LDHs QDs. The QDs supply huge catalytic sites for OER. The in-situ decoration endows the strong affinity between QDs with EG, thus inducing fast charge transfer. Based on the aforementioned benefits, the designed catalyst exhibits outstanding OER properties, in terms of small overpotential (220 mV required to generate 10 mA cm-2), low Tafel slope, and good durable stability, making it a promising candidate for inexpensive OER catalyst.

  6. ZZ AIRFEWG, Gamma, Neutron Transport Calculation in Air Using FEWG1 Cross-Section

    International Nuclear Information System (INIS)

    1985-01-01

    1 - Description of program or function: Format: ANISN; Number of groups: 37 neutron / 21 gamma-ray; Nuclides: air (79% N and 21% O); Origin: DLC-0031/FEWG1 cross sections (ENDF/B-IV). Weighting spectrum: 1/E. The AIRFEWG library has been generated by an ANISN multigroup calculation of gamma-ray, neutron, and secondary gamma-ray transport in infinite homogeneous air using DLC-0031/FEWG1 cross sections. 2 - Method of solution: The results were generated with a P3, ANISN run with a source in a single energy group. Thus, 58 such runs were required. For sources in the 37 neutron groups, both neutron and secondary gamma-ray fluence results were calculated. For gamma-ray sources only gamma-ray fluences were calculated

  7. Manipulating surface diffusion and elastic interactions to obtain quantum dot multilayer arrangements over different length scales

    Energy Technology Data Exchange (ETDEWEB)

    Placidi, E., E-mail: ernesto.placidi@ism.cnr.it; Arciprete, F. [Istituto di Struttura della Materia, CNR, Via del Fosso del Cavaliere 100, 00133 Rome (Italy); Università di Roma “Tor Vergata”, Dipartimento di Fisica, via della Ricerca Scientifica 1, 00133 Rome (Italy); Latini, V.; Latini, S.; Patella, F. [Università di Roma “Tor Vergata”, Dipartimento di Fisica, via della Ricerca Scientifica 1, 00133 Rome (Italy); Magri, R. [Dipartimento di Scienze Fisiche, Informatiche e Matematiche (FIM), Università di Modena e Reggio Emilia, and Centro S3 CNR-Istituto Nanoscienze, Via Campi 213/A, 4100 Modena (Italy); Scuderi, M.; Nicotra, G. [CNR-IMM, Strada VIII, 5, 95121 Catania (Italy)

    2014-09-15

    An innovative multilayer growth of InAs quantum dots on GaAs(100) is demonstrated to lead to self-aggregation of correlated quantum dot chains over mesoscopic distances. The fundamental idea is that at critical growth conditions is possible to drive the dot nucleation only at precise locations corresponding to the local minima of the Indium chemical potential. Differently from the known dot multilayers, where nucleation of new dots on top of the buried ones is driven by the surface strain originating from the dots below, here the spatial correlations and nucleation of additional dots are mostly dictated by a self-engineering of the surface occurring during the growth, close to the critical conditions for dot formation under the fixed oblique direction of the incoming As flux, that drives the In surface diffusion.

  8. Clustering and percolation threshold in diphase systems of random centered quantum dots of ZnSe

    International Nuclear Information System (INIS)

    Bondar', N.V.

    2009-01-01

    A characteristic feature due to the formation of a percolation phase transition of carriers has been observed in a two-phase system consisting of borosilicate glass with ZnSe quantum dots. For near-threshold quantum-dot concentrations, changes due to microscopic fluctuations of the quantum-dot density have been observed in the intensities of radiation emission bands. This phenomenon is reminiscent of critical opalescence, where similar fluctuations of the density of a pure substance arise near a phase transition. It is proposed that the dielectric mismatch between the matrix and ZnSe plays a large role in the carrier (exciton) delocalization, resulting in the appearance of a 'dielectric trap' on the interface and the formation there of surface states of excitons. The spatial overlapping of states which occurs at the critical concentration of quantum dots results in carrier tunneling and the appearance of a percolation transition in such a system

  9. Electronic transport through a quantum dot chain with strong dot-lead coupling

    International Nuclear Information System (INIS)

    Liu, Yu; Zheng, Yisong; Gong, Weijiang; Gao, Wenzhu; Lue, Tianquan

    2007-01-01

    By means of the non-equilibrium Green function technique, the electronic transport through an N-quantum-dot chain is theoretically studied. By calculating the linear conductance spectrum and the local density of states in quantum dots, we find the resonant peaks in the spectra coincides with the eigen-energies of the N-quantum-dot chain when the dot-lead coupling is relatively weak. With the increase of the dot-lead coupling, such a correspondence becomes inaccurate. When the dot-lead coupling exceeds twice the interdot coupling, such a mapping collapses completely. The linear conductance turn to reflect the eigen-energies of the (N-2)- or (N-1)-quantum dot chain instead. The two peripheral quantum dots do not manifest themselves in the linear conductance spectrum. More interestingly, with the further increase of the dot-lead coupling, the system behaves just like an (N-2)- or (N-1)-quantum dot chain in weak dot-lead coupling limit, since the resonant peaks becomes narrower with the increase of dot-lead coupling

  10. Printer model for dot-on-dot halftone screens

    Science.gov (United States)

    Balasubramanian, Raja

    1995-04-01

    A printer model is described for dot-on-dot halftone screens. For a given input CMYK signal, the model predicts the resulting spectral reflectance of the printed patch. The model is derived in two steps. First, the C, M, Y, K dot growth functions are determined which relate the input digital value to the actual dot area coverages of the colorants. Next, the reflectance of a patch is predicted as a weighted combination of the reflectances of the four solid C, M, Y, K patches and their various overlays. This approach is analogous to the Neugebauer model, with the random mixing equations being replaced by dot-on-dot mixing equations. A Yule-Neilsen correction factor is incorporated to account for light scattering within the paper. The dot area functions and Yule-Neilsen parameter are chosen to optimize the fit to a set of training data. The model is also extended to a cellular framework, requiring additional measurements. The model is tested with a four color xerographic printer employing a line-on-line halftone screen. CIE L*a*b* errors are obtained between measurements and model predictions. The Yule-Neilsen factor significantly decreases the model error. Accuracy is also increased with the use of a cellular framework.

  11. The quantum mechanical description of the dot-dot interaction in ionic colloids

    International Nuclear Information System (INIS)

    Morais, P.C.; Qu, Fanyao

    2007-01-01

    In this study the dot-dot interaction in ionic colloids is systematically investigated by self-consistently solving the coupled Schroedinger and Poisson equations in the frame of finite difference method (FDM). In a first approximation the interacting two-dot system (dimer) is described using the picture of two coupled quantum wells. It was found that the dot-dot interaction changes the colloid characteristic by changing the hopping coefficient (t) and consequently the nanodot surface charge density (σ). The hopping coefficient and the surface charge density were investigated as a function of the dot size and dot-dot distance

  12. Synthesis of colloidal SnSe quantum dots by electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Li Zhen; Peng Liwei; Fang Yaoguo; Chen Zhiwen [Shanghai Applied Radiation Institute, Shanghai University, Shanghai 201800 (China); Pan Dengyu [Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 201800 (China); Wu Minghong, E-mail: mhwu@staff.shu.edu.cn [Shanghai Applied Radiation Institute, Shanghai University, Shanghai 201800 (China)

    2011-12-15

    Water-soluble orthorhombic colloidal SnSe quantum dots with an average diameter of 4 nm were successfully prepared by a novel irradiation route using an electronic accelerator as a radiation source and hexadecyl trimethyl ammonium bromide (CTAB) as a surfactant. The quantum dots exhibit a large direct bandgap of 3.89 eV, greatly blue shifted compared with that of bulk SnSe (1.0 eV) due to the quantum confinement effect. The quantum dots show blue photoluminescence at {approx}420 nm. The influence of CTAB on the growth of the quantum dots was investigated and a possible reaction/growth mechanism was proposed. - Highlights: > A rapid, facile and green strategy is developed to synthesize SnSe QDs. > The raw materials are green and easily obtained. > The surfactant CTAB plays an important role in the formation of SnSe quantum dots. > The obtained SnSe QDs is well-dispersed with the average size of around 4 nm.

  13. A non-genetic approach to labelling acute myeloid leukemia and bone marrow cells with quantum dots.

    Science.gov (United States)

    Zheng, Yanwen; Tan, Dongming; Chen, Zheng; Hu, Chenxi; Mao, Zhengwei J; Singleton, Timothy P; Zeng, Yan; Shao, Xuejun; Yin, Bin

    2014-06-01

    The difficulty in manipulation of leukemia cells has long hindered the dissection of leukemia pathogenesis. We have introduced a non-genetic approach of marking blood cells, using quantum dots. We compared quantum dots complexed with different vehicles, including a peptide Tat, cationic polymer Turbofect and liposome. Quantum dots-Tat showed the highest efficiency of marking hematopoietic cells among the three vehicles. Quantum dots-Tat could also label a panel of leukemia cell lines at varied efficiencies. More uniform intracellular distributions of quantum dots in mouse bone marrow and leukemia cells were obtained with quantum dots-Tat, compared with the granule-like formation obtained with quantum dots-liposome. Our results suggest that quantum dots have provided a photostable and non-genetic approach that labels normal and malignant hematopoietic cells, in a cell type-, vehicle-, and quantum dot concentration-dependent manner. We expect for potential applications of quantum dots as an easy and fast marking tool assisting investigations of various types of blood cells in the future.

  14. Quantum dot-based molecular imaging of cancer cell growth using a clone formation assay.

    Science.gov (United States)

    Geng, Xia-Fei; Fang, Min; Liu, Shao-Ping; Li, Yan

    2016-10-01

    This aim of the present study was to investigate clonal growth behavior and analyze the proliferation characteristics of cancer cells. The MCF‑7 human breast cancer cell line, SW480 human colon cancer cell line and SGC7901 human gastric cancer cell line were selected to investigate the morphology of cell clones. Quantum dot‑based molecular targeted imaging techniques (which stained pan‑cytokeratin in the cytoplasm green and Ki67 in the cell nucleus yellow or red) were used to investigate the clone formation rate, cell morphology, discrete tendency, and Ki67 expression and distribution in clones. From the cell clone formation assay, the MCF‑7, SW480 and SGC7901 cells were observed to form clones on days 6, 8 and 12 of cell culture, respectively. These three types of cells had heterogeneous morphology, large nuclear:cytoplasmic ratios, and conspicuous pathological mitotic features. The cells at the clone periphery formed multiple pseudopodium. In certain clones, cancer cells at the borderline were separated from the central cell clusters or presented a discrete tendency. With quantum dot‑based molecular targeted imaging techniques, cells with strong Ki67 expression were predominantly shown to be distributed at the clone periphery, or concentrated on one side of the clones. In conclusion, cancer cell clones showed asymmetric growth behavior, and Ki67 was widely expressed in clones of these three cell lines, with strong expression around the clones, or aggregated at one side. Cell clone formation assay based on quantum dots molecular imaging offered a novel method to study the proliferative features of cancer cells, thus providing a further insight into tumor biology.

  15. Self-aligned periodic Ni nano dots embedded in nano-oxide layer

    International Nuclear Information System (INIS)

    Doi, M.; Izumi, M.; Kawasaki, S.; Miyake, K.; Sahashi, M.

    2007-01-01

    The Ni nano constriction dots embedded in the Ta-nano-oxide layer (NOL) was prepared by the ion beam sputtering (IBS) method. After the various conditions of the oxidations, the structural analyses of the NOL were performed by RHEED, AES and in situ STM/AFM observations. From the current image of the conductive AFM for NOL, the periodically aligned metallic dots with the size around 5-10 nm were successfully observed. The mechanism of the formation of the self-organized aligned Ni nano constriction dots is discussed from the standpoint of the grain size, the crystal orientation, the preferred oxidation of Ta at the diffused interface

  16. Formation of Si/Ge/Si heterostructures with quantum dots

    International Nuclear Information System (INIS)

    Zinov'ev, V.A.; Dvurechenskij, A.V.; Novikov, P.L.

    2003-01-01

    It is present the Monte Carlo simulation of epitaxial embedding of faceted three-dimensional Ge islands (quantum dots) in a Si matrix. Under a Si flux these islands expand and undergo a shape change (from pyramidal to drop-like shape). The main expansion occurs at initial stage of embedding in Si (deposition of 1-2 monolayers). This change is controlled by surface diffusion. The shape of island can be preserved when one uses the higher Si fluxes. The reason of island conservation lies in blocking of Ge surface diffusion [ru

  17. Quantum dots

    International Nuclear Information System (INIS)

    Kouwenhoven, L.; Marcus, C.

    1998-01-01

    Quantum dots are man-made ''droplets'' of charge that can contain anything from a single electron to a collection of several thousand. Their typical dimensions range from nanometres to a few microns, and their size, shape and interactions can be precisely controlled through the use of advanced nanofabrication technology. The physics of quantum dots shows many parallels with the behaviour of naturally occurring quantum systems in atomic and nuclear physics. Indeed, quantum dots exemplify an important trend in condensed-matter physics in which researchers study man-made objects rather than real atoms or nuclei. As in an atom, the energy levels in a quantum dot become quantized due to the confinement of electrons. With quantum dots, however, an experimentalist can scan through the entire periodic table by simply changing a voltage. In this article the authors describe how quantum dots make it possible to explore new physics in regimes that cannot otherwise be accessed in the laboratory. (UK)

  18. Decoherence and Entanglement Simulation in a Model of Quantum Neural Network Based on Quantum Dots

    Directory of Open Access Journals (Sweden)

    Altaisky Mikhail V.

    2016-01-01

    Full Text Available We present the results of the simulation of a quantum neural network based on quantum dots using numerical method of path integral calculation. In the proposed implementation of the quantum neural network using an array of single-electron quantum dots with dipole-dipole interaction, the coherence is shown to survive up to 0.1 nanosecond in time and up to the liquid nitrogen temperature of 77K.We study the quantum correlations between the quantum dots by means of calculation of the entanglement of formation in a pair of quantum dots on the GaAs based substrate with dot size of 100 ÷ 101 nanometer and interdot distance of 101 ÷ 102 nanometers order.

  19. Record Charge Carrier Diffusion Length in Colloidal Quantum Dot Solids via Mutual Dot-To-Dot Surface Passivation.

    Science.gov (United States)

    Carey, Graham H; Levina, Larissa; Comin, Riccardo; Voznyy, Oleksandr; Sargent, Edward H

    2015-06-03

    Through a combination of chemical and mutual dot-to-dot surface passivation, high-quality colloidal quantum dot solids are fabricated. The joint passivation techniques lead to a record diffusion length for colloidal quantum dots of 230 ± 20 nm. The technique is applied to create thick photovoltaic devices that exhibit high current density without losing fill factor. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Nonlinear Dot Plots.

    Science.gov (United States)

    Rodrigues, Nils; Weiskopf, Daniel

    2018-01-01

    Conventional dot plots use a constant dot size and are typically applied to show the frequency distribution of small data sets. Unfortunately, they are not designed for a high dynamic range of frequencies. We address this problem by introducing nonlinear dot plots. Adopting the idea of nonlinear scaling from logarithmic bar charts, our plots allow for dots of varying size so that columns with a large number of samples are reduced in height. For the construction of these diagrams, we introduce an efficient two-way sweep algorithm that leads to a dense and symmetrical layout. We compensate aliasing artifacts at high dot densities by a specifically designed low-pass filtering method. Examples of nonlinear dot plots are compared to conventional dot plots as well as linear and logarithmic histograms. Finally, we include feedback from an expert review.

  1. Evolution of excitonic states in two-phase systems with quantum dots of II-VI semiconductors near the percolation threshold

    Science.gov (United States)

    Bondar, N. V.; Brodyn, M. S.

    2010-03-01

    In two-phase disordered media composed of borosilicate glass with ZnSe or CdS quantum dots, the formation of a phase percolation transition of carriers for near-threshold concentrations that are manifested in optical spectra has been observed. Microscopic fluctuations of the quantum-dot density near the percolation threshold were found that resembled the phenomenon of critical opalescence, where similar fluctuations of the density of a pure substance appear near to a phase transition. It is proposed that the dielectric mismatch between a matrix and ZnSe or CdS quantum dots plays a significant role in the carrier (exciton) delocalization, resulting in the appearance of a “dielectric Coulomb trap” beyond the QD border and the formation of surface states of excitons. The spatial overlapping of excitonic states at the critical density of quantum dots results in a tunneling of carriers and the formation of a phase percolation transition in such media.

  2. Spectroscopic characteristics of carbon dots (C-dots) derived from carbon fibers and conversion to sulfur-bridged C-dots nanosheets.

    Science.gov (United States)

    Vinci, John C; Ferrer, Ivonne M; Guterry, Nathan W; Colón, Verónica M; Destino, Joel F; Bright, Frank V; Colón, Luis A

    2015-09-01

    We synthesized sub-10 nm carbon nanoparticles (CNPs) consistent with photoluminescent carbon dots (C-dots) from carbon fiber starting material. The production of different C-dots fractions was monitored over seven days. During the course of the reaction, one fraction of C-dots species with relatively high photoluminescence was short-lived, emerging during the first hour of reaction but disappearing after one day of reaction. Isolation of this species during the first hour of the reaction was crucial to obtaining higher-luminescent C-dots species. When the reaction proceeded for one week, the appearance of larger nanostructures was observed over time, with lateral dimensions approaching 200 nm. The experimental evidence suggests that these larger species are formed from small C-dot nanoparticles bridged together by sulfur-based moieties between the C-dot edge groups, as if the C-dots polymerized by cross-linking the edge groups through sulfur bridges. Their size can be tailored by controlling the reaction time. Our results highlight the variety of CNP products, from sub-10 nm C-dots to ~200 nm sulfur-containing carbon nanostructures, that can be produced over time during the oxidation reaction of the graphenic starting material. Our work provides a clear understanding of when to stop the oxidation reaction during the top-down production of C-dots to obtain highly photoluminescent species or a target average particle size.

  3. Characterization of electronic charged states of P-doped Si quantum dots using AFM/Kelvin probe

    International Nuclear Information System (INIS)

    Makihara, Katsunori; Xu, Jun; Ikeda, Mitsuhisa; Murakami, Hideki; Higashi, Seiichiro; Miyazaki, Seiichi

    2006-01-01

    Phosphorous doping to Si quantum dots was performed by a pulse injection of 1% PH 3 diluted with He during the dot formation on thermally grown SiO 2 from thermal decomposition of pure SiH 4 , and electron charging to and discharging from P-doped Si dots were studied to characterize their electronic charged states using a Kelvin probe technique in atomic force microscopy (AFM). The potential change corresponding to the extraction of one electron from each of the P-doped Si dots was observed after applying a tip bias as low as + 0.2 V while for undoped Si dots, with almost the same size as P-doped Si dots, almost the same amount of the potential change was detectable only when the tip bias was increased to ∼ 1 V. It is likely that, for P-doped Si dots, the electron extraction from the conduction band occurs and results in a positively charged state with ionized P donor

  4. A point-kernel shielding code for calculations of neutron and secondary gamma-ray 1cm dose equivalents: PKN

    International Nuclear Information System (INIS)

    Kotegawa, Hiroshi; Tanaka, Shun-ichi

    1991-09-01

    A point-kernel integral technique code, PKN, and the related data library have been developed to calculate neutron and secondary gamma-ray dose equivalents in water, concrete and iron shields for neutron sources in 3-dimensional geometry. The comparison between calculational results of the present code and those of the 1-dimensional transport code ANISN = JR, and the 2-dimensional transport code DOT4.2 showed a sufficient accuracy, and the availability of the PKN code has been confirmed. (author)

  5. ZnS semiconductor quantum dots production by an endophytic fungus Aspergillus flavus

    Energy Technology Data Exchange (ETDEWEB)

    Uddandarao, Priyanka, E-mail: uddandaraopriyanka@gmail.com; B, Raj Mohan, E-mail: rajmohanbala@gmail.com

    2016-05-15

    Graphical abstract: - Highlights: • Endophytic fungus Aspergillus flavus isolated from a medicinal plant Nothapodytes foetida was used for the synthesis of quantum dots. • Morris-Weber kinetic model and Lagergren's pseudo-first-order rate equation were used to study the biosorption kinetics. • Polycrystalline ZnS quantum dots of 18 nm and 58.9 nm from TEM and DLS, respectively. - Abstract: The development of reliable and eco-friendly processes for the synthesis of metal sulphide quantum dots has been considered as a major challenge in the field of nanotechnology. In the present study, polycrystalline ZnS quantum dots were synthesized from an endophytic fungus Aspergillus flavus. It is noteworthy that apart from being rich sources of bioactive compounds, endophytic fungus also has the ability to mediate the synthesis of nanoparticles. TEM and DLS revealed the formation of spherical particles with an average diameter of about 18 nm and 58.9 nm, respectively. The ZnS quantum dots were further characterized using SEM, EDAX, XRD, UV–visible spectroscopy and FTIR. The obtained results confirmed the synthesis of polycrystalline ZnS quantum dots and these quantum dots are used for studying ROS activity. In addition this paper explains kinetics of metal sorption to study the role of biosorption in synthesis of quantum dots by applying Morris-Weber kinetic model. Since Aspergillus flavus is isolated from a medicinal plant Nothapodytes foetida, quantum dots synthesized from this fungus may have great potential in broad environmental and medical applications.

  6. Quasibound states in graphene quantum-dot nanostructures generated by concentric potential barrier rings

    International Nuclear Information System (INIS)

    Jiang Zhao-Tan; Yu Cheng-Long; Dong Quan-Li

    2012-01-01

    We study the quasibound states in a graphene quantum-dot structure generated by the single-, double-, and triple-barrier electrostatic potentials. It is shown that the strongest quasibound states are mainly determined by the innermost barrier. Specifically, the positions of the quasibound states are determined by the barrier height, the number of the quasibound states is determined by the quantum-dot radius and the angular momentum, and the localization degree of the quasibound states is influenced by the width of the innermost barrier, as well as the outside barriers. Furthermore, according to the study on the double- and triple-barrier quantum dots, we find that an effective way to generate more quasibound states with even larger energy level spacings is to design a quantum dot defined by many concentric barriers with larger barrier-height differences. Last, we extend our results into the quantum dot of many barriers, which gives a complete picture about the formation of the quasibound states in the kind of graphene quantum dot created by many concentric potential barrier rings. (rapid communication)

  7. Detection of DNA via the fluorescence quenching of Mn-doped ZnSe D-dots/doxorubicin/DNA ternary complexes system.

    Science.gov (United States)

    Gao, Xue; Niu, Lu; Su, Xingguang

    2012-01-01

    This manuscript reports a method for the detection of double-stranded DNA, based on Mn:ZnSe d-dots and intercalating agent doxorubicin (DOX). DOX can quench the photoluminescence (PL) of Mn:ZnSe d-dots through photoinduced electron transfer process, after binding with Mn:ZnSe d-dots. The addition of DNA can result in the formation of the Mn:ZnSe d-dots-DOX-DNA ternary complexes, the fluorescence of the Mn:ZnSe d-dots-DOX complexes would be further quenched by the addition of DNA, thus allowing the detection of DNA. The formation mechanism of the Mn:ZnSe d-dots-DOX-DNA ternary complexes was studied in detail in this paper. Under optimal conditions, the quenched fluorescence intensity of Mn:ZnSe d-dots-DOX system are perfectly described by Stern-Volmer equation with the concentration of hsDNA ranging from 0.006 μg mL(-1) to 6.4 μg mL(-1). The detection limit (S/N = 3) for hsDNA is 0.5 ng mL(-1). The proposed method was successfully applied to the detection of DNA in synthetic samples and the results were satisfactory.

  8. Neutron multiplication and shielding problems in PWR spent-fuel shipping casks

    International Nuclear Information System (INIS)

    Devillers, C.

    1976-01-01

    In order to evaluate the degree of accuracy of computational methods used for the shield design of spent-fuel shipping casks, comparisons were made between biological dose rate calculations and measurements at the surface of a cask carrying three PWR fuel assemblies (the fuel being successively wet and dry). The experimental methods used provide ksub(eff) with an accuracy of 0.024. Neutron multiplication coefficients provided by the APOLLO and DOT-3 codes are located within the uncertainty range of the experimentally derived values. The APOLLO plus DOT codes for neutron source calculations and ANISN plus DOT codes for neutron transmission calculations provide neutron dose rate predictions in agreement with measurements to within 10%. The PEPIN 76 code used for deriving fission product γ-rays and the point kernel code MERCURE 4 treating the γ-ray transmission give γ dose rate predictions that generally differ from measurements by less than 25%

  9. Quantum Dots Embedded in Graphene Nanoribbons by Chemical Substitution

    DEFF Research Database (Denmark)

    Carbonell-Sanroma, Eduard; Brandimarte, Pedro; Balog, Richard

    2017-01-01

    Bottom-up chemical reactions of selected molecular precursors on a gold surface can produce high quality graphene nanoribbons (GNRs). Here, we report on the formation of quantum dots embedded in an armchair GNR by substitutional inclusion of pairs of boron atoms into the GNR backbone. The boron...

  10. Surface processes during purification of InP quantum dots

    Directory of Open Access Journals (Sweden)

    Natalia Mordvinova

    2014-08-01

    Full Text Available Recently, a new simple and fast method for the synthesis of InP quantum dots by using phosphine as phosphorous precursor and myristic acid as surface stabilizer was reported. Purification after synthesis is necessary to obtain samples with good optical properties. Two methods of purification were compared and the surface processes which occur during purification were studied. Traditional precipitation with acetone is accompanied by a small increase in photoluminescence. It occurs that during the purification the hydrolysis of the indium precursor takes place, which leads to a better surface passivation. The electrophoretic purification technique does not increase luminescence efficiency but yields very pure quantum dots in only a few minutes. Additionally, the formation of In(OH3 during the low temperature synthesis was explained. Purification of quantum dots is a very significant part of postsynthetical treatment that determines the properties of the material. But this subject is not sufficiently discussed in the literature. The paper is devoted to the processes that occur at the surface of quantum dots during purification. A new method of purification, electrophoresis, is investigated and described in particular.

  11. Proton exchange mechanism of synthesizing CdS quantum dots in nafion

    International Nuclear Information System (INIS)

    Nandakumar, P.; Vijayan, C.; Murti, Y.V.G.S.; Dhanalakshmi, K.; Sundararajan, G.

    1999-01-01

    Nanocrystals of CdS are synthesized in the proton exchange membrane nafion in different sizes in the range 1.6 to 6 nm. To understand the process leading to the formation of these quantum dots, we have probed the proton exchange by ac conductance measurements in the frequency range 100 Hz to 13 MHz. Nafion shows good electrical conductivity due to proton transport probably via the Grothus mechanism. Incorporation of cadmium ions by replacement of the hydrogen ions in the sulphonic acid group resulted in a large decrease in conductance indicating the reduction of the mobile carrier density. The conductivity plots all show strong frequency dependence with higher conductance towards the higher frequencies where a near-flat frequency response is seen. After the formation of CdS clusters, there is a partial recovery of conductance corresponding to the reinstatement of the protonic carriers on the side groups. The conductivity of the nafion films embedded with the semiconductor quantum dots exhibits a size-dependence with the highest conductivity obtained for the largest clusters. These findings lend clear experimental evidence for the model of synthesis of quantum dots in nafion by the exchange mechanism. (author)

  12. Novel cookie-with-chocolate carbon dots displaying extremely acidophilic high luminescence

    Science.gov (United States)

    Lu, Siyu; Zhao, Xiaohuan; Zhu, Shoujun; Song, Yubin; Yang, Bai

    2014-10-01

    A fluorescent carbon dot with a cookie-with-chocolate film structure (about 5 × 5 μm2) showed a high fluorescence quantum yield (61.12%) at low pH. It was hydrothermally synthesized from l-serine and l-tryptophan. The formation mechanism of the film with carbon dots (CDs) was investigated. The film structure was formed by hydrogen bonding and π-π stacking interactions between aromatic rings. The strong blue fluorescence of the CDs increased under strong acidic conditions owing to the changes in the N-groups. These cookie-like CDs are attractive for their potential use as effective fluorescent probes for the sensitive detection of aqueous H+ and Fe3+.A fluorescent carbon dot with a cookie-with-chocolate film structure (about 5 × 5 μm2) showed a high fluorescence quantum yield (61.12%) at low pH. It was hydrothermally synthesized from l-serine and l-tryptophan. The formation mechanism of the film with carbon dots (CDs) was investigated. The film structure was formed by hydrogen bonding and π-π stacking interactions between aromatic rings. The strong blue fluorescence of the CDs increased under strong acidic conditions owing to the changes in the N-groups. These cookie-like CDs are attractive for their potential use as effective fluorescent probes for the sensitive detection of aqueous H+ and Fe3+. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03965c

  13. Shielding calculation techniques used in the design of fuel storage systems

    International Nuclear Information System (INIS)

    Wang, S.S.; Massey, J.V.

    1986-01-01

    This paper addresses the shielding design and analysis of a concrete modular spent fuel storage system. Particular attention is given to comparing various computation techniques in determining bulk shielding thickness, and also in dealing with the radiation streaming effect through the air exit penetration openings in the module. Three computer codes QADMOD, ANISN, and DOT-IV were used to solve the same problem. In addition, hand albedo calculation were done to augment the result of the QADMOD calculation to properly deal with the surface scattering

  14. Shielding calculation techniques used in the design of storage systems

    International Nuclear Information System (INIS)

    Wang, S.S.; Massey, J.V.

    1986-01-01

    The shielding design and analysis of a concrete modular spent fuel storage system are discussed. Particular attention is given to comparing various computation techniques in determining bulk shielding thickness, and also in dealing with the radiation streaming effect through the air exist penetration openings in the module. Three computer codes QADMOD, ANISN, and DOT-IV were used to solve the same problem. In addition, hand albedo calculation were done to augment the result of the QADMOD calculation to properly deal with the surface scattering

  15. Phosphine-free synthesis and characterization of type-II ZnSe/CdS core-shell quantum dots

    Science.gov (United States)

    Ghasemzadeh, Roghayyeh; Armanmehr, Mohammad Hasan; Abedi, Mohammad; Fateh, Davood Sadeghi; Bahreini, Zaker

    2018-01-01

    A phosphine-free route for synthesis of type-II ZnSe/CdS core-shell quantum dots, using green, low cost and environmentally friendly reagents and phosphine-free solvents such as 1-octadecene (ODE) and liquid paraffin has been reported. Hot-injection technique has been used for the synthesis of ZnSe core quantum dots. The CdS shell quantum dots prepared by reaction of CdO precursor and S powder in 1-octadecene (ODE). The ZnSe/CdS core-shell quantum dots were synthesized via successive ion layer adsorption and reaction (SILAR) technique. The characterization of produced quantum dots were performed by absorption and fluorescence spectroscopy, X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX) and transmission electron microscopy (TEM). The results showed the formation of type-II ZnSe/CdS core-shell quantum dots with FWHM 32 nm and uniform size distribution.

  16. Resonant Raman scattering of ZnS, ZnO, and ZnS/ZnO core/shell quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Milekhin, A.G. [Institute of Semiconductor Physics, Novosibirsk (Russian Federation); Novosibirsk State University, Novosibirsk (Russian Federation); Yeryukov, N.A.; Sveshnikova, L.L.; Duda, T.A. [Institute of Semiconductor Physics, Novosibirsk (Russian Federation); Himcinschi, C. [TU Bergakademie Freiberg, Institut fuer Theoretische Physik, Freiberg (Germany); Zenkevich, E.I. [Belarussian National Technical University, Minsk (Belarus); Zahn, D.R.T. [Chemnitz University of Technology, Semiconductor Physics, Chemnitz (Germany)

    2012-05-15

    Resonant Raman scattering by optical phonon modes as well as their overtones was investigated in ZnS and ZnO quantum dots grown by the Langmuir-Blodgett technique. The in situ formation of ZnS/ZnO core/shell quantum dots was monitored by Raman spectroscopy during laser illumination. (orig.)

  17. TOPICS-B, Neutron and Gamma Cross-Sections Library Handling in FIDO Format

    International Nuclear Information System (INIS)

    Wasastjerna, Frej

    2003-01-01

    1 - Description of program or function: The program is intended to manipulate working format neutron and/or gamma cross section libraries, carrying out such operations as mixing materials, deleting unneeded groups, inserting response cross sections or whatever the user may require. It has been designed to make it easy to include new modules to cope with new requirements. The cross section libraries involved should preferably be in ANISN format, but if they are not, this too can be handled by adding new modules as needed. This program is intended to supersede TOPICS (NEA-1406). TOPICS was intended for interactive use, but experience has shown that using it is somewhat difficult. Therefore it was redesigned for batch use (the input is written to a file and the program is then run using that file, instead of reading input directly from the keyboard). 2 - Method of solution: Each required operation is performed by a separate module (a set of subprograms). 3 - Restrictions on the complexity of the problem: Essentially none, variable dimensioning is used. However, TOPICS-B is not intended to be applied to basic nuclear data libraries (such as the ENDF/B series) or to flexible format libraries (e.g., the VITAMIN series). It is intended only for working format libraries like the BUGLE series

  18. Formation of quantum wires and dots on InP(001) by As/P exchange

    International Nuclear Information System (INIS)

    Yang, Haeyeon; Ballet, P.; Salamo, G. J.

    2001-01-01

    We report on the use of in situ scanning tunneling microscopy to study As/P exchange on InP(001) surfaces by molecular beam epitaxy. Results demonstrate that the exchange process can be controlled to selectively produce either quantum wires or quantum dots. 15 nm wide self-assembled nanowires are observed, and they are elongated along the dimer row direction of the InP(001)-2x4 surface with a length of over 1 μm and flat top 2x4 surfaces. In addition, when the nanowires are annealed with no arsenic overpressure, the surface reconstruction transforms from 2x4 to 4x2 and the nanowires transform into dots with a rectangular base and flat top. [copyright] 2001 American Institute of Physics

  19. Application of Inkjet Printing in High-Density Pixelated RGB Quantum Dot-Hybrid LEDs

    KAUST Repository

    Haverinen, Hanna

    2012-05-23

    Recently, an intriguing solution to obtain better color purity has been to introduce inorganic emissive quantum dots (QDs) into an otherwise OLED structure. The emphasis of this chapter is to present a simple discussion of the first attempts to fabricate high-density, pixelated (quarter video graphics array (QVGA) format), monochromatic and RGB quantum dots light-emitting diodes (QDLEDs), where inkjet printing is used to deposit the light-emitting layer of QDs. It shows some of the factors that have to be considered in order to achieve the desired accuracy and printing quality. The successful operation of the RGB printed devices indicates the potential of the inkjet printing approach in the fabrication of full-color QDLEDs for display application. However, further optimization of print quality is still needed in order to eliminate the formation of pinholes, thus maximizing energy transfer from organic layers to the QDs and in turn increasing the performance of the devices. Controlled Vocabulary Terms: ink jet printing; LED displays; LED lamps; organic light emitting diodes; quantum dots

  20. Transport in quantum dots

    International Nuclear Information System (INIS)

    Deus, Fernanda; Continetino, Mucio

    2011-01-01

    Full text. In this work we study the time dependent transport in interacting quantum dot. This is a zero-dimensional nano structure system which has quantized electronic states. In our purpose, we are interested in studying such system in a Coulomb blockade regime where a mean-field treatment of the electronic correlations are appropriate. The quantum dot is described by an Anderson type of Hamiltonian where the hybridization term arises from the contact with the leads. We consider a time dependence of both the energy of the localized state in the quantum dot and of the hybridization-like term. These time dependent parameters, under certain conditions, induce a current in the quantum dot even in the absence of difference on the chemical potential of the leads. The approach to this non-equilibrium problem requires the use of a Keldysh formalism. We calculate the non- equilibrium Green's functions and obtain results for the average (equilibrium term) and the non-equilibrium values of the electronic occupation number in the dot. we consider the possibility of a magnetic solution, with different values for the average up and down spins in the quantum dot. Our results allow to obtain, for instance, the tunneling current through the dot. The magnetic nature of the dot, for a certain range of parameters should give rise also to an induced spin current through the dot

  1. Synthesis of blue photoluminescent WS2 quantum dots via ultrasonic cavitation

    International Nuclear Information System (INIS)

    Bayat, A.; Saievar-Iranizad, E.

    2017-01-01

    Blue photoluminescent WS 2 quantum dots (QDs) were synthesized using a simple top-down method from natural raw mineral tungsten disulfide via tip ultrasonication followed by centrifugation in a water-ethanol (0.7/0.3 ratio) as eco-friendly solvent. Cavitation process at a high power (300 W) led to the breaking of bulk WS 2 flakes to its quantum dots. The as synthesized WS 2 QDs showed blue photoluminescence upon UV excitation. The synthesized WS 2 QDs were analysed by UV–vis and photoluminescence spectrophotometry, transmission electron microscopy, atomic force microscopy and X-ray diffraction. According to the transmission electron microscopy images, the size of WS 2 QDs was obtained as 5 nm in average. - Highlights: •Large scale blue photoluminescent WS 2 quantum dots was synthesized using Ultrasonic probe (Cavitation Process). •A solution of water/ethanol (0.7/0.3) was used as eco-friendly solvent instead of unsuitable solvent such as NMP and ACN. •Edges of bulk WS 2 was increased with formation of its quantum dots. •Solution of WS 2 QDs was stable after 6 months.

  2. Spatially correlated two-dimensional arrays of semiconductor and metal quantum dots in GaAs-based heterostructures

    International Nuclear Information System (INIS)

    Nevedomskiy, V. N.; Bert, N. A.; Chaldyshev, V. V.; Preobrazhernskiy, V. V.; Putyato, M. A.; Semyagin, B. R.

    2015-01-01

    A single molecular-beam epitaxy process is used to produce GaAs-based heterostructures containing two-dimensional arrays of InAs semiconductor quantum dots and AsSb metal quantum dots. The twodimensional array of AsSb metal quantum dots is formed by low-temperature epitaxy which provides a large excess of arsenic in the epitaxial GaAs layer. During the growth of subsequent layers at a higher temperature, excess arsenic forms nanoinclusions, i.e., metal quantum dots in the GaAs matrix. The two-dimensional array of such metal quantum dots is created by the δ doping of a low-temperature GaAs layer with antimony which serves as a precursor for the heterogeneous nucleation of metal quantum dots and accumulates in them with the formation of AsSb metal alloy. The two-dimensional array of InAs semiconductor quantum dots is formed via the Stranski–Krastanov mechanism at the GaAs surface. Between the arrays of metal and semiconductor quantum dots, a 3-nm-thick AlAs barrier layer is grown. The total spacing between the arrays of metal and semiconductor quantum dots is 10 nm. Electron microscopy of the structure shows that the arrangement of metal quantum dots and semiconductor quantum dots in the two-dimensional arrays is spatially correlated. The spatial correlation is apparently caused by elastic strain and stress fields produced by both AsSb metal and InAs semiconductor quantum dots in the GaAs matrix

  3. Modeling of the quantum dot filling and the dark current of quantum dot infrared photodetectors

    International Nuclear Information System (INIS)

    Ameen, Tarek A.; El-Batawy, Yasser M.; Abouelsaood, A. A.

    2014-01-01

    A generalized drift-diffusion model for the calculation of both the quantum dot filling profile and the dark current of quantum dot infrared photodetectors is proposed. The confined electrons inside the quantum dots produce a space-charge potential barrier between the two contacts, which controls the quantum dot filling and limits the dark current in the device. The results of the model reasonably agree with a published experimental work. It is found that increasing either the doping level or the temperature results in an exponential increase of the dark current. The quantum dot filling turns out to be nonuniform, with a dot near the contacts containing more electrons than one in the middle of the device where the dot occupation approximately equals the number of doping atoms per dot, which means that quantum dots away from contacts will be nearly unoccupied if the active region is undoped

  4. Morphological evolution of Ge/Si(001) quantum dot rings formed at the rim of wet-etched pits.

    Science.gov (United States)

    Grydlik, Martyna; Brehm, Moritz; Schäffler, Friedrich

    2012-10-30

    We demonstrate the formation of Ge quantum dots in ring-like arrangements around predefined {111}-faceted pits in the Si(001) substrate. We report on the complex morphological evolution of the single quantum dots contributing to the rings by means of atomic force microscopy and demonstrate that by careful adjustment of the epitaxial growth parameters, such rings containing densely squeezed islands can be grown with large spatial distances of up to 5 μm without additional nucleation of randomly distributed quantum dots between the rings.

  5. Effect of swift heavy ion irradiation on bare and coated ZnS quantum dots

    International Nuclear Information System (INIS)

    Chowdhury, S.; Hussain, A.M.P.; Ahmed, G.A.; Singh, F.; Avasthi, D.K.; Choudhury, A.

    2008-01-01

    The present study compares structural and optical modifications of bare and silica (SiO 2 ) coated ZnS quantum dots under swift heavy ion (SHI) irradiation. Bare and silica coated ZnS quantum dots were prepared following an inexpensive chemical route using polyvinyl alcohol (PVA) as the dielectric host matrix. X-ray diffraction (XRD) and transmission electron microscopy (TEM) study of the samples show the formation of almost spherical ZnS quantum dots. The UV-Vis absorption spectra reveal blue shift relative to bulk material in absorption energy while photoluminescence (PL) spectra suggests that surface state and near band edge emissions are dominating in case of bare and coated samples, respectively. Swift heavy ion irradiation of the samples was carried out with 160 MeV Ni 12+ ion beam with fluences 10 12 to 10 13 ions/cm 2 . Size enhancement of bare quantum dots after irradiation has been indicated in XRD and TEM analysis of the samples which has also been supported by optical absorption spectra. However similar investigations on irradiated coated quantum dots revealed little change in quantum dot size and emission. The present study thus shows that the coated ZnS quantum dots are stable upon SHI irradiation compared to the bare one

  6. Neutron dose rate in the upper part of a PWR containment. Comparison between measurements and TRIPOLI-2 calculations

    International Nuclear Information System (INIS)

    Vergnaud, T.; Bourdet, L.; Gonnord, J.; Nimal, J.C.; Champion, G.

    1984-01-01

    Conception of a reactor building requires large openings in the primary concrete shield for a postulated loss-of-coolant accident. Through these openings neutrons escape and produce dose rates in several parts of the reactor building. Some calculations using ANISN, DOT and essentially TRIPOLI-2 codes allow to compute the neutron dose rates at several places such as reactor containment operating floor and containment annulus. Some complementary shields are provided and the instrumentations are placed in area where the dose rate is lower. Comparisons are presented between measurements and calculations

  7. Evaluation of the computer code system RADHEAT-V4 by analysing benchmark problems on radiation shielding

    International Nuclear Information System (INIS)

    Sakamoto, Yukio; Naito, Yoshitaka

    1990-11-01

    A computer code system RADHEAT-V4 has been developed for safety evaluation on radiation shielding of nuclear fuel facilities. To evaluate the performance of the code system, 18 benchmark problem were selected and analysed. Evaluated radiations are neutron and gamma-ray. Benchmark problems consist of penetration, streaming and skyshine. The computed results show more accurate than those by the Sn codes ANISN and DOT3.5 or the Monte Carlo code MORSE. Big core memory and many times I/O are, however, required for RADHEAT-V4. (author)

  8. Study on the dose distribution of the mixed field with thermal and epi-thermal neutrons for neutron capture therapy

    International Nuclear Information System (INIS)

    Kobayashi, Tooru; Sakurai, Yoshinori; Kanda, Keiji

    1994-01-01

    Simulation calculations using DOT 3.5 were carried out in order to confirm the characteristics of depth-dependent dose distribution in water phantom dependent on incident neutron energy. The epithermal neutrons mixed to thermal neutron field is effective improving the thermal neutron depth-dose distribution for neutron capture therapy. A feasibility study on the neutron energy spectrum shifter was performed using ANISN-JR for the KUR Heavy Water Facility. The design of the neutron spectrum shifter is feasible, without reducing the performance as a thermal neutron irradiation field. (author)

  9. DOT's CAFE rulemaking analysis.

    Science.gov (United States)

    2013-02-13

    Presentation discusses what DOT needs to consider in setting CAFE standards. How DOT's use of the CAFE Compliance and Effects Modeling System helps to analyze potential CAFE Standards. How DOT might approach the next round of CAFE standards for model...

  10. Satellitesimal Formation via Collisional Dust Growth in Steady Circumplanetary Disks

    Science.gov (United States)

    Shibaike, Yuhito; Okuzumi, Satoshi; Sasaki, Takanori; Ida, Shigeru

    2017-09-01

    The icy satellites around Jupiter are considered to have formed in a circumplanetary disk. While previous models have focused on the formation of the satellites starting from satellitesimals, the question of how satellitesimals themselves form from smaller dust particles has not yet been addressed. In this work, we study the possibility that satellitesimals form in situ in a circumplanetary disk. We calculate the radial distribution of the surface density and representative size of icy dust particles that grow by colliding with each other and drift toward the central planet in a steady circumplanetary disk with a continuous supply of gas and dust from the parent protoplanetary disk. The radial drift barrier is overcome if the ratio of the dust-to-gas accretion rates onto the circumplanetary disk, {\\dot{M}}{{d}}/{\\dot{M}}{{g}}, is high and the strength of turbulence, α, is not too low. The collision velocity is lower than the critical velocity of fragmentation when α is low. Taken together, we find that the conditions for satellitesimal formation via dust coagulation are given by {\\dot{M}}{{d}}/{\\dot{M}}{{g}}≥slant 1 and {10}-4≤slant α aggregates nor via streaming instability is viable as long as {\\dot{M}}{{d}}/{\\dot{M}}{{g}} is low.

  11. Electrochemical tuning of optical properties of graphitic quantum dots

    International Nuclear Information System (INIS)

    Ge, Juan; Li, Yan; Zhang, Bo-Ping; Ma, Ning; Wang, Jun; Pu, Chang; Xiang, Ying-Chang

    2015-01-01

    Graphitic quantum dots (GQDs), as a new class of quantum dots, possess unique properties. Among the various reported approaches for their fabrication, electrochemical method possesses numerous advantages compared with others. In particular, the formation process of the GQDs could be precisely controlled by this method through adjusting the electrochemical parameters and environment. In this study, GQDs with multi-color fluorescence (FL) were obtained by this method through tuning only the applied potential window of cycling voltammetry. The luminescence mechanism of those GQDs was discussed and explained by the ultraviolet (UV)–visible, photoluminescence (PL), and photoluminescence excitation (PLE) spectra. The influence of the applied potential window on the PL properties of GQDs and the relationship between the degree of surface oxidation and PL properties were also investigated. - Highlights: • We produced the graphite quantum dots (GQDs) by an electrochemical method. • We changed the applied potentials of cycling voltammetry (CV). • Varying of applied potentials changed surface oxygen-containing groups of GQDs. • Higher surface oxidation degree resulted in the red-shift of PL spectra

  12. Phonon impact on optical control schemes of quantum dots: Role of quantum dot geometry and symmetry

    Science.gov (United States)

    Lüker, S.; Kuhn, T.; Reiter, D. E.

    2017-12-01

    Phonons strongly influence the optical control of semiconductor quantum dots. When modeling the electron-phonon interaction in several theoretical approaches, the quantum dot geometry is approximated by a spherical structure, though typical self-assembled quantum dots are strongly lens-shaped. By explicitly comparing simulations of a spherical and a lens-shaped dot using a well-established correlation expansion approach, we show that, indeed, lens-shaped dots can be exactly mapped to a spherical geometry when studying the phonon influence on the electronic system. We also give a recipe to reproduce spectral densities from more involved dots by rather simple spherical models. On the other hand, breaking the spherical symmetry has a pronounced impact on the spatiotemporal properties of the phonon dynamics. As an example we show that for a lens-shaped quantum dot, the phonon emission is strongly concentrated along the direction of the smallest axis of the dot, which is important for the use of phonons for the communication between different dots.

  13. A facile method to prepare fluorescent carbon dots and their application in selective colorimetric sensing of silver ion through the formation of silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ayaz Ahmed, Khan Behlol; P, Suresh Kumar; Veerappan, Anbazhagan, E-mail: anbazhagan@scbt.sastra.edu

    2016-09-15

    Herein, we report a laboratory convenient method for the preparation of blue color emitting fluorescent carbon dots (C-dots) in 60 min by boiling the alkaline solution of pectin. The C-dots derived from pectin detects selectively silver ion by forming silver nanoparticles (AgNPs) without any irradiation or heating or additional reducing agents. As prepared AgNPs appears yellow in color and showed the characteristic surface plasmon resonance maximum at 410 nm. Transmission electron microscopy (TEM) revealed crystalline, spherical AgNPs with size range from 10–15 nm. Cyclic voltammetry study revealed that the lower reduction potential of C-dots than that of silver ion favors the reduction of Ag{sup +} to Ag°. Electrochemical impedance spectroscopy showed the charge transfer value for the redox reaction of C-dots as 200 Ωcm{sup 2}. In the presence of Ag{sup +}, C-dots fluorescence emission was turned from blue to cyan to green to colorless, accompanying the quenching and red shift in emission maximum at 450 nm. Interference study clearly showed that the C-dots have high preference for Ag{sup +} ion than the other interfering metal ions. The proposed sensor system selectively senses Ag{sup +} ion in water at micromolar concentration and also offers an easy procedure to prepare AgNPs in the presence of other interfering metal ions. - Highlights: • Blue color emitting C-dots was prepared by boiling alkaline pectin solution. • C-dots sense silver ion at micromolar concentration. • C-dots recognize silver ion in the presence of interfering metal ions. • Reduction potential of C-dots was estimated by cyclic voltammeter as – 0.2 V.

  14. Morphological and luminescent characteristics of GaN dots deposited on AlN by alternate supply of TMG and NH3

    International Nuclear Information System (INIS)

    Tsai, Y.-L.; Gong, J.-R.; Lin, T.-Y.; Lin, H.-Y.; Chen, Yang-Fang; Lin, K.-M.

    2006-01-01

    GaN dots were deposited on AlN underlayers by alternate supply of trimethylgallium (TMG) and ammonia (NH 3 ) in an inductively heated quartz reactor operated at atmospheric pressure. Various growth parameters including deposition temperature, TMG admittance and pulse time between TMG and NH 3 exposures were proposed to investigate the influence of growth parameters on the size distribution of GaN dots. It appears that GaN dots with uniform size distribution can be achieved under certain growth conditions. Based on the study of atomic force microscopy (AFM), high deposition temperature was found to be in favor of forming large GaN dots with small dot density. Decrement of TMG flow rate or reduction in the number of growth cycle tends to enable the formation of GaN dots with small dot sizes. The results of room temperature (RT) cathodoluminescence (CL) measurements of the GaN dots exhibit an emission peak at 3.735 eV. A remarkable blue shift of GaN dot emission was observed by reduced temperature photoluminescence (PL) measurements

  15. Preparation of 1-pyrenebutyric acid and pyrene submicron dots by laser-induced molecular micro-jet implantation

    International Nuclear Information System (INIS)

    Pihosh, Y.; Goto, M.; Kasahara, A.; Tosa, M.

    2009-01-01

    Pyrene and 1-pyrenebuturic acid molecules were deposited on glass and copper substrates with the formation of submicron dots by laser-induced molecular micro-jet implantation through polar and non-polar liquid layers. The size of the smallest 1-pyrenebuturic acid molecules dots prepared on a glass substrate by implantation through water and diiodomethane was estimated to be about 400 nm and 300 nm at laser fluences of 235 J/cm 2 and 326 J/cm 2 , respectively. The fluorescence and the Raman spectra showed that the implanted 1-pyrenebutyric acid molecules did not decompose during the implantation process. The smallest size of a pyrene dot was 700 nm at the laser fluence of 378 J/cm 2 . However, the pyrene dots could be formed only by implantation through a water layer.

  16. Quantum interference and control of the optical response in quantum dot molecules

    Energy Technology Data Exchange (ETDEWEB)

    Borges, H. S.; Sanz, L.; Villas-Boas, J. M.; Alcalde, A. M. [Instituto de Física, Universidade Federal de Uberlândia, 38400-902 Uberlândia-MG (Brazil)

    2013-11-25

    We discuss the optical response of a quantum molecule under the action of two lasers fields. Using a realistic model and parameters, we map the physical conditions to find three different phenomena reported in the literature: the tunneling induced transparency, the formation of Autler-Townes doublets, and the creation of a Mollow-like triplet. We found that the electron tunneling between quantum dots is responsible for the different optical regime. Our results not only explain the experimental results in the literature but also give insights for future experiments and applications in optics using quantum dots molecules.

  17. The interaction between d-dot's

    International Nuclear Information System (INIS)

    Hirayama, Masaki; Machida, Masahiko; Koyama, Tomio; Ishida, Takekazu; Kato, Masaru

    2005-01-01

    We investigated the interaction between two square d-dot's. The d-dot is the nano-scaled superconducting composite structure that is made of a d-wave superconducting dot embedded in the s-wave superconducting matrix. In the numerical calculation, using the finite element method, we solved the two-components Ginzburg-Landau equation self-consistently. We obtained two kinds of solutions, which can be considered as ferromagnetic and antiferromagnetic configurations, when two d-dot's are separated parallel and diagonally. Also we discuss the applicability of d-dot's as an artificial spin system where the interactions can be controlled by the fabrication

  18. The role of strain-driven in migration in the growth of self-assembled InAs quantum dots on InP

    CERN Document Server

    Yoon, S H; Lee, T W; Hwang, H D; Yoon, E J; Kim, Y D

    1999-01-01

    Self-assembled InAs quantum dots (SAQDs) were grown on InP by metalorganic chemical vapor deposition. The amount of excess InAs and the aspect ratio of the SAQD increased with temperature and V/III ratio. It is explained that the As/P exchange reaction at the surface played an important role in the kinetics of SAQD formation. Insertion of a lattice-matched InGaAs buffer layer suppressed the excess InAs formation, and lowered the aspect ratio. Moreover, the dots formed on InGaAs buffer layers were faceted, whereas those on InP were hemispherical, confirming the effect of the As/P exchange reaction. The shape of InAs quantum dots on InGaAs buffer layers was a truncated pyramid with four [136] facets and base edges parallel to directions.

  19. Biological sensing and control of emission dynamics of quantum dot bioconjugates using arrays of long metallic nanorods.

    Science.gov (United States)

    Sadeghi, Seyed M; Gutha, Rithvik R; Wing, Waylin J; Sharp, Christina; Capps, Lucas; Mao, Chuanbin

    2017-01-01

    We study biological sensing using plasmonic and photonic-plasmonic resonances of arrays of ultralong metallic nanorods and analyze the impact of these resonances on emission dynamics of quantum dot bioconjugates. We demonstrate that the LSPRs and plasmonic lattice modes of such array can be used to detect a single self-assembled monolayer of alkanethiol at the visible (550 nm) and near infrared (770 nm) range with well resolved shifts. We study adsorption of streptavidin-quantum dot conjugates to this monolayer, demonstrating that formation of nearly two dimensional arrays of quantum dots with limited emission blinking can lead to extra well-defined wavelength shifts in these modes. Using spectrally-resolved lifetime measurements we study the emission dynamics of such quantum dot bioconjugates within their monodispersed size distribution. We show that, despite their close vicinity to the nanorods, the rate of energy transfer from these quantum dots to nanorods is rather weak, while the plasmon field enhancement can be strong. Our results reveal that the nanorods present a strongly wavelength or size-dependent non-radiative decay channel to the quantum dot bioconjugates.

  20. Morphological and luminescent characteristics of GaN dots deposited on AlN by alternate supply of TMG and NH{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Y.-L. [Department of Materials Science and Engineering, Feng Chia University, Taichung 407, Taiwan (China); Gong, J.-R. [Institute of Opto-Mechatronics, National Chung Cheng University, Chiayi 621, Taiwan (China); Lin, T.-Y. [Institute of Optoelectronic Sciences, National Taiwan Ocean University, Keelung 202, Taiwan (China); Lin, H.-Y. [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Chen, Yang-Fang [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Lin, K.-M. [Department of Materials Science and Engineering, Feng Chia University, Taichung 407, Taiwan (China)

    2006-03-15

    GaN dots were deposited on AlN underlayers by alternate supply of trimethylgallium (TMG) and ammonia (NH{sub 3}) in an inductively heated quartz reactor operated at atmospheric pressure. Various growth parameters including deposition temperature, TMG admittance and pulse time between TMG and NH{sub 3} exposures were proposed to investigate the influence of growth parameters on the size distribution of GaN dots. It appears that GaN dots with uniform size distribution can be achieved under certain growth conditions. Based on the study of atomic force microscopy (AFM), high deposition temperature was found to be in favor of forming large GaN dots with small dot density. Decrement of TMG flow rate or reduction in the number of growth cycle tends to enable the formation of GaN dots with small dot sizes. The results of room temperature (RT) cathodoluminescence (CL) measurements of the GaN dots exhibit an emission peak at 3.735 eV. A remarkable blue shift of GaN dot emission was observed by reduced temperature photoluminescence (PL) measurements.

  1. Application of Inkjet Printing in High-Density Pixelated RGB Quantum Dot-Hybrid LEDs

    KAUST Repository

    Haverinen, Hanna; Jabbour, Ghassan E.

    2012-01-01

    to fabricate high-density, pixelated (quarter video graphics array (QVGA) format), monochromatic and RGB quantum dots light-emitting diodes (QDLEDs), where inkjet printing is used to deposit the light-emitting layer of QDs. It shows some of the factors

  2. Quantum dot spectroscopy

    DEFF Research Database (Denmark)

    Leosson, Kristjan

    1999-01-01

    Semiconductor quantum dots ("solid state atoms") are promising candidates for quantum computers and future electronic and optoelectronic devices. Quantum dots are zero-dimensional electronic systems and therefore have discrete energy levels, similar to atoms or molecules. The size distribution of...

  3. Quantum dot spectroscopy

    DEFF Research Database (Denmark)

    Leosson, Kristjan

    Semiconductor quantum dots ("solid-state atoms") are promising candidates for quantum computers and future electronic and optoelectronic devices. Quantum dots are zero-dimensional electronic systems and therefore have discrete energy levels, similar to atoms or molecules. The size distribution of...

  4. Transport through overlapping states in quantum dots and double dot molecules

    International Nuclear Information System (INIS)

    Berkovits, R.

    2006-01-01

    Full Text: We shall review the transport properties of interacting quantum dots with overlapping orbitals for which the orthodox Coulomb blockade picture no longer holds. We shall concentrate on he conductance through a serial double dot structure for which the inter-dot tunneling is stronger than the tunneling to the leads. When the dots are occupied by 1 or 3 electrons the usual Kondo peak is observed. For the case in which 2 electrons occupy the molecule a singlet is formed. Nevertheless, the conductance in that case has a constant non-zero value, and might even be equal to the maximum conductance of 2e 2 /h for certain values of the molecule parameters. We show that this is the result of the subtle interplay between the symmetric and anti-symmetric orbitals of the molecule caused by interactions and interference

  5. Synthesis of quantum dots

    Science.gov (United States)

    McDaniel, Hunter

    2017-10-17

    Common approaches to synthesizing alloyed quantum dots employ high-cost, air-sensitive phosphine complexes as the selenium precursor. Disclosed quantum dot synthesis embodiments avoid these hazardous and air-sensitive selenium precursors. Certain embodiments utilize a combination comprising a thiol and an amine that together reduce and complex the elemental selenium to form a highly reactive selenium precursor at room temperature. The same combination of thiol and amine acts as the reaction solvent, stabilizing ligand, and sulfur source in the synthesis of quantum dot cores. A non-injection approach may also be used. The optical properties of the quantum dots synthesized by this new approach can be finely tuned for a variety of applications by controlling size and/or composition of size and composition. Further, using the same approach, a shell can be grown around a quantum dot core that improves stability, luminescence efficiency, and may reduce toxicity.

  6. Quantum Dots: Theory

    Energy Technology Data Exchange (ETDEWEB)

    Vukmirovic, Nenad; Wang, Lin-Wang

    2009-11-10

    This review covers the description of the methodologies typically used for the calculation of the electronic structure of self-assembled and colloidal quantum dots. These are illustrated by the results of their application to a selected set of physical effects in quantum dots.

  7. 49 CFR 40.13 - How do DOT drug and alcohol tests relate to non-DOT tests?

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false How do DOT drug and alcohol tests relate to non... TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Employer Responsibilities § 40.13 How do DOT drug and... non-DOT drug and alcohol testing programs. This prohibition includes the use of the DOT forms with...

  8. A fluorescent nanosensor based on graphene quantum dots-aptamer probe and graphene oxide platform for detection of lead (II) ion.

    Science.gov (United States)

    Qian, Zhao Sheng; Shan, Xiao Yue; Chai, Lu Jing; Chen, Jian Rong; Feng, Hui

    2015-06-15

    The sensitive detection of heavy metal ions in the organism and aquatic ecosystem using nanosensors based on environment friendly and biocompatible materials still remains a challenge. A fluorescent turn-on nanosensor for lead (II) detection based on biocompatible graphene quantum dots and graphene oxide by employment of Pb(2+)-induced G-quadruplex formation was reported. Graphene quantum dots with high quantum yield, good biocompatibility were prepared and served as the fluorophore of Pb(2+) probe. Fluorescence turn-off of graphene quantum dots is easily achieved through efficient photoinduced electron transfer between graphene quantum dots and graphene oxide, and subsequent fluorescence turn-on process is due to the formation of G-quadraplex aptamer-Pb(2+) complex triggered by the addition of Pb(2+). This nanosensor can distinguish Pb(2+) ion from other ions with high sensitivity and good reproducibility. The detection method based on this nanosensor possesses a fast response time of one minute, a broad linear span of up to 400.0 nM and ultralow detection limit of 0.6 nM. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Assembling tin dioxide quantum dots to graphene nanosheets by a facile ultrasonic route.

    Science.gov (United States)

    Chen, Chen; Wang, Lijun; Liu, Yanyu; Chen, Zhiwen; Pan, Dengyu; Li, Zhen; Jiao, Zheng; Hu, Pengfei; Shek, Chan-Hung; Wu, C M Lawrence; Lai, Joseph K L; Wu, Minghong

    2013-03-26

    Nanocomposites have significant potential in the development of advanced materials for numerous applications. Tin dioxide (SnO2) is a functional material with wide-ranging prospects because of its high electronic mobility and wide band gap. Graphene as the basic plane of graphite is a single atomic layer two-dimensional sp(2) hybridized carbon material. Both have excellent physical and chemical properties. Here, SnO2 quantum dots/graphene composites have been successfully fabricated by a facile ultrasonic method. The experimental investigations indicated that the graphene was exfoliated and decorated with SnO2 quantum dots, which was dispersed uniformly on both sides of the graphene. The size distribution of SnO2 quantum dots was estimated to be ranging from 4 to 6 nm and their average size was calculated to be about 4.8 ± 0.2 nm. This facile ultrasonic route demonstrated that the loading of SnO2 quantum dots was an effective way to prevent graphene nanosheets from being restacked during the reduction. During the calcination process, the graphene nanosheets distributed between SnO2 nanoparticles have also prevented the agglomeration of SnO2 nanoparticles, which were beneficial to the formation of SnO2 quantum dots.

  10. DotFETs: MOSFETs strained by a Single SiGE dot in a Low-Temperature ELA Technology

    OpenAIRE

    Biasotto, C.

    2011-01-01

    The work presented in this thesis was performed in the context of the European Sixth Framework Program FP6 project “Disposable Dot Field Effect Transistor for High Speed Si Integrated Circuits”, referred to as the D-DotFET project. The project had the goal of realizing strain-enhanced mobility in CMOS transistors by transferring strain from a self-assembled germanium dot to the channel of a transistor fabricated above the dot. The initial idea was to dispose of the Ge dot underneath the chann...

  11. On the diameter of dot-critical graphs

    Directory of Open Access Journals (Sweden)

    Doost Ali Mojdeh

    2009-01-01

    Full Text Available A graph G is \\(k\\-dot-critical (totaly \\(k\\-dot-critical if \\(G\\ is dot-critical (totaly dot-critical and the domination number is \\(k\\. In the paper [T. Burtona, D. P. Sumner, Domination dot-critical graphs, Discrete Math, 306 (2006, 11-18] the following question is posed: What are the best bounds for the diameter of a \\(k\\-dot-critical graph and a totally \\(k\\-dot-critical graph \\(G\\ with no critical vertices for \\(k \\geq 4\\? We find the best bound for the diameter of a \\(k\\-dot-critical graph, where \\(k \\in\\{4,5,6\\}\\ and we give a family of \\(k\\-dot-critical graphs (with no critical vertices with sharp diameter \\(2k-3\\ for even \\(k \\geq 4\\.

  12. Electron Spin Optical Orientation in Charged Quantum Dots

    Science.gov (United States)

    Shabaev, A.; Gershoni, D.; Korenev, V. L.

    2005-03-01

    We present a theory of nonresonant optical orientation of electron spins localized in quantum dots. This theory explains the negative circularly polarized photoluminescence of singlet trions localized in quantum dots previously observed in experiments where trion polarization changed to negative with time and where the degree of the negative polarization increased with intensity of pumping light. We have shown that this effect can be explained by the accumulation of dark excitons that occurs due to the spin blocking of the singlet trion formation - the major mechanism of dark exciton recombination. The accumulation of dark excitons results from a lack of electrons with a spin matching the exciton polarization. The electron spin lifetime is shortened by a transverse magnetic field or a temperature increase. This takes the block off the dark exciton recombination and restores the positive degree of trion polarization. The presented theory gives good agreement with experimental data.

  13. Quantum dots for future nanophotonic devices : lateral ordering, position, and number control

    NARCIS (Netherlands)

    Nötzel, R.

    2010-01-01

    After the general aspects of InAs/InP (100) quantum dots (QDs) regarding the formation of QDs versus quantum dashes, wavelength tuning from telecom to mid-infrared region, and device applications, we discuss our recent progress on the lateral ordering, position, and number control of QDs.

  14. Synthesis of blue photoluminescent WS{sub 2} quantum dots via ultrasonic cavitation

    Energy Technology Data Exchange (ETDEWEB)

    Bayat, A.; Saievar-Iranizad, E., E-mail: saievare@modares.ac.ir

    2017-05-15

    Blue photoluminescent WS{sub 2} quantum dots (QDs) were synthesized using a simple top-down method from natural raw mineral tungsten disulfide via tip ultrasonication followed by centrifugation in a water-ethanol (0.7/0.3 ratio) as eco-friendly solvent. Cavitation process at a high power (300 W) led to the breaking of bulk WS{sub 2} flakes to its quantum dots. The as synthesized WS{sub 2} QDs showed blue photoluminescence upon UV excitation. The synthesized WS{sub 2} QDs were analysed by UV–vis and photoluminescence spectrophotometry, transmission electron microscopy, atomic force microscopy and X-ray diffraction. According to the transmission electron microscopy images, the size of WS{sub 2} QDs was obtained as 5 nm in average. - Highlights: •Large scale blue photoluminescent WS{sub 2} quantum dots was synthesized using Ultrasonic probe (Cavitation Process). •A solution of water/ethanol (0.7/0.3) was used as eco-friendly solvent instead of unsuitable solvent such as NMP and ACN. •Edges of bulk WS{sub 2} was increased with formation of its quantum dots. •Solution of WS{sub 2} QDs was stable after 6 months.

  15. Hyperdense dots mimicking microcalcifications : Mammographic findings

    International Nuclear Information System (INIS)

    Kim, Nam Hyeon; Park, Jeong Mi; Goo, Hyun Woo; Bang, Sun Woo

    1996-01-01

    To differentiate fine hyperdense dots mimicking microcalcifications from true microcalcifications on mammography. Mammograms showing hyperdense dots in ten patients (mean age, 59 years) were evaluated. Two radiologists were asked to differentiate with the naked eye the hyperdense dots seen on ten mammograms and proven microcalcifications seen on ten mammograms. Densitometry was also performed for all lesions and the contrast index was calculated. The shape and distribution of the hyperdense dots were evaluated and enquires were made regarding any history of breast disease and corresponding treatment. Biopsies were performed for two patients with hyperdense dots. Two radiologists made correct diagnoses in 19/20 cases(95%). The contrast index was 0.10-0.88 (mean 0.58) for hyperdense dots and 0.02-0.45 (mean 0.17) for true microcalcifications. The hyperdense dots were finer and homogeneously rounder than the microcalcifications. Distribution of the hyperdense dots was more superficial in subcutaneous fat (seven cases) and subareolar area (six cases). All ten patients with hyperdense dots had history of mastitis and abscesses and had been treated by open drainage (six cases) and/or folk remedy (four cases). In eight patients, herb patches had been attached. Biopsies of hyperdense dots did not show any microcalcification or evidence of malignancy. These hyperdense dots were seen mainly in older patients. Their characteristic density, shape, distribution and clinical history makes differential diagnosis from true microcalcifications easy and could reduce unnecessary diagnostic procedures such as surgical biopsy

  16. Vectorization of DOT3.5 code

    International Nuclear Information System (INIS)

    Nonomiya, Iwao; Ishiguro, Misako; Tsutsui, Tsuneo

    1990-07-01

    In this report, we describe the vectorization of two-dimensional Sn-method radiation transport code DOT3.5. Vectorized codes are not only the NEA original version developed at ORNL but also the versions improved by JAERI: DOT3.5 FNS version for fusion neutronics analyses, DOT3.5 FER version for fusion reactor design, and ESPRIT module of RADHEAT-V4 code system for radiation shielding and radiation transport analyses. In DOT3.5, input/output processing time amounts to a great part of the elapsed time when a large number of energy groups and/or a large number of spatial mesh points are used in the calculated problem. Therefore, an improvement has been made for the speedup of input/output processing in the DOT3.5 FNS version, and DOT-DD (Double Differential cross section) code. The total speedup ratio of vectorized version to the original scalar one is 1.7∼1.9 for DOT3.5 NEA version, 2.2∼2.3 fro DOT3.5 FNS version, 1.7 for DOT3.5 FER version, and 3.1∼4.4 for RADHEAT-V4, respectively. The elapsed times for improved DOT3.5 FNS version and DOT-DD are reduced to 50∼65% that of the original version by the input/output speedup. In this report, we describe summary of codes, the techniques used for the vectorization and input/output speedup, verification of computed results, and speedup effect. (author)

  17. Hyperdense dots mimicking microcalcifications : Mammographic findings

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nam Hyeon; Park, Jeong Mi; Goo, Hyun Woo; Bang, Sun Woo [Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    1996-12-01

    To differentiate fine hyperdense dots mimicking microcalcifications from true microcalcifications on mammography. Mammograms showing hyperdense dots in ten patients (mean age, 59 years) were evaluated. Two radiologists were asked to differentiate with the naked eye the hyperdense dots seen on ten mammograms and proven microcalcifications seen on ten mammograms. Densitometry was also performed for all lesions and the contrast index was calculated. The shape and distribution of the hyperdense dots were evaluated and enquires were made regarding any history of breast disease and corresponding treatment. Biopsies were performed for two patients with hyperdense dots. Two radiologists made correct diagnoses in 19/20 cases(95%). The contrast index was 0.10-0.88 (mean 0.58) for hyperdense dots and 0.02-0.45 (mean 0.17) for true microcalcifications. The hyperdense dots were finer and homogeneously rounder than the microcalcifications. Distribution of the hyperdense dots was more superficial in subcutaneous fat (seven cases) and subareolar area (six cases). All ten patients with hyperdense dots had history of mastitis and abscesses and had been treated by open drainage (six cases) and/or folk remedy (four cases). In eight patients, herb patches had been attached. Biopsies of hyperdense dots did not show any microcalcification or evidence of malignancy. These hyperdense dots were seen mainly in older patients. Their characteristic density, shape, distribution and clinical history makes differential diagnosis from true microcalcifications easy and could reduce unnecessary diagnostic procedures such as surgical biopsy.

  18. Electron-electron interactions in graphene field-induced quantum dots in a high magnetic field

    DEFF Research Database (Denmark)

    Orlof, A.; Shylau, Artsem; Zozoulenko, I. V.

    2015-01-01

    We study the effect of electron-electron interaction in graphene quantum dots defined by an external electrostatic potential and a high magnetic field. To account for the electron-electron interaction, we use the Thomas-Fermi approximation and find that electron screening causes the formation...... of compressible strips in the potential profile and the electron density. We numerically solve the Dirac equations describing the electron dynamics in quantum dots, and we demonstrate that compressible strips lead to the appearance of plateaus in the electron energies as a function of the magnetic field. Finally...

  19. Structural characterization of CdSe/ZnS quantum dots using medium energy ion scattering

    Science.gov (United States)

    Sortica, M. A.; Grande, P. L.; Radtke, C.; Almeida, L. G.; Debastiani, R.; Dias, J. F.; Hentz, A.

    2012-07-01

    In the present work, we have analyzed CdSe/ZnS core-shell quantum dots by medium energy ion scattering (MEIS), which is a powerful technique to explore the synthesis, formation, stability, and elemental distribution of such core-shell structures, along with other auxiliary analytical techniques. By comparing different quantum-dot structural models spectra with the experimental MEIS data, we were able to obtain some sample structural information. We found that, despite the well known non stoichiometric Cd:Se ratio, the core is stoichiometric, and there is an excess of cadmium distributed in the shell.

  20. AgCl-doped CdSe quantum dots with near-IR photoluminescence.

    Science.gov (United States)

    Kotin, Pavel Aleksandrovich; Bubenov, Sergey Sergeevich; Mordvinova, Natalia Evgenievna; Dorofeev, Sergey Gennadievich

    2017-01-01

    We report the synthesis of colloidal CdSe quantum dots doped with a novel Ag precursor: AgCl. The addition of AgCl causes dramatic changes in the morphology of synthesized nanocrystals from spherical nanoparticles to tetrapods and finally to large ellipsoidal nanoparticles. Ellipsoidal nanoparticles possess an intensive near-IR photoluminescence ranging up to 0.9 eV (ca. 1400 nm). In this article, we explain the reasons for the formation of the ellipsoidal nanoparticles as well as the peculiarities of the process. The structure, Ag content, and optical properties of quantum dots are also investigated. The optimal conditions for maximizing both the reaction yield and IR photoluminescence quantum yield are found.

  1. From DOT to Dotty

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    - Module types are interfaces, which can be abstracted. In this talk Martin will present DOT, a particularly simple calculus that can express systems following these principles. DOT has been developed as the foundation of the next version of Scala. He will also report on dotty, a new Scala compiler that implements the constructs of DOT in its core data structures and that uses the lessons learned to drive Scala’s evolution.

  2. Code system BCG for gamma-ray skyshine calculation

    International Nuclear Information System (INIS)

    Ryufuku, Hiroshi; Numakunai, Takao; Miyasaka, Shun-ichi; Minami, Kazuyoshi.

    1979-03-01

    A code system BCG has been developed for calculating conveniently and efficiently gamma-ray skyshine doses using the transport calculation codes ANISN and DOT and the point-kernel calculation codes G-33 and SPAN. To simplify the input forms to the system, the forms for these codes are unified, twelve geometric patterns are introduced to give material regions, and standard data are available as a library. To treat complex arrangements of source and shield, it is further possible to use successively the code such that the results from one code may be used as input data to the same or other code. (author)

  3. DNA derived fluorescent bio-dots for sensitive detection of mercury and silver ions in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ting [Laboratory of Environmental Science and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhu, Xuefeng, E-mail: zhuxf@ms.xjb.ac.cn [Laboratory of Environmental Science and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); Zhou, Shenghai [Laboratory of Environmental Science and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); Yang, Guang [Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, Xi’an Jiaotong University, Xi’an 710049 (China); Gan, Wei [Laboratory of Environmental Science and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); Yuan, Qunhui, E-mail: yuanqh@ms.xjb.ac.cn [Laboratory of Environmental Science and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China)

    2015-08-30

    Highlights: • First application of a DNA derived fluorescent bio-dot for metal sensing. • Bio-dot was conveniently obtained via a mild thermal hydro-thermal synthesis. • Bio-dot was directly used for fluorescent sensing without further modification. • Bio-dot showed good fluorescent sensing property for Hg(II) and Ag(I). • Formation of T–Hg–T and C–Ag–C structures played key roles in sensing. - Abstract: Inspired by the high affinity between heavy metal ions and bio-molecules as well as the low toxicity of carbon-based quantum dots, we demonstrated the first application of a DNA derived carbonaceous quantum dots, namely bio-dots, in metal ion sensing. The present DNA-derived bio-dots contain graphitic carbon layers with 0.242 nm lattice fringes, exhibit excellent fluorescence property and can be obtained via a facile hydrothermal preparation procedure. Hg(II) and Ag(I) are prone to be captured by the bio-dots due to the existence of residual thymine (T) and cytosine (C) groups, resulting in a quenched fluorescence while other heavy metal ions would cause negligible changes on the fluorescent signals of the bio-dots. The bio-dots could be used as highly selective toxic-free biosensors, with two detecting linear ranges of 0–0.5 μM and 0.5–6 μM for Hg(II) and one linear range of 0–10 μM for Ag(I). The detection limits (at a signal-to-noise ratio of 3) were estimated to be 48 nM for Hg(II) and 0.31 μM for Ag(I), respectively. The detection of Hg(II) and Ag(I) could also be realized in the real water sample analyses, with satisfying recoveries ranging from 87% to 100%.

  4. DNA derived fluorescent bio-dots for sensitive detection of mercury and silver ions in aqueous solution

    International Nuclear Information System (INIS)

    Song, Ting; Zhu, Xuefeng; Zhou, Shenghai; Yang, Guang; Gan, Wei; Yuan, Qunhui

    2015-01-01

    Highlights: • First application of a DNA derived fluorescent bio-dot for metal sensing. • Bio-dot was conveniently obtained via a mild thermal hydro-thermal synthesis. • Bio-dot was directly used for fluorescent sensing without further modification. • Bio-dot showed good fluorescent sensing property for Hg(II) and Ag(I). • Formation of T–Hg–T and C–Ag–C structures played key roles in sensing. - Abstract: Inspired by the high affinity between heavy metal ions and bio-molecules as well as the low toxicity of carbon-based quantum dots, we demonstrated the first application of a DNA derived carbonaceous quantum dots, namely bio-dots, in metal ion sensing. The present DNA-derived bio-dots contain graphitic carbon layers with 0.242 nm lattice fringes, exhibit excellent fluorescence property and can be obtained via a facile hydrothermal preparation procedure. Hg(II) and Ag(I) are prone to be captured by the bio-dots due to the existence of residual thymine (T) and cytosine (C) groups, resulting in a quenched fluorescence while other heavy metal ions would cause negligible changes on the fluorescent signals of the bio-dots. The bio-dots could be used as highly selective toxic-free biosensors, with two detecting linear ranges of 0–0.5 μM and 0.5–6 μM for Hg(II) and one linear range of 0–10 μM for Ag(I). The detection limits (at a signal-to-noise ratio of 3) were estimated to be 48 nM for Hg(II) and 0.31 μM for Ag(I), respectively. The detection of Hg(II) and Ag(I) could also be realized in the real water sample analyses, with satisfying recoveries ranging from 87% to 100%

  5. Optical and structural properties of ensembles of colloidal Ag2S quantum dots in gelatin

    International Nuclear Information System (INIS)

    Ovchinnikov, O. V.; Smirnov, M. S.; Shapiro, B. I.; Shatskikh, T. S.; Perepelitsa, A. S.; Korolev, N. V.

    2015-01-01

    The size dependences of the absorption and luminescence spectra of ensembles of hydrophilic colloidal Ag 2 S quantum dots produced by the sol-gel method and dispersed in gelatin are analyzed. By X-ray diffraction analysis and transmission electron microscopy, the formation of core/shell nanoparticles is detected. The characteristic feature of the nanoparticles is the formation of crystalline cores, 1.5–2.0 nm in dimensions, and shells of gelatin and its complexes with the components of synthesis. The observed slight size dependence of the position of infrared photoluminescence bands (in the range 1000–1400 nm) in the ensembles of hydrophilic colloidal Ag 2 S quantum dots is explained within the context of the model of the radiative recombination of electrons localized at structural and impurity defects with free holes

  6. Hydrogenic impurity in double quantum dots

    International Nuclear Information System (INIS)

    Wang, X.F.

    2007-01-01

    The ground state binding energy and the average interparticle distances for a hydrogenic impurity in double quantum dots with Gaussian confinement potential are studied by the variational method. The probability density of the electron is calculated, too. The dependence of the binding energy on the impurity position is investigated for GaAs quantum dots. The result shows that the binding energy has a minimum as a function of the distance between the two quantum dots when the impurity is located at the center of one quantum dot or at the center of the edge of one quantum dot. When the impurity is located at the center of the two dots, the binding energy decreases monotonically

  7. Ex situ formation of metal selenide quantum dots using bacterially derived selenide precursors

    International Nuclear Information System (INIS)

    Fellowes, J W; Pattrick, R A D; Lloyd, J R; Charnock, J M; Coker, V S; Mosselmans, J F W; Weng, T-C; Pearce, C I

    2013-01-01

    Luminescent quantum dots were synthesized using bacterially derived selenide (Se II− ) as the precursor. Biogenic Se II− was produced by the reduction of Se IV by Veillonella atypica and compared directly against borohydride-reduced Se IV for the production of glutathione-stabilized CdSe and β-mercaptoethanol-stabilized ZnSe nanoparticles by aqueous synthesis. Biological Se II− formed smaller, narrower size distributed QDs under the same conditions. The growth kinetics of biologically sourced CdSe phases were slower. The proteins isolated from filter sterilized biogenic Se II− included a methylmalonyl-CoA decarboxylase previously characterized in the closely related Veillonella parvula. XAS analysis of the glutathione-capped CdSe at the S K-edge suggested that sulfur from the glutathione was structurally incorporated within the CdSe. A novel synchrotron based XAS technique was also developed to follow the nucleation of biological and inorganic selenide phases, and showed that biogenic Se II− is more stable and more resistant to beam-induced oxidative damage than its inorganic counterpart. The bacterial production of quantum dot precursors offers an alternative, ‘green’ synthesis technique that negates the requirement of expensive, toxic chemicals and suggests a possible link to the exploitation of selenium contaminated waste streams. (paper)

  8. Ex Situ Formation of Metal Selenide Quantum Dots Using Bacterially Derived Selenide Precursors

    Energy Technology Data Exchange (ETDEWEB)

    Fellowes, Jonathan W.; Pattrick, Richard; Lloyd, Jon; Charnock, John M.; Coker, Victoria S.; Mosselmans, JFW; Weng, Tsu-Chien; Pearce, Carolyn I.

    2013-04-12

    Luminescent quantum dots were synthesized using bacterially derived selenide (SeII-) as the precursor. Biogenic SeII- was produced by the reduction of Se-IV by Veillonella atypica and compared directly against borohydride-reduced Se-IV for the production of glutathione-stabilized CdSe and beta-mercaptoethanol-stabilized ZnSe nanoparticles by aqueous synthesis. Biological SeII- formed smaller, narrower size distributed QDs under the same conditions. The growth kinetics of biologically sourced CdSe phases were slower. The proteins isolated from filter sterilized biogenic SeII- included a methylmalonyl-CoA decarboxylase previously characterized in the closely related Veillonella parvula. XAS analysis of the glutathione-capped CdSe at the S K-edge suggested that sulfur from the glutathione was structurally incorporated within the CdSe. A novel synchrotron based XAS technique was also developed to follow the nucleation of biological and inorganic selenide phases, and showed that biogenic SeII- is more stable and more resistant to beam-induced oxidative damage than its inorganic counterpart. The bacterial production of quantum dot precursors offers an alternative, 'green' synthesis technique that negates the requirement of expensive, toxic chemicals and suggests a possible link to the exploitation of selenium contaminated waste streams.

  9. Emission switching in carbon dots coated CdTe quantum dots driving by pH dependent hetero-interactions

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Xiao; Wang, Hao; Yi, Qinghua; Wang, Yun; Cong, Shan; Zhao, Jie; Sun, Yinghui; Zou, Guifu, E-mail: zouguifu@suda.edu.cn, E-mail: jiexiong@uestc.edu.cn [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Qian, Zhicheng [School of Electronic and Information Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Huang, Jianwen; Xiong, Jie, E-mail: zouguifu@suda.edu.cn, E-mail: jiexiong@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Luo, Hongmei [Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, New Mexico 88003 (United States)

    2015-11-16

    Due to the different emission mechanism between fluorescent carbon dots and semiconductor quantum dots (QDs), it is of interest to explore the potential emission in hetero-structured carbon dots/semiconducting QDs. Herein, we design carbon dots coated CdTe QDs (CDQDs) and investigate their inherent emission. We demonstrate switchable emission for the hetero-interactions of the CDQDs. Optical analyses indicate electron transfer between the carbon dots and the CdTe QDs. A heterojunction electron process is proposed as the driving mechanism based on N atom protonation of the carbon dots. This work advances our understanding of the interaction mechanism of the heterostructured CDQDs and benefits the future development of optoelectronic nanodevices with new functionalities.

  10. Spin storage in quantum dot ensembles and single quantum dots

    International Nuclear Information System (INIS)

    Heiss, Dominik

    2009-01-01

    This thesis deals with the investigation of spin relaxation of electrons and holes in small ensembles of self-assembled quantum dots using optical techniques. Furthermore, a method to detect the spin orientation in a single quantum dot was developed in the framework of this thesis. A spin storage device was used to optically generate oriented electron spins in small frequency selected quantum dot ensembles using circularly polarized optical excitation. The spin orientation can be determined by the polarization of the time delayed electroluminescence signal generated by the device after a continuously variable storage time. The degree of spin polarized initialization was found to be limited to 0.6 at high magnetic fields, where anisotropic effects are compensated. The spin relaxation was directly measured as a function of magnetic field, lattice temperature and s-shell transition energy of the quantum dot by varying the spin storage time up to 30 ms. Very long spin lifetimes are obtained with a lower limit of T 1 =20 ms at B=4 T and T=1 K. A strong magnetic field dependence T 1 ∝B -5 has been observed for low temperatures of T=1 K which weakens as the temperature is increased. In addition, the temperature dependence has been determined with T 1 ∝T -1 . The characteristic dependencies on magnetic field and temperature lead to the identification of the spin relaxation mechanism, which is governed by spin-orbit coupling and mediated by single phonon scattering. This finding is qualitatively supported by the energy dependent measurements. The investigations were extended to a modified device design that enabled studying the spin relaxation dynamics of heavy holes in self-assembled quantum dots. The measurements show a polarization memory effect for holes with up to 0.1 degree of polarization. Furthermore, investigations of the time dynamics of the hole spin relaxation reveal surprisingly long lifetimes T 1 h in the microsecond range, therefore, comparable with

  11. Spin storage in quantum dot ensembles and single quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Heiss, Dominik

    2009-10-15

    This thesis deals with the investigation of spin relaxation of electrons and holes in small ensembles of self-assembled quantum dots using optical techniques. Furthermore, a method to detect the spin orientation in a single quantum dot was developed in the framework of this thesis. A spin storage device was used to optically generate oriented electron spins in small frequency selected quantum dot ensembles using circularly polarized optical excitation. The spin orientation can be determined by the polarization of the time delayed electroluminescence signal generated by the device after a continuously variable storage time. The degree of spin polarized initialization was found to be limited to 0.6 at high magnetic fields, where anisotropic effects are compensated. The spin relaxation was directly measured as a function of magnetic field, lattice temperature and s-shell transition energy of the quantum dot by varying the spin storage time up to 30 ms. Very long spin lifetimes are obtained with a lower limit of T{sub 1}=20 ms at B=4 T and T=1 K. A strong magnetic field dependence T{sub 1}{proportional_to}B{sup -5} has been observed for low temperatures of T=1 K which weakens as the temperature is increased. In addition, the temperature dependence has been determined with T{sub 1}{proportional_to}T{sup -1}. The characteristic dependencies on magnetic field and temperature lead to the identification of the spin relaxation mechanism, which is governed by spin-orbit coupling and mediated by single phonon scattering. This finding is qualitatively supported by the energy dependent measurements. The investigations were extended to a modified device design that enabled studying the spin relaxation dynamics of heavy holes in self-assembled quantum dots. The measurements show a polarization memory effect for holes with up to 0.1 degree of polarization. Furthermore, investigations of the time dynamics of the hole spin relaxation reveal surprisingly long lifetimes T{sub 1}{sup h

  12. Conjugation of biotin-coated luminescent quantum dots with single domain antibody-rhizavidin fusions

    Directory of Open Access Journals (Sweden)

    Jinny L. Liu

    2016-06-01

    Full Text Available Straightforward and effective methods are required for the bioconjugation of proteins to surfaces and particles. Previously we demonstrated that the fusion of a single domain antibody with the biotin binding molecule rhizavidin provided a facile method to coat biotin-modified surfaces with a highly active and oriented antibody. Here, we constructed similar single domain antibody—rhizavidin fusions as well as unfused rhizavidin with a His-tag. The unfused rhizavidin produced efficiently and its utility for assay development was demonstrated in surface plasmon resonance experiments. The single domain antibody-rhizavidin fusions were utilized to coat quantum dots that had been prepared with surface biotins. Preparation of antibody coated quantum dots by this means was found to be both easy and effective. The prepared single domain antibody-quantum dot reagent was characterized by surface plasmon resonance and applied to toxin detection in a fluoroimmunoassay sensing format.

  13. Curcumin Quantum Dots Mediated Degradation of Bacterial Biofilms

    Directory of Open Access Journals (Sweden)

    Ashish K. Singh

    2017-08-01

    Full Text Available Bacterial biofilm has been reported to be associated with more than 80% of bacterial infections. Curcumin, a hydrophobic polyphenol compound, has anti-quorum sensing activity apart from having antimicrobial action. However, its use is limited by its poor aqueous solubility and rapid degradation. In this study, we attempted to prepare quantum dots of the drug curcumin in order to achieve enhanced solubility and stability and investigated for its antimicrobial and antibiofilm activity. We utilized a newer two-step bottom up wet milling approach to prepare Curcumin Quantum Dots (CurQDs using acetone as a primary solvent. Minimum inhibitory concentration against select Gram-positive and Gram-negative bacteria was performed. The antibiofilm assay was performed at first using 96-well tissue culture plate and subsequently validated by Confocal Laser Scanning Microscopy. Further, biofilm matrix protein was isolated using formaldehyde sludge and TCA/Acetone precipitation method. Protein extracted was incubated with varying concentration of CurQDs for 4 h and was subjected to SDS–PAGE. Molecular docking study was performed to observe interaction between curcumin and phenol soluble modulins as well as curli proteins. The biophysical evidences obtained from TEM, SEM, UV-VIS, fluorescence, Raman spectroscopy, and zeta potential analysis confirmed the formation of curcumin quantum dots with increased stability and solubility. The MICs of curcumin quantum dots, as observed against both select gram positive and negative bacterial isolates, was observed to be significantly lower than native curcumin particles. On TCP assay, Curcumin observed to be having antibiofilm as well as biofilm degrading activity. Results of SDS–PAGE and molecular docking have shown interaction between biofilm matrix proteins and curcumin. The results indicate that aqueous solubility and stability of Curcumin can be achieved by preparing its quantum dots. The study also demonstrates

  14. One-, two- and three-dimensional transport codes using multi-group double-differential form cross sections

    International Nuclear Information System (INIS)

    Mori, Takamasa; Nakagawa, Masayuki; Sasaki, Makoto.

    1988-11-01

    We have developed a group of computer codes to realize the accurate transport calculation by using the multi-group double-differential form cross section. This type of cross section can correctly take account of the energy-angle correlated reaction kinematics. Accordingly, the transport phenomena in materials with highly anisotropic scattering are accurately calculated by using this cross section. They include the following four codes or code systems: PROF-DD : a code system to generate the multi-group double-differential form cross section library by processing basic nuclear data file compiled in the ENDF / B-IV or -V format, ANISN-DD : a one-dimensional transport code based on the discrete ordinate method, DOT-DD : a two-dimensional transport code based on the discrete ordinate method, MORSE-DD : a three-dimensional transport code based on the Monte Carlo method. In addition to these codes, several auxiliary codes have been developed to process calculated results. This report describes the calculation algorithm employed in these codes and how to use them. (author)

  15. A 2x2 quantum dot array with controllable inter-dot tunnel couplings

    OpenAIRE

    Mukhopadhyay, Uditendu; Dehollain, Juan Pablo; Reichl, Christian; Wegscheider, Werner; Vandersypen, Lieven M. K.

    2018-01-01

    The interaction between electrons in arrays of electrostatically defined quantum dots is naturally described by a Fermi-Hubbard Hamiltonian. Moreover, the high degree of tunability of these systems make them a powerful platform to simulate different regimes of the Hubbard model. However, most quantum dot array implementations have been limited to one-dimensional linear arrays. In this letter, we present a square lattice unit cell of 2$\\times$2 quantum dots defined electrostatically in a AlGaA...

  16. Synthesis and characterization of small size fluorescent LEEH caped blue emission ZnTe quantum dots

    Directory of Open Access Journals (Sweden)

    Patnaik Sumanta Kumar

    2017-04-01

    Full Text Available We report here for the first time the synthesis of LEEH caped very small size (2 nm ZnTe quantum dots at low temperature (less than 100 °C using a simple chemical route. The effects of aging and stirring time on the absorption spectra of the quantum dots were investigated. The synthesized nanocrystal (NC was characterized by PL, TEM, XRD and the formation of very small size quantum dots having FCC structure was confirmed. Further, blue emission from the prepared sample was observed during exposure to monochromatic UV radiation. ZnTe NCs obtained in this study were found to be more stable compared to those presented in literature reports. ZnTe NCs may be considered as a new material in place of CdTe for optoelectronics devices.

  17. Enzyme-Polymers Conjugated to Quantum-Dots for Sensing Applications

    Directory of Open Access Journals (Sweden)

    Alexandra Mansur

    2011-10-01

    Full Text Available In the present research, the concept of developing a novel system based on polymer-enzyme macromolecules was tested by coupling carboxylic acid functionalized poly(vinyl alcohol (PVA-COOH to glucose oxidase (GOx followed by the bioconjugation with CdS quantum-dots (QD. The resulting organic-inorganic nanohybrids were characterized by UV-visible spectroscopy, infrared spectroscopy, Photoluminescence spectroscopy (PL and transmission electron microscopy (TEM. The spectroscopy results have clearly shown that the polymer-enzyme macromolecules (PVA-COOH/GOx were synthesized by the proposed zero-length linker route. Moreover, they have performed as successful capping agents for the nucleation and constrained growth of CdS quantum-dots via aqueous colloidal chemistry. The TEM images associated with the optical absorption results have indicated the formation of CdS nanocrystals with estimated diameters of about 3.0 nm. The “blue-shift” in the visible absorption spectra and the PL values have provided strong evidence that the fluorescent CdS nanoparticles were produced in the quantum-size confinement regime. Finally, the hybrid system was biochemically assayed by injecting the glucose substrate and detecting the formation of peroxide with the enzyme horseradish peroxidase (HRP. Thus, the polymer-enzyme-QD hybrid has behaved as a nanostructured sensor for glucose detecting.

  18. Optical Properties of GaAs Quantum Dots Fabricated by Filling of Self-Assembled Nanoholes

    Directory of Open Access Journals (Sweden)

    Heyn Ch

    2009-01-01

    Full Text Available Abstract Experimental results of the local droplet etching technique for the self-assembled formation of nanoholes and quantum rings on semiconductor surfaces are discussed. Dependent on the sample design and the process parameters, filling of nanoholes in AlGaAs generates strain-free GaAs quantum dots with either broadband optical emission or sharp photoluminescence (PL lines. Broadband emission is found for samples with completely filled flat holes, which have a very broad depth distribution. On the other hand, partly filling of deep holes yield highly uniform quantum dots with very sharp PL lines.

  19. Sensitivity to Heavy-Metal Ions of Unfolded Fullerene Quantum Dots

    Directory of Open Access Journals (Sweden)

    Erica Ciotta

    2017-11-01

    Full Text Available A novel type of graphene-like quantum dots, synthesized by oxidation and cage-opening of C60 buckminsterfullerene, has been studied as a fluorescent and absorptive probe for heavy-metal ions. The lattice structure of such unfolded fullerene quantum dots (UFQDs is distinct from that of graphene since it includes both carbon hexagons and pentagons. The basic optical properties, however, are similar to those of regular graphene oxide quantum dots. On the other hand, UFQDs behave quite differently in the presence of heavy-metal ions, in that multiple sensitivity to Cu2+, Pb2+ and As(III was observed through comparable quenching of the fluorescent emission and different variations of the transmittance spectrum. By dynamic light scattering measurements and transmission electron microscope (TEM images we confirmed, for the first time in metal sensing, that this response is due to multiple complexation and subsequent aggregation of UFQDs. Nonetheless, the explanation of the distinct behaviour of transmittance in the presence of As(III and the formation of precipitate with Pb2+ require further studies. These differences, however, also make it possible to discriminate between the three metal ions in view of the implementation of a selective multiple sensor.

  20. Dicke states in multiple quantum dots

    Science.gov (United States)

    Sitek, Anna; Manolescu, Andrei

    2013-10-01

    We present a theoretical study of the collective optical effects which can occur in groups of three and four quantum dots. We define conditions for stable subradiant (dark) states, rapidly decaying super-radiant states, and spontaneous trapping of excitation. Each quantum dot is treated like a two-level system. The quantum dots are, however, realistic, meaning that they may have different transition energies and dipole moments. The dots interact via a short-range coupling which allows excitation transfer across the dots, but conserves the total population of the system. We calculate the time evolution of single-exciton and biexciton states using the Lindblad equation. In the steady state the individual populations of each dot may have permanent oscillations with frequencies given by the energy separation between the subradiant eigenstates.

  1. Optical pumping and negative luminescence polarization in charged GaAs quantum dots

    Science.gov (United States)

    Shabaev, Andrew; Stinaff, Eric A.; Bracker, Allan S.; Gammon, Daniel; Efros, Alexander L.; Korenev, Vladimir L.; Merkulov, Igor

    2009-01-01

    Optical pumping of electron spins and negative photoluminescence polarization are observed when interface quantum dots in a GaAs quantum well are excited nonresonantly by circularly polarized light. Both observations can be explained by the formation of long-lived dark excitons through hole spin relaxation in the GaAs quantum well prior to exciton capture. In this model, optical pumping of resident electron spins is caused by capture of dark excitons and recombination in charged quantum dots. Negative polarization results from accumulation of dark excitons in the quantum well and is enhanced by optical pumping. The dark exciton model describes the experimental results very well, including intensity and bias dependence of the photoluminescence polarization and the Hanle effect.

  2. Formation and stability of manganese-doped ZnS quantum dot monolayers determined by QCM-D and streaming potential measurements.

    Science.gov (United States)

    Oćwieja, Magdalena; Matras-Postołek, Katarzyna; Maciejewska-Prończuk, Julia; Morga, Maria; Adamczyk, Zbigniew; Sovinska, Svitlana; Żaba, Adam; Gajewska, Marta; Król, Tomasz; Cupiał, Klaudia; Bredol, Michael

    2017-10-01

    Manganese-doped ZnS quantum dots (QDs) stabilized by cysteamine hydrochloride were successfully synthesized. Their thorough physicochemical characteristics were acquired using UV-Vis absorption and photoluminescence spectroscopy, X-ray diffraction, dynamic light scattering (DLS), transmission electron microscopy (HR-TEM), energy dispersive spectroscopy (EDS) and Fourier transform infrared (FT-IR) spectroscopy. The average particle size, derived from HR-TEM, was 3.1nm, which agrees with the hydrodynamic diameter acquired by DLS, that was equal to 3-4nm, depending on ionic strength. The quantum dots also exhibited a large positive zeta potential varying between 75 and 36mV for ionic strength of 10 -4 and 10 -2 M, respectively (at pH 6.2) and an intense luminescent emission at 590nm. The quantum yield was equal to 31% and the optical band gap energy was equal to 4.26eV. The kinetics of QD monolayer formation on silica substrates (silica sensors and oxidized silicon wafers) under convection-controlled transport was quantitatively evaluated by the quartz crystal microbalance (QCM) and the streaming potential measurements. A high stability of the monolayer for ionic strength 10 -4 and 10 -2 M was confirmed in these measurements. The experimental data were adequately reflected by the extended random sequential adsorption model (eRSA). Additionally, thorough electrokinetic characteristics of the QD monolayers and their stability for various ionic strengths and pH were acquired by streaming potential measurements carried out under in situ conditions. These results were quantitatively interpreted in terms of the three-dimensional (3D) electrokinetic model that furnished bulk zeta potential of particles for high ionic strengths that is impractical by other experimental techniques. It is concluded that these results can be used for designing of biosensors of controlled monolayer structure capable to bind various ligands via covalent as well as electrostatic interactions

  3. Mesoscopic Elastic Distortions in GaAs Quantum Dot Heterostructures.

    Science.gov (United States)

    Pateras, Anastasios; Park, Joonkyu; Ahn, Youngjun; Tilka, Jack A; Holt, Martin V; Reichl, Christian; Wegscheider, Werner; Baart, Timothy A; Dehollain, Juan Pablo; Mukhopadhyay, Uditendu; Vandersypen, Lieven M K; Evans, Paul G

    2018-05-09

    Quantum devices formed in high-electron-mobility semiconductor heterostructures provide a route through which quantum mechanical effects can be exploited on length scales accessible to lithography and integrated electronics. The electrostatic definition of quantum dots in semiconductor heterostructure devices intrinsically involves the lithographic fabrication of intricate patterns of metallic electrodes. The formation of metal/semiconductor interfaces, growth processes associated with polycrystalline metallic layers, and differential thermal expansion produce elastic distortion in the active areas of quantum devices. Understanding and controlling these distortions present a significant challenge in quantum device development. We report synchrotron X-ray nanodiffraction measurements combined with dynamical X-ray diffraction modeling that reveal lattice tilts with a depth-averaged value up to 0.04° and strain on the order of 10 -4 in the two-dimensional electron gas (2DEG) in a GaAs/AlGaAs heterostructure. Elastic distortions in GaAs/AlGaAs heterostructures modify the potential energy landscape in the 2DEG due to the generation of a deformation potential and an electric field through the piezoelectric effect. The stress induced by metal electrodes directly impacts the ability to control the positions of the potential minima where quantum dots form and the coupling between neighboring quantum dots.

  4. Optical and structural properties of carbon dots/TiO2 nanostructures prepared via DC arc discharge in liquid

    Science.gov (United States)

    Biazar, Nooshin; Poursalehi, Reza; Delavari, Hamid

    2018-01-01

    Synthesis and development of visible active catalysts is an important issue in photocatalytic applications of nanomaterials. TiO2 nanostructures coupled with carbon dots demonstrate a considerable photocatalytic activity in visible wavelengths. Extending optical absorption of a wide band gap semiconductor such as TiO2 with carbon dots is the origin of the visible activity of carbon dots modified semiconductor nanostructures. In addition, carbon dots exhibit high photostability, appropriate electron transport and chemical stability without considerable toxicity or environmental footprints. In this study, optical and structural properties of carbon dots/TiO2 nanostructures prepared via (direct current) DC arc discharge in liquid were investigated. Crystal structure, morphology and optical properties of the samples were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-visible spectroscopy respectively. SEM images show formation of spherical nanoparticles with an average size of 27 nm. In comparison with pristine TiO2, optical transmission spectrum of carbon dots/TiO2 nanostructures demonstrates an absorption edge at longer wavelengths as well a high optical absorption in visible wavelengths which is significant for visible activity of nanostructures as a photocatalyst. Finally, these results can provide a flexible and versatile pathway for synthesis of carbon dots/oxide semiconductor nanostructures with an appropriate activity under visible light.

  5. Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control

    KAUST Repository

    Sun, Liangfeng; Choi, Joshua J.; Stachnik, David; Bartnik, Adam C.; Hyun, Byung-Ryool; Malliaras, George G.; Hanrath, Tobias; Wise, Frank W.

    2012-01-01

    Infrared light-emitting diodes are currently fabricated from direct-gap semiconductors using epitaxy, which makes them expensive and difficult to integrate with other materials. Light-emitting diodes based on colloidal semiconductor quantum dots, on the other hand, can be solution-processed at low cost, and can be directly integrated with silicon. However, so far, exciton dissociation and recombination have not been well controlled in these devices, and this has limited their performance. Here, by tuning the distance between adjacent PbS quantum dots, we fabricate thin-film quantum-dot light-emitting diodes that operate at infrared wavelengths with radiances (6.4 W sr '1 m '2) eight times higher and external quantum efficiencies (2.0%) two times higher than the highest values previously reported. The distance between adjacent dots is tuned over a range of 1.3 nm by varying the lengths of the linker molecules from three to eight CH 2 groups, which allows us to achieve the optimum balance between charge injection and radiative exciton recombination. The electroluminescent powers of the best devices are comparable to those produced by commercial InGaAsP light-emitting diodes. By varying the size of the quantum dots, we can tune the emission wavelengths between 800 and 1,850 nm.© 2012 Macmillan Publishers Limited.

  6. Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control.

    Science.gov (United States)

    Sun, Liangfeng; Choi, Joshua J; Stachnik, David; Bartnik, Adam C; Hyun, Byung-Ryool; Malliaras, George G; Hanrath, Tobias; Wise, Frank W

    2012-05-06

    Infrared light-emitting diodes are currently fabricated from direct-gap semiconductors using epitaxy, which makes them expensive and difficult to integrate with other materials. Light-emitting diodes based on colloidal semiconductor quantum dots, on the other hand, can be solution-processed at low cost, and can be directly integrated with silicon. However, so far, exciton dissociation and recombination have not been well controlled in these devices, and this has limited their performance. Here, by tuning the distance between adjacent PbS quantum dots, we fabricate thin-film quantum-dot light-emitting diodes that operate at infrared wavelengths with radiances (6.4 W sr(-1) m(-2)) eight times higher and external quantum efficiencies (2.0%) two times higher than the highest values previously reported. The distance between adjacent dots is tuned over a range of 1.3 nm by varying the lengths of the linker molecules from three to eight CH(2) groups, which allows us to achieve the optimum balance between charge injection and radiative exciton recombination. The electroluminescent powers of the best devices are comparable to those produced by commercial InGaAsP light-emitting diodes. By varying the size of the quantum dots, we can tune the emission wavelengths between 800 and 1,850 nm.

  7. Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control

    KAUST Repository

    Sun, Liangfeng

    2012-05-06

    Infrared light-emitting diodes are currently fabricated from direct-gap semiconductors using epitaxy, which makes them expensive and difficult to integrate with other materials. Light-emitting diodes based on colloidal semiconductor quantum dots, on the other hand, can be solution-processed at low cost, and can be directly integrated with silicon. However, so far, exciton dissociation and recombination have not been well controlled in these devices, and this has limited their performance. Here, by tuning the distance between adjacent PbS quantum dots, we fabricate thin-film quantum-dot light-emitting diodes that operate at infrared wavelengths with radiances (6.4 W sr \\'1 m \\'2) eight times higher and external quantum efficiencies (2.0%) two times higher than the highest values previously reported. The distance between adjacent dots is tuned over a range of 1.3 nm by varying the lengths of the linker molecules from three to eight CH 2 groups, which allows us to achieve the optimum balance between charge injection and radiative exciton recombination. The electroluminescent powers of the best devices are comparable to those produced by commercial InGaAsP light-emitting diodes. By varying the size of the quantum dots, we can tune the emission wavelengths between 800 and 1,850 nm.© 2012 Macmillan Publishers Limited.

  8. Optical and structural properties of ensembles of colloidal Ag{sub 2}S quantum dots in gelatin

    Energy Technology Data Exchange (ETDEWEB)

    Ovchinnikov, O. V., E-mail: Ovchinnikov-O-V@rambler.ru; Smirnov, M. S. [Voronezh State University (Russian Federation); Shapiro, B. I. [Moscow State University of Fine Chemical Technologies (Russian Federation); Shatskikh, T. S.; Perepelitsa, A. S.; Korolev, N. V. [Voronezh State University (Russian Federation)

    2015-03-15

    The size dependences of the absorption and luminescence spectra of ensembles of hydrophilic colloidal Ag{sub 2}S quantum dots produced by the sol-gel method and dispersed in gelatin are analyzed. By X-ray diffraction analysis and transmission electron microscopy, the formation of core/shell nanoparticles is detected. The characteristic feature of the nanoparticles is the formation of crystalline cores, 1.5–2.0 nm in dimensions, and shells of gelatin and its complexes with the components of synthesis. The observed slight size dependence of the position of infrared photoluminescence bands (in the range 1000–1400 nm) in the ensembles of hydrophilic colloidal Ag{sub 2}S quantum dots is explained within the context of the model of the radiative recombination of electrons localized at structural and impurity defects with free holes.

  9. Dot gain compensation in the blue noise mask

    Science.gov (United States)

    Yao, Meng; Parker, Kevin J.

    1995-04-01

    Frequency modulated (FM) halftoning or 'stochastic screening,' has attracted a great deal of attention in the printing industry in recent years. It has several advantages over conventional halftoning. But one serious problem that arises in FM halftoning is dot gain. One approach to stochastic screening uses a specially constructed halftone screen, the blue noise mask (BNM), to produce an unstructured and visually appealing pattern of halftone dots at any gray level. In this paper, we will present methods to correct dot gain with the BNM. Dot gain is related to the area-to-perimeter ration of printed spots. We can exploit this feature in different ways. At a medium level, a B>NM pattern will have 'connected' as well as 'isolated' dots. Normally, as we build down BNM patterns to lower levels, a specific number of white dots will be replace by black dots. Since connected white dots are more likely to be picked than isolated white dots, this will results in substantial dot gain because of the increasing number of isolated white dots. We show that it is possible to constrain the process of constructing a BNM such that isolated dots are preferentially removes, thus significantly reducing dot gain in a BNM.

  10. Profiteering from the Dot-com Bubble, Sub-Prime Crisis and Asian Financial Crisis

    NARCIS (Netherlands)

    M.J. McAleer (Michael); J. Suen (John); W.-K. Wong (Wing-Keung)

    2013-01-01

    textabstractThis paper explores the characteristics associated with the formation of bubbles that occurred in the Hong Kong stock market in 1997 and 2007, as well as the 2000 dot-com bubble of Nasdaq. It examines the profitability of Technical Analysis (TA) strategies generating buy and sell signals

  11. Electron correlations in quantum dots

    International Nuclear Information System (INIS)

    Tipton, Denver Leonard John

    2001-01-01

    Quantum dot structures confine electrons in a small region of space. Some properties of semiconductor quantum dots, such as the discrete energy levels and shell filling effects visible in addition spectra, have analogies to those of atoms and indeed dots are sometimes referred to as 'artificial atoms'. However, atoms and dots show some fundamental differences due to electron correlations. For real atoms, the kinetic energy of electrons dominates over their mutual Coulomb repulsion energy and for this reason the independent electron approximation works well. For quantum dots the confining potential may be shallower than that of real atoms leading to lower electron densities and a dominance of mutual Coulomb repulsion over kinetic energy. In this strongly correlated regime the independent electron picture leads to qualitatively incorrect results. This thesis concentrates on few-electron quantum dots in the strongly correlated regime both for quasi-one-dimensional and two-dimensional dots in a square confining potential. In this so-called 'Wigner' regime the ground-state electronic charge density is localised near positions of classical electrostatic minima and the interacting electronic spectrum consists of well separated spin multiplets. In the strongly correlated regime the structure of low-energy multiplets is explained by mapping onto lattice models with extended-Hubbard and Heisenberg effective Hamiltonians. The parameters for these effective models are calculated within a Hartree approximation and are shown to reproduce well the exact results obtained by numerical diagonalisation of the full interacting Hamiltonian. Comparison is made between square dots and quantum rings with full rotational symmetry. In the very low-density regime, direct diagonalisation becomes impractical due to excessive computer time for convergence. In this regime a numerical renormalisation group method is applied to one-dimensional dots, enabling effective spin-interactions to be

  12. Magnon-driven quantum dot refrigerators

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuan; Huang, Chuankun; Liao, Tianjun; Chen, Jincan, E-mail: jcchen@xmu.edu.cn

    2015-12-18

    Highlights: • A three-terminal quantum dot refrigerator is proposed. • The effects of magnetic field, applied voltage, and polarization are considered. • The region that the system can work as a refrigerator is determined. • Two different magnon-driven quantum dot refrigerators are compared. - Abstract: A new model of refrigerator consisting of a spin-splitting quantum dot coupled with two ferromagnetic reservoirs and a ferromagnetic insulator is proposed. The rate equation is used to calculate the occupation probabilities of the quantum dot. The expressions of the electron and magnon currents are obtained. The region that the system can work in as a refrigerator is determined. The cooling power and coefficient of performance (COP) of the refrigerator are derived. The influences of the magnetic field, applied voltage, and polarization of two leads on the performance are discussed. The performances of two different magnon-driven quantum dot refrigerators are compared.

  13. 78 FR 48868 - Proposed Cercla Administrative Cost Recovery Settlement; MassDOT, MassDOT Route 1 Right-of-Way...

    Science.gov (United States)

    2013-08-12

    ... Settlement; MassDOT, MassDOT Route 1 Right-of-Way Site, Chelsea, MA AGENCY: Environmental Protection Agency... (``CERCLA''), 42 U.S.C. 9622(h)(1), concerning the MassDOT Route 1 Right-of-Way Site in Chelsea... (OES04-3), Boston, MA 02109-3912 (Telephone No. 617-918-1886) and should refer to: In re: MassDOT Route 1...

  14. In situ growth of ceramic quantum dots in polyaniline host via water vapor flow diffusion as potential electrode materials for energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Mombrú, Dominique [Centro NanoMat/CryssMat/Física – DETEMA – Facultad de Química – Universidad de la República, C.P. 11800 Montevideo (Uruguay); Romero, Mariano, E-mail: mromero@fq.edu.uy [Centro NanoMat/CryssMat/Física – DETEMA – Facultad de Química – Universidad de la República, C.P. 11800 Montevideo (Uruguay); Faccio, Ricardo, E-mail: rfaccio@fq.edu.uy [Centro NanoMat/CryssMat/Física – DETEMA – Facultad de Química – Universidad de la República, C.P. 11800 Montevideo (Uruguay); Castiglioni, Jorge [Laboratorio de Fisicoquímica de Superficies – DETEMA – Facultad de Química – Universidad de la República, C.P. 11800 Montevideo (Uruguay); Mombrú, Alvaro W., E-mail: amombru@fq.edu.uy [Centro NanoMat/CryssMat/Física – DETEMA – Facultad de Química – Universidad de la República, C.P. 11800 Montevideo (Uruguay)

    2017-06-15

    In situ preparation of polyaniline-ceramic nanocomposites has recently demonstrated that the electrical properties are highly improved with respect to the typical ex situ preparations. In this report, we present for the first time, to the best of our knowledge, the in situ growth of titanium oxide quantum dots in polyaniline host via water vapor flow diffusion as an easily adaptable route to prepare other ceramic-polymer nanocomposites. The main relevance of this method is the possibility to prepare ceramic quantum dots from alkoxide precursors using water vapor flow into any hydrophobic polymer host and to achieve good homogeneity and size-control. In addition, we perform full characterization by means of high-resolution transmission electron microscopy, X-ray powder diffraction, small angle X-ray scattering, thermogravimetric and calorimetric analyses, confocal Raman microscopy and impedance spectroscopy analyses. The presence of the polymer host and interparticle Coulomb repulsive interactions was evaluated as an influence for the formation of ~3–8 nm equally-sized quantum dots independently of the concentration. The polyaniline polaron population showed an increase for the quantum dots diluted regime and the suppression at the concentrated regime, ascribed to the formation of chemical bonds at the interface, which was confirmed by theoretical simulations. In agreement with the previous observation, the in situ growth of ceramic quantum dots in polyaniline host via water vapor flow diffusion could be very useful as a novel approach to prepare electrode materials for energy conversion and storage applications. - Highlights: • In situ growth of titanium oxide quantum dots in polyaniline host via water vapor flow diffusion. • Polyaniline charge carriers at the interface and charge interactions between quantum dots. • Easy extrapolation to sol-gel derived quantum dots into polymer host as potential electrode materials.

  15. Magnetic and magneto-optical properties of CdS:Mn quantum dots in PVA matrix

    International Nuclear Information System (INIS)

    Fediv, V I; Savchuk, A I; Frasunyak, V M; Makoviy, V V; Savchuk, O A

    2010-01-01

    We have studied the magnetic and magneto-optical properties of CdS:Mn quantum dots in polyvinyl alcohol matrix synthesized by co-precipitation method. The size of quantum dots was estimated by means of absorption spectroscopy. The results of measurements of magnetic susceptibility as a function of temperature and spectral dependence of the Faraday rotation of CdS:Mn quantum dots / polyvinyl alcohol composites are presented. In this work magnetic susceptibility was investigated by Faraday's method at the temperatures of (78-300) K in magnetic fields of (0.05-0.8) T. The inverse magnetic susceptibility as a function of temperature follows a Curie Weiss law. Formation of ferromagnetic coupling between magnetic ions is supposed. Magneto-optical Faraday rotation has been investigated in the wavelength region (400-700) nm at temperature 300 K in a magnetic field up to 5 T. Sign of the Verdet constant is found to be negative.

  16. Biocompatible Quantum Dots for Biological Applications

    Science.gov (United States)

    Rosenthal, Sandra J.; Chang, Jerry C.; Kovtun, Oleg; McBride, James R.; Tomlinson, Ian D.

    2011-01-01

    Semiconductor quantum dots are quickly becoming a critical diagnostic tool for discerning cellular function at the molecular level. Their high brightness, long-lasting, sizetunable, and narrow luminescence set them apart from conventional fluorescence dyes. Quantum dots are being developed for a variety of biologically oriented applications, including fluorescent assays for drug discovery, disease detection, single protein tracking, and intracellular reporting. This review introduces the science behind quantum dots and describes how they are made biologically compatible. Several applications are also included, illustrating strategies toward target specificity, and are followed by a discussion on the limitations of quantum dot approaches. The article is concluded with a look at the future direction of quantum dots. PMID:21276935

  17. Quantum measurement of coherent tunneling between quantum dots

    International Nuclear Information System (INIS)

    Wiseman, H. M.; Utami, Dian Wahyu; Sun, He Bi; Milburn, G. J.; Kane, B. E.; Dzurak, A.; Clark, R. G.

    2001-01-01

    We describe the conditional and unconditional dynamics of two coupled quantum dots when one dot is subjected to a measurement of its occupation number by coupling it to a third readout dot via the Coulomb interaction. The readout dot is coupled to source and drain leads under weak bias, and a tunnel current flows through a single bound state when energetically allowed. The occupation of the quantum dot near the readout dot shifts the bound state of the readout dot from a low conducting state to a high conducting state. The measurement is made by continuously monitoring the tunnel current through the readout dot. We show that there is a difference between the time scale for the measurement-induced decoherence between the localized states of the dots, and the time scale on which the system becomes localized due to the measurement

  18. Metamorphic quantum dots: Quite different nanostructures

    International Nuclear Information System (INIS)

    Seravalli, L.; Frigeri, P.; Nasi, L.; Trevisi, G.; Bocchi, C.

    2010-01-01

    In this work, we present a study of InAs quantum dots deposited on InGaAs metamorphic buffers by molecular beam epitaxy. By comparing morphological, structural, and optical properties of such nanostructures with those of InAs/GaAs quantum dot ones, we were able to evidence characteristics that are typical of metamorphic InAs/InGaAs structures. The more relevant are: the cross-hatched InGaAs surface overgrown by dots, the change in critical coverages for island nucleation and ripening, the nucleation of new defects in the capping layers, and the redshift in the emission energy. The discussion on experimental results allowed us to conclude that metamorphic InAs/InGaAs quantum dots are rather different nanostructures, where attention must be put to some issues not present in InAs/GaAs structures, namely, buffer-related defects, surface morphology, different dislocation mobility, and stacking fault energies. On the other hand, we show that metamorphic quantum dot nanostructures can provide new possibilities of tailoring various properties, such as dot positioning and emission energy, that could be very useful for innovative dot-based devices.

  19. Templated self-assembly of SiGe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Dais, Christian

    2009-08-19

    This PhD thesis reports on the fabrication and characterization of exact aligned SiGe quantum dot structures. In general, SiGe quantum dots which nucleate via the Stranski-Krastanov growth mode exhibit broad size dispersion and nucleate randomly on the surface. However, to tap the full potential of SiGe quantum dots it is necessary to control the positioning and size of the dots on a nanometer length, e.g. for electronically addressing of individual dots. This can be realized by so-called templated self-assembly, which combines top-down lithography with bottom-up selfassembly. In this process the lithographically defined pits serve as pre-defined nucleation points for the epitaxially grown quantum dots. In this thesis, extreme ultraviolet interference lithography at a wavelength of e=13.4 nm is employed for prepatterning of the Si substrates. This technique allows the precise and fast fabrication of high-resolution templates with a high degree of reproducibility. The subsequent epitaxial deposition is either performed by molecular beam epitaxy or low-pressure chemical vapour deposition. It is shown that the dot nucleation on pre-patterned substrates depends strongly on the lithography parameters, e.g. size and periodicity of the pits, as well as on the epitaxy parameters, e.g. growth temperature or material coverage. The interrelations are carefully analyzed by means of scanning force microscopy, transmission electron microscopy and X-ray diffraction measurements. Provided that correct template and overgrowth parameters are chosen, perfectly aligned and uniform SiGe quantum dot arrays of different period, size as well as symmetry are created. In particular, the quantum dot arrays with the so far smallest period (35 nm) and smallest size dispersion are fabricated in this thesis. Furthermore, the strain fields of the underlying quantum dots allow the fabrication of vertically aligned quantum dot stacks. Combining lateral and vertical dot alignment results in three

  20. Extracellular biosynthesis of CdTe quantum dots by the fungus Fusarium oxysporum and their anti-bacterial activity

    Science.gov (United States)

    Syed, Asad; Ahmad, Absar

    2013-04-01

    The growing demand for semiconductor [quantum dots (Q-dots)] nanoparticles has fuelled significant research in developing strategies for their synthesis and characterization. They are extensively investigated by the chemical route; on the other hand, use of microbial sources for biosynthesis witnessed the highly stable, water dispersible nanoparticles formation. Here we report, for the first time, an efficient fungal-mediated synthesis of highly fluorescent CdTe quantum dots at ambient conditions by the fungus Fusarium oxysporum when reacted with a mixture of CdCl2 and TeCl4. Characterization of these biosynthesized nanoparticles was carried out by different techniques such as Ultraviolet-visible (UV-Vis) spectroscopy, Photoluminescence (PL), X-ray Diffraction (XRD), X-ray Photoelectron spectroscopy (XPS), Transmission Electron Microscopy (TEM) and Fourier Transformed Infrared Spectroscopy (FTIR) analysis. CdTe nanoparticles shows antibacterial activity against Gram positive and Gram negative bacteria. The fungal based fabrication provides an economical, green chemistry approach for production of highly fluorescent CdTe quantum dots.

  1. Porous silicon: silicon quantum dots for photonic applications

    International Nuclear Information System (INIS)

    Pavesi, L.; Guardini, R.

    1996-01-01

    Porous silicon formation and structure characterization are briefly illustrated. Its luminescence properties rae presented and interpreted on the basis of exciton recombination in quantum dot structures: the trap-controlled hopping mechanism is used to describe the recombination dynamics. Porous silicon application to photonic devices is considered: porous silicon multilayer in general, and micro cavities in particular are described. The present situation in the realization of porous silicon LEDs is considered, and future developments in this field of research are suggested. (author). 30 refs., 30 figs., 13 tabs

  2. Quantum dots: Rethinking the electronics

    Energy Technology Data Exchange (ETDEWEB)

    Bishnoi, Dimple [Department of Physics, S. S. Jain Subodh PG College, Jaipur, Rajasthan Pin-302004 (India)

    2016-05-06

    In this paper, we demonstrate theoretically that the Quantum dots are quite interesting for the electronics industry. Semiconductor quantum dots (QDs) are nanometer-scale crystals, which have unique photo physical, quantum electrical properties, size-dependent optical properties, There small size means that electrons do not have to travel as far as with larger particles, thus electronic devices can operate faster. Cheaper than modern commercial solar cells while making use of a wider variety of photon energies, including “waste heat” from the sun’s energy. Quantum dots can be used in tandem cells, which are multi junction photovoltaic cells or in the intermediate band setup. PbSe (lead selenide) is commonly used in quantum dot solar cells.

  3. DOT-7A packaging test procedure

    International Nuclear Information System (INIS)

    Kelly, D.L.

    1995-01-01

    This test procedure documents the steps involved with performance testing of Department of Transportation Specification 7A (DOT-7A) Type A packages. It includes description of the performance tests, the personnel involved, appropriate safety considerations, and the procedures to be followed while performing the tests. Westinghouse Hanford Company (WHC) is conducting the evaluation and testing discussed herein for the Department of Energy-Headquarters, Division of Quality Verification and Transportation Safety (EH-321). Please note that this report is not in WHC format. This report is being submitted through the Engineering Documentation System so that it may be used for reference and information purposes

  4. The electronic properties of semiconductor quantum dots

    International Nuclear Information System (INIS)

    Barker, J.A.

    2000-10-01

    This work is an investigation into the electronic behaviour of semiconductor quantum dots, particularly self-assembled quantum dot arrays. Processor-efficient models are developed to describe the electronic structure of dots, deriving analytic formulae for the strain tensor, piezoelectric distribution and diffusion- induced evolution of the confinement potential, for dots of arbitrary initial shape and composition profile. These models are then applied to experimental data. Transitions due to individual quantum dots have a narrow linewidth as a result of their discrete density of states. By contrast, quantum dot arrays exhibit inhomogeneous broadening which is generally attributed to size variations between the individual dots in the ensemble. Interpreting the results of double resonance spectroscopy, it is seen that variation in the indium composition of the nominally InAs dots is also present. This result also explains the otherwise confusing relationship between the spread in the ground-state and excited-state transition energies. Careful analysis shows that, in addition to the variations in size and composition, some other as yet unidentified broadening mechanism must also be present. The influence of rapid thermal annealing on dot electronic structure is also considered, finding that the experimentally observed blue-shift and narrowing of the photoluminescence linewidth may both be explained in terms of normal In/Ga interdiffusion. InAs/GaAs self-assembled quantum dots are commonly assumed to have a pyramidal geometry, so that we would expect the energy separation of the ground-state electron and hole levels in the dot to be largest at a positive applied field. This should also be the case for any dot of uniform composition whose shape tapers inwards from base to top, counter to the results of experimental Stark-shift spectroscopy which show a peak transition energy at a negative applied field. It is demonstrated that this inversion of the ground state

  5. The DotA protein from Legionella pneumophila is secreted by a novel process that requires the Dot/Icm transporter

    OpenAIRE

    Nagai, Hiroki; Roy, Craig R.

    2001-01-01

    Legionella pneumophila requires the dot/icm genes to create an organelle inside eukaryotic host cells that will support bacterial replication. The dot/icm genes are predicted to encode a type IV-related secretion apparatus. However, no proteins have been identified that require the dot/icm genes for secretion. In this study we show that the DotA protein, which was previously found to be a polytopic membrane protein, is secreted by the Dot/Icm transporter into culture supernatants. Secreted Do...

  6. Design of quaternary logic circuit using quantum dot gate-quantum dot channel FET (QDG-QDCFET)

    Science.gov (United States)

    Karmakar, Supriya

    2014-10-01

    This paper presents the implementation of quaternary logic circuits based on quantum dot gate-quantum dot channel field effect transistor (QDG-QDCFET). The super lattice structure in the quantum dot channel region of QDG-QDCFET and the electron tunnelling from inversion channel to the quantum dot layer in the gate region of a QDG-QDCFET change the threshold voltage of this device which produces two intermediate states between its ON and OFF states. This property of QDG-QDCFET is used to implement multi-valued logic for future multi-valued logic circuit. This paper presents the design of basic quaternary logic operation such as inverter, AND and OR operation based on QDG-QDCFET.

  7. Electron microscopy of GaAs-based structures with InAs and As quantum dots separated by an AlAs barrier

    International Nuclear Information System (INIS)

    Nevedomskiy, V. N.; Bert, N. A.; Chaldyshev, V. V.; Preobrazhenskiy, V. V.; Putyato, M. A.; Semyagin, B. R.

    2013-01-01

    Electron microscopy studies of GaAs-based structures grown by molecular beam epitaxy and containing arrays of semiconductor InAs quantum dots and metal As quantum dots are performed. The array of InAs quantum dots is formed by the Stranski-Krastanov mechanism and consists of vertically coupled pairs of quantum dots separated by a GaAs spacer 10 nm thick. To separate the arrays of semiconductor and metal quantum dots and to prevent diffusion-induced mixing, the array of InAs quantum dots is overgrown with an AlAs barrier layer 5 or 10 nm thick, after which a GaAs layer is grown at a comparatively low temperature (180°C). The array of As quantum dots is formed in an As-enriched layer of the low-temperature GaAs by means of post-growth annealing at 400–760°C for 15 min. It is established that the AlAs barrier layer has a surface profile corresponding to that of a subbarrier layer with InAs quantum dots. The presence of such a profile causes the formation of V-shaped structural defects upon subsequent overgrowth with the GaAs layer. Besides, it was obtained that AlAs layer is thinned over the InAs quantum dots tops. It is shown that the AlAs barrier layer in the regions between the InAs quantum dots effectively prevents the starting diffusion of excess As at annealing temperatures up to 600°C. However, the concentration of mechanical stresses and the reduced thickness of the AlAs barrier layer near the tops of the InAs quantum dots lead to local barrier breakthroughs and the diffusion of As quantum dots into the region of coupled pairs of InAs quantum dots at higher annealing temperatures

  8. Ge/Si(001) heterostructures with dense arrays of Ge quantum dots: morphology, defects, photo-emf spectra and terahertz conductivity.

    Science.gov (United States)

    Yuryev, Vladimir A; Arapkina, Larisa V; Storozhevykh, Mikhail S; Chapnin, Valery A; Chizh, Kirill V; Uvarov, Oleg V; Kalinushkin, Victor P; Zhukova, Elena S; Prokhorov, Anatoly S; Spektor, Igor E; Gorshunov, Boris P

    2012-07-23

    : Issues of Ge hut cluster array formation and growth at low temperatures on the Ge/Si(001) wetting layer are discussed on the basis of explorations performed by high resolution STM and in-situ RHEED. Dynamics of the RHEED patterns in the process of Ge hut array formation is investigated at low and high temperatures of Ge deposition. Different dynamics of RHEED patterns during the deposition of Ge atoms in different growth modes is observed, which reflects the difference in adatom mobility and their 'condensation' fluxes from Ge 2D gas on the surface for different modes, which in turn control the nucleation rates and densities of Ge clusters. Data of HRTEM studies of multilayer Ge/Si heterostructures are presented with the focus on low-temperature formation of perfect films.Heteroepitaxial Si p-i-n-diodes with multilayer stacks of Ge/Si(001) quantum dot dense arrays built in intrinsic domains have been investigated and found to exhibit the photo-emf in a wide spectral range from 0.8 to 5 μm. An effect of wide-band irradiation by infrared light on the photo-emf spectra has been observed. Photo-emf in different spectral ranges has been found to be differently affected by the wide-band irradiation. A significant increase in photo-emf is observed in the fundamental absorption range under the wide-band irradiation. The observed phenomena are explained in terms of positive and neutral charge states of the quantum dot layers and the Coulomb potential of the quantum dot ensemble. A new design of quantum dot infrared photodetectors is proposed.By using a coherent source spectrometer, first measurements of terahertz dynamical conductivity (absorptivity) spectra of Ge/Si(001) heterostructures were performed at frequencies ranged from 0.3 to 1.2 THz in the temperature interval from 300 to 5 K. The effective dynamical conductivity of the heterostructures with Ge quantum dots has been discovered to be significantly higher than that of the structure with the same amount of bulk

  9. The effect of carbon chain length of starting materials on the formation of carbon dots and their optical properties

    Science.gov (United States)

    Pan, Xiaohua; Zhang, Yan; Sun, Xiaobo; Pan, Wei; Yu, Guifeng; Si, Shuxin; Wang, Jinping

    2018-04-01

    Carbon dots (CDs) have attracted increasing attention due to their high performances and potential applications in wide range of areas. However, their emission mechanism is not clear so far. In order to reveal more factors contributing to the emission of CDs, the effect of carbon chain length of starting materials on the formation of CDs and their optical properties was experimentally investigated in this work. In order to focus on the effect of carbon chain length, the starting materials with C, O, N in fully identical forms and only carbon chain lengths being different were selected for synthesizing CDs, including citric acid (CA) and adipic acid (AA) as carbon sources, and diamines with different carbon chain lengths (H2N(CH2)nNH2, n = 2, 4, 6) as nitrogen sources, as well as ethylenediamine (EDA) as nitrogen source and diacids with different carbon chain lengths (HOOC(CH2)nCOOH, n = 0, 2, 4, 6) as carbon sources. Therefore, the effect of carbon chain length of starting materials on the formation and optical properties of CDs can be systematically investigated by characterizing and comparing the structures and optical properties of as-prepared nine types of CDs. Moreover, the density of –NH2 on the surface of the CDs was quantitatively detected by a spectrophotometry so as to elucidate the relationship between the –NH2 related surface state and the optical properties.

  10. Semiconductor quantum-dot lasers and amplifiers

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Borri, Paola; Ledentsov, N. N.

    2002-01-01

    -power surface emitting VCSELs. We investigated the ultrafast dynamics of quantum-dot semiconductor optical amplifiers. The dephasing time at room temperature of the ground-state transition in semiconductor quantum dots is around 250 fs in an unbiased amplifier, decreasing to below 50 fs when the amplifier...... is biased to positive net gain. We have further measured gain recovery times in quantum dot amplifiers that are significantly lower than in bulk and quantum-well semiconductor optical amplifiers. This is promising for future demonstration of quantum dot devices with high modulation bandwidth...

  11. Electric-field controlled ferromagnetism in MnGe magnetic quantum dots

    Directory of Open Access Journals (Sweden)

    Faxian Xiu

    2011-03-01

    Full Text Available Electric-field control of ferromagnetism in magnetic semiconductors at room temperature has been actively pursued as one of the important approaches to realize practical spintronics and non-volatile logic devices. While Mn-doped III-V semiconductors were considered as potential candidates for achieving this controllability, the search for an ideal material with high Curie temperature (Tc>300 K and controllable ferromagnetism at room temperature has continued for nearly a decade. Among various dilute magnetic semiconductors (DMSs, materials derived from group IV elements such as Si and Ge are the ideal candidates for such materials due to their excellent compatibility with the conventional complementary metal-oxide-semiconductor (CMOS technology. Here, we review recent reports on the development of high-Curie temperature Mn0.05Ge0.95 quantum dots (QDs and successfully demonstrate electric-field control of ferromagnetism in the Mn0.05Ge0.95 quantum dots up to 300 K. Upon the application of gate-bias to a metal-oxide-semiconductor (MOS capacitor, the ferromagnetism of the channel layer (i.e. the Mn0.05Ge0.95 quantum dots was modulated as a function of the hole concentration. Finally, a theoretical model based upon the formation of magnetic polarons has been proposed to explain the observed field controlled ferromagnetism.

  12. Formation of a Colloidal CdSe and ZnSe Quantum Dots via a Gamma Radiolytic Technique

    Directory of Open Access Journals (Sweden)

    Aeshah Salem

    2016-09-01

    Full Text Available Colloidal cadmium selenide (CdSe and zinc selenide (ZnSe quantum dots with a hexagonal structure were synthesized by irradiating an aqueous solution containing metal precursors, poly (vinyl pyrrolidone, isopropyl alcohol, and organic solvents with 1.25-MeV gamma rays at a dose of 120 kGy. The radiolytic processes occurring in water result in the nucleation of particles, which leads to the growth of the quantum dots. The physical properties of the CdSe and ZnSe nanoparticles were measured by various characterization techniques. X-ray diffraction (XRD was used to confirm the nanocrystalline structure, energy-dispersive X-ray spectroscopy (EDX was used to estimate the material composition of the samples, transmission electron microscopy (TEM was used to determine the morphologies and average particle size distribution, and UV-visible spectroscopy was used to measure the optical absorption spectra, from which the band gap of the CdSe and ZnSe nanoparticles could be deduced.

  13. GRUNCLE, 1. Collision Source Calculation for Program DOT. DOT-3.5, 2-D Neutron Transport, Gamma Transport Program DOT with New Space-Scaling

    International Nuclear Information System (INIS)

    1996-01-01

    A - Nature of problem or function: DOT solves the Boltzmann transport equation in two-dimensional geometries. Principal applications are to neutron and/or photon transport, although the code can be applied to transport problems for any particles not subject to external force fields. Both homogeneous and external-source problems can be solved. Searches on multiplication factor, time absorption, nuclide concentration, and zone thickness are available for reactor problems. Numerous edits and output data sets for subsequent use are available. DOT-3.5 improves the space-scaling algorithm. DOT-3.5/CAB contains group by group UPSCATTER scaling method. DUCT calculates perturbations to the scalar flux caused by the presence of ducts filled with coolant. VIP is a program for cross section sensitivity analysis using two- dimensional discrete ordinates transport calculations. DGRAD calculates the directional flux gradients from DOT-3 diffusion theory flux tapes. In conjunction with VIP and TPERT, it allows the use of diffusion theory fluxes to obtain exact and first-order perturbation reactivity changes. In order to calculate the reactivity associated with changes in reactor compositions using diffusion theory, it is necessary to fold not only the scalar fluxes with the appropriate cross sections, but also the average flux gradients with the diffusion coefficients. Since DOT diffusion theory does not directly calculate these gradients, it was necessary to calculate the needed quantities external to the DOT code. TPERT is a perturbation code to obtain exact and first-order reactivity changes. TPERT is coupled to VIP which generates adjoint forward flux tables using DOT-3 scalar flux tape information. GRTUNCL calculates an analytical first-collision source for subsequent use in DOT. B - Method of solution: The method of discrete ordinates is used. Balance equations are solved for the density of particles moving along discrete directions in each cell of a two-dimensional spatial

  14. Transport properties of a Kondo dot with a larger side-coupled noninteracting quantum dot

    International Nuclear Information System (INIS)

    Liu, Y S; Fan, X H; Xia, Y J; Yang, X F

    2008-01-01

    We investigate theoretically linear and nonlinear quantum transport through a smaller quantum dot in a Kondo regime connected to two leads in the presence of a larger side-coupled noninteracting quantum dot, without tunneling coupling to the leads. To do this we employ the slave boson mean field theory with the help of the Keldysh Green's function at zero temperature. The numerical results show that the Kondo conductance peak may develop multiple resonance peaks and multiple zero points in the conductance spectrum owing to constructive and destructive quantum interference effects when the energy levels of the large side-coupled noninteracting dot are located in the vicinity of the Fermi level in the leads. As the coupling strength between two quantum dots increases, the tunneling current through the quantum device as a function of gate voltage applied across the two leads is suppressed. The spin-dependent transport properties of two parallel coupled quantum dots connected to two ferromagnetic leads are also investigated. The numerical results show that, for the parallel configuration, the spin current or linear spin differential conductance are enhanced when the polarization strength in the two leads is increased

  15. First-step nucleation growth dependence of InAs/InGaAs/InP quantum dot formation in two-step growth

    International Nuclear Information System (INIS)

    Yin Zongyou; Tang Xiaohong; Deny, Sentosa; Chin, Mee Koy; Zhang Jixuan; Teng Jinghua; Du Anyan

    2008-01-01

    First-step nucleation growth has an important impact on the two-step growth of high-quality mid-infrared emissive InAs/InGaAs/InP quantum dots (QDs). It has been found that an optimized growth rate for first-step nucleation is critical for forming QDs with narrow size distribution, high dot density and high crystal quality. High growth temperature has an advantage in removing defects in the QDs formed, but the dot density will be reduced. Contrasting behavior in forming InAs QDs using metal-organic vapor phase epitaxy (MOVPE) by varying the input flux ratio of group-V versus group-III source (V/III ratio) in the first-step nucleation growth has been observed and investigated. High-density, 2.5 x 10 10 cm -2 , InAs QDs emitting at>2.15 μm have been formed with narrow size distribution, ∼1 nm standard deviation, by reducing the V/III ratio to zero in first-step nucleation growth

  16. Sol-Gel Chemistry for Carbon Dots.

    Science.gov (United States)

    Malfatti, Luca; Innocenzi, Plinio

    2018-03-14

    Carbon dots are an emerging class of carbon-based nanostructures produced by low-cost raw materials which exhibit a widely-tunable photoluminescence and a high quantum yield. The potential of these nanomaterials as a substitute of semiconductor quantum dots in optoelectronics and biomedicine is very high, however they need a customized chemistry to be integrated in host-guest systems or functionalized in core-shell structures. This review is focused on recent advances of the sol-gel chemistry applied to the C-dots technology. The surface modification, the fine tailoring of the chemical composition and the embedding into a complex nanostructured material are the main targets of combining sol-gel processing with C-dots chemistry. In addition, the synergistic effect of the sol-gel precursor combined with the C-dots contribute to modify the intrinsic chemo-physical properties of the dots, empowering the emission efficiency or enabling the tuning of the photoluminescence over a wide range of the visible spectrum. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Large quantum dots with small oscillator strength

    DEFF Research Database (Denmark)

    Stobbe, Søren; Schlereth, T.W.; Höfling, S.

    2010-01-01

    We have measured the oscillator strength and quantum efficiency of excitons confined in large InGaAs quantum dots by recording the spontaneous emission decay rate while systematically varying the distance between the quantum dots and a semiconductor-air interface. The size of the quantum dots...... is measured by in-plane transmission electron microscopy and we find average in-plane diameters of 40 nm. We have calculated the oscillator strength of excitons of that size assuming a quantum-dot confinement given by a parabolic in-plane potential and a hard-wall vertical potential and predict a very large...... intermixing inside the quantum dots....

  18. Magnetophotoluminescence study of the influence of substrate orientation and growth interruption on the electronic properties of InAs/GaAs quantum dots

    International Nuclear Information System (INIS)

    Godefroo, S.; Maes, J.; Hayne, M.; Moshchalkov, V.V.; Henini, M.; Pulizzi, F.; Patane, A.; Eaves, L.

    2004-01-01

    We have used photoluminescence in pulsed (≤50 T) and dc (≤12 T) magnetic fields to investigate the influence of substrate orientation and growth interruption (GI) on the electronic properties of InAs/GaAs quantum dots, grown by molecular beam epitaxy at 480 deg. C. Dot formation is very efficient on the (100) substrate: electronic confinement is already strong without GI and no significant change in confinement is observed with GI. On the contrary, for the (311)B substrate strong confinement of the charges only occurs after a GI is introduced. When longer GIs are applied the dots become higher

  19. Optical properties of quantum-dot-doped liquid scintillators

    International Nuclear Information System (INIS)

    Aberle, C; Winslow, L; Li, J J; Weiss, S

    2013-01-01

    Semiconductor nanoparticles (quantum dots) were studied in the context of liquid scintillator development for upcoming neutrino experiments. The unique optical and chemical properties of quantum dots are particularly promising for the use in neutrinoless double-beta decay experiments. Liquid scintillators for large scale neutrino detectors have to meet specific requirements which are reviewed, highlighting the peculiarities of quantum-dot-doping. In this paper, we report results on laboratory-scale measurements of the attenuation length and the fluorescence properties of three commercial quantum dot samples. The results include absorbance and emission stability measurements, improvement in transparency due to filtering of the quantum dot samples, precipitation tests to isolate the quantum dots from solution and energy transfer studies with quantum dots and the fluorophore PPO

  20. Optical Signatures of Coupled Quantum Dots

    Science.gov (United States)

    Stinaff, E. A.; Scheibner, M.; Bracker, A. S.; Ponomarev, I. V.; Korenev, V. L.; Ware, M. E.; Doty, M. F.; Reinecke, T. L.; Gammon, D.

    2006-02-01

    An asymmetric pair of coupled InAs quantum dots is tuned into resonance by applying an electric field so that a single hole forms a coherent molecular wave function. The optical spectrum shows a rich pattern of level anticrossings and crossings that can be understood as a superposition of charge and spin configurations of the two dots. Coulomb interactions shift the molecular resonance of the optically excited state (charged exciton) with respect to the ground state (single charge), enabling light-induced coupling of the quantum dots. This result demonstrates the possibility of optically coupling quantum dots for application in quantum information processing.

  1. Influence of the quantum dot geometry on p -shell transitions in differently charged quantum dots

    Science.gov (United States)

    Holtkemper, M.; Reiter, D. E.; Kuhn, T.

    2018-02-01

    Absorption spectra of neutral, negatively, and positively charged semiconductor quantum dots are studied theoretically. We provide an overview of the main energetic structure around the p -shell transitions, including the influence of nearby nominally dark states. Based on the envelope function approximation, we treat the four-band Luttinger theory as well as the direct and short-range exchange Coulomb interactions within a configuration interaction approach. The quantum dot confinement is approximated by an anisotropic harmonic potential. We present a detailed investigation of state mixing and correlations mediated by the individual interactions. Differences and similarities between the differently charged quantum dots are highlighted. Especially large differences between negatively and positively charged quantum dots become evident. We present a visualization of energetic shifts and state mixtures due to changes in size, in-plane asymmetry, and aspect ratio. Thereby we provide a better understanding of the experimentally hard to access question of quantum dot geometry effects. Our findings show a method to determine the in-plane asymmetry from photoluminescence excitation spectra. Furthermore, we supply basic knowledge for tailoring the strength of certain state mixtures or the energetic order of particular excited states via changes of the shape of the quantum dot. Such knowledge builds the basis to find the optimal QD geometry for possible applications and experiments using excited states.

  2. Quantum dot-polymer conjugates for stable luminescent displays.

    Science.gov (United States)

    Ghimire, Sushant; Sivadas, Anjaly; Yuyama, Ken-Ichi; Takano, Yuta; Francis, Raju; Biju, Vasudevanpillai

    2018-05-23

    The broad absorption of light in the UV-Vis-NIR region and the size-based tunable photoluminescence color of semiconductor quantum dots make these tiny crystals one of the most attractive antennae in solar cells and phosphors in electrooptical devices. One of the primary requirements for such real-world applications of quantum dots is their stable and uniform distribution in optically transparent matrices. In this work, we prepare transparent thin films of polymer-quantum dot conjugates, where CdSe/ZnS quantum dots are uniformly distributed at high densities in a chitosan-polystyrene copolymer (CS-g-PS) matrix. Here, quantum dots in an aqueous solution are conjugated to the copolymer by a phase transfer reaction. With the stable conjugation of quantum dots to the copolymer, we prevent undesired phase separation between the two and aggregation of quantum dots. Furthermore, the conjugate allows us to prepare transparent thin films in which quantum dots are uniformly distributed at high densities. The CS-g-PS copolymer helps us in not only preserving the photoluminescence properties of quantum dots in the film but also rendering excellent photostability to quantum dots at the ensemble and single particle levels, making the conjugate a promising material for photoluminescence-based devices.

  3. Andreev molecules in semiconductor nanowire double quantum dots.

    Science.gov (United States)

    Su, Zhaoen; Tacla, Alexandre B; Hocevar, Moïra; Car, Diana; Plissard, Sébastien R; Bakkers, Erik P A M; Daley, Andrew J; Pekker, David; Frolov, Sergey M

    2017-09-19

    Chains of quantum dots coupled to superconductors are promising for the realization of the Kitaev model of a topological superconductor. While individual superconducting quantum dots have been explored, control of longer chains requires understanding of interdot coupling. Here, double quantum dots are defined by gate voltages in indium antimonide nanowires. High transparency superconducting niobium titanium nitride contacts are made to each of the dots in order to induce superconductivity, as well as probe electron transport. Andreev bound states induced on each of dots hybridize to define Andreev molecular states. The evolution of these states is studied as a function of charge parity on the dots, and in magnetic field. The experiments are found in agreement with a numerical model.Quantum dots in a nanowire are one possible approach to creating a solid-state quantum simulator. Here, the authors demonstrate the coupling of electronic states in a double quantum dot to form Andreev molecule states; a potential building block for longer chains suitable for quantum simulation.

  4. Quantum optics with single quantum dot devices

    International Nuclear Information System (INIS)

    Zwiller, Valery; Aichele, Thomas; Benson, Oliver

    2004-01-01

    A single radiative transition in a single-quantum emitter results in the emission of a single photon. Single quantum dots are single-quantum emitters with all the requirements to generate single photons at visible and near-infrared wavelengths. It is also possible to generate more than single photons with single quantum dots. In this paper we show that single quantum dots can be used to generate non-classical states of light, from single photons to photon triplets. Advanced solid state structures can be fabricated with single quantum dots as their active region. We also show results obtained on devices based on single quantum dots

  5. Carrier relaxation in (In,Ga)As quantum dots with magnetic field-induced anharmonic level structure

    Energy Technology Data Exchange (ETDEWEB)

    Kurtze, H.; Bayer, M. [Experimentelle Physik 2, TU Dortmund, D-44221 Dortmund (Germany)

    2016-07-04

    Sophisticated models have been worked out to explain the fast relaxation of carriers into quantum dot ground states after non-resonant excitation, overcoming the originally proposed phonon bottleneck. We apply a magnetic field along the quantum dot heterostructure growth direction to transform the confined level structure, which can be approximated by a Fock–Darwin spectrum, from a nearly equidistant level spacing at zero field to strong anharmonicity in finite fields. This changeover leaves the ground state carrier population rise time unchanged suggesting that fast relaxation is maintained upon considerable changes of the level spacing. This corroborates recent models explaining the relaxation by polaron formation in combination with quantum kinetic effects.

  6. PREFACE: Quantum Dot 2010

    Science.gov (United States)

    Taylor, Robert A.

    2010-09-01

    These conference proceedings contain the written papers of the contributions presented at Quantum Dot 2010 (QD2010). The conference was held in Nottingham, UK, on 26-30 April 2010. The conference addressed topics in research on: 1. Epitaxial quantum dots (including self-assembled and interface structures, dots defined by electrostatic gates etc): optical properties and electron transport quantum coherence effects spin phenomena optics of dots in cavities interaction with surface plasmons in metal/semiconductor structures opto-electronics applications 2. Novel QD structures: fabrication and physics of graphene dots, dots in nano-wires etc 3. Colloidal quantum dots: growth (shape control and hybrid nanocrystals such as metal/semiconductor, magnetic/semiconductor) assembly and surface functionalisation optical properties and spin dynamics electrical and magnetic properties applications (light emitting devices and solar cells, biological and medical applications, data storage, assemblers) The Editors Acknowledgements Conference Organising Committee: Maurice Skolnick (Chair) Alexander Tartakovskii (Programme Chair) Pavlos Lagoudakis (Programme Chair) Max Migliorato (Conference Secretary) Paola Borri (Publicity) Robert Taylor (Proceedings) Manus Hayne (Treasurer) Ray Murray (Sponsorship) Mohamed Henini (Local Organiser) International Advisory Committee: Yasuhiko Arakawa (Tokyo University, Japan) Manfred Bayer (Dortmund University, Germany) Sergey Gaponenko (Stepanov Institute of Physics, Minsk, Belarus) Pawel Hawrylak (NRC, Ottawa, Canada) Fritz Henneberger (Institute for Physics, Berlin, Germany) Atac Imamoglu (ETH, Zurich, Switzerland) Paul Koenraad (TU Eindhoven, Nethehrlands) Guglielmo Lanzani (Politecnico di Milano, Italy) Jungil Lee (Korea Institute of Science and Technology, Korea) Henri Mariette (CNRS-CEA, Grenoble, France) Lu Jeu Sham (San Diego, USA) Andrew Shields (Toshiba Research Europe, Cambridge, UK) Yoshihisa Yamamoto (Stanford University, USA) Artur

  7. Elimination of Bimodal Size in InAs/GaAs Quantum Dots for Preparation of 1.3-μm Quantum Dot Lasers.

    Science.gov (United States)

    Su, Xiang-Bin; Ding, Ying; Ma, Ben; Zhang, Ke-Lu; Chen, Ze-Sheng; Li, Jing-Lun; Cui, Xiao-Ran; Xu, Ying-Qiang; Ni, Hai-Qiao; Niu, Zhi-Chuan

    2018-02-21

    The device characteristics of semiconductor quantum dot lasers have been improved with progress in active layer structures. Self-assembly formed InAs quantum dots grown on GaAs had been intensively promoted in order to achieve quantum dot lasers with superior device performances. In the process of growing high-density InAs/GaAs quantum dots, bimodal size occurs due to large mismatch and other factors. The bimodal size in the InAs/GaAs quantum dot system is eliminated by the method of high-temperature annealing and optimized the in situ annealing temperature. The annealing temperature is taken as the key optimization parameters, and the optimal annealing temperature of 680 °C was obtained. In this process, quantum dot growth temperature, InAs deposition, and arsenic (As) pressure are optimized to improve quantum dot quality and emission wavelength. A 1.3-μm high-performance F-P quantum dot laser with a threshold current density of 110 A/cm 2 was demonstrated.

  8. Pauli-spin blockade in a vertical double quantum dot holding two to five electrons

    International Nuclear Information System (INIS)

    Kodera, T; Arakawa, Y; Tarucha, S; Ono, K; Amaha, S

    2009-01-01

    We use a vertical double quantum dot (QD) to study spin blockade (SB) for the two-to five-electron states. SB observed for the two- and four-electron states is both assigned to Pauli exclusion with formation of a spin triplet state, and lifted by singlet-triplet admixing due to fluctuating nuclear field. SB observed for the five-electron state is caused by combined Pauli effect and Hund's rule. We observe a hysteretic behavior of the SB leakage current for up and down sweep of magnetic field, and argue that SB and its lifting by hyperfine interaction are subtle with the spin configuration and modified depending on the inter-dot detuning and number of electrons.

  9. Quantum-dot-in-perovskite solids

    KAUST Repository

    Ning, Zhijun; Gong, Xiwen; Comin, Riccardo; Walters, Grant; Fan, Fengjia; Voznyy, Oleksandr; Yassitepe, Emre; Buin, Andrei; Hoogland, Sjoerd; Sargent, Edward H.

    2015-01-01

    © 2015 Macmillan Publishers Limited. All rights reserved. Heteroepitaxy - atomically aligned growth of a crystalline film atop a different crystalline substrate - is the basis of electrically driven lasers, multijunction solar cells, and blue-light-emitting diodes. Crystalline coherence is preserved even when atomic identity is modulated, a fact that is the critical enabler of quantum wells, wires, and dots. The interfacial quality achieved as a result of heteroepitaxial growth allows new combinations of materials with complementary properties, which enables the design and realization of functionalities that are not available in the single-phase constituents. Here we show that organohalide perovskites and preformed colloidal quantum dots, combined in the solution phase, produce epitaxially aligned 'dots-in-a-matrix' crystals. Using transmission electron microscopy and electron diffraction, we reveal heterocrystals as large as about 60 nanometres and containing at least 20 mutually aligned dots that inherit the crystalline orientation of the perovskite matrix. The heterocrystals exhibit remarkable optoelectronic properties that are traceable to their atom-scale crystalline coherence: photoelectrons and holes generated in the larger-bandgap perovskites are transferred with 80% efficiency to become excitons in the quantum dot nanocrystals, which exploit the excellent photocarrier diffusion of perovskites to produce bright-light emission from infrared-bandgap quantum-tuned materials. By combining the electrical transport properties of the perovskite matrix with the high radiative efficiency of the quantum dots, we engineer a new platform to advance solution-processed infrared optoelectronics.

  10. Quantum-dot-in-perovskite solids

    KAUST Repository

    Ning, Zhijun

    2015-07-15

    © 2015 Macmillan Publishers Limited. All rights reserved. Heteroepitaxy - atomically aligned growth of a crystalline film atop a different crystalline substrate - is the basis of electrically driven lasers, multijunction solar cells, and blue-light-emitting diodes. Crystalline coherence is preserved even when atomic identity is modulated, a fact that is the critical enabler of quantum wells, wires, and dots. The interfacial quality achieved as a result of heteroepitaxial growth allows new combinations of materials with complementary properties, which enables the design and realization of functionalities that are not available in the single-phase constituents. Here we show that organohalide perovskites and preformed colloidal quantum dots, combined in the solution phase, produce epitaxially aligned \\'dots-in-a-matrix\\' crystals. Using transmission electron microscopy and electron diffraction, we reveal heterocrystals as large as about 60 nanometres and containing at least 20 mutually aligned dots that inherit the crystalline orientation of the perovskite matrix. The heterocrystals exhibit remarkable optoelectronic properties that are traceable to their atom-scale crystalline coherence: photoelectrons and holes generated in the larger-bandgap perovskites are transferred with 80% efficiency to become excitons in the quantum dot nanocrystals, which exploit the excellent photocarrier diffusion of perovskites to produce bright-light emission from infrared-bandgap quantum-tuned materials. By combining the electrical transport properties of the perovskite matrix with the high radiative efficiency of the quantum dots, we engineer a new platform to advance solution-processed infrared optoelectronics.

  11. Self-organized strain engineering on GaAs (311)B : template formation for quantum dot nucleation control

    NARCIS (Netherlands)

    Gong, Q.; Nötzel, R.; Hamhuis, G.J.; Eijkemans, T.J.; Wolter, J.H.

    2002-01-01

    A matrix of closely packed cells develops during molecular-beam epitaxy of In/sub 0.35/Ga/sub 0.65/As on GaAs (311)B, due to strain-driven growth instability. The established lateral strain distribution generates a unique template that controls the nucleation and growth of InAs quantum dots (QDs).

  12. Quantum dots for quantum information technologies

    CERN Document Server

    2017-01-01

    This book highlights the most recent developments in quantum dot spin physics and the generation of deterministic superior non-classical light states with quantum dots. In particular, it addresses single quantum dot spin manipulation, spin-photon entanglement and the generation of single-photon and entangled photon pair states with nearly ideal properties. The role of semiconductor microcavities, nanophotonic interfaces as well as quantum photonic integrated circuits is emphasized. The latest theoretical and experimental studies of phonon-dressed light matter interaction, single-dot lasing and resonance fluorescence in QD cavity systems are also provided. The book is written by the leading experts in the field.

  13. Coherent transport through interacting quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Hiltscher, Bastian

    2012-10-05

    The present thesis is composed of four different works. All deal with coherent transport through interacting quantum dots, which are tunnel-coupled to external leads. There a two main motivations for the use of quantum dots. First, they are an ideal device to study the influence of strong Coulomb repulsion, and second, their discrete energy levels can easily be tuned by external gate electrodes to create different transport regimes. The expression of coherence includes a very wide range of physical correlations and, therefore, the four works are basically independent of each other. Before motivating and introducing the different works in more detail, we remark that in all works a diagrammatic real-time perturbation theory is used. The fermionic degrees of freedom of the leads are traced out and the elements of the resulting reduced density matrix can be treated explicitly by means of a generalized master equation. How this equation is solved, depends on the details of the problem under consideration. In the first of the four works adiabatic pumping through an Aharonov-Bohm interferometer with a quantum dot embedded in each of the two arms is studied. In adiabatic pumping transport is generated by varying two system parameters periodically in time. We consider the two dot levels to be these two pumping parameters. Since they are located in different arms of the interferometer, pumping is a quantum mechanical effect purely relying on coherent superpositions of the dot states. It is very challenging to identify a quantum pumping mechanism in experiments, because a capacitive coupling of the gate electrodes to the leads may yield an undesired AC bias voltage, which is rectified by a time dependent conductance. Therefore, distinguishing features of these two transport mechanisms are required. We find that the dependence on the magnetic field is the key feature. While the pumped charge is an odd function of the magnetic flux, the rectified current is even, at least in

  14. Coherent transport through interacting quantum dots

    International Nuclear Information System (INIS)

    Hiltscher, Bastian

    2012-01-01

    The present thesis is composed of four different works. All deal with coherent transport through interacting quantum dots, which are tunnel-coupled to external leads. There a two main motivations for the use of quantum dots. First, they are an ideal device to study the influence of strong Coulomb repulsion, and second, their discrete energy levels can easily be tuned by external gate electrodes to create different transport regimes. The expression of coherence includes a very wide range of physical correlations and, therefore, the four works are basically independent of each other. Before motivating and introducing the different works in more detail, we remark that in all works a diagrammatic real-time perturbation theory is used. The fermionic degrees of freedom of the leads are traced out and the elements of the resulting reduced density matrix can be treated explicitly by means of a generalized master equation. How this equation is solved, depends on the details of the problem under consideration. In the first of the four works adiabatic pumping through an Aharonov-Bohm interferometer with a quantum dot embedded in each of the two arms is studied. In adiabatic pumping transport is generated by varying two system parameters periodically in time. We consider the two dot levels to be these two pumping parameters. Since they are located in different arms of the interferometer, pumping is a quantum mechanical effect purely relying on coherent superpositions of the dot states. It is very challenging to identify a quantum pumping mechanism in experiments, because a capacitive coupling of the gate electrodes to the leads may yield an undesired AC bias voltage, which is rectified by a time dependent conductance. Therefore, distinguishing features of these two transport mechanisms are required. We find that the dependence on the magnetic field is the key feature. While the pumped charge is an odd function of the magnetic flux, the rectified current is even, at least in

  15. Graphene quantum dots

    CERN Document Server

    Güçlü, Alev Devrim; Korkusinski, Marek; Hawrylak, Pawel

    2014-01-01

    This book reflects the current status of theoretical and experimental research of graphene based nanostructures, in particular quantum dots, at a level accessible to young researchers, graduate students, experimentalists and theorists. It presents the current state of research of graphene quantum dots, a single or few monolayer thick islands of graphene. It introduces the reader to the electronic and optical properties of graphite, intercalated graphite and graphene, including Dirac fermions, Berry's phase associated with sublattices and valley degeneracy, covers single particle properties of

  16. Different valence Sn doping - A simple way to detect oxygen concentration variation of ZnO quantum dots synthesized under ultrasonic irradiation.

    Science.gov (United States)

    Yang, Weimin; Zhang, Bing; Zhang, Qitu; Wang, Lixi; Song, Bo; Wu, Fan; Wong, C P

    2017-09-01

    An ultrasonic method is employed to synthesize the Sn doped Zn 0.95 Sn 0.05 O quantum dots with green light emission. Sn 2+ and Sn 4+ ions are used to create different optical defects inside Zn 0.95 Sn 0.05 O quantum dots and the changing trend of oxygen concentration under different ultrasonic irradiation power are investigated. The photoluminescence spectra are employed to characterize the optical defects of Zn 0.95 Sn 0.05 O quantum dots. The UV-vis spectra are used to study the band gap of Zn 0.95 Sn 0.05 O quantum dots, which is influenced by their sizes. The results indicate that ultrasonic power would influence the size of Zn 0.95 Sn 0.05 O quantum dots as well as the type and quantity of defects in ZnO quantum dots. Changing trends in size of Sn 2+ and Sn 4+ doped Zn 0.95 Sn 0.05 O quantum dots are quite similar with each other, while the changing trends in optical defects types and concentration of Sn 2+ and Sn 4+ doped Zn 0.95 Sn 0.05 O quantum dots are different. The difference of the optical defects concentration changing between Sn 2+ doped Zn 0.95 Sn 0.05 O quantum dots (V O defects) and Sn 4+ doped Zn 0.95 Sn 0.05 O quantum dots (O Zn and O i defects) shows that the formation process of ZnO under ultrasonic irradiation wiped oxygen out. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Magneto-optical absorption in semiconducting spherical quantum dots: Influence of the dot-size, confining potential, and magnetic field

    Directory of Open Access Journals (Sweden)

    Manvir S. Kushwaha

    2014-12-01

    Full Text Available Semiconducting quantum dots – more fancifully dubbed artificial atoms – are quasi-zero dimensional, tiny, man-made systems with charge carriers completely confined in all three dimensions. The scientific quest behind the synthesis of quantum dots is to create and control future electronic and optical nanostructures engineered through tailoring size, shape, and composition. The complete confinement – or the lack of any degree of freedom for the electrons (and/or holes – in quantum dots limits the exploration of spatially localized elementary excitations such as plasmons to direct rather than reciprocal space. Here we embark on a thorough investigation of the magneto-optical absorption in semiconducting spherical quantum dots characterized by a confining harmonic potential and an applied magnetic field in the symmetric gauge. This is done within the framework of Bohm-Pines’ random-phase approximation that enables us to derive and discuss the full Dyson equation that takes proper account of the Coulomb interactions. As an application of our theoretical strategy, we compute various single-particle and many-particle phenomena such as the Fock-Darwin spectrum; Fermi energy; magneto-optical transitions; probability distribution; and the magneto-optical absorption in the quantum dots. It is observed that the role of an applied magnetic field on the absorption spectrum is comparable to that of a confining potential. Increasing (decreasing the strength of the magnetic field or the confining potential is found to be analogous to shrinking (expanding the size of the quantum dots: resulting into a blue (red shift in the absorption spectrum. The Fermi energy diminishes with both increasing magnetic-field and dot-size; and exhibits saw-tooth-like oscillations at large values of field or dot-size. Unlike laterally confined quantum dots, both (upper and lower magneto-optical transitions survive even in the extreme instances. However, the intra

  18. Magneto-optical absorption in semiconducting spherical quantum dots: Influence of the dot-size, confining potential, and magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Kushwaha, Manvir S. [Department of Physics and Astronomy, Rice University, P.O. Box 1892, Houston, TX 77251 (United States)

    2014-12-15

    Semiconducting quantum dots – more fancifully dubbed artificial atoms – are quasi-zero dimensional, tiny, man-made systems with charge carriers completely confined in all three dimensions. The scientific quest behind the synthesis of quantum dots is to create and control future electronic and optical nanostructures engineered through tailoring size, shape, and composition. The complete confinement – or the lack of any degree of freedom for the electrons (and/or holes) – in quantum dots limits the exploration of spatially localized elementary excitations such as plasmons to direct rather than reciprocal space. Here we embark on a thorough investigation of the magneto-optical absorption in semiconducting spherical quantum dots characterized by a confining harmonic potential and an applied magnetic field in the symmetric gauge. This is done within the framework of Bohm-Pines’ random-phase approximation that enables us to derive and discuss the full Dyson equation that takes proper account of the Coulomb interactions. As an application of our theoretical strategy, we compute various single-particle and many-particle phenomena such as the Fock-Darwin spectrum; Fermi energy; magneto-optical transitions; probability distribution; and the magneto-optical absorption in the quantum dots. It is observed that the role of an applied magnetic field on the absorption spectrum is comparable to that of a confining potential. Increasing (decreasing) the strength of the magnetic field or the confining potential is found to be analogous to shrinking (expanding) the size of the quantum dots: resulting into a blue (red) shift in the absorption spectrum. The Fermi energy diminishes with both increasing magnetic-field and dot-size; and exhibits saw-tooth-like oscillations at large values of field or dot-size. Unlike laterally confined quantum dots, both (upper and lower) magneto-optical transitions survive even in the extreme instances. However, the intra-Landau level

  19. Electrically-induced polarization selection rules of a graphene quantum dot

    Science.gov (United States)

    Dong, Qing-Rui; Li, Yan; Jia, Chen; Wang, Fu-Li; Zhang, Ya-Ting; Liu, Chun-Xiang

    2018-05-01

    We study theoretically the single-electron triangular zigzag graphene quantum dot in uniform in-plane electric fields. The absorption spectra of the dot are calculated by the tight-binding method. The energy spectra and the distribution of wave functions are also presented to analyse the absorption spectra. The orthogonal zero-energy eigenstates are arranged along to the direction of the external field. The remarkable result is that all intraband transitions and some interband transitions are forbidden when the absorbed light is polarized along the direction of the electric field. With x-direction electric field, all intraband absorption is y polarized due to the electric-field-direction-polarization selection rule. Moreover, with y-direction electric field, all absorption is either x or y polarized due to the parity selection rule as well as to the electric-field-direction-polarization selection rule. Our calculation shows that the formation of the absorption spectra is co-decided by the polarization selection rules and the overlap between the eigenstates of the transition.

  20. [Analysis on workload for hospital DOTS service].

    Science.gov (United States)

    Nagata, Yoko; Urakawa, Minako; Kobayashi, Noriko; Kato, Seiya

    2014-04-01

    A directly observed treatment short course (DOTS) trial was launched in Japan in the late 1990s and targeted patients with social depression at urban areas. Based on these findings, the Ministry of Health, Labour and Welfare established the Japanese DOTS Strategy in 2003, which is a comprehensive support service ensuring the adherence of tuberculosis patients to drug administration. DOTS services are initially provided at the hospital to patients with infectious tuberculosis who are hospitalized according to the Infectious Diseases Control Law. After being discharged from the hospital, the patients are referred to a public health center. However, a survey conducted in 2008 indicated that all the patients do not receive appropriate DOTS services at some hospitals. In the present study, we aimed to evaluate the protocols and workload of DOTS at hospitals that are actively involved in tuberculosis medical practice, including DOTS, to assess whether the hospital DOTS services were adequate. We reviewed a series of articles on hospital DOTS from a Japanese journal on nursing for tuberculosis patients and identified 25 activities regarding the hospital DOTS service. These 25 items were then classified into 3 categories: health education to patients, support for adherence, and coordination with the health center. In total, 20 hospitals that had > 20 authorized tuberculosis beds were selected--while considering the geographical balance, schedule of this survey, etc.--from 33 hospitals where an ex-trainee of the tuberculosis control expert training program in the Research Institute of Tuberculosis (RIT) was working and 20 hospitals that had collaborated with our previous survey on tuberculosis medical facilities. All the staff associated with the DOTS service were asked to record the total working time as well as the time spent for each activity. The data were collected and analyzed at the RIT. The working times for each activity of the DOTS service for nurses, pharmacists

  1. 49 CFR 41.119 - DOT regulated buildings.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false DOT regulated buildings. 41.119 Section 41.119 Transportation Office of the Secretary of Transportation SEISMIC SAFETY § 41.119 DOT regulated buildings. (a) Each DOT Operating Administration with responsibility for regulating the structural safety of buildings...

  2. Formation of columnar (In,Ga)As quantum dots on GaAs(100)

    International Nuclear Information System (INIS)

    He, J.; Noetzel, R.; Offermans, P.; Koenraad, P.M.; Gong, Q.; Hamhuis, G.J.; Eijkemans, T.J.; Wolter, J.H.

    2004-01-01

    Columnar (In,Ga)As quantum dots (QDs) with homogeneous composition and shape in the growth direction are realized by molecular-beam epitaxy on GaAs(100) substrates. The columnar (In,Ga)As QDs are formed on InAs seed QDs by alternating deposition of thin GaAs intermediate layers and monolayers of InAs with extended growth interruptions after each layer. The height of the columnar (In,Ga)As QDs is controlled by varying the number of stacked GaAs/InAs layers. The structural and optical properties are studied by cross-sectional scanning tunneling microscopy, atomic force microscopy, and photoluminescence spectroscopy. With increase of the aspect ratio of the columnar QDs, the emission wavelength is redshifted and the linewidth is reduced

  3. Synthetic Developments of Nontoxic Quantum Dots.

    Science.gov (United States)

    Das, Adita; Snee, Preston T

    2016-03-03

    Semiconductor nanocrystals, or quantum dots (QDs), are candidates for biological sensing, photovoltaics, and catalysis due to their unique photophysical properties. The most studied QDs are composed of heavy metals like cadmium and lead. However, this engenders concerns over heavy metal toxicity. To address this issue, numerous studies have explored the development of nontoxic (or more accurately less toxic) quantum dots. In this Review, we select three major classes of nontoxic quantum dots composed of carbon, silicon and Group I-III-VI elements and discuss the myriad of synthetic strategies and surface modification methods to synthesize quantum dots composed of these material systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. MOVPE grown InGaAs quantum dots of high optical quality as seed layer for low-density InP quantum dots

    International Nuclear Information System (INIS)

    Richter, D; Hafenbrak, R; Joens, K D; Schulz, W-M; Eichfelder, M; Rossbach, R; Jetter, M; Michler, P

    2010-01-01

    To achieve a low density of optically active InP-quantum dots we used InGaAs islands embedded in GaAs as a seed layer. First, the structural InGaAs quantum dot properties and the influence of the annealing technique was investigated by atomic force microscope measurements. High-resolution micro-photoluminescence spectra reveal narrow photoluminescence lines, with linewidths down to 11 μeV and fine structure splittings of 25 μeV. Furthermore, using these InGaAs quantum dots as seed layer reduces the InP quantum dot density of optically active quantum dots drastically. InP quantum dot excitonic photoluminescence emission with a linewidth of 140 μeV has been observed.

  5. Spin current through quantum-dot spin valves

    International Nuclear Information System (INIS)

    Wang, J; Xing, D Y

    2006-01-01

    We report a theoretical study of the influence of the Coulomb interaction on the equilibrium spin current in a quantum-dot spin valve, in which the quantum dot described by the Anderson impurity model is coupled to two ferromagnetic leads with noncollinear magnetizations. In the Kondo regime, electrons transmit through the quantum dot via higher-order virtual processes, in which the spin of either lead electrons or a localized electron on the quantum dot may reverse. It is found that the magnitude of the spin current decreases with increasing Coulomb interactions due to spin flip effects on the dot. However, the spatial direction of the spin current remains unchanged; it is determined only by the exchange coupling between two noncollinear magnetizations

  6. Strain-driven alignment of In nanocrystals on InGaAs quantum dot arrays and coupled plasmon-quantum dot emission

    International Nuclear Information System (INIS)

    Urbanczyk, A.; Hamhuis, G. J.; Noetzel, R.

    2010-01-01

    We report the alignment of In nanocrystals on top of linear InGaAs quantum dot (QD) arrays formed by self-organized anisotropic strain engineering on GaAs (100) by molecular beam epitaxy. The alignment is independent of a thin GaAs cap layer on the QDs revealing its origin is due to local strain recognition. This enables nanometer-scale precise lateral and vertical site registration between the QDs and the In nanocrystals and arrays in a single self-organizing formation process. The plasmon resonance of the In nanocrystals overlaps with the high-energy side of the QD emission leading to clear modification of the QD emission spectrum.

  7. Synthesis of CdSe quantum dots for quantum dot sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Neetu, E-mail: singh.neetu1985@gmail.com; Kapoor, Avinashi [Department of Electronic Science, University of Delhi South Campus, New Delhi-110 021 (India); Kumar, Vinod [Department of Physics, University of the Free State, Bloemfontein, ZA9300 (South Africa); Mehra, R. M. [School of Engineering and Technology, Sharda University, Greater Noida-201 306, U.P. (India)

    2014-04-24

    CdSe Quantum Dots (QDs) of size 0.85 nm were synthesized using chemical route. ZnO based Quantum Dot Sensitized Solar Cell (QDSSC) was fabricated using CdSe QDs as sensitizer. The Pre-synthesized QDs were found to be successfully adsorbed on front ZnO electrode and had potential to replace organic dyes in Dye Sensitized Solar Cells (DSSCs). The efficiency of QDSSC was obtained to be 2.06 % at AM 1.5.

  8. Experimental and theoretical studies of d-dot

    International Nuclear Information System (INIS)

    Ishida, Takekazu; Fujii, Masaki; Abe, Taiji; Yamamoto, Masuo; Miki, Shigehito; Kawamata, Shuichi; Satoh, Kazuo; Yotsuya, Tsutomu; Kato, Masaru; Machida, Masahiko; Koyama, Tomio; Terashima, Takahito; Tsukui, Shigeki; Adachi, Motoaki

    2006-01-01

    We propose the idea of d-dot, where a d-wave superconducting dot is embedded in s-wave matrix. Spontaneous half vortices should appear in the four corners of the d-dot [M. Kato, M. Ako, M. Machida, T. Koyama, T. Ishida, Physica C 412-414 (2004) 352; M. Ako, M. Kato, M. Machida, T. Koyama, T. Ishida, Physica C 412-414 (2004) 544; M. Fujii, T. Abe, H. Yoshikawa, S. Miki, S. Kawamata, K. Satoh, T. Yotsuya, M. Kato, M. Machida, T. Koyama, T. Terashima, S. Tsukui, M. Adachi, T. Ishida, Physica C 426-431 (2005) 104]. Symmetric geometry and the fourfold symmetry of the d-dot would be suitable as a building block for constructing the novel physical systems. The phase dynamics of a closed 0-π junction, which can be realized in a small d x 2 -y 2 -dot, is mapped on a quantum two-level system when the system size is small enough. Using two-component Ginzburg-Landau equation, we study the physical properties of d-dots systematically. We prepare epitaxial YBa 2 Cu 3 O 7 (YBCO) films of thickness 100nm on SrTiO 3 substrates using a laser ablation apparatus. The d-dot is fabricated by a photolithography, electron beam lithography EB and an electron cyclotron resonance (ECR) etching, a focused ion beam microscope, and a lift-off technique. Local vortex profile is investigated using a SQUID microscope when d-dot is cooled in zero field

  9. Growth and optical characteristics of InAs quantum dot structures with tunnel injection quantum wells for 1.55 μ m high-speed lasers

    Science.gov (United States)

    Bauer, Sven; Sichkovskyi, Vitalii; Reithmaier, Johann Peter

    2018-06-01

    InP based lattice matched tunnel injection structures consisting of a InGaAs quantum well, InAlGaAs barrier and InAs quantum dots designed to emit at 1.55 μ m were grown by molecular beam epitaxy and investigated by photoluminescence spectroscopy and atomic force microscopy. The strong influence of quantum well and barrier thicknesses on the samples emission properties at low and room temperatures was investigated. The phenomenon of a decreased photoluminescence linewidth of tunnel injection structures compared to a reference InAs quantum dots sample could be explained by the selection of the emitting dots through the tunneling process. Morphological investigations have not revealed any effect of the injector well on the dot formation and their size distribution. The optimum TI structure design could be defined.

  10. Patients' costs and cost-effectiveness of tuberculosis treatment in DOTS and non-DOTS facilities in Rio de Janeiro, Brazil.

    Directory of Open Access Journals (Sweden)

    Ricardo Steffen

    2010-11-01

    Full Text Available Costs of tuberculosis diagnosis and treatment may represent a significant burden for the poor and for the health system in resource-poor countries.The aim of this study was to analyze patients' costs of tuberculosis care and to estimate the incremental cost-effectiveness ratio (ICER of the directly observed treatment (DOT strategy per completed treatment in Rio de Janeiro, Brazil.We interviewed 218 adult patients with bacteriologically confirmed pulmonary tuberculosis. Information on direct (out-of-pocket expenses and indirect (hours lost costs, loss in income and costs with extra help were gathered through a questionnaire. Healthcare system additional costs due to supervision of pill-intake were calculated considering staff salaries. Effectiveness was measured by treatment completion rate. The ICER of DOT compared to self-administered therapy (SAT was calculated.DOT increased costs during the treatment phase, while SAT increased costs in the pre-diagnostic phase, for both the patient and the health system. Treatment completion rates were 71% in SAT facilities and 79% in DOT facilities. Costs per completed treatment were US$ 194 for patients and U$ 189 for the health system in SAT facilities, compared to US$ 336 and US$ 726 in DOT facilities. The ICER was US$ 6,616 per completed DOT treatment compared to SAT.Costs incurred by TB patients are high in Rio de Janeiro, especially for those under DOT. The DOT strategy doubles patients' costs and increases by fourfold the health system costs per completed treatment. The additional costs for DOT may be one of the contributing factors to the completion rates below the targeted 85% recommended by WHO.

  11. Core–shell quantum dots: Properties and applications

    Energy Technology Data Exchange (ETDEWEB)

    Vasudevan, D., E-mail: vasudevand@rediffmail.com [Electrodics and electrocatalysis division, CSIR-CECRI, Karaikudi 630006 (India); Gaddam, Rohit Ranganathan [Amity Institute of Nanotechnology, Amity University, Noida 201301 (India); Trinchi, Adrian; Cole, Ivan [CSIRO Materials Science and Engineering, Clayton South MDC, 3169 (Australia)

    2015-07-05

    Fluorescent quantum dots (QDs) are semiconducting nanocrystals (NCs) that find numerous applications in areas, such as bio labelling, sensors, lasers, light emitting diodes and medicine. Core–shell quantum dots were developed to improve the photoluminescence efficiency of single quantum dots. Capping their surface with organic ligands as well as their extraction into aqueous media enables their use in sensing applications. The current review highlights the importance and applications of core shell quantum dots as well as their surface modifications and applications in the field of medicine and as sensors for chemical and biochemical analysis.

  12. Core–shell quantum dots: Properties and applications

    International Nuclear Information System (INIS)

    Vasudevan, D.; Gaddam, Rohit Ranganathan; Trinchi, Adrian; Cole, Ivan

    2015-01-01

    Fluorescent quantum dots (QDs) are semiconducting nanocrystals (NCs) that find numerous applications in areas, such as bio labelling, sensors, lasers, light emitting diodes and medicine. Core–shell quantum dots were developed to improve the photoluminescence efficiency of single quantum dots. Capping their surface with organic ligands as well as their extraction into aqueous media enables their use in sensing applications. The current review highlights the importance and applications of core shell quantum dots as well as their surface modifications and applications in the field of medicine and as sensors for chemical and biochemical analysis

  13. Correlation effects in side-coupled quantum dots

    International Nuclear Information System (INIS)

    Zitko, R; Bonca, J

    2007-01-01

    Using Wilson's numerical renormalization group (NRG) technique, we compute zero-bias conductance and various correlation functions of a double quantum dot (DQD) system. We present different regimes within a phase diagram of the DQD system. By introducing a negative Hubbard U on one of the quantum dots, we simulate the effect of electron-phonon coupling and explore the properties of the coexisting spin and charge Kondo state. In a triple quantum dot (TQD) system, a multi-stage Kondo effect appears where localized moments on quantum dots are screened successively at exponentially distinct Kondo temperatures

  14. The diskmass survey. VIII. On the relationship between disk stability and star formation

    Energy Technology Data Exchange (ETDEWEB)

    Westfall, Kyle B.; Verheijen, Marc A. W. [Kapteyn Astronomical Institute, University of Groningen, Landleven 12, 9747 AD Groningen (Netherlands); Andersen, David R. [NRC Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Bershady, Matthew A. [Department of Astronomy, University of Wisconsin-Madison, 475 North Charter Street, Madison, WI 53706 (United States); Martinsson, Thomas P. K. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Swaters, Robert A., E-mail: westfall@astro.rug.nl [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States)

    2014-04-10

    We study the relationship between the stability level of late-type galaxy disks and their star-formation activity using integral-field gaseous and stellar kinematic data. Specifically, we compare the two-component (gas+stars) stability parameter from Romeo and Wiegert (Q {sub RW}), incorporating stellar kinematic data for the first time, and the star-formation rate estimated from 21 cm continuum emission. We determine the stability level of each disk probabilistically using a Bayesian analysis of our data and a simple dynamical model. Our method incorporates the shape of the stellar velocity ellipsoid (SVE) and yields robust SVE measurements for over 90% of our sample. Averaging over this subsample, we find a meridional shape of σ{sub z}/σ{sub R}=0.51{sub −0.25}{sup +0.36} for the SVE and, at 1.5 disk scale lengths, a stability parameter of Q {sub RW} = 2.0 ± 0.9. We also find that the disk-averaged star-formation-rate surface density ( Σ-dot {sub e,∗}) is correlated with the disk-averaged gas and stellar mass surface densities (Σ {sub e,} {sub g} and Σ {sub e,} {sub *}) and anti-correlated with Q {sub RW}. We show that an anti-correlation between Σ-dot {sub e,∗} and Q {sub RW} can be predicted using empirical scaling relations, such that this outcome is consistent with well-established statistical properties of star-forming galaxies. Interestingly, Σ-dot {sub e,∗} is not correlated with the gas-only or star-only Toomre parameters, demonstrating the merit of calculating a multi-component stability parameter when comparing to star-formation activity. Finally, our results are consistent with the Ostriker et al. model of self-regulated star-formation, which predicts Σ-dot {sub e,∗}/Σ{sub e,g}∝Σ{sub e,∗}{sup 1/2}. Based on this and other theoretical expectations, we discuss the possibility of a physical link between disk stability level and star-formation rate in light of our empirical results.

  15. Dynamics of plasmonic field polarization induced by quantum coherence in quantum dot-metallic nanoshell structures.

    Science.gov (United States)

    Sadeghi, S M

    2014-09-01

    When a hybrid system consisting of a semiconductor quantum dot and a metallic nanoparticle interacts with a laser field, the plasmonic field of the metallic nanoparticle can be normalized by the quantum coherence generated in the quantum dot. In this Letter, we study the states of polarization of such a coherent-plasmonic field and demonstrate how these states can reveal unique aspects of the collective molecular properties of the hybrid system formed via coherent exciton-plasmon coupling. We show that transition between the molecular states of this system can lead to ultrafast polarization dynamics, including sudden reversal of the sense of variations of the plasmonic field and formation of circular and elliptical polarization.

  16. The quantum Hall effect in quantum dot systems

    International Nuclear Information System (INIS)

    Beltukov, Y M; Greshnov, A A

    2014-01-01

    It is proposed to use quantum dots in order to increase the temperatures suitable for observation of the integer quantum Hall effect. A simple estimation using Fock-Darwin spectrum of a quantum dot shows that good part of carriers localized in quantum dots generate the intervals of plateaus robust against elevated temperatures. Numerical calculations employing local trigonometric basis and highly efficient kernel polynomial method adopted for computing the Hall conductivity reveal that quantum dots may enhance peak temperature for the effect by an order of magnitude, possibly above 77 K. Requirements to potentials, quality and arrangement of the quantum dots essential for practical realization of such enhancement are indicated. Comparison of our theoretical results with the quantum Hall measurements in InAs quantum dot systems from two experimental groups is also given

  17. Silicon quantum dots: surface matters

    Czech Academy of Sciences Publication Activity Database

    Dohnalová, K.; Gregorkiewicz, T.; Kůsová, Kateřina

    2014-01-01

    Roč. 26, č. 17 (2014), 1-28 ISSN 0953-8984 R&D Projects: GA ČR GPP204/12/P235 Institutional support: RVO:68378271 Keywords : silicon quantum dots * quantum dot * surface chemistry * quantum confinement Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.346, year: 2014

  18. Spin interactions in InAs quantum dots and molecules

    Energy Technology Data Exchange (ETDEWEB)

    Doty, M.F.; Ware, M.E.; Stinaff, E.A.; Scheibner, M.; Bracker, A.S.; Ponomarev, I.V.; Badescu, S.C.; Reinecke, T.L.; Gammon, D. [Naval Research Lab, Washington, DC 20375 (United States); Korenev, V.L. [A.F. Ioffe Physical Technical Institute, St. Petersburg 194021 (Russian Federation)

    2006-12-15

    Spin interactions between particles in quantum dots or quantum dot molecules appear as fine structure in the photoluminescence spectra. Using the understanding of exchange interactions that has been developed from single dot spectra, we analyze the spin signatures of coupled quantum dots separated by a wide barrier such that inter-dot interactions are negligible. We find that electron-hole exchange splitting is directly evident. In dots charged with an excess hole, an effective hole-hole interaction can be turned on through tunnel coupling. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Artful and multifaceted applications of carbon dot in biomedicine.

    Science.gov (United States)

    Jaleel, Jumana Abdul; Pramod, K

    2018-01-10

    Carbon dots (C-dots) are luminescent carbon nanomaterial having good biocompatibility and low toxicity. The characteristic fluorescence emission property of C-dots establishes their role in optical imaging. C-dots which are superior to fluorescent dyes and semiconductor quantum dots act as a safer in vivo imaging probe. Apart from their bioimaging application, other applications in biomedicine such as drug delivery, cancer therapy, and gene delivery were studied. In this review, we present multifaceted applications of C-dots along with their synthesis, surface passivation, doping, and toxicity profile. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Direct-Bandgap InAs Quantum-Dots Have Long-Range Electron--Hole Exchange Whereas Indirect Gap Si Dots Have Short-Range Exchange

    International Nuclear Information System (INIS)

    Juo, J.W.; Franceschetti, A.; Zunger, A.

    2009-01-01

    Excitons in quantum dots manifest a lower-energy spin-forbidden 'dark' state below a spin-allowed 'bright' state; this splitting originates from electron-hole (e-h) exchange interactions, which are strongly enhanced by quantum confinement. The e-h exchange interaction may have both a short-range and a long-range component. Calculating numerically the e-h exchange energies from atomistic pseudopotential wave functions, we show here that in direct-gap quantum dots (such as InAs) the e-h exchange interaction is dominated by the long-range component, whereas in indirect-gap quantum dots (such as Si) only the short-range component survives. As a result, the exciton dark/bright splitting scales as 1/R 2 in InAs dots and 1/R 3 in Si dots, where R is the quantum-dot radius.

  1. Fingerprints of transversal and longitudinal coupling between induced open quantum dots in the longitudinal magneto-conductance through anti-dot lattices

    International Nuclear Information System (INIS)

    Ujevic, Sebastian; Mendoza, Michel

    2011-01-01

    Full text. We propose numerical simulations of longitudinal magneto conductance through a finite anti dot lattice located inside an open quantum dot with a magnetic field applied perpendicular to the plane. The system is connected to reservoirs using quantum point contacts. We discuss the relationship between the longitudinal magneto conductance and the generation of transversal couplings between the induced open quantum dots in the system. The system presents longitudinal magneto conductance maps with crossovers (between transversal bands) and closings (longitudinal decoupling) of fundamental quantum states related to the open quantum dots induced by the anti dot lattice. A relationship is observed between the distribution of anti dots and the formed conductance bands, allowing a systematic follow-up of the bands as a function of the applied magnetic field and quantum point contact width. We observed a high conductance intensity (between n- and (n + 1)-quantum of conductance, n = 1; 2...) in the regions of crossover and closing of states. This suggests transversal couplings between the induced open quantum dots of the system that can be modulated by varying both the anti dots potential and the quantum point contact width. A new continuous channel (not expected) is induced by the variation of the contact width and generate Fano resonances in the conductance. These resonances can be manipulated by the applied magnetic field

  2. Quantum dot optoelectronic devices: lasers, photodetectors and solar cells

    International Nuclear Information System (INIS)

    Wu, Jiang; Chen, Siming; Seeds, Alwyn; Liu, Huiyun

    2015-01-01

    Nanometre-scale semiconductor devices have been envisioned as next-generation technologies with high integration and functionality. Quantum dots, or the so-called ‘artificial atoms’, exhibit unique properties due to their quantum confinement in all 3D. These unique properties have brought to light the great potential of quantum dots in optoelectronic applications. Numerous efforts worldwide have been devoted to these promising nanomaterials for next-generation optoelectronic devices, such as lasers, photodetectors, amplifiers, and solar cells, with the emphasis on improving performance and functionality. Through the development in optoelectronic devices based on quantum dots over the last two decades, quantum dot devices with exceptional performance surpassing previous devices are evidenced. This review describes recent developments in quantum dot optoelectronic devices over the last few years. The paper will highlight the major progress made in 1.3 μm quantum dot lasers, quantum dot infrared photodetectors, and quantum dot solar cells. (topical review)

  3. Parameters calculation of a shielding experiment and evaluation of calculation methodology

    International Nuclear Information System (INIS)

    Gavazza, S.; Otto, A.C.; Gomes, I.C.; Maiorino, J.R.

    1986-01-01

    In this text is carried out the evaluation of radiation transport methodology, comparying the calculated reactions and dose rates, for neutrons and gamma-rays, with the experimental measurements obtained on iron shield, irradiated in YAYOI reactor. Were employed the ENDF/B-IV and VITAMIN-C libraries and the AMPX-II modular system for generation of cross sections, collapsed by the ANISN code. The transport calculation were made by using the DOT 3.5 code, adjusting the spectrum of the iron shield boundary source to the reactions and dose rates, measured at the beginning of shield. The distributions calculated for neutrons and gamma-rays, on iron shield, presented coherence with the experimental measurements. (Author) [pt

  4. Multigroup P8 - elastic scattering matrices of main reactor elements

    International Nuclear Information System (INIS)

    Garg, S.B.; Shukla, V.K.

    1979-01-01

    To study the effect of anisotropic scattering phenomenon on shielding and neutronics of nuclear reactors multigroup P8-elastic scattering matrices have been generated for H, D, He, 6 Li, 7 Li, 10 B, C, N, O, Na, Cr, Fe, Ni, 233 U, 235 U, 238 U, 239 Pu, 240 Pu, 241 Pu and 242 Pu using their angular distribution, Legendre coefficient and elastic scattering cross-section data from the basic ENDF/B library. Two computer codes HSCAT and TRANS have been developed to complete this task for BESM-6 and CDC-3600 computers. These scattering matrices can be directly used as input to the transport theory codes ANISN and DOT. (auth.)

  5. Advanced Neutron Source Cross Section Libraries (ANSL-V): ENDF/B-V based multigroup cross-section libraries for advanced neutron source (ANS) reactor studies

    International Nuclear Information System (INIS)

    Ford, W.E. III; Arwood, J.W.; Greene, N.M.; Moses, D.L.; Petrie, L.M.; Primm, R.T. III; Slater, C.O.; Westfall, R.M.; Wright, R.Q.

    1990-09-01

    Pseudo-problem-independent, multigroup cross-section libraries were generated to support Advanced Neutron Source (ANS) Reactor design studies. The ANS is a proposed reactor which would be fueled with highly enriched uranium and cooled with heavy water. The libraries, designated ANSL-V (Advanced Neutron Source Cross Section Libraries based on ENDF/B-V), are data bases in AMPX master format for subsequent generation of problem-dependent cross-sections for use with codes such as KENO, ANISN, XSDRNPM, VENTURE, DOT, DORT, TORT, and MORSE. Included in ANSL-V are 99-group and 39-group neutron, 39-neutron-group 44-gamma-ray-group secondary gamma-ray production (SGRP), 44-group gamma-ray interaction (GRI), and coupled, 39-neutron group 44-gamma-ray group (CNG) cross-section libraries. The neutron and SGRP libraries were generated primarily from ENDF/B-V data; the GRI library was generated from DLC-99/HUGO data, which is recognized as the ENDF/B-V photon interaction data. Modules from the AMPX and NJOY systems were used to process the multigroup data. Validity of selected data from the fine- and broad-group neutron libraries was satisfactorily tested in performance parameter calculations

  6. Quantum dot systems: artificial atoms with tunable properties

    International Nuclear Information System (INIS)

    Weis, J.

    2005-01-01

    Full text: Quantum dots - also called zero-dimensional electron systems or artificial atoms - are physical objects where the constituent electrons are confined in a small spatial region, leading to discrete eigenvalues for the energies of the confined electrons. Large quantum dots offer a dense energy spectrum comparable to that of metallic grains, whereas small quantum dots more closely resemble atoms in their electronic properties. Quantum dots can be linked to leads by tunnel barriers, hence permitting electrical transport measurements: Coulomb blockade and single-electron charging effects are observed due to the repulsive electron electron interaction on the quantum dot site. Usually fabricated by conventional semiconductor growth and processing technology, the advantage is that both simple and also more complex quantum dot systems can be designed to purpose, acting as model systems with in-situ tunable parameters such as the number of confined electrons in the quantum dot and the strength of the tunnel coupling to the leads, electrostatically controlled by the applied voltages to gate electrodes. With increasing the tunnel coupling to the leads, the virtual occupation of the quantum dot from the leads becomes more and more important -- the simple description of electrical transport by single-electron tunneling events breaks down. The basic physics is described by the Kondo physics based on the Anderson impurity model. A system consisting of strongly electrostatically coupled quantum dots with separate leads to each quantum dot represent another realization of the Anderson impurity model. Experiments to verify the analogy are presented. The experimental data embedded within this tutorial have been obtained with Alexander Huebel, Matthias Keller, Joerg Schmid, David Quirion, Armin Welker, Ulf Wilhelm, and Klaus von Klitzing. (author)

  7. Using of Quantum Dots in Biology and Medicine.

    Science.gov (United States)

    Pleskova, Svetlana; Mikheeva, Elza; Gornostaeva, Ekaterina

    2018-01-01

    Quantum dots are nanoparticles, which due to their unique physical and chemical (first of all optical) properties, are promising in biology and medicine. There are many ways for quantum dots synthesis, both in the form of nanoislands self-forming on the surfaces, which can be used as single-photon emitters in electronics for storing information, and in the form of colloidal quantum dots for diagnostic and therapeutic purposes in living systems. The paper describes the main methods of quantum dots synthesis and summarizes medical and biological ways of their use. The main emphasis is laid on the ways of quantum dots surface modification. Influence of the size and form of nanoparticles, charge on the surfaces of quantum dots, and cover type on the efficiency of internalization by cells and cell compartments is shown. The main mechanisms of penetration are considered.

  8. Quantum Dots and Their Multimodal Applications: A Review

    Directory of Open Access Journals (Sweden)

    Paul H. Holloway

    2010-03-01

    Full Text Available Semiconducting quantum dots, whose particle sizes are in the nanometer range, have very unusual properties. The quantum dots have band gaps that depend in a complicated fashion upon a number of factors, described in the article. Processing-structure-properties-performance relationships are reviewed for compound semiconducting quantum dots. Various methods for synthesizing these quantum dots are discussed, as well as their resulting properties. Quantum states and confinement of their excitons may shift their optical absorption and emission energies. Such effects are important for tuning their luminescence stimulated by photons (photoluminescence or electric field (electroluminescence. In this article, decoupling of quantum effects on excitation and emission are described, along with the use of quantum dots as sensitizers in phosphors. In addition, we reviewed the multimodal applications of quantum dots, including in electroluminescence device, solar cell and biological imaging.

  9. Spin interactions in InAs quantum dots

    Science.gov (United States)

    Doty, M. F.; Ware, M. E.; Stinaff, E. A.; Scheibner, M.; Bracker, A. S.; Gammon, D.; Ponomarev, I. V.; Reinecke, T. L.; Korenev, V. L.

    2006-03-01

    Fine structure splittings in optical spectra of self-assembled InAs quantum dots (QDs) generally arise from spin interactions between particles confined in the dots. We present experimental studies of the fine structure that arises from multiple charges confined in a single dot [1] or in molecular orbitals of coupled pairs of dots. To probe the underlying spin interactions we inject particles with a known spin orientation (by using polarized light to perform photoluminescence excitation spectroscopy experiments) or use a magnetic field to orient and/or mix the spin states. We develop a model of the spin interactions that aids in the development of quantum information processing applications based on controllable interactions between spins confined to QDs. [1] Polarized Fine Structure in the Photoluminescence Excitation Spectrum of a Negatively Charged Quantum Dot, Phys. Rev. Lett. 95, 177403 (2005)

  10. Inter-dot coupling effects on transport through correlated parallel

    Indian Academy of Sciences (India)

    Transport through symmetric parallel coupled quantum dot system has been studied, using non-equilibrium Green function formalism. The inter-dot tunnelling with on-dot and inter-dot Coulomb repulsion is included. The transmission coefficient and Landaur–Buttiker like current formula are shown in terms of internal states ...

  11. Two path transport measurements on a triple quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Rogge, Maximilian C.; Haug, Rolf J. [Institut fuer Festkoerperphysik, Leibniz Universitaet Hannover, Appelstr. 2, 30167 Hannover (Germany)

    2008-07-01

    We present a novel triple quantum dot device made with local anodic oxidation on a GaAs/AlGaAs heterostructure. The geometry provides two path transport via a three lead setup with each lead connected to one of the three quantum dots. In addition charge detection is implemented via a quantum point contact. One lead is used as a common source contact, the other two are used as two separate drain contacts with independent current measurement. Thus two paths are formed with two dots in each path. Along both paths serial transport is observed at the triple points of the two corresponding dots. With four side gates a wide tunability is given. Thus the system can be tuned in and out of triple dot resonances. When all three dots come into resonance, quadruple points are formed with simultaneous transport along both paths. The data are analysed in combined two colour plots and compared to the charge detection showing sets of three different lines, one for each dot. This way the two path setup allows to investigate the transition from double dot physics to triple dot physics.

  12. Tunable single quantum dot nanocavities for cavity QED experiments

    International Nuclear Information System (INIS)

    Kaniber, M; Laucht, A; Neumann, A; Bichler, M; Amann, M-C; Finley, J J

    2008-01-01

    We present cavity quantum electrodynamics experiments performed on single quantum dots embedded in two-dimensional photonic crystal nanocavities. We begin by describing the structural and optical properties of the quantum dot sample and the photonic crystal nanocavities and compare the experimental results with three-dimensional calculations of the photonic properties. The influence of the tailored photonic environment on the quantum dot spontaneous emission dynamics is studied using spectrally and spatially dependent time-resolved spectroscopy. In ensemble and single dot measurements we show that the photonic crystals strongly enhance the photon extraction efficiency and, therefore, are a promising concept for realizing efficient single-photon sources. Furthermore, we demonstrate single-photon emission from an individual quantum dot that is spectrally detuned from the cavity mode. The need for controlling the spectral dot-cavity detuning is discussed on the basis of shifting either the quantum dot emission via temperature tuning or the cavity mode emission via a thin film deposition technique. Finally, we discuss the recently discovered non-resonant coupling mechanism between quantum dot emission and cavity mode for large detunings which drastically lowers the purity of single-photon emission from dots that are spectrally coupled to nanocavity modes.

  13. Optimization of InAs/GaAs quantum-dot structures and application to 1.3-μm mode-locked laser diodes

    International Nuclear Information System (INIS)

    Li Mi-Feng; Ni Hai-Qiao; Niu Zhi-Chuan; Ding Ying; David Bajek; Liang Kong; Ana Cataluna Maria

    2014-01-01

    The self-assembled growth of InAs/GaAs quantum dots by molecular beam epitaxy is conducted by optimizing several growth parameters, using a one-step interruption method after island formation. The dependence of photoluminescence on areal quantum-dot density is systematically investigated as a function of InAs deposition, growth temperature and arsenic pressure. The results of this investigation along with time-resolved photoluminescence measurements show that the combination of a growth temperature of 490 °C, with a deposition rate of 0.02 ML/s, under an arsenic pressure of 1 × 10 −6 Torr (1 Torr = 1.33322 × 10 2 Pa), provides the best compromise between high density and the photoluminescence of quantum dot structure, with a radiative lifetime of 780 ps. The applicability of this 5-layer quantum dot structure to high-repetition-rate pulsed lasers is demonstrated with the fabrication and characterization of a monolithic InAs/GaAs quantum-dot passively mode-locked laser operating at nearly 1300 nm. Picosecond pulse generation is achieved from a two-section laser, with a ∼ 19.7-GHz repetition rate. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  14. Magneto-conductance fingerprints of purely quantum states in the open quantum dot limit

    Science.gov (United States)

    Mendoza, Michel; Ujevic, Sebastian

    2012-06-01

    We present quantum magneto-conductance simulations, at the quantum low energy condition, to study the open quantum dot limit. The longitudinal conductance G(E,B) of spinless and non-interacting electrons is mapped as a function of the magnetic field B and the energy E of the electrons. The quantum dot linked to the semi-infinite leads is tuned by quantum point contacts of variable width w. We analyze the transition from a quantum wire to an open quantum dot and then to an effective closed system. The transition, as a function of w, occurs in the following sequence: evolution of quasi-Landau levels to Fano resonances and quasi-bound states between the quasi-Landau levels, followed by the formation of crossings that evolve to anti-crossings inside the quasi-Landau level region. After that, Fano resonances are created between the quasi-Landau states with the final generation of resonant tunneling peaks. By comparing the G(E,B) maps, we identify the closed and open-like limits of the system as a function of the applied magnetic field. These results were used to build quantum openness diagrams G(w,B). Also, these maps allow us to determine the w-limit value from which we can qualitatively relate the closed system properties to the open one. The above analysis can be used to identify single spinless particle effects in experimental measurements of the open quantum dot limit.

  15. Magneto-conductance fingerprints of purely quantum states in the open quantum dot limit

    International Nuclear Information System (INIS)

    Mendoza, Michel; Ujevic, Sebastian

    2012-01-01

    We present quantum magneto-conductance simulations, at the quantum low energy condition, to study the open quantum dot limit. The longitudinal conductance G(E,B) of spinless and non-interacting electrons is mapped as a function of the magnetic field B and the energy E of the electrons. The quantum dot linked to the semi-infinite leads is tuned by quantum point contacts of variable width w. We analyze the transition from a quantum wire to an open quantum dot and then to an effective closed system. The transition, as a function of w, occurs in the following sequence: evolution of quasi-Landau levels to Fano resonances and quasi-bound states between the quasi-Landau levels, followed by the formation of crossings that evolve to anti-crossings inside the quasi-Landau level region. After that, Fano resonances are created between the quasi-Landau states with the final generation of resonant tunneling peaks. By comparing the G(E,B) maps, we identify the closed and open-like limits of the system as a function of the applied magnetic field. These results were used to build quantum openness diagrams G(w,B). Also, these maps allow us to determine the w-limit value from which we can qualitatively relate the closed system properties to the open one. The above analysis can be used to identify single spinless particle effects in experimental measurements of the open quantum dot limit. (paper)

  16. Randomized study of initial treatment with radiationter dot MCNU or radiationter dot MCNUter dot interferon-. beta. for malignant glioma

    Energy Technology Data Exchange (ETDEWEB)

    Kiya, Katsuzo; Uozumi, Tohru; Kurisu, Kaoru (Hiroshima Univ. (Japan). School of Medicine) (and others)

    1990-02-01

    The efficacy of radiation{center dot}MCNU (MR group) or radiation{center dot}MCNU{center dot}interferon-{beta} (IMR group) for malignant glioma was studied by a randomized trial at numerous medical facilities. MR group was irradiated with 50{approx}60 Gy and intravenously injected with 2 mg/kg of MCNU on the initial day of irradiation and 6 weeks later. IMR group was also given intravenous administration of interferon-{beta} at the dose of 2x10{sup 6}IU/m{sup 2} for 5 serial-days every eight weeks. There was no difference in background between the two groups. The response rate in MR group and IMR group was 44.4% (4/9) and 30.0% (3/10), respectively, showing no significant difference. The resected tumor volume before the start of these regimens seemed to correlate the response to the treatment in both groups. The major toxicity was myelosuppression, especially using MCNU with interferon-{beta}. These results indicated that this combined therapy is effective for malignant glioma, and should be executed further trials and follow up study. (author).

  17. Highly crystalline carbon dots from fresh tomato: UV emission and quantum confinement

    Science.gov (United States)

    Liu, Weijian; Li, Chun; Sun, Xiaobo; Pan, Wei; Yu, Guifeng; Wang, Jinping

    2017-12-01

    In this article, fresh tomatoes are explored as a low-cost source to prepare high-performance carbon dots by using microwave-assisted pyrolysis. Given that amino groups might act as nucleophiles for cleaving covalent bridging ester or ether in the crosslinked macromolecules in the biomass bulk, ethylenediamine (EDA) and urea with amino groups were applied as nucleophiles to modulate the chemical composites of the carbon nanoparticles in order to tune their fluorescence emission and enhance their quantum yields. Very interestingly, the carbon dots synthesized in the presence of urea had a highly crystalline nature, a low-degree amorphous surface and were smaller than 5 nm. Moreover, the doped N contributed to the formation of a cyclic form of core that resulted in a strong electron-withdrawing ability within the conjugated C plane. Therefore, this type of carbon dot exhibited marked quantum confinement, with the maximum fluorescence peak located in the UV region. Carbon nanoparticles greater than 20 nm in size, prepared using pristine fresh tomato and in the presence of EDA, emitted surface state controlled fluorescence. Additionally, carbon nanoparticles synthesized using fresh tomato pulp in the presence of EDA and urea were explored for bioimaging of plant pathogenic fungi and the detection of vanillin.

  18. Vacuum-induced coherence in quantum dot systems

    Science.gov (United States)

    Sitek, Anna; Machnikowski, Paweł

    2012-11-01

    We present a theoretical study of vacuum-induced coherence in a pair of vertically stacked semiconductor quantum dots. The process consists in a coherent excitation transfer from a single-exciton state localized in one dot to a delocalized state in which the exciton occupation gets trapped. We study the influence of the factors characteristic of quantum dot systems (as opposed to natural atoms): energy mismatch, coupling between the single-exciton states localized in different dots, and different and nonparallel dipoles due to sub-band mixing, as well as coupling to phonons. We show that the destructive effect of the energy mismatch can be overcome by an appropriate interplay of the dipole moments and coupling between the dots which allows one to observe the trapping effect even in a structure with technologically realistic energy splitting of the order of milli-electron volts. We also analyze the impact of phonon dynamics on the occupation trapping and show that phonon effects are suppressed in a certain range of system parameters. This analysis shows that the vacuum-induced coherence effect and the associated long-living trapped excitonic population can be achieved in quantum dots.

  19. Spin Switching via Quantum Dot Spin Valves

    Science.gov (United States)

    Gergs, N. M.; Bender, S. A.; Duine, R. A.; Schuricht, D.

    2018-01-01

    We develop a theory for spin transport and magnetization dynamics in a quantum dot spin valve, i.e., two magnetic reservoirs coupled to a quantum dot. Our theory is able to take into account effects of strong correlations. We demonstrate that, as a result of these strong correlations, the dot gate voltage enables control over the current-induced torques on the magnets and, in particular, enables voltage-controlled magnetic switching. The electrical resistance of the structure can be used to read out the magnetic state. Our model may be realized by a number of experimental systems, including magnetic scanning-tunneling microscope tips and artificial quantum dot systems.

  20. Bright infrared LEDs based on colloidal quantum-dots

    KAUST Repository

    Sun, Liangfeng; Choi, Joshua J.; Stachnik, David; Bartnik, Adam C.; Hyun, Byung-Ryool; Malliaras, George G.; Hanrath, Tobias; Wise, Frank W.

    2013-01-01

    Record-brightness infrared LEDs based on colloidal quantum-dots have been achieved through control of the spacing between adjacent quantum-dots. By tuning the size of quantum-dots, the emission wavelengths can be tuned between 900nm and 1650nm. © 2013 Materials Research Society.

  1. Sphere and dot product representations of graphs

    NARCIS (Netherlands)

    R.J. Kang (Ross); T. Müller (Tobias)

    2012-01-01

    textabstractA graph $G$ is a $k$-sphere graph if there are $k$-dimensional real vectors $v_1,\\dots,v_n$ such that $ij\\in E(G)$ if and only if the distance between $v_i$ and $v_j$ is at most $1$. A graph $G$ is a $k$-dot product graph if there are $k$-dimensional real vectors $v_1,\\dots,v_n$ such

  2. Scalable quantum computer architecture with coupled donor-quantum dot qubits

    Science.gov (United States)

    Schenkel, Thomas; Lo, Cheuk Chi; Weis, Christoph; Lyon, Stephen; Tyryshkin, Alexei; Bokor, Jeffrey

    2014-08-26

    A quantum bit computing architecture includes a plurality of single spin memory donor atoms embedded in a semiconductor layer, a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, wherein a first voltage applied across at least one pair of the aligned quantum dot and donor atom controls a donor-quantum dot coupling. A method of performing quantum computing in a scalable architecture quantum computing apparatus includes arranging a pattern of single spin memory donor atoms in a semiconductor layer, forming a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, applying a first voltage across at least one aligned pair of a quantum dot and donor atom to control a donor-quantum dot coupling, and applying a second voltage between one or more quantum dots to control a Heisenberg exchange J coupling between quantum dots and to cause transport of a single spin polarized electron between quantum dots.

  3. Influence of surface states of CuInS{sub 2} quantum dots in quantum dots sensitized photo-electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Zhuoyin; Liu, Yueli [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 (China); Wu, Lei [School of Electronic and Electrical, Wuhan Railway Vocational College of Technology, Wuhan 430205 (China); Zhao, Yinghan; Chen, Keqiang [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 (China); Chen, Wen, E-mail: chenw@whut.edu.cn [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 (China)

    2016-12-01

    Graphical abstract: J–V curves of different ligands capped CuInS{sub 2} QDs sensitized TiO{sub 2} photo-electrodes. - Highlights: • DDT, OLA, MPA, and S{sup 2−} ligand capped CuInS{sub 2} quantum dot sensitized photo-electrodes are prepared. • Surface states of quantum dots greatly influence the electrochemical performance of CuInS{sub 2} quantum dot sensitized photo-electrodes. • S{sup 2−} ligand enhances the UV–vis absorption and electron–hole separation property as well as the excellent charge transfer performance of the photo-electrodes. - Abstract: Surface states are significant factor for the enhancement of electrochemical performance in CuInS{sub 2} quantum dot sensitized photo-electrodes. DDT, OLA, MPA, and S{sup 2−} ligand capped CuInS{sub 2} quantum dot sensitized photo-electrodes are prepared by thermolysis, solvethermal and ligand-exchange processes, respectively, and their optical properties and photoelectrochemical properties are investigated. The S{sup 2−} ligand enhances the UV–vis absorption and electron–hole separation property as well as the excellent charge transfer performance of the photo-electrodes, which is attributed to the fact that the atomic S{sup 2−} ligand for the interfacial region of quantum dots may improve the electron transfer rate. These S{sup 2−}-capped CuInS{sub 2} quantum dot sensitized photo-electrodes exhibit the excellent photoelectrochemical efficiency and IPCE peak value, which is higher than that of the samples with DDT, OLA and MPA ligands.

  4. Study of InGaN/GaN quantum dot systems by TEM techniques and photoluminescence spectroscopy

    International Nuclear Information System (INIS)

    Kashtiban, R J; Bangert, U; Harvey, A J; Sherliker, B; Halsall, M P

    2010-01-01

    InGaN/GaN multilayer quantum dot structures produced by MOCVD techniques on c-plane sapphire were studied by transmission electron microscopy (TEM) and photoluminescence (PL) techniques. Indium fluctuations ranging from 1-4 nm were observed with both energy filtered TEM (EFTEM) and high angle annular dark field (HAADF) scanning TEM. The existence of V-shaped defects with nucleation centres at the termination of threading dislocation were observed in HAADF images. There was also evidence of the formation of large quantum dots at low densities from lattice HRTEM images. This was further confirmed by PL measurements through the observation of a single sharp line at low power with the typical saturation behaviour at higher power excitation.

  5. Growth and characterization of InP/In0.48Ga0.52P quantum dots optimized for single-photon emission

    International Nuclear Information System (INIS)

    Ugur, Asli

    2012-01-01

    In this work the growth of self-assembled InP/InGaP quantum dots, as well as their optical and structural properties are presented and discussed. The QDs were grown on In 0.48 Ga 0.52 P, lattice matched to GaAs. Self-assembled InP quantum dots are grown using gas-source molecular beam epitaxy over a wide range of InP deposition rates, using an ultra-low growth rate of about 0.01 atomic monolayers/s, a quantum-dot density of 1 dot/μm 2 is realized. The resulting isolated InP quantum dots are individually characterized without the need for lithographical patterning and masks on the substrate. Both excitonic and biexcitonic emissions are observed from single dots, appearing as doublets with a fine-structure splitting of 320 μeV. Hanbury Brown-Twiss correlation measurements for the excitonic emission under cw excitation show anti-bunching behavior with an autocorrelation value of g (2) (0)=0.2. This system is applicable as a single-photon source for applications such as quantum cryptography. The formation of well-ordered chains of InP quantum dots on GaAs (001) substrates by using self-organized In 0.48 Ga 0.52 P surface undulations as a template is also demonstrated. The ordering requires neither stacked layers of quantum dots nor substrate misorientation. The structures are investigated by polarization-dependent photoluminescence together with transmission electron microscopy. Luminescence from the In 0.48 Ga 0.52 P matrix is polarized in one crystallographic direction due to anisotropic strain arising from a lateral compositional modulation. The photoluminescence measurements show enhanced linear polarization in the alignment direction of quantum dots. A polarization degree of 66% is observed. The optical anisotropy is achieved with a straightforward heterostructure, requiring only a single layer of QDs.

  6. Kondo and mixed-valence regimes in multilevel quantum dots

    International Nuclear Information System (INIS)

    Chudnovskiy, A. L.; Ulloa, S. E.

    2001-01-01

    We investigate the dependence of the ground state of a multilevel quantum dot on the coupling to an external fermionic system and on the interactions in the dot. As the coupling to the external system increases, the rearrangement of the effective energy levels in the dot signals the transition from the Kondo regime to a mixed-valence (MV) regime. The MV regime in a two-level dot is characterized by an intrinsic mixing of the levels in the dot, resulting in nonperturbative subtunneling and supertunneling phenomena that strongly influence the Kondo effect

  7. Scintillation properties of quantum-dot doped styrene based plastic scintillators

    International Nuclear Information System (INIS)

    Park, J.M.; Kim, H.J.; Hwang, Y.S.; Kim, D.H.; Park, H.W.

    2014-01-01

    We fabricated quantum-dot doped plastic scintillators in order to control the emission wavelength. We studied the characterization of the quantum-dots (CdSe/ZnS) and PPO (2, 5-diphenyloxazole) doped styrene based plastic scintillators. PPO is usually used as a dopant to enhance the scintillation properties of organic scintillators with a maximum emission wavelength of 380 nm. In order to study the scintillation properties of the quantum-dots doped plastic scintillators, the samples were irradiated with X-ray, photon, and 45 MeV proton beams. We observed that only PPO doped plastic scintillators shows a luminescence peak around 380 nm. However, both the quantum-dots and PPO doped plastic scintillators shows luminescence peaks around 380 nm and 520 nm. Addition of quantum-dots had shifted the luminescence spectrum from 380 nm (PPO) toward the region of 520 nm (Quantum-dots). Emissions with wavelength controllable plastic scintillators can be matched to various kinds of photosensors such as photomultiplier tubes, photo-diodes, avalanche photo-diodes, and CCDs, etc. Also quantum-dots doped plastic scintillator, which is irradiated 45 MeV proton beams, shows that the light yield of quantum-dots doped plastic scintillator is increases as quantum-dots doping concentration increases at 520 nm. And also the plastic scintillators were irradiated with Cs-137 γ-ray for measuring fluorescence decay time. -- Highlights: • Quantum-dot doped plastic scintillator is grown by the thermal polymerization method. • Quantum-dot doped plastic scintillators can control the emission wavelength to match with photo-sensor. • Quantum-dots and PPO doped plastic scintillators emitted luminescence peaks around 380 nm and 520 nm. • We observed the energy transfer from PPO to quantum-dot in the quantum-dot doped plastic scintillator

  8. Scintillation properties of quantum-dot doped styrene based plastic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.M.; Kim, H.J., E-mail: hongjooknu@gmail.com; Hwang, Y.S.; Kim, D.H.; Park, H.W.

    2014-02-15

    We fabricated quantum-dot doped plastic scintillators in order to control the emission wavelength. We studied the characterization of the quantum-dots (CdSe/ZnS) and PPO (2, 5-diphenyloxazole) doped styrene based plastic scintillators. PPO is usually used as a dopant to enhance the scintillation properties of organic scintillators with a maximum emission wavelength of 380 nm. In order to study the scintillation properties of the quantum-dots doped plastic scintillators, the samples were irradiated with X-ray, photon, and 45 MeV proton beams. We observed that only PPO doped plastic scintillators shows a luminescence peak around 380 nm. However, both the quantum-dots and PPO doped plastic scintillators shows luminescence peaks around 380 nm and 520 nm. Addition of quantum-dots had shifted the luminescence spectrum from 380 nm (PPO) toward the region of 520 nm (Quantum-dots). Emissions with wavelength controllable plastic scintillators can be matched to various kinds of photosensors such as photomultiplier tubes, photo-diodes, avalanche photo-diodes, and CCDs, etc. Also quantum-dots doped plastic scintillator, which is irradiated 45 MeV proton beams, shows that the light yield of quantum-dots doped plastic scintillator is increases as quantum-dots doping concentration increases at 520 nm. And also the plastic scintillators were irradiated with Cs-137 γ-ray for measuring fluorescence decay time. -- Highlights: • Quantum-dot doped plastic scintillator is grown by the thermal polymerization method. • Quantum-dot doped plastic scintillators can control the emission wavelength to match with photo-sensor. • Quantum-dots and PPO doped plastic scintillators emitted luminescence peaks around 380 nm and 520 nm. • We observed the energy transfer from PPO to quantum-dot in the quantum-dot doped plastic scintillator.

  9. Strain release in metastable CdSe/CdS quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Ke; Beane, Gary; Kelley, David F., E-mail: dfkelley@ucmerced.edu

    2016-06-01

    Highlights: • We have synthesized CdSe/CdS core/shell quantum dots in the “stable” and “metastable” regimes. • Annealing of metastable particles causes lattice strain release, producing hole-trapping defects. • Electron microscopy imaging is relatively insensitive to defects that result in rapid radiationless decay. - Abstract: It has recently been shown (J. Phys. Chem. Lett., 2015, 6, 1559) that high quantum yields (QYs) in zincblende CdSe/CdS quantum dots can be achieved when the lattice strain energy density is in the stable (0–0.59 eV/nm{sup 2}) or metastable (0.59–0.85 eV/nm{sup 2}) regime. Annealing of metastable particles causes a dramatic reduction in the observed QY and a red shift of the absorbance and photoluminescence. In this work we demonstrate that the decline in QY upon annealing is due to the formation of hole traps. These traps, while dramatically affecting the observed QY, produce no significant changes in either morphology or crystallinity as determined by high resolution transmission electron microscopy (HRTEM).

  10. Quantum dots and nanocomposites.

    Science.gov (United States)

    Mansur, Herman Sander

    2010-01-01

    Quantum dots (QDs), also known as semiconducting nanoparticles, are promising zero-dimensional advanced materials because of their nanoscale size and because they can be engineered to suit particular applications such as nonlinear optical devices (NLO), electro-optical devices, and computing applications. QDs can be joined to polymers in order to produce nanocomposites which can be considered a scientific revolution of the 21st century. One of the fastest moving and most exciting interfaces of nanotechnology is the use of QDs in medicine, cell and molecular biology. Recent advances in nanomaterials have produced a new class of markers and probes by conjugating semiconductor QDs with biomolecules that have affinities for binding with selected biological structures. The nanoscale of QDs ensures that they do not scatter light at visible or longer wavelengths, which is important in order to minimize optical losses in practical applications. Moreover, at this scale, quantum confinement and surface effects become very important and therefore manipulation of the dot diameter or modification of its surface allows the properties of the dot to be controlled. Quantum confinement affects the absorption and emission of photons from the dot. Thus, the absorption edge of a material can be tuned by control of the particle size. This paper reviews developments in the myriad of possibilities for the use of semiconductor QDs associated with molecules producing novel hybrid nanocomposite systems for nanomedicine and bioengineering applications.

  11. Coherence and dephasing in self-assembled quantum dots

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Leosson, K.; Birkedal, Dan

    2003-01-01

    We measured dephasing times in InGaAl/As self-assembled quantum dots at low temperature using degenerate four-wave mixing. At 0K, the coherence time of the quantum dots is lifetime limited, whereas at finite temperatures pure dephasing by exciton-phonon interactions governs the quantum dot...

  12. Transport through a vibrating quantum dot: Polaronic effects

    International Nuclear Information System (INIS)

    Koch, T; Alvermann, A; Fehske, H; Loos, J; Bishop, A R

    2010-01-01

    We present a Green's function based treatment of the effects of electron-phonon coupling on transport through a molecular quantum dot in the quantum limit. Thereby we combine an incomplete variational Lang-Firsov approach with a perturbative calculation of the electron-phonon self energy in the framework of generalised Matsubara Green functions and a Landauer-type transport description. Calculating the ground-state energy, the dot single-particle spectral function and the linear conductance at finite carrier density, we study the low-temperature transport properties of the vibrating quantum dot sandwiched between metallic leads in the whole electron-phonon coupling strength regime. We discuss corrections to the concept of an anti-adiabatic dot polaron and show how a deformable quantum dot can act as a molecular switch.

  13. Quantum Dots Coupled to a Superconductor

    DEFF Research Database (Denmark)

    Jellinggaard, Anders Robert

    are tuned electrostatically. This includes tuning the odd occupation of the dot through a quantum phase transition, where it forms a singlet with excitations in the superconductor. We detail the fabrication of these bottom gated devices, which additionally feature ancillary sensor dots connected...

  14. Blood-derived small Dot cells reduce scar in wound healing

    International Nuclear Information System (INIS)

    Kong, Wuyi; Li Shaowei; Longaker, Michael T.; Lorenz, H. Peter

    2008-01-01

    Wounds in fetal skin heal without scar, however the mechanism is unknown. We identified a novel group of E-cadherin positive cells in the blood of fetal and adult mice and named them 'Dot cells'. The percentage of Dot cells in E16.5 fetal mice blood is more than twenty times higher compared to adult blood. Dot cells also express integrin β1, CD184, CD34, CD13 low and Sca1 low , but not CD45, CD44, and CD117. Dot cells have a tiny dot shape between 1 and 7 μm diameters with fast proliferation in vitro. Most of the Dot cells remain positive for E-cadherin and integrin β1 after one month in culture. Transplantation of Dot cells to adult mice heals skin wounds with less scar due to reduced smooth muscle actin and collagen expression in the repair tissue. Tracking GFP-positive Dot cells demonstrates that Dot cells migrate to wounds and differentiate into dermal cells, which also express strongly to FGF-2, and later lose their GFP expression. Our results indicate that Dot cells are a group of previously unidentified cells that have strong wound healing effect. The mechanism of scarless wound healing in fetal skin is due to the presence of a large number of Dot cells

  15. Fast synthesize ZnO quantum dots via ultrasonic method.

    Science.gov (United States)

    Yang, Weimin; Zhang, Bing; Ding, Nan; Ding, Wenhao; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-05-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic sol-gel method. The ZnO quantum dots were synthesized in various ultrasonic temperature and time. Photoluminescence properties of these ZnO quantum dots were measured. Time-resolved photoluminescence decay spectra were also taken to discover the change of defects amount during the reaction. Both ultrasonic temperature and time could affect the type and amount of defects in ZnO quantum dots. Total defects of ZnO quantum dots decreased with the increasing of ultrasonic temperature and time. The dangling bonds defects disappeared faster than the optical defects. Types of optical defects first changed from oxygen interstitial defects to oxygen vacancy and zinc interstitial defects. Then transformed back to oxygen interstitial defects again. The sizes of ZnO quantum dots would be controlled by both ultrasonic temperature and time as well. That is, with the increasing of ultrasonic temperature and time, the sizes of ZnO quantum dots first decreased then increased. Moreover, concentrated raw materials solution brought larger sizes and more optical defects of ZnO quantum dots. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Thick-shell nanocrystal quantum dots

    Science.gov (United States)

    Hollingsworth, Jennifer A [Los Alamos, NM; Chen, Yongfen [Eugene, OR; Klimov, Victor I [Los Alamos, NM; Htoon, Han [Los Alamos, NM; Vela, Javier [Los Alamos, NM

    2011-05-03

    Colloidal nanocrystal quantum dots comprising an inner core having an average diameter of at least 1.5 nm and an outer shell, where said outer shell comprises multiple monolayers, wherein at least 30% of the quantum dots have an on-time fraction of 0.80 or greater under continuous excitation conditions for a period of time of at least 10 minutes.

  17. Optical localization of quantum dots in tapered nanowires

    DEFF Research Database (Denmark)

    Østerkryger, Andreas Dyhl; Gregersen, Niels; Fons, Romain

    2017-01-01

    In this work we have measured the far-field emission patterns of In As quantum dots embedded in a GaAs tapered nanowire and used an open-geometry Fourier modal method for determining the radial position of the quantum dots by computing the far-field emission pattern for different quantum dot...

  18. Ordered quantum-ring chains grown on a quantum-dot superlattice template

    International Nuclear Information System (INIS)

    Wu Jiang; Wang, Zhiming M.; Holmes, Kyland; Marega, Euclydes; Mazur, Yuriy I.; Salamo, Gregory J.

    2012-01-01

    One-dimensional ordered quantum-ring chains are fabricated on a quantum-dot superlattice template by molecular beam epitaxy. The quantum-dot superlattice template is prepared by stacking multiple quantum-dot layers and quantum-ring chains are formed by partially capping quantum dots. Partially capping InAs quantum dots with a thin layer of GaAs introduces a morphological change from quantum dots to quantum rings. The lateral ordering is introduced by engineering the strain field of a multi-layer InGaAs quantum-dot superlattice.

  19. Detection of CdSe quantum dot photoluminescence for security label on paper

    Energy Technology Data Exchange (ETDEWEB)

    Isnaeni,, E-mail: isnaeni@lipi.go.id; Sugiarto, Iyon Titok [Research Center for Physics, Indonesian Institute of Science, Building 442 Puspiptek Serpong, South Tangerang, Banten, Indonesia 15314 (Indonesia); Bilqis, Ratu; Suseno, Jatmiko Endro [Department of Physics, Diponegoro University, Jl. Prof. Soedarto, Tembalang, Semarang, Indonesia 50275 (Indonesia)

    2016-02-08

    CdSe quantum dot has great potential in various applications especially for emitting devices. One example potential application of CdSe quantum dot is security label for anti-counterfeiting. In this work, we present a practical approach of security label on paper using one and two colors of colloidal CdSe quantum dot, which is used as stamping ink on various types of paper. Under ambient condition, quantum dot is almost invisible. The quantum dot security label can be revealed by detecting emission of quantum dot using photoluminescence and cnc machine. The recorded quantum dot emission intensity is then analyzed using home-made program to reveal quantum dot pattern stamp having the word ’RAHASIA’. We found that security label using quantum dot works well on several types of paper. The quantum dot patterns can survive several days and further treatment is required to protect the quantum dot. Oxidation of quantum dot that occurred during this experiment reduced the emission intensity of quantum dot patterns.

  20. Formation of clusters and the percolation threshold in a two-phase system with a random distribution of ZnSe quantum points

    Science.gov (United States)

    Bondar', N. V.

    2009-03-01

    A characteristic feature due to the formation of a percolation phase transition of carriers has been observed in a two-phase system consisting of borosilicate glass with ZnSe quantum dots. For near-threshold quantum-dot concentrations, changes due to microscopic fluctuations of the quantum-dot density have been observed in the intensities of radiation emission bands. This phenomenon is reminiscent of critical opalescence, where similar fluctuations of the density of a pure substance arise near a phase transition. It is proposed that the dielectric mismatch between the matrix and ZnSe plays a large role in the carrier (exciton) delocalization, resulting in the appearance of a "dielectric trap" on the interface and the formation there of surface states of excitons. The spatial overlapping of states which occurs at the critical concentration of quantum dots results in carrier tunneling and the appearance of a percolation transition in such a system.

  1. Semiconductor Quantum Dots with Photoresponsive Ligands.

    Science.gov (United States)

    Sansalone, Lorenzo; Tang, Sicheng; Zhang, Yang; Thapaliya, Ek Raj; Raymo, Françisco M; Garcia-Amorós, Jaume

    2016-10-01

    Photochromic or photocaged ligands can be anchored to the outer shell of semiconductor quantum dots in order to control the photophysical properties of these inorganic nanocrystals with optical stimulations. One of the two interconvertible states of the photoresponsive ligands can be designed to accept either an electron or energy from the excited quantum dots and quench their luminescence. Under these conditions, the reversible transformations of photochromic ligands or the irreversible cleavage of photocaged counterparts translates into the possibility to switch luminescence with external control. As an alternative to regulating the photophysics of a quantum dot via the photochemistry of its ligands, the photochemistry of the latter can be controlled by relying on the photophysics of the former. The transfer of excitation energy from a quantum dot to a photocaged ligand populates the excited state of the species adsorbed on the nanocrystal to induce a photochemical reaction. This mechanism, in conjunction with the large two-photon absorption cross section of quantum dots, can be exploited to release nitric oxide or to generate singlet oxygen under near-infrared irradiation. Thus, the combination of semiconductor quantum dots and photoresponsive ligands offers the opportunity to assemble nanostructured constructs with specific functions on the basis of electron or energy transfer processes. The photoswitchable luminescence and ability to photoinduce the release of reactive chemicals, associated with the resulting systems, can be particularly valuable in biomedical research and can, ultimately, lead to the realization of imaging probes for diagnostic applications as well as to therapeutic agents for the treatment of cancer.

  2. DotFETs : MOSFETs strained by a Single SiGE dot in a Low-Temperature ELA Technology

    NARCIS (Netherlands)

    Biasotto, C.

    2011-01-01

    The work presented in this thesis was performed in the context of the European Sixth Framework Program FP6 project “Disposable Dot Field Effect Transistor for High Speed Si Integrated Circuits”, referred to as the D-DotFET project. The project had the goal of realizing strain-enhanced mobility in

  3. Coherent radiation by quantum dots and magnetic nanoclusters

    International Nuclear Information System (INIS)

    Yukalov, V. I.; Yukalova, E. P.

    2014-01-01

    The assemblies of either quantum dots or magnetic nanoclusters are studied. It is shown that such assemblies can produce coherent radiation. A method is developed for solving the systems of nonlinear equations describing the dynamics of such assemblies. The method is shown to be general and applicable to systems of different physical nature. Despite mathematical similarities of dynamical equations, the physics of the processes for quantum dots and magnetic nanoclusters is rather different. In a quantum dot assembly, coherence develops due to the Dicke effect of dot interactions through the common radiation field. For a system of magnetic clusters, coherence in the spin motion appears due to the Purcell effect caused by the feedback action of a resonator. Self-organized coherent spin radiation cannot arise without a resonator. This principal difference is connected with the different physical nature of dipole forces between the objects. Effective dipole interactions between the radiating quantum dots, appearing due to photon exchange, collectivize the dot radiation. While the dipolar spin interactions exist from the beginning, yet before radiation, and on the contrary, they dephase spin motion, thus destroying the coherence of moving spins. In addition, quantum dot radiation exhibits turbulent photon filamentation that is absent for radiating spins

  4. Four-Wave Mixing Spectroscopy of Quantum Dot Molecules

    Science.gov (United States)

    Sitek, A.; Machnikowski, P.

    2007-08-01

    We study theoretically the nonlinear four-wave mixing response of an ensemble of coupled pairs of quantum dots (quantum dot molecules). We discuss the shape of the echo signal depending on the parameters of the ensemble: the statistics of transition energies and the degree of size correlations between the dots forming the molecules.

  5. Quantum dot devices for optical communications

    DEFF Research Database (Denmark)

    Mørk, Jesper

    2005-01-01

    -low threshold currents and amplifiers with record-high power levels. In this tutorial we will review the basic properties of quantum dots, emphasizing the properties which are important for laser and amplifier applications, as well as devices for all-optical signal processing. The high-speed properties....... The main property of semiconductor quantum dots compared to bulk material or even quantum well structures is the discrete nature of the allowed states, which means that inversion of the medium can be obtained for very low electron densities. This has led to the fabrication of quantum dot lasers with record...

  6. Near-field strong coupling of single quantum dots.

    Science.gov (United States)

    Groß, Heiko; Hamm, Joachim M; Tufarelli, Tommaso; Hess, Ortwin; Hecht, Bert

    2018-03-01

    Strong coupling and the resultant mixing of light and matter states is an important asset for future quantum technologies. We demonstrate deterministic room temperature strong coupling of a mesoscopic colloidal quantum dot to a plasmonic nanoresonator at the apex of a scanning probe. Enormous Rabi splittings of up to 110 meV are accomplished by nanometer-precise positioning of the quantum dot with respect to the nanoresonator probe. We find that, in addition to a small mode volume of the nanoresonator, collective coherent coupling of quantum dot band-edge states and near-field proximity interaction are vital ingredients for the realization of near-field strong coupling of mesoscopic quantum dots. The broadband nature of the interaction paves the road toward ultrafast coherent manipulation of the coupled quantum dot-plasmon system under ambient conditions.

  7. Solid-state cavity quantum electrodynamics using quantum dots

    International Nuclear Information System (INIS)

    Gerard, J.M.; Gayral, B.; Moreau, E.; Robert, I.; Abram, I.

    2001-01-01

    We review the recent development of solid-state cavity quantum electrodynamics using single self-assembled InAs quantum dots and three-dimensional semiconductor microcavities. We discuss first prospects for observing a strong coupling regime for single quantum dots. We then demonstrate that the strong Purcell effect observed for single quantum dots in the weak coupling regime allows us to prepare emitted photons in a given state (the same spatial mode, the same polarization). We present finally the first single-mode solid-state source of single photons, based on an isolated quantum dot in a pillar microcavity. This optoelectronic device, the first ever to rely on a cavity quantum electrodynamics effect, exploits both Coulomb interaction between trapped carriers in a single quantum dot and single mode photon tunneling in the microcavity. (author)

  8. The convergence of quantum-dot-mediated fluorescence resonance energy transfer and microfluidics for monitoring DNA polyplex self-assembly in real time

    International Nuclear Information System (INIS)

    Ho Yiping; Wang, T-H; Chen, Hunter H; Leong, Kam W

    2009-01-01

    We present a novel convergence of quantum-dot-mediated fluorescence resonance energy transfer (QD-FRET) and microfluidics, through which molecular interactions were precisely controlled and monitored using highly sensitive quantum-dot-mediated FRET. We demonstrate its potential in studying the kinetics of self-assembly of DNA polyplexes under laminar flow in real time with millisecond resolution. The integration of nanophotonics and microfluidics offers a powerful tool for elucidating the formation of polyelectrolyte polyplexes, which is expected to provide better control and synthesis of uniform and customizable polyplexes for future nucleic acid-based therapeutics.

  9. Calorific energy deposited by gamma radiations in a test reactor. Calorimetric measurements and calculations

    International Nuclear Information System (INIS)

    Mecheri, K.-F.

    1977-01-01

    The purpose of this work was to determine the calorific energy deposited by gamma radiations in the experimental devices irradiated in the test reactors of the Grenoble Nuclear Study Centre. A theoretical study briefly recalls to mind the various sorts of nuclear reactions that occur in a reactor, from the special angle of their ability to deposit calorific energy in the materials. A special study with the help of a graphite calorimeter made it possible to show the possible effect of the various parameters intervening in this energy absorption: the nature of the materials, their geometry, the spectrum of the incident gamma rays and the fact that the variation of this spectrum is due to the position of the measuring point with respect to the reactor core or to the presence of structures around the measuring instrument. The results of the calculations made with the help of the Mercury IV and ANISN codes are compared with those of the determinations in order to ascertain that very are adapted to the forecasts of energy deposition in the various materials. The conclusion was reached that in order to calculate with accuracy the depositifs of gamma energy in the experimental devices, it is necessary either to introduce the build-up calculation for the low energy photons, in the Mercury IV calculation code or to associate the DOT code to the ANISN calculation code [fr

  10. Quantum dot solar cells

    CERN Document Server

    Wu, Jiang

    2013-01-01

    The third generation of solar cells includes those based on semiconductor quantum dots. This sophisticated technology applies nanotechnology and quantum mechanics theory to enhance the performance of ordinary solar cells. Although a practical application of quantum dot solar cells has yet to be achieved, a large number of theoretical calculations and experimental studies have confirmed the potential for meeting the requirement for ultra-high conversion efficiency. In this book, high-profile scientists have contributed tutorial chapters that outline the methods used in and the results of variou

  11. Carbon "Quantum" Dots for Fluorescence Labeling of Cells.

    Science.gov (United States)

    Liu, Jia-Hui; Cao, Li; LeCroy, Gregory E; Wang, Ping; Meziani, Mohammed J; Dong, Yiyang; Liu, Yuanfang; Luo, Pengju G; Sun, Ya-Ping

    2015-09-02

    The specifically synthesized and selected carbon dots of relatively high fluorescence quantum yields were evaluated in their fluorescence labeling of cells. For the cancer cell lines, the cellular uptake of the carbon dots was generally efficient, resulting in the labeling of the cells with bright fluorescence emissions for both one- and two-photon excitations from predominantly the cell membrane and cytoplasm. In the exploration on labeling the live stem cells, the cellular uptake of the carbon dots was relatively less efficient, though fluorescence emissions could still be adequately detected in the labeled cells, with the emissions again predominantly from the cell membrane and cytoplasm. This combined with the observed more efficient internalization of the same carbon dots by the fixed stem cells might suggest some significant selectivity of the stem cells toward surface functionalities of the carbon dots. The needs and possible strategies for more systematic and comparative studies on the fluorescence labeling of different cells, including especially live stem cells, by carbon dots as a new class of brightly fluorescent probes are discussed.

  12. The effect of near laterally and vertically neighboring quantum dots on the composition of uncapped InxGa1−xAs/GaAs quantum dots

    International Nuclear Information System (INIS)

    Donglin, Wang; Zhongyuan, Yu; Yumin, Liu; Han, Ye; Pengfei, Lu; Xiaotao, Guo; Long, Zhao; Xia, Xin

    2010-01-01

    The composition of quantum dots has a direct effect on the optical and electronic properties of quantum-dot-based devices. In this paper, we combine the method of moving asymptotes and finite element tools to compute the composition distribution by minimizing the Gibbs free energy of quantum dots, and use this method to study the effect of near laterally and vertically neighboring quantum dots on the composition distribution. The simulation results indicate that the effect from the laterally neighboring quantum dot is very small, and the vertically neighboring quantum dot can significantly influence the composition by the coupled strain field

  13. Fabrication of quantum-dot devices in graphene

    Directory of Open Access Journals (Sweden)

    Satoshi Moriyama, Yoshifumi Morita, Eiichiro Watanabe, Daiju Tsuya, Shinya Uji, Maki Shimizu and Koji Ishibashi

    2010-01-01

    Full Text Available We describe our recent experimental results on the fabrication of quantum-dot devices in a graphene-based two-dimensional system. Graphene samples were prepared by micromechanical cleavage of graphite crystals on a SiO2/Si substrate. We performed micro-Raman spectroscopy measurements to determine the number of layers of graphene flakes during the device fabrication process. By applying a nanofabrication process to the identified graphene flakes, we prepared a double-quantum-dot device structure comprising two lateral quantum dots coupled in series. Measurements of low-temperature electrical transport show the device to be a series-coupled double-dot system with varied interdot tunnel coupling, the strength of which changes continuously and non-monotonically as a function of gate voltage.

  14. Enhanced Photoelectrochemical Response of Zn-Dotted Hematite

    Directory of Open Access Journals (Sweden)

    Saroj Kumari

    2007-01-01

    Full Text Available Photoelectrochemical response of thin films of α-Fe2O3, Zn doped α-Fe2O3, and Zn dots deposited on doped α-Fe2O3 prepared by spray pyrolysis has been studied. Samples of Zn dots were prepared using thermal evaporation method by evaporating Zn through a mesh having pore diameter of 0.7 mm. The presence of Zn-dotted islands on doped α-Fe2O3 surface exhibited significantly large photocurrent density as compared to other samples. An optimum thickness of Zn dots ∼230 Å is found to give enhanced photoresponse. The observed results are analyzed with the help of estimated values of resistivity, band gap, flatband potential, and donor density.

  15. From quantum dots to quantum circuits

    International Nuclear Information System (INIS)

    Ensslin, K.

    2008-01-01

    Full text: Quantum dots, or artificial atoms, confine charge carriers in three-dimensional islands in a semiconductor environment. Detailed understanding and exquisite control of the charge and spin state of the electrically tunable charge occupancy have been demonstrated over the years. Quantum dots with best quality for transport experiments are usually realized in n-type AlGaAs/GaAs heterostructures. Novel material systems, such as graphene, nanowires and p-type heterostructures offer unexplored parameter regimes in view of spin-orbit interactions, carrier-carrier interactions and hyperfine coupling between electron and nuclear spins, which might be relevant for future spin qubits realized in quantum dots. With more sophisticated nanotechnology it has become possible to fabricate coupled quantum systems where classical and quantum mechanical coupling and back action is experimentally investigated. A narrow constriction, or quantum point contact, in vicinity to a quantum dot has been shown to serve as a minimally invasive sensor of the charge state of the dot. If charge transport through the quantum dot is slow enough (kHz), the charge sensor allows the detection of time-resolved transport through quantum-confined structures. This has allowed us to measure extremely small currents not detectable with conventional electronics. In addition the full statistics of current fluctuations becomes experimentally accessible. This way correlations between electrons which influence the current flow can be analyzed by measuring the noise and higher moments of the distribution of current fluctuations. Mesoscopic conductors driven out of equilibrium can emit photons which may be detected by another nearby quantum system with suitably tuned energy levels. This way an on-chip microwave single photon detector has been realized. In a ring geometry containing a tunable double quantum dot it has been possible to measure the self-interference of individual electrons as they traverse

  16. Double quantum dot as a minimal thermoelectric generator

    OpenAIRE

    Donsa, S.; Andergassen, S.; Held, K.

    2014-01-01

    Based on numerical renormalization group calculations, we demonstrate that experimentally realized double quantum dots constitute a minimal thermoelectric generator. In the Kondo regime, one quantum dot acts as an n-type and the other one as a p-type thermoelectric device. Properly connected the double quantum dot provides a miniature power supply utilizing the thermal energy of the environment.

  17. First principles study of edge carboxylated graphene quantum dots

    Science.gov (United States)

    Abdelsalam, Hazem; Elhaes, Hanan; Ibrahim, Medhat A.

    2018-05-01

    The structure stability and electronic properties of edge carboxylated hexagonal and triangular graphene quantum dots are investigated using density functional theory. The calculated binding energies show that the hexagonal clusters with armchair edges have the highest stability among all the quantum dots. The binding energy of carboxylated graphene quantum dots increases by increasing the number of carboxyl groups. Our study shows that the total dipole moment significantly increases by adding COOH with the highest value observed in triangular clusters. The edge states in triangular graphene quantum dots with zigzag edges produce completely different energy spectrum from other dots: (a) the energy gap in triangular zigzag is very small as compared to other clusters and (b) the highest occupied molecular orbital is localized at the edges which is in contrast to other clusters where it is distributed over the cluster surface. The enhanced reactivity and the controllable energy gap by shape and edge termination make graphene quantum dots ideal for various nanodevice applications such as sensors. The infrared spectra are presented to confirm the stability of the quantum dots.

  18. Photoluminescence studies of single InGaAs quantum dots

    DEFF Research Database (Denmark)

    Leosson, Kristjan; Jensen, Jacob Riis; Hvam, Jørn Märcher

    1999-01-01

    Semiconductor quantum dots are considered a promising material system for future optical devices and quantum computers. We have studied the low-temperature photoluminescence properties of single InGaAs quantum dots embedded in GaAs. The high spatial resolution required for resolving single dots...... to resolve luminescence lines from individual quantum dots, revealing an atomic-like spectrum of sharp transition lines. A parameter of fundamental importance is the intrinsic linewidth of these transitions. Using high-resolution spectroscopy we have determined the linewidth and investigated its dependence...... on temperature, which gives information about how the exciton confined to the quantum dot interacts with the surrounding lattice....

  19. Coulomb Blockade of Tunnel-Coupled Quantum Dots

    National Research Council Canada - National Science Library

    Golden, John

    1997-01-01

    .... Though classical charging models can explain the Coulomb blockade of an isolated dot, they must be modified to explain the Coulomb blockade of dots coupled through the quantum mechanical tunneling of electrons...

  20. Optical Properties of Semiconductor Quantum Dots

    NARCIS (Netherlands)

    Perinetti, U.

    2011-01-01

    This thesis presents different optical experiments performed on semiconductor quantum dots. These structures allow to confine a small number of electrons and holes to a tiny region of space, some nm across. The aim of this work was to study the basic properties of different types of quantum dots

  1. Realization of electrically tunable single quantum dot nanocavities

    Energy Technology Data Exchange (ETDEWEB)

    Hofbauer, Felix Florian Georg

    2009-03-15

    We investigated the design, fabrication and optical investigation of electrically tunable single quantum dot-photonic crystal defect nanocavities operating in both the weak and strong coupling regimes of the light matter interaction. We demonstrate that the quantum confined Stark effect can be employed to quickly and reversibly switch the dot-cavity coupling, simply by varying a gate voltage. Our results show that exciton transitions from individual dots can be tuned by up to {proportional_to}4 meV relative to the nanocavity mode, before the emission quenches due to carrier tunneling escape from the dots. We directly probe spontaneous emission, irreversible polariton decay and the statistics of the emitted photons from a single-dot nanocavity in the weak and strong coupling regimes. New information is obtained on the nature of the dot-cavity coupling in the weak coupling regime and electrical control of zero dimensional polaritons is demonstrated for the first time. The structures investigated are p-i-n photodiodes consisting of an 180nm thick free-standing GaAs membrane into which a two dimensional photonic crystal is formed by etching a triangular lattice of air holes. Low mode volume nanocavities (V{sub mode}<1.6 ({lambda}/n){sup 3}) are realized by omitting 3 holes in a line to form L3 cavities and a single layer of InGaAs self-assembled quantum dots is embedded into the midpoint of the membrane. The nanocavities are electrically contacted via 35 nm thick p- and n-doped contact layers in the GaAs membrane. In the weak coupling regime, time resolved spectroscopy reveals a {proportional_to}7 x shortening of the spontaneous emission lifetime as the dot is tuned through the nanocavity mode, due to the Purcell effect. Upon strongly detuning the same quantum dot transition from the nanocavity mode we observe an additional {proportional_to}8 x lengthening of the spontaneous emission lifetime. These observations unequivocally highlight two regimes of dot

  2. Shape, strain, and ordering of lateral InAs quantum dot molecules

    International Nuclear Information System (INIS)

    Krause, B.; Metzger, T.H.; Rastelli, A.; Songmuang, R.; Kiravittaya, S.; Schmidt, O. G.

    2005-01-01

    The results of an x-ray study on freestanding, self-assembled InAs/GaAs quantum dots grown by molecular beam epitaxy are presented. The studied samples cover the range from statistically distributed single quantum dots to quantum dot bimolecules, and finally to quantum dot quadmolecules. The x-ray diffraction data of the single quantum dots and the bimolecules, obtained in grazing incidence geometry, have been analyzed using the isostrain model. An extended version of the isostrain model has been developed, including the lateral arrangement of the quantum dots within a quantum dot molecule and the superposition of the scattering from different parts of the dots. This model has been applied to the scattering maps of all three samples. Quantitative information about the positions of the dots, the shape, and the lattice parameter distribution of their crystalline core has been obtained. For the single dot and the bimolecule, a strong similarity of the shape and lattice parameter distribution has been found, in agreement with the similarity of their photoluminescence spectra

  3. Photoinduced electric dipole in CuCl quantum dots

    International Nuclear Information System (INIS)

    Masumoto, Yasuaki; Naruse, Fumitaka; Kanno, Atsushi

    2003-01-01

    Electromodulated absorption spectra of CuCl quantum dots modulated at twice the modulation frequency of electric field, 2f, show prominent structure around persistently burned hole. It grows in proportion to square of the electric field in the same manner as the 2f component of electromodulated absorption spectra of the dots without the laser exposure. Even the f component of electromodulated signal was observed around the burned hole position. These observations are explained by considering electric dipole formed in hole burned and photoionized quantum dots. Photoionization not only produces persistent spectral hole burning but also the local built-in electric field and photoinduced dipole moment in quantum dots. The dipole moment is estimated to be about 5 debye for 3.2-nm-radius quantum dots. The dipole moments are randomly oriented but 1% anisotropy is deduced from the electromodulated signal at f

  4. Micromagnetic simulations of submicron cobalt dots

    International Nuclear Information System (INIS)

    Parker, G. J.; Cerjan, C.

    2000-01-01

    Numerical simulations of submicron Co extruded elliptical dots were performed to illustrate the relative importance of different physical parameters on the switching behavior in the easy direction. Shape, size, magnetic moment magnitude, and the magnitude and distribution of the crystalline anisotropicity were varied. The simulation represents magnetostatic, exchange, and crystalline anisotropicity fields on a structured mesh using finite difference techniques. The smooth boundary of the dots is accurately represented by use of the embedded curve boundary method. Agreement with experimental hysteresis measurements of submicron dot arrays is obtained when an appropriate angular distribution of the grain anisotropicity axes is invoked. (c) 2000 American Institute of Physics

  5. Reduced graphene oxide-germanium quantum dot nanocomposite: electronic, optical and magnetic properties

    Science.gov (United States)

    Amollo, Tabitha A.; Mola, Genene T.; Nyamori, Vincent O.

    2017-12-01

    Graphene provides numerous possibilities for structural modification and functionalization of its carbon backbone. Localized magnetic moments can, as well, be induced in graphene by the formation of structural defects which include vacancies, edges, and adatoms. In this work, graphene was functionalized using germanium atoms, we report the effect of the Ge ad atoms on the structural, electrical, optical and magnetic properties of graphene. Reduced graphene oxide (rGO)-germanium quantum dot nanocomposites of high crystalline quality were synthesized by the microwave-assisted solvothermal reaction. Highly crystalline spherical shaped germanium quantum dots, of diameter ranging between 1.6-9.0 nm, are anchored on the basal planes of rGO. The nanocomposites exhibit high electrical conductivity with a sheet resistance of up to 16 Ω sq-1. The electrical conductivity is observed to increase with the increase in Ge content in the nanocomposites. High defect-induced magnetization is attained in the composites via germanium adatoms. The evolution of the magnetic moments in the nanocomposites and the coercivity showed marked dependence on the Ge quantum dots size and concentration. Quantum confinement effects is evidenced in the UV-vis absorbance spectra and photoluminescence emission spectra of the nanocomposites which show marked size-dependence. The composites manifest strong absorption in the UV region, strong luminescence in the near UV region, and a moderate luminescence in the visible region.

  6. Central dot sign in entities other than Caroli disease

    International Nuclear Information System (INIS)

    Ahmadi, T.; Itai, Yuji; Minami, Manabu.

    1997-01-01

    The purpose of this study was to describe central dot sign (tiny dots with strong contrast enhancement of the portal vein within dilated hepatic bile ducts on computed tomography) in entities other than Caroli disease, especially in peribiliary cysts with or without autosomal-dominant polycystic kidney disease. Computed tomography in 74 cases of peribiliary cysts and 134 cases of other liver diseases and states possibly showing central dot sign were retrospectively reviewed to examine the central dot sign. In three cases of peribiliary cysts, some part of the liver showed strongly enhanced portal radicles surrounded completely or partially by low-attenuation, enlarged peribiliary cysts, presenting ''central dot sign'' on contrast-enhanced computed tomography. We suggest that in addition to Caroli disease, some other entities and diseases of the liver may demonstrate central dot sign and this sign should not be considered a specific finding of Caroli disease. (author)

  7. Central dot sign in entities other than Caroli disease

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadi, T.; Itai, Yuji [Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine; Minami, Manabu

    1997-11-01

    The purpose of this study was to describe central dot sign (tiny dots with strong contrast enhancement of the portal vein within dilated hepatic bile ducts on computed tomography) in entities other than Caroli disease, especially in peribiliary cysts with or without autosomal-dominant polycystic kidney disease. Computed tomography in 74 cases of peribiliary cysts and 134 cases of other liver diseases and states possibly showing central dot sign were retrospectively reviewed to examine the central dot sign. In three cases of peribiliary cysts, some part of the liver showed strongly enhanced portal radicles surrounded completely or partially by low-attenuation, enlarged peribiliary cysts, presenting ``central dot sign`` on contrast-enhanced computed tomography. We suggest that in addition to Caroli disease, some other entities and diseases of the liver may demonstrate central dot sign and this sign should not be considered a specific finding of Caroli disease. (author)

  8. Studies of quantum dots in the quantum Hall regime

    Science.gov (United States)

    Goldmann, Eyal

    We present two studies of quantum dots in the quantum Hall regime. In the first study, presented in Chapter 3, we investigate the edge reconstruction phenomenon believed to occur when the quantum dot filling fraction is n≲1 . Our approach involves the examination of large dots (≤40 electrons) using a partial diagonalization technique in which the occupancies of the deep interior orbitals are frozen. To interpret the results of this calculation, we evaluate the overlap between the diagonalized ground state and a set of trial wavefunctions which we call projected necklace (PN) states. A PN state is simply the angular momentum projection of a maximum density droplet surrounded by a ring of localized electrons. Our calculations reveal that PN states have up to 99% overlap with the diagonalized ground states, and are lower in energy than the states identified in Chamon and Wen's study of the edge reconstruction. In the second study, presented in Chapter 4, we investigate quantum dots in the fractional quantum Hall regime using a Hartree formulation of composite fermion theory. We find that under appropriate conditions, the chemical potential of the dots oscillates periodically with B due to the transfer of composite fermions between quasi-Landau bands. This effect is analogous the addition spectrum oscillations which occur in quantum dots in the integer quantum Hall regime. Period f0 oscillations are found in sharply confined dots with filling factors nu = 2/5 and nu = 2/3. Period 3 f0 oscillations are found in a parabolically confined nu = 2/5 dot. More generally, we argue that the oscillation period of dots with band pinning should vary continuously with B, whereas the period of dots without band pinning is f0 .

  9. Research Progress of Photoanodes for Quantum Dot Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    LI Zhi-min

    2017-08-01

    Full Text Available This paper presents the development status and tendency of quantum dot sensitized solar cells. Photoanode research progress and its related technologies are analyzed in detail from the three ways of semiconductor thin films, quantum dot co-sensitization and quantum dot doping, deriving from the approach that the conversion efficiency can be improved by photoanode modification for quantum dot sensitized solar cells. According to the key factors which restrict the cell efficiency, the promising future development of quantum dot sensitized solar cells is proposed,for example,optimizing further the compositions and structures of semiconductor thin films for the photoanodes, exploring new quantum dots with broadband absorption and developing high efficient techniques of interface modification.

  10. Aptamer-conjugated dendrimer-modified quantum dots for glioblastoma cells imaging

    International Nuclear Information System (INIS)

    Li Zhiming; Huang Peng; He Rong; Bao Chenchen; Cui Daxiang; Zhang Xiaomin; Ren Qiushi

    2009-01-01

    Targeted quantum dots have shown potential as a platform for development of cancer imaging. Aptamers have recently been demonstrated as ideal candidates for molecular targeting applications. In present work, polyamidoamine dendrimers were used to modify surface of quantum dots and improve their solubility in water solution. Then, dendrimer-modified quantum dots were conjugated with DNA aptamer, GBI-10, can recognize the extracellular matrix protein tenascin-C on the surface of human glioblastoma cells. The dendrimer-modified quantum dots exhibit water-soluble, high quantum yield, and good biocompatibility. Aptamer-conjugated quantum dots can specifically target U251 human glioblastoma cells. High-performance aptamer-conjugated dendrimers modified quantum dot-based nanoprobes have great potential in application such as cancer imaging.

  11. Polarization-insensitive quantum-dot coupled quantum-well semiconductor optical amplifier

    International Nuclear Information System (INIS)

    Huang Lirong; Yu Yi; Tian Peng; Huang Dexiu

    2009-01-01

    The optical gain of a quantum-dot semiconductor optical amplifier is usually seriously dependent on polarization; we propose a quantum-dot coupled tensile-strained quantum-well structure to obtain polarization insensitivity. The tensile-strained quantum well not only serves as a carrier injection layer of quantum dots but also offers gain to the transverse-magnetic mode. Based on the polarization-dependent coupled carrier rate-equation model, we study carrier competition among quantum well and quantum dots, and study the polarization dependence of the quantum-dot coupled quantum-well semiconductor optical amplifier. We also analyze polarization-dependent photon-mediated carrier distribution among quantum well and quantum dots. It is shown that polarization-insensitive gain can be realized by optimal design

  12. Combination of carbon dot and polymer dot phosphors for white light-emitting diodes.

    Science.gov (United States)

    Sun, Chun; Zhang, Yu; Sun, Kai; Reckmeier, Claas; Zhang, Tieqiang; Zhang, XiaoYu; Zhao, Jun; Wu, Changfeng; Yu, William W; Rogach, Andrey L

    2015-07-28

    We realized white light-emitting diodes with high color rendering index (85-96) and widely variable color temperatures (2805-7786 K) by combining three phosphors based on carbon dots and polymer dots, whose solid-state photoluminescence self-quenching was efficiently suppressed within a polyvinyl pyrrolidone matrix. All three phosphors exhibited dominant absorption in the UV spectral region, which ensured the weak reabsorption and no energy transfer crosstalk. The WLEDs showed excellent color stability against the increasing current because of the similar response of the tricolor phosphors to the UV light variation.

  13. Exciton dephasing in single InGaAs quantum dots

    DEFF Research Database (Denmark)

    Leosson, Kristjan; Østergaard, John Erland; Jensen, Jacob Riis

    2000-01-01

    The homogeneous linewidth of excitonic transitions is a parameter of fundamental physical importance. In self-assembled quantum dot systems, a strong inhomogeneous broadening due to dot size fluctuations masks the homogeneous linewidth associated with transitions between individual states....... The homogeneous and inhomogeneous broadening of InGaAs quantum dot luminescence is of central importance for the potential application of this material system in optoelectronic devices. Recent measurements of MOCVD-grown InAs/InGaAs quantum dots indicate a large homogeneous broadening at room temperature due...... to fast dephasing. We present an investigation of the low-temperature homogeneous linewidth of individual PL lines from MBE-grown In0.5Ga0.5As/GaAs quantum dots....

  14. Gunn's dots in retinal images of 2,286 adolescents

    DEFF Research Database (Denmark)

    Boberg-Ans, Lars C.; Munch, Inger C.; Larsen, Michael

    2017-01-01

    a 6 mm grid centered on the optic disc. Results: One or more Gunn's dots were seen in at least one eye in 82.6% of children. The median number of Gunn's dots per eye was 46 (range 0-482). Most Gunn's dots were found inferior and superior of the optic disc (49.3% and 45.8%, respectively, of the total...... number of Gunn's dots in the population). The odds for having 1 or more Gunn's dots were 3-fold greater in children with dark brown irides compared with children with blue irides (odds ratio 2.99, 95% CI 1.81 to 4.94, P, 0.0001 adjusted for age, sex, retinal nerve fiber layer thickness, refraction...

  15. Aptamer-Modified Semiconductor Quantum Dots for Biosensing Applications.

    Science.gov (United States)

    Wen, Lin; Qiu, Liping; Wu, Yongxiang; Hu, Xiaoxiao; Zhang, Xiaobing

    2017-07-28

    Semiconductor quantum dots have attracted extensive interest in the biosensing area because of their properties, such as narrow and symmetric emission with tunable colors, high quantum yield, high stability and controllable morphology. The introduction of various reactive functional groups on the surface of semiconductor quantum dots allows one to conjugate a spectrum of ligands, antibodies, peptides, or nucleic acids for broader and smarter applications. Among these ligands, aptamers exhibit many advantages including small size, high chemical stability, simple synthesis with high batch-to-batch consistency and convenient modification. More importantly, it is easy to introduce nucleic acid amplification strategies and/or nanomaterials to improve the sensitivity of aptamer-based sensing systems. Therefore, the combination of semiconductor quantum dots and aptamers brings more opportunities in bioanalysis. Here we summarize recent advances on aptamer-functionalized semiconductor quantum dots in biosensing applications. Firstly, we discuss the properties and structure of semiconductor quantum dots and aptamers. Then, the applications of biosensors based on aptamer-modified semiconductor quantum dots by different signal transducing mechanisms, including optical, electrochemical and electrogenerated chemiluminescence approaches, is discussed. Finally, our perspectives on the challenges and opportunities in this promising field are provided.

  16. Aptamer-Modified Semiconductor Quantum Dots for Biosensing Applications

    Directory of Open Access Journals (Sweden)

    Lin Wen

    2017-07-01

    Full Text Available Semiconductor quantum dots have attracted extensive interest in the biosensing area because of their properties, such as narrow and symmetric emission with tunable colors, high quantum yield, high stability and controllable morphology. The introduction of various reactive functional groups on the surface of semiconductor quantum dots allows one to conjugate a spectrum of ligands, antibodies, peptides, or nucleic acids for broader and smarter applications. Among these ligands, aptamers exhibit many advantages including small size, high chemical stability, simple synthesis with high batch-to-batch consistency and convenient modification. More importantly, it is easy to introduce nucleic acid amplification strategies and/or nanomaterials to improve the sensitivity of aptamer-based sensing systems. Therefore, the combination of semiconductor quantum dots and aptamers brings more opportunities in bioanalysis. Here we summarize recent advances on aptamer-functionalized semiconductor quantum dots in biosensing applications. Firstly, we discuss the properties and structure of semiconductor quantum dots and aptamers. Then, the applications of biosensors based on aptamer-modified semiconductor quantum dots by different signal transducing mechanisms, including optical, electrochemical and electrogenerated chemiluminescence approaches, is discussed. Finally, our perspectives on the challenges and opportunities in this promising field are provided.

  17. Magneto-exciton transitions in laterally coupled quantum dots

    Science.gov (United States)

    Barticevic, Zdenka; Pacheco, Monica; Duque, Carlos A.; Oliveira, Luiz E.

    2008-03-01

    We present a study of the electronic and optical properties of laterally coupled quantum dots. The excitonic spectra of this system under the effects of an external magnetic field applied perpendicular to the plane of the dots is obtained, with the potential of every individual dot taken as the superposition of a quantum well potential along the axial direction with a lateral parabolic confinement potential, and the coupled two- dot system then modeled by a superposition of the potentials of each dot, with their minima at different positions and truncated at the intersection plane. The wave functions and eigenvalues are obtained in the effective-mass approximation by using an extended variational approach in which the magneto- exciton states are simultaneously obtained [1]. The allowed magneto-exciton transitions are investigated by using circularly polarized radiation in the plane perpendicular to the magnetic field. We present results on the excitonic absorption coefficient as a function of the photon energy for different geometric quantum-dot confinement and magnetic-field values. Reference: [1] Z. Barticevic, M. Pacheco, C. A. Duque and L. E. Oliveira, Phys. Rev. B 68, 073312 (2003).

  18. Interaction of porphyrins with CdTe quantum dots

    International Nuclear Information System (INIS)

    Zhang Xing; Liu Zhongxin; Ma Lun; Hossu, Marius; Chen Wei

    2011-01-01

    Porphyrins may be used as photosensitizers for photodynamic therapy, photocatalysts for organic pollutant dissociation, agents for medical imaging and diagnostics, applications in luminescence and electronics. The detection of porphyrins is significantly important and here the interaction of protoporphyrin-IX (PPIX) with CdTe quantum dots was studied. It was observed that the luminescence of CdTe quantum dots was quenched dramatically in the presence of PPIX. When CdTe quantum dots were embedded into silica layers, almost no quenching by PPIX was observed. This indicates that PPIX may interact and alter CdTe quantum dots and thus quench their luminescence. The oxidation of the stabilizers such as thioglycolic acid (TGA) as well as the nanoparticles by the singlet oxygen generated from PPIX is most likely responsible for the luminescence quenching. The quenching of quantum dot luminescence by porphyrins may provide a new method for photosensitizer detection.

  19. Formation of InAs/GaAs quantum dots from a subcritical InAs wetting layer: A reflection high-energy electron diffraction and theoretical study

    International Nuclear Information System (INIS)

    Song, H. Z.; Usuki, T.; Nakata, Y.; Yokoyama, N.; Sasakura, H.; Muto, S.

    2006-01-01

    InAs/GaAs quantum dots (QD's) are formed by postgrowth annealing of an InAs wetting layer thinner than the critical thickness for the transition from two- (2D) to three-dimensional (3D) growth mode. Reflection high energy electron diffraction is used to monitor the QD formation. Based on a mean-field theory [Phys. Rev. Lett. 79, 897 (1997)], the time evolution of total QD's volume, first increasing and finally saturating, is well explained by precursors forming during wetting layer growth and converting into nucleated QD's after growth stop. Both the saturation QD's volume and the QD nucleation rate depend exponentially on the InAs coverage. These behaviors and their temperature and InAs growth rate dependences are essentially understandable in the frame of the mean-field theory. Similar analysis to conventional QD growth suggests that the often observed significant mass transport from wetting layer to QD's can be ascribed to the precursors existing before 2D-3D growth mode transition

  20. Growth and characterization of InP/In{sub 0.48}Ga{sub 0.52}P quantum dots optimized for single-photon emission

    Energy Technology Data Exchange (ETDEWEB)

    Ugur, Asli

    2012-08-28

    In this work the growth of self-assembled InP/InGaP quantum dots, as well as their optical and structural properties are presented and discussed. The QDs were grown on In{sub 0.48}Ga{sub 0.52}P, lattice matched to GaAs. Self-assembled InP quantum dots are grown using gas-source molecular beam epitaxy over a wide range of InP deposition rates, using an ultra-low growth rate of about 0.01 atomic monolayers/s, a quantum-dot density of 1 dot/μm{sup 2} is realized. The resulting isolated InP quantum dots are individually characterized without the need for lithographical patterning and masks on the substrate. Both excitonic and biexcitonic emissions are observed from single dots, appearing as doublets with a fine-structure splitting of 320 μeV. Hanbury Brown-Twiss correlation measurements for the excitonic emission under cw excitation show anti-bunching behavior with an autocorrelation value of g{sup (2)}(0)=0.2. This system is applicable as a single-photon source for applications such as quantum cryptography. The formation of well-ordered chains of InP quantum dots on GaAs (001) substrates by using self-organized In{sub 0.48}Ga{sub 0.52}P surface undulations as a template is also demonstrated. The ordering requires neither stacked layers of quantum dots nor substrate misorientation. The structures are investigated by polarization-dependent photoluminescence together with transmission electron microscopy. Luminescence from the In{sub 0.48}Ga{sub 0.52}P matrix is polarized in one crystallographic direction due to anisotropic strain arising from a lateral compositional modulation. The photoluminescence measurements show enhanced linear polarization in the alignment direction of quantum dots. A polarization degree of 66% is observed. The optical anisotropy is achieved with a straightforward heterostructure, requiring only a single layer of QDs.

  1. Effects of Thermal Lattice Vibration on the Effective Potential of Weak-Coupling Bipolaron in a Quantum Dot

    International Nuclear Information System (INIS)

    Eerdunchaolu; Xiao Xin; Han Chao; Xin Wei; Wuyunqimuge

    2012-01-01

    Based on the Huybrechts' linear-combination operator, effects of thermal lattice vibration on the effective potential of weak-coupling bipolaron in semiconductor quantum dots are studied by using the LLP variational method and quantum statistical theory. The results show that the absolute value of the induced potential of the bipolaron increases with increasing the electron-phonon coupling strength, but decreases with increasing the temperature and the distance of electrons, respectively; the absolute value of the effective potential increases with increasing the radius of the quantum dot, electron-phonon coupling strength and the distance of electrons, respectively, but decreases with increasing the temperature; the temperature and electron-phonon interaction have the important influence on the formation and state properties of the bipolaron: the bipolarons in the bound state are closer and more stable when the electron-phonon coupling strength is larger or the temperature is lower; the confinement potential and coulomb repulsive potential between electrons are unfavorable to the formation of bipolarons in the bound state. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  2. APPLE-2: an improved version of APPLE code for plotting neutron and gamma ray spectra and reaction rates

    International Nuclear Information System (INIS)

    Kawasaki, Hiromitsu; Seki, Yasushi.

    1982-07-01

    A computer code APPLE-2 which plots the spatial distribution of energy spectra of multi-group neutron and/or gamma ray fluxes, and reaction rates has been developed. This code is an improved version of the previously developed APPLE code and has the following features: (1) It plots energy spectra of neutron and/or gamma ray fluxes calculated by ANISN, DOT and MORSE. (2) It calculates and plots the spatial distribution of neutron and gamma ray fluxes and various types of reaction rates such as nuclear heating rates, operational dose rates, displacement damage rates. (3) Input data specification is greatly simplified by the use of standard, response libraries and by close coupling with radiation transport calculation codes. (4) Plotting outputs are given in camera ready form. (author)

  3. Parameters calculation of shielding experiment

    International Nuclear Information System (INIS)

    Gavazza, S.

    1986-02-01

    The radiation transport methodology comparing the calculated reactions and dose rates for neutrons and gama-rays, with experimental measurements obtained on iron shield, irradiated in the YAYOI reactor is evaluated. The ENDF/B-IV and VITAMIN-C libraries and the AMPX-II modular system, for cross sections generation collapsed by the ANISN code were used. The transport calculations were made using the DOT 3.5 code, adjusting the boundary iron shield source spectrum to the reactions and dose rates, measured at the beginning of shield. The neutron and gamma ray distributions calculated on the iron shield presented reasonable agreement with experimental measurements. An experimental arrangement using the IEA-R1 reactor to determine a shielding benchmark is proposed. (Author) [pt

  4. A theoretical study of exciton energy levels in laterally coupled quantum dots

    International Nuclear Information System (INIS)

    Barticevic, Z; Pacheco, M; Duque, C A; Oliveira, L E

    2009-01-01

    A theoretical study of the electronic and optical properties of laterally coupled quantum dots, under applied magnetic fields perpendicular to the plane of the dots, is presented. The exciton energy levels of such laterally coupled quantum-dot systems, together with the corresponding wavefunctions and eigenvalues, are obtained in the effective-mass approximation by using an extended variational approach in which the magnetoexciton states are simultaneously obtained. One achieves the expected limits of one single quantum dot, when the distance between the dots is zero, and of two uncoupled quantum dots, when the distance between the dots is large enough. Moreover, present calculations-with appropriate structural dimensions of the two-dot system-are shown to be in agreement with measurements in self-assembled laterally aligned GaAs quantum-dot pairs and naturally/accidentally occurring coupled quantum dots in GaAs/GaAlAs quantum wells.

  5. Spectroscopy characterization and quantum yield determination of quantum dots

    International Nuclear Information System (INIS)

    Ortiz, S N Contreras; Ospino, E Mejía; Cabanzo, R

    2016-01-01

    In this paper we show the characterization of two kinds of quantum dots: hydrophilic and hydrophobic, with core and core/shell respectively, using spectroscopy techniques such as UV-Vis, fluorescence and Raman. We determined the quantum yield in the quantum dots using the quinine sulphate as standard. This salt is commonly used because of its quantum yield (56%) and stability. For the CdTe excitation, we used a wavelength of 549nm and for the CdSe/ZnS excitation a wavelength of 527nm. The results show that CdSe/ZnS (49%) has better fluorescence, better quantum dots, and confirm the fluorescence result. The quantum dots have shown a good fluorescence performance, so this property will be used to replace dyes, with the advantage that quantum dots are less toxic than some dyes like the rhodamine. In addition, in this work we show different techniques to find the quantum dots emission: fluorescence spectrum, synchronous spectrum and Raman spectrum. (paper)

  6. Advancements in the Field of Quantum Dots

    Science.gov (United States)

    Mishra, Sambeet; Tripathy, Pratyasha; Sinha, Swami Prasad.

    2012-08-01

    Quantum dots are defined as very small semiconductor crystals of size varying from nanometer scale to a few micron i.e. so small that they are considered dimensionless and are capable of showing many chemical properties by virtue of which they tend to be lead at one minute and gold at the second minute.Quantum dots house the electrons just the way the electrons would have been present in an atom, by applying a voltage. And therefore they are very judiciously given the name of being called as the artificial atoms. This application of voltage may also lead to the modification of the chemical nature of the material anytime it is desired, resulting in lead at one minute to gold at the other minute. But this method is quite beyond our reach. A quantum dot is basically a semiconductor of very tiny size and this special phenomenon of quantum dot, causes the band of energies to change into discrete energy levels. Band gaps and the related energy depend on the relationship between the size of the crystal and the exciton radius. The height and energy between different energy levels varies inversely with the size of the quantum dot. The smaller the quantum dot, the higher is the energy possessed by it.There are many applications of the quantum dots e.g. they are very wisely applied to:Light emitting diodes: LEDs eg. White LEDs, Photovoltaic devices: solar cells, Memory elements, Biology : =biosensors, imaging, Lasers, Quantum computation, Flat-panel displays, Photodetectors, Life sciences and so on and so forth.The nanometer sized particles are able to display any chosen colour in the entire ultraviolet visible spectrum through a small change in their size or composition.

  7. Principles of conjugating quantum dots to proteins via carbodiimide chemistry

    International Nuclear Information System (INIS)

    Song Fayi; Chan, Warren C W

    2011-01-01

    The covalent coupling of nanomaterials to bio-recognition molecules is a critical intermediate step in using nanomaterials for biology and medicine. Here we investigate the carbodiimide-mediated conjugation of fluorescent quantum dots to different proteins (e.g., immunoglobulin G, bovine serum albumin, and horseradish peroxidase). To enable these studies, we developed a simple method to isolate quantum dot bioconjugates from unconjugated quantum dots. The results show that the reactant concentrations and protein type will impact the overall number of proteins conjugated onto the surfaces of the quantum dots, homogeneity of the protein–quantum dot conjugate population, quantum efficiency, binding avidity, and enzymatic kinetics. We propose general principles that should be followed for the successful coupling of proteins to quantum dots.

  8. Electric and Magnetic Interaction between Quantum Dots and Light

    DEFF Research Database (Denmark)

    Tighineanu, Petru

    argue that there is ample room for improving the oscillator strength with prospects for approaching the ultra-strong-coupling regime of cavity quantum electrodynamics with optical photons. These outstanding gures of merit render interface-uctuation quantum dots excellent candidates for use in cavity...... quantum electrodynamics and quantum-information science. We investigate exciton localization in droplet-epitaxy quantum dots by conducting spectral and time-resolved measurements. We nd small excitons despite the large physical size of dropletepitaxy quantum dots, which is attributed to material inter......The present thesis reports research on the optical properties of quantum dots by developing new theories and conducting optical measurements. We demonstrate experimentally singlephoton superradiance in interface-uctuation quantum dots by recording the temporal decay dynamics in conjunction...

  9. ANIPLO-D50

    International Nuclear Information System (INIS)

    Dietrich, R.

    1979-01-01

    The ANIPLO-D50 code plots the location-dependent scalar flow calculated with the ANISN Sn program. The scalar flows punched on cards by the ANISN program are part of the input of ANIPLO-D50. They can be read by ANIPLO-D50 directly in the mode chosen in ANISN where signs, mantissa, and exponents are distinguished. The ANIPLO-D50 program also permits plotting of the dose rate distribution. The ANIPLO-D50 code is written in FORTRAN IV. (orig.) [de

  10. COMBINE7.0 - A Portable ENDF/B-VII.0 Based Neutron Spectrum and Cross-Section Generation Program

    Energy Technology Data Exchange (ETDEWEB)

    Woo Y. Yoon; David W. Nigg

    2008-09-01

    COMBINE7.0 is a FORTRAN 90 computer code that generates multigroup neutron constants for use in the deterministic diffusion and transport theory neutronics analysis. The cross-section database used by COMBINE7.0 is derived from the Evaluated Nuclear Data Files (ENDF/B-VII.0). The neutron energy range covered is from 20 MeV to 1.0E-5 eV. The Los Alamos National Laboratory NJOY code is used as the processing code to generate a 167 finegroup cross-section library in MATXS format for Bondarenko self-shielding treatment. Resolved resonance parameters are extracted from ENDF/B-VII.0 File 2 for a separate library to be used in an alternate Nordheim self-shielding treatment in the resolved resonance energy range. The equations solved for energy dependent neutron spectrum in the 167 fine-group structure are the B-3 or B-1 approximations to the transport equation. The fine group cross sections needed for the spectrum calculation are first prepared by Bondarenko selfshielding interpolation in terms of background cross section and temperature. The geometric lump effect, when present, is accounted for by augmenting the background cross section. Nordheim self-shielded fine group cross sections for a material having resolved resonance parameters overwrite correspondingly the existing self-shielded fine group cross sections when this option is used. The fine group cross sections in the thermal energy range are replaced by those selfshielded with the Amouyal/Benoist/Horowitz method in the three region geometry when this option is requested. COMBINE7.0 coalesces fine group cross sections into broad group macroscopic and microscopic constants. The coalescing is performed by utilizing fine-group fluxes and/or currents obtained by spectrum calculation as the weighting functions. The multigroup constant may be output in any of several standard formats including ANISN 14** free format, CCCC ISOTXS format, and AMPX working library format. ANISN-PC, a onedimensional, discrete

  11. COMBINE7.0 - A Portable ENDF/B-VII.0 Based Neutron Spectrum and Cross-Section Generation Program

    International Nuclear Information System (INIS)

    Yoon, Woo Y.; Nigg, David W.

    2008-01-01

    COMBINE7.0 is a FORTRAN 90 computer code that generates multigroup neutron constants for use in the deterministic diffusion and transport theory neutronics analysis. The cross-section database used by COMBINE7.0 is derived from the Evaluated Nuclear Data Files (ENDF/B-VII.0). The neutron energy range covered is from 20 MeV to 1.0E-5 eV. The Los Alamos National Laboratory NJOY code is used as the processing code to generate a 167 finegroup cross-section library in MATXS format for Bondarenko self-shielding treatment. Resolved resonance parameters are extracted from ENDF/B-VII.0 File 2 for a separate library to be used in an alternate Nordheim self-shielding treatment in the resolved resonance energy range. The equations solved for energy dependent neutron spectrum in the 167 fine-group structure are the B-3 or B-1 approximations to the transport equation. The fine group cross sections needed for the spectrum calculation are first prepared by Bondarenko selfshielding interpolation in terms of background cross section and temperature. The geometric lump effect, when present, is accounted for by augmenting the background cross section. Nordheim self-shielded fine group cross sections for a material having resolved resonance parameters overwrite correspondingly the existing self-shielded fine group cross sections when this option is used. The fine group cross sections in the thermal energy range are replaced by those selfshielded with the Amouyal/Benoist/Horowitz method in the three region geometry when this option is requested. COMBINE7.0 coalesces fine group cross sections into broad group macroscopic and microscopic constants. The coalescing is performed by utilizing fine-group fluxes and/or currents obtained by spectrum calculation as the weighting functions. The multigroup constant may be output in any of several standard formats including ANISN 14** free format, CCCC ISOTXS format, and AMPX working library format. ANISN-PC, a onedimensional, discrete

  12. Remanence coercivity of dot arrays of hcp-CoPt perpendicular films

    Energy Technology Data Exchange (ETDEWEB)

    Mitsuzuka, K; Shimatsu, T; Aoi, H [Research Institute of Electrical Communication, Tohoku University, Sendai, 980-8577 (Japan); Kikuchi, N; Okamoto, S; Kitakami, O, E-mail: shimatsu@riec.tohoku.ac.j [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577 (Japan)

    2010-01-01

    The remanence coercivity, H{sub r}, of hcp-CoPt dot arrays with various dot thicknesses, {delta}, (3 and 10 nm) and Pt content (20-30at%) were experimentally investigated as a function of the dot diameter, D(30-400 nm). All dot arrays showed a single domain state, even after removal of an applied field equal to H{sub r}. The angular dependence of H{sub r} for the dot arrays indicated coherent rotation of the magnetization during nucleation. H{sub r} increased as Ddecreased in all series of dot arrays with various {delta} and Pt content. Assuming that the nucleation field of a dot is determined by the switching field of a grain having the smallest switching field, we calculated the value of nucleation field H{sub n}{sup cal} taking account of the c-axis distribution and the distribution of the demagnetizing field in the dot. The values of H{sub r} obtained experimentally are in good agreement with those of H{sub n}{sup cal}, taking account of thermal agitation of magnetization. This result suggested that the reversal process of hcp-CoPt dot arrays starts from a nucleation at the center of the dot followed by a propagation process.

  13. Today's DOT and the quest for more accountable organizational structures.

    Science.gov (United States)

    2005-12-01

    This study investigates the impact of DOT organizational structures on effective transportation planning and performance. A review of the 50 state DOT authorizing statutes and DOT organizational charts found minimal differences in organizational stru...

  14. Tetragonal zirconia quantum dots in silica matrix prepared by a modified sol-gel protocol

    Science.gov (United States)

    Verma, Surbhi; Rani, Saruchi; Kumar, Sushil

    2018-05-01

    Tetragonal zirconia quantum dots (t-ZrO2 QDs) in silica matrix with different compositions ( x)ZrO2-(100 - x)SiO2 were fabricated by a modified sol-gel protocol. Acetylacetone was added as a chelating agent to zirconium propoxide to avoid precipitation. The powders as well as thin films were given thermal treatment at 650, 875 and 1100 °C for 4 h. The silica matrix remained amorphous after thermal treatment and acted as an inert support for zirconia quantum dots. The tetragonal zirconia embedded in silica matrix transformed into monoclinic form due to thermal treatment ≥ 1100 °C. The stability of tetragonal phase of zirconia is found to enhance with increase in silica content. A homogenous dispersion of t-ZrO2 QDs in silica matrix was indicated by the mapping of Zr, Si and O elements obtained from scanning electron microscope with energy dispersive X-ray analyser. The transmission electron images confirmed the formation of tetragonal zirconia quantum dots embedded in silica. The optical band gap of zirconia QDs (3.65-5.58 eV) was found to increase with increase in zirconia content in silica. The red shift of PL emission has been exhibited with increase in zirconia content in silica.

  15. Synthesis and Characterization of Aqueous Lead Selenide Quantum Dots for Solar Cell Application

    Science.gov (United States)

    Albert, Ancy; Sreekala, C. O.; Prabhakaran, Malini

    2018-02-01

    High quality, colloidal lead selenide (PbSe) nanoparticles possessing cube shaped morphology have been successfully synthesized by organometallic synthesis method, using oleic acid (OA) as capping agent. The use of non-coordinating solvent, 1-Octadecene (ODE), during the synthesis results in good quality nanocrystals. Morphology analysis by transmission electron microscopy reveals that cube-shaped nanocrystals with a size range of 10 nm have been produced during the synthesis. The absorption and PL spectra analysis showed an emission peak at 675 nm when excited to a wavelength of 610 nm, further confirmed the formation of PbSe nanocrystals. The surface modification of this colloidal quantum dots was then carried out using L- cysteine ligand, to make them water soluble, for solar cell application. The J-V characteristics study of this PbSe quantum dots solar cell (PbSe QDSC) showed a little power conversion efficiency which intern it shows significant advance toward effective utilization of PbSe nanocrystals sensitized in solar cells.

  16. MnDOT Library strategic plan : final report.

    Science.gov (United States)

    2017-06-01

    MnDOTs Senior Leadership asked MnDOT Library to develop a Strategic Plan that identifies and reviews the challenges facing the Library over the next five years to better address the evolving needs of the department and users. The strategic plan is...

  17. Double Rashba Quantum Dots Ring as a Spin Filter

    Directory of Open Access Journals (Sweden)

    Chi Feng

    2008-01-01

    Full Text Available AbstractWe theoretically propose a double quantum dots (QDs ring to filter the electron spin that works due to the Rashba spin–orbit interaction (RSOI existing inside the QDs, the spin-dependent inter-dot tunneling coupling and the magnetic flux penetrating through the ring. By varying the RSOI-induced phase factor, the magnetic flux and the strength of the spin-dependent inter-dot tunneling coupling, which arises from a constant magnetic field applied on the tunneling junction between the QDs, a 100% spin-polarized conductance can be obtained. We show that both the spin orientations and the magnitude of it can be controlled by adjusting the above-mentioned parameters. The spin filtering effect is robust even in the presence of strong intra-dot Coulomb interactions and arbitrary dot-lead coupling configurations.

  18. Quantum Dot Photonics

    Science.gov (United States)

    Kinnischtzke, Laura A.

    We report on several experiments using single excitons confined to single semiconductor quantum dots (QDs). Electric and magnetic fields have previously been used as experimental knobs to understand and control individual excitons in single quantum dots. We realize new ways of electric field control by changing materials and device geometry in the first two experiments with strain-based InAs QDs. A standard Schottky diode heterostructure is demonstrated with graphene as the Schottky gate material, and its performance is bench-marked against a diode with a standard gate material, semi-transparent nickel-chromium (NiCr). This change of materials increases the photon collection rate by eliminating absorption in the metallic NiCr layer. A second set of experiments investigates the electric field response of QDs as a possible metrology source. A linear voltage potential drop in a plane near the QDs is used to describe how the spatially varying voltage profile is also imparted on the QDs. We demonstrate a procedure to map this voltage profile as a preliminary route towards a full quantum sensor array. Lastly, InAs QDs are explored as potential spin-photon interfaces. We describe how a magnetic field is used to realize a reversible exchange of information between light and matter, including a discussion of the polarization-dependence of the photoluminesence, and how that can be linked to the spin of a resident electron or hole. We present evidence of this in two wavelength regimes for InAs quantum dots, and discuss how an external magnetic field informs the spin physics of these 2-level systems. This thesis concludes with the discovery of a new class of quantum dots. As-yet unidentified defect states in single layer tungsten diselenide (WSe 2 ) are shown to host quantum light emission. We explore the spatial extent of electron confinement and tentatively identify a radiative lifetime of 1 ns for these single photon emitters.

  19. TxDOT can help pave the way for distribution centers.

    Science.gov (United States)

    2010-05-01

    TxDOT supports economic development in Texas. : Working through its district offices, TxDOT can help : developers avoid common transportation-related : problems associated with selected center sites. TxDOT : may also be able to help distribution cent...

  20. Quantum dot nanoparticle conjugation, characterization, and applications in neuroscience

    Science.gov (United States)

    Pathak, Smita

    Quantum dot are semiconducting nanoparticles that have been used for decades in a variety of applications such as solar cells, LEDs and medical imaging. Their use in the last area, however, has been extremely limited despite their potential as revolutionary new biological labeling tools. Quantum dots are much brighter and more stable than conventional fluorophores, making them optimal for high resolution imaging and long term studies. Prior work in this area involves synthesizing and chemically conjugating quantum dots to molecules of interest in-house. However this method is both time consuming and prone to human error. Additionally, non-specific binding and nanoparticle aggregation currently prevent researchers from utilizing this system to its fullest capacity. Another critical issue that has not been addressed is determining the number of ligands bound to nanoparticles, which is crucial for proper interpretation of results. In this work, methods to label fixed cells using two types of chemically modified quantum dots are studied. Reproducible non-specific artifact labeling is consistently demonstrated if antibody-quantum dot conditions are less than optimal. In order to explain this, antibodies bound to quantum dots were characterized and quantified. While other groups have qualitatively characterized antibody functionalized quantum dots using TEM, AFM, UV spectroscopy and gel electrophoresis, and in some cases have reported calculated estimates of the putative number of total antibodies bound to quantum dots, no quantitative experimental results had been reported prior to this work. The chemical functionalization and characterization of quantum dot nanocrystals achieved in this work elucidates binding mechanisms of ligands to nanoparticles and allows researchers to not only translate our tools to studies in their own areas of interest but also derive quantitative results from these studies. This research brings ease of use and increased reliability to

  1. Chemiluminescence behavior of the carbon dots and the reduced state carbon dots

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Ping [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Xie, Jianxin [College of Resources and Environment, Yuxi Normal University, Yuxi, Yunnan 653100 (China); Long, Yijuan; Huang, Xiaoxiao; Zhu, Rui; Wang, Xiliang; Liang, Liping [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Huang, Yuming, E-mail: ymhuang@swu.edu.cn [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Zheng, Huzhi, E-mail: zhenghz@swu.edu.cn [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)

    2014-02-15

    Potassium permanganate (KMnO{sub 4}) can react with two different carbon nanoparticles, i.e., carbon dots (CDs) and reduced state carbon dots (r-CDs), in a strong acid medium to generate chemiluminescence (CL). Furthermore, the different CL intensities and CL behaviors due to the different surface groups on these two kinds of carbon nanoparticles were confirmed. CL spectra, fluorescence spectra, UV–vis absorption spectra, and electron paramagnanetic resonance spectra were applied to investigate the CL mechanism. The main reaction pathways were proposed as follows: for the CL reaction between CDs and KMnO{sub 4}, the excited states of CDs (CDs{sup ⁎}) and Mn(II) (Mn(II){sup ⁎}) emerged as KMnO{sub 4} could inject holes into CDs, then, the CDs{sup ⁎} and Mn(II){sup ⁎} acted as luminophors to yield CL; in the r-CDs-KMnO{sub 4} system, r-CDs were oxidized by KMnO{sub 4} directly, and CDs{sup ⁎} and Mn(II){sup ⁎} were produced, at the same time, CL occurred. What is more interesting is that the CL intensity of the r-CD system is stronger than that of the CD system, which confirms that functional groups have strong effect on the CL behavior. It inspired us that new carbon nanoparticles with excellent luminous performance can be designed by tuning their surface groups. -- Highlights: • Carbon dots (CDs) and reduced state carbon dots (r-CDs) can react with potassium permanganate (KMnO{sub 4}) in a strong acid to generate chemiluminescence (CL). • With different surface groups, the CL intensity of r-CDs-KMnO{sub 4} system is different from that of CDs-KMnO{sub 4} system. • The CL mechanisms of the two systems were investigated.

  2. Evidence for possible quantum dot interdiffusion induced by cap layer growth

    International Nuclear Information System (INIS)

    Jasinski, J.; Czeczott, M.; Gladysz, A.; Babinski, A.; Kozubowski, J.

    1999-01-01

    Self-organised InGaAs quantum dots were grown on (001) GaAs substrates and covered with two different types of cap layers grown at significantly different temperatures. In order to determine quantum dot emission energy and dot size distribution, photoluminescence and transmission electron microscopy studies were carried out on such samples. Simple theoretical model neglecting effect of interdiffusion allowed for correlation between quantum dot size and photoluminescence emission energy only in the case of dots covered by cap layers grown at the lower temperature. For dots covered by layers grown at the higher temperature such correlation was possible only when strong interdiffusion was assumed. (author)

  3. Optical Spectroscopy Of Charged Quantum Dot Molecules

    Science.gov (United States)

    Scheibner, M.; Bracker, A. S.; Stinaff, E. A.; Doty, M. F.; Gammon, D.; Ponomarev, I. V.; Reinecke, T. L.; Korenev, V. L.

    2007-04-01

    Coupling between two closely spaced quantum dots is observed by means of photoluminescence spectroscopy. Hole coupling is realized by rational crystal growth and heterostructure design. We identify molecular resonances of different excitonic charge states, including the important case of a doubly charged quantum dot molecule.

  4. Cell characteristics of a multiple alloy nano-dots memory structure

    International Nuclear Information System (INIS)

    Bea, Ji Chel; Lee, Kang-Wook; Tanaka, Tetsu; Koyanagi, Mitsumasa; Song, Yun Heub; Lee, Gae-Hun

    2009-01-01

    A multiple alloy metal nano-dots memory using FN tunneling was investigated in order to confirm its structural possibility for future flash memory. In this work, a multiple FePt nano-dots device with a high work function (∼5.2 eV) and extremely high dot density (∼1.2 × 10 13 cm −2 ) was fabricated. Its structural effect for multiple layers was evaluated and compared to the one with a single layer in terms of the cell characteristics and reliability. We confirm that MOS capacitor structures with two to four multiple FePt nano-dot layers provide a larger threshold voltage window and better retention characteristics. Furthermore, it was also revealed that several process parameters for block oxide and inter-tunnel oxide between the nano-dot layers are very important to improve the efficiency of electron injection into multiple nano-dots. From these results, it is expected that a multiple FePt nano-dots memory using Fowler–Nordheim (FN) tunneling could be a candidate structure for future flash memory

  5. Strong-coupling polaron effect in quantum dots

    International Nuclear Information System (INIS)

    Zhu Kadi; Gu Shiwei

    1993-11-01

    Strong-coupling polaron in a parabolic quantum dot is investigated by the Landau-Pekar variational treatment. The polaron binding energy and the average number of virtual phonons around the electron as a function of the effective confinement length of the quantum dot are obtained in Gaussian function approximation. It is shown that both the polaron binding energy and the average number of virtual phonons around the electron decrease by increasing the effective confinement length. The results indicate that the polaronic effects are more pronounced in quantum dots than those in two-dimensional and three-dimensional cases. (author). 15 refs, 4 figs

  6. Second-harmonic imaging of semiconductor quantum dots

    DEFF Research Database (Denmark)

    Østergaard, John Erland; Bozhevolnyi, Sergey I.; Pedersen, Kjeld

    2000-01-01

    Resonant second-harmonic generation is observed at room temperature in reflection from self-assembled InAlGaAs quantum dots grown on a GaAs (001) substrate. The detected second-harmonic signal peaks at a pump wavelength of similar to 885 nm corresponding to the quantum-dot photoluminescence maximum....... In addition, the second-harmonic spectrum exhibits another smaller but well-pronounced peak at 765 nm not found in the linear experiments. We attribute this peak to the generation of second-harmonic radiation in the AlGaAs spacer layer enhanced by the local symmetry at the quantum-dot interface. We further...

  7. Applications to shielding design and others of monte carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Daiichiro [Mitsui Engineering and Shipbuiding Co., Ltd., Tokyo (Japan)

    2001-01-01

    One-dimensional or two-dimensional Sn computer code (ANISN, DOT3.5, etc.) and a point attenuation kernel integral code (QAD, etc.) have been used widely for shielding design. Application examples of monte carlo method which could follow precisely the three-dimensional configuration of shielding structure are shown as follow: (1) CASTER cask has a complex structure which consists of a large number of fuel baskets (stainless steel), neutron moderators (polyethylene rods), the body (cast iron), and cooling fin. The R-{theta} model of Sn code DOT3.5 cannot follow closely the complex form of polyethylene rods and fuel baskets. A monte carlo code MORSE is used to ascertain the calculation results of DOT3.5. The discrepancy between the calculation results of DOT3.5 and MORSE was in 10% for dose rate at distance of 1 m from the cask surface. (2) The dose rates of an iron cell at 10 cm above the floor are calculated by the code QAD and the MORSE. The reflected components of gamma ray caused by the auxiliary floor shield (lead) are analyzed by the MORSE. (3) A monte carlo code MCNP4A is used for skyshine evaluation of spent fuel carrier ship 'ROKUEIMARU'. The direct and skyshine components of gamma ray and neutron flux are estimated at each center of engine room and wheel house. The skyshine dose rate of neutron flux is 5-15 times larger than the gamma ray. (M. Suetake)

  8. Quantum dot molecules

    CERN Document Server

    Wu, Jiang

    2014-01-01

    This book reviews recent advances in the exciting and rapidly growing field of quantum dot molecules (QDMs). It offers state-of-the-art coverage of novel techniques and connects fundamental physical properties with device design.

  9. Carbon quantum dots and a method of making the same

    Science.gov (United States)

    Zidan, Ragaiy; Teprovich, Joseph A.; Washington, Aaron L.

    2017-08-22

    The present invention is directed to a method of preparing a carbon quantum dot. The carbon quantum dot can be prepared from a carbon precursor, such as a fullerene, and a complex metal hydride. The present invention also discloses a carbon quantum dot made by reacting a carbon precursor with a complex metal hydride and a polymer containing a carbon quantum dot made by reacting a carbon precursor with a complex metal hydride.

  10. Quantum dot solar cell

    International Nuclear Information System (INIS)

    Ahamefula, U.C.; Sulaiman, M.Y.; Sopian, K.; Ibarahim, Z.; Ibrahim, N.; Alghoul, M.A.; Haw, L.C.; Yahya, M.; Amin, N.; Mat, S.; Ruslan, M.H.

    2009-01-01

    Full text: The much awaited desire of replacing fossil fuel with photovoltaic will remain a fairy tale if the myriad of issues facing solar cell development are marginalized. Foremost in the list is the issue of cost. Silicon has reached a stage where its use on large scale can no longer be lavishly depended upon. The demand for high grade silicon from the microelectronics and solar industries has soared leading to scarcity. New approach has to be sought. Notable is the increased attention on thin films such as cadmium telluride, copper indium gallium diselenide, amorphous silicon, and the not so thin non-crystalline family of silicon. While efforts to address the issues of stability, toxicity and efficiency of these systems are ongoing, another novel approach is quietly making its appearance - quantum dots. Quantum dots seem to be promising candidates for solar cells because of the opportunity to manipulate their energy levels allowing absorption of a wider solar spectrum. Utilization of minute quantity of these nano structures is enough to bring the cost of solar cell down and to ascertain sustainable supply of useful material. The paper outlines the progress that has been made on quantum dot solar cells. (author)

  11. Charge sensing of a few-donor double quantum dot in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Watson, T. F., E-mail: tfwatson15@gmail.com; Weber, B.; Büch, H.; Fuechsle, M.; Simmons, M. Y., E-mail: michelle.simmons@unsw.edu.au [Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology, University of New South Wales, Sydney, New South Wales 2052 (Australia)

    2015-12-07

    We demonstrate the charge sensing of a few-donor double quantum dot precision placed with atomic resolution scanning tunnelling microscope lithography. We show that a tunnel-coupled single electron transistor (SET) can be used to detect electron transitions on both dots as well as inter-dot transitions. We demonstrate that we can control the tunnel times of the second dot to the SET island by ∼4 orders of magnitude by detuning its energy with respect to the first dot.

  12. Modeling of phonon- and Coulomb-mediated capture processes in quantum dots

    DEFF Research Database (Denmark)

    Magnúsdóttir, Ingibjörg

    2003-01-01

    This thesis describes modeling of carrier relaxation processes in self-assembled quantum-dot-structures, with particular emphasis on carrier capture processes in quantum dots. Relaxation by emission of lontitudinal optical (LO) phonons is very efficient in bulk semiconductors and nanostructures...... of higher dimensionality. Here, we investigate carrier capture processes into quantum dots, mediated by emission of one and two LO phonons. In these investigations is is assumed that the dot is empty initially. In the Case of single-phonon capture we also investigate the influence of the presence...... of a charge in the quantum-dot state to which the capture takes place. In general, capture rates are of the same order as capture rates into an empty dot state, but in some cases the dot-size interval for which the capture process is energetically allowed, is considerably reduced.The above calculations...

  13. Optical properties of pH-sensitive carbon-dots with different modifications

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Weiguang, E-mail: 11236095@zju.edu.cn [Department of Physics and State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Wu, Huizhen, E-mail: hzwu@zju.edu.cn [Department of Physics and State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Ye, Zhenyu, E-mail: yzheny@zju.edu.cn [Department of Physics and State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Li, Ruifeng, E-mail: hbrook@zju.edu.cn [Department of Physics and State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Xu, Tianning, E-mail: xtn9886@zju.edu.cn [Department of Physics and State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Department of Science, Zhijiang College of Zhejiang University of Technology, Hangzhou, Zhejiang 310024 (China); Zhang, Bingpo, E-mail: 11006080@zju.edu.cn [Department of Physics and State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027 (China)

    2014-04-15

    Carbon dots with unique characters of chemical inertness, low cytotoxicity and good biocompatibility, demonstrate important applications in biology and optoelectronics. In this paper we report the optical properties of pH-sensitive carbon dots with different surface modifications. The as-prepared carbon dots can be well dispersed in water by modifying with acid, alkali or metal ions though they tend to form a suspension when being directly dispersed in water. We find that the carbon dots dispersed in water show a new emission and absorption character which is tunable due to the pH-sensitive nature. It is firstly proved that the addition of bivalent copper ions offers a high color contrast for visual colorimetric assays for pH measurement. The effect of surface defects with different modification on the performances of the carbon dots is also explored with a core–shell model. The hydro-dispersed carbon dots can be potentially utilized for cellular imaging or metal ion probes in biochemistry. -- Highlights: • The dispersibility in water of as-prepared carbon dots is effectively improved by the addition of acid, alkali or metal ions. • The effect of hydrolysis on the optical properties of the carbon dots is studied. • The luminescent carbon dots show a pH-sensitive fluorescence and absorption property. • The addition of bivalent copper ions in the post-treated carbon dots offers a high color contrast for visual colorimetric assays for pH measurement. • The effect of surface defects and ligands on the performances of the carbon dots is also explored.

  14. Photovoltaic Performance of a Nanowire/Quantum Dot Hybrid Nanostructure Array Solar Cell.

    Science.gov (United States)

    Wu, Yao; Yan, Xin; Zhang, Xia; Ren, Xiaomin

    2018-02-23

    An innovative solar cell based on a nanowire/quantum dot hybrid nanostructure array is designed and analyzed. By growing multilayer InAs quantum dots on the sidewalls of GaAs nanowires, not only the absorption spectrum of GaAs nanowires is extended by quantum dots but also the light absorption of quantum dots is dramatically enhanced due to the light-trapping effect of the nanowire array. By incorporating five layers of InAs quantum dots into a 500-nm high-GaAs nanowire array, the power conversion efficiency enhancement induced by the quantum dots is six times higher than the power conversion efficiency enhancement in thin-film solar cells which contain the same amount of quantum dots, indicating that the nanowire array structure can benefit the photovoltaic performance of quantum dot solar cells.

  15. Integrated photonics using colloidal quantum dots

    Science.gov (United States)

    Menon, Vinod M.; Husaini, Saima; Okoye, Nicky; Valappil, Nikesh V.

    2009-11-01

    Integrated photonic devices were realized using colloidal quantum dot composites such as flexible microcavity laser, microdisk emitters and integrated active-passive waveguides. The microcavity laser structure was realized using spin coating and consisted of an all-polymer distributed Bragg reflector with a poly-vinyl carbazole cavity layer embedded with InGaP/ZnS colloidal quantum dots. These microcavities can be peeled off the substrate yielding a flexible structure that can conform to any shape and whose emission spectra can be mechanically tuned. Planar photonic devices consisting of vertically coupled microring resonators, microdisk emitters, active-passive integrated waveguide structures and coupled active microdisk resonators were realized using soft lithography, photo-lithography, and electron beam lithography, respectively. The gain medium in all these devices was a composite consisting of quantum dots embedded in SU8 matrix. Finally, the effect of the host matrix on the optical properties of the quantum dots using results of steady-state and time-resolved luminescence measurements was determined. In addition to their specific functionalities, these novel device demonstrations and their development present a low-cost alternative to the traditional photonic device fabrication techniques.

  16. Capture, relaxation and recombination in quantum dots

    NARCIS (Netherlands)

    Sreenivasan, D.

    2008-01-01

    Quantum dots (QDs) have attracted a lot of interest both from application and fundamental physics point of view. A semiconductor quantum dot features discrete atomiclike energy levels, despite the fact that it contains many atoms within its surroundings. The discrete energy levels give rise to very

  17. Proposal for a magnetic field induced graphene dot

    International Nuclear Information System (INIS)

    Maksym, P A; Roy, M; Craciun, M F; Russo, S; Yamamoto, M; Tarucha, S; Aoki, H

    2010-01-01

    Quantum dots induced by a strong magnetic field applied to a single layer of graphene in the perpendicular direction are investigated. The dot is defined by a model potential which consists of a well of depth ΔV relative to a flat asymptotic part and quantum states formed from the zeroth Landau level are considered. The energy of the dot states cannot be lower than -ΔV relative to the asymptotic potential. Consequently, when ΔV is chosen to be about half of the gap between the zeroth and first Landau levels, the dot states are isolated energetically in the gap between Landau level 0 and Landau level -1. This is confirmed with numerical calculations of the magnetic field dependent energy spectrum and the quantum states. Remarkably, an antidot formed by reversing the sign of ΔV also confines electrons but in the energy region between Landau level 0 and Landau level +1. This unusual behaviour gives an unambiguous signal of the novel physics of graphene quantum dots.

  18. The role of surface and deep-level defects on the emission of tin oxide quantum dots

    International Nuclear Information System (INIS)

    Kumar, Vinod; Kumar, Vijay; Som, S; Ntwaeaborwa, O M; Swart, H C; Neethling, J H; Lee, Mike

    2014-01-01

    This paper reports on the role of surface and deep-level defects on the blue emission of tin oxide quantum dots (SnO 2 QDs) synthesized by the solution-combustion method at different combustion temperatures. X-ray diffraction studies showed the formation of a single rutile SnO 2 phase with a tetragonal lattice structure. High resolution transmission electron microscopy studies revealed an increase in the average dot size from 2.2 to 3.6 nm with an increase of the combustion temperature from 350 to 550 °C. A decrease in the band gap value from 3.37 to 2.76 eV was observed with the increase in dot size due to the quantum confinement effect. The photoluminescence emission was measured for excitation at 325 nm and it showed a broad blue emission band for all the combustion temperatures studied. This was due to the creation of various oxygen and tin vacancies/defects as confirmed by x-ray photoelectron spectroscopy data. The origin of the blue emission in the SnO 2 QDs is discussed with the help of an energy band diagram. (paper)

  19. Cooperative effects in CdSe/ZnS-PEGOH quantum dot luminescence quenching by a water soluble porphyrin

    Energy Technology Data Exchange (ETDEWEB)

    Borissevitch, I.E., E-mail: iourib@ffclrp.usp.br [Departamento de Fisica, Faculdade de Filosofia Ciencia e Letras de Ribeirao Preto, Universidade de Sao Paulo, Av. Bandeirantes 3900, Ribeirao Preto, SP (Brazil); Parra, G.G. [Departamento de Fisica, Faculdade de Filosofia Ciencia e Letras de Ribeirao Preto, Universidade de Sao Paulo, Av. Bandeirantes 3900, Ribeirao Preto, SP (Brazil); Zagidullin, V.E.; Lukashev, E.P.; Knox, P.P.; Paschenko, V.Z.; Rubin, A.B. [Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Vorobyovy Gory, 119991 Moscow (Russian Federation)

    2013-02-15

    In this work we report on the study of the interaction of CdSe/ZnS-PEGOH 570 Quantum Dot (QD) with negatively charged meso-tetrakis(p-sulfonato-phenyl)porphyrin (TPPS{sub 4}) using optical absorption and fluorescence spectroscopies accompanied with time resolved 'single photon counting' and dynamic and resonance light scattering techniques. In the steady-state experiments the QD luminescence quenching by TPPS{sub 4} was well approximated by a square law. In the time-resolved experiments we observed a typical multi-exponential luminescence decay curve, successfully fitted by a bi-exponential approximation. At QD interaction with porphyrin the time quenching of both components was described by a linear Stern-Volmer dependence. The discrepancy between Stern-Volmer dependences in the steady-state and time resolved experiments may be due to formation of mixed m(TPPS{sub 4})+n(QD) complexes, in which one TPPS{sub 4} molecule can quench several excited QDs. This idea is in accordance with the dynamic and resonance light scattering data, which demonstrate an increase of the scattering particle size at the TPPS{sub 4} addition to QD solutions. - Highlights: Black-Right-Pointing-Pointer Quantum Dot luminescence quenching by TPPS porphyrin was studied in water solutions. Black-Right-Pointing-Pointer The size of particles in QD solutions possessed increase at the TPPS4 addition. Black-Right-Pointing-Pointer Quenching of the QD luminescence by TPPS4 is realized in contact QD-porphyrin complexes. Black-Right-Pointing-Pointer The formation of mixed quantum dot-porphyrin aggregates takes place.

  20. Graphene quantum dots probed by scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Morgenstern, Markus; Freitag, Nils; Nent, Alexander; Nemes-Incze, Peter; Liebmann, Marcus [II. Institute of Physics B and JARA-FIT, RWTH Aachen University, Aachen (Germany)

    2017-11-15

    Scanning tunneling spectroscopy results probing the electronic properties of graphene quantum dots are reviewed. After a short summary of the study of squared wave functions of graphene quantum dots on metal substrates, we firstly present data where the Landau level gaps caused by a perpendicular magnetic field are used to electrostatically confine electrons in monolayer graphene, which are probed by the Coulomb staircase revealing the consecutive charging of a quantum dot. It turns out that these quantum dots exhibit much more regular charging sequences than lithographically confined ones. Namely, the consistent grouping of charging peaks into quadruplets, both, in the electron and hole branch, portrays a regular orbital splitting of about 10meV. At low hole occupation numbers, the charging peaks are, partly, additionally grouped into doublets. The spatially varying energy separation of the doublets indicates a modulation of the valley splitting by the underlying BN substrate. We outline that this property might be used to eventually tune the valley splitting coherently. Afterwards, we describe graphene quantum dots with multiple contacts produced without lithographic resist, namely by local anodic oxidation. Such quantum dots target the goal to probe magnetotransport properties during the imaging of the corresponding wave functions by scanning tunneling spectroscopy. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Biocompatible yogurt carbon dots: evaluation of utilization for medical applications

    Science.gov (United States)

    Dinç, Saliha; Kara, Meryem; Demirel Kars, Meltem; Aykül, Fatmanur; Çiçekci, Hacer; Akkuş, Mehmet

    2017-09-01

    In this study, carbon dots (CDs) were produced from yogurt, a fermented milk product, via microwave-assisted process (800 W) in 30 min without using any additional chemical agents. Yogurt CDs had outstanding nitrogen and oxygen ratios. These dots were monodisperse and about 2 nm sized. The toxicological assessments of yogurt carbon dots in human cancer cells and normal epithelial cells and their fluorescence imaging in living cell system were carried out. Yogurt carbon dots had intense fluorescent signal under confocal microscopy and good fluorescence stability in living cell system. The resulting yogurt carbon dots exhibited high biocompatibility up to 7.1 mg/mL CD concentration which may find utilization in medical applications such as cellular tracking, imaging and drug delivery. Yogurt carbon dots have potential to be good diagnostic agents to visualize cancer cells which may be developed as a therapeutic carrier.

  2. Heat transport modeling of the dot spectroscopy platform on NIF

    Science.gov (United States)

    Farmer, W. A.; Jones, O. S.; Barrios, M. A.; Strozzi, D. J.; Koning, J. M.; Kerbel, G. D.; Hinkel, D. E.; Moody, J. D.; Suter, L. J.; Liedahl, D. A.; Lemos, N.; Eder, D. C.; Kauffman, R. L.; Landen, O. L.; Moore, A. S.; Schneider, M. B.

    2018-04-01

    Electron heat transport within an inertial-fusion hohlraum plasma is difficult to model due to the complex interaction of kinetic plasma effects, magnetic fields, laser-plasma interactions, and microturbulence. Here, simulations using the radiation-hydrodynamic code, HYDRA, are compared to hohlraum plasma experiments which contain a Manganese-Cobalt tracer dot (Barrios et al 2016 Phys. Plasmas 23 056307). The dot is placed either on the capsule or on a film midway between the capsule and the laser-entrance hole. From spectroscopic measurements, electron temperature and position of the dot are inferred. Simulations are performed with ad hoc flux limiters of f = 0.15 and f = 0.03 (with electron heat flux, q, limited to fnT 3/2/m 1/2), and two more physical means of flux limitation: the magnetohydrodynamics and nonlocal packages. The nonlocal model agrees best with the temperature of the dot-on-film and dot-on-capsule. The hohlraum produced x-ray flux is over-predicted by roughly ˜11% for the f = 0.03 model and the remaining models by ˜16%. The simulated trajectories of the dot-on-capsule are slightly ahead of the experimental trajectory for all but the f = 0.03 model. The simulated dot-on-film position disagrees with the experimental measurement for all transport models. In the MHD simulation of the dot-on-film, the dot is strongly perturbative, though the simulation predicts a peak dot-on-film temperature 2-3 keV higher than the measurement. This suggests a deficiency in the MHD modeling possibly due to the neglect of the Righi-Leduc term or interpenetrating flows of multiple ion species which would reduce the strength of the self-generated fields.

  3. Interaction of Water-Soluble CdTe Quantum Dots with Bovine Serum Albumin

    Science.gov (United States)

    2011-01-01

    Semiconductor nanoparticles (quantum dots) are promising fluorescent markers, but it is very little known about interaction of quantum dots with biological molecules. In this study, interaction of CdTe quantum dots coated with thioglycolic acid (TGA) with bovine serum albumin was investigated. Steady state spectroscopy, atomic force microscopy, electron microscopy and dynamic light scattering methods were used. It was explored how bovine serum albumin affects stability and spectral properties of quantum dots in aqueous media. CdTe–TGA quantum dots in aqueous solution appeared to be not stable and precipitated. Interaction with bovine serum albumin significantly enhanced stability and photoluminescence quantum yield of quantum dots and prevented quantum dots from aggregating. PMID:27502633

  4. Enhanced intratumoral uptake of quantum dots concealed within hydrogel nanoparticles

    International Nuclear Information System (INIS)

    Nair, Ashwin; Shen Jinhui; Thevenot, Paul; Zou Ling; Tang Liping; Cai Tong; Hu Zhibing

    2008-01-01

    Effective nanomedical devices for tumor imaging and drug delivery are not yet available. In an attempt to construct a more functional device for tumor imaging, we have embedded quantum dots (which have poor circulatory behavior) within hydrogel nanoparticles made of poly-N-isopropylacrylamide. We found that the hydrogel encapsulated quantum dots are more readily taken up by cultured tumor cells. Furthermore, in a melanoma model, hydrogel encapsulated quantum dots also preferentially accumulate in the tumor tissue compared with normal tissue and have ∼16-fold greater intratumoral uptake compared to non-derivatized quantum dots. Our results suggest that these derivatized quantum dots, which have greatly improved tumor localization, may enhance cancer monitoring and chemotherapy.

  5. Investigation of the internal stresses caused by delayed ettringite formation in concrete.

    Science.gov (United States)

    2008-11-01

    Delayed ettringite formation (DEF) in concrete has been identified in recent as a significant cause of deterioration in : some of the reinforced concrete infrastructure in Texas. This report is part of a research project, TxDOT project : 5218, to inv...

  6. Synthesis and Characterization of Mercaptoacetic Acid Capped Cadmium Sulphide Quantum Dots.

    Science.gov (United States)

    Wageh, S; Maize, Mai; Donia, A M; Al-Ghamdi, Ahmed A; Umar, Ahmad

    2015-12-01

    This paper reports the facile synthesis and detailed characterization of mercaptoacetic acid capped cadmium sulphide (CdS) quantum dots using various cadmium precursors. The mercaptoacetic acid capped CdS quantum dots were prepared by facile and simple wet chemical method and characterized by several techniques such as energy dispersive spectroscopy (EDS), X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, UV-vis. spectroscopy, photoluminescence spectroscopy, high-resolution transmission microscopy (HRTEM) and thremogravimetric analysis. The EDS studies revealed that the prepared quantum dots possess higher atomic percentage of sulfur compared to cadmium due to the coordination of thiolate to the quantum dots surfaces. The X-ray and absorption analyses exhibited that the size of quantum dots prepared by cadmium acetate is larger than the quantum dots prepared by cadmium chloride and cadmium nitrate. The increase in size can be attributed to the low stability constant of cadmium acetate in comparison with cadmium chloride and cadmium nitrate. The FTIR and thermogravimetric analysis showed that the nature of capping molecule on the surface of quantum dots are different depending on the cadmium precursors which affect the emission from CdS quantum dots. Photoemission spectroscopy revealed that the emission of quantum dots prepared by cadmium acetate has high intensity band edge emission along with low intensity trapping state emission. However the CdS quantum dots prepared by cadmium chloride and cadmium nitrate produced only trapping state emissions.

  7. Cost and cost-effectiveness of PPM-DOTS for tuberculosis control: evidence from India.

    OpenAIRE

    Floyd, Katherine; Arora, V. K.; Murthy, K. J. R.; Lonnroth, Knut; Singla, Neeta; Akbar, Y.; Zignol, Matteo; Uplekar, Mukund

    2006-01-01

    OBJECTIVE: To assess the cost and cost-effectiveness of the Public-Private Mix DOTS (PPM-DOTS) strategy for tuberculosis (TB) control in India. METHODS: We collected data on the costs and effects of pilot PPM-DOTS projects in Delhi and Hyderabad using documentary data and interviews. The cost of PPM-DOTS was compared with public sector DOTS (i.e. DOTS delivered through public sector facilities only) and non-DOTS treatment in the private sector. Costs for 2002 in US$ were assessed for the publ...

  8. Bit-Serial Adder Based on Quantum Dots

    Science.gov (United States)

    Fijany, Amir; Toomarian, Nikzad; Modarress, Katayoon; Spotnitz, Mathew

    2003-01-01

    A proposed integrated circuit based on quantum-dot cellular automata (QCA) would function as a bit-serial adder. This circuit would serve as a prototype building block for demonstrating the feasibility of quantum-dots computing and for the further development of increasingly complex and increasingly capable quantum-dots computing circuits. QCA-based bit-serial adders would be especially useful in that they would enable the development of highly parallel and systolic processors for implementing fast Fourier, cosine, Hartley, and wavelet transforms. The proposed circuit would complement the QCA-based circuits described in "Implementing Permutation Matrices by Use of Quantum Dots" (NPO-20801), NASA Tech Briefs, Vol. 25, No. 10 (October 2001), page 42 and "Compact Interconnection Networks Based on Quantum Dots" (NPO-20855), which appears elsewhere in this issue. Those articles described the limitations of very-large-scale-integrated (VLSI) circuitry and the major potential advantage afforded by QCA. To recapitulate: In a VLSI circuit, signal paths that are required not to interact with each other must not cross in the same plane. In contrast, for reasons too complex to describe in the limited space available for this article, suitably designed and operated QCA-based signal paths that are required not to interact with each other can nevertheless be allowed to cross each other in the same plane without adverse effect. In principle, this characteristic could be exploited to design compact, coplanar, simple (relative to VLSI) QCA-based networks to implement complex, advanced interconnection schemes. To enable a meaningful description of the proposed bit-serial adder, it is necessary to further recapitulate the description of a quantum-dot cellular automation from the first-mentioned prior article: A quantum-dot cellular automaton contains four quantum dots positioned at the corners of a square cell. The cell contains two extra mobile electrons that can tunnel (in the

  9. Beginning DotNetNuke Skinning and Design

    CERN Document Server

    Hay, Andrew

    2011-01-01

    DotNetNuke is an open source framework built on top of the ASP.Net platform. While this system offers an impressive set of out-of-the-box features for public and private sites, it also includes a compelling story for folks who want to present a unique look and feel to visitors. The skinning engine inside of DotNetNuke has strengthened over the course of several years and hundreds of thousands of registered users. The success of its skin and module developer community is another key indicator of the depth and breadth of this technology. The Core Team responsible for the DotNetNuke brand has gon

  10. Spin-orbit effects in carbon-nanotube double quantum dots

    DEFF Research Database (Denmark)

    Weiss, S; Rashba, E I; Kuemmeth, Ferdinand

    2010-01-01

    We study the energy spectrum of symmetric double quantum dots in narrow-gap carbon nanotubes with one and two electrostatically confined electrons in the presence of spin-orbit and Coulomb interactions. Compared to GaAs quantum dots, the spectrum exhibits a much richer structure because of the spin...... between the dots. For the two-electron regime, the detailed structure of the spin-orbit split energy spectrum is investigated as a function of detuning between the quantum dots in a 22-dimensional Hilbert space within the framework of a single-longitudinal-mode model. We find a competing effect......-orbit interaction that couples the electron's isospin to its real spin through two independent coupling constants. In a single dot, both constants combine to split the spectrum into two Kramers doublets while the antisymmetric constant solely controls the difference in the tunneling rates of the Kramers doublets...

  11. 3D super-resolution imaging with blinking quantum dots

    Science.gov (United States)

    Wang, Yong; Fruhwirth, Gilbert; Cai, En; Ng, Tony; Selvin, Paul R.

    2013-01-01

    Quantum dots are promising candidates for single molecule imaging due to their exceptional photophysical properties, including their intense brightness and resistance to photobleaching. They are also notorious for their blinking. Here we report a novel way to take advantage of quantum dot blinking to develop an imaging technique in three-dimensions with nanometric resolution. We first applied this method to simulated images of quantum dots, and then to quantum dots immobilized on microspheres. We achieved imaging resolutions (FWHM) of 8–17 nm in the x-y plane and 58 nm (on coverslip) or 81 nm (deep in solution) in the z-direction, approximately 3–7 times better than what has been achieved previously with quantum dots. This approach was applied to resolve the 3D distribution of epidermal growth factor receptor (EGFR) molecules at, and inside of, the plasma membrane of resting basal breast cancer cells. PMID:24093439

  12. Electroluminescent Cu-doped CdS quantum dots

    NARCIS (Netherlands)

    Stouwdam, J.W.; Janssen, R.A.J.

    2009-01-01

    Incorporating Cu-doped CdS quantum dots into a polymer host produces efficient light-emitting diodes. The Cu dopant creates a trap level that aligns with the valence band of the host, enabling the direct injection of holes into the quantum dots, which act as emitters. At low current densities, the

  13. A triple quantum dot in a single-wall carbon nanotube

    DEFF Research Database (Denmark)

    Grove-Rasmussen, Kasper; Jørgensen, Henrik Ingerslev; Hayashi, T.

    2008-01-01

    A top-gated single-wall carbon nanotube is used to define three coupled quantum dots in series between two electrodes. The additional electron number on each quantum dot is controlled by top-gate voltages allowing for current measurements of single, double, and triple quantum dot stability diagrams...

  14. Transient Dynamics of Double Quantum Dots Coupled to Two Reservoirs

    Science.gov (United States)

    Fukadai, Takahisa; Sasamoto, Tomohiro

    2018-05-01

    We study the time-dependent properties of double quantum dots coupled to two reservoirs using the nonequilibrium Green function method. For an arbitrary time-dependent bias, we derive an expression for the time-dependent electron density of a dot and several currents, including the current between the dots in the wide-band-limit approximation. For the special case of a constant bias, we calculate the electron density and the currents numerically. As a result, we find that these quantities oscillate and that the number of crests in a single period of the current from a dot changes with the bias voltage. We also obtain an analytical expression for the relaxation time, which expresses how fast the system converges to its steady state. From the expression, we find that the relaxation time becomes constant when the coupling strength between the dots is sufficiently large in comparison with the difference of coupling strength between the dots and the reservoirs.

  15. Static and dynamic properties of three-dimensional dot-type magnonic crystals

    International Nuclear Information System (INIS)

    Maksymov, Artur; Spinu, Leonard

    2016-01-01

    The static and dynamic magnetization of three-dimensional magnonic metamaterials has been investigated. By numerical means it was analyzed the impact of space dimensionality on the properties of magnonic crystal with unit cell consisting of four dots. It is find out the possibility of multi-vortex core formation which is related to the increasing of the crystal height by three-dimensional periodicity of single crystal layer. Additionally is provided the analysis of ferromagnetic resonance phenomenon for two-dimensional and three-dimensional structures. For the unsaturated magnetization of three-dimensional crystal the several pronounced resonance frequencies were detected.

  16. Static and dynamic properties of three-dimensional dot-type magnonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Maksymov, Artur, E-mail: maxyartur@gmail.com [Advanced Materials Research Institute, University of New Orleans, LA 70148 (United States); Department of General Physics, Chernivtsi National University, Chernivtsi 58012 (Ukraine); Spinu, Leonard [Advanced Materials Research Institute, University of New Orleans, LA 70148 (United States); Department of Physics, University of New Orleans, New Orleans, LA 70148 (United States)

    2016-04-01

    The static and dynamic magnetization of three-dimensional magnonic metamaterials has been investigated. By numerical means it was analyzed the impact of space dimensionality on the properties of magnonic crystal with unit cell consisting of four dots. It is find out the possibility of multi-vortex core formation which is related to the increasing of the crystal height by three-dimensional periodicity of single crystal layer. Additionally is provided the analysis of ferromagnetic resonance phenomenon for two-dimensional and three-dimensional structures. For the unsaturated magnetization of three-dimensional crystal the several pronounced resonance frequencies were detected.

  17. In situ electron-beam polymerization stabilized quantum dot micelles.

    Science.gov (United States)

    Travert-Branger, Nathalie; Dubois, Fabien; Renault, Jean-Philippe; Pin, Serge; Mahler, Benoit; Gravel, Edmond; Dubertret, Benoit; Doris, Eric

    2011-04-19

    A polymerizable amphiphile polymer containing PEG was synthesized and used to encapsulate quantum dots in micelles. The quantum dot micelles were then polymerized using a "clean" electron beam process that did not require any post-irradiation purification. Fluorescence spectroscopy revealed that the polymerized micelles provided an organic coating that preserved the quantum dot fluorescence better than nonpolymerized micelles, even under harsh conditions. © 2011 American Chemical Society

  18. Analysis of MoDOT communication and outreach effectiveness

    Science.gov (United States)

    2008-07-01

    Personal interviews were held with MoDOT personnel to assess MoDOTs current communication practices and existing customer segmentation practices. Focus groups were then held to help gauge the effectiveness of existing communication practices and t...

  19. Electroluminescence of colloidal ZnSe quantum dots

    International Nuclear Information System (INIS)

    Dey, S.C.; Nath, S.S.

    2011-01-01

    The article reports a green chemical synthesis of colloidal ZnSe quantum dots at a moderate temperature. The prepared colloid sample is characterised by UV-vis absorption spectroscopy and transmission electron microscopy. UV-vis spectroscopy reveals as-expected blue-shift with strong absorption edge at 400 nm and micrographs show a non-uniform size distribution of ZnSe quantum dots in the range 1-4 nm. Further, photoluminescence and electroluminescence spectroscopies are carried out to study optical emission. Each of the spectroscopies reveals two emission peaks, indicating band-to-band transition and defect related transition. From the luminescence studies, it can be inferred that the recombination of electrons and holes resulting from interband transition causes violet emission and the recombination of a photon generated hole with a charged state of Zn-vacancy gives blue emission. Meanwhile electroluminescence study suggests the application of ZnSe quantum dots as an efficient light emitting device with the advantage of colour tuning (violet-blue-violet). - Highlights: → Synthesis of ZnSe quantum dots by a green chemical route. → Characterisation: UV-vis absorption spectroscopy and transmission electron microscopy. → Analysis of UV-vis absorption spectrum and transmission electron micrographs. → Study of electro-optical properties by photoluminescence and electroluminescence. → Conclusion: ZnSe quantum dots can be used as LED with dual colour emission.

  20. Photoluminescence of carbon dots from mesoporous silica

    Science.gov (United States)

    Nelson, D. K.; Razbirin, B. S.; Starukhin, A. N.; Eurov, D. A.; Kurdyukov, D. A.; Stovpiaga, E. Yu; Golubev, V. G.

    2016-09-01

    Photophysical properties of carbon dots were investigated under various excitation conditions and over a wide temperature region - from room to liquid helium temperatures. The carbon dots (CDs) were synthesized using mesoporous silica particles as a reactor and (3-aminopropyl)triethoxysilane (APTES) as a precursor. The photoluminescence spectra of CDs exhibit a strong dependence on the excitation wavelength and demonstrate a significant inhomogeneous broadening. Lowering sample temperature reveals the doublet structure of the spectra, which is associated with the vibronic structure of radiative transitions. The vibration energy ∼1200 cm-1 is close to the energy of Csbnd O stretching vibration. Long-lived phosphorescence of carbon dots with its decay time ∼0.2 s at T = 80 K was observed. The fluorescence and phosphorescence spectra are shown to be spectrally separated. The long-lived component of the emission was ascribed to optically forbidden triplet-singlet transitions. The value of the singlet-triplet splitting was found to be about 0.3 eV. Photo-induced polarization of the luminescence of carbon dots was revealed. The degree of the linear polarization is dependent on the wavelengths of both excitation and emitted light. The effect indicates a hidden anisotropy of optical dipole transitions in the dots and demonstrates the loss of the dipole orientation during the electron energy relaxation.

  1. Simulation of quantum dots size and spacing effect for intermediate band solar cell application based on InAs quantum dots arrangement in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Hendra, P. I. B., E-mail: ib.hendra@gmail.com; Rahayu, F., E-mail: ib.hendra@gmail.com; Darma, Y., E-mail: ib.hendra@gmail.com [Physical Vapor Deposition Laboratory, Physics of Material Electronics Research, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2014-03-24

    Intermediate band solar cell (IBSC) has become a promising technology in increasing solar cell efficiency. In this work we compare absorption coefficient profile between InAs quantum dots with GaAs bulk. We calculate the efficiency of GaAs bulk and GaAs doped with 2, 5, and 10 nm InAs quantum dot. Effective distances in quantum dot arrangement based on electron tunneling consideration were also calculated. We presented a simple calculation method with low computing power demand. Results showed that arrangement of quantum dot InAs in GaAs can increase solar cell efficiency from 23.9 % initially up to 60.4%. The effective distance between two quantum dots was found 2 nm in order to give adequate distance to prevent electron tunneling and wave functions overlap.

  2. Silicon Quantum Dots with Counted Antimony Donor Implants

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Meenakshi [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Pacheco, Jose L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Perry, Daniel Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Garratt, E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Ten Eyck, Gregory A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Wendt, Joel R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Manginell, Ronald P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Luhman, Dwight [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Bielejec, Edward S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Lilly, Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Carroll, Malcolm S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies

    2015-10-01

    Deterministic control over the location and number of donors is crucial to donor spin quantum bits (qubits) in semiconductor based quantum computing. A focused ion beam is used to implant close to quantum dots. Ion detectors are integrated next to the quantum dots to sense the implants. The numbers of ions implanted can be counted to a precision of a single ion. Regular coulomb blockade is observed from the quantum dots. Charge offsets indicative of donor ionization, are observed in devices with counted implants.

  3. Imaging GABAc Receptors with Ligand-Conjugated Quantum Dots

    Directory of Open Access Journals (Sweden)

    Ian D. Tomlinson

    2007-01-01

    Full Text Available We report a methodology for labeling the GABAc receptor on the surface membrane of intact cells. This work builds upon our earlier work with serotonin-conjugated quantum dots and our studies with PEGylated quantum dots to reduce nonspecific binding. In the current approach, a PEGylated derivative of muscimol was synthesized and attached via an amide linkage to quantum dots coated in an amphiphilic polymer derivative of a modified polyacrylamide. These conjugates were used to image GABAC receptors heterologously expressed in Xenopus laevis oocytes.

  4. Hexagonal graphene quantum dots

    KAUST Repository

    Ghosh, Sumit; Schwingenschlö gl, Udo

    2016-01-01

    We study hexagonal graphene quantum dots, using density functional theory, to obtain a quantitative description of the electronic properties and their size dependence, considering disk and ring geometries with both armchair and zigzag edges. We show that the electronic properties of quantum dots with armchair edges are more sensitive to structural details than those with zigzag edges. As functions of the inner and outer radii, we find in the case of armchair edges that the size of the band gap follows distinct branches, while in the case of zigzag edges it changes monotonically. This behaviour is further analyzed by studying the ground state wave function and explained in terms of its localisation.

  5. Hexagonal graphene quantum dots

    KAUST Repository

    Ghosh, Sumit

    2016-12-05

    We study hexagonal graphene quantum dots, using density functional theory, to obtain a quantitative description of the electronic properties and their size dependence, considering disk and ring geometries with both armchair and zigzag edges. We show that the electronic properties of quantum dots with armchair edges are more sensitive to structural details than those with zigzag edges. As functions of the inner and outer radii, we find in the case of armchair edges that the size of the band gap follows distinct branches, while in the case of zigzag edges it changes monotonically. This behaviour is further analyzed by studying the ground state wave function and explained in terms of its localisation.

  6. Electrochemiluminescent detection of Pb{sup 2+} by graphene/gold nanoparticles and CdSe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Liping, E-mail: lipinglu@bjut.edu.cn; Guo, Linqing; Li, Jiao; Kang, Tianfang; Cheng, Shuiyuan

    2016-12-01

    Highlights: • An ECL sensor was fabricated based on the distance dependent between CdSe QDs and gold nanoparticles. • The ssDNA strands rich in G bases adopt the G4 conformation when Pb{sup 2+} is present in detection system. • AuNPs/RGO composite improved the performance of electron transfer of sensor. • The ECL sensor was used to detect Pb{sup 2+} concentration in an actual water sample with high sensitivity and selectivity. - Abstract: A highly sensitive electrochemiluminescent detection method for lead ions (Pb(II)) was fabricated based on the distance-dependent quenching of the electrochemiluminescence from CdSe quantum dots by nanocomposites of graphene and gold nanoparticles. Graphene/gold nanoparticles were electrochemically deposited onto a glassy carbon electrode through the constant potential method. Thiol-labeled DNA was then assembled on the surface of the electrode via gold−sulfur bonding, following which the amino-labeled terminal of the DNA was linked to carboxylated CdSe quantum dots by the formation of amide bonds. The 27-base aptamer was designed with two different domains: the immobilization and detection sequences. The immobilization sequence was paired with 12 complementary bases and immobilized on the gold electrode; the single-stranded detection sequence, rich in G bases, formed a G-quadruplex (G4) structure in the presence of Pb{sup 2+}. The formation of G4 shortens the distance between the CdSe quantum dots and the Au electrode, which decreases the electrochemiluminescent intensity in a linear fashion, proportional to the concentration of Pb(II). The linear range of the sensor was 10{sup −10} to 10{sup −8} mol/L (R = 0.9819) with a detection limit of 10{sup −10} mol/L. This sensor detected Pb(II) in real water samples with satisfactory results.

  7. [Effect of quantum dots CdSe/ZnS's concentration on its fluorescence].

    Science.gov (United States)

    Jin, Min; Huang, Yu-hua; Luo, Ji-xiang

    2015-02-01

    The authors measured the absorption and the fluorescence spectra of the quantum dots CdSe/ZnS with 4 nm in size at different concentration with the use of the UV-Vis absorption spectroscopy and fluorescence spectrometer. The effect of quantum dots CdSe/ZnS's concentration on its fluorescence was especially studied and its physical mechanism was analyzed. It was observed that the optimal concentration of the quantum dots CdSe/ZnS for fluorescence is 2 micromole x L(-1). When the quantum dot's concentration is over 2 micromol x L(-1), the fluorescence is decreased with the increase in the concentration. While the quantum dot's concentration is less than 2 micromol x L(-1), the fluorescence is decreased with the decrease in the concentration. There are two main reasons: (1) fluorescence quenching and 2) the competition between absorption and fluorescence. When the quantum dot's concentration is over 2 micromol x L(-1), the distance between quantum dots is so close that the fluorescence quenching is induced. The closer the distance between quantum dots is, the more serious the fluorescence quenching is induced. Also, in this case, the absorption is so large that some of the quantum dots can not be excited because the incident light can not pass through the whole sample. As a result, the fluorescence is decreased with the increase in the quantum dot's concentration. As the quantum dot's concentration is below 2 micromol x L(-1), the distance between quantum dots is far enough that no more fluorescence quenching is induced. In this case, the fluorescence is determined by the particle number per unit volume. More particle number per unit volume produces more fluorescence. Therefore, the fluorescence is decreased with the decrease in the quantum dot's concentration.

  8. Bio-templated CdSe quantum dots green synthesis in the functional protein, lysozyme, and biological activity investigation

    International Nuclear Information System (INIS)

    Wang, Qisui; Li, Song; Liu, Peng; Min, Xinmin

    2012-01-01

    Bifunctional fluorescence (CdSe Quantum Dots) – protein (Lysozyme) nanocomposites were synthesized at room temperature by a protein-directed, solution-phase, green-synthetic method. Fluorescence (FL) and absorption spectra showed that CdSe QDs were prepared successfully with Lyz. The average particle size and crystalline structure of QDs were investigated by high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD), respectively. With attenuated total reflection-fourier transform infrared (ATR-FTIR) spectra and thermogravimetric (TG) analysis, it was confirmed that there is interaction between QDs and amide I, amide II groups in Lyz. FL polarization was measured and FL imaging was done to monitor whether QDs could be responsible for possible changes in the conformation and activity of Lyz. Interestingly, the results showed Lyz still retain the biological activity after formation of QDs, but the secondary structure of the Lyz was changed. And the advantage of this synthesis method is producing excellent fluorescent QDs with specifically biological function. -- Highlights: ► Lysozyme-directed green synthesis of CdSe quantum dots. ► Lysozyme still retain the biological activity after formation of CdSe. ► The method is the production of fluorescent QDs with highly specific and functions.

  9. Quantum-dot temperature profiles during laser irradiation for semiconductor-doped glasses

    International Nuclear Information System (INIS)

    Nagpal, Swati

    2002-01-01

    Temperature profiles around laser irradiated CdX (X=S, Se, and Te) quantum dots in borosilicate glasses were theoretically modeled. Initially the quantum dots heat up rapidly, followed by a gradual increase of temperature. Also it is found that larger dots reach higher temperatures for the same pulse characteristics. After the pulse is turned off, the dots initially cool rapidly, followed by a gradual decrease in temperature

  10. Quantum-dot temperature profiles during laser irradiation for semiconductor-doped glasses

    Science.gov (United States)

    Nagpal, Swati

    2002-12-01

    Temperature profiles around laser irradiated CdX (X=S, Se, and Te) quantum dots in borosilicate glasses were theoretically modeled. Initially the quantum dots heat up rapidly, followed by a gradual increase of temperature. Also it is found that larger dots reach higher temperatures for the same pulse characteristics. After the pulse is turned off, the dots initially cool rapidly, followed by a gradual decrease in temperature.

  11. Colloidal quantum dot photovoltaics: The effect of polydispersity

    KAUST Repository

    Zhitomirsky, David

    2012-02-08

    The size-effect tunability of colloidal quantum dots enables facile engineering of the bandgap at the time of nanoparticle synthesis. The dependence of effective bandgap on nanoparticle size also presents a challenge if the size dispersion, hence bandgap variability, is not well-controlled within a given quantum dot solid. The impact of this polydispersity is well-studied in luminescent devices as well as in unipolar electronic transport; however, the requirements on monodispersity have yet to be quantified in photovoltaics. Here we carry out a series of combined experimental and model-based studies aimed at clarifying, and quantifying, the importance of quantum dot monodispersity in photovoltaics. We successfully predict, using a simple model, the dependence of both open-circuit voltage and photoluminescence behavior on the density of small-bandgap (large-diameter) quantum dot inclusions. The model requires inclusion of trap states to explain the experimental data quantitatively. We then explore using this same experimentally tested model the implications of a broadened quantum dot population on device performance. We report that present-day colloidal quantum dot photovoltaic devices with typical inhomogeneous linewidths of 100-150 meV are dominated by surface traps, and it is for this reason that they see marginal benefit from reduction in polydispersity. Upon eliminating surface traps, achieving inhomogeneous broadening of 50 meV or less will lead to device performance that sees very little deleterious impact from polydispersity. © 2012 American Chemical Society.

  12. Injection of a single electron from static to moving quantum dots.

    Science.gov (United States)

    Bertrand, Benoit; Hermelin, Sylvain; Mortemousque, Pierre-André; Takada, Shintaro; Yamamoto, Michihisa; Tarucha, Seigo; Ludwig, Arne; Wieck, Andreas D; Bäuerle, Christopher; Meunier, Tristan

    2016-05-27

    We study the injection mechanism of a single electron from a static quantum dot into a moving quantum dot. The moving quantum dots are created with surface acoustic waves (SAWs) in a long depleted channel. We demonstrate that the injection process is characterized by an activation law with a threshold that depends on the SAW amplitude and on the dot-channel potential gradient. By sufficiently increasing the SAW modulation amplitude, we can reach a regime where the transfer has unity probability and is potentially adiabatic. This study points to the relevant regime to use moving dots in quantum information protocols.

  13. Synthesis, characterization and non-linear optical response of organophilic carbon dots

    KAUST Repository

    Bourlinos, Athanasios B.

    2013-09-01

    For the first time ever we report the nonlinear optical (NLO) properties of carbon dots (C-dots). The C-dots for these experiments were synthesized by mild pyrolysis of lauryl gallate. The resulting C-dots bear lauryl chains and, hence, are highly dispersible in polar organic solvents, like chloroform. Dispersions in CHCl3 show significant NLO response. Specifically, the C-dots show negative nonlinear absorption coefficient and negative nonlinear refraction. Using suspensions with different concentrations these parameters are quantified and compared to those of fullerene a well-known carbon molecule with proven NLO response. © 2013 Elsevier Ltd. All rights reserved.

  14. Synthesis, characterization and non-linear optical response of organophilic carbon dots

    KAUST Repository

    Bourlinos, Athanasios B.; Karakassides, Michael A.; Kouloumpis, Antonios; Gournis, Dimitrios; Bakandritsos, Aristides; Papagiannouli, Irene; Aloukos, Panagiotis; Couris, Stelios; Hola, Katerina; Zboril, Radek; Krysmann, Marta; Giannelis, Emmanuel P.

    2013-01-01

    For the first time ever we report the nonlinear optical (NLO) properties of carbon dots (C-dots). The C-dots for these experiments were synthesized by mild pyrolysis of lauryl gallate. The resulting C-dots bear lauryl chains and, hence, are highly dispersible in polar organic solvents, like chloroform. Dispersions in CHCl3 show significant NLO response. Specifically, the C-dots show negative nonlinear absorption coefficient and negative nonlinear refraction. Using suspensions with different concentrations these parameters are quantified and compared to those of fullerene a well-known carbon molecule with proven NLO response. © 2013 Elsevier Ltd. All rights reserved.

  15. Mössbauer spectroscopy study of surfactant sputtering induced Fe silicide formation on a Si surface

    Energy Technology Data Exchange (ETDEWEB)

    Beckmann, C.; Zhang, K. [2nd Institute of Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Hofsäss, H., E-mail: hans.hofsaess@phys.uni-goettingen.de [2nd Institute of Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Brüsewitz, C.; Vetter, U. [2nd Institute of Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Bharuth-Ram, K. [Physics Department, Durban University of Technology, Durban 4001 (South Africa)

    2015-12-01

    Highlights: • We study the formation of self-organized nanoscale dot and ripple patterns on Si. • Patterns are created by keV noble gas ion irradiation and simultaneous {sup 57}Fe co-deposition. • Ion-induced phase separation and the formation of a-FeSi{sub 2} is identified as relevant process. - Abstract: The formation of Fe silicides in surface ripple patterns, generated by erosion of a Si surface with keV Ar and Xe ions and simultaneous co-deposition of Fe, was investigated with conversion electron Mössbauer spectroscopy, atomic force microscopy and Rutherford backscattering spectrometry. For the dot and ripple patterns studied, we find an average Fe concentration in the irradiated layer between 6 and 25 at.%. The Mössbauer spectra clearly show evidence of the formation of Fe disilicides with Fe content close to 33 at.%, but very little evidence of the formation of metallic Fe particles. The results support the process of ion-induced phase separation toward an amorphous Fe disilicide phase as pattern generation mechanism. The observed amorphous phase is in agreement with thermodynamic calculations of amorphous Fe silicides.

  16. Room-temperature dephasing in InAs/GaAs quantum dots

    DEFF Research Database (Denmark)

    Borri, Paola; Langbein, Wolfgang; Hvam, Jørn Märcher

    1999-01-01

    Summary form only given. Semiconductor quantum dots (QDs) are receiving increasing attention for fundamental studies on zero-dimensional confinement and for device applications. Quantum-dot lasers are expected to show superior performances, like high material gain, low and temperature...... stacked layers of InAs-InGaAs-GaAs quantum dots....

  17. Quantum dot-linked immunosorbent assay (QLISA) using orientation-directed antibodies.

    Science.gov (United States)

    Suzuki, Miho; Udaka, Hikari; Fukuda, Takeshi

    2017-09-05

    An approach similar to the enzyme-linked immunosorbent assay (ELISA), with the advantage of saving time and effort but exhibiting high performance, was developed using orientation-directed half-part antibodies immobilized on CdSe/ZnS quantum dots. ELISA is a widely accepted assay used to detect the presence of a target substance. However, it takes time to quantify the target with specificity and sensitivity owing to signal amplification. In this study, CdSe/ZnS quantum dots are introduced as bright and photobleaching-tolerant fluorescent materials. Since hydrophilic surface coating of quantum dots rendered biocompatibility and functional groups for chemical reactions, the quantum dots were modified with half-sized antibodies after partial reduction. The half-sized antibody could be bound to a quantum dot through a unique thiol site to properly display the recognition domain for the core process of ELISA, which is an antigen-antibody interaction. The reducing conditions were investigated to generate efficient conjugates of quantum dots and half-sized antibodies. This was applied to IL-6 detection, as the quantification of IL-6 is significant owing to its close relationships with various biomedical phenomena that cause different diseases. An ELISA-like assay with CdSe/ZnS quantum dot institution (QLISA; Quantum dot-linked immunosorbent assay) was developed to detect 0.05ng/mL IL-6, which makes it sufficiently sensitive as an immunosorbent assay. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Non-blinking quantum dot with a plasmonic nanoshell resonator

    Science.gov (United States)

    Ji, Botao; Giovanelli, Emerson; Habert, Benjamin; Spinicelli, Piernicola; Nasilowski, Michel; Xu, Xiangzhen; Lequeux, Nicolas; Hugonin, Jean-Paul; Marquier, Francois; Greffet, Jean-Jacques; Dubertret, Benoit

    2015-02-01

    Colloidal semiconductor quantum dots are fluorescent nanocrystals exhibiting exceptional optical properties, but their emission intensity strongly depends on their charging state and local environment. This leads to blinking at the single-particle level or even complete fluorescence quenching, and limits the applications of quantum dots as fluorescent particles. Here, we show that a single quantum dot encapsulated in a silica shell coated with a continuous gold nanoshell provides a system with a stable and Poissonian emission at room temperature that is preserved regardless of drastic changes in the local environment. This novel hybrid quantum dot/silica/gold structure behaves as a plasmonic resonator with a strong Purcell factor, in very good agreement with simulations. The gold nanoshell also acts as a shield that protects the quantum dot fluorescence and enhances its resistance to high-power photoexcitation or high-energy electron beams. This plasmonic fluorescent resonator opens the way to a new family of plasmonic nanoemitters with robust optical properties.

  19. Design and Simulation Test of an Open D-Dot Voltage Sensor

    Directory of Open Access Journals (Sweden)

    Yunjie Bai

    2015-09-01

    Full Text Available Nowadays, sensor development focuses on miniaturization and non-contact measurement. According to the D-dot principle, a D-dot voltage sensor with a new structure was designed based on the differential D-dot sensor with a symmetrical structure, called an asymmetric open D-dot voltage sensor. It is easier to install. The electric field distribution of the sensor was analyzed through Ansoft Maxwell and an open D-dot voltage sensor was designed. This open D-voltage sensor is characteristic of accessible insulating strength and small electric field distortion. The steady and transient performance test under 10 kV-voltage reported satisfying performances of the designed open D-dot voltage sensor. It conforms to requirements for a smart grid measuring sensor in intelligence, miniaturization and facilitation.

  20. Carrier-phonon interaction in semiconductor quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Seebeck, Jan

    2009-03-10

    In recent years semiconductor quantum dots have been studied extensively due to their wide range of possible applications, predominantly for light sources. For successful applications, efficient carrier scattering processes as well as a detailed understanding of the optical properties are of central importance. The aims of this thesis are theoretical investigations of carrier scattering processes in InGaAs/GaAs quantum dots on a quantum-kinetic basis. A consistent treatment of quasi-particle renormalizations and carrier kinetics for non-equilibrium conditions is presented, using the framework of non-equilibrium Green's functions. The focus of our investigations is the interaction of carriers with LO phonons. Important for the understanding of the scattering mechanism are the corresponding quasi-particle properties. Starting from a detailed study of quantum-dot polarons, scattering and dephasing processes are discussed for different temperature regimes. The inclusion of polaron and memory effects turns out to be essential for the description of the carrier kinetics in quantum-dot systems. They give rise to efficient scattering channels and the obtained results are in agreement with recent experiments. Furthermore, a consistent treatment of the carrier-LO-phonon and the carrier-carrier interaction is presented for the optical response of semiconductor quantum dots, both giving rise to equally important contributions to the dephasing. Beside the conventional GaAs material system, currently GaN based light sources are of high topical interest due to their wide range of possible emission frequencies. In this material additionally intrinsic properties like piezoelectric fields and strong band-mixing effects have to be considered. For the description of the optical properties of InN/GaN quantum dots a procedure is presented, where the material properties obtained from an atomistic tight-binding approach are combined with a many-body theory for non

  1. 49 CFR 41.110 - New DOT owned buildings and additions to buildings.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false New DOT owned buildings and additions to buildings....110 New DOT owned buildings and additions to buildings. (a) DOT Operating Administrations responsible for the design and construction of new DOT Federally owned buildings will ensure that each building is...

  2. Featured Image: Bright Dots in a Sunspot

    Science.gov (United States)

    Kohler, Susanna

    2018-03-01

    This image of a sunspot, located in in NOAA AR 12227, was captured in December 2014 by the 0.5-meter Solar Optical Telescope on board the Hinode spacecraft. This image was processed by a team of scientists led by Rahul Yadav (Udaipur Solar Observatory, Physical Research Laboratory Dewali, India) in order to examine the properties of umbral dots: transient, bright features observed in the umbral region (the central, darkest part) of a sunspot. By exploring these dots, Yadav and collaborators learned how their properties relate to the large-scale properties of the sunspots in which they form for instance, how do the number, intensities, or filling factors of dots relate to the size of a sunspots umbra? To find out more about the authors results, check out the article below.Sunspot in NOAA AR 11921. Left: umbralpenumbral boundary. Center: the isolated umbra from the sunspot. Right: The umbra with locations of umbral dots indicated by yellow plus signs. [Adapted from Yadav et al. 2018]CitationRahul Yadav et al 2018 ApJ 855 8. doi:10.3847/1538-4357/aaaeba

  3. Induced spin-accumulation and spin-polarization in a quantum-dot ring by using magnetic quantum dots and Rashba spin-orbit effect

    International Nuclear Information System (INIS)

    Eslami, L.; Faizabadi, E.

    2014-01-01

    The effect of magnetic contacts on spin-dependent electron transport and spin-accumulation in a quantum ring, which is threaded by a magnetic flux, is studied. The quantum ring is made up of four quantum dots, where two of them possess magnetic structure and other ones are subjected to the Rashba spin-orbit coupling. The magnetic quantum dots, referred to as magnetic quantum contacts, are connected to two external leads. Two different configurations of magnetic moments of the quantum contacts are considered; the parallel and the anti-parallel ones. When the magnetic moments are parallel, the degeneracy between the transmission coefficients of spin-up and spin-down electrons is lifted and the system can be adjusted to operate as a spin-filter. In addition, the accumulation of spin-up and spin-down electrons in non-magnetic quantum dots are different in the case of parallel magnetic moments. When the intra-dot Coulomb interaction is taken into account, we find that the electron interactions participate in separation between the accumulations of electrons with different spin directions in non-magnetic quantum dots. Furthermore, the spin-accumulation in non-magnetic quantum dots can be tuned in the both parallel and anti-parallel magnetic moments by adjusting the Rashba spin-orbit strength and the magnetic flux. Thus, the quantum ring with magnetic quantum contacts could be utilized to create tunable local magnetic moments which can be used in designing optimized nanodevices.

  4. Preparation of carbon quantum dots based high photostability luminescent membranes.

    Science.gov (United States)

    Zhao, Jinxing; Liu, Cui; Li, Yunchuan; Liang, Jiyuan; Liu, Jiyan; Qian, Tonghui; Ding, Jianjun; Cao, Yuan-Cheng

    2017-06-01

    Urethane acrylate (UA) was used to prepare carbon quantum dots (C-dots) luminescent membranes and the resultants were examined with FT-IR, mechanical strength, scanning electron microscope (SEM) and quantum yields (QYs). FT-IR results showed the polyurethane acrylate (PUA) prepolymer -C = C-vibration at 1101 cm -1 disappeared but there was strong vibration at1687cm -1 which was contributed from the-C = O groups in cross-linking PUA. Mechanical strength results showed that the different quantity of C-dots loadings and UV-curing time affect the strength. SEM observations on the cross-sections of the membranes are uniform and have no structural defects, which prove that the C-dots are compatible with the water-soluble PUA resin. The C-dot loading was increased from 0 to 1 g, the maximum tensile stress was nearly 2.67 MPa, but the tensile strain was decreased from 23.4% to 15.1% and 7.2% respectively. QYs results showed that the C-dots in the membrane were stable after 120 h continuous irradiation. Therefore, the C-dots photoluminescent film is the promising material for the flexible devices in the future applications. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Optical manipulation of electron spin in quantum dot systems

    Science.gov (United States)

    Villas-Boas, Jose; Ulloa, Sergio; Govorov, Alexander

    2006-03-01

    Self-assembled quantum dots (QDs) are of particular interest for fundamental physics because of their similarity with atoms. Coupling two of such dots and addressing them with polarized laser light pulses is perhaps even more interesting. In this paper we use a multi-exciton density matrix formalism to model the spin dynamics of a system with single or double layers of QDs. Our model includes the anisotropic electron-hole exchange in the dots, the presence of wetting layer states, and interdot tunneling [1]. Our results show that it is possible to switch the spin polarization of a single self-assembled quantum dot under elliptically polarized light by increasing the laser intensity. In the nonlinear mechanism described here, intense elliptically polarized light creates an effective exchange channel between the exciton spin states through biexciton states, as we demonstrate by numerical and analytical methods. We further show that the effect persists in realistic ensembles of dots, and we propose alternative ways to detect it. We also extend our study to a double layer of quantum dots, where we find a competition between Rabi frequency and tunneling oscillations. [1] J. M. Villas-Boas, S. E. Ulloa, and A. O. Govorov, Phys. Rev. Lett. 94, 057404 (2005); Phys. Rev. B 69, 125342 (2004).

  6. Optical anisotropy in vertically coupled quantum dots

    DEFF Research Database (Denmark)

    Yu, Ping; Langbein, Wolfgang Werner; Leosson, Kristjan

    1999-01-01

    We have studied the polarization of surface and edge-emitted photoluminescence (PL) from structures with vertically coupled In0.5Ga0.5As/GaAs quantum dots (QD's) grown by molecular beam epitaxy. The PL polarization is found to be strongly dependent on the number of stacked layers. While single...... number due to increasing dot size....

  7. Detecting the chirality for coupled quantum dots

    International Nuclear Information System (INIS)

    Cao Huijuan; Hu Lian

    2008-01-01

    We propose a scheme to detect the chirality for a system consisting of three coupled quantum dots. The chirality is found to be determined by the frequency of the transition between chiral states under the chiral symmetry broken perturbation. The results are important to construct quantum gates and to demonstrate chiral entangle states in the triangle spin dots

  8. Facilitated preparation of bioconjugatable zwitterionic quantum dots using dual-lipid encapsulation.

    Science.gov (United States)

    Shrake, Robert; Demillo, Violeta G; Ahmadiantehrani, Mojtaba; Zhu, Xiaoshan; Publicover, Nelson G; Hunter, Kenneth W

    2015-01-01

    Zwitterionic quantum dots prepared through incorporated zwitterionic ligands on quantum dot surfaces, are being paid significant attention in biomedical applications because of their excellent colloidal stability across a wide pH and ionic strength range, antifouling surface, good biocompatibility, etc. In this work, we report a dual-lipid encapsulation approach to prepare bioconjugatable zwitterionic quantum dots using amidosulfobetaine-16 lipids, dipalmitoyl-sn-glycero-3-phosphoethanolamine lipids with functional head groups, and CuInS2/ZnS quantum dots in a tetrahydrofuran/methanol/water solvent system with sonication. Amidosulfobetaine-16 is a zwitterionic lipid and dipalmitoyl-sn-glycero-3-phosphoethanolamine, with its functional head, provides bioconjugation capability. Under sonication, tetrahydrofuran/methanol containing amidosulfobetaine-16, dipalmitoyl-sn-glycero-3-phosphoethanolamine, and hydrophobic quantum dots are dispersed in water to form droplets. Highly water-soluble tetrahydrofuran/methanol in droplets is further displaced by water, which induces the lipid self-assembling on hydrophobic surface of quantum dots and thus forms water soluble zwitterionic quantum dots. The prepared zwitterionic quantum dots maintain colloidal stability in aqueous solutions with high salinity and over a wide pH range. They are also able to be conjugated with biomolecules for bioassay with minimal nonspecific binding. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. In vivo cation exchange in quantum dots for tumor-specific imaging.

    Science.gov (United States)

    Liu, Xiangyou; Braun, Gary B; Qin, Mingde; Ruoslahti, Erkki; Sugahara, Kazuki N

    2017-08-24

    In vivo tumor imaging with nanoprobes suffers from poor tumor specificity. Here, we introduce a nanosystem, which allows selective background quenching to gain exceptionally tumor-specific signals. The system uses near-infrared quantum dots and a membrane-impermeable etchant, which serves as a cation donor. The etchant rapidly quenches the quantum dots through cation exchange (ionic etching), and facilitates renal clearance of metal ions released from the quantum dots. The quantum dots are intravenously delivered into orthotopic breast and pancreas tumors in mice by using the tumor-penetrating iRGD peptide. Subsequent etching quenches excess quantum dots, leaving a highly tumor-specific signal provided by the intact quantum dots remaining in the extravascular tumor cells and fibroblasts. No toxicity is noted. The system also facilitates the detection of peritoneal tumors with high specificity upon intraperitoneal tumor targeting and selective etching of excess untargeted quantum dots. In vivo cation exchange may be a promising strategy to enhance specificity of tumor imaging.The imaging of tumors in vivo using nanoprobes has been challenging due to the lack of sufficient tumor specificity. Here, the authors develop a tumor-specific quantum dot system that permits in vivo cation exchange to achieve selective background quenching and high tumor-specific imaging.

  10. Testing of the PELSHIE shielding code using Benchmark problems and other special shielding models

    International Nuclear Information System (INIS)

    Language, A.E.; Sartori, D.E.; De Beer, G.P.

    1981-08-01

    The PELSHIE shielding code for gamma rays from point and extended sources was written in 1971 and a revised version was published in October 1979. At Pelindaba the program is used extensively due to its flexibility and ease of use for a wide range of problems. The testing of PELSHIE results with the results of a range of models and so-called Benchmark problems is desirable to determine possible weaknesses in PELSHIE. Benchmark problems, experimental data, and shielding models, some of which were resolved by the discrete-ordinates method with the ANISN and DOT 3.5 codes, were used for the efficiency test. The description of the models followed the pattern of a classical shielding problem. After the intercomparison with six different models, the usefulness of the PELSHIE code was quantitatively determined [af

  11. SCALPLO, Plotting of Flux Output from SCALE Program

    International Nuclear Information System (INIS)

    Hersman, A.; De Leege, P.F.A.; Hoogenboom, J.E.

    1993-01-01

    1 - Description of program or function: SCALPLO is a plot program, designed to plot flux, power and spectrum information. Data exchange between SCALE modules and SCALPLO is via CCCC-interface files. As not all modules can produce these files, there are special routines supplied with SCALPLO that can produce CCCC-like files. These routines can be included in the code and for XSDRPM, CITATION, ANISN and DOT, the place to include these routines is supplied. 2 - Method of solution: SCALPLO consists of two sections. Firstly the pre-processor, which selects and reads the required data. Secondly the plot section which produces the plot on the selected output device. 3 - Restrictions on the complexity of the problem: SCALPLO requires DISSPLA version 11.0 or higher. The choice of output device depends on the devices installed

  12. Methodology of shielding calculation for nuclear reactors

    International Nuclear Information System (INIS)

    Maiorino, J.R.; Mendonca, A.G.; Otto, A.C.; Yamaguchi, Mitsuo

    1982-01-01

    A methodology of calculation that coupling a serie of computer codes in a net that make the possibility to calculate the radiation, neutron and gamma transport, is described, for deep penetration problems, typical of nuclear reactor shielding. This net of calculation begining with the generation of constant multigroups, for neutrons and gamma, by the AMPX system, coupled to ENDF/B-IV data library, the transport calculation of these radiations by ANISN, DOT 3.5 and Morse computer codes, up to the calculation of absorbed doses and/or equivalents buy SPACETRAN code. As examples of the calculation method, results from benchmark n 0 6 of Shielding Benchmark Problems - ORNL - RSIC - 25, namely Neutron and Secondary Gamma Ray fluence transmitted through a Slab of Borated Polyethylene, are presented. (Author) [pt

  13. Size dependence in tunneling spectra of PbSe quantum-dot arrays.

    Science.gov (United States)

    Ou, Y C; Cheng, S F; Jian, W B

    2009-07-15

    Interdot Coulomb interactions and collective Coulomb blockade were theoretically argued to be a newly important topic, and experimentally identified in semiconductor quantum dots, formed in the gate confined two-dimensional electron gas system. Developments of cluster science and colloidal synthesis accelerated the studies of electron transport in colloidal nanocrystal or quantum-dot solids. To study the interdot coupling, various sizes of two-dimensional arrays of colloidal PbSe quantum dots are self-assembled on flat gold surfaces for scanning tunneling microscopy and scanning tunneling spectroscopy measurements at both room and liquid-nitrogen temperatures. The tip-to-array, array-to-substrate, and interdot capacitances are evaluated and the tunneling spectra of quantum-dot arrays are analyzed by the theory of collective Coulomb blockade. The current-voltage of PbSe quantum-dot arrays conforms properly to a scaling power law function. In this study, the dependence of tunneling spectra on the sizes (numbers of quantum dots) of arrays is reported and the capacitive coupling between quantum dots in the arrays is explored.

  14. Fluorescence from a quantum dot and metallic nanosphere hybrid system

    Energy Technology Data Exchange (ETDEWEB)

    Schindel, Daniel G. [Department of Mathematics and Statistics, University of Winnipeg, 515 Portage Avenue, Winnipeg, MB, R3B 2E9 (Canada); Singh, Mahi R. [Department of Physics and Astronomy, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 3K7 (Canada)

    2014-03-31

    We present energy absorption and interference in a quantum dot-metallic nanosphere system embedded on a dielectric substrate. A control field is applied to induce dipole moments in the nanosphere and the quantum dot, and a probe field is applied to monitor absorption. Dipole moments in the quantum dot or the metal nanosphere are induced, both by the external fields and by each other's dipole fields. Thus, in addition to direct polarization, the metal nanosphere and the quantum dot will sense one another via the dipole-dipole interaction. The density matrix method was used to show that the absorption spectrum can be split from one peak to two peaks by the control field, and this can also be done by placing the metal sphere close to the quantum dot. When the two are extremely close together, a self-interaction in the quantum dot produces an asymmetry in the absorption peaks. In addition, the fluorescence efficiency can be quenched by the addition of a metal nanosphere. This hybrid system could be used to create ultra-fast switching and sensing nanodevices.

  15. Laterally coupled jellium-like two-dimensional quantum dots

    NARCIS (Netherlands)

    Markvoort, Albert. J.; Hilbers, P.A.J.; Pino, R.

    2003-01-01

    Many studies have been performed to describe quantum dots using a parabolic confining potential. However, infinite potentials are unphysical and lead to problems when describing laterally coupled quantum dots. We propose the use of the parabolic potential of a homogeneous density distribution within

  16. Theoretical analysis of four wave mixing in quantum dot optical amplifiers

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Mørk, Jesper

    2003-01-01

    The four wave mixing properties of semiconductor quantum dot amplifiers have been investigated. The combination of strong non-equilibrium depletion of dot levels and a small linewidth enhancement factor results in efficient and symmetric four wave mixing.......The four wave mixing properties of semiconductor quantum dot amplifiers have been investigated. The combination of strong non-equilibrium depletion of dot levels and a small linewidth enhancement factor results in efficient and symmetric four wave mixing....

  17. Exciton in type-II quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Sierra-Ortega, J; Escorcia, R A [Universidad del Magdalena, A. A. 731, Santa Marta (Colombia); Mikhailov, I D, E-mail: jsierraortega@gmail.co [Universidad Industrial de Santander, A. A. 678, Bucaramanga (Colombia)

    2009-05-01

    We study the quantum-size effect and the influence of the external magnetic field on the exciton ground state energy in the type-II InP quantum disk, lens and pyramid deposited on a wetting layer and embedded in a GaInP matrix. We show that the charge distribution over and below quantum dot and wetting layer induced by trapped exciton strongly depends on the quantum dot morphology and the strength of the magnetic field.

  18. Charge transport in quantum dot organic solar cells with Si quantum dots sandwiched between poly(3-hexylthiophene) (P3HT) absorber and bathocuproine (BCP) transport layers

    Science.gov (United States)

    Verma, Upendra Kumar; Kumar, Brijesh

    2017-10-01

    We have modeled a multilayer quantum dot organic solar cell that explores the current-voltage characteristic of the solar cell whose characteristics can be tuned by varying the fabrication parameters of the quantum dots (QDs). The modeled device consists of a hole transport layer (HTL) which doubles up as photon absorbing layer, several quantum dot layers, and an electron transport layer (ETL). The conduction of charge carriers in HTL and ETL has been modeled by the drift-diffusion transport mechanism. The conduction and recombination in the quantum dot layers are described by a system of coupled rate equations incorporating tunneling and bimolecular recombination. Analysis of QD-solar cells shows improved device performance compared to the similar bilayer and trilayer device structures without QDs. Keeping other design parameters constant, solar cell characteristics can be controlled by the quantum dot layers. Bimolecular recombination coefficient of quantum dots is a prime factor which controls the open circuit voltage (VOC) without any significant reduction in short circuit current (JSC).

  19. Spectroscopy of Charged Quantum Dot Molecules

    Science.gov (United States)

    Stinaff, E. A.; Scheibner, M.; Bracker, A. S.; Ponomarev, I. V.; Ware, M. E.; Doty, M. F.; Reinecke, T. L.; Gammon, D.; Korenev, V. L.

    2006-03-01

    Spins of single charges in quantum dots are attractive for many quantum information and spintronic proposals. Scalable quantum information applications require the ability to entangle and operate on multiple spins in coupled quantum dots (CQDs). To further the understanding of these systems, we present detailed spectroscopic studies of InAs CQDs with control of the discrete electron or hole charging of the system. The optical spectrum reveals a pattern of energy anticrossings and crossings in the photoluminescence as a function of applied electric field. These features can be understood as a superposition of charge and spin configurations of the two dots and represent clear signatures of quantum mechanical coupling. The molecular resonance leading to these anticrossings is achieved at different electric fields for the optically excited (trion) states and the ground (hole) states allowing for the possibility of using the excited states for optically induced coupling of the qubits.

  20. Nonequilibrium Electron Transport Through a Quantum Dot from Kubo Formula

    International Nuclear Information System (INIS)

    Lue Rong; Zhang Guangming

    2005-01-01

    Based on the Kubo formula for an electron tunneling junction, we revisit the nonequilibrium transport properties through a quantum dot. Since the Fermi level of the quantum dot is set by the conduction electrons of the leads, we calculate the electron current from the left side by assuming the quantum dot coupled to the right lead as another side of the tunneling junction, and the other way round is used to calculate the current from the right side. By symmetrizing these two currents, an effective local density states on the dot can be obtained, and is discussed at high and low temperatures, respectively.

  1. [Louis Braille (1809-1852)--inventor of raised dots system].

    Science.gov (United States)

    Maciejewicz, Piotr; Kopacz, Dorota

    2005-01-01

    Louis Braille was born on January 4th 1809 in Coupvray, France. An injury to his eye at the age of three, resulted in total loss of vision. In 1819 he entered the Institute for Blind Youth in Paris. There he would live, study, and later teach. When he was fifteen, he developed system of reading and writing by means of raised dots, which is known today as Braille. The basis of the Braille system is known as a Braille cell. The cell is comprised of six dots numbered in a specific order. Each dot or combination of dots represents a letter of the alphabet. This Braille system has established itself internationally and formed the basic Braille for all languages.

  2. Photoluminescence study of carbon dots from ginger and galangal herbs using microwave technique

    Science.gov (United States)

    Isnaeni; Rahmawati, I.; Intan, R.; Zakaria, M.

    2018-03-01

    Carbon dots are new type of fluorescent nanoparticle that can be synthesis easily from natural sources. We have synthesized carbon dots from ginger and galangal herbs using microwave technique and studied their optical properties. We synthesized colloidal carbon dots in water solvent by varying microwave processing time. UV-Vis absorbance, photoluminescence, time-resolved photoluminescence, and transmission electron microscope were utilized to study properties of carbon dots. We found that microwave processing time significantly affect optical properties of synthesized carbon dots. UV-Vis absorbance spectra and time-resolved photoluminescence results show that luminescent of carbon dots is dominated by recombination process from n-π* surface energy level. With further development, these carbon dots are potential for several applications.

  3. PREFACE: Quantum dots as probes in biology

    Science.gov (United States)

    Cieplak, Marek

    2013-05-01

    The recent availability of nanostructured materials has resulted in an explosion of research focused on their unique optical, thermal, mechanical and magnetic properties. Optical imagining, magnetic enhancement of contrast and drug delivery capabilities make the nanoparticles of special interest in biomedical applications. These materials have been involved in the development of theranostics—a new field of medicine that is focused on personalized tests and treatment. It is likely that multimodal nanomaterials will be responsible for future diagnostic advances in medicine. Quantum dots (QD) are nanoparticles which exhibit luminescence either through the formation of three-dimensional excitons or excitations of the impurities. The excitonic luminescence can be tuned by changing the size (the smaller the size, the higher the frequency). QDs are usually made of semiconducting materials. Unlike fluorescent proteins and organic dyes, QDs resist photobleaching, allow for multi-wavelength excitations and have narrow emission spectra. The techniques to make QDs are cheap and surface modifications and functionalizations can be implemented. Importantly, QDs could be synthesized to exhibit useful optomagnetic properties and, upon functionalization with an appropriate biomolecule, directed towards a pre-selected target for diagnostic imaging and photodynamic therapy. This special issue on Quantum dots in Biology is focused on recent research in this area. It starts with a topical review by Sreenivasan et al on various physical mechanisms that lead to the QD luminescence and on using wavelength shifts for an improvement in imaging. The next paper by Szczepaniak et al discusses nanohybrids involving QDs made of CdSe coated by ZnS and combined covalently with a photosynthetic enzyme. These nanohybrids are shown to maintain the enzymatic activity, however the enzyme properties depend on the size of a QD. They are proposed as tools to study photosynthesis in isolated

  4. Stark effect and polarizability of graphene quantum dots

    DEFF Research Database (Denmark)

    Pedersen, Thomas Garm

    2017-01-01

    The properties of graphene quantum dots can be manipulated via lateral electric fields. Treating electrons in such structures as confined massless Dirac fermions, we derive an analytical expression for the quadratic Stark shift valid for arbitrary angular momentum and quantum dot size. Moreover, we...

  5. Electron Energy Level Statistics in Graphene Quantum Dots

    NARCIS (Netherlands)

    De Raedt, H.; Katsnellson, M. I.; Katsnelson, M.I.

    2008-01-01

    Motivated by recent experimental observations of size quantization of electron energy levels in graphene quantum dots [7] we investigate the level statistics in the simplest tight-binding model for different dot shapes by computer simulation. The results are in a reasonable agreement with the

  6. Red Dot Basal Cell Carcinoma: An Unusual Variant of a Common Malignancy.

    Science.gov (United States)

    Loh, Tiffany Y; Cohen, Philip R

    2016-05-01

    Red dot basal cell carcinoma is a distinct but rare subtype of basal cell carcinoma (BCC). It presents as a red macule or papule; therefore, in most cases, it may easily be mistaken for a benign vascular lesion, such as a telangiectasia or angioma. A red dot BCC in an older woman is described. Clinical and histological differences between red dot BCCs and telangiectasias are described. A 72-year-old woman initially presented with a painless red macule on her nose. Biopsy of the lesion established the diagnosis of a red dot BCC. Pubmed was searched for the following terms: angioma, basal cell carcinoma, dermoscope, diascopy, red dot, non-melanoma skin cancer, telangiectasia, and vascular. The papers were reviewed for cases of red dot basal cell carcinoma. Clinical and histological characteristics of red dot basal cell carcinoma and telangiectasias were compared. Red dot BCC is an extremely rare variant of BCC that may be confused with benign vascular lesions. Although BCCs rarely metastasize and are associated with low mortality, they have the potential to become locally invasive and destructive if left untreated. Thus, a high index of suspicion for red dot BCC is necessary. J Drugs Dermatol. 2016;15(5):645-647.

  7. Novel {beta}-cyclodextrin modified CdTe quantum dots as fluorescence nanosensor for acetylsalicylic acid and metabolites

    Energy Technology Data Exchange (ETDEWEB)

    Algarra, M. [Centro de Geologia do Porto, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Campos, B.B.; Aguiar, F.R.; Rodriguez-Borges, J.E. [Centro de Investigacao em Quimica (CIQ-UP), Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre 687, 169-007 Porto (Portugal); Esteves da Silva, J.C.G., E-mail: jcsilva@fc.up.pt [Centro de Investigacao em Quimica (CIQ-UP), Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre 687, 169-007 Porto (Portugal)

    2012-05-01

    {beta}-Cyclodextrin was modified with 11-[(ethoxycarbonyl)thio]undecanoic acid and used as a capping agent, together with mercaptosuccinic acid, to prepare water-stable CdTe quantum dots. The water soluble quantum dot obtained displays fluorescence with a maximum emission at 425 nm (under excitation at 300 nm) with lifetimes of 0.53, 4.8, 181, and 44.1 ns, respectively. The S-{beta}CD-MSA-CdTe can act as a nanoprobe that is due to the affinity of the cyclodextrin moiety for selected substances such as acetylsalicylic acid (ASA) and its metabolites as foreign species. The fluorescence of the S-{beta}CD-MSA-CdTe is enhanced on addition of ASA. Linear calibration plots are observed with ASA in concentrations between 0 and 1 mg/l, with a limit of detection at 8.5 Multiplication-Sign 10{sup -9} mol/l (1.5 ng/ml) and a precision as relative standard deviation of 1% (0.05 mg/l). The interference effect of certain compounds as ascorbic acid and its main metabolites such as salicylic, gentisic and salicyluric acid upon the obtained procedure was studied. Highlights: Black-Right-Pointing-Pointer Nanosensors constituted by CdTe quantum dots capped with modified cyclodextrin. Black-Right-Pointing-Pointer This nanomaterial shows fluorescence properties compatible with a semiconductor quantum dot. Black-Right-Pointing-Pointer The nanosensor shows fluorescence enhancement when inclusion complexes are formed with acetylsalicylic acid. Black-Right-Pointing-Pointer This nanomaterial has nanosensor potential taking into consideration the formation stability of the inclusion complex.

  8. Numerical simulation of optical feedback on a quantum dot lasers

    Energy Technology Data Exchange (ETDEWEB)

    Al-Khursan, Amin H., E-mail: ameen_2all@yahoo.com [Thi-Qar University, Nassiriya Nanotechnology Research Laboratory (NNRL), Science College (Iraq); Ghalib, Basim Abdullattif [Babylon University, Laser Physics Department, Science College for Women (Iraq); Al-Obaidi, Sabri J. [Al-Mustansiriyah University, Physics Department, Science College (Iraq)

    2012-02-15

    We use multi-population rate equations model to study feedback oscillations in the quantum dot laser. This model takes into account all peculiar characteristics in the quantum dots such as inhomogeneous broadening of the gain spectrum, the presence of the excited states on the quantum dot and the non-confined states due to the presence of wetting layer and the barrier. The contribution of quantum dot groups, which cannot follow by other models, is simulated. The results obtained from this model show the feedback oscillations, the periodic oscillations which evolves to chaos at higher injection current of higher feedback levels. The frequency fluctuation is attributed mainly to wetting layer with a considerable contribution from excited states. The simulation shows that is must be not using simple rate equation models to express quantum dots working at excited state transition.

  9. Spin-Orbit Coupling, Antilocalization, and Parallel Magnetic Fields in Quantum Dots

    DEFF Research Database (Denmark)

    Zumbuhl, D.; Miller, Jessica; M. Marcus, C.

    2002-01-01

    We investigate antilocalization due to spin-orbit coupling in ballistic GaAs quantum dots. Antilocalization that is prominent in large dots is suppressed in small dots, as anticipated theoretically. Parallel magnetic fields suppress both antilocalization and also, at larger fields, weak localizat...

  10. Transcending binary logic by gating three coupled quantum dots.

    Science.gov (United States)

    Klein, Michael; Rogge, S; Remacle, F; Levine, R D

    2007-09-01

    Physical considerations supported by numerical solution of the quantum dynamics including electron repulsion show that three weakly coupled quantum dots can robustly execute a complete set of logic gates for computing using three valued inputs and outputs. Input is coded as gating (up, unchanged, or down) of the terminal dots. A nanosecond time scale switching of the gate voltage requires careful numerical propagation of the dynamics. Readout is the charge (0, 1, or 2 electrons) on the central dot.

  11. Influence of ablation wavelength and time on optical properties of laser ablated carbon dots

    Science.gov (United States)

    Isnaeni, Hanna, M. Yusrul; Pambudi, A. A.; Murdaka, F. H.

    2017-01-01

    Carbon dots, which are unique and applicable materials, have been produced using many techniques. In this work, we have fabricated carbon dots made of coconut fiber using laser ablation technique. The purpose of this work is to evaluate two ablation parameters, which are ablation wavelength and ablation time. We used pulsed laser from Nd:YAG laser with emit wavelength at 355 nm, 532 nm and 1064 nm. We varied ablation time one hour and two hours. Photoluminescence and time-resolved photoluminescence setup were used to study the optical properties of fabricated carbon dots. In general, fabricated carbon dots emit bluish green color emission upon excitation by blue laser. We found that carbon dots fabricated using 1064 nm laser produced the highest carbon dots emission among other samples. The peak wavelength of carbon dots emission is between 495 nm until 505 nm, which gives bluish green color emission. Two hours fabricated carbon dots gave four times higher emission than one hour fabricated carbon dot. More emission intensity of carbon dots means more carbon dots nanoparticles were fabricated during laser ablation process. In addition, we also measured electron dynamics of carbon dots using time-resolved photoluminescence. We found that sample with higher emission has longer electron decay time. Our finding gives optimum condition of carbon dots fabrication from coconut fiber using laser ablation technique. Moreover, fabricated carbon dots are non-toxic nanoparticles that can be applied for health, bio-tagging and medical applications.

  12. L-Cysteine Capped CdSe Quantum Dots Synthesized by Photochemical Route.

    Science.gov (United States)

    Singh, Avinash; Kunwar, Amit; Rath, M C

    2018-05-01

    L-cysteine capped CdSe quantum dots were synthesized via photochemical route in aqueous solution under UV photo-irradiation. The as grown CdSe quantum dots exhibit broad fluorescence at room temperature. The CdSe quantum dots were found to be formed only through the reactions of the precursors, i.e., Cd(NH3)2+4 and SeSO2-3 with the photochemically generated 1-hydroxy-2-propyl radicals, (CH3)2COH radicals, which are formed through the process of H atom abstraction by the photoexcited acetone from 2-propanol. L-Cysteine was found to act as a suitable capping agent for the CdSe quantum dots and increases their biocompatability. Cytotoxicty effects of these quantum dots were evaluated in Chinese Hamster Ovary (CHO) epithelial cells, indicated a significant lower level for the L-cysteine capped CdSe quantum dots as compare to the bare ones.

  13. Wetting layers effect on InAs/GaAs quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Sun Chao [State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, P.O. Box 49(BUPT), Xitucheng Road No. 10, Beijing 100876 (China); Lu Pengfei, E-mail: photon.bupt@gmail.com [State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, P.O. Box 49(BUPT), Xitucheng Road No. 10, Beijing 100876 (China); Yu Zhongyuan; Cao Huawei; Zhang Lidong [State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, P.O. Box 49(BUPT), Xitucheng Road No. 10, Beijing 100876 (China)

    2012-11-15

    FEM combining with the K{center_dot}P theory is adopted to systematically investigate the effect of wetting layers on the strain-stress profiles and electronic structures of self-organized InAs quantum dot. Four different kinds of quantum dots are introduced at the same height and aspect ratio. We found that 0.5 nm wetting layer is an appropriate thickness for InAs/GaAs quantum dots. Strain shift down about 3%{approx}4.5% for the cases with WL (0.5 nm) and without WL in four shapes of quantum dots. For band edge energy, wetting layers expand the potential energy gap width. When WL thickness is more than 0.8 nm, the band edge energy profiles cannot vary regularly. The electron energy is affected while for heavy hole this impact on the energy is limited. Wetting layers for the influence of the electronic structure is obviously than the heavy hole. Consequently, the electron probability density function spread from buffer to wetting layer while the center of hole's function moves from QDs internal to wetting layer when introduce WLs. When WLs thickness is larger than 0.8 nm, the electronic structures of quantum dots have changed obviously. This will affect the instrument's performance which relies on the quantum dots' optical properties.

  14. A Quantum Dot with Spin-Orbit Interaction--Analytical Solution

    Science.gov (United States)

    Basu, B.; Roy, B.

    2009-01-01

    The practical applicability of a semiconductor quantum dot with spin-orbit interaction gives an impetus to study analytical solutions to one- and two-electron quantum dots with or without a magnetic field.

  15. Cross-sectional nanophotoluminescence studies of Stark effects in self-assembled quantum dots

    International Nuclear Information System (INIS)

    Htoon, H.; Keto, J. W.; Baklenov, O.; Holmes, A. L. Jr.; Shih, C. K.

    2000-01-01

    By using a cross-sectional geometry, we show the capability to perform single-dot spectroscopy in self-assembled quantum dots using far-field optics. By using this method, we study the quantum-confined Stark effect in self-assembled quantum dots. For single-stack quantum dots (QDs), we find that the spectra are redshifted with an increase in electric field. For vertically coupled double-stack quantum dots, while most of the QDs are redshifted, some QDs show blueshifted spectra, which can be interpreted as an evidence of coupled QD molecules. (c) 2000 American Institute of Physics

  16. Statistical Characterization of Dispersed Single-Wall Carbon Nanotube Quantum Dots

    International Nuclear Information System (INIS)

    Shimizu, M; Moriyama, S; Suzuki, M; Fuse, T; Homma, Y; Ishibashi, K

    2006-01-01

    Quantum dots have been fabricated in single-wall carbon nanotubes (SWCNTs) simply by depositing metallic contacts on top of them. The fabricated quantum dots show different characteristics from sample to sample, which are even different in samples fabricated in the same chip. In this report, we study the statistical variations of the quantum dots fabricated with our method, and suggest their possible origin

  17. Optical properties of a tip-induced quantum dot

    NARCIS (Netherlands)

    Kemerink, M.; Sauthoff, K.; Koenraad, P.M.; Gerritsen, J.W.; Kempen, van H.; Fomin, V.M.; Wolter, J.H.; Devreese, J.T.; Miura, N.; Ando, T.

    2001-01-01

    We have performed optical spectroscopy measurements on an STM-tip-induced quantum dot. The dominant confinement in the (hole) quantum dot is in the direction parallel to the tip axis. Electron confinement is achieved by a sub-surface AlGaAs barrier. Current dependent measurements indicate that

  18. Electronic properties of assemblies of zno quantum dots

    NARCIS (Netherlands)

    Roest, Aarnoud Laurens

    2003-01-01

    Electron transport in an assembly of ZnO quantum dots has been studied using an electrochemically gated transistor. The electron mobility shows a step-wise increase as a function of the electron occupation per quantum dot. When the occupation number is below two, transport occurs by tunnelling

  19. Magnetization reversal in circular vortex dots of small radius.

    Science.gov (United States)

    Goiriena-Goikoetxea, M; Guslienko, K Y; Rouco, M; Orue, I; Berganza, E; Jaafar, M; Asenjo, A; Fernández-Gubieda, M L; Fernández Barquín, L; García-Arribas, A

    2017-08-10

    We present a detailed study of the magnetic behavior of Permalloy (Ni 80 Fe 20 alloy) circular nanodots with small radii (30 nm and 70 nm) and different thicknesses (30 nm or 50 nm). Despite the small size of the dots, the measured hysteresis loops manifestly display the features of classical vortex behavior with zero remanence and lobes at high magnetic fields. This is remarkable because the size of the magnetic vortex core is comparable to the dot diameter, as revealed by magnetic force microscopy and micromagnetic simulations. The dot ground states are close to the border of the vortex stability and, depending on the dot size, the magnetization distribution combines attributes of the typical vortex, single domain states or even presents features resembling magnetic skyrmions. An analytical model of the dot magnetization reversal, accounting for the large vortex core size, is developed to explain the observed behavior, providing a rather good agreement with the experimental results. The study extends the understanding of magnetic nanodots beyond the classical vortex concept (where the vortex core spins have a negligible influence on the magnetic behavior) and can therefore be useful for improving emerging spintronic applications, such as spin-torque nano-oscillators. It also delimits the feasibility of producing a well-defined vortex configuration in sub-100 nm dots, enabling the intracellular magneto-mechanical actuation for biomedical applications.

  20. Heparin conjugated quantum dots for in vitro imaging applications.

    Science.gov (United States)

    Maguire, Ciaran Manus; Mahfoud, Omar Kazem; Rakovich, Tatsiana; Gerard, Valerie Anne; Prina-Mello, Adriele; Gun'ko, Yurii; Volkov, Yuri

    2014-11-01

    In this work heparin-gelatine multi-layered cadmium telluride quantum dots (QDgel/hep) were synthesised using a novel 'one-pot' method. The QDs produced were characterised using various spectroscopic and physiochemical techniques. Suitable QDs were then selected and compared to thioglycolic acid stabilised quantum dots (QDTGA) and gelatine coated quantum dots (QDgel) for utilisation in in vitro imaging experiments on live and fixed permeabilised THP-1, A549 and Caco-2 cell lines. Exposure of live THP-1 cells to QDgel/hep resulted in localisation of the QDs to the nucleus of the cells. QDgel/hep show affinity for the nuclear compartment of fixed permeabilised THP-1 and A549 cells but remain confined to cytoplasm of fixed permeabilised Caco-2 cells. It is postulated that heparin binding to the CD11b receptor facilitates the internalisation of the QDs into the nucleus of THP-1 cells. In addition, the heparin layer may reduce the unfavourable thrombogenic nature of quantum dots observed in vivo. In this study, heparin conjugated quantum dots were found to have superior imaging properties compared to its native counterparts. The authors postulate that heparin binding to the CD11b receptor facilitates QD internalization to the nucleus, and the heparin layer may reduce the in vivo thrombogenic properties of quantum dots. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Field-emission from quantum-dot-in-perovskite solids.

    Science.gov (United States)

    García de Arquer, F Pelayo; Gong, Xiwen; Sabatini, Randy P; Liu, Min; Kim, Gi-Hwan; Sutherland, Brandon R; Voznyy, Oleksandr; Xu, Jixian; Pang, Yuangjie; Hoogland, Sjoerd; Sinton, David; Sargent, Edward

    2017-03-24

    Quantum dot and well architectures are attractive for infrared optoelectronics, and have led to the realization of compelling light sensors. However, they require well-defined passivated interfaces and rapid charge transport, and this has restricted their efficient implementation to costly vacuum-epitaxially grown semiconductors. Here we report solution-processed, sensitive infrared field-emission photodetectors. Using quantum-dots-in-perovskite, we demonstrate the extraction of photocarriers via field emission, followed by the recirculation of photogenerated carriers. We use in operando ultrafast transient spectroscopy to sense bias-dependent photoemission and recapture in field-emission devices. The resultant photodiodes exploit the superior electronic transport properties of organometal halide perovskites, the quantum-size-tuned absorption of the colloidal quantum dots and their matched interface. These field-emission quantum-dot-in-perovskite photodiodes extend the perovskite response into the short-wavelength infrared and achieve measured specific detectivities that exceed 10 12 Jones. The results pave the way towards novel functional photonic devices with applications in photovoltaics and light emission.

  2. Tuning Single Quantum Dot Emission with a Micromirror.

    Science.gov (United States)

    Yuan, Gangcheng; Gómez, Daniel; Kirkwood, Nicholas; Mulvaney, Paul

    2018-02-14

    The photoluminescence of single quantum dots fluctuates between bright (on) and dark (off) states, also termed fluorescence intermittency or blinking. This blinking limits the performance of quantum dot-based devices such as light-emitting diodes and solar cells. However, the origins of the blinking remain unresolved. Here, we use a movable gold micromirror to determine both the quantum yield of the bright state and the orientation of the excited state dipole of single quantum dots. We observe that the quantum yield of the bright state is close to unity for these single QDs. Furthermore, we also study the effect of a micromirror on blinking, and then evaluate excitation efficiency, biexciton quantum yield, and detection efficiency. The mirror does not modify the off-time statistics, but it does change the density of optical states available to the quantum dot and hence the on times. The duration of the on times can be lengthened due to an increase in the radiative recombination rate.

  3. Organic-inorganic hybrid carbon dots for cell imaging

    Science.gov (United States)

    Liu, Huan; Zhang, Hongwen; Li, Jiayu; Tang, Yuying; Cao, Yu; Jiang, Yan

    2018-04-01

    In this paper, nitrogen-doped carbon dots (CDs) had been synthesized directly by one-step ultrasonic treatment under mild conditions. During the functionalization process, Octa-aminopropyl polyhedral oligomeric silsesquioxane hydrochloride salt (OA-POSS) was used as stabilizing and passivation agent, which lead to self-assembling of CDs in aqueous medium solution. OA-POSS was obtained via hydrolytic condensation of γ-aminopropyl triethoxy silane (APTES). The average size of CDs prepared was approximately 3.3 nm with distribution between 2.5 nm and 4.5 nm. The prepared organic-inorganic hybrid carbon dots have several characteristics such as photoluminescence emission wavelength, efficient cellular uptake, and good biocompatibility. The results indicate that OA-POSS can maintain the fluorescence properties of the carbon dots effectively, and reduced cytotoxicity provides the possibility for biomedical applications. More than 89% of the Hela cells were viable when incubated with 2 mg ml‑1 or lesser organic-inorganic hybrid carbon dots. Thus, it provides a potential for multicolor imaging with HeLa cells.

  4. Charge-extraction strategies for colloidal quantum dot photovoltaics

    KAUST Repository

    Lan, Xinzheng

    2014-02-20

    The solar-power conversion efficiencies of colloidal quantum dot solar cells have advanced from sub-1% reported in 2005 to a record value of 8.5% in 2013. Much focus has deservedly been placed on densifying, passivating and crosslinking the colloidal quantum dot solid. Here we review progress in improving charge extraction, achieved by engineering the composition and structure of the electrode materials that contact the colloidal quantum dot film. New classes of structured electrodes have been developed and integrated to form bulk heterojunction devices that enhance photocharge extraction. Control over band offsets, doping and interfacial trap state densities have been essential for achieving improved electrical communication with colloidal quantum dot solids. Quantum junction devices that not only tune the optical absorption spectrum, but also provide inherently matched bands across the interface between p-and n-materials, have proven that charge separation can occur efficiently across an all-quantum-tuned rectifying junction. © 2014 Macmillan Publishers Limited.

  5. Galaxy Formation with Self-Consistently Modeled Stars and Massive Black Holes. I: Feedback-Regulated Star Formation and Black Hole Growth

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji-hoon; Wise, John H.; /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Princeton U., Astrophys. Sci. Dept.; Alvarez, Marcelo A.; /Canadian Inst. Theor. Astrophys.; Abel, Tom; /KIPAC, Menlo Park /Stanford U., Phys. Dept.

    2011-11-04

    There is mounting evidence for the coevolution of galaxies and their embedded massive black holes (MBHs) in a hierarchical structure formation paradigm. To tackle the nonlinear processes of galaxy-MBH interaction, we describe a self-consistent numerical framework which incorporates both galaxies and MBHs. The high-resolution adaptive mesh refinement (AMR) code Enzo is modified to model the formation and feedback of molecular clouds at their characteristic scale of 15.2 pc and the accretion of gas onto an MBH. Two major channels of MBH feedback, radiative feedback (X-ray photons followed through full three-dimensional adaptive ray tracing) and mechanical feedback (bipolar jets resolved in high-resolution AMR), are employed. We investigate the coevolution of a 9.2 x 10{sup 11} M {circle_dot} galactic halo and its 10{sup 5} {circle_dot} M embedded MBH at redshift 3 in a cosmological CDM simulation. The MBH feedback heats the surrounding interstellar medium (ISM) up to 10{sup 6} K through photoionization and Compton heating and locally suppresses star formation in the galactic inner core. The feedback considerably changes the stellar distribution there. This new channel of feedback from a slowly growing MBH is particularly interesting because it is only locally dominant and does not require the heating of gas globally on the disk. The MBH also self-regulates its growth by keeping the surrounding ISM hot for an extended period of time.

  6. Templated self-assembly of quantum dots from aqueous solution using protein scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Blum, Amy Szuchmacher [Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375 (United States); Soto, Carissa M [Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375 (United States); Wilson, Charmaine D [Geo-Centers, Incorporated, Newton, MA 02459 (United States); Whitley, Jessica L [Geo-Centers, Incorporated, Newton, MA 02459 (United States); Moore, Martin H [Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375 (United States); Sapsford, Kim E [George Mason University, 10910 University Boulevard, Manassas, VA 20110 (United States); Lin, Tianwei [Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (United States); Chatterji, Anju [Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (United States); Johnson, John E [Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (United States); Ratna, Banahalli R [Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375 (United States)

    2006-10-28

    Short, histidine-containing peptides can be conjugated to lysine-containing protein scaffolds to controllably attach quantum dots (QDs) to the scaffold, allowing for generic attachment of quantum dots to any protein without the use of specially engineered domains. This technique was used to bind quantum dots from aqueous solution to both chicken IgG and cowpea mosaic virus (CPMV), a 30 nm viral particle. These quantum dot-protein assemblies were studied in detail. The IgG-QD complexes were shown to retain binding specificity to their antigen after modification. The CPMV-QD complexes have a local concentration of quantum dots greater than 3000 nmol ml{sup -1}, and show a 15% increase in fluorescence quantum yield over free quantum dots in solution.

  7. Tuberculosis deaths averted by implementation of the DOTS strategy in Kazakhstan.

    Science.gov (United States)

    Favorov, M; Belilovsky, E; Aitmagambetova, I; Ismailov, S; White, M E; Chorba, T

    2010-12-01

    Kazakhstan began implementing the DOTS strategy for tuberculosis (TB) in 1998. Data were analyzed 1) to determine if changes in TB mortality rate (MR) and case fatality rate (CFR) in Kazakhstan for 1998-2003 differed from those of Uzbekistan and four adjacent Russian Federation (RF) oblasts that had not yet implemented DOTS, and 2) to estimate the number of deaths averted in Kazakhstan as a result of DOTS. Observed MRs were calculated, and predicted MRs for Kazakhstan were approximated by linear regression based on average slope of MRs from 1998 through 2003 in adjacent non-DOTS-implementing territories. Deaths averted were calculated by comparing predicted MRs to actual MRs by converting rate differences to numbers of deaths. TB MRs in Kazakhstan decreased markedly, but remained stable or increased in the neighboring territories. CFRs decreased markedly in Kazakhstan and marginally in Uzbekistan, and increased in the neighboring RF oblasts. From 1998 to 2004, DOTS appears to have helped avert approximately 17,800 deaths in Kazakhstan. DOTS has contributed markedly to a decrease in TB mortality in Kazakhstan. In settings where mortality data are relatively complete, deaths averted can be another indicator of DOTS effectiveness.

  8. Hyperbolic metamaterials based on quantum-dot plasmon-resonator nanocomposites

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Ozel, T.; Mutlugun, E.

    2014-01-01

    We theoretically demonstrate that nanocomposites made of colloidal semiconductor quantum dot monolayers placed between metal nanoparticle monolayers can function as multilayer hyperbolic metamaterials. Depending on the thickness of the spacer between the quantum dot and nanoparticle layers......, the effective permittivity tensor of the nanocomposite is shown to become indefinite, resulting in increased photonic density of states and strong enhancement of quantum dot luminescence. This explains the results of recent experiments [T. Ozel et al., ACS Nano 5, 1328 (2011)] and confirms that hyperbolic...

  9. Spin fine structure of optically excited quantum dot molecules

    Science.gov (United States)

    Scheibner, M.; Doty, M. F.; Ponomarev, I. V.; Bracker, A. S.; Stinaff, E. A.; Korenev, V. L.; Reinecke, T. L.; Gammon, D.

    2007-06-01

    The interaction between spins in coupled quantum dots is revealed in distinct fine structure patterns in the measured optical spectra of InAs/GaAs double quantum dot molecules containing zero, one, or two excess holes. The fine structure is explained well in terms of a uniquely molecular interplay of spin-exchange interactions, Pauli exclusion, and orbital tunneling. This knowledge is critical for converting quantum dot molecule tunneling into a means of optically coupling not just orbitals but also spins.

  10. Computer-automated tuning of semiconductor double quantum dots into the single-electron regime

    Energy Technology Data Exchange (ETDEWEB)

    Baart, T. A.; Vandersypen, L. M. K. [QuTech, Delft University of Technology, P.O. Box 5046, 2600 GA Delft (Netherlands); Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft (Netherlands); Eendebak, P. T. [QuTech, Delft University of Technology, P.O. Box 5046, 2600 GA Delft (Netherlands); Netherlands Organisation for Applied Scientific Research (TNO), P.O. Box 155, 2600 AD Delft (Netherlands); Reichl, C.; Wegscheider, W. [Solid State Physics Laboratory, ETH Zürich, 8093 Zürich (Switzerland)

    2016-05-23

    We report the computer-automated tuning of gate-defined semiconductor double quantum dots in GaAs heterostructures. We benchmark the algorithm by creating three double quantum dots inside a linear array of four quantum dots. The algorithm sets the correct gate voltages for all the gates to tune the double quantum dots into the single-electron regime. The algorithm only requires (1) prior knowledge of the gate design and (2) the pinch-off value of the single gate T that is shared by all the quantum dots. This work significantly alleviates the user effort required to tune multiple quantum dot devices.

  11. Functional Carbon Quantum Dots: A Versatile Platform for Chemosensing and Biosensing.

    Science.gov (United States)

    Feng, Hui; Qian, Zhaosheng

    2018-05-01

    Carbon quantum dot has emerged as a new promising fluorescent nanomaterial due to its excellent optical properties, outstanding biocompatibility and accessible fabrication methods, and has shown huge application perspective in a variety of areas, especially in chemosensing and biosensing applications. In this personal account, we give a brief overview of carbon quantum dots from its origin and preparation methods, present some advance on fluorescence origin of carbon quantum dots, and focus on development of chemosensors and biosensors based on functional carbon quantum dots. Comprehensive advances on functional carbon quantum dots as a versatile platform for sensing from our group are included and summarized as well as some typical examples from the other groups. The biosensing applications of functional carbon quantum dots are highlighted from selective assays of enzyme activity to fluorescent identification of cancer cells and bacteria. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Dynamical localization of two electrons in triple-quantum-dot shuttles

    International Nuclear Information System (INIS)

    Qu, Jinxian; Duan, Suqing; Yang, Ning

    2012-01-01

    The dynamical localization phenomena in two-electron quantum-dot shuttles driven by an ac field have been investigated and analyzed by the Floquet theory. The dynamical localization occurs near the anti-crossings in Floquet eigenenergy spectrum. The oscillation of the quantum-dot shuttles may increase the possibility of the dynamical localization. Especially, even if the two electrons are initialized in two neighbor dots, they can be localized there for appropriate intensity of the driven field. The studies may help the understanding of dynamical localization in electron shuttles and expand the application potential of nanoelectromechanical devices. -- Highlights: ► The dynamical localization in electron shuttle is studied by Floquet theory. ► There is a relation between quasi-energy anti-crossings and dynamical localization. ► The oscillation of quantum dot increases the dynamical localization. ► Even the electrons are initialized in different dots, the localization can occur.

  13. Quantum Dots in the Therapy: Current Trends and Perspectives.

    Science.gov (United States)

    Pohanka, Miroslav

    2017-01-01

    Quantum dots are an emerging nanomaterial with broad use in technical disciplines; however, their application in the field of biomedicine becomes also relevant and significant possibilities have appeared since the discovery in 1980s. The current review is focused on the therapeutic applications of quantum dots which become an emerging use of the particles. They are introduced as potent carriers of drugs and as a material well suited for the diagnosis of disparate pathologies like visualization of cancer cells or pathogenic microorganisms. Quantum dots toxicity and modifications for the toxicity reduction are discussed here as well. Survey of actual papers and patents in the field of quantum dots use in the biomedicine is provided. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Quantum dot conjugates in a sub-micrometer fluidic channel

    Science.gov (United States)

    Stavis, Samuel M.; Edel, Joshua B.; Samiee, Kevan T.; Craighead, Harold G.

    2010-04-13

    A nanofluidic channel fabricated in fused silica with an approximately 500 nm square cross section was used to isolate, detect and identify individual quantum dot conjugates. The channel enables the rapid detection of every fluorescent entity in solution. A laser of selected wavelength was used to excite multiple species of quantum dots and organic molecules, and the emission spectra were resolved without significant signal rejection. Quantum dots were then conjugated with organic molecules and detected to demonstrate efficient multicolor detection. PCH was used to analyze coincident detection and to characterize the degree of binding. The use of a small fluidic channel to detect quantum dots as fluorescent labels was shown to be an efficient technique for multiplexed single molecule studies. Detection of single molecule binding events has a variety of applications including high throughput immunoassays.

  15. Quantum dot conjugates in a sub-micrometer fluidic channel

    Science.gov (United States)

    Stavis, Samuel M [Ithaca, NY; Edel, Joshua B [Brookline, MA; Samiee, Kevan T [Ithaca, NY; Craighead, Harold G [Ithaca, NY

    2008-07-29

    A nanofluidic channel fabricated in fused silica with an approximately 500 nm square cross section was used to isolate, detect and identify individual quantum dot conjugates. The channel enables the rapid detection of every fluorescent entity in solution. A laser of selected wavelength was used to excite multiple species of quantum dots and organic molecules, and the emission spectra were resolved without significant signal rejection. Quantum dots were then conjugated with organic molecules and detected to demonstrate efficient multicolor detection. PCH was used to analyze coincident detection and to characterize the degree of binding. The use of a small fluidic channel to detect quantum dots as fluorescent labels was shown to be an efficient technique for multiplexed single molecule studies. Detection of single molecule binding events has a variety of applications including high throughput immunoassays.

  16. Polarized quantum dot emission in electrohydrodynamic jet printed photonic crystals

    International Nuclear Information System (INIS)

    See, Gloria G.; Xu, Lu; Nuzzo, Ralph G.; Sutanto, Erick; Alleyne, Andrew G.; Cunningham, Brian T.

    2015-01-01

    Tailored optical output, such as color purity and efficient optical intensity, are critical considerations for displays, particularly in mobile applications. To this end, we demonstrate a replica molded photonic crystal structure with embedded quantum dots. Electrohydrodynamic jet printing is used to control the position of the quantum dots within the device structure. This results in significantly less waste of the quantum dot material than application through drop-casting or spin coating. In addition, the targeted placement of the quantum dots minimizes any emission outside of the resonant enhancement field, which enables an 8× output enhancement and highly polarized emission from the photonic crystal structure

  17. Using a quantum dot system to realize perfect state transfer

    International Nuclear Information System (INIS)

    Li Ji; Wu Shi-Hai; Zhang Wen-Wen; Xi Xiao-Qiang

    2011-01-01

    There are some disadvantages to Nikolopoulos et al.'s protocol [Nikolopoulos G M, Petrosyan D and Lambropoulos P 2004 Europhys. Lett. 65 297] where a quantum dot system is used to realize quantum communication. To overcome these disadvantages, we propose a protocol that uses a quantum dot array to construct a four-qubit spin chain to realize perfect quantum state transfer (PQST). First, we calculate the interaction relation for PQST in the spin chain. Second, we review the interaction between the quantum dots in the Heitler—London approach. Third, we present a detailed program for designing the proper parameters of a quantum dot array to realize PQST. (general)

  18. Probing long-lived dark excitons in self-assembled quantum dots

    DEFF Research Database (Denmark)

    Johansen, Jeppe; Julsgaard, Brian; Stobbe, Søren

    2010-01-01

    Long-lived dark exciton states are formed in self-assembled quantum dots due to the combination of the angular momentum of electrons and holes. The lifetime of dark excitons are determined by spin-flip processes that transfer dark excitons into radiative bright excitons. We employ time......-resolved spontaneous emission measurements in a modified local density of optical states to unambiguously record the spin-flip rate. Pronounced variations in the spin-flip rate with the quantum dot emission energy are observed demonstrating that the exciton storage time can be extended by controlling the quantum dot......, which illustrates the important role of interfaces for quantum dot based nanophotonic structures....

  19. Whispering-gallery mode microcavity quantum-dot lasers

    International Nuclear Information System (INIS)

    Kryzhanovskaya, N V; Maximov, M V; Zhukov, A E

    2014-01-01

    This review examines axisymmetric-cavity quantum-dot microlasers whose emission spectrum is determined by whisperinggallery modes. We describe the possible designs, fabrication processes and basic characteristics of the microlasers and demonstrate the possibility of lasing at temperatures above 100 °C. The feasibility of creating multichannel optical sources based on a combination of a broadband quantum-dot laser and silicon microring modulators is discussed. (review)

  20. Zinc Cadmium Selenide Cladded Quantum Dot Based Electroluminescent and Nonvolatile Memory Devices

    Science.gov (United States)

    Al-Amody, Fuad H.

    This dissertation presents electroluminescent (EL) and nonvolatile memory devices fabricated using pseudomorphic ZnCdSe-based cladded quantum dots (QDs). These dots were grown using our own in-school built novel reactor. The EL device was fabricated on a substrate of ITO (indium tin oxide) coated glass with the quantum dots sandwiched between anode and cathode contacts with a small barrier layer on top of the QDs. The importance of these cladded dots is to increase the quantum yield of device. This device is unique as they utilize quantum dots that are pseudomorphic (nearly lattice-matched core and the shell of the dot). In the case of floating quantum dot gate nonvolatile memory, cladded ZnCdSe quantum dots are deposited on single crystalline gate insulator (ZnMgS/ZnMgSe), which is grown using metal-organic chemical vapor deposition (MOCVD). The control gate dielectric layer of the nonvolatile memory is Si3N4 or SiO2 and is grown using plasma enhanced chemical vapor deposition (PECVD). The cladded dots are grown using an improved methodology of photo-assisted microwave plasma metal-organic chemical vapor deposition (PMP-MOCVD) enhanced reactor. The cladding composition of the core and shell of the dots was engineered by the help of ultraviolet light which changed the incorporation of zinc (and hence composition of ZnCdSe). This makes ZnxCd1--xSe-ZnyCd1--y Se QDs to have a low composition of zinc in the core than the cladding (x