Evolution of the jet opening angle distribution in holographic plasma
Rajagopal, Krishna; van der Schee, Wilke
2016-01-01
We use holography to analyze the evolution of an ensemble of jets, with an initial probability distribution for their energy and opening angle as %for jets in proton-proton (pp) collisions, as they propagate through an expanding cooling droplet of strongly coupled plasma as in heavy ion collisions. We identify two competing effects: (i) each individual jet widens as it propagates; (ii) the opening angle distribution for jets emerging from the plasma within any specified range of energies has been pushed toward smaller angles, comparing to pp jets with the same energies. The second effect arises because small-angle jets suffer less energy loss and because jets with a higher initial energy are less probable in the ensemble. We illustrate both effects in a simple two-parameter model, and find that their consequence in sum is that the opening angle distribution for jets in any range of energies contains fewer narrow and wide jets. Either effect can dominate in the mean opening angle, for not unreasonable values o...
Evolution of the Jet Opening Angle Distribution in Holographic Plasma.
Rajagopal, Krishna; Sadofyev, Andrey V; van der Schee, Wilke
2016-05-27
We use holography to analyze the evolution of an ensemble of jets, with an initial probability distribution for their energy and opening angle as in proton-proton (pp) collisions, as they propagate through an expanding cooling droplet of strongly coupled plasma as in heavy ion collisions. We identify two competing effects: (i) each individual jet widens as it propagates and (ii) because wide-angle jets lose more energy, energy loss combined with the steeply falling perturbative spectrum serves to filter wide jets out of the ensemble at any given energy. Even though every jet widens, jets with a given energy can have a smaller mean opening angle after passage through the plasma than jets with that energy would have had in vacuum, as experimental data may indicate. PMID:27284647
Clark, G.; Paranicas, C.; Santos-Costa, D.; Livi, S.; Krupp, N.; Mitchell, D. G.; Roussos, E.; Tseng, W.-L.
2014-12-01
We provide a global view of ~20 to 800 keV electron pitch angle distributions (PADs) close to Saturn's current sheet using observations from the Cassini MIMI/LEMMS instrument. Previous work indicated that the nature of pitch angle distributions in Saturn's inner to middle magnetosphere changes near the radial distance of 10RS. This work confirms the existence of a PAD transition region. Here we go further and develop a new technique to statistically quantify the spatial profile of butterfly PADs as well as present new spatial trends on the isotropic PAD. Additionally, we perform a case study analysis and show the PADs exhibit strong energy dependent features throughout this transition region. We also present a diffusion theory model based on adiabatic transport, Coulomb interactions with Saturn's neutral gas torus, and an energy dependent radial diffusion coefficient. A data-model comparison reveals that adiabatic transport is the dominant transport mechanism between ~8 to 12RS, however interactions with Saturn's neutral gas torus become dominant inside ~7RS and govern the flux level of ~20 to 800 keV electrons. We have also found that field-aligned fluxes were not well reproduced by our modeling approach. We suggest that wave-particle interactions and/or a polar source of the energetic particles needs further investigation.
Evolution in opening angle combining DGLAP and BFKL logarithms
de Oliveira, E. G.; Martin, A. D.(Institute for Particle Physics Phenomenology, University of Durham, DH1 3LE, Durham, UK); Ryskin, M. G.
2014-01-01
We present an evolution equation which simultaneously sums the leading BFKL and DGLAP logarithms for the integrated gluon distribution in terms of a single variable, namely the emission angle of the gluon. This form of evolution is appropriate for Monte Carlo simulations of events of high energy pp (and p\\bar{p}) interactions, particularly where small x events are sampled.
Evolution in opening angle combining DGLAP and BFKL logarithms
Oliveira, E.G. de [Universidade Federal de Santa Catarina, Departamento de Fisica, CFM, C.P. 476, Florianopolis, SC (Brazil); Martin, A.D. [University of Durham, Institute for Particle Physics Phenomenology, Durham (United Kingdom); Ryskin, M.G. [University of Durham, Institute for Particle Physics Phenomenology, Durham (United Kingdom); Petersburg Nuclear Physics Institute, NRC Kurchatov Institute, St. Petersburg (Russian Federation)
2014-10-15
We present an evolution equation which simultaneously sums the leading BFKL and DGLAP logarithms for the integrated gluon distribution in terms of a single variable, namely the emission angle of the gluon. This form of evolution is appropriate for Monte Carlo simulations of events of high energy pp (and p anti p) interactions, particularly where small x events are sampled. (orig.)
R. M. Thorne
2012-04-01
Full Text Available We present a detailed numerical study on the effects of a non-dipole magnetic field on the Earth's plasma sheet electron distribution and its implication for diffuse auroral precipitation. Use of the modified bounce-averaged Fokker-Planck equation developed in the companion paper by Ni et al. (2012 for 2-D non-dipole magnetic fields suggests that we can adopt a numerical scheme similar to that used for a dipole field, but should evaluate bounce-averaged diffusion coefficients and bounce period related terms in non-dipole magnetic fields. Focusing on nightside whistler-mode chorus waves at L = 6, and using various Dungey magnetic models, we calculate and compare of the bounce-averaged diffusion coefficients in each case. Using the Alternative Direction Implicit (ADI scheme to numerically solve the 2-D Fokker-Planck diffusion equation, we demonstrate that chorus driven resonant scattering causes plasma sheet electrons to be scattered much faster into loss cone in a non-dipole field than a dipole. The electrons subject to such scattering extends to lower energies and higher equatorial pitch angles when the southward interplanetary magnetic field (IMF increases in the Dungey magnetic model. Furthermore, we find that changes in the diffusion coefficients are the dominant factor responsible for variations in the modeled temporal evolution of plasma sheet electron distribution. Our study demonstrates that the effects of realistic ambient magnetic fields need to be incorporated into both the evaluation of resonant diffusion coefficients and the calculation of Fokker-Planck diffusion equation to understand quantitatively the evolution of plasma sheet electron distribution and the occurrence of diffuse aurora, in particular at L > 5 during geomagnetically disturbed periods when the ambient magnetic field considerably deviates from a magnetic dipole.
Qualitative criterion for atom sputtering angle distributions
A model is introduced to explain the shape of atom polar emission angle distributions for monocomponent targets sputtered by normally incident keV - energy ions. Analytical expressions are obtained from the model which make it possible to identify three known kinds of the angle distributions - subcosinus, isotropic and supracosinus, for given ion energies and target-ion pairs. Furthermore the fourth, hybrid false-isotropic distribution is found, which is superposition of supracosinus and subcosinus distributions. The theoretical predictions of the angle distributions shape agree with the numerical modeling for sputtering of carbon and platinum by 0.1-10 keV Ar+ ions
Brownian Motion on a Sphere: Distribution of Solid Angles
Krishna, M. M. G.; Samuel, Joseph; Sinha, Supurna
2000-01-01
We study the diffusion of Brownian particles on the surface of a sphere and compute the distribution of solid angles enclosed by the diffusing particles. This function describes the distribution of geometric phases in two state quantum systems (or polarised light) undergoing random evolution. Our results are also relevant to recent experiments which observe the Brownian motion of molecules on curved surfaces like micelles and biological membranes. Our theoretical analysis agrees well with the...
The solar proton event of April 16, 1970 was monitored by Vela satellites, of orbit r=18 R/sub E/, in the solar wind and high-latitude magnetotail (lobe). Intensity structure at < or approx. =1 MeV indicates a delay of 85--102 min in access of protons to near the center of the north lobe, corresponding to entry points at 340--370 R/sub E/ from the earth. In three sequential periods, of 16, 181, and 124 min duration, the average intensity in the north lobe was lower, higher, and lower, respectively, than that in interplanetary space, by factors which varied from 2 to 5. These reversals were a consequence of reversals in field-aligned anisotropy in interplanetary space, the interplanetary magnetic field remaining southward. Pitch angle distributions were measured in three dimensions in interplanetary space and in the north lobe. In the lobe the distributions were essentially isotropic at r=18 R/sub E/. Comparison is made with theoretical propagation of solar particles along field lines in an open tail model, under the following conditions along a trajectory: (1) adiabatic motion all the way (Liouville theorem) : the 'adiabatic access model' (2) isotropization at the magnetopause followed by adiabatic motion: the 'nonadiabatic access model'. Neither mode of access explains the observations adequately. A hybrid mode is proposed, in which a minimal amount of scattering occurs as particles enter the tail, followed by amplification (attenuation) of intensity as the pitch distribution is transformed to near 18 R/sub E/ in the favored (unfavored) lobe. In this mode a large part of the isotropization at Vela orbit is accomplished by the Liouville transformation, since particles entering the tail beyond approx. =100 R/sub E/ will see an increase in magnetic field by a factor of 3 as they propagate along the tail. The amount of scatter at the magnetopause is estimated to be Δμ (rms) =0.3, where μ is cosine of pitch angle
Distribution of angles in hyperbolic lattices
Risager, Morten Skarsholm; Truelsen, Jimi Lee
2010-01-01
We prove an effective equidistribution result about angles in a hyperbolic lattice. We use this to generalize a result from the study by Boca.......We prove an effective equidistribution result about angles in a hyperbolic lattice. We use this to generalize a result from the study by Boca....
Distribution of Angles in Hyperbolic Lattices
S. Risager, Morten; L. Truelsen, Jimi
2008-01-01
We prove an effective equidistribution result about angles in a hyperbolic lattice. We use this to generalize a result due to F. P. Boca.......We prove an effective equidistribution result about angles in a hyperbolic lattice. We use this to generalize a result due to F. P. Boca....
Contact pressure distribution and support angle optimization of kiln tyre
无
2006-01-01
According to the shearing force character and the deformation coordination condition of shell at the station of supports, the mathematical models to calculate contact angle and contact pressure distribution between tyre and shell were set up, the formulae of bending moment and bending stress of tyre were obtained. Taking the maximum of tyre fatigue life as the optimal objective, the optimization model of tyre support angle was built. The computational results show that when tyre support angle is 30°, tyre life is far less than that when tyre support angle is optimal, which is 35.6°, and it is unsuitable to stipulate tyre support angle to be 30° in traditional design. The larger the load, the less the nominal stress amplitude increment of tyre, the more favorable the tyre fatigue life when tyre support angle is optimal.
Wide angle near-field diffraction and Wigner distribution
Almeida, J B
2003-01-01
Free-space propagation can be described as a shearing of the Wigner distribution function in the spatial coordinate; this shearing is linear in paraxial approximation but assumes a more complex shape for wide-angle propagation. Integration in the frequency domain allows the determination of near-field diffraction, leading to the well known Fresnel diffraction when small angles are considered and allowing exact prediction of wide-angle diffraction. The authors use this technique to demonstrate evanescent wave formation and diffraction elimination for very small apertures.
Winding angle distributions for two-dimensional collapsing polymers
Narros, Arturo; Owczarek, Aleksander L.; Prellberg, Thomas
2016-01-01
We provide numerical support for a long-standing prediction of universal scaling of winding angle distributions. Simulations of interacting self-avoiding walks show that the winding angle distribution for N-step walks is compatible with the theoretical prediction of a Gaussian with a variance growing asymptotically as C log N, with C = 2 in the swollen phase (previously verified), and C = 24/7 at the θ-point. At low temperatures weaker evidence demonstrates compatibility with the same scaling and a value of C = 4 in the collapsed phase, also as theoretically predicted.
Mathematical simulation of gamma-radiation angle distribution measurements
We developed mathematical model of the facility for gamma-radiation angle distribution measurement and calculated response functions for gamma-radiation intensities. We developed special software for experimental data processing, the 'Shelter' object radiation spectra unfolding and Sphere detector (ShD) angle resolution estimation. Neuronet method using for detection of the radiation directions is given. We developed software based on the neuronet algorithm, that allows obtaining reliable distribution of gamma-sources that make impact on the facility detectors at the measurement point. 10 refs.; 15 figs.; 4 tab
Effect of Air Outlet Angle on Air Distribution Performance Index
Isbeyeh W. Maid
2013-05-01
Full Text Available In this paper a numerical study of velocity and temperature distribution in air conditioned space have been made. The computational model consists of the non-isothermal 3-D turbulent with (k-ε model. The numerical study is made to conduct air distribution in a room air-conditioned space with real interior dimensions (6×4×3m and to analyze the effect of changing angle of grille vanes on the flow pattern, velocity, and temperature distribution in the room under a set of different condition, and under a supply air temperature of 16˚C to examine the final result on air distribution performance index (ADPI.The results show a significant effect within the change of supply air angle, the maximum air distribution performance index (ADPI is 52% when air change per hour (ACH is equal to 10 at 16˚C inlet temperature with angle ( 15˚ down, and the minimum value of (ADPI is 20% when ACH is equal to 15 at 16˚C inlet temperature and angle ( degree.
BOND-ANGLE DISTRIBUTION FUNCTIONS IN METALLIC GLASSES
Hafner, J.
1985-01-01
Bond-angle distribution functions have been calculated for realistic models of metallic glasses. They suggest a defected icosahedral short-range bond-orientational order and a close analogy of the short-range topological order in the amorphous and in the crystalline states.
SIMULATING THE EFFECTS OF INITIAL PITCH-ANGLE DISTRIBUTIONS ON SOLAR FLARES
In this work, we model both the thermal and non-thermal components of solar flares. The model we use, HYLOOP, combines a hydrodynamic equation solver with a non-thermal particle tracking code to simulate the thermal and non-thermal dynamics and emission of solar flares. In order to test the effects of pitch-angle distribution on flare dynamics and emission, a series of flares is simulated with non-thermal electron beams injected at the loop apex. The pitch-angle distribution of each beam is described by a single parameter and allowed to vary from flare to flare. We use the results of these simulations to generate synthetic hard and soft X-ray emissions (HXR and SXR). The light curves of the flares in Hinode's X-ray Telescope passbands show a distinct signal that is highly dependent on pitch-angle distribution. The simulated HXR emission in the 3-6 keV bandpass shows the formation and evolution of emission sources that correspond well to the observations of pre-impulsive flares. This ability to test theoretical models of thermal and non-thermal flare dynamics directly with observations allows for the investigation of a wide range of physical processes governing the evolution of solar flares. We find that the initial pitch-angle distribution of non-thermal particle populations has a profound effect on loop top HXR and SXR emission and that apparent motion of HXR is a natural consequence of non-thermal particle evolution in a magnetic trap.
Cultural Evolution as Distributed Computation
Gabora, Liane
2013-01-01
The speed and transformative power of human cultural evolution is evident from the change it has wrought on our planet. This chapter proposes a human computation program aimed at (1) distinguishing algorithmic from non-algorithmic components of cultural evolution, (2) computationally modeling the algorithmic components, and amassing human solutions to the non-algorithmic (generally, creative) components, and (3) combining them to develop human-machine hybrids with previously unforeseen comput...
Evolution of dose distribution calculations in brachytherapy
In this report the evolution of dose distribution calculations is revised in detail, considering the simplest case (a point source in free space) and the more complex situation of a real encapsulated line source embedded in a scattering medium. The most recent formalism to perform the dosimetry of interstitial brachytherapy sources is presented, where measured or measurable dose rates from actual sources in a tissue equivalent phantom are required as input data
On World Religion Adherence Distribution Evolution
Ausloos, M.; Petroni, F.
2008-01-01
Religious adherence can be considered as a degree of freedom, in a statistical physics sense, for a human agent belonging to a population. The distribution, performance and life time of religions can thus be studied having in mind heterogeneous interacting agent modeling in mind. We present a comprehensive analysis of 58 so called religion (to be better defined in the main text) evolutions, as measured through their number of adherents between 1900 and 2000, - data taken from the World Christ...
Small-angle x-ray scattering measurements of hydrogen evolution from an epitaxial Nb film
Small-angle x-ray scattering (SAXS) measurements have been performed to investigate particle morphology during in situ hydrogen evolution from a 1000-A epitaxial Nb film on (112-bar0) sapphire initially loaded to saturation with hydrogen. The SAXS intensity follows the plate or disk single-particle form factor (Q-2, where Q is the wave-vector transfer) during hydrogen evolution. A fit to this power-law behavior yields a plate thickness of ≅7 A. A second power-law behavior (Q-3) was observed after complete hydrogen evolution. This power law corresponds to the small-angle scattering response from edge dislocations and is consistent with the broadening of the lattice mosaic induced by hydride decomposition
Evolution of Quasar Spectral Energy Distributions
Schilling, Amanda; Kennefick, J.; Mahmood, A.
2012-05-01
A common practice when formulating quasar luminosity functions (QLF) has been to adopt an average spectral index, $\\alpha$, for the sample even though it is well known that quasars exhibit a broad range of spectral energy distributions (SED.) We have investigated the possible evolution of $\\alpha$ as a function of redshift, as any evolution in this parameter would introduce or mask evolution in the QLF. We imaged 103 Sloan Digital Sky Survey (SDSS) quasars in the optical and near-infrared bands, near in time to mitigate the effects of variability, in three redshift bins centered at $z\\approx 1.9$, $2.7$, and $4.0$, corresponding to look-back times of 10-12 billion years. We present restframe UV-optical SED’s and spectral indices and discuss possible evolution in our sample. We also use single epoch spectra of the quasars to estimate the mass of the central black hole and discuss possible correlations of quasar properties such as mass, luminosity, and spectral shape.
Definition and Evolution of Transverse Momentum Distributions
Echevarria, Miguel G; Scimemi, Ignazio
2012-01-01
We consider the definition of unpolarized transverse-momentum-dependent parton distribution functions while staying on-the-light-cone. By imposing a requirement of identical treatment of two collinear sectors, our approach, compatible with a generic factorization theorem with the soft function included, is valid for all non-ultra-violet regulators (as it should), an issue which causes much confusion in the whole field. We explain how large logarithms can be resummed in a way which can be considered as an alternative to the use of Collins-Soper evolution equation. The evolution properties are also discussed and the gauge-invariance, in both classes of gauges, regular and singular, is emphasized.
The existing methods for determining particle size distributions from small angle X-ray scattering data are reviewed. The improved transform technique was used for calculating diameter distributions N(D) of lightsensitive silverhalide crystallites in photochromic glasses. From the evolution of N(D) during a certain heat treatment it can be concluded that two generations of crystallites of different size are precipitated. In glass I, the mean diameter D increases proportional to the time t of the treatment (reaction-limited growth) and in glass II D3 approximately t (diffusion-limited ripening) is obtained. (author)
Solar proton pitch angle distribution for the January 24, 1969 event
Pitch angle distributions during the highly anisotropic phase of the event are fitted by a polynomial in cosmic pitch angle, μ, and the results are compared with the predictions of a Fokker-Planck equation in μ space for quasi-steady injection. Implications for the theory of the diffusion coefficient D(μ) are discussed. (orig.)
Using the analogy between brownian motion and Quantum Mechanics, we study the winding angle θ of planar brownian curves around a given point, say the origin O. In particular, we compute the characteristic function for the probability distribution of θ and recover Spitzer's law in the limit of infinitely large times. Finally, we study the (large) change in the winding angle distribution when we add a repulsive potential at the origin
Helles, Glennie; Fonseca, Rasmus
2009-01-01
residue in the input-window. The trained neural network shows a significant improvement (4-68%) in predicting the most probable bin (covering a 30°×30° area of the dihedral angle space) for all amino acids in the data set compared to first order statistics. An accuracy comparable to that of secondary...... local context dependent dihedral angle propensities in coil-regions. This predicted distribution can potentially improve tertiary structure prediction methods that are based on sampling the backbone dihedral angles of individual amino acids. The predicted distribution may also help predict local...
Xu, Y.; Tan, L.; Cao, S. L.; Wang, Y. C.; Meng, G.; Qu, W. S.
2015-01-01
The influence of blade angle distribution along leading edge on cavitation performance of centrifugal pumps is analysed in the present paper. Three sets of blade angle distribution along leading edge for three blade inlet angles are chosen to design nine centrifugal pump impellers. The RNG k-epsilon turbulence model and the Zwart-Gerber-Belamri cavitation model are employed to simulate the cavitation flows in centrifugal pumps with different impellers and the same volute. The numerical results are compared with the experimental data, and the comparison proves that the numerical simulation can accurately predict the cavitation performance of centrifugal pumps. On the basis of the numerical simulations, the pump head variations with pump inlet pressure, and the flow details in centrifugal pump are revealed to demonstrate the influence of blade angle distribution along leading edge on cavitation performances of centrifugal pumps.
Controls on stream network branching angles, tested using landscape evolution models
Theodoratos, Nikolaos; Seybold, Hansjörg; Kirchner, James W.
2016-04-01
Stream networks are striking landscape features. The topology of stream networks has been extensively studied, but their geometry has received limited attention. Analyses of nearly 1 million stream junctions across the contiguous United States [1] have revealed that stream branching angles vary systematically with climate and topographic gradients at continental scale. Stream networks in areas with wet climates and gentle slopes tend to have wider branching angles than in areas with dry climates or steep slopes, but the mechanistic linkages underlying these empirical correlations remain unclear. Under different climatic and topographic conditions different runoff generation mechanisms and, consequently, transport processes are dominant. Models [2] and experiments [3] have shown that the relative strength of channel incision versus diffusive hillslope transport controls the spacing between valleys, an important geometric property of stream networks. We used landscape evolution models (LEMs) to test whether similar factors control network branching angles as well. We simulated stream networks using a wide range of hillslope diffusion and channel incision parameters. The resulting branching angles vary systematically with the parameters, but by much less than the regional variability in real-world stream networks. Our results suggest that the competition between hillslope and channeling processes influences branching angles, but that other mechanisms may also be needed to account for the variability in branching angles observed in the field. References: [1] H. Seybold, D. H. Rothman, and J. W. Kirchner, 2015, Climate's watermark in the geometry of river networks, Submitted manuscript. [2] J. T. Perron, W. E. Dietrich, and J. W. Kirchner, 2008, Controls on the spacing of first-order valleys, Journal of Geophysical Research, 113, F04016. [3] K. E. Sweeney, J. J. Roering, and C. Ellis, 2015, Experimental evidence for hillslope control of landscape scale, Science, 349
Huemmrich, Karl F.
2013-01-01
The leaf inclination angle distribution (LAD) is an important characteristic of vegetation canopy structure affecting light interception within the canopy. However, LADs are difficult and time consuming to measure. To examine possible global patterns of LAD and their implications in remote sensing, a model was developed to predict leaf angles within canopies. Canopies were simulated using the SAIL radiative transfer model combined with a simple photosynthesis model. This model calculated leaf inclination angles for horizontal layers of leaves within the canopy by choosing the leaf inclination angle that maximized production over a day in each layer. LADs were calculated for five latitude bands for spring and summer solar declinations. Three distinct LAD types emerged: tropical, boreal, and an intermediate temperate distribution. In tropical LAD, the upper layers have a leaf angle around 35 with the lower layers having horizontal inclination angles. While the boreal LAD has vertical leaf inclination angles throughout the canopy. The latitude bands where each LAD type occurred changed with the seasons. The different LADs affected the fraction of absorbed photosynthetically active radiation (fAPAR) and Normalized Difference Vegetation Index (NDVI) with similar relationships between fAPAR and leaf area index (LAI), but different relationships between NDVI and LAI for the different LAD types. These differences resulted in significantly different relationships between NDVI and fAPAR for each LAD type. Since leaf inclination angles affect light interception, variations in LAD also affect the estimation of leaf area based on transmittance of light or lidar returns.
Multi-angle Spectra Evolution of Langmuir Turbulence Excited by RF Ionospheric Interactions at HAARP
Sheerin, J. P.; Rayyan, N.; Watkins, B. J.; Bristow, W. A.; Spaleta, J.; Watanabe, N.; Golkowski, M.; Bernhardt, P. A.
2013-12-01
The high power HAARP HF transmitter is employed to generate and study strong Langmuir turbulence (SLT) in the interaction region of overdense ionospheric plasma. Diagnostics included the Modular UHF Ionospheric Radar (MUIR) sited at HAARP, the SuperDARN-Kodiak HF radar, and HF receivers to record stimulated electromagnetic emissions (SEE). Dependence of diagnostic signals on HAARP HF parameters, including pulselength, duty-cycle, aspect angle, and frequency were recorded. Short pulse, low duty cycle experiments demonstrate control of artificial field-aligned irregularities (AFAI) and isolation of ponderomotive effects. Among the effects observed and studied are: SLT spectra including cascade, collapse, and co-existence spectra and an outshifted plasma line under certain ionospheric conditions. High time resolution studies of the temporal evolution of the plasma line reveal the appearance of an overshoot effect on ponderomotive timescales. Bursty turbulence is observed in the collapse and cascade lines. For the first time, simultaneous multi-angle radar measurements of plasma line spectra are recorded demonstrating marked dependence on aspect angle with the strongest interaction region observed displaced southward of the HF zenith pointing angle. Numerous measurements of the outshifted plasma line are observed. Experimental results are compared to previous high latitude experiments and predictions from recent modeling efforts.
Multi-angle Spectra Evolution of Ionospheric Turbulence Excited by RF Interactions at HAARP
Sheerin, J. P.; Rayyan, N.; Watkins, B. J.; Watanabe, N.; Golkowski, M.; Bristow, W. A.; Bernhardt, P. A.; Briczinski, S. J., Jr.
2014-12-01
The high power HAARP HF transmitter is employed to generate and study strong Langmuir turbulence (SLT) in the interaction region of overdense ionospheric plasma. Diagnostics included the Modular UHF Ionospheric Radar (MUIR) sited at HAARP, the SuperDARN-Kodiak HF radar, and HF receivers to record stimulated electromagnetic emissions (SEE). Dependence of diagnostic signals on HAARP HF parameters, including pulselength, duty-cycle, aspect angle, and frequency were recorded. Short pulse, low duty cycle experiments demonstrate control of artificial field-aligned irregularities (AFAI) and isolation of ponderomotive effects. For the first time, simultaneous multi-angle radar measurements of plasma line spectra are recorded demonstrating marked dependence on aspect angle with the strongest interaction region observed displaced southward of the HF zenith pointing angle. For a narrow range of HF pointing between Spitze and magnetic zenith, a reduced threshold for AFAI is observed. High time resolution studies of the temporal evolution of the plasma line reveal the appearance of an overshoot effect on ponderomotive timescales. Numerous measurements of the outshifted plasma line are observed. Experimental results are compared to previous high latitude experiments and predictions from recent modeling efforts
The pitch angle distributions of a mesh type electron gun for the electron transport experiments in stellarators are estimated with the electron re-entry effect and the measurement method for pitch angle distribution by means of a local mirror field is proposed. It is found that the electron re-entry effect is significant to design electron guns for the electron transport experiment in stellarators because the high pitch angle electrons which re-enter into the gun launch again with a low pitch angle. The compensation method for an error field on the quasi helically symmetric stellarator HSX is also proposed. It is found that the additional toroidal mirror modes [n,m] = [3,0], [4,0] can eliminate a dangerous error field model [-1, -1] like the earth field. Here, n and m are toroidal and poloidal modes. (author)
A particle-swarm optimization method with nonlinear time-varying evolution (PSO-NTVE) is employed in determining the tilt angle of photovoltaic (PV) modules in Taiwan. The objective is to maximize the output electrical energy of the modules. In this study, seven Taiwanese cities were selected for analysis. First, the sun's position at any time and location was predicted by the mathematical procedure of Julian dating, and then the solar irradiation was obtained at each site under a clear sky. By combining the temperature effect, the PSO-NTVE method is adopted to calculate the optimal tilt angles for fixed south-facing PV modules. In this method, the parameters are determined by using matrix experiments with an orthogonal array, in which a minimal number of experiments have an effect that approximates the full factorial experiments. Statistical error analysis was performed to compare the results between the four PSO methods and experimental results. Hengchun city in which the minimum total error value of 6.12% the reasons for the weather more stability and less building shade. A comparison of the measurement results in electrical energy between the four PSO methods and the PV modules set a six tilt angles. Obviously four types of PSO methods simulation of electrical energy value from 231.12 kWh/m2 for Taipei to 233.81 kWh/m2 for Hengchun greater than the measurement values from 224.71 kWh/m2 for Taichung to 228.47 kWh/m2 for Hengchun by PV module which is due to instability caused by climate change. Finally, the results show that the annual optimal angle for the Taipei area is 18.16o; for Taichung, 17.3o; for Tainan, 16.15o; for Kaosiung, 15.79o; for Hengchung, 15.17o; for Hualian, 17.16o; and for Taitung, 15.94o. It is evident that the authorized Industrial Technology Research Institute (ITRI) recommends that tilt angle of 23.5o was not an appropriate use of Taiwan's seven cities. PV modules with the installation of the tilt angle should be adjusted in different
Maadooliat, Mehdi
2012-08-27
Despite considerable progress in the past decades, protein structure prediction remains one of the major unsolved problems in computational biology. Angular-sampling-based methods have been extensively studied recently due to their ability to capture the continuous conformational space of protein structures. The literature has focused on using a variety of parametric models of the sequential dependencies between angle pairs along the protein chains. In this article, we present a thorough review of angular-sampling-based methods by assessing three main questions: What is the best distribution type to model the protein angles? What is a reasonable number of components in a mixture model that should be considered to accurately parameterize the joint distribution of the angles? and What is the order of the local sequence-structure dependency that should be considered by a prediction method? We assess the model fits for different methods using bivariate lag-distributions of the dihedral/planar angles. Moreover, the main information across the lags can be extracted using a technique called Lag singular value decomposition (LagSVD), which considers the joint distribution of the dihedral/planar angles over different lags using a nonparametric approach and monitors the behavior of the lag-distribution of the angles using singular value decomposition. As a result, we developed graphical tools and numerical measurements to compare and evaluate the performance of different model fits. Furthermore, we developed a web-tool (http://www.stat.tamu. edu/~madoliat/LagSVD) that can be used to produce informative animations. © The Author 2012. Published by Oxford University Press.
Spin-Orbit angle distribution and the origin of (mis)aligned hot Jupiters
Crida, Aurélien
2014-01-01
For 61 transiting hot Jupiters, the projection of the angle between the orbital plane and the stellar equator (called the spin-orbit angle) has been measured. For about half of them, a significant misalignment is detected, and retrograde planets have been observed. This challenges scenarios of the formation of hot Jupiters. In order to better constrain formation models, we relate the distribution of the real spin-orbit angle $\\Psi$ to the projected one $\\beta$. Then, a comparison with the observations is relevant. We analyse the geometry of the problem to link analytically the projected angle $\\beta$ to the real spin-orbit angle $\\Psi$. The distribution of $\\Psi$ expected in various models is taken from the literature, or derived with a simplified model and Monte-Carlo simulations in the case of the disk-torquing mechanism. An easy formula to compute the probability density function (PDF) of $\\beta$ knowing the PDF of $\\Psi$ is provided. All models tested here look compatible with the observed distribution be...
Effect of Chorus Latitudinal Distribution on Evolution of Outer Radiation Belt Electrons
XIAO Fuliang; LI Junqiu; TANG Lijun; HE Yihua; LI Jiangfan
2009-01-01
Primary result on the impact of the latitudinal distribution of whistler-mode chorus upon temporal evolution of the phase space density (PSD) of outer radiation belt energetic electrons was presented.We evaluate diffusion rates in pitch angle and momentum due to a band of chorus frequency distributed at a standard Gaussian spectrum,and solve a 2-D bounce-averaged momentum-pitch-angle Fokker-Planck equation at L=4.5.It is shown that chorus is effective in accelerating electrons and can increase PSD for energy of ～1 MeV by a factor of 10 or more in about one day,which is consistent with observation.Moreover,the latitudinal distribution of chorus has a great impact on the acceleration of electrons.As the latitudinal distribution increases,the efficient acceleration region extends from higher pitch angles to lower pitch angles,and even covers the entire pitch angle region when chorus power reaches the maximum latitude λm=45°.
Measurement of angle distribution in multiple scattering by track digitization method
The multiple scattering of β-ray with neon gas atoms is studied by use of the projection spark chamber. The tracks are digitized and analysed on-line to give the projected angle distribution. The present data are compared with the Moliere theory. (author)
Small-angle neutron scattering study of structural evolution of different phases in protein solution
V K Aswal; S Chodankar; J Kohlbrecher; R Vavrin; A G Wagh
2008-10-01
Small-angle neutron scattering (SANS) has been used to study the structural evolution of different phases in protein solution leading to crystallization, denaturation and gelation. The protein solution under crystallization mostly consists of monomers and dimers, and higher-mers are not observed as they are perhaps formed in very small numbers. The onset and the rate of crystallization strongly depend on the salt concentration. Protein denaturation on addition of surfactant occurs due to the formation of micelle-like clusters along the unfolded polypeptide chains of the protein. The structure of such protein{surfactant complex is found to be independent of the size of the micelles in their pure surfactant solutions. The structure of temperature-induced protein gels shows a fractal structure. Rheology of these gels shows a strong dependence on varying pH or protein concentration, whereas the structure of such gels is found to be similar.
Small-angle neutron scattering study of structural evolution of different phases in protein solution
Small-angle neutron scattering (SANS) has been used to study the structural evolution of different phases in protein solution leading to crystallization, denaturation and gelation. The protein solution under crystallization mostly consists of monomers and dimmers, and higher-mers are not observed as they are perhaps formed in very small numbers. The onset and the rate of crystallization strongly depend on the salt concentration. Protein denaturation on addition of surfactant occurs due to the formation of micelle-like clusters along the unfolded polypeptide chains of the protein. The structure of such protein-surfactant complex is found to be independent of the size of the micelles in their pure surfactant solutions. The structure of temperature-induced protein gels shows a fractal structure. Rheology of these gels shows a strong dependence on varying pH or protein concentration, whereas the structure of such gels is found to be similar. (author)
Evolution of surname distribution under gender-equality measurements
Lafuerza, Luis F.; Raul Toral
2010-01-01
We consider a model for the evolution of the surnames distribution under a gender-equality measurement presently discussed in the Spanish parliament (the children take the surname of the father or the mother according to alphabetical order). We quantify how this would bias the alphabetical distribution of surnames, and analyze its effect on the present distribution of the surnames in Spain.
Evolution of the pulsar inclination angle in the wind braking model
Kou, F F; Wang, N
2016-01-01
In a plasma filled magnetosphere, in addition to providing a torque to brake down the pulsar, the magnetosphere will also generate a torque to align the pulsar magnetic and rotational axes. The evolution of pulsar inclination angle in the wind braking model is calculated. In the wind braking model, the oblique pulsar tends to align. The pulsar alignment will also affect the spin-down behavior. Braking index will increase firstly and then decrease as the pulsar evolving from the magneto-dipole radiation dominated case to the wind braking dominated case. Braking index may be larger than $3$ in the early time. And during the following long time, braking index will be always smaller than $3$. This can explain braking index observations of larger than $3$ and smaller than $3$. Besides, the pulsar will evolve downwards straightly to the death valley after pulsar death in the $P-\\dot{P}$ diagram. This may explain the observed maximum spinning period of pulsars. And the long-term evolution of pulsars in the wind brak...
Evolution Equations for Higher Moments of Angular Momentum Distributions
Haegler, P.; Schaefer, A
1998-01-01
Based on a sumrule for the nucleon spin we expand quark and gluon orbital angular momentum operators and derive an evolution matrix for higher moments of the corresponding distributions. In combination with the spin-dependent DGLAP-matrix we find a complete set of spin and orbital angular momentum evolution equations.
Correlations in double parton distributions. Effects of evolution
We numerically investigate the impact of scale evolution on double parton distributions, which are needed to compute multiple hard scattering processes. Assuming correlations between longitudinal and transverse variables or between the parton spins to be present at a low scale, we study how they are affected by evolution to higher scales, i.e. by repeated parton emission. We find that generically evolution tends to wash out correlations, but with a speed that may be slow or fast depending on kinematics and on the type of correlation. Nontrivial parton correlations may hence persist in double parton distributions at the high scales relevant for hard scattering processes.
Choi, Sung-Hwan; Kim, Seong-Jin; Lee, Kee-Joon; Sung, Sang-Jin; Chun, Youn-Sic
2016-01-01
Objective The purpose of this study was to analyze stress distributions in the roots, periodontal ligaments (PDLs), and bones around cylindrical and tapered miniscrews inserted at different angles using a finite element analysis. Methods We created a three-dimensional (3D) maxilla model of a dentition with extracted first premolars and used 2 types of miniscrews (tapered and cylindrical) with 1.45-mm diameters and 8-mm lengths. The miniscrews were inserted at 30°, 60°, and 90° angles with respect to the bone surface. A simulated horizontal orthodontic force of 2 N was applied to the miniscrew heads. Then, the stress distributions, magnitudes during miniscrew placement, and force applications were analyzed with a 3D finite element analysis. Results Stresses were primarily absorbed by cortical bone. Moreover, very little stress was transmitted to the roots, PDLs, and cancellous bone. During cylindrical miniscrew insertion, the maximum von Mises stress increased as insertion angle decreased. Tapered miniscrews exhibited greater maximum von Mises stress than cylindrical miniscrews. During force application, maximum von Mises stresses increased in both groups as insertion angles decreased. Conclusions For both cylindrical and tapered miniscrew designs, placement as perpendicular to the bone surface as possible is recommended to reduce stress in the surrounding bone. PMID:27478796
Liquid-crystal variable-focus lenses with a spatially-distributed tilt angles.
Honma, Michinori; Nose, Toshiaki; Yanase, Satoshi; Yamaguchi, Rumiko; Sato, Susumu
2009-06-22
A pretilt angle controlling method by the density of rubbings using a tiny stylus is proposed. The control of the surface pretilt angle is achieved by rubbing a side-chain type polyimide film for a homeotropic alignment. Smooth liquid crystal (LC) director distribution in the bulk layer is successfully obtained even though the rough surface orientation. This approach is applied to LC cylindrical and rectangular lenses with a variable-focusing function. The distribution profile of the rubbing pitch (the reciprocal of the rubbing density) for small aberration is determined to be quadratic. The variable focusing function is successfully achieved in the LC rectangular lens, and the voltage dependence of the focal length is tried to be explained by the LC molecular reorientation behavior. PMID:19550499
Prediction of optimum section pitch angle distribution along wind turbine blades
Highlights: ► Prediction of optimum pitch angle along wind turbine blades. ► Maximum electrical power extraction at the installation site. ► Solving BEM equations with the probability distribution function of wind speed at a installation site. - Abstract: In this paper, the boost in electrical energy production of horizontal-axis wind turbines with fixed rotor speed is studied. To achieve this, a new innovative algorithm is proposed and justified to predict a distribution of section pitch angle along wind turbine blades that corresponds to the maximum power extraction in the installation site. A code is developed based on the blade element momentum theory which incorporates different corrections such as the tip loss correction. This aerodynamic code is capable of accurately predicting the aerodynamics of horizontal-axis wind turbines
Microwave field distribution in a magic angle spinning dynamic nuclear polarization NMR probe
Nanni, Emilio A.; Barnes, Alexander B.; Matsuki, Yoh; Woskov, Paul P.; Corzilius, Björn; Griffin, Robert G.; Temkin, Richard J.
2011-01-01
We present a calculation of the microwave field distribution in a magic angle spinning (MAS) probe utilized in dynamic nuclear polarization (DNP) experiments. The microwave magnetic field (B[subscript 1S]) profile was obtained from simulations performed with the High Frequency Structure Simulator (HFSS) software suite, using a model that includes the launching antenna, the outer Kel-F stator housing coated with Ag, the RF coil, and the 4 mm diameter sapphire rotor containing the sample. The p...
Pitch angle distributions of energetic ions in the lobes of the distant geomagnetic tail
Analysis of energetic (> 35 keV) ion data from the ISEE-3 spacecraft obtained during 1982-1983, when the spacecraft made a series of traversals of the distant geomagnetic tail (XGSE > - 230 RE), indicates that the pitch angle distribution of energetic ions in the distant tail lobes is usually highly anisotropic, being peaked closely perpendicular to the magnetic field direction, but with a small net flow in the antisunward direction. In this paper we present a model, based on the motion of single particles into and within the tail lobes, which accounts for these observed distributions. This model assumes that the lobe ions originate in the magnetosheath, where the energetic ion population consists of two components; a spatially uniform ''solar'' population, and a population of ''terrestrial'' origin, which decreases in strength with downtail distance. The pitch angle distribution at any point within the lobe may be constructed, assuming that the value of the distribution function along the particle trajectory is conserved. In general, those ions with a large field-aligned component to their motion enter the lobes in the deep tail, where the ''terrestrial'' source is weak, whilst those moving closely perpendicular to the field enter the lobes at positions much closer to the Earth, where the source is strong. The fluxes of these latter ions are therefore much enhanced above the rest of the pitch angle distribution, and are shown to account for the form of the observed distributions. The model also accounts for the more isotropic ion population observed in the lobe during solar particle events, when the ''terrestrial'' component of the magnetosheath source may be considered negligible in comparison to the enhanced ''solar'' component. (author)
李军超; 杨芬芬; 周志强
2015-01-01
Although multi-stage incremental sheet forming has always been adopted instead of single-stage forming to form parts with a steep wall angle or to achieve a high forming performance, it is largely dependent on empirical designs. In order to research multi-stage forming further, the effect of forming stages (n) and angle interval between the two adjacent stages (Δα) on thickness distribution was investigated. Firstly, a finite element method (FEM) model of multi-stage incremental forming was established and experimentally verified. Then, based on the proposed simulation model, different strategies were adopted to form a frustum of cone with wall angle of 30° to research the thickness distribution of multi-pass forming. It is proved that the minimum thickness increases largely and the variance of sheet thickness decreases significantly as the value of n grows. Further, with the increase of Δα, the minimum thickness increases initially and then decreases, and the optimal thickness distribution is achieved with Δα of 10°. Additionally, a formula is deduced to estimate the sheet thickness after multi-stage forming and proved to be effective. And the simulation results fit well with the experimental results.
Regge behaviour of distribution functions and and -evolutions of gluon distribution function at low-
U Jamil; J K Sarma
2007-08-01
In this paper, and -evolutions of gluon distribution function from Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP) evolution equation in leading order (LO) at low- are presented assuming the Regge behaviour of quarks and gluons at this limit. We compare our results of gluon distribution function with MRST 2001, MRST 2004 and GRV 1998 parametrizations and show the compatibility of Regge behaviour of quark and gluon distribution functions with perturbative quantum chromodynamics (PQCD) at low-. We also discuss the limitations of Taylor series expansion method used earlier to solve DGLAP evolution equations in the Regge behaviour of distribution functions.
Effect of rapid evolution of magnetic tilt angle on a newborn magnetar's dipole radiation
We study the electromagnetic radiation from a newborn magnetar whose magnetic tilt angle decreases rapidly. We calculate the evolution of the angular spin frequency, the perpendicular component of the surface magnetic field strength, and the energy loss rate through magnetic dipole radiation. We show that the spin-down of the magnetar experiences two stages characterized by two different timescales. The apparent magnetic field decreases with the decrease of the tilt angle. We further show that the energy loss rate of the magnetar is very different from that in the case of a fixed tilt angle. The evolution of the energy loss rate is consistent with the overall light curves of gamma-ray bursts which show a plateau structure in their afterglow stage. Our model supports the idea that some gamma-ray bursts with a plateau phase in their afterglow stage may originate from newborn millisecond magnetars. (paper)
Pisek, J.
2012-12-01
Directional distribution of leaves is one primary parameter for determining the radiation transmission through the canopy. When inverting canopy transmittance measurements for estimating the leaf area index or foliage clumping, incorrect assumptions on leaf angles may lead to considerable errors. Often spherical distribution of leaf normals is assumed, i.e. leaf normals are assumed to have no preferred direction in situations where no measurement data are available. The goal of this study is to examine if a spherical leaf angle distribution and the resulting isotropic G-function (G≡0.5) is indeed a valid assumption for temperate and boreal tree and shrub species. Leaf angle distributions were measured for over 80 deciduous broadleaf species commonly found in temperate and boreal ecoclimatic regions. The leaf inclination angles were obtained by sampling the complete vertical extent of trees and shrubs using a recently introduced technique based on digital photography. It is found a spherical leaf angle distribution is not a valid assumption for both tree and shrub species in temperate and boreal ecoclimatic regions. Given the influence of leaf angle distribution on inverting clumping and LAI estimates from canopy transmittance measurements, it is recommended to use planophile or plagiophile leaf angle distribution as more appropriate for modeling radiation transmission in temperate and boreal ecoclimatic regions when no actual leaf inclination angle measurements are available.
ATLAS distributed computing: experience and evolution
Nairz, A; The ATLAS collaboration
2014-01-01
The ATLAS experiment has just concluded its first running period which commenced in 2010. After two years of remarkable performance from the LHC and ATLAS, the experiment has accumulated more than 25/fb of data. The total volume of beam and simulated data products exceeds 100~PB distributed across more than 150 computing centres around the world, managed by the experiment's distributed data management system. These sites have provided up to 150,000 computing cores to ATLAS's global production and analysis processing system, enabling a rich physics programme including the discovery of the Higgs-like boson in 2012. The wealth of accumulated experience in global data-intensive computing at this massive scale, and the considerably more challenging requirements of LHC computing from 2015 when the LHC resumes operation, are driving a comprehensive design and development cycle to prepare a revised computing model together with data processing and management systems able to meet the demands of higher trigger rates, e...
ATLAS Distributed Computing: Experience and Evolution
Nairz, A; The ATLAS collaboration
2013-01-01
The ATLAS experiment has just concluded its first running period which commenced in 2010. After two years of remarkable performance from the LHC and ATLAS, the experiment has accumulated more than 25 fb-1 of data. The total volume of beam and simulated data products exceeds 100 PB distributed across more than 150 computing centers around the world, managed by the experiment's distributed data management system. These sites have provided up to 150,000 computing cores to ATLAS's global production and analysis processing system, enabling a rich physics program including the discovery of the Higgs-like boson in 2012. The wealth of accumulated experience in global data-intensive computing at this massive scale, and the considerably more challenging requirements of LHC computing from 2014 when the LHC resumes operation, are driving a comprehensive design and development cycle to prepare a revised computing model together with data processing and management systems able to meet the demands of higher trigger rates, e...
Vesta Evolution from Surface Mineralogy: Mafic and Ultramafic Mineral Distribution
DeSanctis, M. C.; Ammannito, E.; Palomba, E.; Longobardo, A.; Mittlefehldt, D. W.; McSween, H. Y; Marchi, S.; Capria, M. T.; Capaccioni, F.; Frigeri, A.; Pieters, C. M.; Ruesch, O.; Tosi, F.; Zambon, F.; Hiesinger, H.; Magni, G.; McFadden, L. A.; Raymond, C. A.; Russell, C. T.; Sunshine, J. M.
2014-01-01
Vesta is the only intact, differentiated, rocky protoplanet and it is the parent body of HED meterorites. Howardite, eucrite and diogenite (HED) meteorites represent regolith, basaltic-crust, lower-crust and possibly ultramafic-mantle samples of asteroid Vesta. Only a few of these meteorites, the orthopyroxene-rich diogenites, contain olivine, a mineral that is a major component of the mantles of differentiated bodies, including Vesta. The HED parent body experienced complex igneous processes that are not yet fully understood and olivine and diogenite distribution is a key measurement to understand Vesta evolution. Here we report on the distribution of olivine and its constraints on vestan evolution models.
Effect of slope angle of an artificial pool on distributions of turbulence
Atefeh Fazlollahi; Hossein Afzalimehr; Jueyi Sui
2015-01-01
abstract Experiments were carried out over a 2-dimentional pool with a constant length of 1.5 m and four different slopes. The distributions of velocity, Reynolds stress and turbulence intensities have been studied in this paper. Results show that as flow continues up the exit slope, the flow velocity increases near the channel bed and decreases near the water surface. The flow separation was not observed by ADV at the crest of the bed-form. In addition, the length of the separation zone increases with the increasing of entrance and exit slopes. The largest slope angle causes the maximum normalized shear stress. Based on the experiments, it is concluded that the shape of Reynolds stress distribution is generally dependent on the entrance and exit slopes of the pool. Also, the shape of Reynolds stress distribution is affected by both decelerating and accelerating flows. Additionally, with the increase in the slope angle, secondary currents are developed and become more stable. Results of the quadrant analysis show that the momentum between flow and bed-form is mostly transferred by sweep and ejection events.&2015 International Research and Training Centre on Erosion and Sedimentation/the World Association for Sedimentation and Erosion Research. Published by Elsevier B.V. All rights reserved.
Yi, Shu-Xu
2015-01-01
We study the possibility that the long term red timing-noise in pulsars originates from the evolution of the magnetic inclination angle $\\chi$. The braking torque under consideration is a combination of the dipole radiation and the current loss. We find that the evolution of $\\chi$ can give rise to extra cubic and fourth-order polynomial terms in the timing residuals. These two terms are determined by the efficiency of the dipole radiation, the relative electric-current density in the pulsar tube and $\\chi$. The following observation facts can be explained with this model: a) young pulsars have positive $\\ddot{\
On the QCD evolution of transverse momentum dependent distributions
We reconsider the evolution equations for transverse momentum dependent distributions recently proposed by us and recast them in a form which allows the comparison with results recently appeared in the literature. We show under which conditions the obtained results are consistent with each other
Particle size distribution models of small angle neutron scattering pattern on ferro fluids
The Fe3O4 ferro fluids samples were synthesized by a co-precipitation method. The investigation of ferro fluids microstructure is known to be one of the most important problems because the presence of aggregates and their internal structure influence greatly the properties of ferro fluids. The size and the size dispersion of particle in ferro fluids were determined assuming a log normal distribution of particle radius. The scattering pattern of the measurement by small angle neutron scattering were fitted by the theoretical scattering function of two limitation models are log normal sphere distribution and fractal aggregate. Two types of particle are detected, which are presumably primary particle of 30 Armstrong in radius and secondary fractal aggregate of 200 Armstrong with polydispersity of 0.47 up to 0.53. (author)
Wang, Kaiti; Lin, Ching-Huei; Wang, Lu-Yin; Hada, Tohru; Nishimura, Yukitoshi; Turner, Drew L.; Angelopoulos, Vassilis
2014-12-01
Changes in pitch angle distributions of electrons with energies from a few eV to 1 MeV at dipolarization sites in Earth's magnetotail are investigated statistically to determine the extent to which adiabatic acceleration may contribute to these changes. Forty-two dipolarization events from 2008 and 2009 observed by Time History of Events and Macroscale Interactions during Substorms probes covering the inner plasma sheet from 8 RE to 12 RE during geomagnetic activity identified by the AL index are analyzed. The number of observed events with cigar-type distributions (peaks at 0° and 180°) decreases sharply below 1 keV after dipolarization because in many of these events, electron distributions became more isotropized. From above 1 keV to a few tens of keV, however, the observed number of cigar-type events increases after dipolarization and the number of isotropic events decreases. These changes can be related to the ineffectiveness of Fermi acceleration below 1 keV (at those energies, dipolarization time becomes comparable to electron bounce time). Model-calculated pitch angle distributions after dipolarization with the effect of betatron and Fermi acceleration tested indicate that these adiabatic acceleration mechanisms can explain the observed patterns of event number changes over a large range of energies for cigar events and isotropic events. Other factors still need to be considered to assess the observed increase in cigar events around 2 keV. Indeed, preferential directional increase/loss of electron fluxes, which may contribute to the formation of cigar events, was observed. Nonadiabatic processes to accelerate electrons in a parallel direction may also be important for future study.
Okei, K.; Takahashi, N.; Nakatsuka, T.
Moliere simultaneous distribution between the deflection angle and the lateral displacement is derived by applying numerical Fourier transforms on the solution for frequency distribution acquired through Kamata-Nishimura formulation of Moliere theory. The differences of our result from that under the gaussian approximation and the basic properties of our distribution are investigated closely.
Nonlinear GLR-MQ evolution equation and Q{sup 2}-evolution of gluon distribution function
Devee, Mayuri; Sarma, J.K. [Tezpur University, HEP Laboratory, Department of Physics, Tezpur, Assam (India)
2014-02-15
In this paper we have solved the nonlinear Gribov-Levin-Ryskin-Mueller-Qiu (GLR-MQ) evolution equation for the gluon distribution function G(x, Q{sup 2}) and studied the effects of the nonlinear GLR-MQ corrections to the Leading Order (LO) Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equations.Herewe have incorporated a Regge-like behavior of gluon distribution function to obtain the solution of the GLR-MQ evolution equation. We have also investigated the Q{sup 2}-dependence of the gluon distribution function from the solution of the GLRMQ evolution equation. Moreover it is interesting to observe from our results that nonlinearities increase with decreasing correlation radius (R) between two interacting gluons. The results also confirm that the steep behavior of gluon distribution function is observed at R = 5GeV{sup -1}, whereas it is lowered at R = 2GeV{sup -1} with decreasing x as Q{sup 2} increases. In this work we have also checked the sensitivity of λ{sub G} in our calculations. Our computed results are compared with those obtained by the global DGLAP fits to the parton distribution functions viz. GRV, MRST, MSTW and with the EHKQS model. (orig.)
On the Evolution of Jet Energy and Opening Angle in Strongly Coupled Plasma
Chesler, Paul M
2015-01-01
We calculate how the energy and the opening angle of jets in ${\\cal N}=4$ SYM theory evolve as they propagate through the strongly coupled plasma of that theory. We define the rate of energy loss $dE_{\\rm jet}/dx$ and the jet opening angle in a straightforward fashion directly in the gauge theory before calculating both holographically, in the dual gravitational description. In this way, we rederive the previously known result for $dE_{\\rm jet}/dx$ without the need to introduce a finite slab of plasma. We obtain a striking relationship between the initial opening angle of the jet, which is to say the opening angle that it would have had if it had found itself in vacuum instead of in plasma, and the thermalization distance of the jet. Via this relationship, we show that ${\\cal N}=4$ SYM jets with any initial energy that have the same initial opening angle and the same trajectory through the plasma experience the same fractional energy loss. We also provide an expansion that describes how the opening angle of t...
Souza, V. M. C. E. S.; Vieira, L.; Alves, L. R.; Da Silva, L. A.; Koga, D.; Sibeck, D. G.; Walsh, B.; Kanekal, S. G.; Silveira, M. D.; Medeiros, C.; Mendes, O., Jr.; Marchezi, J.; Rockenbach, M.; Jauer, P. R.; Gonzalez, W.; Baker, D. N.
2015-12-01
A myriad of physical phenomena occur in the inner magnetosphere, in particular at the Earth's radiation belts, which can be a result of the combination of both internal and external processes. However, the connection between physical processes occurring deep within the magnetosphere and external interplanetary drivers it is not yet well understood. In this work we investigate whether a selected set of interplanetary structures affect the local time distribution of three different classes of high energy electron pitch angle distributions (PADs), namely normal, isotropic, and butterfly. We split this work into two parts: initially we focus on the methodology used which employs a Self-Organized Feature Map (SOFM) neural network for identifying different classes of electron PAD shapes in the Van Allen Probes' Relativistic Electron Proton Telescope (REPT) data. The algorithm can categorize the input data into an arbitrary number of classes from which three of them appears the most: normal, isotropic and butterfly. Other classes which are related with these three also emerge and deserve to be addressed in detail in future works. We also discuss the uncertainties of the algorithm. Then, we move to the second part where we describe in details the criteria used for selecting the interplanetary events, and also try to investigate the relation between key parameters characterizing such interplanetary structures and the local time distributions of electron PAD shapes.
Kubota, N; Furuyama, Y; Kitamura, A
2002-01-01
A novel analytical method of light element distribution in a thin film is presented. The method is based on the deuteron-induced nuclear reaction. The emission angle of the lighter product detected coincidentally with the heavier product is analyzed to deduce the depth distribution of the target atoms, while the conventional energy analysis is applied for impurities, the distributions of which are not of primary interest. Results of proof-of-principle experiments using the D(d,p)t reaction for a deuterated polyethylene (C sub 2 D sub 4) film are described. The depth resolution is evaluated to be 0.66+-0.07 mu m for 400 keV deuteron incidence in the C sub 2 D sub 4 film. Factors limiting the resolution are discussed, and possible improvement even down to several tens of nm is concluded. The present method is applicable for microanalysis of some light elements other than deuterium contained in a film with thickness of several mu m which cannot be reached by conventional heavy ion elastic recoil detection using ...
Proper definition and evolution of generalized transverse momentum distributions
Echevarria, Miguel G; Kanazawa, Koichi; Lorcé, Cédric; Metz, Andreas; Pasquini, Barbara; Schlegel, Marc
2016-01-01
We consider one of the most fundamental sets of hadronic matrix elements, namely the generalized transverse momentum distributions (GTMDs), and argue that their existing definitions lack proper evolution properties. By exploiting the similarity of GTMDs with the much better understood transverse momentum distributions, we argue that the existing definitions of GTMDs have to include an additional dependence on soft gluon radiation in order to render them properly defined. With this, we manage to obtain the evolution kernel of all (un)polarized quark and gluon GTMDs, which turns out to be spin independent. As a byproduct, all large logarithms can be resummed up to next-to-next-to-leading-logarithmic accuracy with the currently known perturbative ingredients.
Proper definition and evolution of generalized transverse momentum dependent distributions
Echevarria, Miguel G.; Idilbi, Ahmad; Kanazawa, Koichi; Lorcé, Cédric; Metz, Andreas; Pasquini, Barbara; Schlegel, Marc
2016-08-01
We consider one of the most fundamental sets of hadronic matrix elements, namely the generalized transverse momentum dependent distributions (GTMDs), and argue that their existing definitions lack proper evolution properties. By exploiting the similarity of GTMDs with the much better understood transverse momentum distributions, we argue that the existing definitions of GTMDs have to include an additional dependence on soft gluon radiation in order to render them properly defined. With this, we manage to obtain the evolution kernel of all (un)polarized quark and gluon GTMDs, which turns out to be spin independent. As a byproduct, all large logarithms can be resummed up to next-to-next-to-leading-logarithmic accuracy with the currently known perturbative ingredients.
Proper definition and evolution of generalized transverse momentum dependent distributions
Miguel G. Echevarria
2016-08-01
Full Text Available We consider one of the most fundamental sets of hadronic matrix elements, namely the generalized transverse momentum dependent distributions (GTMDs, and argue that their existing definitions lack proper evolution properties. By exploiting the similarity of GTMDs with the much better understood transverse momentum distributions, we argue that the existing definitions of GTMDs have to include an additional dependence on soft gluon radiation in order to render them properly defined. With this, we manage to obtain the evolution kernel of all (unpolarized quark and gluon GTMDs, which turns out to be spin independent. As a byproduct, all large logarithms can be resummed up to next-to-next-to-leading-logarithmic accuracy with the currently known perturbative ingredients.
Raabe, Kairi; Pisek, Jan; Sonnentag, Oliver; Annuk, Kalju
2014-05-01
Leaf inclination angle distribution is a key parameter in determining the transmission and reflection of radiation by vegetation canopies. It has been previously observed that leaf inclination angle might change gradually from more vertical in the upper canopy and in high light habitats to more horizontal in the lower canopy and in low light habitats [1]. Despite its importance, relatively few measurements on actual leaf angle distributions have been reported for different tree species. Even smaller number of studies have dealt with the possible seasonal changes in leaf angle distribution [2]. In this study the variation of leaf inclination angle distributions was examined both temporally throughout the growing season and vertically at different heights of trees. We report on leaf inclination angle distributions for five deciduous broadleaf species found commonly in several parts of Europe: grey alder (Alnus incana), Silver birch (Betula pendula Roth), chestnut (Castanea), Norway maple (Acer platanoides), and aspen (Populus tremula). The angles were measured using the leveled camera method [3], with the data collected at several separate heights and four times during the period of May-September 2013. The results generally indicate the greatest change in leaf inclination angles for spring, with the changes usually being the most pronounced at the top of the canopy. It should also be noted, however, that whereas the temporal variation proved to be rather consistent for different species, the vertical variation differed more between species. The leveled camera method was additionally tested in terms of sensitivity to different users. Ten people were asked to measure the leaf angles for four different species. The results indicate the method is quite robust in providing coinciding distributions irrespective of the user and level of previous experience with the method. However, certain caution must be exercised when measuring long narrow leaves. References [1] G.G. Mc
Kim, Gichul; HwangBo, Pil-Neo
2016-03-01
[Purpose] The purpose of this study was to compare the effect of Schroth and Pilates exercises on the Cobb angle and body weight distribution of patients with idiopathic scoliosis. [Subjects] Twenty-four scoliosis patients with a Cobb angle of ≥20° were divided into the Schroth exercise group (SEG, n = 12) and the Pilates exercise group (PEG, n = 12). [Methods] The SEG and PEG performed Schroth and Pilates exercises, respectively, three times a week for 12 weeks. The Cobb angle was measured in the standing position with a radiography apparatus, and weight load was measured with Gait View Pro 1.0. [Results] In the intragroup comparison, both groups showed significant changes in the Cobb angle. For weight distribution, the SEG showed significant differences in the total weight between the concave and convex sides, but the PEG did not show significant differences. Furthermore, in the intragroup comparison, the SEG showed significant differences in the changes in the Cobb angle and weight distribution compared with the PEG. [Conclusion] Both Schroth and Pilates exercises were effective in changing the Cobb angle and weight distribution of scoliosis patients; however, the intergroup comparison showed that the Schroth exercise was more effective than the Pilates exercise. PMID:27134403
Souza, V. M.; Vieira, L. E. A.; Medeiros, C.; Da Silva, L. A.; Alves, L. R.; Koga, D.; Sibeck, D. G.; Walsh, B. M.; Kanekal, S. G.; Jauer, P. R.; Rockenbach, M.; Dal Lago, A.; Silveira, M. V. D.; Marchezi, J. P.; Mendes, O.; Gonzalez, W. D.; Baker, D. N.
2016-04-01
Analysis of particle pitch angle distributions (PADs) has been used as a means to comprehend a multitude of different physical mechanisms that lead to flux variations in the Van Allen belts and also to particle precipitation into the upper atmosphere. In this work we developed a neural network-based data clustering methodology that automatically identifies distinct PAD types in an unsupervised way using particle flux data. One can promptly identify and locate three well-known PAD types in both time and radial distance, namely, 90° peaked, butterfly, and flattop distributions. In order to illustrate the applicability of our methodology, we used relativistic electron flux data from the whole month of November 2014, acquired from the Relativistic Electron-Proton Telescope instrument on board the Van Allen Probes, but it is emphasized that our approach can also be used with multiplatform spacecraft data. Our PAD classification results are in reasonably good agreement with those obtained by standard statistical fitting algorithms. The proposed methodology has a potential use for Van Allen belt's monitoring.
Kim, Gichul; Hwangbo, Pil-Neo
2016-01-01
[Purpose] The purpose of this study was to compare the effect of Schroth and Pilates exercises on the Cobb angle and body weight distribution of patients with idiopathic scoliosis. [Subjects] Twenty-four scoliosis patients with a Cobb angle of ≥20° were divided into the Schroth exercise group (SEG, n = 12) and the Pilates exercise group (PEG, n = 12). [Methods] The SEG and PEG performed Schroth and Pilates exercises, respectively, three times a week for 12 weeks. The Cobb angle was measured i...
Runov, A.; Angelopoulos, V.; Gabrielse, C.; Zhou, X.-Z.; Turner, D.; Plaschke, F.
2013-02-01
Taking advantage of multipoint observations from a Cluster-like Time History of Events and Macroscale Interactions during Substorms (THEMIS) probe configuration repeated in three events, we study pitch-angle distributions (PAD) of lower energy (0.2-keV) electrons and omnidirectional energy-time spectrograms of higher energy (30-500 keV) electrons observed at and near dipolarization fronts in the plasma sheet. Recent observations have shown that dipolarization fronts in the plasma sheet provide an impulsive electric field suggested to cause electron energization and dispersionless injections. Increase and decrease in energetic electron flux are equally probable at the fronts, however. Our case studies demonstrate increased energetic electron flux in the front's central region but decreased flux on its dusk side, where diverted plasma flow forms a vortex. An electric field associated with this vortex causes the electron flux decrease. We also find that shorter-term energetic flux decreases, often observed before injections, coincide with a dip in the northward magnetic field ahead of the front. We attribute these decreases to particle energy loss via the inverse betatron effect. Our case studies reveal that pancake-type (maximum at 90° pitch angle) and cigar-type (maxima at 0 and 180°) PADs coexist at the same front. Our data analysis suggests that energetic electron PADs are mainly pancake type near the neutral sheet (|Bx| cigar type at |Bx| > 10 nt. These results, to be confirmed in statistical studies, provide important constraints for further modeling of electron energization and transport toward the inner magnetosphere.
The evolution of gauge couplings and the Weinberg angle in 5 dimensions for an SU(3) gauge group
Khojali, Mohammed Omer; Deandrea, Aldo
2016-01-01
We test in a simplified 5-dimensional model with SU(3) gauge symmetry, the evolution equations of the gauge couplings of a model containing bulk fields, gauge fields and one pair of fermions. In this model we assume that the fermion doublet and two singlet fields are located at fixed points of the extra-dimension compactified on an $S^{1}/Z_{2}$ orbifold. The gauge coupling evolution is derived at one-loop in 5-dimensions, for the gauge group $G = SU(3)$, and used to test the impact on lower energy observables, in particular the Weinberg angle. The gauge bosons and the Higgs field arise from the gauge bosons in 5 dimensions, as in a gauge-Higgs model. The model is used as a testing ground as it is not a complete and realistic model for the electroweak interactions.
González-Garciá, M Concepción; Smirnov, Yu A
2001-01-01
We have performed a detailed study of the zenith angle dependence of the regeneration factor and distributions of events at SNO and SK for different solutions of the solar neutrino problem. In particular, we discuss oscillatory behaviour and the synchronization effect in the distribution for the LMA solution, the parametric peak for the LOW solution, etc.. Physical interpretation of the effects is given. We suggest a new binning of events which emphasizes distinctive features of zenith angle distributions for the different solutions. We also find the correlations between the integrated day-night asymmetry and the rates of events in different zenith angle bins. Study of these correlations strengthens the identification power of the analysis.
To assess the three-dimensional turbo spin echo with variable flip-angle distribution magnetic resonance sequence (SPACE: Sampling Perfection with Application optimised Contrast using different flip-angle Evolution) for the imaging of intracranial cerebrospinal fluid (CSF) spaces. We prospectively investigated 18 healthy volunteers and 25 patients, 20 with communicating hydrocephalus (CH), five with non-communicating hydrocephalus (NCH), using the SPACE sequence at 1.5T. Volume rendering views of both intracranial and ventricular CSF were obtained for all patients and volunteers. The subarachnoid CSF distribution was qualitatively evaluated on volume rendering views using a four-point scale. The CSF volumes within total, ventricular and subarachnoid spaces were calculated as well as the ratio between ventricular and subarachnoid CSF volumes. Three different patterns of subarachnoid CSF distribution were observed. In healthy volunteers we found narrowed CSF spaces within the occipital aera. A diffuse narrowing of the subarachnoid CSF spaces was observed in patients with NCH whereas patients with CH exhibited narrowed CSF spaces within the high midline convexity. The ratios between ventricular and subarachnoid CSF volumes were significantly different among the volunteers, patients with CH and patients with NCH. The assessment of CSF spaces volume and distribution may help to characterise hydrocephalus. (orig.)
Evolution of the Magnetic Field Distribution of Active Regions
Dacie, Sally; van Driel-Gesztelyi, Lidia; Long, David; Baker, Deb; Janvier, Miho; Yardley, Stephanie; Pérez-Suárez, David
2016-01-01
Aims. Although the temporal evolution of active regions (ARs) is relatively well understood, the processes involved continue to be the subject of investigation. We study how the magnetic field of a series of ARs evolves with time to better characterise how ARs emerge and disperse. Methods. We examine the temporal variation in the magnetic field distribution of 37 emerging ARs. A kernel density estimation plot of the field distribution was created on a log-log scale for each AR at each time step. We found that the central portion of the distribution is typically linear and its slope was used to characterise the evolution of the magnetic field. Results. The slopes were seen to evolve with time, becoming less steep as the fragmented emerging flux coalesces. The slopes reached a maximum value of ~ -1.5 just before the time of maximum flux before becoming steeper during the decay phase towards the quiet Sun value of ~ -3. This behaviour differs significantly from a classical diffusion model, which produces a slope...
Chao-Chi Huang
2014-10-01
Full Text Available In a vehicular sensor network (VSN, the key design issue is how to organize vehicles effectively, such that the local network topology can be stabilized quickly. In this work, each vehicle with on-board sensors can be considered as a local controller associated with a group of communication members. In order to balance the load among the nodes and govern the local topology change, a group formation scheme using localized criteria is implemented. The proposed distributed topology control method focuses on reducing the rate of group member change and avoiding the unnecessary information exchange. Two major phases are sequentially applied to choose the group members of each vehicle using hybrid angle/distance information. The operation of Phase I is based on the concept of the cone-based method, which can select the desired vehicles quickly. Afterwards, the proposed time-slot method is further applied to stabilize the network topology. Given the network structure in Phase I, a routing scheme is presented in Phase II. The network behaviors are explored through simulation and analysis in a variety of scenarios. The results show that the proposed mechanism is a scalable and effective control framework for VSNs.
Huang, Chao-Chi; Chiu, Yang-Hung; Wen, Chih-Yu
2014-01-01
In a vehicular sensor network (VSN), the key design issue is how to organize vehicles effectively, such that the local network topology can be stabilized quickly. In this work, each vehicle with on-board sensors can be considered as a local controller associated with a group of communication members. In order to balance the load among the nodes and govern the local topology change, a group formation scheme using localized criteria is implemented. The proposed distributed topology control method focuses on reducing the rate of group member change and avoiding the unnecessary information exchange. Two major phases are sequentially applied to choose the group members of each vehicle using hybrid angle/distance information. The operation of Phase I is based on the concept of the cone-based method, which can select the desired vehicles quickly. Afterwards, the proposed time-slot method is further applied to stabilize the network topology. Given the network structure in Phase I, a routing scheme is presented in Phase II. The network behaviors are explored through simulation and analysis in a variety of scenarios. The results show that the proposed mechanism is a scalable and effective control framework for VSNs. PMID:25350506
High-energy spectrum and zenith-angle distribution of atmospheric neutrinos
Sinegovsky, S I; Sinegovskaya, T S
2011-01-01
High-energy neutrinos, arising from decays of mesons produced through the collisions of cosmic ray particles with air nuclei, form the background in the astrophysical neutrino detection problem. An ambiguity in high-energy behavior of pion and especially kaon production cross sections for nucleon-nucleus collisions may affect essentially the calculated neutrino flux. We present results of the calculation of the energy spectrum and zenith-angle distribution of the muon and electron atmospheric neutrinos in the energy range 10 GeV to 10 PeV. The calculation was performed with usage of known hadronic models (QGSJET-II-03, SIBYLL 2.1, Kimel & Mokhov) for two of the primary spectrum parametrizations, by Gaisser & Honda and by Zatsepin & Sokolskaya. The comparison of the calculated muon neutrino spectrum with the IceCube40 experiment data make it clear that even at energies above 100 TeV the prompt neutrino contribution is not so apparent because of tangled uncertainties of the strange (kaons) and charm...
Counterion Distribution Around Protein-SNAs probed by Small-angle X-ray scattering
Krishnamoorthy, Kurinji; Bedzyk, Michael; Kewalramani, Sumit; Moreau, Liane; Mirkin, Chad
Protein-DNA conjugates couple the advanced cell transfection capabilities of spherical DNA architecture and the biocompatible enzymatic activity of a protein core to potentially create therapeutic agents with dual functionality. An understanding of their stabilizing ionic environment is crucial to better understand and predict their properties. Here, we use Small-angle X-ray scattering techniques to decipher the structure of the counterion cloud surrounding these DNA coated nanoparticles. Through the use of anomalous scattering techniques we have mapped the local concentrations of Rb+ ions in the region around the Protein-DNA constructs. These results are further corroborated with simulations using a geometric model for the excess charge density as function of radial distance from the protein core. Further, we investigate the influence of solution ionic strength on the structure of the DNA corona and demonstrate a reduction in the extension of the DNA corona with increasing concentration of NaCl in solution for the case of both single and double stranded DNA shells. Our work reveals the distribution of counterions in the vicinity of Protein-DNA conjugates and decouples the effect of solution ionic strength on the thickness of the DNA layer.
The bond angle distribution and local coordination for silica glass under densification
We present a simulation of silica glass with density ranging from 2.53 to 3.49 g cm-3 using the molecular dynamics method. The simulation reveals that the density of constructed samples can be expressed by a linear function of fraction of units SiOx. As the density increases, the fraction of units SiOx and linkages OSiy significantly varies, but partial bond angle distributions (BAD) for SiOx, x = 4, 5, 6, and OSiy, y = 2, 3, are identical for all the obtained samples. This allows us to establish a simple relation between total BAD and fraction of SiOx or OSiy. The simulation shows good agreement between the simulation and calculation results for both Si-O-Si and O-Si-O BAD. Moreover, most Si atoms in the low-density sample belong to the perfect tetrahedron (PT), whereas they are mainly present in the distorted tetrahedron for the high-density sample. We also found a large cluster of PTs that are linked to each other via bridging oxygen. The largest cluster consists of 90% Si in the low-density sample and 39% Si in the high-density one. (paper)
Polyphase tectonic evolution of the Aksu Basin, Isparta Angle (Southern Turkey)
Üner, Serkan; Özsayin, Erman; Kutluay, Alkor; Dirik, Kadir
2015-04-01
The Aksu Basin, within the Isparta Angle, is located to the north of the intersection of the Aegean and Cyprus arcs and has been evolving since the Middle Miocene. Correlation of: (1) kinematic analysis of fault planes that cut the basin fill, (2) the reactivation/inversion of fault planes and (3) sedimentological data indicate that the Aksu Basin has evolved by four alternating compressional and extensional tectonic phases since its formation. The first phase was NW-SE oriented compression caused by the emplacement of the Lycian Nappe units which ended in Langhian. This compressional phase that induced the formation and the initial deformation of the basin was followed by a NW-SE extensional phase. This tectonic phase prevailed between the Langhian and Messinian and was terminated by a NE-SW compressional regime known as the Aksu Phase. The neotectonic period is characterized by NE-SW extension and began in the Late Pliocene. Correlation with the existing tectonic literature shows that the order of deformational phases proposed in this study might also be valid for the entire Isparta Angle area.
New Archiving Distributed InfrastructuRe (NADIR): Status and Evolution
De Marco, M.; Knapic, C.; Smareglia, R.
2015-09-01
The New Archiving Distributed InfrastructuRe (NADIR) has been developed at INAF-OATs IA2 (Italian National Institute for Astrophysics - Astronomical Observatory of Trieste, Italian center of Astronomical Archives), as an evolution of the previous archiving and distribution system, used on several telescopes (LBT, TNG, Asiago, etc.) to improve performance, efficiency and reliability. At the present, NADIR system is running on LBT telescope and Vespa (Italian telescopes network for outreach) Ramella et al. (2014), and will be used on TNG, Asiago and IRA (Istituto Radio Astronomia) archives of Medicina, Noto and SRT radio telescopes Zanichelli et al. (2014) as the data models for radio data will be ready. This paper will discuss the progress status, the architectural choices and the solutions adopted, during the development and the commissioning phase of the project. A special attention will be given to the LBT case, due to some critical aspect of data flow and policies and standards compliance, adopted by the LBT organization.
Probability Distribution Function Evolution for Binary Alloy Solidification
Steinzig, M.L.; Harlow, F.H.
1999-02-26
The thermally controlled solidification of a binary alloy, nucleated at isolated sites, is described by the evolution of a probability distribution function, whose variables include grain size and distance to nearest neighbor, together with descriptors of shape, orientation, and such material properties as orientation of nonisotropic elastic modulus and coefficient of thermal expansion. The relevant Liouville equation is described and coupled with global equations for energy and solute transport. Applications are discussed for problems concerning nucleation and impingement and the consequences for final size and size distribution. The goal of this analysis is to characterize the grain structure of the solidified casting and to enable the description of its probable response to thermal treatment, machining, and the imposition of mechanical insults.
Precipitation particle charge distribution and evolution of East Asian rainbands
Takahashi, Tsutomu
2012-11-01
Numerous videosondes, balloon-borne surveyors of precipitation particle morphology and charge, have been launched into cloud systems in many, disparate locations in East Asia. Reported here are videosonde-based observations of early summer, Baiu rainbands at Tanegashima in southern Japan and of summer rainbands at Chiang Rai in northern Thailand. Precipitation particles are mapped by type and charge over the course of cloud development, allowing particle and charge evolution to be derived. The basic charge distribution as observed in Hokuriku winter thunderclouds at different cloud life stages was seen at different locations characterized by vertical velocity profiles in the cloud. The charge structure of the rainbands in both locations was a basic tripole. The major charge carriers were graupel and ice crystals. As graupel and ice crystal concentrations increased, not only did space charge increase, but per-particle charge also increased. Increased lightning activity was associated with higher particle space charge and lower cloud-top temperature. The particle charge evolution of these systems includes several fundamental features: a. active negative charging of graupel in an intense updraft, b. descent of negative graupel along the edge of an updraft column, c. merging of negative graupel with positively charged raindrops falling in the central cloud, and d. extended distribution of positive ice crystals in the stratiform cloud. The observations suggest that riming electrification was the main charge separation mechanism.
Simultaneous distribution between the deflection angle and the lateral displacement of fast charged particles traversing through matter is derived by applying numerical inverse Fourier transforms on the Fourier spectral density solved analytically under the Moliere theory of multiple scattering, taking account of ionization loss. Our results show the simultaneous Gaussian distribution at the region of both small deflection angle and lateral displacement, though they show the characteristic contour patterns of probability density specific to the single and the double scatterings at the regions of large deflection angle and/or lateral displacement. The influences of ionization loss on the distribution are also investigated. An exact simultaneous distribution is derived under the fixed energy condition based on a well-known model of screened single scattering, which indicates the limit of validity of the Moliere theory applied to the simultaneous distribution. The simultaneous distribution will be valuable for improving the accuracy and the efficiency of experimental analyses and simulation studies relating to charged particle transports. (orig.)
Nakatsuka, Takao [Okayama Shoka University, Laboratory of Information Science, Okayama (Japan); Okei, Kazuhide [Kawasaki Medical School, Dept. of Information Sciences, Kurashiki (Japan); Iyono, Atsushi [Okayama university of Science, Dept. of Fundamental Science, Faculty of Science, Okayama (Japan); Bielajew, Alex F. [Univ. of Michigan, Dept. Nuclear Engineering and Radiological Sciences, Ann Arbor, MI (United States)
2015-12-15
Simultaneous distribution between the deflection angle and the lateral displacement of fast charged particles traversing through matter is derived by applying numerical inverse Fourier transforms on the Fourier spectral density solved analytically under the Moliere theory of multiple scattering, taking account of ionization loss. Our results show the simultaneous Gaussian distribution at the region of both small deflection angle and lateral displacement, though they show the characteristic contour patterns of probability density specific to the single and the double scatterings at the regions of large deflection angle and/or lateral displacement. The influences of ionization loss on the distribution are also investigated. An exact simultaneous distribution is derived under the fixed energy condition based on a well-known model of screened single scattering, which indicates the limit of validity of the Moliere theory applied to the simultaneous distribution. The simultaneous distribution will be valuable for improving the accuracy and the efficiency of experimental analyses and simulation studies relating to charged particle transports. (orig.)
Gao, Li
2015-07-01
We study the evolution of the distribution of consumption of individuals in the majority population in China during the period 1995-2012 and find that its probability density functions (PDFs) obey the rule Pc(x) = K(x - μ) e-(x - μ)2/2σ2. We also find (i) that the PDFs and the individual income distribution appear to be identical, (ii) that the peaks of the PDFs of the individual consumption distribution are consistently on the low side of the PDFs of the income distribution, and (iii) that the average of the marginal propensity to consume (MPC) is large, MPC bar = 0.77, indicating that in the majority population individual consumption is low and strongly dependent on income. The long right tail of the PDFs of consumption indicates that few people in China are participating in the high consumption economy, and that consumption inequality is high. After comparing the PDFs of consumption with the PDFs of income we obtain the PDFs of residual wealth during the period 1995-2012, which exhibit a Gaussian distribution. We use an agent-based kinetic wealth-exchange model (KWEM) to simulate this evolutional process and find that this Gaussian distribution indicates a strong propensity to save rather than spend. This may be due to an anticipation of such large potential outlays as housing, education, and health care in the context of an inadequate welfare support system.
Microwave field distribution in a magic angle spinning dynamic nuclear polarization NMR probe
Nanni, Emilio A.; Barnes, Alexander B.; Matsuki, Yoh; Woskov, Paul P.; Corzilius, Björn; Griffin, Robert G.; Temkin, Richard J.
2011-05-01
We present a calculation of the microwave field distribution in a magic angle spinning (MAS) probe utilized in dynamic nuclear polarization (DNP) experiments. The microwave magnetic field (B 1 S) profile was obtained from simulations performed with the High Frequency Structure Simulator (HFSS) software suite, using a model that includes the launching antenna, the outer Kel-F stator housing coated with Ag, the RF coil, and the 4 mm diameter sapphire rotor containing the sample. The predicted average B 1 S field is 13 μT/W 1/2, where S denotes the electron spin. For a routinely achievable input power of 5 W the corresponding value is γSB 1 S = 0.84 MHz. The calculations provide insights into the coupling of the microwave power to the sample, including reflections from the RF coil and diffraction of the power transmitted through the coil. The variation of enhancement with rotor wall thickness was also successfully simulated. A second, simplified calculation was performed using a single pass model based on Gaussian beam propagation and Fresnel diffraction. This model provided additional physical insight and was in good agreement with the full HFSS simulation. These calculations indicate approaches to increasing the coupling of the microwave power to the sample, including the use of a converging lens and fine adjustment of the spacing of the windings of the RF coil. The present results should prove useful in optimizing the coupling of microwave power to the sample in future DNP experiments. Finally, the results of the simulation were used to predict the cross effect DNP enhancement ( ɛ) vs. ω1 S/(2 π) for a sample of 13C-urea dissolved in a 60:40 glycerol/water mixture containing the polarizing agent TOTAPOL; very good agreement was obtained between theory and experiment.
Evolution of Particle Size Distributions in Fragmentation Over Time
Charalambous, C. A.; Pike, W. T.
2013-12-01
We present a new model of fragmentation based on a probabilistic calculation of the repeated fracture of a particle population. The resulting continuous solution, which is in closed form, gives the evolution of fragmentation products from an initial block, through a scale-invariant power-law relationship to a final comminuted powder. Models for the fragmentation of particles have been developed separately in mainly two different disciplines: the continuous integro-differential equations of batch mineral grinding (Reid, 1965) and the fractal analysis of geophysics (Turcotte, 1986) based on a discrete model with a single probability of fracture. The first gives a time-dependent development of the particle-size distribution, but has resisted a closed-form solution, while the latter leads to the scale-invariant power laws, but with no time dependence. Bird (2009) recently introduced a bridge between these two approaches with a step-wise iterative calculation of the fragmentation products. The development of the particle-size distribution occurs with discrete steps: during each fragmentation event, the particles will repeatedly fracture probabilistically, cascading down the length scales to a final size distribution reached after all particles have failed to further fragment. We have identified this process as the equivalent to a sequence of trials for each particle with a fixed probability of fragmentation. Although the resulting distribution is discrete, it can be reformulated as a continuous distribution in maturity over time and particle size. In our model, Turcotte's power-law distribution emerges at a unique maturation index that defines a regime boundary. Up to this index, the fragmentation is in an erosional regime with the initial particle size setting the scaling. Fragmentation beyond this index is in a regime of comminution with rebreakage of the particles down to the size limit of fracture. The maturation index can increment continuously, for example under
Evolution and Distribution of Saxitoxin Biosynthesis in Dinoflagellates
Kjetill S. Jakobsen
2013-08-01
Full Text Available Numerous species of marine dinoflagellates synthesize the potent environmental neurotoxic alkaloid, saxitoxin, the agent of the human illness, paralytic shellfish poisoning. In addition, certain freshwater species of cyanobacteria also synthesize the same toxic compound, with the biosynthetic pathway and genes responsible being recently reported. Three theories have been postulated to explain the origin of saxitoxin in dinoflagellates: The production of saxitoxin by co-cultured bacteria rather than the dinoflagellates themselves, convergent evolution within both dinoflagellates and bacteria and horizontal gene transfer between dinoflagellates and bacteria. The discovery of cyanobacterial saxitoxin homologs in dinoflagellates has enabled us for the first time to evaluate these theories. Here, we review the distribution of saxitoxin within the dinoflagellates and our knowledge of its genetic basis to determine the likely evolutionary origins of this potent neurotoxin.
AGIS: Evolution of Distributed Computing information system for ATLAS
Anisenkov, A.; Di Girolamo, A.; Alandes, M.; Karavakis, E.
2015-12-01
ATLAS, a particle physics experiment at the Large Hadron Collider at CERN, produces petabytes of data annually through simulation production and tens of petabytes of data per year from the detector itself. The ATLAS computing model embraces the Grid paradigm and a high degree of decentralization of computing resources in order to meet the ATLAS requirements of petabytes scale data operations. It has been evolved after the first period of LHC data taking (Run-1) in order to cope with new challenges of the upcoming Run- 2. In this paper we describe the evolution and recent developments of the ATLAS Grid Information System (AGIS), developed in order to integrate configuration and status information about resources, services and topology of the computing infrastructure used by the ATLAS Distributed Computing applications and services.
Cherry, John F; Carlson, Joe; Duan, Huaiyu; Qian, Yong-Zong
2010-01-01
We report results of the first 3-by-3 "multi-angle" simulation of the evolution of neutrino flavor in the core collapse supernova environment. In particular, we follow neutrino flavor transformation in the neutronization neutrino burst of an O-Ne-Mg core collapse event. Though in qualitative sense our results are consistent with those obtained in 3-by-3 single-angle simulations, at least in terms of neutrino mass hierarchy dependence, performing multi-angle calculations is found to reduce the adiabaticity of flavor evolution in the normal neutrino mass hierarchy, resulting in lower swap energies. Our simulations also show that current uncertainties in the measured mass-squared and mixing angle parameters translate into uncertainties in neutrino swap energies. Our results show that at low theta-13 it may be difficult to resolve the neutrino mass hierarchy in the O-Ne-Mg neutronization neutrino burst.
Sugiyama, Masaaki; Annaka, Masahiko; Hara, Kazuhiro;
2003-01-01
reveal that, depending upon the [NIPA]/[SA] ratio, the dehydrated NIPA-SA gel shows two mesoscopic structures: one consists of randomly distributed SA-rich islands in NIPA matrix, while the other is a microphase-separated structure, composed of NIPA-rich and SA-rich domains. In addition, the SANS...... experiments reveal the mesoscopic structural features during the dehydration process. As the concentration of the network polymers increases, NIPA-rich and water-rich domains segregate in the gel. Then, an electrostatic interaction between the segregated domains induces a microphase-separated structure in the...... limit of the dehydrated NIPA-SA gel....
Hideaki Tanoue
2013-07-01
Full Text Available The body tilt angle of a fish has a large effect on the acoustic target strength. For an accurate estimation of fish abundance using acoustic methods, it is necessary to measure body tilt angles in free-ranging fish. We measured diurnal body tilt angle distributions of threeline grunt (Parapristipoma trilineatum while swimming in schools in a fish cage. Micro-acceleration data loggers were used to record (for 3 days swaying and surging accelerations (at 16 Hz intervals of 10 individuals among 20 forming a school in a fish cage. Time series analysis of 1-h mean body tilt angles revealed significant differences in body tilt angles between day (−7.9 ± 3.28° and night (0.8 ± 5.89°, which must be taken into account when conducting acoustic surveys. These results will be useful for calculating the average dorsal aspect target strength (TS of threeline grunt for accurate estimations of fish abundance.
A laser speckle sensor to measure the distribution of static torsion angles of twisted targets
Rose, B.; Imam, H.; Hanson, Steen Grüner;
1998-01-01
cylindrical lens serves to image the closely spaced lateral positions of the target along the twist axis onto corresponding lines of the two dimensional image sensor. Thus, every single line of the image sensor measures the torsion angle of the corresponding surface position along the twist axis of the target...
West, H.I. Jr.
1978-12-11
An account is given of the obervations of the pitch angle distributions of energetic particles in the near equatorial regions of the Earth's magnetosphere. The emphasis is on relating the observed distributions to the field configuration responsible for the observed effects. The observed effects relate to drift-shell splitting, to the breakdown of adiabatic guiding center motion in regions of sharp field curvature relative to partial gyro radii, to wave-particle interactions, and to moving field configurations. 39 references.
Growth of epitaxial CrN on MgO(001): Role of deposition angle on surface morphological evolution
CrN layers, 6 to 500 nm thick, were grown on MgO(001) at 600 deg. C by ultra-high-vacuum magnetron sputter deposition in pure N2 discharges at 2.6 Pa. The deposition angle α with respect to the surface normal was varied from 0 deg. to 80 deg. in order to directly probe the effect of atomic shadowing on the surface morphological evolution. Layers grown with α 0 deg. are single crystals which develop a regular surface mound structure. At low layer thicknesses, t ≤ 25 nm, the surface mounds grow primarily vertically, due to kinetic roughening, and form square-shapes with edges along low-energy , directions. Continued growth at t ≥ 25 nm is dominated by mound-competition and coalescence which leads to a self-similar growth mode with increases in both mound height and width. Layers deposited from oblique angles α = 80 deg. also nucleate as single crystals with a cube-on-cube epitaxial relationship with the substrate. However, rough surfaces with cauliflower-type morphologies cause the nucleation of misoriented CrN grains that develop into cone-shaped grains that protrude out of the epitaxial matrix to form triangular faceted surface mounds. Atomic shadowing exacerbates the growth rate of these misoriented grains, causing a dramatic increase in the root-mean-square surface roughness, which is ∼ 16x higher for layers grown at α = 80 deg. than at α = 0 deg. The roughening follows a power-law with a roughening exponent β that increases from 0.37 ± 0.04 to 0.57 ± 0.15 as α is increased from 0 deg. to 80 deg. This increase is attributed to a transition from kinetic roughening to roughening caused by atomic shadowing effects
Kuznetsov, P.; Rakhmatulina, T.; Koznikov, A.; Belyaeva, I.
2015-10-01
Submicrocrystalline structure of 99.99% pure copper produced by equal channel angular pressing was under investigation. After deformation the samples were subjected to low-temperature annealing. Grain and subgrain structure was studied by scanning tunnel microscopy. Internal interface energy was estimated using the method based on measurement of dihedral angles (ψ) of the boundary grooves formed by electrochemical etching. Analysis of the differential and cumulative distribution functions for relative grain boundary energy enabled to qualitatively evaluate energy redistribution between the boundaries of different types and internal bulk crystallites and to study evolution of submicrocrystalline structure under low-temperature annealing.
Leprêtre, A.; Klingelhoefer, F.; Graindorge, D.; Schnurle, P.; Beslier, M. O.; Yelles, K.; Déverchère, J.; Bracene, R.
2013-08-01
The origin of the Algerian margin remains one of the key questions still discussed in the Western Mediterranean sea, due to the imprecise nature and kinematics of the associated basin during the Neogene. For the first time, the deep structure of the Maghrebian margin was explored during the SPIRAL seismic survey. In this work, we present a N-S transect off Tipaza (west of Algiers), a place where the margin broadens due to a topographic high (Khayr-al-Din Bank). New deep penetration seismic profiles allow us to image the sedimentary sequence in the Algerian basin and the crustal structure at the continent-ocean boundary. Modeling of the wide-angle data shows thinning of the basement, from more than 15km in the continental upper margin to only 5-6km of oceanic-type basement in the Algerian basin, and reveals a very narrow or absent transitional zone. Analysis of the deep structure of the margin indicates features inherited from its complex evolution: (1) an oceanic-type crust in the deep basin, (2) similarities with margins formed in a transform-type setting, (3) a progressive deepening of the whole sedimentary cover, and the thickening of the Plio-Quaternary sediments at the margin foot, coeval with (4) a downward flexure of the basement in the basin. These features argue for a multiphased evolution of the margin, including (1) an early stage of rifting and/or spreading, (2) a late transcurrent episode related to the westward migration of the Alboran domain, and (3) a diffuse Plio-Quaternary compressional reactivation of the margin.
Azimuth angle distribution of thermal-infrared temperature over rice canopy with row orientation
Using ground-based and airborne observation, as well as numerical simulation, we confirmed that the thermal-infrared temperature (TIT) of a rice canopy surface with row orientation changes with azimuth viewing angle. The TIT of the direction parallel to row orientation is 1-4degC higher than that of the other directions. The TIT differences occur during the daytime, and for a leaf area index (LAI) around 0.5-3 because the field of view of an infrared thermometer viewing a direction parallel to the rows contains much more of the water surface under the rice canopy than the plant surface of the canopy. The temperature of the water surface between rows is much higher than that of the plant surface, because the intense incoming solar radiation near noon is not absorbed by the canopy and so warms the water efficiently. Matsushima and Kondo (1997) developed a radiation transfer model for TIT of a rice canopy surface, and confirmed a nadir viewing angle dependence of TIT of according to leaf area index. Based on the above model, a model of a rice canopy with row orientation was developed to investigate the TIT variation with azimuth viewing angle. The model design employs the ratio of the apparent areas of the plant surface and the underground water surface, which change with the azimuth and nadir viewing angles, and reproduces the observation well. These results indicate that the main cause of the TIT difference is the ratio of the apparent areas of the plant surface and the water surface when the temperature of the water surface is much higher than that of the plant surface. The TIT in a westerly direction exceeds that of the other directions shortly after sunrise because the solar elevation is low and the azimuth of the sun is around east. This is because the plant surface temperature exceeds that of the water surface, which is opposite the near noon cases. On the scale of a satellite grid, a simple numerical experiment demonstrated that the TIT difference of azimuth
Temperature distribution and evolution characteristic in lightning return stroke channel
Mu, Yali; Yuan, Ping; Wang, Xuejuan; Dong, Caixia
2016-07-01
According to the time-resolved spectra of four lightning return strokes, the temperatures of arc core channel and the peripheral optical channel surrounding the arc core are investigated by different methods; the temperature distribution along the radial direction of channel on the peak current stage is discussed. The results show that a temperature gradient is formed along the radial direction of channel during the discharge process. With the increasing of the radius, the temperature decreases gradually. The temperature of arc core channel is about 4000-5000 K higher than that of the peripheral optical channel. The time evolution of channel temperature shows that the falling of the temperature is very slow compared with the decreasing of the current after their peak values. After the peak current, the channel temperature is still maintained at around 20,000 K up to 200-400 μ s . The heat effect resulting from such a long-time high temperature is the main source of most direct lightning disasters.
Statistical Quadrature Evolution for Continuous-Variable Quantum Key Distribution
Gyongyosi, Laszlo; Imre, Sandor
2016-05-01
We propose a statistical quadrature evolution (SQE) method for multicarrier continuous-variable quantum key distribution (CVQKD). A multicarrier CVQKD protocol utilizes Gaussian subcarrier quantum continuous variables (CV) for information transmission. The SQE framework provides a minimal error estimate of the quadratures of the CV quantum states from the discrete, measured noisy subcarrier variables. We define a method for the statistical modeling and processing of noisy Gaussian subcarrier quadratures. We introduce the terms statistical secret key rate and statistical private classical information, which quantities are derived purely by the statistical functions of our method. We prove the secret key rate formulas for a multiple access multicarrier CVQKD. The framework can be established in an arbitrary CVQKD protocol and measurement setting, and are implementable by standard low-complexity statistical functions, which is particularly convenient for an experimental CVQKD scenario. This work was partially supported by the GOP-1.1.1-11-2012-0092 project sponsored by the EU and European Structural Fund, by the Hungarian Scientific Research Fund - OTKA K-112125, and by the COST Action MP1006.
Barker, Adrian J.
2016-08-01
The spin axis of a rotationally deformed planet is forced to precess about its orbital angular momentum vector, due to the tidal gravity of its host star, if these directions are misaligned. This induces internal fluid motions inside the planet that are subject to a hydrodynamic instability. We study the turbulent damping of precessional fluid motions, as a result of this instability, in the simplest local computational model of a giant planet (or star), with and without a weak internal magnetic field. Our aim is to determine the outcome of this instability, and its importance in driving tidal evolution of the spin-orbit angle in precessing planets (and stars). We find that this instability produces turbulent dissipation that is sufficiently strong that it could drive significant tidal evolution of the spin-orbit angle for hot Jupiters with orbital periods shorter than about 10-18 d. If this mechanism acts in isolation, this evolution would be towards alignment or anti-alignment, depending on the initial angle, but the ultimate evolution (if other tidal mechanisms also contribute) is expected to be towards alignment. The turbulent dissipation is proportional to the cube of the precession frequency, so it leads to much slower damping of stellar spin-orbit angles, implying that this instability is unlikely to drive evolution of the spin-orbit angle in stars (either in planetary or close binary systems). We also find that the instability-driven flow can act as a system-scale dynamo, which may play a role in producing magnetic fields in short-period planets.
Barker, Adrian J.
2016-08-01
The spin axis of a rotationally deformed planet is forced to precess about its orbital angular momentum vector, due to the tidal gravity of its host star, if these directions are misaligned. This induces internal fluid motions inside the planet that are subject to a hydrodynamic instability. We study the turbulent damping of precessional fluid motions, as a result of this instability, in the simplest local computational model of a giant planet (or star), with and without a weak internal magnetic field. Our aim is to determine the outcome of this instability, and its importance in driving tidal evolution of the spin-orbit angle in precessing planets (and stars). We find that this instability produces turbulent dissipation that is sufficiently strong that it could drive significant tidal evolution of the spin-orbit angle for hot Jupiters with orbital periods shorter than about 10-18 days. If this mechanism acts in isolation, this evolution would be towards alignment or anti-alignment, depending on the initial angle, but the ultimate evolution (if other tidal mechanisms also contribute) is expected to be towards alignment. The turbulent dissipation is proportional to the cube of the precession frequency, so it leads to much slower damping of stellar spin-orbit angles, implying that this instability is unlikely to drive evolution of the spin-orbit angle in stars (either in planetary or close binary systems). We also find that the instability-driven flow can act as a system-scale dynamo, which may play a role in producing magnetic fields in short-period planets.
Grain size effects on He bubbles distribution and evolution
Wang, J. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); Gao, X.; Gao, N. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Wang, Z.G., E-mail: zhgwang@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Cui, M.H.; Wei, K.F.; Yao, C.F.; Sun, J.R.; Li, B.S.; Zhu, Y.B.; Pang, L.L. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Li, Y.F. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); Wang, D. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xie, E.Q. [School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China)
2015-02-15
Highlights: • SMAT treated T91 and conventional T91 were implanted by 200 keV He{sup 2+} to 1 × 10{sup 21} He m{sup −2} at room temperature and annealed at 450 °C for 3.5 h. • He bubbles in nanometer-size-grained T91 are smaller in as-implanted case. • The bubbles in the matrix of nanograins were hard to detect and those along the nanograin boundaries coalesced and filled with the grain boundaries after annealing. • Brownian motion and coalescence and Ostwald ripening process might lead to bubbles morphology presented in the nanometer-size-grained T91 after annealing. - Abstract: Grain boundary and grain size effects on He bubble distribution and evolution were investigated by He implantation into nanometer-size-grained T91 obtained by Surface Mechanical Attrition Treatment (SMAT) and the conventional coarse-grained T91. It was found that bubbles in the nanometer-size-grained T91 were smaller than those in the conventional coarse-grained T91 in as-implanted case, and bubbles in the matrix of nanograins were undetectable while those at nanograin boundaries (GBs) coalesced and filled in GBs after heat treatment. These results suggested that the grain size of structural material should be larger than the mean free path of bubble’s Brownian motion and/or denuded zone around GBs in order to prevent bubbles accumulation at GBs, and multiple instead of one type of defects should be introduced into structural materials to effectively reduce the susceptibility of materials to He embrittlement and improve the irradiation tolerance of structural materials.
In the present work contrast-matching USANS (ultra-small-angle neutron scattering) was employed in order to determine the spatial distribution of immiscible fluids confined within a macroporous α-Al2O3 membrane. Water-air as well as water-hydrocarbon and hydrocarbon-air systems were examined and the analysis of the results, also on the basis of a complementary numerical study provided significant information on the behaviour of the multiphase ensemble as it has been demonstrated that the individual fluids occupy certain positions in the pore space, regardless of the actual values of the respective interfacial properties.
Dong, Wan Jae; Lo, Nhat-Truong; Jung, Gwan Ho; Ham, Juyoung; Lee, Jong-Lam
2016-03-01
A distributed Bragg reflector (DBR) is conducted as a bottom reflector in see-through organic photovoltaics (OPVs) with an active layer of poly(3-hexylthiophene) and phenyl-C61-butyric acid methyl ester (P3HT:PCBM). The DBR consists of alternative layers of the high- and low-refractive index materials of Ta2O5 (n = 2.16) and SiO2 (n = 1.46). The DBR selectively reflects the light within a specific wavelength region (490 nm-630 nm) where the absorbance of P3HT:PCBM is maximum. The see-through OPVs fabricated on DBR exhibit efficiency enhancement by 31% compared to the device without DBR. Additionally, the angle-dependent transmittance of DBR is analysed using optical simulation and verified by experimental results. As the incident angle of light increases, peak of reflectance shifts to shorter wavelength and the bandwidth gets narrower. This unique angle-dependent optical properties of DBR allows the facile color change of see-through OPVs.
Angle-resolved energy distributions of laser ablated silver ions in vacuum
Hansen, T.N.; Schou, Jørgen; Lunney, J.G.
1998-01-01
The energy distributions of ions ablated from silver in vacuum have been measured in situ for pulsed laser irradiation at 355 nm. We have determined the energy spectra for directions ranging from 5 degrees to 75 degrees with respect to the normal in the intensity range from 100 to 400 MW/cm(2). At...
Hong, Suk-Ho [Association EURATOM-CEA/Cadarache, IRFM/SIPP/GIPP, St. Paul les Durance 13108 (France)], E-mail: sukhhong@nfri.re.kr; Grisolia, Christian; Monier-Gabet, Pascale [Association EURATOM-CEA/Cadarache, IRFM/SIPP/GIPP, St. Paul les Durance 13108 (France)
2009-06-15
Images of wide-angle visible CCD cameras contain information on dust creation events (flaking) that occur during plasma operations. Due to the interaction with plasma, flakes entering into the plasma left straight line-like visible traces behind in the images. Analyzing these traces by image processing, the temporal evolution, spatial distribution, and statistics on dust creation events in DITS campaign in Tore Supra were obtained.
Remote Sensing of Spatial Distributions of Greenhouse Gases in the Los Angles Basin
Fu, Dejian; Pongetti, Thomas J.; Sander, Stanley P.; Cheung, Ross; Stutz, Jochen; Park, Chang Hyoun; Li, Qinbin
2011-01-01
The Los Angeles air basin is a significant anthropogenic source of greenhouse gases and pollutants including CO2, CH4, N2O, and CO, contributing significantly to regional and global climate change. Recent legislation in California, the California Global Warming Solutions Act (AB32), established a statewide cap for greenhouse gas emissions for 2020 based on 1990 emissions. Verifying the effectiveness of regional greenhouse gas emissions controls requires high-precision, regional-scale measurement methods combined with models that capture the principal anthropogenic and biogenic sources and sinks. We present a novel approach for monitoring the spatial distributions of greenhouse gases in the Los Angeles basin using high resolution remote sensing spectroscopy. We participated in the CalNex 2010 campaign to provide greenhouse gas distributions for comparison between top-down and bottom-up emission estimates.
Chao-Chi Huang; Yang-Hung Chiu; Chih-Yu Wen
2014-01-01
In a vehicular sensor network (VSN), the key design issue is how to organize vehicles effectively, such that the local network topology can be stabilized quickly. In this work, each vehicle with on-board sensors can be considered as a local controller associated with a group of communication members. In order to balance the load among the nodes and govern the local topology change, a group formation scheme using localized criteria is implemented. The proposed distributed topology control meth...
The moment method can be used to determine the time evolution of particle size distribution due to Brownian coagulation based on the general dynamic equation (GDE). But the function form of the initial particle size distribution must be determined beforehand for the moment method. If the assumed function type of the initial particle size distribution has an obvious deviation from the true particle population, the evolution of particle size distribution may be different from the real evolution tendency. Thus, a simple and general method is proposed based on the moment method. In this method, the Johnson's SB function is chosen as a general distribution function to fit the initial distributions including the log normal (L-N), Rosin–Rammler (R-R), normal (N-N) and gamma distribution functions, respectively. Meanwhile, using the modified beta function to fit the L-N, R-R, N-N and gamma functions is also conducted as a comparison in order to present the advantage of the Johnson's SB function as the general distribution function. And then, the time evolution of particle size distributions using the Johnson's SB function as the initial distribution can be obtained by several lower order moment equations of the Johnson's SB function in conjunction with the GDE during the Brownian coagulation process. Simulation experiments indicate that fairly reasonable results of the time evolution of particle size distribution can be obtained with this proposed method in the free molecule regime, transition regime and continuum plus near continuum regime, respectively, at the early time stage of evolution. The Johnson's SB function has the ability of describing the early time evolution of different initial particle size distributions. (paper)
Asymptotic Fitness Distribution in the Bak-Sneppen Model of Biological Evolution with Four Species
Schlemm, Eckhard
2012-08-01
We suggest a new method to compute the asymptotic fitness distribution in the Bak-Sneppen model of biological evolution. As applications we derive the full asymptotic distribution in the four-species model, and give an explicit linear recurrence relation for a set of coefficients determining the asymptotic distribution in the five-species model.
Asymptotic fitness distribution in the Bak-Sneppen model of biological evolution with four species
Schlemm, Eckhard
2012-01-01
We suggest a new method to compute the asymptotic fitness distribution in the Bak-Sneppen model of biological evolution. As applications we derive the full asymptotic distribution in the four-species model, and give an explicit linear recurrence relation for a set of coefficients determining the asymptotic distribution in the five-species model.
Efficient evolution of unpolarized and polarized parton distributions with QCD-PEGASUS
Vogt, A
2004-01-01
The Fortran package QCD-PEGASUS is presented. This program provides fast, flexible and accurate solutions of the evolution equations for unpolarized and polarized parton distributions of hadrons in perturbative QCD. The evolution is performed using the symbolic moment-space solutions on a one-fits-all Mellin inversion contour. User options include the order of the evolution including the next-to-next-to-leading order in the unpolarized case, the type of the evolution including an emulation of brute-force solutions, the evolution with a fixed number n_f of flavours or in the variable-n_f scheme, and the evolution with a renormalization scale unequal to the factorization scale. The initial distributions are needed in a form facilitating the computation of the complex Mellin moments.
Energy distributions of plume ions from silver at different angles ablated in vacuum
Christensen, Bo Toftmann; Schou, Jørgen; Canulescu, Stela
A typical pulsed laser deposition (PLD) is carried out for a fluence between 0.5 and 2.5 J/cm2. The ablated particles are largely neutrals at the lowest fluence, but the fraction of ions increases strongly with fluence and accounts for more 0.5 of the particles at 2.5 J/cm2 [1,2]. Since it may be...... comparatively difficult to measure the energy and angular distribution of neutrals, measurements of the ionic fraction will be valuable for any modeling of PLD. We have irradiated silver in a vacuum chamber (~ 10-7 mbar) with a Nd:YAG laser at a wavelength of 355 nm and made detailed measurements of the time...
Spatial distribution and evolution of cerebral microbleeds: impact on the clinical therapy
Cerebral microbleeds reflect the pathological changes of cerebral small vessel diseases. It has characterized spatial distribution and evolution. The occurrence of microbleeds impacts on clinical treatment. Susceptibility weighted imaging can improve the detection of cerebral microbleeds which could help for the diagnosis and differential diagnosis. We reviewed the pathology, characteristics of spatial and evolution of cerebral microbleeds and its impact on clinical therapy. (authors)
Sun, Guangai [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); College of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230029 (China); Wu, Erdong, E-mail: ewu@imr.ac.cn [National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Huang, Chaoqiang [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); College of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230029 (China); Cheng, Chun [National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Yan, Guanyun [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Wang, Xiaolin [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); College of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230029 (China); Liu, Shi [National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Tian, Qiang; Chen, Bo [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Wu, Zhonghua [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Liu, Yi; Wang, Jie [Institute of Shanghai Apply Physics, Chinese Academy of Sciences, Shanghai 201800 (China)
2014-05-02
Evolution and change of He bubbles in magnetron sputtering prepared He-containing Ti films under thermal treatment are studied by small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM) and X-ray diffraction. Incorporation of He introduces a large number of He-vacancy clusters and some voids in the films, and significantly increases SAXS intensity and causes anisotropic scattering. The change of He induced defects during annealing is affected by thermal diffusion and migration of trapped He to the surface and between interfaces of He induced defects within the films. Annealing at 200 and 400 °C reduces intensity and anisotropy of SAXS, in accord with observed shrinking and disappearance of the voids. The simultaneous growth of non-uniformly distributed He bubbles to the sizes of 1–2 nm and a population level of 10{sup 5}/μm{sup 3} are detected in the temperature range. The changes are explained by migration and coalescence mechanisms, which requires low apparent activation energy. Inconsistence between TEM and SAXS observations is noted and attributed to thinning induced internal stress relaxation of TEM specimen. Remarkable enlargement of He bubbles, associated with increased SAXS intensity and fractal dimension, is observed after 600 °C annealing, indicating involvement of Ostwald Ripening (OR) mechanism. The OR process dominates at 800 °C, where the high temperature provides activation energy for accelerated He dissociation from small bubbles into larger ones, and generating textured microstructure and agglomerated bubble clusters. The inhomogeneous bubble size distribution observed at this temperature covers a broad range of about 10–50 nm and possessing a population density level of 10{sup 3}/μm{sup 3}. - Highlights: • Change of He bubbles in thermally treated Ti–He films is studied by SAXS and TEM. • SAXS reveals size distribution and fractional population of He bubbles in films. • He-vacancy clusters in Ti–He film
Evolution and change of He bubbles in magnetron sputtering prepared He-containing Ti films under thermal treatment are studied by small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM) and X-ray diffraction. Incorporation of He introduces a large number of He-vacancy clusters and some voids in the films, and significantly increases SAXS intensity and causes anisotropic scattering. The change of He induced defects during annealing is affected by thermal diffusion and migration of trapped He to the surface and between interfaces of He induced defects within the films. Annealing at 200 and 400 °C reduces intensity and anisotropy of SAXS, in accord with observed shrinking and disappearance of the voids. The simultaneous growth of non-uniformly distributed He bubbles to the sizes of 1–2 nm and a population level of 105/μm3 are detected in the temperature range. The changes are explained by migration and coalescence mechanisms, which requires low apparent activation energy. Inconsistence between TEM and SAXS observations is noted and attributed to thinning induced internal stress relaxation of TEM specimen. Remarkable enlargement of He bubbles, associated with increased SAXS intensity and fractal dimension, is observed after 600 °C annealing, indicating involvement of Ostwald Ripening (OR) mechanism. The OR process dominates at 800 °C, where the high temperature provides activation energy for accelerated He dissociation from small bubbles into larger ones, and generating textured microstructure and agglomerated bubble clusters. The inhomogeneous bubble size distribution observed at this temperature covers a broad range of about 10–50 nm and possessing a population density level of 103/μm3. - Highlights: • Change of He bubbles in thermally treated Ti–He films is studied by SAXS and TEM. • SAXS reveals size distribution and fractional population of He bubbles in films. • He-vacancy clusters in Ti–He film transfer to bubbles and
Lee, Chaohong; Zhu, Xiwen; Gao, Kelin
2001-01-01
We introduce the standard distribution width of fitness to characterize the global and individual features of a ecosystem in the Bak-Sneppen evolution model. Through tracking this quantity in evolution, a different hierarchy of avalanche dynamics, $w_{0}$ avalanche is observed. The corresponding gap equation and the self-organized threshold $w_{c}$ are obtained. The critical exponents $\\tau ,$ $\\gamma $and $\\rho $, which describe the behavior of the avalanche size distribution, the average av...
Nikolaev, Pavel
2009-01-01
Many applications of single wall carbon nanotubes (SWCNT), especially in microelectronics, will benefit from use of certain (n,m) nanotube types (metallic, small gap semiconductor, etc.) Especially fascinating is the possibility of quantum conductors that require metallic armchair nanotubes. However, as produced SWCNT samples are polydisperse, with many (n,m) types present and typical approx.1:2 metal/semiconductor ratio. Nanotube nucleation models predict that armchair nuclei are energetically preferential due to formation of partial triple bonds along the armchair edge. However, nuclei can not reach any meaningful thermal equilibrium in a rapidly expanding and cooling plume of carbon clusters, leading to polydispersity. In the present work, SWCNTs were produced by a pulsed laser vaporization (PLV) technique. The carbon vapor plume cooling rate was either increased by change in the oven temperature (expansion into colder gas), or decreased via "warm-up" with a laser pulse at the moment of nucleation. The effect of oven temperature and "warm-up" on nanotube type population was studied via photoluminescence, UV-Vis-NIR absorption and Raman spectroscopy. It was found that reduced temperatures leads to smaller average diameters, progressively narrower diameter distributions, and some preference toward armchair structures. "Warm-up" shifts nanotube population towards arm-chair structures as well, but the effect is small. Possible improvement of the "warm-up" approach to produce armchair SWCNTs will be discussed. These results demonstrate that PLV production technique can provide at least partial control over the nanotube (n,m) population. In addition, these results have implications for the understanding the nanotube nucleation mechanism in the laser oven.
We have investigated the lipid sorting in a binary small unilamellar vesicle (SUV) composed of cone-shaped (1,2-dihexanoyl-sn-glycero-3-phosphocholine: DHPC) and cylinder-shaped (1,2-dipalmitoyl-sn-glycero-3-phosphocholine: DPPC) lipids. In order to reveal the lipid sorting we adopted a contrast matching technique of small angle neutron scattering (SANS), which extracts the distribution of deuterated lipids in the bilayer quantitatively without steric modification of lipids as in fluorescence probe techniques. First the SANS profile of protonated SUVs at a film contrast condition showed that SUVs have a spherical shape with an inner radius of 190 A and a bilayer thickness of 40 A. The SANS profile of deuterated SUVs at a contrast matching condition showed a characteristic scattering profile, indicating an asymmetric distribution of cone-shaped lipids in the bilayer. The characteristic profile was described well by a spherical bilayer model. The fitting revealed that most DHPC molecules are localized in the outer leaflet. Thus the shape of the lipid is strongly coupled with the membrane curvature. We compared the obtained asymmetric distribution of the cone-shaped lipids in the bilayer with the theoretical prediction based on the curvature energy model.
Mochizuki, Keiichi; Oosumi, Kazumasa; Koizumi, Fumiaki; Shinohara, Yoshinori; Tagaya, Akihiro; Koike, Yasuhiro
2015-06-01
We have proposed a light-emitting diode (LED) downlight lens that is made of a highly scattered optical transmission (HSOT) polymer. The HSOT polymer contains optimized heterogeneous structures that produce homogeneously scattered light with forward directivity. The full width at half maximum of the illuminance distribution angle can be increased from 16.7° to 37.9° as the concentration of the scattering particles in the HSOT polymer LED downlight lenses of identical shape is increased from 0.015 to 0.100 wt%. The colors in an illuminated area are highly uniform, which is not discernible by the human eye, with a high output efficiency greater than 85 %.
Evolution of knowledge about distribution of productive forces
Yevgeny Georgievich Animitsa
2014-06-01
Full Text Available The article presents systematization of scientific knowledge concerning distribution of productive forces. It is proved that the conception of distribution of productive forces has dual-natured matter. The authors put an emphasis on interpretation of three main “distribution of productive forces” paradigms, which were figured out from foreign and native theories. Each of these paradigms has its special features and characteristics. It is necessary to use the complex of methods and tools in order to analyze the distinguish features of the distribution in different historic steps. The article provides methodology of distribution of productive forces, which based on such categories as “time” and “space.” Nowadays, this approach is more convenient as allows to reach continuous development. This idea also corresponds to contemporary principles of distribution of productive forces: parsimony principle, spatial concentration principle, irregular distribution of productive forces principle. The authors made conclusion that the modern paradigm of distribution of productive forces will contribute to developing regional economics as a science.
Evolution of One-Point Distributions from Gaussian Initial Fluctuations
Kofman, Lev; Bertschinger, Edmund; Gelb, James M.; Nusser, Adi; Dekel, Avishai
1993-01-01
We study the quasilinear evolution of the one-point probability density functions (PDFs) of the smoothed density and velocity fields in a cosmological gravitating system beginning with Gaussian initial fluctuations. Our analytic results are based on the Zel'dovich approximation and laminar flow. A numerical analysis extends the results into the multistreaming regime using the smoothed fields of a CDM N-body simulation. We find that the PDF of velocity, both Lagrangian and Eulerian, remains Ga...
A visual study is conducted to determine the effect of geometrical parameters of a two-fluid atomizer on its spray cone angle. The liquid (water) jets exit from six peripheral inclined orifices and are introduced to a high speed gas (air) stream in the gravitational direction. Using a high speed imaging system, the spray cone angle has been determined in constant operational conditions, i.e., Reynolds and Weber numbers for different nozzle geometries. Also, the droplet sizes (Sauter mean diameter) and their distributions have been determined using Malvern Master Sizer x. The investigated geometrical parameters are the liquid jet diameter, liquid port angle and the length of the gas-liquid mixing chamber. The results show that among these parameters, the liquid jet diameter has a significant effect on spray cone angle. In addition, an empirical correlation has been obtained to predict the spray cone angle of the present two-fluid atomizer in terms of nozzle geometries
Critical Exponent of Species-Size Distribution in Evolution
Adami, C; Yirdaw, R; Adami, Christoph; Seki, Ryoichi; Yirdaw, Robel
1998-01-01
We analyze the geometry of the species- and genotype-size distribution in evolving and adapting populations of single-stranded self-replicating genomes: here programs in the Avida world. We find that a scale-free distribution (power law) emerges in complex landscapes that achieve a separation of two fundamental time scales: the relaxation time (time for population to return to equilibrium after a perturbation) and the time between mutations that produce fitter genotypes. The latter can be dialed by changing the mutation rate. In the scaling regime, we determine the critical exponent of the distribution of sizes and strengths of avalanches in a system without coevolution, described by first-order phase transitions in single finite niches.
Barker, Adrian J
2016-01-01
The spin axis of a rotationally deformed planet is forced to precess about its orbital angular momentum vector, due to the tidal gravity of its host star, if these directions are misaligned. This induces internal fluid motions inside the planet that are subject to a hydrodynamic instability. We study the turbulent damping of precessional fluid motions, as a result of this instability, in the simplest local computational model of a giant planet (or star), with and without a weak internal magnetic field. Our aim is to determine the outcome of this instability, and its importance in driving tidal evolution of the spin-orbit angle in precessing planets (and stars). We find that this instability produces turbulent dissipation that is sufficiently strong that it could drive significant tidal evolution of the spin-orbit angle for hot Jupiters with orbital periods shorter than about 10-18 days. If this mechanism acts in isolation, this evolution would be towards alignment or anti-alignment, depending on the initial a...
The period distribution of Cepheids: a test of stellar evolution
Groenewegen M.A.T.
2015-01-01
Full Text Available The period distributions of classical Cepheids in the Small and Large Magellanic Cloud are quite different. Using the TRILEGAL population synthesis code and a theoretical instability strip the ultimate aim is to understand these differences quantitatively. First results are presented for one area in the LMC using VMC NIR data.
Rynders, Maurice; Lidkea, Bruce; Chisholm, William; Thibos, Larry N.
1995-10-01
Subjective transverse chromatic aberration (sTCA) manifest at the fovea was determined for a population of 85 young adults (19-38 years old) by means of a two-dimensional, two-color, vernier alignment technique. The statistical distribution of sTCA was well fitted by a bivariate Gaussian function with mean values that were not significantly different from zero in either the horizontal or the vertical direction. We conclude from this result that a hypothetical, average eye representing the population mean of human eyes with medium-sized pupils is free of foveal sTCA. However, the absolute magnitude of sTCA for any given individual was often significantly greater than zero and ranged from 0.05 to 2.67 arcmin for the red and the blue lights of a computer monitor (mean wavelengths, 605 and 497 nm, respectively). The statistical distribution of the absolute magnitude of sTCA was well described by a Rayleigh probability distribution with a mean of 0.8 arcmin. A simple device useful for population screening in a clinical setting was also tested and gave concordant results. Assuming that sTCA at the fovea is due to decentering of the pupil with respect to the visual axis, we infer from these results that the pupil is, on average, well centered in human eyes. The average magnitude of pupil decentration in individual eyes is less than 0.5 mm, which corresponds to psi =3 deg for the angle between the achromatic and the visual axes of the eye.
Wide-scale evolution of magnetization distribution in ultrathin films
Kisielewski, M.; Maziewski, A.; Polyakova, T.; Zablotskyy, Vitaliy A.
2004-01-01
Roč. 69, č. 18 (2004), 184419/1-184419/7. ISSN 0163-1829 Grant ostatní: PSCSR(PL) 4T11B 006 24; ICAI-CT(XE) 2000-70018 Institutional research plan: CEZ:AV0Z1010914 Keywords : magnetization domains * distribution * ultrathin film Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.075, year: 2004
AGIS: Evolution of Distributed Computing Information system for ATLAS
Anisenkov, Alexey; The ATLAS collaboration; Alandes Pradillo, Maria; Karavakis, Edward
2015-01-01
The variety of the ATLAS Computing Infrastructure requires a central information system to define the topology of computing resources and to store the different parameters and configuration data which are needed by the various ATLAS software components. The ATLAS Grid Information System is the system designed to integrate configuration and status information about resources, services and topology of the computing infrastructure used by ATLAS Distributed Computing applications and services.
Evolution of the statistical distribution in a topological defect network
Xue, Fei; Wang, Xueyun; Socolenco, Ion; Gu, Yijia; Chen, Long-Qing; Cheong, Sang-Wook
2015-11-01
The complex networks of numerous topological defects in hexagonal manganites are highly relevant to vastly different phenomena from the birth of our cosmos to superfluidity transition. The topological defects in hexagonal manganites form two types of domain networks: type-I without and type-II with electric self-poling. A combined phase-field simulations and experimental study shows that the frequencies of domains with N-sides, i.e. of N-gons, in a type-I network are fitted by a lognormal distribution, whereas those in type-II display a scale-free power-law distribution with exponent ∼2. A preferential attachment process that N-gons with a larger N have higher probability of coalescence is responsible for the emergence of the scale-free networks. Since the domain networks can be observed, analyzed, and manipulated at room temperature, hexagonal manganites provide a unique opportunity to explore how the statistical distribution of a topological defect network evolves with an external electric field.
Transverse-momentum-dependent gluon distributions from JIMWLK evolution
Marquet, C; Roiesnel, C
2016-01-01
Transverse-momentum-dependent (TMD) gluon distributions have different operator definitions, depending on the process under consideration. We study that aspect of TMD factorization in the small-x limit, for the various unpolarized TMD gluon distributions encountered in the literature. To do this, we consider di-jet production in hadronic collisions, since this process allows to be exhaustive with respect to the possible operator definitions, and is suitable to be investigated at small x. Indeed, for forward and nearly back-to-back jets, one can apply both the TMD factorization and Color Glass Condensate (CGC) approaches to compute the di-jet cross-section, and compare the results. Doing so, we show that both descriptions coincide, and we show how to express the various TMD gluon distributions in terms of CGC correlators of Wilson lines, while keeping Nc finite. We then proceed to evaluate them by solving the JIMWLK equation numerically. We obtain that at large transverse momentum, the process dependence essen...
The evolution of the thermoluminescence glow curve of a natural Ca-Be rich aluminosilicate after annealing treatments at different temperatures has been studied in order to evaluate the changes in the trapped charge distribution. The glow curve consists of a single broad peak that continuously shifts toward higher temperatures when the sample is preheated up to increasing temperatures, thus indicating the presence of a continuous trap distribution. The glow curve fitting assuming different distribution functions shows how a gaussian distribution becomes a nearly exponential distribution owing to the thermal leakage of charge carriers from trapping centres. (authors)
Evolution of the distribution of wealth in an economic environment driven by local Nash equilibria
Degond, Pierre; Liu, Jian-guo; Ringhofer, Christian
2013-01-01
We present and analyze a model for the evolution of the wealth distribution within a heterogeneous economic environment. The model considers a system of rational agents interacting in a game theoretical framework, through fairly general assumptions on the cost function. This evolution drives the dynamic of the agents in both wealth and economic configuration variables. We consider a regime of scale separation where the large scale dynamics is given by a hydrodynamic closure with a Nash equili...
Light-Ray Evolution Equations and Leading-Twist Parton Helicity-Dependent Nonforward Distributions
Balitsky, Yu Yu
1997-01-01
We discuss the calculation of the evolution kernels \\Delta W_{\\zeta}(X,Z) for the leading-twist nonforward parton distributions G_\\zeta(X,t) sensitive to parton helicities. We present our results for the kernels governing evolution of the relevant light-ray operators and describe a simple method allowing to obtain from them the components of the nonforward kernels \\Delta W_{\\zeta}(X,Z).
The distribution of the size of wheat starch granules using the method LALLS (Low Angle Laser Light Scattering), followed by the evaluation of the effect of variety, experimental site and intensity of cultivation on the vol. % of the starch A (starch granules > 10 μm) was determined. The total starch content and crude protein content in dry matter of flour T530 in selected collection of five winter wheat varieties were determined. Vol. % of the starch A in evaluated collection of wheat varieties varied between 65.31 and 72.34%. The effect of a variety on the vol. % of starch A seemed to be more marked than the effect of site and intensity of cultivation. The highest vol. % of starch A reached evaluated varieties from the quality group C, i.e. varieties unsuitable for baking utilisation (except variety Contra with high total content of starch in dry matter of flour T530, but relatively low vol. % of starch A). A low vol. % of starch A was also found in the variety Hana (very good variety for baking utilisation). Certain variety differences followed from the evaluation of distribution of starch fractions of starch granules, forming starch A. In the case of varieties Hana, Contra and Siria higher representation of fractions up to 30 μm was recorded, while starch A in the varieties Estica and Versailles was formed in higher degree by size fractions of starch granules over 30 μm and particularly size fraction > 50 μm was greatest in these varieties of all evaluated samples. With increasing total starch content in dry matter of flour T530 the crude protein content decreased; the vol. % of starch A not always increased proportionally with increasing total starch content. (author)
Heller, William; Qian, Shuo
2012-02-01
Cellular membranes are complex mixtures of lipids, proteins and other small molecules that provide functional, dynamic barriers between the cell and its environment, as well as between environments within the cell. The lipid composition of the membrane is highly specific and controlled in terms of both content and lipid localization. Here, small-angle neutron scattering and selective deuterium labeling were used to probe the impact of the membrane-active peptides melittin and alamethicin on the structure of lipid bilayers composed of a mixture of the lipids dimyristoyl phosphatidylglycerol (DMPG) and chain-perdeuterated dimyristoyl phosphatidylcholine (DMPC). We found that both peptides enriched the outer leaflet of the bilayer with the negatively charged DMPG, creating an asymmetric distribution of lipids. The level of enrichment is peptide concentration-dependent and is stronger for melittin than alamethicin. The enrichment between the inner and outer bilayer leaflets occurs at very low peptide concentrations, and increases with peptide concentration, including when the peptide adopts a membrane-spanning, pore-forming state.
Goerigk, G.; Schweins, R.; Huber, K.; Ballauff, M.
2004-05-01
The distribution of Sr counterions around negatively charged sodium polyacrylate chains (NaPA) in aqueous solution was studied by anomalous small-angle X-ray scattering. Different ratios of the concentrations of SrCl2/[NaPA] reveal dramatic changes in the scattering curves. At the lower ratio the scattering curves indicate a coil-like behavior, while at the higher ratio the scattering curves are contracted to smaller q-values, caused by the collapse of the NaPA coil. The form factor of the scattering contribution of the counterions was separated and analyzed. For the scattering curves of the collapsed chains, this analysis agrees with the model of a pearl necklace, consisting of collapsed sphere-like subdomains which are connected by stretched chain segments. An averaged radius of the pearls of 19 nm and a distance between neighbouring pearls close to 60 nm could be established for the collapsed state of the NaPA chains.
Evolution of column density distributions within Orion~A
Stutz, A M
2015-01-01
We compare the structure of star-forming molecular clouds in different regions of Orion A to determine how the column density probability distribution function (N-PDF) varies with environmental conditions such as the fraction of young protostars. A correlation between the N-PDF slope and Class 0 protostar fraction has been previously observed in a low-mass star-formation region (Perseus) by Sadavoy; here we test if a similar correlation is observed in a high-mass star-forming region. We use Herschel data to derive a column density map of Orion A. We use the Herschel Orion Protostar Survey catalog for accurate identification and classification of the Orion A young stellar object (YSO) content, including the short-lived Class 0 protostars (with a $\\sim$ 0.14 Myr lifetime). We divide Orion A into eight independent 13.5 pc$^2$ regions; in each region we fit the N-PDF distribution with a power-law, and we measure the fraction of Class 0 protostars. We use a maximum likelihood method to measure the N-PDF power-law ...
Research on social communication network evolution based on topology potential distribution
Zhao, Dongjie; Jiang, Jian; Li, Deyi; Zhang, Haisu; Chen, Guisheng
2011-12-01
Aiming at the problem of social communication network evolution, first, topology potential is introduced to measure the local influence among nodes in networks. Second, from the perspective of topology potential distribution the method of network evolution description based on topology potential distribution is presented, which takes the artificial intelligence with uncertainty as basic theory and local influence among nodes as essentiality. Then, a social communication network is constructed by enron email dataset, the method presented is used to analyze the characteristic of the social communication network evolution and some useful conclusions are got, implying that the method is effective, which shows that topology potential distribution can effectively describe the characteristic of sociology and detect the local changes in social communication network.
Extraction of Quark Transversity Distribution and Collins Fragmentation Functions with QCD Evolution
Kang, Zhong-Bo; Sun, Peng; Yuan, Feng
2016-01-01
We study the transverse momentum dependent (TMD) evolution of the Collins azimuthal asymmetries in $e^+e^-$ annihilations and semi-inclusive hadron production in deep inelastic scattering (SIDIS) processes. All the relevant coefficients are calculated up to the next-to-leading logarithmic (NLL) order accuracy. By applying the TMD evolution at the approximate NLL order in the Collins-Soper-Sterman (CSS) formalism, we extract transversity distributions for $u$ and $d$ quarks and Collins fragmentation functions from current experimental data by a global analysis of the Collins asymmetries in back-to-back di-hadron productions in $e^+e^-$ annihilations measured by BELLE and BABAR Collaborations and SIDIS data from HERMES, COMPASS, and JLab HALL A experiments. The impact of the evolution effects and the relevant theoretical uncertainties are discussed. We further discuss the TMD interpretation for our results, and illustrate the unpolarized quark distribution, transversity distribution, unpolarized quark fragmenta...
Evolution of column density distributions within Orion A⋆
Stutz, A. M.; Kainulainen, J.
2015-05-01
We compare the structure of star-forming molecular clouds in different regions of Orion A to determine how the column density probability distribution function (N-PDF) varies with environmental conditions such as the fraction of young protostars. A correlation between the N-PDF slope and Class 0 protostar fraction has been previously observed in a low-mass star-formation region (Perseus); here we test whether a similar correlation is observed in a high-mass star-forming region. We used Herschel PACS and SPIRE cold dust emission observations to derive a column density map of Orion A. We used the Herschel Orion Protostar Survey catalog to accurately identify and classify the Orion A young stellar object content, including the cold and relatively short-lived Class 0 protostars (with a lifetime of ~0.14 Myr). We divided Orion A into eight independent regions of 0.25 square degrees (13.5 pc2); in each region we fit the N-PDF distribution with a power law, and we measured the fraction of Class 0 protostars. We used a maximum-likelihood method to measure the N-PDF power-law index without binning the column density data. We find that the Class 0 fraction is higher in regions with flatter column density distributions. We tested the effects of incompleteness, extinction-driven misclassification of Class 0 sources, resolution, and adopted pixel-scales. We show that these effects cannot account for the observed trend. Our observations demonstrate an association between the slope of the power-law N-PDF and the Class 0 fractions within Orion A. Various interpretations are discussed, including timescales based on the Class 0 protostar fraction assuming a constant star-formation rate. The observed relation suggests that the N-PDF can be related to an evolutionary state of the gas. If universal, such a relation permits evaluating the evolutionary state from the N-PDF power-law index at much greater distances than those accessible with protostar counts. Appendices are available in
Takemura, Akihiro; Togawa, Kumiko; Yokoi, Tomohiro; Ueda, Shinichi; Noto, Kimiya; Kojima, Hironori; Isomura, Naoki; Kumano, Tomoyasu
2016-07-01
In volumetric modulated arc therapy (VMAT) for prostate cancer, a positional and rotational error correction is performed according to the position and angle of the prostate. The correction often involves body leaning, and there is concern regarding variation in the dose distribution. Our purpose in this study was to evaluate the impact of body pitch rotation on the dose distribution regarding VMAT. Treatment plans were obtained retrospectively from eight patients with prostate cancer. The body in the computed tomography images for the original VMAT plan was shifted to create VMAT plans with virtual pitch angle errors of ±1.5° and ±3°. Dose distributions for the tilted plans were recalculated with use of the same beam arrangement as that used for the original VMAT plan. The mean value of the maximum dose differences in the dose distributions between the original VMAT plan and the tilted plans was 2.98 ± 0.96 %. The value of the homogeneity index for the planning target volume (PTV) had an increasing trend according to the pitch angle error, and the values of the D 95 for the PTV and D 2ml, V 50, V 60, and V 70 for the rectum had decreasing trends (p pitch angle error caused by body leaning had little effect on the dose distribution; in contrast, the pitch angle correction reduced the effects of organ displacement and improved these indexes. Thus, the pitch angle setup error in VMAT for prostate cancer should be corrected. PMID:26873139
Model-Independent Evolution of Transverse Momentum Dependent Distribution Functions (TMDs) at NNLL
Echevarria, Miguel G; Schäfer, Andreas; Scimemi, Ignazio
2012-01-01
We present a new approach to treat the perturbative QCD evolution of TMDs by resummation. We obtain a universal evolution kernel for the eight quark distributions while large logarithms are resummed up to next-to-next-to leading logarithms (NNLL). Contrary to earlier works this resummation gives unambiguous predictions avoiding the need to introduce an ad-hoc cut-off parameters and thus highly reducing the model-dependence. Applications to single-spin asymmetries, as the Sivers function, and unpolarized transverse-momentum-dependent parton distribution functions are given. The results agree very well with phenomenology.
The Evolution of the Pion Distribution Amplitude in Next-to-Leading Order
Müller, Dieter
1994-01-01
The evolution of the pion distribution amplitude in next-to-leading order is studied for a fixed and a running coupling constant. In both cases, the evolution provides a logarithmic modification in the endpoint region. Assuming a simple parameterization of the distribution amplitude at a scale of $Q_0\\sim 0.5\\ \\rm GeV$, it is shown numerically that these effects are large enough at $Q\\sim 2\\ \\rm GeV$ that they have to be taken into account in the next-to-leading-order analysis for exclusive p...
The possible use of the 27Al-NMR method with sample rotation at a ''magic'' angle to study the local environment and cation distribution of Al(III) ions in the oxide lattice are exemplified by γ-, eta-, chi-, α-Al2O3 and commercial A-1 Al(III) oxide. (author)
In this paper we have determined the behavior of gluon distribution function by solving the Gribov-Levin-Reskin-Mueller-Qiu (GLR-MQ) evolution equation,which is nonlinear in gluon density. The moderate Q2 behavior of G(x, t), where t = ln(Q2/Λ2), is obtained by employing the Regge like behaviour of gluon distribution function at small-x. Here Q2 behavior of nonlinear gluon distribution function is investigated for small values x = 10−2, 10−3, 10−4 and 10−5 rexpectively. Our predictions are compared with different parametrisations and are found in good agreement. It is observed from our results that with the nonlinear corrections incorporated, the strong growth of G(x,t) that corresponds to the linear QCD evolution equation is slowed down. Moreover essential taming of gluon distribution function is observed for R = 2 GeV−1 as expected
He, Y.; Hilinski, E.; Attard, M.; Bibby, D.; Santos, R.; Zavadil, R.
2015-04-01
In processing non-oriented electrical steel sheets using conventional rolling schemes, the most common texture components obtained after final annealing are the magnetically unfavourable //ND (γ) and //RD (α) fibres. A lot of researches have been carried out trying to optimize the processes to produce the favourable //ND (θ) fibre. However, since the final texture is formed through a series of texture evolution steps during the solidification, hot rolling, cold rolling and annealing processes, it is quite challenging to tailor the texture of the final product. In this study, a new rolling scheme was examined, in which the cold rolling direction (CRD) was inclined to the hot rolling direction (HRD) at an angle from 0° to 90° (with a 15° increment). This was intended to alter the texture commonly produced by cold rolling along the HRD, and to optimize the final recrystallization texture. The cold rolling and recrystallization textures of two non-oriented electrical steels with 0.9% and 2.8% Si were measured. It was found that the inclination of CRD to HRD has a substantial effect on the cold rolling texture for both steels, but only in the low Si steel, does it lead to significantly different recrystallization textures. A strong cube texture was produced at an inclination angle of 60°, and the //ND (γ) fibre was significantly weakened or essentially disappeared. The core losses of these steels were measured by Epstein frame method and the results showed a ∼10% difference among strips cold rolled at different angles. A minimum core loss occurred at a 45° inclination angle in the low Si steel.
Dowty, James G.; Byrnes, Graham B; Gertig, Dorota M
2013-01-01
Ductal carcinoma {\\em in situ} (DCIS) lesions are non-invasive tumours of the breast which are thought to precede most invasive breast cancers (IBC). As individual DCIS lesions are initiated, grow and invade (i.e. become IBC) the size distribution of the DCIS lesions present in a given human population will evolve. We derive a differential equation governing this evolution and show, for given assumptions about growth and invasion, that there is a unique distribution which does not vary with t...
Academic training: From Evolution Theory to Parallel and Distributed Genetic Programming
2007-01-01
2006-2007 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 15, 16 March From 11:00 to 12:00 - Main Auditorium, bldg. 500 From Evolution Theory to Parallel and Distributed Genetic Programming F. FERNANDEZ DE VEGA / Univ. of Extremadura, SP Lecture No. 1: From Evolution Theory to Evolutionary Computation Evolutionary computation is a subfield of artificial intelligence (more particularly computational intelligence) involving combinatorial optimization problems, which are based to some degree on the evolution of biological life in the natural world. In this tutorial we will review the source of inspiration for this metaheuristic and its capability for solving problems. We will show the main flavours within the field, and different problems that have been successfully solved employing this kind of techniques. Lecture No. 2: Parallel and Distributed Genetic Programming The successful application of Genetic Programming (GP, one of the available Evolutionary Algorithms) to optimization problems has encouraged an ...
Numerical solution of $Q^{2}$ evolution equation for the transversity distribution $\\Delta_{T}$ q
Hirai, M; Miyama, M
1998-01-01
We investigate numerical solution of the Dokshitzer-Gribov-Lipatov-Altarelli- Parisi (DGLAP) Q^2 evolution equation for the transversity distribution Delta_T q or the structure function h_1. The leading-order (LO) and next-to- leading-order (NLO) evolution equations are studied. The renormalization scheme is MS or overline{MS} in the NLO case. Dividing the variables x and Q^2 into small steps, we solve the integrodifferential equations by the Euler method in the variable Q^2 and by the Simpson method in the variable x. Numerical results indicate that accuracy is better than 1% in the region 10^{-5}
The measurement of the effective weak mixing angle with the ATLAS experiment at the LHC is presented. It is extracted from the forward-backward asymmetry in the polar angle distribution of the muons originating from Z boson decays in the reaction pp→Z/γ*+X→ μ+μ-+X. In total 4.7 fb-1 of proton-proton collisions at √(s)=7 TeV are analysed. In addition, the full polar and azimuthal angular distributions are measured as a function of the transverse momentum of the Z/γ* system and are compared to several simulations as well as recent results obtained in p anti p collisions. Finally, the angular distributions are used to confirm the spin of the gluon using the Lam-Tung relation.
Nucleonic helicity distributions revisited with an emphasis on their evolutions and twists
Rajen Kundu
2014-12-01
In this work, we uphold and extend the formalism advocated by us more than a decade ago in order to extract information on various distribution functions describing nucleonic helicity structure and calculate a complete set of splitting functions relevant for their quantum chromodynamics (QCD) evolutions using light-front Hamiltonian perturbation theory in light front gauge + = 0. Twist-two structures of the helicity distributions are self-evident in our calculation. Sum rules associated with these helicity distributions are also verified in a frame-independent way.
U Jamil; J K Sarma
2008-09-01
Evolution of gluon distribution function from Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP) evolution equation in next-to-leading order (NLO) at low- is presented assuming the Regge behaviour of quark and gluon at this limit. We compare our results of gluon distribution function with MRST2004, GRV98LO and GRV98NLO parametrizations and show the compatibility of Regge behaviour of quark and gluon distribution functions with perturbative quantum chromodynamics (PQCD) at low-.
QCD evolution of naive-time-reversal-odd parton distribution functions
We reexamine the derivation of the leading order QCD evolution equations of twist-3 quark-gluon correlation functions, Tq,F(x,x) and Tq,F(σ)(x,x), which are the first transverse-momentum-moment of the naive-time-reversal-odd parton distribution functions - the Sivers and Boer-Mulders function, respectively. The evolution equations were derived by several groups with apparent differences. We identify the sources that are responsible for the differences, and are able to reconcile the results from various groups.
Renormalization-group improved evolution of the meson distribution amplitude at the two-loop level
We discuss the two-loop evolution of the flavor-nonsinglet meson distribution amplitude in perturbative QCD. After reviewing previous two-loop computations, we outline the incompatibility of these solutions with the group property of the renormalization-group transformations. To cure this deficiency, we compute a correction factor for the non-diagonal part of the meson evolution equation and prove that with this modification the two-loop solution conforms with the group properties of the renormalization-group transformations. The special case of a fixed strong coupling (no Q2 dependence) is also discussed, and comparison is given to previously obtained results
The B-O-B bond angle distributions for both ring and non-ring boron sites in vitreous B2O3 have been determined by 11B double rotation (DOR) NMR and multiple-quantum (MQ) DOR NMR. The [B3O6] boroxol rings are observed to have a mean internal B-O-B angle of 120.0±0.7 deg. with a small standard deviation, σR=3.2±0.4 deg., indicating that the rings are near-perfect planar, hexagonal structures. The rings are linked predominantly by non-ring [BO3] units, which share oxygens with the boroxol ring, with a mean Bring-O-Bnon-ring angle of 135.1±0.6 deg. and σNR=6.7±0.4 deg. In addition, the fraction of boron atoms, f, which reside in the boroxol rings has been measured for this sample as f=0.73±0.01. - Graphical abstract: Connectivities and B-O-B bond angle distributions of ring and non-ring boron atoms in v-B2O3 have been determined by 11B double rotation (DOR) NMR, multiple-quantum (MQ) DOR NMR and spin-diffusion DOR. Near-perfect planar, hexagonal [B3O6] boroxol rings are shown to be present. Display Omitted
Model independent evolution of transverse momentum dependent distribution functions (TMDs) at NNLL
Echevarria, Miguel G.; Scimemi, Ignazio [Universidad Complutense de Madrid (UCM), Departamento de Fisica Teorica II, Madrid (Spain); Idilbi, Ahmad [European Centre for Theoretical Studies in Nuclear Physics and Related Areas, ECT, Villazzano, Trento (Italy); Schaefer, Andreas [Universitaet Regensburg, Instituet fuer Theoretische Physik, Regensburg (Germany)
2013-12-15
We discuss the evolution of the eight leading-twist transverse momentum dependent parton distribution functions, which turns out to be universal and spin independent. By using the highest order perturbatively calculable ingredients at our disposal, we perform the resummation of the large logarithms that appear in the evolution kernel of transverse momentum distributions up to next-to-next-to-leading logarithms (NNLL), thus obtaining an expression for the kernel with highly reduced model dependence. Our results can also be obtained using the standard CSS approach when a particular choice of the b {sup *} prescription is used. In this sense, and while restricted to the perturbative domain of applicability, we consider our results as a ''prediction'' of the correct value of b{sub max} which is very close to 1.5 GeV{sup -1}. We explore under which kinematical conditions the effects of the non-perturbative region are negligible, and hence the evolution of transverse momentum distributions can be applied in a model independent way. The application of the kernel is illustrated by considering the unpolarized transverse momentum dependent parton distribution function and the Sivers function. (orig.)
Model independent evolution of transverse momentum dependent distribution functions (TMDs) at NNLL
We discuss the evolution of the eight leading-twist transverse momentum dependent parton distribution functions, which turns out to be universal and spin independent. By using the highest order perturbatively calculable ingredients at our disposal, we perform the resummation of the large logarithms that appear in the evolution kernel of transverse momentum distributions up to next-to-next-to-leading logarithms (NNLL), thus obtaining an expression for the kernel with highly reduced model dependence. Our results can also be obtained using the standard CSS approach when a particular choice of the b * prescription is used. In this sense, and while restricted to the perturbative domain of applicability, we consider our results as a ''prediction'' of the correct value of bmax which is very close to 1.5 GeV-1. We explore under which kinematical conditions the effects of the non-perturbative region are negligible, and hence the evolution of transverse momentum distributions can be applied in a model independent way. The application of the kernel is illustrated by considering the unpolarized transverse momentum dependent parton distribution function and the Sivers function. (orig.)
Bora Tas
2016-01-01
Full Text Available To investigate the dose-volume variations of planning target volume (PTV and organ at risks (OARs in eleven prostate cancer patients planned with single and double arc volumetric modulated arc therapy (VMAT when varying collimator angle. Single and double arc VMAT treatment plans were created using Monaco5.0® with collimator angle set to 0°. All plans were normalized 7600 cGy dose to the 95% of clinical target volume (CTV volume. The single arc VMAT plans were reoptimized with different collimator angles (0°, 15°, 30°, 45°, 60°, 75°, and 90°, and for double arc VMAT plans (0–0°, 15°–345, 30–330°, 45–315°, 60–300°, 75–285°, 90–270° using the same optimization parameters. For the comparison the parameters of heterogeneity index (HI, dose-volume histogram and minimum dose to the 95% of PTV volume (D95 PTV calculated and analyzed. The best plans were verified using 2 dimensional ion chamber array IBA Matrixx® and three-dimensional IBA Compass® program. The comparison between calculation and measurement were made by the γ-index (3%/3 mm analysis. A higher D95 (PTV were found for single arc VMAT with 15° collimator angle. For double arc, VMAT with 60–300° and 75–285° collimator angles. However, lower rectum doses obtained for 75–285° collimator angles. There was no significant dose difference, based on other OARs which are bladder and femur head. When we compared single and double arc VMAT's D95 (PTV, we determined 2.44% high coverage and lower HI with double arc VMAT. All plans passed the γ-index (3%/3 mm analysis with more than 97% of the points and we had an average γ-index for CTV 0.36, for PTV 0.32 with double arc VMAT. These results were significant by Wilcoxon signed rank test statistically. The results show that dose coverage of target and OAR's doses also depend significantly on the collimator angles due to the geometry of target and OARs. Based on the results we have decided to plan prostate
Tas, Bora; Bilge, Hatice; Ozturk, Sibel Tokdemir
2016-01-01
To investigate the dose-volume variations of planning target volume (PTV) and organ at risks (OARs) in eleven prostate cancer patients planned with single and double arc volumetric modulated arc therapy (VMAT) when varying collimator angle. Single and double arc VMAT treatment plans were created using Monaco5.0(®) with collimator angle set to 0°. All plans were normalized 7600 cGy dose to the 95% of clinical target volume (CTV) volume. The single arc VMAT plans were reoptimized with different collimator angles (0°, 15°, 30°, 45°, 60°, 75°, and 90°), and for double arc VMAT plans (0-0°, 15°-345, 30-330°, 45-315°, 60-300°, 75-285°, 90-270°) using the same optimization parameters. For the comparison the parameters of heterogeneity index (HI), dose-volume histogram and minimum dose to the 95% of PTV volume (D95 PTV) calculated and analyzed. The best plans were verified using 2 dimensional ion chamber array IBA Matrixx(®) and three-dimensional IBA Compass(®) program. The comparison between calculation and measurement were made by the γ-index (3%/3 mm) analysis. A higher D95 (PTV) were found for single arc VMAT with 15° collimator angle. For double arc, VMAT with 60-300° and 75-285° collimator angles. However, lower rectum doses obtained for 75-285° collimator angles. There was no significant dose difference, based on other OARs which are bladder and femur head. When we compared single and double arc VMAT's D95 (PTV), we determined 2.44% high coverage and lower HI with double arc VMAT. All plans passed the γ-index (3%/3 mm) analysis with more than 97% of the points and we had an average γ-index for CTV 0.36, for PTV 0.32 with double arc VMAT. These results were significant by Wilcoxon signed rank test statistically. The results show that dose coverage of target and OAR's doses also depend significantly on the collimator angles due to the geometry of target and OARs. Based on the results we have decided to plan prostate cancer patients in our
The present study elaborates on a 2D level set model of polycrystal microstructures that was recently established by adding the influence of anisotropic grain boundary energy and mobility on microstructure evolution. The new model is used to trace the evolution of grain boundary character distribution during grain growth. The employed level set formulation conveniently allows the grain boundary characteristics to be quantified in terms of coincidence site lattice (CSL) type per unit of grain boundary length, providing a measure of the distribution of such boundaries. In the model, both the mobility and energy of the grain boundaries are allowed to vary with misorientation. In addition, the influence of initial polycrystal texture is studied by comparing results obtained from a polycrystal with random initial texture against results from a polycrystal that initially has a cube texture. It is shown that the proposed level set formulation can readily incorporate anisotropic grain boundary properties and the simulation results further show that anisotropic grain boundary properties only have a minor influence on the evolution of CSL boundary distribution during grain growth. As anisotropic boundary properties are considered, the most prominent changes in the CSL distributions are an increase of general low-angle Σ1 boundaries as well as a more stable presence of Σ3 boundaries. The observations also hold for the case of an initially cube-textured polycrystal. The presence of this kind of texture has little influence over the evolution of the CSL distribution. Taking into consideration the anisotropy of grain boundary properties, grain growth alone does not seem to be sufficient to promote any significantly increased overall presence of CSL boundaries. (paper)
Full text: The structural evolution on the drying of wet sonogels of silica with the liquid phase exchanged by acetone, obtained from tetraethoxisilane sonohydrolysis, was studied 'in situ' by small-angle X-ray scattering (SAXS). The SAXS measurements were carried out using synchrotron radiation with a wavelength λ = 0.1608 nm and a pin-hole geometry collimated beam. The periods associated to the structural evolution as determined by SAXS are in agreement with those classical ones established on basis of the features of the evaporation rate of the liquid phase in the obtaining of xerogels. The SAXS data were analyzed on basis of the fractal characteristics of the sonogels. The wet gel can be described as formed by primary particles (microclusters), with characteristic length a ∼ 0.67 nm and surface which is fractal, linking together to form mass fractal structures with mass fractal dimension D = 2.24 in a length scale ξ ∼ 6.7 nm. As the network collapses while the liquid/vapor meniscus is kept out of the gel volume, the mass fractal structure becomes more compacted by increasing D and decreasing ξ, with smoothing of the fractal surface of the microclusters. The time evolution of the density of the wet gels was evaluated exclusively from the SAXS parameters ξ, D and a. The final dried acetone-exchanged gel presents Porod's inhomogeneity length of about 2.8 nm and apparently exhibits an interesting singularity D → 3, as determined by the mass fractal modeling used to t the SAXS intensity data for the obtaining of the parameters ξ and D. (author)
Noetzli, J.; Gruber, S.; Kohl, T; Salzmann, N.; Haeberli, W.
2007-01-01
Permafrost degradation is regarded as a crucial factor influencing the stability of steep rockwalls in alpine areas. Discernment of zones of fast temperature changes requires knowledge about the temperature distribution and evolution at and below the surface of steep rock. In complex high-mountain topography, strong lateral heat fluxes result from topography and variable surface temperatures and profoundly influence the subsurface thermal field. To investigate such three-dimensional effects, ...
The Evolution of US City Size Distribution from a Long Term Perspective (1900-2000)
González-Val, Rafael
2009-01-01
This paper analyses the evolution of city size distribution in the United States throughout the twentieth century. In particular, it tests the validity of two empirical regularities studied in urban economics: Zipf’s law, which postulates that the product between rank and size of a population is constant, and Gibrat’s law or the law of proportionate growth, according to which the growth rate of a variable is independent of its initial size. To achieve this, we use parametric and nonparametric...
On a link between a species survival time in an evolution model and the Bessel distributions
Guiol, Herve; Schinazi, Rinaldo B
2011-01-01
We consider a stochastic model for species evolution. A new species is born at rate lambda and a species dies at rate mu. A random number, sampled from a given distribution F, is associated with each new species at the time of birth. Every time there is a death event, the species that is killed is the one with the smallest fitness. We consider the (random) survival time of a species with a given fitness f. We show that the survival time distribution depends crucially on whether ff_c where f_c is a critical fitness that is computed explicitly.
Time evolution of the lateral-velocity distribution for a strong-field-ionization process
Ivanov, I. A.
2016-05-01
We study time development of a cusp in the lateral-velocity distribution for the process of strong-field ionization. The lateral-velocity distribution is computed using an ab initio quantum mechanical procedure for the moments of time inside and after the end of the laser pulse. We show that at the moment of time corresponding to the midpoint of the laser pulse the lateral-velocity distribution is a smooth Gaussian curve, its parameters agreeing very well with the predictions of the tunelling theories. At the moment of time corresponding to the end of the pulse the lateral-velocity distribution narrows considerably, showing the initial stage of the cusp-formation process due to the Coulomb focusing effect. Following evolution of the ionized wave packet yet further in time we consider the cusp formation in detail.
Eliasson, B., E-mail: bengt.eliasson@strath.ac.uk [SUPA, Physics Department, John Anderson Building, Strathclyde University, Glasgow G4 0NG, Scotland (United Kingdom); Lazar, M., E-mail: mlazar@tp4.rub.de [Centre for Mathematical Plasma Astrophysics, Celestijnenlaan 200B, 3001 Leuven (Belgium); Institut für Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik, Ruhr-Universität Bochum, 44780 Bochum (Germany)
2015-06-15
This paper presents a numerical study of the linear and nonlinear evolution of the electromagnetic electron-cyclotron (EMEC) instability in a bi-Kappa distributed plasma. Distributions with high energy tails described by the Kappa power-laws are often observed in collision-less plasmas (e.g., solar wind and accelerators), where wave-particle interactions control the plasma thermodynamics and keep the particle distributions out of Maxwellian equilibrium. Under certain conditions, the anisotropic bi-Kappa distribution gives rise to plasma instabilities creating low-frequency EMEC waves in the whistler branch. The instability saturates nonlinearly by reducing the temperature anisotropy until marginal stability is reached. Numerical simulations of the Vlasov-Maxwell system of equations show excellent agreement with the growth-rate and real frequency of the unstable modes predicted by linear theory. The wave-amplitude of the EMEC waves at nonlinear saturation is consistent with magnetic trapping of the electrons.
NLO $Q^{2}$-evolution of the nucleon's transversity distribution $h_{1}(x, Q^2)$
Hayashigaki, A; Koike, Y; Koike, Yuji
1997-01-01
We present a calculation of the two-loop anomalous dimension for the transversity distribution $h_1(x,Q^2)$, $\\gamma^{h(1)}_n$, in the MS scheme of the dimensional regularization. Because of the chiral-odd nature, $h_1$ does not mix with the gluon distributions, and thus our result is the same for the flavor-singlet and nonsinglet distributions. At small $n$ (moment of $h_1$), anomalous dimension for the nonsinglet $f_1$ and $g_1$), but approaches relation between the one-loop anomalous dimension for $f_1$ $(g_1)$ and $h_1$. We also show that this difference in the anomalous dimension between $h_1$ and $g_1$ leads to a drastic difference in the $Q^2$-evolution of those distributions in the small $x$ region.
Kela, K. B.; Arya, L. D.
2014-09-01
This paper describes a methodology for determination of optimum failure rate and repair time for each section of a radial distribution system. An objective function in terms of reliability indices and their target values is selected. These indices depend mainly on failure rate and repair time of a section present in a distribution network. A cost is associated with the modification of failure rate and repair time. Hence the objective function is optimized subject to failure rate and repair time of each section of the distribution network considering the total budget allocated to achieve the task. The problem has been solved using differential evolution and bare bones particle swarm optimization. The algorithm has been implemented on a sample radial distribution system.
Jazebi, S., E-mail: jazebi@aut.ac.i [Dept. of Electrical Engineering, Amirkabir University of Technology, No. 424, Hafez Avenue, Tehran 158754413 (Iran, Islamic Republic of); Hosseinian, S.H., E-mail: hosseinian@aut.ac.i [Dept. of Electrical Engineering, Amirkabir University of Technology, No. 424, Hafez Avenue, Tehran 158754413 (Iran, Islamic Republic of); Vahidi, B., E-mail: vahidi@aut.ac.i [Dept. of Electrical Engineering, Amirkabir University of Technology, No. 424, Hafez Avenue, Tehran 158754413 (Iran, Islamic Republic of)
2011-07-15
Highlights: {yields} Reconfiguration and DSTATCOM allocation are implemented for RDS planning. {yields} Differential evolution algorithm is applied to solve the nonlinear problem. {yields} Optimal status of tie switches, DSTATCOM size and location are determined. {yields} The goal is to minimize network losses and to improve voltage profile. {yields} The results show the effectiveness of the proposed method to satisfy objectives. -- Abstract: The main idea in distribution network reconfiguration is usually to reduce loss by changing the status of sectionalizing switches and determining appropriate tie switches. Recently Distribution FACTS (DFACTS) devices such as DSTATCOM also have been planned for loss reduction and voltage profile improvement in steady state conditions. This paper implements a combinatorial process based on reconfiguration and DSTATCOM allocation in order to mitigate losses and improve voltage profile in power distribution networks. The distribution system tie switches, DSTATCOM location and size have been optimally determined to obtain an appropriate operational condition. Differential evolution algorithm (DEA) has been used to solve and overcome the complicity of this combinatorial nonlinear optimization problem. To validate the accuracy of results a comparison with particle swarm optimization (PSO) has been made. Simulations have been applied on 69 and 83 busses distribution test systems. All optimization results show the effectiveness of the combinatorial approach in loss reduction and voltage profile improvement.
Highlights: → Reconfiguration and DSTATCOM allocation are implemented for RDS planning. → Differential evolution algorithm is applied to solve the nonlinear problem. → Optimal status of tie switches, DSTATCOM size and location are determined. → The goal is to minimize network losses and to improve voltage profile. → The results show the effectiveness of the proposed method to satisfy objectives. -- Abstract: The main idea in distribution network reconfiguration is usually to reduce loss by changing the status of sectionalizing switches and determining appropriate tie switches. Recently Distribution FACTS (DFACTS) devices such as DSTATCOM also have been planned for loss reduction and voltage profile improvement in steady state conditions. This paper implements a combinatorial process based on reconfiguration and DSTATCOM allocation in order to mitigate losses and improve voltage profile in power distribution networks. The distribution system tie switches, DSTATCOM location and size have been optimally determined to obtain an appropriate operational condition. Differential evolution algorithm (DEA) has been used to solve and overcome the complicity of this combinatorial nonlinear optimization problem. To validate the accuracy of results a comparison with particle swarm optimization (PSO) has been made. Simulations have been applied on 69 and 83 busses distribution test systems. All optimization results show the effectiveness of the combinatorial approach in loss reduction and voltage profile improvement.
Extraction of quark transversity distribution and Collins fragmentation functions with QCD evolution
Kang, Zhong-Bo; Prokudin, Alexei; Sun, Peng; Yuan, Feng
2016-01-01
We study the transverse-momentum-dependent (TMD) evolution of the Collins azimuthal asymmetries in e+e- annihilations and semi-inclusive hadron production in deep inelastic scattering processes. All the relevant coefficients are calculated up to the next-to-leading-logarithmic-order accuracy. By applying the TMD evolution at the approximate next-to-leading-logarithmic order in the Collins-Soper-Sterman formalism, we extract transversity distributions for u and d quarks and Collins fragmentation functions from current experimental data by a global analysis of the Collins asymmetries in back-to-back dihadron productions in e+e- annihilations measured by BELLE and BABAR collaborations and semi-inclusive hadron production in deep inelastic scattering data from HERMES, COMPASS, and JLab HALL A experiments. The impact of the evolution effects and the relevant theoretical uncertainties are discussed. We further discuss the TMD interpretation for our results and illustrate the unpolarized quark distribution, transversity distribution, unpolarized quark fragmentation, and Collins fragmentation functions depending on the transverse momentum and the hard momentum scale. We make detailed predictions for future experiments and discuss their impact.
Ikegami, Seiji, E-mail: double1892@gmail.com
2013-12-01
The aims of this work are to compare and to include two energy loss effects in multiple scattering caused by elastic and inelastic collisions in angular and lateral distributions based on Valdes and Arista (VA) theory. VA developed small angle multiple scattering theory including energy loss effects based on the Sigmund and Winterbon model for the first time. However, the energy loss effects on lateral distributions have not yet been estimated. In the VA model, target thickness and energy loss are independently treated. In this study, those effects are successfully introduced on the basis of the VA model. We considered the lateral spread and angular distribution separately and included the nuclear and electronic energy loss effects as a function of target thickness. Our results indicate that discrepancies occur between the two distributions, including nuclear and electronic stopping for several target thickness. Moreover, we constructed a multiple scattering model that includes both elastic and inelastic energy losses.
Size Evolution and Stochastic Models: Explaining Ostracod Size through Probabilistic Distributions
Krawczyk, M.; Decker, S.; Heim, N. A.; Payne, J.
2014-12-01
The biovolume of animals has functioned as an important benchmark for measuring evolution throughout geologic time. In our project, we examined the observed average body size of ostracods over time in order to understand the mechanism of size evolution in these marine organisms. The body size of ostracods has varied since the beginning of the Ordovician, where the first true ostracods appeared. We created a stochastic branching model to create possible evolutionary trees of ostracod size. Using stratigraphic ranges for ostracods compiled from over 750 genera in the Treatise on Invertebrate Paleontology, we calculated overall speciation and extinction rates for our model. At each timestep in our model, new lineages can evolve or existing lineages can become extinct. Newly evolved lineages are assigned sizes based on their parent genera. We parameterized our model to generate neutral and directional changes in ostracod size to compare with the observed data. New sizes were chosen via a normal distribution, and the neutral model selected new sizes differentials centered on zero, allowing for an equal chance of larger or smaller ostracods at each speciation. Conversely, the directional model centered the distribution on a negative value, giving a larger chance of smaller ostracods. Our data strongly suggests that the overall direction of ostracod evolution has been following a model that directionally pushes mean ostracod size down, shying away from a neutral model. Our model was able to match the magnitude of size decrease. Our models had a constant linear decrease while the actual data had a much more rapid initial rate followed by a constant size. The nuance of the observed trends ultimately suggests a more complex method of size evolution. In conclusion, probabilistic methods can provide valuable insight into possible evolutionary mechanisms determining size evolution in ostracods.
Neutron energy spectra at different emission angles, between 0° and 120° from the Be(p,xn) reaction generated by a beryllium thick-target bombarded with 5 MeV protons, have been measured at the Legnaro Laboratories (LNL) of the Italian National Institute for Nuclear Physics research (INFN). A new and quite compact recoil-proton spectrometer, based on a monolithic silicon telescope, coupled to a polyethylene converter, was efficiently used with respect to the traditional Time-of-Flight (TOF) technique. The measured distributions of recoil-protons were processed through an iterative unfolding algorithm in order to determine the neutron energy spectra at all the angles accounted for. The neutron energy spectrum measured at 0° resulted to be in good agreement with the only one so far available at the requested energy and measured years ago with TOF technique. Moreover, the results obtained at different emission angles resulted to be consistent with detailed past measurements performed at 4 MeV protons at the same angles by TOF techniques.
Agosteo, S. [Politecnico di Milano, Dipartimento di Energia, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)] [Istituto Nazionale di Fisica Nucleare, Sezione di Milano, via Celoria 16, 20133 Milano (Italy); Colautti, P., E-mail: paolo.colautti@lnl.infn.it [INFN, Laboratori Nazionali di Legnaro (LNL), Via dell' Universita, 2, I-35020 Legnaro (PD) (Italy); Esposito, J., E-mail: juan.esposito@tin.it [INFN, Laboratori Nazionali di Legnaro (LNL), Via dell' Universita, 2, I-35020 Legnaro (PD) (Italy); Fazzi, A.; Introini, M.V.; Pola, A. [Politecnico di Milano, Dipartimento di Energia, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)] [Istituto Nazionale di Fisica Nucleare, Sezione di Milano, via Celoria 16, 20133 Milano (Italy)
2011-12-15
Neutron energy spectra at different emission angles, between 0 Degree-Sign and 120 Degree-Sign from the Be(p,xn) reaction generated by a beryllium thick-target bombarded with 5 MeV protons, have been measured at the Legnaro Laboratories (LNL) of the Italian National Institute for Nuclear Physics research (INFN). A new and quite compact recoil-proton spectrometer, based on a monolithic silicon telescope, coupled to a polyethylene converter, was efficiently used with respect to the traditional Time-of-Flight (TOF) technique. The measured distributions of recoil-protons were processed through an iterative unfolding algorithm in order to determine the neutron energy spectra at all the angles accounted for. The neutron energy spectrum measured at 0 Degree-Sign resulted to be in good agreement with the only one so far available at the requested energy and measured years ago with TOF technique. Moreover, the results obtained at different emission angles resulted to be consistent with detailed past measurements performed at 4 MeV protons at the same angles by TOF techniques.
Time-Evolution of a Fractal Distribution: Particle Concentrations in Free-Surface Turbulence
Larkin, Jason; Bandi, M M
2010-01-01
Steady-state turbulence is generated in a tank of water and the trajectories of particles forming a compressible system on the surface are tracked in time. The initial uniformly distributed floating particles coagulate and form a fractal distribution, a rare manifestation of a fractal object observable in real-space. The surface pattern reaches a steady state in approximately 1 s. Measurements are made of the fractal dimensions $D_q(t)$ ($q=1$ to $6$) of the floating particles starting with the uniform distribution $D_q(0)$ = 2 for Taylor Microscale Reynolds number $Re_{\\lambda} \\simeq 160$. Focus is on the the time-evolution of the correlation dimension $D_2(t)$ as the steady state is approached. This steady state is reached in several large eddy turnover times and does so at an exponential rate.
$Q^2$ evolution of chiral-odd twist-3 distribution $e(x,Q^2)$
Koike, Y; Koike, Yuji
1997-01-01
We study the $Q^2$ dependence of the chiral-odd twist-3 distribution $e(x,Q^2)$.The anomalous dimension matrix for the corresponding twist-3 operators is calculated in the one-loop level. This study completes the calculation of the anomalous dimension matrices for all the twist-3 distributions together with the known results for the other twist-3 distributions $g_2(x,Q^2)$ and $h_L(x,Q^2)$. We also have confirmed that in the large $N_c$ limit the $Q^2$-evolution of $e(x,Q^2)$ is wholely governed by the lowest eigenvalue of the anomalous dimension matrix which takes a very simple analytic form as in the case of $g_2$ and $h_L$.
Zou, Z.; Ni, B.; Gu, X.; Zhao, Z.; Zhou, C.
2015-12-01
Fifteen month of pitch angle resolved Van Allen Probes Relativistic Electron-Proton Telescope (REPT) measurements of differential electron flux are analyzed to investigate the characteristics of the pitch angle distribution of radiation belt ultrarelativistic(> 2 MeV) electrons during storm conditions and during the long-storm decay. By modeling the ultrarelativistic electron pitch angle distribution as ,where is the equatorial pitch angle we examine the spatiotemporal variations of n value. The results show that in general n values increases with the level of geomagnetic activity. In principle the ultrarelativistic electrons respond to geomagnetic storms by becoming peaked at 90° pitch angle with n-values of 2 - 3 as a supportive signature of chorus acceleration outside the plasmasphere. High n-values also exists inside the plasmasphere, being localized adjacent to the plasmapause and energy dependent, which suggests a significant contribution from electronmagnetic ion cyclotron (EMIC) waves scattering. During quiet periods, n values generally evolve to become small, i.e., 0-1. The slow and long-term decays of the ultrarelativistic electrons after geomagnetic storms, while prominent, produce energy and L-shell-dependent decay time scales in association with the solar and geomagnetic activity and wave-particle interaction processes. At lower L shells inside the plasmasphere, the decay time scales for electrons at REPT energies are generally larger, varying from tens of days to hundreds of days, which can be mainly attributed to the combined effect of hiss-induced pitch angle scattering and inward radial diffusion. As L shell increases to L~3.5, a narrow region exists (with a width of ~0.5 L), where the observed ultrarelativistic electrons decay fastest, possibly resulting from efficient EMIC wave scattering. As L shell continues to increase, generally becomes larger again, indicating an overall slower loss process by waves at high L shells. Our investigation based
A grazing incidence small-angle X-ray scattering (GISAXS) technique has been applied for characterizing a particle size distribution of nickel nano-particles in a nickel-carbon granular (Ni-C granular) film fabricated by a cosputtering method on a silicon substrate. The particles were modelled as a spherical shape in order to calculate scattering intensity, and a Γ-distribution was employed for determining the size distribution. In addition, a grazing incidence X-ray diffraction (GIXRD) was also measured in order to determine crystallite size of the particles. The crystallite size was analyzed by the Sherrer equation. The average particle size and the crystallite size are 5.7 and 5.2 nm respectively. These results suggest most of nickel particles are single crystal
The Evolution of the Water Distribution in a Viscous Protoplanetary Disk
Ciesla, F J; Ciesla, Fred J.; Cuzzi, Jeffrey N.
2005-01-01
(Abridged) Astronomical observations have shown that protoplanetary disks are dynamic objects through which mass is transported and accreted by the central star. Age dating of meteorite constituents shows that their creation, evolution, and accumulation occupied several Myr, and over this time disk properties would evolve significantly. Moreover, on this timescale, solid particles decouple from the gas in the disk and their evolution follows a different path. Here we present a model which tracks how the distribution of water changes in an evolving disk as the water-bearing species experience condensation, accretion, transport, collisional destruction, and vaporization. Because solids are transported in a disk at different rates depending on their sizes, the motions will lead to water being concentrated in some regions of a disk and depleted in others. These enhancements and depletions are consistent with the conditions needed to explain some aspects of the chemistry of chondritic meteorites and formation of g...
Eiserhardt, Wolf L.; Svenning, J.-C.; Kissling, W. Daniel;
Species distributions, assemblage composition, and species richness depend on both current environment and the diversification of lineages in past environments. On broad scales, processes that constrain diversifying lineages to certain regions or environments are particularly important. Through s...... of Amazonian palm communities, which mainly reflects the evolution of habitat preferences....... species pool effects, those processes also affect local community composition and richness. In addition, evolution directly affects local communities directly via niche-based assembly. We studied these effects with palms (Arecaceae) as a model group, using a) a dataset including >340,000 palm individuals...... in 430 transects in the Western Amazon, b) a set of range maps for all American palms (550 spp.), and c) global country-level presence/ absence data of all (>2400) palm species. These data were analysed with novel phylogenetic community structure and turnover methods. Globally, the phylogenetic...
The effect of particle size distributions on the microstructural evolution during sintering
Bjørk, Rasmus; Tikare, V.; Frandsen, Henrik Lund;
2013-01-01
Microstructural evolution and sintering behavior of powder compacts composed of spherical particles with different particle size distributions (PSDs) were simulated using a kinetic Monte Carlo model of solid state sintering. Compacts of monosized particles, normal PSDs with fixed mean particle...... PSDs, but the final grain sizes were smaller. These behaviors are explained by the smallest grains in the broader PSDs being consumed very quickly by larger neighboring grains. The elimination of the small grains reduces both the total number of necks and the neck area between particles, which in turn...... reduces the regions where vacancies can be annihilated, leading to slower densification rates. The loss of neck area causes grain growth by surface diffusion to become the dominant microstructural evolution mechanism, leading to poor densification. Finally, pore size was shown to increase with the width...
Asteroid age distributions determined by space weathering and collisional evolution models
Willman, Mark; 10.1016/j.icarus.2010.02.017
2010-01-01
We provide evidence of consistency between the dynamical evolution of main belt asteroids and their color evolution due to space weathering. The dynamical age of an asteroid's surface \\citep{bib.bot05a,bib.nes05} is the time since its last catastrophic disruption event which is a function of the object's diameter. The age of an S-complex asteroid's surface may also be determined from its color using a space weathering model \\citep[e.g.][]{bib.wil10,bib.jed04,bib.wil08,bib.mar06}. We used a sample of 95 S-complex asteroids from SMASS and obtained their absolute magnitudes and $u,g,r,i,z$ filter magnitudes from SDSS. The absolute magnitudes yield a size-derived age distribution. The $u,g,r,i,z$ filter magnitudes lead to the principal component color which yields a color-derived age distribution by inverting our color-age relationship, an enhanced version of the `dual $\\tau$' space weathering model of \\citet{bib.wil10}. We fit the size-age distribution to the enhanced dual $\\tau$ model and found characteristic w...
Cooperative co-evolution based distributed path planning of multiple mobile robots
WANG Mei; WU Tie-jun
2005-01-01
This paper proposes novel multiple-mobile-robot collision avoidance path planning based on cooperative co-evolution,which can be executed fully distributed and in parallel. A real valued co-evolutionary algorithm is developed to coordinate the movement of multiple robots in 2D world, avoiding C-space or grid net searching. The collision avoidance is achieved by cooperatively co-evolving segments of paths and the time interval to pass them. Methods for constraint handling, which are developed for evolutionary algorithm, make the path planning easier. The effectiveness of the algorithm is demonstrated on a number of 2Dpath planning problems.
Mantsyzov, Alexey B. [M.V. Lomonosov Moscow State University, Faculty of Fundamental Medicine (Russian Federation); Shen, Yang; Lee, Jung Ho [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States); Hummer, Gerhard [Max Planck Institute of Biophysics (Germany); Bax, Ad, E-mail: bax@nih.gov [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)
2015-09-15
MERA (Maximum Entropy Ramachandran map Analysis from NMR data) is a new webserver that generates residue-by-residue Ramachandran map distributions for disordered proteins or disordered regions in proteins on the basis of experimental NMR parameters. As input data, the program currently utilizes up to 12 different parameters. These include three different types of short-range NOEs, three types of backbone chemical shifts ({sup 15}N, {sup 13}C{sup α}, and {sup 13}C′), six types of J couplings ({sup 3}J{sub HNHα}, {sup 3}J{sub C′C′}, {sup 3}J{sub C′Hα}, {sup 1}J{sub HαCα}, {sup 2}J{sub CαN} and {sup 1}J{sub CαN}), as well as the {sup 15}N-relaxation derived J(0) spectral density. The Ramachandran map distributions are reported in terms of populations of their 15° × 15° voxels, and an adjustable maximum entropy weight factor is available to ensure that the obtained distributions will not deviate more from a newly derived coil library distribution than required to account for the experimental data. MERA output includes the agreement between each input parameter and its distribution-derived value. As an application, we demonstrate performance of the program for several residues in the intrinsically disordered protein α-synuclein, as well as for several static and dynamic residues in the folded protein GB3.
MERA (Maximum Entropy Ramachandran map Analysis from NMR data) is a new webserver that generates residue-by-residue Ramachandran map distributions for disordered proteins or disordered regions in proteins on the basis of experimental NMR parameters. As input data, the program currently utilizes up to 12 different parameters. These include three different types of short-range NOEs, three types of backbone chemical shifts (15N, 13Cα, and 13C′), six types of J couplings (3JHNHα, 3JC′C′, 3JC′Hα, 1JHαCα, 2JCαN and 1JCαN), as well as the 15N-relaxation derived J(0) spectral density. The Ramachandran map distributions are reported in terms of populations of their 15° × 15° voxels, and an adjustable maximum entropy weight factor is available to ensure that the obtained distributions will not deviate more from a newly derived coil library distribution than required to account for the experimental data. MERA output includes the agreement between each input parameter and its distribution-derived value. As an application, we demonstrate performance of the program for several residues in the intrinsically disordered protein α-synuclein, as well as for several static and dynamic residues in the folded protein GB3
Cavallaro, M., E-mail: manuela.cavallaro@lns.infn.it [INFN, Laboratori Nazionali del Sud, Via S. Sofia 62, I-95125 Catania (Italy); Cappuzzello, F.; Carbone, D.; Cunsolo, A. [INFN, Laboratori Nazionali del Sud, Via S. Sofia 62, I-95125 Catania (Italy); Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, I-95125 Catania (Italy); Foti, A. [Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, I-95125 Catania (Italy); INFN, Sezione di Catania, Via S. Sofia 64, I-95125 Catania (Italy); Linares, R. [Instituto de Fisica, Universidade Federal Fluminense, Litoranea s/n, Gragoata, Niteroi, Rio de Janeiro 24210-340 (Brazil); Pereira, D.; Oliveira, J.R.B.; Gomes, P.R.S.; Lubian, J. [Universidade de Sao Paulo, Departamento de Fisica Nuclear, Instituto de Fisica da Universidade de Sao Paulo, Caixa Postal 66318, 05315-970 Sao Paulo, SP (Brazil); Chen, R. [Institute of Modern Physics, CAS, Lanzhou (China)
2011-08-21
The {sup 16}O+{sup 27}Al elastic and inelastic angular distributions have been measured in a broad angular range (13{sup o}<{theta}{sub lab}<52{sup o}) at about 100 MeV incident energy. The use of the MAGNEX large acceptance magnetic spectrometer and of the ray-reconstruction analysis technique has been crucial in order to provide, in the same experiment, high-resolution energy spectra and cross-section measurements distributed over more than seven orders of magnitude down to hundreds of nb/sr.
Kannan, S. M.; Renuga, P.; Kalyani, S.; Muthukumaran, E.
2015-12-01
This paper proposes new methods to select the optimal values of fixed and switched shunt capacitors in Radial distribution feeders for varying load conditions so as to maximize the annual savings and minimizes the energy loss by taking the capacitor cost into account. The identification of the weak buses, where the capacitors should be placed is decided by a set of rules given by the fuzzy expert system. Then the sizing of the fixed and switched capacitors is modeled using differential evolution (DE) and particle swarm optimization (PSO). A case study with an existing 15 bus rural distribution feeder is presented to illustrate the applicability of the algorithm. Simulation results show the better saving in cost over previous capacitor placement algorithm.
Information Measure for Size Distribution of Avalanches in the Bak-Sneppen Evolution Model
Li, Wei; Cai, Xu
2003-01-01
Information of avalanche size distribution is measured by calculating information entropy (IE) in the Bak-Sneppen evolution model. It is found that the IE increases as the model evolves. Specifically, we establish the relation between the IE and the self-organized threshold fc. The variation of the IE near the critical point yields an exponent entropy index E = (tau-1)/sigma, where tau and sigma represent the critical exponents for avalanche size distribution and avalanche size cutoff, respectively. A new quantity Dtau(g) (g = 1-(fc-G)(tau-1)/sigma, where G is the gap of the current state), defined as 1-Itau(g)/Itau(1), with Itau(g) and Itau(1) being the IE for the current state and the critical one respectively, is suggested that it represents the distance between the state with gap G and the critical one.
Information Measure for Size Distribution of Avalanches in the Bak-Sneppen Evolution Model
LI Wei; CAI Xu
2003-01-01
Information of avalanche size distribution is measured by calculating information entropy (IE) in the Bak-Sneppen evolution model. It is found that the IE increases as the model evolves. Specifically, we establish the relation between the IE and the self-organized threshold fc ? The variation of the IE near the critical point yields an exponent entropy index E = (T - l)/
By taking into account the effects of leading particles, we discuss the pseudorapidity distributions of the charged particles produced in high energy heavy ion collisions in the context of evolution-dominated hydrodynamic model. The leading particles are supposed to have a Gaussian rapidity distribution normalized to the number of participants. A comparison is made between the theoretical results and the experimental measurements performed by BRAHMS and PHOBOS Collaboration at BNL-RHIC in Au-Au and Cu-Cu collisions at √(sNN)=200 GeV and by ALICE Collaboration at CERN-LHC in Pb-Pb collisions at √(sNN)=2.76 TeV
Optimal Location and Sizing of UPQC in Distribution Networks Using Differential Evolution Algorithm
Seyed Abbas Taher
2012-01-01
Full Text Available Differential evolution (DE algorithm is used to determine optimal location of unified power quality conditioner (UPQC considering its size in the radial distribution systems. The problem is formulated to find the optimum location of UPQC based on an objective function (OF defined for improving of voltage and current profiles, reducing power loss and minimizing the investment costs considering the OF's weighting factors. Hence, a steady-state model of UPQC is derived to set in forward/backward sweep load flow. Studies are performed on two IEEE 33-bus and 69-bus standard distribution networks. Accuracy was evaluated by reapplying the procedures using both genetic (GA and immune algorithms (IA. Comparative results indicate that DE is capable of offering a nearer global optimal in minimizing the OF and reaching all the desired conditions than GA and IA.
Quasilinear Evolution of Multiple Non-thermal Ion Distributions in ICRF Heating
The AORSA global-wave solver is combined with the CQL3D bounce-averaged Fokker-Planck code to simulate the quasilinear evolution of non-thermal distributions in ion cyclotron resonance heating of tokamak plasmas. A novel re-formulation of the quasilinear operator enables calculation of the velocity space diffusion coefficients directly from the global wave fields. To obtain self-consistency between the wave fields and particle distribution function, AORSA and CQL3D have been iteratively coupled using Python. The combined self-consistent model is applied to minority ion heating in the Alcator C-Mod tokamak. Results show the formation of a 70 keV ion tail near the minority ion cyclotron resonance layer in approximate agreement with measurements from charge exchange neutral particle analyzers.
The AORSA global-wave solver is combined with the CQL3D bounce-averaged Fokker-Planck code to simulate the quasilinear evolution of non-thermal distributions in ion cyclotron resonance heating of tokamak plasmas. A novel re-formulation of the quasilinear operator enables calculation of the velocity space diffusion coefficients directly from the global wave fields. To obtain self-consistency between the wave fields and particle distribution function, AORSA and CQL3D have been iteratively coupled using Python. The combined selfconsistent model is applied to minority ion heating in the Alcator C-Mod tokamak. Results show the formation of a 70 keV ion tail near the minority ion cyclotron resonance layer in approximate agreement with measurements from charge exchange neutral particle analyzers
QCD evolution of (un)polarized gluon TMDPDFs and the Higgs $q_T$-distribution
Echevarria, Miguel G; Mulders, Piet J; Pisano, Cristian
2015-01-01
We provide the proper definition of all the leading-twist (un)polarized gluon transverse momentum dependent parton distribution functions (TMDPDFs), by considering the Higgs boson transverse momentum distribution in hadron-hadron collisions and deriving the factorization theorem in terms of them. We show that the evolution of all the (un)polarized gluon TMDPDFs is driven by a universal evolution kernel, which can be resummed up to next-to-next-to-leading-logarithmic accuracy. Considering the proper definition of gluon TMDPDFs, we perform an explicit next-to-leading-order calculation of the unpolarized ($f_1^g$), linearly polarized ($h_1^{\\perp g}$) and helicity ($g_{1L}^g$) gluon TMDPDFs, and show that, as expected, they are free from rapidity divergences. As a byproduct, we obtain the Wilson coefficients of the refactorization of these TMDPDFs at large transverse momentum. In particular, the coefficient of $g_{1L}^g$, which has never been calculated before, constitutes a new and necessary ingredient for a re...
Knowledge Evolution in Distributed Geoscience Datasets and the Role of Semantic Technologies
Ma, X.
2014-12-01
Knowledge evolves in geoscience, and the evolution is reflected in datasets. In a context with distributed data sources, the evolution of knowledge may cause considerable challenges to data management and re-use. For example, a short news published in 2009 (Mascarelli, 2009) revealed the geoscience community's concern that the International Commission on Stratigraphy's change to the definition of Quaternary may bring heavy reworking of geologic maps. Now we are in the era of the World Wide Web, and geoscience knowledge is increasingly modeled and encoded in the form of ontologies and vocabularies by using semantic technologies. Accordingly, knowledge evolution leads to a consequence called ontology dynamics. Flouris et al. (2008) summarized 10 topics of general ontology changes/dynamics such as: ontology mapping, morphism, evolution, debugging and versioning, etc. Ontology dynamics makes impacts at several stages of a data life cycle and causes challenges, such as: the request for reworking of the extant data in a data center, semantic mismatch among data sources, differentiated understanding of a same piece of dataset between data providers and data users, as well as error propagation in cross-discipline data discovery and re-use (Ma et al., 2014). This presentation will analyze the best practices in the geoscience community so far and summarize a few recommendations to reduce the negative impacts of ontology dynamics in a data life cycle, including: communities of practice and collaboration on ontology and vocabulary building, link data records to standardized terms, and methods for (semi-)automatic reworking of datasets using semantic technologies. References: Flouris, G., Manakanatas, D., Kondylakis, H., Plexousakis, D., Antoniou, G., 2008. Ontology change: classification and survey. The Knowledge Engineering Review 23 (2), 117-152. Ma, X., Fox, P., Rozell, E., West, P., Zednik, S., 2014. Ontology dynamics in a data life cycle: Challenges and recommendations
Full text: In present study, sintering behaviour of calcium doped lanthanum chromite (La0.7Ca0.3CrO3) (LCC) and strontium doped chromite (La0.8Sr0.2CrO3) (LSC) powders which is used as interconnect material for SOFC application, synthesized through a gel combustion route, have been studied. Fractal morphology in LCC and LSC powder aggregate has been investigated using small angle neutron scattering (SANS) technique for different sintering temperatures. A comparison of the evolution of mesoscopic structure has also been elucidated for the two materials at different sintering temperatures. X-ray diffraction experiments show the isostructural crystalline structure for both powders. Neutron scattering data reveal a fractal type correlation of building blocks in the as-formed powders. An increase in fractal dimension and a reduction in upper cutoff were found as sintering progresses indicating a compaction of agglomerates with increasing sintering temperature. At about 1200 deg C sintering temperature, the fractal characteristics morphology disappears almost completely. This is due to relatively faster diffusion mechanism at higher sintering temperatures and also because of better sinterability of the nano-particles compared to their bulk counterpart. Possibility of transient liquid phase sintering and phase transition assisted sintering process at higher sintering temperature may also be a possibility. Comparison of SANS profiles for LCC and LSC powders indicate that agglomerates in initial virgin powder of LSC are relatively more loose and larger in nature as compared to that of LCC. This reveals that the sintering efficiency of virgin powder of LCC is relatively easy than that of LSC in spite of their isothermal crystalline phase
The evolution processes of regular structure in isothermal crystallization phenomena of crystalline polymers have been investigated from the viewpoints of molecular level, crystal lattice, and higher-order structure on the basis of time-dependent infrared spectral data and synchrotron small- (SAXS) and wide-angle X-ray scattering (WAXD) data. The polymers treated here were isotactic polypropylene (iPP), nylon 10/10 and polyoxymethylene (POM). In the case of iPP, the formation and growing processes of regular helical segments in the molten state are described by utilizing the concept of critical sequential length for infrared bands. Combination of these spectroscopic data with the SAXS and WAXD data clarifies the formation process of domains consisting of regular helical segments, the increment of correlation of neighboring domains, and the development of stacked lamellar structure, during which the remarkable growth of crystal lattices consisting of regular helices occurs in parallel. In the case of nylon 10/10, weak hydrogen bonds are formed between amide groups even in the molten state. Once the isothermal crystallization starts to occur, these more-or-less correlated domains built up by the hydrogen bonds are formed followed by the formation of crystal lattices consisting of relatively regular methylene segments. Such growth is quite different from the case of iPP crystallization. The study of POM is based on the observation of infrared bands intrinsic to the folded chain crystals (FCC) and extended chain crystals (ECC). From the time-resolved measurements of these infrared bands as well as the SAXS and WAXD in the isothermal crystallization process of POM, we clarified that the lamellar structure of FCC morphology is formed at first. Then some new lamellae are formed in between these original lamellae, resulting in the formation of ECC parts in which the regular helices pass through the several neighboring lamellae as taut tie chains. (author)
Sachpazi, M.; Vigner, A.; Laigle, M.; Hirn, A.; Roussos, N.
2003-04-01
and reflectors interpreted as the top and the base of the lower crust. Based on the consistency of seismic evidence over the different profiles, though this is faint on each taken by itself, clear basement-involving faults that appear tosole into an upper crustal reflective domain which is interpreted as a shallow dipping detachment. These profiles reveal also uppercrustal structures consistent with the evolution in time and space of such a detachment. The latter has low angle dip grossly northeastward, from very shallow under the base of sediments in the SW corner of the NAT (N of Sporadhes Islands) to the 10 km depth where the active normal fault on the northern slope has been imaged. It is imaged in a joint consideration of the pres-stack depth migrated line and of the stack with multiple-suppression. Beneath, the top of the lower crust and the Moho are imaged in places. In-line and broadside wide-angle recordings by stations along the Magnesian peninsula and Evvia detect an abnormaly shallow position and facies of the lower crust under the southwestern edge of the NAT. Its extent is limited by the southern and western edges of the NAT and it can be viewed as marking the location of largest finite thinning of the upper crust. Striction and transport along the detachment are suggested to occur by the drag of the SW transported southern limb to the North Anatolian fault at the North Sporadhes escarpment.
The most commonly used methods of assessing the scoliotic deviation measure angles that are not clearly defined in relation to the anatomy of the patient. In order to give an anatomic basis for such measurements it is proposed to define the scoliotic deviation as the deviation the vertebral column makes with the sagittal plane. Both the Cobb and the Ferguson angles may be based on this definition. The present methods of measurement are then attempts to measure these angles. If the plane of these angles is parallel to the film, the measurement will be correct. Errors in the measurements may be incurred by the projection. A hypothetical projection, called a 'rectified orthogonal projection', is presented, which correctly represents all scoliotic angles in accordance with these principles. It can be constructed in practice with the aid of a computer and by performing measurements on two projections of the vertebral column; a scoliotic curve can be represented independent of the kyphosis and lordosis. (Auth.)
J. J. Lee
2012-11-01
Full Text Available Electron microburst energy spectra in the range of 170 keV to 360 keV have been measured using two solid-state detectors onboard the low-altitude (680 km, polar-orbiting Korean STSAT-1 (Science and Technology SATellite-1. Applying a unique capability of the spacecraft attitude control system, microburst energy spectra have been accurately resolved into two components: perpendicular to and parallel to the geomagnetic field direction. The former measures trapped electrons and the latter those electrons with pitch angles in the loss cone and precipitating into atmosphere. It is found that the perpendicular component energy spectra are harder than the parallel component and the loss cone is not completely filled by the electrons in the energy range of 170 keV to 360 keV. These results have been modeled assuming a wave-particle cyclotron resonance mechanism, where higher energy electrons travelling within a magnetic flux tube interact with whistler mode waves at higher latitudes (lower altitudes. Our results suggest that because higher energy (relativistic microbursts do not fill the loss cone completely, only a small portion of electrons is able to reach low altitude (~100 km atmosphere. Thus assuming that low energy microbursts and relativistic microbursts are created by cyclotron resonance with chorus elements (but at different locations, the low energy portion of the microburst spectrum will dominate at low altitudes. This explains why relativistic microbursts have not been observed by balloon experiments, which typically float at altitudes of ~30 km and measure only X-ray flux produced by collisions between neutral atmospheric particles and precipitating electrons.
Evolution of the ATLAS distributed computing system during the LHC long shutdown
The ATLAS Distributed Computing project (ADC) was established in 2007 to develop and operate a framework, following the ATLAS computing model, to enable data storage, processing and bookkeeping on top of the Worldwide LHC Computing Grid (WLCG) distributed infrastructure. ADC development has always been driven by operations and this contributed to its success. The system has fulfilled the demanding requirements of ATLAS, daily consolidating worldwide up to 1 PB of data and running more than 1.5 million payloads distributed globally, supporting almost one thousand concurrent distributed analysis users. Comprehensive automation and monitoring minimized the operational manpower required. The flexibility of the system to adjust to operational needs has been important to the success of the ATLAS physics program. The LHC shutdown in 2013-2015 affords an opportunity to improve the system in light of operational experience and scale it to cope with the demanding requirements of 2015 and beyond, most notably a much higher trigger rate and event pileup. We will describe the evolution of the ADC software foreseen during this period. This includes consolidating the existing Production and Distributed Analysis framework (PanDA) and ATLAS Grid Information System (AGIS), together with the development and commissioning of next generation systems for distributed data management (DDM/Rucio) and production (Prodsys-2). We will explain how new technologies such as Cloud Computing and NoSQL databases, which ATLAS investigated as R and D projects in past years, will be integrated in production. Finally, we will describe more fundamental developments such as breaking job-to-data locality by exploiting storage federations and caches, and event level (rather than file or dataset level) workload engines.
Evolution of the ATLAS distributed computing system during the LHC long shutdown
Campana, S.; Atlas Collaboration
2014-06-01
The ATLAS Distributed Computing project (ADC) was established in 2007 to develop and operate a framework, following the ATLAS computing model, to enable data storage, processing and bookkeeping on top of the Worldwide LHC Computing Grid (WLCG) distributed infrastructure. ADC development has always been driven by operations and this contributed to its success. The system has fulfilled the demanding requirements of ATLAS, daily consolidating worldwide up to 1 PB of data and running more than 1.5 million payloads distributed globally, supporting almost one thousand concurrent distributed analysis users. Comprehensive automation and monitoring minimized the operational manpower required. The flexibility of the system to adjust to operational needs has been important to the success of the ATLAS physics program. The LHC shutdown in 2013-2015 affords an opportunity to improve the system in light of operational experience and scale it to cope with the demanding requirements of 2015 and beyond, most notably a much higher trigger rate and event pileup. We will describe the evolution of the ADC software foreseen during this period. This includes consolidating the existing Production and Distributed Analysis framework (PanDA) and ATLAS Grid Information System (AGIS), together with the development and commissioning of next generation systems for distributed data management (DDM/Rucio) and production (Prodsys-2). We will explain how new technologies such as Cloud Computing and NoSQL databases, which ATLAS investigated as R&D projects in past years, will be integrated in production. Finally, we will describe more fundamental developments such as breaking job-to-data locality by exploiting storage federations and caches, and event level (rather than file or dataset level) workload engines.
Tormann, Thessa; Wiemer, Stefan; Enescu, Bogdan; Woessner, Jochen
2016-04-01
One of the major unresolved questions in seismology is the evolution in time and space of the earthquake rupture potential and thus time-dependent hazard along active faults. What happens after a major event: is the potential for further large events reduced as predicted from elastic rebound, or increased as proposed by current-state short-term clustering models? How does the rupture potential distribute in space, i.e. does it reveal imprints of stress transfer? Based on the rich earthquake record from the Pacific Plate along the Japanese coastline we investigate what information on spatial distributions and temporal changes of a normalized rupture potential (NRP) for different magnitudes can be derived from time-varying, local statistical characteristics of well and frequently observed small-to-moderate seismicity. Seismicity records show strong spatio-temporal variability in both activity rates and size distribution. We analyze 18 years of seismicity, including the massive 2011 M9 Tohoku earthquake and its aftermath. We show that the size distribution of earthquakes has significantly changed before (increased fraction of larger magnitudes) and after that mainshock (increased fraction of smaller magnitudes), strongest in areas of highest coseismic slip. Remarkably, a rapid recovery of this effect is observed within only few years. We combine this significant temporal variability in earthquake size distributions with local activity rates and infer the evolution of NRP distributions. We study complex spatial patterns and how they evolve, and more detailed temporal characteristics in a simplified spatial selection, i.e. inside and outside the high slip zone of the M9 earthquake. We resolve an immediate and strong NRP increase for large events prior to the Tohoku event in the subsequent high slip patch and a very rapid decrease inside this high-stress-release area, coupled with a lasting increase of NRP in the immediate surroundings. Even in the center of the Tohoku
QCD evolution of (un)polarized gluon TMDPDFs and the Higgs q T -distribution
Echevarria, Miguel G.; Kasemets, Tomas; Mulders, Piet J.; Pisano, Cristian
2015-07-01
We provide the proper definition of all the leading-twist (un)polarized gluon transverse momentum dependent parton distribution functions (TMDPDFs), by considering the Higgs boson transverse momentum distribution in hadron-hadron collisions and deriving the factorization theorem in terms of them. We show that the evolution of all the (un)polarized gluon TMDPDFs is driven by a universal evolution kernel, which can be resummed up to next-to-next-to-leading-logarithmic accuracy. Considering the proper definition of gluon TMDPDFs, we perform an explicit next-to-leading-order calculation of the unpolarized ( f {1/ g }), linearly polarized ( h {1/⊥ g }) and helicity ( g {1/L g }) gluon TMDPDFs, and show that, as expected, they are free from rapidity divergences. As a byproduct, we obtain the Wilson coefficients of the refactorization of these TMDPDFs at large transverse momentum. In particular, the coefficient of g {1/L g }, which has never been calculated before, constitutes a new and necessary ingredient for a reliable phenomenological extraction of this quantity, for instance at RHIC or the future AFTER@LHC or Electron-Ion Collider. The coefficients of f {1/ g } and h {1/⊥ g } have never been calculated in the present formalism, although they could be obtained by carefully collecting and recasting previous results in the new TMD formalism. We apply these results to analyze the contribution of linearly polarized gluons at different scales, relevant, for instance, for the inclusive production of the Higgs boson and the C-even pseudoscalar bottomonium state η b . Applying our resummation scheme we finally provide predictions for the Higgs boson q T -distribution at the LHC.
Vertical distribution, flight behaviour and evolution of wing morphology in Morpho butterflies.
Devries, P J; Penz, Carla M; Hill, Ryan I
2010-09-01
1. Flight is a key innovation in the evolution of insects that is crucial to their dispersal, migration, territoriality, courtship and predator avoidance. Male butterflies have characteristic territoriality and courtship flight behaviours, and females use a characteristic flight behaviour when searching for host plants. This implies that selection acts on wing morphology to maximize flight performance for conducting important behaviours among sexes. 2. Butterflies in the genus Morpho are obvious components of neotropical forests, and many observations indicate that they show two broad categories of flight behaviour and flight height. Although species can be categorized as using gliding or flapping flight, and flying at either canopy or understorey height, the association of flight behaviour and flight height with wing shape evolution has never been explored. 3. Two clades within Morpho differ in flight behaviour and height. Males and females of one clade inhabit the forest understorey and use flapping flight, whereas in the other clade, males use gliding flight at canopy level and females use flapping flight in both canopy and understorey. 4. We used independent contrasts to answer whether wing shape is associated with flight behaviour and height. Given a single switch to canopy habitation and gliding flight, we compared contrasts for the node at which the switch to canopy flight occurred with the distribution of values in the two focal clades. We found significant changes in wing shape at the transition to canopy flight only in males, and no change in size for either sex. A second node within the canopy clade suggests that other factors may also be involved in wing shape evolution. Our results reinforce the hypothesis that natural selection acts differently on male and female butterfly wing shape and indicate that the transition to canopy flight cannot explain all wing shape diversity in Morpho. 5. This study provides a starting point for characterizing evolution
Modelling the evolution of 210Pb and 210Po size distributions in the atmosphere
The study of radon (222Rn and 220Rn) decay products in the atmosphere is important for estimating air ionization, assessing the inhalation doses to humans and for understanding atmospheric transport processes. The decay products 218Po, 214Pb (T1/2 < 1 hour), 212Pb (T1/2 ∼ 10.6 hrs) are short lived and 210Po (T1/2 ∼ 13 days), 210Pb (T1/2 ∼ 22 years) are long lived. Within a short time after their formation, the decay product atom combine with air constituents to form molecular clusters which then get attached to existing aerosol particles. The activity size distributions of the short-lived components in the atmosphere show two major modes, namely fine and coarse modes. The long-lived components predominantly occur in the coarse mode. Several studies have been carried out on the decay product activity distributions to estimate their atmospheric residence times. An important aspect that has received little attention is the upward size evolution of the decay products due to the persistent coagulation of the coarse mode particles. The present study aims at the development of first principle model for progeny attachment dynamics to a coagulating aerosol, which will provide insight in understanding the evolution of activity size distribution. A theoretical model is formulated by considering the processes such a constant formation of background aerosols, attachment of progeny atoms to the aerosol, coagulation, physical decay, and deposition. A set of integro-differential equations for attached and unattached fractions are formulated and are solved by a comprehensive numerical approach. Comparative studies of the activity size distributions, the degree of mixing of radioactivity within particles are carried out for short-lived and long lived species. The results are in agreement with the observations which show that the mode of the activity size distribution strongly depends on the effective life time of the progeny species in the atmosphere. The size dependence of
Evolution of the Distribution of Neutron Exposures in the Galaxy Disc: An Analytical Model
Wenyuan Cui; Weijuan Zhang; Bo Zhang
2007-03-01
In this work, based on the analytical model with delayed production approximation developed by Pagel & Tautvaišienė (1995) for the Galaxy, the analytic solutions of the distribution of neutron exposures of the Galaxy (hereafter NEG) are obtained. The present results appear to reasonably reproduce the distribution of neutron exposures of the solar system (hereafter NES). The strong component and the main component of the NES are built up in different epochs. Firstly, the strong component is produced by the s-process nucleosynthesis in the metal-poor AGB stars, starting from [Fe/H] ≈ -1.16 to [Fe/H] ≈ -0.66, corresponding to the time interval 1.06 < < 2.6 Gyr. Secondly, the main component is produced by the s-process in the galactic disk AGB stars, starting from [Fe/H] ≈ -0.66 to [Fe/H] ≈ 0, corresponding to the time interval > 2.6 Gyr. The analytic solutions have the advantage of an understanding of the structure and the properties of the NEG. The NEG is believed to be an effective tool to study the s-process element abundance distributions in the Galaxy at different epochs and the galactic chemical evolution of the neutron-capture elements.
Collisionless Evolution of Isotropic Alpha-Particle Distribution in a Tokamak
Full text: The density of the noninductive current generated due to collisionless motion of alpha-particles in the tokamak magnetic field is calculated. The analysis is based on fully three-dimensional calculations of charged particle trajectories without simplifying assumptions typical for drift and neoclassical approaches. The current is calculated over the entire cross section of the plasma column, including the magnetic axis. It is shown that the current density is not a function of a magnetic surface and is strongly polarized over the poloidal angle. The current density distribution in the tokamak poloidal cross section is obtained, and the current density as a function of the safety factor profile, the tokamak aspect ratio, and the ratio of the particle Larmor radius on the axis to the tokamak minor radius is determined. It is shown that, when the source of alpha-particles is spatially nonuniform, the current density in the center of the tokamak is nonzero due to asymmetry of the phase-space boundary between trapped and passing particles. The current density scaling in the tokamak center differs from the known approximations for the bootstrap current and is sensitive to the spatial distribution of alpha-particles. (author)
Hosseinkhani, H
2010-01-01
To overcome the complexity of generalized two hard scale ($k_t$,$\\mu$) evolution equation, well known as the $Ciafaloni$, $Catani$, $Fiorani$ and $Marchsini$ ($CCFM$) evolution equations, and calculate the unintegrated parton distribution functions ($UPDF$), $Kimber$, $Martin$ and $Ryskin$ ($KMR$) proposed a procedure based on ($i$) the inclusion of single-scale ($\\mu$) only at the last step of evolution and ($ii$) the angular ordering constraint ($AOC$) on the $DGLAP$ terms (the $DGLAP$ collinear approximation), to bring the second scale, $k_t$ into the $UPDF$ evolution equations. In this work we intend to use the $MSTW 2008$ (Martin et al) parton distribution functions (PDF) and try to calculate $UPDF$ for various values of $x$ (the longitudinal fraction of parton momentum), $\\mu$ (the probe scale) and $k_t$ (the parton transverse momentum) to see the general behavior of three dimensional $UPDF$ at the $NLO$ level up to the $LHC$ working energy scales ($\\mu^2)$. It is shown that there exits some pronounced ...
Evolution equation for the higher-twist B-meson distribution amplitude
Braun, V.M.; Offen, N. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Manashov, A.N. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Sankt-Petersburg State Univ. (Russian Federation). Dept. of Theoretical Physics
2015-07-15
We find that the evolution equation for the three-particle quark-gluon B-meson light-cone distribution amplitude (DA) of subleading twist is completely integrable in the large N{sub c} limit and can be solved exactly. The lowest anomalous dimension is separated from the remaining, continuous, spectrum by a finite gap. The corresponding eigenfunction coincides with the contribution of quark-gluon states to the two-particle DA φ{sub -}(ω) so that the evolution equation for the latter is the same as for the leading-twist DA φ{sub +}(ω) up to a constant shift in the anomalous dimension. Thus, ''genuine'' three-particle states that belong to the continuous spectrum effectively decouple from φ{sub -}(ω) to the leading-order accuracy. In turn, the scale dependence of the full three-particle DA turns out to be nontrivial so that the contribution with the lowest anomalous dimension does not become leading at any scale. The results are illustrated on a simple model that can be used in studies of 1/m{sub b} corrections to heavy-meson decays in the framework of QCD factorization or light-cone sum rules.
Optical and x-ray selected samples of quasars: evolution of the luminosity distributions
Spectroscopic and X-ray observations were obtained of quasar candidates in the 1.72 deg2 region centered on 13/sup h/ 300 which were selected on the basis of ultraviolet excess. A complete sample totalling 35 quasars with B +10% of the observed X-ray background at 2 keV. The completion of identifications of quasar candidates with B 2. A parametric likelihood analysis of the joint redshift-luminosity distribution is developed and applied to the composite sample of 57 quasars with 17.0 L), is found to be described well by a steep power law, L-35, verified by non-parametric estimation. The PG quasar sample, consisting of 114 quasars with B 4deg2, is added to the data set and fitted with pure luminosity evolution (LE) models
Evolution of the ATLAS PanDA Production and Distributed Analysis System
The PanDA (Production and Distributed Analysis) system has been developed to meet ATLAS production and analysis requirements for a data-driven workload management system capable of operating at LHC data processing scale. PanDA has performed well with high reliability and robustness during the two years of LHC data-taking, while being actively evolved to meet the rapidly changing requirements for analysis use cases. We will present an overview of system evolution including automatic rebrokerage and reattempt for analysis jobs, adaptation for the CernVM File System, support for the multi-cloud model through which Tier-2 sites act as members of multiple clouds, pledged resource management and preferential brokerage, and monitoring improvements. We will also describe results from the analysis of two years of PanDA usage statistics, current issues, and plans for the future.
Distribution and evolution of the serine/aspartate racemase family in invertebrates.
Uda, Kouji; Abe, Keita; Dehara, Yoko; Mizobata, Kiriko; Sogawa, Natsumi; Akagi, Yuki; Saigan, Mai; Radkov, Atanas D; Moe, Luke A
2016-02-01
Free D-amino acids have been found in various invertebrate phyla, while amino acid racemase genes have been identified in few species. The purpose of this study is to elucidate the distribution, function, and evolution of amino acid racemases in invertebrate animals. We searched the GenBank databases, and found 11 homologous serine racemase genes from eight species in eight different invertebrate phyla. The cloned genes were identified based on their maximum activity as Acropora millepora (Cnidaria) serine racemase (SerR) and aspartate racemase (AspR), Caenorhabditis elegans (Nematoda) SerR, Capitella teleta (Annelida) SerR, Crassostrea gigas (Mollusca) SerR and AspR, Dugesia japonica (Platyhelminthes) SerR, Milnesium tardigradum (Tardigrada) SerR, Penaeus monodon (Arthropoda) SerR and AspR and Strongylocentrotus purpuratus (Echinodermata) AspR. We found that Acropora, Aplysia, Capitella, Crassostrea and Penaeus had two amino acid racemase paralogous genes and these paralogous genes have evolved independently by gene duplication at their recent ancestral species. The transcriptome analyses using available SRA data and enzyme kinetic data suggested that these paralogous genes are expressed in different tissues and have different functions in vivo. Phylogenetic analyses clearly indicated that animal SerR and AspR are not separated by their particular racemase functions and form a serine/aspartate racemase family cluster. Our results revealed that SerR and AspR are more widely distributed among invertebrates than previously known. Moreover, we propose that the triple serine loop motif at amino acid positions 150-152 may be responsible for the large aspartate racemase activity and the AspR evolution from SerR. PMID:26352274
Pegues, Jamila; Oberg, Karin
2016-01-01
Nitrogen is an important component in many of the world's known organic and inorganic compounds, and its presence is crucial for the existence and survival of life as we know it on Earth today. And yet, in comparison to the total amount of nitrogen available, nitrogen exists as a depleted resource throughout the Solar System, with Earth and unearthed meteorites featuring nitrogen levels depleted from 1 to 5 orders of magnitude relative to the Sun. Additionally, comets have been discovered that contain depleted levels of N2 in comparison to CO, despite the similar binding strengths of both N2 and CO to ices, with ices functioning as the main component in comets.Mechanisms that are likely to play a major part in the distribution of nitrogen throughout the Solar System, and other extra-solar systems, are condensation fronts, such as snowlines and snowsurfaces. Here, condensation fronts refer to the locations at which 50% of a given volatile is contained in gaseous form, while the other 50% is contained within grain form. During formation, astronomical bodies will accumulate different chemical compositions, depending upon where they form with respect to the locations of the condensation fronts within the system. In addition, a system's initial chemistry, as well as how that chemistry evolves, will ultimately alter how the volatiles in the system are distributed over time.Thus, the locations of these condensation fronts, coupled with a protoplanetary disk's initial chemistry and chemical evolution, are mechanisms that affect the eventual distribution and evolution of the disk's volatiles. In this project, we characterize and interpret these mechanisms within disk models. We vary the disk's time dependence and initial chemical conditions, and then analyze the effects of those variations upon the main carriers of nitrogen in both gaseous and grain form. From observed patterns and characteristics of these varied models, we evolve our understanding of curious nitrogen
Kato, S.; Tanaka, N.; Sasao, M.; Kisaki, M.; Tsumori, K.; Nishiura, M.; Matsumoto, Y.; Kenmotsu, T.; Wada, M.; Yamaoka, H.
2015-08-01
Hydrogen ion reflection properties have been investigated following the injection of H+, H2+ and H3+ ions onto a polycrystalline W surface. Angle- and energy-resolved intensity distributions of both scattered H+ and H- ions are measured by a magnetic momentum analyzer. We have detected atomic hydrogen ions reflected from the surface, while molecular hydrogen ions are unobserved within our detection limit. The reflected hydrogen ion energy is approximately less than one-third of the incident beam energy for H3+ ion injection and less than a half of that for H2+ ion injection. Other reflection properties are very similar to those of monoatomic H+ ion injection. Experimental results are compared to the classical trajectory simulations using the ACAT code based on the binary collision approximation.
Hydrogen ion reflection properties have been investigated following the injection of H+, H2+ and H3+ ions onto a polycrystalline W surface. Angle- and energy-resolved intensity distributions of both scattered H+ and H− ions are measured by a magnetic momentum analyzer. We have detected atomic hydrogen ions reflected from the surface, while molecular hydrogen ions are unobserved within our detection limit. The reflected hydrogen ion energy is approximately less than one-third of the incident beam energy for H3+ ion injection and less than a half of that for H2+ ion injection. Other reflection properties are very similar to those of monoatomic H+ ion injection. Experimental results are compared to the classical trajectory simulations using the ACAT code based on the binary collision approximation
Kato, S., E-mail: eun1302@mail4.doshsha.ac.jp [Doshisha University, Kyotanabe, Kyoto 610-0321 (Japan); Tanaka, N. [Institute of Laser Engineering, Osaka University, Suita, Osaka 565-0871 (Japan); Sasao, M. [Doshisha University, Kyotanabe, Kyoto 610-0321 (Japan); Kisaki, M.; Tsumori, K. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Nishiura, M. [University of Tokyo, Kashiwa, Chiba 277-8568 (Japan); Matsumoto, Y. [Tokushima Bunri University, Yamashiro, Tokushima 770-8514 (Japan); Kenmotsu, T.; Wada, M. [Doshisha University, Kyotanabe, Kyoto 610-0321 (Japan); Yamaoka, H. [RIKEN SPring-8 Center, Sayo, Hyogo 679-5148 (Japan)
2015-08-15
Hydrogen ion reflection properties have been investigated following the injection of H{sup +}, H{sub 2}{sup +} and H{sub 3}{sup +} ions onto a polycrystalline W surface. Angle- and energy-resolved intensity distributions of both scattered H{sup +} and H{sup −} ions are measured by a magnetic momentum analyzer. We have detected atomic hydrogen ions reflected from the surface, while molecular hydrogen ions are unobserved within our detection limit. The reflected hydrogen ion energy is approximately less than one-third of the incident beam energy for H{sub 3}{sup +} ion injection and less than a half of that for H{sub 2}{sup +} ion injection. Other reflection properties are very similar to those of monoatomic H{sup +} ion injection. Experimental results are compared to the classical trajectory simulations using the ACAT code based on the binary collision approximation.
Using a general Green function formulation, we re-derive, both (i) Spitzer and his followers results for the winding angle distribution of the planar Brownian motion, and (ii) Edwards-Prager-Frisch results on the statistical mechanics of a ring polymer entangled with a straight bar. In the statistical mechanics part, we consider both cases of quenched and annealed topology. Among new results, we compute exactly the (expectation value of) the surface area of the locus of points such that each of them has linking number n with a given closed random walk trajectory (ring polymer). We also consider the generalizations of the problem for the finite diameter (disc-like) obstacle and winding within a cavity
A steady-state Reynolds averaged Navier-Stokes simulation was conducted to investigate the distribution of the Reynolds stress tensor inside tip leakage vortex of a linear compressor cascade. Two different inlet flow angles β=29.3 .deg. (design condition) and 36.5 .deg. (off-design condition) at a constant tip clearance size of 1% blade span were considered. Classical methods of solid mechanics, applied to view the Reynolds stress tensor in the principal direction system, clearly showed that the high anisotropic feature of turbulent flow field was dominant at the outer part of tip leakage vortex near the suction side of the blade and endwall flow separation region, whereas a nearly isotropic turbulence was found at the center of tip leakage vortex. There was no significant difference in the anisotropy of the Reynolds normal stresses inside tip leakage vortex between the design and off-design condition
Lee, Chaohong; Zhu, Xiwen; Gao, Kelin
2003-01-01
We introduce the standard distribution width of fitness to characterize the global and individual features of an ecosystem described by the Bak-Sneppen evolution model. Through tracking this quantity in evolution, a different hierarchy of avalanche dynamics, the w0 avalanche, is observed. The corresponding gap equation and the self-organized threshold wc are obtained. The critical exponents τ, γ and ρ, which describe the behaviour of the avalanche size distribution, the average avalanche size and the relaxation to attractor, respectively, are calculated by numerical simulation. The exact master equation and γ equation are derived, and the scaling relations are established among the critical exponents of this new avalanche.
Cherbal, Omar; Maamache, Mustapha; Drir, Mahrez
2003-01-01
We propose to determinate the nonadiabatic Hannay’s angle of spin one half in a varying external magnetic field, by using an averaged version of the variational principal. We also show how the evolution and this nonadiabatic Hannay’s angle is associated with the evolution of Grassmannian invariant-angle coherent states.
Codon information value and codon transition-probability distributions in short-term evolution
Jiménez-Montaño, M. A.; Coronel-Brizio, H. F.; Hernández-Montoya, A. R.; Ramos-Fernández, A.
2016-07-01
To understand the way the Genetic Code and the physical-chemical properties of coded amino acids affect accepted amino acid substitutions in short-term protein evolution, taking into account only overall amino acid conservation, we consider an underlying codon-level model. This model employs codon pair-substitution frequencies from an empirical matrix in the literature, modified for single-base mutations only. Ordering the degenerated codons according to their codon information value (Volkenstein, 1979), we found that three-fold and most of four-fold degenerated codons, which have low codon values, were best fitted to rank-frequency distributions with constant failure rate (exponentials). In contrast, almost all two-fold degenerated codons, which have high codon values, were best fitted to rank-frequency distributions with variable failure rate (inverse power-laws). Six-fold degenerated codons are considered to be doubly assigned. The exceptional behavior of some codons, including non-degenerate codons, is discussed.
Cormier, D; Wang, J; Pety, J; Usero, A; Roychowdhury, S; Carton, D; van der Hulst, J M; Jozsa, G I G; Garcia, M Gonzales; Saintonge, A
2016-01-01
One of the key goals of the Bluedisk survey is to characterize the impact of gas accretion in disc galaxies in the context of galaxy evolution. It contains 50 disc galaxies in the stellar mass range 10^10-10^11 Msun, of which half are bluer and more HI-rich galaxies than their HI-normal (control) counterparts. In this paper, we investigate how ongoing disc growth affects the molecular gas distribution and the star-formation efficiency in these galaxies. We present 12CO observations from the IRAM 30-m telescope in 26 galaxies of the Bluedisk survey. We compare the amount and spatial distribution of the molecular gas to key quantities such as atomic gas, stellar mass and surface density, star-formation rate and metallicity. We analyse the star-formation rate per unit gas (SFR/HI and SFR/H2) and relate all those parameters to general galaxy properties (HI-rich/control disc, morphology, etc.). We find that the HI-rich galaxies have similar H2 masses as the control galaxies. In their centres, HI-rich galaxies have...
We analyze the magnetic cluster size (MCS) and magnetic cluster size distribution (MCSD) in a variety of perpendicular magnetic recording (PMR) media designs using resonant small angle x-ray scattering at the Co L3 absorption edge. The different PMR media flavors considered here vary in grain size between 7.5 and 9.5 nm as well as in lateral inter-granular exchange strength, which is controlled via the segregant amount. While for high inter-granular exchange, the MCS increases rapidly for grain sizes below 8.5 nm, we show that for increased amount of segregant with less exchange the MCS remains relatively small, even for grain sizes of 7.5 and 8 nm. However, the MCSD still increases sharply when shrinking grains from 8 to 7.5 nm. We show evidence that recording performance such as signal-to-noise-ratio on the spin stand correlates well with the product of magnetic cluster size and magnetic cluster size distribution
Different evaluated (n,d) energy-angle elastic scattering distributions produce k-effective differences in MCNP5 simulations of critical experiments involving heavy water (D2O) of sufficient magnitude to suggest a need for new (n,d) scattering measurements and/or distributions derived from modern theoretical nuclear models, especially at neutron energies below a few MeV. The present work focuses on the small reactivity change of 2O coolant-void-reactivity calculation bias for simulations of two pairs of critical experiments performed in the ZED-2 reactor at the Chalk River Laboratories when different nuclear data libraries are used for deuterium. The deuterium data libraries tested include Endf/B-VII.0, Endf/B-VI.4, JENDL-3.3 and a new evaluation, labelled Bonn-B, which is based on recent theoretical nuclear-model calculations. Comparison calculations were also performed for a simplified, two-region, spherical model having an inner, 250-cm radius, homogeneous sphere of UO2, without and with deuterium, and an outer 20-cm-thick deuterium reflector. A notable observation from this work is the reduction of about 0.4 mk in the MCNP5 ZED-2 CVR calculation bias that is obtained when the O-in-UO2 thermal scattering data comes from Endf-B-VII.0. (author)
Mehta, Virat; Ikeda, Yoshihiro; Takano, Ken; Terris, Bruce D.; Hellwig, Olav [San Jose Research Center, HGST a Western Digital company, 3403 Yerba Buena Rd., San Jose, California 95135 (United States); Wang, Tianhan [Department of Materials Science and Engineering, Stanford University, Stanford, California 94035 (United States); Stanford Institute for Materials and Energy Science (SIMES), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Wu, Benny; Graves, Catherine [Stanford Institute for Materials and Energy Science (SIMES), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Department of Applied Physics, Stanford University, Stanford, California 94035 (United States); Dürr, Hermann A.; Scherz, Andreas; Stöhr, Jo [Stanford Institute for Materials and Energy Science (SIMES), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States)
2015-05-18
We analyze the magnetic cluster size (MCS) and magnetic cluster size distribution (MCSD) in a variety of perpendicular magnetic recording (PMR) media designs using resonant small angle x-ray scattering at the Co L{sub 3} absorption edge. The different PMR media flavors considered here vary in grain size between 7.5 and 9.5 nm as well as in lateral inter-granular exchange strength, which is controlled via the segregant amount. While for high inter-granular exchange, the MCS increases rapidly for grain sizes below 8.5 nm, we show that for increased amount of segregant with less exchange the MCS remains relatively small, even for grain sizes of 7.5 and 8 nm. However, the MCSD still increases sharply when shrinking grains from 8 to 7.5 nm. We show evidence that recording performance such as signal-to-noise-ratio on the spin stand correlates well with the product of magnetic cluster size and magnetic cluster size distribution.
Transverse momentum dependent parton distribution and fragmentation functions with QCD evolution
Aybat, S. Mert; Rogers, Ted C.
2011-06-01
We assess the current phenomenological status of transverse momentum dependent (TMD) parton distribution functions (PDFs) and fragmentation functions (FFs) and study the effect of consistently including perturbative QCD (pQCD) evolution. Our goal is to initiate the process of establishing reliable, QCD-evolved parametrizations for the TMD PDFs and TMD FFs that can be used both to test TMD factorization and to search for evidence of the breakdown of TMD factorization that is expected for certain processes. In this article, we focus on spin-independent processes because they provide the simplest illustration of the basic steps and can already be used in direct tests of TMD factorization. Our calculations are based on the Collins-Soper-Sterman (CSS) formalism, supplemented by recent theoretical developments which have clarified the precise definitions of the TMD PDFs and TMD FFs needed for a valid TMD-factorization theorem. Starting with these definitions, we numerically generate evolved TMD PDFs and TMD FFs using as input existing parametrizations for the collinear PDFs, collinear FFs, nonperturbative factors in the CSS factorization formalism, and recent fixed-scale fits. We confirm that evolution has important consequences, both qualitatively and quantitatively, and argue that it should be included in future phenomenological studies of TMD functions. Our analysis is also suggestive of extensions to processes that involve spin-dependent functions such as the Boer-Mulders, Sivers, or Collins functions, which we intend to pursue in future publications. At our website [http://projects.hepforge.org/tmd/], we have made available the tables and calculations needed to obtain the TMD parametrizations presented herein.
Shen, Kyle Michael
2005-09-02
It is widely believed that many of the exotic physical properties of the high-T{sub c} cuprate superconductors arise from the proximity of these materials to the strongly correlated, antiferromagnetic Mott insulating state. Therefore, one of the fundamental questions in the field of high-temperature superconductivity is to understand the insulator-to-superconductor transition and precisely how the electronic structure of Mott insulator evolves as the first holes are doped into the system. This dissertation presents high-resolution, doping dependent angle-resolved photoemission (ARPES) studies of the cuprate superconductor Ca{sub 2-x}Na{sub x}CuO{sub 2}Cl{sub 2}, spanning from the undoped parent Mott insulator to a high-temperature superconductor with a T{sub c} of 22 K. A phenomenological model is proposed to explain how the spectral lineshape, the quasiparticle band dispersion, and the chemical potential all progress with doping in a logical and self-consistent framework. This model is based on Franck-Condon broadening observed in polaronic systems where strong electron-boson interactions cause the quasiparticle residue, Z, to be vanishingly small. Comparisons of the low-lying states to different electronic states in the valence band strongly suggest that the coupling of the photohole to the lattice (i.e. lattice polaron formation) is the dominant broadening mechanism for the lower Hubbard band states. Combining this polaronic framework with high-resolution ARPES measurements finally provides a resolution to the long-standing controversy over the behavior of the chemical potential in the high-T{sub c} cuprates. This scenario arises from replacing the conventional Fermi liquid quasiparticle interpretation of the features in the Mott insulator by a Franck-Condon model, allowing the reassignment of the position of the quasiparticle pole. As a function of hole doping, the chemical potential shifts smoothly into the valence band while spectral weight is transferred
Pari, Sharareh Mehrabi; Shahri, Fatemeh Taghavi
2015-01-01
The "Iterative Laplace Transform Method" is used to solve the Fokker-Planck equation for finding the time evolution of the heavy quarks distribution functions such as charm and bottom in quark gluon plasma. These solutions will lead us to calculation of nuclear suppression factor RAA. The results have good agreement with available experiment data from the PHENIX collaboration.
Biktashev, Vadim N.
2011-01-01
We consider a simple mathematical model of gradual Darwinian evolution in continuous time and continuous trait space, due to intraspecific competition for common resource in an asexually reproducing population in constant environment, while far from evolutionary stable equilibrium. The model admits exact analytical solution. In particular, Gaussian distribution of the trait emerges from generic initial conditions.
Pari Sharareh Mehrabi
2016-01-01
Full Text Available The “Laplace Transform Method” is used to solve the Fokker-Plank equation for finding the time evolution of the heavy quarks distribution functions such as charm and bottom in quark gluon plasma. These solutions will lead us to calculation of nuclear suppression factor RAA. The results have good agreement with available experiment data from the PHENIX collaboration.
B. Hubinger
2011-12-01
Full Text Available Karst aquifers evolve where the dissolution of soluble rocks causes the enlargement of discrete pathways along fractures or bedding planes, thus creating highly conductive solution conduits. To identify general interrelations between hydrogeological conditions and the properties of the evolving conduit systems the aperture-size frequency distributions resulting from generic models of conduit evolution are analysed. For this purpose, a process-based numerical model coupling flow and rock dissolution is employed. Initial protoconduits are represented by tubes with log-normally distributed aperture sizes with a mean μ_{0} = 0.5 mm for the logarithm of the diameters. Apertures are spatially uncorrelated and widen up to the metre range due to dissolution by chemically aggressive waters. Several examples of conduit development are examined focussing on influences of the initial heterogeneity and the available amount of recharge. If the available recharge is sufficiently high the evolving conduits compete for flow and those with large apertures and high hydraulic gradients attract more and more water. As a consequence, the positive feedback between increasing flow and dissolution causes the breakthrough of a conduit pathway connecting the recharge and discharge sides of the modelling domain. Under these competitive flow conditions dynamically stable bimodal aperture distributions are found to evolve, i.e. a certain percentage of tubes continues to be enlarged while the remaining tubes stay small-sized. The percentage of strongly widened tubes is found to be independent of the breakthrough time and decreases with increasing heterogeneity of the initial apertures and decreasing amount of available water. If the competition for flow is suppressed because the availability of water is strongly limited breakthrough of a conduit pathway is inhibited and the conduit pathways widen very slowly. The resulting aperture distributions are found to be
The Evolution of the Baryon Distribution in the Universe from Cosmological Simulations
Durier, Fabrice
2011-01-01
The evolution of the baryon distribution in different phases, derived from cosmological simulations, are here reported. These computations indicate that presently most of baryons are in a warm-hot intergalactic (WHIM) medium (about 43%) while at z = 2.5 most of baryons constitute the diffuse medium (about 74%). Stars and the cold gas in galaxies represent only 14% of the baryons at z = 0. For z < 4 about a half of the metals are locked into stars while the fraction present in the WHIM and in the diffuse medium increases with a decreasing redshift. In the redshift range 0 < z < 2.5, the amount of metals in the WHIM increases from 4% to 22% while in the diffuse medium it increases from 0.6% to 4%. This enrichment process is due essentially to a turbulent diffusion mechanism associated to mass motions driven by supernova explosions. At z = 0, simulated blue (late type) galaxies show a correlation of the oxygen abundance present in the cold gas with the luminosity of the considered galaxy that agrees qui...
Structure formation a spherical model for the evolution of the density distribution
Valageas, P
1998-01-01
Within the framework of hierarchical clustering we show that a simple Press-Schechter-like approximation, based on spherical dynamics, provides a good estimate of the evolution of the density field in the quasi-linear regime up to $\\Sigma \\sim 1$. Moreover, it allows one to recover the exact series of the cumulants of the probability distribution of the density contrast in the limit $\\Sigma \\to 0$ which sheds some light on the rigorous result and on ``filtering''. We also obtain similar results for the divergence of the velocity field. Next, we extend this prescription to the highly non-linear regime, using a stable-clustering approximation. Then we recover a specific scaling of the counts-in-cells which is indeed seen in numerical simulations, over a well-defined range. To this order we also introduce an explicit treatment of the behaviour of underdensities, which takes care of the normalization and is linked to the low-density bubbles and the walls one can see in numerical simulations. We compare this to a ...
The evolution of a superbubble driven by sequential explosions of supernovae in an OB association is studied. We especially focus on the effect of the plane-stratified gas distribution in the direction perpendicular to the galactic disk. It is shown that the superbubble asymmetrically expands with respect to the parallel and perpendicular directions to the disk. In the case that the density on the disk plane, n0, is ∼ 1 cm-3, it is found that the cooled shell surrounds the hot cavity like an egg shape. On the other hand, in a low-density disk with n0 ∼ 0.1 cm-3, a cooled wall is formed only on the disk plane side of the bubble and the hot gas flows up to the halo region. This corresponds to the HI worms pointed out by Heiles (1984; AAA 38.155.014). We can show that the hot gas which is pushed up maintains the galactic hot gaseous halo. (author)
The Evolution of the EM Distribution in the Core of an Active Region
Del Zanna, Giulio; Mason, Helen; Subramanian, Srividya; O'Dwyer, Brendan
2014-01-01
We study the spatial distribution and evolution of the slope of the Emission Measure between 1 and 3~MK in the core active region NOAA~11193, first when it appeared near the central meridian and then again when it re-appeared after a solar rotation. We use observations recorded by the Extreme-ultraviolet Imaging Spectrometer (EIS) aboard Hinode, with a new radiometric calibration. We also use observations from the Atmospheric Imaging Assembly (AIA) aboard Solar Dynamics Observatory (SDO). We present the first spatially resolved maps of the EM slope in the 1--3~MK range within the core of the AR using several methods, both approximate and from the Differential Emission Measure (DEM). A significant variation of the slope is found at different spatial locations within the active region. We selected two regions that were not affected too much by any line-of-sight lower temperature emission. We found that the EM had a power law of the form EM~$\\propto T^{b}$, with b = 4.4$\\pm0.4$, and 4.6$\\pm0.4$, during the first...
Deng, Pingchuan; Wang, Meng; Feng, Kewei; Cui, Licao; Tong, Wei; Song, Weining; Nie, Xiaojun
2016-01-01
Microsatellites are an important constituent of plant genome and distributed across entire genome. In this study, genome-wide analysis of microsatellites in 8 Triticeae species and 9 model plants revealed that microsatellite characteristics were similar among the Triticeae species. Furthermore, genome-wide microsatellite markers were designed in wheat and then used to analyze the evolutionary relationship of wheat and other Triticeae species. Results displayed that Aegilops tauschii was found to be the closest species to Triticum aestivum, followed by Triticum urartu, Triticum turgidum and Aegilops speltoides, while Triticum monococcum, Aegilops sharonensis and Hordeum vulgare showed a relatively lower PCR amplification effectivity. Additionally, a significantly higher PCR amplification effectivity was found in chromosomes at the same subgenome than its homoeologous when these markers were subjected to search against different chromosomes in wheat. After a rigorous screening process, a total of 20,666 markers showed high amplification and polymorphic potential in wheat and its relatives, which were integrated with the public available wheat markers and then anchored to the genome of wheat (CS). This study not only provided the useful resource for SSR markers development in Triticeae species, but also shed light on the evolution of polyploid wheat from the perspective of microsatellites. PMID:27561724
Zheng, Feifei; Simpson, Angus R.; Zecchin, Aaron C.
2011-08-01
This paper proposes a novel optimization approach for the least cost design of looped water distribution systems (WDSs). Three distinct steps are involved in the proposed optimization approach. In the first step, the shortest-distance tree within the looped network is identified using the Dijkstra graph theory algorithm, for which an extension is proposed to find the shortest-distance tree for multisource WDSs. In the second step, a nonlinear programming (NLP) solver is employed to optimize the pipe diameters for the shortest-distance tree (chords of the shortest-distance tree are allocated the minimum allowable pipe sizes). Finally, in the third step, the original looped water network is optimized using a differential evolution (DE) algorithm seeded with diameters in the proximity of the continuous pipe sizes obtained in step two. As such, the proposed optimization approach combines the traditional deterministic optimization technique of NLP with the emerging evolutionary algorithm DE via the proposed network decomposition. The proposed methodology has been tested on four looped WDSs with the number of decision variables ranging from 21 to 454. Results obtained show the proposed approach is able to find optimal solutions with significantly less computational effort than other optimization techniques.
Revisiting the theory of the evolution of pick-up ion distributions: magnetic or adiabatic cooling?
H. J. Fahr
2008-01-01
Full Text Available We study the phasespace behaviour of heliospheric pick-up ions after the time of their injection as newly created ions into the solar wind bulk flow from either charge exchange or photoionization of interplanetary neutral atoms. As interaction with the ambient MHD wave fields we allow for rapid pitch angle diffusion, but for the beginning of this paper we shall neglect the effect of quasilinear or nonlinear energy diffusion (Fermi-2 acceleration induced by counterflowing ambient waves. In the up-to-now literature connected with the convection of pick-up ions by the solar wind only adiabatic cooling of these ions is considered which in the solar wind frame takes care of filling the gap between the injection energy and energies of the thermal bulk of solar wind ions. Here we reinvestigate the basics of the theory behind this assumption of adiabatic pick-up ion reactions and correlated predictions derived from it. We then compare it with the new assumption of a pure magnetic cooling of pick-up ions simply resulting from their being convected in an interplanetary magnetic field which decreases in magnitude with increase of solar distance. We compare the results for pick-up ion distribution functions derived along both ways and can point out essential differences of observational and diagnostic relevance. Furthermore we then include stochastic acceleration processes by wave-particle interactions. As we can show, magnetic cooling in conjunction with diffusive acceleration by wave-particle interaction allows for an unbroken power law with the unique power index γ=−5 beginning from lowest velocities up to highest energy particles of about 100 KeV which just marginally can be in resonance with magnetoacoustic turbulences. Consequences for the resulting pick-up ion pressures are also analysed.
Shinichi Kinugasa
2012-01-01
Full Text Available Accurate determination of the intensity-average diameter of polystyrene latex (PS-latex by dynamic light scattering (DLS was carried out through extrapolation of both the concentration of PS-latex and the observed scattering angle. Intensity-average diameter and size distribution were reliably determined by asymmetric flow field flow fractionation (AFFFF using multi-angle light scattering (MALS with consideration of band broadening in AFFFF separation. The intensity-average diameter determined by DLS and AFFFF-MALS agreed well within the estimated uncertainties, although the size distribution of PS-latex determined by DLS was less reliable in comparison with that determined by AFFFF-MALS.
Monir Sharifi
2012-05-01
Full Text Available Periodic mesoporous materials of the type (R′O3Si-R-Si(OR′3 with benzene as an organic bridge and a crystal-like periodicity within the pore walls were functionalized with SO3H or SO3− groups and investigated by small-angle neutron scattering (SANS with in situ nitrogen adsorption at 77 K. If N2 is adsorbed in the pores the SANS measurements show a complete matching of all of the diffraction signals that are caused by the long-range ordering of the mesopores in the benzene-PMO, due to the fact that the benzene-PMO walls possess a neutron scattering length density (SLD similar to that of nitrogen in the condensed state. However, signals at higher q-values (>1 1/Å are not affected with respect to their SANS intensity, even after complete pore filling, confirming the assumption of a crystal-like periodicity within the PMO material walls due to π–π interactions between the organic bridges. The SLD of pristine benzene-PMO was altered by functionalizing the surface with different amounts of SO3H-groups, using the grafting method. For a low degree of functionalization (0.81 mmol SO3H·g−1 and/or an inhomogeneous distribution of the SO3H-groups, the SLD changes only negligibly, and thus, complete contrast matching is still found. However, for higher amounts of SO3H-groups (1.65 mmol SO3H·g−1 being present in the mesopores, complete matching of the neutron diffraction signals is no longer observed proving that homogeneously distributed SO3H-groups on the inner pore walls of the benzene-PMO alter the SLD in a way that it no longer fits to the SLD of the condensed N2.