Sample records for andreas fault system

  1. Tectonic history of the north portion of the San Andreas fault system, California, inferred from gravity and magnetic anomalies

    Griscom, A.; Jachens, R.C.


    Geologic and geophysical data for the San Andreas fault system north of San Francisco suggest that the eastern boundary of the Pacific plate migrated eastward from its presumed original position at the base of the continental slope to its present position along the San Andreas transform fault by means of a series of eastward jumps of the Mendocino triple junction. These eastward jumps total a distance of about 150 km since 29 Ma. Correlation of right-laterally displaced gravity and magnetic anomalies that now have components at San Francisco and on the shelf north of Point Arena indicates that the presently active strand of the San Andreas fault north of the San Francisco peninsula formed recently at about 5 Ma when the triple junction jumped eastward a minimum of 100 km to its present location at the north end of the San Andreas fault. -from Authors

  2. Response of deformation patterns to reorganizations of the southern San Andreas fault system since ca. 1.5 Ma

    Cooke, M. L.; Fattaruso, L.; Dorsey, R. J.; Housen, B. A.


    Between ~1.5 and 1.1 Ma, the southern San Andreas fault system underwent a major reorganization that included initiation of the San Jacinto fault and termination of slip on the extensional West Salton detachment fault. The southern San Andreas fault itself has also evolved since this time, with several shifts in activity among fault strands within San Gorgonio Pass. We use three-dimensional mechanical Boundary Element Method models to investigate the impact of these changes to the fault network on deformation patterns. A series of snapshot models of the succession of active fault geometries explore the role of fault interaction and tectonic loading in abandonment of the West Salton detachment fault, initiation of the San Jacinto fault, and shifts in activity of the San Andreas fault. Interpreted changes to uplift patterns are well matched by model results. These results support the idea that growth of the San Jacinto fault led to increased uplift rates in the San Gabriel Mountains and decreased uplift rates in the San Bernardino Mountains. Comparison of model results for vertical axis rotation to data from paleomagnetic studies reveals a good match to local rotation patterns in the Mecca Hills and Borrego Badlands. We explore the mechanical efficiency at each step in the evolution, and find an overall trend toward increased efficiency through time. Strain energy density patterns are used to identify regions of off-fault deformation and potential incipient faulting. These patterns support the notion of north-to-south propagation of the San Jacinto fault during its initiation. The results of the present-day model are compared with microseismicity focal mechanisms to provide additional insight into the patterns of off-fault deformation within the southern San Andreas fault system.

  3. The San Andreas Fault 'Supersite' (Invited)

    Hudnut, K. W.


    An expanded and permanent Supersite has been proposed to the Committee on Earth Observation Satellites (CEOS) for the San Andreas Fault system, based upon the successful initial Group on Earth Observations (GEO) Geohazard Supersite for the Los Angeles region from 2009-2013. As justification for the comprehensive San Andreas Supersite, consider the earthquake history of California, in particular the devastating M 7.8 San Francisco earthquake of 1906, which occurred along the San Andreas Fault, as did an earthquake of similar magnitude in 1857 in southern California. Los Angeles was only a small town then, but now the risk exposure has increased for both of California's megacities. Between the San Francisco and Los Angeles urban areas lies a section of the San Andreas Fault known to creep continually, so it has relatively less earthquake hazard. It used to be thought of as capable of stopping earthquakes entering it from either direction. Transitional behavior at either end of the creeping section is known to display a full range of seismic to aseismic slip events and accompanying seismicity and strain transient events. Because the occurrence of creep events is well documented by instrumental networks such as CISN and PBO, the San Andreas Supersite can be expected to be especially effective. A good baseline level of geodetic data regarding past events and strain accumulation and release exists. Many prior publications regarding the occurrence of geophysical phenomena along the San Andreas Fault system mean that in order to make novel contributions, state-of-the-art science will be required within this Supersite region. In more recent years, the 1989 Loma Prieta earthquake struck adjacent to the San Andreas Fault and caused the most damage along the western side of the San Francisco Bay Area. More recently, the concern has focused on the potential for future events along the Hayward Fault along the eastern side of San Francisco Bay. In Southern California, earthquakes

  4. Aseismic Slip Events along the Southern San Andreas Fault System Captured by Radar Interferometry

    Vincent, P


    A seismic slip is observed along several faults in the Salton Sea and southernmost Landers rupture zone regions using interferometric synthetic aperture radar (InSAR) data spanning different time periods between 1992 and 1997. In the southernmost Landers rupture zone, projecting south from the Pinto Mountain Fault, sharp discontinuities in the interferometric phase are observed along the sub-parallel Burnt Mountain and Eureka Peak Faults beginning three months after the Landers earthquake and is interpreted to be post-Landers after-slip. Abrupt phase offsets are also seen along the two southernmost contiguous 11 km Durmid Hill and North Shore segments of the San Andreas Fault with an abrupt termination of slip near the northern end of the North Shore Segment. A sharp phase offset is seen across 20 km of the 30 km-long Superstition Hills Fault before phase decorrelation in the Imperial Valley along the southern 10 km of the fault prevents coherent imaging by InSAR. A time series of deformation interferograms suggest most of this slip occurred between 1993 and 1995 and none of it occurred between 1992 and 1993. A phase offset is also seen along a 5 km central segment of the Coyote Creek fault that forms a wedge with an adjoining northeast-southwest trending conjugate fault. Most of the slip observed on the southern San Andreas and Superstition Hills Faults occurred between 1993 and 1995--no slip is observed in the 92-93 interferograms. These slip events, especially the Burnt Mountain and Eureka Peak events, are inferred to be related to stress redistribution from the June, 1992 M{sub w} = 7.3 Landers earthquake. Best-fit elastic models of the San Andreas and Superstition Hills slip events suggest source mechanisms with seismic moments over three orders of magnitude larger than a maximum possible summation of seismic moments from all seismicity along each fault segment during the entire 4.8-year time interval spanned by the InSAR data. Aseismic moment releases of this

  5. 4-D Strain Rate Along the San Andreas Fault System: Knowns and Unknowns (Invited)

    Sandwell, D. T.; Smith-Konter, B. R.; Tong, X.


    Geodetic imaging of the San Andreas Fault System from a combination of GPS and InSAR techniques is providing a remarkably accurate and detailed mapping of plate boundary surface strain rate. We have assembled and compared strain-rate models from 17 research groups and find that 5 of these models provide remarkably similar images of the surface strain rate tensor, having principal strain axes in good agreement with the principal stress directions inferred from a recent compilation of earthquake focal mechanisms [Yang and Hauksson, 2013]. While surface strain rates seem to be well mapped, it is also important to understand strain rate variations with depth and through time. We have developed a kinematic 4-D earthquake cycle model spanning the North American-Pacific plate boundary that simulates interseismic strain accumulation, coseismic displacement, and postseismic viscous relaxation of the mantle. The model can predict the full 4-D strain rate tensor for the past 1000 years but relies on numerous approximations and assumptions. This talk will highlight the most poorly known aspects of the 4-D model and discuss additional measurements that could improve our mapping of the 4-D strain rate.

  6. GPS-aided inertial technology and navigation-based photogrammetry for aerial mapping the San Andreas fault system

    Sanchez, Richard D.; Hudnut, Kenneth W.


    Aerial mapping of the San Andreas Fault System can be realized more efficiently and rapidly without ground control and conventional aerotriangulation. This is achieved by the direct geopositioning of the exterior orientation of a digital imaging sensor by use of an integrated Global Positioning System (GPS) receiver and an Inertial Navigation System (INS). A crucial issue to this particular type of aerial mapping is the accuracy, scale, consistency, and speed achievable by such a system. To address these questions, an Applanix Digital Sensor System (DSS) was used to examine its potential for near real-time mapping. Large segments of vegetation along the San Andreas and Cucamonga faults near the foothills of the San Bernardino and San Gabriel Mountains were burned to the ground in the California wildfires of October-November 2003. A 175 km corridor through what once was a thickly vegetated and hidden fault surface was chosen for this study. Both faults pose a major hazard to the greater Los Angeles metropolitan area and a near real-time mapping system could provide information vital to a post-disaster response.

  7. Retardations in fault creep rates before local moderate earthquakes along the San Andreas fault system, central California

    Burford, R.O.


    Records of shallow aseismic slip (fault creep) obtained along parts of the San Andreas and Calaveras faults in central California demonstrate that significant changes in creep rates often have been associated with local moderate earthquakes. An immediate postearthquake increase followed by gradual, long-term decay back to a previous background rate is generally the most obvious earthquake effect on fault creep. This phenomenon, identified as aseismic afterslip, usually is characterized by above-average creep rates for several months to a few years. In several cases, minor step-like movements, called coseismic slip events, have occurred at or near the times of mainshocks. One extreme case of coseismic slip, recorded at Cienega Winery on the San Andreas fault 17.5 km southeast of San Juan Bautista, consisted of 11 mm of sudden displacement coincident with earthquakes of ML=5.3 and ML=5.2 that occurred 2.5 minutes apart on 9 April 1961. At least one of these shocks originated on the main fault beneath the winery. Creep activity subsequently stopped at the winery for 19 months, then gradually returned to a nearly steady rate slightly below the previous long-term average. The phenomena mentioned above can be explained in terms of simple models consisting of relatively weak material along shallow reaches of the fault responding to changes in load imposed by sudden slip within the underlying seismogenic zone. In addition to coseismic slip and afterslip phenomena, however, pre-earthquake retardations in creep rates also have been observed. Onsets of significant, persistent decreases in creep rates have occurred at several sites 12 months or more before the times of moderate earthquakes. A 44-month retardation before the 1979 ML=5.9 Coyote Lake earthquake on the Calaveras fault was recorded at the Shore Road creepmeter site 10 km northwest of Hollister. Creep retardation on the San Andreas fault near San Juan Bautista has been evident in records from one creepmeter site for

  8. SAFOD Penetrates the San Andreas Fault

    Mark D. Zoback


    Full Text Available SAFOD, the San Andreas Fault Observatory at Depth (Fig. 1, completed an important milestone in July 2005 by drilling through the San Andreas Fault at seismogenic depth. SAFOD is one of three major components of EarthScope, a U.S. National Science Foundation (NSF initiative being conducted in collaboration with the U.S. Geological Survey (USGS. The International Continental Scientific DrillingProgram (ICDP provides engineering and technical support for the project as well as online access to project data and information ( In 2002, the ICDP, the NSF, and the USGS provided funding for a pilot hole project at the SAFOD site. Twenty scientifi c papers summarizing the results of the pilot hole project as well as pre-SAFOD site characterization studies were published in Geophysical Research Letters (Vol.31, Nos. 12 and 15, 2004.

  9. Synthetic seismicity for the San Andreas fault

    S. N. Ward


    Full Text Available Because historical catalogs generally span only a few repetition intervals of major earthquakes, they do not provide much constraint on how regularly earthquakes recur. In order to obtain better recurrence statistics and long-term probability estimates for events M ? 6 on the San Andreas fault, we apply a seismicity model to this fault. The model is based on the concept of fault segmentation and the physics of static dislocations which allow for stress transfer between segments. Constraints are provided by geological and seismological observations of segment lengths, characteristic magnitudes and long-term slip rates. Segment parameters slightly modified from the Working Group on California Earthquake Probabilities allow us to reproduce observed seismicity over four orders of magnitude. The model yields quite irregular earthquake recurrence patterns. Only the largest events (M ? 7.5 are quasi-periodic; small events cluster. Both the average recurrence time and the aperiodicity are also a function of position along the fault. The model results are consistent with paleoseismic data for the San Andreas fault as well as a global set of historical and paleoseismic recurrence data. Thus irregular earthquake recurrence resulting from segment interaction is consistent with a large range of observations.

  10. Observing the San Andreas Fault at Depth

    Ellsworth, W.; Hickman, S.; Zoback, M.; Davis, E.; Gee, L.; Huggins, R.; Krug, R.; Lippus, C.; Malin, P.; Neuhauser, D.; Paulsson, B.; Shalev, E.; Vajapeyam, B.; Weiland, C.; Zumberge, M.


    Extending 4 km into the Earth along a diagonal path that crosses the divide between Salinian basement accreted to the Pacific Plate and Cretaceous sediments of North America, the main hole at the San Andreas Fault Observatory at Depth (SAFOD) was designed to provide a portal into the inner workings of a major plate boundary fault. The successful drilling and casing of the main hole in the summer of 2005 to a total vertical depth of 3.1 km make it possible to conduct spatially extensive and long-duration observations of active tectonic processes within the actively deforming core of the San Andreas Fault. In brief, the observatory consists of retrievable seismic, deformation and environmental sensors deployed inside the casing in both the main hole (maximum temperature 135 C) and the collocated pilot hole (1.1 km depth), and a fiber optic strainmeter installed behind casing in the main hole. By using retrievable systems deployed on either wire line or rigid tubing, each hole can be used for a wide range of scientific purposes, with instrumentation that takes maximum advantage of advances in sensor technology. To meet the scientific and technical challenges of building the observatory, borehole instrumentation systems developed for use in the petroleum industry and by the academic community in other deep research boreholes have been deployed in the SAFOD pilot hole and main hole over the past year. These systems included 15Hz omni-directional and 4.5 Hz gimbaled seismometers, micro-electro-mechanical accelerometers, tiltmeters, sigma-delta digitizers, and a fiber optic interferometeric strainmeter. A 1200-m-long, 3-component 80-level clamped seismic array was also operated in the main hole for 2 weeks of recording in May of 2005, collecting continuous seismic data at 4000 sps. Some of the observational highlights include capturing one of the M 2 SAFOD target repeating earthquakes in the near-field at a distance of 420 m, with accelerations of up to 200 cm/s and a

  11. Deep-water turbidites as Holocene earthquake proxies: the Cascadia subduction zone and Northern San Andreas Fault systems

    J. E. Johnson


    Full Text Available New stratigraphic evidence from the Cascadia margin demonstrates that 13 earthquakes ruptured the margin from Vancouver Island to at least the California border following the catastrophic eruption of Mount Mazama. These 13 events have occurred with an average repeat time of ?? 600 years since the first post-Mazama event ?? 7500 years ago. The youngest event ?? 300 years ago probably coincides with widespread evidence of coastal subsidence and tsunami inundation in buried marshes along the Cascadia coast. We can extend the Holocene record to at least 9850 years, during which 18 events correlate along the same region. The pattern of repeat times is consistent with the pattern observed at most (but not all localities onshore, strengthening the contention that both were produced by plate-wide earthquakes. We also observe that the sequence of Holocene events in Cascadia may contain a repeating pattern, a tantalizing look at what may be the long-term behavior of a major fault system. Over the last ?? 7500 years, the pattern appears to have repeated at least three times, with the most recent A.D. 1700 event being the third of three events following a long interval of 845 years between events T4 and T5. This long interval is one that is also recognized in many of the coastal records, and may serve as an anchor point between the offshore and onshore records. Similar stratigraphic records are found in two piston cores and one box core from Noyo Channel, adjacent to the Northern San Andreas Fault, which show a cyclic record of turbidite beds, with thirty- one turbidite beds above a Holocene/.Pleistocene faunal «datum». Thus far, we have determined ages for 20 events including the uppermost 5 events from these cores. The uppermost event returns a «modern» age, which we interpret is likely the 1906 San Andreas earthquake. The penultimate event returns an intercept age of A.D. 1664 (2 ?? range 1505- 1822. The third event and fourth event

  12. Chemical controls on fault behavior: weakening of serpentinite sheared against quartz-bearing rocks and its significance for fault creep in the San Andreas system

    Moore, Diane E.; Lockner, David A.


    The serpentinized ultramafic rocks found in many plate-tectonic settings commonly are juxtaposed against crustal rocks along faults, and the chemical contrast between the rock types potentially could influence the mechanical behavior of such faults. To investigate this possibility, we conducted triaxial experiments under hydrothermal conditions (200-350°C), shearing serpentinite gouge between forcing blocks of granite or quartzite. In an ultramafic chemical environment, the coefficient of friction, µ, of lizardite and antigorite serpentinite is 0.5-0.6, and µ increases with increasing temperature over the tested range. However, when either lizardite or antigorite serpentinite is sheared against granite or quartzite, strength is reduced to µ ~ 0.3, with the greatest strength reductions at the highest temperatures (temperature weakening) and slowest shearing rates (velocity strengthening). The weakening is attributed to a solution-transfer process that is promoted by the enhanced solubility of serpentine in pore fluids whose chemistry has been modified by interaction with the quartzose wall rocks. The operation of this process will promote aseismic slip (creep) along serpentinite-bearing crustal faults at otherwise seismogenic depths. During short-term experiments serpentine minerals reprecipitate in low-stress areas, whereas in longer experiments new Mg-rich phyllosilicates crystallize in response to metasomatic exchanges across the serpentinite-crustal rock contact. Long-term shear of serpentinite against crustal rocks will cause the metasomatic mineral assemblages, which may include extremely weak minerals such as saponite or talc, to play an increasingly important role in the mechanical behavior of the fault. Our results may explain the distribution of creep on faults in the San Andreas system.

  13. Using surface creep rate to infer fraction locked for sections of the San Andreas fault system in northern California from alignment array and GPS data

    Lienkaemper, James J.; McFarland, Forrest S.; Simpson, Robert W.; Caskey, S. John


    Surface creep rate, observed along five branches of the dextral San Andreas fault system in northern California, varies considerably from one section to the next, indicating that so too may the depth at which the faults are locked. We model locking on 29 fault sections using each section’s mean long‐term creep rate and the consensus values of fault width and geologic slip rate. Surface creep rate observations from 111 short‐range alignment and trilateration arrays and 48 near‐fault, Global Positioning System station pairs are used to estimate depth of creep, assuming an elastic half‐space model and adjusting depth of creep iteratively by trial and error to match the creep observations along fault sections. Fault sections are delineated either by geometric discontinuities between them or by distinctly different creeping behaviors. We remove transient rate changes associated with five large (M≥5.5) regional earthquakes. Estimates of fraction locked, the ratio of moment accumulation rate to loading rate, on each section of the fault system provide a uniform means to inform source parameters relevant to seismic‐hazard assessment. From its mean creep rates, we infer the main branch (the San Andreas fault) ranges from only 20%±10% locked on its central creeping section to 99%–100% on the north coast. From mean accumulation rates, we infer that four urban faults appear to have accumulated enough seismic moment to produce major earthquakes: the northern Calaveras (M 6.8), Hayward (M 6.8), Rodgers Creek (M 7.1), and Green Valley (M 7.1). The latter three faults are nearing or past their mean recurrence interval.

  14. Continuation of the San Andreas fault system into the upper mantle: Evidence from spinel peridotite xenoliths in the Coyote Lake basalt, central California

    Titus, Sarah J.; Medaris, L. Gordon; Wang, Herbert F.; Tikoff, Basil


    The Coyote Lake basalt, located near the intersection of the Hayward and Calaveras faults in central California, contains spinel peridotite xenoliths from the mantle beneath the San Andreas fault system. Six upper mantle xenoliths were studied in detail by a combination of petrologic techniques. Temperature estimates, obtained from three two-pyroxene geothermometers and the Al-in-orthopyroxene geothermometer, indicate that the xenoliths equilibrated at 970-1100 °C. A thermal model was used to estimate the corresponding depth of equilibration for these xenoliths, resulting in depths between 38 and 43 km. The lattice preferred orientation of olivine measured in five of the xenolith samples show strong point distributions of olivine crystallographic axes suggesting that fabrics formed under high-temperature conditions. Calculated seismic anisotropy values indicate an average shear wave anisotropy of 6%, higher than the anisotropy calculated from xenoliths from other tectonic environments. Using this value, the anisotropic layer responsible for fault-parallel shear wave splitting in central California is less than 100 km thick. The strong fabric preserved in the xenoliths suggests that a mantle shear zone exists below the Calaveras fault to a depth of at least 40 km, and combining xenolith petrofabrics with shear wave splitting studies helps distinguish between different models for deformation at depth beneath the San Andrea fault system.

  15. Isotopic evidence for the infiltration of mantle and metamorphic CO2-H2O fluids from below in faulted rocks from the San Andreas Fault System

    Pili, E.; Kennedy, B.M.; Conrad, M.E.; Gratier, J.-P.


    To characterize the origin of the fluids involved in the San Andreas Fault (SAF) system, we carried out an isotope study of exhumed faulted rocks from deformation zones, vein fillings and their hosts and the fluid inclusions associated with these materials. Samples were collected from segments along the SAF system selected to provide a depth profile from upper to lower crust. In all, 75 samples from various structures and lithologies from 13 localities were analyzed for noble gas, carbon, and oxygen isotope compositions. Fluid inclusions exhibit helium isotope ratios ({sup 3}He/{sup 4}He) of 0.1-2.5 times the ratio in air, indicating that past fluids percolating through the SAF system contained mantle helium contributions of at least 35%, similar to what has been measured in present-day ground waters associated with the fault (Kennedy et al., 1997). Calcite is the predominant vein mineral and is a common accessory mineral in deformation zones. A systematic variation of C- and O-isotope compositions of carbonates from veins, deformation zones and their hosts suggests percolation by external fluids of similar compositions and origin with the amount of fluid infiltration increasing from host rocks to vein to deformation zones. The isotopic trend observed for carbonates in veins and deformation zones follows that shown by carbonates in host limestones, marbles, and other host rocks, increasing with increasing contribution of deep metamorphic crustal volatiles. At each crustal level, the composition of the infiltrating fluids is thus buffered by deeper metamorphic sources. A negative correlation between calcite {delta}{sup 13}C and fluid inclusion {sup 3}He/{sup 4}He is consistent with a mantle origin for a fraction of the infiltrating CO{sub 2}. Noble gas and stable isotope systematics show consistent evidence for the involvement of mantle-derived fluids combined with infiltration of deep metamorphic H{sub 2}O and CO{sub 2} in faulting, supporting the involvement of

  16. Geomorphic evidence of active tectonics in the San Gorgonio Pass region of the San Andreas Fault system: an example of discovery-based research in undergraduate teaching

    Reinen, L. A.; Yule, J. D.


    Student-conducted research in courses during the first two undergraduate years can increase learning and improve student self-confidence in scientific study, and is recommended for engaging and retaining students in STEM fields (PCAST, 2012). At Pomona College, incorporating student research throughout the geology curriculum tripled the number of students conducting research prior to their senior year that culminated in a professional conference presentation (Reinen et al., 2006). Here we present an example of discovery-based research in Neotectonics, a second-tier course predominantly enrolling first-and second-year students; describe the steps involved in the four week project; and discuss early outcomes of student confidence, engagement and retention. In the San Gorgonio Pass region (SGPR) in southern California, the San Andreas fault undergoes a transition from predominantly strike-slip to a complex system of faults with significant dip-slip, resulting in diffuse deformation and raising the question of whether a large earthquake on the San Andreas could propagate through the region (Yule, 2009). In spring 2014, seven students in the Neotectonics course conducted original research investigating quantifiable geomorphic evidence of tectonic activity in the SGPR. Students addressed questions of [1] unequal uplift in the San Bernardino Mountains, [2] fault activity indicated by stream knick points, [3] the role of fault style on mountain front sinuosity, and [4] characteristic earthquake slip determined via fault scarp degradation models. Students developed and revised individual projects, collaborated with each other on methods, and presented results in a public forum. A final class day was spent reviewing the projects and planning future research directions. Pre- and post-course surveys show increases in students' self-confidence in the design, implementation, and presentation of original scientific inquiries. 5 of 6 eligible students participated in research the

  17. Vertical deformation along the Indio Hills, San Andreas Fault, California

    Scharer, K. M.; Blisniuk, K.; Sharp, W. D.; Williams, P. L.; Johnson, K.


    Halfway between the Salton Sea and San Gorgonio Pass, the southernmost San Andreas Fault (SAF) bifurcates into the Mission Creek and Banning strands. These strands bound the Indio Hills (IH), and mark the first of a series of left-stepping branches that define the transpressional, southern Big Bend of the SAF. Between the fault strands, the Quaternary Ocotillo Formation is deformed with fold axis orientations consistent with dextral shear; structurally the IH are synclinal in the east, transitioning to a complex antiform with increased uplift suggested by exhumation of Tertiary units in the west. We report new long- and short-term erosion rates across the IH and uplift rates on the Banning strand, and we evaluate these measurements in terms of slip rates across the fault system and structural deformation within the IH. Two methods of catchment-averaged erosion rates provide minimum rates yield similar results, (0.08 to 0.34 mm/yr) across 6 catchments. The long-term rates are calculated from eroded volumes estimated from a 10-m DEM surface enveloping the Indio Hills and assume that all folding and uplift initiated ca. 500ka (the 750 ka Bishop ash is uplifted and warped within the IH). The short-term rates, determined from 10Be dating of alluvial sediments, increase gradually to the northwest. Similarity of the rates suggests steady state uplift over the history of the fold; ongoing structural analysis and dating needed to constrain the maximum rates will test this possibility. The new uplift rate for the Banning strand at the east end of the IH is determined from a 60 pts/m^2 DEM produced by structure from motion photogrammetry and U-series ages and cosmogenic dates that provide an age range of 20-76ka for a fan vertically offset by ~2.5 m. The resulting uplift rate on the fault (0.03-0.125 mm/yr) overlaps with the short-term catchment-averaged erosion rate for this location (0.08 mm/yr). Consequently, we interpret that vertical strain is partitioned onto both the

  18. Zoogeography of the San Andreas Fault system: Great Pacific Fracture Zones correspond with spatially concordant phylogeographic boundaries in western North America.

    Gottscho, Andrew D


    The purpose of this article is to provide an ultimate tectonic explanation for several well-studied zoogeographic boundaries along the west coast of North America, specifically, along the boundary of the North American and Pacific plates (the San Andreas Fault system). By reviewing 177 references from the plate tectonics and zoogeography literature, I demonstrate that four Great Pacific Fracture Zones (GPFZs) in the Pacific plate correspond with distributional limits and spatially concordant phylogeographic breaks for a wide variety of marine and terrestrial animals, including invertebrates, fish, amphibians, reptiles, birds, and mammals. These boundaries are: (1) Cape Mendocino and the North Coast Divide, (2) Point Conception and the Transverse Ranges, (3) Punta Eugenia and the Vizcaíno Desert, and (4) Cabo Corrientes and the Sierra Transvolcanica. However, discussion of the GPFZs is mostly absent from the zoogeography and phylogeography literature likely due to a disconnect between biologists and geologists. I argue that the four zoogeographic boundaries reviewed here ultimately originated via the same geological process (triple junction evolution). Finally, I suggest how a comparative phylogeographic approach can be used to test the hypothesis presented here. PMID:25521005

  19. Deep permeability of the San Andreas Fault from San Andreas Fault Observatory at Depth (SAFOD) core samples

    Morrow, Carolyn A.; Lockner, David A.; Moore, Diane E.; Hickman, Stephen H.


    The San Andreas Fault Observatory at Depth (SAFOD) scientific borehole near Parkfield, California crosses two actively creeping shear zones at a depth of 2.7 km. Core samples retrieved from these active strands consist of a foliated, Mg-clay-rich gouge containing porphyroclasts of serpentinite and sedimentary rock. The adjacent damage zone and country rocks are comprised of variably deformed, fine-grained sandstones, siltstones, and mudstones. We conducted laboratory tests to measure the permeability of representative samples from each structural unit at effective confining pressures, Pe up to the maximum estimated in situ Pe of 120 MPa. Permeability values of intact samples adjacent to the creeping strands ranged from 10−18 to 10−21 m2 at Pe = 10 MPa and decreased with applied confining pressure to 10−20–10−22 m2 at 120 MPa. Values for intact foliated gouge samples (10−21–6 × 10−23 m2 over the same pressure range) were distinctly lower than those for the surrounding rocks due to their fine-grained, clay-rich character. Permeability of both intact and crushed-and-sieved foliated gouge measured during shearing at Pe ≥ 70 MPa ranged from 2 to 4 × 10−22 m2 in the direction perpendicular to shearing and was largely insensitive to shear displacement out to a maximum displacement of 10 mm. The weak, actively-deforming foliated gouge zones have ultra-low permeability, making the active strands of the San Andreas Fault effective barriers to cross-fault fluid flow. The low matrix permeability of the San Andreas Fault creeping zones and adjacent rock combined with observations of abundant fractures in the core over a range of scales suggests that fluid flow outside of the actively-deforming gouge zones is probably fracture dominated.

  20. Correlation between deep fluids, tremor and creep along the central San Andreas fault

    Becken, M.; Ritter, O.; Bedrosian, P.A.; Weckmann, U.


    The seismicity pattern along the San Andreas fault near Parkfield and Cholame, California, varies distinctly over a length of only fifty kilometres. Within the brittle crust, the presence of frictionally weak minerals, fault-weakening high fluid pressures and chemical weakening are considered possible causes of an anomalously weak fault northwest of Parkfield. Non-volcanic tremor from lower-crustal and upper-mantle depths is most pronounced about thirty kilometres southeast of Parkfield and is thought to be associated with high pore-fluid pressures at depth. Here we present geophysical evidence of fluids migrating into the creeping section of the San Andreas fault that seem to originate in the region of the uppermost mantle that also stimulates tremor, and evidence that along-strike variations in tremor activity and amplitude are related to strength variations in the lower crust and upper mantle. Interconnected fluids can explain a deep zone of anomalously low electrical resistivity that has been imaged by magnetotelluric data southwest of the Parkfield-Cholame segment. Near Cholame, where fluids seem to be trapped below a high-resistivity cap, tremor concentrates adjacent to the inferred fluids within a mechanically strong zone of high resistivity. By contrast, subvertical zones of low resistivity breach the entire crust near the drill hole of the San Andreas Fault Observatory at Depth, northwest of Parkfield, and imply pathways for deep fluids into the eastern fault block, coincident with a mechanically weak crust and the lower tremor amplitudes in the lower crust. Fluid influx to the fault system is consistent with hypotheses of fault-weakening high fluid pressures in the brittle crust. ?? 2011 Macmillan Publishers Limited. All rights reserved.

  1. Frictional strength and heat flow of southern San Andreas Fault

    Zhu, P. P.


    Frictional strength and heat flow of faults are two related subjects in geophysics and seismology. To date, the investigation on regional frictional strength and heat flow still stays at the stage of qualitative estimation. This paper is concentrated on the regional frictional strength and heat flow of the southern San Andreas Fault (SAF). Based on the in situ borehole measured stress data, using the method of 3D dynamic faulting analysis, we quantitatively determine the regional normal stress, shear stress, and friction coefficient at various seismogenic depths. These new data indicate that the southern SAF is a weak fault within the depth of 15 km. As depth increases, all the regional normal and shear stresses and friction coefficient increase. The former two increase faster than the latter. Regional shear stress increment per kilometer equals 5.75 ± 0.05 MPa/km for depth ≤15 km; regional normal stress increment per kilometer is equal to 25.3 ± 0.1 MPa/km for depth ≤15 km. As depth increases, regional friction coefficient increment per kilometer decreases rapidly from 0.08 to 0.01/km at depths less than ~3 km. As depth increases from ~3 to ~5 km, it is 0.01/km and then from ~5 to 15 km, and it is 0.002/km. Previously, frictional strength could be qualitatively determined by heat flow measurements. It is difficult to obtain the quantitative heat flow data for the SAF because the measured heat flow data exhibit large scatter. However, our quantitative results of frictional strength can be employed to investigate the heat flow in the southern SAF. We use a physical quantity P f to describe heat flow. It represents the dissipative friction heat power per unit area generated by the relative motion of two tectonic plates accommodated by off-fault deformation. P f is called "fault friction heat." On the basis of our determined frictional strength data, utilizing the method of 3D dynamic faulting analysis, we quantitatively determine the regional long-term fault

  2. Flow and Chemistry Pulsations, Monterey: Implications for Stress Transient Modulations of Hydrologic and Geochemical Systems in the Greater San Andreas Fault Zone

    Brown, K. M.; Fueri, E.; Hilton, D. R.


    Submarine fluid venting at continental shelf and slope regions has been recognized over the past ten years as an important, yet under-studied process in marine science. Seeps are now known to be a general feature of the hydrogeology of many tectonically active continental margins. The eastern Pacific margin is characterized by a variety of tectonic settings (i.e. convergent and strike-slip) where active venting of fluids and gases has been documented. Reports include vents off Alaska, Costa Rica, Monterey Bay, Eel River basin, and Heceta Bay, OR. Indications of seismic tremor, linked to hydrologic transience in the offshore regions of subduction zones have recently been published elsewhere (see Brown et al, EPSL 2005). We now address here the varying nature of submarine fluid discharges in a San Andreas strike-slip setting. A key element of the proposed work is the combined multidisciplinary measurement of fluid flow, seep temperatures, and dissolved noble gases and chemistry of the Monterey seep sites at Extrovert Cliff. The seeps are situated close to several active strike-slip faults including the Monterey and San Gregorio fault zones. Initial results of 2 week deployments in 2004 of flow meters at Extravert Cliff indicated high flow rates and elevated seep temperatures that vary by as much as a factor of 2 on diurnal time scales with subtle changes over longer periods (>2 weeks). There are also indicative chemical signals of deeply sourced fluids that vary widely with time that show the following signals: 1) Elevated abundances of both mantle derived Helium (3He) as well as 4He and 40Ar of radiogenic crustal relevant trace element components; 2) Altered fluid chemistry (including, Ca Mg, Li and B); 3) The fluid temperature, flow rates, and gas chemistry, in particular, vary with time. We have both long-term and sub-diurnal variations in flow and temperature as well as the 3He/4He ratios, helium concentration, CO2 concentration and d13C values perhaps influenced

  3. Preliminary Holocene History of Fault Slip for the Mojave Section of the San Andreas Fault

    Compton, T.; Cowgill, E.; Scharer, K. M.; Gold, R. D.; Westerteiger, R.; Bernardin, T. S.; Kellogg, L. H.


    The Mojave section of the San Andreas fault (MSAF) shows an apparent discrepancy between slip rates where geodetic rates are systematically slower relative to geologic rates. Resolving this discrepancy is important for determining whether or not the MSAF exhibits temporal changes in slip, advancing the understanding of the mechanical behavior of fault systems, and improving seismic-hazard assessment for the MSAF. Paleoseismic data along the MSAF suggest temporal variations in strain release over the last 2 kyr, but more studies are needed to extend the slip history back in time. Here we address the problem of the apparent slip rate discrepancy and possible temporal variations in strain release by employing Monte Carlo analysis of previously reported displacement-time data to investigate the extent to which these data constrain the Holocene slip history. We evaluated 42 previously reported piercing lines for possible inclusion in our analysis, 15 of which were unused because they are either duplicate reports or poorly documented. The remaining 27 data points reveal that slip rates are nonexistent for 5 offset distances (19-27m, 33-42m, 45-63m, 65-129m, and 131-300m) and for 3 time periods from 10-3.9 kyr, 3.9-2.8 kyr, and 2.8-1.4 kyr BP. Results of this analysis suggest slip rate along the MSAF varied between 0 and 4.5 kyr BP, with 5 possible phases of strain release, 3 of which are faster than the average of ~30 mm/yr. The oldest fast phase was from 4.5-2.9 kyr with an average slip rate of 61 mm/yr. The next fast phase, with an average rate of 81 mm/yr, was from 1.5-1.1 kyr. The youngest fast phase resulted in a rate of 36 mm/yr between 0.4 kyr and the 1857 event. Slower phases of slip occurred from 2.9-1.5 kyr, with an average rate of 12 mm/yr, and from 1.1-0.4 kyr, with a slip rate of 20 mm/yr. These slip history findings are considered preliminary because they are based on a limited dataset that contain data gaps. To aide in our search for additional potentially

  4. Seismic tomography and deformation modeling of the junction of the San Andreas and Calaveras faults

    Dorbath, C.; Oppenheimer, D.; Amelung, F.; King, G.


    Local earthquake P traveltime data is inverted to obtain a three-dimensional tomographic image of the region centered on the junction of the San Andreas and Calaveras faults. The resulting velocity model is then used to relocate more than 17,000 earthquakes and to produce a model of fault structure in the region. These faults serve as the basis for modeling the topography using elastic dislocation methods. The region is of interest because active faults join, it marks the transition zone from creeping to locked fault behavior on the San Andreas fault, it exhibits young topography, and it has a good spatial distribution of seismicity. The tomographic data set is extensive, consisting of 1445 events, 96 stations, and nearly 95,000 travel time readings. Tomographic images are resolvable to depths of 12 km and show significant velocity contrasts across the San Andreas and Calaveras faults, a low-velocity zone associated with the creeping section of the San Andreas fault, and shallow low-velocity sediments in the southern Santa Clara valley and northern Salinas valley. Relocated earthquakes only occur where vp>5 km/s and indicate that portions of the San Andreas and Calaveras faults are non vertical, although we cannot completely exclude the possibility that all or part of this results from ray tracing problems. The new dips are more consistent with geological observations that dipping faults intersect the surface where surface traces have been mapped. The topographic modeling predicts extensive subsidence in regions characterized by shallow low-velocity material, presumably the result of recent sedimentation. Some details of the topography at the junction of the San Andreas and Calaveras faults are not consistent with the modeling results, suggesting that the current position of this "triple junction" has changed with time. The model also predicts those parts of the fault subject to contraction or extension perpendicular to the fault strike and hence the sense of any

  5. Correction to “Constraints on the stress state of the San Andreas Fault with analysis based on core and cuttings from San Andreas Fault Observatory at Depth (SAFOD) drilling phases 1 and 2”

    Tembe, Sheryl; Lockner, David; Wong, Teng-Fong


    This article corrects: Constraints on the stress state of the San Andreas Fault with analysis based on core and cuttings from San Andreas Fault Observatory at Depth (SAFOD) drilling phases 1 and 2. Vol. 114, Issue B11, Article first published online: 5 NOV 2009.

  6. A case for historic joint rupture of the San Andreas and San Jacinto faults

    Lozos, Julian C.


    The San Andreas fault is considered to be the primary plate boundary fault in southern California and the most likely fault to produce a major earthquake. I use dynamic rupture modeling to show that the San Jacinto fault is capable of rupturing along with the San Andreas in a single earthquake, and interpret these results along with existing paleoseismic data and historic damage reports to suggest that this has likely occurred in the historic past. In particular, I find that paleoseismic data and historic observations for the ~M7.5 earthquake of 8 December 1812 are best explained by a rupture that begins on the San Jacinto fault and propagates onto the San Andreas fault. This precedent carries the implications that similar joint ruptures are possible in the future and that the San Jacinto fault plays a more significant role in seismic hazard in southern California than previously considered. My work also shows how physics-based modeling can be used for interpreting paleoseismic data sets and understanding prehistoric fault behavior. PMID:27034977

  7. Variability of fault slip behavior along the San Andreas Fault in the San Juan Bautista Region

    Taira, Taka'aki; Bürgmann, Roland; Nadeau, Robert M.; Dreger, Douglas S.


    An improved understanding of the time history of fault slip at depth is an essential step toward understanding the underlying mechanics of the faulting process. Using a waveform cross-correlation approach, we document spatially and temporally varying fault slip along the northernmost creeping section of the San Andreas Fault near San Juan Bautista (SJB), California, by systematically examining spatiotemporal behaviors of characteristically repeating earthquakes (CREs). The spatial distribution of pre-1998 SJB earthquake (1984-1998) fault slip rate inferred from the CREs reveals a ~15 km long low creep or partially locked section located near the 1998 Mw 5.1 SJB earthquake rupture. A finite-fault slip inversion reveals that the rupture of the 1998 SJB earthquake is characterized by the failure of a compact ~4 km2 asperity with a maximum slip of about 90 cm and corresponding peak stress drop of up to 50 MPa, whereas the mean stress drop is about 15 MPa. Following the 1998 earthquake, the CRE activity was significantly increased in a 5-10 km deep zone extending 2-7 km northwest of the main shock, which indicates triggering of substantial aseismic slip. The postseismic slip inferred from the CRE activity primarily propagated to the northwest and released a maximum slip of 9 cm. In this 5-10 km depth range, the estimated postseismic moment release is 8.6 × 1016 N m, which is equivalent to Mw 5.22. The aseismic slip distribution following the 1998 earthquake is not consistent with coseismic stress-driven afterslip but represents a triggered, long-lasting slow earthquake.

  8. Elevated time-dependent strengthening rates observed in San Andreas Fault drilling samples

    Ikari, Matt J.; Carpenter, Brett M.; Vogt, Christoph; Kopf, Achim J.


    The central San Andreas Fault in California is known as a creeping fault, however recent studies have shown that it may be accumulating a slip deficit and thus its seismogenic potential should be seriously considered. We conducted laboratory friction experiments measuring time-dependent frictional strengthening (healing) on fault zone and wall rock samples recovered during drilling at the San Andreas Fault Observatory at Depth (SAFOD), located near the southern edge of the creeping section and in the direct vicinity of three repeating microearthquake clusters. We find that for hold times of up to 3000 s, frictional healing follows a log-linear dependence on hold time and that the healing rate is very low for a sample of the actively shearing fault core, consistent with previous results. However, considering longer hold times up to ∼350,000 s, the healing rate accelerates such that the data for all samples are better described by a power law relation. In general, samples having a higher content of phyllosilicate minerals exhibit low log-linear healing rates, and the notably clay-rich fault zone sample also exhibits strong power-law healing when longer hold times are included. Our data suggest that weak faults, such as the creeping section of the San Andreas Fault, can accumulate interseismic shear stress more rapidly than expected from previous friction data. Using the power-law dependence of frictional healing on hold time, calculations of recurrence interval and stress drop based on our data accurately match observations of discrete creep events and repeating Mw = 2 earthquakes on the San Andreas Fault.

  9. The wister mud pot lineament: Southeastward extension or abandoned strand of the San Andreas fault?

    Lynch, D.K.; Hudnut, K.W.


    We present the results of a survey of mud pots in the Wister Unit of the Imperial Wildlife Area. Thirty-three mud pots, pot clusters, or related geothermal vents (hundreds of pots in all) were identified, and most were found to cluster along a northwest-trending line that is more or less coincident with the postulated Sand Hills fault. An extrapolation of the trace of the San Andreas fault southeastward from its accepted terminus north of Bombay Beach very nearly coincides with the mud pot lineament and may represent a surface manifestation of the San Andreas fault southeast of the Salton Sea. Additionally, a recent survey of vents near Mullet Island in the Salton Sea revealed eight areas along a northwest-striking line where gas was bubbling up through the water and in two cases hot mud and water were being violently ejected.

  10. Investigating Fault Slip and Rheology Along the San Andreas Fault in the San Juan Bautista Region

    Taira, T.; Burgmann, R.; Nadeau, R. M.; Dreger, D. S.


    An improved understanding of the connection between seismic behavior and fault-zone rheology at depth is an essential step toward understanding the underlying mechanics of the faulting process. We investigate the seismicity along the northernmost creeping section of the San Andreas fault near San Juan Bautista (SJB), California, by systematically examining spatiotemporal behaviors of the aftershock sequences following the 12 August 1998 Mw 5.1 SJB earthquake. This 1998 SJB earthquake was the largest historic earthquake in the SJB area and was associated with a large slow slip event. Using a waveform cross-correlation approach (Peng and Zhao, 2009, NatureGeo), we have detected previously uncataloged earthquakes (about 500 events), resolving details of the aftershock activity in a zone at a depth of 9 km about 7 km northwest of the 1998 SJB mainshock. This aftershock zone is marked by one of the highest changes in the seismicity rate, exhibiting a delayed peak (about 20 hours after the mainshock) in the rate of aftershocks preceded by a period of very low rate of aftershocks since the mainshock. Subsequently, the rate of aftershocks shows power-law decay with time for about 1 month, and then the aftershock activity approached the pre-earthquake background level. This temporal behavior of the aftershock activity is different from the predicted aftershock decay based on the model of Dieterich (1994, JGR). Instead, our observation is more consistent with the decay rate of aftershocks occurring in the transition zone between locked and stable slip, as simulated numerically by Kaneko and Lapusta (2008, JGR). Our waveform analysis also identifies over 20 repeating microearthquake sequences (or groups of earthquakes with similar waveforms) associated with the 1998 SJB mainshock. The majority of the sequences have events occurring in the first month of the postseismic period. In other words, they reflect short-lived, accelerated repeater recurrences activated by the 1998 SJB

  11. Habitat information in the region on the underwater San Andreas Fault - Topic: Exploring the Undersea San Andreas Fault: Revealing the Past, Present, and Future at the Centennial of the Great 1906 Earthquake

    National Oceanic and Atmospheric Administration, Department of Commerce — During this exploration, the first comprehensive high-resolution multi-beam sonar and seismic reflection survey of the Northern San Andreas Fault (NSAF) was...

  12. A permeability and compliance contrast measured hydrogeologically on the San Andreas Fault

    Xue, Lian; Brodsky, Emily E.; Erskine, Jon; Fulton, Patrick M.; Carter, Reed


    Hydrogeologic properties of fault zones are critical to faulting processes; however, they are not well understood and difficult to measure in situ, particularly in low-permeability fractured bedrock formations. Analysis of continuous water level response to Earth tides in monitoring wells provides a method to measure the in situ hydrogeologic properties. We utilize four monitoring wells within the San Andreas Fault zone near Logan Quarry to study the fault zone hydrogeologic architecture by measuring the water level tidal response. The specific storage and permeability inferred from the tidal response suggest that there is a difference in properties at different distances from the fault. The sites closer to the fault have higher specific storage and higher permeability than farther from the fault. This difference of properties might be related to the fault zone fracture distribution decreasing away from the fault. Although permeability channels near faults have been documented before, the difference in specific storage near the fault is a new observation. The inferred compliance contrast is consistent with prior estimates of elastic moduli in the near-fault environment, but the direct measurements are new. The combination of measured permeability and storage yields a diffusivity of about 10-2 m2/s at all the sites both near and far from the fault as a result of the competing effects of permeability and specific storage. This uniform diffusivity structure suggests that the permeability contrast might not efficiently trap fluids during the interseismic period.

  13. Low-altitude aerial color digital photographic survey of the San Andreas Fault

    Lynch, David K.; Hudnut, Kenneth W.; Dearborn, David S.P.


    Ever since 1858, when Gaspard-Félix Tournachon (pen name Félix Nadar) took the first aerial photograph (Professional Aerial Photographers Association 2009), the scientific value and popular appeal of such pictures have been widely recognized. Indeed, Nadar patented the idea of using aerial photographs in mapmaking and surveying. Since then, aerial imagery has flourished, eventually making the leap to space and to wavelengths outside the visible range. Yet until recently, the availability of such surveys has been limited to technical organizations with significant resources. Geolocation required extensive time and equipment, and distribution was costly and slow. While these situations still plague older surveys, modern digital photography and lidar systems acquire well-calibrated and easily shared imagery, although expensive, platform-specific software is sometimes still needed to manage and analyze the data. With current consumer-level electronics (cameras and computers) and broadband internet access, acquisition and distribution of large imaging data sets are now possible for virtually anyone. In this paper we demonstrate a simple, low-cost means of obtaining useful aerial imagery by reporting two new, high-resolution, low-cost, color digital photographic surveys of selected portions of the San Andreas fault in California. All pictures are in standard jpeg format. The first set of imagery covers a 92-km-long section of the fault in Kern and San Luis Obispo counties and includes the entire Carrizo Plain. The second covers the region from Lake of the Woods to Cajon Pass in Kern, Los Angeles, and San Bernardino counties (151 km) and includes Lone Pine Canyon soon after the ground was largely denuded by the Sheep Fire of October 2009. The first survey produced a total of 1,454 oblique digital photographs (4,288 x 2,848 pixels, average 6 Mb each) and the second produced 3,762 nadir images from an elevation of approximately 150 m above ground level (AGL) on the

  14. Elemental Geochemistry of Samples From Fault Segments of the San Andreas Fault Observatory at Depth (SAFOD) Drill Hole

    Tourscher, S. N.; Schleicher, A. M.; van der Pluijm, B. A.; Warr, L. N.


    Elemental geochemistry of mudrock samples from phase 2 drilling of the San Andreas Fault Observatory at Depth (SAFOD) is presented from bore hole depths of 3066 m to 3169 m and from 3292 m to 3368 m, which contain a creeping section and main trace of the fault, respectively. In addition to preparation and analysis of whole rock sample, fault grains with neomineralized, polished surfaces were hand picked from well-washed whole rock samples, minimizing the potential contamination from drilling mud and steel shavings. The separated fractions were washed in deionized water, powdered using a mortar and pestle, and analyzed using an Inductively Coupled Plasma- Optical Emission Spectrometer for major and minor elements. Based on oxide data results, systematic differences in element concentrations are observed between the whole rock and fault rock. Two groupings of data points are distinguishable in the regions containing the main trace of the fault, a shallow part (3292- 3316 m) and a deeper section (3320-3368 m). Applying the isocon method, assuming Zr and Ti to be immobile elements in these samples, indicates a volume loss of more than 30 percent in the shallow part and about 23 percent in the deep part of the main trace. These changes are minimum estimates of fault-related volume loss, because the whole rock from drilling samples contains variable amount of fault rock as well. Minimum estimates for volume loss in the creeping section of the fault are more than 50 percent when using the isocon method, comparing whole rock to plucked fault rock. The majority of the volume loss in the fault rocks is due to the dissolution and loss of silica, potassium, aluminum, sodium and calcium, whereas (based on oxide data) the mineralized surfaces of fractures appear to be enriched in Fe and Mg. The large amount of element mobility within these fault traces suggests extensive circulation of hydrous fluids along fractures that was responsible for progressive dissolution and leaching

  15. Paleoseismic Studies of the Peninsula San Andreas Fault near Crystal Springs Reservoir, Woodside, California

    Prentice, C. S.; Zachariasen, J. A.; Kozaci, O.; Clahan, K.; Sickler, R. R.; Rosa, C. M.; Hassett, W.; Feigelson, L.; Haproff, P. J.; DeLong, S.; Perkins, A.; Brooks, B. A.; Delano, J.; Baldwin, J. N.


    The Peninsula section of the San Andreas Fault (SAFP) is within 10 km of downtown San Francisco, making it among the most significant contributors to seismic hazard in the San Francisco Bay area. However, the history of earthquakes along this fault is poorly known. The most recent ground-rupturing earthquake occurred in 1906, but the ages of earlier earthquakes associated with surface rupture on this fault segment remain uncertain. Most researchers assume that the historically documented earthquake in 1838 occurred on the SAFP, but no definitive evidence of surface rupture at that time has been found. South of Crystal Springs Reservoir, the San Andreas Fault zone is expressed as a prominent fault scarp that is cut back in several locations by recent fluvial processes. At our Crystal Springs South (CSS) trench site, the fault is expressed as a low scarp with no other surface expression to suggest additional young fault traces. Excavations at this site revealed two distinct sets of faults, a younger set of faults that extend nearly to the modern ground surface that we assume represent the 1906 surface rupture, and an older set of faults that terminate lower in the stratigraphic section and are overlain by a scarp-derived colluvial deposit. Radiocarbon dating constrains the age of this older earthquake to 830-930 Cal. years BP. We determined that a buried channel deposit that dates to 790-960 Cal. years BP is displaced approximately 6-7m across both sets of faults. The closest 1906 offset measurement was made about 11 km northwest of this site, and is about 2.9m. Therefore our measurement of 6-7m of offset on the buried channel deposit at the CSS site could represent slip from 1906 and only one previous event comparable in size to the 1906 earthquake. The surprisingly old age of the earlier earthquake raises concerns that one or both of the event horizons exposed at the CSS site could represent multiple earthquakes. We therefore excavated an exploratory trench about 0

  16. Holocene geologic slip rate for the Banning strand of the southern San Andreas Fault, southern California

    Gold, Peter O.; Behr, Whitney M.; Rood, Dylan; Sharp, Warren D.; Rockwell, Thomas; Kendrick, Katherine J.; Salin, Aaron


    Northwest directed slip from the southern San Andreas Fault is transferred to the Mission Creek, Banning, and Garnet Hill fault strands in the northwestern Coachella Valley. How slip is partitioned between these three faults is critical to southern California seismic hazard estimates but is poorly understood. In this paper, we report the first slip rate measured for the Banning fault strand. We constrain the depositional age of an alluvial fan offset 25 ± 5 m from its source by the Banning strand to between 5.1 ± 0.4 ka (95% confidence interval (CI)) and 6.4 + 3.7/−2.1 ka (95% CI) using U-series dating of pedogenic carbonate clast coatings and 10Be cosmogenic nuclide exposure dating of surface clasts. We calculate a Holocene geologic slip rate for the Banning strand of 3.9 + 2.3/−1.6 mm/yr (median, 95% CI) to 4.9 + 1.0/−0.9 mm/yr (median, 95% CI). This rate represents only 25–35% of the total slip accommodated by this section of the southern San Andreas Fault, suggesting a model in which slip is less concentrated on the Banning strand than previously thought. In rejecting the possibility that the Banning strand is the dominant structure, our results highlight an even greater need for slip rate and paleoseismic measurements along faults in the northwestern Coachella Valley in order to test the validity of current earthquake hazard models. In addition, our comparison of ages measured with U-series and 10Be exposure dating demonstrates the importance of using multiple geochronometers when estimating the depositional age of alluvial landforms.

  17. The San Andreas Fault revisited through seismic-noise and surface-wave tomography

    P. Roux; Wathelet, Marc; Roueff, A.


    We present here surface-wave tomography results for the San Andreas Fault in the Parkfield area, California, USA, that were extracted from microseismic noise in the 0.15 Hz to 0.35 Hz frequency band using passive seismic-correlation techniques. Using directive noise incoming from the Pacific Ocean, passive seismic-noise tomography was performed using three-component sensors from a dense seismic network. A rotation algorithm was applied to the nine-component noise-correlation tensor that optim...

  18. Constraints on the stress state of the San Andreas Fault with analysis based on core and cuttings from San Andreas Fault Observatory at Depth (SAFOD) drilling phases 1 and 2

    Tembe, S.; Lockner, D.; Wong, T.-F.


    Analysis of field data has led different investigators to conclude that the San Andreas Fault (SAF) has either anomalously low frictional sliding strength (?? 0.6). Arguments for the apparent weakness of the SAF generally hinge on conceptual models involving intrinsically weak gouge or elevated pore pressure within the fault zone. Some models assert that weak gouge and/or high pore pressure exist under static conditions while others consider strength loss or fluid pressure increase due to rapid coseismic fault slip. The present paper is composed of three parts. First, we develop generalized equations, based on and consistent with the Rice (1992) fault zone model to relate stress orientation and magnitude to depth-dependent coefficient of friction and pore pressure. Second, we present temperature-and pressure-dependent friction measurements from wet illite-rich fault gouge extracted from San Andreas Fault Observatory at Depth (SAFOD) phase 1 core samples and from weak minerals associated with the San Andreas Fault. Third, we reevaluate the state of stress on the San Andreas Fault in light of new constraints imposed by SAFOD borehole data. Pure talc (?????0.1) had the lowest strength considered and was sufficiently weak to satisfy weak fault heat flow and stress orientation constraints with hydrostatic pore pressure. Other fault gouges showed a systematic increase in strength with increasing temperature and pressure. In this case, heat flow and stress orientation constraints would require elevated pore pressure and, in some cases, fault zone pore pressure in excess of vertical stress. Copyright 2009 by the American Geophysical Union.

  19. Holocene Geologic Slip Rate for the Banning Strand of the Southern San Andreas Fault near San Gorgonio Pass, Southern California

    Gold, P. O.; Behr, W. M.; Rood, D. H.; Kendrick, K. J.; Rockwell, T. K.; Sharp, W. D.


    We present the first Holocene geologic slip rate for the Banning strand of the southern San Andreas Fault in southern California. The southern San Andreas Fault splays into the sub-parallel Banning and Mission Creek strands in the northwestern Coachella Valley, and although it has long been surmised that the Banning strand eventually accommodates the majority of displacement and transfers it into San Gorgonio Pass, until now it has been uncertain how slip is actually partitioned between these two fault strands. Our new slip rate measurement, critically located at the northwestern end of the Banning strand, overlaps within errors with the published rate for the southern San Andreas Fault measured at Biskra Palms Oasis. This indicates that the majority of southern San Andreas Fault displacement transfers from the southeastern Mission Creek strand northwest to the Banning strand and into San Gorgonio Pass. Our result corroborates the UCERF3 hazard model, and is consistent with most previous interpretations of how slip is partitioned between the Banning and Mission Creek fault strands. To measure this slip rate, we used B4 airborne LiDAR to identify the apex of an alluvial fan offset laterally 30 ± 5 m from its source. We calculated the depositional age of the fan using 10Be in-situ cosmogenic exposure dating of 5 cobbles and a depth profile. We calculated a most probable fan age of 4.0 +2.0/-1.6 ka (1σ) by combining the inheritance-corrected cobble ages assuming Gaussian uncertainty. However, the probability density function yielded a multi-peaked distribution, which we attribute to variable 10Be inheritance in the cobbles, so we favor the depth profile age of 2.2-3.6 ka. Combined, these measurements yield a late Holocene slip rate for the Banning strand of the southern San Andreas Fault of 11.1 +3.1/-3.3 mm/yr. This slip rate does not preclude possibility that some slip transfers north along the Mission Creek strand and the Garnet Hill fault, but it does confirm

  20. Bimodal distribution of creep event amplitudes on the San Andreas fault, California

    Burford, R.O.


    EPISODIC fault creep, at several instrument sites along the San Andreas and associated faults in central California consists of a few small and large slip events per year generally superimposed on a background of gradual yielding at low rates1-3. Most of the events are aseismic, but a few minor displacement steps have occured in association with local earthquakes 12. After removal of earthquake steps, event lists for several sites include significant numbers of small events about an order or magnitude below the typical 1-4-mm amplitude range for large events1, 3. Recent experimental rock-deformation results demonstrate that under biaxial loading some rocks show episodic slip on pre-cut surfaces9,10. It is not yet clear how the laboratory and field observations are related, but the data presented here indicate that episodic fault creep in nature may be more complex than previously realised. In light of the laboratory results, it is more important than ever to consider all the details of the field data concerning fault creep. ?? 1977 Nature Publishing Group.

  1. Mineral carbonation of serpentinite in the San Andreas Fault: Implications for aseismic creep

    Klein, F.; Goldsby, D. L.; Lin, J.


    Here we present a new model that highlights the impact of peridotite-water-CO2 interactions on aseismic creep in the San Andreas Fault (SAF) zone. Serpentinization of peridotite is commonly invoked as the cause of aseismic slip (creep) observed in the SAF of central and northern California, as the creeping section coincides with the mapped extent of the Coast Range ophiolite (Irwin and Barnes, 1975). However, more recently it has been demonstrated that serpentinization alone cannot account for the high rates of aseismic slip (Moore et al., 1996). Moore and Rymer (2007) hypothesized that the reaction of silica-rich fluids with serpentinite causes the formation of mechanically weak talc, which is presently held responsible for fault-zone weakening in this area. While silica-metasomatism can transform serpentinite into steatite (talc rock), the common and widespread occurrence of CO2-rich springs in the fault zone, and silica-carbonate altered serpentinite, points to carbonation (i.e., CO2-metasomatism) of serpentinite as the major cause of fault-zone weakening in central and northern California. Initial results of our field program, mineralogical analyses and friction experiments will be presented, which highlight the evolution in shear strength from serpentine, to soapstone (talc-magnesite rock), to listvenite (quartz-magnesite rock), the final product of CO2-metasomatism.

  2. Detecting Significant Stress Drop Variations in Large Micro-Earthquake Datasets: A Comparison Between a Convergent Step-Over in the San Andreas Fault and the Ventura Thrust Fault System, Southern California

    Goebel, T. H. W.; Hauksson, E.; Plesch, A.; Shaw, J. H.


    A key parameter in engineering seismology and earthquake physics is seismic stress drop, which describes the relative amount of high-frequency energy radiation at the source. To identify regions with potentially significant stress drop variations, we perform a comparative analysis of source parameters in the greater San Gorgonio Pass (SGP) and Ventura basin (VB) in southern California. The identification of physical stress drop variations is complicated by large data scatter as a result of attenuation, limited recording bandwidth and imprecise modeling assumptions. In light of the inherently high uncertainties in single stress drop measurements, we follow the strategy of stacking large numbers of source spectra thereby enhancing the resolution of our method. We analyze more than 6000 high-quality waveforms between 2000 and 2014, and compute seismic moments, corner frequencies and stress drops. Significant variations in stress drop estimates exist within the SGP area. Moreover, the SGP also exhibits systematically higher stress drops than VB and shows more scatter. We demonstrate that the higher scatter in SGP is not a generic artifact of our method but an expression of differences in underlying source processes. Our results suggest that higher differential stresses, which can be deduced from larger focal depth and more thrust faulting, may only be of secondary importance for stress drop variations. Instead, the general degree of stress field heterogeneity and strain localization may influence stress drops more strongly, so that more localized faulting and homogeneous stress fields favor lower stress drops. In addition, higher loading rates, for example, across the VB potentially result in stress drop reduction whereas slow loading rates on local fault segments within the SGP region result in anomalously high stress drop estimates. Our results show that crustal and fault properties systematically influence earthquake stress drops of small and large events and should

  3. Examining the Evolution of the Peninsula Segment of the San Andreas Fault, Northern California, Using a 4-D Geologic Model

    Horsman, E.; Graymer, R. W.; McLaughlin, R. J.; Jachens, R. C.; Scheirer, D. S.


    Retrodeformation of a three-dimensional geologic model allows us to explore the tectonic evolution of the Peninsula segment of the San Andreas Fault and adjacent rock bodies in the San Francisco Bay area. By using geological constraints to quantitatively retrodeform specific surfaces (e.g. unfolding paleohorizontal horizons, removing fault slip), we evaluate the geometric evolution of rock bodies and faults in the study volume and effectively create a four-dimensional model of the geology. The three-dimensional map is divided into fault-bounded blocks and subdivided into lithologic units. Surface geologic mapping provides the foundation for the model. Structural analysis and well data allow extrapolation to a few kilometers depth. Geometries of active faults are inferred from double-difference relocated earthquake hypocenters. Gravity and magnetic data provide constraints on the geometries of low density Cenozoic deposits on denser basement, highly magnetic marker units, and adjacent faults. Existing seismic refraction profiles constrain the geometries of rock bodies with different seismic velocities. Together these datasets and others allow us to construct a model of first-order geologic features in the upper ~15 km of the crust. Major features in the model include the active San Andreas Fault surface; the Pilarcitos Fault, an abandoned strand of the San Andreas; an active NE-vergent fold and thrust belt located E of the San Andreas Fault; regional relief on the basement surface; and several Cenozoic syntectonic basins. Retrodeformation of these features requires constraints from all available datasets (structure, geochronology, paleontology, etc.). Construction of the three-dimensional model and retrodeformation scenarios are non-unique, but significant insights follow from restricting the range of possible geologic histories. For example, we use the model to investigate how the crust responded to migration of the principal slip surface from the Pilarcitos Fault

  4. Inferring fault rheology from low-frequency earthquakes on the San Andreas

    Beeler, N. M.; Thomas, Amanda; Bürgmann, Roland; Shelly, David


    of recurring low-frequency earthquakes (LFEs) within nonvolcanic tremor (NVT) on the San Andreas fault in central California show strong sensitivity to shear stress induced by the daily tidal cycle. LFEs occur at all levels of the tidal shear stress and are in phase with the very small, ~400 Pa, stress amplitude. To quantitatively explain the correlation, we use a model from the existing literature that assumes the LFE sources are small, persistent regions that repeatedly fail during shear of a much larger scale, otherwise aseismically creeping fault zone. The LFE source patches see tectonic loading, creep of the surrounding fault which may be modulated by the tidal stress, and direct tidal loading. If the patches are small relative to the surrounding creeping fault then the stressing is dominated by fault creep, and if patch failure occurs at a threshold stress, then the resulting seismicity rate is proportional to the fault creep rate or fault zone strain rate. Using the seismicity rate as a proxy for strain rate and the tidal shear stress, we fit the data with possible fault rheologies that produce creep in laboratory experiments at temperatures of 400 to 600°C appropriate for the LFE source depth. The rheological properties of rock-forming minerals for dislocation creep and dislocation glide are not consistent with the observed fault creep because strong correlation between small stress perturbations and strain rate requires perturbation on the order of the ambient stress. The observed tidal modulation restricts ambient stress to be at most a few kilopascal, much lower than rock strength. A purely rate dependent friction is consistent with the observations only if the product of the friction rate dependence and effective normal stress is ~ 0.5 kPa. Extrapolating the friction rate strengthening dependence of phyllosilicates (talc) to depth would require the effective normal stress to be ~50 kPa, implying pore pressure is lithostatic. If the LFE source is on the

  5. Cradle of the Earthquake: Exploring the Underwater San Andreas Fault on the R/V Pacific Storm and the SRV Derek M. Baylis between 20100910 and 20101003

    National Oceanic and Atmospheric Administration, Department of Commerce — Over one hundred years after the devastating Great 1906 Earthquake that nearly destroyed San Francisco, this expedition explored the Northern San Andreas Fault, the...

  6. Correlation of clayey gouge in a surface exposure of the San Andreas fault with gouge at depth from SAFOD: Implications for the role of serpentinite in fault mechanics

    Moore, Diane E.; Rymer, Michael J.


    Magnesium-rich clayey gouge similar to that comprising the two actively creeping strands of the San Andreas Fault in drill core from the San Andreas Fault Observatory at Depth (SAFOD) has been identified in a nearby outcrop of serpentinite within the fault zone at Nelson Creek. Each occurrence of the gouge consists of porphyroclasts of serpentinite and sedimentary rocks dispersed in a fine-grained, foliated matrix of Mg-rich smectitic clays. The clay minerals in all three gouges are interpreted to be the product of fluid-assisted, shear-enhanced reactions between quartzofeldspathic wall rocks and serpentinite that was tectonically entrained in the fault from a source in the Coast Range Ophiolite. We infer that the gouge at Nelson Creek connects to one or both of the gouge zones in the SAFOD core, and that similar gouge may occur at depths in between. The special significance of the outcrop is that it preserves the early stages of mineral reactions that are greatly advanced at depth, and it confirms the involvement of serpentinite and the Mg-rich phyllosilicate minerals that replace it in promoting creep along the central San Andreas Fault.

  7. Near-surface structure of the 1906 main trace of the San Andreas Fault, San Francisco peninsula segment, California

    Rosa, C.; Catchings, R. D.; Rymer, M. J.; Goldman, M.; Grove, K.; Prentice, C. S.


    The peninsula segment of the San Andreas Fault (SAF) is forecasted to have the second highest probability of producing a M6.7 or greater earthquake in the San Francisco Bay Area in the next 30 years; yet, relatively little is known about its slip history. In most places, the surface location of the SAF has been determined primarily on the basis of geomorphic features and from mapping surface ruptures associated with the 1906 M7.9 San Francisco earthquake. To more precisely locate traces of this segment of the SAF along the San Francisco peninsula in the subsurface, we acquired a high-resolution seismic imaging survey, using both seismic refraction and reflection profiling, south of Upper Crystal Springs Reservoir near Woodside, California in June 2012. High-resolution seismic images produced from this study may benefit ongoing paleoseismological investigations along the SAF because the seismic data can be used to precisely locate the main fault trace and auxiliary faults that may contribute to the earthquake hazards associated with the fault zone. Furthermore, the seismic images provide insights into near-surface fault structure and P- and S-wave velocities, which can be important in understanding strong shaking resulting from future earthquakes along this segment of the SAF. We acquired both P- and S-wave data using a 60-channel seismograph system connected via cable to 40-Hz vertical-component and 4-Hz horizontal geophones, which were spaced at 1-m intervals along a 60-m-long transect. Seismic sources (shots) were generated by hammer impacts on a steel plate or aluminum block at each geophone location. All shots were recorded on all channels. This survey design permits simultaneous acquisition of reflection and refraction data so that both refraction tomography and reflection images can be developed. Our initial analysis of the P-wave data shows that seismic velocities across the main trace of the SAF vary from about 700 m/s near the surface to more than 2500 m

  8. Subsurface geometry of the San Andreas-Calaveras fault junction: influence of serpentinite and the Coast Range Ophiolite

    Watt, Janet Tilden; Ponce, David A.; Graymer, Russell W.; Jachens, Robert C.; Simpson, Robert W.


    While an enormous amount of research has been focused on trying to understand the geologic history and neotectonics of the San Andreas-Calaveras fault (SAF-CF) junction, fundamental questions concerning fault geometry and mechanisms for slip transfer through the junction remain. We use potential-field, geologic, geodetic, and seismicity data to investigate the 3-D geologic framework of the SAF-CF junction and identify potential slip-transferring structures within the junction. Geophysical evidence suggests that the San Andreas and Calaveras fault zones dip away from each other within the northern portion of the junction, bounding a triangular-shaped wedge of crust in cross section. This wedge changes shape to the south as fault geometries change and fault activity shifts between fault strands, particularly along the Calaveras fault zone (CFZ). Potential-field modeling and relocated seismicity suggest that the Paicines and San Benito strands of the CFZ dip 65° to 70° NE and form the southwest boundary of a folded 1 to 3 km thick tabular body of Coast Range Ophiolite (CRO) within the Vallecitos syncline. We identify and characterize two steeply dipping, seismically active cross structures within the junction that are associated with serpentinite in the subsurface. The architecture of the SAF-CF junction presented in this study may help explain fault-normal motions currently observed in geodetic data and help constrain the seismic hazard. The abundance of serpentinite and related CRO in the subsurface is a significant discovery that not only helps constrain the geometry of structures but may also help explain fault behavior and the tectonic evolution of the SAF-CF junction.

  9. Near-Surface Structure of the Peninsula Segment of the San Andreas Fault, San Francisco Bay Area, California

    Rosa, C.; Catchings, R.; Rymer, M. J.; Goldman, M.; Grove, K.; Prentice, C. S.


    The peninsula segment of the San Andreas Fault (SAF) is a section of the fault that has the potential to produce the next large earthquake in the San Francisco Bay Area, yet the slip history of the peninsula segment is relatively unknown. In most places, the surface location of the SAF has been determined primarily on the basis of geomorphic features and from mapping surface ruptures associated with the 1906 M7.9 San Francisco earthquake. To more precisely locate traces of the SAF along the San Francisco peninsula in the subsurface, we acquired a high-resolution seismic imaging survey, using both seismic refraction and reflection profiling, south of Upper Crystal Springs Reservoir near Woodside, California in June 2012. We acquired coincident P- and S-wave data using a 60-channel seismograph system connected via cable to 40-Hz vertical-component and 4-Hz horizontal-component geophones, with spacing at 1-m intervals along a 60-m-long transect across the SAF. Seismic sources (shots) were generated by hammer impacts on a steel plate or aluminum block at each geophone location. All shots were recorded on all channels. This survey design permitted simultaneous acquisition of reflection and refraction data such that both refraction tomography and reflection images were developed. Analysis of the P- and S-wave data, using refraction tomography, shows abrupt variations in the P-wave (Vp) and S-wave (Vs) velocities, including the 1,500 m/s velocity contour that outlines the top to groundwater and images of Vp/Vs and Poisson's ratios. P-wave velocities range from about 700 m/s at the surface to more than 4000 m/s at 20-m depth. S-wave velocities range from about 300 m/s at the surface to about 800 m/s at 20-m depth. The combined data indicate that the near-surface trace of the SAF dips steeply to the southwest in the upper few tens of meters. Variations in the velocity images also suggest the possibility of two additional near-surface fault traces within about 25 m of the

  10. Tomographic imaging of the tectonic tremor zone beneath the San Andreas fault in the Parkfield region

    Peterson, D. E.; Thurber, C. H.; Shelly, D. R.; Bennington, N. L.; Zhang, H.; Brown, J. R.


    The fine-scale seismic velocity structure around zones of tectonic (nonvolcanic) tremor and low-frequency earthquakes (LFE's) has been imaged successfully in subduction zones. This success is due in part to the occurrence of earthquakes in the subducting slab beneath the zone of tremor and LFE's. Such studies have found the tremor and LFE's to lie within zones of reduced seismic velocity and high Vp/Vs, which have been interpreted to reflect high pore fluid pressure (e.g., Shelly et al., 2006). For the San Andreas fault, the observed tremor and LFE's in the Parkfield region occur at depths greater than 15 km, which is below the deepest conventional earthquakes in the region. This makes tomographic imaging of the tremor zone more challenging. We use a combination of P and S arrival times and corresponding differential times from stacked seismograms of LFE's (Shelly and Hardebeck, 2010) along with absolute and differential times from shallower microearthquakes to image the three-dimensional P- and S- wave velocity structure to ~20 km depth. Our initial results indicate the LFE's near SAFOD lie within or adjacent to zones with slightly reduced P-wave velocity and more sharply reduced S- wave velocity. The estimated Vp/Vs values are approximately 1.85 to 1.95 in these zones. The elevated Vp/Vs values are interpreted to reflect high pore fluid pressure and low effective stress. This is consistent with results from subduction zones and with observations of triggering and tidal modulation of LFE's and tremor on this deep extension of the SAF. We will present refined tomography results that expand the area imaged and include additional LFE arrival time picks from temporary array data. Cross-section from SW to NE through SAFOD at Y=0. Vs is shown by black contours (labeled with km/sec) and colors from red (slow) to blue (fast). Black diamonds are hypocenters of LFE's and earthquakes used in the inversion.

  11. Late Holocene slip rate of the San Andreas fault and its accommodation by creep and moderate-magnitude earthquakes at Parkfield, California

    Toke, N.A.; Arrowsmith, J.R.; Rymer, M.J.; Landgraf, A.; Haddad, D.E.; Busch, M.; Coyan, J.; Hannah, A.


    Investigation of a right-laterally offset channel at the Miller's Field paleoseismic site yields a late Holocene slip rate of 26.2 +6.4/-4.3 mm/yr (1??) for the main trace of the San Andreas fault at Park-field, California. This is the first well-documented geologic slip rate between the Carrizo and creeping sections of the San Andreas fault. This rate is lower than Holocene measurements along the Carrizo Plain and rates implied by far-field geodetic measurements (~35 mm/yr). However, the rate is consistent with historical slip rates, measured to the northwest, along the creeping section of the San Andreas fault (creep and observations of surface slip from the 28 September 2004 M6 Parkfield earthquake. Together, this slip rate and deformation fabric suggest that the historically observed San Andreas fault slip behavior along the Parkfield section has persisted for at least a millennium, and that significant slip is accommodated by structures in a zone beyond the main San Andreas fault trace. ?? 2011 Geological Society of America.

  12. Fault Tolerant Control Systems

    Bøgh, S.A.

    from this study highlights requirements for a dedicated software environment for fault tolerant control systems design. The second detailed study addressed the detection of a fault event and determination of the failed component. A variety of algorithms were compared, based on two fault scenarios in...... faults, but also that the research field still misses a systematic approach to handle realistic problems such as low sampling rate and nonlinear characteristics of the system. The thesis contributed with methods to detect both faults and specifically with a novel algorithm for the actuator fault...... detection that is superior in terms of performance and complexity to the other algorithms in the comparative study....

  13. Heterogeneous slip and rupture models of the San Andreas fault zone based upon three-dimensional earthquake tomography

    Foxall, W.


    Crystal fault zones exhibit spatially heterogeneous slip behavior at all scales, slip being partitioned between stable frictional sliding, or fault creep, and unstable earthquake rupture. An understanding the mechanisms underlying slip segmentation is fundamental to research into fault dynamics and the physics of earthquake generation. This thesis investigates the influence that large-scale along-strike heterogeneity in fault zone lithology has on slip segmentation. Large-scale transitions from the stable block sliding of the Central 4D Creeping Section of the San Andreas, fault to the locked 1906 and 1857 earthquake segments takes place along the Loma Prieta and Parkfield sections of the fault, respectively, the transitions being accomplished in part by the generation of earthquakes in the magnitude range 6 (Parkfield) to 7 (Loma Prieta). Information on sub-surface lithology interpreted from the Loma Prieta and Parkfield three-dimensional crustal velocity models computed by Michelini (1991) is integrated with information on slip behavior provided by the distributions of earthquakes located using, the three-dimensional models and by surface creep data to study the relationships between large-scale lithological heterogeneity and slip segmentation along these two sections of the fault zone.

  14. Fault tolerant computing systems

    Fault tolerance involves the provision of strategies for error detection damage assessment, fault treatment and error recovery. A survey is given of the different sorts of strategies used in highly reliable computing systems, together with an outline of recent research on the problems of providing fault tolerance in parallel and distributed computing systems. (orig.)

  15. Strength of the Creeping Segment of the San Andreas Fault Inferred from Intact SAFOD Core Material

    Lockner, D. A.; Morrow, C. A.; Moore, D. E.; Hickman, S.


    A primary goal of the SAFOD fault zone drilling project was to determine the strength and frictional properties of the San Andreas Fault (SAF) at seismogenic depth. Laboratory testing of SAFOD core material has now provided measurements under near-in-situ conditions of the shear strength of the creeping portion of the SAF at a vertical depth of 2.7 km. Early measurements made on SAFOD spot core and drilling cuttings before core from within the SAF zone was available [Tembe et al. (2006), Morrow et al. (2007), Carpenter et al. (2011)] associated low strength material with currently inactive faults southwest of the SAF and actively deforming zones associated with the SAF that were identified from casing deformation data. In Phase 3 drilling in 2007, core was retrieved from two actively deforming shear zones within the approximately 200-m-wide SAF damage zone. The two zones contained clay-rich foliated gouge and have been designated as the Southwest Deforming Zone (SDZ - width ~1.6 m) and Central Deforming Zone (CDZ - width ~2.6 m). Casing deformation [Zoback et al. (2010)] suggests that deformation is localized within these weak foliated gouge zones. Deformation tests on crushed and sieved samples of the foliated gouge [Lockner et al. (2011) and Carpenter et al. (2012)] showed low strength (coefficient of friction μ in the range 0.1 to 0.2) due to the high concentration of saponite, an Mg-rich smectite clay. We now present results from deformation tests on intact CDZ foliated gouge that, combined with similar deformation tests by Carpenter et al. (2012), allow comparison with crushed/sieved samples. We find: (1) no significant difference in strength of intact and crushed/sieved foliated gouge samples. Apparently, the high concentration of the weak mineral phase (>60%) makes strength variations due to fabric irrelevant in this case. Therefore, crushed/sieved samples that are significantly easier to prepare and test can be used to infer strength and other rheological

  16. Continuation of a deep borehole stress measurement profile near the San Andreas Fault: 2. Hydraulic fracturing stress measurements at Black Butte, Mojave Desert, California

    Stock, J. M.; Healy, J. H.


    Hydraulic fracturing stress measurements were obtained in the Black Butte drill hole, 18 km northeast of the San Andreas fault in the Mojave Desert, at depths from 251 to 635 m. In all tests the least and greatest horizontal principal stresses (Sh and SH, respectively) exceeded the vertical stress (Sν), indicating a thrust faulting stress regime. A single good-quality hydraulic fracture impression from 309 m depth indicates an SH direction of N41°E ± 10°. This SH direction should be interpreted with caution because it is based on only one observation. This orientation is fairly compatible with nearby surface stress measurements but is incompatible with most of the hydraulic fracturing stress orientations reported from comparable depths in the Mojave Desert and is not favorable for right-lateral slip on either the San Andreas fault or NW striking faults present farther to the east. The stress regime measured in the Black Butte hole is comparable to that measured at nearby shallow depths but differs from the strike-slip or transitional (strike-slip to thrust faulting) stress regime present at similar depths in two nearby holes: Crystallaire, 4 km northeast of fhe San Andreas fault, and Hi Vista, 32 km northeast of the San Andreas fault. The SH direction measured in these holes is approximately 60° counterclockwise of that observed in the Black Butte hole. The differences in stress magnitudes and orientation among these holes substantiate previous indications of local variations in stress in the upper kilometer of the crust in this area and cast doubt on the validity of linear elastic models in which the effects of the San Andreas fault dominate the stress field in the western Mojave Desert.

  17. Scientific drilling into the San Andreas fault and site characterization research: Planning and coordination efforts. Final technical report

    Zoback, M.D.


    The fundamental scientific issue addressed in this proposal, obtaining an improved understanding of the physical and chemical processes responsible for earthquakes along major fault zones, is clearly of global scientific interest. By sampling the San Andreas fault zone and making direct measurements of fault zone properties to 4.0 km at Parkfield they will be studying an active plate-boundary fault at a depth where aseismic creep and small earthquakes occur and where a number of the scientific questions associated with deeper fault zone drilling can begin to be addressed. Also, the technological challenges associated with drilling, coring, downhole measurements and borehole instrumentation that may eventually have to be faced in deeper drilling can first be addressed at moderate depth and temperature in the Parkfield hole. Throughout the planning process leading to the development of this proposal they have invited participation by scientists from around the world. As a result, the workshops and meetings they have held for this project have involved about 350 scientists and engineers from about a dozen countries.

  18. Long-term slip rate of the southern San Andreas Fault, from 10Be-26Al surface exposure dating of an offset alluvial fan

    der Woerd, J v; Klinger, Y; Sieh, K; Tapponnier, P; Ryerson, F; M?riaux, A


    We determine the long-term slip rate of the southern San Andreas Fault in the southeastern Indio Hills using {sup 10}Be and {sup 26}Al isotopes to date an offset alluvial fan surface. Field mapping complemented with topographic data, air photos and satellite images allow to precisely determine piercing points across the fault zone that are used to measure an offset of 565 {+-} 80 m. A total of twenty-six quartz-rich cobbles from three different fan surfaces were collected and dated. The tight cluster of nuclide concentrations from 19 samples out of 20 from the offset fan surface implies a simple exposure history, negligible prior exposure and erosion, and yield an age of 35.5 {+-} 2.5 ka. The long-term slip rate of the San Andreas Fault south of Biskra Palms is thus 15.9 {+-} 3.4 mm/yr. This rate is about 10 mm/yr slower than geological (0-14 ka) and short-term geodetic estimates for this part of the San Andreas Fault implying changes in slip rate or in faulting behavior. This result puts new constraints on the slip rate of the San Jacinto and on the Eastern California Shear Zone for the last 35 ka. Our study shows that more sites along the major faults of southern California need to be targeted to better constrain the slip-rates over different time scales.

  19. Precise location of San Andreas Fault tremors near Cholame, California using seismometer clusters: Slip on the deep extension of the fault?

    Shelly, D.R.; Ellsworth, W.L.; Ryberg, T.; Haberland, C.; Fuis, G.S.; Murphy, J.; Nadeau, R.M.; Burgmann, R.


    We examine a 24-hour period of active San Andreas Fault (SAF) tremor and show that this tremor is largely composed of repeated similar events. Utilizing this similarity, we locate the subset of the tremor with waveforms similar to an identified low frequency earthquake (LFE) "master template," located using P and S wave arrivals to be ???26 km deep. To compensate for low signal-to-noise, we estimate event-pair differential times at "clusters" of nearby stations rather than at single stations. We find that the locations form a near-linear structure in map view, striking parallel to the SAF and near the surface trace. Therefore, we suggest that at least a portion of the tremor occurs on the deep extension of the fault, likely reflecting shear slip, similar to subduction zone tremor. If so, the SAF may extend to the base of the crust, ???10 km below the deepest regular earthquakes on the fault. ?? 2009 by the American Geophysical Union.

  20. Three-Dimensional Investigation of a 5 m Deflected Swale along the San Andreas Fault in the Carrizo Plain

    Akciz, S. O.


    Topographic maps produced from Light Detection and Ranging (LiDAR) data are useful for paleoseismic and neotectonic research because they provide submeter representation of faulting-related surface features. Offset measurements of geomorphic features, made in the field or on a remotely sensed imagery, commonly assume a straight or smooth (i.e., undeflected) pre-earthquake geometry. Here, we present results from investigation of an ∼20 cm deep and >5 m wide swale with a sharp bend along the San Andreas fault (SAF) at the Bidart fan site in the Carrizo Plain, California. From analysis of LiDAR topography images and field measurements, the swale was initially interpreted as a channel tectonically offset ∼4:7 m. Our observations from exposures in four backhoe excavations and 25 hand-dug trenchettes show that even though a sharp bend in the swale coincides with the trace of the A.D. 1857 fault rupture, the swale formed after the 1857 earthquake and was not tectonically offset. Subtle fractures observed within a surficial gravel unit overlying the 1857 rupture trace are similar to fractures previously documented at the Phelan fan and LY4 paleoseismic sites 3 and 35 km northwest of Bidart fan, respectively. Collectively, the fractures suggest that a post-1857 moderate-magnitude earthquake caused ground cracking in the Carrizo and Cholame stretches of the SAF. Our observations emphasize the importance of excavation at key locations to validate remote and ground-based measurements, and we advocate more geomorphic characterization for each site if excavation is not possible.

  1. Fault detection and isolation in systems with parametric faults

    Stoustrup, Jakob; Niemann, Hans Henrik


    The problem of fault detection and isolation of parametric faults is considered in this paper. A fault detection problem based on parametric faults are associated with internal parameter variations in the dynamical system. A fault detection and isolation method for parametric faults is formulated...

  2. Locating non-volcanic tremor along the San Andreas Fault using a multiple array source imaging technique

    Ryberg, T.; Haberland, C.H.; Fuis, G.S.; Ellsworth, W.L.; Shelly, D.R.


    Non-volcanic tremor (NVT) has been observed at several subduction zones and at the San Andreas Fault (SAF). Tremor locations are commonly derived by cross-correlating envelope-transformed seismic traces in combination with source-scanning techniques. Recently, they have also been located by using relative relocations with master events, that is low-frequency earthquakes that are part of the tremor; locations are derived by conventional traveltime-based methods. Here we present a method to locate the sources of NVT using an imaging approach for multiple array data. The performance of the method is checked with synthetic tests and the relocation of earthquakes. We also applied the method to tremor occurring near Cholame, California. A set of small-aperture arrays (i.e. an array consisting of arrays) installed around Cholame provided the data set for this study. We observed several tremor episodes and located tremor sources in the vicinity of SAF. During individual tremor episodes, we observed a systematic change of source location, indicating rapid migration of the tremor source along SAF. ?? 2010 The Authors Geophysical Journal International ?? 2010 RAS.

  3. Physical and chemical characterization of pulverized granite from a shallow drill along the San Andreas Fault, Little Rock, CA

    Wechsler, N.; Allen, E. E.; Rockwell, T. K.; Chester, J. S.; Girty, G. H.; Ben-Zion, Y.


    We present results from a continuous 42 meter deep core through damaged granitoids adjacent to the San Andreas fault near Little Rock Creek. We employed several methods to measure particle size distribution (pipette, elutriator, laser particle analyzer), as well as x-ray diffraction and fluorescence (XRD, XRF) methods to investigate the relation between depth, pulverization and chemical processes that may affect the degree of damage. The drill site is characterized by extensive outcrops of granitic rocks with varying degrees of damage at distances of up to a few hundreds of meters from the fault's primary active strand. The drill core is composed mainly of pulverized granite and granodiorite, and crosses several high clay content secondary shears. Results of particle size distributions measured using standard sieving and pipette methods indicate that medium to coarse silt and fine sand are the dominant particle size range in the cored section, similar to pulverized granitic rocks analyzed by Rockwell et al. (2008). Very few clay-size particles were observed, but minor amounts of clay weathering products are present. We observe a minor shift in the particle size distribution towards finer sizes with depth, in agreement with the results of Anderson et al. (1980), and find somewhat different distributions for different lithologies. Several zones displaying significant chemical alteration were captured over the cored interval, but XRF data indicate that there is no systematic change in chemical alteration with depth. Where substantial chemical alterations do occur, different lithologies show different weathering trends. Those chemical alterations occur in proximity to secondary shears, suggesting fluid induced mass transfer.

  4. Nonextensive triplet in a geological faults system

    de Freitas, D. B.; França, G. S.; Scherrer, T. M.; Vilar, C. S.; Silva, R.


    The San Andreas fault (SAF) in the USA is one of the most investigated self-organizing systems in Nature. In this paper, we studied some geophysical properties of the SAF system in order to analyze the behavior of earthquakes in the context of Tsallis's q-Triplet. To this end, we considered 134573 earthquake events in the magnitude interval 2\\leq m<8 , taken from the Southern Earthquake Data Center (SCEDC, 1932-2012). The values obtained (“q-Triplet”{}\\equiv\\{q_{\\textit{stat}},q_{\\textit{sen}},q_{\\textit{rel}}\\} ) reveal that the q_{\\textit{stat}} -Gaussian behavior of the aforementioned data exhibit long-range temporal correlations. Moreover, q_{\\textit{sen}} exhibits quasi-monofractal behavior with a Hurst exponent of 0.87.

  5. Nonextensive triplet in geological faults system

    de Freitas, D B; Scheerer, T M; Vilar, C S; Silva, R


    The San Andreas fault (SAF) in the USA is one of the most investigated self-organizing systems in nature. In this paper, we studied some geophysical properties of the SAF system in order to analyze the behavior of earthquakes in the context of Tsallis's $q$--Triplet. To that end, we considered 134,573 earthquake events in magnitude interval $2\\leq m<8$, taken from the Southern Earthquake Data Center (SCEDC, 1932 - 2012). The values obtained ("$q$--Triplet"$\\equiv$$\\{$$q$$_{stat}$,$q$$_{sen}$,$q$$_{rel}$$\\}$) reveal that the $q_{stat}$--Gaussian behavior of the aforementioned data exhibit long-range temporal correlations. Moreover, $q_{sen}$ exhibits quasi-monofractal behavior with a Hurst exponent of 0.87.

  6. Using Precariously Balanced Rocks, Historic Records And Paleoseismology To Constrain Rupture Patterns And Rupture Potential Of The San Andreas And San Jacinto Faults In The Los Angeles Region

    Grant Ludwig, L.; Brune, J. N.


    The San Andreas fault (SAF) has been identified as the likely source of a future damaging earthquake that could threaten millions of California residents, and the southern half of the fault has been identified as a likely candidate for rupture because it appears to be loaded with accumulated strain. Forecasts of future large earthquakes on the southern SAF and estimates of co-seismic slip depend critically on the slip rate and date of last rupture. The earliest historically documented rupture of the southern SAF occurred on December 8th and/or 21st, 1812 A.D., as recorded by early California missionaries, and confirmed by tree ring studies at Wrightwood, California. Prior to the tree ring study, the sequence of earthquakes in December 1812 was attributed to the Newport-Inglewood fault and/or another fault offshore of southern California, to explain the collapse of a church at Mission San Juan Capistrano and a tsunami near Mission Santa Barbara. Competing rupture models have been proposed to fit the sparse historic accounts of shaking recorded at the Missions, and sparse paleoseismic data from trenches excavated across the San Andreas and other southern California faults. Confirmation of proposed rupture patterns has been elusive because dates of surface ruptures observed in trenches at several locations along the SAF either cannot be resolved to 1812 due to uncertainty in radiocarbon dating, or preclude rupture. One possibility is that the 1812 earthquake ruptured both the SAF in Wrightwood and the northern San Jacinto fault in the Cajon Pass and San Bernardino Valley. Active traces of the faults are less than 2 km apart in Cajon Pass and it is well documented that ruptures can propagate between fault strands up to several kilometers apart. Here we propose that the distribution of fragile semi-precarious and precariously balanced rocks (PBRs) in the western San Bernardino Mountains is inconsistent with accepted rupture models for the 1812 earthquake. To better fit

  7. Uncertainties in slip-rate estimates for the Mission Creek strand of the southern San Andreas fault at Biskra Palms Oasis, southern California

    Behr, W.M.; Rood, D.H.; Fletcher, K.E.; Guzman, N.; Finkel, R.; Hanks, T.C.; Hudnut, K.W.; Kendrick, K.J.; Platt, J.P.; Sharp, W.D.; Weldon, R.J.; Yule, J.D.


    This study focuses on uncertainties in estimates of the geologic slip rate along the Mission Creek strand of the southern San Andreas fault where it offsets an alluvial fan (T2) at Biskra Palms Oasis in southern California. We provide new estimates of the amount of fault offset of the T2 fan based on trench excavations and new cosmogenic 10Be age determinations from the tops of 12 boulders on the fan surface. We present three alternative fan offset models: a minimum, a maximum, and a preferred offset of 660 m, 980 m, and 770 m, respectively. We assign an age of between 45 and 54 ka to the T2 fan from the 10Be data, which is significantly older than previously reported but is consistent with both the degree of soil development associated with this surface, and with ages from U-series geochronology on pedogenic carbonate from T2, described in a companion paper by Fletcher et al. (this volume). These new constraints suggest a range of slip rates between ~12 and 22 mm/yr with a preferred estimate of ~14-17 mm/yr for the Mission Creek strand of the southern San Andreas fault. Previous studies suggested that the geologic and geodetic slip-rate estimates at Biskra Palms differed. We find, however, that considerable uncertainty affects both the geologic and geodetic slip-rate estimates, such that if a real discrepancy between these rates exists for the southern San Andreas fault at Biskra Palms, it cannot be demonstrated with available data. ?? 2010 Geological Society of America.

  8. Volatile fluxes through the Big Bend section of the San Andreas Fault, California: helium and carbon-dioxide systematics

    Kulongoski, Justin T.; Hilton, David R.; Barry, Peter H.; Esser, Bradley K.; Hillegonds, Darren; Belitz, Kenneth


    To investigate the source of volatiles and their relationship to the San Andreas Fault System (SAFS), 18 groundwater samples were collected from wells near the Big Bend section of the SAFS in southern California and analyzed for helium and carbon abundance and isotopes. Concentrations of 4He, corrected for air-bubble entrainment, vary from 4.15 to 62.7 (× 10− 8) cm3 STP g− 1 H2O. 3He/4He ratios vary from 0.09 to 3.52 RA (where RA = air 3He/4He), consistent with up to 44% mantle helium in samples. A subset of 10 samples was analyzed for the major volatile phase (CO2) — the hypothesized carrier phase of the helium in the mantle–crust system: CO2/3He ratios vary from 0.614 to 142 (× 1011), and δ13C (CO2) values vary from − 21.5 to − 11.9‰ (vs. PDB). 3He/4He ratios and CO2 concentrations are highest in the wells located in the Mil Potrero and Cuddy valleys adjacent to the SAFS. The elevated 3He/4He ratios are interpreted to be a consequence of a mantle volatile flux though the SAFS diluted by radiogenic He produced in the crust. Samples with the highest 3He/4He ratios also had the lowest CO2/3He ratios. The combined helium isotope, He–CO2 elemental relationships, and δ13C (CO2) values of the groundwater volatiles reveal a mixture of mantle and deep crustal (metamorphic) fluid origins. The flux of fluids into the seismogenic zone at high hydrostatic pressure may cause fault rupture, and transfer volatiles into the shallow crust. We calculate an upward fluid flow rate of 147 mm a− 1 along the SAFS, up to 37 times higher than previous estimates (Kennedy et al., 1997). However, using newly identified characteristics of the SAFS, we calculate a total flux of 3He along the SAFS of 7.4 × 103 cm3 STP a− 1 (0.33 mol 3He a− 1), and a CO2 flux of 1.5 × 1013 cm3STP a− 1 (6.6 × 108 mol a− 1), ~ 1% of previous estimates. Lower fluxes along the Big Bend section of the SAFS suggest that the flux of mantle volatiles alone is insufficient to cause the

  9. Active Fault Isolation in MIMO Systems

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad


    isolation is based directly on the input/output s ignals applied for the fault detection. It is guaranteed that the fault group includes the fault that had occurred in the system. The second step is individual fault isolation in the fault group . Both types of isolation are obtained by applying dedicated......Active fault isolation of parametric faults in closed-loop MIMO system s are considered in this paper. The fault isolation consists of two steps. T he first step is group- wise fault isolation. Here, a group of faults is isolated from other pos sible faults in the system. The group-wise fault...

  10. Fuzzy fault diagnostic system based on fault tree analysis

    Yang, Zong Xiao; Suzuki, Kazuhiko; Shimada, Yukiyasu; Sayama, Hayatoshi


    A method is presented for process fault diagnosis using information from fault tree analysis and uncertainty/imprecision of data. Fault tree analysis, which has been used as a method of system reliability/safety analysis, provides a procedure for identifying failures within a process. A fuzzy fault diagnostic system is constructed which uses the fuzzy fault tree analysis to represent a knowledge of the causal relationships in process operation and control system. The proposed method is applie...

  11. Fault management for data systems

    Boyd, Mark A.; Iverson, David L.; Patterson-Hine, F. Ann


    Issues related to automating the process of fault management (fault diagnosis and response) for data management systems are considered. Substantial benefits are to be gained by successful automation of this process, particularly for large, complex systems. The use of graph-based models to develop a computer assisted fault management system is advocated. The general problem is described and the motivation behind choosing graph-based models over other approaches for developing fault diagnosis computer programs is outlined. Some existing work in the area of graph-based fault diagnosis is reviewed, and a new fault management method which was developed from existing methods is offered. Our method is applied to an automatic telescope system intended as a prototype for future lunar telescope programs. Finally, an application of our method to general data management systems is described.

  12. A New Estimate for Total Offset on the Southern San Andreas Fault: Implications for Cumulative Plate Boundary Shear in the Northern Gulf of California

    Darin, M. H.; Dorsey, R. J.


    Development of a consistent and balanced tectonic reconstruction for the late Cenozoic San Andreas fault (SAF) in southern California has been hindered for decades by incompatible estimates of total dextral offset based on different geologic cross-fault markers. The older estimate of 240-270 km is based on offset fluvial conglomerates of the middle Miocene Mint Canyon and Caliente Formations west of the SAF from their presumed source area in the northern Chocolate Mountains NE of the SAF (Ehlig et al., 1975; Ehlert, 2003). The second widely cited offset marker is a distinctive Triassic megaporphyritic monzogranite that has been offset 160 ± 10 km between Liebre Mountain west of the SAF and the San Bernadino Mountains (Matti and Morton, 1993). In this analysis we use existing paleocurrent data and late Miocene clockwise rotation in the eastern Transverse Ranges (ETR) to re-assess the orientation of the piercing line used in the 240 km-correlation, and present a palinspastic reconstruction that satisfies all existing geologic constraints. Our reconstruction of the Mint Canyon piercing line reduces the original estimate of 240-270 km to 195 ± 15 km of cumulative right-lateral slip on the southern SAF (sensu stricto), which is consistent with other published estimates of 185 ± 20 km based on correlative basement terranes in the Salton Trough region. Our estimate of ~195 km is consistent with the lower estimate of ~160 km on the Mojave segment because transform-parallel extension along the southwestern boundary of the ETR during transrotation produces ~25-40 km of displacement that does not affect offset markers of the Liebre/San Bernadino correlation located northwest of the ETR rotating domain. Reconciliation of these disparate estimates places an important new constraint on the total plate boundary shear that is likely accommodated in the adjacent northern Gulf of California. Global plate circuit models require ~650 km of cumulative Pacific-North America (PAC

  13. Andreas Vesalius' 500th Anniversary: Initiation of the Superficial Facial System and Superficial Musculoaponeurotic System Concepts.

    Brinkman, Romy J; Hage, J Joris


    Because of their relevance for liposuction and rhytidectomies, respectively, the superficial fascial system (SFS) and superficial musculoaponeurotic system (SMAS) have been thoroughly studied over the past decennia. Although it is well known that the SMAS concept was introduced by Tessier in 1974, it remains unknown who first properly described the stratum membranosum of the SFS. In light of the 500th birthday of Andreas Vesalius (1515-1564), we searched his 1543 masterwork De Humani Corporis Fabrica Libri Septem and related work for references to these structures. We found ample reference to both structures as the membrana carnosa (or fleshy membrane) in his works and concluded that Vesalius recognized the extension, nature, and functions of the stratum membranosum of the SFS, as well as its more musculous differentiation as the SMAS in the head and neck area, and the dartos in the perineogenital area. In doing so, Vesalius recorded most details of the SFS and SMAS concepts avant la lettre. PMID:26761152

  14. Near-Surface San Andreas Fault Location and Dip Near Woodside, California From Tomographic Vp, Vs, and Vp/Vs Ratios

    Goldman, M.; Catchings, R.; Sickler, R. R.; Criley, C.; Prentice, C. S.


    The slip history of the San Andreas Fault (SAF) on the San Francisco peninsula is not well determined, and paleoseismic investigations to date yield inconsistent results, possibly because previous measurements were made on differing near-surface traces of the SAF. Furthermore, ground-shaking modeling requires accurate shallow-depth S-wave velocities across the fault zone and accurate fault dips; the existing Bay Area 3-D velocity models lack such measurements. To locate all near-surface traces of the SAF within 150 m of the 1906 surface rupture, to determine near-surface shear-wave velocities (VS30 to VS100), and to determine the fault dip, the USGS acquired a set of 300-m-long, high-resolution, P- and S-wave seismic imaging profiles across the SAF near Woodside, California, centered on the 1906 surface rupture zone. Sources (seisgun and hammer) and receivers (40-Hz P-wave and 4.5-Hz S-wave) were spaced at 3-m intervals. We developed independent P- and S-wave tomographic velocity models to depths of ~ 120 m (P-waves) and 80 m (S-waves). P-wave velocities vary widely from near the surface (Vp = 800 m/s, Vs = 250) to 100 m depth (Vp > 3000 m/s, Vs > 500 m/s). The 1906 surface rupture zone forms P- and S-wave low-velocity zones (Vp = 1600 to 1800 m/s; Vs = 250 to 350 m/s) within the fault zone relative to outside the fault zone (Vp = 2000 to 2200 m/s; Vs = 300 to 400 m/s). Vp/Vs ratios range from about 2.8 to about 5.7, with higher ratios on either side of the 1906 surface rupture zone and on the uphill (southwest) side. Southwest-dipping Vp/Vs contours suggest a 60o-southwest dip for one of the fault traces. However, a CDP reflection stack shows a near-vertical dip of the main 1906 rupture zone to 1.2 km depth, and the stack shows evidence for multiple fault traces. Collectively, these new data show a complex fault structure and highly variable velocities across the fault zone, which should aid paleoseismic investigations and improve existing ground-shaking models.

  15. Chemical and Isotopic Composition of Water and Gases From the SAFOD Wells: Implications to the Dynamics of the San Andreas Fault at Parkfield, California

    Thordsen, J. J.; Evans, W. C.; Kharaka, Y. K.; Kennedy, B. M.; van Soest, M.


    To investigate the source of fluids within the San Andreas fault zone, we obtained downhole fluid samples from both the SAFOD pilot well (open hole at vertical depth of ~2.2 km) and the adjacent SAFOD main well, from open holes at depths of 1443-1470 m and 2540-2557 m. Each fluid sampling opportunity followed coring runs, which provided open holes at these depths, enabling formation fluid to enter the wells. Prior to coring, the drilling fluids were tagged with fluorescein and Rhodamine WT tracer dyes to allow for calculation of the contamination effects. We used an evacuated Kuster sampler and positive-displacement Westport samplers, that both allow for accurate determination of the dissolved gas concentrations. Chemical data and water-level measurements in the SAFOD pilot well and the shallower zone of SAFOD main well indicated that no significant amount of formation water was produced. Significant amounts of formation water, however, were produced from the deeper open hole of the SAFOD main well. The water level in the well rose ~60 m from completion of coring (October 1, 2004) to the first fluid sampling (April 13, 2005), when three samples were obtained, and rose ~12 m more by June 8, 2005, when an additional 4 samples were collected. Chemical data show that these samples are a mixture of formation water (75-80%) and the dye-tagged `KCl' drilling solution. High pH values (9.5-10.5) and high Ca concentrations indicate contamination from the cement used for casing the well. Mixing proportions and geochemical modeling, utilizing the tracer dyes and conservative solutes, are used to calculate the compositions of formation water. Results show a Na-Ca-Cl type water with a salinity of ~20,000 mg/L TDS, very low Mg (0.1 mg/L) and carbonate alkalinity (water from sedimentary rocks, such as oil field waters from California. The deepest samples from SAFOD main well are extremely gas-rich, with calculated in-situ gas pressures exceeding 50 bar. The gas composition is also

  16. Fault injection system for automatic testing system

    王胜文; 洪炳熔


    Considering the deficiency of the means for confirming the attribution of fault redundancy in the re-search of Automatic Testing System(ATS) , a fault-injection system has been proposed to study fault redundancyof automatic testing system through compurison. By means of a fault-imbeded environmental simulation, thefaults injected at the input level of the software are under test. These faults may induce inherent failure mode,thus bringing about unexpected output, and the anticipated goal of the test is attained. The fault injection con-sists of voltage signal generator, current signal generator and rear drive circuit which are specially developed,and the ATS can work regularly by means of software simulation. The experimental results indicate that the faultinjection system can find the deficiency of the automatic testing software, and identify the preference of fault re-dundancy. On the other hand, some soft deficiency never exposed before can be identified by analyzing the tes-ting results.

  17. Subaru FATS (fault tracking system)

    Winegar, Tom W.; Noumaru, Junichi


    The Subaru Telescope requires a fault tracking system to record the problems and questions that staff experience during their work, and the solutions provided by technical experts to these problems and questions. The system records each fault and routes it to a pre-selected 'solution-provider' for each type of fault. The solution provider analyzes the fault and writes a solution that is routed back to the fault reporter and recorded in a 'knowledge-base' for future reference. The specifications of our fault tracking system were unique. (1) Dual language capacity -- Our staff speak both English and Japanese. Our contractors speak Japanese. (2) Heterogeneous computers -- Our computer workstations are a mixture of SPARCstations, Macintosh and Windows computers. (3) Integration with prime contractors -- Mitsubishi and Fujitsu are primary contractors in the construction of the telescope. In many cases, our 'experts' are our contractors. (4) Operator scheduling -- Our operators spend 50% of their work-month operating the telescope, the other 50% is spent working day shift at the base facility in Hilo, or day shift at the summit. We plan for 8 operators, with a frequent rotation. We need to keep all operators informed on the current status of all faults, no matter the operator's location.

  18. Fault detection in photovoltaic systems

    Nilsson, David


    This master’s thesis concerns three different areas in the field of fault detection in photovoltaic systems.Previous studies have concerned homogeneous systems with a large set of parameters being observed,while this study is focused on a more restrictive case. The first problem is to discover immediate faults occurring in solar panels. A new online algorithm is developed based on similarity measures with in a single installation. It performs reliably and is able to detect all significant fau...

  19. Is there a "blind" strike-slip fault at the southern end of the San Jacinto Fault system?

    Tymofyeyeva, E.; Fialko, Y. A.


    We have studied the interseismic deformation at the southern end of the San Jacinto fault system using Interferometric Synthetic Aperture Radar (InSAR) and Global Positioning System (GPS) data. To complement the continuous GPS measurements from the PBO network, we have conducted campaign-style GPS surveys of 19 benchmarks along Highway 78 in the years 2012, 2013, and 2014. We processed the campaign GPS data using GAMIT to obtain horizontal velocities. The data show high velocity gradients East of the surface trace of the Coyote Creek Fault. We also processed InSAR data from the ascending and descending tracks of the ENVISAT mission between the years 2003 and 2010. The InSAR data were corrected for atmospheric artifacts using an iterative common point stacking method. We combined average velocities from different look angles to isolate the fault-parallel velocity field, and used fault-parallel velocities to compute strain rate. We filtered the data over a range of wavelengths prior to numerical differentiation, to reduce the effects of noise and to investigate both shallow and deep sources of deformation. At spatial wavelengths less than 2km the strain rate data show prominent anomalies along the San Andreas and Superstition Hills faults, where shallow creep has been documented by previous studies. Similar anomalies are also observed along parts of the Coyote Creek Fault, San Felipe Fault, and an unmapped southern continuation of the Clark strand of the San Jacinto Fault. At wavelengths on the order of 20km, we observe elevated strain rates concentrated east of the Coyote Creek Fault. The long-wavelength strain anomaly east of the Coyote Creek Fault, and the localized shallow creep observed in the short-wavelength strain rate data over the same area suggest that there may be a "blind" segment of the Clark Fault that accommodates a significant portion of the deformation on the southern end of the San Jacinto Fault.

  20. Interaction Between Early San Andreas Strike-Slip Faulting and Extensional Tectonism in the Chocolate Mountains: A Prologue to Growth of the Salton Trough Along the Plate Boundary in Southern California

    Powell, R. E.; Fleck, R. J.


    The Chocolate Mountains (CM) along the NE margin of the southern Salton Trough (ST) lie NE of the post-5- Ma San Andreas fault (SAF) and SW of the early and middle Miocene Clemens Well-Fenner-San Francisquito strand (CW-F-SF) of the SAF system. The CM are a highly extended terrain that evolved during the late Oligocene-middle Miocene and is bounded by the CW fault. Constrained by reconstruction of a compelling array of paleogeologic patterns, the approximately 300 km displacement on the SAF NW of the Garlock fault is distributed to the SE on the SAF (ca 160 km, 0 to 5 Ma), San Gabriel fault (ca 40 km, 0-5 to 12 Ma), and CW-F-SF fault (ca 100 km, 13 to 17-22 Ma). The youngest rocks yet shown to be offset 300 km in southern CA are basalts in the Diligencia and Plush Ranch formations, as young as 22 Ma. Lack of evidence for a large-displacement dextral fault in AZ on-trend with the CW fault requires the existence of a tectonic mechanism for absorbing its dextral displacement to the SE. Structure in the CM manifests late Oligocene-middle Miocene extensional tectonism that culminated in exhumation of Orocopia Schist by tectonic denudation. In its early stages, tectonism was accompanied by sedimentation and by voluminous magma-generation producing a batholithic-to-volcanic edifice. The principal structural feature is a complexly faulted, NW-trending array of en echelon antiforms that runs the length of the range and continues SE into AZ and NW into the Orocopia Mts. In the anticlinorium core, Orocopia Schist is intruded by a late Oligocene composite batholith of mafic to felsic plutons. A succession of tectonic plates separated by detachment faults overlies the schist and plutons. The structurally lowest fault is ductile and juxtaposes mylonite against the schist. Three higher faults, all brittle, vertically stack plates of (1) Mesozoic orthogneiss, (2) little deformed Triassic and Jurassic plutonic rocks, Proterozoic gneiss and anorthosite, and dacitic to rhyolitic late

  1. Wiring systems and fault finding

    Scaddan, Brian


    This book deals with an area of practice which many students and non-electricians find particularly challenging. It explains how to interpret circuit diagrams, wiring systems and the principles and practice of testing and fault diagnosis. It will give the reader confidence to understand the principles of testing and to apply this knowledge to fault finding in electrical circuits.It is a handy reference for anybody who needs to be able to trace faults in circuits, whether in domestic, commercial or industrial settings. It will be a time-saver for all electricians, plumbers, heating engineers, t

  2. Implications of Microstructural Studies of the SAFOD Gouge for the Strength and Deformation Mechanisms in the Creeping Segment of the San Andreas Fault

    Hadizadeh, J.; Gratier, J. L.; Mittempergher, S.; Renard, F.; Richard, J.; di Toro, G.; Babaie, H. A.


    The San Andreas Fault zone (SAF) in the vicinity of the San Andreas Fault Observatory at Depth (SAFOD)in central California is characterized by an average 21 mm/year aseismic creep and strain release through repeating Mmodels for the SAF? The SAFOD provides core samples and geophysical data including cores from two shear zones where the main borehole casing is deforming. The studies so far show a weak fault zone with about 200m of low-permeability damage zone without anomalous temperature or high fluid pressure (Zoback et al. EOS 2010). To answer the above questions, we studied core samples and thin sections ranging in measured depths (MD) from 3059m to 3991m including gouge from borehole casing deformation zones. The methods of study included high resolution scanning and transmission electron microscopy, cathodoluminescence imaging, X-ray fluorescence mapping, and energy dispersive X-ray spectroscopy. The microstructural and analytical data suggest that deformation is by a coupling of cataclastic flow and pressure solution accompanied by widespread alteration of feldspar to clay minerals and other neomineralizations. The clay contents of the gouge and streaks of serpentinite are not uniformly distributed, but weakness of the creeping segment is likely to be due to intrinsically low frictional strength of the fault material. This conclusion, which is based on the overall ratio of clay/non-clay constituents and the presence of talc in the actively deforming zones, is consistent with the 0.3-0.45 coefficient of friction for the drill cuttings tested by others. We also considered weakening by diffusion-accommodated grain boundary sliding. There are two main trends in the microstructural data that provide a basis for explaining the creep rate and seismic activity: 1. Clay content of the gouge including serpentinite and talc increases toward the 1-3m wide borehole casing deformation zones, which are expected to be deforming at above the average creep rate 2. Evidence of

  3. Late Quaternary slip history of the Mill Creek strand of the San Andreas fault in San Gorgonio Pass, southern California: The role of a subsidiary left-lateral fault in strand switching

    Kendrick, Katherine J.; Matti, Jonathan; Mahan, Shannon


    The fault history of the Mill Creek strand of the San Andreas fault (SAF) in the San Gorgonio Pass region, along with the reconstructed geomorphology surrounding this fault strand, reveals the important role of the left-lateral Pinto Mountain fault in the regional fault strand switching. The Mill Creek strand has 7.1–8.7 km total slip. Following this displacement, the Pinto Mountain fault offset the Mill Creek strand 1–1.25 km, as SAF slip transferred to the San Bernardino, Banning, and Garnet Hill strands. An alluvial complex within the Mission Creek watershed can be linked to palinspastic reconstruction of drainage segments to constrain slip history of the Mill Creek strand. We investigated surface remnants through detailed geologic mapping, morphometric and stratigraphic analysis, geochronology, and pedogenic analysis. The degree of soil development constrains the duration of surface stability when correlated to other regional, independently dated pedons. This correlation indicates that the oldest surfaces are significantly older than 500 ka. Luminescence dates of 106 ka and 95 ka from (respectively) 5 and 4 m beneath a younger fan surface are consistent with age estimates based on soil-profile development. Offset of the Mill Creek strand by the Pinto Mountain fault suggests a short-term slip rate of ∼10–12.5 mm/yr for the Pinto Mountain fault, and a lower long-term slip rate. Uplift of the Yucaipa Ridge block during the period of Mill Creek strand activity is consistent with thermochronologic modeled uplift estimates.

  4. A learning system for fault finding

    Tunevi, Anders


    A learning system for fault finding has been constructed. This system contains many different types of knowledge, three ways to find faults and four ways to learn fault finding. The constructed learning system works for a class of fault finding problems. This class has been described in the paper. The developed system could be viewed as an architecture of a general learning system for fault finding. The system could also be used as a testbench of learning mechanisms. The experiences from this...

  5. Fault Tolerant Quantum Filtering and Fault Detection for Quantum Systems

    Gao, Qing; Dong, Daoyi; Petersen, Ian R.


    This paper aims to determine the fault tolerant quantum filter and fault detection equation for a class of open quantum systems coupled to a laser field that is subject to stochastic faults. In order to analyze this class of open quantum systems, we propose a quantum-classical Bayesian inference method based on the definition of a so-called quantum-classical conditional expectation. It is shown that the proposed Bayesian inference approach provides a convenient tool to simultaneously derive t...

  6. Revealing a strike-slip plate boundary: Drill-bit seismic imaging of the San Andreas Fault at the SAFOD site

    Taylor, Stewart Thomas


    The San Andreas Fault at the San Andreas Fault Observatory at Depth (SAFOD) near Parkfield, CA forms the contact between the Pacific and North American tectonic plates. The hypotheses tested in this dissertation are that this boundary (1) is not located beneath the currently recognized surface trace of the SAF, (2) is not composed of a single active strand, but at least two overlapping, positive and negative flower structures, and (3) has juxtaposed, severely folded, and then buried Tertiary to pre-Cretaceous strata not previously known to exist in the Parkfield area. These hypotheses were tested through the construction, analysis, and interpretation of a new type of drill-bit seismic reflection imaging at the SAFOD drill site. Drill-bit seismic (DBS) imaging uses the drill bit as a seismic source. Previous DBS experiments have used geophone receiver arrays laid on the earth's surface. At SAFOD, a vertical receiver array supplemented a surface receiver array, to record the Stage 1 drilling of SAFOD well which was completed in 2004. This dissertation expands the DBS method by utilizing both the vertical and surface arrays to record the drill bit vibrations and produce two types of reverse vertical seismic profiles. A major portion of this dissertation includes research and development of DBS data signal processing techniques for industrial applications and the special case of the SAFOD observations. These observations include downhole geophone recordings which represent a new approach not previously reported in the seismic reflection literature. The application of algorithms produced by these studies has resulted in improved methods for estimating the drill bit seismic source signature. These methods also determine optimal deconvolution operators for DBS signals which produce estimates of the "pilot signal". It is shown that processing of DBS data is possible without drill string pilot accelerometers. This allows more economic deployment of equipment at the drill

  7. Tremor reveals stress shadowing, deep postseismic creep, and depth-dependent slip recurrence on the lower-crustal San Andreas fault near Parkfield

    Shelly, David R.; Johnson, Kaj M.


    The 2003 magnitude 6.5 San Simeon and the 2004 magnitude 6.0 Parkfield earthquakes induced small, but significant, static stress changes in the lower crust on the central San Andreas fault, where recently detected tectonic tremor sources provide new constraints on deep fault creep processes. We find that these earthquakes affect tremor rates very differently, consistent with their differing transferred static shear stresses. The San Simeon event appears to have cast a "stress shadow" north of Parkfield, where tremor activity was stifled for 3-6 weeks. In contrast, the 2004 Parkfield earthquake dramatically increased tremor activity rates both north and south of Parkfield, allowing us to track deep postseismic slip. Following this event, rates initially increased by up to two orders of magnitude for the relatively shallow tremor sources closest to the rupture, with activity in some sources persisting above background rates for more than a year. We also observe strong depth dependence in tremor recurrence patterns, with shallower sources generally exhibiting larger, less-frequent bursts, possibly signaling a transition toward steady creep with increasing temperature and depth. Copyright 2011 by the American Geophysical Union.

  8. Magnetic stratigraphy and a test for block rotation of sedimentary rocks within the San Andreas fault zone, Mecca Hills, southeastern California

    Chang, Shih-Bin R.; Allen, Clarence R.; Kirschvink, Joseph L.


    A 500-m section of the Palm Spring Formation in the southern Mecca Hills, located within the San Andreas fault zone in southeastern California, has been paleomagnetically sampled to determine possible tectonic rotation in this area and to establish time-stratigraphic control. This work was partly stimulated by the fact that 80 km farther south, previous studies demonstrated 35° of postdepositional rotation in the Palm Spring Formation of the Vallecito-Fish Creek basin east of the Elsinore fault. Several lines of evidence suggest that hematite is the main magnetic carrier of the Mecca Hills samples. Large anhedral hematite grains observed in magnetic extracts and a positive fold test imply a detrital origin of the remanence. The polarity reversal patterns, together with earlier vertebrate paleontologic studies, restrict the time span for deposition of this unit to the middle-late Matuyama chron (2.0-0.75 myr ago), thus of uppermost Pliocene and early Pleistocene age. Characteristic directions of best least-squares fit for 73 samples suggest little or no overall rotation, despite the severe late Quaternary tectonic activity demonstrated by the intense deformation of these strata.

  9. S-wave triggering of tremor beneath the Parkfield, California, section of the San Andreas fault by the 2011 Tohoku, Japan earthquake: observations and theory

    Hill, David P.; Peng, Zhigang; Shelly, David R.; Aiken, Chastity


    The dynamic stresses that are associated with the energetic seismic waves generated by the Mw 9.0 Tohoku earthquake off the northeast coast of Japan triggered bursts of tectonic tremor beneath the Parkfield section of the San Andreas fault (SAF) at an epicentral distance of ∼8200  km. The onset of tremor begins midway through the ∼100‐s‐period S‐wave arrival, with a minor burst coinciding with the SHSH arrival, as recorded on the nearby broadband seismic station PKD. A more pronounced burst coincides with the Love arrival, followed by a series of impulsive tremor bursts apparently modulated by the 20‐ to 30‐s‐period Rayleigh wave. The triggered tremor was located at depths between 20 and 30 km beneath the surface trace of the fault, with the burst coincident with the S wave centered beneath the fault 30 km northwest of Parkfield. Most of the subsequent activity, including the tremor coincident with the SHSH arrival, was concentrated beneath a stretch of the fault extending from 10 to 40 km southeast of Parkfield. The seismic waves from the Tohoku epicenter form a horizontal incidence angle of ∼14°, with respect to the local strike of the SAF. Computed peak dynamic Coulomb stresses on the fault at tremor depths are in the 0.7–10 kPa range. The apparent modulation of tremor bursts by the small, strike‐parallel Rayleigh‐wave stresses (∼0.7  kPa) is likely enabled by pore pressure variations driven by the Rayleigh‐wave dilatational stress. These results are consistent with the strike‐parallel dynamic stresses (δτs) associated with the S, SHSH, and surface‐wave phases triggering small increments of dextral slip on the fault with a low friction (μ∼0.2). The vertical dynamic stresses δτd do not trigger tremor with vertical or oblique slip under this simple Coulomb failure model.

  10. Earthquake Recurrence and Slip Over the Past 4 - 5 events on the Southern Santa Cruz Mountains Section of the San Andreas Fault

    Streig, A. R.; Dawson, T. E.; Weldon, R. J.


    The Santa Cruz Mountains section (SAS) of the San Andreas fault last ruptured during the 1906 earthquake, an event that ruptured about 470 km, from Point Arena to San Juan Bautista, California. Paleoseismic studies on the SAS at the Grizzly Flat (GF) and Arano Flat - Mill Creek (AF) paleoseismic sites provide evidence of 1906 surface deformation, but have yielded differing records of prehistoric surface-fault ruptures. GF is located 14 km northwest of the AF site and records one 17th Century earthquake dated between 1632-1659 (Schwartz et al., 1996). The record at AF site records a younger penultimate earthquake between AD 1711 - 1770, with a third event between AD 1660-1670 (Fumal, in review). The AF sites suggest nine earthquakes in the past ~1000 years, and an average recurrence interval of 105 years over the past 1,000 years (Fumal et al., 2003). The Hazel Dell site is located approximately 9.5 km north of AF, between the AF and GF sites. This site has yielded good evidence of the most recent earthquake the 1906 surface rupture (E1), and 3 to 4 earlier events, including new evidence for two mid 1800's earthquakes. Evidence for the penultimate event, E2, is expressed as upward fault terminations within a massive sand infilling a topographic low. This sand infilled a depression formed by the pre-penultimate earthquake, E3. We identified milled wood stratigraphically below the pre-penultimate earthquake horizon, which suggests that surface rupturing earthquakes E2 and E3 occurred after deposition of the milled wood stratigraphic unit. Lumber harvesting began in the area around 1832, which suggests that earthquakes E2 and E3 are historical. Based on the presence of milled wood, the stratigraphic record at Hazel Dell appears more complete during the early historical period than at the AF and GF sites. These new event data for the SAS suggest more frequent surface rupturing earthquakes within historical time than previously recognized. We present a preliminary short

  11. Time-dependent model of aseismic slip on the central San Andreas Fault from InSAR time series and repeating earthquakes

    Khoshmanesh, M.; Shirzaei, M.; Nadeau, R. M.


    The Central segment of San Andreas Fault (CSAF) is characterized by a nearly continuous right-lateral aseismic slip. However, observations of the creep rate obtained using small characteristically repeating earthquakes (CREs) show pulses of creep along the CSAF, which may indicate spatially and temporally variable seismic hazard along the CSAF. Therefore, the goal of this study is to obtain a high-resolution time-dependent model of creep along the CSAF to examine this hypothesis. To this end, we apply a time-dependent creep modeling approach, which combines interferometric synthetic aperture radar (InSAR) surface deformation time series and observations of fault creep obtained from CREs. The SAR data set includes C band scenes acquired by the ERS-2 and Envisat satellites between 2003 and 2011. The resulting creep rate distribution implies a peak rate up to 32 mm/yr along the central part of the CSAF. Afterslip due to the 2004 Parkfield earthquake on the southeastern segment of the CSAF is also manifest in the model, and there is clear evidence of creep pulsing along strike and depth of the CSAF. Estimated annual rate of slip deficit accumulation is equivalent to a magnitude 5.6-5.7 earthquake. Taking advantage of the time-dependence of our model, we also refine the scaling relationship, which associates the released seismic moment due to a CRE event with the amount of creep on the fault, surrounding the CRE patches. This study provides the first kinematic model of creep pulsing, constrained using geodetic and seismic data, which can enhance time-dependent seismic hazard maps and improve earthquake operational forecast models.

  12. Transient Faults in Computer Systems

    Masson, Gerald M.


    A powerful technique particularly appropriate for the detection of errors caused by transient faults in computer systems was developed. The technique can be implemented in either software or hardware; the research conducted thus far primarily considered software implementations. The error detection technique developed has the distinct advantage of having provably complete coverage of all errors caused by transient faults that affect the output produced by the execution of a program. In other words, the technique does not have to be tuned to a particular error model to enhance error coverage. Also, the correctness of the technique can be formally verified. The technique uses time and software redundancy. The foundation for an effective, low-overhead, software-based certification trail approach to real-time error detection resulting from transient fault phenomena was developed.

  13. Potential field Modeling of the 3-D Geologic Structure of the San Andreas Fault Observatory at Depth (SAFOD) at Parkfield, California

    McPhee, D. K.


    Gravity and magnetic data, along with other geophysical and geological constraints, are used to develop 2-D models that we use to characterize the 3-D geological structure of the San Andreas fault (SAF) zone in the vicinity of SAFOD near Parkfield, CA. The gravity data, reduced to isostatic anomalies, comprise a compilation of three different data sets with a maximum of 1.6 km grid spacing for the scattered data and closely spaced ( ˜40 m) stations along one SW-NE profile crossing the SAFOD pilot hole. Aeromagnetic data were flown at a nominal 300 m above the terrain along SW-NE flight lines perpendicular to the San Andreas Fault. Data were recorded at ˜50 m spacing along flight lines approximately 800 m apart. Ground magnetic data recorded every 5 m along lines ˜300 m apart cover a 3 x 5 km area surrounding the SAFOD pilot hole. Previous modeling showed that magnetic granitic basement rocks southwest of the SAF are divided by an inferred steep fault sub-parallel to the SAF. We compute 2-D crustal models along 5 km-long southwest-northeast profiles, one of which extends through the SAFOD pilot hole near and along the high-resolution seismic refraction/reflection survey completed in 1998 (Catchings et al., 2002). Our models are constrained by pilot hole measurements, where we see a boundary between sediment and granitic basement at ˜770 m and an order of magnitude increase in magnetic susceptibility at ˜1400 m, possibly the same depth at which the SW dipping Buzzard Canyon Fault intersects the pilot hole. Regional gravity, magnetic and geologic data indicate two very distinct basement blocks separated by a steeply dipping SAF. The shallowly dipping sedimentary section SW of the SAF coincides with the low velocity zone observed with seismic measurements. Shallow slivers of magnetic sandstone on the NE side of the SAF explain higher frequency features in the magnetic data. In addition, we show a flat lying, tabular body of serpentinite sandwiched between 2 blocks

  14. A Laboratory Earthquake‐Based Stochastic Seismic Source Generation Algorithm for Strike‐Slip Faults and its Application to the Southern San Andreas Fault

    Siriki, Hemanth; Bhat, Harsha S.; Lu, Xiao; Krishnan, Swaminathan


    There is a sparse number of credible source models available from large‐magnitude past earthquakes. A stochastic source‐model‐generation algorithm thus becomes necessary for robust risk quantification using scenario earthquakes. We present an algorithm that combines the physics of fault ruptures as imaged in laboratory earthquakes with stress estimates on the fault constrained by field observations to generate stochastic source models for large‐magnitude (M_w 6.0–8.0) strike‐slip earthquakes....

  15. Soft Computing Approaches To Fault Tolerant Systems

    Neeraj Prakash Srivastava


    Full Text Available We present in this paper as an introduction to soft computing techniques for fault tolerant systems and the terminology with different ways of achieving fault tolerance. The paper focuses on the problem of fault tolerance using soft computing techniques. The fundamentals of soft computing approaches and its type with introduction of fault tolerance are discussed. The main objective is to show how to implement soft computing approaches for fault detection, isolation and identification. The paper contains details about soft computing application with an application of wireless sensor network as fault tolerant system.

  16. Zipper Faults

    Platt, J. P.; Passchier, C. W.


    Intersecting simultaneously active pairs of faults with different orientations and opposing slip sense ("conjugate faults") present geometrical and kinematic problems. Such faults rarely offset each other, even when they have displacements of many km. A simple solution to the problem is that the two faults merge, either zippering up or unzippering, depending on the relationship between the angle of intersection and the slip senses. A widely recognized example of this is the so-called blind front developed in some thrust belts, where a backthrust branches off a decollement surface at depth. The decollement progressively unzippers, so that its hanging wall becomes the hanging wall of the backthrust, and its footwall becomes the footwall of the active decollement. The opposite situation commonly arises in core complexes, where conjugate low-angle normal faults merge to form a single detachment; in this case the two faults zipper up. Analogous situations may arise for conjugate pairs of strike-slip faults. We present kinematic and geometrical analyses of the Garlock and San Andreas faults in California, the Najd fault system in Saudi Arabia, the North and East Anatolian faults, the Karakoram and Altyn Tagh faults in Tibet, and the Tonale and Guidicarie faults in the southern Alps, all of which appear to have undergone zippering over distances of several tens to hundreds of km. The zippering process may produce complex and significant patterns of strain and rotation in the surrounding rocks, particularly if the angle between the zippered faults is large. A zippering fault may be inactive during active movement on the intersecting faults, or it may have a slip rate that differs from either fault. Intersecting conjugate ductile shear zones behave in the same way on outcrop and micro-scales.

  17. Paleoearthquakes on the southern San Andreas Fault, Wrightwood, California, 3000 to 1500 B.C.: A new method for evaluating paleoseismic evidence and earthquake horizons

    Scharer, K.M.; Weldon, R.J., II; Fumal, T.E.; Biasi, G.P.


    We present evidence of 11-14 earthquakes that occurred between 3000 and 1500 B.C. on the San Andreas fault at the Wrightwood paleoseismic site. Earthquake evidence is presented in a novel form in which we rank (high, moderate, poor, or low) the quality of all evidence of ground deformation, which are called "event indicators." Event indicator quality reflects our confidence that the morphologic and sedimentologic evidence can be attributable to a ground-deforming earthquake and that the earthquake horizon is accurately identified by the morphology of the feature. In four vertical meters of section exposed in ten trenches, we document 316 event indicators attributable to 32 separate stratigraphic horizons. Each stratigraphic horizon is evaluated based on the sum of rank (Rs), maximum rank (Rm), average rank (Ra), number of observations (Obs), and sum of higher-quality event indicators (Rs>1). Of the 32 stratigraphic horizons, 14 contain 83% of the event indicators and are qualified based on the number and quality of event indicators; the remaining 18 do not have satisfactory evidence for further consideration. Eleven of the 14 stratigraphic horizons have sufficient number and quality of event indicators to be qualified as "probable" to "very likely" earthquakes; the remaining three stratigraphic horizons are associated with somewhat ambiguous features and are qualified as "possible" earthquakes. Although no single measurement defines an obvious threshold for designation as an earthquake horizon, Rs, Rm, and Rs>1 correlate best with the interpreted earthquake quality. Earthquake age distributions are determined from radio-carbon ages of peat samples using a Bayesian approach to layer dating. The average recurrence interval for the 10 consecutive and highest-quality earthquakes is 111 (93-131) years and individual intervals are ??50% of the average. With comparison with the previously published 14-15 earthquake record between A.D. 500 and present, we find no evidence

  18. Synthesis of Fault-Tolerant Embedded Systems

    Eles, Petru; Izosimov, Viacheslav; Pop, Paul; Peng, Zebo

    This work addresses the issue of design optimization for fault- tolerant hard real-time systems. In particular, our focus is on the handling of transient faults using both checkpointing with rollback recovery and active replication. Fault tolerant schedules are generated based on a conditional...... process graph representation. The formulated system synthesis approaches decide the assignment of fault-tolerance policies to processes, the optimal placement of checkpoints and the mapping of processes to processors, such that multiple transient faults are tolerated, transparency requirements are...

  19. Multiple Fault Isolation in Redundant Systems

    Shakeri, M.; Pattipati, Krishna R.; Raghavan, V.; Patterson-Hine, Ann; Iverson, David L.


    We consider the problem of sequencing tests to isolate multiple faults in redundant (fault-tolerant) systems with minimum expected testing cost (time). It can be shown that single faults and minimal faults, i.e., minimum number of failures with a failure signature different from the union of failure signatures of individual failures, together with their failure signatures, constitute the necessary information for fault diagnosis in redundant systems. In this paper, we develop an algorithm to find all the minimal faults and their failure signatures. Then, we extend the Sure diagnostic strategies [1] of our previous work to diagnose multiple faults in redundant systems. The proposed algorithms and strategies are illustrated using several examples.

  20. From fault classification to fault tolerance for multi-agent systems

    Potiron, Katia; Taillibert, Patrick


    Faults are a concern for Multi-Agent Systems (MAS) designers, especially if the MAS are built for industrial or military use because there must be some guarantee of dependability. Some fault classification exists for classical systems, and is used to define faults. When dependability is at stake, such fault classification may be used from the beginning of the system's conception to define fault classes and specify which types of faults are expected. Thus, one may want to use fault classification for MAS; however, From Fault Classification to Fault Tolerance for Multi-Agent Systems argues that

  1. Fault isolability conditions for linear systems with additive faults

    Niemann, Hans Henrik; Stoustrup, Jakob


    In this paper, we shall show that an unlimited number of additive single faults can be isolated under mild conditions if a general isolation scheme is applied. Multiple faults are also covered. The approach is algebraic and is based on a set representation of faults, where all faults within a set...... can occur simultaneously, whereas faults belonging to different fault sets appear disjoint in time. The proposed fault detection and isolation (FDI) scheme consists of three steps. A fault detection (FD) step is followed by a fault set isolation (FSI) step. Here the fault set is isolated wherein the...... faults have occurred. The last step is a fault isolation (FI) of the faults occurring in a specific fault set, i.e. equivalent with the standard FI step....

  2. Middleware Fault Tolerance Support for the BOSS Embedded Operating System

    Afonso, Francisco; Carlos A. Silva; Montenegro, Sérgio; Tavares, Adriano


    Critical embedded systems need a dependable operating system and application. Despite all efforts to prevent and remove faults in system development, residual software faults usually persist. Therefore, critical systems need some sort of fault tolerance to deal with these faults and also with hardware faults at operation time. This work proposes fault-tolerant support mechanisms for the BOSS embedded operating system, based on the application of proven fault tolerance strategies by middlew...

  3. Social vulnerability analysis of earthquake risk using HAZUS-MH losses from a M7.8 scenario earthquake on the San Andreas fault

    Noriega, G. R.; Grant Ludwig, L.


    Natural hazards research indicates earthquake risk is not equitably distributed. Demographic differences are significant in determining the risks people encounter, whether and how they prepare for disasters, and how they fare when disasters occur. In this study, we analyze the distribution of economic and social losses in all 88 cities of Los Angeles County from the 2008 ShakeOut scenario earthquake. The ShakeOut scenario earthquake is a scientifically plausible M 7.8 scenario earthquake on the San Andreas fault that was developed and applied for regional earthquake preparedness planning and risk mitigation from a compilation of collaborative studies and findings by the 2007 Working Group on California Earthquake Probabilities (WGCEP). The scenario involved 1) developing a realistic scenario earthquake using the best available and most recent earthquake research findings, 2) estimation of physical damage, 3) estimation of social impact of the earthquake, and 4) identifying changes that will help to prevent a catastrophe due to an earthquake. Estimated losses from this scenario earthquake include 1,800 deaths and $213 billion dollars in economic losses. We use regression analysis to examine the relationship between potential city losses due to the ShakeOut scenario earthquake and the cities' demographic composition. The dependent variables are economic and social losses calculated in HAZUS-MH methodology for the scenario earthquake. The independent variables -median household income, tenure and race/ethnicity- have been identified as indicators of social vulnerability to natural disasters (Mileti, 1999; Cutter, 2006; Cutter & Finch, 2008). Preliminary Ordinary Least Squares (OLS) regression analysis of economic losses on race/ethnicity, income and tenure, indicates that cities with lower Hispanic population are associated with lower economic losses. Cities with higher Hispanic population are associated with higher economic losses, though this relationship is

  4. Active fault detection in MIMO systems

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad


    from auxiliary input to residual outputs. The analysis is based on a singular value decomposition of these transfer functions Based on this analysis, it is possible to design auxiliary input as well as design of the associated residual vector with respect to every single parametric fault in the system......The focus in this paper is on active fault detection (AFD) for MIMO systems with parametric faults. The problem of design of auxiliary inputs with respect to detection of parametric faults is investigated. An analysis of the design of auxiliary inputs is given based on analytic transfer functions...

  5. Fault system polarity: A matter of chance?

    Schöpfer, Martin; Childs, Conrad; Manzocchi, Tom; Walsh, John; Nicol, Andy; Grasemann, Bernhard


    Many normal fault systems and, on a smaller scale, fracture boudinage exhibit asymmetry so that one fault dip direction dominates. The fraction of throw (or heave) accommodated by faults with the same dip direction in relation to the total fault system throw (or heave) is a quantitative measure of fault system asymmetry and termed 'polarity'. It is a common belief that the formation of domino and shear band boudinage with a monoclinic symmetry requires a component of layer parallel shearing, whereas torn boudins reflect coaxial flow. Moreover, domains of parallel faults are frequently used to infer the presence of a common décollement. Here we show, using Distinct Element Method (DEM) models in which rock is represented by an assemblage of bonded circular particles, that asymmetric fault systems can emerge under symmetric boundary conditions. The pre-requisite for the development of domains of parallel faults is however that the medium surrounding the brittle layer has a very low strength. We demonstrate that, if the 'competence' contrast between the brittle layer and the surrounding material ('jacket', or 'matrix') is high, the fault dip directions and hence fault system polarity can be explained using a random process. The results imply that domains of parallel faults are, for the conditions and properties used in our models, in fact a matter of chance. Our models suggest that domino and shear band boudinage can be an unreliable shear-sense indicator. Moreover, the presence of a décollement should not be inferred on the basis of a domain of parallel faults only.

  6. Fault analysis of multichannel spacecraft power systems

    Dugal-Whitehead, Norma R.; Lollar, Louis F.


    The NASA Marshall Space Flight Center proposes to implement computer-controlled fault injection into an electrical power system breadboard to study the reactions of the various control elements of this breadboard. Elements under study include the remote power controllers, the algorithms in the control computers, and the artificially intelligent control programs resident in this breadboard. To this end, a study of electrical power system faults is being performed to yield a list of the most common power system faults. The results of this study will be applied to a multichannel high-voltage DC spacecraft power system called the large autonomous spacecraft electrical power system (LASEPS) breadboard. The results of the power system fault study and the planned implementation of these faults into the LASEPS breadboard are described.

  7. Explaining the current geodetic field with geological models: A case study of the Haiyuan fault system

    Daout, S.; Jolivet, R.; Lasserre, C.; Doin, M. P.; Barbot, S.; Peltzer, G.; Tapponnier, P.


    Oblique convergence across Tibet leads to slip partitioning with the co-existence of strike-slip, normal and thrust motion in major fault systems. While such complexity has been shown at the surface, the question is to understand how faults interact and accumulate strain at depth. Here, we process InSAR data across the central Haiyuan restraining bend, at the north-eastern boundary of the Tibetan plateau and show that the surface complexity can be explained by partitioning of a uniform deep-seated convergence rate. We construct a time series of ground deformation, from Envisat radar data spanning from 2001-2011 period, across a challenging area because of the high jump in topography between the desert environment and the plateau. To improve the signal-to-noise ratio, we used the latest Synthetic Aperture Radar interferometry methodology, such as Global Atmospheric Models (ERA Interim) and Digital Elevation Model errors corrections before unwrapping. We then developed a new Bayesian approach, jointly inverting our InSAR time series together with published GPS displacements. We explore fault system geometry at depth and associated slip rates and determine a uniform N86±7E° convergence rate of 8.45±1.4 mm/yr across the whole fault system with a variable partitioning west and east of a major extensional fault-jog. Our 2D model gives a quantitative understanding of how crustal deformation is accumulated by the various branches of this thrust/strike-slip fault system and demonstrate the importance of the geometry of the Haiyuan Fault, controlling the partitioning or the extrusion of the block motion. The approach we have developed would allow constraining the low strain accumulation along deep faults, like for example for the blind thrust faults or possible detachment in the San Andreas "big bend", which are often associated to a poorly understood seismic hazard.

  8. Creep, compaction and the weak rheology of major faults

    Sleep, N.H.; Blanpied, M.L.


    Field and laboratory observations suggest that the porosity within fault zones varies over earthquake cycles so that fluid pressure is in long-term equilibrium with hydrostatic fluid pressure in the country rock. Between earthquakes, ductile creep compacts the fault zone, increasing fluid pressure, and finally allowing frictional failure at relatively low shear stress. Earthquake faulting restores porosity and decreases fluid pressure to below hydrostatic. This mechanism may explain why major faults, such as the San Andreas system, are weak.

  9. Software fault tolerance in computer operating systems

    Iyer, Ravishankar K.; Lee, Inhwan


    This chapter provides data and analysis of the dependability and fault tolerance for three operating systems: the Tandem/GUARDIAN fault-tolerant system, the VAX/VMS distributed system, and the IBM/MVS system. Based on measurements from these systems, basic software error characteristics are investigated. Fault tolerance in operating systems resulting from the use of process pairs and recovery routines is evaluated. Two levels of models are developed to analyze error and recovery processes inside an operating system and interactions among multiple instances of an operating system running in a distributed environment. The measurements show that the use of process pairs in Tandem systems, which was originally intended for tolerating hardware faults, allows the system to tolerate about 70% of defects in system software that result in processor failures. The loose coupling between processors which results in the backup execution (the processor state and the sequence of events occurring) being different from the original execution is a major reason for the measured software fault tolerance. The IBM/MVS system fault tolerance almost doubles when recovery routines are provided, in comparison to the case in which no recovery routines are available. However, even when recovery routines are provided, there is almost a 50% chance of system failure when critical system jobs are involved.

  10. Testing Distributed ABS System with Fault Injection

    Trawczyński, Dawid; Sosnowski, Janusz; Gawkowski, Piotr

    The paper deals with the problem of adapting software implemented fault injection technique (SWIFI) to evaluate dependability of reactive microcontroller systems. We present an original methodology of disturbing controller operation and analyzing fault effects taking into account reactions of the controlled object and the impact of the system environment. Faults can be injected randomly (in space and time) or targeted at the most sensitive elements of the controller to check it at high stresses. This approach allows identifying rarely encountered problems, usually missed in classical approaches. The developed methodology has been used successfully to verify dependability of ABS system. Experimental results are commented in the paper.

  11. Fault detection and fault-tolerant control for nonlinear systems

    Li, Linlin


    Linlin Li addresses the analysis and design issues of observer-based FD and FTC for nonlinear systems. The author analyses the existence conditions for the nonlinear observer-based FD systems to gain a deeper insight into the construction of FD systems. Aided by the T-S fuzzy technique, she recommends different design schemes, among them the L_inf/L_2 type of FD systems. The derived FD and FTC approaches are verified by two benchmark processes. Contents Overview of FD and FTC Technology Configuration of Nonlinear Observer-Based FD Systems Design of L2 nonlinear Observer-Based FD Systems Design of Weighted Fuzzy Observer-Based FD Systems FTC Configurations for Nonlinear Systems< Application to Benchmark Processes Target Groups Researchers and students in the field of engineering with a focus on fault diagnosis and fault-tolerant control fields The Author Dr. Linlin Li completed her dissertation under the supervision of Prof. Steven X. Ding at the Faculty of Engineering, University of Duisburg-Essen, Germany...

  12. Energy-efficient fault-tolerant systems

    Mathew, Jimson; Pradhan, Dhiraj K


    This book describes the state-of-the-art in energy efficient, fault-tolerant embedded systems. It covers the entire product lifecycle of electronic systems design, analysis and testing and includes discussion of both circuit and system-level approaches. Readers will be enabled to meet the conflicting design objectives of energy efficiency and fault-tolerance for reliability, given the up-to-date techniques presented.

  13. Fault-tolerant parallel processing system

    Harper, R.E.; Lala, J.H.


    This patent describes a fault tolerant processing system for providing processing operations, while tolerating f failures in the execution thereof. It comprises: at least (3f + 1) fault containment regions. Each of the regions includes a plurality of processors; network means connected to the processors and to the network means of the others of the fault containment regions; groups of one or more processors being configured to form redundant processing sites at least one of the groups having (2f + 1) processors, each of the processors of a group being included in a different one of the fault containment regions. Each network means of a fault containment region includes means for providing communication operations between the network means and the network means of the others of the fault containment regions, each of the network means being connected to each other network means by at lest (2f + 1) disjoint communication paths, a minimum of (f + 1) rounds of communication being provided among the network means of the fault containment regions in the execution of a the processing operation; and means for synchronizing the communication operations of the network means with the communications operations of the network means of the other fault containment regions.

  14. Fault Isolation in Object Oriented Control Systems

    Larsson, Magnus; Klein, Inger; Lawesson, Dan; Nilsson, Ulf


    This article addresses the problem of fault propagation between software modules in a large-scale control system with object oriented architecture. There exists a conflict between object-oriented design goals such as encapsulation and modularity, and the possibility to suppress propagating error conditions. The propagation manifests itself as many irrelevant error messages, and hence causes problems for system operators and service personnel when attempting to isolate the real fault. We propo...

  15. Extreme multi-millennial slip rate variations on the Garlock fault, California: Strain super-cycles, potentially time-variable fault strength, and implications for system-level earthquake occurrence

    Dolan, James F.; McAuliffe, Lee J.; Rhodes, Edward J.; McGill, Sally F.; Zinke, Robert


    Pronounced variations in fault slip rate revealed by new measurements along the Garlock fault have basic implications for understanding how faults store and release strain energy in large earthquakes. Specifically, dating of a series of 26.0+3.5/-2.5 m fault offsets with a newly developed infrared-stimulated luminescence method shows that the fault was slipping at >14.0+2.2/-1.8 mm /yr, approximately twice as fast as the long-term average rate, during a previously documented cluster of four earthquakes 0.5-2.0 ka. This elevated late Holocene rate must be balanced by periods of slow or no slip such as that during the ca. 3300-yr-long seismic lull preceding the cluster. Moreover, whereas a comparison of paleoseismic data and stress modeling results suggests that individual Garlock earthquakes may be triggered by periods of rapid San Andreas fault slip or very large-slip events, the "on-off" behavior of the Garlock suggests a longer-term mechanism that may involve changes in the rate of elastic strain accumulation on the fault over millennial time scales. This inference is consistent with most models of the geodetic velocity field, which yield slip-deficit rates that are much slower than the average latest Pleistocene-early Holocene (post-8-13 ka) Garlock slip rate of 6.5 ± 1.5 mm /yr. These observations indicate the occurrence of millennia-long strain "super-cycles" on the Garlock fault that may be associated with temporal changes in elastic strain accumulation rate, which may in turn be controlled by variations in relative strength of the various faults in the Garlock-San Andreas-Eastern California Shear Zone fault system and/or changes in relative plate motion rates.

  16. Robust Fault Diagnosis Design for Linear Multiagent Systems with Incipient Faults

    Jingping Xia


    Full Text Available The design of a robust fault estimation observer is studied for linear multiagent systems subject to incipient faults. By considering the fact that incipient faults are in low-frequency domain, the fault estimation of such faults is proposed for discrete-time multiagent systems based on finite-frequency technique. Moreover, using the decomposition design, an equivalent conclusion is given. Simulation results of a numerical example are presented to demonstrate the effectiveness of the proposed techniques.

  17. Software engineering of fault tolerant systems

    Pelliccione, P; Muccini, Henry


    In architecting dependable systems, what is required to improve the overall system robustness is fault tolerance. Many methods have been proposed to this end, the solutions are usually considered late during the design and implementation phases of the software life-cycle (e.g., Java and Windows NT exception handling), thus reducing the effectiveness error and fault handling. Since the system design typically models only normal behaviour of the system while ignoring exceptional ones, the implementation of the system is unable to handle abnormal events. Consequently, the system may fail in unexp

  18. Architecture of small-scale fault zones in the context of the Leinetalgraben Fault System

    Reyer, Dorothea; Philipp, Sonja L.


    Understanding fault zone properties in different geological settings is important to better assess the development and propagation of faults. In addition this allows better evaluation and permeability estimates of potential fault-related geothermal reservoirs. The Leinetalgraben fault system provides an outcrop analogue for many fault zones in the subsurface of the North German Basin. The Leinetalgraben is a N-S-trending graben structure, initiated in the Jurassic, in the south of Lower Saxony and as such part of the North German Basin. The fault system was reactivated and inverted during Alpine compression in the Tertiary. This complex geological situation was further affected by halotectonics. Therefore we can find different types of fault zones, that is normal, reverse, strike-slip an oblique-slip faults, surrounding the major Leinetalgraben boundary faults. Here we present first results of structural geological field studies on the geometry and architecture of fault zones in the Leinetalgraben Fault System in outcrop-scale. We measured the orientations and displacements of 17 m-scale fault zones in limestone (Muschelkalk) outcrops, the thicknesses of their fault cores and damage zones, as well as the fracture densities and geometric parameters of the fracture systems therein. We also analysed the effects of rock heterogeneities, particularly stiffness variations between layers (mechanical layering) on the propagation of natural fractures and fault zones. The analysed fault zones predominantly show similar orientations as the major fault zones they surround. Other faults are conjugate or perpendicular to the major fault zones. The direction of predominant joint strike corresponds to the orientation of the fault zones in the majority of cases. The mechanical layering of the limestone and marlstone stratification obviously has great effects on fracture propagation. Already thin layers (mm- to cm-scale) of low stiffness - here marl - seem to suffice to change the

  19. Guaranteed Cost Fault-Tolerant Control for Networked Control Systems with Sensor Faults

    Qixin Zhu; Kaihong Lu; Guangming Xie; Yonghong Zhu


    For the large scale and complicated structure of networked control systems, time-varying sensor faults could inevitably occur when the system works in a poor environment. Guaranteed cost fault-tolerant controller for the new networked control systems with time-varying sensor faults is designed in this paper. Based on time delay of the network transmission environment, the networked control systems with sensor faults are modeled as a discrete-time system with uncertain parameters. And the mode...

  20. Subtropical Storm Andrea


    The circling clouds of an intense low-pressure system sat off the southeast coast of the United States on May 8, 2007, when the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite captured this image. By the following morning, the storm developed enough to be classified as a subtropical storm, a storm that forms outside of the tropics, but has many of the characteristics--hurricane-force winds, driving rains, low pressure, and sometimes an eye--of a tropical storm. Although it arrived several weeks shy of the official start of the hurricane season (June 1), Subtropical Storm Andrea became the first named storm of the 2007 Atlantic hurricane season. The storm has the circular shape of a tropical cyclone in this image, but lacks the tight organization seen in more powerful storms. By May 9, the storm's winds reached 75 kilometers per hour (45 miles per hour), and the storm was not predicted to get any stronger, said the National Hurricane Center. Though Subtropical Storm Andrea was expected to remain offshore, its strong winds and high waves pummeled coastal states, prompting a tropical storm watch. The winds fueled wild fires (marked with red boxes) in Georgia and Florida. The wind-driven flames generated thick plumes of smoke that concentrated in a gray-brown mass over Tampa Bay, Florida. Unfortunately for Georgia and Florida, which are experiencing moderate to severe drought, Subtropical Storm Andrea was not predicted to bring significant rain to the region right away, according to reports on the Washington Post Website.

  1. Transfer zones in listric normal fault systems

    Bose, Shamik

    Listric normal faults are common in passive margin settings where sedimentary units are detached above weaker lithological units, such as evaporites or are driven by basal structural and stratigraphic discontinuities. The geometries and styles of faulting vary with the types of detachment and form landward and basinward dipping fault systems. Complex transfer zones therefore develop along the terminations of adjacent faults where deformation is accommodated by secondary faults, often below seismic resolution. The rollover geometry and secondary faults within the hanging wall of the major faults also vary with the styles of faulting and contribute to the complexity of the transfer zones. This study tries to understand the controlling factors for the formation of the different styles of listric normal faults and the different transfer zones formed within them, by using analog clay experimental models. Detailed analyses with respect to fault orientation, density and connectivity have been performed on the experiments in order to gather insights on the structural controls and the resulting geometries. A new high resolution 3D laser scanning technology has been introduced to scan the surfaces of the clay experiments for accurate measurements and 3D visualizations. Numerous examples from the Gulf of Mexico have been included to demonstrate and geometrically compare the observations in experiments and real structures. A salt cored convergent transfer zone from the South Timbalier Block 54, offshore Louisiana has been analyzed in detail to understand the evolutionary history of the region, which helps in deciphering the kinematic growth of similar structures in the Gulf of Mexico. The dissertation is divided into three chapters, written in a journal article format, that deal with three different aspects in understanding the listric normal fault systems and the transfer zones so formed. The first chapter involves clay experimental models to understand the fault patterns in

  2. Regional Fault Systems of Qaidam Basin and Adjacent Orogenic Belts


    The purpose of this paper is to analyze the regional fault systems of Qaidam basin and adjacent orogenic belts. Field investigation and seismic interpretation indicate that five regional fault systems occurred in the Qaidam and adjacent mountain belts, controlling the development and evolution of the Qaidam basin. These fault systems are: (1)north Qaidam-Qilian Mountain fault system; (2) south Qaidam-East Kunlun Mountain fault system; (3)Altun strike-slip fault system; (4)Elashan strike-slip fault system, and (5) Gansen-Xiaochaidan fault system. It is indicated that the fault systems controlled the orientation of the Qaidam basin, the formation and distribution of secondary faults within the basin,the migration of depocenters and the distribution of hydrocarbon accumulation belt.

  3. Observer-based Fault Detection and Isolation for Nonlinear Systems

    Lootsma, T.F.


    With the rise in automation the increase in fault detectionand isolation & reconfiguration is inevitable. Interest in fault detection and isolation (FDI) for nonlinear systems has grown significantly in recent years. The design of FDI is motivated by the need for knowledge about occurring faults in fault-tolerant control systems (FTC systems). The idea of FTC systems is to detect, isolate, and handle faults in such a way that the systems can still perform in a required manner. One prefers...

  4. Fault tolerant filtering and fault detection for quantum systems driven by fields in single photon states

    Gao, Qing; Dong, Daoyi; Petersen, Ian R.; Rabitz, Herschel


    The purpose of this paper is to solve the fault tolerant filtering and fault detection problem for a class of open quantum systems driven by a continuous-mode bosonic input field in single photon states when the systems are subject to stochastic faults. Optimal estimates of both the system observables and the fault process are simultaneously calculated and characterized by a set of coupled recursive quantum stochastic differential equations.

  5. Fault Detection for Shipboard Monitoring and Decision Support Systems

    Lajic, Zoran; Nielsen, Ulrik Dam


    In this paper a basic idea of a fault-tolerant monitoring and decision support system will be explained. Fault detection is an important part of the fault-tolerant design for in-service monitoring and decision support systems for ships. In the paper, a virtual example of fault detection will be p...

  6. Faults and Diagnosis Systems in Power Converters

    Lee, Kyo-Beum; Choi, Uimin


    efforts have been put into making these systems better in terms of reliability in order to achieve high power source availability, reduce the cost of energy and also increase the reliability of overall systems. Among the components used in power converters, a power device and a capacitor fault occurs most...

  7. Study of fault diagnosis software design for complex system based on fault tree

    Complex systems always have high-level reliability and safety requirements, and same does their diagnosis work. As a great deal of fault tree models have been acquired during the design and operation phases, a fault diagnosis method which combines fault tree analysis with knowledge-based technology has been proposed. The prototype of fault diagnosis software has been realized and applied to mobile LIDAR system. (authors)

  8. Tectonics of the Levant fault system

    Klinger, Yann


    In June 2013, for the second time, an international workshop dedicated to the tectonics of the Levant fault system and the Arabic plate was held in Paris. During two days, this meeting gathered researchers from 19 institutions and 12 countries, with 24 presentations. During this meeting, a large variety of topics were addressed, ranging from new insights into the geodynamics of the Red Sea to earthquake history along the Dead Sea fault. A key point of this meeting was actually to gather contributions focused on the same object, here the Levant fault system, but with different perspectives, to foster new collaborations and research projects. In line with this idea, several presentations were actually dealing with issues related to the palaeoclimate of this specific region, engineering issues about earthquake destructions, or the impact of the Dead Sea active tectonics on the evolution of hominins, aside from general tectonics.

  9. A master system for power system fault phenomena

    Yoo, Myung Ho; Jang, Sang Ho; Hong, Joon Hee; Min, Wan Ki; Yoo, Chang Hwan [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center


    This report includes as follows - Real time digital simulator - Remote measuring, analyzing and reproducing system of power system fault data -Power system reduction method program using EMTP -Test system for protection device. (author). 22 refs., 38 figs.

  10. Guideliness for system modeling: fault tree [analysis

    Lee, Yoon Hwan; Yang, Joon Eon; Kang, Dae Il; Hwang, Mee Jeong


    This document, the guidelines for system modeling related to Fault Tree Analysis(FTA), is intended to provide the guidelines with the analyzer to construct the fault trees in the level of the capability category II of ASME PRA standard. Especially, they are to provide the essential and basic guidelines and the related contents to be used in support of revising the Ulchin 3 and 4 PSA model for risk monitor within the capability category II of ASME PRA standard. Normally the main objective of system analysis is to assess the reliability of system modeled by Event Tree Analysis (ETA). A variety of analytical techniques can be used for the system analysis, however, FTA method is used in this procedures guide. FTA is the method used for representing the failure logic of plant systems deductively using AND, OR or NOT gates. The fault tree should reflect all possible failure modes that may contribute to the system unavailability. This should include contributions due to the mechanical failures of the components, Common Cause Failures (CCFs), human errors and outages for testing and maintenance. This document identifies and describes the definitions and the general procedures of FTA and the essential and basic guidelines for reving the fault trees. Accordingly, the guidelines for FTA will be capable to guide the FTA to the level of the capability category II of ASME PRA standard.

  11. Observer-based Fault Detection and Isolation for Nonlinear Systems

    Lootsma, T.F.

    -tolerance can be applied to ordinary industrial processes that are not categorized as high risk applications, but where high availability is desirable. The quality of fault-tolerant control is totally dependent on the quality of the underlying algorithms. They detect possible faults, and later reconfigure......With the rise in automation the increase in fault detectionand isolation & reconfiguration is inevitable. Interest in fault detection and isolation (FDI) for nonlinear systems has grown significantly in recent years. The design of FDI is motivated by the need for knowledge about occurring faults in...... fault-tolerant control systems (FTC systems). The idea of FTC systems is to detect, isolate, and handle faults in such a way that the systems can still perform in a required manner. One prefers reduced performance after occurrence of a fault to the shut down of (sub-) systems. Hence, the idea of fault...

  12. Fault systems of the 1971 San Fernando and 1994 Northridge earthquakes, southern California: Relocated aftershocks and seismic images from LARSE II

    Fuis, G.S.; Clayton, R.W.; Davis, P.M.; Ryberg, T.; Lutter, W.J.; Okaya, D.A.; Hauksson, E.; Prodehl, C.; Murphy, J.M.; Benthien, M.L.; Baher, S.A.; Kohler, M.D.; Thygesen, K.; Simila, G.; Keller, Gordon R.


    We have constructed a composite image of the fault systems of the M 6.7 San Fernando (1971) and Northridge (1994), California, earthquakes, using industry reflection and oil test well data in the upper few kilometers of the crust, relocated aftershocks in the seismogenic crust, and LARSE II (Los Angeles Region Seismic Experiment, Phase II) reflection data in the middle and lower crust. In this image, the San Fernando fault system appears to consist of a decollement that extends 50 km northward at a dip of ???25?? from near the surface at the Northridge Hills fault, in the northern San Fernando Valley, to the San Andreas fault in the middle to lower crust. It follows a prominent aseismic reflective zone below and northward of the main-shock hypocenter. Interpreted upward splays off this decollement include the Mission Hills and San Gabriel faults and the two main rupture planes of the San Fernando earthquake, which appear to divide the hanging wall into shingle- or wedge-like blocks. In contrast, the fault system for the Northridge earthquake appears simple, at least east of the LARSE II transect, consisting of a fault that extends 20 km southward at a dip of ???33?? from ???7 km depth beneath the Santa Susana Mountains, where it abuts the interpreted San Fernando decollement, to ???20 km depth beneath the Santa Monica Mountains. It follows a weak aseismic reflective zone below and southward of the mainshock hypocenter. The middle crustal reflective zone along the interpreted San Fernando decollement appears similar to a reflective zone imaged beneath the San Gabriel Mountains along the LARSE I transect, to the east, in that it appears to connect major reverse or thrust faults in the Los Angeles region to the San Andreas fault. However, it differs in having a moderate versus a gentle dip and in containing no mid-crustal bright reflections.

  13. Study on Knowledge -based Intelligent Fault Diagnosis of Hydraulic System

    Xuexia Liu


    Full Text Available A general framework of hydraulic fault diagnosis system was studied. It consisted of equipment knowledge bases, real-time databases, fusion reasoning module, knowledge acquisition module and so on. A tree-structure model of fault knowledge was established. Fault nodes knowledge was encapsulated by object-oriented technique. Complete knowledge bases were made including fault bases and diagnosis bases. It could describe the fault positions, the structure of fault, cause-symptom relationships, diagnosis principles and other knowledge. Taking the fault of left and right lifting oil cylinder out of sync for example, the diagnostic results show that the methods were effective.

  14. Guaranteed Cost Fault-Tolerant Control for Networked Control Systems with Sensor Faults

    Qixin Zhu


    Full Text Available For the large scale and complicated structure of networked control systems, time-varying sensor faults could inevitably occur when the system works in a poor environment. Guaranteed cost fault-tolerant controller for the new networked control systems with time-varying sensor faults is designed in this paper. Based on time delay of the network transmission environment, the networked control systems with sensor faults are modeled as a discrete-time system with uncertain parameters. And the model of networked control systems is related to the boundary values of the sensor faults. Moreover, using Lyapunov stability theory and linear matrix inequalities (LMI approach, the guaranteed cost fault-tolerant controller is verified to render such networked control systems asymptotically stable. Finally, simulations are included to demonstrate the theoretical results.

  15. Study on Software Fault Injection Based on Onboard System

    PENGJunjie; HONGBingrong; YUANChengjun; LIAiguo; WEIZhenhua; QIAOYongqiang


    Fault injection techniques are the effective methods to evaluate the dependability and validate the fault tolerance mechanisms of computer systems. Among the different fault injection techniques, software implemented fault injection technique is regarded as one of the most promising technique for evaluation of the dependability of computer systems. In this paper, combined the advantages of software fault injection and the particularity of onboard system, a new software fault injection model, which can be used to evaluate the dependability and validate the fault tolerance mechanisms of the onboard system, is put forward. To evaluate the dependability of on boardsystem effectively, the application algorithm on how to use the model is presented. The experimental results show that using the fault injection model and algorithm put forward in this paper, not only most of low-level faults such as processor register faults, memory faults and so on can be injected, but also some high-level faults such as code faults, branch faults etc. can be injected, which can be used to evaluate the dependability of the onboard systems.

  16. Abstractions for Fault-Tolerant Distributed System Verification

    Pike, Lee S.; Maddalon, Jeffrey M.; Miner, Paul S.; Geser, Alfons


    Four kinds of abstraction for the design and analysis of fault tolerant distributed systems are discussed. These abstractions concern system messages, faults, fault masking voting, and communication. The abstractions are formalized in higher order logic, and are intended to facilitate specifying and verifying such systems in higher order theorem provers.

  17. 3D Dynamic Rupture Simulation Across a Complex Fault System: the Mw7.0, 2010, Haiti Earthquake

    Douilly, R.; Aochi, H.; Calais, E.; Freed, A. M.


    Earthquakes ruptures sometimes take place on a secondary fault and surprisingly do not activate an adjacent major one. The 1989 Loma Prieta earthquake is a classic case where rupture occurred on a blind thrust while the adjacent San Andreas Fault was not triggered during the process. Similar to Loma Prieta, the Mw7.0, January 12 2010, Haiti earthquake also ruptured a secondary blind thrust, the Léogâne fault, adjacent to the main plate boundary, the Enriquillo Plantain Garden Fault, which did not rupture during this event. Aftershock relocalizations delineate the Léogâne rupture with two north dipping segments with slightly different dip, where the easternmost segment had mostly dip-slip motion and the westernmost one had mostly strike-slip motion. In addition, an offshore south dipping structure inferred from the aftershocks to the west of the rupture zone coincides with the offshore Trois Baies reverse fault, a region of increase in Coulomb stress increase. In this study, we investigate the rupture dynamics of the Haiti earthquake in a complex fault system of multiple segments identified by the aftershock relocations. We suppose a background stress regime that is consistent with the type of motion of each fault and with the regional tectonic regime. We initiate a nucleation on the east segment of the Léogâne fault by defining a circular region with a 2 km radius where shear stress is slightly greater than the yield stress. By varying friction on faults and background stress, we find a range of plausible scenarios. In the absence of near-field seismic records of the event, we score the different models against the static deformation field derived from GPS and InSAR at the surface. All the plausible simulations show that the rupture propagates from the eastern to the western segment along the Léogâne fault, but not on the Enriquillo fault nor on the Trois Baies fault. The best-fit simulation shows a significant increase of shear stresses on the Trois Baies

  18. Robust Fault Detection and Isolation for Stochastic Systems

    George, Jemin; Gregory, Irene M.


    This paper outlines the formulation of a robust fault detection and isolation scheme that can precisely detect and isolate simultaneous actuator and sensor faults for uncertain linear stochastic systems. The given robust fault detection scheme based on the discontinuous robust observer approach would be able to distinguish between model uncertainties and actuator failures and therefore eliminate the problem of false alarms. Since the proposed approach involves precise reconstruction of sensor faults, it can also be used for sensor fault identification and the reconstruction of true outputs from faulty sensor outputs. Simulation results presented here validate the effectiveness of the robust fault detection and isolation system.

  19. Coulomb stress interactions among M≥5.9 earthquakes in the Gorda deformation zone and on the Mendocino Fracture Zone, Cascadia megathrust, and northern San Andreas fault

    Rollins, John C.; Stein, Ross S.


    The Gorda deformation zone, a 50,000 km2 area of diffuse shear and rotation offshore northernmost California, has been the site of 20 M ≥ 5.9 earthquakes on four different fault orientations since 1976, including four M ≥ 7 shocks. This is the highest rate of large earthquakes in the contiguous United States. We calculate that the source faults of six recent M ≥ 5.9 earthquakes had experienced ≥0.6 bar Coulomb stress increases imparted by earthquakes that struck less than 9 months beforehand. Control tests indicate that ≥0.6 bar Coulomb stress interactions between M ≥ 5.9 earthquakes separated by Mw = 7.3 Trinidad earthquake are consistent with the locations of M ≥ 5.9 earthquakes in the Gorda zone until at least 1995, as well as earthquakes on the Mendocino Fault Zone in 1994 and 2000. Coulomb stress changes imparted by the 1980 earthquake are also consistent with its distinct elbow-shaped aftershock pattern. From these observations, we derive generalized static stress interactions among right-lateral, left-lateral and thrust faults near triple junctions.

  20. Physiochemical Evidence of Faulting Processes and Modeling of Fluid in Evolving Fault Systems in Southern California

    Boles, James [Professor


    Our study targets recent (Plio-Pleistocene) faults and young (Tertiary) petroleum fields in southern California. Faults include the Refugio Fault in the Transverse Ranges, the Ellwood Fault in the Santa Barbara Channel, and most recently the Newport- Inglewood in the Los Angeles Basin. Subsurface core and tubing scale samples, outcrop samples, well logs, reservoir properties, pore pressures, fluid compositions, and published structural-seismic sections have been used to characterize the tectonic/diagenetic history of the faults. As part of the effort to understand the diagenetic processes within these fault zones, we have studied analogous processes of rapid carbonate precipitation (scaling) in petroleum reservoir tubing and manmade tunnels. From this, we have identified geochemical signatures in carbonate that characterize rapid CO2 degassing. These data provide constraints for finite element models that predict fluid pressures, multiphase flow patterns, rates and patterns of deformation, subsurface temperatures and heat flow, and geochemistry associated with large fault systems.

  1. Estimation of Faults in DC Electrical Power System

    National Aeronautics and Space Administration — This paper demonstrates a novel optimizationbased approach to estimating fault states in a DC power system. The model includes faults changing the circuit topology...

  2. Fault Adaptive Control of Overactuated Systems Using Prognostic Estimation

    National Aeronautics and Space Administration — Most fault adaptive control research addresses the preservation of system stability or functionality in the presence of a specific failure (fault). This paper...

  3. Advanced Ground Systems Maintenance Functional Fault Models For Fault Isolation Project

    Perotti, Jose M. (Compiler)


    This project implements functional fault models (FFM) to automate the isolation of failures during ground systems operations. FFMs will also be used to recommend sensor placement to improve fault isolation capabilities. The project enables the delivery of system health advisories to ground system operators.

  4. Study of fault injection system based on software


    A software fault injection system SFIS is designed, which consists of the target system plus a fault injector, fault library, workload, data collector, and data analyzer. A serial communication mechanism is adopted to simulate the factual work environment. Then a fault model is built for single particle event, which can be denoted as FM = (FL, FT). FL stands for fault location, and FT stands for fault type. The fault model supports three temporal faults: transient, intermittent, and permanent. During the experiments implemented by SFIS,the software interruption method is adopted to inject transient faults, and step trace method is adopted to inject permanent faults into the target system. The experiment results indicate that for the injected transient code segment faults, 2.8% of them do not affect the program output, 80.1% of them are detected by the built-in error detection in the system, and 17.1% of them are not detected by fault detection mechanism. The experiment results verify the validity of the fault injection method.

  5. Data-driven design of fault diagnosis and fault-tolerant control systems

    Ding, Steven X


    Data-driven Design of Fault Diagnosis and Fault-tolerant Control Systems presents basic statistical process monitoring, fault diagnosis, and control methods, and introduces advanced data-driven schemes for the design of fault diagnosis and fault-tolerant control systems catering to the needs of dynamic industrial processes. With ever increasing demands for reliability, availability and safety in technical processes and assets, process monitoring and fault-tolerance have become important issues surrounding the design of automatic control systems. This text shows the reader how, thanks to the rapid development of information technology, key techniques of data-driven and statistical process monitoring and control can now become widely used in industrial practice to address these issues. To allow for self-contained study and facilitate implementation in real applications, important mathematical and control theoretical knowledge and tools are included in this book. Major schemes are presented in algorithm form and...

  6. Robust fault diagnosis for a class of nonlinear systems

    Zhanshan WANG; Huaguang ZHANG


    Robust fault diagnosis based on adaptive observer is studied for a class of nonlinear systems up to output injection. Adaptive fault updating laws are designed to guarantee the stability of the diagnosis system. The upper bounds of the state estimation error and fault estimation error of the adaptive observer are given respectively and the effects of parameter in the adaptive updating laws on fault estimation accuracy are also discussed. Simulation example demonstrates the effectiveness of the proposed methods and the analysis results.

  7. Fault tolerant architecture for artificial olfactory system

    In this paper, to cover and mask the faults that occur in the sensing unit of an artificial olfactory system, a novel architecture is offered. The proposed architecture is able to tolerate failures in the sensors of the array and the faults that occur are masked. The proposed architecture for extracting the correct results from the output of the sensors can provide the quality of service for generated data from the sensor array. The results of various evaluations and analysis proved that the proposed architecture has acceptable performance in comparison with the classic form of the sensor array in gas identification. According to the results, achieving a high odor discrimination based on the suggested architecture is possible. (paper)

  8. Fault diagnostic system for a mobile robot

    Nikam, Umesh; Hall, Ernest L.


    This paper describes the development of a robot fault diagnosis system (RFDS). Though designed ostensibly for the University of Cincinnati's autonomous, unmanned, mobile robot for a national competition, it has the flexibility to be adapted for industrial applications as well. Using a top-down approach the robot is sub-divided into different functional units, such as the vision guidance system, the ultrasonic obstacle avoidance system, the steering mechanism, the speed control system, the braking system and the power unit. The techniques of potential failure mode and effects analysis (PFMEA) are used to analyze faults, their visible symptoms, and probable causes and remedies. The relationships obtained therefrom are mapped in a database framework. This is then coded in a user-friendly interactive Visual BasicTM program that guides the user to the likely cause(s) of failure through a question-answer format. A provision is made to ensure better accuracy of the system by incorporating historical data on failures as it becomes available. The RFDS thus provides a handy trouble-shooting tool that cuts down the time involved in diagnosing failures in the complex robot consisting of mechanical, electric, electronic and optical systems. This has been of great help in diagnosing failures and ensuring maximum performance from the robot during the contest in the face of pressure of the competition and the outdoor conditions.

  9. Accurate fault location technique for distribution system using fault-generated high-frequency transient voltage signals

    Bo, Z.Q.; Weller, G. [Alstom T and D Protection Control Ltd., Stafford (United Kingdom); Redfern, M.A. [University of Bath (United Kingdom). Dept. of Electronic and Electrical Engineering


    A technique is presented for accurate fault location on distribution overhead lines and underground cables. A specially designed fault locator unit is used to capture the high-frequency voltage transient signal generated by faults on the distribution line/cable. The travelling time of the high-frequency components is used to determine the fault position. The technique is insensitive to fault type, fault resistance, fault inception angle and system source configuration, and is able to offer very high accuracy in fault location in a distribution system. (author)

  10. Faults

    National Oceanic and Atmospheric Administration, Department of Commerce — Through the study of faults and their effects, much can be learned about the size and recurrence intervals of earthquakes. Faults also teach us about crustal...

  11. Discrete Wavelet Transform for Fault Locations in Underground Distribution System

    Apisit, C.; Ngaopitakkul, A.


    In this paper, a technique for detecting faults in underground distribution system is presented. Discrete Wavelet Transform (DWT) based on traveling wave is employed in order to detect the high frequency components and to identify fault locations in the underground distribution system. The first peak time obtained from the faulty bus is employed for calculating the distance of fault from sending end. The validity of the proposed technique is tested with various fault inception angles, fault locations and faulty phases. The result is found that the proposed technique provides satisfactory result and will be very useful in the development of power systems protection scheme.

  12. Paleoseismology and Fault Interactions of the Pajarito Fault System, Rio Grande Rift, New Mexico

    Gardner, J. N.; Lewis, C. J.; Lavine, A.; Reneau, S. L.; Schultz, E. S.


    The Pajarito fault system is the local active boundary fault of the Rio Grande rift in the vicinity of Los Alamos, New Mexico. Detailed geologic and geomorphic mapping, and displacement-length profiles, reveal a complex pattern of structural deformation that suggests interaction and connective growth among the principal faults in the system (Pajarito, Rendija Canyon, Guaje Mountain, and Santa Clara faults, totaling ~55 km in length). At the surface, the Pajarito fault is not a single shear surface but a complex zone of deformation with considerable lateral variation in structural style from south to north. In the area of detailed mapping, the Pajarito fault is a broad zone of distributed deformation: at the southwest corner of the area, structure is dominated by a large monocline, but small faults and monoclines span a breadth of about 2 km with about 125 m of displacement in the last 1.2 million years; at the west central part of the area, the Pajarito fault is expressed as mainly a large normal fault with smaller faults spread across about 1 km with about 80 m of displacement in the last 1.2 million years; and, in the northwestern part of the area, structure is again dominated by a large monocline with normal faulting in a zone about 1.5 km wide with about 65 m of displacement in the last 1.2 million years. These along-strike variations in the deformation of the Pajarito fault suggest that in most places the tip of the master fault does not break the surface; instead, most of what can be observed is subsidiary structure. The implication of the complex structure and styles of deformation in the fault is that it severely complicates paleoseismic exploration for hazard analyses because different subsidiary structures rupture in different seismic events; no individual structure can be identified with even a near- complete paleoseismic record. Additionally, surface rupture hazards must be associated with broad zones instead of individual faults. Seven paleoseismic

  13. Advanced information processing system: Fault injection study and results

    Burkhardt, Laura F.; Masotto, Thomas K.; Lala, Jaynarayan H.


    The objective of the AIPS program is to achieve a validated fault tolerant distributed computer system. The goals of the AIPS fault injection study were: (1) to present the fault injection study components addressing the AIPS validation objective; (2) to obtain feedback for fault removal from the design implementation; (3) to obtain statistical data regarding fault detection, isolation, and reconfiguration responses; and (4) to obtain data regarding the effects of faults on system performance. The parameters are described that must be varied to create a comprehensive set of fault injection tests, the subset of test cases selected, the test case measurements, and the test case execution. Both pin level hardware faults using a hardware fault injector and software injected memory mutations were used to test the system. An overview is provided of the hardware fault injector and the associated software used to carry out the experiments. Detailed specifications are given of fault and test results for the I/O Network and the AIPS Fault Tolerant Processor, respectively. The results are summarized and conclusions are given.

  14. Study on fault diagnose expert system for large astronomy telescope

    Liu, Jia-jing; Luo, Ming-Cheng; Tang, Peng-yi; Wu, Wen-qing; Zhang, Guang-yu; Zhang, Hong-fei; Wang, Jian


    The development of astronomical techniques and telescopes currently entered a new vigorous period. The telescopes have trends of the giant, complex, diversity of equipment and wide span of control despite of optical, radio space telescopes. That means, for telescope observatory, the control system must have these specifications: flexibility, scalability, distributive, cross-platform and real-time, especially the fault locating and fault processing is more important when fault or exception arise. Through the analysis of the structure of large telescopes, fault diagnosis expert system of large telescope based on the fault tree and distributed log service is given.

  15. Estimation of Parametric Fault in Closed-loop Systems

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad


    The aim of this paper is to present a method for estimation of parametric faults in closed-loop systems. The key technology applied in this paper is coprime factorization of both the dynamic system as well as the feedback controller. Using the Youla-Jabr-Bongiorno-Kucera (YJBK) parameterization, it...... is shown that a certain matrix transfer function, the fault signature matrix, is an LFT (linear fractional transformation) of the parametric faults. Further, for limit parametric faults, the fault signature matrix transfer function can be approximated with a linear matrix function of the parametric...

  16. Fault-tolerant Actuator System for Electrical Steering of Vehicles

    Sørensen, Jesper Sandberg; Blanke, Mogens


    Being critical to the safety of vehicles, the steering system is required to maintain the vehicles ability to steer until it is brought to halt, should a fault occur. With electrical steering becoming a cost-effective candidate for electrical powered vehicles, a fault-tolerant architecture is...... needed that meets this requirement. This paper studies the fault-tolerance properties of an electrical steering system. It presents a fault-tolerant architecture where a dedicated AC motor design used in conjunction with cheap voltage measurements can ensure detection of all relevant faults in the...

  17. Novel Fault Diagnosis Scheme for HVDC System via ESO

    YAN Bing-yong; TIAN Zuo-hua; SHI Song-jiao


    A novel fault detection and identification (FDI) scheme for HVDC (High Voltage Direct Current Transmission) system was presented. It was based on the unique active disturbance rejection concept, where the HVDC system faults were estimated using an extended states observer (ESO). Firstly, the mathematical model of HVDC system was constructed, where the system states and disturbance were treated as an extended state. An augment HVDC system was established by using the extended state in rectify side and converter side, respectively. Then, a fault diagnosis filter was established to diagnose the HVDC system faults via the ESO theory. The evolution of the extended state in the augment HVDC system can reflect the actual system faults and disturbances, which can be used for the fault diagnosis purpose. A novel feature of this approach is that it can simultaneously detect and identify the shape and magnitude of the HVDC faults and disturbance. Finally, different kinds of HVDC faults were simulated to illustrate the feasibility and effectiveness of the proposed ESO based FDI approach. Compared with the neural network based or support vector machine based FDI approach, the ESO based FDI scheme can reduce the fault detection time dramatically and track the actual system fault accurately. What's more important, it needs not do complex online calculations and the training of neural network so that it can be applied into practice.

  18. Method and system for environmentally adaptive fault tolerant computing

    Copenhaver, Jason L. (Inventor); Jeremy, Ramos (Inventor); Wolfe, Jeffrey M. (Inventor); Brenner, Dean (Inventor)


    A method and system for adapting fault tolerant computing. The method includes the steps of measuring an environmental condition representative of an environment. An on-board processing system's sensitivity to the measured environmental condition is measured. It is determined whether to reconfigure a fault tolerance of the on-board processing system based in part on the measured environmental condition. The fault tolerance of the on-board processing system may be reconfigured based in part on the measured environmental condition.

  19. Bond graph model-based fault diagnosis of hybrid systems

    Borutzky, Wolfgang


    This book presents a bond graph model-based approach to fault diagnosis in mechatronic systems appropriately represented by a hybrid model. The book begins by giving a survey of the fundamentals of fault diagnosis and failure prognosis, then recalls state-of-art developments referring to latest publications, and goes on to discuss various bond graph representations of hybrid system models, equations formulation for switched systems, and simulation of their dynamic behavior. The structured text: • focuses on bond graph model-based fault detection and isolation in hybrid systems; • addresses isolation of multiple parametric faults in hybrid systems; • considers system mode identification; • provides a number of elaborated case studies that consider fault scenarios for switched power electronic systems commonly used in a variety of applications; and • indicates that bond graph modelling can also be used for failure prognosis. In order to facilitate the understanding of fault diagnosis and the presented...

  20. Intelligent System for Fault Diagnosis in Automotive Applications

    Kabir, Mashud


    This work presents an intelligent system for fault diagnosis in automotive applications. The system is proposed to handle faults in a running car as well as in a car which is in the process of being developed. The main goal of this work is to use the vast knowledge previously acquired by system experts, to visualize, localize and fix a fault in any of the life phases of a car. The existing techniques and systems which are in use for fault diagnosis are investigated. There is no system which c...

  1. Fault tolerant aggregation for power system services

    Kosek, Anna Magdalena; Gehrke, Oliver; Kullmann, Daniel


    Exploiting the flexibility in distributed energy resources (DER) is seen as an important contribution to allow high penetrations of renewable generation in electrical power systems. However, the present control infrastructure in power systems is not well suited for the integration of a very large...... number of small units. A common approach is to aggregate a portfolio of such units together and expose them to the power system as a single large virtual unit. In order to realize the vision of a Smart Grid, concepts for flexible, resilient and reliable aggregation infrastructures are required. This...... paper presents such a concept while focusing on the aspect of resilience and fault tolerance. The proposed concept makes use of a multi-level election algorithm to transparently manage the addition, removal, failure and reorganization of units. It has been implemented and tested as a proof-of-concept on...

  2. Teatrikunstnik Andrea Haamer: Olen alati unistanud Eestisse tagasi tulla / Andrea Haamer ; intervjueerinud Andreas Sepp, Anneli Sihvart

    Haamer, Andrea


    Eesti juurtega lava- ja kostüümikunstnikust Andrea T. Haamerist, kes on Eestis kujundanud kolm balletti. 25. veebruaril avatavast neljandast Jõhvi balletifestivalist, kus avatakse Andrea Haameri näitus

  3. Fault evolution-test dependency modeling for mechanical systems

    Xiao-dong TAN; Jian-lu LUO; Qing LI; Bing LU; Jing QIU


    Tracking the process of fault growth in mechanical systems using a range of tests is important to avoid catastrophic failures. So, it is necessary to study the design for testability (DFT). In this paper, to improve the testability performance of me-chanical systems for tracking fault growth, a fault evolution-test dependency model (FETDM) is proposed to implement DFT. A testability analysis method that considers fault trackability and predictability is developed to quantify the testability performance of mechanical systems. Results from experiments on a centrifugal pump show that the proposed FETDM and testability analysis method can provide guidance to engineers to improve the testability level of mechanical systems.

  4. Observer-Based Fault Estimation and Accomodation for Dynamic Systems

    Zhang, Ke; Shi, Peng


    Due to the increasing security and reliability demand of actual industrial process control systems, the study on fault diagnosis and fault tolerant control of dynamic systems has received considerable attention. Fault accommodation (FA) is one of effective methods that can be used to enhance system stability and reliability, so it has been widely and in-depth investigated and become a hot topic in recent years. Fault detection is used to monitor whether a fault occurs, which is the first step in FA. On the basis of fault detection, fault estimation (FE) is utilized to determine online the magnitude of the fault, which is a very important step because the additional controller is designed using the fault estimate. Compared with fault detection, the design difficulties of FE would increase a lot, so research on FE and accommodation is very challenging. Although there have been advancements reported on FE and accommodation for dynamic systems, the common methods at the present stage have design difficulties, whi...

  5. Algorithmic fault tree construction by component-based system modeling

    Computer-aided fault tree generation can be easier, faster and less vulnerable to errors than the conventional manual fault tree construction. In this paper, a new approach for algorithmic fault tree generation is presented. The method mainly consists of a component-based system modeling procedure an a trace-back algorithm for fault tree synthesis. Components, as the building blocks of systems, are modeled using function tables and state transition tables. The proposed method can be used for a wide range of systems with various kinds of components, if an inclusive component database is developed. (author)

  6. A BRB Based Fault Prediction Method of Complex Electromechanical Systems

    Bangcheng Zhang


    Full Text Available Fault prediction is an effective and important approach to improve the reliability and reduce the risk of accidents for complex electromechanical systems. In order to use the quantitative information and qualitative knowledge efficiently to predict the fault, a new model is proposed on the basis of belief rule base (BRB. Moreover, an evidential reasoning (ER based optimal algorithm is developed to train the fault prediction model. The screw failure in computer numerical control (CNC milling machine servo system is taken as an example and the fault prediction results show that the proposed method can predict the behavior of the system accurately with combining qualitative knowledge and some quantitative information.

  7. Kinematically Coupled Strike-Slip and Normal Faults in the Lake Mead Strike-Slip Fault System, Southeast Nevada

    Kattenhorn, S. A.; Marshall, S. T.; Cooke, M. L.


    The Lake Mead fault system consists of a ~95 km long, northeast-trending zone of strike-slip faults of Miocene age that accommodate a total left-lateral offset of 20-65 km. We use a combination of detailed field mapping and numerical modeling to show that a previously unnamed left-lateral strike-slip segment of the Lake Mead fault system and a dense cluster of dominantly west-dipping normal faults acted in concert to accommodate regional left-lateral offset. We suggest that the strike-slip fault that we refer to as the Pinto Ridge fault: (1) was kinematically related to other faults of the Lake Mead fault system; (2) was responsible for the creation of the normal fault cluster at Pinto Ridge; and (3) utilized these normal faults as linking structures between separate strike-slip fault segments to create a longer, through-going fault. Results from numerical models demonstrate that the observed location and curving strike patterns of the normal fault cluster is consistent with the faults having formed as secondary structures as the result of the perturbed stress field around the slipping Pinto Ridge fault. Comparison of mechanical efficiency of various normal fault geometries within extending terranes suggests that the observed west dip of normal faults reflects a west- dipping anisotropy at depth, such as a detachment. The apparent terminations of numerous strike-slip faults of the Lake Mead fault system into west-dipping normal faults suggest that a west-dipping detachment may be regionally coherent.

  8. FaultBuster: data driven fault detection and diagnosis for industrial systems

    Bergantino, Nicola; Caponetti, Fabio; Longhi, Sauro


    Efficient and reliable monitoring systems are mandatory to assure the required security standards in industrial complexes. This paper describes the recent developments of FaultBuster, a purely data-driven diagnostic system. It is designed so to be easily scalable to different monitor tasks. Multivariate statistical models based on principal components are used to detect abnormal situations. Tailored to alarms, a probabilistic inference engine process the fault evidences to output the most pro...

  9. Morphostructural study of the Belledonne faults system (French Alps).

    Billant, Jérémy; Bellier, Olivier; Hippolyte, Jean-Claude; Godard, Vincent; Manchuel, Kevin


    The NE trending Belledonne faults system, located in the Alps, is a potentially active faults system that extends from the Aiguilles Rouges and Mont Blanc massifs in the NE to the Vercors massif in the SW (subalpine massifs). It includes the Belledonne border fault (BBF), defined by an alignment of micro earthquakes (ML≤3.5) along the eastern part of the Grésivaudan valley (Thouvenot et al., 2003). Focal mechanisms and their respective depths tend to confirm a dextral strike-slip faulting at crustal scale. In the scope of the Sigma project (, EDF), this study aims at better constraining the geometry, kinematic and seismogenic potential of the constitutive faults of the Belledonne fault system, by using a multidisciplinary approach that includes tectonics, geomorphology and geophysics. Fault kinematic analysis along the BBF (Billant et al., 2015) and the Jasneuf fault allows the determination of a strike-slip tectonic regime characterised by an ENE trending σ1 stress axes, which is consistent with stress state deduced from the focal mechanisms. Although no morphological anomalies could be related to recent faulting along the BBF, new clues of potential Quaternary deformations were observed along the other faults of the system: -right lateral offset of morphologic markers (talwegs...) along the NE trending Arcalod fault located at the north-eastern terminations of the BBF; -left lateral offset of the valley formed by the Isère glacier along the NW trending Brion fault which is consistent with its left-lateral slip inferred from the focal mechanisms; -fault scarps and right lateral offsets of cliffs bordering a calcareous plateau and talwegs along the four fault segments of the NE trending Jasneuf fault located at the south-western termination of the BBF in the Vercors massif. Some offsets were measured using a new method that does not require the identification of piercing points and take advantage of the high resolution

  10. Model-based fault diagnosis in PEM fuel cell systems

    Escobet, T.; de Lira, S.; Puig, V.; Quevedo, J. [Automatic Control Department (ESAII), Universitat Politecnica de Catalunya (UPC), Rambla Sant Nebridi 10, 08222 Terrassa (Spain); Feroldi, D.; Riera, J.; Serra, M. [Institut de Robotica i Informatica Industrial (IRI), Consejo Superior de Investigaciones Cientificas (CSIC), Universitat Politecnica de Catalunya (UPC) Parc Tecnologic de Barcelona, Edifici U, Carrer Llorens i Artigas, 4-6, Planta 2, 08028 Barcelona (Spain)


    In this work, a model-based fault diagnosis methodology for PEM fuel cell systems is presented. The methodology is based on computing residuals, indicators that are obtained comparing measured inputs and outputs with analytical relationships, which are obtained by system modelling. The innovation of this methodology is based on the characterization of the relative residual fault sensitivity. To illustrate the results, a non-linear fuel cell simulator proposed in the literature is used, with modifications, to include a set of fault scenarios proposed in this work. Finally, it is presented the diagnosis results corresponding to these fault scenarios. It is remarkable that with this methodology it is possible to diagnose and isolate all the faults in the proposed set in contrast with other well known methodologies which use the binary signature matrix of analytical residuals and faults. (author)

  11. Application of fault tree analysis to sucker rod pumping systems

    Ge, Z. [Texas Tech Univ., Lubbock, TX (United States). Center for Energy Research


    The Fault Tree Analysis technique was applied to the reliability analysis of the sucker-rod pumping system. Although the most widely used form of artificial lift, it is known to be vulnerable to failure. This study describes salient features of the Fault Tree System, and provides detailed application procedures to demonstrate the feasibility of this technique.

  12. Fault diagnosis of nuclear equipment based on artificial immune system

    As the nuclear equipment is complicate and special, this paper put forward a novel fault diagnosis method for nuclear equipment based on artificial immune system and the principle to model with negative-selection algorithm and further identify the fault with clone-variation algorithm. Features are extracted with the signal that was sampled in a rotary machinery, then the result is input to the AIS model. Simulation result shows that the model can identify each fault type successfully. (authors)

  13. Fault Tolerance in Distributed Systems using Fused State Machines

    Balasubramanian, Bharath; Garg, Vijay K


    Replication is a standard technique for fault tolerance in distributed systems modeled as deterministic finite state machines (DFSMs or machines). To correct f crash or f/2 Byzantine faults among n different machines, replication requires nf additional backup machines. We present a solution called fusion that requires just f additional backup machines. First, we build a framework for fault tolerance in DFSMs based on the notion of Hamming distances. We introduce the concept of an (f,m)-fusion...

  14. Non deterministic finite automata for power systems fault diagnostics

    LINDEN, R.


    Full Text Available This paper introduces an application based on finite non-deterministic automata for power systems diagnosis. Automata for the simpler faults are presented and the proposed system is compared with an established expert system.

  15. Fault Diagnosis of Nonlinear Systems Using Structured Augmented State Models

    Jochen Aβfalg; Frank Allg(o)wer


    This paper presents an internal model approach for modeling and diagnostic functionality design for nonlinear systems operating subject to single- and multiple-faults. We therefore provide the framework of structured augmented state models. Fault characteristics are considered to be generated by dynamical exosystems that are switched via equality constraints to overcome the augmented state observability limiting the number of diagnosable faults. Based on the proposed model, the fault diagnosis problem is specified as an optimal hybrid augmented state estimation problem. Sub-optimal solutions are motivated and exemplified for the fault diagnosis of the well-known three-tank benchmark. As the considered class of fault diagnosis problems is large, the suggested approach is not only of theoretical interest but also of high practical relevance.

  16. Fault Diagnosis for Electrical Distribution Systems using Structural Analysis

    Knüppel, Thyge; Blanke, Mogens; Østergaard, Jacob

    Fault-tolerance in electrical distribution relies on the ability to diagnose possible faults and determine which components or units cause a problem or are close to doing so. Faults include defects in instrumentation, power generation, transformation and transmission. The focus of this paper is the...... structure graph. This paper shows how three-phase networks are modelled and analysed using structural methods, and it extends earlier results by showing how physical faults can be identified such that adequate remedial actions can be taken. The paper illustrates a feasible modelling technique for structural...... analysis of power systems, it demonstrates detection and isolation of failures in a network, and shows how typical faults are diagnosed. Nonlinear fault simulations illustrate the results....

  17. Sensor Fault Tolerant Generic Model Control for Nonlinear Systems


    A modified Strong Tracking Filter (STF) is used to develop a new approach to sensor fault tolerant control. Generic Model Control (GMC) is used to control the nonlinear process while the process runs normally because of its robust control performance. If a fault occurs in the sensor, a sensor bias vector is then introduced to the output equation of the process model. The sensor bias vector is estimated on-line during every control period using the STF. The estimated sensor bias vector is used to develop a fault detection mechanism to supervise the sensors. When a sensor fault occurs, the conventional GMC is switched to a fault tolerant control scheme, which is, in essence, a state estimation and output prediction based GMC. The laboratory experimental results on a three-tank system demonstrate the effectiveness of the proposed Sensor Fault Tolerant Generic Model Control (SFTGMC) approach.

  18. Fault Reconstruction Approach for Distributed Coordinated Spacecraft Attitude Control System

    Mingyi Huo


    Full Text Available This work presents a novel fault reconstruction approach for a large-scale system, that is, a distributed coordinated spacecraft attitude control system. The attitude of all the spacecrafts in this distributed system is controlled by using thrusters. All possible faults of thruster including thrust magnitude error and alignment error are investigated. As a stepping stone, the mathematical model of thruster is firstly established based on the thruster configuration. On the basis of this, a sliding mode observer is then proposed to reconstruct faults in each agent of the coordinated control system. A Lyapunov-based analysis shows that the observer asymptotically converges to the actual faults. The key feature of this fault reconstruction approach is that it can achieve a faster reconstruction of the fault in comparison with the conventional fault reconstruction schemes. It can globally reconstruct thruster faults with zero reconstruction error, and this is accomplished within finite time. The effectiveness of the proposed approach is analytically authenticated via simulation study.

  19. System assessment using modular logic fault tree methodology

    In the process of a Probabilistic Safety analysis (PSA) study a large number of fault trees are generated by different specialist. Modular Logic Fault Tree Methodology pave the way the way to systematize the procedures and to unify the criteria in the process of systems modulation. An example of of the application of this methodology is shown

  20. Adaptive Observer-Based Fault Estimate for Nonlinear Systems

    ZONG Qun; LIU Wenjing; LIU Li


    An approach for adaptive observer-based fault estimate for nonlinear system is proposed.H-infinity theory is applied to analyzing the design method and stable conditions of the adaptive observer,from which both system state and fault can be estimated.It is proved that the fault estimate error is related to the given H-infinity track performance indexes,as well as to the changing rate of the fault and the Lipschitz constant of the nonlinear item.The design steps of the adaptive observer are proposed.The simulation results show that the observer has good performance for fault estimate even when the system includes nonlinear terms,which confirms the effectiveness of the method.

  1. Comparing fault susceptibility of multiple ISAs and operating systems

    Chyłek, Sławomir


    This paper presents a research that aims to compare effects of faults on different configurations of computer systems. The study covers comparison of susceptibility to faults of x86, AMD64, ARM, PowerPC, MIPS architectures and Linux, FreeBSD, Minix operating systems. An emulation based software implemented fault injection technique was used to perform experiments. The problem of choosing an adequate number of tests in experiments is followed by report with collected results where multiple aspects of test runs were analyzed: providing correct computation result, availability of the system under test and error messages. The research allows to determine characteristics of susceptibility to faults of each platform and is a first step towards designing new fault tolerance solutions and assessing their effectiveness.

  2. Navigation System Fault Diagnosis for Underwater Vehicle

    Falkenberg, Thomas; Gregersen, Rene Tavs; Blanke, Mogens

    This paper demonstrates fault diagnosis on unmanned underwater vehicles (UUV) based on analysis of structure of the nonlinear dynamics. Residuals are generated using dierent approaches in structural analysis followed by statistical change detection. Hypothesis testing thresholds are made signal...

  3. High-Intensity Radiated Field Fault-Injection Experiment for a Fault-Tolerant Distributed Communication System

    Yates, Amy M.; Torres-Pomales, Wilfredo; Malekpour, Mahyar R.; Gonzalez, Oscar R.; Gray, W. Steven


    Safety-critical distributed flight control systems require robustness in the presence of faults. In general, these systems consist of a number of input/output (I/O) and computation nodes interacting through a fault-tolerant data communication system. The communication system transfers sensor data and control commands and can handle most faults under typical operating conditions. However, the performance of the closed-loop system can be adversely affected as a result of operating in harsh environments. In particular, High-Intensity Radiated Field (HIRF) environments have the potential to cause random fault manifestations in individual avionic components and to generate simultaneous system-wide communication faults that overwhelm existing fault management mechanisms. This paper presents the design of an experiment conducted at the NASA Langley Research Center's HIRF Laboratory to statistically characterize the faults that a HIRF environment can trigger on a single node of a distributed flight control system.

  4. Oblique fault systems crossing the Seattle Basin: Geophysical evidence for additional shallow fault systems in the central Puget Lowland

    Mace, Chris G.; Keranen, Katie M.


    Upper plate seismicity in the Puget Lowland is more broadly distributed than mapped fault systems and presents a conundrum for understanding the active tectonics of the region. Although many previous studies have mapped faulting in the Puget Lowland from subsurface geophysical data, many of these efforts have focused specifically on mapping the structure of the Seattle Fault Zone and the South Whidbey Island Fault. The thick glacial sediments and extensive water bodies may conceal additional active faults away from these major structures. We map fault networks in Quaternary sediments broadly throughout the central Puget Lowland using existing marine multichannel seismic reflection data sets with widely distributed profiles to extend the results of previous work. We identify a NE-SW zone of recent high-angle faulting and shallow sediment deformation crossing the Seattle Uplift and the Seattle Basin that segments the Seattle Fault Zone and is distinct from previously mapped fault systems. Faults in this zone cut or deform sediments at the seafloor, and the zone trends across the central Puget Lowland at an oblique angle to major regional structures. Two additional zones of faulting trend NW-SE and cut through the Seattle Basin and the Kingston Arch, respectively. Aeromagnetic lineations extend the NE-SW trend of deformation across the Seattle Uplift and connect deformation of shallow sediment in the Puget Sound with deformation of shallow sediment in the Hood Canal. These oblique fault structures may partially control the wide distribution of seismicity within the central Puget Lowland and should be considered in seismic hazard assessments.

  5. Communication-based fault handling scheme for ungrounded distribution systems

    The requirement for high quality and highly reliable power supplies has been increasing as a result of increasing demand for power. At the time of a fault occurrence in a distribution system, some protection method would be dedicated to fault section isolation and service restoration. However, if there are many outage areas when the protection method is performed, it is an inconvenience to the customer. A conventional method to determine a fault section in ungrounded systems requires many successive outage invocations. This paper proposed an efficient fault section isolation method and service restoration method for single line-to-ground fault in an ungrounded distribution system that was faster than the conventional one using the information exchange between connected feeders. The proposed algorithm could be performed without any power supply interruption and could decrease the number of switching operations, so that customers would not experience outages very frequently. The method involved the use of an intelligent communication method and a sequential switching control scheme. The proposed algorithm was also applied in both a single-tie and multi-tie distribution system. This proposed algorithm has been verified through fault simulations in a simple model of ungrounded multi-tie distribution system. The method proposed in this paper was proven to offer more efficient fault identification and much less outage time than the conventional method. The proposed method could contribute to a system design since it is valid in multi-tie systems. 5 refs., 2 tabs., 8 figs

  6. Sandia's fault analysis system for non-DFT designs

    A toolset is described that is used to do comprehensive fault analysis on Sandia's past, present, and future generation designs. This toolset provides very fast realistic fault simulation at both the gate and switch level, hierarchical fault reporting, and automatic annotation of undetectable faults. The toolset is built around the Mentor Graphics design system and a Mach1000 hardware accelerator from Silicon Solutions. This session describes the work at Sandia National Laboratories' Center for Radiation Hardened Microelectronics (the CRM) in Albuquerque, New Mexico. The CRM designs and manufactures radiation hardened microelectronics for hostile environments. CRM parts are used in satellites, deep space probes, and weapon systems - hence the reliability of these parts must be exceedingly high. Since the yield of a radiation hardened process is inherently low, Sandia must insure high test vector coverage of all detectable faults

  7. Sliding mode based fault detection, reconstruction and fault tolerant control scheme for motor systems.

    Mekki, Hemza; Benzineb, Omar; Boukhetala, Djamel; Tadjine, Mohamed; Benbouzid, Mohamed


    The fault-tolerant control problem belongs to the domain of complex control systems in which inter-control-disciplinary information and expertise are required. This paper proposes an improved faults detection, reconstruction and fault-tolerant control (FTC) scheme for motor systems (MS) with typical faults. For this purpose, a sliding mode controller (SMC) with an integral sliding surface is adopted. This controller can make the output of system to track the desired position reference signal in finite-time and obtain a better dynamic response and anti-disturbance performance. But this controller cannot deal directly with total system failures. However an appropriate combination of the adopted SMC and sliding mode observer (SMO), later it is designed to on-line detect and reconstruct the faults and also to give a sensorless control strategy which can achieve tolerance to a wide class of total additive failures. The closed-loop stability is proved, using the Lyapunov stability theory. Simulation results in healthy and faulty conditions confirm the reliability of the suggested framework. PMID:25747198

  8. Functional Fault Modeling of a Cryogenic System for Real-Time Fault Detection and Isolation

    Ferrell, Bob; Lewis, Mark; Perotti, Jose; Oostdyk, Rebecca; Brown, Barbara


    The purpose of this paper is to present the model development process used to create a Functional Fault Model (FFM) of a liquid hydrogen (L H2) system that will be used for realtime fault isolation in a Fault Detection, Isolation and Recover (FDIR) system. The paper explains th e steps in the model development process and the data products required at each step, including examples of how the steps were performed fo r the LH2 system. It also shows the relationship between the FDIR req uirements and steps in the model development process. The paper concl udes with a description of a demonstration of the LH2 model developed using the process and future steps for integrating the model in a live operational environment.

  9. Ground Fault Diagnosctic System for PEP-II

    James, Glen; Himel, Tom; Johnson, Ralph


    This paper describes a diagnostic system designed into the String Magnet Power Conversion System that localizes magnet or cable ground faults in the PEP-II rings. This system provides online diagnostics that allow the operator/maintenance personnel to identify the magnet string that has the ground fault and the region in the ring where the ground fault exists. Furthermore, it is our goal to identify within 2 adjacent magnets where this fault exists. The system utilizes the existing PEP-II control system with transient digitizers, ADCs to monitor voltages and currents from the DC/DC converters and the voltage across the soft ground resistor at each bulk power supply. Also, the magnet string voltages are monitored in six locations around the ring to provide an adaptive model of the voltage distribution for each for each magnet string. These signals are utilized in a ground fault location algorithm that identifies and displays the magnet string and specific magnet candidate with the ground fault, on the operators console. Wave forms taken during the fault event are also available for examination at the operators console.

  10. Comparing Different Fault Identification Algorithms in Distributed Power System

    Alkaabi, Salim

    A power system is a huge complex system that delivers the electrical power from the generation units to the consumers. As the demand for electrical power increases, distributed power generation was introduced to the power system. Faults may occur in the power system at any time in different locations. These faults cause a huge damage to the system as they might lead to full failure of the power system. Using distributed generation in the power system made it even harder to identify the location of the faults in the system. The main objective of this work is to test the different fault location identification algorithms while tested on a power system with the different amount of power injected using distributed generators. As faults may lead the system to full failure, this is an important area for research. In this thesis different fault location identification algorithms have been tested and compared while the different amount of power is injected from distributed generators. The algorithms were tested on IEEE 34 node test feeder using MATLAB and the results were compared to find when these algorithms might fail and the reliability of these methods.

  11. Fault Tolerant Services for Safe In-Car Embedded Systems

    Navet, Nicolas; Simonot-Lion, Françoise


    Due to the increasing criticality of the functions in terms of safety, embedded automotive systems must now respect stringent dependability constraints despite the faults that may occur in a very harsh environment. In a context where critical functions are distributed over the network, the communication system plays a major role. First, we discuss the main services and functionalities that a communication system should offer for easying the design of fault-tolerant applications in the automot...

  12. Active tectonics of Himalayan Frontal Fault system

    Thakur, V. C.


    In the Sub-Himalayan zone, the frontal Siwalik range abuts against the alluvial plain with an abrupt physiographic break along the Himalayan Frontal Thrust (HFT), defining the present-day tectonic boundary between the Indian plate and the Himalayan orogenic prism. The frontal Siwalik range is characterized by large active anticline structures, which were developed as fault propagation and fault-bend folds in the hanging wall of the HFT. Fault scarps showing surface ruptures and offsets observed in excavated trenches indicate that the HFT is active. South of the HFT, the piedmont zone shows incipient growth of structures, drainage modification, and 2-3 geomorphic depositional surfaces. In the hinterland between the HFT and the MBT, reactivation and out-of-sequence faulting displace Late Quaternary-Holocene sediments. Geodetic measurements across the Himalaya indicate a ~100-km-wide zone, underlain by the Main Himalayan Thrust (MHT), between the HFT and the main microseismicity belt to north is locked. The bulk of shortening, 15-20 mm/year, is consumed aseismically at mid-crustal depth through ductile by creep. Assuming the wedge model, reactivation of the hinterland faults may represent deformation prior to wedge attaining critical taper. The earthquake surface ruptures, ≥240 km in length, interpreted on the Himalayan mountain front through paleoseismology imply reactivation of the HFT and may suggest foreland propagation of the thrust belt.

  13. FaultBuster: data driven fault detection and diagnosis for industrial systems

    Bergantino, Nicola; Caponetti, Fabio; Longhi, Sauro


    Efficient and reliable monitoring systems are mandatory to assure the required security standards in industrial complexes. This paper describes the recent developments of FaultBuster, a purely data-driven diagnostic system. It is designed so to be easily scalable to different monitor tasks...

  14. Correlating hardware fault detection information from distributed control systems to isolate and diagnose a fault in pressurised water reactors

    Cilliers, Anthonie Christoffel


    Early fault identification systems enable detecting and diagnosing early onset faults or fault causes which allow maintenance planning on the equipment showing signs of deterioration or failure. This includes valve and leaks and small cracks in steam generator tubes usually detected by means of ultrasonic inspection. We have shown (Cilliers and Mulder, 2012) that detecting faults early during transient operation in NPPs is possible when coupled with a reliable reference to compare plant measu...

  15. Robust fault diagnosis for a class of nonlinear systems with time delay


    Robust fault diagnosis problems based on adaptive observer technique are studied for a class of time delayed nonlinear system with external disturbance. Adaptive fault updating laws were designed to estimate the fault and to guarantee the stability of the diagnosis system. The effects of adjusting parameters in adaptive fault updating laws on the fault estimation accuracy were analyzed. For a designed fault diagnosis system, the super bounds of the state estimation error and fault estimation error of the adaptive observer were discussed, which further showed how the parameters in the adaptive fault updating laws influenced the fault estimation accuracy.Simulation example demonstrates the effectiveness of the proposed methods and the analysis results.

  16. Active Fault Tolerant Control of Livestock Stable Ventilation System

    Gholami, Mehdi


    of the hybrid model are estimated by a recursive estimation algorithm, the Extended Kalman Filter (EKF), using experimental data which was provided by an equipped laboratory. Two methods for active fault diagnosis are proposed. The AFD methods excite the system by injecting a so-called excitation...... degraded performance even in the faulty case. In this thesis, we have designed such controllers for climate control systems for livestock buildings in three steps: Deriving a model for the climate control system of a pig-stable. Designing a active fault diagnosis (AFD) algorithm for different kinds of...... fault. Designing a fault tolerant control scheme for the climate control system. In the first step, a conceptual multi-zone model for climate control of a live-stock building is derived. The model is a nonlinear hybrid model. Hybrid systems contain both discrete and continuous components. The parameters...

  17. PCA Fault Feature Extraction in Complex Electric Power Systems

    ZHANG, J.


    Full Text Available Electric power system is one of the most complex artificial systems in the world. The complexity is determined by its characteristics about constitution, configuration, operation, organization, etc. The fault in electric power system cannot be completely avoided. When electric power system operates from normal state to failure or abnormal, its electric quantities (current, voltage and angles, etc. may change significantly. Our researches indicate that the variable with the biggest coefficient in principal component usually corresponds to the fault. Therefore, utilizing real-time measurements of phasor measurement unit, based on principal components analysis technology, we have extracted successfully the distinct features of fault component. Of course, because of the complexity of different types of faults in electric power system, there still exists enormous problems need a close and intensive study.

  18. A Simulator Study of Recovery of HVDC Links Following AC System Faults

    J. Senthil; Padiyar, KR; Sachchidanand, *


    This paper presents the simulator study of a two-terminal HVDC system. The various AC system faults to which the study system is subjected are a) remote-three-phase ground fault, b)single-phase-ground fault and three phase ground faults. These faults are applied both at the rectifier and inverter ends. The results of the simulator study are presented to demonstrate the controller performance in the recovery of HVDC link following AC system faults.

  19. Correlating hardware fault detection information from distributed control systems to isolate and diagnose a fault in pressurised water reactors

    Highlights: ► Attempt was to use available resources at a nuclear plant in a value added fashion. ► Includes plant measurement data and plant training and engineering simulator capabilities. ► Correlating fault detection data for systems to develop of a deterministic fault identifications system. ► After implementing a host of data manipulation algorithms, the results provided more information on the fault than expected. - Abstract: Early fault identification systems enable detecting and diagnosing early onset faults or fault causes which allow maintenance planning on the equipment showing signs of deterioration or failure. This includes valve and leaks and small cracks in steam generator tubes usually detected by means of ultrasonic inspection. We have shown (Cilliers and Mulder, 2012) that detecting faults early during transient operation in NPPs is possible when coupled with a reliable reference to compare plant measurements with during transients. The problem introduced by the distributed application of control systems operating independently to keep the plant operating within the safe operating boundaries was solved by re-introducing the fault information it into the measurement data, thereby improving plant diagnostic performance. This paper introduces the use of improved fault detection information received from all distributed systems in the plant control system and correlating the information to not only detect the fault but also to diagnose it based on the location and magnitude of the fault cause

  20. Study on Missile Intelligent Fault Diagnosis System Based on Fuzzy NN Expert System


    In order to study intelligent fault diagnosis methods based on fuzzy neural network (NN) expert systemand build up intelligent fault diagnosis for a type of mis-sile weapon system, the concrete implementation of a fuzzyNN fault diagnosis expert system is given in this paper. Based on thorough research of knowledge presentation, theintelligent fault diagnosis system is implemented with artificial intelligence for a large-scale missile weapon equipment.The method is an effective way to perform fuzzy fault diagnosis. Moreover, it provides a new way of the fault diagnosisfor large-scale missile weapon equipment.

  1. Disturbance observer based fault estimation and dynamic output feedback fault tolerant control for fuzzy systems with local nonlinear models.

    Han, Jian; Zhang, Huaguang; Wang, Yingchun; Liu, Yang


    This paper addresses the problems of fault estimation (FE) and fault tolerant control (FTC) for fuzzy systems with local nonlinear models, external disturbances, sensor and actuator faults, simultaneously. Disturbance observer (DO) and FE observer are designed, simultaneously. Compared with the existing results, the proposed observer is with a wider application range. Using the estimation information, a novel fuzzy dynamic output feedback fault tolerant controller (DOFFTC) is designed. The controller can be used for the fuzzy systems with unmeasurable local nonlinear models, mismatched input disturbances, and measurement output affecting by sensor faults and disturbances. At last, the simulation shows the effectiveness of the proposed methods. PMID:26456728

  2. Use of Fuzzy Logic Systems for Assessment of Primary Faults

    Petrović, Ivica; Jozsa, Lajos; Baus, Zoran


    In electric power systems, grid elements are often subjected to very complex and demanding disturbances or dangerous operating conditions. Determining initial fault or cause of those states is a difficult task. When fault occurs, often it is an imperative to disconnect affected grid element from the grid. This paper contains an overview of possibilities for using fuzzy logic in an assessment of primary faults in the transmission grid. The tool for this task is SCADA system, which is based on information of currents, voltages, events of protection devices and status of circuit breakers in the grid. The function model described with the membership function and fuzzy logic systems will be presented in the paper. For input data, diagnostics system uses information of protection devices tripping, states of circuit breakers and measurements of currents and voltages before and after faults.

  3. Designing Expert System for Detecting Faults in Cloud Environment

    Marzieh Shabdiz


    Full Text Available Many fault detection techniques for detecting faults in rule bases system have appeared in the literature. These techniques assume that the rule base is static. This paper presents a new approach by designing Expert system for detecting faults in dynamic environment, such as cloud. Cloud resources are usually not only shared by multiple users but are also dynamically re-allocated per demand. Therefore, rules may be added/deleted in response to certain events happening in the integrated system being controlled by the rules. The approach makes use of spanning trees and Complementary sets to check a dynamic rule base for different kinds of faults underlying directed graph and devises a new method with scripting language on web based tools. This is performed as rules are being added to the dynamic rule base one at a time without the need to rebuild the structures and update rules and paths by expert system.

  4. Fault Injection and Monitoring Capability for a Fault-Tolerant Distributed Computation System

    Torres-Pomales, Wilfredo; Yates, Amy M.; Malekpour, Mahyar R.


    The Configurable Fault-Injection and Monitoring System (CFIMS) is intended for the experimental characterization of effects caused by a variety of adverse conditions on a distributed computation system running flight control applications. A product of research collaboration between NASA Langley Research Center and Old Dominion University, the CFIMS is the main research tool for generating actual fault response data with which to develop and validate analytical performance models and design methodologies for the mitigation of fault effects in distributed flight control systems. Rather than a fixed design solution, the CFIMS is a flexible system that enables the systematic exploration of the problem space and can be adapted to meet the evolving needs of the research. The CFIMS has the capabilities of system-under-test (SUT) functional stimulus generation, fault injection and state monitoring, all of which are supported by a configuration capability for setting up the system as desired for a particular experiment. This report summarizes the work accomplished so far in the development of the CFIMS concept and documents the first design realization.

  5. Andrea Levialdi in Memoriam

    Waisman, Dina

    Professor Andrea Levialdi was born in Bologna Italy in 1911, son of a very modest scientist who at the time was active in the socialist ranks. From an early age Levialdi felt the contradictions between the bourgeois environment surrounding him and his family's deep antifascism. He earned a doctorate in mathematics and physics at the University of Rome in 1937 with a dissertation on photoelasticity, methods and applications. Soon after, he was awarded a scholarship for specializing in optics at the Arcetri National Optics Institute (Florence).

  6. Dynamic Performance of STATCOM Under Various Faults in Power System

    R.krishna sampath , c.kumar


    Full Text Available The STATCOM (Synchronous Static Compensator based on voltage source converter (VSC is used for voltage regulation in transmission and distribution system. The STATCOM can rapidly supply dynamic VARs required during system faults for voltage support. Strict requirements of STATCOM losses and total system loss penalty preclude the use of PWM (Pulse-Width Modulation for VSC based STATCOM applications. This constraint of implementing VSC without PWM functionality, results in over-currents and trips of the STATCOM during and after system faults, when its VAR support functionality is most required. In this paper, we propose and develop an “emergency PWM” strategy to prevent over-currents (and trips in the VSC during and after single line to ground system faults, LLLG faults and to ensure that the STATCOM supplies required reactive power. System performance during a nonlinear load connected without any fault is also considered. The Simulation results are shown for a 48-pulse VSC based ± 100 MVAR STATCOM connected to a 2- bus power strategy to prevent VSC over-currents and to supply required reactive power under line to ground system faults.

  7. Advanced Information Processing System - Fault detection and error handling

    Lala, J. H.


    The Advanced Information Processing System (AIPS) is designed to provide a fault tolerant and damage tolerant data processing architecture for a broad range of aerospace vehicles, including tactical and transport aircraft, and manned and autonomous spacecraft. A proof-of-concept (POC) system is now in the detailed design and fabrication phase. This paper gives an overview of a preliminary fault detection and error handling philosophy in AIPS.

  8. Fault diagnosis system for the Outokumpu flash smelting process

    Fault diagnosis systems have attracted the growing interest of researchers in a number of engineering areas. The number of applications has increased and successful results are reported widely. This paper presents the results of principal component analysis carried out on the Outokumpu flash smelting process the waste heat boiler being analysed in more detail. The PCA results are evaluated and the configuration of a fault diagnosis system is proposed. (author)

  9. Fault tolerant control of systems with saturations

    Niemann, Hans Henrik


    This paper presents framework for fault tolerant controllers (FTC) that includes input saturation. The controller architecture known from FTC is based on the Youla-Jabr-Bongiorno-Kucera (YJBK) parameterization is extended to handle input saturation. Applying this controller architecture in connec...

  10. Fault detection in rotor bearing systems using time frequency techniques

    Chandra, N. Harish; Sekhar, A. S.


    Faults such as misalignment, rotor cracks and rotor to stator rub can exist collectively in rotor bearing systems. It is an important task for rotor dynamic personnel to monitor and detect faults in rotating machinery. In this paper, the rotor startup vibrations are utilized to solve the fault identification problem using time frequency techniques. Numerical simulations are performed through finite element analysis of the rotor bearing system with individual and collective combinations of faults as mentioned above. Three signal processing tools namely Short Time Fourier Transform (STFT), Continuous Wavelet Transform (CWT) and Hilbert Huang Transform (HHT) are compared to evaluate their detection performance. The effect of addition of Signal to Noise ratio (SNR) on three time frequency techniques is presented. The comparative study is focused towards detecting the least possible level of the fault induced and the computational time consumed. The computation time consumed by HHT is very less when compared to CWT based diagnosis. However, for noisy data CWT is more preferred over HHT. To identify fault characteristics using wavelets a procedure to adjust resolution of the mother wavelet is presented in detail. Experiments are conducted to obtain the run-up data of a rotor bearing setup for diagnosis of shaft misalignment and rotor stator rubbing faults.

  11. Adaptive Vibration Control System for MR Damper Faults

    Juan C. Tudón-Martínez


    Full Text Available Several methods have been proposed to estimate the force of a semiactive damper, particularly of a magnetorheological damper because of its importance in automotive and civil engineering. Usually, all models have been proposed assuming experimental data in nominal operating conditions and some of them are estimated for control purposes. Because dampers are prone to fail, fault estimation is useful to design adaptive vibration controllers to accommodate the malfunction in the suspension system. This paper deals with the diagnosis and estimation of faults in an automotive magnetorheological damper. A robust LPV observer is proposed to estimate the lack of force caused by a damper leakage in a vehicle corner. Once the faulty damper is isolated in the vehicle and the fault is estimated, an Adaptive Vibration Control System is proposed to reduce the fault effect using compensation forces from the remaining healthy dampers. To fulfill the semiactive damper constraints in the fault adaptation, an LPV controller is designed for vehicle comfort and road holding. Simulation results show that the fault observer has good performance with robustness to noise and road disturbances and the proposed AVCS improves the comfort up to 24% with respect to a controlled suspension without fault tolerance features.

  12. Measurement and analysis of operating system fault tolerance

    Lee, I.; Tang, D.; Iyer, R. K.


    This paper demonstrates a methodology to model and evaluate the fault tolerance characteristics of operational software. The methodology is illustrated through case studies on three different operating systems: the Tandem GUARDIAN fault-tolerant system, the VAX/VMS distributed system, and the IBM/MVS system. Measurements are made on these systems for substantial periods to collect software error and recovery data. In addition to investigating basic dependability characteristics such as major software problems and error distributions, we develop two levels of models to describe error and recovery processes inside an operating system and on multiple instances of an operating system running in a distributed environment. Based on the models, reward analysis is conducted to evaluate the loss of service due to software errors and the effect of the fault-tolerance techniques implemented in the systems. Software error correlation in multicomputer systems is also investigated.

  13. Soft-Fault Detection Technologies Developed for Electrical Power Systems

    Button, Robert M.


    The NASA Glenn Research Center, partner universities, and defense contractors are working to develop intelligent power management and distribution (PMAD) technologies for future spacecraft and launch vehicles. The goals are to provide higher performance (efficiency, transient response, and stability), higher fault tolerance, and higher reliability through the application of digital control and communication technologies. It is also expected that these technologies will eventually reduce the design, development, manufacturing, and integration costs for large, electrical power systems for space vehicles. The main focus of this research has been to incorporate digital control, communications, and intelligent algorithms into power electronic devices such as direct-current to direct-current (dc-dc) converters and protective switchgear. These technologies, in turn, will enable revolutionary changes in the way electrical power systems are designed, developed, configured, and integrated in aerospace vehicles and satellites. Initial successes in integrating modern, digital controllers have proven that transient response performance can be improved using advanced nonlinear control algorithms. One technology being developed includes the detection of "soft faults," those not typically covered by current systems in use today. Soft faults include arcing faults, corona discharge faults, and undetected leakage currents. Using digital control and advanced signal analysis algorithms, we have shown that it is possible to reliably detect arcing faults in high-voltage dc power distribution systems (see the preceding photograph). Another research effort has shown that low-level leakage faults and cable degradation can be detected by analyzing power system parameters over time. This additional fault detection capability will result in higher reliability for long-lived power systems such as reusable launch vehicles and space exploration missions.

  14. Architecture and Segmentation of Strike-Slip Faults in Southern California

    Sahakian, Valerie Jean

    This dissertation investigates the architecture and segmentation of fault structures in Southern California, using marine active-source seismic data. Onshore or marine fault geometry is often poorly constrained due to their location. This study employs marine active-source seismic data to image these structures, and further the current understanding of the hazards they pose to the region. With these data, this dissertation first improves the existing framework of knowledge of fault architecture in the Salton pull-apart basin, near the terminus of the Southern San Andreas Fault (SSAF). It investigates the evolution of the pull-apart basin in the Imperial-San Andreas fault system with reflection and refraction data, and provides important constraints regarding the interplay of faults and strain partitioning in this region. New data suggest the existence of a previously unknown fault in the Salton Sea, the Salton Trough Fault (STF). This transtensional fault is located just to the west of the eastern Salton Sea shoreline, and strikes approximately parallel to the SSAF terminus. Finally, this dissertation investigates the architecture and segmentation of the Newport-Inglewood/Rose Canyon (NIRC) fault zone offshore Southern California, using seismic data sets with unprecedented density and resolution. It identifies four main fault strands, with three main stepover boundaries, and presents possible rupture scenarios based on quantitative and qualitative assessments of throughgoing rupture at stepovers or segment boundaries.

  15. Fault tolerant hypercube computer system architecture

    Madan, Herb S. (Inventor); Chow, Edward (Inventor)


    A fault-tolerant multiprocessor computer system of the hypercube type comprising a hierarchy of computers of like kind which can be functionally substituted for one another as necessary is disclosed. Communication between the working nodes is via one communications network while communications between the working nodes and watch dog nodes and load balancing nodes higher in the structure is via another communications network separate from the first. A typical branch of the hierarchy reporting to a master node or host computer comprises, a plurality of first computing nodes; a first network of message conducting paths for interconnecting the first computing nodes as a hypercube. The first network provides a path for message transfer between the first computing nodes; a first watch dog node; and a second network of message connecting paths for connecting the first computing nodes to the first watch dog node independent from the first network, the second network provides an independent path for test message and reconfiguration affecting transfers between the first computing nodes and the first switch watch dog node. There is additionally, a plurality of second computing nodes; a third network of message conducting paths for interconnecting the second computing nodes as a hypercube. The third network provides a path for message transfer between the second computing nodes; a fourth network of message conducting paths for connecting the second computing nodes to the first watch dog node independent from the third network. The fourth network provides an independent path for test message and reconfiguration affecting transfers between the second computing nodes and the first watch dog node; and a first multiplexer disposed between the first watch dog node and the second and fourth networks for allowing the first watch dog node to selectively communicate with individual ones of the computing nodes through the second and fourth networks; as well as, a second watch dog node

  16. A Diagnostic System for Speed-Varying Motor Rotary Faults

    Chwan-Lu Tseng


    Full Text Available This study proposed an intelligent rotary fault diagnostic system for motors. A sensorless rotational speed detection method and an improved dynamic structural neural network are used. Moreover, to increase the convergence speed of training, a terminal attractor method and a hybrid discriminant analysis are also adopted. The proposed method can be employed to detect the rotary frequencies of motors with varying speeds and can enhance the discrimination of motor faults. To conduct the experiments, this study used wireless sensor nodes to transmit vibration data and employed MATLAB to write codes for functional modules, including the signal processing, sensorless rotational speed estimation, neural network, and stochastic process control chart. Additionally, Visual Basic software was used to create an integrated human-machine interface. The experimental results regarding the test of equipment faults indicated that the proposed novel diagnostic system can effectively estimate rotational speeds and provide superior ability of motor fault discrimination with fast training convergence.

  17. Development of an advanced transmission line fault location system

    This paper describes the solution techniques, system modeling considerations, and simulation studies performed as a part of the development of an advanced transmission line fault location system (AFLS) intended for use on the New York Power Authority's system. The Power Authority's Moses-Adirondack 230 kV lines were selected as a test bed for the study. A reduced model of the transmission system around the Moses-Adirondack lines was developed, and a number of Electromagnetic Transients Program (EMTP) cases run to establish simulated voltage and current information as fed to the fault location system. Sensitivity studies were performed to investigate the impact of various system models, hardware features, and system conditions on fault location accuracy

  18. A Diagnostic System for Speed-Varying Motor Rotary Faults


    This study proposed an intelligent rotary fault diagnostic system for motors. A sensorless rotational speed detection method and an improved dynamic structural neural network are used. Moreover, to increase the convergence speed of training, a terminal attractor method and a hybrid discriminant analysis are also adopted. The proposed method can be employed to detect the rotary frequencies of motors with varying speeds and can enhance the discrimination of motor faults. To conduct the experime...

  19. Model Based Fault Isolation for Object-Oriented Control Systems

    Larsson, Magnus; Klein, Inger; Lawesson, Dan; Nilsson, Ulf


    This report addresses the problem of fault propagation between software modules in a large industrial control system with anobject oriented architecture. There exists a conflict between object-oriented design goals such as encapsulation and modularity, and the possibility to suppress propagating error conditions. When an object detects an error condition, it is not desirable toperform the extensive querying of other objects that would be necessary to decide how close to the real fault the obj...

  20. Robust Fault Diagnosis for Systems with Electronic Induced Delays

    Fonod, Robert; Henry, David; Bornschlegl, Eric; Charbonnel, Catherine


    A problem of robust fault diagnosis of digital controlled continuous-time systems with uncertain time-varying input delay is studied in this paper. Two residual-based fault detection and isolation (FDI) schemes are proposed that are robust in terms of time-varying delays induced by the electronic devices and disturbances. The idea of both proposed methods is to transform the uncertainty caused by delays into unknown inputs and decouple them by means of eigenstructure assignment (EA) technique...

  1. Fault Diagnosis and Accommodation of LTI systems by modified Youla parameterization

    Minupriya A


    Full Text Available In this paper an Active Fault Tolerant Control (FTC scheme is proposed for Linear Time Invariant (LTI systems, which achieves fault diagnosis followed by fault accommodation. The fault diagnosis scheme is carried out in two steps; Fault detection followed by Fault isolation. Fault detection filter use the sensor measurements to generate residuals, which have a unique static pattern in response to each fault. Distortion in these static patterns generates the probability of the presence of fault. The fault accommodation scheme is carried out using the Generalized Internal Model Control (GIMC architecture, also known as modified Youla parameterization. In addition, performance indices are also evaluated to indicate that the resulting fault tolerant scheme can detect, identify and accommodate actuator and sensor faults under additive faults. The DC motor example is considered for the demonstration of the proposed scheme.

  2. Study on fault locating technology for satellite power system

    LONG Bing; JIANG Xing-wei; SONG Zheng-ji


    It is currently prevalent to locate faults for a satellite power system based on an expert system, not utilizing all the available information provided by tests. The casual network model for a satellite power system is presented. Considerations for failure probability of each component of the power system, the cost of applying each test, the influence of a precedent test result on the next test selection, and an optimal sequential testing algorithm for fault location is presented. This program is applied to locate the failure component of the power system of a satellite. The results show this program is very effective and it is very fast to generate an optimal diagnosis tree.

  3. Fault diagnosis and fault-tolerant control strategies for non-linear systems analytical and soft computing approaches

    Witczak, Marcin


      This book presents selected fault diagnosis and fault-tolerant control strategies for non-linear systems in a unified framework. In particular, starting from advanced state estimation strategies up to modern soft computing, the discrete-time description of the system is employed Part I of the book presents original research results regarding state estimation and neural networks for robust fault diagnosis. Part II is devoted to the presentation of integrated fault diagnosis and fault-tolerant systems. It starts with a general fault-tolerant control framework, which is then extended by introducing robustness with respect to various uncertainties. Finally, it is shown how to implement the proposed framework for fuzzy systems described by the well-known Takagi–Sugeno models. This research monograph is intended for researchers, engineers, and advanced postgraduate students in control and electrical engineering, computer science,as well as mechanical and chemical engineering.

  4. Fault Diagnosis Scheme for Nonlinear Stochastic Hybrid Systems With Time-Varying Fault

    Nguyen, H.Q.; Čelikovský, Sergej

    Lima: Tarea Asociación Gráfica Educativa, Lima, Peru, 2012, s. 1-7. ISBN 978-612-4057-71-7. [15th Latinamerican Control Conference CLCA 2012. Lima (PE), 23.10.2012-26.10.2012] Institutional support: RVO:67985556 Keywords : Fault detection and diagnosis * nonlinear stochastic hybrid system * B-spline functions * probability density function(PDF) Subject RIV: BC - Control Systems Theory

  5. Fault tolerance control for proton exchange membrane fuel cell systems

    Wu, Xiaojuan; Zhou, Boyang


    Fault diagnosis and controller design are two important aspects to improve proton exchange membrane fuel cell (PEMFC) system durability. However, the two tasks are often separately performed. For example, many pressure and voltage controllers have been successfully built. However, these controllers are designed based on the normal operation of PEMFC. When PEMFC faces problems such as flooding or membrane drying, a controller with a specific design must be used. This paper proposes a unique scheme that simultaneously performs fault diagnosis and tolerance control for the PEMFC system. The proposed control strategy consists of a fault diagnosis, a reconfiguration mechanism and adjustable controllers. Using a back-propagation neural network, a model-based fault detection method is employed to detect the PEMFC current fault type (flooding, membrane drying or normal). According to the diagnosis results, the reconfiguration mechanism determines which backup controllers to be selected. Three nonlinear controllers based on feedback linearization approaches are respectively built to adjust the voltage and pressure difference in the case of normal, membrane drying and flooding conditions. The simulation results illustrate that the proposed fault tolerance control strategy can track the voltage and keep the pressure difference at desired levels in faulty conditions.

  6. Fault sensitivity and wear-out analysis of VLSI systems

    Choi, Gwan Seung


    This thesis describes simulation approaches to conduct fault sensitivity and wear-out failure analysis of VLSI systems. A fault-injection approach to study transient impact in VLSI systems is developed. Through simulated fault injection at the device level and, subsequent fault propagation at the gate functional and software levels, it is possible to identify critical bottlenecks in dependability. Techniques to speed up the fault simulation and to perform statistical analysis of fault-impact are developed. A wear-out simulation environment is also developed to closely mimic dynamic sequences of wear-out events in a device through time, to localize weak location/aspect of target chip and to allow generation of TTF (Time-to-failure) distribution of VLSI chip as a whole. First, an accurate simulation of a target chip and its application code is performed to acquire trace data (real workload) on switch activity. Then, using this switch activity information, wear-out of the each component in the entire chip is simulated using Monte Carlo techniques.

  7. Active Fault Diagnosis in Sampled-data Systems

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad


    The focus in this paper is on active fault diagnosis (AFD) in closed-loop sampleddata systems. Applying the same AFD architecture as for continuous-time systems does not directly result in the same set of closed-loop matrix transfer functions. For continuous-time systems, the LFT (linear fractional...

  8. Diagnosis and Fault-Tolerant Control for Thruster-Assisted Position Mooring System

    Nguyen, Trong Dong; Blanke, Mogens; Sørensen, Asgeir


    Development of fault-tolerant control systems is crucial to maintain safe operation of o®shore installations. The objective of this paper is to develop a fault- tolerant control for thruster-assisted position mooring (PM) system with faults occurring in the mooring lines. Faults in line's pretens......Development of fault-tolerant control systems is crucial to maintain safe operation of o®shore installations. The objective of this paper is to develop a fault- tolerant control for thruster-assisted position mooring (PM) system with faults occurring in the mooring lines. Faults in line......'s pretension or line breaks will degrade the performance of the positioning of the vessel. Faults will be detected and isolated through a fault diagnosis procedure. When faults are detected, they can be accommodated through the control action in which only parameter of the controlled plant has to be updated to...

  9. Software fault tree analysis of an automated control system device written in Ada

    Winter, Mathias William.


    Software Fault Tree Analysis (SFTA) is a technique used to analyze software for faults that could lead to hazardous conditions in systems which contain software components. Previous thesis works have developed three Ada-based, semi-automated software analysis tools, the Automated Code Translation Tool (ACm) an Ada statement template generator, the Fault Tree Editor (Fm) a graphical fault tree editor, and the Fault Isolator (Fl) an automated software fault tree isolator. These previous works d...

  10. Fault Analysis of ITER Coil Power Supply System

    The ITER magnet coils are all designed using superconductors with high current carrying capability. The Toroidal Field (TF) coils operate in a steadystate mode with a current of 68 kA and discharge the stored energy in case of quench with using 9 interleaved Fast Discharge Units (FDUs). The Central Solenoid (CS) coils and Poloidal Field (PF) coils operate in a pulse mode with currents of up to 45 kA and require fast variation of currents inducing more than 10 kV during normal operation on the coil terminals using Switching Network (SN) systems (CSs, PF1 and 6) and Booster and VS converters (PF2 to 5), which are series connected to Main converters. SN and FDU systems comprise high current DC circuit breakers and resistors for generating high voltage (SN) and to dissipate magnetic energy (FDUs). High transient voltages can arise due to the switching operation of SN and FD and the characteristics of resistors and stray components of DC distribution systems. Also, faults in power supply control such as shorts or grounding faults can produce higher voltages between terminals and between terminal and ground. Therefore, the design of the coil insulation, coil terminal regions, feeders, feed throughs, pipe breaks and instrumentation must take account of these high voltages during normal and abnormal conditions. Voltage insulation level can be defined and it is necessary to test the coils at higher voltages, to be sure of reliable performance during the lifetime of operation. This paper describes the fault analysis of the TF, CS and PF coil power supply systems, taking account of the stray parameter of the power supply and switching systems and inductively coupled superconducting coil models. Resistor grounding systems are included in the simulation model and all fault conditions such as converter hardware and software faults, switching system hardware and software faults, DC short circuits and single grounding faults are simulated. The occurrence of two successive faults

  11. Sensor fault estimation filter design for discrete-time linear time-varying systems

    Wang, Zhenhua; Rodrigues, Mickael; Theilliol, Didier; Shen, Yi


    This paper proposes a sensor fault diagnosis method for a class of discrete-time linear time-varying (LTV) systems. In this paper, the considered system is rstly formulated as a de- scriptor system representation by considering the sensor faults as auxiliary state variables. Based on the descriptor system model, a fault estimation lter which can simultaneously estimate the state and the sensor fault magnitudes is designed via a minimum- variance principle. Then, a fault diagnosis scheme is pr...

  12. Generalised strategy for implementing the minimum fault reactance based fault location algorithm in real power distribution systems

    E. Correa-Tapasco


    Full Text Available The paper presented here is aimed at proposing a generalised strategy for easily implementing a fault locator in real power distribution systems. The strategy is based on the definition of a fault location method and its successive application along section lines from a power substation to the section where the fault has been determined. According to the results, the proposed strategy seems to be applicable to real power systems as an alternative for reducing fault location time and thus keeping good continuity indexes.

  13. Inter Processor Communication for Fault Diagnosis in Multiprocessor Systems

    C. D. Malleswar


    Full Text Available In the preseJlt paper a simple technique is proposed for fault diagnosis for multiprocessor and multiple system environments, wherein all microprocessors in the system are used in part to check the health of their neighbouring processors. It involves building simple fail-safe serial communication links between processors. Processors communicate with each other over these links and each processor is made to go through certain sequences of actions intended for diagnosis, under the observation of another processor .With limited overheads, fault detection can be done by this method. Also outlined are some of the popular techniques used for health check of processor-based systems.

  14. Fault-tolerant Control Systems-An Introductory Overview

    Jin Jiang


    This paper presents an introductory overview on the development of fault-tolerant control systems. For this reason, the paper is written in a tutorial fashion to summarize some of the important results in this subject area deliberately without going into details in any of them. However, key references are provided from which interested readers can obtain more detailed information on a particular subject. It is necessary to mention that, throughout this paper, no efforts were made to provide an exhaustive coverage on the subject matter. In fact, it is far from it. The paper merely represents the view and experience of its author. It can very well be that some important issues or topics were left out unintentionally. If that is the case, the author sincerely apologizes in advance.After a brief account of fault-tolerant control systems, particularly on the original motivations, and the concept of redundancies, the paper reviews the development of fault-tolerant control systems with highlights to several important issues from a historical perspective. The general approaches to fault-tolerant control has been divided into passive, active, and hybrid approaches. The analysis techniques for active fault-tolerant control systems are also discussed. Practical applications of faulttolerant control are highlighted from a practical and industrial perspective. Finally, some critical issues in this area are discussed as open problems for future research/development in this emerging field.

  15. Design of fault tolerant control system for steam generator using

    Kim, Myung Ki; Seo, Mi Ro [Korea Electric Power Research Institute, Taejon (Korea, Republic of)


    A controller and sensor fault tolerant system for a steam generator is designed with fuzzy logic. A structure of the proposed fault tolerant redundant system is composed of a supervisor and two fuzzy weighting modulators. A supervisor alternatively checks a controller and a sensor induced performances to identify which part, a controller or a sensor, is faulty. In order to analyze controller induced performance both an error and a change in error of the system output are chosen as fuzzy variables. The fuzzy logic for a sensor induced performance uses two variables : a deviation between two sensor outputs and its frequency. Fuzzy weighting modulator generates an output signal compensated for faulty input signal. Simulations show that the proposed fault tolerant control scheme for a steam generator regulates well water level by suppressing fault effect of either controllers or sensors. Therefore through duplicating sensors and controllers with the proposed fault tolerant scheme, both a reliability of a steam generator control and sensor system and that of a power plant increase even more. 2 refs., 9 figs., 1 tab. (Author)

  16. Experimental study on superconducting fault current limiting transformer for fault current suppression and system stability improvement

    Kagawa, H.; Hayakawa, N.; Kashima, N.; Nagaya, S.; Okubo, H.


    We have been developing a superconducting fault current limiting transformer (SFCLT) with 3-phase, 500/275 kV, 625 MVA and optimized the main parameters by EMTP simulation. In this paper, we designed and fabricated an experimental scale-down model of SFCLT with 3-phase, 275/105 V, 6.25 kVA, using NbTi superconducting wire. We introduced the experimental model SFCLT into a transient network analyzer consisted of synchronous generators, transformers, transmission lines, circuit breakers and an infinite bus. It was revealed that experimental model had effective function-parameters as was simulated and experimental results clarified the effectiveness of SFCLT having both functions of the fault current suppression and the system stability improvement in a future superconducting power system.

  17. An enhanced approach to actuator fault estimation design for linear continuous-time systems

    An enhanced approach to fault estimation systems design, adjusted for linear continuous-time systems, is proposed in the paper. Based on LMI principle the method exploits state-space observer principle in an adaptive fault estimation scheme for single actuator faults. A simulation example, subject to different type of failures, demonstrates the effectiveness of the proposed form of the fault estimation technique

  18. Efficient Fault Tree Analysis of Complex Fault Tolerant Multiple-Phased Systems

    MO Yuchang; LIU Hongwei; YANG Xiaozong


    Fault tolerant multiple phased systems (FTMPS), i.e., systems whose critical components are independently replicated and whose operational life can be partitioned in a set of disjoint periods, are called "phases". Because of their deployment in critical applications, their reliability analysis is a task of primary relevance to validate the designs. Fault tree analysis based on binary decision diagram (BDD) is one of the most commonly used techniques for FTMPS reliability analysis. To utilize the technique the fault tree structure of FTMPS needs to be converted into the corresponding BDD format. Our research work shows that the system BDD generation algorithms presented in the literature are too inefficient to be used for industrial complex FTPMS because of the problems, such as variable ordering and combination of large BDDs. This paper presents a more efficient approach consisting of a flatting pre-processing technique, a proved efficient ordering heuristic and a bottom-up generation algorithm. The approach tries to combine share-variable BDDs by complex combination operation firstly and then combine no-share-variable BDDs using simple combination operation, thus to alvoid the intensive computations caused by large BDD combination operations. An example FTMPS is analyzed to illustrate the advantages of our approach.

  19. Online fault location on crossbonded AC cables in underground transmission systems

    F. Jensen, Christian; Bak, Claus Leth; Gudmundsdottir, Unnur Stella


    In this paper, a fault locator system specifically designed for crossbonded cables is described. Electromagnetic wave propagation theory for crossbonded cables with focus on fault location purposes is discussed. Based on this, the most optimal modal component and input signal to the fault locator system are identified. The fault locator system uses the Wavelet Transform both to create reliable triggers in the units and to estimate the fault location based on time domain signals obtained in th...

  20. Fault Diagnosis in Dynamic Systems Using Fuzzy Interacting Observers

    N. V. Kolesov


    Full Text Available A method of fault diagnosis in dynamic systems based on a fuzzy approach is proposed. The new method possesses two basic specific features which distinguish it from the other known fuzzy methods based on the application of fuzzy logic and a bank of state observers. First, this method uses a bank of interacting observers instead of traditional independent observers. The second specific feature of the proposed method is the assumption that there is no strict boundary between the serviceable and disabled technical states of the system, which makes it possible to specify a decision making rule for fault diagnosis.

  1. Testing Virtual Reconfigurable Circuit Designed For A Fault Tolerant System

    P. N. Kumar


    Full Text Available This research describes about the testing of virtual reconfigurable circuit (VRC designed and implemented for a fault tolerant system which averages the (three sensor inputs. The circuits that are to be tested are those which are successfully evolved in this system under different situations such as (i all the three sensors are faultless (ii one of the input sensor fails as open (iii sensors fails as short circuit. The objective of this research is to test the desired optimal circuits evolved by decoding the configuration bit streams. The logic simulation tool used to perform fault simulation is AUSIM (Auburn University Simulator.

  2. Effect analysis of faults in digital I and C systems of nuclear power plants

    A reliability analysis of digital instrumentation and control (I and C) systems in nuclear power plants has been introduced as one of the important elements of a probabilistic safety assessment because of the unique characteristics of digital I and C systems. Digital I and C systems have various features distinguishable from those of analog I and C systems such as software and fault-tolerant techniques. In this work, the faults in a digital I and C system were analyzed and a model for representing the effects of the faults was developed. First, the effects of the faults in a system were analyzed using fault injection experiments. A software-implemented fault injection technique in which faults can be injected into the memory was used based on the assumption that all faults in a system are reflected in the faults in the memory. In the experiments, the effect of a fault on the system output was observed. In addition, the success or failure in detecting the fault by fault-tolerant functions included in the system was identified. Second, a fault tree model for representing that a fault is propagated to the system output was developed. With the model, it can be identified how a fault is propagated to the output or why a fault is not detected by fault-tolerant techniques. Based on the analysis results of the proposed method, it is possible to not only evaluate the system reliability but also identify weak points of fault-tolerant techniques by identifying undetected faults. The results can be reflected in the designs to improve the capability of fault-tolerant techniques. (author)

  3. Managing systems faults on the commercial flight deck: Analysis of pilots' organization and prioritization of fault management information

    Rogers, William H.


    In rare instances, flight crews of commercial aircraft must manage complex systems faults in addition to all their normal flight tasks. Pilot errors in fault management have been attributed, at least in part, to an incomplete or inaccurate awareness of the fault situation. The current study is part of a program aimed at assuring that the types of information potentially available from an intelligent fault management aiding concept developed at NASA Langley called 'Faultfinde' (see Abbott, Schutte, Palmer, and Ricks, 1987) are an asset rather than a liability: additional information should improve pilot performance and aircraft safety, but it should not confuse, distract, overload, mislead, or generally exacerbate already difficult circumstances.

  4. Influences of Resistor-Type Superconducting Fault Current Limiter on Power System Transient Stability with Asymmetrical Short-Circuit Faults

    Xue-Ping Gu; Zhi-Long Yang


    The transient stability of a single machine to infinite-busbar power system with resistor- type superconducting fault current limiters (SFCL) is analyzed under asymmetrical short-circuit fault conditions. The SFCL is considered to introduce a resistance into the three-phase circuits when faults occur. Based on the power-angle curves for different short-circuit conditions of the single-line to ground, double-line to ground and line to line short-circuit faults, the influences of the SFCLs on transient stability are analyzed in detail. The time-domain simulation of transient stability is carried out to verify the analytical results.

  5. FADES: A tool for automated fault analysis of complex systems

    FADES is an Expert System for performing fault analyses on complex connected systems. By using a graphical editor to draw components and link them together the FADES system allows the analyst to describe a given system. The knowledge base created is used to qualitatively simulate the system behaviour. By inducing all possible component failures in the system and determining their effects, a set of facts is built up. These facts are then used to create Fault Trees, or FMEA tables. The facts may also be used for explanation effects and to generate diagnostic rules allowing system instrumentation to be optimised. The prototype system has been built and tested and is preently undergoing testing by users. All comments from these trials will be used to tailor the system to the requirements of the user so that the end product performs the exact task required

  6. Fault trees for decision making in systems analysis

    The application of fault tree analysis (FTA) to system safety and reliability is presented within the framework of system safety analysis. The concepts and techniques involved in manual and automated fault tree construction are described and their differences noted. The theory of mathematical reliability pertinent to FTA is presented with emphasis on engineering applications. An outline of the quantitative reliability techniques of the Reactor Safety Study is given. Concepts of probabilistic importance are presented within the fault tree framework and applied to the areas of system design, diagnosis and simulation. The computer code IMPORTANCE ranks basic events and cut sets according to a sensitivity analysis. A useful feature of the IMPORTANCE code is that it can accept relative failure data as input. The output of the IMPORTANCE code can assist an analyst in finding weaknesses in system design and operation, suggest the most optimal course of system upgrade, and determine the optimal location of sensors within a system. A general simulation model of system failure in terms of fault tree logic is described. The model is intended for efficient diagnosis of the causes of system failure in the event of a system breakdown. It can also be used to assist an operator in making decisions under a time constraint regarding the future course of operations. The model is well suited for computer implementation. New results incorporated in the simulation model include an algorithm to generate repair checklists on the basis of fault tree logic and a one-step-ahead optimization procedure that minimizes the expected time to diagnose system failure. (80 figures, 20 tables)

  7. A System for Fault Management and Fault Consequences Analysis for NASA's Deep Space Habitat

    Colombano, Silvano; Spirkovska, Liljana; Baskaran, Vijaykumar; Aaseng, Gordon; McCann, Robert S.; Ossenfort, John; Smith, Irene; Iverson, David L.; Schwabacher, Mark


    NASA's exploration program envisions the utilization of a Deep Space Habitat (DSH) for human exploration of the space environment in the vicinity of Mars and/or asteroids. Communication latencies with ground control of as long as 20+ minutes make it imperative that DSH operations be highly autonomous, as any telemetry-based detection of a systems problem on Earth could well occur too late to assist the crew with the problem. A DSH-based development program has been initiated to develop and test the automation technologies necessary to support highly autonomous DSH operations. One such technology is a fault management tool to support performance monitoring of vehicle systems operations and to assist with real-time decision making in connection with operational anomalies and failures. Toward that end, we are developing Advanced Caution and Warning System (ACAWS), a tool that combines dynamic and interactive graphical representations of spacecraft systems, systems modeling, automated diagnostic analysis and root cause identification, system and mission impact assessment, and mitigation procedure identification to help spacecraft operators (both flight controllers and crew) understand and respond to anomalies more effectively. In this paper, we describe four major architecture elements of ACAWS: Anomaly Detection, Fault Isolation, System Effects Analysis, and Graphic User Interface (GUI), and how these elements work in concert with each other and with other tools to provide fault management support to both the controllers and crew. We then describe recent evaluations and tests of ACAWS on the DSH testbed. The results of these tests support the feasibility and strength of our approach to failure management automation and enhanced operational autonomy


    Han Yilun


    Fault diagnosis expert system for hydraulic support is studied.The system is achieved by Turbo-prolong Language, it summaries the experience of the domain expert and sets up a fault tree, knowledge base is developed by a productive rule.According to the feature of diagnosis, the system selects forward non-determination inferring and limited depth-first search strategy.It can accomplish expert diagnosis of more than 50 kinds faults in hydraulic support.

  9. PCA Fault Feature Extraction in Complex Electric Power Systems

    ZHANG, J.; Z. Wang; Zhang, Y.; J. MA


    Electric power system is one of the most complex artificial systems in the world. The complexity is determined by its characteristics about constitution, configuration, operation, organization, etc. The fault in electric power system cannot be completely avoided. When electric power system operates from normal state to failure or abnormal, its electric quantities (current, voltage and angles, etc.) may change significantly. Our researches indicate that the variable with the biggest coeffic...

  10. Neotectonics of the Periadriatic Fault System (Eastern and Southern Alps)

    Garcia, Sebastian; Handy, Mark R.; Rosenberg, Claudio L.


    The Periadriatic Fault System (PFS) is the surface trace of the leading edge of the present Adriatic microplate, which has indented the European lithosphere since at least Miocene time. The PFS is also the tectonic boundary between the Southern Alps with its S-directed fold-and-thrust belt and the rest of the Alps that experienced Cretaceous and Tertiary metamorphism and deformation. In contrast to other Oligo-Miocene faults in the Eastern Alps (Engadine, Brenner and Inntal faults, Friuli-Trieste and the Giudicarie thrust systems) the PFS is seismically silent. In reassessing recent GPS data of Devoti et al. [2008], we find that the northward component of Adriatic motion is accommodated primarily by the Friuli-Trieste and Giudicarie thrust belts. This is manifested by a step-like decrease of the northward-component of Adriatic convergence and a drastic reduction in the seismic activity going from south to north along the Giudicarie belt. Nevertheless, the PFS may still be active, as indicated by an M=4.8 earthquake in 2001 near Merano. Geochronological ages show no evidence for tectonic movements younger than mid-Miocene along the PFS, except along the Giudicarie thrust system where exhumation rates have increased since the Messinian [Martin et al., 1998; Müller et al., 2001]. To investigate the current role of the PFS in accommodating Adriatic indentation, we tried to quantify deformation along the PFS over a time span longer than that accessible through seismic or GPS data, but shorter than that constrained by Rb-Sr or Ar-Ar geochronology. For this purpose, we analysed the geomorphology along the PFS in the Eastern Alps, using surface markers to identify possible offsets (e.g., alluvial fans, river terraces or thalwegs). First analyses of aerial photos and river networks combined with DEMs reveal a clear influence of the PFS on the morphology and on drainage network. For example, river channels along the Gailtal fault have apparent dextral offsets of up to 4 km