WorldWideScience

Sample records for ancestral duplication highly-conserved

  1. Local synteny and codon usage contribute to asymmetric sequence divergence of Saccharomyces cerevisiae gene duplicates

    Directory of Open Access Journals (Sweden)

    Bergthorsson Ulfar

    2011-09-01

    Full Text Available Abstract Background Duplicated genes frequently experience asymmetric rates of sequence evolution. Relaxed selective constraints and positive selection have both been invoked to explain the observation that one paralog within a gene-duplicate pair exhibits an accelerated rate of sequence evolution. In the majority of studies where asymmetric divergence has been established, there is no indication as to which gene copy, ancestral or derived, is evolving more rapidly. In this study we investigated the effect of local synteny (gene-neighborhood conservation and codon usage on the sequence evolution of gene duplicates in the S. cerevisiae genome. We further distinguish the gene duplicates into those that originated from a whole-genome duplication (WGD event (ohnologs versus small-scale duplications (SSD to determine if there exist any differences in their patterns of sequence evolution. Results For SSD pairs, the derived copy evolves faster than the ancestral copy. However, there is no relationship between rate asymmetry and synteny conservation (ancestral-like versus derived-like in ohnologs. mRNA abundance and optimal codon usage as measured by the CAI is lower in the derived SSD copies relative to ancestral paralogs. Moreover, in the case of ohnologs, the faster-evolving copy has lower CAI and lowered expression. Conclusions Together, these results suggest that relaxation of selection for codon usage and gene expression contribute to rate asymmetry in the evolution of duplicated genes and that in SSD pairs, the relaxation of selection stems from the loss of ancestral regulatory information in the derived copy.

  2. Inference of the ancestral vertebrate phenotype through vestiges of the whole-genome duplications.

    Science.gov (United States)

    Onimaru, Koh; Kuraku, Shigehiro

    2018-03-16

    Inferring the phenotype of the last common ancestor of living vertebrates is a challenging problem because of several unresolvable factors. They include the lack of reliable out-groups of living vertebrates, poor information about less fossilizable organs and specialized traits of phylogenetically important species, such as lampreys and hagfishes (e.g. secondary loss of vertebrae in adult hagfishes). These factors undermine the reliability of ancestral reconstruction by traditional character mapping approaches based on maximum parsimony. In this article, we formulate an approach to hypothesizing ancestral vertebrate phenotypes using information from the phylogenetic and functional properties of genes duplicated by genome expansions in early vertebrate evolution. We named the conjecture as 'chronological reconstruction of ohnolog functions (CHROF)'. This CHROF conjecture raises the possibility that the last common ancestor of living vertebrates may have had more complex traits than currently thought.

  3. Indigenous ancestral sayings contribute to modern conservation partnerships: examples using Phormium tenax.

    Science.gov (United States)

    Wehi, Priscilla M

    2009-01-01

    Traditional ecological knowledge (TEK) is central to indigenous worldviews and practices and is one of the most important contributions that indigenous people can bring to conservation management partnerships. However, researchers and managers may have difficulty accessing such knowledge, particularly where knowledge transmission has been damaged. A new methodological approach analyzes ancestral sayings from Maori oral traditions for ecological information about Phormium tenax, a plant with high cultural value that is a dominant component in many threatened wetland systems, and frequently used in restoration plantings in New Zealand. Maori ancestral sayings record an association with nectar-feeding native parrots that has only rarely been reported, as well as indications of important environmental parameters (rainfall and drought) for this species. These sayings provide evidence of indigenous management that has not been reported from interviews with elders, including evidence of fire use to create Phormium cultivations. TEK in Maori ancestral sayings imply landscape-scale processes in comparison to intensive, small-scale management methods often reported in interviews. TEK in ancestral sayings can be used to generate new scientific hypotheses, negotiate collaborative pathways, and identify ecological management strategies that support biodiversity retention. TEK can inform restoration ecology, historical ecology, and conservation management of species and ecosystems, especially where data from pollen records and archaeological artifacts are incomplete.

  4. Evolutionary Fates and Dynamic Functionalization of Young Duplicate Genes in Arabidopsis Genomes.

    Science.gov (United States)

    Wang, Jun; Tao, Feng; Marowsky, Nicholas C; Fan, Chuanzhu

    2016-09-01

    Gene duplication is a primary means to generate genomic novelties, playing an essential role in speciation and adaptation. Particularly in plants, a high abundance of duplicate genes has been maintained for significantly long periods of evolutionary time. To address the manner in which young duplicate genes were derived primarily from small-scale gene duplication and preserved in plant genomes and to determine the underlying driving mechanisms, we generated transcriptomes to produce the expression profiles of five tissues in Arabidopsis thaliana and the closely related species Arabidopsis lyrata and Capsella rubella Based on the quantitative analysis metrics, we investigated the evolutionary processes of young duplicate genes in Arabidopsis. We determined that conservation, neofunctionalization, and specialization are three main evolutionary processes for Arabidopsis young duplicate genes. We explicitly demonstrated the dynamic functionalization of duplicate genes along the evolutionary time scale. Upon origination, duplicates tend to maintain their ancestral functions; but as they survive longer, they might be likely to develop distinct and novel functions. The temporal evolutionary processes and functionalization of plant duplicate genes are associated with their ancestral functions, dynamic DNA methylation levels, and histone modification abundances. Furthermore, duplicate genes tend to be initially expressed in pollen and then to gain more interaction partners over time. Altogether, our study provides novel insights into the dynamic retention processes of young duplicate genes in plant genomes. © 2016 American Society of Plant Biologists. All rights reserved.

  5. Evolutionary Fates and Dynamic Functionalization of Young Duplicate Genes in Arabidopsis Genomes1[OPEN

    Science.gov (United States)

    Wang, Jun; Tao, Feng; Marowsky, Nicholas C.; Fan, Chuanzhu

    2016-01-01

    Gene duplication is a primary means to generate genomic novelties, playing an essential role in speciation and adaptation. Particularly in plants, a high abundance of duplicate genes has been maintained for significantly long periods of evolutionary time. To address the manner in which young duplicate genes were derived primarily from small-scale gene duplication and preserved in plant genomes and to determine the underlying driving mechanisms, we generated transcriptomes to produce the expression profiles of five tissues in Arabidopsis thaliana and the closely related species Arabidopsis lyrata and Capsella rubella. Based on the quantitative analysis metrics, we investigated the evolutionary processes of young duplicate genes in Arabidopsis. We determined that conservation, neofunctionalization, and specialization are three main evolutionary processes for Arabidopsis young duplicate genes. We explicitly demonstrated the dynamic functionalization of duplicate genes along the evolutionary time scale. Upon origination, duplicates tend to maintain their ancestral functions; but as they survive longer, they might be likely to develop distinct and novel functions. The temporal evolutionary processes and functionalization of plant duplicate genes are associated with their ancestral functions, dynamic DNA methylation levels, and histone modification abundances. Furthermore, duplicate genes tend to be initially expressed in pollen and then to gain more interaction partners over time. Altogether, our study provides novel insights into the dynamic retention processes of young duplicate genes in plant genomes. PMID:27485883

  6. Saccharomyces cerevisiae Bat1 and Bat2 aminotransferases have functionally diverged from the ancestral-like Kluyveromyces lactis orthologous enzyme.

    Directory of Open Access Journals (Sweden)

    Maritrini Colón

    Full Text Available BACKGROUND: Gene duplication is a key evolutionary mechanism providing material for the generation of genes with new or modified functions. The fate of duplicated gene copies has been amply discussed and several models have been put forward to account for duplicate conservation. The specialization model considers that duplication of a bifunctional ancestral gene could result in the preservation of both copies through subfunctionalization, resulting in the distribution of the two ancestral functions between the gene duplicates. Here we investigate whether the presumed bifunctional character displayed by the single branched chain amino acid aminotransferase present in K. lactis has been distributed in the two paralogous genes present in S. cerevisiae, and whether this conservation has impacted S. cerevisiae metabolism. PRINCIPAL FINDINGS: Our results show that the KlBat1 orthologous BCAT is a bifunctional enzyme, which participates in the biosynthesis and catabolism of branched chain aminoacids (BCAAs. This dual role has been distributed in S. cerevisiae Bat1 and Bat2 paralogous proteins, supporting the specialization model posed to explain the evolution of gene duplications. BAT1 is highly expressed under biosynthetic conditions, while BAT2 expression is highest under catabolic conditions. Bat1 and Bat2 differential relocalization has favored their physiological function, since biosynthetic precursors are generated in the mitochondria (Bat1, while catabolic substrates are accumulated in the cytosol (Bat2. Under respiratory conditions, in the presence of ammonium and BCAAs the bat1Δ bat2Δ double mutant shows impaired growth, indicating that Bat1 and Bat2 could play redundant roles. In K. lactis wild type growth is independent of BCAA degradation, since a Klbat1Δ mutant grows under this condition. CONCLUSIONS: Our study shows that BAT1 and BAT2 differential expression and subcellular relocalization has resulted in the distribution of the

  7. Maintenance and Loss of Duplicated Genes by Dosage Subfunctionalization.

    Science.gov (United States)

    Gout, Jean-Francois; Lynch, Michael

    2015-08-01

    Whole-genome duplications (WGDs) have contributed to gene-repertoire enrichment in many eukaryotic lineages. However, most duplicated genes are eventually lost and it is still unclear why some duplicated genes are evolutionary successful whereas others quickly turn to pseudogenes. Here, we show that dosage constraints are major factors opposing post-WGD gene loss in several Paramecium species that share a common ancestral WGD. We propose a model where a majority of WGD-derived duplicates preserve their ancestral function and are retained to produce enough of the proteins performing this same ancestral function. Under this model, the expression level of individual duplicated genes can evolve neutrally as long as they maintain a roughly constant summed expression, and this allows random genetic drift toward uneven contributions of the two copies to total expression. Our analysis suggests that once a high level of imbalance is reached, which can require substantial lengths of time, the copy with the lowest expression level contributes a small enough fraction of the total expression that selection no longer opposes its loss. Extension of our analysis to yeast species sharing a common ancestral WGD yields similar results, suggesting that duplicated-gene retention for dosage constraints followed by divergence in expression level and eventual deterministic gene loss might be a universal feature of post-WGD evolution. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. A conserved segmental duplication within ELA.

    Science.gov (United States)

    Brinkmeyer-Langford, C L; Murphy, W J; Childers, C P; Skow, L C

    2010-12-01

    The assembled genomic sequence of the horse major histocompatibility complex (MHC) (equine lymphocyte antigen, ELA) is very similar to the homologous human HLA, with the notable exception of a large segmental duplication at the boundary of ELA class I and class III that is absent in HLA. The segmental duplication consists of a ∼ 710 kb region of at least 11 repeated blocks: 10 blocks each contain an MHC class I-like sequence and the helicase domain portion of a BAT1-like sequence, and the remaining unit contains the full-length BAT1 gene. Similar genomic features were found in other Perissodactyls, indicating an ancient origin, which is consistent with phylogenetic analyses. Reverse-transcriptase PCR (RT-PCR) of mRNA from peripheral white blood cells of healthy and chronically or acutely infected horses detected transcription from predicted open reading frames in several of the duplicated blocks. This duplication is not present in the sequenced MHCs of most other mammals, although a similar feature at the same relative position is present in the feline MHC (FLA). Striking sequence conservation throughout Perissodactyl evolution is consistent with a functional role for at least some of the genes included within this segmental duplication. © 2010 The Authors, Journal compilation © 2010 Stichting International Foundation for Animal Genetics.

  9. Evolution of stress-regulated gene expression in duplicate genes of Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Cheng Zou

    2009-07-01

    Full Text Available Due to the selection pressure imposed by highly variable environmental conditions, stress sensing and regulatory response mechanisms in plants are expected to evolve rapidly. One potential source of innovation in plant stress response mechanisms is gene duplication. In this study, we examined the evolution of stress-regulated gene expression among duplicated genes in the model plant Arabidopsis thaliana. Key to this analysis was reconstructing the putative ancestral stress regulation pattern. By comparing the expression patterns of duplicated genes with the patterns of their ancestors, duplicated genes likely lost and gained stress responses at a rapid rate initially, but the rate is close to zero when the synonymous substitution rate (a proxy for time is > approximately 0.8. When considering duplicated gene pairs, we found that partitioning of putative ancestral stress responses occurred more frequently compared to cases of parallel retention and loss. Furthermore, the pattern of stress response partitioning was extremely asymmetric. An analysis of putative cis-acting DNA regulatory elements in the promoters of the duplicated stress-regulated genes indicated that the asymmetric partitioning of ancestral stress responses are likely due, at least in part, to differential loss of DNA regulatory elements; the duplicated genes losing most of their stress responses were those that had lost more of the putative cis-acting elements. Finally, duplicate genes that lost most or all of the ancestral responses are more likely to have gained responses to other stresses. Therefore, the retention of duplicates that inherit few or no functions seems to be coupled to neofunctionalization. Taken together, our findings provide new insight into the patterns of evolutionary changes in gene stress responses after duplication and lay the foundation for testing the adaptive significance of stress regulatory changes under highly variable biotic and abiotic environments.

  10. Conserved intron positions in FGFR genes reflect the modular structure of FGFR and reveal stepwise addition of domains to an already complex ancestral FGFR.

    Science.gov (United States)

    Rebscher, Nicole; Deichmann, Christina; Sudhop, Stefanie; Fritzenwanker, Jens Holger; Green, Stephen; Hassel, Monika

    2009-10-01

    We have analyzed the evolution of fibroblast growth factor receptor (FGFR) tyrosine kinase genes throughout a wide range of animal phyla. No evidence for an FGFR gene was found in Porifera, but we tentatively identified an FGFR gene in the placozoan Trichoplax adhaerens. The gene encodes a protein with three immunoglobulin-like domains, a single-pass transmembrane, and a split tyrosine kinase domain. By superimposing intron positions of 20 FGFR genes from Placozoa, Cnidaria, Protostomia, and Deuterostomia over the respective protein domain structure, we identified ten ancestral introns and three conserved intron groups. Our analysis shows (1) that the position of ancestral introns correlates to the modular structure of FGFRs, (2) that the acidic domain very likely evolved in the last common ancestor of triploblasts, (3) that splicing of IgIII was enabled by a triploblast-specific insertion, and (4) that IgI is subject to substantial loss or duplication particularly in quickly evolving genomes. Moreover, intron positions in the catalytic domain of FGFRs map to the borders of protein subdomains highly conserved in other serine/threonine kinases. Nevertheless, these introns were introduced in metazoan receptor tyrosine kinases exclusively. Our data support the view that protein evolution dating back to the Cambrian explosion took place in such a short time window that only subtle changes in the domain structure are detectable in extant representatives of animal phyla. We propose that the first multidomain FGFR originated in the last common ancestor of Placozoa, Cnidaria, and Bilateria. Additional domains were introduced mainly in the ancestor of triploblasts and in the Ecdysozoa.

  11. Whole genome duplications and expansion of the vertebrate GATA transcription factor gene family

    Directory of Open Access Journals (Sweden)

    Bowerman Bruce

    2009-08-01

    Full Text Available Abstract Background GATA transcription factors influence many developmental processes, including the specification of embryonic germ layers. The GATA gene family has significantly expanded in many animal lineages: whereas diverse cnidarians have only one GATA transcription factor, six GATA genes have been identified in many vertebrates, five in many insects, and eleven to thirteen in Caenorhabditis nematodes. All bilaterian animal genomes have at least one member each of two classes, GATA123 and GATA456. Results We have identified one GATA123 gene and one GATA456 gene from the genomic sequence of two invertebrate deuterostomes, a cephalochordate (Branchiostoma floridae and a hemichordate (Saccoglossus kowalevskii. We also have confirmed the presence of six GATA genes in all vertebrate genomes, as well as additional GATA genes in teleost fish. Analyses of conserved sequence motifs and of changes to the exon-intron structure, and molecular phylogenetic analyses of these deuterostome GATA genes support their origin from two ancestral deuterostome genes, one GATA 123 and one GATA456. Comparison of the conserved genomic organization across vertebrates identified eighteen paralogous gene families linked to multiple vertebrate GATA genes (GATA paralogons, providing the strongest evidence yet for expansion of vertebrate GATA gene families via genome duplication events. Conclusion From our analysis, we infer the evolutionary birth order and relationships among vertebrate GATA transcription factors, and define their expansion via multiple rounds of whole genome duplication events. As the genomes of four independent invertebrate deuterostome lineages contain single copy GATA123 and GATA456 genes, we infer that the 0R (pre-genome duplication invertebrate deuterostome ancestor also had two GATA genes, one of each class. Synteny analyses identify duplications of paralogous chromosomal regions (paralogons, from single ancestral vertebrate GATA123 and GATA456

  12. Two Rounds of Whole Genome Duplication in the AncestralVertebrate

    Energy Technology Data Exchange (ETDEWEB)

    Dehal, Paramvir; Boore, Jeffrey L.

    2005-04-12

    The hypothesis that the relatively large and complex vertebrate genome was created by two ancient, whole genome duplications has been hotly debated, but remains unresolved. We reconstructed the evolutionary relationships of all gene families from the complete gene sets of a tunicate, fish, mouse, and human, then determined when each gene duplicated relative to the evolutionary tree of the organisms. We confirmed the results of earlier studies that there remains little signal of these events in numbers of duplicated genes, gene tree topology, or the number of genes per multigene family. However, when we plotted the genomic map positions of only the subset of paralogous genes that were duplicated prior to the fish-tetrapod split, their global physical organization provides unmistakable evidence of two distinct genome duplication events early in vertebrate evolution indicated by clear patterns of 4-way paralogous regions covering a large part of the human genome. Our results highlight the potential for these large-scale genomic events to have driven the evolutionary success of the vertebrate lineage.

  13. Domain duplication, divergence, and loss events in vertebrate Msx paralogs reveal phylogenomically informed disease markers.

    Science.gov (United States)

    Finnerty, John R; Mazza, Maureen E; Jezewski, Peter A

    2009-01-20

    Msx originated early in animal evolution and is implicated in human genetic disorders. To reconstruct the functional evolution of Msx and inform the study of human mutations, we analyzed the phylogeny and synteny of 46 metazoan Msx proteins and tracked the duplication, diversification and loss of conserved motifs. Vertebrate Msx sequences sort into distinct Msx1, Msx2 and Msx3 clades. The sister-group relationship between MSX1 and MSX2 reflects their derivation from the 4p/5q chromosomal paralogon, a derivative of the original "MetaHox" cluster. We demonstrate physical linkage between Msx and other MetaHox genes (Hmx, NK1, Emx) in a cnidarian. Seven conserved domains, including two Groucho repression domains (N- and C-terminal), were present in the ancestral Msx. In cnidarians, the Groucho domains are highly similar. In vertebrate Msx1, the N-terminal Groucho domain is conserved, while the C-terminal domain diverged substantially, implying a novel function. In vertebrate Msx2 and Msx3, the C-terminal domain was lost. MSX1 mutations associated with ectodermal dysplasia or orofacial clefting disorders map to conserved domains in a non-random fashion. Msx originated from a MetaHox ancestor that also gave rise to Tlx, Demox, NK, and possibly EHGbox, Hox and ParaHox genes. Duplication, divergence or loss of domains played a central role in the functional evolution of Msx. Duplicated domains allow pleiotropically expressed proteins to evolve new functions without disrupting existing interaction networks. Human missense sequence variants reside within evolutionarily conserved domains, likely disrupting protein function. This phylogenomic evaluation of candidate disease markers will inform clinical and functional studies.

  14. Domain duplication, divergence, and loss events in vertebrate Msx paralogs reveal phylogenomically informed disease markers

    Directory of Open Access Journals (Sweden)

    Finnerty John R

    2009-01-01

    Full Text Available Abstract Background Msx originated early in animal evolution and is implicated in human genetic disorders. To reconstruct the functional evolution of Msx and inform the study of human mutations, we analyzed the phylogeny and synteny of 46 metazoan Msx proteins and tracked the duplication, diversification and loss of conserved motifs. Results Vertebrate Msx sequences sort into distinct Msx1, Msx2 and Msx3 clades. The sister-group relationship between MSX1 and MSX2 reflects their derivation from the 4p/5q chromosomal paralogon, a derivative of the original "MetaHox" cluster. We demonstrate physical linkage between Msx and other MetaHox genes (Hmx, NK1, Emx in a cnidarian. Seven conserved domains, including two Groucho repression domains (N- and C-terminal, were present in the ancestral Msx. In cnidarians, the Groucho domains are highly similar. In vertebrate Msx1, the N-terminal Groucho domain is conserved, while the C-terminal domain diverged substantially, implying a novel function. In vertebrate Msx2 and Msx3, the C-terminal domain was lost. MSX1 mutations associated with ectodermal dysplasia or orofacial clefting disorders map to conserved domains in a non-random fashion. Conclusion Msx originated from a MetaHox ancestor that also gave rise to Tlx, Demox, NK, and possibly EHGbox, Hox and ParaHox genes. Duplication, divergence or loss of domains played a central role in the functional evolution of Msx. Duplicated domains allow pleiotropically expressed proteins to evolve new functions without disrupting existing interaction networks. Human missense sequence variants reside within evolutionarily conserved domains, likely disrupting protein function. This phylogenomic evaluation of candidate disease markers will inform clinical and functional studies.

  15. Detection of Weakly Conserved Ancestral Mammalian RegulatorySequences by Primate Comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qian-fei; Prabhakar, Shyam; Chanan, Sumita; Cheng,Jan-Fang; Rubin, Edward M.; Boffelli, Dario

    2006-06-01

    Genomic comparisons between human and distant, non-primatemammals are commonly used to identify cis-regulatory elements based onconstrained sequence evolution. However, these methods fail to detectcryptic functional elements, which are too weakly conserved among mammalsto distinguish from nonfunctional DNA. To address this problem, weexplored the potential of deep intra-primate sequence comparisons. Wesequenced the orthologs of 558 kb of human genomic sequence, coveringmultiple loci involved in cholesterol homeostasis, in 6 nonhumanprimates. Our analysis identified 6 noncoding DNA elements displayingsignificant conservation among primates, but undetectable in more distantcomparisons. In vitro and in vivo tests revealed that at least three ofthese 6 elements have regulatory function. Notably, the mouse orthologsof these three functional human sequences had regulatory activity despitetheir lack of significant sequence conservation, indicating that they arecryptic ancestral cis-regulatory elements. These regulatory elementscould still be detected in a smaller set of three primate speciesincluding human, rhesus and marmoset. Since the human and rhesus genomesequences are already available, and the marmoset genome is activelybeing sequenced, the primate-specific conservation analysis describedhere can be applied in the near future on a whole-genome scale, tocomplement the annotation provided by more distant speciescomparisons.

  16. Characterisation of monotreme caseins reveals lineage-specific expansion of an ancestral casein locus in mammals.

    Science.gov (United States)

    Lefèvre, Christophe M; Sharp, Julie A; Nicholas, Kevin R

    2009-01-01

    Using a milk-cell cDNA sequencing approach we characterised milk-protein sequences from two monotreme species, platypus (Ornithorhynchus anatinus) and echidna (Tachyglossus aculeatus) and found a full set of caseins and casein variants. The genomic organisation of the platypus casein locus is compared with other mammalian genomes, including the marsupial opossum and several eutherians. Physical linkage of casein genes has been seen in the casein loci of all mammalian genomes examined and we confirm that this is also observed in platypus. However, we show that a recent duplication of beta-casein occurred in the monotreme lineage, as opposed to more ancient duplications of alpha-casein in the eutherian lineage, while marsupials possess only single copies of alpha- and beta-caseins. Despite this variability, the close proximity of the main alpha- and beta-casein genes in an inverted tail-tail orientation and the relative orientation of the more distant kappa-casein genes are similar in all mammalian genome sequences so far available. Overall, the conservation of the genomic organisation of the caseins indicates the early, pre-monotreme development of the fundamental role of caseins during lactation. In contrast, the lineage-specific gene duplications that have occurred within the casein locus of monotremes and eutherians but not marsupials, which may have lost part of the ancestral casein locus, emphasises the independent selection on milk provision strategies to the young, most likely linked to different developmental strategies. The monotremes therefore provide insight into the ancestral drivers for lactation and how these have adapted in different lineages.

  17. Annelid Distal-less/Dlx duplications reveal varied post-duplication fates

    Directory of Open Access Journals (Sweden)

    Korchagina Natalia

    2011-08-01

    Full Text Available Abstract Background Dlx (Distal-less genes have various developmental roles and are widespread throughout the animal kingdom, usually occurring as single copy genes in non-chordates and as multiple copies in most chordate genomes. While the genomic arrangement and function of these genes is well known in vertebrates and arthropods, information about Dlx genes in other organisms is scarce. We investigate the presence of Dlx genes in several annelid species and examine Dlx gene expression in the polychaete Pomatoceros lamarckii. Results Two Dlx genes are present in P. lamarckii, Capitella teleta and Helobdella robusta. The C. teleta Dlx genes are closely linked in an inverted tail-to-tail orientation, reminiscent of the arrangement of vertebrate Dlx pairs, and gene conversion appears to have had a role in their evolution. The H. robusta Dlx genes, however, are not on the same genomic scaffold and display divergent sequences, while, if the P. lamarckii genes are linked in a tail-to-tail orientation they are a minimum of 41 kilobases apart and show no sign of gene conversion. No expression in P. lamarckii appendage development has been observed, which conflicts with the supposed conserved role of these genes in animal appendage development. These Dlx duplications do not appear to be annelid-wide, as the polychaete Platynereis dumerilii likely possesses only one Dlx gene. Conclusions On the basis of the currently accepted annelid phylogeny, we hypothesise that one Dlx duplication occurred in the annelid lineage after the divergence of P. dumerilii from the other lineages and these duplicates then had varied evolutionary fates in different species. We also propose that the ancestral role of Dlx genes is not related to appendage development.

  18. Conservation, duplication, and loss of the Tor signaling pathway in the fungal kingdom

    Directory of Open Access Journals (Sweden)

    Heitman Joseph

    2010-09-01

    Full Text Available Abstract Background The nutrient-sensing Tor pathway governs cell growth and is conserved in nearly all eukaryotic organisms from unicellular yeasts to multicellular organisms, including humans. Tor is the target of the immunosuppressive drug rapamycin, which in complex with the prolyl isomerase FKBP12 inhibits Tor functions. Rapamycin is a gold standard drug for organ transplant recipients that was approved by the FDA in 1999 and is finding additional clinical indications as a chemotherapeutic and antiproliferative agent. Capitalizing on the plethora of recently sequenced genomes we have conducted comparative genomic studies to annotate the Tor pathway throughout the fungal kingdom and related unicellular opisthokonts, including Monosiga brevicollis, Salpingoeca rosetta, and Capsaspora owczarzaki. Results Interestingly, the Tor signaling cascade is absent in three microsporidian species with available genome sequences, the only known instance of a eukaryotic group lacking this conserved pathway. The microsporidia are obligate intracellular pathogens with highly reduced genomes, and we hypothesize that they lost the Tor pathway as they adapted and streamlined their genomes for intracellular growth in a nutrient-rich environment. Two TOR paralogs are present in several fungal species as a result of either a whole genome duplication or independent gene/segmental duplication events. One such event was identified in the amphibian pathogen Batrachochytrium dendrobatidis, a chytrid responsible for worldwide global amphibian declines and extinctions. Conclusions The repeated independent duplications of the TOR gene in the fungal kingdom might reflect selective pressure acting upon this kinase that populates two proteinaceous complexes with different cellular roles. These comparative genomic analyses illustrate the evolutionary trajectory of a central nutrient-sensing cascade that enables diverse eukaryotic organisms to respond to their natural

  19. Diversification of a single ancestral gene into a successful toxin superfamily in highly venomous Australian funnel-web spiders.

    Science.gov (United States)

    Pineda, Sandy S; Sollod, Brianna L; Wilson, David; Darling, Aaron; Sunagar, Kartik; Undheim, Eivind A B; Kely, Laurence; Antunes, Agostinho; Fry, Bryan G; King, Glenn F

    2014-03-05

    Spiders have evolved pharmacologically complex venoms that serve to rapidly subdue prey and deter predators. The major toxic factors in most spider venoms are small, disulfide-rich peptides. While there is abundant evidence that snake venoms evolved by recruitment of genes encoding normal body proteins followed by extensive gene duplication accompanied by explosive structural and functional diversification, the evolutionary trajectory of spider-venom peptides is less clear. Here we present evidence of a spider-toxin superfamily encoding a high degree of sequence and functional diversity that has evolved via accelerated duplication and diversification of a single ancestral gene. The peptides within this toxin superfamily are translated as prepropeptides that are posttranslationally processed to yield the mature toxin. The N-terminal signal sequence, as well as the protease recognition site at the junction of the propeptide and mature toxin are conserved, whereas the remainder of the propeptide and mature toxin sequences are variable. All toxin transcripts within this superfamily exhibit a striking cysteine codon bias. We show that different pharmacological classes of toxins within this peptide superfamily evolved under different evolutionary selection pressures. Overall, this study reinforces the hypothesis that spiders use a combinatorial peptide library strategy to evolve a complex cocktail of peptide toxins that target neuronal receptors and ion channels in prey and predators. We show that the ω-hexatoxins that target insect voltage-gated calcium channels evolved under the influence of positive Darwinian selection in an episodic fashion, whereas the κ-hexatoxins that target insect calcium-activated potassium channels appear to be under negative selection. A majority of the diversifying sites in the ω-hexatoxins are concentrated on the molecular surface of the toxins, thereby facilitating neofunctionalisation leading to new toxin pharmacology.

  20. Vertebrate beta-thymosins: conserved synteny reveals the relationship between those of bony fish and of land vertebrates.

    Science.gov (United States)

    Edwards, John

    2010-03-05

    Using conservation of synteny I show how the four thymosins expressed by teleost fish are related to the three of tetrapods, which is not evident from their protein sequences. This clarification was aided by identification of a novel thymosin of reptilians that replaces the beta10 thymosin of mammals. Recent reconstruction of the ancestral vertebrate genome suggests that divergence of beta-thymosins began with duplication preceding the two rounds of whole genome duplication. Copyright (c) 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  1. Multiple chromosomal rearrangements structured the ancestral vertebrate Hox-bearing protochromosomes.

    Directory of Open Access Journals (Sweden)

    Vincent J Lynch

    2009-01-01

    Full Text Available While the proposal that large-scale genome expansions occurred early in vertebrate evolution is widely accepted, the exact mechanisms of the expansion--such as a single or multiple rounds of whole genome duplication, bloc chromosome duplications, large-scale individual gene duplications, or some combination of these--is unclear. Gene families with a single invertebrate member but four vertebrate members, such as the Hox clusters, provided early support for Ohno's hypothesis that two rounds of genome duplication (the 2R-model occurred in the stem lineage of extant vertebrates. However, despite extensive study, the duplication history of the Hox clusters has remained unclear, calling into question its usefulness in resolving the role of large-scale gene or genome duplications in early vertebrates. Here, we present a phylogenetic analysis of the vertebrate Hox clusters and several linked genes (the Hox "paralogon" and show that different phylogenies are obtained for Dlx and Col genes than for Hox and ErbB genes. We show that these results are robust to errors in phylogenetic inference and suggest that these competing phylogenies can be resolved if two chromosomal crossover events occurred in the ancestral vertebrate. These results resolve conflicting data on the order of Hox gene duplications and the role of genome duplication in vertebrate evolution and suggest that a period of genome reorganization occurred after genome duplications in early vertebrates.

  2. Enzyme functional evolution through improved catalysis of ancestrally nonpreferred substrates

    Science.gov (United States)

    Huang, Ruiqi; Hippauf, Frank; Rohrbeck, Diana; Haustein, Maria; Wenke, Katrin; Feike, Janie; Sorrelle, Noah; Piechulla, Birgit; Barkman, Todd J.

    2012-01-01

    In this study, we investigated the role for ancestral functional variation that may be selected upon to generate protein functional shifts using ancestral protein resurrection, statistical tests for positive selection, forward and reverse evolutionary genetics, and enzyme functional assays. Data are presented for three instances of protein functional change in the salicylic acid/benzoic acid/theobromine (SABATH) lineage of plant secondary metabolite-producing enzymes. In each case, we demonstrate that ancestral nonpreferred activities were improved upon in a daughter enzyme after gene duplication, and that these functional shifts were likely coincident with positive selection. Both forward and reverse mutagenesis studies validate the impact of one or a few sites toward increasing activity with ancestrally nonpreferred substrates. In one case, we document the occurrence of an evolutionary reversal of an active site residue that reversed enzyme properties. Furthermore, these studies show that functionally important amino acid replacements result in substrate discrimination as reflected in evolutionary changes in the specificity constant (kcat/KM) for competing substrates, even though adaptive substitutions may affect KM and kcat separately. In total, these results indicate that nonpreferred, or even latent, ancestral protein activities may be coopted at later times to become the primary or preferred protein activities. PMID:22315396

  3. Ancestral genomic duplication of the insulin gene in tilapia: An analysis of possible implications for clinical islet xenotransplantation using donor islets from transgenic tilapia expressing a humanized insulin gene.

    Science.gov (United States)

    Hrytsenko, Olga; Pohajdak, Bill; Wright, James R

    2016-07-03

    Tilapia, a teleost fish, have multiple large anatomically discrete islets which are easy to harvest, and when transplanted into diabetic murine recipients, provide normoglycemia and mammalian-like glucose tolerance profiles. Tilapia insulin differs structurally from human insulin which could preclude their use as islet donors for xenotransplantation. Therefore, we produced transgenic tilapia with islets expressing a humanized insulin gene. It is now known that fish genomes may possess an ancestral duplication and so tilapia may have a second insulin gene. Therefore, we cloned, sequenced, and characterized the tilapia insulin 2 transcript and found that its expression is negligible in islets, is not islet-specific, and would not likely need to be silenced in our transgenic fish.

  4. Artificial domain duplication replicates evolutionary history of ketol-acid reductoisomerases.

    Science.gov (United States)

    Cahn, Jackson K B; Brinkmann-Chen, Sabine; Buller, Andrew R; Arnold, Frances H

    2016-07-01

    The duplication of protein structural domains has been proposed as a common mechanism for the generation of new protein folds. A particularly interesting case is the class II ketol-acid reductoisomerase (KARI), which putatively arose from an ancestral class I KARI by duplication of the C-terminal domain and corresponding loss of obligate dimerization. As a result, the class II enzymes acquired a deeply embedded figure-of-eight knot. To test this evolutionary hypothesis we constructed a novel class II KARI by duplicating the C-terminal domain of a hyperthermostable class I KARI. The new protein is monomeric, as confirmed by gel filtration and X-ray crystallography, and has the deeply knotted class II KARI fold. Surprisingly, its catalytic activity is nearly unchanged from the parent KARI. This provides strong evidence in support of domain duplication as the mechanism for the evolution of the class II KARI fold and demonstrates the ability of domain duplication to generate topological novelty in a function-neutral manner. © 2015 The Protein Society.

  5. A synergism between adaptive effects and evolvability drives whole genome duplication to fixation.

    Science.gov (United States)

    Cuypers, Thomas D; Hogeweg, Paulien

    2014-04-01

    Whole genome duplication has shaped eukaryotic evolutionary history and has been associated with drastic environmental change and species radiation. While the most common fate of WGD duplicates is a return to single copy, retained duplicates have been found enriched for highly interacting genes. This pattern has been explained by a neutral process of subfunctionalization and more recently, dosage balance selection. However, much about the relationship between environmental change, WGD and adaptation remains unknown. Here, we study the duplicate retention pattern postWGD, by letting virtual cells adapt to environmental changes. The virtual cells have structured genomes that encode a regulatory network and simple metabolism. Populations are under selection for homeostasis and evolve by point mutations, small indels and WGD. After populations had initially adapted fully to fluctuating resource conditions re-adaptation to a broad range of novel environments was studied by tracking mutations in the line of descent. WGD was established in a minority (≈30%) of lineages, yet, these were significantly more successful at re-adaptation. Unexpectedly, WGD lineages conserved more seemingly redundant genes, yet had higher per gene mutation rates. While WGD duplicates of all functional classes were significantly over-retained compared to a model of neutral losses, duplicate retention was clearly biased towards highly connected TFs. Importantly, no subfunctionalization occurred in conserved pairs, strongly suggesting that dosage balance shaped retention. Meanwhile, singles diverged significantly. WGD, therefore, is a powerful mechanism to cope with environmental change, allowing conservation of a core machinery, while adapting the peripheral network to accommodate change.

  6. A synergism between adaptive effects and evolvability drives whole genome duplication to fixation.

    Directory of Open Access Journals (Sweden)

    Thomas D Cuypers

    2014-04-01

    Full Text Available Whole genome duplication has shaped eukaryotic evolutionary history and has been associated with drastic environmental change and species radiation. While the most common fate of WGD duplicates is a return to single copy, retained duplicates have been found enriched for highly interacting genes. This pattern has been explained by a neutral process of subfunctionalization and more recently, dosage balance selection. However, much about the relationship between environmental change, WGD and adaptation remains unknown. Here, we study the duplicate retention pattern postWGD, by letting virtual cells adapt to environmental changes. The virtual cells have structured genomes that encode a regulatory network and simple metabolism. Populations are under selection for homeostasis and evolve by point mutations, small indels and WGD. After populations had initially adapted fully to fluctuating resource conditions re-adaptation to a broad range of novel environments was studied by tracking mutations in the line of descent. WGD was established in a minority (≈30% of lineages, yet, these were significantly more successful at re-adaptation. Unexpectedly, WGD lineages conserved more seemingly redundant genes, yet had higher per gene mutation rates. While WGD duplicates of all functional classes were significantly over-retained compared to a model of neutral losses, duplicate retention was clearly biased towards highly connected TFs. Importantly, no subfunctionalization occurred in conserved pairs, strongly suggesting that dosage balance shaped retention. Meanwhile, singles diverged significantly. WGD, therefore, is a powerful mechanism to cope with environmental change, allowing conservation of a core machinery, while adapting the peripheral network to accommodate change.

  7. Reconstruction of Ancestral Genomes in Presence of Gene Gain and Loss.

    Science.gov (United States)

    Avdeyev, Pavel; Jiang, Shuai; Aganezov, Sergey; Hu, Fei; Alekseyev, Max A

    2016-03-01

    Since most dramatic genomic changes are caused by genome rearrangements as well as gene duplications and gain/loss events, it becomes crucial to understand their mechanisms and reconstruct ancestral genomes of the given genomes. This problem was shown to be NP-complete even in the "simplest" case of three genomes, thus calling for heuristic rather than exact algorithmic solutions. At the same time, a larger number of input genomes may actually simplify the problem in practice as it was earlier illustrated with MGRA, a state-of-the-art software tool for reconstruction of ancestral genomes of multiple genomes. One of the key obstacles for MGRA and other similar tools is presence of breakpoint reuses when the same breakpoint region is broken by several different genome rearrangements in the course of evolution. Furthermore, such tools are often limited to genomes composed of the same genes with each gene present in a single copy in every genome. This limitation makes these tools inapplicable for many biological datasets and degrades the resolution of ancestral reconstructions in diverse datasets. We address these deficiencies by extending the MGRA algorithm to genomes with unequal gene contents. The developed next-generation tool MGRA2 can handle gene gain/loss events and shares the ability of MGRA to reconstruct ancestral genomes uniquely in the case of limited breakpoint reuse. Furthermore, MGRA2 employs a number of novel heuristics to cope with higher breakpoint reuse and process datasets inaccessible for MGRA. In practical experiments, MGRA2 shows superior performance for simulated and real genomes as compared to other ancestral genome reconstruction tools.

  8. Effect of Duplicate Genes on Mouse Genetic Robustness: An Update

    Directory of Open Access Journals (Sweden)

    Zhixi Su

    2014-01-01

    Full Text Available In contrast to S. cerevisiae and C. elegans, analyses based on the current knockout (KO mouse phenotypes led to the conclusion that duplicate genes had almost no role in mouse genetic robustness. It has been suggested that the bias of mouse KO database toward ancient duplicates may possibly cause this knockout duplicate puzzle, that is, a very similar proportion of essential genes (PE between duplicate genes and singletons. In this paper, we conducted an extensive and careful analysis for the mouse KO phenotype data and corroborated a strong effect of duplicate genes on mouse genetics robustness. Moreover, the effect of duplicate genes on mouse genetic robustness is duplication-age dependent, which holds after ruling out the potential confounding effect from coding-sequence conservation, protein-protein connectivity, functional bias, or the bias of duplicates generated by whole genome duplication (WGD. Our findings suggest that two factors, the sampling bias toward ancient duplicates and very ancient duplicates with a proportion of essential genes higher than that of singletons, have caused the mouse knockout duplicate puzzle; meanwhile, the effect of genetic buffering may be correlated with sequence conservation as well as protein-protein interactivity.

  9. Evolution of the duplicated intracellular lipid-binding protein genes of teleost fishes.

    Science.gov (United States)

    Venkatachalam, Ananda B; Parmar, Manoj B; Wright, Jonathan M

    2017-08-01

    Increasing organismal complexity during the evolution of life has been attributed to the duplication of genes and entire genomes. More recently, theoretical models have been proposed that postulate the fate of duplicated genes, among them the duplication-degeneration-complementation (DDC) model. In the DDC model, the common fate of a duplicated gene is lost from the genome owing to nonfunctionalization. Duplicated genes are retained in the genome either by subfunctionalization, where the functions of the ancestral gene are sub-divided between the sister duplicate genes, or by neofunctionalization, where one of the duplicate genes acquires a new function. Both processes occur either by loss or gain of regulatory elements in the promoters of duplicated genes. Here, we review the genomic organization, evolution, and transcriptional regulation of the multigene family of intracellular lipid-binding protein (iLBP) genes from teleost fishes. Teleost fishes possess many copies of iLBP genes owing to a whole genome duplication (WGD) early in the teleost fish radiation. Moreover, the retention of duplicated iLBP genes is substantially higher than the retention of all other genes duplicated in the teleost genome. The fatty acid-binding protein genes, a subfamily of the iLBP multigene family in zebrafish, are differentially regulated by peroxisome proliferator-activated receptor (PPAR) isoforms, which may account for the retention of iLBP genes in the zebrafish genome by the process of subfunctionalization of cis-acting regulatory elements in iLBP gene promoters.

  10. Ancestral sequence reconstruction in primate mitochondrial DNA: compositional bias and effect on functional inference.

    Science.gov (United States)

    Krishnan, Neeraja M; Seligmann, Hervé; Stewart, Caro-Beth; De Koning, A P Jason; Pollock, David D

    2004-10-01

    flexibility. To determine whether biased reconstructions using optimization methods might affect inferences of functional properties, ancestral primate mitochondrial tRNA sequences were inferred and helix-forming propensities for conserved pairs were evaluated in silico. For ambiguously reconstructed nucleotides at sites with high base composition variability, ancestral tRNA sequences from Bayesian analyses were more compatible with canonical base pairing than were those inferred by other methods. Thus, nucleotide bias in reconstructed sequences apparently can lead to serious bias and inaccuracies in functional predictions.

  11. Recurrent Gene Duplication Leads to Diverse Repertoires of Centromeric Histones in Drosophila Species.

    Science.gov (United States)

    Kursel, Lisa E; Malik, Harmit S

    2017-06-01

    Despite their essential role in the process of chromosome segregation in most eukaryotes, centromeric histones show remarkable evolutionary lability. Not only have they been lost in multiple insect lineages, but they have also undergone gene duplication in multiple plant lineages. Based on detailed study of a handful of model organisms including Drosophila melanogaster, centromeric histone duplication is considered to be rare in animals. Using a detailed phylogenomic study, we find that Cid, the centromeric histone gene, has undergone at least four independent gene duplications during Drosophila evolution. We find duplicate Cid genes in D. eugracilis (Cid2), in the montium species subgroup (Cid3, Cid4) and in the entire Drosophila subgenus (Cid5). We show that Cid3, Cid4, and Cid5 all localize to centromeres in their respective species. Some Cid duplicates are primarily expressed in the male germline. With rare exceptions, Cid duplicates have been strictly retained after birth, suggesting that they perform nonredundant centromeric functions, independent from the ancestral Cid. Indeed, each duplicate encodes a distinct N-terminal tail, which may provide the basis for distinct protein-protein interactions. Finally, we show some Cid duplicates evolve under positive selection whereas others do not. Taken together, our results support the hypothesis that Drosophila Cid duplicates have subfunctionalized. Thus, these gene duplications provide an unprecedented opportunity to dissect the multiple roles of centromeric histones. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  12. Gene duplication and the evolution of hemoglobin isoform differentiation in birds.

    Science.gov (United States)

    Grispo, Michael T; Natarajan, Chandrasekhar; Projecto-Garcia, Joana; Moriyama, Hideaki; Weber, Roy E; Storz, Jay F

    2012-11-02

    The majority of bird species co-express two functionally distinct hemoglobin (Hb) isoforms in definitive erythrocytes as follows: HbA (the major adult Hb isoform, with α-chain subunits encoded by the α(A)-globin gene) and HbD (the minor adult Hb isoform, with α-chain subunits encoded by the α(D)-globin gene). The α(D)-globin gene originated via tandem duplication of an embryonic α-like globin gene in the stem lineage of tetrapod vertebrates, which suggests the possibility that functional differentiation between the HbA and HbD isoforms may be attributable to a retained ancestral character state in HbD that harkens back to a primordial, embryonic function. To investigate this possibility, we conducted a combined analysis of protein biochemistry and sequence evolution to characterize the structural and functional basis of Hb isoform differentiation in birds. Functional experiments involving purified HbA and HbD isoforms from 11 different bird species revealed that HbD is characterized by a consistently higher O(2) affinity in the presence of allosteric effectors such as organic phosphates and Cl(-) ions. In the case of both HbA and HbD, analyses of oxygenation properties under the two-state Monod-Wyman-Changeux allosteric model revealed that the pH dependence of Hb-O(2) affinity stems primarily from changes in the O(2) association constant of deoxy (T-state)-Hb. Ancestral sequence reconstructions revealed that the amino acid substitutions that distinguish the adult-expressed Hb isoforms are not attributable to the retention of an ancestral (pre-duplication) character state in the α(D)-globin gene that is shared with the embryonic α-like globin gene.

  13. Gene Duplication and the Evolution of Hemoglobin Isoform Differentiation in Birds*

    Science.gov (United States)

    Grispo, Michael T.; Natarajan, Chandrasekhar; Projecto-Garcia, Joana; Moriyama, Hideaki; Weber, Roy E.; Storz, Jay F.

    2012-01-01

    The majority of bird species co-express two functionally distinct hemoglobin (Hb) isoforms in definitive erythrocytes as follows: HbA (the major adult Hb isoform, with α-chain subunits encoded by the αA-globin gene) and HbD (the minor adult Hb isoform, with α-chain subunits encoded by the αD-globin gene). The αD-globin gene originated via tandem duplication of an embryonic α-like globin gene in the stem lineage of tetrapod vertebrates, which suggests the possibility that functional differentiation between the HbA and HbD isoforms may be attributable to a retained ancestral character state in HbD that harkens back to a primordial, embryonic function. To investigate this possibility, we conducted a combined analysis of protein biochemistry and sequence evolution to characterize the structural and functional basis of Hb isoform differentiation in birds. Functional experiments involving purified HbA and HbD isoforms from 11 different bird species revealed that HbD is characterized by a consistently higher O2 affinity in the presence of allosteric effectors such as organic phosphates and Cl− ions. In the case of both HbA and HbD, analyses of oxygenation properties under the two-state Monod-Wyman-Changeux allosteric model revealed that the pH dependence of Hb-O2 affinity stems primarily from changes in the O2 association constant of deoxy (T-state)-Hb. Ancestral sequence reconstructions revealed that the amino acid substitutions that distinguish the adult-expressed Hb isoforms are not attributable to the retention of an ancestral (pre-duplication) character state in the αD-globin gene that is shared with the embryonic α-like globin gene. PMID:22962007

  14. Duplication of the IGFBP-2 gene in teleost fish: protein structure and functionality conservation and gene expression divergence.

    Directory of Open Access Journals (Sweden)

    Jianfeng Zhou

    Full Text Available BACKGROUND: Insulin-like growth factor binding protein-2 (IGFBP-2 is a secreted protein that binds and regulates IGF actions in controlling growth, development, reproduction, and aging. Elevated expression of IGFBP-2 is often associated with progression of many types of cancers. METHODOLOGY/PRINCIPAL FINDINGS: We report the identification and characterization of two IGFBP-2 genes in zebrafish and four other teleost fish. Comparative genomics and structural analyses suggest that they are co-orthologs of the human IGFBP-2 gene. Biochemical assays show that both zebrafish igfbp-2a and -2b encode secreted proteins that bind IGFs. These two genes exhibit distinct spatiotemporal expression patterns. During embryogenesis, IGFBP-2a mRNA is initially detected in the lens, then in the brain boundary vasculature, and subsequently becomes highly expressed in the liver. In the adult stage, liver has the highest levels of IGFBP-2a mRNA, followed by the brain. Low levels of IGFBP-2a mRNA were detected in muscle and in the gonad in male adults only. IGFBP-2b mRNA is detected initially in all tissues at low levels, but later becomes abundant in the liver. In adult males, IGFBP-2b mRNA is only detected in the liver. In adult females, it is also found in the gut, kidney, ovary, and muscle. To gain insights into how the IGFBP-2 genes may have evolved through partitioning of ancestral functions, functional and mechanistic studies were carried out. Expression of zebrafish IGFBP-2a and -2b caused significant decreases in the growth and developmental rates and their effects are comparable to that of human IGFBP-2. IGFBP-2 mutants with altered IGF binding-, RGD-, and heparin-binding sites were generated and their actions examined. While mutating the RGD and heparin binding sites had little effect, altering the IGF binding site abolished its biological activity. CONCLUSIONS/SIGNIFICANCE: These results suggest that IGFBP-2 is a conserved regulatory protein and it inhibits

  15. Duplications of the Y-chromosome specific loci P25 and 92R7 and forensic implications

    DEFF Research Database (Denmark)

    Sanchez Sanchez, Juan Jose; Brión, Maria; Parson, Walther

    2004-01-01

    methodologies were used in order to detect the SNP alleles and the PSVs of the loci. All results obtained with the various typing techniques supported the conclusion. The allele distributions of the binary markers were analysed in more than 600 males with seven different haplogroups. For P25, the ancestral...... allele C was found in several samples from different haplogroups. The derived allele A was always present with an additional C variant. Haplogroup P was defined by the derived allele A at the 92R7 locus. However, the ancestral allele G was always associated with an A variant due to the duplication....

  16. Drosophila duplication hotspots are associated with late-replicating regions of the genome.

    Directory of Open Access Journals (Sweden)

    Margarida Cardoso-Moreira

    2011-11-01

    Full Text Available Duplications play a significant role in both extremes of the phenotypic spectrum of newly arising mutations: they can have severe deleterious effects (e.g. duplications underlie a variety of diseases but can also be highly advantageous. The phenotypic potential of newly arisen duplications has stimulated wide interest in both the mutational and selective processes shaping these variants in the genome. Here we take advantage of the Drosophila simulans-Drosophila melanogaster genetic system to further our understanding of both processes. Regarding mutational processes, the study of two closely related species allows investigation of the potential existence of shared duplication hotspots, and the similarities and differences between the two genomes can be used to dissect its underlying causes. Regarding selection, the difference in the effective population size between the two species can be leveraged to ask questions about the strength of selection acting on different classes of duplications. In this study, we conducted a survey of duplication polymorphisms in 14 different lines of D. simulans using tiling microarrays and combined it with an analogous survey for the D. melanogaster genome. By integrating the two datasets, we identified duplication hotspots conserved between the two species. However, unlike the duplication hotspots identified in mammalian genomes, Drosophila duplication hotspots are not associated with sequences of high sequence identity capable of mediating non-allelic homologous recombination. Instead, Drosophila duplication hotspots are associated with late-replicating regions of the genome, suggesting a link between DNA replication and duplication rates. We also found evidence supporting a higher effectiveness of selection on duplications in D. simulans than in D. melanogaster. This is also true for duplications segregating at high frequency, where we find evidence in D. simulans that a sizeable fraction of these mutations is

  17. Yeast Interspecies Comparative Proteomics Reveals Divergence in Expression Profiles and Provides Insights into Proteome Resource Allocation and Evolutionary Roles of Gene Duplication*

    Science.gov (United States)

    Kito, Keiji; Ito, Haruka; Nohara, Takehiro; Ohnishi, Mihoko; Ishibashi, Yuko; Takeda, Daisuke

    2016-01-01

    Omics analysis is a versatile approach for understanding the conservation and diversity of molecular systems across multiple taxa. In this study, we compared the proteome expression profiles of four yeast species (Saccharomyces cerevisiae, Saccharomyces mikatae, Kluyveromyces waltii, and Kluyveromyces lactis) grown on glucose- or glycerol-containing media. Conserved expression changes across all species were observed only for a small proportion of all proteins differentially expressed between the two growth conditions. Two Kluyveromyces species, both of which exhibited a high growth rate on glycerol, a nonfermentative carbon source, showed distinct species-specific expression profiles. In K. waltii grown on glycerol, proteins involved in the glyoxylate cycle and gluconeogenesis were expressed in high abundance. In K. lactis grown on glycerol, the expression of glycolytic and ethanol metabolic enzymes was unexpectedly low, whereas proteins involved in cytoplasmic translation, including ribosomal proteins and elongation factors, were highly expressed. These marked differences in the types of predominantly expressed proteins suggest that K. lactis optimizes the balance of proteome resource allocation between metabolism and protein synthesis giving priority to cellular growth. In S. cerevisiae, about 450 duplicate gene pairs were retained after whole-genome duplication. Intriguingly, we found that in the case of duplicates with conserved sequences, the total abundance of proteins encoded by a duplicate pair in S. cerevisiae was similar to that of protein encoded by nonduplicated ortholog in Kluyveromyces yeast. Given the frequency of haploinsufficiency, this observation suggests that conserved duplicate genes, even though minor cases of retained duplicates, do not exhibit a dosage effect in yeast, except for ribosomal proteins. Thus, comparative proteomic analyses across multiple species may reveal not only species-specific characteristics of metabolic processes under

  18. Comparative genomics reveals conservative evolution of the xylem transcriptome in vascular plants.

    Science.gov (United States)

    Li, Xinguo; Wu, Harry X; Southerton, Simon G

    2010-06-21

    Wood is a valuable natural resource and a major carbon sink. Wood formation is an important developmental process in vascular plants which played a crucial role in plant evolution. Although genes involved in xylem formation have been investigated, the molecular mechanisms of xylem evolution are not well understood. We use comparative genomics to examine evolution of the xylem transcriptome to gain insights into xylem evolution. The xylem transcriptome is highly conserved in conifers, but considerably divergent in angiosperms. The functional domains of genes in the xylem transcriptome are moderately to highly conserved in vascular plants, suggesting the existence of a common ancestral xylem transcriptome. Compared to the total transcriptome derived from a range of tissues, the xylem transcriptome is relatively conserved in vascular plants. Of the xylem transcriptome, cell wall genes, ancestral xylem genes, known proteins and transcription factors are relatively more conserved in vascular plants. A total of 527 putative xylem orthologs were identified, which are unevenly distributed across the Arabidopsis chromosomes with eight hot spots observed. Phylogenetic analysis revealed that evolution of the xylem transcriptome has paralleled plant evolution. We also identified 274 conifer-specific xylem unigenes, all of which are of unknown function. These xylem orthologs and conifer-specific unigenes are likely to have played a crucial role in xylem evolution. Conifers have highly conserved xylem transcriptomes, while angiosperm xylem transcriptomes are relatively diversified. Vascular plants share a common ancestral xylem transcriptome. The xylem transcriptomes of vascular plants are more conserved than the total transcriptomes. Evolution of the xylem transcriptome has largely followed the trend of plant evolution.

  19. Multiple independent origins of mitochondrial control region duplications in the order Psittaciformes

    Science.gov (United States)

    Schirtzinger, Erin E.; Tavares, Erika S.; Gonzales, Lauren A.; Eberhard, Jessica R.; Miyaki, Cristina Y.; Sanchez, Juan J.; Hernandez, Alexis; Müeller, Heinrich; Graves, Gary R.; Fleischer, Robert C.; Wright, Timothy F.

    2012-01-01

    Mitochondrial genomes are generally thought to be under selection for compactness, due to their small size, consistent gene content, and a lack of introns or intergenic spacers. As more animal mitochondrial genomes are fully sequenced, rearrangements and partial duplications are being identified with increasing frequency, particularly in birds (Class Aves). In this study, we investigate the evolutionary history of mitochondrial control region states within the avian order Psittaciformes (parrots and cockatoos). To this aim, we reconstructed a comprehensive multi-locus phylogeny of parrots, used PCR of three diagnostic fragments to classify the mitochondrial control region state as single or duplicated, and mapped these states onto the phylogeny. We further sequenced 44 selected species to validate these inferences of control region state. Ancestral state reconstruction using a range of weighting schemes identified six independent origins of mitochondrial control region duplications within Psittaciformes. Analysis of sequence data showed that varying levels of mitochondrial gene and tRNA homology and degradation were present within a given clade exhibiting duplications. Levels of divergence between control regions within an individual varied from 0–10.9% with the differences occurring mainly between 51 and 225 nucleotides 3′ of the goose hairpin in domain I. Further investigations into the fates of duplicated mitochondrial genes, the potential costs and benefits of having a second control region, and the complex relationship between evolutionary rates, selection, and time since duplication are needed to fully explain these patterns in the mitochondrial genome. PMID:22543055

  20. Circular DNA Intermediate in the Duplication of Nile Tilapia vasa Genes

    Science.gov (United States)

    Fujimura, Koji; Conte, Matthew A.; Kocher, Thomas D.

    2011-01-01

    vasa is a highly conserved RNA helicase involved in animal germ cell development. Among vertebrate species, it is typically present as a single copy per genome. Here we report the isolation and sequencing of BAC clones for Nile tilapia vasa genes. Contrary to a previous report that Nile tilapia have a single copy of the vasa gene, we find evidence for at least three vasa gene loci. The vasa gene locus was duplicated from the original site and integrated into two distant novel sites. For one of these insertions we find evidence that the duplication was mediated by a circular DNA intermediate. This mechanism of gene duplication may explain the origin of isolated gene duplicates during the evolution of fish genomes. These data provide a foundation for studying the role of multiple vasa genes in the development of tilapia gonads, and will contribute to investigations of the molecular mechanisms of sex determination and evolution in cichlid fishes. PMID:22216289

  1. Whole Genome and Tandem Duplicate Retention facilitated Glucosinolate Pathway Diversification in the Mustard Family.

    NARCIS (Netherlands)

    Hofberger, J.A.; Lyons, E.; Edger, P.P.; Pires, J.C.; Schranz, M.E.

    2013-01-01

    Plants share a common history of successive whole genome duplication (WGD) events retaining genomic patterns of duplicate gene copies (ohnologs) organized in conserved syntenic blocks. Duplication was often proposed to affect the origin of novel traits during evolution. However, genetic evidence

  2. Concomitant duplications of opioid peptide and receptor genes before the origin of jawed vertebrates.

    Directory of Open Access Journals (Sweden)

    Görel Sundström

    Full Text Available BACKGROUND: The opioid system is involved in reward and pain mechanisms and consists in mammals of four receptors and several peptides. The peptides are derived from four prepropeptide genes, PENK, PDYN, PNOC and POMC, encoding enkephalins, dynorphins, orphanin/nociceptin and beta-endorphin, respectively. Previously we have described how two rounds of genome doubling (2R before the origin of jawed vertebrates formed the receptor family. METHODOLOGY/PRINCIPAL FINDINGS: Opioid peptide gene family members were investigated using a combination of sequence-based phylogeny and chromosomal locations of the peptide genes in various vertebrates. Several adjacent gene families were investigated similarly. The results show that the ancestral peptide gene gave rise to two additional copies in the genome doublings. The fourth member was generated by a local gene duplication, as the genes encoding POMC and PNOC are located on the same chromosome in the chicken genome and all three teleost genomes that we have studied. A translocation has disrupted this synteny in mammals. The PDYN gene seems to have been lost in chicken, but not in zebra finch. Duplicates of some peptide genes have arisen in the teleost fishes. Within the prepropeptide precursors, peptides have been lost or gained in different lineages. CONCLUSIONS/SIGNIFICANCE: The ancestral peptide and receptor genes were located on the same chromosome and were thus duplicated concomitantly. However, subsequently genetic linkage has been lost. In conclusion, the system of opioid peptides and receptors was largely formed by the genome doublings that took place early in vertebrate evolution.

  3. Slipins: ancient origin, duplication and diversification of the stomatin protein family

    Directory of Open Access Journals (Sweden)

    Young J Peter W

    2008-02-01

    Full Text Available Abstract Background Stomatin is a membrane protein that was first isolated from human red blood cells. Since then, a number of stomatin-like proteins have been identified in all three domains of life. The conservation among these proteins is remarkable, with bacterial and human homologs sharing 50 % identity. Despite being associated with a variety of diseases such as cancer, kidney failure and anaemia, precise functions of these proteins remain unclear. Results We have constructed a comprehensive phylogeny of all 'stomatin-like' sequences that share a 150 amino acid domain. We show these proteins comprise an ancient family that arose early in prokaryotic evolution, and we propose a new nomenclature that reflects their phylogeny, based on the name "slipin" (stomatin-like protein. Within prokaryotes there are two distinct subfamilies that account for the two different origins of the eight eukaryotic stomatin subfamilies, one of which gave rise to eukaryotic SLP-2, renamed here "paraslipin". This was apparently acquired through the mitochondrial endosymbiosis and is widely distributed amongst the major kingdoms. The other prokaryotic subfamily gave rise to the ancestor of the remaining seven eukaryotic subfamilies. The highly diverged "alloslipin" subfamily is represented only by fungal, viral and ciliate sequences. The remaining six subfamilies, collectively termed "slipins", are confined to metazoa. Protostome stomatin, as well as a newly reported arthropod subfamily slipin-4, are restricted to invertebrate groups, whilst slipin-1 (previously SLP-1 is present in nematodes and higher metazoa. In vertebrates, the stomatin family expanded considerably, with at least two duplication events giving rise to podocin and slipin-3 subfamilies (previously SLP-3, with the retained ancestral sequence giving rise to vertebrate stomatin. Conclusion Stomatin-like proteins have their origin in an ancient duplication event that occurred early on in the evolution

  4. Phylogenetic signal from rearrangements in 18 Anopheles species by joint scaffolding extant and ancestral genomes.

    Science.gov (United States)

    Anselmetti, Yoann; Duchemin, Wandrille; Tannier, Eric; Chauve, Cedric; Bérard, Sèverine

    2018-05-09

    Genomes rearrangements carry valuable information for phylogenetic inference or the elucidation of molecular mechanisms of adaptation. However, the detection of genome rearrangements is often hampered by current deficiencies in data and methods: Genomes obtained from short sequence reads have generally very fragmented assemblies, and comparing multiple gene orders generally leads to computationally intractable algorithmic questions. We present a computational method, ADSEQ, which, by combining ancestral gene order reconstruction, comparative scaffolding and de novo scaffolding methods, overcomes these two caveats. ADSEQ provides simultaneously improved assemblies and ancestral genomes, with statistical supports on all local features. Compared to previous comparative methods, it runs in polynomial time, it samples solutions in a probabilistic space, and it can handle a significantly larger gene complement from the considered extant genomes, with complex histories including gene duplications and losses. We use ADSEQ to provide improved assemblies and a genome history made of duplications, losses, gene translocations, rearrangements, of 18 complete Anopheles genomes, including several important malaria vectors. We also provide additional support for a differentiated mode of evolution of the sex chromosome and of the autosomes in these mosquito genomes. We demonstrate the method's ability to improve extant assemblies accurately through a procedure simulating realistic assembly fragmentation. We study a debated issue regarding the phylogeny of the Gambiae complex group of Anopheles genomes in the light of the evolution of chromosomal rearrangements, suggesting that the phylogenetic signal they carry can differ from the phylogenetic signal carried by gene sequences, more prone to introgression.

  5. An evolutionarily conserved glycine-tyrosine motif forms a folding core in outer membrane proteins.

    Directory of Open Access Journals (Sweden)

    Marcin Michalik

    Full Text Available An intimate interaction between a pair of amino acids, a tyrosine and glycine on neighboring β-strands, has been previously reported to be important for the structural stability of autotransporters. Here, we show that the conservation of this interacting pair extends to nearly all major families of outer membrane β-barrel proteins, which are thought to have originated through duplication events involving an ancestral ββ hairpin. We analyzed the function of this motif using the prototypical outer membrane protein OmpX. Stopped-flow fluorescence shows that two folding processes occur in the millisecond time regime, the rates of which are reduced in the tyrosine mutant. Folding assays further demonstrate a reduction in the yield of folded protein for the mutant compared to the wild-type, as well as a reduction in thermal stability. Taken together, our data support the idea of an evolutionarily conserved 'folding core' that affects the folding, membrane insertion, and thermal stability of outer membrane protein β-barrels.

  6. Using paleogenomics to study the evolution of gene families: origin and duplication history of the relaxin family hormones and their receptors.

    Directory of Open Access Journals (Sweden)

    Sergey Yegorov

    Full Text Available Recent progress in the analysis of whole genome sequencing data has resulted in the emergence of paleogenomics, a field devoted to the reconstruction of ancestral genomes. Ancestral karyotype reconstructions have been used primarily to illustrate the dynamic nature of genome evolution. In this paper, we demonstrate how they can also be used to study individual gene families by examining the evolutionary history of relaxin hormones (RLN/INSL and relaxin family peptide receptors (RXFP. Relaxin family hormones are members of the insulin superfamily, and are implicated in the regulation of a variety of primarily reproductive and neuroendocrine processes. Their receptors are G-protein coupled receptors (GPCR's and include members of two distinct evolutionary groups, an unusual characteristic. Although several studies have tried to elucidate the origins of the relaxin peptide family, the evolutionary origin of their receptors and the mechanisms driving the diversification of the RLN/INSL-RXFP signaling systems in non-placental vertebrates has remained elusive. Here we show that the numerous vertebrate RLN/INSL and RXFP genes are products of an ancestral receptor-ligand system that originally consisted of three genes, two of which apparently trace their origins to invertebrates. Subsequently, diversification of the system was driven primarily by whole genome duplications (WGD, 2R and 3R followed by almost complete retention of the ligand duplicates in most vertebrates but massive loss of receptor genes in tetrapods. Interestingly, the majority of 3R duplicates retained in teleosts are potentially involved in neuroendocrine regulation. Furthermore, we infer that the ancestral AncRxfp3/4 receptor may have been syntenically linked to the AncRln-like ligand in the pre-2R genome, and show that syntenic linkages among ligands and receptors have changed dynamically in different lineages. This study ultimately shows the broad utility, with some caveats, of

  7. Divergence and Conservative Evolution of XTNX Genes in Land Plants

    Directory of Open Access Journals (Sweden)

    Yan-Mei Zhang

    2017-10-01

    Full Text Available The Toll-interleukin-1 receptor (TIR and Nucleotide-binding site (NBS domains are two major components of the TIR-NBS-leucine-rich repeat family plant disease resistance genes. Extensive functional and evolutionary studies have been performed on these genes; however, the characterization of a small group of genes that are composed of atypical TIR and NBS domains, namely XTNX genes, is limited. The present study investigated this specific gene family by conducting genome-wide analyses of 59 green plant genomes. A total of 143 XTNX genes were identified in 51 of the 52 land plant genomes, whereas no XTNX gene was detected in any green algae genomes, which indicated that XTNX genes originated upon emergence of land plants. Phylogenetic analysis revealed that the ancestral XTNX gene underwent two rounds of ancient duplications in land plants, which resulted in the formation of clades I/II and clades IIa/IIb successively. Although clades I and IIb have evolved conservatively in angiosperms, the motif composition difference and sequence divergence at the amino acid level suggest that functional divergence may have occurred since the separation of the two clades. In contrast, several features of the clade IIa genes, including the absence in the majority of dicots, the long branches in the tree, the frequent loss of ancestral motifs, and the loss of expression in all detected tissues of Zea mays, all suggest that the genes in this lineage might have undergone pseudogenization. This study highlights that XTNX genes are a gene family originated anciently in land plants and underwent specific conservative pattern in evolution.

  8. De novo assembly of the zucchini genome reveals a whole-genome duplication associated with the origin of the Cucurbita genus.

    Science.gov (United States)

    Montero-Pau, Javier; Blanca, José; Bombarely, Aureliano; Ziarsolo, Peio; Esteras, Cristina; Martí-Gómez, Carlos; Ferriol, María; Gómez, Pedro; Jamilena, Manuel; Mueller, Lukas; Picó, Belén; Cañizares, Joaquín

    2017-11-07

    The Cucurbita genus (squashes, pumpkins and gourds) includes important domesticated species such as C. pepo, C. maxima and C. moschata. In this study, we present a high-quality draft of the zucchini (C. pepo) genome. The assembly has a size of 263 Mb, a scaffold N50 of 1.8 Mb and 34 240 gene models. It includes 92% of the conserved BUSCO core gene set, and it is estimated to cover 93.0% of the genome. The genome is organized in 20 pseudomolecules that represent 81.4% of the assembly, and it is integrated with a genetic map of 7718 SNPs. Despite the small genome size, three independent lines of evidence support that the C. pepo genome is the result of a whole-genome duplication: the topology of the gene family phylogenies, the karyotype organization and the distribution of 4DTv distances. Additionally, 40 transcriptomes of 12 species of the genus were assembled and analysed together with all the other published genomes of the Cucurbitaceae family. The duplication was detected in all the Cucurbita species analysed, including C. maxima and C. moschata, but not in the more distant cucurbits belonging to the Cucumis and Citrullus genera, and it is likely to have occurred 30 ± 4 Mya in the ancestral species that gave rise to the genus. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  9. The vertebrate ancestral repertoire of visual opsins, transducin alpha subunits and oxytocin/vasopressin receptors was established by duplication of their shared genomic region in the two rounds of early vertebrate genome duplications.

    Science.gov (United States)

    Lagman, David; Ocampo Daza, Daniel; Widmark, Jenny; Abalo, Xesús M; Sundström, Görel; Larhammar, Dan

    2013-11-02

    Vertebrate color vision is dependent on four major color opsin subtypes: RH2 (green opsin), SWS1 (ultraviolet opsin), SWS2 (blue opsin), and LWS (red opsin). Together with the dim-light receptor rhodopsin (RH1), these form the family of vertebrate visual opsins. Vertebrate genomes contain many multi-membered gene families that can largely be explained by the two rounds of whole genome duplication (WGD) in the vertebrate ancestor (2R) followed by a third round in the teleost ancestor (3R). Related chromosome regions resulting from WGD or block duplications are said to form a paralogon. We describe here a paralogon containing the genes for visual opsins, the G-protein alpha subunit families for transducin (GNAT) and adenylyl cyclase inhibition (GNAI), the oxytocin and vasopressin receptors (OT/VP-R), and the L-type voltage-gated calcium channels (CACNA1-L). Sequence-based phylogenies and analyses of conserved synteny show that the above-mentioned gene families, and many neighboring gene families, expanded in the early vertebrate WGDs. This allows us to deduce the following evolutionary scenario: The vertebrate ancestor had a chromosome containing the genes for two visual opsins, one GNAT, one GNAI, two OT/VP-Rs and one CACNA1-L gene. This chromosome was quadrupled in 2R. Subsequent gene losses resulted in a set of five visual opsin genes, three GNAT and GNAI genes, six OT/VP-R genes and four CACNA1-L genes. These regions were duplicated again in 3R resulting in additional teleost genes for some of the families. Major chromosomal rearrangements have taken place in the teleost genomes. By comparison with the corresponding chromosomal regions in the spotted gar, which diverged prior to 3R, we could time these rearrangements to post-3R. We present an extensive analysis of the paralogon housing the visual opsin, GNAT and GNAI, OT/VP-R, and CACNA1-L gene families. The combined data imply that the early vertebrate WGD events contributed to the evolution of vision and the

  10. A role for gene duplication and natural variation of gene expression in the evolution of metabolism.

    Directory of Open Access Journals (Sweden)

    Daniel J Kliebenstein

    Full Text Available BACKGROUND: Most eukaryotic genomes have undergone whole genome duplications during their evolutionary history. Recent studies have shown that the function of these duplicated genes can diverge from the ancestral gene via neo- or sub-functionalization within single genotypes. An additional possibility is that gene duplicates may also undergo partitioning of function among different genotypes of a species leading to genetic differentiation. Finally, the ability of gene duplicates to diverge may be limited by their biological function. METHODOLOGY/PRINCIPAL FINDINGS: To test these hypotheses, I estimated the impact of gene duplication and metabolic function upon intraspecific gene expression variation of segmental and tandem duplicated genes within Arabidopsis thaliana. In all instances, the younger tandem duplicated genes showed higher intraspecific gene expression variation than the average Arabidopsis gene. Surprisingly, the older segmental duplicates also showed evidence of elevated intraspecific gene expression variation albeit typically lower than for the tandem duplicates. The specific biological function of the gene as defined by metabolic pathway also modulated the level of intraspecific gene expression variation. The major energy metabolism and biosynthetic pathways showed decreased variation, suggesting that they are constrained in their ability to accumulate gene expression variation. In contrast, a major herbivory defense pathway showed significantly elevated intraspecific variation suggesting that it may be under pressure to maintain and/or generate diversity in response to fluctuating insect herbivory pressures. CONCLUSION: These data show that intraspecific variation in gene expression is facilitated by an interaction of gene duplication and biological activity. Further, this plays a role in controlling diversity of plant metabolism.

  11. Gene family size conservation is a good indicator of evolutionary rates.

    Science.gov (United States)

    Chen, Feng-Chi; Chen, Chiuan-Jung; Li, Wen-Hsiung; Chuang, Trees-Juen

    2010-08-01

    The evolution of duplicate genes has been a topic of broad interest. Here, we propose that the conservation of gene family size is a good indicator of the rate of sequence evolution and some other biological properties. By comparing the human-chimpanzee-macaque orthologous gene families with and without family size conservation, we demonstrate that genes with family size conservation evolve more slowly than those without family size conservation. Our results further demonstrate that both family expansion and contraction events may accelerate gene evolution, resulting in elevated evolutionary rates in the genes without family size conservation. In addition, we show that the duplicate genes with family size conservation evolve significantly more slowly than those without family size conservation. Interestingly, the median evolutionary rate of singletons falls in between those of the above two types of duplicate gene families. Our results thus suggest that the controversy on whether duplicate genes evolve more slowly than singletons can be resolved when family size conservation is taken into consideration. Furthermore, we also observe that duplicate genes with family size conservation have the highest level of gene expression/expression breadth, the highest proportion of essential genes, and the lowest gene compactness, followed by singletons and then by duplicate genes without family size conservation. Such a trend accords well with our observations of evolutionary rates. Our results thus point to the importance of family size conservation in the evolution of duplicate genes.

  12. Ancestrality and evolution of trait syndromes in finches (Fringillidae).

    Science.gov (United States)

    Ponge, Jean-François; Zuccon, Dario; Elias, Marianne; Pavoine, Sandrine; Henry, Pierre-Yves; Théry, Marc; Guilbert, Éric

    2017-12-01

    Species traits have been hypothesized by one of us (Ponge, 2013) to evolve in a correlated manner as species colonize stable, undisturbed habitats, shifting from "ancestral" to "derived" strategies. We predicted that generalism, r-selection, sexual monomorphism, and migration/gregariousness are the ancestral states (collectively called strategy A) and evolved correlatively toward specialism, K-selection, sexual dimorphism, and residence/territoriality as habitat stabilized (collectively called B strategy). We analyzed the correlated evolution of four syndromes, summarizing the covariation between 53 traits, respectively, involved in ecological specialization, r-K gradient, sexual selection, and dispersal/social behaviors in 81 species representative of Fringillidae, a bird family with available natural history information and that shows variability for all these traits. The ancestrality of strategy A was supported for three of the four syndromes, the ancestrality of generalism having a weaker support, except for the core group Carduelinae (69 species). It appeared that two different B-strategies evolved from the ancestral state A, both associated with highly predictable environments: one in poorly seasonal environments, called B1, with species living permanently in lowland tropics, with "slow pace of life" and weak sexual dimorphism, and one in highly seasonal environments, called B2, with species breeding out-of-the-tropics, migratory, with a "fast pace of life" and high sexual dimorphism.

  13. Single-copy genes define a conserved order between rice and wheat for understanding differences caused by duplication, deletion, and transposition of genes.

    Science.gov (United States)

    Singh, Nagendra K; Dalal, Vivek; Batra, Kamlesh; Singh, Binay K; Chitra, G; Singh, Archana; Ghazi, Irfan A; Yadav, Mahavir; Pandit, Awadhesh; Dixit, Rekha; Singh, Pradeep K; Singh, Harvinder; Koundal, Kirpa R; Gaikwad, Kishor; Mohapatra, Trilochan; Sharma, Tilak R

    2007-01-01

    The high-quality rice genome sequence is serving as a reference for comparative genome analysis in crop plants, especially cereals. However, early comparisons with bread wheat showed complex patterns of conserved synteny (gene content) and colinearity (gene order). Here, we show the presence of ancient duplicated segments in the progenitor of wheat, which were first identified in the rice genome. We also show that single-copy (SC) rice genes, those representing unique matches with wheat expressed sequence tag (EST) unigene contigs in the whole rice genome, show more than twice the proportion of genes mapping to syntenic wheat chromosome as compared to the multicopy (MC) or duplicated rice genes. While 58.7% of the 1,244 mapped SC rice genes were located in single syntenic wheat chromosome groups, the remaining 41.3% were distributed randomly to the other six non-syntenic wheat groups. This could only be explained by a background dispersal of genes in the genome through transposition or other unknown mechanism. The breakdown of rice-wheat synteny due to such transpositions was much greater near the wheat centromeres. Furthermore, the SC rice genes revealed a conserved primordial gene order that gives clues to the origin of rice and wheat chromosomes from a common ancestor through polyploidy, aneuploidy, centromeric fusions, and translocations. Apart from the bin-mapped wheat EST contigs, we also compared 56,298 predicted rice genes with 39,813 wheat EST contigs assembled from 409,765 EST sequences and identified 7,241 SC rice gene homologs of wheat. Based on the conserved colinearity of 1,063 mapped SC rice genes across the bins of individual wheat chromosomes, we predicted the wheat bin location of 6,178 unmapped SC rice gene homologs and validated the location of 213 of these in the telomeric bins of 21 wheat chromosomes with 35.4% initial success. This opens up the possibility of directed mapping of a large number of conserved SC rice gene homologs in wheat

  14. RESEARCH ON NON-DESTRUCTIVE TESTING TECHNOLOGY IN CONSERVATION REPAIR PROJECT OF ANCESTRAL TEMPLE IN MUKDEN PALACE

    Directory of Open Access Journals (Sweden)

    J. Yang

    2017-08-01

    Full Text Available Due to the use of wood and other non-permanent materials, traditional Chinese architecture is one of the most fragile constructions in various heritage objects today. With the increasing emphasis on the protection of cultural relics, the repair project of wooden structure has become more and more important. There are various kinds of destructions, which pose a hidden danger to the overall safety of the ancient buildings, caused not only by time and nature, but also by improper repairs in history or nowadays. Today, the use of digital technology is a basic requirement in the conservation of cultural heritage. Detection technology, especially non-destructive testing technology, could provide more accurate records in capturing detailed physical characteristics of structures such as geometric deformation and invisible damage, as well as prevent a man-made destruction in the process of repair project. This paper aims to interpret with a typical example, Ancestral Temple in Mukden Palace, along with a discussion of how to use the non-destructive testing technology with ground penetrating radar, stress wave, resistograph and so on, in addition to find an appropriate protection method in repair project of traditional Chinese wooden architecture.

  15. Research on Non-Destructive Testing Technology in Conservation Repair Project of Ancestral Temple in Mukden Palace

    Science.gov (United States)

    Yang, J.; Fu, M.

    2017-08-01

    Due to the use of wood and other non-permanent materials, traditional Chinese architecture is one of the most fragile constructions in various heritage objects today. With the increasing emphasis on the protection of cultural relics, the repair project of wooden structure has become more and more important. There are various kinds of destructions, which pose a hidden danger to the overall safety of the ancient buildings, caused not only by time and nature, but also by improper repairs in history or nowadays. Today, the use of digital technology is a basic requirement in the conservation of cultural heritage. Detection technology, especially non-destructive testing technology, could provide more accurate records in capturing detailed physical characteristics of structures such as geometric deformation and invisible damage, as well as prevent a man-made destruction in the process of repair project. This paper aims to interpret with a typical example, Ancestral Temple in Mukden Palace, along with a discussion of how to use the non-destructive testing technology with ground penetrating radar, stress wave, resistograph and so on, in addition to find an appropriate protection method in repair project of traditional Chinese wooden architecture.

  16. Ancestral Relationships Using Metafounders: Finite Ancestral Populations and Across Population Relationships.

    Science.gov (United States)

    Legarra, Andres; Christensen, Ole F; Vitezica, Zulma G; Aguilar, Ignacio; Misztal, Ignacy

    2015-06-01

    Recent use of genomic (marker-based) relationships shows that relationships exist within and across base population (breeds or lines). However, current treatment of pedigree relationships is unable to consider relationships within or across base populations, although such relationships must exist due to finite size of the ancestral population and connections between populations. This complicates the conciliation of both approaches and, in particular, combining pedigree with genomic relationships. We present a coherent theoretical framework to consider base population in pedigree relationships. We suggest a conceptual framework that considers each ancestral population as a finite-sized pool of gametes. This generates across-individual relationships and contrasts with the classical view which each population is considered as an infinite, unrelated pool. Several ancestral populations may be connected and therefore related. Each ancestral population can be represented as a "metafounder," a pseudo-individual included as founder of the pedigree and similar to an "unknown parent group." Metafounders have self- and across relationships according to a set of parameters, which measure ancestral relationships, i.e., homozygozities within populations and relationships across populations. These parameters can be estimated from existing pedigree and marker genotypes using maximum likelihood or a method based on summary statistics, for arbitrarily complex pedigrees. Equivalences of genetic variance and variance components between the classical and this new parameterization are shown. Segregation variance on crosses of populations is modeled. Efficient algorithms for computation of relationship matrices, their inverses, and inbreeding coefficients are presented. Use of metafounders leads to compatibility of genomic and pedigree relationship matrices and to simple computing algorithms. Examples and code are given. Copyright © 2015 by the Genetics Society of America.

  17. Analysis of high-identity segmental duplications in the grapevine genome

    Directory of Open Access Journals (Sweden)

    Carelli Francesco N

    2011-08-01

    Full Text Available Abstract Background Segmental duplications (SDs are blocks of genomic sequence of 1-200 kb that map to different loci in a genome and share a sequence identity > 90%. SDs show at the sequence level the same characteristics as other regions of the human genome: they contain both high-copy repeats and gene sequences. SDs play an important role in genome plasticity by creating new genes and modeling genome structure. Although data is plentiful for mammals, not much was known about the representation of SDs in plant genomes. In this regard, we performed a genome-wide analysis of high-identity SDs on the sequenced grapevine (Vitis vinifera genome (PN40024. Results We demonstrate that recent SDs (> 94% identity and >= 10 kb in size are a relevant component of the grapevine genome (85 Mb, 17% of the genome sequence. We detected mitochondrial and plastid DNA and genes (10% of gene annotation in segmentally duplicated regions of the nuclear genome. In particular, the nine highest copy number genes have a copy in either or both organelle genomes. Further we showed that several duplicated genes take part in the biosynthesis of compounds involved in plant response to environmental stress. Conclusions These data show the great influence of SDs and organelle DNA transfers in modeling the Vitis vinifera nuclear DNA structure as well as the impact of SDs in contributing to the adaptive capacity of grapevine and the nutritional content of grape products through genome variation. This study represents a step forward in the full characterization of duplicated genes important for grapevine cultural needs and human health.

  18. Ancestral sequence alignment under optimal conditions

    Directory of Open Access Journals (Sweden)

    Brown Daniel G

    2005-11-01

    Full Text Available Abstract Background Multiple genome alignment is an important problem in bioinformatics. An important subproblem used by many multiple alignment approaches is that of aligning two multiple alignments. Many popular alignment algorithms for DNA use the sum-of-pairs heuristic, where the score of a multiple alignment is the sum of its induced pairwise alignment scores. However, the biological meaning of the sum-of-pairs of pairs heuristic is not obvious. Additionally, many algorithms based on the sum-of-pairs heuristic are complicated and slow, compared to pairwise alignment algorithms. An alternative approach to aligning alignments is to first infer ancestral sequences for each alignment, and then align the two ancestral sequences. In addition to being fast, this method has a clear biological basis that takes into account the evolution implied by an underlying phylogenetic tree. In this study we explore the accuracy of aligning alignments by ancestral sequence alignment. We examine the use of both maximum likelihood and parsimony to infer ancestral sequences. Additionally, we investigate the effect on accuracy of allowing ambiguity in our ancestral sequences. Results We use synthetic sequence data that we generate by simulating evolution on a phylogenetic tree. We use two different types of phylogenetic trees: trees with a period of rapid growth followed by a period of slow growth, and trees with a period of slow growth followed by a period of rapid growth. We examine the alignment accuracy of four ancestral sequence reconstruction and alignment methods: parsimony, maximum likelihood, ambiguous parsimony, and ambiguous maximum likelihood. Additionally, we compare against the alignment accuracy of two sum-of-pairs algorithms: ClustalW and the heuristic of Ma, Zhang, and Wang. Conclusion We find that allowing ambiguity in ancestral sequences does not lead to better multiple alignments. Regardless of whether we use parsimony or maximum likelihood, the

  19. Nicotinic acetylcholine receptor: subunit structure, functional binding sites, and ion transport properties

    International Nuclear Information System (INIS)

    Raftery, M.A.; Dunn, S.M.J.; Conti-Tronconi, B.M.; Middlemas, D.S.; Crawford, R.D.

    1983-01-01

    The structure of the nicotinic acetylcholine receptor has been highly conserved during animal evolution, and in all the species and tissues studied so far, including mammals, it is a pseudosymmetric, pentameric complex of related subunits with very similar physical properties. All subunits of these nicotinic receptors were derived from a common ancestral gene, probably by way of gene duplications occurring very early in animal evolution. 45 refs., 8 figs., 2 tabs

  20. Gene Duplicability of Core Genes Is Highly Consistent across All Angiosperms.

    Science.gov (United States)

    Li, Zhen; Defoort, Jonas; Tasdighian, Setareh; Maere, Steven; Van de Peer, Yves; De Smet, Riet

    2016-02-01

    Gene duplication is an important mechanism for adding to genomic novelty. Hence, which genes undergo duplication and are preserved following duplication is an important question. It has been observed that gene duplicability, or the ability of genes to be retained following duplication, is a nonrandom process, with certain genes being more amenable to survive duplication events than others. Primarily, gene essentiality and the type of duplication (small-scale versus large-scale) have been shown in different species to influence the (long-term) survival of novel genes. However, an overarching view of "gene duplicability" is lacking, mainly due to the fact that previous studies usually focused on individual species and did not account for the influence of genomic context and the time of duplication. Here, we present a large-scale study in which we investigated duplicate retention for 9178 gene families shared between 37 flowering plant species, referred to as angiosperm core gene families. For most gene families, we observe a strikingly consistent pattern of gene duplicability across species, with gene families being either primarily single-copy or multicopy in all species. An intermediate class contains gene families that are often retained in duplicate for periods extending to tens of millions of years after whole-genome duplication, but ultimately appear to be largely restored to singleton status, suggesting that these genes may be dosage balance sensitive. The distinction between single-copy and multicopy gene families is reflected in their functional annotation, with single-copy genes being mainly involved in the maintenance of genome stability and organelle function and multicopy genes in signaling, transport, and metabolism. The intermediate class was overrepresented in regulatory genes, further suggesting that these represent putative dosage-balance-sensitive genes. © 2016 American Society of Plant Biologists. All rights reserved.

  1. Hominoid chromosomal rearrangements on 17q map to complex regions of segmental duplication.

    Science.gov (United States)

    Cardone, Maria Francesca; Jiang, Zhaoshi; D'Addabbo, Pietro; Archidiacono, Nicoletta; Rocchi, Mariano; Eichler, Evan E; Ventura, Mario

    2008-01-01

    Chromosomal rearrangements, such as translocations and inversions, are recurrent phenomena during evolution, and both of them are involved in reproductive isolation and speciation. To better understand the molecular basis of chromosome rearrangements and their part in karyotype evolution, we have investigated the history of human chromosome 17 by comparative fluorescence in situ hybridization (FISH) and sequence analysis. Human bacterial artificial chromosome/p1 artificial chromosome probes spanning the length of chromosome 17 were used in FISH experiments on great apes, Old World monkeys and New World monkeys to study the evolutionary history of this chromosome. We observed that the macaque marker order represents the ancestral organization. Human, chimpanzee and gorilla homologous chromosomes differ by a paracentric inversion that occurred specifically in the Homo sapiens/Pan troglodytes/Gorilla gorilla ancestor. Detailed analyses of the paracentric inversion revealed that the breakpoints mapped to two regions syntenic to human 17q12/21 and 17q23, both rich in segmental duplications. Sequence analyses of the human and macaque organization suggest that the duplication events occurred in the catarrhine ancestor with the duplication blocks continuing to duplicate or undergo gene conversion during evolution of the hominoid lineage. We propose that the presence of these duplicons has mediated the inversion in the H. sapiens/P. troglodytes/G. gorilla ancestor. Recently, the same duplication blocks have been shown to be polymorphic in the human population and to be involved in triggering microdeletion and duplication in human. These results further support a model where genomic architecture has a direct role in both rearrangement involved in karyotype evolution and genomic instability in human.

  2. Are Hox genes ancestrally involved in axial patterning? Evidence from the hydrozoan Clytia hemisphaerica (Cnidaria.

    Directory of Open Access Journals (Sweden)

    Roxane Chiori

    Full Text Available BACKGROUND: The early evolution and diversification of Hox-related genes in eumetazoans has been the subject of conflicting hypotheses concerning the evolutionary conservation of their role in axial patterning and the pre-bilaterian origin of the Hox and ParaHox clusters. The diversification of Hox/ParaHox genes clearly predates the origin of bilaterians. However, the existence of a "Hox code" predating the cnidarian-bilaterian ancestor and supporting the deep homology of axes is more controversial. This assumption was mainly based on the interpretation of Hox expression data from the sea anemone, but growing evidence from other cnidarian taxa puts into question this hypothesis. METHODOLOGY/PRINCIPAL FINDINGS: Hox, ParaHox and Hox-related genes have been investigated here by phylogenetic analysis and in situ hybridisation in Clytia hemisphaerica, an hydrozoan species with medusa and polyp stages alternating in the life cycle. Our phylogenetic analyses do not support an origin of ParaHox and Hox genes by duplication of an ancestral ProtoHox cluster, and reveal a diversification of the cnidarian HOX9-14 genes into three groups called A, B, C. Among the 7 examined genes, only those belonging to the HOX9-14 and the CDX groups exhibit a restricted expression along the oral-aboral axis during development and in the planula larva, while the others are expressed in very specialised areas at the medusa stage. CONCLUSIONS/SIGNIFICANCE: Cross species comparison reveals a strong variability of gene expression along the oral-aboral axis and during the life cycle among cnidarian lineages. The most parsimonious interpretation is that the Hox code, collinearity and conservative role along the antero-posterior axis are bilaterian innovations.

  3. Craniofacial duplication: a case report.

    Science.gov (United States)

    Suryawanshi, Pradeep; Deshpande, Mandar; Verma, Nitin; Mahendrakar, Vivek; Mahendrakar, Sandhya

    2013-09-01

    A craniofacial duplication or diprosopus is an unusual variant of conjoined twinning. The reported incidence is one in 180,000-15 million births and 35 cases have been reported till date. The phenotype is wide, with the partial duplication of a few facial structures to complete dicephalus. A complete duplication is associated with a high incidence of anomalies in the central nervous system, cardiovascular system, gastrointestinal system and the respiratory system, whereas no major anomalies are found in the infants with a partial duplication. A term baby with the features of a craniofacial duplication has been described, with the proposed theories on embryogenesis and a brief review of the literature.

  4. Palaeohistological Evidence for Ancestral High Metabolic Rate in Archosaurs.

    Science.gov (United States)

    Legendre, Lucas J; Guénard, Guillaume; Botha-Brink, Jennifer; Cubo, Jorge

    2016-11-01

    Metabolic heat production in archosaurs has played an important role in their evolutionary radiation during the Mesozoic, and their ancestral metabolic condition has long been a matter of debate in systematics and palaeontology. The study of fossil bone histology provides crucial information on bone growth rate, which has been used to indirectly investigate the evolution of thermometabolism in archosaurs. However, no quantitative estimation of metabolic rate has ever been performed on fossils using bone histological features. Moreover, to date, no inference model has included phylogenetic information in the form of predictive variables. Here we performed statistical predictive modeling using the new method of phylogenetic eigenvector maps on a set of bone histological features for a sample of extant and extinct vertebrates, to estimate metabolic rates of fossil archosauromorphs. This modeling procedure serves as a case study for eigenvector-based predictive modeling in a phylogenetic context, as well as an investigation of the poorly known evolutionary patterns of metabolic rate in archosaurs. Our results show that Mesozoic theropod dinosaurs exhibit metabolic rates very close to those found in modern birds, that archosaurs share a higher ancestral metabolic rate than that of extant ectotherms, and that this derived high metabolic rate was acquired at a much more inclusive level of the phylogenetic tree, among non-archosaurian archosauromorphs. These results also highlight the difficulties of assigning a given heat production strategy (i.e., endothermy, ectothermy) to an estimated metabolic rate value, and confirm findings of previous studies that the definition of the endotherm/ectotherm dichotomy may be ambiguous. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. REGEN: Ancestral Genome Reconstruction for Bacteria

    OpenAIRE

    Yang, Kuan; Heath, Lenwood S.; Setubal, João C.

    2012-01-01

    Ancestral genome reconstruction can be understood as a phylogenetic study with more details than a traditional phylogenetic tree reconstruction. We present a new computational system called REGEN for ancestral bacterial genome reconstruction at both the gene and replicon levels. REGEN reconstructs gene content, contiguous gene runs, and replicon structure for each ancestral genome. Along each branch of the phylogenetic tree, REGEN infers evolutionary events, including gene creation and deleti...

  6. Robustness of ancestral sequence reconstruction to phylogenetic uncertainty.

    Science.gov (United States)

    Hanson-Smith, Victor; Kolaczkowski, Bryan; Thornton, Joseph W

    2010-09-01

    Ancestral sequence reconstruction (ASR) is widely used to formulate and test hypotheses about the sequences, functions, and structures of ancient genes. Ancestral sequences are usually inferred from an alignment of extant sequences using a maximum likelihood (ML) phylogenetic algorithm, which calculates the most likely ancestral sequence assuming a probabilistic model of sequence evolution and a specific phylogeny--typically the tree with the ML. The true phylogeny is seldom known with certainty, however. ML methods ignore this uncertainty, whereas Bayesian methods incorporate it by integrating the likelihood of each ancestral state over a distribution of possible trees. It is not known whether Bayesian approaches to phylogenetic uncertainty improve the accuracy of inferred ancestral sequences. Here, we use simulation-based experiments under both simplified and empirically derived conditions to compare the accuracy of ASR carried out using ML and Bayesian approaches. We show that incorporating phylogenetic uncertainty by integrating over topologies very rarely changes the inferred ancestral state and does not improve the accuracy of the reconstructed ancestral sequence. Ancestral state reconstructions are robust to uncertainty about the underlying tree because the conditions that produce phylogenetic uncertainty also make the ancestral state identical across plausible trees; conversely, the conditions under which different phylogenies yield different inferred ancestral states produce little or no ambiguity about the true phylogeny. Our results suggest that ML can produce accurate ASRs, even in the face of phylogenetic uncertainty. Using Bayesian integration to incorporate this uncertainty is neither necessary nor beneficial.

  7. Enteric and rectal duplications and duplication cysts in the adult.

    Science.gov (United States)

    Simsek, Abdurrahman; Zeybek, Nazif; Yagci, Gokhan; Kaymakcioglu, Nihat; Tas, Huseyin; Saglam, Mutlu; Cetiner, Sadettin

    2005-03-01

    Alimentary tract duplication and duplication cysts are rare congenital malformations. The ileum is the most frequently affected site. However, alimentary tract duplication and duplication cysts can occur at any point along the gastrointestinal tract. Early diagnosis and prompt surgical treatment is the best way to prevent associated morbidity. This article presents the cases of three patients admitted to Gulhane Military Medical Academy with signs of acute abdomen, intra-abdominal mass and chronic abdominal pain. These patients were found to have enteric duplication, duplication cyst and/or retro-rectal cyst. The literature on alimentary tract duplications is reviewed.

  8. Gene Duplicability of Core Genes Is Highly Consistent across All Angiosperms[OPEN

    Science.gov (United States)

    Li, Zhen; Van de Peer, Yves; De Smet, Riet

    2016-01-01

    Gene duplication is an important mechanism for adding to genomic novelty. Hence, which genes undergo duplication and are preserved following duplication is an important question. It has been observed that gene duplicability, or the ability of genes to be retained following duplication, is a nonrandom process, with certain genes being more amenable to survive duplication events than others. Primarily, gene essentiality and the type of duplication (small-scale versus large-scale) have been shown in different species to influence the (long-term) survival of novel genes. However, an overarching view of “gene duplicability” is lacking, mainly due to the fact that previous studies usually focused on individual species and did not account for the influence of genomic context and the time of duplication. Here, we present a large-scale study in which we investigated duplicate retention for 9178 gene families shared between 37 flowering plant species, referred to as angiosperm core gene families. For most gene families, we observe a strikingly consistent pattern of gene duplicability across species, with gene families being either primarily single-copy or multicopy in all species. An intermediate class contains gene families that are often retained in duplicate for periods extending to tens of millions of years after whole-genome duplication, but ultimately appear to be largely restored to singleton status, suggesting that these genes may be dosage balance sensitive. The distinction between single-copy and multicopy gene families is reflected in their functional annotation, with single-copy genes being mainly involved in the maintenance of genome stability and organelle function and multicopy genes in signaling, transport, and metabolism. The intermediate class was overrepresented in regulatory genes, further suggesting that these represent putative dosage-balance-sensitive genes. PMID:26744215

  9. A salmonid EST genomic study: genes, duplications, phylogeny and microarrays

    Directory of Open Access Journals (Sweden)

    Brahmbhatt Sonal

    2008-11-01

    consistent with an ancestral salmonid genome duplication hypothesis. Genome resources, including a new 32 K microarray, provide valuable new tools to study salmonids.

  10. Ancestral sequence reconstruction with Maximum Parsimony

    OpenAIRE

    Herbst, Lina; Fischer, Mareike

    2017-01-01

    One of the main aims in phylogenetics is the estimation of ancestral sequences based on present-day data like, for instance, DNA alignments. One way to estimate the data of the last common ancestor of a given set of species is to first reconstruct a phylogenetic tree with some tree inference method and then to use some method of ancestral state inference based on that tree. One of the best-known methods both for tree inference as well as for ancestral sequence inference is Maximum Parsimony (...

  11. Assessing the Accuracy of Ancestral Protein Reconstruction Methods

    OpenAIRE

    Williams, Paul D; Pollock, David D; Blackburne, Benjamin P; Goldstein, Richard A

    2006-01-01

    The phylogenetic inference of ancestral protein sequences is a powerful technique for the study of molecular evolution, but any conclusions drawn from such studies are only as good as the accuracy of the reconstruction method. Every inference method leads to errors in the ancestral protein sequence, resulting in potentially misleading estimates of the ancestral protein's properties. To assess the accuracy of ancestral protein reconstruction methods, we performed computational population evolu...

  12. External cystic rectal duplication: an unusual presentation of rectal duplication cyst.

    Science.gov (United States)

    Karaman, I; Karaman, A; Arda, N; Cakmak, O

    2007-11-01

    Duplications of gastrointestinal tract are rare anomalies, and rectal duplications account for five percent of the alimentary tract duplications. We present an unusual case of rectal duplication, which was located externally in a newborn female, and discuss the types of distal hindgut duplications.

  13. Evolutionary conservation of regulatory elements in vertebrate HOX gene clusters

    Energy Technology Data Exchange (ETDEWEB)

    Santini, Simona; Boore, Jeffrey L.; Meyer, Axel

    2003-12-31

    Due to their high degree of conservation, comparisons of DNA sequences among evolutionarily distantly-related genomes permit to identify functional regions in noncoding DNA. Hox genes are optimal candidate sequences for comparative genome analyses, because they are extremely conserved in vertebrates and occur in clusters. We aligned (Pipmaker) the nucleotide sequences of HoxA clusters of tilapia, pufferfish, striped bass, zebrafish, horn shark, human and mouse (over 500 million years of evolutionary distance). We identified several highly conserved intergenic sequences, likely to be important in gene regulation. Only a few of these putative regulatory elements have been previously described as being involved in the regulation of Hox genes, while several others are new elements that might have regulatory functions. The majority of these newly identified putative regulatory elements contain short fragments that are almost completely conserved and are identical to known binding sites for regulatory proteins (Transfac). The conserved intergenic regions located between the most rostrally expressed genes in the developing embryo are longer and better retained through evolution. We document that presumed regulatory sequences are retained differentially in either A or A clusters resulting from a genome duplication in the fish lineage. This observation supports both the hypothesis that the conserved elements are involved in gene regulation and the Duplication-Deletion-Complementation model.

  14. Complete colonic duplication in children.

    Science.gov (United States)

    Khaleghnejad Tabari, Ahmad; Mirshemirani, Alireza; Khaleghnejad Tabari, Nasibeh

    2012-01-01

    Complete colonic duplication is a very rare congenital anomaly that may have different presentations according to its location and size. Complete colonic duplication can occur in 15% of gastrointestinal duplication. We report two cases of complete colonic duplications, and their characteristics. We present two patients with complete colonic duplication with different types and presentations. Case 1: A 2- year old boy presented to the clinic with abdominal protrusion, difficulty to defecate, chronic constipation and mucosal prolaps covered bulging (rectocele) since he was 6 months old. The patient had palpable pelvic mass with doughy consistency. Rectal exam confirmed perirectal mass with soft consistency. The patient underwent a surgical operation that had total tubular colorectal duplication with one blind end and was treated with simple fenestration of distal end, and was discharged without complication. After two years follow up, he had normal defecation and good weight gain. Case 2: A 2 -day old infant was referred with imperforate anus and complete duplication of recto-sigmoid colon, diphallus, double bladder, and hypospadiasis. After clinical and paraclinical investigations, he underwent operations in several stages in different periods, and was discharged without complications. After four years follow up, he led a normal life. The patients with complete duplication have to be examined carefully because of the high incidence of other systemic anomalies. Treatment includes simple resection of distal common wall, fenestration, and repair other associated anomalies.

  15. Enteric Duplication.

    Science.gov (United States)

    Jeziorczak, Paul M; Warner, Brad W

    2018-03-01

    Enteric duplications have been described throughout the entire gastrointestinal tract. The usual perinatal presentation is an abdominal mass. Duplications associated with the foregut have associated respiratory symptoms, whereas duplications in the midgut and hindgut can present with obstructive symptoms, perforation, nausea, emesis, hemorrhage, or be asymptomatic, and identified as an incidental finding. These are differentiated from other cystic lesions by the presence of a normal gastrointestinal mucosal epithelium. Enteric duplications are located on the mesenteric side of the native structures and are often singular with tubular or cystic characteristics. Management of enteric duplications often requires operative intervention with preservation of the native blood supply and intestine. These procedures are usually very well tolerated with low morbidity.

  16. Comparative studies of vertebrate scavenger receptor class B type 1: a high-density lipoprotein binding protein

    Directory of Open Access Journals (Sweden)

    Holmes RS

    2012-06-01

    the average of gene expression. Phylogenetic analyses examined the relationships and potential evolutionary origins of the vertebrate SCARB1 gene with vertebrate SCARB2 and vertebrate and invertebrate SCARB3 (CD36 genes. These suggested that SCARB1 originated in a vertebrate ancestral genome from a gene duplication event of an ancestral invertebrate CD36 gene.Keywords: vertebrates, amino acid sequence, SCARB1, evolution, high-density lipoprotein receptor

  17. An ancient history of gene duplications, fusions and losses in the evolution of APOBEC3 mutators in mammals

    Science.gov (United States)

    2012-01-01

    Background The APOBEC3 (A3) genes play a key role in innate antiviral defense in mammals by introducing directed mutations in the DNA. The human genome encodes for seven A3 genes, with multiple splice alternatives. Different A3 proteins display different substrate specificity, but the very basic question on how discerning self from non-self still remains unresolved. Further, the expression of A3 activity/ies shapes the way both viral and host genomes evolve. Results We present here a detailed temporal analysis of the origin and expansion of the A3 repertoire in mammals. Our data support an evolutionary scenario where the genome of the mammalian ancestor encoded for at least one ancestral A3 gene, and where the genome of the ancestor of placental mammals (and possibly of the ancestor of all mammals) already encoded for an A3Z1-A3Z2-A3Z3 arrangement. Duplication events of the A3 genes have occurred independently in different lineages: humans, cats and horses. In all of them, gene duplication has resulted in changes in enzyme activity and/or substrate specificity, in a paradigmatic example of convergent adaptive evolution at the genomic level. Finally, our results show that evolutionary rates for the three A3Z1, A3Z2 and A3Z3 motifs have significantly decreased in the last 100 Mya. The analysis constitutes a textbook example of the evolution of a gene locus by duplication and sub/neofunctionalization in the context of virus-host arms race. Conclusions Our results provide a time framework for identifying ancestral and derived genomic arrangements in the APOBEC loci, and to date the expansion of this gene family for different lineages through time, as a response to changes in viral/retroviral/retrotransposon pressure. PMID:22640020

  18. Assessing the accuracy of ancestral protein reconstruction methods.

    Directory of Open Access Journals (Sweden)

    Paul D Williams

    2006-06-01

    Full Text Available The phylogenetic inference of ancestral protein sequences is a powerful technique for the study of molecular evolution, but any conclusions drawn from such studies are only as good as the accuracy of the reconstruction method. Every inference method leads to errors in the ancestral protein sequence, resulting in potentially misleading estimates of the ancestral protein's properties. To assess the accuracy of ancestral protein reconstruction methods, we performed computational population evolution simulations featuring near-neutral evolution under purifying selection, speciation, and divergence using an off-lattice protein model where fitness depends on the ability to be stable in a specified target structure. We were thus able to compare the thermodynamic properties of the true ancestral sequences with the properties of "ancestral sequences" inferred by maximum parsimony, maximum likelihood, and Bayesian methods. Surprisingly, we found that methods such as maximum parsimony and maximum likelihood that reconstruct a "best guess" amino acid at each position overestimate thermostability, while a Bayesian method that sometimes chooses less-probable residues from the posterior probability distribution does not. Maximum likelihood and maximum parsimony apparently tend to eliminate variants at a position that are slightly detrimental to structural stability simply because such detrimental variants are less frequent. Other properties of ancestral proteins might be similarly overestimated. This suggests that ancestral reconstruction studies require greater care to come to credible conclusions regarding functional evolution. Inferred functional patterns that mimic reconstruction bias should be reevaluated.

  19. Assessing the accuracy of ancestral protein reconstruction methods.

    Science.gov (United States)

    Williams, Paul D; Pollock, David D; Blackburne, Benjamin P; Goldstein, Richard A

    2006-06-23

    The phylogenetic inference of ancestral protein sequences is a powerful technique for the study of molecular evolution, but any conclusions drawn from such studies are only as good as the accuracy of the reconstruction method. Every inference method leads to errors in the ancestral protein sequence, resulting in potentially misleading estimates of the ancestral protein's properties. To assess the accuracy of ancestral protein reconstruction methods, we performed computational population evolution simulations featuring near-neutral evolution under purifying selection, speciation, and divergence using an off-lattice protein model where fitness depends on the ability to be stable in a specified target structure. We were thus able to compare the thermodynamic properties of the true ancestral sequences with the properties of "ancestral sequences" inferred by maximum parsimony, maximum likelihood, and Bayesian methods. Surprisingly, we found that methods such as maximum parsimony and maximum likelihood that reconstruct a "best guess" amino acid at each position overestimate thermostability, while a Bayesian method that sometimes chooses less-probable residues from the posterior probability distribution does not. Maximum likelihood and maximum parsimony apparently tend to eliminate variants at a position that are slightly detrimental to structural stability simply because such detrimental variants are less frequent. Other properties of ancestral proteins might be similarly overestimated. This suggests that ancestral reconstruction studies require greater care to come to credible conclusions regarding functional evolution. Inferred functional patterns that mimic reconstruction bias should be reevaluated.

  20. Ascorbate peroxidase-related (APx-R) is not a duplicable gene.

    Science.gov (United States)

    Dunand, Christophe; Mathé, Catherine; Lazzarotto, Fernanda; Margis, Rogério; Margis-Pinheiro, Marcia

    2011-12-01

    Phylogenetic, genomic and functional analyses have allowed the identification of a new class of putative heme peroxidases, so called APx-R (APx-Related). These new class, mainly present in the green lineage (including green algae and land plants), can also be detected in other unicellular chloroplastic organisms. Except for recent polyploid organisms, only single-copy of APx-R gene was detected in each genome, suggesting that the majority of the APx-R extra-copies were lost after chromosomal or segmental duplications. In a similar way, most APx-R co-expressed genes in Arabidopsis genome do not have conserved extra-copies after chromosomal duplications and are predicted to be localized in organelles, as are the APx-R. The member of this gene network can be considered as unique gene, well conserved through the evolution due to a strong negative selection pressure and a low evolution rate. © 2011 Landes Bioscience

  1. Chromosome evolution in kangaroos (Marsupialia: Macropodidae): cross species chromosome painting between the tammar wallaby and rock wallaby spp. with the 2n = 22 ancestral macropodid karyotype.

    Science.gov (United States)

    O'Neill, R J; Eldridge, M D; Toder, R; Ferguson-Smith, M A; O'Brien, P C; Graves, J A

    1999-06-01

    Marsupial mammals show extraordinary karyotype stability, with 2n = 14 considered ancestral. However, macropodid marsupials (kangaroos and wallabies) exhibit a considerable variety of karyotypes, with a hypothesised ancestral karyotype of 2n = 22. Speciation and karyotypic diversity in rock wallabies (Petrogale) is exceptional. We used cross species chromosome painting to examine the chromosome evolution between the tammar wallaby (2n = 16) and three 2n = 22 rock wallaby species groups with the putative ancestral karyotype. Hybridization of chromosome paints prepared from flow sorted chromosomes of the tammar wallaby to Petrogale spp., showed that this ancestral karyotype is largely conserved among 2n = 22 rock wallaby species, and confirmed the identity of ancestral chromosomes which fused to produce the bi-armed chromosomes of the 2n = 16 tammar wallaby. These results illustrate the fission-fusion process of karyotype evolution characteristic of the kangaroo group.

  2. Mitochondrial Genomes of Kinorhyncha: trnM Duplication and New Gene Orders within Animals.

    Science.gov (United States)

    Popova, Olga V; Mikhailov, Kirill V; Nikitin, Mikhail A; Logacheva, Maria D; Penin, Aleksey A; Muntyan, Maria S; Kedrova, Olga S; Petrov, Nikolai B; Panchin, Yuri V; Aleoshin, Vladimir V

    2016-01-01

    Many features of mitochondrial genomes of animals, such as patterns of gene arrangement, nucleotide content and substitution rate variation are extensively used in evolutionary and phylogenetic studies. Nearly 6,000 mitochondrial genomes of animals have already been sequenced, covering the majority of animal phyla. One of the groups that escaped mitogenome sequencing is phylum Kinorhyncha-an isolated taxon of microscopic worm-like ecdysozoans. The kinorhynchs are thought to be one of the early-branching lineages of Ecdysozoa, and their mitochondrial genomes may be important for resolving evolutionary relations between major animal taxa. Here we present the results of sequencing and analysis of mitochondrial genomes from two members of Kinorhyncha, Echinoderes svetlanae (Cyclorhagida) and Pycnophyes kielensis (Allomalorhagida). Their mitochondrial genomes are circular molecules approximately 15 Kbp in size. The kinorhynch mitochondrial gene sequences are highly divergent, which precludes accurate phylogenetic inference. The mitogenomes of both species encode a typical metazoan complement of 37 genes, which are all positioned on the major strand, but the gene order is distinct and unique among Ecdysozoa or animals as a whole. We predict four types of start codons for protein-coding genes in E. svetlanae and five in P. kielensis with a consensus DTD in single letter code. The mitochondrial genomes of E. svetlanae and P. kielensis encode duplicated methionine tRNA genes that display compensatory nucleotide substitutions. Two distant species of Kinorhyncha demonstrate similar patterns of gene arrangements in their mitogenomes. Both genomes have duplicated methionine tRNA genes; the duplication predates the divergence of two species. The kinorhynchs share a few features pertaining to gene order that align them with Priapulida. Gene order analysis reveals that gene arrangement specific of Priapulida may be ancestral for Scalidophora, Ecdysozoa, and even Protostomia.

  3. Mitochondrial Genomes of Kinorhyncha: trnM Duplication and New Gene Orders within Animals.

    Directory of Open Access Journals (Sweden)

    Olga V Popova

    Full Text Available Many features of mitochondrial genomes of animals, such as patterns of gene arrangement, nucleotide content and substitution rate variation are extensively used in evolutionary and phylogenetic studies. Nearly 6,000 mitochondrial genomes of animals have already been sequenced, covering the majority of animal phyla. One of the groups that escaped mitogenome sequencing is phylum Kinorhyncha-an isolated taxon of microscopic worm-like ecdysozoans. The kinorhynchs are thought to be one of the early-branching lineages of Ecdysozoa, and their mitochondrial genomes may be important for resolving evolutionary relations between major animal taxa. Here we present the results of sequencing and analysis of mitochondrial genomes from two members of Kinorhyncha, Echinoderes svetlanae (Cyclorhagida and Pycnophyes kielensis (Allomalorhagida. Their mitochondrial genomes are circular molecules approximately 15 Kbp in size. The kinorhynch mitochondrial gene sequences are highly divergent, which precludes accurate phylogenetic inference. The mitogenomes of both species encode a typical metazoan complement of 37 genes, which are all positioned on the major strand, but the gene order is distinct and unique among Ecdysozoa or animals as a whole. We predict four types of start codons for protein-coding genes in E. svetlanae and five in P. kielensis with a consensus DTD in single letter code. The mitochondrial genomes of E. svetlanae and P. kielensis encode duplicated methionine tRNA genes that display compensatory nucleotide substitutions. Two distant species of Kinorhyncha demonstrate similar patterns of gene arrangements in their mitogenomes. Both genomes have duplicated methionine tRNA genes; the duplication predates the divergence of two species. The kinorhynchs share a few features pertaining to gene order that align them with Priapulida. Gene order analysis reveals that gene arrangement specific of Priapulida may be ancestral for Scalidophora, Ecdysozoa, and even

  4. Integrating Principles Underlying Ancestral Spirits Belief in ...

    African Journals Online (AJOL)

    , associated with ancestral spirits and its use as powerful therapeutic agent for influencing behavior or lifestyle changes. Explanatory models of attachment to ancestral spirits by living descendants are first discussed, followed by a discussion ...

  5. Ancestral Variations of the PCDHG Gene Cluster Predispose to Dyslexia in a Multiplex Family

    Directory of Open Access Journals (Sweden)

    Teesta Naskar

    2018-02-01

    Full Text Available Dyslexia is a heritable neurodevelopmental disorder characterized by difficulties in reading and writing. In this study, we describe the identification of a set of 17 polymorphisms located across 1.9 Mb region on chromosome 5q31.3, encompassing genes of the PCDHG cluster, TAF7, PCDH1 and ARHGAP26, dominantly inherited with dyslexia in a multi-incident family. Strikingly, the non-risk form of seven variations of the PCDHG cluster, are preponderant in the human lineage, while risk alleles are ancestral and conserved across Neanderthals to non-human primates. Four of these seven ancestral variations (c.460A > C [p.Ile154Leu], c.541G > A [p.Ala181Thr], c.2036G > C [p.Arg679Pro] and c.2059A > G [p.Lys687Glu] result in amino acid alterations. p.Ile154Leu and p.Ala181Thr are present at EC2: EC3 interacting interface of γA3-PCDH and γA4-PCDH respectively might affect trans-homophilic interaction and hence neuronal connectivity. p.Arg679Pro and p.Lys687Glu are present within the linker region connecting trans-membrane to extracellular domain. Sequence analysis indicated the importance of p.Ile154, p.Arg679 and p.Lys687 in maintaining class specificity. Thus the observed association of PCDHG genes encoding neural adhesion proteins reinforces the hypothesis of aberrant neuronal connectivity in the pathophysiology of dyslexia. Additionally, the striking conservation of the identified variants indicates a role of PCDHG in the evolution of highly specialized cognitive skills critical to reading.

  6. Infant and juvenile growth in ancestral Pueblo Indians.

    Science.gov (United States)

    Schillaci, Michael A; Nikitovic, Dejana; Akins, Nancy J; Tripp, Lianne; Palkovich, Ann M

    2011-06-01

    The present study examines patterns of infant and juvenile growth in a diachronic sample of ancestral Pueblo Indians (AD 1300-1680) from the American Southwest. An assessment of growth patterns is accompanied by an evaluation of pathological conditions often considered to be indicators of nutritional deficiencies and/or gastrointestinal infections. Growth patterns and the distribution of pathological conditions are interpreted relative to culturally relevant age categories defined by Puebloan rites of passage described in the ethnographic literature. A visual comparison of growth distance curves revealed that relative to a modern comparative group our sample of ancestral Pueblo infant and juveniles exhibited faltering growth beginning soon after birth to about 5 years of age. A comparison of curves describing growth relative to adult femoral length, however, indicated reduced growth occurring later, by around 2 years of age. Similar to previous studies, we observed a high proportion of nonsurvivors exhibiting porotic cranial lesions during the first 2 years of life. Contrary to expectations, infants and juveniles without evidence of porotic cranial lesions exhibited a higher degree of stunting. Our study is generally consistent with previous research reporting poor health and high mortality for ancestral Pueblo Indian infants and juveniles. Through use of a culturally relevant context defining childhood, we argue that the observed poor health and high mortality in our sample occur before the important transition from young to older child and the concomitant initial incorporation into tribal ritual organization. Copyright © 2011 Wiley-Liss, Inc.

  7. Radiological findings of male urethral duplication associated with bladder duplication: case report

    International Nuclear Information System (INIS)

    Kim, Hyoung Jung; Lim, Joo Won; Lee, Dong Ho; Ko, Young Tae

    2004-01-01

    Urethral duplication or accessory urethra is a rare congenital anomaly. Even rarer, is its association with bladder duplication. We report a case of urethral duplication associated with bladder duplication in a seven-year-old boy who underwent retrograde urethrography, sonography and magnetic resonance (MR) imaging. WhiIe retrograde urethrography can demonstrate the extent of the duplicated urethra, MR imaging and sonography can provide detailed information on the anatomy of the adjacent tissues as well as urethral duplication

  8. Duplications involving a conserved regulatory element downstream of BMP2 are associated with brachydactyly type A2

    DEFF Research Database (Denmark)

    Dathe, Katarina; Kjaer, Klaus W; Brehm, Anja

    2009-01-01

    Autosomal-dominant brachydactyly type A2 (BDA2), a limb malformation characterized by hypoplastic middle phalanges of the second and fifth fingers, has been shown to be due to mutations in the Bone morphogenetic protein receptor 1B (BMPR1B) or in its ligand Growth and differentiation factor 5 (GDF5......). A linkage analysis performed in a mutation-negative family identified a novel locus for BDA2 on chromosome 20p12.3 that incorporates the gene for Bone morphogenetic protein 2 (BMP2). No point mutation was identified in BMP2, so a high-density array CGH analysis covering the critical interval...... within the identified duplication. Our results reveal an additional functional mechanism for the pathogenesis of BDA2, which is duplication of a regulatory element that affects the expression of BMP2 in the developing limb....

  9. Development of genome- and transcriptome-derived microsatellites in related species of snapping shrimps with highly duplicated genomes.

    Science.gov (United States)

    Gaynor, Kaitlyn M; Solomon, Joseph W; Siller, Stefanie; Jessell, Linnet; Duffy, J Emmett; Rubenstein, Dustin R

    2017-11-01

    Molecular markers are powerful tools for studying patterns of relatedness and parentage within populations and for making inferences about social evolution. However, the development of molecular markers for simultaneous study of multiple species presents challenges, particularly when species exhibit genome duplication or polyploidy. We developed microsatellite markers for Synalpheus shrimp, a genus in which species exhibit not only great variation in social organization, but also interspecific variation in genome size and partial genome duplication. From the four primary clades within Synalpheus, we identified microsatellites in the genomes of four species and in the consensus transcriptome of two species. Ultimately, we designed and tested primers for 143 microsatellite markers across 25 species. Although the majority of markers were disomic, many markers were polysomic for certain species. Surprisingly, we found no relationship between genome size and the number of polysomic markers. As expected, markers developed for a given species amplified better for closely related species than for more distant relatives. Finally, the markers developed from the transcriptome were more likely to work successfully and to be disomic than those developed from the genome, suggesting that consensus transcriptomes are likely to be conserved across species. Our findings suggest that the transcriptome, particularly consensus sequences from multiple species, can be a valuable source of molecular markers for taxa with complex, duplicated genomes. © 2017 John Wiley & Sons Ltd.

  10. Recombination and evolution of duplicate control regions in the mitochondrial genome of the Asian big-headed turtle, Platysternon megacephalum.

    Directory of Open Access Journals (Sweden)

    Chenfei Zheng

    Full Text Available Complete mitochondrial (mt genome sequences with duplicate control regions (CRs have been detected in various animal species. In Testudines, duplicate mtCRs have been reported in the mtDNA of the Asian big-headed turtle, Platysternon megacephalum, which has three living subspecies. However, the evolutionary pattern of these CRs remains unclear. In this study, we report the completed sequences of duplicate CRs from 20 individuals belonging to three subspecies of this turtle and discuss the micro-evolutionary analysis of the evolution of duplicate CRs. Genetic distances calculated with MEGA 4.1 using the complete duplicate CR sequences revealed that within turtle subspecies, genetic distances between orthologous copies from different individuals were 0.63% for CR1 and 1.2% for CR2app:addword:respectively, and the average distance between paralogous copies of CR1 and CR2 was 4.8%. Phylogenetic relationships were reconstructed from the CR sequences, excluding the variable number of tandem repeats (VNTRs at the 3' end using three methods: neighbor-joining, maximum likelihood algorithm, and Bayesian inference. These data show that any two CRs within individuals were more genetically distant from orthologous genes in different individuals within the same subspecies. This suggests independent evolution of the two mtCRs within each P. megacephalum subspecies. Reconstruction of separate phylogenetic trees using different CR components (TAS, CD, CSB, and VNTRs suggested the role of recombination in the evolution of duplicate CRs. Consequently, recombination events were detected using RDP software with break points at ≈290 bp and ≈1,080 bp. Based on these results, we hypothesize that duplicate CRs in P. megacephalum originated from heterological ancestral recombination of mtDNA. Subsequent recombination could have resulted in homogenization during independent evolutionary events, thus maintaining the functions of duplicate CRs in the mtDNA of P

  11. Genomic Imprinting Was Evolutionarily Conserved during Wheat Polyploidization.

    Science.gov (United States)

    Yang, Guanghui; Liu, Zhenshan; Gao, Lulu; Yu, Kuohai; Feng, Man; Yao, Yingyin; Peng, Huiru; Hu, Zhaorong; Sun, Qixin; Ni, Zhongfu; Xin, Mingming

    2018-01-01

    Genomic imprinting is an epigenetic phenomenon that causes genes to be differentially expressed depending on their parent of origin. To evaluate the evolutionary conservation of genomic imprinting and the effects of ploidy on this process, we investigated parent-of-origin-specific gene expression patterns in the endosperm of diploid ( Aegilops spp), tetraploid, and hexaploid wheat ( Triticum spp) at various stages of development via high-throughput transcriptome sequencing. We identified 91, 135, and 146 maternally or paternally expressed genes (MEGs or PEGs, respectively) in diploid, tetraploid, and hexaploid wheat, respectively, 52.7% of which exhibited dynamic expression patterns at different developmental stages. Gene Ontology enrichment analysis suggested that MEGs and PEGs were involved in metabolic processes and DNA-dependent transcription, respectively. Nearly half of the imprinted genes exhibited conserved expression patterns during wheat hexaploidization. In addition, 40% of the homoeolog pairs originating from whole-genome duplication were consistently maternally or paternally biased in the different subgenomes of hexaploid wheat. Furthermore, imprinted expression was found for 41.2% and 50.0% of homolog pairs that evolved by tandem duplication after genome duplication in tetraploid and hexaploid wheat, respectively. These results suggest that genomic imprinting was evolutionarily conserved between closely related Triticum and Aegilops species and in the face of polyploid hybridization between species in these genera. © 2018 American Society of Plant Biologists. All rights reserved.

  12. Gene duplication, modularity and adaptation in the evolution of the aflatoxin gene cluster

    Directory of Open Access Journals (Sweden)

    Jakobek Judy L

    2007-07-01

    Full Text Available Abstract Background The biosynthesis of aflatoxin (AF involves over 20 enzymatic reactions in a complex polyketide pathway that converts acetate and malonate to the intermediates sterigmatocystin (ST and O-methylsterigmatocystin (OMST, the respective penultimate and ultimate precursors of AF. Although these precursors are chemically and structurally very similar, their accumulation differs at the species level for Aspergilli. Notable examples are A. nidulans that synthesizes only ST, A. flavus that makes predominantly AF, and A. parasiticus that generally produces either AF or OMST. Whether these differences are important in the evolutionary/ecological processes of species adaptation and diversification is unknown. Equally unknown are the specific genomic mechanisms responsible for ordering and clustering of genes in the AF pathway of Aspergillus. Results To elucidate the mechanisms that have driven formation of these clusters, we performed systematic searches of aflatoxin cluster homologs across five Aspergillus genomes. We found a high level of gene duplication and identified seven modules consisting of highly correlated gene pairs (aflA/aflB, aflR/aflS, aflX/aflY, aflF/aflE, aflT/aflQ, aflC/aflW, and aflG/aflL. With the exception of A. nomius, contrasts of mean Ka/Ks values across all cluster genes showed significant differences in selective pressure between section Flavi and non-section Flavi species. A. nomius mean Ka/Ks values were more similar to partial clusters in A. fumigatus and A. terreus. Overall, mean Ka/Ks values were significantly higher for section Flavi than for non-section Flavi species. Conclusion Our results implicate several genomic mechanisms in the evolution of ST, OMST and AF cluster genes. Gene modules may arise from duplications of a single gene, whereby the function of the pre-duplication gene is retained in the copy (aflF/aflE or the copies may partition the ancestral function (aflA/aflB. In some gene modules, the

  13. Ancestral Sequence Reconstruction with Maximum Parsimony.

    Science.gov (United States)

    Herbst, Lina; Fischer, Mareike

    2017-12-01

    One of the main aims in phylogenetics is the estimation of ancestral sequences based on present-day data like, for instance, DNA alignments. One way to estimate the data of the last common ancestor of a given set of species is to first reconstruct a phylogenetic tree with some tree inference method and then to use some method of ancestral state inference based on that tree. One of the best-known methods both for tree inference and for ancestral sequence inference is Maximum Parsimony (MP). In this manuscript, we focus on this method and on ancestral state inference for fully bifurcating trees. In particular, we investigate a conjecture published by Charleston and Steel in 1995 concerning the number of species which need to have a particular state, say a, at a particular site in order for MP to unambiguously return a as an estimate for the state of the last common ancestor. We prove the conjecture for all even numbers of character states, which is the most relevant case in biology. We also show that the conjecture does not hold in general for odd numbers of character states, but also present some positive results for this case.

  14. Which came first: The lizard or the egg? Robustness in phylogenetic reconstruction of ancestral states.

    Science.gov (United States)

    Wright, April M; Lyons, Kathleen M; Brandley, Matthew C; Hillis, David M

    2015-09-01

    Changes in parity mode between egg-laying (oviparity) and live-bearing (viviparity) have occurred repeatedly throughout vertebrate evolution. Oviparity is the ancestral amniote state, and viviparity has evolved many times independently within amniotes (especially in lizards and snakes), with possibly a few reversions to oviparity. In amniotes, the shelled egg is considered a complex structure that is unlikely to re-evolve if lost (i.e., it is an example of Dollo's Principle). However, a recent ancestral state reconstruction analysis concluded that viviparity was the ancestral state of squamate reptiles (lizards and snakes), and that oviparity re-evolved from viviparity many times throughout the evolutionary history of squamates. Here, we re-evaluate support for this provocative conclusion by testing the sensitivity of the analysis to model assumptions and estimates of squamate phylogeny. We found that the models and methods used for parity mode reconstruction are highly sensitive to the specific estimate of phylogeny used, and that the point estimate of phylogeny used to suggest that viviparity is the root state of the squamate tree is far from an optimal phylogenetic solution. The ancestral state reconstructions are also highly sensitive to model choice and specific values of model parameters. A method that is designed to account for biases in taxon sampling actually accentuates, rather than lessens, those biases with respect to ancestral state reconstructions. In contrast to recent conclusions from the same data set, we find that ancestral state reconstruction analyses provide highly equivocal support for the number and direction of transitions between oviparity and viviparity in squamates. Moreover, the reconstructions of ancestral parity state are highly dependent on the assumptions of each model. We conclude that the common ancestor of squamates was oviparous, and subsequent evolutionary transitions to viviparity were common, but reversals to oviparity were

  15. Gene duplication and fragmentation in the zebra finch major histocompatibility complex.

    Science.gov (United States)

    Balakrishnan, Christopher N; Ekblom, Robert; Völker, Martin; Westerdahl, Helena; Godinez, Ricardo; Kotkiewicz, Holly; Burt, David W; Graves, Tina; Griffin, Darren K; Warren, Wesley C; Edwards, Scott V

    2010-04-01

    Due to its high polymorphism and importance for disease resistance, the major histocompatibility complex (MHC) has been an important focus of many vertebrate genome projects. Avian MHC organization is of particular interest because the chicken Gallus gallus, the avian species with the best characterized MHC, possesses a highly streamlined minimal essential MHC, which is linked to resistance against specific pathogens. It remains unclear the extent to which this organization describes the situation in other birds and whether it represents a derived or ancestral condition. The sequencing of the zebra finch Taeniopygia guttata genome, in combination with targeted bacterial artificial chromosome (BAC) sequencing, has allowed us to characterize an MHC from a highly divergent and diverse avian lineage, the passerines. The zebra finch MHC exhibits a complex structure and history involving gene duplication and fragmentation. The zebra finch MHC includes multiple Class I and Class II genes, some of which appear to be pseudogenes, and spans a much more extensive genomic region than the chicken MHC, as evidenced by the presence of MHC genes on each of seven BACs spanning 739 kb. Cytogenetic (FISH) evidence and the genome assembly itself place core MHC genes on as many as four chromosomes with TAP and Class I genes mapping to different chromosomes. MHC Class II regions are further characterized by high endogenous retroviral content. Lastly, we find strong evidence of selection acting on sites within passerine MHC Class I and Class II genes. The zebra finch MHC differs markedly from that of the chicken, the only other bird species with a complete genome sequence. The apparent lack of synteny between TAP and the expressed MHC Class I locus is in fact reminiscent of a pattern seen in some mammalian lineages and may represent convergent evolution. Our analyses of the zebra finch MHC suggest a complex history involving chromosomal fission, gene duplication and translocation in the

  16. Gene duplication and fragmentation in the zebra finch major histocompatibility complex

    Directory of Open Access Journals (Sweden)

    Burt David W

    2010-04-01

    Full Text Available Abstract Background Due to its high polymorphism and importance for disease resistance, the major histocompatibility complex (MHC has been an important focus of many vertebrate genome projects. Avian MHC organization is of particular interest because the chicken Gallus gallus, the avian species with the best characterized MHC, possesses a highly streamlined minimal essential MHC, which is linked to resistance against specific pathogens. It remains unclear the extent to which this organization describes the situation in other birds and whether it represents a derived or ancestral condition. The sequencing of the zebra finch Taeniopygia guttata genome, in combination with targeted bacterial artificial chromosome (BAC sequencing, has allowed us to characterize an MHC from a highly divergent and diverse avian lineage, the passerines. Results The zebra finch MHC exhibits a complex structure and history involving gene duplication and fragmentation. The zebra finch MHC includes multiple Class I and Class II genes, some of which appear to be pseudogenes, and spans a much more extensive genomic region than the chicken MHC, as evidenced by the presence of MHC genes on each of seven BACs spanning 739 kb. Cytogenetic (FISH evidence and the genome assembly itself place core MHC genes on as many as four chromosomes with TAP and Class I genes mapping to different chromosomes. MHC Class II regions are further characterized by high endogenous retroviral content. Lastly, we find strong evidence of selection acting on sites within passerine MHC Class I and Class II genes. Conclusion The zebra finch MHC differs markedly from that of the chicken, the only other bird species with a complete genome sequence. The apparent lack of synteny between TAP and the expressed MHC Class I locus is in fact reminiscent of a pattern seen in some mammalian lineages and may represent convergent evolution. Our analyses of the zebra finch MHC suggest a complex history involving

  17. Origin of amphibian and avian chromosomes by fission, fusion, and retention of ancestral chromosomes

    Science.gov (United States)

    Voss, Stephen R.; Kump, D. Kevin; Putta, Srikrishna; Pauly, Nathan; Reynolds, Anna; Henry, Rema J.; Basa, Saritha; Walker, John A.; Smith, Jeramiah J.

    2011-01-01

    Amphibian genomes differ greatly in DNA content and chromosome size, morphology, and number. Investigations of this diversity are needed to identify mechanisms that have shaped the evolution of vertebrate genomes. We used comparative mapping to investigate the organization of genes in the Mexican axolotl (Ambystoma mexicanum), a species that presents relatively few chromosomes (n = 14) and a gigantic genome (>20 pg/N). We show extensive conservation of synteny between Ambystoma, chicken, and human, and a positive correlation between the length of conserved segments and genome size. Ambystoma segments are estimated to be four to 51 times longer than homologous human and chicken segments. Strikingly, genes demarking the structures of 28 chicken chromosomes are ordered among linkage groups defining the Ambystoma genome, and we show that these same chromosomal segments are also conserved in a distantly related anuran amphibian (Xenopus tropicalis). Using linkage relationships from the amphibian maps, we predict that three chicken chromosomes originated by fusion, nine to 14 originated by fission, and 12–17 evolved directly from ancestral tetrapod chromosomes. We further show that some ancestral segments were fused prior to the divergence of salamanders and anurans, while others fused independently and randomly as chromosome numbers were reduced in lineages leading to Ambystoma and Xenopus. The maintenance of gene order relationships between chromosomal segments that have greatly expanded and contracted in salamander and chicken genomes, respectively, suggests selection to maintain synteny relationships and/or extremely low rates of chromosomal rearrangement. Overall, the results demonstrate the value of data from diverse, amphibian genomes in studies of vertebrate genome evolution. PMID:21482624

  18. Loop 7 of E2 enzymes: an ancestral conserved functional motif involved in the E2-mediated steps of the ubiquitination cascade.

    Directory of Open Access Journals (Sweden)

    Elena Papaleo

    Full Text Available The ubiquitin (Ub system controls almost every aspect of eukaryotic cell biology. Protein ubiquitination depends on the sequential action of three classes of enzymes (E1, E2 and E3. E2 Ub-conjugating enzymes have a central role in the ubiquitination pathway, interacting with both E1 and E3, and influencing the ultimate fate of the substrates. Several E2s are characterized by an extended acidic insertion in loop 7 (L7, which if mutated is known to impair the proper E2-related functions. In the present contribution, we show that acidic loop is a conserved ancestral motif in E2s, relying on the presence of alternate hydrophobic and acidic residues. Moreover, the dynamic properties of a subset of family 3 E2s, as well as their binary and ternary complexes with Ub and the cognate E3, have been investigated. Here we provide a model of L7 role in the different steps of the ubiquitination cascade of family 3 E2s. The L7 hydrophobic residues turned out to be the main determinant for the stabilization of the E2 inactive conformations by a tight network of interactions in the catalytic cleft. Moreover, phosphorylation is known from previous studies to promote E2 competent conformations for Ub charging, inducing electrostatic repulsion and acting on the L7 acidic residues. Here we show that these active conformations are stabilized by a network of hydrophobic interactions between L7 and L4, the latter being a conserved interface for E3-recruitment in several E2s. In the successive steps, L7 conserved acidic residues also provide an interaction interface for both Ub and the Rbx1 RING subdomain of the cognate E3. Our data therefore suggest a crucial role for L7 of family 3 E2s in all the E2-mediated steps of the ubiquitination cascade. Its different functions are exploited thank to its conserved hydrophobic and acidic residues in a finely orchestrate mechanism.

  19. Gene duplication, silencing and expression alteration govern the molecular evolution of PRC2 genes in plants.

    Science.gov (United States)

    Furihata, Hazuka Y; Suenaga, Kazuya; Kawanabe, Takahiro; Yoshida, Takanori; Kawabe, Akira

    2016-10-13

    PRC2 genes were analyzed for their number of gene duplications, d N /d S ratios and expression patterns among Brassicaceae and Gramineae species. Although both amino acid sequences and copy number of the PRC2 genes were generally well conserved in both Brassicaceae and Gramineae species, we observed that some rapidly evolving genes experienced duplications and expression pattern changes. After multiple duplication events, all but one or two of the duplicated copies tend to be silenced. Silenced copies were reactivated in the endosperm and showed ectopic expression in developing seeds. The results indicated that rapid evolution of some PRC2 genes is initially caused by a relaxation of selective constraint following the gene duplication events. Several loci could become maternally expressed imprinted genes and acquired functional roles in the endosperm.

  20. Why Meillassoux’s Speculative Materialism Struggles with Ancestrality

    Directory of Open Access Journals (Sweden)

    Ciprian Jeler

    2014-12-01

    Full Text Available This paper shows that Quentin Meillassoux’s speculative materialism doesn’t offer us the means to account for the ancestral statements that the modern sciences produce, i.e. for the scientific statements about events preceding all forms of life. An analysis of the reasons why Meillassoux thinks that the problem of ancestrality problematizes the contemporary self-evidence of correlationism is first offered. The results of this analysis are then applied to speculative materialism itself and the consequences are not very promising: very much like correlationism, speculative materialism explicitly denies what I call the “generalized version of the realistic assumption of science” and, in so doing, renders scientific ancestral statements de jure unverifiable. Therefore, if correlationism is rendered suspicious by the issue of ancestrality, the same can be said of speculative materialism.

  1. REGEN: Ancestral Genome Reconstruction for Bacteria.

    Science.gov (United States)

    Yang, Kuan; Heath, Lenwood S; Setubal, João C

    2012-07-18

    Ancestral genome reconstruction can be understood as a phylogenetic study with more details than a traditional phylogenetic tree reconstruction. We present a new computational system called REGEN for ancestral bacterial genome reconstruction at both the gene and replicon levels. REGEN reconstructs gene content, contiguous gene runs, and replicon structure for each ancestral genome. Along each branch of the phylogenetic tree, REGEN infers evolutionary events, including gene creation and deletion and replicon fission and fusion. The reconstruction can be performed by either a maximum parsimony or a maximum likelihood method. Gene content reconstruction is based on the concept of neighboring gene pairs. REGEN was designed to be used with any set of genomes that are sufficiently related, which will usually be the case for bacteria within the same taxonomic order. We evaluated REGEN using simulated genomes and genomes in the Rhizobiales order.

  2. Sas-4 proteins are required during basal body duplication in Paramecium

    Science.gov (United States)

    Gogendeau, Delphine; Hurbain, Ilse; Raposo, Graca; Cohen, Jean; Koll, France; Basto, Renata

    2011-01-01

    Centrioles and basal bodies are structurally related organelles composed of nine microtubule (MT) triplets. Studies performed in Caenorhabditis elegans embryos have shown that centriole duplication takes place in sequential way, in which different proteins are recruited in a specific order to assemble a procentriole. ZYG-1 initiates centriole duplication by triggering the recruitment of a complex of SAS-5 and SAS-6, which then recruits the final player, SAS-4, to allow the incorporation of MT singlets. It is thought that a similar mechanism (that also involves additional proteins) is present in other animal cells, but it remains to be investigated whether the same players and their ascribed functions are conserved during basal body duplication in cells that exclusively contain basal bodies. To investigate this question, we have used the multiciliated protist Paramecium tetraurelia. Here we show that in the absence of PtSas4, two types of defects in basal body duplication can be identified. In the majority of cases, the germinative disk and cartwheel, the first structures assembled during duplication, are not detected. In addition, if daughter basal bodies were formed, they invariably had defects in MT recruitment. Our results suggest that PtSas4 has a broader function than its animal orthologues. PMID:21289083

  3. The Korarchaeota: Archaeal orphans representing an ancestral lineage of life

    Energy Technology Data Exchange (ETDEWEB)

    Elkins, James G.; Kunin, Victor; Anderson, Iain; Barry, Kerrie; Goltsman, Eugene; Lapidus, Alla; Hedlund, Brian; Hugenholtz, Phil; Kyrpides, Nikos; Graham, David; Keller, Martin; Wanner, Gerhard; Richardson, Paul; Stetter, Karl O.

    2007-05-01

    Based on conserved cellular properties, all life on Earth can be grouped into different phyla which belong to the primary domains Bacteria, Archaea, and Eukarya. However, tracing back their evolutionary relationships has been impeded by horizontal gene transfer and gene loss. Within the Archaea, the kingdoms Crenarchaeota and Euryarchaeota exhibit a profound divergence. In order to elucidate the evolution of these two major kingdoms, representatives of more deeply diverged lineages would be required. Based on their environmental small subunit ribosomal (ss RNA) sequences, the Korarchaeota had been originally suggested to have an ancestral relationship to all known Archaea although this assessment has been refuted. Here we describe the cultivation and initial characterization of the first member of the Korarchaeota, highly unusual, ultrathin filamentous cells about 0.16 {micro}m in diameter. A complete genome sequence obtained from enrichment cultures revealed an unprecedented combination of signature genes which were thought to be characteristic of either the Crenarchaeota, Euryarchaeota, or Eukarya. Cell division appears to be mediated through a FtsZ-dependent mechanism which is highly conserved throughout the Bacteria and Euryarchaeota. An rpb8 subunit of the DNA-dependent RNA polymerase was identified which is absent from other Archaea and has been described as a eukaryotic signature gene. In addition, the representative organism possesses a ribosome structure typical for members of the Crenarchaeota. Based on its gene complement, this lineage likely diverged near the separation of the two major kingdoms of Archaea. Further investigations of these unique organisms may shed additional light onto the evolution of extant life.

  4. REGEN: Ancestral Genome Reconstruction for Bacteria

    Directory of Open Access Journals (Sweden)

    João C. Setubal

    2012-07-01

    Full Text Available Ancestral genome reconstruction can be understood as a phylogenetic study with more details than a traditional phylogenetic tree reconstruction. We present a new computational system called REGEN for ancestral bacterial genome reconstruction at both the gene and replicon levels. REGEN reconstructs gene content, contiguous gene runs, and replicon structure for each ancestral genome. Along each branch of the phylogenetic tree, REGEN infers evolutionary events, including gene creation and deletion and replicon fission and fusion. The reconstruction can be performed by either a maximum parsimony or a maximum likelihood method. Gene content reconstruction is based on the concept of neighboring gene pairs. REGEN was designed to be used with any set of genomes that are sufficiently related, which will usually be the case for bacteria within the same taxonomic order. We evaluated REGEN using simulated genomes and genomes in the Rhizobiales order.

  5. Comparative analysis of rosaceous genomes and the reconstruction of a putative ancestral genome for the family.

    Science.gov (United States)

    Illa, Eudald; Sargent, Daniel J; Lopez Girona, Elena; Bushakra, Jill; Cestaro, Alessandro; Crowhurst, Ross; Pindo, Massimo; Cabrera, Antonio; van der Knaap, Esther; Iezzoni, Amy; Gardiner, Susan; Velasco, Riccardo; Arús, Pere; Chagné, David; Troggio, Michela

    2011-01-12

    Comparative genome mapping studies in Rosaceae have been conducted until now by aligning genetic maps within the same genus, or closely related genera and using a limited number of common markers. The growing body of genomics resources and sequence data for both Prunus and Fragaria permits detailed comparisons between these genera and the recently released Malus × domestica genome sequence. We generated a comparative analysis using 806 molecular markers that are anchored genetically to the Prunus and/or Fragaria reference maps, and physically to the Malus genome sequence. Markers in common for Malus and Prunus, and Malus and Fragaria, respectively were 784 and 148. The correspondence between marker positions was high and conserved syntenic blocks were identified among the three genera in the Rosaceae. We reconstructed a proposed ancestral genome for the Rosaceae. A genome containing nine chromosomes is the most likely candidate for the ancestral Rosaceae progenitor. The number of chromosomal translocations observed between the three genera investigated was low. However, the number of inversions identified among Malus and Prunus was much higher than any reported genome comparisons in plants, suggesting that small inversions have played an important role in the evolution of these two genera or of the Rosaceae.

  6. Comparative analysis of rosaceous genomes and the reconstruction of a putative ancestral genome for the family

    Directory of Open Access Journals (Sweden)

    Velasco Riccardo

    2011-01-01

    Full Text Available Abstract Background Comparative genome mapping studies in Rosaceae have been conducted until now by aligning genetic maps within the same genus, or closely related genera and using a limited number of common markers. The growing body of genomics resources and sequence data for both Prunus and Fragaria permits detailed comparisons between these genera and the recently released Malus × domestica genome sequence. Results We generated a comparative analysis using 806 molecular markers that are anchored genetically to the Prunus and/or Fragaria reference maps, and physically to the Malus genome sequence. Markers in common for Malus and Prunus, and Malus and Fragaria, respectively were 784 and 148. The correspondence between marker positions was high and conserved syntenic blocks were identified among the three genera in the Rosaceae. We reconstructed a proposed ancestral genome for the Rosaceae. Conclusions A genome containing nine chromosomes is the most likely candidate for the ancestral Rosaceae progenitor. The number of chromosomal translocations observed between the three genera investigated was low. However, the number of inversions identified among Malus and Prunus was much higher than any reported genome comparisons in plants, suggesting that small inversions have played an important role in the evolution of these two genera or of the Rosaceae.

  7. Reconstructed Ancestral Enzymes Impose a Fitness Cost upon Modern Bacteria Despite Exhibiting Favourable Biochemical Properties.

    Science.gov (United States)

    Hobbs, Joanne K; Prentice, Erica J; Groussin, Mathieu; Arcus, Vickery L

    2015-10-01

    Ancestral sequence reconstruction has been widely used to study historical enzyme evolution, both from biochemical and cellular perspectives. Two properties of reconstructed ancestral proteins/enzymes are commonly reported--high thermostability and high catalytic activity--compared with their contemporaries. Increased protein stability is associated with lower aggregation rates, higher soluble protein abundance and a greater capacity to evolve, and therefore, these proteins could be considered "superior" to their contemporary counterparts. In this study, we investigate the relationship between the favourable in vitro biochemical properties of reconstructed ancestral enzymes and the organismal fitness they confer in vivo. We have previously reconstructed several ancestors of the enzyme LeuB, which is essential for leucine biosynthesis. Our initial fitness experiments revealed that overexpression of ANC4, a reconstructed LeuB that exhibits high stability and activity, was only able to partially rescue the growth of a ΔleuB strain, and that a strain complemented with this enzyme was outcompeted by strains carrying one of its descendants. When we expanded our study to include five reconstructed LeuBs and one contemporary, we found that neither in vitro protein stability nor the catalytic rate was correlated with fitness. Instead, fitness showed a strong, negative correlation with estimated evolutionary age (based on phylogenetic relationships). Our findings suggest that, for reconstructed ancestral enzymes, superior in vitro properties do not translate into organismal fitness in vivo. The molecular basis of the relationship between fitness and the inferred age of ancestral LeuB enzymes is unknown, but may be related to the reconstruction process. We also hypothesise that the ancestral enzymes may be incompatible with the other, contemporary enzymes of the metabolic network.

  8. Duplication and relocation of the functional DPY19L2 gene within low copy repeats

    Directory of Open Access Journals (Sweden)

    Cheung Joseph

    2006-03-01

    Full Text Available Abstract Background Low copy repeats (LCRs are thought to play an important role in recent gene evolution, especially when they facilitate gene duplications. Duplicate genes are fundamental to adaptive evolution, providing substrates for the development of new or shared gene functions. Moreover, silencing of duplicate genes can have an indirect effect on adaptive evolution by causing genomic relocation of functional genes. These changes are theorized to have been a major factor in speciation. Results Here we present a novel example showing functional gene relocation within a LCR. We characterize the genomic structure and gene content of eight related LCRs on human Chromosomes 7 and 12. Two members of a novel transmembrane gene family, DPY19L, were identified in these regions, along with six transcribed pseudogenes. One of these genes, DPY19L2, is found on Chromosome 12 and is not syntenic with its mouse orthologue. Instead, the human locus syntenic to mouse Dpy19l2 contains a pseudogene, DPY19L2P1. This indicates that the ancestral copy of this gene has been silenced, while the descendant copy has remained active. Thus, the functional copy of this gene has been relocated to a new genomic locus. We then describe the expansion and evolution of the DPY19L gene family from a single gene found in invertebrate animals. Ancient duplications have led to multiple homologues in different lineages, with three in fish, frogs and birds and four in mammals. Conclusion Our results show that the DPY19L family has expanded throughout the vertebrate lineage and has undergone recent primate-specific evolution within LCRs.

  9. Current incidence of duplicate publication in otolaryngology.

    Science.gov (United States)

    Cheung, Veronique Wan Fook; Lam, Gilbert O A; Wang, Yun Fan; Chadha, Neil K

    2014-03-01

    Duplicate publication--deemed highly unethical--is the reproduction of substantial content in another article by the same authors. In 1999, Rosenthal et al. identified an 8.5% incidence of duplicate articles in two otolaryngology journals. We explored the current incidence in three otolaryngology journals in North America and Europe. Retrospective literature review. Index articles in 2008 in Archives of Otolaryngology-Head and Neck Surgery, Laryngoscope, and Clinical Otolaryngology were searched using MEDLINE. Potential duplicate publications in 2006 through 2010 were identified using the first, second, and last authors' names. Three authors independently investigated suspected duplicate publications--classifying them by degree of duplication. Of 358 index articles screened, 75 (20.9%) had 119 potential duplicates from 2006 to 2010. Full review of these 119 potential duplicates revealed a total of 40 articles with some form of redundancy (33.6% of the potential duplicates) involving 27 index articles (7.5% of 358 index articles); one (0.8%) "dual" publication (identical or nearly identical data and conclusions to the index article); three (2.5%) "suspected" dual publications (less than 50% new data and same conclusions); and 36 (30.3%) publications with "salami-slicing" (portion of the index article data repeated) were obtained. Further analysis compared the likelihood of duplicate publication by study source and subspecialty within otolaryngology. The incidence of duplicate publication has not significantly changed over 10 years. "Salami-slicing" was a concerning practice, with no cross-referencing in 61% of these cases. Detecting and eliminating redundant publications is a laborious task, but it is essential in upholding the journal quality and research integrity. © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  10. Resolution effects in reconstructing ancestral genomes.

    Science.gov (United States)

    Zheng, Chunfang; Jeong, Yuji; Turcotte, Madisyn Gabrielle; Sankoff, David

    2018-05-09

    The reconstruction of ancestral genomes must deal with the problem of resolution, necessarily involving a trade-off between trying to identify genomic details and being overwhelmed by noise at higher resolutions. We use the median reconstruction at the synteny block level, of the ancestral genome of the order Gentianales, based on coffee, Rhazya stricta and grape, to exemplify the effects of resolution (granularity) on comparative genomic analyses. We show how decreased resolution blurs the differences between evolving genomes, with respect to rate, mutational process and other characteristics.

  11. Duplicate editorial on duplicate publication.

    Science.gov (United States)

    Corson, Stephen L; Decherney, Alan H

    2005-04-01

    The authors define and discuss the various forms taken by duplicate publications, and provide suggested remedies to help authors, editors, reviewers, and readers avoid this form of internal plagiarism.

  12. Analysis on the reconstruction accuracy of the Fitch method for inferring ancestral states

    Directory of Open Access Journals (Sweden)

    Grünewald Stefan

    2011-01-01

    accuracies on 1000 simulated Yule trees also exhibit similar behaviors. For comb-shaped trees, the limiting reconstruction accuracies of using all taxa are always less than or equal to those of using the nearest root-to-leaf path when the conservation probability is not less than 1N. As a result, more taxa are suggested for ancestral reconstruction when the tree topology is balanced and the sequences are highly similar, and a few taxa close to the root are recommended otherwise.

  13. The duplicated genes database: identification and functional annotation of co-localised duplicated genes across genomes.

    Directory of Open Access Journals (Sweden)

    Marion Ouedraogo

    Full Text Available BACKGROUND: There has been a surge in studies linking genome structure and gene expression, with special focus on duplicated genes. Although initially duplicated from the same sequence, duplicated genes can diverge strongly over evolution and take on different functions or regulated expression. However, information on the function and expression of duplicated genes remains sparse. Identifying groups of duplicated genes in different genomes and characterizing their expression and function would therefore be of great interest to the research community. The 'Duplicated Genes Database' (DGD was developed for this purpose. METHODOLOGY: Nine species were included in the DGD. For each species, BLAST analyses were conducted on peptide sequences corresponding to the genes mapped on a same chromosome. Groups of duplicated genes were defined based on these pairwise BLAST comparisons and the genomic location of the genes. For each group, Pearson correlations between gene expression data and semantic similarities between functional GO annotations were also computed when the relevant information was available. CONCLUSIONS: The Duplicated Gene Database provides a list of co-localised and duplicated genes for several species with the available gene co-expression level and semantic similarity value of functional annotation. Adding these data to the groups of duplicated genes provides biological information that can prove useful to gene expression analyses. The Duplicated Gene Database can be freely accessed through the DGD website at http://dgd.genouest.org.

  14. Duplication in DNA Sequences

    Science.gov (United States)

    Ito, Masami; Kari, Lila; Kincaid, Zachary; Seki, Shinnosuke

    The duplication and repeat-deletion operations are the basis of a formal language theoretic model of errors that can occur during DNA replication. During DNA replication, subsequences of a strand of DNA may be copied several times (resulting in duplications) or skipped (resulting in repeat-deletions). As formal language operations, iterated duplication and repeat-deletion of words and languages have been well studied in the literature. However, little is known about single-step duplications and repeat-deletions. In this paper, we investigate several properties of these operations, including closure properties of language families in the Chomsky hierarchy and equations involving these operations. We also make progress toward a characterization of regular languages that are generated by duplicating a regular language.

  15. Rectal duplication presenting as colonic subocclusion.

    Science.gov (United States)

    Vuilleumier, H; Maternini, M

    2006-04-01

    Rectal duplication cyst is a rare congenital lesion which is known to be associated with other congenital defects, especially genitourinary and vertebral anomalies. Infections with fistulization, bleeding, and malignant degeneration are the major complications of developmental cysts. The case of an 83-year-old woman referred for acute constipation associated with abdominal distension is reported. CT and MRI showed a large cystic mass of the pelvis with extrinsic compression of the rectum. Surgical excision would have been the treatment of choice. In this case, the patient was unfortunately not eligible for surgery due to her poor general condition but responded well to conservative treatment.

  16. Recombination facilitates neofunctionalization of duplicate genes via originalization

    Directory of Open Access Journals (Sweden)

    Huang Ren

    2010-06-01

    Full Text Available Abstract Background Recently originalization was proposed to be an effective way of duplicate-gene preservation, in which recombination provokes the high frequency of original (or wild-type allele on both duplicated loci. Because the high frequency of wild-type allele might drive the arising and accumulating of advantageous mutation, it is hypothesized that recombination might enlarge the probability of neofunctionalization (Pneo of duplicate genes. In this article this hypothesis has been tested theoretically. Results Results show that through originalization recombination might not only shorten mean time to neofunctionalizaiton, but also enlarge Pneo. Conclusions Therefore, recombination might facilitate neofunctionalization via originalization. Several extensive applications of these results on genomic evolution have been discussed: 1. Time to nonfunctionalization can be much longer than a few million generations expected before; 2. Homogenization on duplicated loci results from not only gene conversion, but also originalization; 3. Although the rate of advantageous mutation is much small compared with that of degenerative mutation, Pneo cannot be expected to be small.

  17. Duplication and independent selection of cell-wall invertase genes GIF1 and OsCIN1 during rice evolution and domestication

    Directory of Open Access Journals (Sweden)

    Ge Song

    2010-04-01

    Full Text Available Abstract Background Various evolutionary models have been proposed to interpret the fate of paralogous duplicates, which provides substrates on which evolution selection could act. In particular, domestication, as a special selection, has played important role in crop cultivation with divergence of many genes controlling important agronomic traits. Recent studies have indicated that a pair of duplicate genes was often sub-functionalized from their ancestral functions held by the parental genes. We previously demonstrated that the rice cell-wall invertase (CWI gene GIF1 that plays an important role in the grain-filling process was most likely subjected to domestication selection in the promoter region. Here, we report that GIF1 and another CWI gene OsCIN1 constitute a pair of duplicate genes with differentiated expression and function through independent selection. Results Through synteny analysis, we show that GIF1 and another cell-wall invertase gene OsCIN1 were paralogues derived from a segmental duplication originated during genome duplication of grasses. Results based on analyses of population genetics and gene phylogenetic tree of 25 cultivars and 25 wild rice sequences demonstrated that OsCIN1 was also artificially selected during rice domestication with a fixed mutation in the coding region, in contrast to GIF1 that was selected in the promoter region. GIF1 and OsCIN1 have evolved into different expression patterns and probable different kinetics parameters of enzymatic activity with the latter displaying less enzymatic activity. Overexpression of GIF1 and OsCIN1 also resulted in different phenotypes, suggesting that OsCIN1 might regulate other unrecognized biological process. Conclusion How gene duplication and divergence contribute to genetic novelty and morphological adaptation has been an interesting issue to geneticists and biologists. Our discovery that the duplicated pair of GIF1 and OsCIN1 has experienced sub

  18. Evolution of sexes from an ancestral mating-type specification pathway.

    Directory of Open Access Journals (Sweden)

    Sa Geng

    2014-07-01

    Full Text Available Male and female sexes have evolved repeatedly in eukaryotes but the origins of dimorphic sexes and their relationship to mating types in unicellular species are not understood. Volvocine algae include isogamous species such as Chlamydomonas reinhardtii, with two equal-sized mating types, and oogamous multicellular species such as Volvox carteri with sperm-producing males and egg-producing females. Theoretical work predicts genetic linkage of a gamete cell-size regulatory gene(s to an ancestral mating-type locus as a possible step in the evolution of dimorphic gametes, but this idea has not been tested. Here we show that, contrary to predictions, a single conserved mating locus (MT gene in volvocine algae-MID, which encodes a RWP-RK domain transcription factor-evolved from its ancestral role in C. reinhardtii as a mating-type specifier, to become a determinant of sperm and egg development in V. carteri. Transgenic female V. carteri expressing male MID produced functional sperm packets during sexual development. Transgenic male V. carteri with RNA interference (RNAi-mediated knockdowns of VcMID produced functional eggs, or self-fertile hermaphrodites. Post-transcriptional controls were found to regulate cell-type-limited expression and nuclear localization of VcMid protein that restricted its activity to nuclei of developing male germ cells and sperm. Crosses with sex-reversed strains uncoupled sex determination from sex chromosome identity and revealed gender-specific roles for male and female mating locus genes in sexual development, gamete fitness and reproductive success. Our data show genetic continuity between the mating-type specification and sex determination pathways of volvocine algae, and reveal evidence for gender-specific adaptations in the male and female mating locus haplotypes of Volvox. These findings will enable a deeper understanding of how a master regulator of mating-type determination in an ancestral unicellular species was

  19. Implications of duplicated cis-regulatory elements in the evolution of metazoans: the DDI model or how simplicity begets novelty.

    Science.gov (United States)

    Jiménez-Delgado, Senda; Pascual-Anaya, Juan; Garcia-Fernàndez, Jordi

    2009-07-01

    The discovery that most regulatory genes were conserved among animals from distant phyla challenged the ideas that gene duplication and divergence of homologous coding sequences were the basis for major morphological changes in metazoan evolution. In recent years, however, the interest for the roles, conservation and changes of non-coding sequences grew-up in parallel with genome sequencing projects. Presently, many independent studies are highlighting the importance that subtle changes in cis-regulatory regions had in the evolution of morphology trough the Animal Kingdom. Here we will show and discuss some of these studies, and underscore the future of cis-Evo-Devo research. Nevertheless, we would also explore how gene duplication, which includes duplication of regulatory regions, may have been critical for spatial or temporal co-option of new regulatory networks, causing the deployment of new transcriptome scenarios, and how these induced morphological changes were critical for the evolution of new forms. Forty years after Susumu Ohno famous sentence 'natural selection merely modifies, while redundancy creates', we suggest the alternative: 'natural selection modifies, while redundancy of cis-regulatory elements innovates', and propose the Duplication-Degeneration-Innovation model to explain the increased evolvability of duplicated cis-regulatory regions. Paradoxically, making regulation simpler by subfunctionalization paved the path for future complexity or, in other words, 'to make it simple to make it complex'.

  20. Global ex-situ crop diversity conservation and the Svalbard Global Seed Vault: assessing the current status.

    Directory of Open Access Journals (Sweden)

    Ola T Westengen

    Full Text Available Ex-situ conservation of crop diversity is a global concern, and the development of an efficient and sustainable conservation system is a historic priority recognized in international law and policy. We assess the completeness of the safety duplication collection in the Svalbard Global Seed Vault with respect to data on the world's ex-situ collections as reported by the Food and Agriculture Organization of the United Nations. Currently, 774,601 samples are deposited at Svalbard by 53 genebanks. We estimate that more than one third of the globally distinct accessions of 156 crop genera stored in genebanks as orthodox seeds are conserved in the Seed Vault. The numbers of safety duplicates of Triticum (wheat, Sorghum (sorghum, Pennisetum (pearl millet, Eleusine (finger millet, Cicer (chickpea and Lens (lentil exceed 50% of the estimated numbers of distinct accessions in global ex-situ collections. The number of accessions conserved globally generally reflects importance for food production, but there are significant gaps in the safety collection at Svalbard in some genera of high importance for food security in tropical countries, such as Amaranthus (amaranth, Chenopodium (quinoa, Eragrostis (teff and Abelmoschus (okra. In the 29 food-crop genera with the largest number of accessions stored globally, an average of 5.5 out of the ten largest collections is already represented in the Seed Vault collection or is covered by existing deposit agreements. The high coverage of ITPGRFA Annex 1 crops and of those crops for which there is a CGIAR mandate in the current Seed Vault collection indicates that existence of international policies and institutions are important determinants for accessions to be safety duplicated at Svalbard. As a back-up site for the global conservation system, the Seed Vault plays not only a practical but also a symbolic role for enhanced integration and cooperation for conservation of crop diversity.

  1. Global ex-situ crop diversity conservation and the Svalbard Global Seed Vault: assessing the current status.

    Science.gov (United States)

    Westengen, Ola T; Jeppson, Simon; Guarino, Luigi

    2013-01-01

    Ex-situ conservation of crop diversity is a global concern, and the development of an efficient and sustainable conservation system is a historic priority recognized in international law and policy. We assess the completeness of the safety duplication collection in the Svalbard Global Seed Vault with respect to data on the world's ex-situ collections as reported by the Food and Agriculture Organization of the United Nations. Currently, 774,601 samples are deposited at Svalbard by 53 genebanks. We estimate that more than one third of the globally distinct accessions of 156 crop genera stored in genebanks as orthodox seeds are conserved in the Seed Vault. The numbers of safety duplicates of Triticum (wheat), Sorghum (sorghum), Pennisetum (pearl millet), Eleusine (finger millet), Cicer (chickpea) and Lens (lentil) exceed 50% of the estimated numbers of distinct accessions in global ex-situ collections. The number of accessions conserved globally generally reflects importance for food production, but there are significant gaps in the safety collection at Svalbard in some genera of high importance for food security in tropical countries, such as Amaranthus (amaranth), Chenopodium (quinoa), Eragrostis (teff) and Abelmoschus (okra). In the 29 food-crop genera with the largest number of accessions stored globally, an average of 5.5 out of the ten largest collections is already represented in the Seed Vault collection or is covered by existing deposit agreements. The high coverage of ITPGRFA Annex 1 crops and of those crops for which there is a CGIAR mandate in the current Seed Vault collection indicates that existence of international policies and institutions are important determinants for accessions to be safety duplicated at Svalbard. As a back-up site for the global conservation system, the Seed Vault plays not only a practical but also a symbolic role for enhanced integration and cooperation for conservation of crop diversity.

  2. Duplicability of self-interacting human genes.

    LENUS (Irish Health Repository)

    Pérez-Bercoff, Asa

    2010-01-01

    BACKGROUND: There is increasing interest in the evolution of protein-protein interactions because this should ultimately be informative of the patterns of evolution of new protein functions within the cell. One model proposes that the evolution of new protein-protein interactions and protein complexes proceeds through the duplication of self-interacting genes. This model is supported by data from yeast. We examined the relationship between gene duplication and self-interaction in the human genome. RESULTS: We investigated the patterns of self-interaction and duplication among 34808 interactions encoded by 8881 human genes, and show that self-interacting proteins are encoded by genes with higher duplicability than genes whose proteins lack this type of interaction. We show that this result is robust against the system used to define duplicate genes. Finally we compared the presence of self-interactions amongst proteins whose genes have duplicated either through whole-genome duplication (WGD) or small-scale duplication (SSD), and show that the former tend to have more interactions in general. After controlling for age differences between the two sets of duplicates this result can be explained by the time since the gene duplication. CONCLUSIONS: Genes encoding self-interacting proteins tend to have higher duplicability than proteins lacking self-interactions. Moreover these duplicate genes have more often arisen through whole-genome rather than small-scale duplication. Finally, self-interacting WGD genes tend to have more interaction partners in general in the PIN, which can be explained by their overall greater age. This work adds to our growing knowledge of the importance of contextual factors in gene duplicability.

  3. Facial duplication: case, review, and embryogenesis.

    Science.gov (United States)

    Barr, M

    1982-04-01

    The craniofacial anatomy of an infant with facial duplication is described. There were four eyes, two noses, two maxillae, and one mandible. Anterior to the single pituitary the brain was duplicated and there was bilateral arhinencephaly. Portions of the brain were extruded into a large frontal encephalocele. Cases of symmetrical facial duplication reported in the literature range from two complete faces on a single head (diprosopus) to simple nasal duplication. The variety of patterns of duplication suggests that the doubling of facial components arises in several different ways: Forking of the notochord, duplication of the prosencephalon, duplication of the olfactory placodes, and duplication of maxillary and/or mandibular growth centers around the margins of the stomatodeal plate. Among reported cases, the female:male ratio is 2:1.

  4. Ancestral gene reconstruction and synthesis of ancient rhodopsins in the laboratory.

    Science.gov (United States)

    Chang, Belinda S W

    2003-08-01

    Laboratory synthesis of ancestral proteins offers an intriguing opportunity to study the past directly. The development of Bayesian methods to infer ancestral sequences, combined with advances in models of molecular evolution, and synthetic gene technology make this an increasingly promising approach in evolutionary studies of molecular function. Visual pigments form the first step in the biochemical cascade of events in the retina in all animals known to possess visual capabilities. In vertebrates, the necessity of spanning a dynamic range of light intensities of many orders of magnitude has given rise to two different types of photoreceptors, rods specialized for dim-light conditions, and cones for daylight and color vision. These photoreceptors contain different types of visual pigment genes. Reviewed here are methods of inferring ancestral sequences, chemical synthesis of artificial ancestral genes in the laboratory, and applications to the evolution of vertebrate visual systems and the experimental recreation of an archosaur rod visual pigment. The ancestral archosaurs gave rise to several notable lineages of diapsid reptiles, including the birds and the dinosaurs, and would have existed over 200 MYA. What little is known of their physiology comes from fossil remains, and inference based on the biology of their living descendants. Despite its age, an ancestral archosaur pigment was successfully recreated in the lab, and showed interesting properties of its wavelength sensitivity that may have implications for the visual capabilities of the ancestral archosaurs in dim light.

  5. The fate of the duplicated androgen receptor in fishes: a late neofunctionalization event?

    Directory of Open Access Journals (Sweden)

    Haendler Bernard

    2008-12-01

    Full Text Available Abstract Background Based on the observation of an increased number of paralogous genes in teleost fishes compared with other vertebrates and on the conserved synteny between duplicated copies, it has been shown that a whole genome duplication (WGD occurred during the evolution of Actinopterygian fish. Comparative phylogenetic dating of this duplication event suggests that it occurred early on, specifically in teleosts. It has been proposed that this event might have facilitated the evolutionary radiation and the phenotypic diversification of the teleost fish, notably by allowing the sub- or neo-functionalization of many duplicated genes. Results In this paper, we studied in a wide range of Actinopterygians the duplication and fate of the androgen receptor (AR, NR3C4, a nuclear receptor known to play a key role in sex-determination in vertebrates. The pattern of AR gene duplication is consistent with an early WGD event: it has been duplicated into two genes AR-A and AR-B after the split of the Acipenseriformes from the lineage leading to teleost fish but before the divergence of Osteoglossiformes. Genomic and syntenic analyses in addition to lack of PCR amplification show that one of the duplicated copies, AR-B, was lost in several basal Clupeocephala such as Cypriniformes (including the model species zebrafish, Siluriformes, Characiformes and Salmoniformes. Interestingly, we also found that, in basal teleost fish (Osteoglossiformes and Anguilliformes, the two copies remain very similar, whereas, specifically in Percomorphs, one of the copies, AR-B, has accumulated substitutions in both the ligand binding domain (LBD and the DNA binding domain (DBD. Conclusion The comparison of the mutations present in these divergent AR-B with those known in human to be implicated in complete, partial or mild androgen insensitivity syndrome suggests that the existence of two distinct AR duplicates may be correlated to specific functional differences that may be

  6. Zebrafish IGF genes: gene duplication, conservation and divergence, and novel roles in midline and notochord development.

    Directory of Open Access Journals (Sweden)

    Shuming Zou

    Full Text Available Insulin-like growth factors (IGFs are key regulators of development, growth, and longevity. In most vertebrate species including humans, there is one IGF-1 gene and one IGF-2 gene. Here we report the identification and functional characterization of 4 distinct IGF genes (termed as igf-1a, -1b, -2a, and -2b in zebrafish. These genes encode 4 structurally distinct and functional IGF peptides. IGF-1a and IGF-2a mRNAs were detected in multiple tissues in adult fish. IGF-1b mRNA was detected only in the gonad and IGF-2b mRNA only in the liver. Functional analysis showed that all 4 IGFs caused similar developmental defects but with different potencies. Many of these embryos had fully or partially duplicated notochords, suggesting that an excess of IGF signaling causes defects in the midline formation and an expansion of the notochord. IGF-2a, the most potent IGF, was analyzed in depth. IGF-2a expression caused defects in the midline formation and expansion of the notochord but it did not alter the anterior neural patterning. These results not only provide new insights into the functional conservation and divergence of the multiple igf genes but also reveal a novel role of IGF signaling in midline formation and notochord development in a vertebrate model.

  7. Duplication and Loss of Function of Genes Encoding RNA Polymerase III Subunit C4 Causes Hybrid Incompatibility in Rice

    Directory of Open Access Journals (Sweden)

    Giao Ngoc Nguyen

    2017-08-01

    Full Text Available Reproductive barriers are commonly observed in both animals and plants, in which they maintain species integrity and contribute to speciation. This report shows that a combination of loss-of-function alleles at two duplicated loci, DUPLICATED GAMETOPHYTIC STERILITY 1 (DGS1 on chromosome 4 and DGS2 on chromosome 7, causes pollen sterility in hybrid progeny derived from an interspecific cross between cultivated rice, Oryza sativa, and an Asian annual wild rice, O. nivara. Male gametes carrying the DGS1 allele from O. nivara (DGS1-nivaras and the DGS2 allele from O. sativa (DGS2-T65s were sterile, but female gametes carrying the same genotype were fertile. We isolated the causal gene, which encodes a protein homologous to DNA-dependent RNA polymerase (RNAP III subunit C4 (RPC4. RPC4 facilitates the transcription of 5S rRNAs and tRNAs. The loss-of-function alleles at DGS1-nivaras and DGS2-T65s were caused by weak or nonexpression of RPC4 and an absence of RPC4, respectively. Phylogenetic analysis demonstrated that gene duplication of RPC4 at DGS1 and DGS2 was a recent event that occurred after divergence of the ancestral population of Oryza from other Poaceae or during diversification of AA-genome species.

  8. Rectal duplication with sciatic hernia.

    Science.gov (United States)

    Nosek, Marzena; Golonka, Anna; Kalińska-Lipert, Anita; Nachulewicz, Paweł

    2015-07-01

    Rectal duplications represent 5% of all duplications in the alimentary tract, and they are very rarely diagnosed during the neonatal period. The authors present the method of investigation and the results of surgical treatment of a full-term neonate with a sciatic hernia containing a rectal duplication. The procedure started with three-port laparoscopy, but excision of the tubular duplication of the rectum was possible only by a transanal endorectal pull-through approach. The sciatic hernia was closed, and plastic sutures on the buttock finished the procedure. The coincidence of sciatic hernia with rectal duplication is extremely rare, and the method of treatment depends exclusively on the anatomical conditions.

  9. Social capital and health: evidence that ancestral trust promotes health among children of immigrants.

    Science.gov (United States)

    Ljunge, Martin

    2014-12-01

    This paper presents evidence that generalized trust promotes health. Children of immigrants in a broad set of European countries with ancestry from across the world are studied. Individuals are examined within country of residence using variation in trust across countries of ancestry. The approach addresses reverse causality and concerns that the trust measure picks up institutional factors in the individual's contextual setting. There is a significant positive estimate of ancestral trust in explaining self-assessed health. The finding is robust to accounting for individual, parental, and extensive ancestral country characteristics. Individuals with higher ancestral trust are also less likely to be hampered by health problems in their daily life, providing evidence of trust influencing real life outcomes. Individuals with high trust feel and act healthier, enabling a more productive life.

  10. Evaluation of contrast in duplicated radiographs

    International Nuclear Information System (INIS)

    Thunthy, K.H.; Weinberg, R.

    1982-01-01

    This investigation evaluated changes in the contrast of duplicated radiographs made at different ultraviolet light exposures. Increasing ultraviolet light exposure had different effects on the duplicates of originals of different background densities. When correctly exposed, a duplicate radiograph enhanced contrast. When originals had the same contrast but different background densities, their duplicates did not have the same contrast. It was not possible to duplicate accurately all the different contrasts measured on an original. It was possible, however, to produce duplicates with all contrasts greater than those of the original

  11. Bayesian phylogeny analysis of vertebrate serpins illustrates evolutionary conservation of the intron and indels based six groups classification system from lampreys for ∼500 MY

    Directory of Open Access Journals (Sweden)

    Abhishek Kumar

    2015-06-01

    Full Text Available The serpin superfamily is characterized by proteins that fold into a conserved tertiary structure and exploits a sophisticated and irreversible suicide-mechanism of inhibition. Vertebrate serpins are classified into six groups (V1–V6, based on three independent biological features—genomic organization, diagnostic amino acid sites and rare indels. However, this classification system was based on the limited number of mammalian genomes available. In this study, several non-mammalian genomes are used to validate this classification system using the powerful Bayesian phylogenetic method. This method supports the intron and indel based vertebrate classification and proves that serpins have been maintained from lampreys to humans for about 500 MY. Lampreys have fewer than 10 serpins, which expand into 36 serpins in humans. The two expanding groups V1 and V2 have SERPINB1/SERPINB6 and SERPINA8/SERPIND1 as the ancestral serpins, respectively. Large clusters of serpins are formed by local duplications of these serpins in tetrapod genomes. Interestingly, the ancestral HCII/SERPIND1 locus (nested within PIK4CA possesses group V4 serpin (A2APL1, homolog of α2-AP/SERPINF2 of lampreys; hence, pointing to the fact that group V4 might have originated from group V2. Additionally in this study, details of the phylogenetic history and genomic characteristics of vertebrate serpins are revisited.

  12. Targeted tandem duplication of a large chromosomal segment in Aspergillus oryzae.

    Science.gov (United States)

    Takahashi, Tadashi; Sato, Atsushi; Ogawa, Masahiro; Hanya, Yoshiki; Oguma, Tetsuya

    2014-08-01

    We describe here the first successful construction of a targeted tandem duplication of a large chromosomal segment in Aspergillus oryzae. The targeted tandem chromosomal duplication was achieved by using strains that had a 5'-deleted pyrG upstream of the region targeted for tandem chromosomal duplication and a 3'-deleted pyrG downstream of the target region. Consequently,strains bearing a 210-kb targeted tandem chromosomal duplication near the centromeric region of chromosome 8 and strains bearing a targeted tandem chromosomal duplication of a 700-kb region of chromosome 2 were successfully constructed. The strains bearing the tandem chromosomal duplication were efficiently obtained from the regenerated protoplast of the parental strains. However, the generation of the chromosomal duplication did not depend on the introduction of double-stranded breaks(DSBs) by I-SceI. The chromosomal duplications of these strains were stably maintained after five generations of culture under nonselective conditions. The strains bearing the tandem chromosomal duplication in the 700-kb region of chromosome 2 showed highly increased protease activity in solid-state culture, indicating that the duplication of large chromosomal segments could be a useful new breeding technology and gene analysis method.

  13. WARACS: Wrappers to Automate the Reconstruction of Ancestral Character States.

    Science.gov (United States)

    Gruenstaeudl, Michael

    2016-02-01

    Reconstructions of ancestral character states are among the most widely used analyses for evaluating the morphological, cytological, or ecological evolution of an organismic lineage. The software application Mesquite remains the most popular application for such reconstructions among plant scientists, even though its support for automating complex analyses is limited. A software tool is needed that automates the reconstruction and visualization of ancestral character states with Mesquite and similar applications. A set of command line-based Python scripts was developed that (a) communicates standardized input to and output from the software applications Mesquite, BayesTraits, and TreeGraph2; (b) automates the process of ancestral character state reconstruction; and (c) facilitates the visualization of reconstruction results. WARACS provides a simple tool that streamlines the reconstruction and visualization of ancestral character states over a wide array of parameters, including tree distribution, character state, and optimality criterion.

  14. Why Meillassoux’s Speculative Materialism Struggles with Ancestrality

    OpenAIRE

    Ciprian Jeler

    2014-01-01

    This paper shows that Quentin Meillassoux’s speculative materialism doesn’t offer us the means to account for the ancestral statements that the modern sciences produce, i.e. for the scientific statements about events preceding all forms of life. An analysis of the reasons why Meillassoux thinks that the problem of ancestrality problematizes the contemporary self-evidence of correlationism is first offered. The results of this analysis are then applied to speculative materialism itself and the...

  15. Properties of Sequence Conservation in Upstream Regulatory and Protein Coding Sequences among Paralogs in Arabidopsis thaliana

    Science.gov (United States)

    Richardson, Dale N.; Wiehe, Thomas

    Whole genome duplication (WGD) has catalyzed the formation of new species, genes with novel functions, altered expression patterns, complexified signaling pathways and has provided organisms a level of genetic robustness. We studied the long-term evolution and interrelationships of 5’ upstream regulatory sequences (URSs), protein coding sequences (CDSs) and expression correlations (EC) of duplicated gene pairs in Arabidopsis. Three distinct methods revealed significant evolutionary conservation between paralogous URSs and were highly correlated with microarray-based expression correlation of the respective gene pairs. Positional information on exact matches between sequences unveiled the contribution of micro-chromosomal rearrangements on expression divergence. A three-way rank analysis of URS similarity, CDS divergence and EC uncovered specific gene functional biases. Transcription factor activity was associated with gene pairs exhibiting conserved URSs and divergent CDSs, whereas a broad array of metabolic enzymes was found to be associated with gene pairs showing diverged URSs but conserved CDSs.

  16. Reconstruction of ancestral RNA sequences under multiple structural constraints.

    Science.gov (United States)

    Tremblay-Savard, Olivier; Reinharz, Vladimir; Waldispühl, Jérôme

    2016-11-11

    Secondary structures form the scaffold of multiple sequence alignment of non-coding RNA (ncRNA) families. An accurate reconstruction of ancestral ncRNAs must use this structural signal. However, the inference of ancestors of a single ncRNA family with a single consensus structure may bias the results towards sequences with high affinity to this structure, which are far from the true ancestors. In this paper, we introduce achARNement, a maximum parsimony approach that, given two alignments of homologous ncRNA families with consensus secondary structures and a phylogenetic tree, simultaneously calculates ancestral RNA sequences for these two families. We test our methodology on simulated data sets, and show that achARNement outperforms classical maximum parsimony approaches in terms of accuracy, but also reduces by several orders of magnitude the number of candidate sequences. To conclude this study, we apply our algorithms on the Glm clan and the FinP-traJ clan from the Rfam database. Our results show that our methods reconstruct small sets of high-quality candidate ancestors with better agreement to the two target structures than with classical approaches. Our program is freely available at: http://csb.cs.mcgill.ca/acharnement .

  17. Thermotolerant Yeast Strains Adapted by Laboratory Evolution Show Trade-Off at Ancestral Temperatures and Preadaptation to Other Stresses

    DEFF Research Database (Denmark)

    Caspeta, Luis; Nielsen, Jens

    2015-01-01

    adaptive laboratory evolution, we previously isolated seven Saccharomyces cerevisiae strains with improved growth at 40°C. Here, we show that genetic adaptations to high temperature caused a growth trade-off at ancestral temperatures, reduced cellular functions, and improved tolerance of other stresses...... in the ancestral strain. The latter is an advantageous attribute for acquiring thermotolerance and correlates with the reduction of yeast functions associated with loss of respiration capacity. This trait caused glycerol overproduction that was associated with the growth trade-off at ancestral temperatures....... In combination with altered sterol composition of cellular membranes, glycerol overproduction was also associated with yeast osmotolerance and improved tolerance of high concentrations of glucose and ethanol. Our study shows that thermal adaptation of yeast is suitable for improving yeast resistance...

  18. The house spider genome reveals an ancient whole-genome duplication during arachnid evolution.

    Science.gov (United States)

    Schwager, Evelyn E; Sharma, Prashant P; Clarke, Thomas; Leite, Daniel J; Wierschin, Torsten; Pechmann, Matthias; Akiyama-Oda, Yasuko; Esposito, Lauren; Bechsgaard, Jesper; Bilde, Trine; Buffry, Alexandra D; Chao, Hsu; Dinh, Huyen; Doddapaneni, HarshaVardhan; Dugan, Shannon; Eibner, Cornelius; Extavour, Cassandra G; Funch, Peter; Garb, Jessica; Gonzalez, Luis B; Gonzalez, Vanessa L; Griffiths-Jones, Sam; Han, Yi; Hayashi, Cheryl; Hilbrant, Maarten; Hughes, Daniel S T; Janssen, Ralf; Lee, Sandra L; Maeso, Ignacio; Murali, Shwetha C; Muzny, Donna M; Nunes da Fonseca, Rodrigo; Paese, Christian L B; Qu, Jiaxin; Ronshaugen, Matthew; Schomburg, Christoph; Schönauer, Anna; Stollewerk, Angelika; Torres-Oliva, Montserrat; Turetzek, Natascha; Vanthournout, Bram; Werren, John H; Wolff, Carsten; Worley, Kim C; Bucher, Gregor; Gibbs, Richard A; Coddington, Jonathan; Oda, Hiroki; Stanke, Mario; Ayoub, Nadia A; Prpic, Nikola-Michael; Flot, Jean-François; Posnien, Nico; Richards, Stephen; McGregor, Alistair P

    2017-07-31

    The duplication of genes can occur through various mechanisms and is thought to make a major contribution to the evolutionary diversification of organisms. There is increasing evidence for a large-scale duplication of genes in some chelicerate lineages including two rounds of whole genome duplication (WGD) in horseshoe crabs. To investigate this further, we sequenced and analyzed the genome of the common house spider Parasteatoda tepidariorum. We found pervasive duplication of both coding and non-coding genes in this spider, including two clusters of Hox genes. Analysis of synteny conservation across the P. tepidariorum genome suggests that there has been an ancient WGD in spiders. Comparison with the genomes of other chelicerates, including that of the newly sequenced bark scorpion Centruroides sculpturatus, suggests that this event occurred in the common ancestor of spiders and scorpions, and is probably independent of the WGDs in horseshoe crabs. Furthermore, characterization of the sequence and expression of the Hox paralogs in P. tepidariorum suggests that many have been subject to neo-functionalization and/or sub-functionalization since their duplication. Our results reveal that spiders and scorpions are likely the descendants of a polyploid ancestor that lived more than 450 MYA. Given the extensive morphological diversity and ecological adaptations found among these animals, rivaling those of vertebrates, our study of the ancient WGD event in Arachnopulmonata provides a new comparative platform to explore common and divergent evolutionary outcomes of polyploidization events across eukaryotes.

  19. Animal regeneration: ancestral character or evolutionary novelty?

    Science.gov (United States)

    Slack, Jonathan Mw

    2017-09-01

    An old question about regeneration is whether it is an ancestral character which is a general property of living matter, or whether it represents a set of specific adaptations to the different circumstances faced by different types of animal. In this review, some recent results on regeneration are assessed to see if they can throw any new light on this question. Evidence in favour of an ancestral character comes from the role of Wnt and bone morphogenetic protein signalling in controlling the pattern of whole-body regeneration in acoels, which are a basal group of bilaterian animals. On the other hand, there is some evidence for adaptive acquisition or maintenance of the regeneration of appendages based on the occurrence of severe non-lethal predation, the existence of some novel genes in regenerating organisms, and differences at the molecular level between apparently similar forms of regeneration. It is tentatively concluded that whole-body regeneration is an ancestral character although has been lost from most animal lineages. Appendage regeneration is more likely to represent a derived character resulting from many specific adaptations. © 2017 The Author.

  20. Conservation of gene linkage in dispersed vertebrate NK homeobox clusters.

    Science.gov (United States)

    Wotton, Karl R; Weierud, Frida K; Juárez-Morales, José L; Alvares, Lúcia E; Dietrich, Susanne; Lewis, Katharine E

    2009-10-01

    Nk homeobox genes are important regulators of many different developmental processes including muscle, heart, central nervous system and sensory organ development. They are thought to have arisen as part of the ANTP megacluster, which also gave rise to Hox and ParaHox genes, and at least some NK genes remain tightly linked in all animals examined so far. The protostome-deuterostome ancestor probably contained a cluster of nine Nk genes: (Msx)-(Nk4/tinman)-(Nk3/bagpipe)-(Lbx/ladybird)-(Tlx/c15)-(Nk7)-(Nk6/hgtx)-(Nk1/slouch)-(Nk5/Hmx). Of these genes, only NKX2.6-NKX3.1, LBX1-TLX1 and LBX2-TLX2 remain tightly linked in humans. However, it is currently unclear whether this is unique to the human genome as we do not know which of these Nk genes are clustered in other vertebrates. This makes it difficult to assess whether the remaining linkages are due to selective pressures or because chance rearrangements have "missed" certain genes. In this paper, we identify all of the paralogs of these ancestrally clustered NK genes in several distinct vertebrates. We demonstrate that tight linkages of Lbx1-Tlx1, Lbx2-Tlx2 and Nkx3.1-Nkx2.6 have been widely maintained in both the ray-finned and lobe-finned fish lineages. Moreover, the recently duplicated Hmx2-Hmx3 genes are also tightly linked. Finally, we show that Lbx1-Tlx1 and Hmx2-Hmx3 are flanked by highly conserved noncoding elements, suggesting that shared regulatory regions may have resulted in evolutionary pressure to maintain these linkages. Consistent with this, these pairs of genes have overlapping expression domains. In contrast, Lbx2-Tlx2 and Nkx3.1-Nkx2.6, which do not seem to be coexpressed, are also not associated with conserved noncoding sequences, suggesting that an alternative mechanism may be responsible for the continued clustering of these genes.

  1. Tissue-specific differential induction of duplicated fatty acid-binding protein genes by the peroxisome proliferator, clofibrate, in zebrafish (Danio rerio

    Directory of Open Access Journals (Sweden)

    Venkatachalam Ananda B

    2012-07-01

    Full Text Available Abstract Background Force, Lynch and Conery proposed the duplication-degeneration-complementation (DDC model in which partitioning of ancestral functions (subfunctionalization and acquisition of novel functions (neofunctionalization were the two primary mechanisms for the retention of duplicated genes. The DDC model was tested by analyzing the transcriptional induction of the duplicated fatty acid-binding protein (fabp genes by clofibrate in zebrafish. Clofibrate is a specific ligand of the peroxisome proliferator-activated receptor (PPAR; it activates PPAR which then binds to a peroxisome proliferator response element (PPRE to induce the transcriptional initiation of genes primarily involved in lipid homeostasis. Zebrafish was chosen as our model organism as it has many duplicated genes owing to a whole genome duplication (WGD event that occurred ~230-400 million years ago in the teleost fish lineage. We assayed the steady-state levels of fabp mRNA and heterogeneous nuclear RNA (hnRNA transcripts in liver, intestine, muscle, brain and heart for four sets of duplicated fabp genes, fabp1a/fabp1b.1/fabp1b.2, fabp7a/fabp7b, fabp10a/fabp10b and fabp11a/fabp11b in zebrafish fed different concentrations of clofibrate. Result Electron microscopy showed an increase in the number of peroxisomes and mitochondria in liver and heart, respectively, in zebrafish fed clofibrate. Clofibrate also increased the steady-state level of acox1 mRNA and hnRNA transcripts in different tissues, a gene with a functional PPRE. These results demonstrate that zebrafish is responsive to clofibrate, unlike some other fishes. The levels of fabp mRNA and hnRNA transcripts for the four sets of duplicated fabp genes was determined by reverse transcription, quantitative polymerase chain reaction (RT-qPCR. The level of hnRNA coded by a gene is an indirect estimate of the rate of transcriptional initiation of that gene. Clofibrate increased the steady-state level of fabp mRNAs and hn

  2. Evolutionary Paths of the cAMP-Dependent Protein Kinase (PKA) Catalytic Subunits

    Science.gov (United States)

    Søberg, Kristoffer; Jahnsen, Tore; Rognes, Torbjørn; Skålhegg, Bjørn S.; Laerdahl, Jon K.

    2013-01-01

    3′,5′-cyclic adenosine monophosphate (cAMP) dependent protein kinase or protein kinase A (PKA) has served as a prototype for the large family of protein kinases that are crucially important for signal transduction in eukaryotic cells. The PKA catalytic subunits Cα and Cβ, encoded by the two genes PRKACA and PRKACB, respectively, are among the best understood and characterized human kinases. Here we have studied the evolution of this gene family in chordates, arthropods, mollusks and other animals employing probabilistic methods and show that Cα and Cβ arose by duplication of an ancestral PKA catalytic subunit in a common ancestor of vertebrates. The two genes have subsequently been duplicated in teleost fishes. The evolution of the PRKACG retroposon in simians was also investigated. Although the degree of sequence conservation in the PKA Cα/Cβ kinase family is exceptionally high, a small set of signature residues defining Cα and Cβ subfamilies were identified. These conserved residues might be important for functions that are unique to the Cα or Cβ clades. This study also provides a good example of a seemingly simple phylogenetic problem which, due to a very high degree of sequence conservation and corresponding weak phylogenetic signals, combined with problematic nonphylogenetic signals, is nontrivial for state-of-the-art probabilistic phylogenetic methods. PMID:23593352

  3. Profiling of gene duplication patterns of sequenced teleost genomes: evidence for rapid lineage-specific genome expansion mediated by recent tandem duplications.

    Science.gov (United States)

    Lu, Jianguo; Peatman, Eric; Tang, Haibao; Lewis, Joshua; Liu, Zhanjiang

    2012-06-15

    Gene duplication has had a major impact on genome evolution. Localized (or tandem) duplication resulting from unequal crossing over and whole genome duplication are believed to be the two dominant mechanisms contributing to vertebrate genome evolution. While much scrutiny has been directed toward discerning patterns indicative of whole-genome duplication events in teleost species, less attention has been paid to the continuous nature of gene duplications and their impact on the size, gene content, functional diversity, and overall architecture of teleost genomes. Here, using a Markov clustering algorithm directed approach we catalogue and analyze patterns of gene duplication in the four model teleost species with chromosomal coordinates: zebrafish, medaka, stickleback, and Tetraodon. Our analyses based on set size, duplication type, synonymous substitution rate (Ks), and gene ontology emphasize shared and lineage-specific patterns of genome evolution via gene duplication. Most strikingly, our analyses highlight the extraordinary duplication and retention rate of recent duplicates in zebrafish and their likely role in the structural and functional expansion of the zebrafish genome. We find that the zebrafish genome is remarkable in its large number of duplicated genes, small duplicate set size, biased Ks distribution toward minimal mutational divergence, and proportion of tandem and intra-chromosomal duplicates when compared with the other teleost model genomes. The observed gene duplication patterns have played significant roles in shaping the architecture of teleost genomes and appear to have contributed to the recent functional diversification and divergence of important physiological processes in zebrafish. We have analyzed gene duplication patterns and duplication types among the available teleost genomes and found that a large number of genes were tandemly and intrachromosomally duplicated, suggesting their origin of independent and continuous duplication

  4. Rectal duplication: a case report.

    Science.gov (United States)

    Didden, K; Masereel, B; Geyskens, P

    2013-01-01

    Gastrointestinal tract duplications are uncommon congenital abnormalities, that may occur anywhere along the alimentary tract. Most frequently they occur at the level of the small bowel tract and are symptomatic before the age of two. In our case we report the history of a 68-years old women with a colon duplication, especially a rectal duplication. This is very exceptional.

  5. Ana3 is a conserved protein required for the structural integrity of centrioles and basal bodies.

    Science.gov (United States)

    Stevens, Naomi R; Dobbelaere, Jeroen; Wainman, Alan; Gergely, Fanni; Raff, Jordan W

    2009-11-02

    Recent studies have identified a conserved "core" of proteins that are required for centriole duplication. A small number of additional proteins have recently been identified as potential duplication factors, but it is unclear whether any of these proteins are components of the core duplication machinery. In this study, we investigate the function of one of these proteins, Drosophila melanogaster Ana3. We show that Ana3 is present in centrioles and basal bodies, but its behavior is distinct from that of the core duplication proteins. Most importantly, we find that Ana3 is required for the structural integrity of both centrioles and basal bodies and for centriole cohesion, but it is not essential for centriole duplication. We show that Ana3 has a mammalian homologue, Rotatin, that also localizes to centrioles and basal bodies and appears to be essential for cilia function. Thus, Ana3 defines a conserved family of centriolar proteins and plays an important part in ensuring the structural integrity of centrioles and basal bodies.

  6. A synergism between adaptive effects and evolvability drives whole genome duplication to fixation

    NARCIS (Netherlands)

    Cuypers, Thomas D; Hogeweg, Paulien; Hogeweg, P.

    Whole genome duplication has shaped eukaryotic evolutionary history and has been associated with drastic environmental change and species radiation. While the most common fate of WGD duplicates is a return to single copy, retained duplicates have been found enriched for highly interacting genes.

  7. Evidence that the ancestral haplotype in Australian hemochromatosis patients may be associated with a common mutation in the gene

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, D.H.G.; Powell, L.W.; Leggett, B.A. [Univ. of Queensland (Australia)] [and others

    1995-08-01

    Hemochromatosis (HC) is a common inherited disorder of iron metabolism for which neither the gene nor biochemical defect have yet been identified. The aim of this study was to look for clinical evidence that the predominant ancestral haplotype in Australian patients is associated with a common mutation in the gene. We compared indices of iron metabolism and storage in three groups of HC patients categorized according to the presence of the ancestral haplotype (i.e., patients with two copies, one copy, and no copies of the ancestral haplotype). We also examined iron indices in two groups of HC heterozygotes (those with the ancestral haplotype and those without) and in age-matched controls. These analyses indicate that (i) HC patients with two copies of the ancestral haplotype show significantly more severe expression of the disorder than those with one copy or those without, (ii) HC heterozygotes have partial clinical expression, which may be influenced by the presence of the ancestral haplotype in females but not in males, and (iii) the high population frequency of the HC gene may be the result of the selective advantage conferred by protecting heterozygotes against iron deficiency. 18 refs., 3 tabs.

  8. Readings in Wildlife and Fish Conservation, High School Conservation Curriculum Project.

    Science.gov (United States)

    Ensminger, Jack

    This publication is a tentative edition of readings on Wildlife and Fish Conservation in Louisiana, and as such it forms part of one of the four units of study designed for an experimental high school course, the "High School Conservation Curriculum Project." The other three units are concerned with Forest Conervation, Soil and Water…

  9. Fate of males with urethral "Y-duplication": 40-year long follow-up in 8 patients.

    Science.gov (United States)

    Lima, Mario; Destro, Francesca; Di Salvo, Neil; Gargano, Tommaso; Ruggeri, Giovanni

    2017-08-01

    The spectrum of male urethral duplication is heterogeneous and it includes the Y-duplication. The malformation is rare and there is only a few case series reported in the literature. The management of Y-forms remains challenging for the surgeon and the long-term follow-up is still scarcely investigated. We report our 40-year experience in the management of patients with Y-duplication. We conducted a restrospective analysis collecting information of patients with urethral Y-duplication treated at our department from April 1975 to April 2015. We investigated long-term effects of surgery by using a questionnaire. Ten male patients with Y-duplication came to our attention. One was treated conservatively, seven underwent surgery and two were lost. Surgery consisted of removal of the ectopic branch (via perineal or ASTRA/anterior sagittal trans-rectal approach approach) and reconstruction of the orthotopic urethra. Post-operative complications included stenosis and infections. Long-term results are influenced by associated anomalies and significant problems (incontinence, urinary tract infections and orchiepididimitis) have been reported. Y-duplication (or λ-duplication, as we prefer calling it) is a particular form of urethral duplication. The management of patients should be based upon the identification of the functional channel. The removal of the ectopic channel with ASTRA approach is safe and feasible. On the other hand, the reconstruction of the anterior urethra (when steno-atresic) is more challenging and justifies the need for many procedures. The P.A.D.U.A. (progressive augmentation by dilating the anterior urethra) technique was not effective. Skin tube grafts were responsible for infections ("hairy urethra"). BMFG (bladder mucosa free graft) urethroplasty is a good alternative, although associated with well-known complications. Associated anomalies influence long-term outcomes. Clinical study with type IV level of evidence. Copyright © 2016 Elsevier Inc

  10. Caudal duplication syndrome: imaging evaluation of a rare entity in an adult patient

    Directory of Open Access Journals (Sweden)

    Tianshen Hu, BS

    2016-03-01

    Full Text Available Several theories have been put forth to explain the complex yet symmetrical malformations and the myriad of clinical presentations of caudal duplication syndrome. Hereby, reported case is a 28-year-old female, gravida 2 para 2, with congenital caudal malformation who has undergone partial reconstructive surgeries in infancy to connect her 2 colons. She presented with recurrent left lower abdominal pain associated with nausea, vomiting, and subsequent feculent anal discharge. Imaging reveals duplication of the urinary bladder, urethra, and colon with with cloacal malformations and fistulae from the left-sided cloaca, uterus didelphys with separate cervices and vaginal canals, right-sided aortic arch and descending thoracic aorta, and dysraphic midline sacrococcygeal defect. Hydronephrosis of the left kidney with left hydroureter and inflammation of one of the colons were suspected to be the cause of the patient’s acute complaints. She improved symptomatically over the course of her hospitalization stay with conservative treatments. The management for this syndrome is individualized and may include surgical intervention to fuse or excise the duplicated organs.

  11. Rectal duplication.

    Directory of Open Access Journals (Sweden)

    Kulkarni B

    1995-04-01

    Full Text Available Duplications of the alimentary tract are of a great rarity, particularly so in the rectum. Because of its rarity, the difficulty of making a correct diagnosis and of selection of proper approach for treatment, this entity bears a special significance. The present case report deals with a female newborn who presented with imperforate anus and a rectovestibular fistula and a mass prolapsing at the introitus. Complete excision of the mass was carried out through the perineal approach and the child then underwent, a PSARP for the correction of the rectal anomaly. Histology confirmed the mass to be a rectal duplication.

  12. Preliminary experiments of electronic duplication

    International Nuclear Information System (INIS)

    Fay, Bernard

    1974-01-01

    Systems of electron sputtering (at the unit scale) use as master mask a photocathode with localized emitting zones. Emitted electrons are accelerated and focussed on a silicon substrate covered with an electrosensitive resin. The very high definition associated with electron masking is obtained whatever the complexity of the master mask is, for a printing duration of the order of the minute. This is a duplication method without any contact that prevents the master mask from any mechanical erosion. Alignment of the successive masks is obtained from an electric signal directly usable through an automatic alignment system. Experiments using the apparatus for reproducing masks through an electronic image or ''electronic duplicator'' developed in Thomson-CSF Laboratory at Corbeville, are presented [fr

  13. Analysis of the 9p21.3 sequence associated with coronary artery disease reveals a tendency for duplication in a CAD patient

    Science.gov (United States)

    Kouprina, Natalay; Noskov, Vladimir N.; Waterfall, Joshua J.; Walker, Robert L.; Meltzer, Paul S.; Topol, Eric J.; Larionov, Vladimir

    2018-01-01

    Tandem segmental duplications (SDs) greater than 10 kb are widespread in complex genomes. They provide material for gene divergence and evolutionary adaptation, while formation of specific de novo SDs is a hallmark of cancer and some human diseases. Most SDs map to distinct genomic regions termed ‘duplication blocks’. SDs organization within these blocks is often poorly characterized as they are mosaics of ancestral duplicons juxtaposed with younger duplicons arising from more recent duplication events. Structural and functional analysis of SDs is further hampered as long repetitive DNA structures are underrepresented in existing BAC and YAC libraries. We applied Transformation-Associated Recombination (TAR) cloning, a versatile technique for large DNA manipulation, to selectively isolate the coronary artery disease (CAD) interval sequence within the 9p21.3 chromosome locus from a patient with coronary artery disease and normal individuals. Four tandem head-to-tail duplicons, each ∼50 kb long, were recovered in the patient but not in normal individuals. Sequence analysis revealed that the repeats varied by 10-15 SNPs between each other and by 82 SNPs between the human genome sequence (version hg19). SNPs polymorphism within the junctions between repeats allowed two junction types to be distinguished, Type 1 and Type 2, which were found at a 2:1 ratio. The junction sequences contained an Alu element, a sequence previously shown to play a role in duplication. Knowledge of structural variation in the CAD interval from more patients could help link this locus to cardiovascular diseases susceptibility, and maybe relevant to other cases of regional amplification, including cancer. PMID:29632643

  14. Duplication of the oesophagus

    Energy Technology Data Exchange (ETDEWEB)

    Lingg, G; Nebel, G

    1981-08-01

    The article reports on the authors' own observation of a patient with duplication of the oesophagus. Basing on this case, the possibilities of the evolutionary origin are discussed briefly. The significance and decisive importance of X-ray film diagnosis in gastro-intestinal duplications is underlined.

  15. Magmatism and Epithermal Gold-Silver Deposits of the Southern Ancestral Cascade Arc, Western Nevada and Eastern California

    Science.gov (United States)

    John, David A.; du Bray, Edward A.; Henry, Christopher D.; Vikre, Peter

    2015-01-01

    Many epithermal gold-silver deposits are temporally and spatially associated with late Oligocene to Pliocene magmatism of the southern ancestral Cascade arc in western Nevada and eastern California. These deposits, which include both quartz-adularia (low- and intermediate-sulfidation; Comstock Lode, Tonopah, Bodie) and quartz-alunite (high-sulfidation; Goldfield, Paradise Peak) types, were major producers of gold and silver. Ancestral Cascade arc magmatism preceded that of the modern High Cascades arc and reflects subduction of the Farallon plate beneath North America. Ancestral arc magmatism began about 45 Ma, continued until about 3 Ma, and extended from near the Canada-United States border in Washington southward to about 250 km southeast of Reno, Nevada. The ancestral arc was split into northern and southern segments across an inferred tear in the subducting slab between Mount Shasta and Lassen Peak in northern California. The southern segment extends between 42°N in northern California and 37°N in western Nevada and was active from about 30 to 3 Ma. It is bounded on the east by the northeast edge of the Walker Lane. Ancestral arc volcanism represents an abrupt change in composition and style of magmatism relative to that in central Nevada. Large volume, caldera-forming, silicic ignimbrites associated with the 37 to 19 Ma ignimbrite flareup are dominant in central Nevada, whereas volcanic centers of the ancestral arc in western Nevada consist of andesitic stratovolcanoes and dacitic to rhyolitic lava domes that mostly formed between 25 and 4 Ma. Both ancestral arc and ignimbrite flareup magmatism resulted from rollback of the shallowly dipping slab that began about 45 Ma in northeast Nevada and migrated south-southwest with time. Most southern segment ancestral arc rocks have oxidized, high potassium, calc-alkaline compositions with silica contents ranging continuously from about 55 to 77 wt%. Most lavas are porphyritic and contain coarse plagioclase

  16. Reproductive function in mice exposed to ancestral and direct irradiation

    International Nuclear Information System (INIS)

    Nash, D.J.; Sprackling, L.S.

    1978-01-01

    Reproduction was studied in 13 inbred strains of mice that had been exposed continuously to 60 Co gamma radiation for varying numbers of generations. At weaning the mice were removed from the irradiation chamber and were tested for reproductive performance. Ancestral and direct levels of irradiation were determined for each animal. Each irradiated or control female was scored as fertile or sterile, and in utero litter counts were made in pregnant females that were dissected past the 10th day of pregnancy. The number of resorptions, dead embryos, and live embryos were counted, and the ratio of living embryos to the total number of embryos was determined for each litter. The overall fertility curves were sigmoid in the range of doses below those which caused complete sterility, which indicated some sort of cumulative damage. In 11 of the 13 strains studied, an increase in ancestral and/or direct irradiation led to significant decreases in fertility. The means of the number alive in the litters for the control and irradiated mice in each strain showed a definite trend toward fewer live mice in utero after irradiation. Least-squares analyses of variance were made to detect possible effects of any of six irradiation variables (ancestral linear, ancestral quadratic, ancestral cubic, direct linear, direct quadratic, or direct cubic) or of strain differences on total litter size and on ratio. Strain effects were significant in each instance. Litter size was more likely to be affected by radiation variables than ratios were

  17. Duplication of the oesophagus

    International Nuclear Information System (INIS)

    Lingg, G.; Nebel, G.

    1981-01-01

    The article reports on the authors' own observation of a patient with duplication of the oesophagus. Basing on this case, the possibilities of the evolutionary origin are discussed briefly. The significance and decisive importance of X-ray film diagnosis in gastro-intestinal duplications is underlined. (orig.) [de

  18. Reconstruction of ancestral RNA sequences under multiple structural constraints

    Directory of Open Access Journals (Sweden)

    Olivier Tremblay-Savard

    2016-11-01

    Full Text Available Abstract Background Secondary structures form the scaffold of multiple sequence alignment of non-coding RNA (ncRNA families. An accurate reconstruction of ancestral ncRNAs must use this structural signal. However, the inference of ancestors of a single ncRNA family with a single consensus structure may bias the results towards sequences with high affinity to this structure, which are far from the true ancestors. Methods In this paper, we introduce achARNement, a maximum parsimony approach that, given two alignments of homologous ncRNA families with consensus secondary structures and a phylogenetic tree, simultaneously calculates ancestral RNA sequences for these two families. Results We test our methodology on simulated data sets, and show that achARNement outperforms classical maximum parsimony approaches in terms of accuracy, but also reduces by several orders of magnitude the number of candidate sequences. To conclude this study, we apply our algorithms on the Glm clan and the FinP-traJ clan from the Rfam database. Conclusions Our results show that our methods reconstruct small sets of high-quality candidate ancestors with better agreement to the two target structures than with classical approaches. Our program is freely available at: http://csb.cs.mcgill.ca/acharnement .

  19. The mammary gland-specific marsupial ELP and eutherian CTI share a common ancestral gene.

    Science.gov (United States)

    Pharo, Elizabeth A; De Leo, Alison A; Renfree, Marilyn B; Thomson, Peter C; Lefèvre, Christophe M; Nicholas, Kevin R

    2012-06-08

    The marsupial early lactation protein (ELP) gene is expressed in the mammary gland and the protein is secreted into milk during early lactation (Phase 2A). Mature ELP shares approximately 55.4% similarity with the colostrum-specific bovine colostrum trypsin inhibitor (CTI) protein. Although ELP and CTI both have a single bovine pancreatic trypsin inhibitor (BPTI)-Kunitz domain and are secreted only during the early lactation phases, their evolutionary history is yet to be investigated. Tammar ELP was isolated from a genomic library and the fat-tailed dunnart and Southern koala ELP genes cloned from genomic DNA. The tammar ELP gene was expressed only in the mammary gland during late pregnancy (Phase 1) and early lactation (Phase 2A). The opossum and fat-tailed dunnart ELP and cow CTI transcripts were cloned from RNA isolated from the mammary gland and dog CTI from cells in colostrum. The putative mature ELP and CTI peptides shared 44.6%-62.2% similarity. In silico analyses identified the ELP and CTI genes in the other species examined and provided compelling evidence that they evolved from a common ancestral gene. In addition, whilst the eutherian CTI gene was conserved in the Laurasiatherian orders Carnivora and Cetartiodactyla, it had become a pseudogene in others. These data suggest that bovine CTI may be the ancestral gene of the Artiodactyla-specific, rapidly evolving chromosome 13 pancreatic trypsin inhibitor (PTI), spleen trypsin inhibitor (STI) and the five placenta-specific trophoblast Kunitz domain protein (TKDP1-5) genes. Marsupial ELP and eutherian CTI evolved from an ancestral therian mammal gene before the divergence of marsupials and eutherians between 130 and 160 million years ago. The retention of the ELP gene in marsupials suggests that this early lactation-specific milk protein may have an important role in the immunologically naïve young of these species.

  20. Characterization of Reconstructed Ancestral Proteins Suggests a Change in Temperature of the Ancient Biosphere.

    Science.gov (United States)

    Akanuma, Satoshi

    2017-08-06

    Understanding the evolution of ancestral life, and especially the ability of some organisms to flourish in the variable environments experienced in Earth's early biosphere, requires knowledge of the characteristics and the environment of these ancestral organisms. Information about early life and environmental conditions has been obtained from fossil records and geological surveys. Recent advances in phylogenetic analysis, and an increasing number of protein sequences available in public databases, have made it possible to infer ancestral protein sequences possessed by ancient organisms. However, the in silico studies that assess the ancestral base content of ribosomal RNAs, the frequency of each amino acid in ancestral proteins, and estimate the environmental temperatures of ancient organisms, show conflicting results. The characterization of ancestral proteins reconstructed in vitro suggests that ancient organisms had very thermally stable proteins, and therefore were thermophilic or hyperthermophilic. Experimental data supports the idea that only thermophilic ancestors survived the catastrophic increase in temperature of the biosphere that was likely associated with meteorite impacts during the early history of Earth. In addition, by expanding the timescale and including more ancestral proteins for reconstruction, it appears as though the Earth's surface temperature gradually decreased over time, from Archean to present.

  1. Anterior colorectal duplication presenting as rectal prolapse.

    Science.gov (United States)

    Ramirez-Resendiz, Amador; Asz, Jose; Medina-Vega, F Antonio; Ortega-Salgado, J Arturo

    2007-09-01

    Duplications of the gastrointestinal (GI) tract are rare. Only 5% of them are rectal and there are very few reports of rectal prolapse (RP) caused by a duplication. An 11 month-old female presented with a RP caused by a blind-ended anterior tubular colorectal duplication. The duplication was successfully opened and connected to the normal rectum without complications. Although infrequent, a rectal duplication should be considered in the differential diagnosis of RP.

  2. Musculature in sipunculan worms: ontogeny and ancestral states.

    Science.gov (United States)

    Schulze, Anja; Rice, Mary E

    2009-01-01

    Molecular phylogenetics suggests that the Sipuncula fall into the Annelida, although they are morphologically very distinct and lack segmentation. To understand the evolutionary transformations from the annelid to the sipunculan body plan, it is important to reconstruct the ancestral states within the respective clades at all life history stages. Here we reconstruct the ancestral states for the head/introvert retractor muscles and the body wall musculature in the Sipuncula using Bayesian statistics. In addition, we describe the ontogenetic transformations of the two muscle systems in four sipunculan species with different developmental modes, using F-actin staining with fluorescent-labeled phalloidin in conjunction with confocal laser scanning microscopy. All four species, which have smooth body wall musculature and less than the full set of four introvert retractor muscles as adults, go through developmental stages with four retractor muscles that are eventually reduced to a lower number in the adult. The circular and sometimes the longitudinal body wall musculature are split into bands that later transform into a smooth sheath. Our ancestral state reconstructions suggest with nearly 100% probability that the ancestral sipunculan had four introvert retractor muscles, longitudinal body wall musculature in bands and circular body wall musculature arranged as a smooth sheath. Species with crawling larvae have more strongly developed body wall musculature than those with swimming larvae. To interpret our findings in the context of annelid evolution, a more solid phylogenetic framework is needed for the entire group and more data on ontogenetic transformations of annelid musculature are desirable.

  3. Adaptations to High Salt in a Halophilic Protist: Differential Expression and Gene Acquisitions through Duplications and Gene Transfers

    Science.gov (United States)

    Harding, Tommy; Roger, Andrew J.; Simpson, Alastair G. B.

    2017-01-01

    The capacity of halophiles to thrive in extreme hypersaline habitats derives partly from the tight regulation of ion homeostasis, the salt-dependent adjustment of plasma membrane fluidity, and the increased capability to manage oxidative stress. Halophilic bacteria, and archaea have been intensively studied, and substantial research has been conducted on halophilic fungi, and the green alga Dunaliella. By contrast, there have been very few investigations of halophiles that are phagotrophic protists, i.e., protozoa. To gather fundamental knowledge about salt adaptation in these organisms, we studied the transcriptome-level response of Halocafeteria seosinensis (Stramenopiles) grown under contrasting salinities. We provided further evolutionary context to our analysis by identifying genes that underwent recent duplications. Genes that were highly responsive to salinity variations were involved in stress response (e.g., chaperones), ion homeostasis (e.g., Na+/H+ transporter), metabolism and transport of lipids (e.g., sterol biosynthetic genes), carbohydrate metabolism (e.g., glycosidases), and signal transduction pathways (e.g., transcription factors). A significantly high proportion (43%) of duplicated genes were also differentially expressed, accentuating the importance of gene expansion in adaptation by H. seosinensis to high salt environments. Furthermore, we found two genes that were lateral acquisitions from bacteria, and were also highly up-regulated and highly expressed at high salt, suggesting that this evolutionary mechanism could also have facilitated adaptation to high salt. We propose that a transition toward high-salt adaptation in the ancestors of H. seosinensis required the acquisition of new genes via duplication, and some lateral gene transfers (LGTs), as well as the alteration of transcriptional programs, leading to increased stress resistance, proper establishment of ion gradients, and modification of cell structure properties like membrane

  4. Adaptations to High Salt in a Halophilic Protist: Differential Expression and Gene Acquisitions through Duplications and Gene Transfers

    Directory of Open Access Journals (Sweden)

    Tommy Harding

    2017-05-01

    Full Text Available The capacity of halophiles to thrive in extreme hypersaline habitats derives partly from the tight regulation of ion homeostasis, the salt-dependent adjustment of plasma membrane fluidity, and the increased capability to manage oxidative stress. Halophilic bacteria, and archaea have been intensively studied, and substantial research has been conducted on halophilic fungi, and the green alga Dunaliella. By contrast, there have been very few investigations of halophiles that are phagotrophic protists, i.e., protozoa. To gather fundamental knowledge about salt adaptation in these organisms, we studied the transcriptome-level response of Halocafeteria seosinensis (Stramenopiles grown under contrasting salinities. We provided further evolutionary context to our analysis by identifying genes that underwent recent duplications. Genes that were highly responsive to salinity variations were involved in stress response (e.g., chaperones, ion homeostasis (e.g., Na+/H+ transporter, metabolism and transport of lipids (e.g., sterol biosynthetic genes, carbohydrate metabolism (e.g., glycosidases, and signal transduction pathways (e.g., transcription factors. A significantly high proportion (43% of duplicated genes were also differentially expressed, accentuating the importance of gene expansion in adaptation by H. seosinensis to high salt environments. Furthermore, we found two genes that were lateral acquisitions from bacteria, and were also highly up-regulated and highly expressed at high salt, suggesting that this evolutionary mechanism could also have facilitated adaptation to high salt. We propose that a transition toward high-salt adaptation in the ancestors of H. seosinensis required the acquisition of new genes via duplication, and some lateral gene transfers (LGTs, as well as the alteration of transcriptional programs, leading to increased stress resistance, proper establishment of ion gradients, and modification of cell structure properties like

  5. Rapid maximum likelihood ancestral state reconstruction of continuous characters: A rerooting-free algorithm.

    Science.gov (United States)

    Goolsby, Eric W

    2017-04-01

    Ancestral state reconstruction is a method used to study the evolutionary trajectories of quantitative characters on phylogenies. Although efficient methods for univariate ancestral state reconstruction under a Brownian motion model have been described for at least 25 years, to date no generalization has been described to allow more complex evolutionary models, such as multivariate trait evolution, non-Brownian models, missing data, and within-species variation. Furthermore, even for simple univariate Brownian motion models, most phylogenetic comparative R packages compute ancestral states via inefficient tree rerooting and full tree traversals at each tree node, making ancestral state reconstruction extremely time-consuming for large phylogenies. Here, a computationally efficient method for fast maximum likelihood ancestral state reconstruction of continuous characters is described. The algorithm has linear complexity relative to the number of species and outperforms the fastest existing R implementations by several orders of magnitude. The described algorithm is capable of performing ancestral state reconstruction on a 1,000,000-species phylogeny in fewer than 2 s using a standard laptop, whereas the next fastest R implementation would take several days to complete. The method is generalizable to more complex evolutionary models, such as phylogenetic regression, within-species variation, non-Brownian evolutionary models, and multivariate trait evolution. Because this method enables fast repeated computations on phylogenies of virtually any size, implementation of the described algorithm can drastically alleviate the computational burden of many otherwise prohibitively time-consuming tasks requiring reconstruction of ancestral states, such as phylogenetic imputation of missing data, bootstrapping procedures, Expectation-Maximization algorithms, and Bayesian estimation. The described ancestral state reconstruction algorithm is implemented in the Rphylopars

  6. WARACS: Wrappers to Automate the Reconstruction of Ancestral Character States1

    Science.gov (United States)

    Gruenstaeudl, Michael

    2016-01-01

    Premise of the study: Reconstructions of ancestral character states are among the most widely used analyses for evaluating the morphological, cytological, or ecological evolution of an organismic lineage. The software application Mesquite remains the most popular application for such reconstructions among plant scientists, even though its support for automating complex analyses is limited. A software tool is needed that automates the reconstruction and visualization of ancestral character states with Mesquite and similar applications. Methods and Results: A set of command line–based Python scripts was developed that (a) communicates standardized input to and output from the software applications Mesquite, BayesTraits, and TreeGraph2; (b) automates the process of ancestral character state reconstruction; and (c) facilitates the visualization of reconstruction results. Conclusions: WARACS provides a simple tool that streamlines the reconstruction and visualization of ancestral character states over a wide array of parameters, including tree distribution, character state, and optimality criterion. PMID:26949580

  7. Supervised Learning for Detection of Duplicates in Genomic Sequence Databases.

    Directory of Open Access Journals (Sweden)

    Qingyu Chen

    Full Text Available First identified as an issue in 1996, duplication in biological databases introduces redundancy and even leads to inconsistency when contradictory information appears. The amount of data makes purely manual de-duplication impractical, and existing automatic systems cannot detect duplicates as precisely as can experts. Supervised learning has the potential to address such problems by building automatic systems that learn from expert curation to detect duplicates precisely and efficiently. While machine learning is a mature approach in other duplicate detection contexts, it has seen only preliminary application in genomic sequence databases.We developed and evaluated a supervised duplicate detection method based on an expert curated dataset of duplicates, containing over one million pairs across five organisms derived from genomic sequence databases. We selected 22 features to represent distinct attributes of the database records, and developed a binary model and a multi-class model. Both models achieve promising performance; under cross-validation, the binary model had over 90% accuracy in each of the five organisms, while the multi-class model maintains high accuracy and is more robust in generalisation. We performed an ablation study to quantify the impact of different sequence record features, finding that features derived from meta-data, sequence identity, and alignment quality impact performance most strongly. The study demonstrates machine learning can be an effective additional tool for de-duplication of genomic sequence databases. All Data are available as described in the supplementary material.

  8. Supervised Learning for Detection of Duplicates in Genomic Sequence Databases.

    Science.gov (United States)

    Chen, Qingyu; Zobel, Justin; Zhang, Xiuzhen; Verspoor, Karin

    2016-01-01

    First identified as an issue in 1996, duplication in biological databases introduces redundancy and even leads to inconsistency when contradictory information appears. The amount of data makes purely manual de-duplication impractical, and existing automatic systems cannot detect duplicates as precisely as can experts. Supervised learning has the potential to address such problems by building automatic systems that learn from expert curation to detect duplicates precisely and efficiently. While machine learning is a mature approach in other duplicate detection contexts, it has seen only preliminary application in genomic sequence databases. We developed and evaluated a supervised duplicate detection method based on an expert curated dataset of duplicates, containing over one million pairs across five organisms derived from genomic sequence databases. We selected 22 features to represent distinct attributes of the database records, and developed a binary model and a multi-class model. Both models achieve promising performance; under cross-validation, the binary model had over 90% accuracy in each of the five organisms, while the multi-class model maintains high accuracy and is more robust in generalisation. We performed an ablation study to quantify the impact of different sequence record features, finding that features derived from meta-data, sequence identity, and alignment quality impact performance most strongly. The study demonstrates machine learning can be an effective additional tool for de-duplication of genomic sequence databases. All Data are available as described in the supplementary material.

  9. Visual system evolution and the nature of the ancestral snake.

    Science.gov (United States)

    Simões, B F; Sampaio, F L; Jared, C; Antoniazzi, M M; Loew, E R; Bowmaker, J K; Rodriguez, A; Hart, N S; Hunt, D M; Partridge, J C; Gower, D J

    2015-07-01

    The dominant hypothesis for the evolutionary origin of snakes from 'lizards' (non-snake squamates) is that stem snakes acquired many snake features while passing through a profound burrowing (fossorial) phase. To investigate this, we examined the visual pigments and their encoding opsin genes in a range of squamate reptiles, focusing on fossorial lizards and snakes. We sequenced opsin transcripts isolated from retinal cDNA and used microspectrophotometry to measure directly the spectral absorbance of the photoreceptor visual pigments in a subset of samples. In snakes, but not lizards, dedicated fossoriality (as in Scolecophidia and the alethinophidian Anilius scytale) corresponds with loss of all visual opsins other than RH1 (λmax 490-497 nm); all other snakes (including less dedicated burrowers) also have functional sws1 and lws opsin genes. In contrast, the retinas of all lizards sampled, even highly fossorial amphisbaenians with reduced eyes, express functional lws, sws1, sws2 and rh1 genes, and most also express rh2 (i.e. they express all five of the visual opsin genes present in the ancestral vertebrate). Our evidence of visual pigment complements suggests that the visual system of stem snakes was partly reduced, with two (RH2 and SWS2) of the ancestral vertebrate visual pigments being eliminated, but that this did not extend to the extreme additional loss of SWS1 and LWS that subsequently occurred (probably independently) in highly fossorial extant scolecophidians and A. scytale. We therefore consider it unlikely that the ancestral snake was as fossorial as extant scolecophidians, whether or not the latter are para- or monophyletic. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  10. Accuracy of Genomic Prediction in Synthetic Populations Depending on the Number of Parents, Relatedness, and Ancestral Linkage Disequilibrium.

    Science.gov (United States)

    Schopp, Pascal; Müller, Dominik; Technow, Frank; Melchinger, Albrecht E

    2017-01-01

    Synthetics play an important role in quantitative genetic research and plant breeding, but few studies have investigated the application of genomic prediction (GP) to these populations. Synthetics are generated by intermating a small number of parents ([Formula: see text] and thereby possess unique genetic properties, which make them especially suited for systematic investigations of factors contributing to the accuracy of GP. We generated synthetics in silico from [Formula: see text]2 to 32 maize (Zea mays L.) lines taken from an ancestral population with either short- or long-range linkage disequilibrium (LD). In eight scenarios differing in relatedness of the training and prediction sets and in the types of data used to calculate the relationship matrix (QTL, SNPs, tag markers, and pedigree), we investigated the prediction accuracy (PA) of Genomic best linear unbiased prediction (GBLUP) and analyzed contributions from pedigree relationships captured by SNP markers, as well as from cosegregation and ancestral LD between QTL and SNPs. The effects of training set size [Formula: see text] and marker density were also studied. Sampling few parents ([Formula: see text]) generates substantial sample LD that carries over into synthetics through cosegregation of alleles at linked loci. For fixed [Formula: see text], [Formula: see text] influences PA most strongly. If the training and prediction set are related, using [Formula: see text] parents yields high PA regardless of ancestral LD because SNPs capture pedigree relationships and Mendelian sampling through cosegregation. As [Formula: see text] increases, ancestral LD contributes more information, while other factors contribute less due to lower frequencies of closely related individuals. For unrelated prediction sets, only ancestral LD contributes information and accuracies were poor and highly variable for [Formula: see text] due to large sample LD. For large [Formula: see text], achieving moderate accuracy requires

  11. Estimation of the ancestral effective population sizes of African great apes under different selection regimes.

    Science.gov (United States)

    Schrago, Carlos G

    2014-08-01

    Reliable estimates of ancestral effective population sizes are necessary to unveil the population-level phenomena that shaped the phylogeny and molecular evolution of the African great apes. Although several methods have previously been applied to infer ancestral effective population sizes, an analysis of the influence of the selective regime on the estimates of ancestral demography has not been thoroughly conducted. In this study, three independent data sets under different selective regimes were used were composed to tackle this issue. The results showed that selection had a significant impact on the estimates of ancestral effective population sizes of the African great apes. The inference of the ancestral demography of African great apes was affected by the selection regime. The effects, however, were not homogeneous along the ancestral populations of great apes. The effective population size of the ancestor of humans and chimpanzees was more impacted by the selection regime when compared to the same parameter in the ancestor of humans, chimpanzees and gorillas. Because the selection regime influenced the estimates of ancestral effective population size, it is reasonable to assume that a portion of the discrepancy found in previous studies that inferred the ancestral effective population size may be attributable to the differential action of selection on the genes sampled.

  12. Origins of amino acid transporter loci in trypanosomatid parasites

    Directory of Open Access Journals (Sweden)

    Jackson Andrew P

    2007-02-01

    Full Text Available Abstract Background Large amino acid transporter gene families were identified from the genome sequences of three parasitic protists, Trypanosoma brucei, Trypanosoma cruzi and Leishmania major. These genes encode molecular sensors of the external host environment for trypanosomatid cells and are crucial to modulation of gene expression as the parasite passes through different life stages. This study provides a comprehensive phylogenetic account of the origins of these genes, redefining each locus according to a positional criterion, through the integration of phyletic identity with comparative gene order information. Results Each locus was individually specified by its surrounding gene order and associated with homologs showing the same position ('homoeologs' in other species, where available. Bayesian and maximum likelihood phylogenies were in general agreement on systematic relationships and confirmed several 'orthology sets' of genes retained since divergence from the common ancestor. Reconciliation analysis quantified the scale of duplication and gene loss, as well as identifying further apparent orthology sets, which lacked conservation of genomic position. These instances suggested substantial genomic restructuring or transposition. Other analyses identified clear instances of evolutionary rate changes post-duplication, the effects of concerted evolution within tandem gene arrays and gene conversion events between syntenic loci. Conclusion Despite their importance to cell function and parasite development, the repertoires of AAT loci in trypanosomatid parasites are relatively fluid in both complement and gene dosage. Some loci are ubiquitous and, after an ancient origin through transposition, originated through descent from the ancestral trypanosomatid. However, reconciliation analysis demonstrated that unilateral expansions of gene number through tandem gene duplication, transposition of gene duplicates to otherwise well conserved genomic

  13. Ancestral state reconstruction, rate heterogeneity, and the evolution of reptile viviparity.

    Science.gov (United States)

    King, Benedict; Lee, Michael S Y

    2015-05-01

    Virtually all models for reconstructing ancestral states for discrete characters make the crucial assumption that the trait of interest evolves at a uniform rate across the entire tree. However, this assumption is unlikely to hold in many situations, particularly as ancestral state reconstructions are being performed on increasingly large phylogenies. Here, we show how failure to account for such variable evolutionary rates can cause highly anomalous (and likely incorrect) results, while three methods that accommodate rate variability yield the opposite, more plausible, and more robust reconstructions. The random local clock method, implemented in BEAST, estimates the position and magnitude of rate changes on the tree; split BiSSE estimates separate rate parameters for pre-specified clades; and the hidden rates model partitions each character state into a number of rate categories. Simulations show the inadequacy of traditional models when characters evolve with both asymmetry (different rates of change between states within a character) and heterotachy (different rates of character evolution across different clades). The importance of accounting for rate heterogeneity in ancestral state reconstruction is highlighted empirically with a new analysis of the evolution of viviparity in squamate reptiles, which reveal a predominance of forward (oviparous-viviparous) transitions and very few reversals. © The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Reconstruction of ancestral RNA sequences under multiple structural constraints

    OpenAIRE

    Tremblay-Savard, Olivier; Reinharz, Vladimir; Waldisp?hl, J?r?me

    2016-01-01

    Background Secondary structures form the scaffold of multiple sequence alignment of non-coding RNA (ncRNA) families. An accurate reconstruction of ancestral ncRNAs must use this structural signal. However, the inference of ancestors of a single ncRNA family with a single consensus structure may bias the results towards sequences with high affinity to this structure, which are far from the true ancestors. Methods In this paper, we introduce achARNement, a maximum parsimony approach that, given...

  15. Anomalously high variation in postnatal development is ancestral for dinosaurs but lost in birds

    Science.gov (United States)

    Griffin, Christopher T.; Nesbitt, Sterling J.

    2016-12-01

    Compared with all other living reptiles, birds grow extremely fast and possess unusually low levels of intraspecific variation during postnatal development. It is now clear that birds inherited their high rates of growth from their dinosaurian ancestors, but the origin of the avian condition of low variation during development is poorly constrained. The most well-understood growth trajectories of later Mesozoic theropods (e.g., Tyrannosaurus, Allosaurus) show similarly low variation to birds, contrasting with higher variation in extant crocodylians. Here, we show that deep within Dinosauria, among the earliest-diverging dinosaurs, anomalously high intraspecific variation is widespread but then is lost in more derived theropods. This style of development is ancestral for dinosaurs and their closest relatives, and, surprisingly, this level of variation is far higher than in living crocodylians. Among early dinosaurs, this variation is widespread across Pangaea in the Triassic and Early Jurassic, and among early-diverging theropods (ceratosaurs), this variation is maintained for 165 million years to the end of the Cretaceous. Because the Late Triassic environment across Pangaea was volatile and heterogeneous, this variation may have contributed to the rise of dinosaurian dominance through the end of the Triassic Period.

  16. Molecular evolution of a Y chromosome to autosome gene duplication in Drosophila.

    Science.gov (United States)

    Dyer, Kelly A; White, Brooke E; Bray, Michael J; Piqué, Daniel G; Betancourt, Andrea J

    2011-03-01

    In contrast to the rest of the genome, the Y chromosome is restricted to males and lacks recombination. As a result, Y chromosomes are unable to respond efficiently to selection, and newly formed Y chromosomes degenerate until few genes remain. The rapid loss of genes from newly formed Y chromosomes has been well studied, but gene loss from highly degenerate Y chromosomes has only recently received attention. Here, we identify and characterize a Y to autosome duplication of the male fertility gene kl-5 that occurred during the evolution of the testacea group species of Drosophila. The duplication was likely DNA based, as other Y-linked genes remain on the Y chromosome, the locations of introns are conserved, and expression analyses suggest that regulatory elements remain linked. Genetic mapping reveals that the autosomal copy of kl-5 resides on the dot chromosome, a tiny autosome with strongly suppressed recombination. Molecular evolutionary analyses show that autosomal copies of kl-5 have reduced polymorphism and little recombination. Importantly, the rate of protein evolution of kl-5 has increased significantly in lineages where it is on the dot versus Y linked. Further analyses suggest this pattern is a consequence of relaxed purifying selection, rather than adaptive evolution. Thus, although the initial fixation of the kl-5 duplication may have been advantageous, slightly deleterious mutations have accumulated in the dot-linked copies of kl-5 faster than in the Y-linked copies. Because the dot chromosome contains seven times more genes than the Y and is exposed to selection in both males and females, these results suggest that the dot suffers the deleterious effects of genetic linkage to more selective targets compared with the Y chromosome. Thus, a highly degenerate Y chromosome may not be the worst environment in the genome, as is generally thought, but may in fact be protected from the accumulation of deleterious mutations relative to other nonrecombining

  17. Conservation of the abscission signaling peptide IDA during Angiosperm evolution: withstanding genome duplications and gain and loss of the receptors HAE/HSL2

    Directory of Open Access Journals (Sweden)

    Ida M. Stø

    2015-10-01

    Full Text Available The peptide INFLORESCENCE DEFICIENT IN ABSCISSION (IDA, which signals through the leucine-rich repeat receptor-like kinases HAESA (HAE and HAESA-LIKE2 (HSL2, controls different cell separation events in Arabidopsis thaliana. We hypothesize the involvement of this signaling module in abscission processes in other plant species even though they may shed other organs than A. thaliana. As the first step towards testing this hypothesis from an evolutionarily perspective we have identified genes encoding putative orthologues of IDA and its receptors by BLAST searches of publically available protein, nucleotide and genome databases for angiosperms. Genes encoding IDA or IDA-LIKE (IDL peptides and HSL proteins were found in all investigated species, which were selected as to represent each angiosperm order with available genomic sequences. The 12 amino acids representing the bioactive peptide in A. thaliana have virtually been unchanged throughout the evolution of the angiosperms; however, the number of IDL and HSL genes varies between different orders and species. The phylogenetic analyses suggest that IDA, HSL2 and the related HSL1 gene, were present in the species that gave rise to the angiosperms. HAE has arisen from HSL1 after a genome duplication that took place after the monocot - eudicots split. HSL1 has also independently been duplicated in the monocots, while HSL2 has been lost in gingers (Zingiberales and grasses (Poales. IDA has been duplicated in eudicots to give rise to functionally divergent IDL peptides. We postulate that the high number of IDL homologs present in the core eudicots is a result of multiple whole genome duplications. We substantiate the involvement of IDA and HAE/HSL2 homologs in abscission by providing gene expression data of different organ separation events from various species.

  18. Invasion of Ancestral Mammals into Dim-light Environments Inferred from Adaptive Evolution of the Phototransduction Genes.

    Science.gov (United States)

    Wu, Yonghua; Wang, Haifeng; Hadly, Elizabeth A

    2017-04-20

    Nocturnality is a key evolutionary innovation of mammals that enables mammals to occupy relatively empty nocturnal niches. Invasion of ancestral mammals into nocturnality has long been inferred from the phylogenetic relationships of crown Mammalia, which is primarily nocturnal, and crown Reptilia, which is primarily diurnal, although molecular evidence for this is lacking. Here we used phylogenetic analyses of the vision genes involved in the phototransduction pathway to predict the diel activity patterns of ancestral mammals and reptiles. Our results demonstrated that the common ancestor of the extant Mammalia was dominated by positive selection for dim-light vision, supporting the predominate nocturnality of the ancestral mammals. Further analyses showed that the nocturnality of the ancestral mammals was probably derived from the predominate diurnality of the ancestral amniotes, which featured strong positive selection for bright-light vision. Like the ancestral amniotes, the common ancestor of the extant reptiles and various taxa in Squamata, one of the main competitors of the temporal niches of the ancestral mammals, were found to be predominate diurnality as well. Despite this relatively apparent temporal niche partitioning between ancestral mammals and the relevant reptiles, our results suggested partial overlap of their temporal niches during crepuscular periods.

  19. Gene Duplication Leads to Altered Membrane Topology of a Cytochrome P450 Enzyme in Seed Plants.

    Science.gov (United States)

    Renault, Hugues; De Marothy, Minttu; Jonasson, Gabriella; Lara, Patricia; Nelson, David R; Nilsson, IngMarie; André, François; von Heijne, Gunnar; Werck-Reichhart, Danièle

    2017-08-01

    Evolution of the phenolic metabolism was critical for the transition of plants from water to land. A cytochrome P450, CYP73, with cinnamate 4-hydroxylase (C4H) activity, catalyzes the first plant-specific and rate-limiting step in this pathway. The CYP73 gene is absent from green algae, and first detected in bryophytes. A CYP73 duplication occurred in the ancestor of seed plants and was retained in Taxaceae and most angiosperms. In spite of a clear divergence in primary sequence, both paralogs can fulfill comparable cinnamate hydroxylase roles both in vitro and in vivo. One of them seems dedicated to the biosynthesis of lignin precursors. Its N-terminus forms a single membrane spanning helix and its properties and length are highly constrained. The second is characterized by an elongated and variable N-terminus, reminiscent of ancestral CYP73s. Using as proxies the Brachypodium distachyon proteins, we show that the elongation of the N-terminus does not result in an altered subcellular localization, but in a distinct membrane topology. Insertion in the membrane of endoplasmic reticulum via a double-spanning open hairpin structure allows reorientation to the lumen of the catalytic domain of the protein. In agreement with participation to a different functional unit and supramolecular organization, the protein displays modified heme proximal surface. These data suggest the evolution of divergent C4H enzymes feeding different branches of the phenolic network in seed plants. It shows that specialization required for retention of gene duplicates may result from altered protein topology rather than change in enzyme activity. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  20. Biliary tract duplication cyst with gastric heterotopia

    Energy Technology Data Exchange (ETDEWEB)

    Grumbach, K.; Baker, D.H.; Weigert, J.; Altman, R.P.

    1988-05-01

    Cystic duplications of the biliary tract are rare anomalies, easily mistaken for choledochal cysts. Surgical drainage is the preferred therapy for choledochal cyst, but cystic duplication necessitates surgical excision as duplications may contain heterotopic gastric mucosa leading to peptic ulceration of the biliary tract. We report a case of biliary tract duplication cyst containing heterotopic alimentary mucosa which had initially been diagnosed and surgically treated as a choledochal cyst.

  1. Biliary tract duplication cyst with gastric heterotopia

    International Nuclear Information System (INIS)

    Grumbach, K.; Baker, D.H.; Weigert, J.; Altman, R.P.

    1988-01-01

    Cystic duplications of the biliary tract are rare anomalies, easily mistaken for choledochal cysts. Surgical drainage is the preferred therapy for choledochal cyst, but cystic duplication necessitates surgical excision as duplications may contain heterotopic gastric mucosa leading to peptic ulceration of the biliary tract. We report a case of biliary tract duplication cyst containing heterotopic alimentary mucosa which had initially been diagnosed and surgically treated as a choledochal cyst. (orig.)

  2. Phylogenetic distribution and evolutionary dynamics of the sex determination genes doublesex and transformer in insects.

    Science.gov (United States)

    Geuverink, E; Beukeboom, L W

    2014-01-01

    Sex determination in insects is characterized by a gene cascade that is conserved at the bottom but contains diverse primary signals at the top. The bottom master switch gene doublesex is found in all insects. Its upstream regulator transformer is present in the orders Hymenoptera, Coleoptera and Diptera, but has thus far not been found in Lepidoptera and in the basal lineages of Diptera. transformer is presumed to be ancestral to the holometabolous insects based on its shared domains and conserved features of autoregulation and sex-specific splicing. We interpret that its absence in basal lineages of Diptera and its order-specific conserved domains indicate multiple independent losses or recruitments into the sex determination cascade. Duplications of transformer are found in derived families within the Hymenoptera, characterized by their complementary sex determination mechanism. As duplications are not found in any other insect order, they appear linked to the haplodiploid reproduction of the Hymenoptera. Further phylogenetic analyses combined with functional studies are needed to understand the evolutionary history of the transformer gene among insects. © 2013 S. Karger AG, Basel.

  3. Early vertebrate chromosome duplications and the evolution of the neuropeptide Y receptor gene regions

    Directory of Open Access Journals (Sweden)

    Brenner Sydney

    2008-06-01

    Full Text Available Abstract Background One of the many gene families that expanded in early vertebrate evolution is the neuropeptide (NPY receptor family of G-protein coupled receptors. Earlier work by our lab suggested that several of the NPY receptor genes found in extant vertebrates resulted from two genome duplications before the origin of jawed vertebrates (gnathostomes and one additional genome duplication in the actinopterygian lineage, based on their location on chromosomes sharing several gene families. In this study we have investigated, in five vertebrate genomes, 45 gene families with members close to the NPY receptor genes in the compact genomes of the teleost fishes Tetraodon nigroviridis and Takifugu rubripes. These correspond to Homo sapiens chromosomes 4, 5, 8 and 10. Results Chromosome regions with conserved synteny were identified and confirmed by phylogenetic analyses in H. sapiens, M. musculus, D. rerio, T. rubripes and T. nigroviridis. 26 gene families, including the NPY receptor genes, (plus 3 described recently by other labs showed a tree topology consistent with duplications in early vertebrate evolution and in the actinopterygian lineage, thereby supporting expansion through block duplications. Eight gene families had complications that precluded analysis (such as short sequence length or variable number of repeated domains and another eight families did not support block duplications (because the paralogs in these families seem to have originated in another time window than the proposed genome duplication events. RT-PCR carried out with several tissues in T. rubripes revealed that all five NPY receptors were expressed in the brain and subtypes Y2, Y4 and Y8 were also expressed in peripheral organs. Conclusion We conclude that the phylogenetic analyses and chromosomal locations of these gene families support duplications of large blocks of genes or even entire chromosomes. Thus, these results are consistent with two early vertebrate

  4. The centriole duplication cycle

    Science.gov (United States)

    Fırat-Karalar, Elif Nur; Stearns, Tim

    2014-01-01

    Centrosomes are the main microtubule-organizing centre of animal cells and are important for many critical cellular and developmental processes from cell polarization to cell division. At the core of the centrosome are centrioles, which recruit pericentriolar material to form the centrosome and act as basal bodies to nucleate formation of cilia and flagella. Defects in centriole structure, function and number are associated with a variety of human diseases, including cancer, brain diseases and ciliopathies. In this review, we discuss recent advances in our understanding of how new centrioles are assembled and how centriole number is controlled. We propose a general model for centriole duplication control in which cooperative binding of duplication factors defines a centriole ‘origin of duplication’ that initiates duplication, and passage through mitosis effects changes that license the centriole for a new round of duplication in the next cell cycle. We also focus on variations on the general theme in which many centrioles are created in a single cell cycle, including the specialized structures associated with these variations, the deuterosome in animal cells and the blepharoplast in lower plant cells. PMID:25047614

  5. Evolution and functional insights of different ancestral orthologous clades of chitin synthase genes in the fungal tree of life

    Directory of Open Access Journals (Sweden)

    Mu eLi

    2016-02-01

    Full Text Available Chitin synthases (CHSs are key enzymes in the biosynthesis of chitin, an important structural component of fungal cell walls that can trigger innate immune responses in host plants and animals. Members of CHS gene family perform various functions in fungal cellular processes. Previous studies focused primarily on classifying diverse CHSs into different classes, regardless of their functional diversification, or on characterizing their functions in individual fungal species. A complete and systematic comparative analysis of CHS genes based on their orthologous relationships will be valuable for elucidating the evolution and functions of different CHS genes in fungi. Here, we identified and compared members of the CHS gene family across the fungal tree of life, including 18 divergent fungal lineages. Phylogenetic analysis revealed that the fungal CHS gene family is comprised of at least 10 ancestral orthologous clades, which have undergone multiple independent duplications and losses in different fungal lineages during evolution. Interestingly, one of these CHS clades (class III was expanded in plant or animal pathogenic fungi belonging to different fungal lineages. Two clades (classes VIb and VIc identified for the first time in this study occurred mainly in plant pathogenic fungi from Sordariomycetes and Dothideomycetes. Moreover, members of classes III and VIb were specifically up-regulated during plant infection, suggesting important roles in pathogenesis. In addition, CHS-associated networks conserved among plant pathogenic fungi are involved in various biological processes, including sexual reproduction and plant infection. We also identified specificity-determining sites, many of which are located at or adjacent to important structural and functional sites that are potentially responsible for functional divergence of different CHS classes. Overall, our results provide new insights into the evolution and function of members of CHS gene

  6. Expression Pattern Similarities Support the Prediction of Orthologs Retaining Common Functions after Gene Duplication Events1[OPEN

    Science.gov (United States)

    Haberer, Georg; Panda, Arup; Das Laha, Shayani; Ghosh, Tapas Chandra; Schäffner, Anton R.

    2016-01-01

    The identification of functionally equivalent, orthologous genes (functional orthologs) across genomes is necessary for accurate transfer of experimental knowledge from well-characterized organisms to others. This frequently relies on automated, coding sequence-based approaches such as OrthoMCL, Inparanoid, and KOG, which usually work well for one-to-one homologous states. However, this strategy does not reliably work for plants due to the occurrence of extensive gene/genome duplication. Frequently, for one query gene, multiple orthologous genes are predicted in the other genome, and it is not clear a priori from sequence comparison and similarity which one preserves the ancestral function. We have studied 11 organ-dependent and stress-induced gene expression patterns of 286 Arabidopsis lyrata duplicated gene groups and compared them with the respective Arabidopsis (Arabidopsis thaliana) genes to predict putative expressologs and nonexpressologs based on gene expression similarity. Promoter sequence divergence as an additional tool to substantiate functional orthology only partially overlapped with expressolog classification. By cloning eight A. lyrata homologs and complementing them in the respective four Arabidopsis loss-of-function mutants, we experimentally proved that predicted expressologs are indeed functional orthologs, while nonexpressologs or nonfunctionalized orthologs are not. Our study demonstrates that even a small set of gene expression data in addition to sequence homologies are instrumental in the assignment of functional orthologs in the presence of multiple orthologs. PMID:27303025

  7. The mechanistic basis of hemoglobin adaptation in the high-flying barheaded goose: insights from ancestral protein resurrection

    DEFF Research Database (Denmark)

    Natarajan, Chandrasekhar; Kumar, Amit; Moriyama, Hideaki

    2016-01-01

    the functional effects of causative mutations on the genetic background in which they actually occurred during evolution (i.e., in the BHG ancestor). An alternative ‘vertical’ approach is to reconstruct and resurrect ancestral proteins to test the effects of historical mutations on the genetic background...

  8. Ancestral effect on HOMA-IR levels quantitated in an American population of Mexican origin.

    Science.gov (United States)

    Qu, Hui-Qi; Li, Quan; Lu, Yang; Hanis, Craig L; Fisher-Hoch, Susan P; McCormick, Joseph B

    2012-12-01

    An elevated insulin resistance index (homeostasis model assessment of insulin resistance [HOMA-IR]) is more commonly seen in the Mexican American population than in European populations. We report quantitative ancestral effects within a Mexican American population, and we correlate ancestral components with HOMA-IR. We performed ancestral analysis in 1,551 participants of the Cameron County Hispanic Cohort by genotyping 103 ancestry-informative markers (AIMs). These AIMs allow determination of the percentage (0-100%) ancestry from three major continental populations, i.e., European, African, and Amerindian. We observed that predominantly Amerindian ancestral components were associated with increased HOMA-IR (β = 0.124, P = 1.64 × 10(-7)). The correlation was more significant in males (Amerindian β = 0.165, P = 5.08 × 10(-7)) than in females (Amerindian β = 0.079, P = 0.019). This unique study design demonstrates how genomic markers for quantitative ancestral information can be used in admixed populations to predict phenotypic traits such as insulin resistance.

  9. The structured ancestral selection graph and the many-demes limit.

    Science.gov (United States)

    Slade, Paul F; Wakeley, John

    2005-02-01

    We show that the unstructured ancestral selection graph applies to part of the history of a sample from a population structured by restricted migration among subpopulations, or demes. The result holds in the limit as the number of demes tends to infinity with proportionately weak selection, and we have also made the assumptions of island-type migration and that demes are equivalent in size. After an instantaneous sample-size adjustment, this structured ancestral selection graph converges to an unstructured ancestral selection graph with a mutation parameter that depends inversely on the migration rate. In contrast, the selection parameter for the population is independent of the migration rate and is identical to the selection parameter in an unstructured population. We show analytically that estimators of the migration rate, based on pairwise sequence differences, derived under the assumption of neutrality should perform equally well in the presence of weak selection. We also modify an algorithm for simulating genealogies conditional on the frequencies of two selected alleles in a sample. This permits efficient simulation of stronger selection than was previously possible. Using this new algorithm, we simulate gene genealogies under the many-demes ancestral selection graph and identify some situations in which migration has a strong effect on the time to the most recent common ancestor of the sample. We find that a similar effect also increases the sensitivity of the genealogy to selection.

  10. The odds of duplicate gene persistence after polyploidization

    Directory of Open Access Journals (Sweden)

    Chain Frédéric JJ

    2011-12-01

    Full Text Available Abstract Background Gene duplication is an important biological phenomenon associated with genomic redundancy, degeneration, specialization, innovation, and speciation. After duplication, both copies continue functioning when natural selection favors duplicated protein function or expression, or when mutations make them functionally distinct before one copy is silenced. Results Here we quantify the degree to which genetic parameters related to gene expression, molecular evolution, and gene structure in a diploid frog - Silurana tropicalis - influence the odds of functional persistence of orthologous duplicate genes in a closely related tetraploid species - Xenopus laevis. Using public databases and 454 pyrosequencing, we obtained genetic and expression data from S. tropicalis orthologs of 3,387 X. laevis paralogs and 4,746 X. laevis singletons - the most comprehensive dataset for African clawed frogs yet analyzed. Using logistic regression, we demonstrate that the most important predictors of the odds of duplicate gene persistence in the tetraploid species are the total gene expression level and evenness of expression across tissues and development in the diploid species. Slow protein evolution and information density (fewer exons, shorter introns in the diploid are also positively correlated with duplicate gene persistence in the tetraploid. Conclusions Our findings suggest that a combination of factors contribute to duplicate gene persistence following whole genome duplication, but that the total expression level and evenness of expression across tissues and through development before duplication are most important. We speculate that these parameters are useful predictors of duplicate gene longevity after whole genome duplication in other taxa.

  11. RevSex duplication-induced and sex-related differences in the SOX9 regulatory region chromatin landscape in human fibroblasts.

    Science.gov (United States)

    Lybæk, Helle; de Bruijn, Diederik; den Engelsman-van Dijk, Anke H A; Vanichkina, Darya; Nepal, Chirag; Brendehaug, Atle; Houge, Gunnar

    2014-03-01

    It was recently shown that duplications of the RevSex element, located 0.5 Mb upstream of SOX9, cause XX-disorder of sex development (DSD), and that deletions cause XY-DSD. To explore how a 148 kb RevSex duplication could have turned on gonadal SOX9 expression in the absence of SRY in an XX-male, we examined the chromatin landscape in primary skin fibroblast cultures from the index, his RevSex duplication-carrier father and six controls. The ENCODE project supports the notion that chromatin state maps show overlap between different cell types, i.e., that our study of fibroblasts could be of biological relevance. We examined the SOX9 regulatory region by high-resolution ChIP-on-chip experiments (a kind of "chromatin-CGH") and DNA methylation investigations. The RevSex duplication was associated with chromatin changes predicting better accessibility of the SRY-responsive TESCO enhancer region 14-15 kb upstream of SOX9. Four kb downstream of the TESCO evolutionary conserved region, a peak of the enhancer/promoter-associated H3K4me3 mark was found together with a major dip of the repressive H3K9me3 chromatin mark. Similar differences were also found when three control males were compared with three control females. A marked male/female difference was a more open chromatin signature in males starting ~400 kb upstream of SOX9 and increasing toward the SOX9 promoter. In the RevSex duplication-carrier father, two positions of DNA hypomethylation were also found, one corresponding to the H3K4me3 peak mentioned above. Our results suggest that the RevSex duplication could operate by inducing long-range epigenetic changes. Furthermore, the differences in chromatin state maps between males and females suggest that the Y chromosome or X chromosome dosage may affect chromatin conformation, i.e., that sex-dependent gene regulation may take place by chromatin modification.

  12. A synergism between adaptive effects and evolvability drives whole genome duplication to fixation

    OpenAIRE

    Cuypers, Thomas D; Hogeweg, Paulien; Hogeweg, P.

    2014-01-01

    Whole genome duplication has shaped eukaryotic evolutionary history and has been associated with drastic environmental change and species radiation. While the most common fate of WGD duplicates is a return to single copy, retained duplicates have been found enriched for highly interacting genes. This pattern has been explained by a neutral process of subfunctionalization and more recently, dosage balance selection. However, much about the relationship between environmental change, WGD and ada...

  13. A synergism between adaptive effects and evolvability drives whole genome duplication to fixation.

    OpenAIRE

    Thomas D Cuypers; Paulien Hogeweg

    2014-01-01

    Whole genome duplication has shaped eukaryotic evolutionary history and has been associated with drastic environmental change and species radiation. While the most common fate of WGD duplicates is a return to single copy, retained duplicates have been found enriched for highly interacting genes. This pattern has been explained by a neutral process of subfunctionalization and more recently, dosage balance selection. However, much about the relationship between environmental change, WGD and ada...

  14. Colonic duplication in an adult

    International Nuclear Information System (INIS)

    Baro, P.; Dario Casas, J.; Sanchez, D.

    1988-01-01

    A case of colonic duplication that was diagnosed radiologically in an adult is reported. A long duplicated segment below the normal transverse colon, with a wide anastomosis at the hepatic flexure level, was observed on barium enema. The rarity of this anomaly unassociated with other malformations is emphasized. (orig.)

  15. Clinical Fact of Rectal Duplication with gastric heterotopy | Atmani ...

    African Journals Online (AJOL)

    Enteric duplication could occur through the entire alimentary tract. A case of rectal duplication cyst with heterotopic gastric mucosa in a chid is described. MRI scan is shown useful in the diagnosis of the duplication. The treatment is the complete local resection of the rectal duplication. Keywords: duplication, rectal, MRI, ...

  16. Noncommunicating Isolated Enteric Duplication Cyst in the ...

    African Journals Online (AJOL)

    Noncommunicating isolated enteric duplications in the abdomen are an extremely rare variant of enteric duplications with their own blood supply. We report a case of a noncommunicating isolated ileal duplication in a 10-month-old boy. He was admitted because of severe abdominal distension and developed irritability ...

  17. Laparoscopic excision of a newborn rectal duplication cyst.

    Science.gov (United States)

    Hartin, Charles W; Lau, Stanley T; Escobar, Mauricio A; Glick, Philip L

    2008-08-01

    Congenital rectal duplication cyst is a rare entity treated with surgical excision. Without treatment, a rectal duplication cyst may cause a variety of complications, most notably, transforming into a malignancy. We report on a 7-week-old girl who was found to have a rectal duplication cyst. The rectal duplication cyst was successfully excised laparoscopically. Rectal duplication cysts are rare alimentary tract anomalies generally discovered during childhood. Complications include symptoms arising from the cyst and the possibility of malignant degeneration. They are typically managed by surgical excision.

  18. The mammary gland-specific marsupial ELP and eutherian CTI share a common ancestral gene

    Directory of Open Access Journals (Sweden)

    Pharo Elizabeth A

    2012-06-01

    Full Text Available Abstract Background The marsupial early lactation protein (ELP gene is expressed in the mammary gland and the protein is secreted into milk during early lactation (Phase 2A. Mature ELP shares approximately 55.4% similarity with the colostrum-specific bovine colostrum trypsin inhibitor (CTI protein. Although ELP and CTI both have a single bovine pancreatic trypsin inhibitor (BPTI-Kunitz domain and are secreted only during the early lactation phases, their evolutionary history is yet to be investigated. Results Tammar ELP was isolated from a genomic library and the fat-tailed dunnart and Southern koala ELP genes cloned from genomic DNA. The tammar ELP gene was expressed only in the mammary gland during late pregnancy (Phase 1 and early lactation (Phase 2A. The opossum and fat-tailed dunnart ELP and cow CTI transcripts were cloned from RNA isolated from the mammary gland and dog CTI from cells in colostrum. The putative mature ELP and CTI peptides shared 44.6%-62.2% similarity. In silico analyses identified the ELP and CTI genes in the other species examined and provided compelling evidence that they evolved from a common ancestral gene. In addition, whilst the eutherian CTI gene was conserved in the Laurasiatherian orders Carnivora and Cetartiodactyla, it had become a pseudogene in others. These data suggest that bovine CTI may be the ancestral gene of the Artiodactyla-specific, rapidly evolving chromosome 13 pancreatic trypsin inhibitor (PTI, spleen trypsin inhibitor (STI and the five placenta-specific trophoblast Kunitz domain protein (TKDP1-5 genes. Conclusions Marsupial ELP and eutherian CTI evolved from an ancestral therian mammal gene before the divergence of marsupials and eutherians between 130 and 160 million years ago. The retention of the ELP gene in marsupials suggests that this early lactation-specific milk protein may have an important role in the immunologically naïve young of these species.

  19. Our experience with unusual gastrointestinal tract duplications in infants

    Directory of Open Access Journals (Sweden)

    Bilal Mirza

    2014-01-01

    Full Text Available Background: Classical duplications may present along any part of gastrointestinal tract (GIT from mouth to anus. Atypical or unusual rare varieties of GIT duplications may also occur, but with different anatomical features. Materials and Methods: We reviewed our 5-year record (February 2008-January 2013 to describe clinical profile of unusual GIT duplications in neonates and small infants. Results: Three patients with atypical variety of GIT duplications were managed in our department during this tenure. Two were females and one male. Age was ranged between 11 days and 2 months. All patients presented with massive abdominal distension causing respiratory embarrassment in two of them. In all patients, the pre-operative differential diagnoses also included GIT duplication cysts. Computerized tomography (CT scan showed single huge cyst in one and multiple cysts in two patients. In one patient the CT scan also depicted a thoracic cyst in relation to posterior mediastinum. At operation, one patient had colonic tubular duplication cyst along with another isolated duplication cyst, the second case had a tubular duplication cyst of ileum with its segmental dilatation, and in the third case two isolated duplications were found. Duplication cysts were excised along with mucosal stripping in one patient, cyst excision and intestinal resection and anastomosis in one patient, and only cysts excision in one. All patients did well post-operatively. Conclusion: We presented unusual GIT duplications. These duplications are managed on similar lines as classical duplications with good prognosis when dealt early.

  20. Independent Origin and Global Distribution of Distinct Plasmodium vivax Duffy Binding Protein Gene Duplications.

    Directory of Open Access Journals (Sweden)

    Jessica B Hostetler

    2016-10-01

    Full Text Available Plasmodium vivax causes the majority of malaria episodes outside Africa, but remains a relatively understudied pathogen. The pathology of P. vivax infection depends critically on the parasite's ability to recognize and invade human erythrocytes. This invasion process involves an interaction between P. vivax Duffy Binding Protein (PvDBP in merozoites and the Duffy antigen receptor for chemokines (DARC on the erythrocyte surface. Whole-genome sequencing of clinical isolates recently established that some P. vivax genomes contain two copies of the PvDBP gene. The frequency of this duplication is particularly high in Madagascar, where there is also evidence for P. vivax infection in DARC-negative individuals. The functional significance and global prevalence of this duplication, and whether there are other copy number variations at the PvDBP locus, is unknown.Using whole-genome sequencing and PCR to study the PvDBP locus in P. vivax clinical isolates, we found that PvDBP duplication is widespread in Cambodia. The boundaries of the Cambodian PvDBP duplication differ from those previously identified in Madagascar, meaning that current molecular assays were unable to detect it. The Cambodian PvDBP duplication did not associate with parasite density or DARC genotype, and ranged in prevalence from 20% to 38% over four annual transmission seasons in Cambodia. This duplication was also present in P. vivax isolates from Brazil and Ethiopia, but not India.PvDBP duplications are much more widespread and complex than previously thought, and at least two distinct duplications are circulating globally. The same duplication boundaries were identified in parasites from three continents, and were found at high prevalence in human populations where DARC-negativity is essentially absent. It is therefore unlikely that PvDBP duplication is associated with infection of DARC-negative individuals, but functional tests will be required to confirm this hypothesis.

  1. MSOAR 2.0: Incorporating tandem duplications into ortholog assignment based on genome rearrangement

    Directory of Open Access Journals (Sweden)

    Zhang Liqing

    2010-01-01

    Full Text Available Abstract Background Ortholog assignment is a critical and fundamental problem in comparative genomics, since orthologs are considered to be functional counterparts in different species and can be used to infer molecular functions of one species from those of other species. MSOAR is a recently developed high-throughput system for assigning one-to-one orthologs between closely related species on a genome scale. It attempts to reconstruct the evolutionary history of input genomes in terms of genome rearrangement and gene duplication events. It assumes that a gene duplication event inserts a duplicated gene into the genome of interest at a random location (i.e., the random duplication model. However, in practice, biologists believe that genes are often duplicated by tandem duplications, where a duplicated gene is located next to the original copy (i.e., the tandem duplication model. Results In this paper, we develop MSOAR 2.0, an improved system for one-to-one ortholog assignment. For a pair of input genomes, the system first focuses on the tandemly duplicated genes of each genome and tries to identify among them those that were duplicated after the speciation (i.e., the so-called inparalogs, using a simple phylogenetic tree reconciliation method. For each such set of tandemly duplicated inparalogs, all but one gene will be deleted from the concerned genome (because they cannot possibly appear in any one-to-one ortholog pairs, and MSOAR is invoked. Using both simulated and real data experiments, we show that MSOAR 2.0 is able to achieve a better sensitivity and specificity than MSOAR. In comparison with the well-known genome-scale ortholog assignment tool InParanoid, Ensembl ortholog database, and the orthology information extracted from the well-known whole-genome multiple alignment program MultiZ, MSOAR 2.0 shows the highest sensitivity. Although the specificity of MSOAR 2.0 is slightly worse than that of InParanoid in the real data experiments

  2. Perforated ileal duplication cyst with haemorrhagic pseudocyst formation

    International Nuclear Information System (INIS)

    Hwang, Im Kyung; Kim, Bong Soo; Kim, Heung Chul; Lee, In Sun; Hwang, Woo Chul; Namkung, Sook

    2003-01-01

    Duplication cysts of the gastrointestinal tract are rare congenital abnormalities. Ectopic gastric mucosa, which can be found in duplications, may cause peptic ulceration, gastrointestinal bleeding or perforation. We report a 1-year-old boy with a perforated ileal duplication cyst with haemorrhagic pseudocyst formation caused by peptic ulceration of the duplication cyst. It presented a snowman-like appearance consisting of a small, thick-walled, true enteric cyst and a large, thin-walled haemorrhagic pseudocyst on US and CT. It is an unusual manifestation of a duplication cyst, which has not been reported in the English language literature. (orig.)

  3. Prenatal effects of ancestral irradiation in inbred mice

    International Nuclear Information System (INIS)

    Sprackling, L.E.S.

    1975-01-01

    Mice from 13 inbred strains (S, Z, E, Bab, BaB, BrR, C, K, N, Q, G, CFW, CF1) received continuous cobalt 60 irradiation at low dose rates for varying numbers of consecutive generations. Some Bab and BaB mice had received continuous irradiation for from 24 to 31 generations and the other mice had up to six generations of continuous irradiation in their ancestry. At weaning, the mice were removed from the irradiation room and were mated within strains either to sibs or nonsibs. Ancestral and direct irradiation doses were calculated. The ancestral dose was the effective accumulated dose to the progeny of the mated mice. The direct dose was the amount of irradiation received by any mated female from her conception to her weaning. Each irradiated or control female was scored as fertile or sterile and in utero litter counts were made in pregnant females that were dissected past the tenth day of pregnancy; the sum of moles, dead embryos, and live embryos was the total in utero litter size. A ratio of the living embryos to the total number of embryos in utero was determined for each litter. An increase in ancestral or direct irradiation dose significantly decreased fertility in 11 of the 13 strains. The fertility curves for the pooled data were sigmoid in the area of the doses below those that caused complete sterility. Among the controls, there were significant strain differences in total litter size and in the ratio. Strain X--Y plots, with ancestral or direct doses plotted against total litter size or ratio, revealed the tendency for litter size to decrease as dose increased. The only trend shown for ratio was for the litters with ratios of 0.50 or less to appear more frequently among the irradiated mice. The few corpora lutea counts revealed nothing of significance. Generally, there was a definite trend toward fewer mice alive in utero among the irradiated mice

  4. The ancestral selection graph under strong directional selection.

    Science.gov (United States)

    Pokalyuk, Cornelia; Pfaffelhuber, Peter

    2013-08-01

    The ancestral selection graph (ASG) was introduced by  Neuhauser and Krone (1997) in order to study populations of constant size which evolve under selection. Coalescence events, which occur at rate 1 for every pair of lines, lead to joint ancestry. In addition, splitting events in the ASG at rate α, the scaled selection coefficient, produce possible ancestors, such that the real ancestor depends on the ancestral alleles. Here, we use the ASG in the case without mutation in order to study fixation of a beneficial mutant. Using our main tool, a reversibility property of the ASG, we provide a new proof of the fact that a beneficial allele fixes roughly in time (2logα)/α if α is large. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Gallbladder duplication

    Directory of Open Access Journals (Sweden)

    Yagan Pillay

    2015-01-01

    Conclusion: Duplication of the gallbladder is a rare congenital abnormality, which requires special attention to the biliary ductal and arterial anatomy. Laparoscopic cholecystectomy with intraoperative cholangiography is the appropriate treatment in a symptomatic gallbladder. The removal of an asymptomatic double gallbladder remains controversial.

  6. The Macromolecular Machines that Duplicate the Escherichia coli Chromosome as Targets for Drug Discovery

    Directory of Open Access Journals (Sweden)

    Jon M. Kaguni

    2018-03-01

    Full Text Available DNA replication is an essential process. Although the fundamental strategies to duplicate chromosomes are similar in all free-living organisms, the enzymes of the three domains of life that perform similar functions in DNA replication differ in amino acid sequence and their three-dimensional structures. Moreover, the respective proteins generally utilize different enzymatic mechanisms. Hence, the replication proteins that are highly conserved among bacterial species are attractive targets to develop novel antibiotics as the compounds are unlikely to demonstrate off-target effects. For those proteins that differ among bacteria, compounds that are species-specific may be found. Escherichia coli has been developed as a model system to study DNA replication, serving as a benchmark for comparison. This review summarizes the functions of individual E. coli proteins, and the compounds that inhibit them.

  7. Presentation and Surgical Management of Duodenal Duplication in Adults

    Directory of Open Access Journals (Sweden)

    Caroline C. Jadlowiec

    2015-01-01

    Full Text Available Duodenal duplications in adults are exceedingly rare and their diagnosis remains difficult as symptoms are largely nonspecific. Clinical presentations include pancreatitis, biliary obstruction, gastrointestinal bleeding from ectopic gastric mucosa, and malignancy. A case of duodenal duplication in a 59-year-old female is presented, and her treatment course is reviewed with description of combined surgical and endoscopic approach to repair, along with a review of historic and current recommendations for management. Traditionally, gastrointestinal duplications have been treated with surgical resection; however, for duodenal duplications, the anatomic proximity to the biliopancreatic ampulla makes surgical management challenging. Recently, advances in endoscopy have improved the clinical success of cystic intraluminal duodenal duplications. Despite these advances, surgical resection is still recommended for extraluminal tubular duplications although combined techniques may be necessary for long tubular duplications. For duodenal duplications, a combined approach of partial excision combined with mucosal stripping may offer advantage.

  8. [Partial facial duplication (a rare diprosopus): Case report and review of the literature].

    Science.gov (United States)

    Es-Seddiki, A; Rkain, M; Ayyad, A; Nkhili, H; Amrani, R; Benajiba, N

    2015-12-01

    Diprosopus, or partial facial duplication, is a very rare congenital abnormality. It is a rare form of conjoined twins. Partial facial duplication may be symmetric or not and may involve the nose, the maxilla, the mandible, the palate, the tongue and the mouth. A male newborn springing from inbred parents was admitted at his first day of life for facial deformity. He presented with hypertelorism, 2 eyes, a tendency to nose duplication (flatted large nose, 2 columellae, 2 lateral nostrils separated in the midline by a third deformed hole), two mouths and a duplicated maxilla. Laboratory tests were normal. The cranio-facial CT confirmed the maxillary duplication. This type of cranio-facial duplication is a rare entity with about 35 reported cases in the literature. Our patient was similar to a rare case of living diprosopus reported by Stiehm in 1972. Diprosopus is often associated with abnormalities of the gastrointestinal tract, the central nervous system, the cardiovascular and respiratory systems and with a high incidence of cleft lip and palate. Surgical treatment consists in the resection of the duplicated components. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  9. Rectal Duplication%直肠重复畸形

    Institute of Scientific and Technical Information of China (English)

    张道荣; 牟弦琴; 李振东; 李恭才; 王修忠; 代蕊霜

    1983-01-01

    @@ 我们两院近10年来共收治先天性直肠重复畸形17例(其中河北医学院11例,西安医学院6例).均经手术及病理证实.现总结如下:临床资料本组男性6例,女性11例,最小年龄4天,最大年龄14岁.%This paper reports 17 cases of rectal duplication. There were 6 males and 11rectal duplications were divided into three bordered by a common wall.9 patients in this series were found to have this condition.a rectovestitubular fistula.B.Pararectal duplication.The duplicated bowel lies near elliptical in shape and filled with fluid.In Complicated rectal duplication.The dupticated bowel is located at the perineum near the abnormal anus and is usually associated with hypospadia.Two cases were of this type.between the duplicated bowel and normal rectum must be partially resected at the distal end.The rectovestitubular fistula should be repaired at the same time.Pararectal duplication can be completely resected.resect the duplicated bowel from perineum but leave the genital anomaly for later treatment.

  10. Rectal duplication cyst in a cat.

    Science.gov (United States)

    Kook, Peter H; Hagen, Regine; Willi, Barbara; Ruetten, Maja; Venzin, Claudio

    2010-12-01

    Enteric duplication is a rare developmental malformation in people, dogs and cats. The purpose of the present report is to describe the first case of a rectal duplication cyst in a 7-year-old domestic shorthair cat presenting for acute constipation and tenesmus. On rectal palpation a spherical mass compressing the lumen of the rectum could be felt in the dorsal wall of the rectum. A computed tomography (CT) scan confirmed the presence of a well demarcated cystic lesion in the pelvic canal, dorsal to the rectum. The cyst was surgically removed via a perineal approach. No communication with the rectal lumen could be demonstrated. Histopathological examination was consistent with a rectal duplication cyst. Clinical signs resolved completely after excision of this conjoined non-communicating cystic rectal duplicate. Copyright © 2010 ISFM and AAFP. Published by Elsevier Ltd. All rights reserved.

  11. Extensive lineage-specific gene duplication and evolution of the spiggin multi-gene family in stickleback

    Directory of Open Access Journals (Sweden)

    Nishida Mutsumi

    2007-11-01

    Full Text Available Abstract Background The threespine stickleback (Gasterosteus aculeatus has a characteristic reproductive mode; mature males build nests using a secreted glue-like protein called spiggin. Although recent studies reported multiple occurrences of genes that encode this glue-like protein spiggin in threespine and ninespine sticklebacks, it is still unclear how many genes compose the spiggin multi-gene family. Results Genome sequence analysis of threespine stickleback showed that there are at least five spiggin genes and two pseudogenes, whereas a single spiggin homolog occurs in the genomes of other fishes. Comparative genome sequence analysis demonstrated that Muc19, a single-copy mucous gene in human and mouse, is an ortholog of spiggin. Phylogenetic and molecular evolutionary analyses of these sequences suggested that an ancestral spiggin gene originated from a member of the mucin gene family as a single gene in the common ancestor of teleosts, and gene duplications of spiggin have occurred in the stickleback lineage. There was inter-population variation in the copy number of spiggin genes and positive selection on some codons, indicating that additional gene duplication/deletion events and adaptive evolution at some amino acid sites may have occurred in each stickleback population. Conclusion A number of spiggin genes exist in the threespine stickleback genome. Our results provide insight into the origin and dynamic evolutionary process of the spiggin multi-gene family in the threespine stickleback lineage. The dramatic evolution of genes for mucous substrates may have contributed to the generation of distinct characteristics such as "bio-glue" in vertebrates.

  12. Post-duplication charge evolution of phosphoglucose isomerases in teleost fishes through weak selection on many amino acid sites

    Directory of Open Access Journals (Sweden)

    Sato Yukuto

    2007-10-01

    Full Text Available Abstract Background The partitioning of ancestral functions among duplicated genes by neutral evolution, or subfunctionalization, has been considered the primary process for the evolution of novel proteins (neofunctionalization. Nonetheless, how a subfunctionalized protein can evolve into a more adaptive protein is poorly understood, mainly due to the limitations of current analytical methods, which can detect only strong selection for amino acid substitutions involved in adaptive molecular evolution. In this study, we employed a comparative evolutionary approach to this question, focusing on differences in the structural properties of a protein, specifically the electric charge, encoded by fish-specific duplicated phosphoglucose isomerase (Pgi genes. Results Full-length cDNA cloning, RT-PCR based gene expression analyses, and comparative sequence analyses showed that after subfunctionalization with respect to the expression organ of duplicate Pgi genes, the net electric charge of the PGI-1 protein expressed mainly in internal tissues became more negative, and that of PGI-2 expressed mainly in muscular tissues became more positive. The difference in net protein charge was attributable not to specific amino acid sites but to the sum of various amino acid sites located on the surface of the PGI molecule. Conclusion This finding suggests that the surface charge evolution of PGI proteins was not driven by strong selection on individual amino acid sites leading to permanent fixation of a particular residue, but rather was driven by weak selection on a large number of amino acid sites and consequently by steady directional and/or purifying selection on the overall structural properties of the protein, which is derived from many modifiable sites. The mode of molecular evolution presented here may be relevant to various cases of adaptive modification in proteins, such as hydrophobic properties, molecular size, and electric charge.

  13. MADS goes genomic in conifers: towards determining the ancestral set of MADS-box genes in seed plants.

    Science.gov (United States)

    Gramzow, Lydia; Weilandt, Lisa; Theißen, Günter

    2014-11-01

    MADS-box genes comprise a gene family coding for transcription factors. This gene family expanded greatly during land plant evolution such that the number of MADS-box genes ranges from one or two in green algae to around 100 in angiosperms. Given the crucial functions of MADS-box genes for nearly all aspects of plant development, the expansion of this gene family probably contributed to the increasing complexity of plants. However, the expansion of MADS-box genes during one important step of land plant evolution, namely the origin of seed plants, remains poorly understood due to the previous lack of whole-genome data for gymnosperms. The newly available genome sequences of Picea abies, Picea glauca and Pinus taeda were used to identify the complete set of MADS-box genes in these conifers. In addition, MADS-box genes were identified in the growing number of transcriptomes available for gymnosperms. With these datasets, phylogenies were constructed to determine the ancestral set of MADS-box genes of seed plants and to infer the ancestral functions of these genes. Type I MADS-box genes are under-represented in gymnosperms and only a minimum of two Type I MADS-box genes have been present in the most recent common ancestor (MRCA) of seed plants. In contrast, a large number of Type II MADS-box genes were found in gymnosperms. The MRCA of extant seed plants probably possessed at least 11-14 Type II MADS-box genes. In gymnosperms two duplications of Type II MADS-box genes were found, such that the MRCA of extant gymnosperms had at least 14-16 Type II MADS-box genes. The implied ancestral set of MADS-box genes for seed plants shows simplicity for Type I MADS-box genes and remarkable complexity for Type II MADS-box genes in terms of phylogeny and putative functions. The analysis of transcriptome data reveals that gymnosperm MADS-box genes are expressed in a great variety of tissues, indicating diverse roles of MADS-box genes for the development of gymnosperms. This study is

  14. Clusters of ancestrally related genes that show paralogy in whole or in part are a major feature of the genomes of humans and other species.

    Directory of Open Access Journals (Sweden)

    Michael B Walker

    Full Text Available Arrangements of genes along chromosomes are a product of evolutionary processes, and we can expect that preferable arrangements will prevail over the span of evolutionary time, often being reflected in the non-random clustering of structurally and/or functionally related genes. Such non-random arrangements can arise by two distinct evolutionary processes: duplications of DNA sequences that give rise to clusters of genes sharing both sequence similarity and common sequence features and the migration together of genes related by function, but not by common descent. To provide a background for distinguishing between the two, which is important for future efforts to unravel the evolutionary processes involved, we here provide a description of the extent to which ancestrally related genes are found in proximity.Towards this purpose, we combined information from five genomic datasets, InterPro, SCOP, PANTHER, Ensembl protein families, and Ensembl gene paralogs. The results are provided in publicly available datasets (http://cgd.jax.org/datasets/clustering/paraclustering.shtml describing the extent to which ancestrally related genes are in proximity beyond what is expected by chance (i.e. form paraclusters in the human and nine other vertebrate genomes, as well as the D. melanogaster, C. elegans, A. thaliana, and S. cerevisiae genomes. With the exception of Saccharomyces, paraclusters are a common feature of the genomes we examined. In the human genome they are estimated to include at least 22% of all protein coding genes. Paraclusters are far more prevalent among some gene families than others, are highly species or clade specific and can evolve rapidly, sometimes in response to environmental cues. Altogether, they account for a large portion of the functional clustering previously reported in several genomes.

  15. A comparison of ancestral state reconstruction methods for quantitative characters.

    Science.gov (United States)

    Royer-Carenzi, Manuela; Didier, Gilles

    2016-09-07

    Choosing an ancestral state reconstruction method among the alternatives available for quantitative characters may be puzzling. We present here a comparison of seven of them, namely the maximum likelihood, restricted maximum likelihood, generalized least squares under Brownian, Brownian-with-trend and Ornstein-Uhlenbeck models, phylogenetic independent contrasts and squared parsimony methods. A review of the relations between these methods shows that the maximum likelihood, the restricted maximum likelihood and the generalized least squares under Brownian model infer the same ancestral states and can only be distinguished by the distributions accounting for the reconstruction uncertainty which they provide. The respective accuracy of the methods is assessed over character evolution simulated under a Brownian motion with (and without) directional or stabilizing selection. We give the general form of ancestral state distributions conditioned on leaf states under the simulation models. Ancestral distributions are used first, to give a theoretical lower bound of the expected reconstruction error, and second, to develop an original evaluation scheme which is more efficient than comparing the reconstructed and the simulated states. Our simulations show that: (i) the distributions of the reconstruction uncertainty provided by the methods generally make sense (some more than others); (ii) it is essential to detect the presence of an evolutionary trend and to choose a reconstruction method accordingly; (iii) all the methods show good performances on characters under stabilizing selection; (iv) without trend or stabilizing selection, the maximum likelihood method is generally the most accurate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Divergence of recently duplicated M{gamma}-type MADS-box genes in Petunia.

    Science.gov (United States)

    Bemer, Marian; Gordon, Jonathan; Weterings, Koen; Angenent, Gerco C

    2010-02-01

    The MADS-box transcription factor family has expanded considerably in plants via gene and genome duplications and can be subdivided into type I and MIKC-type genes. The two gene classes show a different evolutionary history. Whereas the MIKC-type genes originated during ancient genome duplications, as well as during more recent events, the type I loci appear to experience high turnover with many recent duplications. This different mode of origin also suggests a different fate for the type I duplicates, which are thought to have a higher chance to become silenced or lost from the genome. To get more insight into the evolution of the type I MADS-box genes, we isolated nine type I genes from Petunia, which belong to the Mgamma subclass, and investigated the divergence of their coding and regulatory regions. The isolated genes could be subdivided into two categories: two genes were highly similar to Arabidopsis Mgamma-type genes, whereas the other seven genes showed less similarity to Arabidopsis genes and originated more recently. Two of the recently duplicated genes were found to contain deleterious mutations in their coding regions, and expression analysis revealed that a third paralog was silenced by mutations in its regulatory region. However, in addition to the three genes that were subjected to nonfunctionalization, we also found evidence for neofunctionalization of one of the Petunia Mgamma-type genes. Our study shows a rapid divergence of recently duplicated Mgamma-type MADS-box genes and suggests that redundancy among type I paralogs may be less common than expected.

  17. Comparing genomes with rearrangements and segmental duplications.

    Science.gov (United States)

    Shao, Mingfu; Moret, Bernard M E

    2015-06-15

    Large-scale evolutionary events such as genomic rearrange.ments and segmental duplications form an important part of the evolution of genomes and are widely studied from both biological and computational perspectives. A basic computational problem is to infer these events in the evolutionary history for given modern genomes, a task for which many algorithms have been proposed under various constraints. Algorithms that can handle both rearrangements and content-modifying events such as duplications and losses remain few and limited in their applicability. We study the comparison of two genomes under a model including general rearrangements (through double-cut-and-join) and segmental duplications. We formulate the comparison as an optimization problem and describe an exact algorithm to solve it by using an integer linear program. We also devise a sufficient condition and an efficient algorithm to identify optimal substructures, which can simplify the problem while preserving optimality. Using the optimal substructures with the integer linear program (ILP) formulation yields a practical and exact algorithm to solve the problem. We then apply our algorithm to assign in-paralogs and orthologs (a necessary step in handling duplications) and compare its performance with that of the state-of-the-art method MSOAR, using both simulations and real data. On simulated datasets, our method outperforms MSOAR by a significant margin, and on five well-annotated species, MSOAR achieves high accuracy, yet our method performs slightly better on each of the 10 pairwise comparisons. http://lcbb.epfl.ch/softwares/coser. © The Author 2015. Published by Oxford University Press.

  18. Choosing the best ancestral character state reconstruction method.

    Science.gov (United States)

    Royer-Carenzi, Manuela; Pontarotti, Pierre; Didier, Gilles

    2013-03-01

    Despite its intrinsic difficulty, ancestral character state reconstruction is an essential tool for testing evolutionary hypothesis. Two major classes of approaches to this question can be distinguished: parsimony- or likelihood-based approaches. We focus here on the second class of methods, more specifically on approaches based on continuous-time Markov modeling of character evolution. Among them, we consider the most-likely-ancestor reconstruction, the posterior-probability reconstruction, the likelihood-ratio method, and the Bayesian approach. We discuss and compare the above-mentioned methods over several phylogenetic trees, adding the maximum-parsimony method performance in the comparison. Under the assumption that the character evolves according a continuous-time Markov process, we compute and compare the expectations of success of each method for a broad range of model parameter values. Moreover, we show how the knowledge of the evolution model parameters allows to compute upper bounds of reconstruction performances, which are provided as references. The results of all these reconstruction methods are quite close one to another, and the expectations of success are not so far from their theoretical upper bounds. But the performance ranking heavily depends on the topology of the studied tree, on the ancestral node that is to be inferred and on the parameter values. Consequently, we propose a protocol providing for each parameter value the best method in terms of expectation of success, with regard to the phylogenetic tree and the ancestral node to infer. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Obscure bleeding colonic duplication responds to proton pump inhibitor therapy.

    Science.gov (United States)

    Jacques, Jérémie; Projetti, Fabrice; Legros, Romain; Valgueblasse, Virginie; Sarabi, Matthieu; Carrier, Paul; Fredon, Fabien; Bouvier, Stéphane; Loustaud-Ratti, Véronique; Sautereau, Denis

    2013-09-21

    We report the case of a 17-year-old male admitted to our academic hospital with massive rectal bleeding. Since childhood he had reported recurrent gastrointestinal bleeding and had two exploratory laparotomies 5 and 2 years previously. An emergency abdominal computed tomography scan, gastroscopy and colonoscopy, performed after hemodynamic stabilization, were considered normal. High-dose intravenous proton pump inhibitor (PPI) therapy was initiated and bleeding stopped spontaneously. Two other massive rectal bleeds occurred 8 h after each cessation of PPI which led to a hemostatic laparotomy after negative gastroscopy and small bowel capsule endoscopy. This showed long tubular duplication of the right colon, with fresh blood in the duplicated colon. Obscure lower gastrointestinal bleeding is a difficult medical situation and potentially life-threatening. The presence of ulcerated ectopic gastric mucosa in the colonic duplication explains the partial efficacy of PPI therapy. Obscure gastrointestinal bleeding responding to empiric anti-acid therapy should probably evoke the diagnosis of bleeding ectopic gastric mucosa such as Meckel's diverticulum or gastrointestinal duplication, and gastroenterologists should be aware of this potential medical situation.

  20. Signals of historical interlocus gene conversion in human segmental duplications.

    Directory of Open Access Journals (Sweden)

    Beth L Dumont

    Full Text Available Standard methods of DNA sequence analysis assume that sequences evolve independently, yet this assumption may not be appropriate for segmental duplications that exchange variants via interlocus gene conversion (IGC. Here, we use high quality multiple sequence alignments from well-annotated segmental duplications to systematically identify IGC signals in the human reference genome. Our analysis combines two complementary methods: (i a paralog quartet method that uses DNA sequence simulations to identify a statistical excess of sites consistent with inter-paralog exchange, and (ii the alignment-based method implemented in the GENECONV program. One-quarter (25.4% of the paralog families in our analysis harbor clear IGC signals by the quartet approach. Using GENECONV, we identify 1477 gene conversion tracks that cumulatively span 1.54 Mb of the genome. Our analyses confirm the previously reported high rates of IGC in subtelomeric regions and Y-chromosome palindromes, and identify multiple novel IGC hotspots, including the pregnancy specific glycoproteins and the neuroblastoma breakpoint gene families. Although the duplication history of a paralog family is described by a single tree, we show that IGC has introduced incredible site-to-site variation in the evolutionary relationships among paralogs in the human genome. Our findings indicate that IGC has left significant footprints in patterns of sequence diversity across segmental duplications in the human genome, out-pacing the contributions of single base mutation by orders of magnitude. Collectively, the IGC signals we report comprise a catalog that will provide a critical reference for interpreting observed patterns of DNA sequence variation across duplicated genomic regions, including targets of recent adaptive evolution in humans.

  1. Exon duplications in the ATP7A gene

    DEFF Research Database (Denmark)

    Mogensen, Mie; Skjørringe, Tina; Kodama, Hiroko

    2011-01-01

    the identified duplicated fragments originated from a single or from two different X-chromosomes, polymorphic markers located in the duplicated fragments were analyzed. RESULTS: Partial ATP7A gene duplication was identified in 20 unrelated patients including one patient with Occipital Horn Syndrome (OHS...

  2. Genome-wide signatures of 'rearrangement hotspots' within segmental duplications in humans.

    Directory of Open Access Journals (Sweden)

    Mohammed Uddin

    Full Text Available The primary objective of this study was to create a genome-wide high resolution map (i.e., >100 bp of 'rearrangement hotspots' which can facilitate the identification of regions capable of mediating de novo deletions or duplications in humans. A hierarchical method was employed to fragment segmental duplications (SDs into multiple smaller SD units. Combining an end space free pairwise alignment algorithm with a 'seed and extend' approach, we have exhaustively searched 409 million alignments to detect complex structural rearrangements within the reference-guided assembly of the NA18507 human genome (18× coverage, including the previously identified novel 4.8 Mb sequence from de novo assembly within this genome. We have identified 1,963 rearrangement hotspots within SDs which encompass 166 genes and display an enrichment of duplicated gene nucleotide variants (DNVs. These regions are correlated with increased non-allelic homologous recombination (NAHR event frequency which presumably represents the origin of copy number variations (CNVs and pathogenic duplications/deletions. Analysis revealed that 20% of the detected hotspots are clustered within the proximal and distal SD breakpoints flanked by the pathogenic deletions/duplications that have been mapped for 24 NAHR-mediated genomic disorders. FISH Validation of selected complex regions revealed 94% concordance with in silico localization of the highly homologous derivatives. Other results from this study indicate that intra-chromosomal recombination is enhanced in genic compared with agenic duplicated regions, and that gene desert regions comprising SDs may represent reservoirs for creation of novel genes. The generation of genome-wide signatures of 'rearrangement hotspots', which likely serve as templates for NAHR, may provide a powerful approach towards understanding the underlying mutational mechanism(s for development of constitutional and acquired diseases.

  3. Functions of two distinct prolactin-releasing peptides evolved from a common ancestral gene

    Directory of Open Access Journals (Sweden)

    Tetsuya eTachibana

    2014-11-01

    Full Text Available Prolactin-releasing peptide (PrRP is one of the RF-amide peptides and was originally identified in the bovine hypothalamus as a stimulator of prolactin (PRL release. Independently, another RF-amide peptide was found in Japanese crucian carp and named Carassius RFa (C-RFa, which shows high homology to PrRP and stimulates PRL secretion in teleost fish. Therefore, C-RFa has been recognized as fish PrRP. However, recent work has revealed that PrRP and C-RFa in non-mammalian vertebrates are encoded by separate genes originated through duplication of an ancestral gene. Indeed, both PrRP and C-RFa are suggested to exist in teleost, amphibian, reptile, and avian species. Therefore, we propose that non-mammalian PrRP (C-RFa be renamed PrRP2. Despite a common evolutionary origin, PrRP2 appears to be a physiological regulator of PRL, whereas this is not a consistent role for PrRP itself. Further work revealed that the biological functions of PrRP and PrRP2 are not limited solely to PRL release, because they are also neuromodulators of several hypothalamus-pituitary axes and are involved in some brain circuits related to the regulation of food intake, stress, and cardiovascular functions. However, these actions appear to be different among vertebrates. For example, central injection of PrRP inhibits feeding behavior in rodents and teleosts while it stimulates it in chicks. Therefore, both PrRP and PrRP2 have acquired diverse actions through evolution. In this review, we integrate the burgeoning information of structures, expression profiles, and multiple biological actions of PrRP in higher vertebrates, as well as those of PrRP2 in non-mammals.

  4. Long segment ileal duplication with extensive gastric heterotopia

    Directory of Open Access Journals (Sweden)

    Jacob Sunitha

    2009-07-01

    Full Text Available Duplications of the alimentary tract are rare congenital anomalies which can be found at all levels of the alimentary tract. Majority of the duplications present as spherical cysts and usually range from a few millimeters to less than ten centimeters in size. Duplications produce complications such as intestinal obstruction or hemorrhage. A two-month-old infant presented with recurrent episodes of bleeding per rectum. Laparotomy revealed a giant ileal duplicated bowel segment which exhibited extensive gastric heterotopia with focal ulceration.

  5. A Comparative Transcriptomic Analysis Reveals Conserved Features of Stem Cell Pluripotency in Planarians and Mammals

    Science.gov (United States)

    Labbé, Roselyne M.; Irimia, Manuel; Currie, Ko W.; Lin, Alexander; Zhu, Shu Jun; Brown, David D.R.; Ross, Eric J.; Voisin, Veronique; Bader, Gary D.; Blencowe, Benjamin J.; Pearson, Bret J.

    2014-01-01

    Many long-lived species of animals require the function of adult stem cells throughout their lives. However, the transcriptomes of stem cells in invertebrates and vertebrates have not been compared, and consequently, ancestral regulatory circuits that control stem cell populations remain poorly defined. In this study, we have used data from high-throughput RNA sequencing to compare the transcriptomes of pluripotent adult stem cells from planarians with the transcriptomes of human and mouse pluripotent embryonic stem cells. From a stringently defined set of 4,432 orthologs shared between planarians, mice and humans, we identified 123 conserved genes that are ≥5-fold differentially expressed in stem cells from all three species. Guided by this gene set, we used RNAi screening in adult planarians to discover novel stem cell regulators, which we found to affect the stem cell-associated functions of tissue homeostasis, regeneration, and stem cell maintenance. Examples of genes that disrupted these processes included the orthologs of TBL3, PSD12, TTC27, and RACK1. From these analyses, we concluded that by comparing stem cell transcriptomes from diverse species, it is possible to uncover conserved factors that function in stem cell biology. These results provide insights into which genes comprised the ancestral circuitry underlying the control of stem cell self-renewal and pluripotency. PMID:22696458

  6. Evolutionary analysis of the highly dynamic CHEK2 duplicon in anthropoids

    Directory of Open Access Journals (Sweden)

    Fernandes António MG

    2008-10-01

    Full Text Available Abstract Background Segmental duplications (SDs are euchromatic portions of genomic DNA (≥ 1 kb that occur at more than one site within the genome, and typically share a high level of sequence identity (>90%. Approximately 5% of the human genome is composed of such duplicated sequences. Here we report the detailed investigation of CHEK2 duplications. CHEK2 is a multiorgan cancer susceptibility gene encoding a cell cycle checkpoint kinase acting in the DNA-damage response signalling pathway. The continuous presence of the CHEK2 gene in all eukaryotes and its important role in maintaining genome stability prompted us to investigate the duplicative evolution and phylogeny of CHEK2 and its paralogs during anthropoid evolution. Results To study CHEK2 duplicon evolution in anthropoids we applied a combination of comparative FISH and in silico analyses. Our comparative FISH results with a CHEK2 fosmid probe revealed the single-copy status of CHEK2 in New World monkeys, Old World monkeys and gibbons. Whereas a single CHEK2 duplication was detected in orangutan, a multi-site signal pattern indicated a burst of duplication in African great apes and human. Phylogenetic analysis of paralogous and ancestral CHEK2 sequences in human, chimpanzee and rhesus macaque confirmed this burst of duplication, which occurred after the radiation of orangutan and African great apes. In addition, we used inter-species quantitative PCR to determine CHEK2 copy numbers. An amplification of CHEK2 was detected in African great apes and the highest CHEK2 copy number of all analysed species was observed in the human genome. Furthermore, we detected variation in CHEK2 copy numbers within the analysed set of human samples. Conclusion Our detailed analysis revealed the highly dynamic nature of CHEK2 duplication during anthropoid evolution. We determined a burst of CHEK2 duplication after the radiation of orangutan and African great apes and identified the highest CHEK2 copy number

  7. Finding all sorting tandem duplication random loss operations

    DEFF Research Database (Denmark)

    Bernt, Matthias; Chen, Kuan Yu; Chen, Ming Chiang

    2011-01-01

    A tandem duplication random loss (TDRL) operation duplicates a contiguous segment of genes, followed by the random loss of one copy of each of the duplicated genes. Although the importance of this operation is founded by several recent biological studies, it has been investigated only rarely from...

  8. Evolution of Cis-Regulatory Elements and Regulatory Networks in Duplicated Genes of Arabidopsis.

    Science.gov (United States)

    Arsovski, Andrej A; Pradinuk, Julian; Guo, Xu Qiu; Wang, Sishuo; Adams, Keith L

    2015-12-01

    Plant genomes contain large numbers of duplicated genes that contribute to the evolution of new functions. Following duplication, genes can exhibit divergence in their coding sequence and their expression patterns. Changes in the cis-regulatory element landscape can result in changes in gene expression patterns. High-throughput methods developed recently can identify potential cis-regulatory elements on a genome-wide scale. Here, we use a recent comprehensive data set of DNase I sequencing-identified cis-regulatory binding sites (footprints) at single-base-pair resolution to compare binding sites and network connectivity in duplicated gene pairs in Arabidopsis (Arabidopsis thaliana). We found that duplicated gene pairs vary greatly in their cis-regulatory element architecture, resulting in changes in regulatory network connectivity. Whole-genome duplicates (WGDs) have approximately twice as many footprints in their promoters left by potential regulatory proteins than do tandem duplicates (TDs). The WGDs have a greater average number of footprint differences between paralogs than TDs. The footprints, in turn, result in more regulatory network connections between WGDs and other genes, forming denser, more complex regulatory networks than shown by TDs. When comparing regulatory connections between duplicates, WGDs had more pairs in which the two genes are either partially or fully diverged in their network connections, but fewer genes with no network connections than the TDs. There is evidence of younger TDs and WGDs having fewer unique connections compared with older duplicates. This study provides insights into cis-regulatory element evolution and network divergence in duplicated genes. © 2015 American Society of Plant Biologists. All Rights Reserved.

  9. The sea lamprey meiotic map improves resolution of ancient vertebrate genome duplications.

    Science.gov (United States)

    Smith, Jeramiah J; Keinath, Melissa C

    2015-08-01

    It is generally accepted that many genes present in vertebrate genomes owe their origin to two whole-genome duplications that occurred deep in the ancestry of the vertebrate lineage. However, details regarding the timing and outcome of these duplications are not well resolved. We present high-density meiotic and comparative genomic maps for the sea lamprey (Petromyzon marinus), a representative of an ancient lineage that diverged from all other vertebrates ∼550 million years ago. Linkage analyses yielded a total of 95 linkage groups, similar to the estimated number of germline chromosomes (1n ∼ 99), spanning a total of 5570.25 cM. Comparative mapping data yield strong support for the hypothesis that a single whole-genome duplication occurred in the basal vertebrate lineage, but do not strongly support a hypothetical second event. Rather, these comparative maps reveal several evolutionarily independent segmental duplications occurring over the last 600+ million years of chordate evolution. This refined history of vertebrate genome duplication should permit more precise investigations of vertebrate evolution. © 2015 Smith and Keinath; Published by Cold Spring Harbor Laboratory Press.

  10. Embryonic duplications in sheep.

    Science.gov (United States)

    Dennis, S M

    1975-02-01

    Twenty-seven embryonic duplications were examined during a 3-year investigation into the causes of perinatal lamb mortality. Twenty of the 27 were anomalous twins with 19 being conjoined (diplopagus 9 and heteropagus 10). The various duplications were: haloacardius acephalus 1, diprosopus 2, dicephalus 2, dipypus 3, diprosopus dipygus 1, syncephalus dipygus 1, pygopagus parasiticus 1, heteropagus dipygus 3, melodidymus 6, polyury 4, penile duplication 2, and bilateral otognathia 1. Four lambs were living and the time of death of the others was: parturient 8, and post-parturient 15. Average dry weight of the lambs was 3.35 kg (range 1.59 to 5.45 kg). Breed distribution was: Merino 77.8%, Crossbred 14.8%, Dorset Horn 3.7%, and Corriedale 3.7%. The caudal region was involved in 10 of the conjoined twins (52.6%), anterior region in 7 (36.9%), and both anterior and caudal regions in 2 (10.5%). Associated defects were present in 70.4% of the 27 lambs, the most common being atresia ani.

  11. The duplication 17p13.3 phenotype

    DEFF Research Database (Denmark)

    Curry, Cynthia J; Rosenfeld, Jill A; Grant, Erica

    2013-01-01

    . Older patients were often overweight. Three variant phenotypes included cleft lip/palate (CLP), split hand/foot with long bone deficiency (SHFLD), and a connective tissue phenotype resembling Marfan syndrome. The duplications in patients with clefts appear to disrupt ABR, while the SHFLD phenotype......Chromosome 17p13.3 is a gene rich region that when deleted is associated with the well-known Miller-Dieker syndrome. A recently described duplication syndrome involving this region has been associated with intellectual impairment, autism and occasional brain MRI abnormalities. We report 34...... was associated with duplication of BHLHA9 as noted in two recent reports. The connective tissue phenotype did not have a convincing critical region. Our experience with this large cohort expands knowledge of this diverse duplication syndrome....

  12. Prevalence of lower extremity venous duplication

    Directory of Open Access Journals (Sweden)

    Simpson William

    2010-01-01

    Full Text Available Purpose: This retrospective study was performed to determine the prevalence of lower extremity venous duplication using duplex ultrasound in the patient population of a large urban medical center. Materials and Methods: The reports of all lower extremity venous ultrasound examinations performed at our institution between January 1, 2002 and December 31, 2002 were reviewed. Ultrasound examinations that were performed for purposes other than the detection of lower extremity deep vein thrombosis were excluded. The prevalence of duplication and its specific location were recorded. In addition, the prevalence of thrombus and its specific location were also recorded. Results: A total of 3118 exams were performed in 2664 patients. Of the 2664 patients, 2311 had only one examination performed during the study period; 353 patients had more than one examination performed. We found that 10.1% of patients (270/2664 had at least one venous segment duplicated and 5.4% of patients (143/2664 had a thrombus in at least one venous segment. There was a statistically significant difference in the prevalence of both duplication and thrombus with a change in venous segment. Only 0.4% of patients (11/2664 had thrombus within a duplicated segment. Of those who had more than one examination performed, 15.3% (54/353 had the same venous segment(s seen on one examination but not another. Conclusion: Lower extremity venous duplication is a frequent anatomic variant that is seen in 10.1% of patients, but it may not be as common as is generally believed. It can result in a false negative result for deep vein thrombosis.

  13. Ancestral informative marker selection and population structure visualization using sparse Laplacian eigenfunctions.

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    Full Text Available Identification of a small panel of population structure informative markers can reduce genotyping cost and is useful in various applications, such as ancestry inference in association mapping, forensics and evolutionary theory in population genetics. Traditional methods to ascertain ancestral informative markers usually require the prior knowledge of individual ancestry and have difficulty for admixed populations. Recently Principal Components Analysis (PCA has been employed with success to select SNPs which are highly correlated with top significant principal components (PCs without use of individual ancestral information. The approach is also applicable to admixed populations. Here we propose a novel approach based on our recent result on summarizing population structure by graph laplacian eigenfunctions, which differs from PCA in that it is geometric and robust to outliers. Our approach also takes advantage of the priori sparseness of informative markers in the genome. Through simulation of a ring population and the real global population sample HGDP of 650K SNPs genotyped in 940 unrelated individuals, we validate the proposed algorithm at selecting most informative markers, a small fraction of which can recover the similar underlying population structure efficiently. Employing a standard Support Vector Machine (SVM to predict individuals' continental memberships on HGDP dataset of seven continents, we demonstrate that the selected SNPs by our method are more informative but less redundant than those selected by PCA. Our algorithm is a promising tool in genome-wide association studies and population genetics, facilitating the selection of structure informative markers, efficient detection of population substructure and ancestral inference.

  14. Complete cloacal duplication imaged before and during pregnancy.

    Science.gov (United States)

    Ragab, Omar; Landay, Melanie; Shriki, Jabi

    2009-01-01

    The authors describe a 31 year-old female who presented emergently with abdominal pain and was found at CT to have complete genitourinary duplication including separate urinary bladders, uteri, cervices, and vaginas, and also duplication of the rectum. No etiology for abdominal pain was identified. The patient was referred to urology for further evaluation, and an intravenous urographic study was obtained, which confirmed complete lower urinary tract duplication. The patient presented emergently 9 months later during a subsequent pregnancy for further evaluation of abdominal pain. A second CT scan was ordered to rule out appendicitis. Findings consistent with cloacal duplication were again noted. There was also dilatation of the urinary collecting systems, more prominently on the right side. A Cesarean section was performed and confirmed total genitourinary and rectal duplication.

  15. An unusual presentation of a rectal duplication cyst.

    Science.gov (United States)

    Jackson, Katharine L; Peche, William J; Rollins, Michael D

    2012-01-01

    Intestinal duplications are rare developmental anomalies that can occur anywhere along the gastrointestinal tract. Rectal duplication cysts account for approximately 4% of all duplication cysts. They usually present in childhood with symptoms of mass effect, local infection or more rarely with rectal bleeding from ectopic gastric mucosa. A 26year old male presented with a history of bright red blood per rectum. On examination a mucosal defect with an associated cavity adjacent to the rectum was identified. This was confirmed with rigid proctoscopy and CT scan imaging. A complete transanal excision was performed. Rectal duplication cysts are more common in pediatric patients. They more frequently present with symptoms of mass effect or local infection than with rectal bleeding. In adult patients they are a rare cause of rectal bleeding. Definitive treatment is with surgical excision. A transanal, transcoccygeal, posterior sagittal or a combined abdominoperineal approach may be used depending on anatomic characteristics of the duplication cyst. We present a rare case of a rectal duplication cyst presenting in adulthood with rectal bleeding, managed with transanal excision. Published by Elsevier Ltd.

  16. [Rectal duplication cyst--case report].

    Science.gov (United States)

    Turyna, R; Horák, L; Kucera, E; Hejda, V; Krofta, L; Feyereisl, J

    2009-06-01

    The authors demonstrate a rare case of duplication anomaly of the rectum. Case report. Institute for the Care of Mother and Child, Prague. We present a rare case of cystic rectal duplication in adult, completely removed and histologically confirmed. A literature review was summarized. The case was complicated by delay in diagnosis, multiple operations, and by the association with endometriosis, as well. Mentioned anomaly is published in the Czech literature for the very first time.

  17. Comparative analyses reveal high levels of conserved colinearity between the finger millet and rice genomes.

    Science.gov (United States)

    Srinivasachary; Dida, Mathews M; Gale, Mike D; Devos, Katrien M

    2007-08-01

    Finger millet is an allotetraploid (2n = 4x = 36) grass that belongs to the Chloridoideae subfamily. A comparative analysis has been carried out to determine the relationship of the finger millet genome with that of rice. Six of the nine finger millet homoeologous groups corresponded to a single rice chromosome each. Each of the remaining three finger millet groups were orthologous to two rice chromosomes, and in all the three cases one rice chromosome was inserted into the centromeric region of a second rice chromosome to give the finger millet chromosomal configuration. All observed rearrangements were, among the grasses, unique to finger millet and, possibly, the Chloridoideae subfamily. Gene orders between rice and finger millet were highly conserved, with rearrangements being limited largely to single marker transpositions and small putative inversions encompassing at most three markers. Only some 10% of markers mapped to non-syntenic positions in rice and finger millet and the majority of these were located in the distal 14% of chromosome arms, supporting a possible correlation between recombination and sequence evolution as has previously been observed in wheat. A comparison of the organization of finger millet, Panicoideae and Pooideae genomes relative to rice allowed us to infer putative ancestral chromosome configurations in the grasses.

  18. Modeling X-linked ancestral origins in multiparental populations

    NARCIS (Netherlands)

    Zheng, Chaozhi

    2015-01-01

    The models for the mosaic structure of an individual's genome from multiparental populations have been developed primarily for autosomes, whereas X chromosomes receive very little attention. In this paper, we extend our previous approach to model ancestral origin processes along two X chromosomes

  19. Duplicate Record Elimination in Large Data Files.

    Science.gov (United States)

    1981-08-01

    UNCLASSIFIJED CSTR -445 NL LmEE~hhE - I1.0 . 111112----5 1.~4 __112 ___IL25_ 1.4 111111.6 EI24 COMPUTER SCIENCES DEPARTMENT oUniversity of Wisconsin...we propose a combinatorial model for the use in the analysis of algorithms for duplicate elimination. We contend that this model can serve as a...duplicates in a multiset of records, knowing the size of the multiset and the number of distinct records in it. 3. Algorithms for Duplicate Elimination

  20. On the Accuracy of Ancestral Sequence Reconstruction for Ultrametric Trees with Parsimony.

    Science.gov (United States)

    Herbst, Lina; Fischer, Mareike

    2018-04-01

    We examine a mathematical question concerning the reconstruction accuracy of the Fitch algorithm for reconstructing the ancestral sequence of the most recent common ancestor given a phylogenetic tree and sequence data for all taxa under consideration. In particular, for the symmetric four-state substitution model which is also known as Jukes-Cantor model, we answer affirmatively a conjecture of Li, Steel and Zhang which states that for any ultrametric phylogenetic tree and a symmetric model, the Fitch parsimony method using all terminal taxa is more accurate, or at least as accurate, for ancestral state reconstruction than using any particular terminal taxon or any particular pair of taxa. This conjecture had so far only been answered for two-state data by Fischer and Thatte. Here, we focus on answering the biologically more relevant case with four states, which corresponds to ancestral sequence reconstruction from DNA or RNA data.

  1. A case report of Ileal duplication

    Energy Technology Data Exchange (ETDEWEB)

    Oh, K K; Suh, J H; Choi, B S [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1971-10-15

    Since Frankel reported the congenital anomalous intestinal duplication incidentally during autopsy in 1883, about 228 cases has been reported on the literatures. In our severance hospital, one case of ileal duplication was found, and was confirmed by pathology and surgery. This patient of duplication usually reveals the symptoms of abnormal distension, pain and palpable abdominal mass, and sometimes the symptoms of intestinal obstruction. On x-ray flate abdomen, huge occupying mass displaces intestinal gas pattern to left side. Barium enema study reveals elongation and displacement of ileum by large extrinsic mass. And cecum is also displaced upward. On the IVP, this extrinsic mass is not related to kidneys. Also, the literature was reviewed.

  2. Evolution of cyclin-dependent kinases (CDKs) and CDK-activating kinases (CAKs): differential conservation of CAKs in yeast and metazoa.

    Science.gov (United States)

    Liu, J; Kipreos, E T

    2000-07-01

    Cyclin-dependent kinases (CDKs) function as central regulators of both the cell cycle and transcription. CDK activation depends on phosphorylation by a CDK-activating kinase (CAK). Different CAKs have been identified in budding yeast, fission yeast, and metazoans. All known CAKs belong to the extended CDK family. The sole budding yeast CAK, CAK1, and one of the two CAKs in fission yeast, csk1, have diverged considerably from other CDKs. Cell cycle regulatory components have been largely conserved in eukaryotes; however, orthologs of neither CAK1 nor csk1 have been identified in other species to date. To determine the evolutionary relationships of yeast and metazoan CAKs, we performed a phylogenetic analysis of the extended CDK family in budding yeast, fission yeast, humans, the fruit fly Drosophila melanogaster, and the nematode Caenorhabditis elegans. We observed that there were 10 clades for CDK-related genes, of which seven appeared ancestral, containing both yeast and metazoan genes. The four clades that contain CDKs that regulate transcription by phosphorylating the carboxyl-terminal domain (CTD) of RNA Polymerase II generally have only a single orthologous gene in each species of yeast and metazoans. In contrast, the ancestral cell cycle CDK (analogous to budding yeast CDC28) gave rise to a number of genes in metazoans, as did the ancestor of budding yeast PHO85. One ancestral clade is unique in that there are fission yeast and metazoan members, but there is no budding yeast ortholog, suggesting that it was lost subsequent to evolutionary divergence. Interestingly, CAK1 and csk1 branch together with high bootstrap support values. We used both the relative apparent synapomorphy analysis (RASA) method in combination with the S-F method of sampling reduced character sets and gamma-corrected distance methods to confirm that the CAK1/csk1 association was not an artifact of long-branch attraction. This result suggests that CAK1 and csk1 are orthologs and that a

  3. Telomeric expression sites are highly conserved in Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Christiane Hertz-Fowler

    Full Text Available Subtelomeric regions are often under-represented in genome sequences of eukaryotes. One of the best known examples of the use of telomere proximity for adaptive purposes are the bloodstream expression sites (BESs of the African trypanosome Trypanosoma brucei. To enhance our understanding of BES structure and function in host adaptation and immune evasion, the BES repertoire from the Lister 427 strain of T. brucei were independently tagged and sequenced. BESs are polymorphic in size and structure but reveal a surprisingly conserved architecture in the context of extensive recombination. Very small BESs do exist and many functioning BESs do not contain the full complement of expression site associated genes (ESAGs. The consequences of duplicated or missing ESAGs, including ESAG9, a newly named ESAG12, and additional variant surface glycoprotein genes (VSGs were evaluated by functional assays after BESs were tagged with a drug-resistance gene. Phylogenetic analysis of constituent ESAG families suggests that BESs are sequence mosaics and that extensive recombination has shaped the evolution of the BES repertoire. This work opens important perspectives in understanding the molecular mechanisms of antigenic variation, a widely used strategy for immune evasion in pathogens, and telomere biology.

  4. Duplication of Key Frames of Video Streams in Wireless Networks

    OpenAIRE

    Sagatov, Evgeny S.; Sukhov, Andrei M.

    2011-01-01

    In this paper technological solutions for improving the quality of video transfer along wireless networks are investigated. Tools have been developed to allow packets to be duplicated with key frames data. In the paper we tested video streams with duplication of all frames, with duplication of key frames, and without duplication. The experiments showed that the best results are obtained by duplication of packages which contain key frames. The paper also provides an overview of the coefficient...

  5. Partial craniofacial duplication: a review of the literature and case report.

    Science.gov (United States)

    Costa, Melinda A; Borzabadi-Farahani, Ali; Lara-Sanchez, Pedro A; Schweitzer, Daniela; Jacobson, Lia; Clarke, Noreen; Hammoudeh, Jeffery; Urata, Mark M; Magee, William P

    2014-06-01

    Diprosopus (Greek; di-, "two" + prosopon, "face"), or craniofacial duplication, is a rare craniofacial anomaly referring to the complete duplication of facial structures. Partial craniofacial duplication describes a broad spectrum of congenital anomalies, including duplications of the oral cavity. This paper describes a 15 month-old female with a duplicated oral cavity, mandible, and maxilla. A Tessier type 7 cleft, midline meningocele, and duplicated hypophysis were also present. The preoperative evaluation, surgical approach, postoperative results, and a review of the literature are presented. The surgical approach was designed to preserve facial nerve innervation to the reconstructed cheek and mouth. The duplicated mandible and maxilla were excised and the remaining left maxilla was bone grafted. Soft tissue repair included closure of the Tessier type VII cleft. Craniofacial duplication remains a rare entity that is more common in females. The pathophysiology remains incompletely characterized, but is postulated to be due to duplication of the notochord, as well as duplication of mandibular growth centres. While diprosopus is a severe deformity often associated with anencephaly, patients with partial duplication typically benefit from surgical treatment. Managing craniofacial duplication requires a detailed preoperative evaluation as well as a comprehensive, staged treatment plan. Long-term follow up is needed appropriately to address ongoing craniofacial deformity. Published by Elsevier Ltd.

  6. Rectal duplication cyst presenting as rectal prolapse in an infant

    Directory of Open Access Journals (Sweden)

    Maher Zaiem

    2018-05-01

    Full Text Available Rectal duplication is a rare variety of gastrointestinal duplication. It accounts 4% of the total gastrointestinal duplications.In this paper, we are reporting a case of an 8 months old male who presented with rectal prolapse. Digital rectal examination revealed a soft mass bulging through the posterior wall of rectum. Computed tomography (CT scan showed a cystic mass compressing the posterior wall of the rectum. The mass was excised using a Muscle Complex Saving Posterior Sagittal approach (MCS-PSA. The pathology report confirmed the diagnosis of the rectal duplication cyst. The postoperative recovery was uneventful. Keywords: Intestinal duplication, Cystic rectal duplication, Rectal prolapse

  7. Effectiveness of ancestral irradiation on the direct and correlated responses to selection for body weight in rats

    International Nuclear Information System (INIS)

    Gianola, D.

    1975-01-01

    The effects of ancestral irradiation of rat spermatogonia (a cumulative total of 4050 r of x-rays) were studied in a highly inbred line of rats to explore the feasibility of using irradiation to enhance the effectiveness of selection. Six generations after irradiation was terminated, a selection experiment for body weight at six weeks of age was started in both ancestrally irradiated and non-irradiated populations. There were two non-contemporaneous replicates in each of the populations. Within each of the ancestral treatment-replicate combinations one line was selected for high, one for low body weight at six weeks of age, and a third line was maintained by random selection. In each line, avoidance of mating of animals with grandparents in common was attempted. Data on the first ten progeny generations of selection were included in this study. Five types of covariances among relatives were used to estimate causal components of variance for five different genetic models within the ''non-irradiated'' and ''irradiated'' randomly selected models. The parameters in the genetic models were estimated by generalized least-squares. This analysis suggested that a genetic model including direct genetic and maternal genetic effects was adequate to describe the body weights at 3, 6 and 10 weeks of age and the weight gains between these ages. Ancestral irradiation seemed to have enhanced the maternal genetic variance and the covariance between the direct genetic and the maternal genetic effects. On the basis of the above analysis, it was deduced that mass selection should have been more effective in the descendants of irradiated males than in those of the non-irradiated males as a consequence of greater phenotypic variability in their progeny and an enhancement in the regression of the genetic value on the selection criterion

  8. Gene Duplication of the zebrafish kit ligand and partitioning of melanocyte development functions to kit ligand a.

    Directory of Open Access Journals (Sweden)

    Keith A Hultman

    2007-01-01

    Full Text Available The retention of particular genes after the whole genome duplication in zebrafish has given insights into how genes may evolve through partitioning of ancestral functions. We examine the partitioning of expression patterns and functions of two zebrafish kit ligands, kit ligand a (kitla and kit ligand b (kitlb, and discuss their possible coevolution with the duplicated zebrafish kit receptors (kita and kitb. In situ hybridizations show that kitla mRNA is expressed in the trunk adjacent to the notochord in the middle of each somite during stages of melanocyte migration and later expressed in the skin, when the receptor is required for melanocyte survival. kitla is also expressed in other regions complementary to kita receptor expression, including the pineal gland, tail bud, and ear. In contrast, kitlb mRNA is expressed in brain ventricles, ear, and cardinal vein plexus, in regions generally not complementary to either zebrafish kit receptor ortholog. However, like kitla, kitlb is expressed in the skin during stages consistent with melanocyte survival. Thus, it appears that kita and kitla have maintained congruent expression patterns, while kitb and kitlb have evolved divergent expression patterns. We demonstrate the interaction of kita and kitla by morpholino knockdown analysis. kitla morphants, but not kitlb morphants, phenocopy the null allele of kita, with defects for both melanocyte migration and survival. Furthermore, kitla morpholino, but not kitlb morpholino, interacts genetically with a sensitized allele of kita, confirming that kitla is the functional ligand to kita. Last, we examine kitla overexpression in embryos, which results in hyperpigmentation caused by an increase in the number and size of melanocytes. This hyperpigmentation is dependent on kita function. We conclude that following genome duplication, kita and kitla have maintained their receptor-ligand relationship, coevolved complementary expression patterns, and that

  9. Environmental enrichment mitigates the impact of ancestral stress on motor skill and corticospinal tract plasticity.

    Science.gov (United States)

    McCreary, J Keiko; Erickson, Zachary T; Metz, Gerlinde A S

    2016-10-06

    An adverse fetal environment in utero has been associated with long-term alterations in brain structure and function, and a higher risk of neurological disorders in later life. A common consequence of early adverse experience is impaired motor system function. A causal relationship for stress-associated impairments and a suitable therapy, however, have not been determined yet. To investigate the impact of ancestral stress on corticospinal tract (CST) morphology and fine motor performance in rats, and to determine if adverse programming by ancestral stress can be mitigated by environmental enrichment therapy in rats. The study examined F3 offspring generated by three lineages; one with prenatal stress only in the F1 generation, one with compounding effects of multigenerational prenatal stress, and a non-stress control lineage. F3 offspring from each lineage were injected with biotinylated dextran amine (BDA) into the motor cortex for anterograde tracing of the CST. Examination of the CST revealed reduced axonal density in the ancestrally stressed lineages. These anatomical changes were associated with significant impairments in skilled walking, as indicated by reduced foot placement accuracy and disturbed inter-limb coordination. Therapeutic intervention by environmental enrichment reduced the neuromorphological consequences of ancestral stress and restored skilled walking ability. The data suggest a causal relationship between stress-induced abnormal CST function and loss of fine motor performance. Thus, ancestral stress may be a determinant of motor system development and motor skill. Environmental enrichment may represent an effective intervention for the adverse programming by ancestral stress and trauma. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Origin of the duplicated regions in the yeast genomes

    DEFF Research Database (Denmark)

    Piskur, Jure

    2001-01-01

    The genome of Saccharomyces cerevisiae contains several duplicated regions. The recent sequencing results of several yeast species suggest that the duplicated regions found in the modern Saccharomyces species are probably the result of a single gross duplication, as well as a series of sporadic...

  11. [Intestinal volvulus due to yeyunal duplication].

    Science.gov (United States)

    Rodríguez Iglesias, P; Carazo Palacios, M E; Lluna González, J; Ibáñez Pradas, V; Rodríguez Caraballo, L

    2014-10-01

    Duplications of the alimentary tract are congenital malformations. The ileum is the most commonly affected organ. A lot of duplications are incidentally diagnosed but most of patients present a combination of pain or complications such as obstructive symptoms, intestinal intussusception, perforation or volvulus. We report the case of a 6-years-old girl, with intermittent abdominal pain and vomits for two months long. Laboratory work was completely normal and in the radiology analysis (abdominal sonography and magnetic resonance) a cystic image with intestinal volvulus was observed. The patient underwent laparotomy, Ladd's procedure was done and the cyst was resected. In conclusion, if a patient is admitted with abdominal pain and obstructive symptoms, it is important to consider duplication of the alimentary tract as a possible diagnosis.

  12. Surgical management of complete penile duplication accompanied by multiple anomalies.

    Science.gov (United States)

    Karaca, Irfan; Turk, Erdal; Ucan, A Basak; Yayla, Derya; Itirli, Gulcin; Ercal, Derya

    2014-09-01

    Diphallus (penile duplication) is very rare and seen once every 5.5 million births. It can be isolated, but is usually accompanied by other congenital anomalies. Previous studies have reported many concurrent anomalies, such as bladder extrophy, cloacal extrophy, duplicated bladder, scrotal abnormalities, hypospadias, separated symphysis pubis, intestinal anomalies and imperforate anus; no penile duplication case accompanied by omphalocele has been reported. We present the surgical management of a patient with multiple anomalies, including complete penile duplication, hypo-gastric omphalocele and extrophic rectal duplication.

  13. Functional requirements driving the gene duplication in 12 Drosophila species.

    Science.gov (United States)

    Zhong, Yan; Jia, Yanxiao; Gao, Yang; Tian, Dacheng; Yang, Sihai; Zhang, Xiaohui

    2013-08-15

    Gene duplication supplies the raw materials for novel gene functions and many gene families arisen from duplication experience adaptive evolution. Most studies of young duplicates have focused on mammals, especially humans, whereas reports describing their genome-wide evolutionary patterns across the closely related Drosophila species are rare. The sequenced 12 Drosophila genomes provide the opportunity to address this issue. In our study, 3,647 young duplicate gene families were identified across the 12 Drosophila species and three types of expansions, species-specific, lineage-specific and complex expansions, were detected in these gene families. Our data showed that the species-specific young duplicate genes predominated (86.6%) over the other two types. Interestingly, many independent species-specific expansions in the same gene family have been observed in many species, even including 11 or 12 Drosophila species. Our data also showed that the functional bias observed in these young duplicate genes was mainly related to responses to environmental stimuli and biotic stresses. This study reveals the evolutionary patterns of young duplicates across 12 Drosophila species on a genomic scale. Our results suggest that convergent evolution acts on young duplicate genes after the species differentiation and adaptive evolution may play an important role in duplicate genes for adaption to ecological factors and environmental changes in Drosophila.

  14. Historian: accurate reconstruction of ancestral sequences and evolutionary rates.

    Science.gov (United States)

    Holmes, Ian H

    2017-04-15

    Reconstruction of ancestral sequence histories, and estimation of parameters like indel rates, are improved by using explicit evolutionary models and summing over uncertain alignments. The previous best tool for this purpose (according to simulation benchmarks) was ProtPal, but this tool was too slow for practical use. Historian combines an efficient reimplementation of the ProtPal algorithm with performance-improving heuristics from other alignment tools. Simulation results on fidelity of rate estimation via ancestral reconstruction, along with evaluations on the structurally informed alignment dataset BAliBase 3.0, recommend Historian over other alignment tools for evolutionary applications. Historian is available at https://github.com/evoldoers/historian under the Creative Commons Attribution 3.0 US license. ihholmes+historian@gmail.com. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  15. Endoscopic ultrasonography and rectal duplication cyst in an adult.

    Science.gov (United States)

    Castro-Poças, Fernando M; Araújo, Tarcísio P; Silva, Jorge D; Gonçalves, Vicente S

    2017-01-01

    Rectal duplication cysts account for 4% of all duplications of the alimentary tract. Presentation in adulthood is rare. An asymptomatic 54-year-old man was referred for endoscopic colorectal cancer screening. A bulging mass covered by normal mucosa was identified in the rectum. Endoscopic ultrasonography (EUS) with fine needle aspiration (FNA) was made for a diagnosis of rectal duplication cyst. The patient was operated and the diagnosis was confirmed. The diagnosis of the rectal duplication cyst is a challenge. EUS may have a singular role when identifying a muscular layer, because this is the only absolutely necessary criterion for the diagnosis. FNA by EUS may eventually identify colorectal and/or heterotypic epithelium that are the other diagnostic criteria of the duplication cyst.

  16. Generation of monoclonal antibodies against highly conserved antigens.

    Directory of Open Access Journals (Sweden)

    Hongzhe Zhou

    Full Text Available BACKGROUND: Therapeutic antibody development is one of the fastest growing areas of the pharmaceutical industry. Generating high-quality monoclonal antibodies against a given therapeutic target is very crucial for the success of the drug development. However, due to immune tolerance, some proteins that are highly conserved between mice and humans are not very immunogenic in mice, making it difficult to generate antibodies using a conventional approach. METHODOLOGY/PRINCIPAL FINDINGS: In this report, the impaired immune tolerance of NZB/W mice was exploited to generate monoclonal antibodies against highly conserved or self-antigens. Using two highly conserved human antigens (MIF and HMGB1 and one mouse self-antigen (TNF-alpha as examples, we demonstrate here that multiple clones of high affinity, highly specific antibodies with desired biological activities can be generated, using the NZB/W mouse as the immunization host and a T cell-specific tag fused to a recombinant antigen to stimulate the immune system. CONCLUSIONS/SIGNIFICANCE: We developed an efficient and universal method for generating surrogate or therapeutic antibodies against "difficult antigens" to facilitate the development of therapeutic antibodies.

  17. Prenatal diagnosis of foetuses with congenital abnormalities and duplication of the MECP2 region.

    Science.gov (United States)

    Fu, Fang; Liu, Huan-ling; Li, Ru; Han, Jin; Yang, Xin; Min, Pan; Zhen, Li; Zhang, Yong-ling; Xie, Gui-e; Lei, Ting-ying; Li, Yan; Li, Jian; Li, Dong-zhi; Liao, Can

    2014-08-10

    MECP2 duplication results in a well-recognised syndrome in 100% of affected male children; this syndrome is characterised by severe neurodevelopmental disabilities and recurrent infections. However, no sonographic findings have been reported for affected foetuses, and prenatal molecular diagnosis has not been possible for this disease due to lack of prenatal clinical presentation. In this study, we identified a small duplication comprising the MECP2 and L1CAM genes in the Xq28 region in a patient from a family with severe X-linked mental retardation and in a prenatal foetus with brain structural abnormalities. Using high-resolution chromosome microarray analysis (CMA) to screen 108 foetuses with congenital structural abnormalities, we identified additional three foetuses with the MECP2 duplication. Our study indicates that ventriculomegaly, hydrocephalus, agenesis of the corpus callosum, choroid plexus cysts, foetal growth restriction and hydronephrosis might be common ultrasound findings in prenatal foetuses with the MECP2 duplication and provides the first set of prenatal cases with MECP2 duplication, the ultrasonographic phenotype described in these patients will help to recognise the foetuses with possible MECP2 duplication and prompt the appropriate molecular testing. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Allelic lineages of the ficolin genes (FCNs are passed from ancestral to descendant primates.

    Directory of Open Access Journals (Sweden)

    Tina Hummelshøj

    Full Text Available The ficolins recognize carbohydrates and acetylated compounds on microorganisms and dying host cells and are able to activate the lectin pathway of the complement system. In humans, three ficolin genes have been identified: FCN1, FCN2 and FCN3, which encode ficolin-1, ficolin-2 and ficolin-3, respectively. Rodents have only two ficolins designated ficolin-A and ficolin-B that are closely related to human ficolin-1, while the rodent FCN3 orthologue is a pseudogene. Ficolin-2 and ficolin-3 have so far only been observed in humans. Thus, we performed a systematic investigation of the FCN genes in non-human primates. The exons and intron-exon boundaries of the FCN1-3 genes were sequenced in the following primate species: chimpanzee, gorilla, orangutan, rhesus macaque, cynomolgus macaque, baboon and common marmoset. We found that the exon organisation of the FCN genes was very similar between all the non-human primates and the human FCN genes. Several variations in the FCN genes were found in more than one primate specie suggesting that they were carried from one species to another including humans. The amino acid diversity of the ficolins among human and non-human primate species was estimated by calculating the Shannon entropy revealing that all three proteins are generally highly conserved. Ficolin-1 and ficolin-2 showed the highest diversity, whereas ficolin-3 was more conserved. Ficolin-2 and ficolin-3 were present in non-human primate sera with the same characteristic oligomeric structures as seen in human serum. Taken together all the FCN genes show the same characteristics in lower and higher primates. The existence of trans-species polymorphisms suggests that different FCN allelic lineages may be passed from ancestral to descendant species.

  19. The Sequence and Analysis of Duplication Rich Human Chromosome 16

    Science.gov (United States)

    Martin, Joel; Han, Cliff; Gordon, Laurie A.; Terry, Astrid; Prabhakar, Shyam; She, Xinwei; Xie, Gary; Hellsten, Uffe; Man Chan, Yee; Altherr, Michael; Couronne, Olivier; Aerts, Andrea; Bajorek, Eva; Black, Stacey; Blumer, Heather; Branscomb, Elbert; Brown, Nancy C.; Bruno, William J.; Buckingham, Judith M.; Callen, David F.; Campbell, Connie S.; Campbell, Mary L.; Campbell, Evelyn W.; Caoile, Chenier; Challacombe, Jean F.; Chasteen, Leslie A.; Chertkov, Olga; Chi, Han C.; Christensen, Mari; Clark, Lynn M.; Cohn, Judith D.; Denys, Mirian; Detter, John C.; Dickson, Mark; Dimitrijevic-Bussod, Mira; Escobar, Julio; Fawcett, Joseph J.; Flowers, Dave; Fotopulos, Dea; Glavina, Tijana; Gomez, Maria; Gonzales, Eidelyn; Goodstein, David; Goodwin, Lynne A.; Grady, Deborah L.; Grigoriev, Igor; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Hildebrand, Carl E.; Huang, Wayne; Israni, Sanjay; Jett, Jamie; Jewett, Phillip E.; Kadner, Kristen; Kimball, Heather; Kobayashi, Arthur; Krawczyk, Marie-Claude; Leyba, Tina; Longmire, Jonathan L.; Lopez, Frederick; Lou, Yunian; Lowry, Steve; Ludeman, Thom; Mark, Graham A.; Mcmurray, Kimberly L.; Meincke, Linda J.; Morgan, Jenna; Moyzis, Robert K.; Mundt, Mark O.; Munk, A. Christine; Nandkeshwar, Richard D.; Pitluck, Sam; Pollard, Martin; Predki, Paul; Parson-Quintana, Beverly; Ramirez, Lucia; Rash, Sam; Retterer, James; Ricke, Darryl O.; Robinson, Donna L.; Rodriguez, Alex; Salamov, Asaf; Saunders, Elizabeth H.; Scott, Duncan; Shough, Timothy; Stallings, Raymond L.; Stalvey, Malinda; Sutherland, Robert D.; Tapia, Roxanne; Tesmer, Judith G.; Thayer, Nina; Thompson, Linda S.; Tice, Hope; Torney, David C.; Tran-Gyamfi, Mary; Tsai, Ming; Ulanovsky, Levy E.; Ustaszewska, Anna; Vo, Nu; White, P. Scott; Williams, Albert L.; Wills, Patricia L.; Wu, Jung-Rung; Wu, Kevin; Yang, Joan; DeJong, Pieter; Bruce, David; Doggett, Norman; Deaven, Larry; Schmutz, Jeremy; Grimwood, Jane; Richardson, Paul; et al.

    2004-01-01

    We report here the 78,884,754 base pairs of finished human chromosome 16 sequence, representing over 99.9 percent of its euchromatin. Manual annotation revealed 880 protein coding genes confirmed by 1,637 aligned transcripts, 19 tRNA genes, 341 pseudogenes and 3 RNA pseudogenes. These genes include metallothionein, cadherin and iroquois gene families, as well as the disease genes for polycystic kidney disease and acute myelomonocytic leukemia. Several large-scale structural polymorphisms spanning hundreds of kilobasepairs were identified and result in gene content differences across humans. One of the unique features of chromosome 16 is its high level of segmental duplication, ranked among the highest of the human autosomes. While the segmental duplications are enriched in the relatively gene poor pericentromere of the p-arm, some are involved in recent gene duplication and conversion events which are likely to have had an impact on the evolution of primates and human disease susceptibility.

  20. The sequence and analysis of duplication rich human chromosome 16

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Joel; Han, Cliff; Gordon, Laurie A.; Terry, Astrid; Prabhakar, Shyam; She, Xinwei; Xie, Gary; Hellsten, Uffe; Man Chan, Yee; Altherr, Michael; Couronne, Olivier; Aerts, Andrea; Bajorek, Eva; Black, Stacey; Blumer, Heather; Branscomb, Elbert; Brown, Nancy C.; Bruno, William J.; Buckingham, Judith M.; Callen, David F.; Campbell, Connie S.; Campbell, Mary L.; Campbell, Evelyn W.; Caoile, Chenier; Challacombe, Jean F.; Chasteen, Leslie A.; Chertkov, Olga; Chi, Han C.; Christensen, Mari; Clark, Lynn M.; Cohn, Judith D.; Denys, Mirian; Detter, John C.; Dickson, Mark; Dimitrijevic-Bussod, Mira; Escobar, Julio; Fawcett, Joseph J.; Flowers, Dave; Fotopulos, Dea; Glavina, Tijana; Gomez, Maria; Gonzales, Eidelyn; Goodstein, David; Goodwin, Lynne A.; Grady, Deborah L.; Grigoriev, Igor; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Hildebrand, Carl E.; Huang, Wayne; Israni, Sanjay; Jett, Jamie; Jewett, Phillip E.; Kadner, Kristen; Kimball, Heather; Kobayashi, Arthur; Krawczyk, Marie-Claude; Leyba, Tina; Longmire, Jonathan L.; Lopez, Frederick; Lou, Yunian; Lowry, Steve; Ludeman, Thom; Mark, Graham A.; Mcmurray, Kimberly L.; Meincke, Linda J.; Morgan, Jenna; Moyzis, Robert K.; Mundt, Mark O.; Munk, A. Christine; Nandkeshwar, Richard D.; Pitluck, Sam; Pollard, Martin; Predki, Paul; Parson-Quintana, Beverly; Ramirez, Lucia; Rash, Sam; Retterer, James; Ricke, Darryl O.; Robinson, Donna L.; Rodriguez, Alex; Salamov, Asaf; Saunders, Elizabeth H.; Scott, Duncan; Shough, Timothy; Stallings, Raymond L.; Stalvey, Malinda; Sutherland, Robert D.; Tapia, Roxanne; Tesmer, Judith G.; Thayer, Nina; Thompson, Linda S.; Tice, Hope; Torney, David C.; Tran-Gyamfi, Mary; Tsai, Ming; Ulanovsky, Levy E.; Ustaszewska, Anna; Vo, Nu; White, P. Scott; Williams, Albert L.; Wills, Patricia L.; Wu, Jung-Rung; Wu, Kevin; Yang, Joan; DeJong, Pieter; Bruce, David; Doggett, Norman; Deaven, Larry; Schmutz, Jeremy; Grimwood, Jane; Richardson, Paul; et al.

    2004-08-01

    We report here the 78,884,754 base pairs of finished human chromosome 16 sequence, representing over 99.9 percent of its euchromatin. Manual annotation revealed 880 protein coding genes confirmed by 1,637 aligned transcripts, 19 tRNA genes, 341 pseudogenes and 3 RNA pseudogenes. These genes include metallothionein, cadherin and iroquois gene families, as well as the disease genes for polycystic kidney disease and acute myelomonocytic leukemia. Several large-scale structural polymorphisms spanning hundreds of kilobasepairs were identified and result in gene content differences across humans. One of the unique features of chromosome 16 is its high level of segmental duplication, ranked among the highest of the human autosomes. While the segmental duplications are enriched in the relatively gene poor pericentromere of the p-arm, some are involved in recent gene duplication and conversion events which are likely to have had an impact on the evolution of primates and human disease susceptibility.

  1. Efficient Algorithms for Analyzing Segmental Duplications, Deletions, and Inversions in Genomes

    Science.gov (United States)

    Kahn, Crystal L.; Mozes, Shay; Raphael, Benjamin J.

    Segmental duplications, or low-copy repeats, are common in mammalian genomes. In the human genome, most segmental duplications are mosaics consisting of pieces of multiple other segmental duplications. This complex genomic organization complicates analysis of the evolutionary history of these sequences. Earlier, we introduced a genomic distance, called duplication distance, that computes the most parsimonious way to build a target string by repeatedly copying substrings of a source string. We also showed how to use this distance to describe the formation of segmental duplications according to a two-step model that has been proposed to explain human segmental duplications. Here we describe polynomial-time exact algorithms for several extensions of duplication distance including models that allow certain types of substring deletions and inversions. These extensions will permit more biologically realistic analyses of segmental duplications in genomes.

  2. Pattern of Duplicate Presentations at National Hematology-Oncology Meetings: Influence of the Pharmaceutical Industry.

    Science.gov (United States)

    Ramchandren, Radhakrishnan; Schiffer, Charles A

    2016-03-01

    The major large US hematology-oncology meetings sponsored by the American Society of Hematology (ASH) and American Society of Clinical Oncology (ASCO) have specific guidelines in place discouraging submission of scientific information presented previously at other meetings. Nonetheless, duplicate submissions are frequent. The incidence and motivations for duplicate hematologic presentations and the influence of the pharmaceutical industry on this process have not been thoroughly analyzed. Therefore, were viewed four consecutive ASH and ASCO meetings to assess the frequency of duplicate abstract presentations. All abstracts presented at ASCO2010 in the area of malignant hematology were compared with abstracts from ASCO and ASH 2009 and ASH 2010, and funding sources were reviewed. More than half (54%) of all abstracts submitted to ASCO 2010 acknowledged pharmaceutical company support. Almost one third (31%) of ASCO 2010 abstracts were resubmitted in the 2-year time period, and it was notable that a high fraction (75%) of these duplicate abstracts had pharmaceutical industry sponsorship, compared with 42% of the abstracts that were submitted only once. Despite current guidelines prohibiting duplicate abstract presentation, a substantial proportion (31%) of abstracts at large international hematology-oncology meetings are duplicative, with potential negative consequences. In addition, a disproportionate percentage of the duplicate abstracts rely on pharmaceutical industry support (75%), suggesting that marketing strategies may be a motivation for some of these repetitive submissions.

  3. Ancestral Rocky Mountian Tectonics: A Sedimentary Record of Ancestral Front Range and Uncompahgre Exhumation

    Science.gov (United States)

    Smith, T. M.; Saylor, J. E.; Lapen, T. J.

    2015-12-01

    The Ancestral Rocky Mountains (ARM) encompass multiple crustal provinces with characteristic crystallization ages across the central and western US. Two driving mechanisms have been proposed to explain ARM deformation. (1) Ouachita-Marathon collision SE of the ARM uplifts has been linked to an E-to-W sequence of uplift and is consistent with proposed disruption of a larger Paradox-Central Colorado Trough Basin by exhumation of the Uncompahgre Uplift. Initial exhumation of the Amarillo-Wichita Uplift to the east would provide a unique ~530 Ma signal absent from source areas to the SW, and result in initial exhumation of the Ancestral Front Range. (2) Alternatively, deformation due to flat slab subduction along a hypothesized plate boundary to the SW suggests a SW-to-NE younging of exhumation. This hypothesis suggests a SW-derived Grenville signature, and would trigger uplift of the Uncompahgre first. We analyzed depositional environments, sediment dispersal patterns, and sediment and basement zircon U-Pb and (U-Th)/He ages in 3 locations in the Paradox Basin and Central Colorado Trough (CCT). The Paradox Basin exhibits an up-section transition in fluvial style that suggests a decrease in overbank stability and increased lateral migration. Similarly, the CCT records a long-term progradation of depositional environments from marginal marine to fluvial, indicating that sediment supply in both basins outpaced accommodation. Preliminary provenance results indicate little to no input from the Amarillo-Wichita uplift in either basin despite uniformly westward sediment dispersal systems in both basins. Results also show that the Uncompahgre Uplift was the source for sediment throughout Paradox Basin deposition. These observations are inconsistent with the predictions of scenario 1 above. Rather, they suggest either a synchronous response to tectonic stress across the ARM provinces or an SW-to-NE pattern of deformation.

  4. Immunohistochemical findings in rectal duplication mimicking rectal prolapse.

    Science.gov (United States)

    Cortese, M G; Pucci, A; Macchieraldo, R; Sacco Casamassima, M G; Canavese, F

    2008-08-01

    Alimentary tract duplications represent rare anomalies, with only 5 % occurring in the rectum. The variety in clinical presentation may lead to a delay in diagnosis or to incorrect and multiple surgical procedures. We report the clinical, histological and immunohistochemical characteristics of a rectal duplication occurring in a 3-month-old male with an unusual clinical presentation. Using routine histology and immunohistochemistry, the rectal duplication showed the diffuse presence of gastric mucosa with a characteristic immunophenotype (i.e., diffuse cytokeratin 7 positivity and scattered chromogranin immunoreactivity). As far as we know, this is the first report showing an immunohistochemical differentiation pattern of gastric lining in a rectal duplication. Our results, showing the presence of gastric mucosa, are suggestive of a possible origin from the embryonic foregut.

  5. Sorting by Cuts, Joins, and Whole Chromosome Duplications.

    Science.gov (United States)

    Zeira, Ron; Shamir, Ron

    2017-02-01

    Genome rearrangement problems have been extensively studied due to their importance in biology. Most studied models assumed a single copy per gene. However, in reality, duplicated genes are common, most notably in cancer. In this study, we make a step toward handling duplicated genes by considering a model that allows the atomic operations of cut, join, and whole chromosome duplication. Given two linear genomes, [Formula: see text] with one copy per gene and [Formula: see text] with two copies per gene, we give a linear time algorithm for computing a shortest sequence of operations transforming [Formula: see text] into [Formula: see text] such that all intermediate genomes are linear. We also show that computing an optimal sequence with fewest duplications is NP-hard.

  6. Bilateral duplication of the internal auditory canal

    International Nuclear Information System (INIS)

    Weon, Young Cheol; Kim, Jae Hyoung; Choi, Sung Kyu; Koo, Ja-Won

    2007-01-01

    Duplication of the internal auditory canal is an extremely rare temporal bone anomaly that is believed to result from aplasia or hypoplasia of the vestibulocochlear nerve. We report bilateral duplication of the internal auditory canal in a 28-month-old boy with developmental delay and sensorineural hearing loss. (orig.)

  7. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Baumgarten Andrew

    2004-06-01

    Full Text Available Abstract Background Most genes in Arabidopsis thaliana are members of gene families. How do the members of gene families arise, and how are gene family copy numbers maintained? Some gene families may evolve primarily through tandem duplication and high rates of birth and death in clusters, and others through infrequent polyploidy or large-scale segmental duplications and subsequent losses. Results Our approach to understanding the mechanisms of gene family evolution was to construct phylogenies for 50 large gene families in Arabidopsis thaliana, identify large internal segmental duplications in Arabidopsis, map gene duplications onto the segmental duplications, and use this information to identify which nodes in each phylogeny arose due to segmental or tandem duplication. Examples of six gene families exemplifying characteristic modes are described. Distributions of gene family sizes and patterns of duplication by genomic distance are also described in order to characterize patterns of local duplication and copy number for large gene families. Both gene family size and duplication by distance closely follow power-law distributions. Conclusions Combining information about genomic segmental duplications, gene family phylogenies, and gene positions provides a method to evaluate contributions of tandem duplication and segmental genome duplication in the generation and maintenance of gene families. These differences appear to correspond meaningfully to differences in functional roles of the members of the gene families.

  8. [Colonic duplication revealed by intestinal obstruction due to fecal impaction].

    Science.gov (United States)

    Azahouani, A; Hida, M; Benhaddou, H

    2015-12-01

    Colonic duplications are very rare in children. With rectal duplications, they are the rarest locations of alimentary tract duplications, most often diagnosed in the first years of life. We report an unusual case of colic duplication with fecal impaction in a 9-month-old boy revealed by intestinal obstruction. We discuss the main diagnostic and therapeutic aspects of this malformation. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  9. Craniofacial duplication (diprosopus).

    Science.gov (United States)

    Turpin, I M; Furnas, D W; Amlie, R N

    1981-02-01

    No congenital malformation in infants is more profound than anterior craniofacial duplication. The precise term for this rare anomaly is diprosopus, referring to a fetus with a single trunk, normal limbs, and varying degrees of facial duplication. A search of the world literature produced only 16 cases of diprosopus since 1864. Despite the rarity of this anomaly, three such infants were born in the Southern California area during the past year, making this the largest reported series to date. The three infants were born with two distinctly formed faces. Each had four separate eyes, two mouths, two noses, and two ears with a primitive ear or sinus tract at the plane of fusion. In addition, multiple congenital aberrations existed which involved a variety of internal organs. The pathogenesis of diprosopus is not well understood, but environmental stress early in embryologic development has been suggested as a possible factor. The apparent mechanism is a slowing of pregastrulation oxidation with resultant focal developmental arrests.

  10. THE BIOLOGICAL VALUES AND CONSERVATION STATUS OF SACRED GROVES IN THE BALASORE WILDLIFE DIVISION, ODISHA: A CASE STUDY

    OpenAIRE

    Raj Kishore MOHANTA; Bhupendra Singh ADHIKARI; Hemanta Kumar SAHU; Kedar Kumar SWAIN

    2012-01-01

    On a global scale, the existing Sacred Groves (SGs) are based on ancestral worship and focus on the conservation of forest patches. Sacred groves are distributed over a wide ecosystem and help in the conservation of rare and endemic species. Well preserved sites are store houses of biological, ecological, medicinal, ethno-cultural and religious values. We documented the state of 13 Sacred Groves in Balasore, Odisha during March 2011. For a detailed investigation, sample areas were set, for th...

  11. DB2: a probabilistic approach for accurate detection of tandem duplication breakpoints using paired-end reads.

    Science.gov (United States)

    Yavaş, Gökhan; Koyutürk, Mehmet; Gould, Meetha P; McMahon, Sarah; LaFramboise, Thomas

    2014-03-05

    With the advent of paired-end high throughput sequencing, it is now possible to identify various types of structural variation on a genome-wide scale. Although many methods have been proposed for structural variation detection, most do not provide precise boundaries for identified variants. In this paper, we propose a new method, Distribution Based detection of Duplication Boundaries (DB2), for accurate detection of tandem duplication breakpoints, an important class of structural variation, with high precision and recall. Our computational experiments on simulated data show that DB2 outperforms state-of-the-art methods in terms of finding breakpoints of tandem duplications, with a higher positive predictive value (precision) in calling the duplications' presence. In particular, DB2's prediction of tandem duplications is correct 99% of the time even for very noisy data, while narrowing down the space of possible breakpoints within a margin of 15 to 20 bps on the average. Most of the existing methods provide boundaries in ranges that extend to hundreds of bases with lower precision values. Our method is also highly robust to varying properties of the sequencing library and to the sizes of the tandem duplications, as shown by its stable precision, recall and mean boundary mismatch performance. We demonstrate our method's efficacy using both simulated paired-end reads, and those generated from a melanoma sample and two ovarian cancer samples. Newly discovered tandem duplications are validated using PCR and Sanger sequencing. Our method, DB2, uses discordantly aligned reads, taking into account the distribution of fragment length to predict tandem duplications along with their breakpoints on a donor genome. The proposed method fine tunes the breakpoint calls by applying a novel probabilistic framework that incorporates the empirical fragment length distribution to score each feasible breakpoint. DB2 is implemented in Java programming language and is freely available

  12. Duplication of the Portal Vein: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Won; Shin, Hyeong Cheol; Jou, Sung Shick; Han, Jong Kyu; Kim, Il Young [Soonchunhyang University Cheonan Hospital, Cheonan (Korea, Republic of)

    2009-12-15

    The duplication of the portal vein is an uncommon congenital anomaly. To date, only four cases have been reported in the medical literature. This anomaly can cause portal hypertension in pediatric patients. In addition, duplication of the portal vein has various patterns of connection with a splenic vein or mesenteric veins, and it can lie anterior or posterior to the duodenum. We report the MDCT findings of an adult patient with duplication of the portal vein that was found incidentally

  13. Evidence for intron length conservation in a set of mammalian genes associated with embryonic development

    LENUS (Irish Health Repository)

    2011-10-05

    Abstract Background We carried out an analysis of intron length conservation across a diverse group of nineteen mammalian species. Motivated by recent research suggesting a role for time delays associated with intron transcription in gene expression oscillations required for early embryonic patterning, we searched for examples of genes that showed the most extreme conservation of total intron content in mammals. Results Gene sets annotated as being involved in pattern specification in the early embryo or containing the homeobox DNA-binding domain, were significantly enriched among genes with highly conserved intron content. We used ancestral sequences reconstructed with probabilistic models that account for insertion and deletion mutations to distinguish insertion and deletion events on lineages leading to human and mouse from their last common ancestor. Using a randomization procedure, we show that genes containing the homeobox domain show less change in intron content than expected, given the number of insertion and deletion events within their introns. Conclusions Our results suggest selection for gene expression precision or the existence of additional development-associated genes for which transcriptional delay is functionally significant.

  14. Ancestral TCDD exposure promotes epigenetic transgenerational inheritance of imprinted gene Igf2: Methylation status and DNMTs

    International Nuclear Information System (INIS)

    Ma, Jing; Chen, Xi; Liu, Yanan; Xie, Qunhui; Sun, Yawen; Chen, Jingshan; Leng, Ling; Yan, Huan; Zhao, Bin; Tang, Naijun

    2015-01-01

    Ancestral TCDD exposure could induce epigenetic transgenerational phenotypes, which may be mediated in part by imprinted gene inheritance. The aim of our study was to evaluate the transgenerational effects of ancestral TCDD exposure on the imprinted gene insulin-like growth factor-2 (Igf2) in rat somatic tissue. TCDD was administered daily by oral gavage to groups of F0 pregnant SD rats at dose levels of 0 (control), 200 or 800 ng/kg bw during gestation day 8–14. Animal transgenerational model of ancestral exposure to TCDD was carefully built, avoiding sibling inbreeding. Hepatic Igf2 expression of the TCDD male progeny was decreased concomitantly with hepatic damage and increased activities of serum hepatic enzymes both in the F1 and F3 generation. Imprinted Control Region (ICR) of Igf2 manifested a hypermethylated pattern, whereas methylation status in the Differentially Methylated Region 2 (DMR2) showed a hypomethylated manner in the F1 generation. These epigenetic alterations in these two regions maintained similar trends in the F3 generation. Meanwhile, the expressions of DNA methyltransferases (DNMT1, DNMT3A and DNMT3B) changed in a non-monotonic manner both in the F1 and F3 generation. This study provides evidence that ancestral TCDD exposure may promote epigenetic transgenerational alterations of imprinted gene Igf2 in adult somatic tissue. - Highlights: • Ancestral TCDD exposure induces epigenetic transgenerational inheritance. • Ancestral TCDD exposure affects methylation status in ICR and DMR2 region of Igf2. • DNMTs play a role in TCDD induced epigenetic transgenerational changes of Igf2.

  15. Ancestral TCDD exposure promotes epigenetic transgenerational inheritance of imprinted gene Igf2: Methylation status and DNMTs

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jing; Chen, Xi; Liu, Yanan [Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070 (China); Xie, Qunhui [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Sun, Yawen; Chen, Jingshan; Leng, Ling; Yan, Huan [Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070 (China); Zhao, Bin, E-mail: binzhao@rcees.ac.cn [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Tang, Naijun, E-mail: tangnaijun@tijmu.edu.cn [Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070 (China)

    2015-12-01

    Ancestral TCDD exposure could induce epigenetic transgenerational phenotypes, which may be mediated in part by imprinted gene inheritance. The aim of our study was to evaluate the transgenerational effects of ancestral TCDD exposure on the imprinted gene insulin-like growth factor-2 (Igf2) in rat somatic tissue. TCDD was administered daily by oral gavage to groups of F0 pregnant SD rats at dose levels of 0 (control), 200 or 800 ng/kg bw during gestation day 8–14. Animal transgenerational model of ancestral exposure to TCDD was carefully built, avoiding sibling inbreeding. Hepatic Igf2 expression of the TCDD male progeny was decreased concomitantly with hepatic damage and increased activities of serum hepatic enzymes both in the F1 and F3 generation. Imprinted Control Region (ICR) of Igf2 manifested a hypermethylated pattern, whereas methylation status in the Differentially Methylated Region 2 (DMR2) showed a hypomethylated manner in the F1 generation. These epigenetic alterations in these two regions maintained similar trends in the F3 generation. Meanwhile, the expressions of DNA methyltransferases (DNMT1, DNMT3A and DNMT3B) changed in a non-monotonic manner both in the F1 and F3 generation. This study provides evidence that ancestral TCDD exposure may promote epigenetic transgenerational alterations of imprinted gene Igf2 in adult somatic tissue. - Highlights: • Ancestral TCDD exposure induces epigenetic transgenerational inheritance. • Ancestral TCDD exposure affects methylation status in ICR and DMR2 region of Igf2. • DNMTs play a role in TCDD induced epigenetic transgenerational changes of Igf2.

  16. The hidden duplication past of the plant pathogen Phytophthora and its consequences for infection

    Directory of Open Access Journals (Sweden)

    Martens Cindy

    2010-06-01

    Full Text Available Abstract Background Oomycetes of the genus Phytophthora are pathogens that infect a wide range of plant species. For dicot hosts such as tomato, potato and soybean, Phytophthora is even the most important pathogen. Previous analyses of Phytophthora genomes uncovered many genes, large gene families and large genome sizes that can partially be explained by significant repeat expansion patterns. Results Analysis of the complete genomes of three different Phytophthora species, using a newly developed approach, unveiled a large number of small duplicated blocks, mainly consisting of two or three consecutive genes. Further analysis of these duplicated genes and comparison with the known gene and genome duplication history of ten other eukaryotes including parasites, algae, plants, fungi, vertebrates and invertebrates, suggests that the ancestor of P. infestans, P. sojae and P. ramorum most likely underwent a whole genome duplication (WGD. Genes that have survived in duplicate are mainly genes that are known to be preferentially retained following WGDs, but also genes important for pathogenicity and infection of the different hosts seem to have been retained in excess. As a result, the WGD might have contributed to the evolutionary and pathogenic success of Phytophthora. Conclusions The fact that we find many small blocks of duplicated genes indicates that the genomes of Phytophthora species have been heavily rearranged following the WGD. Most likely, the high repeat content in these genomes have played an important role in this rearrangement process. As a consequence, the paucity of retained larger duplicated blocks has greatly complicated previous attempts to detect remnants of a large-scale duplication event in Phytophthora. However, as we show here, our newly developed strategy to identify very small duplicated blocks might be a useful approach to uncover ancient polyploidy events, in particular for heavily rearranged genomes.

  17. Asymptotic distributions of coalescence times and ancestral lineage numbers for populations with temporally varying size.

    Science.gov (United States)

    Chen, Hua; Chen, Kun

    2013-07-01

    The distributions of coalescence times and ancestral lineage numbers play an essential role in coalescent modeling and ancestral inference. Both exact distributions of coalescence times and ancestral lineage numbers are expressed as the sum of alternating series, and the terms in the series become numerically intractable for large samples. More computationally attractive are their asymptotic distributions, which were derived in Griffiths (1984) for populations with constant size. In this article, we derive the asymptotic distributions of coalescence times and ancestral lineage numbers for populations with temporally varying size. For a sample of size n, denote by Tm the mth coalescent time, when m + 1 lineages coalesce into m lineages, and An(t) the number of ancestral lineages at time t back from the current generation. Similar to the results in Griffiths (1984), the number of ancestral lineages, An(t), and the coalescence times, Tm, are asymptotically normal, with the mean and variance of these distributions depending on the population size function, N(t). At the very early stage of the coalescent, when t → 0, the number of coalesced lineages n - An(t) follows a Poisson distribution, and as m → n, $$n\\left(n-1\\right){T}_{m}/2N\\left(0\\right)$$ follows a gamma distribution. We demonstrate the accuracy of the asymptotic approximations by comparing to both exact distributions and coalescent simulations. Several applications of the theoretical results are also shown: deriving statistics related to the properties of gene genealogies, such as the time to the most recent common ancestor (TMRCA) and the total branch length (TBL) of the genealogy, and deriving the allele frequency spectrum for large genealogies. With the advent of genomic-level sequencing data for large samples, the asymptotic distributions are expected to have wide applications in theoretical and methodological development for population genetic inference.

  18. The Zygosaccharomyces bailii transcription factor Haa1 is required for acetic acid and copper stress responses suggesting subfunctionalization of the ancestral bifunctional protein Haa1/Cup2.

    Science.gov (United States)

    Palma, Margarida; Dias, Paulo Jorge; Roque, Filipa de Canaveira; Luzia, Laura; Guerreiro, Joana Fernandes; Sá-Correia, Isabel

    2017-01-13

    The food spoilage yeast species Zygosaccharomyces bailii exhibits an extraordinary capacity to tolerate weak acids, in particular acetic acid. In Saccharomyces cerevisiae, the transcription factor Haa1 (ScHaa1) is considered the main player in genomic expression reprogramming in response to acetic acid stress, but the role of its homologue in Z. bailii (ZbHaa1) is unknown. In this study it is demonstrated that ZbHaa1 is a ScHaa1 functional homologue by rescuing the acetic acid susceptibility phenotype of S. cerevisiae haa1Δ. The disruption of ZbHAA1 in Z. bailii IST302 and the expression of an extra ZbHAA1 copy confirmed ZbHAA1 as a determinant of acetic acid tolerance. ZbHaa1 was found to be required for acetic acid stress-induced transcriptional activation of Z. bailii genes homologous to ScHaa1-target genes. An evolutionary analysis of the Haa1 homologues identified in 28 Saccharomycetaceae species genome sequences, including Z bailii, was carried out using phylogenetic and gene neighbourhood approaches. Consistent with previous studies, this analysis revealed a group containing pre-whole genome duplication species Haa1/Cup2 single orthologues, including ZbHaa1, and two groups containing either Haa1 or Cup2 orthologues from post-whole genome duplication species. S. cerevisiae Cup2 (alias Ace1) is a transcription factor involved in response and tolerance to copper stress. Taken together, these observations led us to hypothesize and demonstrate that ZbHaa1 is also involved in copper-induced transcriptional regulation and copper tolerance. The transcription factor ZbHaa1 is required for adaptive response and tolerance to both acetic acid and copper stresses. The subfunctionalization of the single ancestral Haa1/Cup2 orthologue that originated Haa1 and Cup2 paralogues after whole genome duplication is proposed.

  19. Functional characterization of duplicated Suppressor of Overexpression of Constans 1-like genes in petunia.

    Science.gov (United States)

    Preston, Jill C; Jorgensen, Stacy A; Jha, Suryatapa G

    2014-01-01

    Flowering time is strictly controlled by a combination of internal and external signals that match seed set with favorable environmental conditions. In the model plant species Arabidopsis thaliana (Brassicaceae), many of the genes underlying development and evolution of flowering have been discovered. However, much remains unknown about how conserved the flowering gene networks are in plants with different growth habits, gene duplication histories, and distributions. Here we functionally characterize three homologs of the flowering gene Suppressor Of Overexpression of Constans 1 (SOC1) in the short-lived perennial Petunia hybrida (petunia, Solanaceae). Similar to A. thaliana soc1 mutants, co-silencing of duplicated petunia SOC1-like genes results in late flowering. This phenotype is most severe when all three SOC1-like genes are silenced. Furthermore, expression levels of the SOC1-like genes Unshaven (UNS) and Floral Binding Protein 21 (FBP21), but not FBP28, are positively correlated with developmental age. In contrast to A. thaliana, petunia SOC1-like gene expression did not increase with longer photoperiods, and FBP28 transcripts were actually more abundant under short days. Despite evidence of functional redundancy, differential spatio-temporal expression data suggest that SOC1-like genes might fine-tune petunia flowering in response to photoperiod and developmental stage. This likely resulted from modification of SOC1-like gene regulatory elements following recent duplication, and is a possible mechanism to ensure flowering under both inductive and non-inductive photoperiods.

  20. Functional characterization of duplicated Suppressor of Overexpression of Constans 1-like genes in petunia.

    Directory of Open Access Journals (Sweden)

    Jill C Preston

    Full Text Available Flowering time is strictly controlled by a combination of internal and external signals that match seed set with favorable environmental conditions. In the model plant species Arabidopsis thaliana (Brassicaceae, many of the genes underlying development and evolution of flowering have been discovered. However, much remains unknown about how conserved the flowering gene networks are in plants with different growth habits, gene duplication histories, and distributions. Here we functionally characterize three homologs of the flowering gene Suppressor Of Overexpression of Constans 1 (SOC1 in the short-lived perennial Petunia hybrida (petunia, Solanaceae. Similar to A. thaliana soc1 mutants, co-silencing of duplicated petunia SOC1-like genes results in late flowering. This phenotype is most severe when all three SOC1-like genes are silenced. Furthermore, expression levels of the SOC1-like genes Unshaven (UNS and Floral Binding Protein 21 (FBP21, but not FBP28, are positively correlated with developmental age. In contrast to A. thaliana, petunia SOC1-like gene expression did not increase with longer photoperiods, and FBP28 transcripts were actually more abundant under short days. Despite evidence of functional redundancy, differential spatio-temporal expression data suggest that SOC1-like genes might fine-tune petunia flowering in response to photoperiod and developmental stage. This likely resulted from modification of SOC1-like gene regulatory elements following recent duplication, and is a possible mechanism to ensure flowering under both inductive and non-inductive photoperiods.

  1. Partial duplication of the APBA2 gene in chromosome 15q13 corresponds to duplicon structures

    Directory of Open Access Journals (Sweden)

    Kesterson Robert A

    2003-04-01

    Full Text Available Abstract Background Chromosomal abnormalities affecting human chromosome 15q11-q13 underlie multiple genomic disorders caused by deletion, duplication and triplication of intervals in this region. These events are mediated by highly homologous segments of DNA, or duplicons, that facilitate mispairing and unequal cross-over in meiosis. The gene encoding an amyloid precursor protein-binding protein (APBA2 was previously mapped to the distal portion of the interval commonly deleted in Prader-Willi and Angelman syndromes and duplicated in cases of autism. Results We show that this gene actually maps to a more telomeric location and is partially duplicated within the broader region. Two highly homologous copies of an interval containing a large 5' exon and downstream sequence are located ~5 Mb distal to the intact locus. The duplicated copies, containing the first coding exon of APBA2, can be distinguished by single nucleotide sequence differences and are transcriptionally inactive. Adjacent to APBA2 maps a gene termed KIAA0574. The protein encoded by this gene is weakly homologous to a protein termed X123 that in turn maps adjacent to APBA1 on 9q21.12; APBA1 is highly homologous to APBA2 in the C-terminal region and is distinguished from APBA2 by the N-terminal region encoded by this duplicated exon. Conclusion The duplication of APBA2 sequences in this region adds to a complex picture of different low copy repeats present across this region and elsewhere on the chromosome.

  2. Typewriting: Toward Duplicating Success

    Science.gov (United States)

    Orsborn, Karen J.

    1977-01-01

    A description of two projects (secretarial handbook and memo pad and personalized stationery) for use in teaching the duplication process that will capture the interests of students in an advanced typewriting class. (HD)

  3. Identification of approximately duplicate material records in ERP systems

    Science.gov (United States)

    Zong, Wei; Wu, Feng; Chu, Lap-Keung; Sculli, Domenic

    2017-03-01

    The quality of master data is crucial for the accurate functioning of the various modules of an enterprise resource planning (ERP) system. This study addresses specific data problems arising from the generation of approximately duplicate material records in ERP databases. Such problems are mainly due to the firm's lack of unique and global identifiers for the material records, and to the arbitrary assignment of alternative names for the same material by various users. Traditional duplicate detection methods are ineffective in identifying such approximately duplicate material records because these methods typically rely on string comparisons of each field. To address this problem, a machine learning-based framework is developed to recognise semantic similarity between strings and to further identify and reunify approximately duplicate material records - a process referred to as de-duplication in this article. First, the keywords of the material records are extracted to form vectors of discriminating words. Second, a machine learning method using a probabilistic neural network is applied to determine the semantic similarity between these material records. The approach was evaluated using data from a real case study. The test results indicate that the proposed method outperforms traditional algorithms in identifying approximately duplicate material records.

  4. An Epistemological Analysis of the African Ontology of `Ancestral ...

    African Journals Online (AJOL)

    The paper explores the contemporary debate surrounding the idea of ancestral reincarnation in African society and philosophy. It analyzes various problem areas having to do with the physical and spiritual status of ancestors, their relationship with their societies of orientation, the philosophical contexts of their existence, ...

  5. Chromosomal duplication strains of Aspergillus nidulans and their instability

    International Nuclear Information System (INIS)

    Azevedo, J.L. de; Almeida Okino, L.M. de

    1981-01-01

    Strains of Aspergillus nidulans with chromosomal duplication were obtained after gamma irradiation followed by crossing of the translocated strains with normal strains. From 20 analysed colonies, 12 have shown translocations induced by irradiation. Segregants from four of these translocation strains crossed to normal strains have shown to be unstable although presenting normal morphology. Two segregants were genetically analysed. The first one has shown a duplication of part of linkage groups VIII and the second one presented a duplication of a segment of linkage group V. These new duplication strains in A. nidulans open new perspectives of a more detailed study of the instability phenomenon in this fungus. (Author) [pt

  6. Using Resurrected Ancestral Proviral Proteins to Engineer Virus Resistance

    Directory of Open Access Journals (Sweden)

    Asunción Delgado

    2017-05-01

    Full Text Available Proviral factors are host proteins hijacked by viruses for processes essential for virus propagation such as cellular entry and replication. Pathogens and their hosts co-evolve. It follows that replacing a proviral factor with a functional ancestral form of the same protein could prevent viral propagation without fatally compromising organismal fitness. Here, we provide proof of concept of this notion. Thioredoxins serve as general oxidoreductases in all known cells. We report that several laboratory resurrections of Precambrian thioredoxins display substantial levels of functionality within Escherichia coli. Unlike E. coli thioredoxin, however, these ancestral thioredoxins are not efficiently recruited by the bacteriophage T7 for its replisome and therefore prevent phage propagation in E. coli. These results suggest an approach to the engineering of virus resistance. Diseases caused by viruses may have a devastating effect in agriculture. We discuss how the suggested approach could be applied to the engineering of plant virus resistance.

  7. Mitogenomics and phylogenomics reveal priapulid worms as extant models of the ancestral Ecdysozoan.

    Science.gov (United States)

    Webster, Bonnie L; Copley, Richard R; Jenner, Ronald A; Mackenzie-Dodds, Jacqueline A; Bourlat, Sarah J; Rota-Stabelli, Omar; Littlewood, D T J; Telford, Maximilian J

    2006-01-01

    Research into arthropod evolution is hampered by the derived nature and rapid evolution of the best-studied out-group: the nematodes. We consider priapulids as an alternative out-group. Priapulids are a small phylum of bottom-dwelling marine worms; their tubular body with spiny proboscis or introvert has changed little over 520 million years and recognizable priapulids are common among exceptionally preserved Cambrian fossils. Using the complete mitochondrial genome and 42 nuclear genes from Priapulus caudatus, we show that priapulids are slowly evolving ecdysozoans; almost all these priapulid genes have evolved more slowly than nematode orthologs and the priapulid mitochondrial gene order may be unchanged since the Cambrian. Considering their primitive bodyplan and embryology and the great conservation of both nuclear and mitochondrial genomes, priapulids may deserve the popular epithet of "living fossil." Their study is likely to yield significant new insights into the early evolution of the Ecdysozoa and the origins of the arthropods and their kin as well as aiding inference of the morphology of ancestral Ecdysozoa and Bilateria and their genomes.

  8. Partial duplication of head--a rare congenital anomaly.

    Science.gov (United States)

    Hemachandran, Manikkapurath; Radotra, Bishan Dass

    2004-10-01

    Duplication of notochord results in rare congenital anomalies like double headed monsters, with or without trunk/limb duplication, depending upon the extent of notochordal abnormality. Here we describe the morphological abnormalities in a case of partial duplication of cranial structures with fusion of the two. Autopsy findings suggest that the bifurcation of the neural tube took place around 4th to 6th week of gestation. There are only few reports in English literature describing the autopsy findings of such an anomaly, which is termed as Diprosopus triophthalmus in the modern literature.

  9. Duplication of the Left Vertebral Artery Origin: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Sang Wook; Park, Dong Woo; Park, Choong Ki; Lee, Young Jun [Dept. of Radiology, College of Medicine, Hanyang University, Hanyang University Guri Hospital, Guri (Korea, Republic of)

    2013-01-15

    Duplication of vertebral arteries is a very rare but clinically important condition. A duplicated vertebral artery origin can influence hemodynamics, pathogenesis of vascular lesions and treatment options. In cases of vertebral artery duplication, the vertebral arteries generally enter the transverse foramen higher up than normal. Awareness of these vertebral artery variants before procedures, such as neurointervention or surgery, may be beneficial. Here, we describe a case of a 51-year-old female patient with left vertebral artery duplication which was detected incidentally.

  10. Duplication of the Left Vertebral Artery Origin: A Case Report

    International Nuclear Information System (INIS)

    Shin, Sang Wook; Park, Dong Woo; Park, Choong Ki; Lee, Young Jun

    2013-01-01

    Duplication of vertebral arteries is a very rare but clinically important condition. A duplicated vertebral artery origin can influence hemodynamics, pathogenesis of vascular lesions and treatment options. In cases of vertebral artery duplication, the vertebral arteries generally enter the transverse foramen higher up than normal. Awareness of these vertebral artery variants before procedures, such as neurointervention or surgery, may be beneficial. Here, we describe a case of a 51-year-old female patient with left vertebral artery duplication which was detected incidentally.

  11. A branch-heterogeneous model of protein evolution for efficient inference of ancestral sequences.

    Science.gov (United States)

    Groussin, M; Boussau, B; Gouy, M

    2013-07-01

    Most models of nucleotide or amino acid substitution used in phylogenetic studies assume that the evolutionary process has been homogeneous across lineages and that composition of nucleotides or amino acids has remained the same throughout the tree. These oversimplified assumptions are refuted by the observation that compositional variability characterizes extant biological sequences. Branch-heterogeneous models of protein evolution that account for compositional variability have been developed, but are not yet in common use because of the large number of parameters required, leading to high computational costs and potential overparameterization. Here, we present a new branch-nonhomogeneous and nonstationary model of protein evolution that captures more accurately the high complexity of sequence evolution. This model, henceforth called Correspondence and likelihood analysis (COaLA), makes use of a correspondence analysis to reduce the number of parameters to be optimized through maximum likelihood, focusing on most of the compositional variation observed in the data. The model was thoroughly tested on both simulated and biological data sets to show its high performance in terms of data fitting and CPU time. COaLA efficiently estimates ancestral amino acid frequencies and sequences, making it relevant for studies aiming at reconstructing and resurrecting ancestral amino acid sequences. Finally, we applied COaLA on a concatenate of universal amino acid sequences to confirm previous results obtained with a nonhomogeneous Bayesian model regarding the early pattern of adaptation to optimal growth temperature, supporting the mesophilic nature of the Last Universal Common Ancestor.

  12. [High frequency of ancestral allele of the TJP1 polymorphism rs2291166 in Mexican population, conformational effect and applications in surgery and medicine].

    Science.gov (United States)

    Ramirez-Garcia, Sergio Alberto; Flores-Alvarado, Luis Javier; Topete-González, Luz Rosalba; Charles-Niño, Claudia; Mazariegos-Rubi, Manuel; Dávalos-Rodríguez, Nory Omayra

    2016-01-01

    TJP1 gene encodes a ZO-1 protein that is required for the recruitment of occludins and claudins in tight junction, and is involved in cell polarisation. It has different variations, the frequency of which has been studied in different populations. In Mexico there are no studies of this gene. These are required because their polymorphisms can be used in studies associated with medicine and surgery. Therefore, the aim of this study was to estimate the frequency of alleles and genotypes of rs2291166 gene polymorphism TJP1 in Mexico Mestizos population, and to estimate the conformational effect of an amino acid change. A total of 473 individuals were included. The rs2291166 polymorphism was identified PASA PCR-7% PAGE, and stained with silver nitrate. The conformational effect of amino acid change was performed in silico, and was carried out with servers ProtPraram Tool and Search Database with Fasta. The most frequent allele in the two populations is the ancestral allele (T). A genotype distribution similar to other populations was found. The polymorphism is in Hardy-Weinberg, p>0.05. Changing aspartate to alanine produced a conformational change. The study reveals a high frequency of the ancestral allele at rs2291166 polymorphism in the Mexican population. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.

  13. Tubular sigmoid duplication in an adult man: an interesting incidental finding.

    Science.gov (United States)

    Asour, Amani; Kim, Hyun-Kyung; Arya, Shobhit; Hepworth, Clive

    2017-11-12

    A 61-year-old man attended an outpatient colorectal clinic for a chronic, non-specific abdominal pain, associated with rectal bleeding. He underwent a number of investigations including a CT pneumocolon, which revealed an incidental finding of 20 cm of additional sigmoid colon. This case is interesting because tubular sigmoid duplication is an extremely unusual condition, rarely diagnosed in adults; only a few cases have been reported of this condition in the adult population. Our team chose to treat this patient conservatively, in order to avoid putting the patient at risk of an unnecessary surgery. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  14. High level of microsynteny and purifying selection affect the evolution of WRKY family in Gramineae.

    Science.gov (United States)

    Jin, Jing; Kong, Jingjing; Qiu, Jianle; Zhu, Huasheng; Peng, Yuancheng; Jiang, Haiyang

    2016-01-01

    The WRKY gene family, which encodes proteins in the regulation processes of diverse developmental stages, is one of the largest families of transcription factors in higher plants. In this study, by searching for interspecies gene colinearity (microsynteny) and dating the age distributions of duplicated genes, we found 35 chromosomal segments of subgroup I genes of WRKY family (WRKY I) in four Gramineae species (Brachypodium, rice, sorghum, and maize) formed eight orthologous groups. After a stepwise gene-by-gene reciprocal comparison of all the protein sequences in the WRKY I gene flanking areas, highly conserved regions of microsynteny were found in the four Gramineae species. Most gene pairs showed conserved orientation within syntenic genome regions. Furthermore, tandem duplication events played the leading role in gene expansion. Eventually, environmental selection pressure analysis indicated strong purifying selection for the WRKY I genes in Gramineae, which may have been followed by gene loss and rearrangement. The results presented in this study provide basic information of Gramineae WRKY I genes and form the foundation for future functional studies of these genes. High level of microsynteny in the four grass species provides further evidence that a large-scale genome duplication event predated speciation.

  15. Genome-wide analysis of the Dof transcription factor gene family reveals soybean-specific duplicable and functional characteristics.

    Directory of Open Access Journals (Sweden)

    Yong Guo

    Full Text Available The Dof domain protein family is a classic plant-specific zinc-finger transcription factor family involved in a variety of biological processes. There is great diversity in the number of Dof genes in different plants. However, there are only very limited reports on the characterization of Dof transcription factors in soybean (Glycine max. In the present study, 78 putative Dof genes were identified from the whole-genome sequence of soybean. The predicted GmDof genes were non-randomly distributed within and across 19 out of 20 chromosomes and 97.4% (38 pairs were preferentially retained duplicate paralogous genes located in duplicated regions of the genome. Soybean-specific segmental duplications contributed significantly to the expansion of the soybean Dof gene family. These Dof proteins were phylogenetically clustered into nine distinct subgroups among which the gene structure and motif compositions were considerably conserved. Comparative phylogenetic analysis of these Dof proteins revealed four major groups, similar to those reported for Arabidopsis and rice. Most of the GmDofs showed specific expression patterns based on RNA-seq data analyses. The expression patterns of some duplicate genes were partially redundant while others showed functional diversity, suggesting the occurrence of sub-functionalization during subsequent evolution. Comprehensive expression profile analysis also provided insights into the soybean-specific functional divergence among members of the Dof gene family. Cis-regulatory element analysis of these GmDof genes suggested diverse functions associated with different processes. Taken together, our results provide useful information for the functional characterization of soybean Dof genes by combining phylogenetic analysis with global gene-expression profiling.

  16. Rectal duplication cyst in adults treated with transanal endoscopic microsurgery.

    Science.gov (United States)

    Ben-Ishay, O; Person, B; Eran, B; Hershkovitz, D; Duek, D Simon

    2011-12-01

    Rectal duplication cyst is a rare entity that accounts for approximately 4% of all alimentary tract duplications. To the best of our knowledge, the presented cases are the first reports in the English literature of rectal duplication cyst resection by transanal endoscopic microsurgery. We present two patients; both are 41-year-old women with a palpable rectal mass. Workup revealed a submucosal posterior mass that was then resected by transanal endoscopic microsurgery. The pathology report described cystic lesions with squamous and columnar epithelium and segments of smooth muscle. These findings were compatible with rectal duplication cyst. Our limited experience showed good results with minimal morbidity and mortality for resection of rectal duplication cysts of limited size with no evidence of malignancy.

  17. High prevalence of chitotriosidase deficiency in Peruvian Amerindians exposed to chitin-bearing food and enteroparasites.

    Science.gov (United States)

    Manno, N; Sherratt, S; Boaretto, F; Coico, F Mejìa; Camus, C Espinoza; Campos, C Jara; Musumeci, S; Battisti, A; Quinnell, R J; León, J Mostacero; Vazza, G; Mostacciuolo, M L; Paoletti, M G; Falcone, F H

    2014-11-26

    The human genome encodes a gene for an enzymatically active chitinase (CHIT1) located in a single copy on Chromosome 1, which is highly expressed by activated macrophages and in other cells of the innate immune response. Several dysfunctional mutations are known in CHIT1, including a 24-bp duplication in Exon 10 causing catalytic deficiency. This duplication is a common variant conserved in many human populations, except in West and South Africans. Thus it has been proposed that human migration out of Africa and the consequent reduction of exposure to chitin from environmental factors may have enabled the conservation of dysfunctional mutations in human chitinases. Our data obtained from 85 indigenous Amerindians from Peru, representative of populations characterized by high prevalence of chitin-bearing enteroparasites and intense entomophagy, reveal a very high frequency of the 24-bp duplication (47.06%), and of other single nucleotide polymorphisms which are known to partially affect enzymatic activity (G102S: 42.7% and A442G/V: 25.5%). Our finding is in line with a founder effect, but appears to confute our previous hypothesis of a protective role against parasite infection and sustains the discussion on the redundancy of chitinolytic function. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Double-blind ureteral duplication: report of two cases

    International Nuclear Information System (INIS)

    Choi, Ja-Young; Kim, Seung Hyup; Kim, Sun Ho

    2002-01-01

    Blind ending of ureteral duplication is one of the most rare anomalies of the upper urinary tract. We report two cases of ureteral duplication with a blind ending both superiorly and inferiorly, and with no definite communication with the urinary tract. (orig.)

  19. Endoscopic Decompression and Marsupialization of A Duodenal Duplication Cyst

    Directory of Open Access Journals (Sweden)

    Eliza I-Lin Sin

    2018-06-01

    Full Text Available Introduction: Duodenal duplication cysts are rare congenital foregut anomalies, accounting for 2%–12% of all gastrointestinal tract duplications. Surgical excision entails risk of injury to the pancreaticobiliary structures due to proximity or communication with the cyst. We present a case of duodenal duplication cyst in a 3 year-old boy who successfully underwent endoscopic decompression. Case report: AT is a young boy who first presented at 15 months of age with abdominal pain. There was one subsequent episode of pancreatitis. Ultrasonography showed the typical double wall sign of a duplication cyst and magnetic resonance cholangio-pancreatography showed a large 5 cm cyst postero-medial to the second part of the duodenum, communicating with the pancreaticobiliary system and causing dilatation of the proximal duodenum. He subsequently underwent successful endoscopic ultrasound guided decompression at 3 years of age under general anesthesia, and had an uneventful postoperative recovery. Conclusion: Endoscopic ultrasound guided assessment and treatment of gastrointestinal duplication cysts is increasingly reported in adults. To the best of our knowledge, only one case of endoscopic treatment of duodenal duplication cyst, in an older child, has been reported thus far in the paediatric literature. In this paper, we review the current literature and discuss the therapeutic options of this rare condition.

  20. A phylogenetic study of SPBP and RAI1: evolutionary conservation of chromatin binding modules.

    Directory of Open Access Journals (Sweden)

    Sagar Darvekar

    Full Text Available Our genome is assembled into and array of highly dynamic nucleosome structures allowing spatial and temporal access to DNA. The nucleosomes are subject to a wide array of post-translational modifications, altering the DNA-histone interaction and serving as docking sites for proteins exhibiting effector or "reader" modules. The nuclear proteins SPBP and RAI1 are composed of several putative "reader" modules which may have ability to recognise a set of histone modification marks. Here we have performed a phylogenetic study of their putative reader modules, the C-terminal ePHD/ADD like domain, a novel nucleosome binding region and an AT-hook motif. Interactions studies in vitro and in yeast cells suggested that despite the extraordinary long loop region in their ePHD/ADD-like chromatin binding domains, the C-terminal region of both proteins seem to adopt a cross-braced topology of zinc finger interactions similar to other structurally determined ePHD/ADD structures. Both their ePHD/ADD-like domain and their novel nucleosome binding domain are highly conserved in vertebrate evolution, and construction of a phylogenetic tree displayed two well supported clusters representing SPBP and RAI1, respectively. Their genome and domain organisation suggest that SPBP and RAI1 have occurred from a gene duplication event. The phylogenetic tree suggests that this duplication has happened early in vertebrate evolution, since only one gene was identified in insects and lancelet. Finally, experimental data confirm that the conserved novel nucleosome binding region of RAI1 has the ability to bind the nucleosome core and histones. However, an adjacent conserved AT-hook motif as identified in SPBP is not present in RAI1, and deletion of the novel nucleosome binding region of RAI1 did not significantly affect its nuclear localisation.

  1. Enteric Duplication Cysts in Children: A Clinicopathological Dilemma.

    Science.gov (United States)

    Sharma, Sonam; Yadav, Amit K; Mandal, Ashish K; Zaheer, Sufian; Yadav, Devendra K; Samie, Amat

    2015-08-01

    Enteric duplication cysts are rare and uncommon congenital malformations formed during the embryonic period of the development of human digestive system and are mainly encountered during infancy or early childhood, but seldom in adults. The clinical presentation is extremely variable depending upon its size, location and type. We present six cases of enteric duplication cysts with diverse clinico-pathological features. This study was carried out in the Department of Pathology and Department of Paediatric Surgery, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India for a period of 2 years (January 2013 - December 2014). We retrospectively analyzed six patients of enteric duplication cysts based on data obtained, which consisted of patient's age, sex, clinical presentation, radiological features, operative findings and histopathology report. The data collected was analyzed by descriptive statistics. Six children between age range of 3 days to 10 years had enteric duplication cysts. Two had ileal and one each were of pyloroduodenal, colonic and rectal duplication cyst. In one patient a presumptive diagnosis of enteric duplication cyst was made. Radiology played an important contributory role in diagnosis of these cysts in all the patients but histopathology proved to be gold standard for its confirmation. All these patients were managed by surgical excision. The postoperative and follow up period in all the cases was uneventful. It is important to be aware and make a definitive diagnosis of this rare congenital anomaly as they can present in various clinical forms and can cause significant morbidity and even mortality if left untreated by causing life threatening complications.

  2. Differential transcriptional modulation of duplicated fatty acid-binding protein genes by dietary fatty acids in zebrafish (Danio rerio: evidence for subfunctionalization or neofunctionalization of duplicated genes

    Directory of Open Access Journals (Sweden)

    Denovan-Wright Eileen M

    2009-09-01

    Full Text Available Abstract Background In the Duplication-Degeneration-Complementation (DDC model, subfunctionalization and neofunctionalization have been proposed as important processes driving the retention of duplicated genes in the genome. These processes are thought to occur by gain or loss of regulatory elements in the promoters of duplicated genes. We tested the DDC model by determining the transcriptional induction of fatty acid-binding proteins (Fabps genes by dietary fatty acids (FAs in zebrafish. We chose zebrafish for this study for two reasons: extensive bioinformatics resources are available for zebrafish at zfin.org and zebrafish contains many duplicated genes owing to a whole genome duplication event that occurred early in the ray-finned fish lineage approximately 230-400 million years ago. Adult zebrafish were fed diets containing either fish oil (12% lipid, rich in highly unsaturated fatty acid, sunflower oil (12% lipid, rich in linoleic acid, linseed oil (12% lipid, rich in linolenic acid, or low fat (4% lipid, low fat diet for 10 weeks. FA profiles and the steady-state levels of fabp mRNA and heterogeneous nuclear RNA in intestine, liver, muscle and brain of zebrafish were determined. Result FA profiles assayed by gas chromatography differed in the intestine, brain, muscle and liver depending on diet. The steady-state level of mRNA for three sets of duplicated genes, fabp1a/fabp1b.1/fabp1b.2, fabp7a/fabp7b, and fabp11a/fabp11b, was determined by reverse transcription, quantitative polymerase chain reaction (RT-qPCR. In brain, the steady-state level of fabp7b mRNAs was induced in fish fed the linoleic acid-rich diet; in intestine, the transcript level of fabp1b.1 and fabp7b were elevated in fish fed the linolenic acid-rich diet; in liver, the level of fabp7a mRNAs was elevated in fish fed the low fat diet; and in muscle, the level of fabp7a and fabp11a mRNAs were elevated in fish fed the linolenic acid-rich or the low fat diets. In all cases

  3. Penile Duplication and Two Anal Openings; Report of a Very Rare Case

    OpenAIRE

    Bakheet, Mohamed Abdel Al M.; Refaei, Mohammad

    2012-01-01

    Background Penile duplication (diphallus) is an extremely rare disorder. It is almost always associated with other malformations like double bladder, exstrophy of the cloacae, imperforate anus, duplication of the rectosigmoid and vertebral deformities. Meanwhile anal canal duplication, the most distal and least common duplication of the digestive tube and is a very rare congenital malformation. Case Presentation A 21 days old Egyptian neonate is reported with complete penile duplication and t...

  4. Gains of ubiquitylation sites in highly conserved proteins in the human lineage

    Directory of Open Access Journals (Sweden)

    Kim Dong Seon

    2012-11-01

    Full Text Available Abstract Background Post-translational modification of lysine residues of specific proteins by ubiquitin modulates the degradation, localization, and activity of these target proteins. Here, we identified gains of ubiquitylation sites in highly conserved regions of human proteins that occurred during human evolution. Results We analyzed human ubiquitylation site data and multiple alignments of orthologous mammalian proteins including those from humans, primates, other placental mammals, opossum, and platypus. In our analysis, we identified 281 ubiquitylation sites in 252 proteins that first appeared along the human lineage during primate evolution: one protein had four novel sites; four proteins had three sites each; 18 proteins had two sites each; and the remaining 229 proteins had one site each. PML, which is involved in neurodevelopment and neurodegeneration, acquired three sites, two of which have been reported to be involved in the degradation of PML. Thirteen human proteins, including ERCC2 (also known as XPD and NBR1, gained human-specific ubiquitylated lysines after the human-chimpanzee divergence. ERCC2 has a Lys/Gln polymorphism, the derived (major allele of which confers enhanced DNA repair capacity and reduced cancer risk compared with the ancestral (minor allele. NBR1 and eight other proteins that are involved in the human autophagy protein interaction network gained a novel ubiquitylation site. Conclusions The gain of novel ubiquitylation sites could be involved in the evolution of protein degradation and other regulatory networks. Although gains of ubiquitylation sites do not necessarily equate to adaptive evolution, they are useful candidates for molecular functional analyses to identify novel advantageous genetic modifications and innovative phenotypes acquired during human evolution.

  5. Comparative inference of duplicated genes produced by polyploidization in soybean genome.

    Science.gov (United States)

    Yang, Yanmei; Wang, Jinpeng; Di, Jianyong

    2013-01-01

    Soybean (Glycine max) is one of the most important crop plants for providing protein and oil. It is important to investigate soybean genome for its economic and scientific value. Polyploidy is a widespread and recursive phenomenon during plant evolution, and it could generate massive duplicated genes which is an important resource for genetic innovation. Improved sequence alignment criteria and statistical analysis are used to identify and characterize duplicated genes produced by polyploidization in soybean. Based on the collinearity method, duplicated genes by whole genome duplication account for 70.3% in soybean. From the statistical analysis of the molecular distances between duplicated genes, our study indicates that the whole genome duplication event occurred more than once in the genome evolution of soybean, which is often distributed near the ends of chromosomes.

  6. Antisense-induced exon skipping for duplications in Duchenne muscular dystrophy

    Directory of Open Access Journals (Sweden)

    van Ommen Gert-Jan B

    2007-07-01

    Full Text Available Abstract Background Antisense-mediated exon skipping is currently one of the most promising therapeutic approaches for Duchenne muscular dystrophy (DMD. Using antisense oligonucleotides (AONs targeting specific exons the DMD reading frame is restored and partially functional dystrophins are produced. Following proof of concept in cultured muscle cells from patients with various deletions and point mutations, we now focus on single and multiple exon duplications. These mutations are in principle ideal targets for this approach since the specific skipping of duplicated exons would generate original, full-length transcripts. Methods Cultured muscle cells from DMD patients carrying duplications were transfected with AONs targeting the duplicated exons, and the dystrophin RNA and protein were analyzed. Results For two brothers with an exon 44 duplication, skipping was, even at suboptimal transfection conditions, so efficient that both exons 44 were skipped, thus generating, once more, an out-of-frame transcript. In such cases, one may resort to multi-exon skipping to restore the reading frame, as is shown here by inducing skipping of exon 43 and both exons 44. By contrast, in cells from a patient with an exon 45 duplication we were able to induce single exon 45 skipping, which allowed restoration of wild type dystrophin. The correction of a larger duplication (involving exons 52 to 62, by combinations of AONs targeting the outer exons, appeared problematic due to inefficient skipping and mistargeting of original instead of duplicated exons. Conclusion The correction of DMD duplications by exon skipping depends on the specific exons targeted. Its options vary from the ideal one, restoring for the first time the true, wild type dystrophin, to requiring more 'classical' skipping strategies, while the correction of multi-exon deletions may need the design of tailored approaches.

  7. 40 CFR 25.13 - Coordination and non-duplication.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Coordination and non-duplication. 25.13 Section 25.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GENERAL PUBLIC PARTICIPATION IN... ACT § 25.13 Coordination and non-duplication. The public participation activities and materials that...

  8. ReAS: Recovery of ancestral sequences for transposable elements from the unassembled reads of a whole genome shotgun

    DEFF Research Database (Denmark)

    Li, Ruiqiang; Ye, Jia; Li, Songgang

    2005-01-01

    in comparison to their ancestral sequences. Tested on the japonica rice genome, ReAS was able to reconstruct all of the high copy sequences in the Repbase repository of known TEs, and increase the effectiveness of RepeatMasker in identifying TEs from genome sequences. Udgivelsesdato: 2005-Sep...

  9. Incidence of Data Duplications in a Randomly Selected Pool of Life Science Publications.

    Science.gov (United States)

    Oksvold, Morten P

    2016-04-01

    Since the solution to many public health problems depends on research, it is critical for the progress and well-being for the patients that we can trust the scientific literature. Misconduct and poor laboratory practice in science threatens the scientific progress, leads to loss of productivity and increased healthcare costs, and endangers lives of patients. Data duplication may represent one of challenges related to these problems. In order to estimate the frequency of data duplication in life science literature, a systematic screen through 120 original scientific articles published in three different cancer related journals [journal impact factor (IF) 20] was completed. The study revealed a surprisingly high proportion of articles containing data duplication. For the IF 20 journals, 25% of the articles were found to contain data duplications. The IF 5-10 journal showed a comparable proportion (22.5%). The proportion of articles containing duplicated data was comparable between the three journals and no significant correlation to journal IF was found. The editorial offices representing the journals included in this study and the individual authors of the detected articles were contacted to clarify the individual cases. The editorial offices did not reply and only 1 out of 29 cases were apparently clarified by the authors, although no supporting data was supplied. This study questions the reliability of life science literature, it illustrates that data duplications are widespread and independent of journal impact factor and call for a reform of the current peer review and retraction process of scientific publishing.

  10. Analysis Of Segmental Duplications In The Pig Genome Based On Next-Generation Sequencing

    DEFF Research Database (Denmark)

    Fadista, João; Bendixen, Christian

    Segmental duplications are >1kb segments of duplicated DNA present in a genome with high sequence identity (>90%). They are associated with genomic rearrangements and provide a significant source of gene and genome evolution within mammalian genomes. Although segmental duplications have been...... extensively studied in other organisms, its analysis in pig has been hampered by the lack of a complete pig genome assembly. By measuring the depth of coverage of Illumina whole-genome shotgun sequencing reads of the Tabasco animal aligned to the latest pig genome assembly (Sus scrofa 10 – based also...... and their associated copy number alterations, focusing on the global organization of these segments and their possible functional significance in porcine phenotypes. This work provides insights into mammalian genome evolution and generates a valuable resource for porcine genomics research...

  11. Evolution of the vertebrate insulin receptor substrate (Irs) gene family.

    Science.gov (United States)

    Al-Salam, Ahmad; Irwin, David M

    2017-06-23

    Insulin receptor substrate (Irs) proteins are essential for insulin signaling as they allow downstream effectors to dock with, and be activated by, the insulin receptor. A family of four Irs proteins have been identified in mice, however the gene for one of these, IRS3, has been pseudogenized in humans. While it is known that the Irs gene family originated in vertebrates, it is not known when it originated and which members are most closely related to each other. A better understanding of the evolution of Irs genes and proteins should provide insight into the regulation of metabolism by insulin. Multiple genes for Irs proteins were identified in a wide variety of vertebrate species. Phylogenetic and genomic neighborhood analyses indicate that this gene family originated very early in vertebrae evolution. Most Irs genes were duplicated and retained in fish after the fish-specific genome duplication. Irs genes have been lost of various lineages, including Irs3 in primates and birds and Irs1 in most fish. Irs3 and Irs4 experienced an episode of more rapid protein sequence evolution on the ancestral mammalian lineage. Comparisons of the conservation of the proteins sequences among Irs paralogs show that domains involved in binding to the plasma membrane and insulin receptors are most strongly conserved, while divergence has occurred in sequences involved in interacting with downstream effector proteins. The Irs gene family originated very early in vertebrate evolution, likely through genome duplications, and in parallel with duplications of other components of the insulin signaling pathway, including insulin and the insulin receptor. While the N-terminal sequences of these proteins are conserved among the paralogs, changes in the C-terminal sequences likely allowed changes in biological function.

  12. Isolation of Ancestral Sylvatic Dengue Virus Type 1, Malaysia

    Science.gov (United States)

    Teoh, Boon-Teong; Sam, Sing-Sin; Abd-Jamil, Juraina

    2010-01-01

    Ancestral sylvatic dengue virus type 1, which was isolated from a monkey in 1972, was isolated from a patient with dengue fever in Malaysia. The virus is neutralized by serum of patients with endemic DENV-1 infection. Rare isolation of this virus suggests a limited spillover infection from an otherwise restricted sylvatic cycle. PMID:21029545

  13. Novel male-biased expression in paralogs of the aphid slimfast nutrient amino acid transporter expansion

    Directory of Open Access Journals (Sweden)

    Nathanson Lubov

    2011-09-01

    Full Text Available Abstract Background A major goal of molecular evolutionary biology is to understand the fate and consequences of duplicated genes. In this context, aphids are intriguing because the newly sequenced pea aphid genome harbors an extraordinary number of lineage-specific gene duplications relative to other insect genomes. Though many of their duplicated genes may be involved in their complex life cycle, duplications in nutrient amino acid transporters appear to be associated rather with their essential amino acid poor diet and the intracellular symbiosis aphids rely on to compensate for dietary deficits. Past work has shown that some duplicated amino acid transporters are highly expressed in the specialized cells housing the symbionts, including a paralog of an aphid-specific expansion homologous to the Drosophila gene slimfast. Previous data provide evidence that these bacteriocyte-expressed transporters mediate amino acid exchange between aphids and their symbionts. Results We report that some nutrient amino acid transporters show male-biased expression. Male-biased expression characterizes three paralogs in the aphid-specific slimfast expansion, and the male-biased expression is conserved across two aphid species for at least two paralogs. One of the male-biased paralogs has additionally experienced an accelerated rate of non-synonymous substitutions. Conclusions This is the first study to document male-biased slimfast expression. Our data suggest that the male-biased aphid slimfast paralogs diverged from their ancestral function to fill a functional role in males. Furthermore, our results provide evidence that members of the slimfast expansion are maintained in the aphid genome not only for the previously hypothesized role in mediating amino acid exchange between the symbiotic partners, but also for sex-specific roles.

  14. Ancestral Variations in the Shape and Size of the Zygoma.

    Science.gov (United States)

    Oettlé, Anna C; Demeter, Fabrice P; L'abbé, Ericka N

    2017-01-01

    The variable development of the zygoma, dictating its shape and size variations among ancestral groups, has important clinical implications and valuable anthropological and evolutionary inferences. The purpose of the study was to review the literature regarding the variations in the zygoma with ancestry. Ancestral variation in the zygoma reflects genetic variations because of genetic drift as well as natural selection and epigenetic changes to adapt to diet and climate variations with possible intensification by isolation. Prominence of the zygoma, zygomaxillary tuberosity, and malar tubercle have been associated with Eastern Asian populations in whom these features intensified. Prominence of the zygoma is also associated with groups from Eastern Europe and the rest of Asia. Diffusion of these traits occurred across the Behring Sea to the Arctic areas and to North and South America. The greatest zygomatic projections are exhibited in Arctic groups as an adaptation to extreme cold conditions, while Native South American groups also present with other features of facial robusticity. Groups from Australia, Malaysia, and Oceania show prominence of the zygoma to a certain extent, possibly because of archaic occupations by undifferentiated Southeast Asian populations. More recent interactions with Chinese groups might explain the prominent cheekbones noted in certain South African groups. Many deductions regarding evolutionary processes and diversifications of early groups have been made. Cognisance of these ancestral variations also have implications for forensic anthropological assessments as well as plastic and reconstructive surgery. More studies are needed to improve accuracy of forensic anthropological identification techniques. Anat Rec, 300:196-208, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. What was the ancestral sex-determining mechanism in amniote vertebrates?

    Science.gov (United States)

    Johnson Pokorná, Martina; Kratochvíl, Lukáš

    2016-02-01

    Amniote vertebrates, the group consisting of mammals and reptiles including birds, possess various mechanisms of sex determination. Under environmental sex determination (ESD), the sex of individuals depends on the environmental conditions occurring during their development and therefore there are no sexual differences present in their genotypes. Alternatively, through the mode of genotypic sex determination (GSD), sex is determined by a sex-specific genotype, i.e. by the combination of sex chromosomes at various stages of differentiation at conception. As well as influencing sex determination, sex-specific parts of genomes may, and often do, develop specific reproductive or ecological roles in their bearers. Accordingly, an individual with a mismatch between phenotypic (gonadal) and genotypic sex, for example an individual sex-reversed by environmental effects, should have a lower fitness due to the lack of specialized, sex-specific parts of their genome. In this case, evolutionary transitions from GSD to ESD should be less likely than transitions in the opposite direction. This prediction contrasts with the view that GSD was the ancestral sex-determining mechanism for amniote vertebrates. Ancestral GSD would require several transitions from GSD to ESD associated with an independent dedifferentiation of sex chromosomes, at least in the ancestors of crocodiles, turtles, and lepidosaurs (tuataras and squamate reptiles). In this review, we argue that the alternative theory postulating ESD as ancestral in amniotes is more parsimonious and is largely concordant with the theoretical expectations and current knowledge of the phylogenetic distribution and homology of sex-determining mechanisms. © 2014 Cambridge Philosophical Society.

  16. Cases in which ancestral maximum likelihood will be confusingly misleading.

    Science.gov (United States)

    Handelman, Tomer; Chor, Benny

    2017-05-07

    Ancestral maximum likelihood (AML) is a phylogenetic tree reconstruction criteria that "lies between" maximum parsimony (MP) and maximum likelihood (ML). ML has long been known to be statistically consistent. On the other hand, Felsenstein (1978) showed that MP is statistically inconsistent, and even positively misleading: There are cases where the parsimony criteria, applied to data generated according to one tree topology, will be optimized on a different tree topology. The question of weather AML is statistically consistent or not has been open for a long time. Mossel et al. (2009) have shown that AML can "shrink" short tree edges, resulting in a star tree with no internal resolution, which yields a better AML score than the original (resolved) model. This result implies that AML is statistically inconsistent, but not that it is positively misleading, because the star tree is compatible with any other topology. We show that AML is confusingly misleading: For some simple, four taxa (resolved) tree, the ancestral likelihood optimization criteria is maximized on an incorrect (resolved) tree topology, as well as on a star tree (both with specific edge lengths), while the tree with the original, correct topology, has strictly lower ancestral likelihood. Interestingly, the two short edges in the incorrect, resolved tree topology are of length zero, and are not adjacent, so this resolved tree is in fact a simple path. While for MP, the underlying phenomenon can be described as long edge attraction, it turns out that here we have long edge repulsion. Copyright © 2017. Published by Elsevier Ltd.

  17. Using Resurrected Ancestral Proviral Proteins to Engineer Virus Resistance.

    Science.gov (United States)

    Delgado, Asunción; Arco, Rocio; Ibarra-Molero, Beatriz; Sanchez-Ruiz, Jose M

    2017-05-09

    Proviral factors are host proteins hijacked by viruses for processes essential for virus propagation such as cellular entry and replication. Pathogens and their hosts co-evolve. It follows that replacing a proviral factor with a functional ancestral form of the same protein could prevent viral propagation without fatally compromising organismal fitness. Here, we provide proof of concept of this notion. Thioredoxins serve as general oxidoreductases in all known cells. We report that several laboratory resurrections of Precambrian thioredoxins display substantial levels of functionality within Escherichia coli. Unlike E. coli thioredoxin, however, these ancestral thioredoxins are not efficiently recruited by the bacteriophage T7 for its replisome and therefore prevent phage propagation in E. coli. These results suggest an approach to the engineering of virus resistance. Diseases caused by viruses may have a devastating effect in agriculture. We discuss how the suggested approach could be applied to the engineering of plant virus resistance. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  18. Female Urethral Duplication: Rare Anomaly with Unusual Presentation

    African Journals Online (AJOL)

    UD is classified according to plane (frontal or sagittal) of duplication into different types: (1) Double urethra and double bladder, (2) double urethra with single bladder,. (3) accessory urethra posterior to the normal channel,. (4) double proximal urethra and single distal urethra, and. (5) single proximal urethra and duplicated ...

  19. G-NEST: a gene neighborhood scoring tool to identify co-conserved, co-expressed genes

    Directory of Open Access Journals (Sweden)

    Lemay Danielle G

    2012-09-01

    Full Text Available Abstract Background In previous studies, gene neighborhoods—spatial clusters of co-expressed genes in the genome—have been defined using arbitrary rules such as requiring adjacency, a minimum number of genes, a fixed window size, or a minimum expression level. In the current study, we developed a Gene Neighborhood Scoring Tool (G-NEST which combines genomic location, gene expression, and evolutionary sequence conservation data to score putative gene neighborhoods across all possible window sizes simultaneously. Results Using G-NEST on atlases of mouse and human tissue expression data, we found that large neighborhoods of ten or more genes are extremely rare in mammalian genomes. When they do occur, neighborhoods are typically composed of families of related genes. Both the highest scoring and the largest neighborhoods in mammalian genomes are formed by tandem gene duplication. Mammalian gene neighborhoods contain highly and variably expressed genes. Co-localized noisy gene pairs exhibit lower evolutionary conservation of their adjacent genome locations, suggesting that their shared transcriptional background may be disadvantageous. Genes that are essential to mammalian survival and reproduction are less likely to occur in neighborhoods, although neighborhoods are enriched with genes that function in mitosis. We also found that gene orientation and protein-protein interactions are partially responsible for maintenance of gene neighborhoods. Conclusions Our experiments using G-NEST confirm that tandem gene duplication is the primary driver of non-random gene order in mammalian genomes. Non-essentiality, co-functionality, gene orientation, and protein-protein interactions are additional forces that maintain gene neighborhoods, especially those formed by tandem duplicates. We expect G-NEST to be useful for other applications such as the identification of core regulatory modules, common transcriptional backgrounds, and chromatin domains. The

  20. Creation of Functional Viruses from Non-Functional cDNA Clones Obtained from an RNA Virus Population by the Use of Ancestral Reconstruction

    DEFF Research Database (Denmark)

    Fahnøe, Ulrik; Pedersen, Anders Gorm; Dräger, Carolin

    2015-01-01

    necessarily be the descendant of a functional ancestor, we hypothesized that it should be possible to produce functional clones by reconstructing ancestral sequences. To test this we used phylogenetic methods to infer two ancestral sequences, which were then reconstructed as cDNA clones. Viruses rescued from...... the reconstructed cDNAs were tested in cell culture and pigs. Both reconstructed ancestral genomes proved functional, and displayed distinct phenotypes in vitro and in vivo. We suggest that reconstruction of ancestral viruses is a useful tool for experimental and computational investigations of virulence and viral...... evolution. Importantly, ancestral reconstruction can be done even on the basis of a set of sequences that all correspond to non-functional variants....

  1. Duplicate retention in signalling proteins and constraints from network dynamics.

    Science.gov (United States)

    Soyer, O S; Creevey, C J

    2010-11-01

    Duplications are a major driving force behind evolution. Most duplicates are believed to fix through genetic drift, but it is not clear whether this process affects all duplications equally or whether there are certain gene families that are expected to show neutral expansions under certain circumstances. Here, we analyse the neutrality of duplications in different functional classes of signalling proteins based on their effects on response dynamics. We find that duplications involving intermediary proteins in a signalling network are neutral more often than those involving receptors. Although the fraction of neutral duplications in all functional classes increase with decreasing population size and selective pressure on dynamics, this effect is most pronounced for receptors, indicating a possible expansion of receptors in species with small population size. In line with such an expectation, we found a statistically significant increase in the number of receptors as a fraction of genome size in eukaryotes compared with prokaryotes. Although not confirmative, these results indicate that neutral processes can be a significant factor in shaping signalling networks and affect proteins from different functional classes differently. © 2010 The Authors. Journal Compilation © 2010 European Society For Evolutionary Biology.

  2. Discovery of Conservation and Diversification of miR171 Genes by Phylogenetic Analysis based on Global Genomes

    Directory of Open Access Journals (Sweden)

    Xudong Zhu

    2015-07-01

    Full Text Available The microRNA171 (miR171 family is widely distributed and highly conserved in a range of species and plays critical roles in regulating plant growth and development through repressing expression of ( transcription factors. However, information on the evolutionary conservation and functional diversification of the miRNA171 family members remains scanty. We reconstructed the phylogenetic relationships among miR171 precursor and mature sequences so as to investigate the extent and degree of evolutionary conservation of miR171 in (L. Heynh. (ath, grape ( L. (vvi, poplar ( Torr. & A.Gray ex Hook. (ptc, and rice ( L. (osa. Despite strong conservation of over 80%, some mature miR171 sequences, such as , and and , -, and -, have undergone critical sequence variation, leading to functional diversification, since they target non gene transcript(s. Phylogenetic analyses revealed a combination of old ancestral relationships and recent lineage-specific diversification in the miR171 family within the four model plants. The -regulatory motifs on the upstream promoter sequences of genes were highly divergent and shared some similar elements, indicating their possible contribution to the functional variation observed within the miR171 family. This study will buttress our understanding of the functional differentiation of miRNAs and the relationships of miRNA–target pairs based on the evolutionary history of genes.

  3. Use of diagnostic imaging in the evaluation of gastrointestinal tract duplications.

    Science.gov (United States)

    Laskowska, Katarzyna; Gałązka, Przemysław; Daniluk-Matraś, Irena; Leszczyński, Waldemar; Serafin, Zbigniew

    2014-01-01

    Gastrointestinal tract duplication is a rare malformation associated with the presence of additional segment of the fetal gut. The aim of this study was to retrospectively review clinical features and imaging findings in intraoperatively confirmed cases of gastrointestinal tract duplication in children. The analysis included own material from the years 2002-2012. The analyzed group included 14 children, among them 8 boys and 6 girls. The youngest patient was diagnosed at the age of three weeks, and the oldest at 12 years of age. The duplication cysts were identified in the esophagus (n=2), stomach (n=5), duodenum (n=1), terminal ileum (n=5), and rectum (n=1). In four cases, the duplication coexisted with other anomalies, such as patent urachus, Meckel's diverticulum, mesenteric cyst, and accessory pancreas. Clinical manifestation of gastrointestinal duplication cysts was variable, and some of them were detected accidently. Thin- or thick-walled cystic structures adjacent to the wall of neighboring gastrointestinal segment were documented on diagnostic imaging. Ultrasound and computed tomography are the methods of choice in the evaluation of gastrointestinal duplication cysts. Apart from the diagnosis of the duplication cyst, an important issue is the detection of concomitant developmental pathologies, including pancreatic heterotopy.

  4. Genome Mutational and Transcriptional Hotspots Are Traps for Duplicated Genes and Sources of Adaptations.

    Science.gov (United States)

    Fares, Mario A; Sabater-Muñoz, Beatriz; Toft, Christina

    2017-05-01

    Gene duplication generates new genetic material, which has been shown to lead to major innovations in unicellular and multicellular organisms. A whole-genome duplication occurred in the ancestor of Saccharomyces yeast species but 92% of duplicates returned to single-copy genes shortly after duplication. The persisting duplicated genes in Saccharomyces led to the origin of major metabolic innovations, which have been the source of the unique biotechnological capabilities in the Baker's yeast Saccharomyces cerevisiae. What factors have determined the fate of duplicated genes remains unknown. Here, we report the first demonstration that the local genome mutation and transcription rates determine the fate of duplicates. We show, for the first time, a preferential location of duplicated genes in the mutational and transcriptional hotspots of S. cerevisiae genome. The mechanism of duplication matters, with whole-genome duplicates exhibiting different preservation trends compared to small-scale duplicates. Genome mutational and transcriptional hotspots are rich in duplicates with large repetitive promoter elements. Saccharomyces cerevisiae shows more tolerance to deleterious mutations in duplicates with repetitive promoter elements, which in turn exhibit higher transcriptional plasticity against environmental perturbations. Our data demonstrate that the genome traps duplicates through the accelerated regulatory and functional divergence of their gene copies providing a source of novel adaptations in yeast. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  5. Cholecystitis of a duplicated gallbladder complicated by a cholecystoenteric fistula

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Brady K. [University of Rochester Medical Center, Department of Imaging Sciences, Rochester, NY (United States); Chess, Mitchell A. [University of Rochester Medical Center, Department of Imaging Sciences, Rochester, NY (United States); Advanced Imaging, Batavia, NY (United States)

    2009-04-15

    Gallbladder duplications are uncommon anatomic variants that are sometimes mistaken for other entities on imaging. We present a surgically confirmed case of cholecystitis in a ductular-type duplicated gallbladder complicated by the formation of an inflammatory fistula to the adjacent duodenum. Both US and magnetic resonance cholangiopancreatography were performed preoperatively, in addition to intraoperative cholangiography, which confirmed the presence of a duplicated gallbladder. (orig.)

  6. Differential evolution of members of the rhomboid gene family with conservative and divergent patterns.

    Science.gov (United States)

    Li, Qi; Zhang, Ning; Zhang, Liangsheng; Ma, Hong

    2015-04-01

    Rhomboid proteins are intramembrane serine proteases that are involved in a plethora of biological functions, but the evolutionary history of the rhomboid gene family is not clear. We performed a comprehensive molecular evolutionary analysis of the rhomboid gene family and also investigated the organization and sequence features of plant rhomboids in different subfamilies. Our results showed that eukaryotic rhomboids could be divided into five subfamilies (RhoA-RhoD and PARL). Most orthology groups appeared to be conserved only as single or low-copy genes in all lineages in RhoB-RhoD and PARL, whereas RhoA genes underwent several duplication events, resulting in multiple gene copies. These duplication events were due to whole genome duplications in plants and animals and the duplicates might have experienced functional divergence. We also identified a novel group of plant rhomboid (RhoB1) that might have lost their enzymatic activity; their existence suggests that they might have evolved new mechanisms. Plant and animal rhomboids have similar evolutionary patterns. In addition, there are mutations affecting key active sites in RBL8, RBL9 and one of the Brassicaceae PARL duplicates. This study delineates a possible evolutionary scheme for intramembrane proteins and illustrates distinct fates and a mechanism of evolution of gene duplicates. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  7. Perianth evolution in Ranunculaceae: are petals ancestral in the family?

    Directory of Open Access Journals (Sweden)

    Sophie Nadot

    2016-04-01

    Full Text Available Progress has been made recently towards the elucidation of phylogenetic relationships among subfamilies and tribes of the Ranunculaceae – the most recent hypothesis was published in 2016 by our team. Although relationships among the 10 tribes of the subfamily Ranunculoideae remain incompletely supported, this hypothesis provides an interesting framework to address the key issue of the ancestral vs. derived nature of a differentiated perianth within the family, and at the level of Ranunculales as a whole. Here, we present ancestral state reconstructions for several perianth characters, such as differentiation into sepals and petals, shape of petals, presence/absence of nectaries, and petaloid or sepaloid aspect of sepals. Characters were scored using the PROTEUS database and optimized on the most recent phylogeny of Ranunculaceae using parsimony and maximum likelihood methods. The results are discussed with regard to recent evo-devo studies focused on identifying genes involved in floral organs identity (the so-called ABC model in Ranunculales.

  8. Centrioles: duplicating precariously.

    Science.gov (United States)

    Pelletier, Laurence

    2007-09-04

    To assemble a mitotic spindle and accurately segregate chromosomes to progeny, a cell needs to precisely regulate its centrosome number, a feat largely accomplished through the tight control of centriole duplication. Recent work showing that the overexpression of centriolar proteins can lead to the formation of multiple centrioles in the absence of pre-existing centrioles challenges the idea that it is a self-replicating organelle.

  9. Emergence, development and diversification of the TGF-beta signalling pathway within the animal kingdom.

    Science.gov (United States)

    Huminiecki, Lukasz; Goldovsky, Leon; Freilich, Shiri; Moustakas, Aristidis; Ouzounis, Christos; Heldin, Carl-Henrik

    2009-02-03

    The question of how genomic processes, such as gene duplication, give rise to co-ordinated organismal properties, such as emergence of new body plans, organs and lifestyles, is of importance in developmental and evolutionary biology. Herein, we focus on the diversification of the transforming growth factor-beta (TGF-beta) pathway -- one of the fundamental and versatile metazoan signal transduction engines. After an investigation of 33 genomes, we show that the emergence of the TGF-beta pathway coincided with appearance of the first known animal species. The primordial pathway repertoire consisted of four Smads and four receptors, similar to those observed in the extant genome of the early diverging tablet animal (Trichoplax adhaerens). We subsequently retrace duplications in ancestral genomes on the lineage leading to humans, as well as lineage-specific duplications, such as those which gave rise to novel Smads and receptors in teleost fishes. We conclude that the diversification of the TGF-beta pathway can be parsimoniously explained according to the 2R model, with additional rounds of duplications in teleost fishes. Finally, we investigate duplications followed by accelerated evolution which gave rise to an atypical TGF-beta pathway in free-living bacterial feeding nematodes of the genus Rhabditis. Our results challenge the view of well-conserved developmental pathways. The TGF-beta signal transduction engine has expanded through gene duplication, continually adopting new functions, as animals grew in anatomical complexity, colonized new environments, and developed an active immune system.

  10. A Dense Brown Trout (Salmo trutta) Linkage Map Reveals Recent Chromosomal Rearrangements in the Salmo Genus and the Impact of Selection on Linked Neutral Diversity

    Science.gov (United States)

    Leitwein, Maeva; Guinand, Bruno; Pouzadoux, Juliette; Desmarais, Erick; Berrebi, Patrick; Gagnaire, Pierre-Alexandre

    2017-01-01

    High-density linkage maps are valuable tools for conservation and eco-evolutionary issues. In salmonids, a complex rediploidization process consecutive to an ancient whole genome duplication event makes linkage maps of prime importance for investigating the evolutionary history of chromosome rearrangements. Here, we developed a high-density consensus linkage map for the brown trout (Salmo trutta), a socioeconomically important species heavily impacted by human activities. A total of 3977 ddRAD markers were mapped and ordered in 40 linkage groups using sex- and lineage-averaged recombination distances obtained from two family crosses. Performing map comparison between S. trutta and its sister species, S. salar, revealed extensive chromosomal rearrangements. Strikingly, all of the fusion and fission events that occurred after the S. salar/S. trutta speciation happened in the Atlantic salmon branch, whereas the brown trout remained closer to the ancestral chromosome structure. Using the strongly conserved synteny within chromosome arms, we aligned the brown trout linkage map to the Atlantic salmon genome sequence to estimate the local recombination rate in S. trutta at 3721 loci. A significant positive correlation between recombination rate and within-population nucleotide diversity (π) was found, indicating that selection constrains variation at linked neutral sites in brown trout. This new high-density linkage map provides a useful genomic resource for future aquaculture, conservation, and eco-evolutionary studies in brown trout. PMID:28235829

  11. A Dense Brown Trout (Salmo trutta Linkage Map Reveals Recent Chromosomal Rearrangements in the Salmo Genus and the Impact of Selection on Linked Neutral Diversity

    Directory of Open Access Journals (Sweden)

    Maeva Leitwein

    2017-04-01

    Full Text Available High-density linkage maps are valuable tools for conservation and eco-evolutionary issues. In salmonids, a complex rediploidization process consecutive to an ancient whole genome duplication event makes linkage maps of prime importance for investigating the evolutionary history of chromosome rearrangements. Here, we developed a high-density consensus linkage map for the brown trout (Salmo trutta, a socioeconomically important species heavily impacted by human activities. A total of 3977 ddRAD markers were mapped and ordered in 40 linkage groups using sex- and lineage-averaged recombination distances obtained from two family crosses. Performing map comparison between S. trutta and its sister species, S. salar, revealed extensive chromosomal rearrangements. Strikingly, all of the fusion and fission events that occurred after the S. salar/S. trutta speciation happened in the Atlantic salmon branch, whereas the brown trout remained closer to the ancestral chromosome structure. Using the strongly conserved synteny within chromosome arms, we aligned the brown trout linkage map to the Atlantic salmon genome sequence to estimate the local recombination rate in S. trutta at 3721 loci. A significant positive correlation between recombination rate and within-population nucleotide diversity (π was found, indicating that selection constrains variation at linked neutral sites in brown trout. This new high-density linkage map provides a useful genomic resource for future aquaculture, conservation, and eco-evolutionary studies in brown trout.

  12. Conservation and diversification of the miR166 family in soybean and potential roles of newly identified miR166s.

    Science.gov (United States)

    Li, Xuyan; Xie, Xin; Li, Ji; Cui, Yuhai; Hou, Yanming; Zhai, Lulu; Wang, Xiao; Fu, Yanli; Liu, Ranran; Bian, Shaomin

    2017-02-01

    microRNA166 (miR166) is a highly conserved family of miRNAs implicated in a wide range of cellular and physiological processes in plants. miR166 family generally comprises multiple miR166 members in plants, which might exhibit functional redundancy and specificity. The soybean miR166 family consists of 21 members according to the miRBase database. However, the evolutionary conservation and functional diversification of miR166 family members in soybean remain poorly understood. We identified five novel miR166s in soybean by data mining approach, thus enlarging the size of miR166 family from 21 to 26 members. Phylogenetic analyses of the 26 miR166s and their precursors indicated that soybean miR166 family exhibited both evolutionary conservation and diversification, and ten pairs of miR166 precursors with high sequence identity were individually grouped into a discrete clade in the phylogenetic tree. The analysis of genomic organization and evolution of MIR166 gene family revealed that eight segmental duplications and four tandem duplications might occur during evolution of the miR166 family in soybean. The cis-elements in promoters of MIR166 family genes and their putative targets pointed to their possible contributions to the functional conservation and diversification. The targets of soybean miR166s were predicted, and the cleavage of ATHB14-LIKE transcript was experimentally validated by RACE PCR. Further, the expression patterns of the five newly identified MIR166s and 12 target genes were examined during seed development and in response to abiotic stresses, which provided important clues for dissecting their functions and isoform specificity. This study enlarged the size of soybean miR166 family from 21 to 26 members, and the 26 soybean miR166s exhibited evolutionary conservation and diversification. These findings have laid a foundation for elucidating functional conservation and diversification of miR166 family members, especially during seed development or

  13. Ruptured rectal duplication with urogenital abnormality: Unusual presentation.

    Science.gov (United States)

    Solanki, Shailesh; Babu, M Narendra; Jadhav, Vinay; Shankar, Gowri; Santhanakrishnan, Ramesh

    2015-01-01

    Rectal duplication (RD) accounts for 5% of alimentary tract duplication. A varied presentation and associated anomalies have been described in the literature. Antenatal rupture of the RD is very rare. We present an unusual case of a ruptured RD associated with urogenital abnormalities in newborn male. We are discussing diagnosis, embryology, management and literature review of ruptured RD.

  14. Approximate maximum parsimony and ancestral maximum likelihood.

    Science.gov (United States)

    Alon, Noga; Chor, Benny; Pardi, Fabio; Rapoport, Anat

    2010-01-01

    We explore the maximum parsimony (MP) and ancestral maximum likelihood (AML) criteria in phylogenetic tree reconstruction. Both problems are NP-hard, so we seek approximate solutions. We formulate the two problems as Steiner tree problems under appropriate distances. The gist of our approach is the succinct characterization of Steiner trees for a small number of leaves for the two distances. This enables the use of known Steiner tree approximation algorithms. The approach leads to a 16/9 approximation ratio for AML and asymptotically to a 1.55 approximation ratio for MP.

  15. A survey of innovation through duplication in the reduced genomes of twelve parasites.

    Directory of Open Access Journals (Sweden)

    Jeremy D DeBarry

    Full Text Available We characterize the prevalence, distribution, divergence, and putative functions of detectable two-copy paralogs and segmental duplications in the Apicomplexa, a phylum of parasitic protists. Apicomplexans are mostly obligate intracellular parasites responsible for human and animal diseases (e.g. malaria and toxoplasmosis. Gene loss is a major force in the phylum. Genomes are small and protein-encoding gene repertoires are reduced. Despite this genomic streamlining, duplications and gene family amplifications are present. The potential for innovation introduced by duplications is of particular interest. We compared genomes of twelve apicomplexans across four lineages and used orthology and genome cartography to map distributions of duplications against genome architectures. Segmental duplications appear limited to five species. Where present, they correspond to regions enriched for multi-copy and species-specific genes, pointing toward roles in adaptation and innovation. We found a phylum-wide association of duplications with dynamic chromosome regions and syntenic breakpoints. Trends in the distribution of duplicated genes indicate that recent, species-specific duplicates are often tandem while most others have been dispersed by genome rearrangements. These trends show a relationship between genome architecture and gene duplication. Functional analysis reveals: proteases, which are vital to a parasitic lifecycle, to be prominent in putative recent duplications; a pair of paralogous genes in Toxoplasma gondii previously shown to produce the rate-limiting step in dopamine synthesis in mammalian cells, a possible link to the modification of host behavior; and phylum-wide differences in expression and subcellular localization, indicative of modes of divergence. We have uncovered trends in multiple modes of duplicate divergence including sequence, intron content, expression, subcellular localization, and functions of putative recent duplicates that

  16. Colonic duplication in adults: Report of two cases presenting with rectal bleeding

    Institute of Scientific and Technical Information of China (English)

    C Fotiadis; M Genetzakis; I Papandreou; EP Misiakos; E Agapitos; GC Zografos

    2005-01-01

    Gastrointestinal duplication is an uncommon congenital abnormality in two-thirds of cases manifesting before the age of 2 years. Ileal duplication is common while colonic duplication, either cystic or tubular, is a rather unusual clinical entity that remains asymptomatic and undiagnosed in most cases. Mostly occurring in pediatric patients,colonic duplication is encountered in adults only in a few cases. This study reports two cases of colonic duplication in adults. Both cases presented with rectal bleeding on admission. The study was focused on clinical, imaging,histological, and therapeutical aspects of the presenting cases. Gastrografin enema established the diagnosis in both cases. The cystic structure and the adjacent part of the colon were excised en-block. The study implies that colonic duplication, though uncommon, should be included in the differential diagnosis of rectal bleeding.

  17. Colonic duplication in adults: report of two cases presenting with rectal bleeding.

    Science.gov (United States)

    Fotiadis, C; Genetzakis, M; Papandreou, I; Misiakos, E P; Agapitos, E; Zografos, G C

    2005-08-28

    Gastrointestinal duplication is an uncommon congenital abnormality in two-thirds of cases manifesting before the age of 2 years. Ileal duplication is common while colonic duplication, either cystic or tubular, is a rather unusual clinical entity that remains asymptomatic and undiagnosed in most cases. Mostly occurring in pediatric patients, colonic duplication is encountered in adults only in a few cases. This study reports two cases of colonic duplication in adults. Both cases presented with rectal bleeding on admission. The study was focused on clinical, imaging, histological, and therapeutical aspects of the presenting cases. Gastrografin enema established the diagnosis in both cases. The cystic structure and the adjacent part of the colon were excised en-block. The study implies that colonic duplication, though uncommon, should be included in the differential diagnosis of rectal bleeding.

  18. Systematics and morphological evolution within the moss family Bryaceae: a comparison between parsimony and Bayesian methods for reconstruction of ancestral character states.

    Science.gov (United States)

    Pedersen, Niklas; Holyoak, David T; Newton, Angela E

    2007-06-01

    The Bryaceae are a large cosmopolitan moss family including genera of significant morphological and taxonomic complexity. Phylogenetic relationships within the Bryaceae were reconstructed based on DNA sequence data from all three genomic compartments. In addition, maximum parsimony and Bayesian inference were employed to reconstruct ancestral character states of 38 morphological plus four habitat characters and eight insertion/deletion events. The recovered phylogenetic patterns are generally in accord with previous phylogenies based on chloroplast DNA sequence data and three major clades are identified. The first clade comprises Bryum bornholmense, B. rubens, B. caespiticium, and Plagiobryum. This corroborates the hypothesis suggested by previous studies that several Bryum species are more closely related to Plagiobryum than to the core Bryum species. The second clade includes Acidodontium, Anomobryum, and Haplodontium, while the third clade contains the core Bryum species plus Imbribryum. Within the latter clade, B. subapiculatum and B. tenuisetum form the sister clade to Imbribryum. Reconstructions of ancestral character states under maximum parsimony and Bayesian inference suggest fourteen morphological synapomorphies for the ingroup and synapomorphies are detected for most clades within the ingroup. Maximum parsimony and Bayesian reconstructions of ancestral character states are mostly congruent although Bayesian inference shows that the posterior probability of ancestral character states may decrease dramatically when node support is taken into account. Bayesian inference also indicates that reconstructions may be ambiguous at internal nodes for highly polymorphic characters.

  19. Ruptured rectal duplication with urogenital abnormality: Unusual presentation

    Directory of Open Access Journals (Sweden)

    Shailesh Solanki

    2015-01-01

    Full Text Available Rectal duplication (RD accounts for 5% of alimentary tract duplication. A varied presentation and associated anomalies have been described in the literature. Antenatal rupture of the RD is very rare. We present an unusual case of a ruptured RD associated with urogenital abnormalities in newborn male. We are discussing diagnosis, embryology, management and literature review of ruptured RD.

  20. Gastric duplication cyst: A cause of rectal bleeding in a young child.

    Science.gov (United States)

    Surridge, Clare A; Goodier, Matthew D

    2014-01-01

    Gastric duplication cysts are an uncommon congenital anomaly and rectal bleeding is a rare presentation of a complicated gastric duplication cyst. This case report describes the radiological findings in a child with a complicated gastric duplication cyst.

  1. Dynamic Delayed Duplicate Detection for External Memory Model Checking

    DEFF Research Database (Denmark)

    Evangelista, Sami

    2008-01-01

    Duplicate detection is an expensive operation of disk-based model checkers. It consists of comparing some potentially new states, the candidate states, to previous visited states. We propose a new approach to this technique called dynamic delayed duplicate detection. This one exploits some typical...

  2. Salmonid Chromosome Evolution as Revealed by a Novel Method for Comparing RADseq Linkage Maps

    Science.gov (United States)

    Gosselin, Thierry; Normandeau, Eric; Lamothe, Manuel; Isabel, Nathalie; Audet, Céline; Bernatchez, Louis

    2016-01-01

    Whole genome duplication (WGD) can provide material for evolutionary innovation. Family Salmonidae is ideal for studying the effects of WGD as the ancestral salmonid underwent WGD relatively recently, ∼65 Ma, then rediploidized and diversified. Extensive synteny between homologous chromosome arms occurs in extant salmonids, but each species has both conserved and unique chromosome arm fusions and fissions. Assembly of large, outbred eukaryotic genomes can be difficult, but structural rearrangements within such taxa can be investigated using linkage maps. RAD sequencing provides unprecedented ability to generate high-density linkage maps for nonmodel species, but can result in low numbers of homologous markers between species due to phylogenetic distance or differences in library preparation. Here, we generate a high-density linkage map (3,826 markers) for the Salvelinus genera (Brook Charr S. fontinalis), and then identify corresponding chromosome arms among the other available salmonid high-density linkage maps, including six species of Oncorhynchus, and one species for each of Salmo, Coregonus, and the nonduplicated sister group for the salmonids, Northern Pike Esox lucius for identifying post-duplicated homeologs. To facilitate this process, we developed MapComp to identify identical and proximate (i.e. nearby) markers between linkage maps using a reference genome of a related species as an intermediate, increasing the number of comparable markers between linkage maps by 5-fold. This enabled a characterization of the most likely history of retained chromosomal rearrangements post-WGD, and several conserved chromosomal inversions. Analyses of RADseq-based linkage maps from other taxa will also benefit from MapComp, available at: https://github.com/enormandeau/mapcomp/ PMID:28173098

  3. Spinal Accessory Nerve Duplication: A Case Report and Literature Review

    OpenAIRE

    Papagianni, Eleni; Kosmidou, Panagiota; Fergadaki, Sotiria; Pallantzas, Athanasios; Skandalakis, Panagiotis; Filippou, Dimitrios

    2018-01-01

    Aim of the present study is to expand our knowledge of the anatomy of the 11th cranial nerve and discuss the clinical importance and literature pertaining to accessory nerve duplication. We present one case of duplicated spinal accessory nerve in a patient undergoing neck dissection for oral cavity cancer. The literature review confirms the extremely rare diagnosis of a duplicated accessory nerve. Its clinical implication is of great importance. From this finding, a further extension to our k...

  4. Gastric duplication cyst: A cause of rectal bleeding in a young child

    Directory of Open Access Journals (Sweden)

    Clare A Surridge

    2014-01-01

    Full Text Available Gastric duplication cysts are an uncommon congenital anomaly and rectal bleeding is a rare presentation of a complicated gastric duplication cyst. This case report describes the radiological findings in a child with a complicated gastric duplication cyst.

  5. Association of anorectal malformation with anal and rectal duplication

    Directory of Open Access Journals (Sweden)

    Karla A. Santos-Jasso

    2014-08-01

    We present three cases of rectal duplications with anorectal malforma- tion with recto-perineal fistula and colonic duplication. Two of them with delayed diagnosis and bowel obstruction, treated with laparotomy, colostomy and side-to-side anastomosis of the proximal colonic duplica- tion; in the third case the diagnosis of the colonic and rectal duplication was made during a colostomy opening. For definitive correction, the three patients underwent abdomino-perineal approach and side-to-side anastomosis of the rectal duplication, placement of the rectum within the muscle complex, and later on colostomy closure. In a fourth patient with anorectal malformation and colostomy after birth, the perineal electro-stimulation showed two muscle complexes. A posterior sagittal approach in both showed two separate blind rectal pouches; an end- to-side anastomosis of the dilated rectum was made, and the muscle complex with stronger contraction was used for the anoplasty. The posterior sagittal approach is the best surgical option to preserve the muscle complex, with a better prognosis for rectal continence.

  6. Accelerated Evolution of Conserved Noncoding Sequences in theHuman Genome

    Energy Technology Data Exchange (ETDEWEB)

    Prambhakar, Shyam; Noonan, James P.; Paabo, Svante; Rubin, EdwardM.

    2006-07-06

    Genomic comparisons between human and distant, non-primatemammals are commonly used to identify cis-regulatory elements based onconstrained sequence evolution. However, these methods fail to detect"cryptic" functional elements, which are too weakly conserved amongmammals to distinguish from nonfunctional DNA. To address this problem,we explored the potential of deep intra-primate sequence comparisons. Wesequenced the orthologs of 558 kb of human genomic sequence, coveringmultiple loci involved in cholesterol homeostasis, in 6 nonhumanprimates. Our analysis identified 6 noncoding DNA elements displayingsignificant conservation among primates, but undetectable in more distantcomparisons. In vitro and in vivo tests revealed that at least three ofthese 6 elements have regulatory function. Notably, the mouse orthologsof these three functional human sequences had regulatory activity despitetheir lack of significant sequence conservation, indicating that they arecryptic ancestral cis-regulatory elements. These regulatory elementscould still be detected in a smaller set of three primate speciesincluding human, rhesus and marmoset. Since the human and rhesus genomesequences are already available, and the marmoset genome is activelybeing sequenced, the primate-specific conservation analysis describedhere can be applied in the near future on a whole-genome scale, tocomplement the annotation provided by more distant speciescomparisons.

  7. Ancestrality and evolution of trait syndromes in finches (Fringillidae)

    OpenAIRE

    Ponge, Jean‐François; Zuccon, Dario; Elias, Marianne; Pavoine, Sandrine; Henry, Pierre‐Yves; Théry, Marc; Guilbert, Éric

    2017-01-01

    International audience; Species traits have been hypothesized by one of us (Ponge, 2013) to evolve in a correlated manner as species colonize stable, undisturbed habitats, shifting from “ancestral” to “derived” strategies. We predicted that generalism, r-selection, sexual monomorphism, and migration/gregariousness are the ancestral states (collectively called strategy A) and evolved correlatively toward specialism, K-selection, sexual dimorphism, and residence/territoriality as habitat stabil...

  8. Lack of Social Support Raises Stress Vulnerability in Rats with a History of Ancestral Stress.

    Science.gov (United States)

    Faraji, Jamshid; Soltanpour, Nabiollah; Lotfi, Hamid; Moeeini, Reza; Moharreri, Ali-Reza; Roudaki, Shabnam; Hosseini, S Abedin; Olson, David M; Abdollahi, Ali-Akbar; Soltanpour, Nasrin; Mohajerani, Majid H; Metz, Gerlinde A S

    2017-07-13

    Stress is a primary risk factor for psychiatric disorders. However, it is not fully understood why some stressed individuals are more vulnerable to psychiatric disorders than others. Here, we investigated whether multigenerational ancestral stress produces phenotypes that are sensitive to depression-like symptoms in rats. We also examined whether social isolation reveals potentially latent sensitivity to depression-like behaviours. F4 female rats born to a lineage of stressed mothers (F0-F3) received stress in adulthood while housed in pairs or alone. Social isolation during stress induced cognitive and psychomotor retardation only in rats exposed to ancestral stress. Social isolation also hampered the resilience of the hypothalamic-pituitary-adrenal axis to chronic stress and reduced hippocampal volume and brain-derived neurotrophic factor (BDNF) expression. Thus, synergy between social isolation and stress may unmask a latent history of ancestral stress, and raises vulnerability to mental health conditions. The findings support the notion that social support critically promotes stress coping and resilience.

  9. Familial partial duplication (1)(p21p31)

    Energy Technology Data Exchange (ETDEWEB)

    Hoechstetter, L.; Soukup, S.; Schorry, E.K. [Children`s Hospital Research Foundation, Cincinnati, OH (United States)

    1995-11-20

    A partial duplication (1)(p21p31), resulting from a maternal direct insertion (13,1) (q22p21p31), was found in a 30-year-old woman with mental retardation, cleft palate, and multiple minor anomalies. Two other affected and deceased relatives were presumed to have the same chromosome imbalance. Duplication 1p cases are reviewed. 8 refs., 5 figs., 1 tab.

  10. Resurrecting ancestral genes in bacteria to interpret ancient biosignatures

    Science.gov (United States)

    Kacar, Betul; Guy, Lionel; Smith, Eric; Baross, John

    2017-11-01

    Two datasets, the geologic record and the genetic content of extant organisms, provide complementary insights into the history of how key molecular components have shaped or driven global environmental and macroevolutionary trends. Changes in global physico-chemical modes over time are thought to be a consistent feature of this relationship between Earth and life, as life is thought to have been optimizing protein functions for the entirety of its approximately 3.8 billion years of history on the Earth. Organismal survival depends on how well critical genetic and metabolic components can adapt to their environments, reflecting an ability to optimize efficiently to changing conditions. The geologic record provides an array of biologically independent indicators of macroscale atmospheric and oceanic composition, but provides little in the way of the exact behaviour of the molecular components that influenced the compositions of these reservoirs. By reconstructing sequences of proteins that might have been present in ancient organisms, we can downselect to a subset of possible sequences that may have been optimized to these ancient environmental conditions. How can one use modern life to reconstruct ancestral behaviours? Configurations of ancient sequences can be inferred from the diversity of extant sequences, and then resurrected in the laboratory to ascertain their biochemical attributes. One way to augment sequence-based, single-gene methods to obtain a richer and more reliable picture of the deep past, is to resurrect inferred ancestral protein sequences in living organisms, where their phenotypes can be exposed in a complex molecular-systems context, and then to link consequences of those phenotypes to biosignatures that were preserved in the independent historical repository of the geological record. As a first step beyond single-molecule reconstruction to the study of functional molecular systems, we present here the ancestral sequence reconstruction of the

  11. Expression, purification and crystallization of the ancestral androgen receptor-DHT complex.

    Science.gov (United States)

    Colucci, Jennifer K; Ortlund, Eric A

    2013-09-01

    Steroid receptors (SRs) are a closely related family of ligand-dependent nuclear receptors that mediate the transcription of genes critical for development, reproduction and immunity. SR dysregulation has been implicated in cancer, inflammatory diseases and metabolic disorders. SRs bind their cognate hormone ligand with exquisite specificity, offering a unique system to study the evolution of molecular recognition. The SR family evolved from an estrogen-sensitive ancestor and diverged to become sensitive to progestagens, corticoids and, most recently, androgens. To understand the structural mechanisms driving the evolution of androgen responsiveness, the ancestral androgen receptor (ancAR1) was crystallized in complex with 5α-dihydrotestosterone (DHT) and a fragment of the transcriptional mediator/intermediary factor 2 (Tif2). Crystals diffracted to 2.1 Å resolution and the resulting structure will permit a direct comparison with its progestagen-sensitive ancestor, ancestral steroid receptor 2 (AncSR2).

  12. 10 CFR 7.21 - Cost of duplication of documents.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Cost of duplication of documents. 7.21 Section 7.21 Energy NUCLEAR REGULATORY COMMISSION ADVISORY COMMITTEES § 7.21 Cost of duplication of documents. Copies of the records, reports, transcripts, minutes, appendices, working papers, drafts, studies, agenda, or other...

  13. Oculocutaneous albinism in a patient with 17p13.2-pter duplication - a review on the molecular syndromology of 17p13 duplication.

    Science.gov (United States)

    Kucharczyk, Marzena; Jezela-Stanek, Aleksandra; Gieruszczak-Bialek, Dorota; Kugaudo, Monika; Cieslikowska, Agata; Pelc, Magdalena; Krajewska-Walasek, Malgorzata

    2015-06-01

    Chromosomal duplications involving 17p13.3 have recently been defined as a new distinctive syndrome with several diagnosed patients. Some variation is known to occur in the breakpoints of the duplicated region and, consequently, in the phenotype as well. We report on a patient, the fifth to our knowledge, a 4-year-old girl with a pure de novo subtelomeric 17p13.2-pter duplication. She presents all of the facial features described so far for this duplication and in addition, a unilateral palmar transversal crease and oculocutaneous albinism which has not been reported previously. A detailed molecular description of the reported aberration and correlation with the observed phenotypical features based on a literature review. We discuss the possible molecular etiology of albinism in regard to the mode of inheritance. The new data provided here may be useful for further genotype correlations in syndromes with oculocutaneous albinism, especially of autosomal dominant inheritance.

  14. Duplicate laboratory test reduction using a clinical decision support tool.

    Science.gov (United States)

    Procop, Gary W; Yerian, Lisa M; Wyllie, Robert; Harrison, A Marc; Kottke-Marchant, Kandice

    2014-05-01

    Duplicate laboratory tests that are unwarranted increase unnecessary phlebotomy, which contributes to iatrogenic anemia, decreased patient satisfaction, and increased health care costs. We employed a clinical decision support tool (CDST) to block unnecessary duplicate test orders during the computerized physician order entry (CPOE) process. We assessed laboratory cost savings after 2 years and searched for untoward patient events associated with this intervention. This CDST blocked 11,790 unnecessary duplicate test orders in these 2 years, which resulted in a cost savings of $183,586. There were no untoward effects reported associated with this intervention. The movement to CPOE affords real-time interaction between the laboratory and the physician through CDSTs that signal duplicate orders. These interactions save health care dollars and should also increase patient satisfaction and well-being.

  15. Dynamic Delayed Duplicate Detection for External Memory Model Checking

    DEFF Research Database (Denmark)

    Evangelista, Sami

    2008-01-01

    Duplicate detection is an expensive operation of disk-based model checkers. It consists of comparing some potentially new states, the candidate states, to previous visited states. We propose a new approach to this technique called dynamic delayed duplicate detection. This one exploits some typica...... significantly better than some previously published algorithms....

  16. [Anterior rectal duplication in adult patient: a case report].

    Science.gov (United States)

    Rodríguez-Cabrera, J; Villanueva-Sáenz, E; Bolaños-Badillo, L E

    2009-01-01

    To report a case of rectal duplication in the adult and make a literature review. The intestinal duplications are injuries of congenital origin that can exist from the base of the tongue to the anal verge, being the most frequent site at level of terminal ileum (22%) and at the rectal level in 5% To date approximately exist 80 reports in world-wide Literature generally in the pediatric population being little frequent in the adult age. Its presentation could be tubular or cystic. The recommended treatment is the surgical resection generally in block with coloanal anastomosis. A case review of rectal duplication in the adult and the conducted treatment. The case of a patient appears with diagnose of rectal duplication with tubular type,whose main symptom was constipation and fecal impactation. In the exploration was detect double rectal lumen (anterior and posterior) that it above initiates by of the anorectal ring with fibrous ulcer of fibrinoid aspect of 3 approx cm of length x 1 cm wide, at level of the septum that separates both rectal lumina. The rectal duplication is a rare pathology in the adult nevertheless is due to suspect before the existence of alterations in the mechanics of the defecation, rectal prolapse and rectal bleeding,the election treatment is a protectomy with colonic pouch in "J" and coloanal anastomosis.

  17. A linear mitochondrial genome of Cyclospora cayetanensis (Eimeriidae, Eucoccidiorida, Coccidiasina, Apicomplexa) suggests the ancestral start position within mitochondrial genomes of eimeriid coccidia.

    Science.gov (United States)

    Ogedengbe, Mosun E; Qvarnstrom, Yvonne; da Silva, Alexandre J; Arrowood, Michael J; Barta, John R

    2015-05-01

    The near complete mitochondrial genome for Cyclospora cayetanensis is 6184 bp in length with three protein-coding genes (Cox1, Cox3, CytB) and numerous lsrDNA and ssrDNA fragments. Gene arrangements were conserved with other coccidia in the Eimeriidae, but the C. cayetanensis mitochondrial genome is not circular-mapping. Terminal transferase tailing and nested PCR completed the 5'-terminus of the genome starting with a 21 bp A/T-only region that forms a potential stem-loop. Regions homologous to the C. cayetanensis mitochondrial genome 5'-terminus are found in all eimeriid mitochondrial genomes available and suggest this may be the ancestral start of eimeriid mitochondrial genomes. Copyright © 2015 Australian Society for Parasitology Inc. All rights reserved.

  18. Adenocarcinoma within a rectal duplication cyst: case report and literature review.

    Science.gov (United States)

    Michael, D; Cohen, C R; Northover, J M

    1999-05-01

    Intestinal duplications are uncommon but recognised developmental anomalies. Duplications of the rectum are the most uncommon of these anomalies. They may present with perianal fistulae, bleeding, a pelvic mass or symptoms produced by a mass, or, rarely, malignant change. We present a case of an adenocarcinoma within a rectal duplication cyst which was initially thought to be inoperable but was treated by radical surgery.

  19. Thermotolerant Yeast Strains Adapted by Laboratory Evolution Show Trade-Off at Ancestral Temperatures and Preadaptation to Other Stresses.

    Science.gov (United States)

    Caspeta, Luis; Nielsen, Jens

    2015-07-21

    A major challenge for the production of ethanol from biomass-derived feedstocks is to develop yeasts that can sustain growth under the variety of inhibitory conditions present in the production process, e.g., high osmolality, high ethanol titers, and/or elevated temperatures (≥ 40 °C). Using adaptive laboratory evolution, we previously isolated seven Saccharomyces cerevisiae strains with improved growth at 40 °C. Here, we show that genetic adaptations to high temperature caused a growth trade-off at ancestral temperatures, reduced cellular functions, and improved tolerance of other stresses. Thermotolerant yeast strains showed horizontal displacement of their thermal reaction norms to higher temperatures. Hence, their optimal and maximum growth temperatures increased by about 3 °C, whereas they showed a growth trade-off at temperatures below 34 °C. Computational analysis of the physical properties of proteins showed that the lethal temperature for yeast is around 49 °C, as a large fraction of the yeast proteins denature above this temperature. Our analysis also indicated that the number of functions involved in controlling the growth rate decreased in the thermotolerant strains compared with the number in the ancestral strain. The latter is an advantageous attribute for acquiring thermotolerance and correlates with the reduction of yeast functions associated with loss of respiration capacity. This trait caused glycerol overproduction that was associated with the growth trade-off at ancestral temperatures. In combination with altered sterol composition of cellular membranes, glycerol overproduction was also associated with yeast osmotolerance and improved tolerance of high concentrations of glucose and ethanol. Our study shows that thermal adaptation of yeast is suitable for improving yeast resistance to inhibitory conditions found in industrial ethanol production processes. Yeast thermotolerance can significantly reduce the production costs of biomass

  20. Diphallus with imperforate anus and complete duplication of recto-sigmoid colon and lower urinary tract.

    Science.gov (United States)

    Mirshemirani, Alireza; Roshanzamir, Fatollah; Shayeghi, Shahnaz; Mohajerzadeh, Leily; Hasas-Yeganeh, Shaghayegh

    2010-06-01

    Diphallus is a rare anomaly and accompanying anomalies vary from bifid scrotum, bladder exstrophy, imperforate anus and colo-rectal anomaly such as duplication, and other associated anomalies. A 2-day old infant is reported with imperforate anus and complete duplication of recto-sigmoid colon, rectal pouch, doubling of the genitalia with completely formed penis (diphallus), double bladder, urethra and hypospadias. No family history of abnormalities was noted. The patient underwent several operations: laparatory and colostomy at 3rd day of life, and after clinical and paraclinical investigations, cystoplasty, ureteral reimplantation and resection of left phallus were carried out when 4 months old. At the age of 1 year, after colostogram and total colon evaluation, laparatomy, resection of duplicated recto-sigmoid colon, and pull-through was carried out; 3 months later colostomy closure was performed and the patient discharged without complications. The patients with diphallus have to be examined carefully because of the high incidence of other systemic anomalies. Treatment of diphallus usually includes excision of the duplicated penile structure, its urethra, and repair of associated anomalies.

  1. Diphallus with Imperforate Anus and Complete Duplication of Recto-Sigmoid Colon and Lower Urinary Tract

    Science.gov (United States)

    Mirshemirani, Alireza; Roshanzamir, Fatollah; Shayeghi, Shahnaz; Mohajerzadeh, Leily; Hasas-yeganeh, Shaghayegh

    2010-01-01

    Background Diphallus is a rare anomaly and accompanying anomalies vary from bifid scrotum, bladder exstrophy, imperforate anus and colo-rectal anomaly such as duplication, and other associated anomalies. Case Presentation A 2-day old infant is reported with imperforate anus and complete duplication of recto-sigmoid colon, rectal pouch, doubling of the genitalia with completely formed penis (diphallus), double bladder, urethra and hypospadias. No family history of abnormalities was noted. The patient underwent several operations: laparatory and colostomy at 3rd day of life, and after clinical and paraclinical investigations, cystoplasty, ureteral reimplantation and resection of left phallus were carried out when 4 months old. At the age of 1 year, after colostogram and total colon evaluation, laparatomy, resection of duplicated recto-sigmoid colon, and pull-through was carried out; 3 months later colostomy closure was performed and the patient discharged without complications. Conclusion The patients with diphallus have to be examined carefully because of the high incidence of other systemic anomalies. Treatment of diphallus usually includes excision of the duplicated penile structure, its urethra, and repair of associated anomalies. PMID:23056710

  2. Tilapia and human CLIC2 structures are highly conserved.

    Science.gov (United States)

    Zeng, Jiao; Li, Zhengjun; Lui, Eei Yin; Lam, Siew Hong; Swaminathan, Kunchithapadam

    2018-01-08

    Chloride intracellular channels (CLICs) exist in soluble and membrane bound forms. We have determined the crystal structure of soluble Clic2 from the euryhaline teleost fish Oreochromis mossambicus. Structural comparison of tilapia and human CLIC2 with other CLICs shows that these proteins are highly conserved. We have also compared the expression levels of clic2 in selected osmoregulatory organs of tilapia, acclimated to freshwater, seawater and hypersaline water. Structural conservation of vertebrate CLICs implies that they might play conserved roles. Also, tissue-specific responsiveness of clic2 suggests that it might be involved in iono-osmoregulation under extreme conditions in tilapia. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. A Consensus Map in Cultivated Hexaploid Oat Reveals Conserved Grass Synteny with Substantial Subgenome Rearrangement

    Directory of Open Access Journals (Sweden)

    Ashley S. Chaffin

    2016-07-01

    Full Text Available Hexaploid oat ( L., 2 = 6 = 42 is a member of the Poaceae family and has a large genome (∼12.5 Gb containing 21 chromosome pairs from three ancestral genomes. Physical rearrangements among parental genomes have hindered the development of linkage maps in this species. The objective of this work was to develop a single high-density consensus linkage map that is representative of the majority of commonly grown oat varieties. Data from a cDNA-derived single-nucleotide polymorphism (SNP array and genotyping-by-sequencing (GBS were collected from the progeny of 12 biparental recombinant inbred line populations derived from 19 parents representing oat germplasm cultivated primarily in North America. Linkage groups from all mapping populations were compared to identify 21 clusters of conserved collinearity. Linkage groups within each cluster were then merged into 21 consensus chromosomes, generating a framework consensus map of 7202 markers spanning 2843 cM. An additional 9678 markers were placed on this map with a lower degree of certainty. Assignment to physical chromosomes with high confidence was made for nine chromosomes. Comparison of homeologous regions among oat chromosomes and matches to orthologous regions of rice ( L. reveal that the hexaploid oat genome has been highly rearranged relative to its ancestral diploid genomes as a result of frequent translocations among chromosomes. Heterogeneous chromosome rearrangements among populations were also evident, probably accounting for the failure of some linkage groups to match the consensus. This work contributes to a further understanding of the organization and evolution of hexaploid grass genomes.

  4. Laparoscopic excision of an ascending colon duplication cyst in an adolescent

    Directory of Open Access Journals (Sweden)

    Heather R. Nolan

    2016-01-01

    Full Text Available Colonic intestinal duplications are infrequent and rarely present past early childhood. We present the case of a large, ascending colon duplication in a 17-year-old boy resected using minimally invasive techniques. This appears to be the first reported case of a laparoscopic en-bloc ascending colon duplication resection in an adolescent. The diagnosis and management of colonic duplications are discussed.

  5. Adenocarcinoma arising in rectal duplication cyst: case report and review of the literature.

    Science.gov (United States)

    Shivnani, Anand T; Small, William; Benson, Al; Rao, Sambasiva; Talamonti, Mark S

    2004-11-01

    Duplication cyst of the gastrointestinal (GI) tract is a rare congenital anomaly, and rectal duplication cysts comprise a small fraction these cases. Most patients present for the first time in adulthood, and the origin of rectal duplication cysts is unclear. Prior series document malignant transformation in approximately 20 per cent of cases. The following case report describes a carcinoma arising in a rectal duplication cyst. Given the lack of data demonstrating adequate control for patients with adenocarcinoma arising in a rectal duplication cyst and our experience with this patient, we recommend all patients undergo multidisciplinary evaluation prior to any therapy.

  6. Colonic duplications: Clinical presentation and radiologic features of five cases

    International Nuclear Information System (INIS)

    Blickman, J.G.; Rieu, P.H.M.; Buonomo, C.; Hoogeveen, Y.L.; Boetes, C.

    2006-01-01

    Diagnosis of colonic duplication can pose a potential problem even for those familiar with gastro-intestinal tract duplications in general but unaware of the condition due to its rarity and its apparently bimodal clinical presentation. In this report of five cases of surgically proven pediatric colonic duplication, we illustrate how the condition manifests clinically and describe the imaging features in an attempt to illustrate this bimodal presentation of the condition. The possible etiology, associated congenital anomalies and modes of clinical presentation are reviewed based on literature review as well as on our own experience

  7. Exposing region duplication through local geometrical color invariant features

    Science.gov (United States)

    Gong, Jiachang; Guo, Jichang

    2015-05-01

    Many advanced image-processing softwares are available for tampering images. How to determine the authenticity of an image has become an urgent problem. Copy-move is one of the most common image forgery operations. Many methods have been proposed for copy-move forgery detection (CMFD). However, most of these methods are designed for grayscale images without any color information used. They are usually not suitable when the duplicated regions have little structure or have undergone various transforms. We propose a CMFD method using local geometrical color invariant features to detect duplicated regions. The method starts by calculating the color gradient of the inspected image. Then, we directly take the color gradient as the input for scale invariant features transform (SIFT) to extract color-SIFT descriptors. Finally, keypoints are matched and clustered before their geometrical relationship is estimated to expose the duplicated regions. We evaluate the detection performance and computational complexity of the proposed method together with several popular CMFD methods on a public database. Experimental results demonstrate the efficacy of the proposed method in detecting duplicated regions with various transforms and poor structure.

  8. Ancestral genes can control the ability of horizontally acquired loci to confer new traits.

    Directory of Open Access Journals (Sweden)

    H Deborah Chen

    2011-07-01

    Full Text Available Horizontally acquired genes typically function as autonomous units conferring new abilities when introduced into different species. However, we reasoned that proteins preexisting in an organism might constrain the functionality of a horizontally acquired gene product if it operates on an ancestral pathway. Here, we determine how the horizontally acquired pmrD gene product activates the ancestral PmrA/PmrB two-component system in Salmonella enterica but not in the closely related bacterium Escherichia coli. The Salmonella PmrD protein binds to the phosphorylated PmrA protein (PmrA-P, protecting it from dephosphorylation by the PmrB protein. This results in transcription of PmrA-dependent genes, including those conferring polymyxin B resistance. We now report that the E. coli PmrD protein can activate the PmrA/PmrB system in Salmonella even though it cannot do it in E. coli, suggesting that these two species differ in an additional component controlling PmrA-P levels. We establish that the E. coli PmrB displays higher phosphatase activity towards PmrA-P than the Salmonella PmrB, and we identified a PmrB subdomain responsible for this property. Replacement of the E. coli pmrB gene with the Salmonella homolog was sufficient to render E. coli resistant to polymyxin B under PmrD-inducing conditions. Our findings provide a singular example whereby quantitative differences in the biochemical activities of orthologous ancestral proteins dictate the ability of a horizontally acquired gene product to confer species-specific traits. And they suggest that horizontally acquired genes can potentiate selection at ancestral loci.

  9. Human immunodeficiency virus type 1 subtype B ancestral envelope protein is functional and elicits neutralizing antibodies in rabbits similar to those elicited by a circulating subtype B envelope.

    Science.gov (United States)

    Doria-Rose, N A; Learn, G H; Rodrigo, A G; Nickle, D C; Li, F; Mahalanabis, M; Hensel, M T; McLaughlin, S; Edmonson, P F; Montefiori, D; Barnett, S W; Haigwood, N L; Mullins, J I

    2005-09-01

    Human immunodeficiency virus type 1 (HIV-1) is a difficult target for vaccine development, in part because of its ever-expanding genetic diversity and attendant capacity to escape immunologic recognition. Vaccine efficacy might be improved by maximizing immunogen antigenic similarity to viruses likely to be encountered by vaccinees. To this end, we designed a prototype HIV-1 envelope vaccine using a deduced ancestral state for the env gene. The ancestral state reconstruction method was shown to be >95% accurate by computer simulation and 99.8% accurate when estimating the known inoculum used in an experimental infection study in rhesus macaques. Furthermore, the deduced ancestor gene differed from the set of sequences used to derive the ancestor by an average of 12.3%, while these latter sequences were an average of 17.3% different from each other. A full-length ancestral subtype B HIV-1 env gene was constructed and shown to produce a glycoprotein of 160 kDa that bound and fused with cells expressing the HIV-1 coreceptor CCR5. This Env was also functional in a virus pseudotype assay. When either gp160- or gp140-expressing plasmids and recombinant gp120 were used to immunize rabbits in a DNA prime-protein boost regimen, the artificial gene induced immunoglobulin G antibodies capable of weakly neutralizing heterologous primary HIV-1 strains. The results were similar for rabbits immunized in parallel with a natural isolate, HIV-1 SF162. Further design efforts to better present conserved neutralization determinants are warranted.

  10. Neutral and Non-Neutral Evolution of Duplicated Genes with Gene Conversion

    Directory of Open Access Journals (Sweden)

    Jeffrey A. Fawcett

    2011-02-01

    Full Text Available Gene conversion is one of the major mutational mechanisms involved in the DNA sequence evolution of duplicated genes. It contributes to create unique patters of DNA polymorphism within species and divergence between species. A typical pattern is so-called concerted evolution, in which the divergence between duplicates is maintained low for a long time because of frequent exchanges of DNA fragments. In addition, gene conversion affects the DNA evolution of duplicates in various ways especially when selection operates. Here, we review theoretical models to understand the evolution of duplicates in both neutral and non-neutral cases. We also explain how these theories contribute to interpreting real polymorphism and divergence data by using some intriguing examples.

  11. Biological consequences of ancient gene acquisition and duplication in the large genome soil bacterium, ""solibacter usitatus"" strain Ellin6076

    Energy Technology Data Exchange (ETDEWEB)

    Challacombe, Jean F [Los Alamos National Laboratory; Eichorst, Stephanie A [Los Alamos National Laboratory; Xie, Gary [Los Alamos National Laboratory; Kuske, Cheryl R [Los Alamos National Laboratory; Hauser, Loren [ORNL; Land, Miriam [ORNL

    2009-01-01

    Bacterial genome sizes range from ca. 0.5 to 10Mb and are influenced by gene duplication, horizontal gene transfer, gene loss and other evolutionary processes. Sequenced genomes of strains in the phylum Acidobacteria revealed that 'Solibacter usistatus' strain Ellin6076 harbors a 9.9 Mb genome. This large genome appears to have arisen by horizontal gene transfer via ancient bacteriophage and plasmid-mediated transduction, as well as widespread small-scale gene duplications. This has resulted in an increased number of paralogs that are potentially ecologically important (ecoparalogs). Low amino acid sequence identities among functional group members and lack of conserved gene order and orientation in the regions containing similar groups of paralogs suggest that most of the paralogs were not the result of recent duplication events. The genome sizes of cultured subdivision 1 and 3 strains in the phylum Acidobacteria were estimated using pulsed-field gel electrophoresis to determine the prevalence of the large genome trait within the phylum. Members of subdivision 1 were estimated to have smaller genome sizes ranging from ca. 2.0 to 4.8 Mb, whereas members of subdivision 3 had slightly larger genomes, from ca. 5.8 to 9.9 Mb. It is hypothesized that the large genome of strain Ellin6076 encodes traits that provide a selective metabolic, defensive and regulatory advantage in the variable soil environment.

  12. Penile duplication and two anal openings; report of a very rare case.

    Science.gov (United States)

    Bakheet, Mohamed Abdel Al M; Refaei, Mohammad

    2012-03-01

    Penile duplication (diphallus) is an extremely rare disorder. It is almost always associated with other malformations like double bladder, exstrophy of the cloacae, imperforate anus, duplication of the rectosigmoid and vertebral deformities. Meanwhile anal canal duplication, the most distal and least common duplication of the digestive tube and is a very rare congenital malformation. A 21 days old Egyptian neonate is reported with complete penile duplication and two scrotums with each one carrying two palpable testes. Both penises have normal shaft with normally located meatus. Clear urine voids from both meati spontaneously. The child had also a fold of redundant skin about 4×5 cm at the anal region in which two separate anal openings are present. In rectal examination we found two normal anuses passing stool spontaneously. Ascending (voiding) cystourethrography revealed two penises with two separate meatuses and one bladder from which the two urethras go out separately. Intravenous pyelogram (IVP) revealed two normal kidneys and ureters. Barium study revealed duplication of rectum and colon, otherwise normal GIT. In our review of the literature, we did not come across any other case of this variety of the penile duplication and congenital presence of two anuses. Unfortunately the patient expired before any surgical correction.

  13. Hypospadiac Duplication of Anterior Urethra-a Rare Congenital Anomaly.

    Science.gov (United States)

    Goyal, Bhawana; Gupta, Suresh; Goyal, Parag

    2017-02-01

    Duplication of the urethra is a complex and rarely seen congenital anomaly with three anatomic variants: epispadiac (dorsal), hypospadiac (ventral), and Y-type. We report here a case of hypospadiac duplication of anterior urethra with dorsal blind ending urethra in a 9-year-old boy who presented with complaint of passing urine from the ventral aspect of penis.

  14. Comparison of SHOX and associated elements duplications distribution between patients (Lėri-Weill dyschondrosteosis/idiopathic short stature) and population sample.

    Science.gov (United States)

    Hirschfeldova, Katerina; Solc, Roman

    2017-09-05

    The effect of heterozygous duplications of SHOX and associated elements on Lėri-Weill dyschondrosteosis (LWD) and idiopathic short stature (ISS) development is less distinct when compared to reciprocal deletions. The aim of our study was to compare frequency and distribution of duplications within SHOX and associated elements between population sample and LWD (ISS) patients. A preliminary analysis conducted on Czech population sample of 250 individuals compared to our previously reported sample of 352 ISS/LWD Czech patients indicated that rather than the difference in frequency of duplications it is the difference in their distribution. Particularly, there was an increased frequency of duplications residing to the CNE-9 enhancer in our LWD/ISS sample. To see whether the obtained data are consistent across published studies we made a literature survey to get published cases with SHOX or associated elements duplication and formed the merged LWD, the merged ISS, and the merged population samples. Relative frequency of particular region duplication in each of those merged samples were calculated. There was a significant difference in the relative frequency of CNE-9 enhancer duplications (11 vs. 3) and complete SHOX (exon1-6b) duplications (4 vs. 24) (p-value 0.0139 and p-value 0.000014, respectively) between the merged LWD sample and the merged population sample. We thus propose that partial SHOX duplications and small duplications encompassing CNE-9 enhancer could be highly penetrant alleles associated with ISS and LWD development. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The ancestral chromosomes of Dromiciops gliroides (Microbiotheridae), and its bearings on the karyotypic evolution of American marsupials

    OpenAIRE

    Su?rez-Villota, Elkin Y.; Haro, Ronie E.; Vargas, Rodrigo A.; Gallardo, Milton H.

    2016-01-01

    Background The low-numbered 14-chromosome karyotype of marsupials has falsified the fusion hypothesis claiming ancestrality from a 22-chromosome karyotype. Since the 14-chromosome condition of the relict Dromiciops gliroides is reminecent of ancestrality, its interstitial traces of past putative fusions and heterochromatin banding patterns were studied and added to available marsupials? cytogenetic data. Fluorescent in situ hybridization (FISH) and self-genomic in situ hybridization (self-GIS...

  16. Gastric Duplication Cyst: A Rare Congenital Disease Often Misdiagnosed in Adults

    Directory of Open Access Journals (Sweden)

    Jessica Falleti

    2013-01-01

    Full Text Available Gastrointestinal duplication is a rare congenital disease which affected more commonly the ileum, while the stomach is rarely involved. Generally diagnosed in paediatric or young age, it could be difficult to suspect a gastrointestinal duplication in adults. Herein, we report a 55-year-old male with a gastric duplication cyst found on routinely checkup for chronic hepatitis and first misdiagnosed as a gastrointestinal stromal tumor (GIST; we also discuss its embryology.

  17. Domain architecture conservation in orthologs

    Science.gov (United States)

    2011-01-01

    Background As orthologous proteins are expected to retain function more often than other homologs, they are often used for functional annotation transfer between species. However, ortholog identification methods do not take into account changes in domain architecture, which are likely to modify a protein's function. By domain architecture we refer to the sequential arrangement of domains along a protein sequence. To assess the level of domain architecture conservation among orthologs, we carried out a large-scale study of such events between human and 40 other species spanning the entire evolutionary range. We designed a score to measure domain architecture similarity and used it to analyze differences in domain architecture conservation between orthologs and paralogs relative to the conservation of primary sequence. We also statistically characterized the extents of different types of domain swapping events across pairs of orthologs and paralogs. Results The analysis shows that orthologs exhibit greater domain architecture conservation than paralogous homologs, even when differences in average sequence divergence are compensated for, for homologs that have diverged beyond a certain threshold. We interpret this as an indication of a stronger selective pressure on orthologs than paralogs to retain the domain architecture required for the proteins to perform a specific function. In general, orthologs as well as the closest paralogous homologs have very similar domain architectures, even at large evolutionary separation. The most common domain architecture changes observed in both ortholog and paralog pairs involved insertion/deletion of new domains, while domain shuffling and segment duplication/deletion were very infrequent. Conclusions On the whole, our results support the hypothesis that function conservation between orthologs demands higher domain architecture conservation than other types of homologs, relative to primary sequence conservation. This supports the

  18. Highly conserved non-coding sequences are associated with vertebrate development.

    Directory of Open Access Journals (Sweden)

    Adam Woolfe

    2005-01-01

    Full Text Available In addition to protein coding sequence, the human genome contains a significant amount of regulatory DNA, the identification of which is proving somewhat recalcitrant to both in silico and functional methods. An approach that has been used with some success is comparative sequence analysis, whereby equivalent genomic regions from different organisms are compared in order to identify both similarities and differences. In general, similarities in sequence between highly divergent organisms imply functional constraint. We have used a whole-genome comparison between humans and the pufferfish, Fugu rubripes, to identify nearly 1,400 highly conserved non-coding sequences. Given the evolutionary divergence between these species, it is likely that these sequences are found in, and furthermore are essential to, all vertebrates. Most, and possibly all, of these sequences are located in and around genes that act as developmental regulators. Some of these sequences are over 90% identical across more than 500 bases, being more highly conserved than coding sequence between these two species. Despite this, we cannot find any similar sequences in invertebrate genomes. In order to begin to functionally test this set of sequences, we have used a rapid in vivo assay system using zebrafish embryos that allows tissue-specific enhancer activity to be identified. Functional data is presented for highly conserved non-coding sequences associated with four unrelated developmental regulators (SOX21, PAX6, HLXB9, and SHH, in order to demonstrate the suitability of this screen to a wide range of genes and expression patterns. Of 25 sequence elements tested around these four genes, 23 show significant enhancer activity in one or more tissues. We have identified a set of non-coding sequences that are highly conserved throughout vertebrates. They are found in clusters across the human genome, principally around genes that are implicated in the regulation of development

  19. Temperature-dependent respiration-growth relations in ancestral maize cultivars

    Science.gov (United States)

    Bruce N. Smith; Jillian L. Walker; Rebekka L. Stone; Angela R. Jones; Lee D. Hansen

    2001-01-01

    Shoots from 4- to 6-day old seedlings of seven ancestral or old cultivars of Zea mays L. were placed in a calorimeter. Dark metabolic heat rate (q) and CO2 production rate (RCO2) were measured at nine temperatures (5, 10, 15, 20, 25, 30, 35, 40, and 45 °C). Temperature dependencies of q and RCO2 were used to model response of both growth and substrate carbon conversion...

  20. Reconstructed ancestral Myo-inositol-3-phosphate synthases indicate that ancestors of the Thermococcales and Thermotoga species were more thermophilic than their descendants.

    Science.gov (United States)

    Butzin, Nicholas C; Lapierre, Pascal; Green, Anna G; Swithers, Kristen S; Gogarten, J Peter; Noll, Kenneth M

    2013-01-01

    The bacterial genomes of Thermotoga species show evidence of significant interdomain horizontal gene transfer from the Archaea. Members of this genus acquired many genes from the Thermococcales, which grow at higher temperatures than Thermotoga species. In order to study the functional history of an interdomain horizontally acquired gene we used ancestral sequence reconstruction to examine the thermal characteristics of reconstructed ancestral proteins of the Thermotoga lineage and its archaeal donors. Several ancestral sequence reconstruction methods were used to determine the possible sequences of the ancestral Thermotoga and Archaea myo-inositol-3-phosphate synthase (MIPS). These sequences were predicted to be more thermostable than the extant proteins using an established sequence composition method. We verified these computational predictions by measuring the activities and thermostabilities of purified proteins from the Thermotoga and the Thermococcales species, and eight ancestral reconstructed proteins. We found that the ancestral proteins from both the archaeal donor and the Thermotoga most recent common ancestor recipient were more thermostable than their descendants. We show that there is a correlation between the thermostability of MIPS protein and the optimal growth temperature (OGT) of its host, which suggests that the OGT of the ancestors of these species of Archaea and the Thermotoga grew at higher OGTs than their descendants.

  1. Reconstructed ancestral Myo-inositol-3-phosphate synthases indicate that ancestors of the Thermococcales and Thermotoga species were more thermophilic than their descendants.

    Directory of Open Access Journals (Sweden)

    Nicholas C Butzin

    Full Text Available The bacterial genomes of Thermotoga species show evidence of significant interdomain horizontal gene transfer from the Archaea. Members of this genus acquired many genes from the Thermococcales, which grow at higher temperatures than Thermotoga species. In order to study the functional history of an interdomain horizontally acquired gene we used ancestral sequence reconstruction to examine the thermal characteristics of reconstructed ancestral proteins of the Thermotoga lineage and its archaeal donors. Several ancestral sequence reconstruction methods were used to determine the possible sequences of the ancestral Thermotoga and Archaea myo-inositol-3-phosphate synthase (MIPS. These sequences were predicted to be more thermostable than the extant proteins using an established sequence composition method. We verified these computational predictions by measuring the activities and thermostabilities of purified proteins from the Thermotoga and the Thermococcales species, and eight ancestral reconstructed proteins. We found that the ancestral proteins from both the archaeal donor and the Thermotoga most recent common ancestor recipient were more thermostable than their descendants. We show that there is a correlation between the thermostability of MIPS protein and the optimal growth temperature (OGT of its host, which suggests that the OGT of the ancestors of these species of Archaea and the Thermotoga grew at higher OGTs than their descendants.

  2. Treatment of Duodenal Duplication by Trans-umbilical Exploratory Minimal Laparotomy

    Directory of Open Access Journals (Sweden)

    Li-Lan Chiang

    2009-08-01

    Full Text Available Duodenal duplication cysts are rare congenital lesions. Their presentation is often non-specific and physical examination and laboratory studies usually reveal no abnormal findings. The diagnosis of duodenal duplication cysts can thus be challenging and relies on ultrasonography, barium swallow, contrast enhanced computed tomography (CT, magnetic resonance imaging (MRI, and magnetic resonance cholangiopancreatography (MRCP. The management of duodenal duplication cyst is surgical. Laparotomy is usually necessary, and complete resection is the management goal. Subtotal excision with stripping of the mucosa due to close involvement of the pancreatobiliary tree, and endoscopic resection have Duodenal duplication cysts are rare congenital lesions usually diagnosed in infancy, although they may present in adulthood. Prenatal diagnosis is difficult, and postnatal diagnosis relies on ultrasonography, barium swallow, contrast-enhanced computerized tomography, magnetic resonance imaging (MRI, and magnetic resonance cholangiopancreatography. A female newborn was diagnosed with an abdominal cyst (size around 6 ×; 5 × 4 cm at gestational age (GA 24 weeks, by regular prenatal examination. After her birth at GA 37 weeks, we performed abdominal ultrasonography and MRI, but there was no definite diagnosis. The usual management of an abdominal cyst involves resection by laparotomy (requiring a large incision or laparoscopy (requiring several small incisions. We performed an exploratory trans-umbilical minimal laparotomy excision for surgery, and the pathology revealed duodenal duplication. In our case, there was no recurrence of the cyst after 18 months follow-up, and the operation scar was almost undetectable. Trans-umbilical minimal laparotomy excision may be considered as an alternative choice for the management of abdominal and duodenal duplication cysts.

  3. Emergence, development and diversification of the TGF-β signalling pathway within the animal kingdom

    Directory of Open Access Journals (Sweden)

    Moustakas Aristidis

    2009-02-01

    Full Text Available Abstract Background The question of how genomic processes, such as gene duplication, give rise to co-ordinated organismal properties, such as emergence of new body plans, organs and lifestyles, is of importance in developmental and evolutionary biology. Herein, we focus on the diversification of the transforming growth factor-β (TGF-β pathway – one of the fundamental and versatile metazoan signal transduction engines. Results After an investigation of 33 genomes, we show that the emergence of the TGF-β pathway coincided with appearance of the first known animal species. The primordial pathway repertoire consisted of four Smads and four receptors, similar to those observed in the extant genome of the early diverging tablet animal (Trichoplax adhaerens. We subsequently retrace duplications in ancestral genomes on the lineage leading to humans, as well as lineage-specific duplications, such as those which gave rise to novel Smads and receptors in teleost fishes. We conclude that the diversification of the TGF-β pathway can be parsimoniously explained according to the 2R model, with additional rounds of duplications in teleost fishes. Finally, we investigate duplications followed by accelerated evolution which gave rise to an atypical TGF-β pathway in free-living bacterial feeding nematodes of the genus Rhabditis. Conclusion Our results challenge the view of well-conserved developmental pathways. The TGF-β signal transduction engine has expanded through gene duplication, continually adopting new functions, as animals grew in anatomical complexity, colonized new environments, and developed an active immune system.

  4. Co-expression network analysis of duplicate genes in maize (Zea mays L.) reveals no subgenome bias.

    Science.gov (United States)

    Li, Lin; Briskine, Roman; Schaefer, Robert; Schnable, Patrick S; Myers, Chad L; Flagel, Lex E; Springer, Nathan M; Muehlbauer, Gary J

    2016-11-04

    Gene duplication is prevalent in many species and can result in coding and regulatory divergence. Gene duplications can be classified as whole genome duplication (WGD), tandem and inserted (non-syntenic). In maize, WGD resulted in the subgenomes maize1 and maize2, of which maize1 is considered the dominant subgenome. However, the landscape of co-expression network divergence of duplicate genes in maize is still largely uncharacterized. To address the consequence of gene duplication on co-expression network divergence, we developed a gene co-expression network from RNA-seq data derived from 64 different tissues/stages of the maize reference inbred-B73. WGD, tandem and inserted gene duplications exhibited distinct regulatory divergence. Inserted duplicate genes were more likely to be singletons in the co-expression networks, while WGD duplicate genes were likely to be co-expressed with other genes. Tandem duplicate genes were enriched in the co-expression pattern where co-expressed genes were nearly identical for the duplicates in the network. Older gene duplications exhibit more extensive co-expression variation than younger duplications. Overall, non-syntenic genes primarily from inserted duplications show more co-expression divergence. Also, such enlarged co-expression divergence is significantly related to duplication age. Moreover, subgenome dominance was not observed in the co-expression networks - maize1 and maize2 exhibit similar levels of intra subgenome correlations. Intriguingly, the level of inter subgenome co-expression was similar to the level of intra subgenome correlations, and genes from specific subgenomes were not likely to be the enriched in co-expression network modules and the hub genes were not predominantly from any specific subgenomes in maize. Our work provides a comprehensive analysis of maize co-expression network divergence for three different types of gene duplications and identifies potential relationships between duplication types

  5. A rare case of congenital Y-type urethral duplication

    Directory of Open Access Journals (Sweden)

    Charu Tiwari

    2015-11-01

    Full Text Available Duplication of urethra is a rare congenital anomaly. We report a case of Y-type of urethral duplication with the accessory urethra arising from posterior urethra and opening in the perineum. The orthotopic urethra was normal. The accessory urethral tract was cored, transfixed and divided. At 1 year of follow-up, the patient has no urinary complaints

  6. Human Genetic Ancestral Composition Correlates with the Origin of Mycobacterium leprae Strains in a Leprosy Endemic Population.

    Science.gov (United States)

    Cardona-Castro, Nora; Cortés, Edwin; Beltrán, Camilo; Romero, Marcela; Badel-Mogollón, Jaime E; Bedoya, Gabriel

    2015-01-01

    Recent reports have suggested that leprosy originated in Africa, extended to Asia and Europe, and arrived in the Americas during European colonization and the African slave trade. Due to colonization, the contemporary Colombian population is an admixture of Native-American, European and African ancestries. Because microorganisms are known to accompany humans during migrations, patterns of human migration can be traced by examining genomic changes in associated microbes. The current study analyzed 118 leprosy cases and 116 unrelated controls from two Colombian regions endemic for leprosy (Atlantic and Andean) in order to determine possible associations of leprosy with patient ancestral background (determined using 36 ancestry informative markers), Mycobacterium leprae genotype and/or patient geographical origin. We found significant differences between ancestral genetic composition. European components were predominant in Andean populations. In contrast, African components were higher in the Atlantic region. M. leprae genotypes were then analyzed for cluster associations and compared with the ancestral composition of leprosy patients. Two M. leprae principal clusters were found: haplotypes C54 and T45. Haplotype C54 associated with African origin and was more frequent in patients from the Atlantic region with a high African component. In contrast, haplotype T45 associated with European origin and was more frequent in Andean patients with a higher European component. These results suggest that the human and M. leprae genomes have co-existed since the African and European origins of the disease, with leprosy ultimately arriving in Colombia during colonization. Distinct M. leprae strains followed European and African settlement in the country and can be detected in contemporary Colombian populations.

  7. Rectal duplication cyst: a combined abdominal and endoanal operative approach.

    Science.gov (United States)

    Rees, Clare M; Woodward, Mark; Grier, David; Cusick, Eleri

    2007-04-01

    Rectal duplication cysts are rare, comprising duplications. Early excision is the treatment of choice and a number of surgical approaches have been described. We present a 3-week-old infant with a 3 cm cyst that was excised using a previously unreported combined abdominal and endoanal approach.

  8. p53 protects against genome instability following centriole duplication failure

    Science.gov (United States)

    Lambrus, Bramwell G.; Uetake, Yumi; Clutario, Kevin M.; Daggubati, Vikas; Snyder, Michael; Sluder, Greenfield

    2015-01-01

    Centriole function has been difficult to study because of a lack of specific tools that allow persistent and reversible centriole depletion. Here we combined gene targeting with an auxin-inducible degradation system to achieve rapid, titratable, and reversible control of Polo-like kinase 4 (Plk4), a master regulator of centriole biogenesis. Depletion of Plk4 led to a failure of centriole duplication that produced an irreversible cell cycle arrest within a few divisions. This arrest was not a result of a prolonged mitosis, chromosome segregation errors, or cytokinesis failure. Depleting p53 allowed cells that fail centriole duplication to proliferate indefinitely. Washout of auxin and restoration of endogenous Plk4 levels in cells that lack centrioles led to the penetrant formation of de novo centrioles that gained the ability to organize microtubules and duplicate. In summary, we uncover a p53-dependent surveillance mechanism that protects against genome instability by preventing cell growth after centriole duplication failure. PMID:26150389

  9. Tubulin evolution in insects: gene duplication and subfunctionalization provide specialized isoforms in a functionally constrained gene family

    Directory of Open Access Journals (Sweden)

    Gadagkar Sudhindra R

    2010-04-01

    with microtubule-associated proteins. CTT residues overwhelming comprise the co-evolving residues between Drosophila alpha 2 and beta 3 tubulin proteins, indicating CTT specializations can be mediated at the level of the tubulin dimer. Gene duplications post-dating separation of the insect orders are unevenly distributed, most often appearing in major alpha 1 and minor beta 2 clades. More than 40 introns are found in tubulins. Their distribution among tubulins reveals that insertion and deletion events are common, surprising given their potential for disrupting tubulin coding sequence. Compensatory evolution is found in Drosophila beta 2 tubulin cis-regulation, and reveals selective pressures acting to maintain testis expression without the use of previously identified testis cis-regulatory elements. Conclusion Tubulins have stringent structure/function relationships, indicated by strong purifying selection, the loss of many gene duplication products, alpha-beta co-evolution in the tubulin dimer, and compensatory evolution in beta 2 tubulin cis-regulation. They evolve through gene duplication, subfunctionalization in expression domain and divergence of duplication products, largely in CTT residues that mediate interactions with other proteins. This has resulted in the tissue-specific minor insect isoforms, and in particular the highly diverse α3, α4, and β2 reproductive tissue-specific tubulin isoforms, illustrating that even a highly conserved protein family can participate in the adaptive process and respond to sexual selection.

  10. Verification and characterization of chromosome duplication in haploid maize.

    Science.gov (United States)

    de Oliveira Couto, E G; Resende Von Pinho, E V; Von Pinho, R G; Veiga, A D; de Carvalho, M R; de Oliveira Bustamante, F; Nascimento, M S

    2015-06-26

    Doubled haploid technology has been used by various private companies. However, information regarding chromosome duplication methodologies, particularly those concerning techniques used to identify duplication in cells, is limited. Thus, we analyzed and characterized artificially doubled haploids using microsatellites molecular markers, pollen viability, and flow cytometry techniques. Evaluated material was obtained using two different chromosome duplication protocols in maize seeds considered haploids, resulting from the cross between the haploid inducer line KEMS and 4 hybrids (GNS 3225, GNS 3032, GNS 3264, and DKB 393). Fourteen days after duplication, plant samples were collected and assessed by flow cytometry. Further, the plants were transplanted to a field, and samples were collected for DNA analyses using microsatellite markers. The tassels were collected during anthesis for pollen viability analyses. Haploid, diploid, and mixoploid individuals were detected using flow cytometry, demonstrating that this technique was efficient for identifying doubled haploids. The microsatellites markers were also efficient for confirming the ploidies preselected by flow cytometry and for identifying homozygous individuals. Pollen viability showed a significant difference between the evaluated ploidies when the Alexander and propionic-carmin stains were used. The viability rates between the plodies analyzed show potential for fertilization.

  11. Identification, duplication, evolution and expression analyses of caleosins in Brassica plants and Arabidopsis subspecies.

    Science.gov (United States)

    Shen, Yue; Liu, Mingzhe; Wang, Lili; Li, Zhuowei; Taylor, David C; Li, Zhixi; Zhang, Meng

    2016-04-01

    Caleosins are a class of Ca(2+) binding proteins that appear to be ubiquitous in plants. Some of the main proteins embedded in the lipid monolayer of lipid droplets, caleosins, play critical roles in the degradation of storage lipids during germination and in lipid trafficking. Some of them have been shown to have histidine-dependent peroxygenase activity, which is believed to participate in stress responses in Arabidopsis. In the model plant Arabidopsis thaliana, caleosins have been examined extensively. However, little is known on a genome-wide scale about these proteins in other members of the Brassicaceae. In this study, 51 caleosins in Brassica plants and Arabidopsis lyrata were investigated and analyzed in silico. Among them, 31 caleosins, including 7 in A. lyrata, 11 in Brassica oleracea and 13 in Brassica napus, are herein identified for the first time. Segmental duplication was the main form of gene expansion. Alignment, motif and phylogenetic analyses showed that Brassica caleosins belong to either the H-family or the L-family with different motif structures and physicochemical properties. Our findings strongly suggest that L-caleosins are evolved from H-caleosins. Predicted phosphorylation sites were differentially conserved in H-caleosin and L-caleosins, respectively. 'RY-repeat' elements and phytohormone-related cis-elements were identified in different caleosins, which suggest diverse physiological functions. Gene structure analysis indicated that most caleosins (38 out of 44) contained six exons and five introns and their intron phases were highly conserved. Structurally integrated caleosins, such as BrCLO3-3 and BrCLO4-2, showed high expression levels and may have important roles. Some caleosins, such as BrCLO2 and BoCLO8-2, lost motifs of the calcium binding domain, proline knot, potential phosphorylation sites and haem-binding sites. Combined with their low expression, it is suggested that these caleosins may have lost function.

  12. High quality maize centromere 10 sequence reveals evidence of frequent recombination events

    Directory of Open Access Journals (Sweden)

    Thomas Kai Wolfgruber

    2016-03-01

    Full Text Available The ancestral centromeres of maize contain long stretches of the tandemly arranged CentC repeat. The abundance of tandem DNA repeats and centromeric retrotransposons (CR have presented a significant challenge to completely assembling centromeres using traditional sequencing methods. Here we report a nearly complete assembly of the 1.85 Mb maize centromere 10 from inbred B73 using PacBio technology and BACs from the reference genome project. The error rates estimated from overlapping BAC sequences are 7 x 10-6 and 5 x 10-5 for mismatches and indels, respectively. The number of gaps in the region covered by the reassembly was reduced from 140 in the reference genome to three. Three expressed genes are located between 92 and 477 kb of the inferred ancestral CentC cluster, which lies within the region of highest centromeric repeat density. The improved assembly increased the count of full-length centromeric retrotransposons from 5 to 55 and revealed a 22.7 kb segmental duplication that occurred approximately 121,000 years ago. Our analysis provides evidence of frequent recombination events in the form of partial retrotransposons, deletions within retrotransposons, chimeric retrotransposons, segmental duplications including higher order CentC repeats, a deleted CentC monomer, centromere-proximal inversions, and insertion of mitochondrial sequences. Double-strand DNA break (DSB repair is the most plausible mechanism for these events and may be the major driver of centromere repeat evolution and diversity. This repair appears to be mediated by microhomology, suggesting that tandem repeats may have evolved to facilitate the repair of frequent DSBs in centromeres.

  13. Case Report Duplication Of Gastrointestinal Tract

    African Journals Online (AJOL)

    duplication (Fig 3). A tragic event occurred intra-operatively when ... Brain damage persisted and all modalities of treatment were terminated upon confirmation of brain death. ... compression, epithelial recanalization, and vascular accidents (6) ...

  14. Tail-like Congenital Duplication of Lower Extremity (Extra Leg or ...

    African Journals Online (AJOL)

    2018-01-01

    Jan 1, 2018 ... ABSTRACT. BACKGROUND: Congenital duplication of lower extremity, either complete or incomplete is extremely rare. Only 26 cases had been reported till 2010, of which only 5 cases had feature of complete duplication. Theories have been proposed that the cause of this abnormality includes maternal ...

  15. MLL duplication in a pediatric patient with B-cell lymphoblastic lymphoma.

    Science.gov (United States)

    Mater, David Van; Goodman, Barbara K; Wang, Endi; Gaca, Ana M; Wechsler, Daniel S

    2012-04-01

    Lymphoblastic lymphoma is the second most common type of non-Hodgkin lymphoma seen in children. Approximately, 90% of lymphoblastic lymphomas arise from T cells, with the remaining 10% being B-cell-lineage derived. Although T-cell lymphoblastic lymphoma most frequently occurs in the anterior mediastinum (thymus), B-cell lymphoblastic lymphoma (B-LBL) predominates in extranodal sites such as skin and bone. Here, we describe a pediatric B-LBL patient who presented with extensive abdominal involvement and whose lymphoma cells displayed segmental duplication of the mixed lineage leukemia (MLL) gene. MLL duplication/amplification has been described primarily in acute myeloid leukemia and myelodysplastic syndrome with no published reports of discrete MLL duplication/amplification events in B-LBL. The MLL gene duplication noted in this case may represent a novel mechanism for tumorigenesis in B-LBL.

  16. Malrotation with midgut volvulus associated with perforated ileal duplication

    Directory of Open Access Journals (Sweden)

    Anand Pandey

    2013-01-01

    Full Text Available Duplication of the alimentary tract is an important surgical condition. It may occur anywhere in the gastrointestinal tract. An important complication of this entity is perforation of the normal or abnormal gut. Malrotation with midgut volvulus can be a surgical emergency. We present a patient, who presented as malrotation with midgut volvulus associated with perforated ileal duplication. The patient was successfully managed.

  17. The origin of the 5S ribosomal RNA molecule could have been caused by a single inverse duplication: strong evidence from its sequences.

    Science.gov (United States)

    Branciamore, Sergio; Di Giulio, Massimo

    2012-04-01

    The secondary structure of the 5S ribosomal RNA (5S rRNA) molecule shows a high degree of symmetry. In order to explain the origin of this symmetry, it has been conjectured that one half of the 5S rRNA molecule was its precursor and that an indirect duplication of this precursor created the other half and thus the current symmetry of the molecule. Here, we have subjected to an empirical test both the indirect duplication model, analysing a total of 684 5S rRNA sequences for complementarity between the two halves of the 5S rRNA, and the direct duplication model analysing in this case the similarity between the two halves of this molecule. In intra- and inter-molecule and intra- and inter-domain comparisons, we find a high statistical support to the hypothesis of a complementarity relationship between the two halves of the 5S rRNA molecule, denying vice versa the hypothesis of similarity between these halves. Therefore, these observations corroborate the indirect duplication model at the expense of the direct duplication model, as reason of the origin of the 5S rRNA molecule. More generally, we discuss and favour the hypothesis that all RNAs and proteins, which present symmetry, did so through gene duplication and not by gradualistic accumulation of few monomers or segments of molecule into a gradualistic growth process. This would be the consequence of the very high propensity that nucleic acids have to be subjected to duplications.

  18. Rickettsia phylogenomics: unwinding the intricacies of obligate intracellular life.

    Directory of Open Access Journals (Sweden)

    Joseph J Gillespie

    Full Text Available BACKGROUND: Completed genome sequences are rapidly increasing for Rickettsia, obligate intracellular alpha-proteobacteria responsible for various human diseases, including epidemic typhus and Rocky Mountain spotted fever. In light of phylogeny, the establishment of orthologous groups (OGs of open reading frames (ORFs will distinguish the core rickettsial genes and other group specific genes (class 1 OGs or C1OGs from those distributed indiscriminately throughout the rickettsial tree (class 2 OG or C2OGs. METHODOLOGY/PRINCIPAL FINDINGS: We present 1823 representative (no gene duplications and 259 non-representative (at least one gene duplication rickettsial OGs. While the highly reductive (approximately 1.2 MB Rickettsia genomes range in predicted ORFs from 872 to 1512, a core of 752 OGs was identified, depicting the essential Rickettsia genes. Unsurprisingly, this core lacks many metabolic genes, reflecting the dependence on host resources for growth and survival. Additionally, we bolster our recent reclassification of Rickettsia by identifying OGs that define the AG (ancestral group, TG (typhus group, TRG (transitional group, and SFG (spotted fever group rickettsiae. OGs for insect-associated species, tick-associated species and species that harbor plasmids were also predicted. Through superimposition of all OGs over robust phylogeny estimation, we discern between C1OGs and C2OGs, the latter depicting genes either decaying from the conserved C1OGs or acquired laterally. Finally, scrutiny of non-representative OGs revealed high levels of split genes versus gene duplications, with both phenomena confounding gene orthology assignment. Interestingly, non-representative OGs, as well as OGs comprised of several gene families typically involved in microbial pathogenicity and/or the acquisition of virulence factors, fall predominantly within C2OG distributions. CONCLUSION/SIGNIFICANCE: Collectively, we determined the relative conservation and

  19. Error analysis of filtering operations in pixel-duplicated images of diabetic retinopathy

    Science.gov (United States)

    Mehrubeoglu, Mehrube; McLauchlan, Lifford

    2010-08-01

    In this paper, diabetic retinopathy is chosen for a sample target image to demonstrate the effectiveness of image enlargement through pixel duplication in identifying regions of interest. Pixel duplication is presented as a simpler alternative to data interpolation techniques for detecting small structures in the images. A comparative analysis is performed on different image processing schemes applied to both original and pixel-duplicated images. Structures of interest are detected and and classification parameters optimized for minimum false positive detection in the original and enlarged retinal pictures. The error analysis demonstrates the advantages as well as shortcomings of pixel duplication in image enhancement when spatial averaging operations (smoothing filters) are also applied.

  20. Scintigraphic detection of 'yo-yo' phenomenon in incomplete ureteric duplication

    International Nuclear Information System (INIS)

    Chu, Winnie C.W.; Chan, Kam-wing; Metreweli, Constantine

    2003-01-01

    'Yo-yo' reflux in an incompletely duplicated renal system was demonstrated on 99m Tc-mercaptoacetyltriglycine (MAG3) renal scintigraphy in a 7-year-old girl presenting with low-grade fever and pyelonephritis. Incomplete duplication and a bifid renal pelvis, which may be seen in up to 4% of the North American population, occasionally causes symptoms because of recurrent urinary tract infection or loin pain. 99m Tc-MAG3 renal scintigraphy can demonstrate 'yo-yo' reflux in patients with incomplete renal duplication and should be considered in cases with unexplained loin pain, even if 99m Tc-dimercaptosuccinic acid (DMSA) renal scintigraphy is normal. (orig.)

  1. Rectal duplication cyst in an adult: the laparoscopic approach.

    Science.gov (United States)

    Salameh, Jihad R; Votanopoulos, Konstantinos I; Hilal, Raouf E; Essien, Francis A; Williams, Michael D; Barroso, Alberto O; Sweeney, John F; Brunicardi, F Charles

    2002-12-01

    Rectal duplication cyst (RDC) is a rare congenital anomaly representing 1% to 8% of all intestinal duplications. The case presented here is the first report of the laparoscopic resection of an RDC. We report the case of a 49-year-old white woman in whom a retrorectal cystic mass measuring 5 x 5.3 x 6 cm was diagnosed. The mass was completely resected by means of laparoscopic techniques. Pathologic findings revealed a cystic structure partially lined with squamous as well as respiratory- and gastrointestinal-type epithelium. Muscularis propria was identified in the outer portions of the wall of the specimen. No atypia or malignancy was identified. The overall findings were consistent with an RDC. Laparoscopic resection constitutes an excellent and patient-friendly approach to the management of large adult cystic duplication of the rectum.

  2. Horizontal transfer, not duplication, drives the expansion of protein families in prokaryotes.

    Directory of Open Access Journals (Sweden)

    Todd J Treangen

    2011-01-01

    Full Text Available Gene duplication followed by neo- or sub-functionalization deeply impacts the evolution of protein families and is regarded as the main source of adaptive functional novelty in eukaryotes. While there is ample evidence of adaptive gene duplication in prokaryotes, it is not clear whether duplication outweighs the contribution of horizontal gene transfer in the expansion of protein families. We analyzed closely related prokaryote strains or species with small genomes (Helicobacter, Neisseria, Streptococcus, Sulfolobus, average-sized genomes (Bacillus, Enterobacteriaceae, and large genomes (Pseudomonas, Bradyrhizobiaceae to untangle the effects of duplication and horizontal transfer. After removing the effects of transposable elements and phages, we show that the vast majority of expansions of protein families are due to transfer, even among large genomes. Transferred genes--xenologs--persist longer in prokaryotic lineages possibly due to a higher/longer adaptive role. On the other hand, duplicated genes--paralogs--are expressed more, and, when persistent, they evolve slower. This suggests that gene transfer and gene duplication have very different roles in shaping the evolution of biological systems: transfer allows the acquisition of new functions and duplication leads to higher gene dosage. Accordingly, we show that paralogs share most protein-protein interactions and genetic regulators, whereas xenologs share very few of them. Prokaryotes invented most of life's biochemical diversity. Therefore, the study of the evolution of biology systems should explicitly account for the predominant role of horizontal gene transfer in the diversification of protein families.

  3. Do Père David's deer lose memories of their ancestral predators?

    Directory of Open Access Journals (Sweden)

    Chunwang Li

    Full Text Available Whether prey retains antipredator behavior after a long period of predator relaxation is an important question in predator-prey evolution. Père David's deer have been raised in enclosures for more than 1200 years and this isolation provides an opportunity to study whether Père David's deer still respond to the cues of their ancestral predators or to novel predators. We played back the sounds of crows (familiar sound and domestic dogs (familiar non-predators, of tigers and wolves (ancestral predators, and of lions (potential naïve predator to Père David's deer in paddocks, and blank sounds to the control group, and videoed the behavior of the deer during the experiment. We also showed life-size photo models of dog, leopard, bear, tiger, wolf, and lion to the deer and video taped their responses after seeing these models. Père David's deer stared at and approached the hidden loudspeaker when they heard the roars of tiger or lion. The deer listened to tiger roars longer, approached to tiger roars more and spent more time staring at the tiger model. The stags were also found to forage less in the trials of tiger roars than that of other sound playbacks. Additionally, it took longer for the deer to restore their normal behavior after they heard tiger roars, which was longer than that after the trial of other sound playbacks. Moreover, the deer were only found to walk away after hearing the sounds of tiger and wolf. Therefore, the tiger was probably the main predator for Père David's deer in ancient time. Our study implies that Père David's deer still retain the memories of the acoustic and visual cues of their ancestral predators in spite of the long term isolation from natural habitat.

  4. Bias and efficiency loss in regression estimates due to duplicated observations: a Monte Carlo simulation

    Directory of Open Access Journals (Sweden)

    Francesco Sarracino

    2017-04-01

    Full Text Available Recent studies documented that survey data contain duplicate records. We assess how duplicate records affect regression estimates, and we evaluate the effectiveness of solutions to deal with duplicate records. Results show that the chances of obtaining unbiased estimates when data contain 40 doublets (about 5% of the sample range between 3.5% and 11.5% depending on the distribution of duplicates. If 7 quintuplets are present in the data (2% of the sample, then the probability of obtaining biased estimates ranges between 11% and 20%. Weighting the duplicate records by the inverse of their multiplicity, or dropping superfluous duplicates outperform other solutions in all considered scenarios. Our results illustrate the risk of using data in presence of duplicate records and call for further research on strategies to analyze affected data.

  5. The conversion of centrioles to centrosomes: essential coupling of duplication with segregation.

    Science.gov (United States)

    Wang, Won-Jing; Soni, Rajesh Kumar; Uryu, Kunihiro; Tsou, Meng-Fu Bryan

    2011-05-16

    Centrioles are self-reproducing organelles that form the core structure of centrosomes or microtubule-organizing centers (MTOCs). However, whether duplication and MTOC organization reflect innate activities of centrioles or activities acquired conditionally is unclear. In this paper, we show that newly formed full-length centrioles had no inherent capacity to duplicate or to organize pericentriolar material (PCM) but acquired both after mitosis through a Plk1-dependent modification that occurred in early mitosis. Modified centrioles initiated PCM recruitment in G1 and segregated equally in mitosis through association with spindle poles. Conversely, unmodified centrioles segregated randomly unless passively tethered to modified centrioles. Strikingly, duplication occurred only in centrioles that were both modified and disengaged, whereas unmodified centrioles, engaged or not, were "infertile," indicating that engagement specifically blocks modified centrioles from reduplication. These two requirements, centriole modification and disengagement, fully exclude unlimited duplication in one cell cycle. We thus uncovered a Plk1-dependent mechanism whereby duplication and segregation are coupled to maintain centriole homeostasis.

  6. MECP2 duplication phenotype in symptomatic females: report of three further cases

    OpenAIRE

    Novara, Francesca; Simonati, Alessandro; Sicca, Federico; Battini, Roberta; Fiori, Simona; Contaldo, Annarita; Criscuolo, Lucia; Zuffardi, Orsetta; Ciccone, Roberto

    2014-01-01

    Background Xq28 duplications, including MECP2 (methyl CpG-binding protein 2; OMIM 300005), have been identified in approximately 140 male patients presenting with hypotonia, severe developmental delay/intellectual disability, limited or absent speech and ambulation, and recurrent respiratory infections. Female patients with Xq28 duplication have been rarely reported and are usually asymptomatic. Altogether, only fifteen symptomatic females with Xq28 duplications including MECP2 have been repo...

  7. Craniofacial duplication (diprosopus): CT, MR imaging, and MR angiography findings case report.

    Science.gov (United States)

    Hähnel, Stefan; Schramm, Peter; Hassfeld, Stefan; Steiner, Hans H; Seitz, Angelika

    2003-01-01

    Diprosopus is one of the rarest malformations in humans. In addition to the facial structures, the cerebral frontal lobes were duplicated in this case. Three pairs of anterior cerebral arteries were detected, and the rostral parts of the superior sagittal sinus were duplicated. Computed tomography, magnetic resonance (MR) imaging, and MR angiography allowed study of the degree of duplicative changes in diprosopus, especially for planning cosmetic correction. Copyright RSNA, 2002

  8. Phylogenetic detection of numerous gene duplications shared by animals, fungi and plants

    OpenAIRE

    Zhou, Xiaofan; Lin, Zhenguo; Ma, Hong

    2010-01-01

    Background Gene duplication is considered a major driving force for evolution of genetic novelty, thereby facilitating functional divergence and organismal diversity, including the process of speciation. Animals, fungi and plants are major eukaryotic kingdoms and the divergences between them are some of the most significant evolutionary events. Although gene duplications in each lineage have been studied extensively in various contexts, the extent of gene duplication prior to the split of pla...

  9. Detection and correction of false segmental duplications caused by genome mis-assembly

    Science.gov (United States)

    2010-01-01

    Diploid genomes with divergent chromosomes present special problems for assembly software as two copies of especially polymorphic regions may be mistakenly constructed, creating the appearance of a recent segmental duplication. We developed a method for identifying such false duplications and applied it to four vertebrate genomes. For each genome, we corrected mis-assemblies, improved estimates of the amount of duplicated sequence, and recovered polymorphisms between the sequenced chromosomes. PMID:20219098

  10. Structure of genes for dermaseptins B, antimicrobial peptides from frog skin. Exon 1-encoded prepropeptide is conserved in genes for peptides of highly different structures and activities.

    Science.gov (United States)

    Vouille, V; Amiche, M; Nicolas, P

    1997-09-01

    We cloned the genes of two members of the dermaseptin family, broad-spectrum antimicrobial peptides isolated from the skin of the arboreal frog Phyllomedusa bicolor. The dermaseptin gene Drg2 has a 2-exon coding structure interrupted by a small 137-bp intron, wherein exon 1 encoded a 22-residue hydrophobic signal peptide and the first three amino acids of the acidic propiece; exon 2 contained the 18 additional acidic residues of the propiece plus a typical prohormone processing signal Lys-Arg and a 32-residue dermaseptin progenitor sequence. The dermaseptin genes Drg2 and Drg1g2 have conserved sequences at both untranslated ends and in the first and second coding exons. In contrast, Drg1g2 comprises a third coding exon for a short version of the acidic propiece and a second dermaseptin progenitor sequence. Structural conservation between the two genes suggests that Drg1g2 arose recently from an ancestral Drg2-like gene through amplification of part of the second coding exon and 3'-untranslated region. Analysis of the cDNAs coding precursors for several frog skin peptides of highly different structures and activities demonstrates that the signal peptides and part of the acidic propieces are encoded by conserved nucleotides encompassed by the first coding exon of the dermaseptin genes. The organization of the genes that belong to this family, with the signal peptide and the progenitor sequence on separate exons, permits strikingly different peptides to be directed into the secretory pathway. The recruitment of such a homologous 'secretory' exon by otherwise non-homologous genes may have been an early event in the evolution of amphibian.

  11. Method of duplicating film using the CR system. Evaluation of detectability in a simulated nodule

    International Nuclear Information System (INIS)

    Fukuyama, Atsushi; Ando, Satoshi; Maeda, Kayoko; Ida, Kazushi; Suzuki, Tomoaki; Fukuyama, Kouichi; Hasegawa, Takeo

    2005-01-01

    Since film processors used for screen-film systems have been decreasing recently, it is becoming difficult to develop duplicating film (Dup film) used conventionally. The purpose of this study was to evaluate the usefulness of the method of duplicating film using a computed radiography (CR) system. The process of duplicating film using CR is to eliminate energy accumulated on the imaging plate (IP) using white light, to accumulate energy on the whole surface, and to place the original film in piles. After an exposure of white light, duplicated films can be obtained by CR system. In order to evaluate the reproducibiliy of our system, duplicated films were read by experienced observers and receiver operating characteristic (ROC) analysis was carried out. Observers read 50 images with a simulated nodule and 50 images without a simulated nodule. The average Az values were 0.94 for the original films, 0.91 for films duplicated using Dup film, and 0.90 for films duplicated using the CR system. When the two-tailed paired-T test was performed for each result, there were no statistically significant differences at p<0.05. The detectability of a simulated nodule for films duplicated using the CR system did not differ from the detectability of films duplicated using Dup film. This method may be a reasonable substitute for the conventional duplication system. (author)

  12. A case of asymptomatic ileal duplication cyst associated with acute appendicitis

    Directory of Open Access Journals (Sweden)

    Hülya İpek

    2017-07-01

    Full Text Available Duplications of the alimentary tract are infrequent anomalies. They are most frequently located in the terminal ileum, and majority of them became symptomatic before the age of 2. Presenting symptoms may include abdominal mass, intestinal obstruction, intussusception, rectal bleeding, and abdominal pain. Preoperative diagnosis is usually difficult, intra-abdominal duplications are usually diagnosed during surgical explorations of above complications. We presented a 12-year-old girl with asymptomatic ileal duplication cyst associated with non-complicated acute appendicitis, whose imaging studies at admission were compatible with complicated perforated appendicitis.

  13. Partial Duplication of Chromosome 8p

    African Journals Online (AJOL)

    rme

    The partial chromosome 8p duplication is a rare syndrome and is ... abnormality of maternal origin that ... second trimester by vaginal bleeding and ... echocardiography, brain CT scan and. MRI. Fig. 1:Conventional karyotype of case 3 showing.

  14. A retroperitoneal foregut duplication cyst: a case report

    International Nuclear Information System (INIS)

    Kim, Yong Woon; Lee, Jin Hee; Byun, Kyung Hwan; Kim, Byung Ki; Sohn, Kyung Sik; Kee, Se Kook; Jeon, Jin Min; Yun, Young Kook

    2006-01-01

    Retroperitoneal foregut duplication cyst is an extremely rare congenital malformation. Pathologically, this lesion contains both gastric mucosa and respiratory type mucosa; radiologically, it is often challenging to differentiate it from the other cystic neoplasms that present a similar appearance. We report on a case of retroperitoneal foregut duplication cyst that was lined by both gastric and pseudostratified ciliated columnar epithelium, and it was also accompanied by a pancreatic pseudocyst. Initially, it presented with peripancreatic and intrapancreatic cystic masses in an asymptomatic 30-year-old man, and this man has since undergone surgical resection

  15. Gene duplication, tissue-specific gene expression and sexual conflict in stalk-eyed flies (Diopsidae).

    Science.gov (United States)

    Baker, Richard H; Narechania, Apurva; Johns, Philip M; Wilkinson, Gerald S

    2012-08-19

    Gene duplication provides an essential source of novel genetic material to facilitate rapid morphological evolution. Traits involved in reproduction and sexual dimorphism represent some of the fastest evolving traits in nature, and gene duplication is intricately involved in the origin and evolution of these traits. Here, we review genomic research on stalk-eyed flies (Diopsidae) that has been used to examine the extent of gene duplication and its role in the genetic architecture of sexual dimorphism. Stalk-eyed flies are remarkable because of the elongation of the head into long stalks, with the eyes and antenna laterally displaced at the ends of these stalks. Many species are strongly sexually dimorphic for eyespan, and these flies have become a model system for studying sexual selection. Using both expressed sequence tag and next-generation sequencing, we have established an extensive database of gene expression in the developing eye-antennal imaginal disc, the adult head and testes. Duplicated genes exhibit narrower expression patterns than non-duplicated genes, and the testes, in particular, provide an abundant source of gene duplication. Within somatic tissue, duplicated genes are more likely to be differentially expressed between the sexes, suggesting gene duplication may provide a mechanism for resolving sexual conflict.

  16. FUNCTIONAL SPECIALIZATION OF DUPLICATED FLAVONOID BIOSYNTHESIS GENES IN WHEAT

    Directory of Open Access Journals (Sweden)

    Khlestkina E.

    2012-08-01

    Full Text Available Gene duplication followed by subfunctionalization and neofunctionalization is of a great evolutionary importance. In plant genomes, duplicated genes may result from either polyploidization (homoeologous genes or segmental chromosome duplications (paralogous genes. In allohexaploid wheat Triticum aestivum L. (2n=6x=42, genome BBAADD, both homoeologous and paralogous copies were found for the regulatory gene Myc encoding MYC-like transcriptional factor in the biosynthesis of flavonoid pigments, anthocyanins, and for the structural gene F3h encoding one of the key enzymes of flavonoid biosynthesis, flavanone 3-hydroxylase. From the 5 copies (3 homoeologous and 2 paralogous of the Myc gene found in T. aestivum, only one plays a regulatory role in anthocyanin biosynthesis, interacting complementary with another transcriptional factor (MYB-like to confer purple pigmentation of grain pericarp in wheat. The role and functionality of the other 4 copies of the Myc gene remain unknown. From the 4 functional copies of the F3h gene in T. aestivum, three homoeologues have similar function. They are expressed in wheat organs colored with anthocyanins or in the endosperm, participating there in biosynthesis of uncolored flavonoid substances. The fourth copy (the B-genomic paralogue is transcribed neither in wheat organs colored with anthocyanins nor in seeds, however, it’s expression has been noticed in roots of aluminium-stressed plants, where the three homoeologous copies are not active. Functional diversification of the duplicated flavonoid biosynthesis genes in wheat may be a reason for maintenance of the duplicated copies and preventing them from pseudogenization.The study was supported by RFBR (11-04-92707. We also thank Ms. Galina Generalova for technical assistance.

  17. The evolution of the tape measure protein: units, duplications and losses

    Directory of Open Access Journals (Sweden)

    Poisson Guylaine

    2011-10-01

    Full Text Available Abstract Background A large family of viruses that infect bacteria, called phages, is characterized by long tails used to inject DNA into their victims' cells. The tape measure protein got its name because the length of the corresponding gene is proportional to the length of the phage's tail: a fact shown by actually copying or splicing out parts of DNA in exemplar species. A natural question is whether there exist units for these tape measures, and if different tape measures have different units and lengths. Such units would allow us to retrace the evolution of tape measure proteins using their duplication/loss history. The vast number of sequenced phages genomes allows us to attack this problem with a comparative genomics approach. Results Here we describe a subset of phages whose tape measure proteins contain variable numbers of an 11 amino acids sequence repeat, aligned with sequence similarity, structural properties, and simple arithmetics. This subset provides a unique opportunity for the combinatorial study of phage evolution, without the added uncertainties of multiple alignments, which are trivial in this case, or of protein functions, that are well established. We give a heuristic that reconstructs the duplication history of these sequences, using divergent strains to discriminate between mutations that occurred before and after speciation, or lineage divergence. The heuristic is based on an efficient algorithm that gives an exhaustive enumeration of all possible parsimonious reconstructions of the duplication/speciation history of a single nucleotide. Finally, we present a method that allows, when possible, to discriminate between duplication and loss events. Conclusions Establishing the evolutionary history of viruses is difficult, in part due to extensive recombinations and gene transfers, and high mutation rates that often erase detectable similarity between homologous genes. In this paper, we introduce new tools to address this

  18. Cystic rectal duplication: a rare cause of neonatal intestinal obstruction.

    Science.gov (United States)

    Mboyo, A; Monek, O; Massicot, R; Martin, L; Destuynder, O; Lemouel, A; Aubert, D

    1997-07-01

    A case of cystic rectal duplication revealed on day 2 of life by a low intestinal occluding syndrome is reported. Radiologic imaging (ultrasonography, cystography, rectography) showed a large, retrorectal liquid formation in the pelvis and abdomen, with pelvic compression of the terminal alimentary canal and lower urinary tract. Magnetic resonance imaging demonstrated a liquid formation with clearly defined edges and no medullary involvement, thus ruling out the possibility of a previous meningeal hernia. Biological markers were within normal limits. On day 4, a 9 x 6-cm cystic rectal duplication was removed, followed by a temporary colostomy. Pathologic examination demonstrated typical rectal architecture with ciliated cells. Radiologic and clinical findings at 2-month follow-up were reassuring. This case report is exceptional for the following reasons: (1) As a rule, rectal duplications are relatively rare (70 cases reported in the literature); (2) The means of disclosing a neonatal rectal duplication is unusual (4 cases reported in the literature); (3) The volume of the malformation was considerable; and (4) Heterotopic ciliated epithelium was present.

  19. Reciprocal duplication of the Williams-Beuren syndrome deletion on chromosome 7q11.23 is associated with schizophrenia.

    Science.gov (United States)

    Mulle, Jennifer Gladys; Pulver, Ann E; McGrath, John A; Wolyniec, Paula S; Dodd, Anne F; Cutler, David J; Sebat, Jonathan; Malhotra, Dheeraj; Nestadt, Gerald; Conrad, Donald F; Hurles, Matthew; Barnes, Chris P; Ikeda, Masashi; Iwata, Nakao; Levinson, Douglas F; Gejman, Pablo V; Sanders, Alan R; Duan, Jubao; Mitchell, Adele A; Peter, Inga; Sklar, Pamela; O'Dushlaine, Colm T; Grozeva, Detelina; O'Donovan, Michael C; Owen, Michael J; Hultman, Christina M; Kähler, Anna K; Sullivan, Patrick F; Kirov, George; Warren, Stephen T

    2014-03-01

    Several copy number variants (CNVs) have been implicated as susceptibility factors for schizophrenia (SZ). Some of these same CNVs also increase risk for autism spectrum disorders, suggesting an etiologic overlap between these conditions. Recently, de novo duplications of a region on chromosome 7q11.23 were associated with autism spectrum disorders. The reciprocal deletion of this region causes Williams-Beuren syndrome. We assayed an Ashkenazi Jewish cohort of 554 SZ cases and 1014 controls for genome-wide CNV. An excess of large rare and de novo CNVs were observed, including a 1.4 Mb duplication on chromosome 7q11.23 identified in two unrelated patients. To test whether this 7q11.23 duplication is also associated with SZ, we obtained data for 14,387 SZ cases and 28,139 controls from seven additional studies with high-resolution genome-wide CNV detection. We performed a meta-analysis, correcting for study population of origin, to assess whether the duplication is associated with SZ. We found duplications at 7q11.23 in 11 of 14,387 SZ cases with only 1 in 28,139 control subjects (unadjusted odds ratio 21.52, 95% confidence interval: 3.13-922.6, p value 5.5 × 10(-5); adjusted odds ratio 10.8, 95% confidence interval: 1.46-79.62, p value .007). Of three SZ duplication carriers with detailed retrospective data, all showed social anxiety and language delay premorbid to SZ onset, consistent with both human studies and animal models of the 7q11.23 duplication. We have identified a new CNV associated with SZ. Reciprocal duplication of the Williams-Beuren syndrome deletion at chromosome 7q11.23 confers an approximately tenfold increase in risk for SZ. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  20. Gene duplication, loss and selection in the evolution of saxitoxin biosynthesis in alveolates.

    Science.gov (United States)

    Murray, Shauna A; Diwan, Rutuja; Orr, Russell J S; Kohli, Gurjeet S; John, Uwe

    2015-11-01

    A group of marine dinoflagellates (Alveolata, Eukaryota), consisting of ∼10 species of the genus Alexandrium, Gymnodinium catenatum and Pyrodinium bahamense, produce the toxin saxitoxin and its analogues (STX), which can accumulate in shellfish, leading to ecosystem and human health impacts. The genes, sxt, putatively involved in STX biosynthesis, have recently been identified, however, the evolution of these genes within dinoflagellates is not clear. There are two reasons for this: uncertainty over the phylogeny of dinoflagellates; and that the sxt genes of many species of Alexandrium and other dinoflagellate genera are not known. Here, we determined the phylogeny of STX-producing and other dinoflagellates based on a concatenated eight-gene alignment. We determined the presence, diversity and phylogeny of sxtA, domains A1 and A4 and sxtG in 52 strains of Alexandrium, and a further 43 species of dinoflagellates and thirteen other alveolates. We confirmed the presence and high sequence conservation of sxtA, domain A4, in 40 strains (35 Alexandrium, 1 Pyrodinium, 4 Gymnodinium) of 8 species of STX-producing dinoflagellates, and absence from non-producing species. We found three paralogs of sxtA, domain A1, and a widespread distribution of sxtA1 in non-STX producing dinoflagellates, indicating duplication events in the evolution of this gene. One paralog, clade 2, of sxtA1 may be particularly related to STX biosynthesis. Similarly, sxtG appears to be generally restricted to STX-producing species, while three amidinotransferase gene paralogs were found in dinoflagellates. We investigated the role of positive (diversifying) selection following duplication in sxtA1 and sxtG, and found negative selection in clades of sxtG and sxtA1, clade 2, suggesting they were functionally constrained. Significant episodic diversifying selection was found in some strains in clade 3 of sxtA1, a clade that may not be involved in STX biosynthesis, indicating pressure for diversification

  1. Pollination and reproduction of an invasive plant inside and outside its ancestral range

    Science.gov (United States)

    Petanidou, Theodora; Price, Mary V.; Bronstein, Judith L.; Kantsa, Aphrodite; Tscheulin, Thomas; Kariyat, Rupesh; Krigas, Nikos; Mescher, Mark C.; De Moraes, Consuelo M.; Waser, Nickolas M.

    2018-05-01

    Comparing traits of invasive species within and beyond their ancestral range may improve our understanding of processes that promote aggressive spread. Solanum elaeagnifolium (silverleaf nightshade) is a noxious weed in its ancestral range in North America and is invasive on other continents. We compared investment in flowers and ovules, pollination success, and fruit and seed set in populations from Arizona, USA ("AZ") and Greece ("GR"). In both countries, the populations we sampled varied in size and types of present-day disturbance. Stature of plants increased with population size in AZ samples whereas GR plants were uniformly tall. Taller plants produced more flowers, and GR plants produced more flowers for a given stature and allocated more ovules per flower. Similar functional groups of native bees pollinated in AZ and GR populations, but visits to flowers decreased with population size and we observed no visits in the largest GR populations. As a result, plants in large GR populations were pollen-limited, and estimates of fecundity were lower on average in GR populations despite the larger allocation to flowers and ovules. These differences between plants in our AZ and GR populations suggest promising directions for further study. It would be useful to sample S. elaeagnifolium in Mediterranean climates within the ancestral range (e.g., in California, USA), to study asexual spread via rhizomes, and to use common gardens and genetic studies to explore the basis of variation in allocation patterns and of relationships between visitation and fruit set.

  2. Specific duplication and dorsoventrally asymmetric expression patterns of Cycloidea-like genes in zygomorphic species of Ranunculaceae.

    Science.gov (United States)

    Jabbour, Florian; Cossard, Guillaume; Le Guilloux, Martine; Sannier, Julie; Nadot, Sophie; Damerval, Catherine

    2014-01-01

    Floral bilateral symmetry (zygomorphy) has evolved several times independently in angiosperms from radially symmetrical (actinomorphic) ancestral states. Homologs of the Antirrhinum majus Cycloidea gene (Cyc) have been shown to control floral symmetry in diverse groups in core eudicots. In the basal eudicot family Ranunculaceae, there is a single evolutionary transition from actinomorphy to zygomorphy in the stem lineage of the tribe Delphinieae. We characterized Cyc homologs in 18 genera of Ranunculaceae, including the four genera of Delphinieae, in a sampling that represents the floral morphological diversity of this tribe, and reconstructed the evolutionary history of this gene family in Ranunculaceae. Within each of the two RanaCyL (Ranunculaceae Cycloidea-like) lineages previously identified, an additional duplication possibly predating the emergence of the Delphinieae was found, resulting in up to four gene copies in zygomorphic species. Expression analyses indicate that the RanaCyL paralogs are expressed early in floral buds and that the duration of their expression varies between species and paralog class. At most one RanaCyL paralog was expressed during the late stages of floral development in the actinomorphic species studied whereas all paralogs from the zygomorphic species were expressed, composing a species-specific identity code for perianth organs. The contrasted asymmetric patterns of expression observed in the two zygomorphic species is discussed in relation to their distinct perianth architecture.

  3. Specific duplication and dorsoventrally asymmetric expression patterns of Cycloidea-like genes in zygomorphic species of Ranunculaceae.

    Directory of Open Access Journals (Sweden)

    Florian Jabbour

    Full Text Available Floral bilateral symmetry (zygomorphy has evolved several times independently in angiosperms from radially symmetrical (actinomorphic ancestral states. Homologs of the Antirrhinum majus Cycloidea gene (Cyc have been shown to control floral symmetry in diverse groups in core eudicots. In the basal eudicot family Ranunculaceae, there is a single evolutionary transition from actinomorphy to zygomorphy in the stem lineage of the tribe Delphinieae. We characterized Cyc homologs in 18 genera of Ranunculaceae, including the four genera of Delphinieae, in a sampling that represents the floral morphological diversity of this tribe, and reconstructed the evolutionary history of this gene family in Ranunculaceae. Within each of the two RanaCyL (Ranunculaceae Cycloidea-like lineages previously identified, an additional duplication possibly predating the emergence of the Delphinieae was found, resulting in up to four gene copies in zygomorphic species. Expression analyses indicate that the RanaCyL paralogs are expressed early in floral buds and that the duration of their expression varies between species and paralog class. At most one RanaCyL paralog was expressed during the late stages of floral development in the actinomorphic species studied whereas all paralogs from the zygomorphic species were expressed, composing a species-specific identity code for perianth organs. The contrasted asymmetric patterns of expression observed in the two zygomorphic species is discussed in relation to their distinct perianth architecture.

  4. High-resolution satellite imagery is an important yet underutilized resource in conservation biology.

    Science.gov (United States)

    Boyle, Sarah A; Kennedy, Christina M; Torres, Julio; Colman, Karen; Pérez-Estigarribia, Pastor E; de la Sancha, Noé U

    2014-01-01

    Technological advances and increasing availability of high-resolution satellite imagery offer the potential for more accurate land cover classifications and pattern analyses, which could greatly improve the detection and quantification of land cover change for conservation. Such remotely-sensed products, however, are often expensive and difficult to acquire, which prohibits or reduces their use. We tested whether imagery of high spatial resolution (≤5 m) differs from lower-resolution imagery (≥30 m) in performance and extent of use for conservation applications. To assess performance, we classified land cover in a heterogeneous region of Interior Atlantic Forest in Paraguay, which has undergone recent and dramatic human-induced habitat loss and fragmentation. We used 4 m multispectral IKONOS and 30 m multispectral Landsat imagery and determined the extent to which resolution influenced the delineation of land cover classes and patch-level metrics. Higher-resolution imagery more accurately delineated cover classes, identified smaller patches, retained patch shape, and detected narrower, linear patches. To assess extent of use, we surveyed three conservation journals (Biological Conservation, Biotropica, Conservation Biology) and found limited application of high-resolution imagery in research, with only 26.8% of land cover studies analyzing satellite imagery, and of these studies only 10.4% used imagery ≤5 m resolution. Our results suggest that high-resolution imagery is warranted yet under-utilized in conservation research, but is needed to adequately monitor and evaluate forest loss and conversion, and to delineate potentially important stepping-stone fragments that may serve as corridors in a human-modified landscape. Greater access to low-cost, multiband, high-resolution satellite imagery would therefore greatly facilitate conservation management and decision-making.

  5. Whole-gene positive selection, elevated synonymous substitution rates, duplication, and indel evolution of the chloroplast clpP1 gene.

    Directory of Open Access Journals (Sweden)

    Per Erixon

    Full Text Available BACKGROUND: Synonymous DNA substitution rates in the plant chloroplast genome are generally relatively slow and lineage dependent. Non-synonymous rates are usually even slower due to purifying selection acting on the genes. Positive selection is expected to speed up non-synonymous substitution rates, whereas synonymous rates are expected to be unaffected. Until recently, positive selection has seldom been observed in chloroplast genes, and large-scale structural rearrangements leading to gene duplications are hitherto supposed to be rare. METHODOLOGY/PRINCIPLE FINDINGS: We found high substitution rates in the exons of the plastid clpP1 gene in Oenothera (the Evening Primrose family and three separate lineages in the tribe Sileneae (Caryophyllaceae, the Carnation family. Introns have been lost in some of the lineages, but where present, the intron sequences have substitution rates similar to those found in other introns of their genomes. The elevated substitution rates of clpP1 are associated with statistically significant whole-gene positive selection in three branches of the phylogeny. In two of the lineages we found multiple copies of the gene. Neighboring genes present in the duplicated fragments do not show signs of elevated substitution rates or positive selection. Although non-synonymous substitutions account for most of the increase in substitution rates, synonymous rates are also markedly elevated in some lineages. Whereas plant clpP1 genes experiencing negative (purifying selection are characterized by having very conserved lengths, genes under positive selection often have large insertions of more or less repetitive amino acid sequence motifs. CONCLUSIONS/SIGNIFICANCE: We found positive selection of the clpP1 gene in various plant lineages to correlated with repeated duplication of the clpP1 gene and surrounding regions, repetitive amino acid sequences, and increase in synonymous substitution rates. The present study sheds light on the

  6. Human Genetic Ancestral Composition Correlates with the Origin of Mycobacterium leprae Strains in a Leprosy Endemic Population.

    Directory of Open Access Journals (Sweden)

    Nora Cardona-Castro

    Full Text Available Recent reports have suggested that leprosy originated in Africa, extended to Asia and Europe, and arrived in the Americas during European colonization and the African slave trade. Due to colonization, the contemporary Colombian population is an admixture of Native-American, European and African ancestries. Because microorganisms are known to accompany humans during migrations, patterns of human migration can be traced by examining genomic changes in associated microbes. The current study analyzed 118 leprosy cases and 116 unrelated controls from two Colombian regions endemic for leprosy (Atlantic and Andean in order to determine possible associations of leprosy with patient ancestral background (determined using 36 ancestry informative markers, Mycobacterium leprae genotype and/or patient geographical origin. We found significant differences between ancestral genetic composition. European components were predominant in Andean populations. In contrast, African components were higher in the Atlantic region. M. leprae genotypes were then analyzed for cluster associations and compared with the ancestral composition of leprosy patients. Two M. leprae principal clusters were found: haplotypes C54 and T45. Haplotype C54 associated with African origin and was more frequent in patients from the Atlantic region with a high African component. In contrast, haplotype T45 associated with European origin and was more frequent in Andean patients with a higher European component. These results suggest that the human and M. leprae genomes have co-existed since the African and European origins of the disease, with leprosy ultimately arriving in Colombia during colonization. Distinct M. leprae strains followed European and African settlement in the country and can be detected in contemporary Colombian populations.

  7. Estimation of the net acid load of the diet of ancestral preagricultural Homo sapiens and their hominid ancestors.

    Science.gov (United States)

    Sebastian, Anthony; Frassetto, Lynda A; Sellmeyer, Deborah E; Merriam, Renée L; Morris, R Curtis

    2002-12-01

    Natural selection has had diet resulting from the inventions of agriculture and animal husbandry. The objective was to estimate the net systemic load of acid (net endogenous acid production; NEAP) from retrojected ancestral preagricultural diets and to compare it with that of contemporary diets, which are characterized by an imbalance of nutrient precursors of hydrogen and bicarbonate ions that induces a lifelong, low-grade, pathogenically significant systemic metabolic acidosis. Using established computational methods, we computed NEAP for a large number of retrojected ancestral preagricultural diets and compared them with computed and measured values for typical American diets. The mean (+/- SD) NEAP for 159 retrojected preagricultural diets was -88 +/- 82 mEq/d; 87% were net base-producing. The computational model predicted NEAP for the average American diet (as recorded in the third National Health and Nutrition Examination Survey) as 48 mEq/d, within a few percentage points of published measured values for free-living Americans; the model, therefore, was not biased toward generating negative NEAP values. The historical shift from negative to positive NEAP was accounted for by the displacement of high-bicarbonate-yielding plant foods in the ancestral diet by cereal grains and energy-dense, nutrient-poor foods in the contemporary diet-neither of which are net base-producing. The findings suggest that diet-induced metabolic acidosis and its sequelae in humans eating contemporary diets reflect a mismatch between the nutrient composition of the diet and genetically determined nutritional requirements for optimal systemic acid-base status.

  8. Conserved molecular interactions in centriole-to-centrosome conversion.

    Science.gov (United States)

    Fu, Jingyan; Lipinszki, Zoltan; Rangone, Hélène; Min, Mingwei; Mykura, Charlotte; Chao-Chu, Jennifer; Schneider, Sandra; Dzhindzhev, Nikola S; Gottardo, Marco; Riparbelli, Maria Giovanna; Callaini, Giuliano; Glover, David M

    2016-01-01

    Centrioles are required to assemble centrosomes for cell division and cilia for motility and signalling. New centrioles assemble perpendicularly to pre-existing ones in G1-S and elongate throughout S and G2. Fully elongated daughter centrioles are converted into centrosomes during mitosis to be able to duplicate and organize pericentriolar material in the next cell cycle. Here we show that centriole-to-centrosome conversion requires sequential loading of Cep135, Ana1 (Cep295) and Asterless (Cep152) onto daughter centrioles during mitotic progression in both Drosophila melanogaster and human. This generates a molecular network spanning from the inner- to outermost parts of the centriole. Ana1 forms a molecular strut within the network, and its essential role can be substituted by an engineered fragment providing an alternative linkage between Asterless and Cep135. This conserved architectural framework is essential for loading Asterless or Cep152, the partner of the master regulator of centriole duplication, Plk4. Our study thus uncovers the molecular basis for centriole-to-centrosome conversion that renders daughter centrioles competent for motherhood.

  9. Duplication of the pituitary gland associated with multiple blastogenesis defects: Duplication of the pituitary gland (DPG)-plus syndrome. Case report and review of literature.

    Science.gov (United States)

    Manjila, Sunil; Miller, Erin A; Vadera, Sumeet; Goel, Rishi K; Khan, Fahd R; Crowe, Carol; Geertman, Robert T

    2012-01-01

    Duplication of the pituitary gland (DPG) is a rare craniofacial developmental anomaly occurring during blastogenesis with postulated etiology such as incomplete twinning, teratogens, median cleft face syndrome or splitting of the notochord. The complex craniocaudal spectrum of blastogenesis defects associated with DPG is examined with an illustrative case. We report for the first time in the medical literature some unique associations with DPG, such as a clival encephalocele, third cerebral peduncle, duplicate odontoid process and a double tongue with independent volitional control. This patient also has the previously reported common associations such as duplicated sella, cleft palate, hypertelorism, callosal agenesis, hypothalamic enlargement, nasopharyngeal teratoma, fenestrated basilar artery and supernumerary teeth. This study also reviews 37 cases of DPG identified through MEDLINE literature search from 1880 to 2011. It provides a detailed analysis of the current case through physical examination and imaging. The authors propose that the developmental deformities associated with duplication of pituitary gland (DPG) occur as part of a developmental continuum, not as chance associations. Considering the fact that DPG is uniquely and certainly present throughout the spectrum of these blastogenesis defects, we suggest the term DPG-plus syndrome.

  10. Diprosopus (partially duplicated head) associated with anencephaly: a case report.

    Science.gov (United States)

    al Muti Zaitoun, A; Chang, J; Booker, M

    1999-01-01

    Craniofacial duplication (diprosopus) is a rare form of conjoined twin. A 16 year old mother with a twin pregnancy delivered one normally formed baby boy and one diprosopus male. The malformed baby was 33 weeks of gestation with a single trunk, normal limbs and various degrees of facial duplication. Of the following structures there were two of each: noses, eyes, ears (and one dimple), mouths, tongues and, with bilateral central cleft lips and cleft palates. This was associated with holoprosencephaly and craniorachischisis. Internal organs showed no duplication. There were multiple congenital anomalies including diaphragmatic hernia, small lungs, two lobes of the right lung, ventricular septal defect, small adrenal gland and small left kidney with short ureter. The body also had a short neck, small chest cavities and kyphosis. X-ray revealed duplication of the vertebral column. The case presented here represents a type II of diprosopia of Rating (1933) and is the least common type reported. We also reviewed 22 recently reported cases of diprosopus. In addition to facial duplication, anencephaly, neural tube defect and cardiac malformations represent the more common congenital abnormalities associated with diprosopus. The pathogenesis of diprosopus is not well understood. Factors that play a role in diprosopus are probably similar to those factors (genetic, environmental and abnormal placental circulation) which affect monozoygotic twins as observed in this case report. Early ultrasonography diagnosis of diprosopus permits one to consider a vaginal therapeutic abortion.

  11. A rare association of rectal and genitourinary duplication and anorectal malformation

    Institute of Scientific and Technical Information of China (English)

    王俊; 施诚仁; 余世耀; 吴燕; 徐长辉

    2003-01-01

    @@ It is very rare to see multiple malformations occurring in both the urogenital and digestive systems in a case of congenital anorectal malformation. In this particular care, an imperforated anus occurred with other multiple malformations, including a double kidney, urethral duplication and rectal duplication, etc.

  12. Role of computed tomography in oesophageal duplications. Report of two cases; Duplications oesophagiennes: place de la tomodensitometrie

    Energy Technology Data Exchange (ETDEWEB)

    Jouini, S.; Menif, E.; Azaiez, N.; Ben Hajel, H.; Cheikh, I.; Ben Ammar, A.; Sellami, M.; Ben Jaafar, M. [Hopital La Rabta, Tunis (Tunisia)

    1995-12-31

    The authors present two cases of esophageal duplication: tubular in one case and cystic in the other. This rare anomaly was identified in both cases by CT scan. A review of literature is proposed. (authors). 22 refs., 10 figs.

  13. Intussusception due to a cecal duplication cyst: a rare cause of acute abdomen. Case report.

    Science.gov (United States)

    Corroppolo, M; Zampieri, N; Erculiani, E; Cecchetto, M; Camoglio, F S

    2007-01-01

    Duplications of the alimentary tract are rare congenital anomalies. The ileum is the most common site, whereas rectal, duodenal, gastric and cecal duplications are extremely rare. Duplication cysts of the cecum, in a neonate, are even rarer, with only 19 cases reported in medical literature to date. We report a case of intestinal intussusception due to a cecal duplication cyst.

  14. An allele of an ancestral transcription factor dependent on a horizontally acquired gene product.

    Science.gov (United States)

    Chen, H Deborah; Jewett, Mollie W; Groisman, Eduardo A

    2012-01-01

    Changes in gene regulatory circuits often give rise to phenotypic differences among closely related organisms. In bacteria, these changes can result from alterations in the ancestral genome and/or be brought about by genes acquired by horizontal transfer. Here, we identify an allele of the ancestral transcription factor PmrA that requires the horizontally acquired pmrD gene product to promote gene expression. We determined that a single amino acid difference between the PmrA proteins from the human adapted Salmonella enterica serovar Paratyphi B and the broad host range S. enterica serovar Typhimurium rendered transcription of PmrA-activated genes dependent on the PmrD protein in the former but not the latter serovar. Bacteria harboring the serovar Typhimurium allele exhibited polymyxin B resistance under PmrA- or under PmrA- and PmrD-inducing conditions. By contrast, isogenic strains with the serovar Paratyphi B allele displayed PmrA-regulated polymyxin B resistance only when experiencing activating conditions for both PmrA and PmrD. We establish that the two PmrA orthologs display quantitative differences in several biochemical properties. Strains harboring the serovar Paratyphi B allele showed enhanced biofilm formation, a property that might promote serovar Paratyphi B's chronic infection of the gallbladder. Our findings illustrate how subtle differences in ancestral genes can impact the ability of horizontally acquired genes to confer new properties.

  15. Craniofacial Duplication (Diprosopus) in the Cat — Case Report and Review of the Literature

    International Nuclear Information System (INIS)

    Sekeles, E.; Aharon, D.C.; Fass, U.

    1985-01-01

    A kitten displaying the features of symmetrical partial duplication of the head (diprosopus) is described. The morphological description of this double monster is compared to three previous similar cases. All four cases were similar in that duplication of the orbits and eyes were not completed and fission of the oral and nasal cavities and their contents were partial. Furthermore, the central nervous systems were duplicated as far caudal as the brain stem. Present case displayed cleft palate in the two faces, a feature that was not described earlier. Though diprosopus is a rare anomaly in cats, it is more common than in the dog, pig and sheep. In cattle, anterior duplications are one of the largest groups of congenital anomalies. Based on generally accepted considerations concerning the mechanism behind the formation of monozyous twins, conjoined twins and anterior duplications, integrated with experimental data on induction of duplications in animals, an hypothesis is proposed for early embryonic fission. It suggests a constant cleaving factor active along the median plane with affinity to midline structures. Its temporal relations with the developing embryo, especially in susceptible species, decide the degree and type of duplication

  16. Rectosigmoid tubular duplication presenting as perineal sepsis in a neonate.

    Science.gov (United States)

    Zhang, Zhibo; Huang, Ying; Wang, Dajia; Su, Pengjun

    2010-03-01

    Tubular rectal duplication is a very rare congenital anomaly. We report a case of tubular rectal duplication in a newborn baby who presented with perianal sepsis. The diagnosis was confirmed by barium enema, magnetic resonance imaging, and at operation. We performed total mucosectomy through a posterior sagittal incision combined with laparotomy. The patient was doing quite well at 17-month follow-up examination.

  17. Reducing duplicate testing: a comparison of two clinical decision support tools.

    Science.gov (United States)

    Procop, Gary W; Keating, Catherine; Stagno, Paul; Kottke-Marchant, Kandice; Partin, Mary; Tuttle, Robert; Wyllie, Robert

    2015-05-01

    Unnecessary duplicate laboratory testing is common and costly. Systems-based means to avert unnecessary testing should be investigated and employed. We compared the effectiveness and cost savings associated with two clinical decision support tools to stop duplicate testing. The Hard Stop required telephone contact with the laboratory and justification to have the duplicate test performed, whereas the Smart Alert allowed the provider to bypass the alert at the point of order entry without justification. The Hard Stop alert was significantly more effective than the Smart Alert (92.3% vs 42.6%, respectively; P < .0001). The cost savings realized per alert activation was $16.08/alert for the Hard Stop alert vs $3.52/alert for the Smart Alert. Structural and process changes that require laboratory contact and justification for duplicate testing are more effective than interventions that allow providers to bypass alerts without justification at point of computerized physician order entry. Copyright© by the American Society for Clinical Pathology.

  18. Evolution of Rosaceae Fruit Types Based on Nuclear Phylogeny in the Context of Geological Times and Genome Duplication.

    Science.gov (United States)

    Xiang, Yezi; Huang, Chien-Hsun; Hu, Yi; Wen, Jun; Li, Shisheng; Yi, Tingshuang; Chen, Hongyi; Xiang, Jun; Ma, Hong

    2017-02-01

    Fruits are the defining feature of angiosperms, likely have contributed to angiosperm successes by protecting and dispersing seeds, and provide foods to humans and other animals, with many morphological types and important ecological and agricultural implications. Rosaceae is a family with ∼3000 species and an extraordinary spectrum of distinct fruits, including fleshy peach, apple, and strawberry prized by their consumers, as well as dry achenetum and follicetum with features facilitating seed dispersal, excellent for studying fruit evolution. To address Rosaceae fruit evolution and other questions, we generated 125 new transcriptomic and genomic datasets and identified hundreds of nuclear genes to reconstruct a well-resolved Rosaceae phylogeny with highly supported monophyly of all subfamilies and tribes. Molecular clock analysis revealed an estimated age of ∼101.6 Ma for crown Rosaceae and divergence times of tribes and genera, providing a geological and climate context for fruit evolution. Phylogenomic analysis yielded strong evidence for numerous whole genome duplications (WGDs), supporting the hypothesis that the apple tribe had a WGD and revealing another one shared by fleshy fruit-bearing members of this tribe, with moderate support for WGDs in the peach tribe and other groups. Ancestral character reconstruction for fruit types supports independent origins of fleshy fruits from dry-fruit ancestors, including the evolution of drupes (e.g., peach) and pomes (e.g., apple) from follicetum, and drupetum (raspberry and blackberry) from achenetum. We propose that WGDs and environmental factors, including animals, contributed to the evolution of the many fruits in Rosaceae, which provide a foundation for understanding fruit evolution. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  19. Preliminary appraisal of ground water in and near the ancestral Missouri River Valley, northeastern Montana

    Science.gov (United States)

    Levings, G.W.

    1986-01-01

    A preliminary appraisal was conducted in and near the ancestral Missouri River valley in northeastern Montana to describe the groundwater resources and to establish a data base for the area. The data base then could be used for future evaluation of possible changes in water levels or water quality. In this area, consolidated aquifers are the Upper Cretaceous Fox Hills-lower Hell Creek aquifer and the overlying Paleocene Fort Union Formation. Unconsolidated aquifers are Pleistocene terrace gravel and glacial deposits and Holocene alluvial deposits. Aquifers are recharged by precipitation, infiltration of streamflow, and possibly leakage from lakes and potholes. Groundwater moves from topographically higher areas to the ancestral valley, then along the ancestral valley to the southwest. Water is discharged from aquifers by evapotranspiration, springs and seeps, movement directly into streams and lakes, and from pumping wells. Average well yields are greatest for irrigation wells completed in outwash gravel (886 gallons/min). Eighteen wells were completed in various aquifers to monitor potential long-term changes in water levels and water quality. Measured water levels declined about 2 ft. or less during the study (1982-85). Chemical analysis of groundwater samples indicated that concentrations of some dissolved constituents exceeded U.S. Environmental Protection Agency standards for drinking water. (USGS)

  20. When ancestral heritage is a source of discomfort: culture, pre-object relatedness, and self-alienation.

    Science.gov (United States)

    Kradin, Richard L

    2012-04-01

    The ancestral claims on an individual can evoke mental conflict when they involve separating from an ethnic group whose beliefs and customs are devalued by the dominant culture. However, these claims are engraved on the psyche early in development by caretakers to the level of pre-object relatedness, where contents and affect tones are implicit and may be unavailable for later psychoanalytical interventions. In addition, as the anthropologist Clifford Geertz notes, one's culture of origin precedes the development of psyche and creates its own set of claims that must be renegotiated when one encounters a different domain of cultural symbols, a confrontation that can produce psychological dissonance and self-alienation. In this paper, three cases are examined in which mental conflicts were evoked by attempts at divesting ancestral claims in response to conscious efforts to assimilate into the dominant culture. These patients suffered from separation guilt and unstable self-esteem and reported dream imagery suggesting psychological imbalance. The requirement to carefully delineate the ancestral claims on psyche as well as those contents and affects that may not be accessible to therapeutic intervention is emphasized, and the importance of compromise and acceptance with respect to the psychological demands of the unconscious are considered. 2012, The Society of Analytical Psychology.

  1. THE BIOLOGICAL VALUES AND CONSERVATION STATUS OF SACRED GROVES IN THE BALASORE WILDLIFE DIVISION, ODISHA: A CASE STUDY

    Directory of Open Access Journals (Sweden)

    Raj Kishore MOHANTA

    2012-09-01

    Full Text Available On a global scale, the existing Sacred Groves (SGs are based on ancestral worship and focus on the conservation of forest patches. Sacred groves are distributed over a wide ecosystem and help in the conservation of rare and endemic species. Well preserved sites are store houses of biological, ecological, medicinal, ethno-cultural and religious values. We documented the state of 13 Sacred Groves in Balasore, Odisha during March 2011. For a detailed investigation, sample areas were set, for the assessment of floral and faunal diversity, ethno-cultural values and management status. A total of 58 floral species and 13 faunal species were recorded. In Balasore, Sacred Groves are small in size and can act as starting points for any long term conservation plan of biodiversity. The communities have kept their faith and traditions linked to these mini nuclei of rich biodiversity in the landscape. Therefore, any conservation program can begin from local communities, by taking them into consideration as trustworthy awareness building factors.

  2. A genome-wide characterization of microRNA genes in maize.

    Directory of Open Access Journals (Sweden)

    Lifang Zhang

    2009-11-01

    Full Text Available MicroRNAs (miRNAs are small, non-coding RNAs that play essential roles in plant growth, development, and stress response. We conducted a genome-wide survey of maize miRNA genes, characterizing their structure, expression, and evolution. Computational approaches based on homology and secondary structure modeling identified 150 high-confidence genes within 26 miRNA families. For 25 families, expression was verified by deep-sequencing of small RNA libraries that were prepared from an assortment of maize tissues. PCR-RACE amplification of 68 miRNA transcript precursors, representing 18 families conserved across several plant species, showed that splice variation and the use of alternative transcriptional start and stop sites is common within this class of genes. Comparison of sequence variation data from diverse maize inbred lines versus teosinte accessions suggest that the mature miRNAs are under strong purifying selection while the flanking sequences evolve equivalently to other genes. Since maize is derived from an ancient tetraploid, the effect of whole-genome duplication on miRNA evolution was examined. We found that, like protein-coding genes, duplicated miRNA genes underwent extensive gene-loss, with approximately 35% of ancestral sites retained as duplicate homoeologous miRNA genes. This number is higher than that observed with protein-coding genes. A search for putative miRNA targets indicated bias towards genes in regulatory and metabolic pathways. As maize is one of the principal models for plant growth and development, this study will serve as a foundation for future research into the functional roles of miRNA genes.

  3. Duplicate Health Insurance Coverage: Determinants of Variation Across States

    OpenAIRE

    Luft, Harold S.; Maerki, Susan C.

    1982-01-01

    Although it is recognized that many people have duplicate private health insurance coverage, either through separate purchase or as health benefits in multi-earner families, there has been little analysis of the factors determining duplicate coverage rates. A new data source, the Survey of Income and Education, offers a comparison with the only previous source of state level data, the estimates from the Health Insurance Association of America. The R2 between the two sets is only .3 and certai...

  4. Origin and spread of photosynthesis based upon conserved sequence features in key bacteriochlorophyll biosynthesis proteins.

    Science.gov (United States)

    Gupta, Radhey S

    2012-11-01

    The origin of photosynthesis and how this capability has spread to other bacterial phyla remain important unresolved questions. I describe here a number of conserved signature indels (CSIs) in key proteins involved in bacteriochlorophyll (Bchl) biosynthesis that provide important insights in these regards. The proteins BchL and BchX, which are essential for Bchl biosynthesis, are derived by gene duplication in a common ancestor of all phototrophs. More ancient gene duplication gave rise to the BchX-BchL proteins and the NifH protein of the nitrogenase complex. The sequence alignment of NifH-BchX-BchL proteins contain two CSIs that are uniquely shared by all NifH and BchX homologs, but not by any BchL homologs. These CSIs and phylogenetic analysis of NifH-BchX-BchL protein sequences strongly suggest that the BchX homologs are ancestral to BchL and that the Bchl-based anoxygenic photosynthesis originated prior to the chlorophyll (Chl)-based photosynthesis in cyanobacteria. Another CSI in the BchX-BchL sequence alignment that is uniquely shared by all BchX homologs and the BchL sequences from Heliobacteriaceae, but absent in all other BchL homologs, suggests that the BchL homologs from Heliobacteriaceae are primitive in comparison to all other photosynthetic lineages. Several other identified CSIs in the BchN homologs are commonly shared by all proteobacterial homologs and a clade consisting of the marine unicellular Cyanobacteria (Clade C). These CSIs in conjunction with the results of phylogenetic analyses and pair-wise sequence similarity on the BchL, BchN, and BchB proteins, where the homologs from Clade C Cyanobacteria and Proteobacteria exhibited close relationship, provide strong evidence that these two groups have incurred lateral gene transfers. Additionally, phylogenetic analyses and several CSIs in the BchL-N-B proteins that are uniquely shared by all Chlorobi and Chloroflexi homologs provide evidence that the genes for these proteins have also been

  5. Social network analysis of duplicative prescriptions: One-month analysis of medical facilities in Japan.

    Science.gov (United States)

    Takahashi, Yoshimitsu; Ishizaki, Tatsuro; Nakayama, Takeo; Kawachi, Ichiro

    2016-03-01

    Duplicative prescriptions refer to situations in which patients receive medications for the same condition from two or more sources. Health officials in Japan have expressed concern about medical "waste" resulting from this practices. We sought to conduct descriptive analysis of duplicative prescriptions using social network analysis and to report their prevalence across ages. We analyzed a health insurance claims database including 1.24 million people from December 2012. Through social network analysis, we examined the duplicative prescription networks, representing each medical facility as nodes, and individual prescriptions for patients as edges. The prevalence of duplicative prescription for any drug class was strongly correlated with its frequency of prescription (r=0.90). Among patients aged 0-19, cough and colds drugs showed the highest prevalence of duplicative prescriptions (10.8%). Among people aged 65 and over, antihypertensive drugs had the highest frequency of prescriptions, but the prevalence of duplicative prescriptions was low (0.2-0.3%). Social network analysis revealed clusters of facilities connected via duplicative prescriptions, e.g., psychotropic drugs showed clustering due to a few patients receiving drugs from 10 or more facilities. Overall, the prevalence of duplicative prescriptions was quite low - less than 10% - although the extent of the problem varied by drug class and age group. Our approach illustrates the potential utility of using a social network approach to understand these practices. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Differential contributions to the transcriptome of duplicated genes in response to abiotic stresses in natural and synthetic polyploids.

    Science.gov (United States)

    Dong, Shaowei; Adams, Keith L

    2011-06-01

    Polyploidy has occurred throughout plant evolution and can result in considerable changes to gene expression when it takes place and over evolutionary time. Little is known about the effects of abiotic stress conditions on duplicate gene expression patterns in polyploid plants. We examined the expression patterns of 60 duplicated genes in leaves, roots and cotyledons of allotetraploid Gossypium hirsutum in response to five abiotic stress treatments (heat, cold, drought, high salt and water submersion) using single-strand conformation polymorphism assays, and 20 genes in a synthetic allotetraploid. Over 70% of the genes showed stress-induced changes in the relative expression levels of the duplicates under one or more stress treatments with frequent variability among treatments. Twelve pairs showed opposite changes in expression levels in response to different abiotic stress treatments. Stress-induced expression changes occurred in the synthetic allopolyploid, but there was little correspondence in patterns between the natural and synthetic polyploids. Our results indicate that abiotic stress conditions can have considerable effects on duplicate gene expression in a polyploid, with the effects varying by gene, stress and organ type. Differential expression in response to environmental stresses may be a factor in the preservation of some duplicated genes in polyploids. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  7. A large duplication involving the IHH locus mimics acrocallosal syndrome.

    Science.gov (United States)

    Yuksel-Apak, Memnune; Bögershausen, Nina; Pawlik, Barbara; Li, Yun; Apak, Selcuk; Uyguner, Oya; Milz, Esther; Nürnberg, Gudrun; Karaman, Birsen; Gülgören, Ayan; Grzeschik, Karl-Heinz; Nürnberg, Peter; Kayserili, Hülya; Wollnik, Bernd

    2012-06-01

    Indian hedgehog (Ihh) signaling is a major determinant of various processes during embryonic development and has a pivotal role in embryonic skeletal development. A specific spatial and temporal expression of Ihh within the developing limb buds is essential for accurate digit outgrowth and correct digit number. Although missense mutations in IHH cause brachydactyly type A1, small tandem duplications involving the IHH locus have recently been described in patients with mild syndactyly and craniosynostosis. In contrast, a ∼600-kb deletion 5' of IHH in the doublefoot mouse mutant (Dbf) leads to severe polydactyly without craniosynostosis, but with craniofacial dysmorphism. We now present a patient resembling acrocallosal syndrome (ACS) with extensive polysyndactyly of the hands and feet, craniofacial abnormalities including macrocephaly, agenesis of the corpus callosum, dysplastic and low-set ears, severe hypertelorism and profound psychomotor delay. Single-nucleotide polymorphism (SNP) array copy number analysis identified a ∼900-kb duplication of the IHH locus, which was confirmed by an independent quantitative method. A fetus from a second pregnancy of the mother by a different spouse showed similar craniofacial and limb malformations and the same duplication of the IHH-locus. We defined the exact breakpoints and showed that the duplications are identical tandem duplications in both sibs. No copy number changes were observed in the healthy mother. To our knowledge, this is the first report of a human phenotype similar to the Dbf mutant and strikingly overlapping with ACS that is caused by a copy number variation involving the IHH locus on chromosome 2q35.

  8. Reconstruction of chromosome rearrangements between the two most ancestral duckweed species Spirodela polyrhiza and S. intermedia.

    Science.gov (United States)

    Hoang, Phuong T N; Schubert, Ingo

    2017-12-01

    The monophyletic duckweeds comprising five genera within the monocot order Alismatales are neotenic, free-floating, aquatic organisms with fast vegetative propagation. Some species are considered for efficient biomass production, for life stock feeding, and for (simultaneous) wastewater phytoremediation. The ancestral genus Spirodela consists of only two species, Spirodela polyrhiza and Spirodela intermedia, both with a similar small genome (~160 Mbp/1C). Reference genome drafts and a physical map of 96 BACs on the 20 chromosome pairs of S. polyrhiza strain 7498 are available and provide useful tools for further evolutionary studies within and between duckweed genera. Here we applied sequential comparative multicolor fluorescence in situ hybridization (mcFISH) to address homeologous chromosomes in S. intermedia (2n = 36), to detect chromosome rearrangements between both species and to elucidate the mechanisms which may have led to the chromosome number alteration after their evolutionary separation. Ten chromosome pairs proved to be conserved between S. polyrhiza and S. intermedia, the remaining ones experienced, depending on the assumed direction of evolution, translocations, inversion, and fissions, respectively. These results represent a first step to unravel karyotype evolution among duckweeds and are anchor points for future genome assembly of S. intermedia.

  9. Giant T-shaped duplication of the transverse colon. A case report.

    Science.gov (United States)

    Trotovsek, Blaz; Hribernik, Marija; Gvardijancic, Diana; Jelenc, Franc

    2006-01-01

    A case of long diverticular colonic duplication producing acute abdominal pain in a 6-year-old girl is presented. Physical examination showed no signs of acute abdomen at the initial presentation. After a pain-free interval, there was a sudden onset of severe abdominal pain and a large tumor in the lower abdomen was observed. A plain x-ray showed an enormously dilated colonic pouch filled with gas. Excision of the T-shaped duplication and small part of the transverse colon was successful. Because of extensive fibrotic changes in the colon near the opening of duplication, a resection margin of at least 2 cm is recommended.

  10. Neofunctionalization of Duplicated P450 Genes Drives the Evolution of Insecticide Resistance in the Brown Planthopper.

    Science.gov (United States)

    Zimmer, Christoph T; Garrood, William T; Singh, Kumar Saurabh; Randall, Emma; Lueke, Bettina; Gutbrod, Oliver; Matthiesen, Svend; Kohler, Maxie; Nauen, Ralf; Davies, T G Emyr; Bass, Chris

    2018-01-22

    Gene duplication is a major source of genetic variation that has been shown to underpin the evolution of a wide range of adaptive traits [1, 2]. For example, duplication or amplification of genes encoding detoxification enzymes has been shown to play an important role in the evolution of insecticide resistance [3-5]. In this context, gene duplication performs an adaptive function as a result of its effects on gene dosage and not as a source of functional novelty [3, 6-8]. Here, we show that duplication and neofunctionalization of a cytochrome P450, CYP6ER1, led to the evolution of insecticide resistance in the brown planthopper. Considerable genetic variation was observed in the coding sequence of CYP6ER1 in populations of brown planthopper collected from across Asia, but just two sequence variants are highly overexpressed in resistant strains and metabolize imidacloprid. Both variants are characterized by profound amino-acid alterations in substrate recognition sites, and the introduction of these mutations into a susceptible P450 sequence is sufficient to confer resistance. CYP6ER1 is duplicated in resistant strains with individuals carrying paralogs with and without the gain-of-function mutations. Despite numerical parity in the genome, the susceptible and mutant copies exhibit marked asymmetry in their expression with the resistant paralogs overexpressed. In the primary resistance-conferring CYP6ER1 variant, this results from an extended region of novel sequence upstream of the gene that provides enhanced expression. Our findings illustrate the versatility of gene duplication in providing opportunities for functional and regulatory innovation during the evolution of an adaptive trait. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Large tubular colonic duplication in an adult treated with a small midline incision

    Science.gov (United States)

    Yong, Yuen Geng; Jung, Kyung Uk; Cho, Yong Beom; Yun, Seong Hyeon; Kim, Hee Cheol; Lee, Woo Yong

    2012-01-01

    Tubular colonic duplication presenting in adults is rare and difficult to diagnose preoperatively. Only a few cases have been reported in the literature. We report a case of a 29-year-old lady presenting with a long history of chronic constipation, abdominal mass and repeated episodes of abdominal pain. The abdominal-pelvic computed tomography scan showed segmental bowel wall thickening thought to be small bowel, and dilatation with stasis of intraluminal content. The provisional diagnosis was small bowel duplication. She was scheduled for single port laparoscopic resection. However, a T-shaped tubular colonic duplication at sigmoid colon was found intraoperatively. Resection of the large T-shaped tubular colonic duplication containing multiple impacted large fecaloma and primary anastomosis was performed. There was no perioperative complication. We report, herein, the case of a T-shaped tubular colonic duplication at sigmoid colon in an adult who was successfully treated through mini-laparotomy assisted by single port laparoscopic surgery. PMID:22403754

  12. Multidetector row computed tomography and ultrasound characteristics of caudal vena cava duplication in dogs.

    Science.gov (United States)

    Bertolini, Giovanna; Diana, Alessia; Cipone, Mario; Drigo, Michele; Caldin, Marco

    2014-01-01

    Caudal vena cava duplication has been rarely reported in small animals. The purpose of this retrospective study was to describe characteristics of duplicated caudal vena cava in a large group of dogs. Computed tomography (CT) and ultrasound databases from two hospitals were searched for canine reports having the diagnosis "double caudal vena cava." One observer reviewed CT images for 71 dogs and two observers reviewed ultrasound images for 21 dogs. In all CT cases, the duplication comprised two vessels that were bilaterally symmetrical and approximately the same calibre (similar to Type I complete duplication in humans). In all ultrasound cases, the duplicated caudal vena cava appeared as a distinct vessel running on the left side of the abdominal segment of the descending aorta and extending from the left common iliac vein to the left renal vein. The prevalence of caudal vena cava duplication was 0.46% for canine ultrasound studies and 2.08% for canine CT studies performed at these hospitals. Median body weight for affected dogs was significantly lower than that of unaffected dogs (P dogs, caudal vena cava duplication should be differentiated from other vascular anomalies when planning surgeries and for avoiding misdiagnoses. © 2014 American College of Veterinary Radiology.

  13. Bionic Duplication of Fresh Navodon septentrionalis Fish Surface Structures

    Directory of Open Access Journals (Sweden)

    Bing Qu

    2011-01-01

    Full Text Available Biomimetic superhydrophobic surface was fabricated by replicating topography of the fresh fish skin surface of Navodon septentrionalis with polydimethylsiloxane (PDMS elastomer. A two-step replicating method was developed to make the surface structure of the fresh fish skin be replicated with high fidelity. After duplication, it was found that the static contact angle of the replica was as large as 173°. Theoretic analysis based on Young's and Cassie-Baxter (C-B model was performed to explain the relationship between structure and hydrophobicity.

  14. Evolution of vertebrate central nervous system is accompanied by novel expression changes of duplicate genes.

    Science.gov (United States)

    Chen, Yuan; Ding, Yun; Zhang, Zuming; Wang, Wen; Chen, Jun-Yuan; Ueno, Naoto; Mao, Bingyu

    2011-12-20

    The evolution of the central nervous system (CNS) is one of the most striking changes during the transition from invertebrates to vertebrates. As a major source of genetic novelties, gene duplication might play an important role in the functional innovation of vertebrate CNS. In this study, we focused on a group of CNS-biased genes that duplicated during early vertebrate evolution. We investigated the tempo-spatial expression patterns of 33 duplicate gene families and their orthologs during the embryonic development of the vertebrate Xenopus laevis and the cephalochordate Brachiostoma belcheri. Almost all the identified duplicate genes are differentially expressed in the CNS in Xenopus embryos, and more than 50% and 30% duplicate genes are expressed in the telencephalon and mid-hindbrain boundary, respectively, which are mostly considered as two innovations in the vertebrate CNS. Interestingly, more than 50% of the amphioxus orthologs do not show apparent expression in the CNS in amphioxus embryos as detected by in situ hybridization, indicating that some of the vertebrate CNS-biased duplicate genes might arise from non-CNS genes in invertebrates. Our data accentuate the functional contribution of gene duplication in the CNS evolution of vertebrate and uncover an invertebrate non-CNS history for some vertebrate CNS-biased duplicate genes. Copyright © 2011. Published by Elsevier Ltd.

  15. Targeted Exon Skipping to Correct Exon Duplications in the Dystrophin Gene

    Directory of Open Access Journals (Sweden)

    Kane L Greer

    2014-01-01

    Full Text Available Duchenne muscular dystrophy is a severe muscle-wasting disease caused by mutations in the dystrophin gene that ablate functional protein expression. Although exonic deletions are the most common Duchenne muscular dystrophy lesion, duplications account for 10–15% of reported disease-causing mutations, and exon 2 is the most commonly duplicated exon. Here, we describe the in vitro evaluation of phosphorodiamidate morpholino oligomers coupled to a cell-penetrating peptide and 2′-O-methyl phosphorothioate oligonucleotides, using three distinct strategies to reframe the dystrophin transcript in patient cells carrying an exon 2 duplication. Differences in exon-skipping efficiencies in vitro were observed between oligomer analogues of the same sequence, with the phosphorodiamidate morpholino oligomer coupled to a cell-penetrating peptide proving the most effective. Differences in exon 2 excision efficiency between normal and exon 2 duplication cells, were apparent, indicating that exon context influences oligomer-induced splice switching. Skipping of a single copy of exon 2 was induced in the cells carrying an exon 2 duplication, the simplest strategy to restore the reading frame and generate a normal dystrophin transcript. In contrast, multiexon skipping of exons 2–7 to generate a Becker muscular dystrophy-like dystrophin transcript was more challenging and could only be induced efficiently with the phosphorodiamidate morpholino oligomer chemistry.

  16. Rapid sequence divergence rates in the 5 prime regulatory regions of young Drosophila melanogaster duplicate gene pairs

    Directory of Open Access Journals (Sweden)

    Michael H. Kohn

    2008-01-01

    Full Text Available While it remains a matter of some debate, rapid sequence evolution of the coding sequences of duplicate genes is characteristic for early phases past duplication, but long established duplicates generally evolve under constraint, much like the rest of the coding genome. As for coding sequences, it may be possible to infer evolutionary rate, selection, and constraint via contrasts between duplicate gene divergence in the 5 prime regions and in the corresponding synonymous site divergence in the coding regions. Finding elevated rates for the 5 prime regions of duplicated genes, in addition to the coding regions, would enable statements regarding the early processes of duplicate gene evolution. Here, 1 kb of each of the 5 prime regulatory regions of Drosophila melanogaster duplicate gene pairs were mapped onto one another to isolate shared sequence blocks. Genetic distances within shared sequence blocks (d5’ were found to increase as a function of synonymous (dS, and to a lesser extend, amino-acid (dA site divergence between duplicates. The rate d5’/dS was found to rapidly decay from values > 1 in young duplicate pairs (dS 0.8. Such rapid rates of 5 prime evolution exceeding 1 (~neutral predominantly were found to occur in duplicate pairs with low amino-acid site divergence and that tended to be co-regulated when assayed on microarrays. Conceivably, functional redundancy and relaxation of selective constraint facilitates subsequent positive selection on the 5 prime regions of young duplicate genes. This might promote the evolution of new functions (neofunctionalization or division of labor among duplicate genes (subfunctionalization. In contrast, similar to the vast portion of the non-coding genome, the 5 prime regions of long-established gene duplicates appear to evolve under selective constraint, indicating that these long-established gene duplicates have assumed critical functions.

  17. An ace-1 gene duplication resorbs the fitness cost associated with resistance in Anopheles gambiae, the main malaria mosquito.

    Science.gov (United States)

    Assogba, Benoît S; Djogbénou, Luc S; Milesi, Pascal; Berthomieu, Arnaud; Perez, Julie; Ayala, Diego; Chandre, Fabrice; Makoutodé, Michel; Labbé, Pierrick; Weill, Mylène

    2015-10-05

    Widespread resistance to pyrethroids threatens malaria control in Africa. Consequently, several countries switched to carbamates and organophophates insecticides for indoor residual spraying. However, a mutation in the ace-1 gene conferring resistance to these compounds (ace-1(R) allele), is already present. Furthermore, a duplicated allele (ace-1(D)) recently appeared; characterizing its selective advantage is mandatory to evaluate the threat. Our data revealed that a unique duplication event, pairing a susceptible and a resistant copy of the ace-1 gene spread through West Africa. Further investigations revealed that, while ace-1(D) confers less resistance than ace-1(R), the high fitness cost associated with ace-1(R) is almost completely suppressed by the duplication for all traits studied. ace-1 duplication thus represents a permanent heterozygote phenotype, selected, and thus spreading, due to the mosaic nature of mosquito control. It provides malaria mosquito with a new evolutionary path that could hamper resistance management.

  18. Retroperitoneal duplication cyst with a fistulous tract to the vagina: a case report.

    Science.gov (United States)

    Filmar, Gilad A; Lotze, Peter M; Fisher, Hilaire W

    2012-01-01

    To describe a rare case of a retroperitoneal duplication cyst that fistulized to the vagina. Case description and discussion of a patient found to have an intestinal duplication cyst. A patient presented for a laparoscopic hysterectomy because of menorrhagia and a fibroid uterus. She also complained of recurrent urinary tract infections (UTIs) and a vaginal discharge. A retroperitoneal intestinal duplication cyst that fistulized to the vagina and caused her recurrent UTIs was identified. Surgical resection of the cyst resolved her complaint of recurrent UTIs. Retroperitoneal intestinal duplication cysts are rare congenital anomalies with vague clinical manifestations. The finding of a fistulous communication to the vagina originating from such a structure can be associated with recurrent UTIs.

  19. Volvulus U-Shaped transverse colonic duplication: Report of a case and literature review

    Directory of Open Access Journals (Sweden)

    Ruankha Bilommi

    2017-05-01

    Full Text Available Tubular duplication of the colon is very rare especially in adulthood, because it is frequently symptomatic earlier in newborn life, so only few cases are reported in literature. Several theories are proposed to explain the onset and the evolution of gut malformations as the aberrant lumen recanalization or the diverticular theory, the alteration of the lateral closure of the embryonal disk or finally the dorsal protrusion of the yolk-sac for herniation or adhesion to the ectoderm for an abnormality of the longitudinal line, but none clarifies the exact genesis of duplication [1–3]. U Shaped transverse colonic duplication with volvulus has never been reported before and very rare in condition in gastrointestinal duplication.

  20. Inferring ancestral distribution area and survival vegetation of Caragana (Fabaceae) in Tertiary

    Science.gov (United States)

    Mingli Zhang; Juanjuan Xue; Qiang Zhang; Stewart C. Sanderson

    2015-01-01

    Caragana, a leguminous genus mainly restricted to temperate Central and East Asia, occurs in arid, semiarid, and humid belts, and has forest, grassland, and desert ecotypes. Based on the previous molecular phylogenetic tree and dating, biogeographical analyses of extant species area and ecotype were conducted by means of four ancestral optimization approaches: S-DIVA,...

  1. Operative correction and follow-up of craniofacial duplication.

    Science.gov (United States)

    Kotrikova, Bibiana; Hassfeld, Stefan; Steiner, Hans H; Hähnel, Stefan; Krempien, Robert; Mühling, Joachim

    2007-03-01

    Anterior craniofacial duplication (diprosopus) is an extremely rare form of conjoined twins. The children share a single trunk with normal extremities and varying degrees of facial malformation. Duplication of specific structures, such as the nose (diprosopus dirrhinus), eyes (diprosopus tetraophthalmus), and ears, is possible. The authors present a case of partial facial duplication (diprosopus dirrhinus) in a male infant. The clinical and radiographic findings and the surgical correction and follow-up are described. In a single surgical session, the authors were able to achieve not only a functionally but also an aesthetically acceptable result. In the postoperative course, the child showed nearly normal growth and satisfactory psychosocial and motor development. However, 40 months postoperatively, we noticed a tendency of the orbitae to diverge (i.e., toward hypertelorism). The surgical management of complex craniofacial malformations such as diprosopus needs a precise morphologic analysis of the patient's deformity followed by a clear treatment plan. A staged reconstructive approach is carried out to coincide with facial growth patterns and brain and eye function. If the interorbital distance in our patient increases progressively, a second operation for reduction of the interorbital distance may be necessary.

  2. Comparative study of human mitochondrial proteome reveals extensive protein subcellular relocalization after gene duplications

    Directory of Open Access Journals (Sweden)

    Huang Yong

    2009-11-01

    Full Text Available Abstract Background Gene and genome duplication is the principle creative force in evolution. Recently, protein subcellular relocalization, or neolocalization was proposed as one of the mechanisms responsible for the retention of duplicated genes. This hypothesis received support from the analysis of yeast genomes, but has not been tested thoroughly on animal genomes. In order to evaluate the importance of subcellular relocalizations for retention of duplicated genes in animal genomes, we systematically analyzed nuclear encoded mitochondrial proteins in the human genome by reconstructing phylogenies of mitochondrial multigene families. Results The 456 human mitochondrial proteins selected for this study were clustered into 305 gene families including 92 multigene families. Among the multigene families, 59 (64% consisted of both mitochondrial and cytosolic (non-mitochondrial proteins (mt-cy families while the remaining 33 (36% were composed of mitochondrial proteins (mt-mt families. Phylogenetic analyses of mt-cy families revealed three different scenarios of their neolocalization following gene duplication: 1 relocalization from mitochondria to cytosol, 2 from cytosol to mitochondria and 3 multiple subcellular relocalizations. The neolocalizations were most commonly enabled by the gain or loss of N-terminal mitochondrial targeting signals. The majority of detected subcellular relocalization events occurred early in animal evolution, preceding the evolution of tetrapods. Mt-mt protein families showed a somewhat different pattern, where gene duplication occurred more evenly in time. However, for both types of protein families, most duplication events appear to roughly coincide with two rounds of genome duplications early in vertebrate evolution. Finally, we evaluated the effects of inaccurate and incomplete annotation of mitochondrial proteins and found that our conclusion of the importance of subcellular relocalization after gene duplication on

  3. Reconstructing an ancestral mammalian immune supercomplex from a marsupial major histocompatibility complex.

    Directory of Open Access Journals (Sweden)

    Katherine Belov

    2006-03-01

    Full Text Available The first sequenced marsupial genome promises to reveal unparalleled insights into mammalian evolution. We have used the Monodelphis domestica (gray short-tailed opossum sequence to construct the first map of a marsupial major histocompatibility complex (MHC. The MHC is the most gene-dense region of the mammalian genome and is critical to immunity and reproductive success. The marsupial MHC bridges the phylogenetic gap between the complex MHC of eutherian mammals and the minimal essential MHC of birds. Here we show that the opossum MHC is gene dense and complex, as in humans, but shares more organizational features with non-mammals. The Class I genes have amplified within the Class II region, resulting in a unique Class I/II region. We present a model of the organization of the MHC in ancestral mammals and its elaboration during mammalian evolution. The opossum genome, together with other extant genomes, reveals the existence of an ancestral "immune supercomplex" that contained genes of both types of natural killer receptors together with antigen processing genes and MHC genes.

  4. Duplication Cyst of the Sigmoid Colon

    Directory of Open Access Journals (Sweden)

    Bastian Domajnko

    2009-01-01

    Full Text Available A 21-year-old male with developmental delay presented with abdominal pain of two days' duration. He was afebrile and his abdomen was soft with mild diffuse tenderness. There were no peritoneal signs. Plain x-ray demonstrated a large air-filled structure in the right upper quadrant. Computed tomography of the abdomen revealed a 9×8 cm structure adjacent to the hepatic flexure containing an air-fluid level. It did not contain oral contrast and had no apparent communication with the colon. At operation, the cystic lesion was identified as a duplication cyst of the sigmoid colon that was adherent to the right upper quadrant. The cyst was excised with a segment of the sigmoid colon and a stapled colo-colostomy was performed. Recovery was uneventful. Final pathology was consistent with a duplication cyst of the sigmoid colon. The cyst was attached to the colon but did not communicate with the lumen.

  5. Near-Duplicate Web Page Detection: An Efficient Approach Using Clustering, Sentence Feature and Fingerprinting

    Directory of Open Access Journals (Sweden)

    J. Prasanna Kumar

    2013-02-01

    Full Text Available Duplicate and near-duplicate web pages are the chief concerns for web search engines. In reality, they incur enormous space to store the indexes, ultimately slowing down and increasing the cost of serving results. A variety of techniques have been developed to identify pairs of web pages that are aldquo;similarardquo; to each other. The problem of finding near-duplicate web pages has been a subject of research in the database and web-search communities for some years. In order to identify the near duplicate web pages, we make use of sentence level features along with fingerprinting method. When a large number of web documents are in consideration for the detection of web pages, then at first, we use K-mode clustering and subsequently sentence feature and fingerprint comparison is used. Using these steps, we exactly identify the near duplicate web pages in an efficient manner. The experimentation is carried out on the web page collections and the results ensured the efficiency of the proposed approach in detecting the near duplicate web pages.

  6. "Tandem duplication-random loss" is not a real feature of oyster mitochondrial genomes

    Directory of Open Access Journals (Sweden)

    Zhang Guofan

    2009-02-01

    Full Text Available Abstract Duplications and rearrangements of coding genes are major themes in the evolution of mitochondrial genomes, bearing important consequences in the function of mitochondria and the fitness of organisms. Yu et al. (BMC Genomics 2008, 9:477 reported the complete mt genome sequence of the oyster Crassostrea hongkongensis (16,475 bp and found that a DNA segment containing four tRNA genes (trnK1, trnC, trnQ1 and trnN, a duplicated (rrnS and a split rRNA gene (rrnL5' was absent compared with that of two other Crassostrea species. It was suggested that the absence was a novel case of "tandem duplication-random loss" with evolutionary significance. We independently sequenced the complete mt genome of three C. hongkongensis individuals, all of which were 18,622 bp and contained the segment that was missing in Yu et al.'s sequence. Further, we designed primers, verified sequences and demonstrated that the sequence loss in Yu et al.'s study was an artifact caused by placing primers in a duplicated region. The duplication and split of ribosomal RNA genes are unique for Crassostrea oysters and not lost in C. hongkongensis. Our study highlights the need for caution when amplifying and sequencing through duplicated regions of the genome.

  7. Ruptured rectal duplication cyst with classical bladder exstrophy.

    Science.gov (United States)

    Gupta, Rahul K; Oak, Sanjay; Parelkar, Sandesh V; Sanghvi, Beejal; Kaltari, Deepak K; Prakash, Advait; Patil, Rajashekhar; Bachani, Mitesh

    2010-07-01

    A newborn boy was brought to us, 2 hours after birth, with a mucosal-lined left hemiperineal lesion associated with classical bladder exstrophy and an anterolaterally displaced anus. Perineal anatomy was restored by excising the mucosa lined lesion. The bladder closure for classical bladder exstrophy was done at the same time. Histologically, gastric, respiratory, and small intestinal epithelia were present in the mucosa. A rectal duplication cyst that had ruptured in utero through the hemiperineum could explain the anomaly. The association of classical bladder exstrophy with ruptured rectal duplication cyst has never previously been described in the literature. Copyright 2010 Elsevier Inc. All rights reserved.

  8. Posterior Nutcracker Syndrome with Left Renal Vein Duplication: A Rare Cause of Haematuria in a 12-Year-Old Boy

    Directory of Open Access Journals (Sweden)

    J. Preza Fernandes

    2012-01-01

    Full Text Available The nutcracker syndrome (NCS is a rare cause of haematuria. It embraces an extended nonpathognomonic spectrum of symptoms that imply a difficult diagnosis. Ultimately it may be associated with substantial morbidity and even life-threatening events. We report a rare cause if a 12-year-old boy who presented with a history of frequent intermittent episodes of painless constant haematuria. The cystoscopy showed a bloody urine ejaculate from the left ureter meatus. The Doppler ultrasonography showed turbulent pattern of venous blood flow of the posterior renal vein branch behind the aorta. The abdominopelvic computer tomography (apCT revealed left renal vein (LRV duplication with a dilated retroaortic branch, entrapped between the aorta and the vertebral column, promoting the renal nutcracker syndrome. The patient was initially hospitalized and managed with oral iron supplements and continuous saline bladder irrigation, not requiring additional treatment. The child is currently asymptomatic, with haemoglobin value returning to normal and therefore proposed to conservative management with close followup. The authors present a case report of episodic haematuria caused by a rare entity—posterior nutcracker syndrome with renal vein duplication.

  9. Prevalent Role of Gene Features in Determining Evolutionary Fates of Whole-Genome Duplication Duplicated Genes in Flowering Plants1[W][OA

    Science.gov (United States)

    Jiang, Wen-kai; Liu, Yun-long; Xia, En-hua; Gao, Li-zhi

    2013-01-01

    The evolution of genes and genomes after polyploidization has been the subject of extensive studies in evolutionary biology and plant sciences. While a significant number of duplicated genes are rapidly removed during a process called fractionation, which operates after the whole-genome duplication (WGD), another considerable number of genes are retained preferentially, leading to the phenomenon of biased gene retention. However, the evolutionary mechanisms underlying gene retention after WGD remain largely unknown. Through genome-wide analyses of sequence and functional data, we comprehensively investigated the relationships between gene features and the retention probability of duplicated genes after WGDs in six plant genomes, Arabidopsis (Arabidopsis thaliana), poplar (Populus trichocarpa), soybean (Glycine max), rice (Oryza sativa), sorghum (Sorghum bicolor), and maize (Zea mays). The results showed that multiple gene features were correlated with the probability of gene retention. Using a logistic regression model based on principal component analysis, we resolved evolutionary rate, structural complexity, and GC3 content as the three major contributors to gene retention. Cluster analysis of these features further classified retained genes into three distinct groups in terms of gene features and evolutionary behaviors. Type I genes are more prone to be selected by dosage balance; type II genes are possibly subject to subfunctionalization; and type III genes may serve as potential targets for neofunctionalization. This study highlights that gene features are able to act jointly as primary forces when determining the retention and evolution of WGD-derived duplicated genes in flowering plants. These findings thus may help to provide a resolution to the debate on different evolutionary models of gene fates after WGDs. PMID:23396833

  10. Gene duplication and neo-functionalization in the evolutionary and functional divergence of the metazoan copper transporters Ctr1 and Ctr2.

    Science.gov (United States)

    Logeman, Brandon L; Wood, L Kent; Lee, Jaekwon; Thiele, Dennis J

    2017-07-07

    Copper is an essential element for proper organismal development and is involved in a range of processes, including oxidative phosphorylation, neuropeptide biogenesis, and connective tissue maturation. The copper transporter (Ctr) family of integral membrane proteins is ubiquitously found in eukaryotes and mediates the high-affinity transport of Cu + across both the plasma membrane and endomembranes. Although mammalian Ctr1 functions as a Cu + transporter for Cu acquisition and is essential for embryonic development, a homologous protein, Ctr2, has been proposed to function as a low-affinity Cu transporter, a lysosomal Cu exporter, or a regulator of Ctr1 activity, but its functional and evolutionary relationship to Ctr1 is unclear. Here we report a biochemical, genetic, and phylogenetic comparison of metazoan Ctr1 and Ctr2, suggesting that Ctr2 arose over 550 million years ago as a result of a gene duplication event followed by loss of Cu + transport activity. Using a random mutagenesis and growth selection approach, we identified amino acid substitutions in human and mouse Ctr2 proteins that support copper-dependent growth in yeast and enhance copper accumulation in Ctr1 -/- mouse embryonic fibroblasts. These mutations revert Ctr2 to a more ancestral Ctr1-like state while maintaining endogenous functions, such as stimulating Ctr1 cleavage. We suggest key structural aspects of metazoan Ctr1 and Ctr2 that discriminate between their biological roles, providing mechanistic insights into the evolutionary, biochemical, and functional relationships between these two related proteins. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Wide rectal duplication cyst in an adult resected by anterior approach: efficacy and recurrence.

    Science.gov (United States)

    Ceriotti, Michela; Saccomani, Giorgia; Lacelli, Francesca; Saccomani, Giovanni E

    2017-06-01

    Alimentary tract duplications are uncommon congenital abnormalities usually diagnosed and treated in childhood. Rectal involvement is extremely rare. We report the case of a 22-year-old female who presented with chronic abdominal and perianal pain; feeling of rectal fullness. Workup revealed a rectal duplication cyst. The patient underwent a complete transabdominal excision of the cyst: an hybrid laparoscopic and laparotomic technique was adopted. The hybrid isolated anterior abdominal approach is safe and feasible even for the treatment of wide rectal duplication cysts. Real recurrence in rectal duplication cysts is uncommon when the first operation was performed with radical intent.

  12. Genetics Home Reference: 17q12 duplication

    Science.gov (United States)

    ... J, Li C, Roeder E, Cox S, Karaviti L, Pearson M, Kang SH, Sahoo T, Lalani SR, Stankiewicz ... genomic disorders from the duplication architecture of the human genome. Nat Genet. 2006 Sep;38(9):1038- ...

  13. Anal canal duplication and triplication: a rare entity with different presentations.

    Science.gov (United States)

    Palazon, P; Julia, V; Saura, L; de Haro, I; Bejarano, M; Rovira, C; Tarrado, X

    2017-05-01

    Anal canal duplication (ACD) is the rarest of gastrointestinal duplications. Few cases have been reported. Most cases present as an opening in the midline, posterior to the normal anus. The aim of our revision is to contribute with eight new cases, some of them with unusual presentations: five presented as the typical form, one with a perianal nodule, and two presented as two separate orifices (anal canal triplication). Complete excision was performed in all patients with no complications. ACD is the most distal and the least frequent digestive duplication. Its treatment should be surgical excision, to avoid complications such as abscess, fistulization, or malignization. Anal canal triplication has never been described before.

  14. Are palaeoscolecids ancestral ecdysozoans?

    Science.gov (United States)

    Harvey, Thomas H P; Dong, Xiping; Donoghue, Philip C J

    2010-01-01

    The reconstruction of ancestors is a central aim of comparative anatomy and evolutionary developmental biology, not least in attempts to understand the relationship between developmental and organismal evolution. Inferences based on living taxa can and should be tested against the fossil record, which provides an independent and direct view onto historical character combinations. Here, we consider the nature of the last common ancestor of living ecdysozoans through a detailed analysis of palaeoscolecids, an early and extinct group of introvert-bearing worms that have been proposed to be ancestral ecdysozoans. In a review of palaeoscolecid anatomy, including newly resolved details of the internal and external cuticle structure, we identify specific characters shared with various living nematoid and scalidophoran worms, but not with panarthropods. Considered within a formal cladistic context, these characters provide most overall support for a stem-priapulid affinity, meaning that palaeoscolecids are far-removed from the ecdysozoan ancestor. We conclude that previous interpretations in which palaeoscolecids occupy a deeper position in the ecdysozoan tree lack particular morphological support and rely instead on a paucity of preserved characters. This bears out a more general point that fossil taxa may appear plesiomorphic merely because they preserve only plesiomorphies, rather than the mélange of primitive and derived characters anticipated of organisms properly allocated to a position deep within animal phylogeny.

  15. Urethral duplication with unusual cause of bladder outlet obstruction

    Directory of Open Access Journals (Sweden)

    Vivek Venkatramani

    2016-01-01

    Full Text Available A 12-year-old boy presented with poor flow and recurrent urinary tract infections following hypospadias repair at the age of 3 years. The evaluation revealed urethral duplication with a hypoplastic dorsal urethra and patent ventral urethra. He also had duplication of the bladder neck, and on voiding cystourethrogram the ventral bladder neck appeared hypoplastic and compressed by the dorsal bladder neck during voiding. The possibility of functional obstruction of the ventral urethra by the occluded dorsal urethra was suspected, and he underwent a successful urethro-urethrostomy.

  16. Acute abdominal pain presenting as a rare appendiceal duplication: a case report

    Directory of Open Access Journals (Sweden)

    Mahmood Ali

    2012-03-01

    Full Text Available Abstract Introduction Appendiceal duplication is a rare anomaly that can manifest as right lower quadrant pain. There are several variations described for this condition. We recommend aggressive operative management should this anatomical variation present in the presence of acute appendicitis. Case presentation We report the case of a 15-year-old African American girl who presented to our hospital with right lower quadrant pain and was subsequently found to have appendiceal duplication. Conclusion There are two categorical systems that have described and stratified appendiceal duplication. Both classification systems have been outlined and referenced in this case report. A computed tomography scan has been included to provide a visual aid to help identify true vermiform appendiceal duplication. The presence of this anatomical abnormality is not a reason for surgical intervention; however, should this be found in the setting of acute appendicitis, aggressive resection of both appendices is mandatory.

  17. Evidence that the ancestral haplotype in Australian hemochromatosis patients may be associated with a common mutation in the gene.

    OpenAIRE

    Crawford, D H; Powell, L W; Leggett, B A; Francis, J S; Fletcher, L M; Webb, S I; Halliday, J W; Jazwinska, E C

    1995-01-01

    Hemochromatosis (HC) is a common inherited disorder of iron metabolism for which neither the gene nor biochemical defect have yet been identified. The aim of this study was to look for clinical evidence that the predominant ancestral haplotype in Australian patients is associated with a common mutation in the gene. We compared indices of iron metabolism and storage in three groups of HC patients categorized according to the presence of the ancestral haplotype (i.e., patients with two copies, ...

  18. 20 CFR 410.705 - Duplicate claims.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Duplicate claims. 410.705 Section 410.705 Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, TITLE IV-BLACK LUNG BENEFITS (1969- ) Rules for the Review of Denied and Pending Claims Under the Black Lung...

  19. Duplication and Diversification of the Hypoxia-Inducible IGFBP-1 Gene in Zebrafish

    DEFF Research Database (Denmark)

    Kamei, Hiroyasu; Lu, Ling; Jiao, Shuang

    2008-01-01

    Background: Gene duplication is the primary force of new gene evolution. Deciphering whether a pair of duplicated genes has evolved divergent functions is often challenging. The zebrafish is uniquely positioned to provide insight into the process of functional gene evolution due to its amenabilit...

  20. 46 CFR Sec. 5 - Responsibility for duplicating copies of NSA-WORKSMALREP Contract.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Responsibility for duplicating copies of NSA-WORKSMALREP Contract. Sec. 5 Section 5 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION A-NATIONAL... INDIVIDUAL CONTRACT FOR MINOR REPAIRS-NSA-WORKSMALREP Sec. 5 Responsibility for duplicating copies of NSA...

  1. Bladder exstrophy associated with complete urethral duplication ...

    African Journals Online (AJOL)

    J.E. Mensah

    ees.elsevier.com/afju · www.sciencedirect.com. Case report. Bladder exstrophy associated with complete urethral duplication: Bladder can be augmented with dorsal urethral mucosa. J.E. Mensaha,∗. , K.N. Ampadua, M.Y. Kyeia, B. Edusieb.

  2. Processes of fungal proteome evolution and gain of function: gene duplication and domain rearrangement

    International Nuclear Information System (INIS)

    Cohen-Gihon, Inbar; Nussinov, Ruth; Sharan, Roded

    2011-01-01

    During evolution, organisms have gained functional complexity mainly by modifying and improving existing functioning systems rather than creating new ones ab initio. Here we explore the interplay between two processes which during evolution have had major roles in the acquisition of new functions: gene duplication and protein domain rearrangements. We consider four possible evolutionary scenarios: gene families that have undergone none of these event types; only gene duplication; only domain rearrangement, or both events. We characterize each of the four evolutionary scenarios by functional attributes. Our analysis of ten fungal genomes indicates that at least for the fungi clade, species significantly appear to gain complexity by gene duplication accompanied by the expansion of existing domain architectures via rearrangements. We show that paralogs gaining new domain architectures via duplication tend to adopt new functions compared to paralogs that preserve their domain architectures. We conclude that evolution of protein families through gene duplication and domain rearrangement is correlated with their functional properties. We suggest that in general, new functions are acquired via the integration of gene duplication and domain rearrangements rather than each process acting independently

  3. Duodenal duplication cyst extending into the posterior mediastinum

    Directory of Open Access Journals (Sweden)

    Tuzun Sefa

    2015-01-01

    Conclusion: Duodenal and the other intestinal duplication cysts should be considered in the differential diagnosis of oral contrast enhanced intrathoracic lesions in thorocoabdominal computerised tomography imaging.

  4. NASAwide electronic publishing system: Electronic printing and duplicating, stage-2 evaluation report (GSFC)

    Science.gov (United States)

    Tuey, Richard C.; Lane, Robert; Hart, Susan V.

    1995-01-01

    The NASA Scientific and Technical Information Office was assigned the responsibility to continue with the expansion of the NASAwide networked electronic duplicating effort by including the Goddard Space Flight Center (GSFC) as an additional node to the existing configuration of networked electronic duplicating systems within NASA. The subject of this report is the evaluation of a networked electronic duplicating system which meets the duplicating requirements and expands electronic publishing capabilities without increasing current operating costs. This report continues the evaluation reported in 'NASA Electronic Publishing System - Electronic Printing and Duplicating Evaluation Report' (NASA TM-106242) and 'NASA Electronic Publishing System - Stage 1 Evaluation Report' (NASA TM-106510). This report differs from the previous reports through the inclusion of an external networked desktop editing, archival, and publishing functionality which did not exist with the previous networked electronic duplicating system. Additionally, a two-phase approach to the evaluation was undertaken; the first was a paper study justifying a 90-day, on-site evaluation, and the second phase was to validate, during the 90-day evaluation, the cost benefits and productivity increases that could be achieved in an operational mode. A benchmark of the functionality of the networked electronic publishing system and external networked desktop editing, archival, and publishing system was performed under a simulated daily production environment. This report can be used to guide others in determining the most cost effective duplicating/publishing alternative through the use of cost/benefit analysis and return on investment techniques. A treatise on the use of these techniques can be found by referring to 'NASA Electronic Publishing System -Cost/Benefit Methodology' (NASA TM-106662).

  5. The ethics of scholarly publishing: exploring differences in plagiarism and duplicate publication across nations*

    Science.gov (United States)

    Amos, Kathleen A.

    2014-01-01

    This study explored national differences in plagiarism and duplicate publication in retracted biomedical literature. The national affiliations of authors and reasons for retraction of papers accessible through PubMed that were published from 2008 to 2012 and subsequently retracted were determined in order to identify countries with the largest numbers and highest rates of retraction due to plagiarism and duplicate publication. Authors from more than fifty countries retracted papers. While the United States retracted the most papers, China retracted the most papers for plagiarism and duplicate publication. Rates of plagiarism and duplicate publication were highest in Italy and Finland, respectively. Unethical publishing practices cut across nations. PMID:24860263

  6. The ethics of scholarly publishing: exploring differences in plagiarism and duplicate publication across nations.

    Science.gov (United States)

    Amos, Kathleen A

    2014-04-01

    This study explored national differences in plagiarism and duplicate publication in retracted biomedical literature. The national affiliations of authors and reasons for retraction of papers accessible through PubMed that were published from 2008 to 2012 and subsequently retracted were determined in order to identify countries with the largest numbers and highest rates of retraction due to plagiarism and duplicate publication. Authors from more than fifty countries retracted papers. While the United States retracted the most papers, China retracted the most papers for plagiarism and duplicate publication. Rates of plagiarism and duplicate publication were highest in Italy and Finland, respectively. Unethical publishing practices cut across nations.

  7. The Microcephalin Ancestral Allele in a Neanderthal Individual

    Science.gov (United States)

    Lari, Martina; Rizzi, Ermanno; Milani, Lucio; Corti, Giorgio; Balsamo, Carlotta; Vai, Stefania; Catalano, Giulio; Pilli, Elena; Longo, Laura; Condemi, Silvana; Giunti, Paolo; Hänni, Catherine; De Bellis, Gianluca; Orlando, Ludovic; Barbujani, Guido; Caramelli, David

    2010-01-01

    Background The high frequency (around 0.70 worlwide) and the relatively young age (between 14,000 and 62,000 years) of a derived group of haplotypes, haplogroup D, at the microcephalin (MCPH1) locus led to the proposal that haplogroup D originated in a human lineage that separated from modern humans >1 million years ago, evolved under strong positive selection, and passed into the human gene pool by an episode of admixture circa 37,000 years ago. The geographic distribution of haplogroup D, with marked differences between Africa and Eurasia, suggested that the archaic human form admixing with anatomically modern humans might have been Neanderthal. Methodology/Principal Findings Here we report the first PCR amplification and high- throughput sequencing of nuclear DNA at the microcephalin (MCPH1) locus from Neanderthal individual from Mezzena Rockshelter (Monti Lessini, Italy). We show that a well-preserved Neanderthal fossil dated at approximately 50,000 years B.P., was homozygous for the ancestral, non-D, allele. The high yield of Neanderthal mtDNA sequences of the studied specimen, the pattern of nucleotide misincorporation among sequences consistent with post-mortem DNA damage and an accurate control of the MCPH1 alleles in all personnel that manipulated the sample, make it extremely unlikely that this result might reflect modern DNA contamination. Conclusions/Significance The MCPH1 genotype of the Monti Lessini (MLS) Neanderthal does not prove that there was no interbreeding between anatomically archaic and modern humans in Europe, but certainly shows that speculations on a possible Neanderthal origin of what is now the most common MCPH1 haplogroup are not supported by empirical evidence from ancient DNA. PMID:20498832

  8. The microcephalin ancestral allele in a Neanderthal individual.

    Directory of Open Access Journals (Sweden)

    Martina Lari

    Full Text Available BACKGROUND: The high frequency (around 0.70 worldwide and the relatively young age (between 14,000 and 62,000 years of a derived group of haplotypes, haplogroup D, at the microcephalin (MCPH1 locus led to the proposal that haplogroup D originated in a human lineage that separated from modern humans >1 million years ago, evolved under strong positive selection, and passed into the human gene pool by an episode of admixture circa 37,000 years ago. The geographic distribution of haplogroup D, with marked differences between Africa and Eurasia, suggested that the archaic human form admixing with anatomically modern humans might have been Neanderthal. METHODOLOGY/PRINCIPAL FINDINGS: Here we report the first PCR amplification and high-throughput sequencing of nuclear DNA at the microcephalin (MCPH1 locus from Neanderthal individual from Mezzena Rockshelter (Monti Lessini, Italy. We show that a well-preserved Neanderthal fossil dated at approximately 50,000 years B.P., was homozygous for the ancestral, non-D, allele. The high yield of Neanderthal mtDNA sequences of the studied specimen, the pattern of nucleotide misincorporation among sequences consistent with post-mortem DNA damage and an accurate control of the MCPH1 alleles in all personnel that manipulated the sample, make it extremely unlikely that this result might reflect modern DNA contamination. CONCLUSIONS/SIGNIFICANCE: The MCPH1 genotype of the Monti Lessini (MLS Neanderthal does not prove that there was no interbreeding between anatomically archaic and modern humans in Europe, but certainly shows that speculations on a possible Neanderthal origin of what is now the most common MCPH1 haplogroup are not supported by empirical evidence from ancient DNA.

  9. Distinct actions of ancestral vinclozolin and juvenile stress on neural gene expression in the male rat

    Directory of Open Access Journals (Sweden)

    Ross eGillette

    2015-03-01

    Full Text Available Exposure to the endocrine disrupting chemical vinclozolin during gestation of an F0 generation and/or chronic restraint stress during adolescence of the F3 descendants affects behavior, physiology, and gene expression in the brain. Genes related to the networks of growth factors, signaling peptides and receptors, steroid hormone receptors and enzymes, and epigenetic related factors were measured using quantitative polymerase chain reaction via Taqman low density arrays targeting 48 genes in the central amygdaloid nucleus, medial amygdaloid nucleus, medial preoptic area, lateral hypothalamus, and the ventromedial nucleus of the hypothalamus. We found that growth factors are particularly vulnerable to ancestral exposure in the central and medial amygdala; restraint stress during adolescence affected neural growth factors in the medial amygdala. Signaling peptides were affected by both ancestral exposure and stress during adolescence primarily in hypothalamic nuclei. Steroid hormone receptors and enzymes were strongly affected by restraint stress in the medial preoptic area. Epigenetic related genes were affected by stress in the ventromedial hypothalamus and by both ancestral exposure and stress during adolescence independently in the central amygdala. It is noteworthy that the lateral hypothalamus showed no effects of either manipulation. Gene expression is discussed in the context of behavioral and physiological measures previously published.

  10. Distinct actions of ancestral vinclozolin and juvenile stress on neural gene expression in the male rat.

    Science.gov (United States)

    Gillette, Ross; Miller-Crews, Isaac; Skinner, Michael K; Crews, David

    2015-01-01

    Exposure to the endocrine disrupting chemical vinclozolin during gestation of an F0 generation and/or chronic restraint stress during adolescence of the F3 descendants affects behavior, physiology, and gene expression in the brain. Genes related to the networks of growth factors, signaling peptides, and receptors, steroid hormone receptors and enzymes, and epigenetic related factors were measured using quantitative polymerase chain reaction via Taqman low density arrays targeting 48 genes in the central amygdaloid nucleus, medial amygdaloid nucleus, medial preoptic area (mPOA), lateral hypothalamus (LH), and the ventromedial nucleus of the hypothalamus. We found that growth factors are particularly vulnerable to ancestral exposure in the central and medial amygdala; restraint stress during adolescence affected neural growth factors in the medial amygdala. Signaling peptides were affected by both ancestral exposure and stress during adolescence primarily in hypothalamic nuclei. Steroid hormone receptors and enzymes were strongly affected by restraint stress in the mPOA. Epigenetic related genes were affected by stress in the ventromedial nucleus and by both ancestral exposure and stress during adolescence independently in the central amygdala. It is noteworthy that the LH showed no effects of either manipulation. Gene expression is discussed in the context of behavioral and physiological measures previously published.

  11. Intestinal duplication and retroperitoneal teratoma in child hoof: a case report

    International Nuclear Information System (INIS)

    Atzingen, Augusto Castelli Von; Bazzano, Felix Carlos Ocariz; Tiburzio, Nicolas Biagione; Grande, Rogerio Mendes; Juntolli Netto, Joao Diniz

    2007-01-01

    The authors present a case of intestinal duplication and retroperitoneal teratoma in a 7-year-old patient with evident mass and abdominal pain to explain; that it was submitted to study conventional X-ray, ultrasonography, computed tomography and subsequent exploiting laparotomia. The anatomopathological study verified intestinal duplication and ripe teratoma. In the existent medical literature it was not found any similar case. (author)

  12. The conservation pattern of short linear motifs is highly correlated with the function of interacting protein domains

    Directory of Open Access Journals (Sweden)

    Wang Yiguo

    2008-10-01

    Full Text Available Abstract Background Many well-represented domains recognize primary sequences usually less than 10 amino acids in length, called Short Linear Motifs (SLiMs. Accurate prediction of SLiMs has been difficult because they are short (often Results Our combined approach revealed that SLiMs are highly conserved in proteins from functional classes that are known to interact with a specific domain, but that they are not conserved in most other protein groups. We found that SLiMs recognized by SH2 domains were highly conserved in receptor kinases/phosphatases, adaptor molecules, and tyrosine kinases/phosphatases, that SLiMs recognized by SH3 domains were highly conserved in cytoskeletal and cytoskeletal-associated proteins, that SLiMs recognized by PDZ domains were highly conserved in membrane proteins such as channels and receptors, and that SLiMs recognized by S/T kinase domains were highly conserved in adaptor molecules, S/T kinases/phosphatases, and proteins involved in transcription or cell cycle control. We studied Tyr-SLiMs recognized by SH2 domains in more detail, and found that SH2-recognized Tyr-SLiMs on the cytoplasmic side of membrane proteins are more highly conserved than those on the extra-cellular side. Also, we found that SH2-recognized Tyr-SLiMs that are associated with SH3 motifs and a tyrosine kinase phosphorylation motif are more highly conserved. Conclusion The interactome of protein domains is reflected by the evolutionary conservation of SLiMs recognized by these domains. Combining scoring matrixes derived from peptide libraries and conservation analysis, we would be able to find those protein groups that are more likely to interact with specific domains.

  13. Perianth evolution in Ranunculaceae: are petals ancestral in the family?

    OpenAIRE

    Nadot S.; Sauquet H.; Damerval C.; Jabbour F.; Domenech B.

    2016-01-01

    Progress has been made recently towards the elucidation of phylogenetic relationships among subfamilies and tribes of the Ranunculaceae – the most recent hypothesis was published in 2016 by our team. Although relationships among the 10 tribes of the subfamily Ranunculoideae remain incompletely supported, this hypothesis provides an interesting framework to address the key issue of the ancestral vs. derived nature of a differentiated perianth within the family, and at the level of Ranunculales...

  14. Microevolution of Duplications and Deletions and Their Impact on Gene Expression in the Nematode Pristionchus pacificus.

    Directory of Open Access Journals (Sweden)

    Praveen Baskaran

    Full Text Available The evolution of diversity across the animal kingdom has been accompanied by tremendous gene loss and gain. While comparative genomics has been fruitful to characterize differences in gene content across highly diverged species, little is known about the microevolution of structural variations that cause these differences in the first place. In order to investigate the genomic impact of structural variations, we made use of genomic and transcriptomic data from the nematode Pristionchus pacificus, which has been established as a satellite model to Caenorhabditis elegans for comparative biology. We exploit the fact that P. pacificus is a highly diverse species for which various genomic data including the draft genome of a sister species P. exspectatus is available. Based on resequencing coverage data for two natural isolates we identified large (> 2 kb deletions and duplications relative to the reference strain. By restriction to completely syntenic regions between P. pacificus and P. exspectatus, we were able to polarize the comparison and to assess the impact of structural variations on expression levels. We found that while loss of genes correlates with lack of expression, duplication of genes has virtually no effect on gene expression. Further investigating expression of individual copies at sites that segregate between the duplicates, we found in the majority of cases only one of the copies to be expressed. Nevertheless, we still find that certain gene classes are strongly depleted in deletions as well as duplications, suggesting evolutionary constraint acting on synteny. In summary, our results are consistent with a model, where most structural variations are either deleterious or neutral and provide first insights into the microevolution of structural variations in the P. pacificus genome.

  15. Translocations used to generate chromosome segment duplications ...

    Indian Academy of Sciences (India)

    a duplication (Dp) of the translocated segment and four inviable (white, W) ascospores with .... of this work, namely, the definition of breakpoint junction sequences of 12 ..... then our results would place supercontig 10.9 in distal. LG VIR. A third ...

  16. Analysis of ancestral and functionally relevant CD5 variants in systemic lupus erythematosus patients.

    Directory of Open Access Journals (Sweden)

    Maria Carmen Cenit

    Full Text Available CD5 plays a crucial role in autoimmunity and is a well-established genetic risk factor of developing RA. Recently, evidence of positive selection has been provided for the CD5 Pro224-Val471 haplotype in East Asian populations. The aim of the present work was to further analyze the functional relevance of non-synonymous CD5 polymorphisms conforming the ancestral and the newly derived haplotypes (Pro224-Ala471 and Pro224-Val471, respectively as well as to investigate the potential role of CD5 on the development of SLE and/or SLE nephritis.The CD5 SNPs rs2241002 (C/T; Pro224Leu and rs2229177 (C/T; Ala471Val were genotyped using TaqMan allelic discrimination assays in a total of 1,324 controls and 681 SLE patients of Spanish origin. In vitro analysis of CD3-mediated T cell proliferative and cytokine response profiles of healthy volunteers homozygous for the above mentioned CD5 haplotypes were also analyzed.T-cell proliferation and cytokine release were significantly increased showing a bias towards to a Th2 profile after CD3 cross-linking of peripheral mononuclear cells from healthy individuals homozygous for the ancestral Pro224-Ala471 (CC haplotype, compared to the more recently derived Pro224-Val471 (CT. The same allelic combination was statistically associated with Lupus nephritis.The ancestral Ala471 CD5 allele confers lymphocyte hyper-responsiveness to TCR/CD3 cross-linking and is associated with nephritis in SLE patients.

  17. Dissecting a hidden gene duplication: the Arabidopsis thaliana SEC10 locus.

    Directory of Open Access Journals (Sweden)

    Nemanja Vukašinović

    Full Text Available Repetitive sequences present a challenge for genome sequence assembly, and highly similar segmental duplications may disappear from assembled genome sequences. Having found a surprising lack of observable phenotypic deviations and non-Mendelian segregation in Arabidopsis thaliana mutants in SEC10, a gene encoding a core subunit of the exocyst tethering complex, we examined whether this could be explained by a hidden gene duplication. Re-sequencing and manual assembly of the Arabidopsis thaliana SEC10 (At5g12370 locus revealed that this locus, comprising a single gene in the reference genome assembly, indeed contains two paralogous genes in tandem, SEC10a and SEC10b, and that a sequence segment of 7 kb in length is missing from the reference genome sequence. Differences between the two paralogs are concentrated in non-coding regions, while the predicted protein sequences exhibit 99% identity, differing only by substitution of five amino acid residues and an indel of four residues. Both SEC10 genes are expressed, although varying transcript levels suggest differential regulation. Homozygous T-DNA insertion mutants in either paralog exhibit a wild-type phenotype, consistent with proposed extensive functional redundancy of the two genes. By these observations we demonstrate that recently duplicated genes may remain hidden even in well-characterized genomes, such as that of A. thaliana. Moreover, we show that the use of the existing A. thaliana reference genome sequence as a guide for sequence assembly of new Arabidopsis accessions or related species has at least in some cases led to error propagation.

  18. Duplication of the vertebral artery: report of two cases and review of the literature

    International Nuclear Information System (INIS)

    Goddard, A.J.P.; Annesley-Williams, D.; Guthrie, J.A.; Weston, M.

    2001-01-01

    Duplication of the vertebral artery is rare. We report two cases in which it was an incidental finding. In the first, duplication of the right vertebral artery was demonstrated by magnetic resonance angiography (MRA) and conventional angiography. The second patient had duplication of the right vertebral artery demonstrated by MRA. We discuss the origin of this abnormality, its radiological implications and its potential clinical significance are discussed. (orig.)

  19. Duplicated collecting system of a kidney complicated with hydronephrosis - diagnostic methods review: A case report

    International Nuclear Information System (INIS)

    Osmanski, P.; Plucinska, I.; Calka, K.; Kedzierski, B.; Jazwiec, P.

    2008-01-01

    Duplicated collecting system of a kidney occurs in 1.7-4.2% of the population. It is a complex, unilateral or bilateral, congenital abnormality of the pyelocalyceal system and the ureter. The 2 ureters fuse to form a single ureteral orifice or empty separately into the bladder (ureter duplex). Duplicated collecting systems with complete ureteric duplication may lead to developing vesicoureteral reflux, hydronephrosis, and urinary infection. This article presents a case of a 49-year-old woman with duplicated collecting system and hydronephrosis in the upper pole. The anomaly was diagnosed using urography, ultrasonography and computed tomography examination.The best method for diagnostics of the duplicated pyelocalyceal system complicated by hydronephrosis is computed tomography examination, especially multislice computed tomography. The authors present also the options for therapy (author)

  20. Chromosome duplication in Lolium multiflorum Lam.

    Directory of Open Access Journals (Sweden)

    Roselaine Cristina Pereira

    2014-11-01

    Full Text Available Artificial chromosome duplication of diploid genotypes of Lolium multiflorum (2n=2x=14 is worthy to breeding, and aims to increase the expression of traits with agronomic interest. The purpose of this study was to obtain polyploid plants of L. multiflorum from local diploid populations in order to exploit adaptation and future verification of the effects of polyploidy in agronomic traits. Seedlings were immersed in different colchicine solutions for an exposure time of 3h and 24h. Ploidy determination was made by the DNA content and certified by chromosomes counts. The plants confirmed as tetraploids were placed in a greenhouse, and, at flowering, pollen viability was evaluated, and seeds were harvested to assess the stability of the progenies. The percentage of polyploids obtained was 20%. Pollen viability of the tetraploids generated ranged from 58% to 69%. The tetraploid plants obtained in the experiment generated 164 progenies, of which 109 presented DNA content compatible with the tetraploid level, showing stability of chromosome duplication in the filial generation.