WorldWideScience

Sample records for analysis quantitative pcr

  1. Quantitative analysis of food and feed samples with droplet digital PCR.

    Directory of Open Access Journals (Sweden)

    Dany Morisset

    Full Text Available In this study, the applicability of droplet digital PCR (ddPCR for routine analysis in food and feed samples was demonstrated with the quantification of genetically modified organisms (GMOs. Real-time quantitative polymerase chain reaction (qPCR is currently used for quantitative molecular analysis of the presence of GMOs in products. However, its use is limited for detecting and quantifying very small numbers of DNA targets, as in some complex food and feed matrices. Using ddPCR duplex assay, we have measured the absolute numbers of MON810 transgene and hmg maize reference gene copies in DNA samples. Key performance parameters of the assay were determined. The ddPCR system is shown to offer precise absolute and relative quantification of targets, without the need for calibration curves. The sensitivity (five target DNA copies of the ddPCR assay compares well with those of individual qPCR assays and of the chamber digital PCR (cdPCR approach. It offers a dynamic range over four orders of magnitude, greater than that of cdPCR. Moreover, when compared to qPCR, the ddPCR assay showed better repeatability at low target concentrations and a greater tolerance to inhibitors. Finally, ddPCR throughput and cost are advantageous relative to those of qPCR for routine GMO quantification. It is thus concluded that ddPCR technology can be applied for routine quantification of GMOs, or any other domain where quantitative analysis of food and feed samples is needed.

  2. A survey of tools for the analysis of quantitative PCR (qPCR) data.

    Science.gov (United States)

    Pabinger, Stephan; Rödiger, Stefan; Kriegner, Albert; Vierlinger, Klemens; Weinhäusel, Andreas

    2014-09-01

    Real-time quantitative polymerase-chain-reaction (qPCR) is a standard technique in most laboratories used for various applications in basic research. Analysis of qPCR data is a crucial part of the entire experiment, which has led to the development of a plethora of methods. The released tools either cover specific parts of the workflow or provide complete analysis solutions. Here, we surveyed 27 open-access software packages and tools for the analysis of qPCR data. The survey includes 8 Microsoft Windows, 5 web-based, 9 R-based and 5 tools from other platforms. Reviewed packages and tools support the analysis of different qPCR applications, such as RNA quantification, DNA methylation, genotyping, identification of copy number variations, and digital PCR. We report an overview of the functionality, features and specific requirements of the individual software tools, such as data exchange formats, availability of a graphical user interface, included procedures for graphical data presentation, and offered statistical methods. In addition, we provide an overview about quantification strategies, and report various applications of qPCR. Our comprehensive survey showed that most tools use their own file format and only a fraction of the currently existing tools support the standardized data exchange format RDML. To allow a more streamlined and comparable analysis of qPCR data, more vendors and tools need to adapt the standardized format to encourage the exchange of data between instrument software, analysis tools, and researchers.

  3. [A new method of processing quantitative PCR data].

    Science.gov (United States)

    Ke, Bing-Shen; Li, Guang-Yun; Chen, Shi-Min; Huang, Xiang-Yan; Chen, Ying-Jian; Xu, Jun

    2003-05-01

    Today standard PCR can't satisfy the need of biotechnique development and clinical research any more. After numerous dynamic research, PE company found there is a linear relation between initial template number and cycling time when the accumulating fluorescent product is detectable.Therefore,they developed a quantitative PCR technique to be used in PE7700 and PE5700. But the error of this technique is too great to satisfy the need of biotechnique development and clinical research. A better quantitative PCR technique is needed. The mathematical model submitted here is combined with the achievement of relative science,and based on the PCR principle and careful analysis of molecular relationship of main members in PCR reaction system. This model describes the function relation between product quantity or fluorescence intensity and initial template number and other reaction conditions, and can reflect the accumulating rule of PCR product molecule accurately. Accurate quantitative PCR analysis can be made use this function relation. Accumulated PCR product quantity can be obtained from initial template number. Using this model to do quantitative PCR analysis,result error is only related to the accuracy of fluorescence intensity or the instrument used. For an example, when the fluorescence intensity is accurate to 6 digits and the template size is between 100 to 1,000,000, the quantitative result accuracy will be more than 99%. The difference of result error is distinct using same condition,same instrument but different analysis method. Moreover,if the PCR quantitative analysis system is used to process data, it will get result 80 times of accuracy than using CT method.

  4. Quantitative (real-time) PCR

    International Nuclear Information System (INIS)

    Denman, S.E.; McSweeney, C.S.

    2005-01-01

    Many nucleic acid-based probe and PCR assays have been developed for the detection tracking of specific microbes within the rumen ecosystem. Conventional PCR assays detect PCR products at the end stage of each PCR reaction, where exponential amplification is no longer being achieved. This approach can result in different end product (amplicon) quantities being generated. In contrast, using quantitative, or real-time PCR, quantification of the amplicon is performed not at the end of the reaction, but rather during exponential amplification, where theoretically each cycle will result in a doubling of product being created. For real-time PCR, the cycle at which fluorescence is deemed to be detectable above the background during the exponential phase is termed the cycle threshold (Ct). The Ct values obtained are then used for quantitation, which will be discussed later

  5. Using multiple PCR and CE with chemiluminescence detection for simultaneous qualitative and quantitative analysis of genetically modified organism.

    Science.gov (United States)

    Guo, Longhua; Qiu, Bin; Chi, Yuwu; Chen, Guonan

    2008-09-01

    In this paper, an ultrasensitive CE-CL detection system coupled with a novel double-on-column coaxial flow detection interface was developed for the detection of PCR products. A reliable procedure based on this system had been demonstrated for qualitative and quantitative analysis of genetically modified organism-the detection of Roundup Ready Soy (RRS) samples was presented as an example. The promoter, terminator, function and two reference genes of RRS were amplified with multiplex PCR simultaneously. After that, the multiplex PCR products were labeled with acridinium ester at the 5'-terminal through an amino modification and then analyzed by the proposed CE-CL system. Reproducibility of analysis times and peak heights for the CE-CL analysis were determined to be better than 0.91 and 3.07% (RSD, n=15), respectively, for three consecutive days. It was shown that this method could accurately and qualitatively detect RRS standards and the simulative samples. The evaluation in terms of quantitative analysis of RRS provided by this new method was confirmed by comparing our assay results with those of the standard real-time quantitative PCR (RT-QPCR) using SYBR Green I dyes. The results showed a good coherence between the two methods. This approach demonstrated the possibility for accurate qualitative and quantitative detection of GM plants in a single run.

  6. Exploring Valid Reference Genes for Quantitative Real-Time PCR Analysis in Sesamia inferens (Lepidoptera: Noctuidae)

    OpenAIRE

    Sun, Meng; Lu, Ming-Xing; Tang, Xiao-Tian; Du, Yu-Zhou

    2015-01-01

    The pink stem borer, Sesamia inferens, which is endemic in China and other parts of Asia, is a major pest of rice and causes significant yield loss in this host plant. Very few studies have addressed gene expression in S. inferens. Quantitative real-time PCR (qRT-PCR) is currently the most accurate and sensitive method for gene expression analysis. In qRT-PCR, data are normalized using reference genes, which help control for internal differences and reduce error between samples. In this study...

  7. Selection of reference genes for quantitative RT-PCR (RT-qPCR) analysis of rat tissues under physiological and toxicological conditions

    DEFF Research Database (Denmark)

    Svingen, Terje; Letting, Heidi; Hadrup, Niels

    2015-01-01

    In biological research the analysis of gene expression levels in cells and tissues can be a powerful tool to gain insights into biological processes. For this, quantitative RT-PCR (RT-qPCR) is a popular method that often involve the use of constitutively expressed endogenous reference (or...... ‘housekeeping’) gene for normalization of data. Thus, it is essential to use reference genes that have been verified to be stably expressed within the specific experimental setting. Here, we have analysed the expression stability of 12 commonly used reference genes (Actb, B2m, Gapdh, Hprt, Pgk1, Rn18s, Rpl13a...

  8. Application of droplet digital PCR for quantitative detection of Spiroplasma citri in comparison with real time PCR.

    Directory of Open Access Journals (Sweden)

    Yogita Maheshwari

    Full Text Available Droplet digital polymerase chain reaction (ddPCR is a method for performing digital PCR that is based on water-oil emulsion droplet technology. It is a unique approach to measure the absolute copy number of nucleic acid targets without the need of external standards. This study evaluated the applicability of ddPCR as a quantitative detection tool for the Spiroplasma citri, causal agent of citrus stubborn disease (CSD in citrus. Two sets of primers, SP1, based on the spiral in housekeeping gene, and a multicopy prophage gene, SpV1 ORF1, were used to evaluate ddPCR in comparison with real time (quantitative PCR (qPCR for S. citri detection in citrus tissues. Standard curve analyses on tenfold dilution series showed that both ddPCR and qPCR exhibited good linearity and efficiency. However, ddPCR had a tenfold greater sensitivity than qPCR and accurately quantified up to one copy of spiralin gene. Receiver operating characteristic analysis indicated that the ddPCR methodology was more robust for diagnosis of CSD and the area under the curve was significantly broader compared to qPCR. Field samples were used to validate ddPCR efficacy and demonstrated that it was equal or better than qPCR to detect S. citri infection in fruit columella due to a higher pathogen titer. The ddPCR assay detected both the S. citri spiralin and the SpV1 ORF1 targets quantitatively with high precision and accuracy compared to qPCR assay. The ddPCR was highly reproducible and repeatable for both the targets and showed higher resilience to PCR inhibitors in citrus tissue extract for the quantification of S. citri compare to qPCR.

  9. Real-time quantitative PCR of microdissected paraffin-embedded breast carcinoma

    DEFF Research Database (Denmark)

    Gjerdrum, Lise Mette; Sorensen, Boe Sandahl; Kjeldsen, Eigil

    2004-01-01

    We studied the feasibility of using real-time quantitative PCR to determine HER-2 DNA amplification and mRNA expression in microdissected formalin-fixed, paraffin-embedded breast tumors and compared this with standard immunohistochemistry (IHC) and fluorescent in situ hybridization (FISH) methods...... tumors as being amplified. Interestingly, all these scored 2+ with the HercepTest, but were negative using FISH. We believe that real-time quantitative PCR analysis of HER-2 DNA amplification following microdissection represents a useful supplementary or perhaps even an alternative technique...

  10. Improved assay to detect Plasmodium falciparum using an uninterrupted, semi-nested PCR and quantitative lateral flow analysis

    Science.gov (United States)

    2013-01-01

    Background A rapid, non-invasive, and inexpensive point-of-care (POC) diagnostic for malaria followed by therapeutic intervention would improve the ability to control infection in endemic areas. Methods A semi-nested PCR amplification protocol is described for quantitative detection of Plasmodium falciparum and is compared to a traditional nested PCR. The approach uses primers that target the P. falciparum dihydrofolate reductase gene. Results This study demonstrates that it is possible to perform an uninterrupted, asymmetric, semi-nested PCR assay with reduced assay time to detect P. falciparum without compromising the sensitivity and specificity of the assay using saliva as a testing matrix. Conclusions The development of this PCR allows nucleic acid amplification without the need to transfer amplicon from the first PCR step to a second reaction tube with nested primers, thus reducing both the chance of contamination and the time for analysis to PCR amplicon yield was adapted to lateral flow detection using the quantitative up-converting phosphor (UCP) reporter technology. This approach provides a basis for migration of the assay to a POC microfluidic format. In addition the assay was successfully evaluated with oral samples. Oral fluid collection provides a simple non-invasive method to collect clinical samples. PMID:23433252

  11. Genome-Wide Identification and Evaluation of Reference Genes for Quantitative RT-PCR Analysis during Tomato Fruit Development.

    Science.gov (United States)

    Cheng, Yuan; Bian, Wuying; Pang, Xin; Yu, Jiahong; Ahammed, Golam J; Zhou, Guozhi; Wang, Rongqing; Ruan, Meiying; Li, Zhimiao; Ye, Qingjing; Yao, Zhuping; Yang, Yuejian; Wan, Hongjian

    2017-01-01

    Gene expression analysis in tomato fruit has drawn increasing attention nowadays. Quantitative real-time PCR (qPCR) is a routine technique for gene expression analysis. In qPCR operation, reliability of results largely depends on the choice of appropriate reference genes (RGs). Although tomato is a model for fruit biology study, few RGs for qPCR analysis in tomato fruit had yet been developed. In this study, we initially identified 38 most stably expressed genes based on tomato transcriptome data set, and their expression stabilities were further determined in a set of tomato fruit samples of four different fruit developmental stages (Immature, mature green, breaker, mature red) using qPCR analysis. Two statistical algorithms, geNorm and Normfinder, concordantly determined the superiority of these identified putative RGs. Notably, SlFRG05 (Solyc01g104170), SlFRG12 (Solyc04g009770), SlFRG16 (Solyc10g081190), SlFRG27 (Solyc06g007510), and SlFRG37 (Solyc11g005330) were proved to be suitable RGs for tomato fruit development study. Further analysis using geNorm indicate that the combined use of SlFRG03 (Solyc02g063070) and SlFRG27 would provide more reliable normalization results in qPCR experiments. The identified RGs in this study will be beneficial for future qPCR analysis of tomato fruit developmental study, as well as for the potential identification of optimal normalization controls in other plant species.

  12. Genome-Wide Identification and Evaluation of Reference Genes for Quantitative RT-PCR Analysis during Tomato Fruit Development

    Directory of Open Access Journals (Sweden)

    Yuan Cheng

    2017-08-01

    Full Text Available Gene expression analysis in tomato fruit has drawn increasing attention nowadays. Quantitative real-time PCR (qPCR is a routine technique for gene expression analysis. In qPCR operation, reliability of results largely depends on the choice of appropriate reference genes (RGs. Although tomato is a model for fruit biology study, few RGs for qPCR analysis in tomato fruit had yet been developed. In this study, we initially identified 38 most stably expressed genes based on tomato transcriptome data set, and their expression stabilities were further determined in a set of tomato fruit samples of four different fruit developmental stages (Immature, mature green, breaker, mature red using qPCR analysis. Two statistical algorithms, geNorm and Normfinder, concordantly determined the superiority of these identified putative RGs. Notably, SlFRG05 (Solyc01g104170, SlFRG12 (Solyc04g009770, SlFRG16 (Solyc10g081190, SlFRG27 (Solyc06g007510, and SlFRG37 (Solyc11g005330 were proved to be suitable RGs for tomato fruit development study. Further analysis using geNorm indicate that the combined use of SlFRG03 (Solyc02g063070 and SlFRG27 would provide more reliable normalization results in qPCR experiments. The identified RGs in this study will be beneficial for future qPCR analysis of tomato fruit developmental study, as well as for the potential identification of optimal normalization controls in other plant species.

  13. Real-time quantitative PCR of Staphylococcus aureus and application in restaurant meals.

    Science.gov (United States)

    Berrada, H; Soriano, J M; Mañes, J; Picó, Y

    2006-01-01

    Staphylococcus aureus is considered the second most common pathogen to cause outbreaks of food poisoning, exceeded only by Campylobacter. Consumption of foods containing this microorganism is often identified as the cause of illness. In this study, a rapid, reliable, and sensitive real-time quantitative PCR was developed and compared with conventional culture methods. Real-time quantitative PCR was carried out by purifying DNA extracts of S. aureus with a Staphylococcus sample preparation kit and quantifying it in the LightCycler system with hybridization probes. The assay was linear from a range of 10 to 10(6) S. aureus cells (r2 > 0.997). The PCR reaction presented an efficiency of >85%. Accuracy of the PCR-based assay, expressed as percent bias, was around 13%, and the precision, expressed as a percentage of the coefficient of variation, was 7 to 10%. Intraday and interday variability were studied at 10(2) CFU/g and was 12 and 14%, respectively. The proposed method was applied to the analysis of 77 samples of restaurant meals in Valencia (Spain). In 11.6% of samples S. aureus was detected by real-time quantitative PCR, as well as by the conventional microbiological method. An excellent correspondence between real-time quantitative PCR and microbiological numbers (CFU/g) was observed with deviations of < 28%.

  14. Interlaboratory validation of quantitative duplex real-time PCR method for screening analysis of genetically modified maize.

    Science.gov (United States)

    Takabatake, Reona; Koiwa, Tomohiro; Kasahara, Masaki; Takashima, Kaori; Futo, Satoshi; Minegishi, Yasutaka; Akiyama, Hiroshi; Teshima, Reiko; Oguchi, Taichi; Mano, Junichi; Furui, Satoshi; Kitta, Kazumi

    2011-01-01

    To reduce the cost and time required to routinely perform the genetically modified organism (GMO) test, we developed a duplex quantitative real-time PCR method for a screening analysis simultaneously targeting an event-specific segment for GA21 and Cauliflower Mosaic Virus 35S promoter (P35S) segment [Oguchi et al., J. Food Hyg. Soc. Japan, 50, 117-125 (2009)]. To confirm the validity of the method, an interlaboratory collaborative study was conducted. In the collaborative study, conversion factors (Cfs), which are required to calculate the GMO amount (%), were first determined for two real-time PCR instruments, the ABI PRISM 7900HT and the ABI PRISM 7500. A blind test was then conducted. The limit of quantitation for both GA21 and P35S was estimated to be 0.5% or less. The trueness and precision were evaluated as the bias and reproducibility of the relative standard deviation (RSD(R)). The determined bias and RSD(R) were each less than 25%. We believe the developed method would be useful for the practical screening analysis of GM maize.

  15. Intra-laboratory validation of chronic bee paralysis virus quantitation using an accredited standardised real-time quantitative RT-PCR method.

    Science.gov (United States)

    Blanchard, Philippe; Regnault, Julie; Schurr, Frank; Dubois, Eric; Ribière, Magali

    2012-03-01

    Chronic bee paralysis virus (CBPV) is responsible for chronic bee paralysis, an infectious and contagious disease in adult honey bees (Apis mellifera L.). A real-time RT-PCR assay to quantitate the CBPV load is now available. To propose this assay as a reference method, it was characterised further in an intra-laboratory study during which the reliability and the repeatability of results and the performance of the assay were confirmed. The qPCR assay alone and the whole quantitation method (from sample RNA extraction to analysis) were both assessed following the ISO/IEC 17025 standard and the recent XP U47-600 standard issued by the French Standards Institute. The performance of the qPCR assay and of the overall CBPV quantitation method were validated over a 6 log range from 10(2) to 10(8) with a detection limit of 50 and 100 CBPV RNA copies, respectively, and the protocol of the real-time RT-qPCR assay for CBPV quantitation was approved by the French Accreditation Committee. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Exploring Valid Reference Genes for Quantitative Real-time PCR Analysis in Plutella xylostella (Lepidoptera: Plutellidae)

    Science.gov (United States)

    Fu, Wei; Xie, Wen; Zhang, Zhuo; Wang, Shaoli; Wu, Qingjun; Liu, Yong; Zhou, Xiaomao; Zhou, Xuguo; Zhang, Youjun

    2013-01-01

    Abstract: Quantitative real-time PCR (qRT-PCR), a primary tool in gene expression analysis, requires an appropriate normalization strategy to control for variation among samples. The best option is to compare the mRNA level of a target gene with that of reference gene(s) whose expression level is stable across various experimental conditions. In this study, expression profiles of eight candidate reference genes from the diamondback moth, Plutella xylostella, were evaluated under diverse experimental conditions. RefFinder, a web-based analysis tool, integrates four major computational programs including geNorm, Normfinder, BestKeeper, and the comparative ΔCt method to comprehensively rank the tested candidate genes. Elongation factor 1 (EF1) was the most suited reference gene for the biotic factors (development stage, tissue, and strain). In contrast, although appropriate reference gene(s) do exist for several abiotic factors (temperature, photoperiod, insecticide, and mechanical injury), we were not able to identify a single universal reference gene. Nevertheless, a suite of candidate reference genes were specifically recommended for selected experimental conditions. Our finding is the first step toward establishing a standardized qRT-PCR analysis of this agriculturally important insect pest. PMID:23983612

  17. Analysis of the bacterial community in aged and aging pit mud of Chinese Luzhou-flavour liquor by combined PCR-DGGE and quantitative PCR assay.

    Science.gov (United States)

    Liang, Huipeng; Li, Wenfang; Luo, Qingchun; Liu, Chaolan; Wu, Zhengyun; Zhang, Wenxue

    2015-10-01

    The community structure of bacteria in aged and aging pit mud, which was judged according to their sensory and physicochemical characteristics, was analysed using polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) and quantitative real-time PCR (qPCR). The phyla Firmicutes, Actinobacteria, Proteobacteria, Synergistetes and Unclassified Bacteria were detected and the fermentative Firmicutes was predominant in both types of pit mud in the PCR-DGGE analysis. Among Firmicutes, Clostridiales was dominant in aged pit mud while Bacillales and Lactobacillales were dominant in aging pit mud. The diversity of bacterial communities in aged pit mud was higher than that in aging pit mud. In the qPCR analysis the abundance of Clostridium IV in aged pit mud was higher than that in aging pit mud and there were significant differences in the quantity of Clostridium IV between aged and aging pit mud of the same cellar (P mud. The differences in the quantity of Clostridium IV might be involved in the distinction that the aged pit mud has a strong aroma while the aging pit mud does not. © 2014 Society of Chemical Industry.

  18. Identification of internal control genes for quantitative expression analysis by real-time PCR in bovine peripheral lymphocytes.

    Science.gov (United States)

    Spalenza, Veronica; Girolami, Flavia; Bevilacqua, Claudia; Riondato, Fulvio; Rasero, Roberto; Nebbia, Carlo; Sacchi, Paola; Martin, Patrice

    2011-09-01

    Gene expression studies in blood cells, particularly lymphocytes, are useful for monitoring potential exposure to toxicants or environmental pollutants in humans and livestock species. Quantitative PCR is the method of choice for obtaining accurate quantification of mRNA transcripts although variations in the amount of starting material, enzymatic efficiency, and the presence of inhibitors can lead to evaluation errors. As a result, normalization of data is of crucial importance. The most common approach is the use of endogenous reference genes as an internal control, whose expression should ideally not vary among individuals and under different experimental conditions. The accurate selection of reference genes is therefore an important step in interpreting quantitative PCR studies. Since no systematic investigation in bovine lymphocytes has been performed, the aim of the present study was to assess the expression stability of seven candidate reference genes in circulating lymphocytes collected from 15 dairy cows. Following the characterization by flow cytometric analysis of the cell populations obtained from blood through a density gradient procedure, three popular softwares were used to evaluate the gene expression data. The results showed that two genes are sufficient for normalization of quantitative PCR studies in cattle lymphocytes and that YWAHZ, S24 and PPIA are the most stable genes. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Identification of appropriate reference genes for human mesenchymal stem cell analysis by quantitative real-time PCR.

    Science.gov (United States)

    Li, Xiuying; Yang, Qiwei; Bai, Jinping; Xuan, Yali; Wang, Yimin

    2015-01-01

    Normalization to a reference gene is the method of choice for quantitative reverse transcription-PCR (RT-qPCR) analysis. The stability of reference genes is critical for accurate experimental results and conclusions. We have evaluated the expression stability of eight commonly used reference genes found in four different human mesenchymal stem cells (MSC). Using geNorm, NormFinder and BestKeeper algorithms, we show that beta-2-microglobulin and peptidyl-prolylisomerase A were the optimal reference genes for normalizing RT-qPCR data obtained from MSC, whereas the TATA box binding protein was not suitable due to its extensive variability in expression. Our findings emphasize the significance of validating reference genes for qPCR analyses. We offer a short list of reference genes to use for normalization and recommend some commercially-available software programs as a rapid approach to validate reference genes. We also demonstrate that the two reference genes, β-actin and glyceraldehyde-3-phosphate dehydrogenase, are frequently used are not always successful in many cases.

  20. Gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of Japanese encephalitis virus

    International Nuclear Information System (INIS)

    Huang, S-H; Tsai, M-H; Lin, C-W; Yang, T-C; Chuang, P-H; Tsai, I-S; Lu, H-C; Wan Lei; Lin, Y-J; Lai, C-H

    2008-01-01

    Virus isolation and antibody detection are routinely used for diagnosis of Japanese encephalitis virus (JEV) infection, but the low level of transient viremia in some JE patients makes JEV isolation from clinical and surveillance samples very difficult. We describe the use of gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of JEV from its RNA genome. We tested the effect of gold nanoparticles on four different PCR systems, including conventional PCR, reverse-transcription PCR (RT-PCR), and SYBR green real-time PCR and RT-PCR assays for diagnosis in the acute phase of JEV infection. Gold nanoparticles increased the amplification yield of the PCR product and shortened the PCR time compared to the conventional reaction. In addition, nanogold-based real-time RT-PCR showed a linear relationship between Ct and template amount using ten-fold dilutions of JEV. The nanogold-based RT-PCR and real-time quantitative RT-PCR assays were able to detect low levels (1-10 000 copies) of the JEV RNA genomes extracted from culture medium or whole blood, providing early diagnostic tools for the detection of low-level viremia in the acute-phase infection. The assays described here were simple, sensitive, and rapid approaches for detection and quantitation of JEV in tissue cultured samples as well as clinical samples

  1. SASqPCR: robust and rapid analysis of RT-qPCR data in SAS.

    Directory of Open Access Journals (Sweden)

    Daijun Ling

    Full Text Available Reverse transcription quantitative real-time PCR (RT-qPCR is a key method for measurement of relative gene expression. Analysis of RT-qPCR data requires many iterative computations for data normalization and analytical optimization. Currently no computer program for RT-qPCR data analysis is suitable for analytical optimization and user-controllable customization based on data quality, experimental design as well as specific research aims. Here I introduce an all-in-one computer program, SASqPCR, for robust and rapid analysis of RT-qPCR data in SAS. This program has multiple macros for assessment of PCR efficiencies, validation of reference genes, optimization of data normalizers, normalization of confounding variations across samples, and statistical comparison of target gene expression in parallel samples. Users can simply change the macro variables to test various analytical strategies, optimize results and customize the analytical processes. In addition, it is highly automatic and functionally extendable. Thus users are the actual decision-makers controlling RT-qPCR data analyses. SASqPCR and its tutorial are freely available at http://code.google.com/p/sasqpcr/downloads/list.

  2. A survey of tools for the analysis of quantitative PCR (qPCR data

    Directory of Open Access Journals (Sweden)

    Stephan Pabinger

    2014-09-01

    Our comprehensive survey showed that most tools use their own file format and only a fraction of the currently existing tools support the standardized data exchange format RDML. To allow a more streamlined and comparable analysis of qPCR data, more vendors and tools need to adapt the standardized format to encourage the exchange of data between instrument software, analysis tools, and researchers.

  3. High Specificity of Quantitative Methylation-Specific PCR Analysis for MGMT Promoter Hypermethylation Detection in Gliomas

    Directory of Open Access Journals (Sweden)

    Paola Parrella

    2009-01-01

    Full Text Available Normal brain tissue from 28 individuals and 50 glioma samples were analyzed by real-time Quantitative Methylation-Specific PCR (QMSP. Data from this analysis were compared with results obtained on the same samples by MSP. QMSP analysis demonstrated a statistically significant difference in both methylation level (P=.000009 Mann Whitney Test and frequencies (P=.0000007, Z-test in tumour samples as compared with normal brain tissues. Although QMSP and MSP showed similar sensitivity, the specificity of QMSP analysis was significantly higher (93%; CI95%: 84%–100% as compared with MSP (64%; 95%CI: 46%–82%. Our results suggest that QMSP analysis may represent a powerful tool to identify glioma patients that will benefit from alkylating agents chemotherapy.

  4. Embryonation of Ostertagia ostertagi eggs affects the outcome of real-time quantitative PCR

    DEFF Research Database (Denmark)

    Drag, Markus; Höglund, Johan; Nejsum, Peter

    prior to detection and quantification by real-time quantitative polymerase chain reaction (qPCR). Fresh O. ostertagi eggs were isolated from cattle faeces and stored at 4°C or 25°C under aerobic or anaerobic conditions. Embryonation was monitored by microscopy and the ITS2 copies were determined by q...... the outcome of qPCR analysis for the quantitative determination of O. ostertagi eggs in cattle faeces. Cold storage at 4°C for up to 3 days or anaerobicvacuum packing at 25°C for up to 336 h will entail no undesirable effects on ITS2 copies....

  5. Embryonation of Ostertagia ostertagi eggs affects the outcome of real-time quantitative PCR

    DEFF Research Database (Denmark)

    Drag, Markus; Höglund, Johan; Nejsum, Peter

    prior to detection and quantification by real-time quantitative polymerase chain reaction (qPCR) . Fresh O. ostertagi eggs were isolated from cattle faeces and stored at 4°C or 25°C under aerobic or anaerobic conditions. Embryonation was monitored by microscopy and the ITS2 copies were determined by q...... the outcome of qPCR analysis for the quantitative determination of O. ostertagi eggs in cattle faeces. Cold storage at 4°C for up to 3 days or anaerobic vacuum packing at 25°C for up to 336 h will entail no undesirable effects on ITS2 copies....

  6. Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology.

    Science.gov (United States)

    Smith, Cindy J; Osborn, A Mark

    2009-01-01

    Quantitative PCR (Q-PCR or real-time PCR) approaches are now widely applied in microbial ecology to quantify the abundance and expression of taxonomic and functional gene markers within the environment. Q-PCR-based analyses combine 'traditional' end-point detection PCR with fluorescent detection technologies to record the accumulation of amplicons in 'real time' during each cycle of the PCR amplification. By detection of amplicons during the early exponential phase of the PCR, this enables the quantification of gene (or transcript) numbers when these are proportional to the starting template concentration. When Q-PCR is coupled with a preceding reverse transcription reaction, it can be used to quantify gene expression (RT-Q-PCR). This review firstly addresses the theoretical and practical implementation of Q-PCR and RT-Q-PCR protocols in microbial ecology, highlighting key experimental considerations. Secondly, we review the applications of (RT)-Q-PCR analyses in environmental microbiology and evaluate the contribution and advances gained from such approaches. Finally, we conclude by offering future perspectives on the application of (RT)-Q-PCR in furthering understanding in microbial ecology, in particular, when coupled with other molecular approaches and more traditional investigations of environmental systems.

  7. Mathematics of quantitative kinetic PCR and the application of standard curves.

    Science.gov (United States)

    Rutledge, R G; Côté, C

    2003-08-15

    Fluorescent monitoring of DNA amplification is the basis of real-time PCR, from which target DNA concentration can be determined from the fractional cycle at which a threshold amount of amplicon DNA is produced. Absolute quantification can be achieved using a standard curve constructed by amplifying known amounts of target DNA. In this study, the mathematics of quantitative PCR are examined in detail, from which several fundamental aspects of the threshold method and the application of standard curves are illustrated. The construction of five replicate standard curves for two pairs of nested primers was used to examine the reproducibility and degree of quantitative variation using SYBER Green I fluorescence. Based upon this analysis the application of a single, well- constructed standard curve could provide an estimated precision of +/-6-21%, depending on the number of cycles required to reach threshold. A simplified method for absolute quantification is also proposed, in which quantitative scale is determined by DNA mass at threshold.

  8. Quantitative threefold allele-specific PCR (QuanTAS-PCR) for highly sensitive JAK2 V617F mutant allele detection

    International Nuclear Information System (INIS)

    Zapparoli, Giada V; Jorissen, Robert N; Hewitt, Chelsee A; McBean, Michelle; Westerman, David A; Dobrovic, Alexander

    2013-01-01

    The JAK2 V617F mutation is the most frequent somatic change in myeloproliferative neoplasms, making it an important tumour-specific marker for diagnostic purposes and for the detection of minimal residual disease. Sensitive quantitative assays are required for both applications, particularly for the monitoring of minimal residual disease, which requires not only high sensitivity but also very high specificity. We developed a highly sensitive probe-free quantitative mutant-allele detection method, Quantitative Threefold Allele-Specific PCR (QuanTAS-PCR), that is performed in a closed-tube system, thus eliminating the manipulation of PCR products. QuantTAS-PCR uses a threefold approach to ensure allele-specific amplification of the mutant sequence: (i) a mutant allele-specific primer, (ii) a 3′dideoxy blocker to suppress false-positive amplification from the wild-type template and (iii) a PCR specificity enhancer, also to suppress false-positive amplification from the wild-type template. Mutant alleles were quantified relative to exon 9 of JAK2. We showed that the addition of the 3′dideoxy blocker suppressed but did not eliminate false-positive amplification from the wild-type template. However, the addition of the PCR specificity enhancer near eliminated false-positive amplification from the wild-type allele. Further discrimination between true and false positives was enabled by using the quantification cycle (Cq) value of a single mutant template as a cut-off point, thus enabling robust distinction between true and false positives. As 10,000 JAK2 templates were used per replicate, the assay had a sensitivity of 1/10 -4 per replicate. Greater sensitivity could be reached by increasing the number of replicates analysed. Variation in replicates when low mutant-allele templates were present necessitated the use of a statistics-based approach to estimate the load of mutant JAK2 copies. QuanTAS-PCR showed comparable quantitative results when validated against a

  9. Quantitative PCR analysis of salivary pathogen burden in periodontitis

    Science.gov (United States)

    Salminen, Aino; Kopra, K. A. Elisa; Hyvärinen, Kati; Paju, Susanna; Mäntylä, Päivi; Buhlin, Kåre; Nieminen, Markku S.; Sinisalo, Juha; Pussinen, Pirkko J.

    2015-01-01

    Our aim was to investigate the value of salivary concentrations of four major periodontal pathogens and their combination in diagnostics of periodontitis. The Parogene study included 462 dentate subjects (mean age 62.9 ± 9.2 years) with coronary artery disease (CAD) diagnosis who underwent an extensive clinical and radiographic oral examination. Salivary levels of four major periodontal bacteria were measured by quantitative real-time PCR (qPCR). Median salivary concentrations of Porphyromonas gingivalis, Tannerella forsythia, and Prevotella intermedia, as well as the sum of the concentrations of the four bacteria, were higher in subjects with moderate to severe periodontitis compared to subjects with no to mild periodontitis. Median salivary Aggregatibacter actinomycetemcomitans concentrations did not differ significantly between the subjects with no to mild periodontitis and subjects with moderate to severe periodontitis. In logistic regression analysis adjusted for age, gender, diabetes, and the number of teeth and implants, high salivary concentrations of P. gingivalis, T. forsythia, and P. intermedia were significantly associated with moderate to severe periodontitis. When looking at different clinical and radiographic parameters of periodontitis, high concentrations of P. gingivalis and T. forsythia were significantly associated with the number of 4–5 mm periodontal pockets, ≥6 mm pockets, and alveolar bone loss (ABL). High level of T. forsythia was associated also with bleeding on probing (BOP). The combination of the four bacteria, i.e., the bacterial burden index, was associated with moderate to severe periodontitis with an odds ratio (OR) of 2.40 (95% CI 1.39–4.13). When A. actinomycetemcomitans was excluded from the combination of the bacteria, the OR was improved to 2.61 (95% CI 1.51–4.52). The highest OR 3.59 (95% CI 1.94–6.63) was achieved when P. intermedia was further excluded from the combination and only the levels of P. gingivalis and

  10. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data

    NARCIS (Netherlands)

    Ramakers, Christian; Ruijter, Jan M.; Deprez, Ronald H. Lekanne; Moorman, Antoon F. M.

    2003-01-01

    Quantification of mRNAs using real-time polymerase chain reaction (PCR) by monitoring the product formation with the fluorescent dye SYBR Green I is being extensively used in neurosciences, developmental biology, and medical diagnostics. Most PCR data analysis procedures assume that the PCR

  11. Use of a D17Z1 oligonucleotide probe for human DNA quantitation prior to PCR analysis of polymorphic DNA markers

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, S.; Alavaren, M.; Varlaro, J. [Roche Molecular Systems, Alameda, CA (United States)] [and others

    1994-09-01

    The alpha-satellite DNA locus D17Z1 contains primate-specific sequences which are repeated several hundred times per chromosome 17. A probe that was designed to hybridize to a subset of the D17Z1 sequence can be used for very sensitive and specific quantitation of human DNA. Sample human genomic DNA is immobilized on nylon membrane using a slot blot apparatus, and then hybridized with a biotinylated D17Z1 oligonucleotide probe. The subsequent binding of streptavidin-horseradish peroxidase to the bound probe allows for either calorimetric (TMB) or chemiluminescent (ECL) detection. Signals obtained for sample DNAs are then compared to the signals obtained for a series of human DNA standards. For either detection method, forty samples can be quantitated in less than two hours, with a sensitivity of 150 pg. As little as 20 pg of DNA can be quantitated when using chemiluminescent detection with longer film exposures. PCR analysis of several VNTR and STR markers has indicated that optimal typing results are generally obtained within a relatively narrow range of input DNA quantities. Too much input DNA can lead to PCR artifacts such as preferential amplification of smaller alleles, non-specific amplification products, and exaggeration of the DNA synthesis slippage products that are seen with STR markers. Careful quantitation of human genomic DNA prior to PCR can avoid or minimize these problems and ultimately give cleaner, more unambiguous PCR results.

  12. Human fecal source identification with real-time quantitative PCR

    Science.gov (United States)

    Waterborne diseases represent a significant public health risk worldwide, and can originate from contact with water contaminated with human fecal material. We describe a real-time quantitative PCR (qPCR) method that targets a Bacteroides dori human-associated genetic marker for...

  13. Identification of reference genes for expression analysis by real-time quantitative PCR in drought-stressed soybean

    Directory of Open Access Journals (Sweden)

    Renata Stolf-Moreira

    2011-01-01

    Full Text Available The objective of this work was to validate, by quantitative PCR in real time (RT-qPCR, genes to be used as reference in studies of gene expression in soybean in drought-stressed trials. Four genes commonly used in soybean were evaluated: Gmβ-actin, GmGAPDH, GmLectin and GmRNAr18S. Total RNA was extracted from six samples: three from roots in a hydroponic system with different drought intensities (0, 25, 50, 75 and 100 minutes of water stress, and three from leaves of plants grown in sand with different soil moistures (15, 5 and 2.5% gravimetric humidity. The raw cycle threshold (Ct data were analyzed, and the efficiency of each primer was calculated for an overall analysis of the Ct range among the different samples. The GeNorm application was used to evaluate the best reference gene, according to its stability. The GmGAPDH was the least stable gene, with the highest mean values of expression stability (M, and the most stable genes, with the lowest M values, were the Gmβ-actin and GmRNAr18S, when both root and leaves samples were tested. These genes can be used in RT-qPCR as reference gene for expression analysis.

  14. Multiplex enrichment quantitative PCR (ME-qPCR): a high-throughput, highly sensitive detection method for GMO identification.

    Science.gov (United States)

    Fu, Wei; Zhu, Pengyu; Wei, Shuang; Zhixin, Du; Wang, Chenguang; Wu, Xiyang; Li, Feiwu; Zhu, Shuifang

    2017-04-01

    Among all of the high-throughput detection methods, PCR-based methodologies are regarded as the most cost-efficient and feasible methodologies compared with the next-generation sequencing or ChIP-based methods. However, the PCR-based methods can only achieve multiplex detection up to 15-plex due to limitations imposed by the multiplex primer interactions. The detection throughput cannot meet the demands of high-throughput detection, such as SNP or gene expression analysis. Therefore, in our study, we have developed a new high-throughput PCR-based detection method, multiplex enrichment quantitative PCR (ME-qPCR), which is a combination of qPCR and nested PCR. The GMO content detection results in our study showed that ME-qPCR could achieve high-throughput detection up to 26-plex. Compared to the original qPCR, the Ct values of ME-qPCR were lower for the same group, which showed that ME-qPCR sensitivity is higher than the original qPCR. The absolute limit of detection for ME-qPCR could achieve levels as low as a single copy of the plant genome. Moreover, the specificity results showed that no cross-amplification occurred for irrelevant GMO events. After evaluation of all of the parameters, a practical evaluation was performed with different foods. The more stable amplification results, compared to qPCR, showed that ME-qPCR was suitable for GMO detection in foods. In conclusion, ME-qPCR achieved sensitive, high-throughput GMO detection in complex substrates, such as crops or food samples. In the future, ME-qPCR-based GMO content identification may positively impact SNP analysis or multiplex gene expression of food or agricultural samples. Graphical abstract For the first-step amplification, four primers (A, B, C, and D) have been added into the reaction volume. In this manner, four kinds of amplicons have been generated. All of these four amplicons could be regarded as the target of second-step PCR. For the second-step amplification, three parallels have been taken for

  15. Quantitative RT-PCR analysis of estrogen receptor gene expression in laser microdissected prostate cancer tissue.

    Science.gov (United States)

    Walton, Thomas J; Li, Geng; McCulloch, Thomas A; Seth, Rashmi; Powe, Desmond G; Bishop, Michael C; Rees, Robert C

    2009-06-01

    Real-time quantitative RT-PCR analysis of laser microdissected tissue is considered the most accurate technique for determining tissue gene expression. The discovery of estrogen receptor beta (ERbeta) has focussed renewed interest on the role of estrogen receptors in prostate cancer, yet few studies have utilized the technique to analyze estrogen receptor gene expression in prostate cancer. Fresh tissue was obtained from 11 radical prostatectomy specimens and from 6 patients with benign prostate hyperplasia. Pure populations of benign and malignant prostate epithelium were laser microdissected, followed by RNA isolation and electrophoresis. Quantitative RT-PCR was performed using primers for androgen receptor (AR), estrogen receptor beta (ERbeta), estrogen receptor alpha (ERalpha), progesterone receptor (PGR) and prostate specific antigen (PSA), with normalization to two housekeeping genes. Differences in gene expression were analyzed using the Mann-Whitney U-test. Correlation coefficients were analyzed using Spearman's test. Significant positive correlations were seen when AR and AR-dependent PSA, and ERalpha and ERalpha-dependent PGR were compared, indicating a representative population of RNA transcripts. ERbeta gene expression was significantly over-expressed in the cancer group compared with benign controls (P cancer group (P prostate cancer specimens. In concert with recent studies the findings suggest differential production of ERbeta splice variants, which may play important roles in the genesis of prostate cancer. (c) 2009 Wiley-Liss, Inc.

  16. A method for quantitative analysis of standard and high-throughput qPCR expression data based on input sample quantity.

    Directory of Open Access Journals (Sweden)

    Mateusz G Adamski

    Full Text Available Over the past decade rapid advances have occurred in the understanding of RNA expression and its regulation. Quantitative polymerase chain reactions (qPCR have become the gold standard for quantifying gene expression. Microfluidic next generation, high throughput qPCR now permits the detection of transcript copy number in thousands of reactions simultaneously, dramatically increasing the sensitivity over standard qPCR. Here we present a gene expression analysis method applicable to both standard polymerase chain reactions (qPCR and high throughput qPCR. This technique is adjusted to the input sample quantity (e.g., the number of cells and is independent of control gene expression. It is efficiency-corrected and with the use of a universal reference sample (commercial complementary DNA (cDNA permits the normalization of results between different batches and between different instruments--regardless of potential differences in transcript amplification efficiency. Modifications of the input quantity method include (1 the achievement of absolute quantification and (2 a non-efficiency corrected analysis. When compared to other commonly used algorithms the input quantity method proved to be valid. This method is of particular value for clinical studies of whole blood and circulating leukocytes where cell counts are readily available.

  17. Evaluation of reference genes for gene expression analysis using quantitative RT-PCR in Azospirillum brasilense.

    Science.gov (United States)

    McMillan, Mary; Pereg, Lily

    2014-01-01

    Azospirillum brasilense is a nitrogen fixing bacterium that has been shown to have various beneficial effects on plant growth and yield. Under normal conditions A. brasilense exists in a motile flagellated form, which, under starvation or stress conditions, can undergo differentiation into an encapsulated, cyst-like form. Quantitative RT-PCR can be used to analyse changes in gene expression during this differentiation process. The accuracy of quantification of mRNA levels by qRT-PCR relies on the normalisation of data against stably expressed reference genes. No suitable set of reference genes has yet been described for A. brasilense. Here we evaluated the expression of ten candidate reference genes (16S rRNA, gapB, glyA, gyrA, proC, pykA, recA, recF, rpoD, and tpiA) in wild-type and mutant A. brasilense strains under different culture conditions, including conditions that induce differentiation. Analysis with the software programs BestKeeper, NormFinder and GeNorm indicated that gyrA, glyA and recA are the most stably expressed reference genes in A. brasilense. The results also suggested that the use of two reference genes (gyrA and glyA) is sufficient for effective normalisation of qRT-PCR data.

  18. Evaluation of reference genes for gene expression analysis using quantitative RT-PCR in Azospirillum brasilense.

    Directory of Open Access Journals (Sweden)

    Mary McMillan

    Full Text Available Azospirillum brasilense is a nitrogen fixing bacterium that has been shown to have various beneficial effects on plant growth and yield. Under normal conditions A. brasilense exists in a motile flagellated form, which, under starvation or stress conditions, can undergo differentiation into an encapsulated, cyst-like form. Quantitative RT-PCR can be used to analyse changes in gene expression during this differentiation process. The accuracy of quantification of mRNA levels by qRT-PCR relies on the normalisation of data against stably expressed reference genes. No suitable set of reference genes has yet been described for A. brasilense. Here we evaluated the expression of ten candidate reference genes (16S rRNA, gapB, glyA, gyrA, proC, pykA, recA, recF, rpoD, and tpiA in wild-type and mutant A. brasilense strains under different culture conditions, including conditions that induce differentiation. Analysis with the software programs BestKeeper, NormFinder and GeNorm indicated that gyrA, glyA and recA are the most stably expressed reference genes in A. brasilense. The results also suggested that the use of two reference genes (gyrA and glyA is sufficient for effective normalisation of qRT-PCR data.

  19. Establishment of a sensitive system for analysis of human vaginal microbiota on the basis of rRNA-targeted reverse transcription-quantitative PCR.

    Science.gov (United States)

    Kurakawa, Takashi; Ogata, Kiyohito; Tsuji, Hirokazu; Kado, Yukiko; Takahashi, Takuya; Kida, Yumi; Ito, Masahiro; Okada, Nobuhiko; Nomoto, Koji

    2015-04-01

    Ten specific primer sets, for Lactobacillus gasseri, Lactobacillus crispatus, Atopobium vaginae, Gardnerella vaginalis, Mobiluncus curtisii, Chlamydia trachomatis/muridarum, Bifidobacterium longum subsp. longum, Bifidobacterium longum subsp. infantis, Bifidobacterium adolescentis, and Bifidobacterium angulatum, were developed for quantitative analysis of vaginal microbiota. rRNA-targeted reverse transcription-quantitative PCR (RT-qPCR) analysis of the vaginal samples from 12 healthy Japanese volunteers using the new primer sets together with 25 existing primer sets revealed the diversity of their vaginal microbiota: Lactobacilli such as L. crispatus, L. gasseri, Lactobacillus jensenii, Lactobacillus iners, and Lactobacillus vaginalis, as the major populations at 10(7) cells/ml vaginal fluid, were followed by facultative anaerobes such as Streptococcus and strict anaerobes at lower population levels of 10(4) cells/ml or less. Certain bacterial vaginosis (BV)-related bacteria, such as G. vaginalis, A. vaginae, M. curtisii, and Prevotella, were also detected in some subjects. Especially in one subject, both G. vaginalis and A. vaginae were detected at high population levels of 10(8.8) and 10(8.9) cells/ml vaginal fluid, suggesting that she is an asymptomatic BV patient. These results suggest that the RT-qPCR system is effective for accurate analysis of major vaginal commensals and diagnosis of several vaginal infections. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Quantitative Real-Time PCR using the Thermo Scientific Solaris qPCR Assay

    Science.gov (United States)

    Ogrean, Christy; Jackson, Ben; Covino, James

    2010-01-01

    The Solaris qPCR Gene Expression Assay is a novel type of primer/probe set, designed to simplify the qPCR process while maintaining the sensitivity and accuracy of the assay. These primer/probe sets are pre-designed to >98% of the human and mouse genomes and feature significant improvements from previously available technologies. These improvements were made possible by virtue of a novel design algorithm, developed by Thermo Scientific bioinformatics experts. Several convenient features have been incorporated into the Solaris qPCR Assay to streamline the process of performing quantitative real-time PCR. First, the protocol is similar to commonly employed alternatives, so the methods used during qPCR are likely to be familiar. Second, the master mix is blue, which makes setting the qPCR reactions easier to track. Third, the thermal cycling conditions are the same for all assays (genes), making it possible to run many samples at a time and reducing the potential for error. Finally, the probe and primer sequence information are provided, simplifying the publication process. Here, we demonstrate how to obtain the appropriate Solaris reagents using the GENEius product search feature found on the ordering web site (www.thermo.com/solaris) and how to use the Solaris reagents for performing qPCR using the standard curve method. PMID:20567213

  1. Reliable gene expression analysis by reverse transcription-quantitative PCR: reporting and minimizing the uncertainty in data accuracy.

    Science.gov (United States)

    Remans, Tony; Keunen, Els; Bex, Geert Jan; Smeets, Karen; Vangronsveld, Jaco; Cuypers, Ann

    2014-10-01

    Reverse transcription-quantitative PCR (RT-qPCR) has been widely adopted to measure differences in mRNA levels; however, biological and technical variation strongly affects the accuracy of the reported differences. RT-qPCR specialists have warned that, unless researchers minimize this variability, they may report inaccurate differences and draw incorrect biological conclusions. The Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines describe procedures for conducting and reporting RT-qPCR experiments. The MIQE guidelines enable others to judge the reliability of reported results; however, a recent literature survey found low adherence to these guidelines. Additionally, even experiments that use appropriate procedures remain subject to individual variation that statistical methods cannot correct. For example, since ideal reference genes do not exist, the widely used method of normalizing RT-qPCR data to reference genes generates background noise that affects the accuracy of measured changes in mRNA levels. However, current RT-qPCR data reporting styles ignore this source of variation. In this commentary, we direct researchers to appropriate procedures, outline a method to present the remaining uncertainty in data accuracy, and propose an intuitive way to select reference genes to minimize uncertainty. Reporting the uncertainty in data accuracy also serves for quality assessment, enabling researchers and peer reviewers to confidently evaluate the reliability of gene expression data. © 2014 American Society of Plant Biologists. All rights reserved.

  2. Comparative analysis of minimal residual disease detection using four-color flow cytometry, consensus IgH-PCR, and quantitative IgH PCR in CLL after allogeneic and autologous stem cell transplantation.

    Science.gov (United States)

    Böttcher, S; Ritgen, M; Pott, C; Brüggemann, M; Raff, T; Stilgenbauer, S; Döhner, H; Dreger, P; Kneba, M

    2004-10-01

    The clinically most suitable method for minimal residual disease (MRD) detection in chronic lymphocytic leukemia is still controversial. We prospectively compared MRD assessment in 158 blood samples of 74 patients with CLL after stem cell transplantation (SCT) using four-color flow cytometry (MRD flow) in parallel with consensus IgH-PCR and ASO IgH real-time PCR (ASO IgH RQ-PCR). In 25 out of 106 samples (23.6%) with a polyclonal consensus IgH-PCR pattern, MRD flow still detected CLL cells, proving higher sensitivity of flow cytometry over PCR-genescanning with consensus IgH-primers. Of 92 samples, 14 (15.2%) analyzed in parallel by MRD flow and by ASO IgH RQ-PCR were negative by our flow cytometric assay but positive by PCR, thus demonstrating superior sensitivity of RQ-PCR with ASO primers. Quantitative MRD levels measured by both methods correlated well (r=0.93). MRD detection by flow and ASO IgH RQ-PCR were equally suitable to monitor MRD kinetics after allogeneic SCT, but the PCR method detected impending relapses after autologous SCT earlier. An analysis of factors that influence sensitivity and specificity of flow cytometry for MRD detection allowed to devise further improvements of this technique.

  3. Quantitative analysis of the dystrophin gene by real-time PCR

    Directory of Open Access Journals (Sweden)

    Maksimovic Nela

    2012-01-01

    Full Text Available Duchenne and Becker muscular dystrophy (DMD/BMD are severe X-linked neuromuscular disorders caused by mutations in the dystrophin gene. Our aim was to optimize a quantitative real-time PCR method based on SYBR® Green I chemistry for routine diagnostics of DMD/BMD deletion carriers. Twenty female relatives of DMD/BMD patients with previously detected partial gene deletions were studied. The relative quantity of the target exons was calculated by a comparative threshold cycle method (ΔΔCt. The carrier status of all subjects was successfully determined. The gene dosage ratio for non-carriers was 1.07±0.20, and for carriers 0.56±0.11. This assay proved to be simple, rapid, reliable and cost-effective.

  4. Mathematical analysis of the real time array PCR (RTA PCR) process

    NARCIS (Netherlands)

    Dijksman, Johan Frederik; Pierik, A.

    2012-01-01

    Real time array PCR (RTA PCR) is a recently developed biochemical technique that measures amplification curves (like with quantitative real time Polymerase Chain Reaction (qRT PCR)) of a multitude of different templates in a sample. It combines two different methods in order to profit from the

  5. Evaluation of Housekeeping Genes for Quantitative Real-Time PCR Analysis of Bradysia odoriphaga (Diptera: Sciaridae

    Directory of Open Access Journals (Sweden)

    Caihua Shi

    2016-07-01

    Full Text Available The soil insect Bradysia odoriphaga (Diptera: Sciaridae causes substantial damage to Chinese chive. Suitable reference genes in B. odoriphaga (Bradysia odoriphaga have yet to be identified for normalizing target gene expression among samples by quantitative real-time PCR (qRT-PCR. This study was focused on identifying the expression stability of 12 candidate housekeeping genes in B. odoriphaga under various experiment conditions. The final stability ranking of 12 housekeeping genes was obtained with RefFinder, and the most suitable number of reference genes was analyzed by GeNorm. The results revealed that the most appropriate sets of internal controls were RPS15, RPL18, and RPS18 across developmental phases; RPS15, RPL28, and GAPDH across temperatures; RPS15 and RPL18 across pesticide treatments; RSP5, RPS18, and SDHA across photoperiods; ACTb, RPS18, and RPS15 across diets; RPS13 and RPL28 across populations; and RPS15, ACTb, and RPS18 across all samples. The use of the most suitable reference genes versus an arbitrarily selected reference gene resulted in significant differences in the analysis of a target gene expression. HSP23 in B. odoriphaga was found to be up-regulated under low temperatures. These results will contribute to the standardization of qRT-PCR and will also be valuable for further research on gene function in B. odoriphaga.

  6. Quantitative analysis of diet structure by real-time PCR, reveals different feeding patterns by two dominant grasshopper species

    Science.gov (United States)

    Huang, Xunbing; Wu, Huihui; McNeill, Mark Richard; Qin, Xinghu; Ma, Jingchuan; Tu, Xiongbing; Cao, Guangchun; Wang, Guangjun; Nong, Xiangqun; Zhang, Zehua

    2016-01-01

    Studies on grasshopper diets have historically employed a range of methodologies, each with certain advantages and disadvantages. For example, some methodologies are qualitative instead of quantitative. Others require long experimental periods or examine population-level effects, only. In this study, we used real-time PCR to examine diets of individual grasshoppers. The method has the advantage of being both fast and quantitative. Using two grasshopper species, Oedaleus asiaticus and Dasyhippus barbipes, we designed ITS primer sequences for their three main host plants, Stipa krylovii, Leymus chinensis and Cleistogenes squarrosa and used real-time PCR method to test diet structure both qualitatively and quantitatively. The lowest detection efficiency of the three grass species was ~80% with a strong correlation between actual and PCR-measured food intake. We found that Oedaleus asiaticus maintained an unchanged diet structure across grasslands with different grass communities. By comparison, Dasyhippus barbipes changed its diet structure. These results revealed why O. asiaticus distribution is mainly confined to Stipa-dominated grassland, and D. barbipes is more widely distributed across Inner Mongolia. Overall, real-time PCR was shown to be a useful tool for investigating grasshopper diets, which in turn offers some insight into grasshopper distributions and improved pest management. PMID:27562455

  7. Development and Evaluation of a PCR and Mass Spectroscopy-based (PCR-MS) Method for Quantitative, Type-specific Detection of Human Papillomavirus

    Science.gov (United States)

    Patel, Divya A.; Shih, Yang-Jen; Newton, Duane W.; Michael, Claire W.; Oeth, Paul A.; Kane, Michael D.; Opipari, Anthony W.; Ruffin, Mack T.; Kalikin, Linda M.; Kurnit, David M.

    2010-01-01

    Knowledge of the central role of high-risk human papillomavirus (HPV) in cervical carcinogenesis, coupled with an emerging need to monitor the efficacy of newly introduced HPV vaccines, warrant development and evaluation of type-specific, quantitative HPV detection methods. In the present study, a prototype PCR and mass spectroscopy (PCR-MS)-based method to detect and quantitate 13 high-risk HPV types is compared to the Hybrid Capture 2 High Risk HPV DNA test (HC2; Digene Corp., Gaithersburg, MD) in 199 cervical scraping samples and to DNA sequencing in 77 cervical tumor samples. High-risk HPV types were detected in 76/77 (98.7%) cervical tumor samples by PCR-MS. Degenerate and type-specific sequencing confirmed the types detected by PCR-MS. In 199 cervical scraping samples, all 13 HPV types were detected by PCR-MS. Eighteen (14.5%) of 124 cervical scraping samples that were positive for high-risk HPV by HC2 were negative by PCR-MS. In all these cases, degenerate DNA sequencing failed to detect any of the 13 high-risk HPV types. Nearly half (46.7%) of the 75 cervical scraping samples that were negative for high-risk HPV by the HC2 assay were positive by PCR-MS. Type-specific sequencing in a subset of these samples confirmed the HPV type detected by PCR-MS. Quantitative PCR-MS results demonstrated that 11/75 (14.7%) samples contained as much HPV copies/cell as HC2-positive samples. These findings suggest that this prototype PCR-MS assay performs at least as well as HC2 for HPV detection, while offering the additional, unique advantages of type-specific identification and quantitation. Further validation work is underway to define clinically meaningful HPV detection thresholds and to evaluate the potential clinical application of future generations of the PCR-MS assay. PMID:19410602

  8. Development and evaluation of a PCR and mass spectroscopy (PCR-MS)-based method for quantitative, type-specific detection of human papillomavirus.

    Science.gov (United States)

    Patel, Divya A; Shih, Yang-Jen; Newton, Duane W; Michael, Claire W; Oeth, Paul A; Kane, Michael D; Opipari, Anthony W; Ruffin, Mack T; Kalikin, Linda M; Kurnit, David M

    2009-09-01

    Knowledge of the central role of high-risk human papillomavirus (HPV) in cervical carcinogenesis, coupled with an emerging need to monitor the efficacy of newly introduced HPV vaccines, warrant development and evaluation of type-specific, quantitative HPV detection methods. In the present study, a prototype PCR and mass spectroscopy (PCR-MS)-based method to detect and quantitate 13 high-risk HPV types is compared to the Hybrid Capture 2 High-Risk HPV DNA test (HC2; Digene Corp., Gaithersburg, MD) in 199 cervical scraping samples and to DNA sequencing in 77 cervical tumor samples. High-risk HPV types were detected in 76/77 (98.7%) cervical tumor samples by PCR-MS. Degenerate and type-specific sequencing confirmed the types detected by PCR-MS. In 199 cervical scraping samples, all 13 HPV types were detected by PCR-MS. Eighteen (14.5%) of 124 cervical scraping samples that were positive for high-risk HPV by HC2 were negative by PCR-MS. In all these cases, degenerate DNA sequencing failed to detect any of the 13 high-risk HPV types. Nearly half (46.7%) of the 75 cervical scraping samples that were negative for high-risk HPV by the HC2 assay were positive by PCR-MS. Type-specific sequencing in a subset of these samples confirmed the HPV type detected by PCR-MS. Quantitative PCR-MS results demonstrated that 11/75 (14.7%) samples contained as much HPV copies/cell as HC2-positive samples. These findings suggest that this prototype PCR-MS assay performs at least as well as HC2 for HPV detection, while offering the additional, unique advantages of type-specific identification and quantitation. Further validation work is underway to define clinically meaningful HPV detection thresholds and to evaluate the potential clinical application of future generations of the PCR-MS assay.

  9. The use of digital PCR to improve the application of quantitative molecular diagnostic methods for tuberculosis.

    Science.gov (United States)

    Devonshire, Alison S; O'Sullivan, Denise M; Honeyborne, Isobella; Jones, Gerwyn; Karczmarczyk, Maria; Pavšič, Jernej; Gutteridge, Alice; Milavec, Mojca; Mendoza, Pablo; Schimmel, Heinz; Van Heuverswyn, Fran; Gorton, Rebecca; Cirillo, Daniela Maria; Borroni, Emanuele; Harris, Kathryn; Barnard, Marinus; Heydenrych, Anthenette; Ndusilo, Norah; Wallis, Carole L; Pillay, Keshree; Barry, Thomas; Reddington, Kate; Richter, Elvira; Mozioğlu, Erkan; Akyürek, Sema; Yalçınkaya, Burhanettin; Akgoz, Muslum; Žel, Jana; Foy, Carole A; McHugh, Timothy D; Huggett, Jim F

    2016-08-03

    Real-time PCR (qPCR) based methods, such as the Xpert MTB/RIF, are increasingly being used to diagnose tuberculosis (TB). While qualitative methods are adequate for diagnosis, the therapeutic monitoring of TB patients requires quantitative methods currently performed using smear microscopy. The potential use of quantitative molecular measurements for therapeutic monitoring has been investigated but findings have been variable and inconclusive. The lack of an adequate reference method and reference materials is a barrier to understanding the source of such disagreement. Digital PCR (dPCR) offers the potential for an accurate method for quantification of specific DNA sequences in reference materials which can be used to evaluate quantitative molecular methods for TB treatment monitoring. To assess a novel approach for the development of quality assurance materials we used dPCR to quantify specific DNA sequences in a range of prototype reference materials and evaluated accuracy between different laboratories and instruments. The materials were then also used to evaluate the quantitative performance of qPCR and Xpert MTB/RIF in eight clinical testing laboratories. dPCR was found to provide results in good agreement with the other methods tested and to be highly reproducible between laboratories without calibration even when using different instruments. When the reference materials were analysed with qPCR and Xpert MTB/RIF by clinical laboratories, all laboratories were able to correctly rank the reference materials according to concentration, however there was a marked difference in the measured magnitude. TB is a disease where the quantification of the pathogen could lead to better patient management and qPCR methods offer the potential to rapidly perform such analysis. However, our findings suggest that when precisely characterised materials are used to evaluate qPCR methods, the measurement result variation is too high to determine whether molecular quantification

  10. Quantitation of TGF-beta1 mRNA in porcine mesangial cells by comparative kinetic RT/PCR: comparison with ribonuclease protection assay and in situ hybridization.

    Science.gov (United States)

    Ceol, M; Forino, M; Gambaro, G; Sauer, U; Schleicher, E D; D'Angelo, A; Anglani, F

    2001-01-01

    Gene expression can be examined with different techniques including ribonuclease protection assay (RPA), in situ hybridisation (ISH), and quantitative reverse transcription-polymerase chain reaction (RT/PCR). These methods differ considerably in their sensitivity and precision in detecting and quantifying low abundance mRNA. Although there is evidence that RT/PCR can be performed in a quantitative manner, the quantitative capacity of this method is generally underestimated. To demonstrate that the comparative kinetic RT/PCR strategy-which uses a housekeeping gene as internal standard-is a quantitative method to detect significant differences in mRNA levels between different samples, the inhibitory effect of heparin on phorbol 12-myristate 13-acetate (PMA)-induced-TGF-beta1 mRNA expression was evaluated by RT/PCR and RPA, the standard method of mRNA quantification, and the results were compared. The reproducibility of RT/PCR amplification was calculated by comparing the quantity of G3PDH and TGF-beta1 PCR products, generated during the exponential phases, estimated from two different RT/PCR (G3PDH, r = 0.968, P = 0.0000; TGF-beta1, r = 0.966, P = 0.0000). The quantitative capacity of comparative kinetic RT/PCR was demonstrated by comparing the results obtained from RPA and RT/PCR using linear regression analysis. Starting from the same RNA extraction, but using only 1% of the RNA for the RT/PCR compared to RPA, significant correlation was observed (r = 0.984, P = 0.0004). Moreover the morphometric analysis of ISH signal was applied for the semi-quantitative evaluation of the expression and localisation of TGF-beta1 mRNA in the entire cell population. Our results demonstrate the close similarity of the RT/PCR and RPA methods in giving quantitative information on mRNA expression and indicate the possibility to adopt the comparative kinetic RT/PCR as reliable quantitative method of mRNA analysis. Copyright 2001 Wiley-Liss, Inc.

  11. Evaluation of quantitative PCR measurement of bacterial colonization of epithelial cells.

    Science.gov (United States)

    Schmidt, Marcin T; Olejnik-Schmidt, Agnieszka K; Myszka, Kamila; Borkowska, Monika; Grajek, Włodzimierz

    2010-01-01

    Microbial colonization is an important step in establishing pathogenic or probiotic relations to host cells and in biofilm formation on industrial or medical devices. The aim of this work was to verify the applicability of quantitative PCR (Real-Time PCR) to measure bacterial colonization of epithelial cells. Salmonella enterica and Caco-2 intestinal epithelial cell line was used as a model. To verify sensitivity of the assay a competition of the pathogen cells to probiotic microorganism was tested. The qPCR method was compared to plate count and radiolabel approach, which are well established techniques in this area of research. The three methods returned similar results. The best quantification accuracy had radiolabel method, followed by qPCR. The plate count results showed coefficient of variation two-times higher than this of qPCR. The quantitative PCR proved to be a reliable method for enumeration of microbes in colonization assay. It has several advantages that make it very useful in case of analyzing mixed populations, where several different species or even strains can be monitored at the same time.

  12. Effectiveness of Quantitative Real Time PCR in Long-Term Follow-up of Chronic Myeloid Leukemia Patients.

    Science.gov (United States)

    Savasoglu, Kaan; Payzin, Kadriye Bahriye; Ozdemirkiran, Fusun; Berber, Belgin

    2015-08-01

    To determine the use of the Quantitative Real Time PCR (RQ-PCR) assay follow-up with Chronic Myeloid Leukemia (CML) patients. Cross-sectional observational. Izmir Ataturk Education and Research Hospital, Izmir, Turkey, from 2009 to 2013. Cytogenetic, FISH, RQ-PCR test results from 177 CMLpatients' materials selected between 2009 - 2013 years was set up for comparison analysis. Statistical analysis was performed to compare between FISH, karyotype and RQ-PCR results of the patients. Karyotyping and FISH specificity and sensitivity rates determined by ROC analysis compared with RQ-PCR results. Chi-square test was used to compare test failure rates. Sensitivity and specificity values were determined for karyotyping 17.6 - 98% (p=0.118, p > 0.05) and for FISH 22.5 - 96% (p=0.064, p > 0.05) respectively. FISH sensitivity was slightly higher than karyotyping but there was calculated a strong correlation between them (p 0.05); however, karyotyping and FISH test failure rate was statistically significant (p < 0.001). Besides, the situation needed for karyotype analysis, RQ-PCR assay can be used alone in the follow-up of CMLdisease.

  13. A quantitative method to evaluate mesenchymal stem cell lipofection using real-time PCR.

    Science.gov (United States)

    Ribeiro, S C; Mendes, R; Madeira, C; Monteiro, G A; da Silva, C L; Cabral, J M S

    2010-01-01

    Genetic modification of human mesenchymal stem cells (MSC) is a powerful tool to improve the therapeutic utility of these cells and to increase the knowledge on their regulation mechanisms. In this context, strong efforts have been made recently to develop efficient nonviral gene delivery systems. Although several studies addressed this question most of them use the end product of a reporter gene instead of the DNA uptake quantification to test the transfection efficiency. In this study, we established a method based on quantitative real-time PCR (RT-PCR) to determine the intracellular plasmid DNA copy number in human MSC after lipofection. The procedure requires neither specific cell lysis nor DNA purification. The influence of cell number on the RT-PCR sensitivity was evaluated. The method showed good reproducibility, high sensitivity, and a wide linear range of 75-2.5 x 10⁶ plasmid DNA copies per cell. RT-PCR results were then compared with the percentage of transfected cells assessed by flow cytometry analysis, which showed that flow cytometry-based results are not always proportional to plasmid cellular uptake determined by RT-PCR. This work contributed for the establishment of a rapid quantitative assay to determine intracellular plasmid DNA in stem cells, which will be extremely beneficial for the optimization of gene delivery strategies. © 2010 American Institute of Chemical Engineers

  14. Complementary techniques: validation of gene expression data by quantitative real time PCR.

    Science.gov (United States)

    Provenzano, Maurizio; Mocellin, Simone

    2007-01-01

    Microarray technology can be considered the most powerful tool for screening gene expression profiles of biological samples. After data mining, results need to be validated with highly reliable biotechniques allowing for precise quantitation of transcriptional abundance of identified genes. Quantitative real time PCR (qrt-PCR) technology has recently reached a level of sensitivity, accuracy and practical ease that support its use as a routine bioinstrumentation for gene level measurement. Currently, qrt-PCR is considered by most experts the most appropriate method to confirm or confute microarray-generated data. The knowledge of the biochemical principles underlying qrt-PCR as well as some related technical issues must be beard in mind when using this biotechnology.

  15. Quantitative real-time RT-PCR and chromogenic in situ hybridization

    DEFF Research Database (Denmark)

    Rosa, Fabíola E; Silveira, Sara M; Silveira, Cássia G T

    2009-01-01

    . METHODS: To elucidate the molecular profile of HER-2 status, mRNA and protein expression in 75 invasive breast carcinomas were analyzed by real time quantitative RT-PCR (qRT-PCR) and IHC, respectively. Amplifications were evaluated in 43 of these cases by CISH and in 11 by FISH. RESULTS: The concordance...

  16. Diagnosis of aerobic vaginitis by quantitative real-time PCR

    OpenAIRE

    Rumyantseva, T. A.; Bellen, G.; Savochkina, Y. A.; Guschin, A. E.; Donders, G.G.G.

    2016-01-01

    Abstract: Purpose To evaluate a real-time PCR-based technique to quantify bacteria associated with aerobic vaginitis (AV) as a potential test. Methods Vaginal samples from 100 women were tested by wet-mount microscopy, gram stain and quantitative real-time PCR targeting Enterobacteriacea, Staphylococcus spp., Streptococcus spp., Enterococcus spp., Escherichia coli, Streptococcus agalactiae, S. aureus; Lactobacillus spp. AV diagnosis obtained by wet-mount microscopy was used as reference. Resu...

  17. Comparative evaluation of a laboratory developed real-time PCR assay and the RealStar® HHV-6 PCR Kit for quantitative detection of human herpesvirus 6.

    Science.gov (United States)

    Yip, Cyril C Y; Sridhar, Siddharth; Cheng, Andrew K W; Fung, Ami M Y; Cheng, Vincent C C; Chan, Kwok-Hung; Yuen, Kwok-Yung

    2017-08-01

    HHV-6 reactivation in immunocompromised patients is common and may be associated with serious morbidity and mortality; therefore, early detection and initiation of therapy might be of benefit. Real-time PCR assays allow for early identification of HHV-6 reactivation to assist in providing a timely response. Thus, we compared the performance of an in-house developed HHV-6 quantitative PCR assay with a commercially available kit, the RealStar ® HHV-6 PCR Kit. The analytical sensitivity, analytical specificity, linearity, precision and accuracy of the in-house developed HHV-6 qPCR assay were evaluated. The diagnostic performance of the in-house HHV-6 qPCR assay was compared with the RealStar ® HHV-6 PCR Kit, using 72 clinical specimens and 17 proficiency testing samples. Linear regression analysis of the quantitative results showed a dynamic range from 2 to 10 log 10 copies/ml and a coefficient of determination (R 2 ) of 0.999 for the in-house assay. A dilution series demonstrated a limit of detection and a limit of quantification of 1.7 log 10 and 2 log 10 copies/ml, respectively. The precision of the assay was highly reproducible among runs with coefficients of variance (CV) ranging from 0.27% to 4.37%. A comparison of 27 matched samples showed an excellent correlation between the quantitative viral loads measured by the in-house HHV-6 qPCR assay and the RealStar ® HHV-6 PCR Kit (R 2 =0.926; PPCR Kit. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. A triplex quantitative real-time PCR assay for differential detection of human adenovirus serotypes 2, 3 and 7.

    Science.gov (United States)

    Qiu, Fang-Zhou; Shen, Xin-Xin; Zhao, Meng-Chuan; Zhao, Li; Duan, Su-Xia; Chen, Chen; Qi, Ju-Ju; Li, Gui-Xia; Wang, Le; Feng, Zhi-Shan; Ma, Xue-Jun

    2018-05-02

    Human adenovirus (HAdV) serotypes 2, 3 and 7 are more prevalent than other serotypes and have been associated with severe pneumonia in pediatric children. Molecular typing of HAdV is not routinely performed in clinical diagnostic laboratories as it is time-consuming and labor-intensive. In the present study, we developed a triplex quantitative real-time PCR assay (tq-PCR) in a single closed tube for differential detection and quantitative analysis of HAdV serotypes 2, 3 and 7. The sensitivity, specificity, reproducibility and clinical performance of tq-PCR were evaluated. The analytical sensitivity of the tq-PCR was 100 copies/reaction for each of HAdV serotypes 2, 3 and 7, and no cross-reaction with other common respiratory viruses or HAdV serotypes 1,4,5,6,31,55 and 57 was observed. The coefficients of variation (CV) of intra-assay and inter-assay were between 0.6% to 3.6%. Of 138 previously-defined HAdV-positive nasopharyngeal aspirates samples tested, the detection agreement between tq-PCR and nested PCR was 96.38% (133/138). The proposed tq-PCR assay is a sensitive, specific and reproducible method and has the potential for clinical use in the rapid and differential detection and quantitation of HAdV serotypes 2, 3 and 7.

  19. Detection of chromosome abnormalities by quantitative fluorescent PCR in ectopic pregnancies

    NARCIS (Netherlands)

    Goddijn, Mariette; van Stralen, Marja; Schuring-Blom, Heleen; Redeker, Bert; van Leeuwen, Liesbeth; Repping, Sjoerd; Leschot, Nico; van der Veen, Fulco

    2005-01-01

    Objective: To evaluate the potential value of quantitative fluorescent polymerase chain reaction (QF-PCR) in the detection of chromosome abnormalities in ectopic pregnancies. Methods: Seventy chorionic villi samples of ectopic pregnancies were studied by QF-PCR. Primers for chromosomes 16, 21, X and

  20. Analysis of ribosomal RNA stability in dead cells of wine yeast by quantitative PCR.

    Science.gov (United States)

    Sunyer-Figueres, Merce; Wang, Chunxiao; Mas, Albert

    2018-04-02

    During wine production, some yeasts enter a Viable But Not Culturable (VBNC) state, which may influence the quality and stability of the final wine through remnant metabolic activity or by resuscitation. Culture-independent techniques are used for obtaining an accurate estimation of the number of live cells, and quantitative PCR could be the most accurate technique. As a marker of cell viability, rRNA was evaluated by analyzing its stability in dead cells. The species-specific stability of rRNA was tested in Saccharomyces cerevisiae, as well as in three species of non-Saccharomyces yeast (Hanseniaspora uvarum, Torulaspora delbrueckii and Starmerella bacillaris). High temperature and antimicrobial dimethyl dicarbonate (DMDC) treatments were efficient in lysing the yeast cells. rRNA gene and rRNA (as cDNA) were analyzed over 48 h after cell lysis by quantitative PCR. The results confirmed the stability of rRNA for 48 h after the cell lysis treatments. To sum up, rRNA may not be a good marker of cell viability in the wine yeasts that were tested. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Effectiveness of quantitative real time PCR in long-term follow-up of chronic myeloid leukemia patients

    International Nuclear Information System (INIS)

    Savasoglu, K.; Berber, B.

    2015-01-01

    To determine the use of the Quantitative Real Time PCR (RQ-PCR) assay follow-up with Chronic Myeloid Leukemia (CML) patients. Study Design: Cross-sectional observational. Place and Duration of Study: Izmir Ataturk Education and Research Hospital, Izmir, Turkey, from 2009 to 2013. Methodology: Cytogenetic, FISH, RQ-PCR test results from 177 CML patients materials selected between 2009 - 2013 years was set up for comparison analysis. Statistical analysis was performed to compare between FISH, karyotype and RQ-PCR results of the patients. Karyotyping and FISH specificity and sensitivity rates determined by ROC analysis compared with RQ-PCR results. Chi-square test was used to compare test failure rates. Results:Sensitivity and specificity values were determined for karyotyping 17.6 - 98% (p=0.118, p > 0.05) and for FISH 22.5 - 96% (p=0.064, p > 0.05) respectively. FISH sensitivity was slightly higher than karyotyping but there was calculated a strong correlation between them (p < 0.001). RQ-PCR test failure rate did not correlate with other two tests (p > 0.05); however, karyotyping and FISH test failure rate was statistically significant (p < 0.001). Conclusion: Besides, the situation needed for karyotype analysis, RQ-PCR assay can be used alone in the follow-up of CML disease. (author)

  2. Bias in the Cq value observed with hydrolysis probe based quantitative PCR can be corrected with the estimated PCR efficiency value

    NARCIS (Netherlands)

    Tuomi, Jari Michael; Voorbraak, Frans; Jones, Douglas L.; Ruijter, Jan M.

    2010-01-01

    For real-time monitoring of PCR amplification of DNA, quantitative PCR (qPCR) assays use various fluorescent reporters. DNA binding molecules and hybridization reporters (primers and probes) only fluoresce when bound to DNA and result in the non-cumulative increase in observed fluorescence.

  3. Quantitative Real Time PCR approach to study gene expression profile during prenatal growth of skeletal muscle in pig of Duroc and Pietrain breeds

    Directory of Open Access Journals (Sweden)

    M. Cagnazzo

    2010-01-01

    Full Text Available The quantitative real time-PCR (QRT-PCR is a very sensitive method used to quantify mRNA level in gene expression analysis. Combining amplification, detection and quantification in a single step, allows a more accurate measurement compared to the traditional PCR end point analysis (Pfaffl, 2001; Bustin, 2002.

  4. Real time quantitative amplification detection on a microarray: towards high multiplex quantitative PCR.

    NARCIS (Netherlands)

    Pierik, A.; Moamfa, M; van Zelst, M.; Clout, D.; Stapert, H.; Dijksman, Johan Frederik; Broer, D.; Wimberger-Friedl, R.

    2012-01-01

    Quantitative real-time polymerase chain reaction (qrtPCR) is widely used as a research and diagnostic tool. Notwithstanding its many powerful features, the method is limited in the degree of multiplexing to about 6 due to spectral overlap of the available fluorophores. A new method is presented that

  5. Real time quantitative amplification detection on a microarray : towards high multiplex quantitative PCR

    NARCIS (Netherlands)

    Pierik, Anke; Boamfa, M.; Zelst, van M.; Clout, D.; Stapert, H.R.; Dijksman, J.F.; Broer, D.J.; Wimberger-Friedl, R.

    2012-01-01

    Quantitative real-time polymerase chain reaction (qrtPCR) is widely used as a research and diagnostic tool. Notwithstanding its many powerful features, the method is limited in the degree of multiplexing to about 6 due to spectral overlap of the available fluorophores. A new method is presented that

  6. Quantification bias caused by plasmid DNA conformation in quantitative real-time PCR assay.

    Science.gov (United States)

    Lin, Chih-Hui; Chen, Yu-Chieh; Pan, Tzu-Ming

    2011-01-01

    Quantitative real-time PCR (qPCR) is the gold standard for the quantification of specific nucleic acid sequences. However, a serious concern has been revealed in a recent report: supercoiled plasmid standards cause significant over-estimation in qPCR quantification. In this study, we investigated the effect of plasmid DNA conformation on the quantification of DNA and the efficiency of qPCR. Our results suggest that plasmid DNA conformation has significant impact on the accuracy of absolute quantification by qPCR. DNA standard curves shifted significantly among plasmid standards with different DNA conformations. Moreover, the choice of DNA measurement method and plasmid DNA conformation may also contribute to the measurement error of DNA standard curves. Due to the multiple effects of plasmid DNA conformation on the accuracy of qPCR, efforts should be made to assure the highest consistency of plasmid standards for qPCR. Thus, we suggest that the conformation, preparation, quantification, purification, handling, and storage of standard plasmid DNA should be described and defined in the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) to assure the reproducibility and accuracy of qPCR absolute quantification.

  7. Quantitative PCR for HTLV-1 provirus in adult T-cell leukemia/lymphoma using paraffin tumor sections.

    Science.gov (United States)

    Kato, Junki; Masaki, Ayako; Fujii, Keiichiro; Takino, Hisashi; Murase, Takayuki; Yonekura, Kentaro; Utsunomiya, Atae; Ishida, Takashi; Iida, Shinsuke; Inagaki, Hiroshi

    2016-11-01

    Detection of HTLV-1 provirus using paraffin tumor sections may assist the diagnosis of adult T-cell leukemia/lymphoma (ATLL). For the detection, non-quantitative PCR assay has been reported, but its usefulness and limitations remain unclear. To our knowledge, quantitative PCR assay using paraffin tumor sections has not been reported. Using paraffin sections from ATLLs and non-ATLL T-cell lymphomas, we first performed non-quantitative PCR for HTLV-1 provirus. Next, we determined tumor ratios and carried out quantitative PCR to obtain provirus copy numbers. The results were analyzed with a simple regression model and a novel criterion, cut-off using 95 % rejection limits. Our quantitative PCR assay showed an excellent association between tumor ratios and the copy numbers (r = 0.89, P paraffin tumor sections may be useful for the screening of ATLL cases, especially in HTLV-1 non-endemic areas where easy access to serological testing for HTLV-1 infection is limited. © 2016 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.

  8. QUANTITATIVE PCR OF SELECTED ASPERGILLUS, PENICILLIUM AND PAECILOMYCES SPECIES

    Science.gov (United States)

    A total of 65 quantitative PCR (QPCR) assays, incorporating fluorigenic 5' nuclease (TaqMan®) chemistry and directed at the nuclear ribosomal RNA operon, internal transcribed spacer regions (ITS1 or ITS2) was developed and tested for the detection of Aspergillus, Penicillium and ...

  9. Comparative validation using quantitative real-time PCR (qPCR and conventional PCR of bovine semen centrifuged in continuous density gradient

    Directory of Open Access Journals (Sweden)

    M.V. Resende

    2011-06-01

    Full Text Available The objective of the present study was to determine the sperm enrichment with X-bearing spermatozoa, after one centrifugation in a Percoll or OptiPrep continuous density gradient, using quantitative real-time polymerase chain reaction (qPCR of sperm DNA and resultant in vitro-produced bovine embryos by PCR. Frozen/thawed sperm was layered on density gradients and the tubes were centrifuged. Supernatants were gently aspirated and the sperm recovered from the bottom of the tubes. Cleavage and blastocyst rates were determined through in vitro production of embryos and PCR was performed to identify the embryos' genetic sex. A difference in blastocyst rate was found in the Percoll treatment compared to OptiPrep (P<0.05. The percentage of female embryos in the Percoll and OptiPrep groups was 62.0% and 47.1%, respectively. These results were confirmed by qPCR of spermatozoa DNA and underestimation was seen only in the Percoll group. It was possible to sexing sperm using simple approach.

  10. Development of real-time PCR for detection and quantitation of Streptococcus parauberis.

    Science.gov (United States)

    Nguyen, T L; Lim, Y J; Kim, D-H; Austin, B

    2016-01-01

    Streptococcus parauberis is an increasing threat to aquaculture of olive flounder, Paralichthys olivaceus Temminck & Schlegel, in South Korea. We developed a real-time polymerase chain reaction (PCR) method using the TaqMan probe assay to detect and quantify S. parauberis by targeting the gyrB gene sequences, which are effective for molecular analysis of the genus Streptococcus. Our real-time PCR assay is capable of detecting 10 fg of genomic DNA per reaction. The intra- and interassay coefficient of variation (CV) values ranged from 0.42-1.95%, demonstrating that the assay has good reproducibility. There was not any cross-reactivity to Streptococcus iniae or to other streptococcal/lactococcal fish pathogens, such as S. agalactiae and Lactococcus garvieae, indicating that the assay is highly specific to S. parauberis. The results of the real-time PCR assay corresponded well to those of conventional culture assays for S. parauberis from inoculated tissue homogenates (r = 0.957; P < 0.05). Hence, this sensitive and specific real-time PCR is a valuable tool for diagnostic quantitation of S. parauberis in clinical samples. © 2014 John Wiley & Sons Ltd.

  11. Quantitative PCR high-resolution melting (qPCR-HRM) curve analysis, a new approach to simultaneously screen point mutations and large rearrangements: application to MLH1 germline mutations in Lynch syndrome.

    Science.gov (United States)

    Rouleau, Etienne; Lefol, Cédrick; Bourdon, Violaine; Coulet, Florence; Noguchi, Tetsuro; Soubrier, Florent; Bièche, Ivan; Olschwang, Sylviane; Sobol, Hagay; Lidereau, Rosette

    2009-06-01

    Several techniques have been developed to screen mismatch repair (MMR) genes for deleterious mutations. Until now, two different techniques were required to screen for both point mutations and large rearrangements. For the first time, we propose a new approach, called "quantitative PCR (qPCR) high-resolution melting (HRM) curve analysis (qPCR-HRM)," which combines qPCR and HRM to obtain a rapid and cost-effective method suitable for testing a large series of samples. We designed PCR amplicons to scan the MLH1 gene using qPCR HRM. Seventy-six patients were fully scanned in replicate, including 14 wild-type patients and 62 patients with known mutations (57 point mutations and five rearrangements). To validate the detected mutations, we used sequencing and/or hybridization on a dedicated MLH1 array-comparative genomic hybridization (array-CGH). All point mutations and rearrangements detected by denaturing high-performance liquid chromatography (dHPLC)+multiplex ligation-dependent probe amplification (MLPA) were successfully detected by qPCR HRM. Three large rearrangements were characterized with the dedicated MLH1 array-CGH. One variant was detected with qPCR HRM in a wild-type patient and was located within the reverse primer. One variant was not detected with qPCR HRM or with dHPLC due to its proximity to a T-stretch. With qPCR HRM, prescreening for point mutations and large rearrangements are performed in one tube and in one step with a single machine, without the need for any automated sequencer in the prescreening process. In replicate, its reagent cost, sensitivity, and specificity are comparable to those of dHPLC+MLPA techniques. However, qPCR HRM outperformed the other techniques in terms of its rapidity and amount of data provided.

  12. WetLab-2: Providing Quantitative PCR Capabilities on ISS

    Science.gov (United States)

    Parra, Macarena; Jung, Jimmy Kar Chuen; Almeida, Eduardo; Boone, Travis David; Schonfeld, Julie; Tran, Luan Hoang

    2015-01-01

    The objective of NASA Ames Research Centers WetLab-2 Project is to place on the ISS a system capable of conducting gene expression analysis via quantitative real-time PCR (qRT-PCR) of biological specimens sampled or cultured on orbit. The WetLab-2 system is capable of processing sample types ranging from microbial cultures to animal tissues dissected on-orbit. The project has developed a RNA preparation module that can lyse cells and extract RNA of sufficient quality and quantity for use as templates in qRT-PCR reactions. Our protocol has the advantage that it uses non-toxic chemicals, alcohols or other organics. The resulting RNA is transferred into a pipette and then dispensed into reaction tubes that contain all lyophilized reagents needed to perform qRT-PCR reactions. These reaction tubes are mounted on rotors to centrifuge the liquid to the reaction window of the tube using a cordless drill. System operations require simple and limited crew actions including syringe pushes, valve turns and pipette dispenses. The resulting process takes less than 30 min to have tubes ready for loading into the qRT-PCR unit.The project has selected a Commercial-Off-The-Shelf (COTS) qRT-PCR unit, the Cepheid SmartCycler, that will fly in its COTS configuration. The SmartCycler has a number of advantages including modular design (16 independent PCR modules), low power consumption, rapid thermal ramp times and four-color detection. The ability to detect up to four fluorescent channels will enable multiplex assays that can be used to normalize for RNA concentration and integrity, and to study multiple genes of interest in each module. The WetLab-2 system will have the capability to downlink data from the ISS to the ground after a completed run and to uplink new programs. The ability to conduct qRT-PCR on-orbit eliminates the confounding effects on gene expression of reentry stresses and shock acting on live cells and organisms or the concern of RNA degradation of fixed samples. The

  13. A community resource for high-throughput quantitative RT-PCR analysis of transcription factor gene expression in Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Redman Julia C

    2008-07-01

    Full Text Available Abstract Background Medicago truncatula is a model legume species that is currently the focus of an international genome sequencing effort. Although several different oligonucleotide and cDNA arrays have been produced for genome-wide transcript analysis of this species, intrinsic limitations in the sensitivity of hybridization-based technologies mean that transcripts of genes expressed at low-levels cannot be measured accurately with these tools. Amongst such genes are many encoding transcription factors (TFs, which are arguably the most important class of regulatory proteins. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR is the most sensitive method currently available for transcript quantification, and one that can be scaled up to analyze transcripts of thousands of genes in parallel. Thus, qRT-PCR is an ideal method to tackle the problem of TF transcript quantification in Medicago and other plants. Results We established a bioinformatics pipeline to identify putative TF genes in Medicago truncatula and to design gene-specific oligonucleotide primers for qRT-PCR analysis of TF transcripts. We validated the efficacy and gene-specificity of over 1000 TF primer pairs and utilized these to identify sets of organ-enhanced TF genes that may play important roles in organ development or differentiation in this species. This community resource will be developed further as more genome sequence becomes available, with the ultimate goal of producing validated, gene-specific primers for all Medicago TF genes. Conclusion High-throughput qRT-PCR using a 384-well plate format enables rapid, flexible, and sensitive quantification of all predicted Medicago transcription factor mRNAs. This resource has been utilized recently by several groups in Europe, Australia, and the USA, and we expect that it will become the 'gold-standard' for TF transcript profiling in Medicago truncatula.

  14. Validation of reference genes for quantitative expression analysis by real-time rt-PCR in four lepidopteran insects.

    Science.gov (United States)

    Teng, Xiaolu; Zhang, Zan; He, Guiling; Yang, Liwen; Li, Fei

    2012-01-01

    Quantitative real-time polymerase chain reaction (qPCR) is an efficient and widely used technique to monitor gene expression. Housekeeping genes (HKGs) are often empirically selected as the reference genes for data normalization. However, the suitability of HKGs used as the reference genes has been seldom validated. Here, six HKGs were chosen (actin A3, actin A1, GAPDH, G3PDH, E2F, rp49) in four lepidopteran insects Bombyx mori L. (Lepidoptera: Bombycidae), Plutella xylostella L. (Plutellidae), Chilo suppressalis Walker (Crambidae), and Spodoptera exigua Hübner (Noctuidae) to study their expression stability. The algorithms of geNorm, NormFinder, stability index, and ΔCt analysis were used to evaluate these HKGs. Across different developmental stages, actin A1 was the most stable in P. xylostella and C. suppressalis, but it was the least stable in B. mori and S. exigua. Rp49 and GAPDH were the most stable in B. mori and S. exigua, respectively. In different tissues, GAPDH, E2F, and Rp49 were the most stable in B. mori, S. exigua, and C. suppressalis, respectively. The relative abundances of Siwi genes estimated by 2(-ΔΔCt) method were tested with different HKGs as the reference gene, proving the importance of internal controls in qPCR data analysis. The results not only presented a list of suitable reference genes in four lepidopteran insects, but also proved that the expression stabilities of HKGs were different among evolutionarily close species. There was no single universal reference gene that could be used in all situations. It is indispensable to validate the expression of HKGs before using them as the internal control in qPCR.

  15. Identification of circulating miRNA biomarkers based on global quantitative real-time PCR profiling

    Directory of Open Access Journals (Sweden)

    Kang Kang

    2012-02-01

    Full Text Available Abstract MicroRNAs (miRNAs are small noncoding RNAs (18-25 nucleotides that regulate gene expression at the post-transcriptional level. Recent studies have demonstrated the presence of miRNAs in the blood circulation. Deregulation of miRNAs in serum or plasma has been associated with many diseases including cancers and cardiovascular diseases, suggesting the possible use of miRNAs as diagnostic biomarkers. However, the detection of the small amount of miRNAs found in serum or plasma requires a method with high sensitivity and accuracy. Therefore, the current study describes polymerase chain reaction (PCR-based methods for measuring circulating miRNAs. Briefly, the procedure involves four major steps: (1 sample collection and preparation; (2 global miRNAs profiling using quantitative real-time PCR (qRT-PCR; (3 data normalization and analysis; and (4 selection and validation of miRNA biomarkers. In conclusion, qRT-PCR is a promising method for profiling of circulating miRNAs as biomarkers.

  16. Fluorescence quantitative PCR in detection of HBV DNA

    International Nuclear Information System (INIS)

    Shen Zheng; Li Ming; Shen Xia

    2003-01-01

    Objective: To study the relationship between the serum content of HBV-DNA and expression of serological markers with HBV infection patients. Methods: Serum samples from 375 hepatitis B patients with different clinical status and 70 normal persons were quantitated for HBV-DNA by FQ-PCR. Results: The average of HBV-DNA contents in the patient in the groups of HBsAg (+) and of HBeAg(+) were significantly higher than those in the group of HBsAg(-) and of HBeAg(-). Even in the group of HBeAg negative, high HBV-DNA contents might still be present in both the HBeAg(+) and HBeAg(-) groups. Conclusion: FQ-PCR can be used to monitor the real state of HBV infection, replication and the course of disease

  17. [Quantitative fluorogenic real-time PCR assay for respiratory syncytial virus detection].

    Science.gov (United States)

    Zhang, Qi-wei; You, Shang-you; Sun, Ji-min; Wu, Qi; Yu, Chun-hua; Zhang, Chu-yu

    2005-07-01

    To Establish a rapid and objective quantitative fluorogenic real-time PCR assay for early detection of human respiratory syncytial virus (hRSV). Two pairs of primers and one TaqMan Fluorogenic probe that are specific for the recognition of the most conservative N gene of hRSV for virus detection with LighCycler PCR in 93 nasopharyngeal secretion specimens collected from infants and young children. The assay was compared with virus isolation, routine PCR, nested PCR, and enzyme-linked immunosorbent assay (ELISA). This TaqMan assay had a sensitivity of 1 x 10(2) cDNA copies/microl with a dynamic range between 1 x 10(2) and 1 x 10(7) cDNA copies/microl, which was the same as that of nested PCR, but 10 times more sensitive than routine PCR. The specificity of the assay was evaluated by comparing hRSV with polivirus type 1, coxsackie virus type 2, influenza A, influenza B and adenovirus type 7. A PCR product of the expected size (195 bp) was produced and fluorescence signal detected for hRSV, but not for any of the other viruses. The results in LightCycler and Rotor-Gene instrument were consistent. Forty-four specimens (43.9%) were hRSV-positive with this assay and 4 (4/93,4.3%) were hRSV-positive with ELISA, showing rather low correlation between the two methods. No visible relation was found between the concentration of hRSV RNA and severity of the disease. This assay is rapid, sensitive, specific and quantitative, and has the potential of wide application for early diagnosis of hRSV infection and evaluation of the therapeutic effect.

  18. Exploring valid reference genes for quantitative real-time PCR analysis in Sesamia inferens (Lepidoptera: Noctuidae.

    Directory of Open Access Journals (Sweden)

    Meng Sun

    Full Text Available The pink stem borer, Sesamia inferens, which is endemic in China and other parts of Asia, is a major pest of rice and causes significant yield loss in this host plant. Very few studies have addressed gene expression in S. inferens. Quantitative real-time PCR (qRT-PCR is currently the most accurate and sensitive method for gene expression analysis. In qRT-PCR, data are normalized using reference genes, which help control for internal differences and reduce error between samples. In this study, seven candidate reference genes, 18S ribosomal RNA (18S rRNA, elongation factor 1 (EF1, glyceraldehyde-3-phosphate dehydrogenase (GAPDH, ribosomal protein S13 (RPS13, ribosomal protein S20 (RPS20, tubulin (TUB, and β-actin (ACTB were evaluated for their suitability in normalizing gene expression under different experimental conditions. The results indicated that three genes (RPS13, RPS20, and EF1 were optimal for normalizing gene expression in different insect tissues (head, epidermis, fat body, foregut, midgut, hindgut, Malpighian tubules, haemocytes, and salivary glands. 18S rRNA, EF1, and GAPDH were best for normalizing expression with respect to developmental stages and sex (egg masses; first, second, third, fourth, fifth, and sixth instar larvae; male and female pupae; and one-day-old male and female adults. 18S rRNA, RPS20, and TUB were optimal for fifth instars exposed to different temperatures (-8, -6, -4, -2, 0, and 27°C. To validate this recommendation, the expression profile of a target gene heat shock protein 83 gene (hsp83 was investigated, and results showed the selection was necessary and effective. In conclusion, this study describes reference gene sets that can be used to accurately measure gene expression in S. inferens.

  19. Exploring valid reference genes for quantitative real-time PCR analysis in Sesamia inferens (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Sun, Meng; Lu, Ming-Xing; Tang, Xiao-Tian; Du, Yu-Zhou

    2015-01-01

    The pink stem borer, Sesamia inferens, which is endemic in China and other parts of Asia, is a major pest of rice and causes significant yield loss in this host plant. Very few studies have addressed gene expression in S. inferens. Quantitative real-time PCR (qRT-PCR) is currently the most accurate and sensitive method for gene expression analysis. In qRT-PCR, data are normalized using reference genes, which help control for internal differences and reduce error between samples. In this study, seven candidate reference genes, 18S ribosomal RNA (18S rRNA), elongation factor 1 (EF1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal protein S13 (RPS13), ribosomal protein S20 (RPS20), tubulin (TUB), and β-actin (ACTB) were evaluated for their suitability in normalizing gene expression under different experimental conditions. The results indicated that three genes (RPS13, RPS20, and EF1) were optimal for normalizing gene expression in different insect tissues (head, epidermis, fat body, foregut, midgut, hindgut, Malpighian tubules, haemocytes, and salivary glands). 18S rRNA, EF1, and GAPDH were best for normalizing expression with respect to developmental stages and sex (egg masses; first, second, third, fourth, fifth, and sixth instar larvae; male and female pupae; and one-day-old male and female adults). 18S rRNA, RPS20, and TUB were optimal for fifth instars exposed to different temperatures (-8, -6, -4, -2, 0, and 27°C). To validate this recommendation, the expression profile of a target gene heat shock protein 83 gene (hsp83) was investigated, and results showed the selection was necessary and effective. In conclusion, this study describes reference gene sets that can be used to accurately measure gene expression in S. inferens.

  20. Parallel susceptibility testing of bacteria through culture-quantitative PCR in 96-well plates

    Directory of Open Access Journals (Sweden)

    Jun Luo

    2018-05-01

    Full Text Available Objective: The methods combining culture and quantitative PCR(qPCR offer new solutions for rapid antibiotic susceptibility testing(AST. However, the multiple steps of DNA extraction and cold storage of PCR reagents needed make them unsuitable for rapid high throughput AST. In this study, a parallel culture-qPCR method was developed to overcome above problems. Method: In this method, bacteria culture and DNA extraction automatically and simultaneously completed through using a common PCR instrument as a controllable heating device. A lyophilized 16S rDNA targeted qPCR reagent was also developed, which was stable and could be kept at 4 °C for long time and at 37 °C for about two months. Result: Testing of 36 P. aeruginosa isolates and 28 S. aureus isolates showed that the method had good agreements with the standard broth microdilution method, with an overall agreement of 97.22% (95% CI, 85.83–99.51 for P. aeruginosa and 96.43% (95% CI, 79.76–99.81 for S. aureus. This method could test 12 samples against a panel of up to 7 antibiotics simultaneously in two 96-well PCR plates within 4 h, which greatly improves the testing efficiency of the culture-qPCR method. Conclusion: With rapidness to obtain results and the capabilities for automation and multiple-sample testing, the parallel culture-qPCR method would have great potentials in clinical labs. Keywords: Antibiotic susceptibility testing, Thermo-cold lysis, Lyophilized qPCR reagent, Quantitative PCR, Bacteria

  1. Microgravity validation of a novel system for RNA isolation and multiplex quantitative real time PCR analysis of gene expression on the International Space Station.

    Directory of Open Access Journals (Sweden)

    Macarena Parra

    Full Text Available The International Space Station (ISS National Laboratory is dedicated to studying the effects of space on life and physical systems, and to developing new science and technologies for space exploration. A key aspect of achieving these goals is to operate the ISS National Lab more like an Earth-based laboratory, conducting complex end-to-end experimentation, not limited to simple microgravity exposure. Towards that end NASA developed a novel suite of molecular biology laboratory tools, reagents, and methods, named WetLab-2, uniquely designed to operate in microgravity, and to process biological samples for real-time gene expression analysis on-orbit. This includes a novel fluidic RNA Sample Preparation Module and fluid transfer devices, all-in-one lyophilized PCR assays, centrifuge, and a real-time PCR thermal cycler. Here we describe the results from the WetLab-2 validation experiments conducted in microgravity during ISS increment 47/SPX-8. Specifically, quantitative PCR was performed on a concentration series of DNA calibration standards, and Reverse Transcriptase-quantitative PCR was conducted on RNA extracted and purified on-orbit from frozen Escherichia coli and mouse liver tissue. Cycle threshold (Ct values and PCR efficiencies obtained on-orbit from DNA standards were similar to Earth (1 g controls. Also, on-orbit multiplex analysis of gene expression from bacterial cells and mammalian tissue RNA samples was successfully conducted in about 3 h, with data transmitted within 2 h of experiment completion. Thermal cycling in microgravity resulted in the trapping of gas bubbles inside septa cap assay tubes, causing small but measurable increases in Ct curve noise and variability. Bubble formation was successfully suppressed in a rapid follow-up on-orbit experiment using standard caps to pressurize PCR tubes and reduce gas release during heating cycles. The WetLab-2 facility now provides a novel operational on-orbit research capability for

  2. Evaluation of Reference Genes for Real-Time Quantitative PCR Analysis in Larvae of Spodoptera litura Exposed to Azadirachtin Stress Conditions

    Directory of Open Access Journals (Sweden)

    Benshui Shu

    2018-04-01

    Full Text Available Azadirachtin is an efficient and broad-spectrum botanical insecticide against more than 150 kinds of agricultural pests with the effects of mortality, antifeedant and growth regulation. Real-time quantitative polymerase chain reaction (RT-qPCR could be one of the powerful tools to analyze the gene expression level and investigate the mechanism of azadirachtin at transcriptional level, however, the ideal reference genes are needed to normalize the expression profiling of target genes. In this present study, the fragments of eight candidate reference genes were cloned and identified from the pest Spodoptera litura. In addition, the expression stability of these genes in different samples from larvae of control and azadirachtin treatments were evaluated by the computational methods of NormFinder, BestKeeper, Delta CT, geNorm, and RefFinder. According to our results, two of the reference genes should be the optimal number for RT-qPCR analysis. Furthermore, the best reference genes for different samples were showed as followed: EF-1α and EF2 for cuticle, β-Tubulin and RPL7A for fat body, EF2 and Actin for midgut, EF2 and RPL13A for larva and RPL13A and RPL7A for all the samples. Our results established a reliable normalization for RT-qPCR experiments in S. litura and ensure the data more accurate for the mechanism analysis of azadirachtin.

  3. Evaluation of Reference Genes for Real-Time Quantitative PCR Analysis in Larvae of Spodoptera litura Exposed to Azadirachtin Stress Conditions.

    Science.gov (United States)

    Shu, Benshui; Zhang, Jingjing; Cui, Gaofeng; Sun, Ranran; Sethuraman, Veeran; Yi, Xin; Zhong, Guohua

    2018-01-01

    Azadirachtin is an efficient and broad-spectrum botanical insecticide against more than 150 kinds of agricultural pests with the effects of mortality, antifeedant and growth regulation. Real-time quantitative polymerase chain reaction (RT-qPCR) could be one of the powerful tools to analyze the gene expression level and investigate the mechanism of azadirachtin at transcriptional level, however, the ideal reference genes are needed to normalize the expression profiling of target genes. In this present study, the fragments of eight candidate reference genes were cloned and identified from the pest Spodoptera litura . In addition, the expression stability of these genes in different samples from larvae of control and azadirachtin treatments were evaluated by the computational methods of NormFinder, BestKeeper, Delta CT, geNorm, and RefFinder. According to our results, two of the reference genes should be the optimal number for RT-qPCR analysis. Furthermore, the best reference genes for different samples were showed as followed: EF-1α and EF2 for cuticle, β-Tubulin and RPL7A for fat body, EF2 and Actin for midgut, EF2 and RPL13A for larva and RPL13A and RPL7A for all the samples. Our results established a reliable normalization for RT-qPCR experiments in S. litura and ensure the data more accurate for the mechanism analysis of azadirachtin.

  4. Real-time quantitative PCR of microdissected paraffin-embedded breast carcinoma

    DEFF Research Database (Denmark)

    Gjerdrum, Lise Mette; Sorensen, Boe Sandahl; Kjeldsen, Eigil

    2004-01-01

    We studied the feasibility of using real-time quantitative PCR to determine HER-2 DNA amplification and mRNA expression in microdissected formalin-fixed, paraffin-embedded breast tumors and compared this with standard immunohistochemistry (IHC) and fluorescent in situ hybridization (FISH) methods...

  5. Comparison of nested PCR and qPCR for the detection and quantitation of BoHV6 DNA.

    Science.gov (United States)

    Kubiś, Piotr; Materniak, Magdalena; Kuźmak, Jacek

    2013-12-01

    Nested PCR and qPCR (quantitative PCR) tests based on glycoprotein B (gB) gene were designed for detecting Bovine herpesvirus 6 (BoHV6) in bovine whole blood samples and wild ruminant blood clots (deer and roe-deer). This virus, commonly known as BLHV (bovine lymphotropic herpesvirus) belongs to the Herpesviridae family, subfamily Gammaherpesvirinae and Macavirus genus. DNA isolated from 92 dairy cow blood samples and 69 wild ruminant clots were examined for the presence of BoHV6 using nested PCR and qPCR tests. Viral DNA was detected by using nested PCR in 59 out of 92 bovine blood samples (64.1%), and by qPCR in 68 out of 92 bovine blood samples (73.9%), but none out of 69 DNA samples isolated from wild ruminant blood clots, was positive in both assays. The specificity of nested PCR and qPCR was confirmed by using BoHV1, BoHV4, BoHV6, BFV, BIV, and BLV DNA. The sensitivity of nested PCR and qPCR was determined using a serially 10-fold diluted vector pCR2.1HgB (2 × 10(0)-2 × 10(6)copies/reaction). In this testing, qPCR was more sensitive than the nested PCR, detecting two copies of BoHV6 whilst the limit of detection for nested PCR was 20 copies. In all qPCR assays, the coefficients of determination (R(2)) ranged between 0.990 and 0.999, and the calculated amplification efficiencies (Eff%) within the range of 89.7-106.9. The intra- and inter-assay CV (coefficient of variation) values did not exceed 4%. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Design and optimization of reverse-transcription quantitative PCR experiments.

    Science.gov (United States)

    Tichopad, Ales; Kitchen, Rob; Riedmaier, Irmgard; Becker, Christiane; Ståhlberg, Anders; Kubista, Mikael

    2009-10-01

    Quantitative PCR (qPCR) is a valuable technique for accurately and reliably profiling and quantifying gene expression. Typically, samples obtained from the organism of study have to be processed via several preparative steps before qPCR. We estimated the errors of sample withdrawal and extraction, reverse transcription (RT), and qPCR that are introduced into measurements of mRNA concentrations. We performed hierarchically arranged experiments with 3 animals, 3 samples, 3 RT reactions, and 3 qPCRs and quantified the expression of several genes in solid tissue, blood, cell culture, and single cells. A nested ANOVA design was used to model the experiments, and relative and absolute errors were calculated with this model for each processing level in the hierarchical design. We found that intersubject differences became easily confounded by sample heterogeneity for single cells and solid tissue. In cell cultures and blood, the noise from the RT and qPCR steps contributed substantially to the overall error because the sampling noise was less pronounced. We recommend the use of sample replicates preferentially to any other replicates when working with solid tissue, cell cultures, and single cells, and we recommend the use of RT replicates when working with blood. We show how an optimal sampling plan can be calculated for a limited budget. .

  7. Amplification of nonspecific products in quantitative polymerase chain reactions (qPCR

    Directory of Open Access Journals (Sweden)

    Adrián Ruiz-Villalba

    2017-12-01

    Full Text Available Quantitative PCR allows the precise measurement of DNA concentrations and is generally considered to be straightforward and trouble free. However, a survey with 93 validated assays for genes in the Wnt-pathway showed that the amplification of nonspecific products occurs frequently and is unrelated to Cq or PCR efficiency values. Titration experiments showed that the occurrence of low and high melting temperature artifacts was shown to be determined by annealing temperature, primer concentration and cDNA input. To explore the range of input variations that occur in the normal use of the Cre assay these conditions were mimicked in a complete two-way design of template −plasmid DNA- and non-template −mouse cDNA- concentrations. These experiments showed that the frequency of the amplification of the correct product and the artifact, as well as the valid quantification of the correct product, depended on the concentration of the non-template cDNA. This finding questions the interpretation of dilution series in which template as well as non-template concentrations are simultaneously decreasing. Repetition of this cDNA concentration experiment with other templates revealed that exact reproduction qPCR experiments was affected by the time it takes to complete the pipetting of a qPCR plate. Long bench times were observed to lead to significantly more artifacts. However, the measurement of artifact-associated fluorescence can be avoided by inclusion of a small heating step after the elongation phase in the amplification protocol. Taken together, this trouble-shooting journey showed that reliability and reproducibility of qPCR experiments not only depends on standardization and reporting of the biochemistry and technical aspects but also on hitherto neglected factors as sample dilution and waiting times in the laboratory work flow. Keywords: RT-qPCR, Melting curve analysis, Reaction parameters, Artifacts

  8. Development of Quantitative Competitive PCR and Absolute Based Real-Time PCR Assays for Quantification of The Butyrate Producing Bacterium: Butyrivibrio fibrisolvens

    Directory of Open Access Journals (Sweden)

    Mojtaba Tahmoorespur

    2016-04-01

    Full Text Available Introduction Butyrivibrio fibrisolvens strains are presently recognized as the major butyrate-producing bacteria found in the rumen and digestive track of many animals and also in the human gut. In this study we reported the development of two DNA based techniques, quantitative competitive (QC PCR and absolute based Real-Time PCR, for enumerating Butyrivibrio fibrisolvens strains. Despite the recent introduction of real-time PCR method for the rapid quantification of the target DNA sequences, use of quantitative competitive PCR (QC-PCR technique continues to play an important role in nucleic acid quantification since it is more cost effective. The procedure relies on the co-amplification of the sequence of interest with a serially diluted synthetic DNA fragment of the known concentration (competitor, using the single set primers. A real-time polymerase chain reaction is a laboratory technique of molecular biology based on the polymerase chain reaction (PCR. It monitors the amplification of a targeted DNA molecule during the PCR. Materials and Methods At first reported species-specific primers targeting the 16S rDNA region of the bacterium Butyrivibrio fibrisolvens were used for amplifying a 213 bp fragment. A DNA competitor differing by 50 bp in length from the 213 bp fragment was constructed and cloned into pTZ57R/T vector. The competitor was quantified by NanoDrop spectrophotometer and serially diluted and co-amplified by PCR with total extracted DNA from rumen fluid samples. PCR products were quantified by photographing agarose gels and analyzed with Image J software and the amount of amplified target DNA was log plotted against the amount of amplified competitor. Coefficient of determination (R2 was used as a criterion of methodology precision. For developing the Real-time PCR technique, the 213 bp fragment was amplified and cloned into pTZ57R/T was used to draw a standard curve. Results and Discussion The specific primers of Butyrivibrio

  9. Tendency for interlaboratory precision in the GMO analysis method based on real-time PCR.

    Science.gov (United States)

    Kodama, Takashi; Kurosawa, Yasunori; Kitta, Kazumi; Naito, Shigehiro

    2010-01-01

    The Horwitz curve estimates interlaboratory precision as a function only of concentration, and is frequently used as a method performance criterion in food analysis with chemical methods. The quantitative biochemical methods based on real-time PCR require an analogous criterion to progressively promote method validation. We analyzed the tendency of precision using a simplex real-time PCR technique in 53 collaborative studies of seven genetically modified (GM) crops. Reproducibility standard deviation (SR) and repeatability standard deviation (Sr) of the genetically modified organism (GMO) amount (%) was more or less independent of GM crops (i.e., maize, soybean, cotton, oilseed rape, potato, sugar beet, and rice) and evaluation procedure steps. Some studies evaluated whole steps consisting of DNA extraction and PCR quantitation, whereas others focused only on the PCR quantitation step by using DNA extraction solutions. Therefore, SR and Sr for GMO amount (%) are functions only of concentration similar to the Horwitz curve. We proposed S(R) = 0.1971C 0.8685 and S(r) = 0.1478C 0.8424, where C is the GMO amount (%). We also proposed a method performance index in GMO quantitative methods that is analogous to the Horwitz Ratio.

  10. A novel universal real-time PCR system using the attached universal duplex probes for quantitative analysis of nucleic acids

    Directory of Open Access Journals (Sweden)

    Wilson Zoe A

    2008-06-01

    Full Text Available Abstract Background Real-time PCR techniques are being widely used for nucleic acids analysis, but one limitation of current frequently employed real-time PCR is the high cost of the labeled probe for each target molecule. Results We describe a real-time PCR technique employing attached universal duplex probes (AUDP, which has the advantage of generating fluorescence by probe hydrolysis and strand displacement over current real-time PCR methods. AUDP involves one set of universal duplex probes in which the 5' end of the fluorescent probe (FP and a complementary quenching probe (QP lie in close proximity so that fluorescence can be quenched. The PCR primer pair with attached universal template (UT and the FP are identical to the UT sequence. We have shown that the AUDP technique can be used for detecting multiple target DNA sequences in both simplex and duplex real-time PCR assays for gene expression analysis, genotype identification, and genetically modified organism (GMO quantification with comparable sensitivity, reproducibility, and repeatability with other real-time PCR methods. Conclusion The results from GMO quantification, gene expression analysis, genotype identification, and GMO quantification using AUDP real-time PCR assays indicate that the AUDP real-time PCR technique has been successfully applied in nucleic acids analysis, and the developed AUDP real-time PCR technique will offer an alternative way for nucleic acid analysis with high efficiency, reliability, and flexibility at low cost.

  11. Legionellosis and Lung Abscesses: Contribution of Legionella Quantitative Real-Time PCR to an Adapted Followup

    Directory of Open Access Journals (Sweden)

    G. Descours

    2013-01-01

    Full Text Available We report a case of severe Legionnaires' disease (LD complicated by a lung abscess in an immunocompetent patient who required ECMO therapy and thoracic surgery. The results of repeated Legionella quantitative real-time PCR performed on both sera and respiratory samples correlated with the LD severity and the poor clinical outcome. Moreover, the PCR allowed for the detection of Legionella DNA in the lung abscess specimen, which was negative when cultured for Legionella. This case report provides a logical basis for further investigations to examine whether the Legionella quantitative PCR could improve the assessment of LD severity and constitute a prognostic marker.

  12. Development and validation of a quantitative PCR assay for Ichthyophonus spp.

    Science.gov (United States)

    White, Vanessa C; Morado, J Frank; Crosson, Lisa M; Vadopalas, Brent; Friedman, Carolyn S

    2013-04-29

    Members of the genus Ichthyophonus are trophically transmitted, cosmopolitan parasites that affect numerous fish species worldwide. A quantitative PCR (qPCR) assay specific for genus Ichthyophonus 18S ribosomal DNA was developed for parasite detection and surveillance. The new assay was tested for precision, repeatability, reproducibility, and both analytical sensitivity and specificity. Diagnostic sensitivity and specificity were estimated using tissue samples from a wild population of walleye pollock Theragra chalcogramma. Ichthyophonus sp. presence in tissue samples was determined by qPCR, conventional PCR (cPCR), and histology. Parasite prevalence estimates varied depending upon the detection method employed and tissue type tested. qPCR identified the greatest number of Ichthyophonus sp.-positive cases when applied to walleye pollock skeletal muscle. The qPCR assay proved sensitive and specific for Ichthyophonus spp. DNA, but like cPCR, is only a proxy for infection. When compared to cPCR, qPCR possesses added benefits of parasite DNA quantification and a 100-fold increase in analytical sensitivity. Because this novel assay is specific for known members of the genus, it is likely appropriate for detecting Ichthyophonus spp. DNA in various hosts from multiple regions. However, species-level identification and isotype variability would require DNA sequencing. In addition to distribution and prevalence applications, this assay could be modified and adapted for use with zooplankton or environmental samples. Such applications could aid in investigating alternate routes of transmission and life history strategies typical to members of the genus Ichthyophonus.

  13. Reference gene identification for reliable normalisation of quantitative RT-PCR data in Setaria viridis.

    Science.gov (United States)

    Nguyen, Duc Quan; Eamens, Andrew L; Grof, Christopher P L

    2018-01-01

    Quantitative real-time polymerase chain reaction (RT-qPCR) is the key platform for the quantitative analysis of gene expression in a wide range of experimental systems and conditions. However, the accuracy and reproducibility of gene expression quantification via RT-qPCR is entirely dependent on the identification of reliable reference genes for data normalisation. Green foxtail ( Setaria viridis ) has recently been proposed as a potential experimental model for the study of C 4 photosynthesis and is closely related to many economically important crop species of the Panicoideae subfamily of grasses, including Zea mays (maize), Sorghum bicolor (sorghum) and Sacchurum officinarum (sugarcane). Setaria viridis (Accession 10) possesses a number of key traits as an experimental model, namely; (i) a small sized, sequenced and well annotated genome; (ii) short stature and generation time; (iii) prolific seed production, and; (iv) is amendable to Agrobacterium tumefaciens -mediated transformation. There is currently however, a lack of reference gene expression information for Setaria viridis ( S. viridis ). We therefore aimed to identify a cohort of suitable S. viridis reference genes for accurate and reliable normalisation of S. viridis RT-qPCR expression data. Eleven putative candidate reference genes were identified and examined across thirteen different S. viridis tissues. Of these, the geNorm and NormFinder analysis software identified SERINE / THERONINE - PROTEIN PHOSPHATASE 2A ( PP2A ), 5 '- ADENYLYLSULFATE REDUCTASE 6 ( ASPR6 ) and DUAL SPECIFICITY PHOSPHATASE ( DUSP ) as the most suitable combination of reference genes for the accurate and reliable normalisation of S. viridis RT-qPCR expression data. To demonstrate the suitability of the three selected reference genes, PP2A , ASPR6 and DUSP , were used to normalise the expression of CINNAMYL ALCOHOL DEHYDROGENASE ( CAD ) genes across the same tissues. This approach readily demonstrated the suitably of the three

  14. Applicability of integrated cell culture reverse transcriptase quantitative PCR (ICC-RTqPCR) for the simultaneous detection of the four human enteric enterovirus species in disinfection studies

    Science.gov (United States)

    A newly developed integrated cell culture reverse transcriptase quantitative PCR (ICC-RTqPCR) method and its applicability in UV disinfection studies is described. This method utilizes a singular cell culture system coupled with four RTqPCR assays to detect infectious serotypes t...

  15. Quantitative RT-PCR for titration of replication-defective recombinant Semliki Forest virus.

    Science.gov (United States)

    Puglia, Ana L P; Rezende, Alexandre G; Jorge, Soraia A C; Wagner, Renaud; Pereira, Carlos A; Astray, Renato M

    2013-11-01

    Virus titration may constitute a drawback in the development and use of replication-defective viral vectors like Semliki Forest virus (SFV). The standardization and validation of a reverse transcription quantitative PCR (qRT-PCR) method for SFV titration is presented here. The qRT-PCR target is located within the nsp1 gene of the non-structural polyprotein SFV region (SFV RNA), which allows the strategy to be used for several different recombinant SFV constructs. Titer determinations were carried out by performing virus titration and infection assays with SFVs containing an RNA coding region for the rabies virus glycoprotein (RVGP) or green fluorescent protein (GFP). Results showed that the standardized qRT-PCR is applicable for different SFV constructs, and showed good reproducibility. To evaluate the correlation between the amount of functional SFV RNA in a virus lot and its infectivity in BHK-21 cell cultures, a temperature mediated titer decrease was performed and successfully quantitated by qRT-PCR. When used for cell infection at the same multiplicity of infection (MOI), the temperature treated SFV-RVGP samples induced the same levels of RVGP expression. Similarly, when different SFV-GFP lots with different virus titers, as accessed by qRT-PCR, were used for cell infection at the same MOI, the cultures showed comparable amounts of fluorescent cells. The data demonstrate a good correlation between the amount of virus used for infection, as measured by its SFV RNA, and the protein synthesis in the cells. In conclusion, the qRT-PCR method developed here is accurate and enables the titration of replication-defective SFV vectors, an essential aid for viral vector development as well as for establishment of production bioprocesses. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Quality control for quantitative PCR based on amplification compatibility test

    Czech Academy of Sciences Publication Activity Database

    Tichopád, Aleš; Bar, T.; Pecen, Ladislav; Kitchen, R.R.; Kubista, Mikael; Pfaffl, M.W.

    2010-01-01

    Roč. 50, č. 4 (2010), s. 308-312 ISSN 1046-2023 R&D Projects: GA AV ČR IAA500520809; GA AV ČR IAA500970904 Institutional research plan: CEZ:AV0Z50520701 Keywords : Quantitative PCR * Quality control * Amplification efficiency Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.527, year: 2010

  17. Amplification of nonspecific products in quantitative polymerase chain reactions (qPCR)

    NARCIS (Netherlands)

    Ruiz-Villalba, Adrián; van Pelt-Verkuil, Elizabeth; Gunst, Quinn D.; Ruijter, Jan M.; van den Hoff, Maurice J. B.

    2017-01-01

    Quantitative PCR allows the precise measurement of DNA concentrations and is generally considered to be straightforward and trouble free. However, a survey with 93 validated assays for genes in the Wnt-pathway showed that the amplification of nonspecific products occurs frequently and is unrelated

  18. Normalization of Reverse Transcription Quantitative PCR Data During Ageing in Distinct Cerebral Structures.

    Science.gov (United States)

    Bruckert, G; Vivien, D; Docagne, F; Roussel, B D

    2016-04-01

    Reverse transcription quantitative-polymerase chain reaction (RT-qPCR) has become a routine method in many laboratories. Normalization of data from experimental conditions is critical for data processing and is usually achieved by the use of a single reference gene. Nevertheless, as pointed by the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines, several reference genes should be used for reliable normalization. Ageing is a physiological process that results in a decline of many expressed genes. Reliable normalization of RT-qPCR data becomes crucial when studying ageing. Here, we propose a RT-qPCR study from four mouse brain regions (cortex, hippocampus, striatum and cerebellum) at different ages (from 8 weeks to 22 months) in which we studied the expression of nine commonly used reference genes. With the use of two different algorithms, we found that all brain structures need at least two genes for a good normalization step. We propose specific pairs of gene for efficient data normalization in the four brain regions studied. These results underline the importance of reliable reference genes for specific brain regions in ageing.

  19. QPCR: Application for real-time PCR data management and analysis

    Directory of Open Access Journals (Sweden)

    Eichhorn Heiko

    2009-08-01

    Full Text Available Abstract Background Since its introduction quantitative real-time polymerase chain reaction (qPCR has become the standard method for quantification of gene expression. Its high sensitivity, large dynamic range, and accuracy led to the development of numerous applications with an increasing number of samples to be analyzed. Data analysis consists of a number of steps, which have to be carried out in several different applications. Currently, no single tool is available which incorporates storage, management, and multiple methods covering the complete analysis pipeline. Results QPCR is a versatile web-based Java application that allows to store, manage, and analyze data from relative quantification qPCR experiments. It comprises a parser to import generated data from qPCR instruments and includes a variety of analysis methods to calculate cycle-threshold and amplification efficiency values. The analysis pipeline includes technical and biological replicate handling, incorporation of sample or gene specific efficiency, normalization using single or multiple reference genes, inter-run calibration, and fold change calculation. Moreover, the application supports assessment of error propagation throughout all analysis steps and allows conducting statistical tests on biological replicates. Results can be visualized in customizable charts and exported for further investigation. Conclusion We have developed a web-based system designed to enhance and facilitate the analysis of qPCR experiments. It covers the complete analysis workflow combining parsing, analysis, and generation of charts into one single application. The system is freely available at http://genome.tugraz.at/QPCR

  20. Quantitative real-time PCR analysis of Anopheles dirus TEP1 and NOS during Plasmodium berghei infection, using three reference genes

    Directory of Open Access Journals (Sweden)

    Jonathan W.K. Liew

    2017-07-01

    Full Text Available Quantitative reverse transcription PCR (qRT-PCR has been an integral part of characterizing the immunity of Anopheles mosquitoes towards Plasmodium invasion. Two anti-Plasmodium factors of Anopheles, thioester-containing protein 1 (TEP1 and nitric oxide synthase (NOS, play a role in the refractoriness of Anopheles towards Plasmodium infection and are generally expressed during infection. However, these are less studied in Anopheles dirus, a dominant malaria vector in Southeast Asia. Furthermore, most studies used a single reference gene for normalization during gene expression analysis without proper validation. This may lead to erroneous quantification of expression levels. Therefore, the present study characterized and investigated the expression profiles of TEP1 and NOS of Anopheles dirus during P. berghei infection. Prior to that, the elongation factor 1-alpha (EF1, actin 1 (Act and ribosomal protein S7 (S7 genes were validated for their suitability as a set of reference genes. TEP1 and NOS expressions in An. dirus were found to be significantly induced after P. berghei infection.

  1. Development of a Quantitative PCR Assay for Thermophilic Spore-Forming Geobacillus stearothermophilus in Canned Food.

    Science.gov (United States)

    Nakano, Miyo

    2015-01-01

    The thermophilic spore forming bacteria Geobacillus stearothermophilus is recognized as a major cause of spoilage in canned food. A quantitative real-time PCR assay was developed to specifically detect and quantify the species G. stearothermophilus in samples from canned food. The selected primer pairs amplified a 163-bp fragment of the 16S rRNA gene in a specific PCR assay with a detection limit of 12.5 fg of pure culture DNA, corresponding to DNA extracted from approximately 0.7 CFU/mL of G. stearothermophilus. Analysis showed that the bacterial species G. stearothermophilus was not detected in any canned food sample. Our approach presented here will be useful for tracking or quantifying species G. stearotethermophilus in canned food and ingredients.

  2. Data Acceptance Criteria for Standardized Human-Associated Fecal Source Identification Quantitative Real-Time PCR Methods

    Science.gov (United States)

    There is a growing interest in the application of human-associated fecal sourceidentification quantitative real-time PCR (qPCR) technologies for water quality management. The transition from a research tool to a standardized protocol requires a high degree of confidence in data q...

  3. Assessing chlorinated ethene degradation in a large scale contaminant plume by dual carbon–chlorine isotope analysis and quantitative PCR

    DEFF Research Database (Denmark)

    Hunkeler, D.; Abe, Y.; Broholm, Mette Martina

    2011-01-01

    The fate of chlorinated ethenes in a large contaminant plume originating from a tetrachloroethene (PCE) source in a sandy aquifer in Denmark was investigated using novel methods including compound-specific carbon and chlorine isotope analysis and quantitative real-time polymerase chain reaction (q...... reduction by pyrite as indicated by the formation of cDCE and stable carbon isotope data. TCE and cDCE showed carbon isotope trends typical for reductive dechlorination with an initial depletion of 13C in the daughter products followed by an enrichment of 13C as degradation proceeded. At 1000 m downgradient......DCE. The significant enrichment of 13C in VC indicates that VC was transformed further, although the mechanismcould not be determined. The transformation of cDCEwas the rate limiting step as no accumulation of VC occurred. In summary, the study demonstrates that carbon–chlorine isotope analysis and qPCR combinedwith...

  4. Reference gene selection for real-time quantitative PCR analysis of the mouse uterus in the peri-implantation period.

    Directory of Open Access Journals (Sweden)

    Pengfei Lin

    Full Text Available The study of uterine gene expression patterns is valuable for understanding the biological and molecular mechanisms that occur during embryo implantation. Real-time quantitative RT-PCR (qRT-PCR is an extremely sensitive technique that allows for the precise quantification of mRNA abundance; however, selecting stable reference genes suitable for the normalization of qRT-PCR data is required to avoid the misinterpretation of experimental results and erroneous analyses. This study employs several mouse models, including an early pregnancy, a pseudopregnancy, a delayed implantation and activation, an artificial decidualization and a hormonal treatment model; ten candidate reference genes (PPIA, RPLP0, HPRT1, GAPDH, ACTB, TBP, B2M, 18S, UBC and TUBA that are found in uterine tissues were assessed for their suitability as internal controls for relative qRT-PCR quantification. GeNorm(PLUS, NormFinder, and BestKeeper were used to evaluate these candidate reference genes, and all of these methods identified RPLP0 and GAPDH as the most stable candidates and B2M and 18S as the least stable candidates. However, when the different models were analyzed separately, the reference genes exhibited some variation in their expression levels.

  5. Outcome of polymerase chain reaction (PCR) analysis in 100 suspected cases of infectious uveitis.

    Science.gov (United States)

    Kharel Sitaula, Ranju; Janani, M K; Madhavan, H N; Biswas, Jyotirmay

    2018-01-10

    Polymerase chain reaction (PCR) analysis is an important tool in the diagnosis of infectious uveitis. A retrospective, interventional study of PCR analysis of ocular fluid in suspected infectious uveitis cases between January 2014 to July 2016 was done. Nested, real-time and broad range PCR was performed for detection of the genome of Mycobacterium tuberculosis, herpes virus family, Chikungunya virus, Toxoplasma gondii, fungus, eubacterium and propionibacterium acne. Total of 100 cases included, mean age was 39.2 ± 15.4 years. Uveitis was unilateral in 82% and granulomatous in 40%. Mean visual acuity at the initial visit and final visit was 0.73 logMar and 0.63 logMar respectively. PCR analysis confirmed the clinical diagnosis in 70.1% patients. The sensitivity, specificity, positive predictive value and negative predictive value of PCR analysis was 90.2%, 93.9%, 93.9% and 90.2% respectively. The quantitative value of real-time M. tb. Positive PCR ranged from 32c/ml to 2722 c/ml. PCR assay is an accurate technique with high sensitivity and specificity to diagnose the DNA genome in infectious uveitis.

  6. Identification of stable reference genes for quantitative PCR in cells derived from chicken lymphoid organs.

    Science.gov (United States)

    Borowska, D; Rothwell, L; Bailey, R A; Watson, K; Kaiser, P

    2016-02-01

    Quantitative polymerase chain reaction (qPCR) is a powerful technique for quantification of gene expression, especially genes involved in immune responses. Although qPCR is a very efficient and sensitive tool, variations in the enzymatic efficiency, quality of RNA and the presence of inhibitors can lead to errors. Therefore, qPCR needs to be normalised to obtain reliable results and allow comparison. The most common approach is to use reference genes as internal controls in qPCR analyses. In this study, expression of seven genes, including β-actin (ACTB), β-2-microglobulin (B2M), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), β-glucuronidase (GUSB), TATA box binding protein (TBP), α-tubulin (TUBAT) and 28S ribosomal RNA (r28S), was determined in cells isolated from chicken lymphoid tissues and stimulated with three different mitogens. The stability of the genes was measured using geNorm, NormFinder and BestKeeper software. The results from both geNorm and NormFinder were that the three most stably expressed genes in this panel were TBP, GAPDH and r28S. BestKeeper did not generate clear answers because of the highly heterogeneous sample set. Based on these data we will include TBP in future qPCR normalisation. The study shows the importance of appropriate reference gene normalisation in other tissues before qPCR analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Screening suitable reference genes for normalization in reverse transcription quantitative real-time PCR analysis in melon.

    Directory of Open Access Journals (Sweden)

    Qiusheng Kong

    Full Text Available Melon (Cucumis melo. L is not only an economically important cucurbitaceous crop but also an attractive model for studying many biological characteristics. Screening appropriate reference genes is essential to reverse transcription quantitative real-time PCR (RT-qPCR, which is key to many studies involving gene expression analysis. In this study, 14 candidate reference genes were selected, and the variations in their expression in roots and leaves of plants subjected to biotic stress, abiotic stress, and plant growth regulator treatment were assessed by RT-qPCR. The stability of the expression of the selected genes was determined and ranked using geNorm and NormFinder. geNorm identified the two most stable genes for each set of conditions: CmADP and CmUBIep across all samples, CmUBIep and CmRPL in roots, CmRAN and CmACT in leaves, CmADP and CmRPL under abiotic stress conditions, CmTUA and CmACT under biotic stress conditions, and CmRAN and CmACT under plant growth regulator treatments. NormFinder determined CmRPL to be the best reference gene in roots and under biotic stress conditions and CmADP under the other experimental conditions. CmUBC2 and CmPP2A were not found to be suitable under many experimental conditions. The catalase family genes CmCAT1, CmCAT2, and CmCAT3 were identified in melon genome and used as target genes to validate the reliability of identified reference genes. The catalase family genes showed the most upregulation 3 days after inoculation with Fusarium wilt in roots, after which they were downregulated. Their levels of expression were significantly overestimated when the unsuitable reference gene was used for normalization. These results not only provide guidelines for the selection of reference genes for gene expression analyses in melons but may also provide valuable information for studying the functions of catalase family genes in stress responses.

  8. Validation of reference genes for gene expression analysis in olive (Olea europaea) mesocarp tissue by quantitative real-time RT-PCR

    Science.gov (United States)

    2014-01-01

    Background Gene expression analysis using quantitative reverse transcription PCR (qRT-PCR) is a robust method wherein the expression levels of target genes are normalised using internal control genes, known as reference genes, to derive changes in gene expression levels. Although reference genes have recently been suggested for olive tissues, combined/independent analysis on different cultivars has not yet been tested. Therefore, an assessment of reference genes was required to validate the recent findings and select stably expressed genes across different olive cultivars. Results A total of eight candidate reference genes [glyceraldehyde 3-phosphate dehydrogenase (GAPDH), serine/threonine-protein phosphatase catalytic subunit (PP2A), elongation factor 1 alpha (EF1-alpha), polyubiquitin (OUB2), aquaporin tonoplast intrinsic protein (TIP2), tubulin alpha (TUBA), 60S ribosomal protein L18-3 (60S RBP L18-3) and polypyrimidine tract-binding protein homolog 3 (PTB)] were chosen based on their stability in olive tissues as well as in other plants. Expression stability was examined by qRT-PCR across 12 biological samples, representing mesocarp tissues at various developmental stages in three different olive cultivars, Barnea, Frantoio and Picual, independently and together during the 2009 season with two software programs, GeNorm and BestKeeper. Both software packages identified GAPDH, EF1-alpha and PP2A as the three most stable reference genes across the three cultivars and in the cultivar, Barnea. GAPDH, EF1-alpha and 60S RBP L18-3 were found to be most stable reference genes in the cultivar Frantoio while 60S RBP L18-3, OUB2 and PP2A were found to be most stable reference genes in the cultivar Picual. Conclusions The analyses of expression stability of reference genes using qRT-PCR revealed that GAPDH, EF1-alpha, PP2A, 60S RBP L18-3 and OUB2 are suitable reference genes for expression analysis in developing Olea europaea mesocarp tissues, displaying the highest level

  9. Comparison of culture-based, vital stain and PMA-qPCR methods for the quantitative detection of viable hookworm ova.

    Science.gov (United States)

    Gyawali, P; Sidhu, J P S; Ahmed, W; Jagals, P; Toze, S

    2017-06-01

    Accurate quantitative measurement of viable hookworm ova from environmental samples is the key to controlling hookworm re-infections in the endemic regions. In this study, the accuracy of three quantitative detection methods [culture-based, vital stain and propidium monoazide-quantitative polymerase chain reaction (PMA-qPCR)] was evaluated by enumerating 1,000 ± 50 Ancylostoma caninum ova in the laboratory. The culture-based method was able to quantify an average of 397 ± 59 viable hookworm ova. Similarly, vital stain and PMA-qPCR methods quantified 644 ± 87 and 587 ± 91 viable ova, respectively. The numbers of viable ova estimated by the culture-based method were significantly (P methods. Therefore, both PMA-qPCR and vital stain methods appear to be suitable for the quantitative detection of viable hookworm ova. However, PMA-qPCR would be preferable over the vital stain method in scenarios where ova speciation is needed.

  10. Synthetic internal control sequences to increase negative call veracity in multiplexed, quantitative PCR assays for Phakopsora pachyrhizi

    Science.gov (United States)

    Quantitative PCR (Q-PCR) utilizing specific primer sequences and a fluorogenic, 5’-exonuclease linear hydrolysis probe is well established as a detection and identification method for Phakopsora pachyrhizi, the soybean rust pathogen. Because of the extreme sensitivity of Q-PCR, the DNA of a single u...

  11. Fast detection of deletion breakpoints using quantitative PCR

    Directory of Open Access Journals (Sweden)

    Gulshara Abildinova

    2016-01-01

    Full Text Available Abstract The routine detection of large and medium copy number variants (CNVs is well established. Hemizygotic deletions or duplications in the large Duchenne muscular dystrophy DMD gene responsible for Duchenne and Becker muscular dystrophies are routinely identified using multiple ligation probe amplification and array-based comparative genomic hybridization. These methods only map deleted or duplicated exons, without providing the exact location of breakpoints. Commonly used methods for the detection of CNV breakpoints include long-range PCR and primer walking, their success being limited by the deletion size, GC content and presence of DNA repeats. Here, we present a strategy for detecting the breakpoints of medium and large CNVs regardless of their size. The hemizygous deletion of exons 45-50 in the DMD gene and the large autosomal heterozygous PARK2 deletion were used to demonstrate the workflow that relies on real-time quantitative PCR to narrow down the deletion region and Sanger sequencing for breakpoint confirmation. The strategy is fast, reliable and cost-efficient, making it amenable to widespread use in genetic laboratories.

  12. [Development and validation of event-specific quantitative PCR method for genetically modified maize LY038].

    Science.gov (United States)

    Mano, Junichi; Masubuchi, Tomoko; Hatano, Shuko; Futo, Satoshi; Koiwa, Tomohiro; Minegishi, Yasutaka; Noguchi, Akio; Kondo, Kazunari; Akiyama, Hiroshi; Teshima, Reiko; Kurashima, Takeyo; Takabatake, Reona; Kitta, Kazumi

    2013-01-01

    In this article, we report a novel real-time PCR-based analytical method for quantitation of the GM maize event LY038. We designed LY038-specific and maize endogenous reference DNA-specific PCR amplifications. After confirming the specificity and linearity of the LY038-specific PCR amplification, we determined the conversion factor required to calculate the weight-based content of GM organism (GMO) in a multilaboratory evaluation. Finally, in order to validate the developed method, an interlaboratory collaborative trial according to the internationally harmonized guidelines was performed with blind DNA samples containing LY038 at the mixing levels of 0, 0.5, 1.0, 5.0 and 10.0%. The precision of the method was evaluated as the RSD of reproducibility (RSDR), and the values obtained were all less than 25%. The limit of quantitation of the method was judged to be 0.5% based on the definition of ISO 24276 guideline. The results from the collaborative trial suggested that the developed quantitative method would be suitable for practical testing of LY038 maize.

  13. Quantitative detection of Campylobacter jejuni on fresh chicken carcasses by real-time PCR.

    Science.gov (United States)

    Rönner, Anna-Clara; Lindmark, Hans

    2007-06-01

    Campylobacter jejuni infection is a significant cause of foodborne gastroenteritis worldwide. Consumption and handling of poultry products is believed to be the primary risk factor for campylobacteriosis. Risk assessments require quantitative data, and C. jejuni is enumerated usually by direct plating, which sometimes allows growth of non-Campylobacter bacteria. The objective of the present study was to develop a quantitative real-time PCR method (q-PCR) for enumerating C. jejuni in chicken rinse without a culturing step. The procedure to obtain the template for the PCR assay involved (i) filtration of 10 ml of chicken rinse, (ii) centrifugation of the sample, and (iii) total DNA extraction from the pellet obtained using a commercial DNA extraction kit. The detection limit of the method was comparable to that for plating 100 microl of chicken rinse on modified charcoal cefoperazone deoxycholate agar, and the detection limit could be further improved 10-fold by concentrating the DNA eluate by ethanol precipitation. A close correlation for spiked chicken rinse was obtained for the results of the quantitative real-time PCR method and direct plating (r = 0.99). The coefficient of correlation for the methods was 0.87 when samples from chicken carcasses on the slaughter line were analyzed, whereas a lower correlation (r = 0.76) was obtained when samples from retail carcasses were analyzed. Greater variation in the proportion of dead and/or viable but not culturable Campylobacter types in the retail samples may explain the decreased correlation between the methods. Overall, the new method is simple and fast and the results obtained are closely correlated with those for direct plating for samples containing a low proportion of dead Campylobacter cells.

  14. Rapid detection of Pseudomonas aeruginosa from positive blood cultures by quantitative PCR

    Directory of Open Access Journals (Sweden)

    Cattoir Vincent

    2010-08-01

    Full Text Available Abstract Background Pseudomonas aeruginosa is responsible for numerous bloodstream infections associated with severe adverse outcomes in case of inappropriate initial antimicrobial therapy. The present study was aimed to develop a novel quantitative PCR (qPCR assay, using ecfX as the specific target gene, for the rapid and accurate identification of P. aeruginosa from positive blood cultures (BCs. Methods Over the period August 2008 to June 2009, 100 BC bottles positive for gram-negative bacilli were tested in order to evaluate performances of the qPCR technique with conventional methods as gold standard (i.e. culture and phenotypic identification. Results Thirty-three strains of P. aeruginosa, 53 strains of Enterobactericaeae, nine strains of Stenotrophomonas maltophilia and two other gram-negative species were isolated while 3 BCs were polymicrobial including one mixture containing P. aeruginosa. All P. aeruginosa clinical isolates were detected by qPCR except a single strain in mixed culture. Performances of the qPCR technique were: specificity, 100%; positive predictive value, 100%; negative predictive value, 98.5%; and sensitivity, 97%. Conclusions This reliable technique may offer a rapid (

  15. A quantitative TaqMan PCR assay for the detection of Ureaplasma diversum.

    Science.gov (United States)

    Marques, Lucas M; Amorim, Aline T; Martins, Hellen Braga; Rezende, Izadora Souza; Barbosa, Maysa Santos; Lobão, Tassia Neves; Campos, Guilherme B; Timenetsky, Jorge

    2013-12-27

    Ureaplasma diversum in veterinary studies is an undesirable microbe, which may cause infection in bulls and may result in seminal vesiculitis, balanopostitis, and alterations in spermatozoids, whereas in cows, it may cause placentitis, fetal alveolitis, abortion, and birth of weak calves. U. diversum is released through organic secretions, especially semen, preputial and vaginal mucus, conjunctival secretion, and milk. The aim of the present study was to develop a TaqMan probe, highly sensitive and specific quantitative PCR (qPCR) assay for the detection and quantification of U. diversum from genital swabs of bovines. Primers and probes specific to U. diversum 16S rRNA gene were designed. The specificity, detection limit, intra- and inter-assay variability of qPCR to detect this ureaplasma was compared with the results of the conventional PCR assay (cPCR). Swabs of vaginal mucus from 169 cows were tested. The qPCR assay detected as few as 10 copies of U. diversum and was 100-fold more sensitive than the cPCR. No cross-reactivity with other Mollicutes or eubacteria was observed. U. diversum was detected in 79 swabs (46.42%) by qPCR, while using cPCR it was detected in 42 (25%) samples. The difference in cPCR and qPCR ureaplasma detection between healthy and sick animals was not statistically significant. But the U. diversum load in samples from animals with genital disorders was higher than in healthy animals. The qPCR assay developed herein is highly sensitive and specific for the detection and quantification of U. diversum in vaginal bovine samples. Copyright © 2013. Published by Elsevier B.V.

  16. Periodontal pathogens: a quantitative comparison of anaerobic culture and real-time PCR

    NARCIS (Netherlands)

    Boutaga, Khalil; van Winkelhoff, Arie Jan; Vandenbroucke-Grauls, Christina M. J. E.; Savelkoul, Paul H. M.

    2005-01-01

    Periodontitis is a multi-factorial chronic inflammatory and destructive disease of the tooth-supporting tissues. Quantitative anaerobic culture techniques have been used for microbial diagnosis of the different forms of the disease. The aim of this study was to compare real-time PCR with

  17. Validation of Reference Genes for Quantitative Expression Analysis by Real-Time RT-PCR in Four Lepidopteran Insects

    OpenAIRE

    Teng, Xiaolu; Zhang, Zan; He, Guiling; Yang, Liwen; Li, Fei

    2012-01-01

    Quantitative real-time polymerase chain reaction (qPCR) is an efficient and widely used technique to monitor gene expression. Housekeeping genes (HKGs) are often empirically selected as the reference genes for data normalization. However, the suitability of HKGs used as the reference genes has been seldom validated. Here, six HKGs were chosen (actin A3, actin A1, GAPDH, G3PDH, E2F, rp49) in four lepidopteran insects Bombyx mori L. (Lepidoptera: Bombycidae), Plutella xylostella L. (Plutellidae...

  18. Quantitative real-time PCR approaches for microbial community studies in wastewater treatment systems: applications and considerations.

    Science.gov (United States)

    Kim, Jaai; Lim, Juntaek; Lee, Changsoo

    2013-12-01

    Quantitative real-time PCR (qPCR) has been widely used in recent environmental microbial ecology studies as a tool for detecting and quantifying microorganisms of interest, which aids in better understandings of the complexity of wastewater microbial communities. Although qPCR can be used to provide more specific and accurate quantification than other molecular techniques, it does have limitations that must be considered when applying it in practice. This article reviews the principle of qPCR quantification and its applications to microbial ecology studies in various wastewater treatment environments. Here we also address several limitations of qPCR-based approaches that can affect the validity of quantification data: template nucleic acid quality, nucleic acid extraction efficiency, specificity of group-specific primers and probes, amplification of nonviable DNA, gene copy number variation, and limited number of sequences in the database. Even with such limitations, qPCR is reportedly among the best methods for quantitatively investigating environmental microbial communities. The application of qPCR is and will continue to be increasingly common in studies of wastewater treatment systems. To obtain reliable analyses, however, the limitations that have often been overlooked must be carefully considered when interpreting the results. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Cloning and evaluation of reference genes for quantitative real-time PCR analysis in Amorphophallus

    Directory of Open Access Journals (Sweden)

    Kai Wang

    2017-04-01

    Full Text Available Quantitative real-time reverse transcription PCR (RT-qPCR has been widely used in the detection and quantification of gene expression levels because of its high accuracy, sensitivity, and reproducibility as well as its large dynamic range. However, the reliability and accuracy of RT-qPCR depends on accurate transcript normalization using stably expressed reference genes. Amorphophallus is a perennial plant with a high content of konjac glucomannan (KGM in its corm. This crop has been used as a food source and as a traditional medicine for thousands of years. Without adequate knowledge of gene expression profiles, there has been no report of validated reference genes in Amorphophallus. In this study, nine genes that are usually used as reference genes in other crops were selected as candidate reference genes. These putative sequences of these genes Amorphophallus were cloned by the use of degenerate primers. The expression stability of each gene was assessed in different tissues and under two abiotic stresses (heat and waterlogging in A. albus and A. konjac. Three distinct algorithms were used to evaluate the expression stability of the candidate reference genes. The results demonstrated that EF1-a, EIF4A, H3 and UBQ were the best reference genes under heat stress in Amorphophallus. Furthermore, EF1-a, EIF4A, TUB, and RP were the best reference genes in waterlogged conditions. By comparing different tissues from all samples, we determined that EF1-α, EIF4A, and CYP were stable in these sets. In addition, the suitability of these reference genes was confirmed by validating the expression of a gene encoding the small heat shock protein SHSP, which is related to heat stress in Amorphophallus. In sum, EF1-α and EIF4A were the two best reference genes for normalizing mRNA levels in different tissues and under various stress treatments, and we suggest using one of these genes in combination with 1 or 2 reference genes associated with different

  20. Evaluation and validation of candidate endogenous control genes for real-time quantitative PCR studies of breast cancer

    Directory of Open Access Journals (Sweden)

    Miller Nicola

    2007-11-01

    Full Text Available Abstract Background Real-time quantitative PCR (RQ-PCR forms the basis of many breast cancer biomarker studies and novel prognostic assays, paving the way towards personalised cancer treatments. Normalisation of relative RQ-PCR data is required to control for non-biological variation introduced during sample preparation. Endogenous control (EC genes, used in this context, should ideally be expressed constitutively and uniformly across treatments in all test samples. Despite widespread recognition that the accuracy of the normalised data is largely dependent on the reliability of the EC, there are no reports of the systematic validation of genes commonly used for this purpose in the analysis of gene expression by RQ-PCR in primary breast cancer tissues. The aim of this study was to identify the most suitable endogenous control genes for RQ-PCR analysis of primary breast tissue from a panel of eleven candidates in current use. Oestrogen receptor alpha (ESR1 was used a target gene to compare the effect of choice of EC on the estimate of gene quantity. Results The expression and validity of candidate ECs (GAPDH, TFRC, ABL, PPIA, HPRT1, RPLP0, B2M, GUSB, MRPL19, PUM1 and PSMC4 was determined in 6 benign and 21 malignant primary breast cancer tissues. Gene expression data was analysed using two different statistical models. MRPL19 and PPIA were identified as the most stable and reliable EC genes, while GUSB, RPLP0 and ABL were least stable. There was a highly significant difference in variance between ECs. ESR1 expression was appreciably higher in malignant compared to benign tissues and there was a significant effect of EC on the magnitude of the error associated with the relative quantity of ESR1. Conclusion We have validated two endogenous control genes, MRPL19 and PPIA, for RQ-PCR analysis of gene expression in primary breast tissue. Of the genes in current use in this field, the above combination offers increased accuracy and resolution in the

  1. Identification and evaluation of reliable reference genes for quantitative real-time PCR analysis in tea plant (Camellia sinensis (L.) O. Kuntze)

    Science.gov (United States)

    Quantitative real-time polymerase chain reaction (qRT-PCR) is a commonly used technique for measuring gene expression levels due to its simplicity, specificity, and sensitivity. Reliable reference selection for the accurate quantification of gene expression under various experimental conditions is a...

  2. Identification of feline immunodeficiency virus subtype-B on St. Kitts, West Indies by quantitative PCR.

    Science.gov (United States)

    Kelly, Patrick J; Stocking, Ruey; Gao, Dongya; Phillips, Nikol; Xu, Chuanling; Kaltenboeck, Bernhard; Wang, Chengming

    2011-07-04

    Although antibodies to the feline immunodeficiency virus (FIV) have been detected by SNAP assay in cats from St. Kitts, there have been no molecular studies to further confirm the infection and determine the FIV subtypes present. Total nucleic acids were extracted from EDTA whole blood specimens from 35 cats, followed by quantitative fluorescence resonance energy transfer (FRET) PCR under a six-channel LightCycler 2.0 Instrument with Software version 4.1. Four of 11 stray cats (36 %) but none of 24 owned cats were FIV positive by real-time PCR.  High-resolution melting curve analysis indicated that all four positive cats were infected with FIV subtype-B. This is the first molecular characterization of FIV subtypes on St. Kitts and the results confirm the high prevalence of FIV infection in stray cats on the island.

  3. Application of reverse transcription-PCR and real-time PCR in nanotoxicity research.

    Science.gov (United States)

    Mo, Yiqun; Wan, Rong; Zhang, Qunwei

    2012-01-01

    Reverse transcription-polymerase chain reaction (RT-PCR) is a relatively simple and inexpensive technique to determine the expression level of target genes and is widely used in biomedical science research including nanotoxicology studies for semiquantitative analysis. Real-time PCR allows for the detection of PCR amplification in the exponential growth phase of the reaction and is much more quantitative than traditional RT-PCR. Although a number of kits and reagents for RT-PCR and real-time PCR are commercially available, the basic principles are the same. Here, we describe the procedures for total RNA isolation by using TRI Reagent, for reverse transcription (RT) by M-MLV reverse transcriptase, and for PCR by GoTaq(®) DNA Polymerase. And real-time PCR will be performed on an iQ5 multicolor real-time PCR detection system by using iQ™ SYBR Green Supermix.

  4. Decay Of Bacterial Pathogens, Fecal Indicators, And Real-Time Quantitative PCR Genetic Markers In Manure-Amended Soils

    Science.gov (United States)

    This study examined persistence and decay of bacterial pathogens, fecal indicator bacteria (FIB), and emerging real-time quantitative PCR (qPCR) genetic markers for rapid detection of fecal pollution in manure-amended agricultural soils. Known concentrations of transformed green...

  5. Decay Of Bacterial Pathogen, Fecal Indicators, And Real-Time Quantitative PCR Genetic Markers In Manure Amended Soils

    Science.gov (United States)

    This study examined persistence and decay of bacterial pathogens, fecal indicator bacteria, and emerging real-time quantitative PCR (qPCR) genetic markers for rapid detection of fecal pollution in manre-amended agricultural soils. Known concentrations of transformed green fluore...

  6. Development of a duplex droplet digital PCR assay for absolute quantitative detection of "Candidatus Liberibacter asiaticus".

    Science.gov (United States)

    Selvaraj, Vijayanandraj; Maheshwari, Yogita; Hajeri, Subhas; Chen, Jianchi; McCollum, Thomas Greg; Yokomi, Raymond

    2018-01-01

    Huanglongbing (HLB, citrus greening) is a devastating citrus disease affecting citrus production worldwide. It is associated with the bacterium "Candidatus Liberibacter asiaticus" (CLas) and is vectored by the Asian citrus psyllid (ACP). Currently, diagnosis of CLas in regulatory samples is based on real-time quantitative polymerase chain reaction (qPCR) using 16S rRNA gene specific primers/probe. The detection of CLas using qPCR is challenging due to low pathogen titer and uneven distribution in infected plants and exacerbated by sampling issues and presence of inhibitors. This study evaluated a duplex droplet digital polymerase chain reaction (ddPCR) using multi-copy gene targets, 16S and RNR, to simultaneously detect CLas DNA targets in the same sample for unambiguous detection of the HLB pathogen in DNA extracts from citrus leaves and ACP. Standard curve analyses on tenfold dilution series with plasmid, citrus leaf and ACP DNA showed that both ddPCR and qPCR exhibited good linearity and efficiency in the duplex assay. CLas-infected low titer samples were used to validate the duplex ddPCR and qPCR performance and demonstrated that detection rate is higher when both 16S and RNR primers were used in duplex assay. However, the receiver operating characteristic analysis indicated that area under the curve for RNR primer was significantly broader, compared to 16S primers for CLas detection at low target titer. The absolute quantification of CLas at variable titers was reproducible and repeatable for both primer sets and the ddPCR showed higher resilience to PCR inhibitors with citrus leaf and ACP extracts. Hence, the resultant duplex ddPCR assay resulted in a significantly improved detection platform for diagnosis of CLas in samples with low pathogen titer.

  7. EVALUATION OF A RAPID, QUANTITATIVE REAL-TIME PCR METHOD FOR ENUMERATION OF PATHOGENIC CANDIDA CELLS IN WATER

    Science.gov (United States)

    Quantitative Real-Time PCR (QRT-PCR) technology, incorporating fluorigenic 5' nuclease (TaqMan?) chemistry, was developed for the specific detection and quantification of six pathogenic species of Candida (C. albicans, C. tropicalis, C. krusei, C. parapsilosis, C. glabrata and C....

  8. Inter-laboratory analysis of selected genetically modified plant reference materials with digital PCR.

    Science.gov (United States)

    Dobnik, David; Demšar, Tina; Huber, Ingrid; Gerdes, Lars; Broeders, Sylvia; Roosens, Nancy; Debode, Frederic; Berben, Gilbert; Žel, Jana

    2018-01-01

    Digital PCR (dPCR), as a new technology in the field of genetically modified (GM) organism (GMO) testing, enables determination of absolute target copy numbers. The purpose of our study was to test the transferability of methods designed for quantitative PCR (qPCR) to dPCR and to carry out an inter-laboratory comparison of the performance of two different dPCR platforms when determining the absolute GM copy numbers and GM copy number ratio in reference materials certified for GM content in mass fraction. Overall results in terms of measured GM% were within acceptable variation limits for both tested dPCR systems. However, the determined absolute copy numbers for individual genes or events showed higher variability between laboratories in one third of the cases, most possibly due to variability in the technical work, droplet size variability, and analysis of the raw data. GMO quantification with dPCR and qPCR was comparable. As methods originally designed for qPCR performed well in dPCR systems, already validated qPCR assays can most generally be used for dPCR technology with the purpose of GMO detection. Graphical abstract The output of three different PCR-based platforms was assessed in an inter-laboratory comparison.

  9. Diagnosis of aerobic vaginitis by quantitative real-time PCR.

    Science.gov (United States)

    Rumyantseva, T A; Bellen, G; Savochkina, Y A; Guschin, A E; Donders, G G G

    2016-07-01

    To evaluate a real-time PCR-based technique to quantify bacteria associated with aerobic vaginitis (AV) as a potential test. Vaginal samples from 100 women were tested by wet-mount microscopy, gram stain and quantitative real-time PCR targeting Enterobacteriacea, Staphylococcus spp., Streptococcus spp., Enterococcus spp., Escherichia coli, Streptococcus agalactiae, S. aureus; Lactobacillus spp. AV diagnosis obtained by wet-mount microscopy was used as reference. Some level of AV was diagnosed in 23 (23.7 %) cases. Various concentrations of Enterobacteriacea, Staphylococcus spp., Streptococcus spp. were detected an all patients. Enterococcus spp. were detected in 76 (78.3 %) cases. Summarized concentrations of aerobes were tenfold higher in AV-positive compared to AV-negative cases [7.30lg vs 6.06lg (p = 0.02)]. Concentrations of aerobes in severe, moderate and light AV cases did not vary significantly (p = 0.14). Concentration of lactobacilli was 1000-fold lower in AV-positive cases compared to normal cases (5.3lg vs 8.3lg, p AV-positive cases [19/22 (86.4 %) samples]. The relation of high loads of aerobes to the low numbers of Lactobacilli are a reliable marker for the presence of AV and could substitute microscopy as a test. PCR may be a good standardized substitution for AV diagnosis in settings where well-trained microscopists are lacking.

  10. A Novel Pretreatment-Free Duplex Chamber Digital PCR Detection System for the Absolute Quantitation of GMO Samples.

    Science.gov (United States)

    Zhu, Pengyu; Wang, Chenguang; Huang, Kunlun; Luo, Yunbo; Xu, Wentao

    2016-03-18

    Digital polymerase chain reaction (PCR) has developed rapidly since it was first reported in the 1990s. However, pretreatments are often required during preparation for digital PCR, which can increase operation error. The single-plex amplification of both the target and reference genes may cause uncertainties due to the different reaction volumes and the matrix effect. In the current study, a quantitative detection system based on the pretreatment-free duplex chamber digital PCR was developed. The dynamic range, limit of quantitation (LOQ), sensitivity and specificity were evaluated taking the GA21 event as the experimental object. Moreover, to determine the factors that may influence the stability of the duplex system, we evaluated whether the pretreatments, the primary and secondary structures of the probes and the SNP effect influence the detection. The results showed that the LOQ was 0.5% and the sensitivity was 0.1%. We also found that genome digestion and single nucleotide polymorphism (SNP) sites affect the detection results, whereas the unspecific hybridization within different probes had little side effect. This indicated that the detection system was suited for both chamber-based and droplet-based digital PCR. In conclusion, we have provided a simple and flexible way of achieving absolute quantitation for genetically modified organism (GMO) genome samples using commercial digital PCR detection systems.

  11. A Novel Pretreatment-Free Duplex Chamber Digital PCR Detection System for the Absolute Quantitation of GMO Samples

    Directory of Open Access Journals (Sweden)

    Pengyu Zhu

    2016-03-01

    Full Text Available Digital polymerase chain reaction (PCR has developed rapidly since it was first reported in the 1990s. However, pretreatments are often required during preparation for digital PCR, which can increase operation error. The single-plex amplification of both the target and reference genes may cause uncertainties due to the different reaction volumes and the matrix effect. In the current study, a quantitative detection system based on the pretreatment-free duplex chamber digital PCR was developed. The dynamic range, limit of quantitation (LOQ, sensitivity and specificity were evaluated taking the GA21 event as the experimental object. Moreover, to determine the factors that may influence the stability of the duplex system, we evaluated whether the pretreatments, the primary and secondary structures of the probes and the SNP effect influence the detection. The results showed that the LOQ was 0.5% and the sensitivity was 0.1%. We also found that genome digestion and single nucleotide polymorphism (SNP sites affect the detection results, whereas the unspecific hybridization within different probes had little side effect. This indicated that the detection system was suited for both chamber-based and droplet-based digital PCR. In conclusion, we have provided a simple and flexible way of achieving absolute quantitation for genetically modified organism (GMO genome samples using commercial digital PCR detection systems.

  12. Culture-independent identification and quantification of Gallibacterium anatis (G. anatis) by real-time quantitative PCR

    DEFF Research Database (Denmark)

    Wang, Chong; Robles, Francisco; Ramirez, Saul

    2016-01-01

    Gallibacterium is a genus within the family Pasteurellaceae characterized by a high level of phenotypic and genetic diversity. No diagnostic method has yet been described, which allows species-specific identification of Gallibacterium anatis. The aim of this study was to develop a real...... published conventional PCR method and culture-based identification, respectively. The detection rates were 97%, 78% and 34% for the current qPCR, the conventional PCR and the culture-based identification method, respectively. The qPCR assay was able to detect the gene gyrB in serial dilutions of 10......-time quantitative PCR (qPCR) method allowing species-specific identification and quantification of G. anatis. A G. anatis specific DNA sequence was identified in the gyrase subunit B gene (gyrB) and used to design a TaqMan probe and corresponding primers. The specificity of the assay was tested on 52 bacterial...

  13. Quantification of viable bacteria in wastewater treatment plants by using propidium monoazide combined with quantitative PCR (PMA-qPCR).

    Science.gov (United States)

    Li, Dan; Tong, Tiezheng; Zeng, Siyu; Lin, Yiwen; Wu, Shuxu; He, Miao

    2014-02-01

    The detection of viable bacteria in wastewater treatment plants (WWTPs) is very important for public health, as WWTPs are a medium with a high potential for waterborne disease transmission. The aim of this study was to use propidium monoazide (PMA) combined with the quantitative polymerase chain reaction (PMA-qPCR) to selectively detect and quantify viable bacteria cells in full-scale WWTPs in China. PMA was added to the concentrated WWTP samples at a final concentration of 100 micromol/L and the samples were incubated in the dark for 5 min, and then lighted for 4 min prior to DNA extraction and qPCR with specific primers for Escherichia coli and Enterococci, respectively. The results showed that PMA treatment removed more than 99% of DNA from non-viable cells in all the WWTP samples, while matrices in sludge samples markedly reduced the effectiveness of PMA treatment. Compared to qPCR, PMA-qPCR results were similar and highly linearly correlated to those obtained by culture assay, indicating that DNA from non-viable cells present in WWTP samples can be eliminated by PMA treatment, and that PMA-qPCR is a reliable method for detection of viable bacteria in environmental samples. This study demonstrated that PMA-qPCR is a rapid and selective detection method for viable bacteria in WWTP samples, and that WWTPs have an obvious function in removing both viable and non-viable bacteria. The results proved that PMA-qPCR is a promising detection method that has a high potential for application as a complementary method to the standard culture-based method in the future.

  14. A method for accurate detection of genomic microdeletions using real-time quantitative PCR

    Directory of Open Access Journals (Sweden)

    Bassett Anne S

    2005-12-01

    Full Text Available Abstract Background Quantitative Polymerase Chain Reaction (qPCR is a well-established method for quantifying levels of gene expression, but has not been routinely applied to the detection of constitutional copy number alterations of human genomic DNA. Microdeletions or microduplications of the human genome are associated with a variety of genetic disorders. Although, clinical laboratories routinely use fluorescence in situ hybridization (FISH to identify such cryptic genomic alterations, there remains a significant number of individuals in which constitutional genomic imbalance is suspected, based on clinical parameters, but cannot be readily detected using current cytogenetic techniques. Results In this study, a novel application for real-time qPCR is presented that can be used to reproducibly detect chromosomal microdeletions and microduplications. This approach was applied to DNA from a series of patient samples and controls to validate genomic copy number alteration at cytoband 22q11. The study group comprised 12 patients with clinical symptoms of chromosome 22q11 deletion syndrome (22q11DS, 1 patient trisomic for 22q11 and 4 normal controls. 6 of the patients (group 1 had known hemizygous deletions, as detected by standard diagnostic FISH, whilst the remaining 6 patients (group 2 were classified as 22q11DS negative using the clinical FISH assay. Screening of the patients and controls with a set of 10 real time qPCR primers, spanning the 22q11.2-deleted region and flanking sequence, confirmed the FISH assay results for all patients with 100% concordance. Moreover, this qPCR enabled a refinement of the region of deletion at 22q11. Analysis of DNA from chromosome 22 trisomic sample demonstrated genomic duplication within 22q11. Conclusion In this paper we present a qPCR approach for the detection of chromosomal microdeletions and microduplications. The strategic use of in silico modelling for qPCR primer design to avoid regions of repetitive

  15. Multiplex, Quantitative, Reverse Transcription PCR Detection of Influenza Viruses Using Droplet Microfluidic Technology

    Directory of Open Access Journals (Sweden)

    Ravi Prakash

    2014-12-01

    Full Text Available Quantitative, reverse transcription, polymerase chain reaction (qRT-PCR is facilitated by leveraging droplet microfluidic (DMF system, which due to its precision dispensing and sample handling capabilities at microliter and lower volumes has emerged as a popular method for miniaturization of the PCR platform. This work substantially improves and extends the functional capabilities of our previously demonstrated single qRT-PCR micro-chip, which utilized a combination of electrostatic and electrowetting droplet actuation. In the reported work we illustrate a spatially multiplexed micro-device that is capable of conducting up to eight parallel, real-time PCR reactions per usage, with adjustable control on the PCR thermal cycling parameters (both process time and temperature set-points. This micro-device has been utilized to detect and quantify the presence of two clinically relevant respiratory viruses, Influenza A and Influenza B, in human samples (nasopharyngeal swabs, throat swabs. The device performed accurate detection and quantification of the two respiratory viruses, over several orders of RNA copy counts, in unknown (blind panels of extracted patient samples with acceptably high PCR efficiency (>94%. The multi-stage qRT-PCR assays on eight panel patient samples were accomplished within 35–40 min, with a detection limit for the target Influenza virus RNAs estimated to be less than 10 RNA copies per reaction.

  16. Kolmogorov-Smirnov statistical test for analysis of ZAP-70 expression in B-CLL, compared with quantitative PCR and IgV(H) mutation status.

    Science.gov (United States)

    Van Bockstaele, Femke; Janssens, Ann; Piette, Anne; Callewaert, Filip; Pede, Valerie; Offner, Fritz; Verhasselt, Bruno; Philippé, Jan

    2006-07-15

    ZAP-70 has been proposed as a surrogate marker for immunoglobulin heavy-chain variable region (IgV(H)) mutation status, which is known as a prognostic marker in B-cell chronic lymphocytic leukemia (CLL). The flow cytometric analysis of ZAP-70 suffers from difficulties in standardization and interpretation. We applied the Kolmogorov-Smirnov (KS) statistical test to make analysis more straightforward. We examined ZAP-70 expression by flow cytometry in 53 patients with CLL. Analysis was performed as initially described by Crespo et al. (New England J Med 2003; 348:1764-1775) and alternatively by application of the KS statistical test comparing T cells with B cells. Receiver-operating-characteristics (ROC)-curve analyses were performed to determine the optimal cut-off values for ZAP-70 measured by the two approaches. ZAP-70 protein expression was compared with ZAP-70 mRNA expression measured by a quantitative PCR (qPCR) and with the IgV(H) mutation status. Both flow cytometric analyses correlated well with the molecular technique and proved to be of equal value in predicting the IgV(H) mutation status. Applying the KS test is reproducible, simple, straightforward, and overcomes a number of difficulties encountered in the Crespo-method. The KS statistical test is an essential part of the software delivered with modern routine analytical flow cytometers and is well suited for analysis of ZAP-70 expression in CLL. (c) 2006 International Society for Analytical Cytology.

  17. Establishment of a 10-Plex Quantitative Fluorescent-PCR Assay for rapid diagnosis of sex chromosome aneuploidies.

    Directory of Open Access Journals (Sweden)

    Xingmei Xie

    Full Text Available Sex chromosome aneuploidies occur commonly in the general population, with an incidence of 1 in 400 newborns. However, no tests specifically targeting sex chromosomes have been carried out in prenatal diagnosis or newborn screening, resulting in late recognition of these diseases. In this study, a rapid diagnostic method for sex chromosome aneuploidies was established using Quantitative Fluorescent-PCR (QF-PCR. Ten markers were included in one multiplex QF-PCR assay, including two sex determination genes (AMXY and SRY, five X-linked short tandem repeats (STRs; DXS1053, DXS981, DXS6809, DXS1187, and DXS8377, one X/Y-common STR (X22, and two autosomal STRs (D13S305 and D21S11. Retrospective tests of 70 cases with known cytogenetic results indicated that the 10-plex QF-PCR assay could well determine sex chromosome copy numbers by both allelic peak numbers and a sex chromosome dosage calculation with the autosomal STRs as internal controls. Prospective comparison with cytogenetic karyotyping on 534 cases confirmed that the 10-plex QF-PCR assay could be well employed for sex chromosome aneuploidy diagnosis in at least the Chinese Han population. This is the first QF-PCR test for the diagnosis of sex chromosome aneuploidies in the Chinese population. This test is superior to previous designs by including up to 8 sex-linked markers covering different parts of sex chromosomes as well as employing internal controls for copy number dosage calculation in a single PCR reaction. Due to simple technique and data analysis, as well as easy implementation within routine clinical services, this method is of great clinical application value and could be widely applied.

  18. Detection and Analysis of Circular RNAs by RT-PCR.

    Science.gov (United States)

    Panda, Amaresh C; Gorospe, Myriam

    2018-03-20

    Gene expression in eukaryotic cells is tightly regulated at the transcriptional and posttranscriptional levels. Posttranscriptional processes, including pre-mRNA splicing, mRNA export, mRNA turnover, and mRNA translation, are controlled by RNA-binding proteins (RBPs) and noncoding (nc)RNAs. The vast family of ncRNAs comprises diverse regulatory RNAs, such as microRNAs and long noncoding (lnc)RNAs, but also the poorly explored class of circular (circ)RNAs. Although first discovered more than three decades ago by electron microscopy, only the advent of high-throughput RNA-sequencing (RNA-seq) and the development of innovative bioinformatic pipelines have begun to allow the systematic identification of circRNAs (Szabo and Salzman, 2016; Panda et al ., 2017b; Panda et al ., 2017c). However, the validation of true circRNAs identified by RNA sequencing requires other molecular biology techniques including reverse transcription (RT) followed by conventional or quantitative (q) polymerase chain reaction (PCR), and Northern blot analysis (Jeck and Sharpless, 2014). RT-qPCR analysis of circular RNAs using divergent primers has been widely used for the detection, validation, and sometimes quantification of circRNAs (Abdelmohsen et al ., 2015 and 2017; Panda et al ., 2017b). As detailed here, divergent primers designed to span the circRNA backsplice junction sequence can specifically amplify the circRNAs and not the counterpart linear RNA. In sum, RT-PCR analysis using divergent primers allows direct detection and quantification of circRNAs.

  19. Detection and identification of Rift Valley fever virus in mosquito vectors by quantitative real-time PCR.

    Science.gov (United States)

    Mwaengo, D; Lorenzo, G; Iglesias, J; Warigia, M; Sang, R; Bishop, R P; Brun, A

    2012-10-01

    Diagnostic methods allowing for rapid identification of pathogens are crucial for controlling and preventing dissemination after disease outbreaks as well as for use in surveillance programs. For arboviruses, detection of the presence of virus in their arthropod hosts is important for monitoring of viral activity and quantitative information is useful for modeling of transmission dynamics. In this study, molecular detection of Rift Valley fever virus (RVFV) in mosquito samples from the 2006 to 2007 East African outbreaks was performed using quantitative real-time PCR assay (qRT-PCR). Specific RVFV sequence-based primer/fluorogenic (TaqMan) probe sets were derived from the L and S RNA segments of the virus. Both primer-probe L and S segment-based combinations detected genomic RVFV sequences, with generally comparable levels of sensitivity. Viral loads from three mosquito species, Aedes mcintoshi, Aedes ochraceus and Mansonia uniformis were estimated and significant differences of between 5- and 1000-fold were detected between Ae. mcintoshi and M. uniformis using both the L and S primer-probe-based assays. The genetic relationships of the viral sequences in mosquito samples were established by partial M segment sequencing and assigned to the two previously described viral lineages defined by analysis of livestock isolates obtained during the 2006-2007 outbreak, confirming that similar viruses were present in both the vector and mammalian host. The data confirms the utility of qRT-PCR for identification and initial quantification of virus in mosquito samples during RVFV outbreaks. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Immunoliposome-PCR: a generic ultrasensitive quantitative antigen detection system

    Directory of Open Access Journals (Sweden)

    He Junkun

    2012-06-01

    Full Text Available Abstract Background The accurate quantification of antigens at low concentrations over a wide dynamic range is needed for identifying biomarkers associated with disease and detecting protein interactions in high-throughput microarrays used in proteomics. Here we report the development of an ultrasensitive quantitative assay format called immunoliposome polymerase chain reaction (ILPCR that fulfills these requirements. This method uses a liposome, with reporter DNA encapsulated inside and biotin-labeled polyethylene glycol (PEG phospholipid conjugates incorporated into the outer surface of the liposome, as a detection reagent. The antigenic target is immobilized in the well of a microplate by a capture antibody and the liposome detection reagent is then coupled to a biotin-labeled second antibody through a NeutrAvidin bridge. The liposome is ruptured to release the reporter DNA, which serves as a surrogate to quantify the protein target using real-time PCR. Results A liposome detection reagent was prepared, which consisted of a population of liposomes ~120 nm in diameter with each liposome possessing ~800 accessible biotin receptors and ~220 encapsulated reporters. This liposome detection reagent was used in an assay to quantify the concentration of carcinoembryonic antigen (CEA in human serum. This ILPCR assay exhibited a linear dose–response curve from 10-10 M to 10-16 M CEA. Within this range the assay coefficient of variance was Conclusions The ILPCR assay has several advantages over other immuno-PCR methods. The reporter DNA and biotin-labeled PEG phospholipids spontaneously incorporate into the liposomes as they form, simplifying preparation of the detection reagent. Encapsulation of the reporter inside the liposomes allows nonspecific DNA in the assay medium to be degraded with DNase I prior to quantification of the encapsulated reporter by PCR, which reduces false-positive results and improves quantitative accuracy. The ability to

  1. Touch-down reverse transcriptase-PCR detection of IgV(H) rearrangement and Sybr-Green-based real-time RT-PCR quantitation of minimal residual disease in patients with chronic lymphocytic leukemia.

    Science.gov (United States)

    Peková, Sona; Marková, Jana; Pajer, Petr; Dvorák, Michal; Cetkovský, Petr; Schwarz, Jirí

    2005-01-01

    Patients with chronic lymphocytic leukemia (CLL) can relapse even after aggressive therapy and autografts. It is commonly assumed that to prevent relapse the level of minimal residual disease (MRD) should be as low as possible. To evaluate MRD, highly sensitive quantitative assays are needed. The aim of the study was to develop a robust and sensitive method for detection of the clonal immunoglobulin heavy-chain variable (IgV(H)) rearrangement in CLL and to introduce a highly sensitive and specific methodology for MRD monitoring in patients with CLL who undergo intensive treatment. As a prerequisite for MRD detection, touch-down reverse transcriptase (RT)-PCR using degenerate primers were used for the diagnostic identification of (H) gene rearrangement(s). For quantitative MRD detection in 18 patients, we employed a real-time RT-PCR assay (RQ-PCR) making use of patient-specific primers and the cost-saving Sybr-Green reporter dye (SG). For precise calibration of RQ-PCR, patient-specific IgV(H) sequences were cloned. Touch-down RT-PCR with degenerate primers allowed the successful detection of IgV(H) clonal rearrangement(s) in 252 of 257 (98.1%) diagnostic samples. Biallelic rearrangements were found in 27 of 252 (10.7%) cases. Degenerate primers used for the identification of clonal expansion at diagnosis were not sensitive enough for MRD detection. In contrast, our RQ-PCR assay using patient-specific primers and SG reached the sensitivity of 10(-)(6). We demonstrated MRD in each patient tested, including four of four patients in complete remission following autologous hematopoietic stem cell transplantation (HSCT) and three of three following allogeneic 'mini'-HSCT. Increments in MRD might herald relapse; aggressive chemotherapy could induce molecular remission. Our touch-down RT-PCR has higher efficiency to detect clonal IgV(H) rearrangements including the biallelic ones. MRD quantitation of IgV(H) expression using SG-based RQ-PCR represents a highly specific

  2. The hsp 16 Gene of the Probiotic Lactobacillus acidophilus Is Differently Regulated by Salt, High Temperature and Acidic Stresses, as Revealed by Reverse Transcription Quantitative PCR (qRT-PCR Analysis

    Directory of Open Access Journals (Sweden)

    Daniela Fiocco

    2011-08-01

    Full Text Available Small heat shock proteins (sHsps are ubiquitous conserved chaperone-like proteins involved in cellular proteins protection under stressful conditions. In this study, a reverse transcription quantitative PCR (RT-qPCR procedure was developed and used to quantify the transcript level of a small heat shock gene (shs in the probiotic bacterium Lactobacillus acidophilus NCFM, under stress conditions such as heat (45 °C and 53 °C, bile (0.3% w/v, hyperosmosis (1 M and 2.5 M NaCl, and low pH value (pH 4. The shs gene of L. acidophilus NCFM was induced by salt, high temperature and acidic stress, while repression was observed upon bile stress. Analysis of the 5' noncoding region of the hsp16 gene reveals the presence of an inverted repeat (IR sequence (TTAGCACTC-N9-GAGTGCTAA homologue to the controlling IR of chaperone expression (CIRCE elements found in the upstream regulatory region of Gram-positive heat shock operons, suggesting that the hsp16 gene of L. acidophilus might be transcriptionally controlled by HrcA. In addition, the alignment of several small heat shock proteins identified so far in lactic acid bacteria, reveals that the Hsp16 of L. acidophilus exhibits a strong evolutionary relationship with members of the Lactobacillus acidophilus group.

  3. Species identification of Cannabis sativa using real-time quantitative PCR (qPCR).

    Science.gov (United States)

    Johnson, Christopher E; Premasuthan, Amritha; Satkoski Trask, Jessica; Kanthaswamy, Sree

    2013-03-01

    Most narcotics-related cases in the United States involve Cannabis sativa. Material is typically identified based on the cystolithic hairs on the leaves and with chemical tests to identify of the presence of cannabinoids. Suspect seeds are germinated into a viable plant so that morphological and chemical tests can be conducted. Seed germination, however, causes undue analytical delays. DNA analyses that involve the chloroplast and nuclear genomes have been developed for identification of C. sativa materials, but they require several nanograms of template DNA. Using the trnL 3' exon-trnF intragenic spacer regions within the C. sativa chloroplast, we have developed a real-time quantitative PCR assay that is capable of identifying picogram amounts of chloroplast DNA for species determination of suspected C. sativa material. This assay provides forensic science laboratories with a quick and reliable method to identify an unknown sample as C. sativa. © 2013 American Academy of Forensic Sciences.

  4. A quantitative PCR (TaqMan assay for pathogenic Leptospira spp

    Directory of Open Access Journals (Sweden)

    Symonds Meegan L

    2002-07-01

    Full Text Available Abstract Background Leptospirosis is an emerging infectious disease. The differential diagnosis of leptospirosis is difficult due to the varied and often "flu like" symptoms which may result in a missed or delayed diagnosis. There are over 230 known serovars in the genus Leptospira. Confirmatory serological diagnosis of leptospirosis is usually made using the microscopic agglutination test (MAT which relies on the use of live cultures as the source of antigen, often performed using a panel of antigens representative of local serovars. Other techniques, such as the enzyme linked immunosorbent assay (ELISA and slide agglutination test (SAT, can detect different classes of antibody but may be subject to false positive reactions and require confirmation of these results by the MAT. Methods The polymerase chain reaction (PCR has been used to detect a large number of microorganisms, including those of clinical significance. The sensitivity of PCR often precludes the need for isolation and culture, thus making it ideal for the rapid detection of organisms involved in acute infections. We employed real-time (quantitative PCR using TaqMan chemistry to detect leptospires in clinical and environmental samples. Results and Conclusions The PCR assay can be applied to either blood or urine samples and does not rely on the isolation and culture of the organism. Capability exists for automation and high throughput testing in a clinical laboratory. It is specific for Leptospira and may discriminate pathogenic and non-pathogenic species. The limit of detection is as low as two cells.

  5. Selection and validation of reference genes for gene expression analysis in switchgrass (Panicum virgatum using quantitative real-time RT-PCR.

    Directory of Open Access Journals (Sweden)

    Jacinta Gimeno

    Full Text Available Switchgrass (Panicum virgatum has received a lot of attention as a forage and bioenergy crop during the past few years. Gene expression studies are in progress to improve new traits and develop new cultivars. Quantitative real time PCR (qRT-PCR has emerged as an important technique to study gene expression analysis. For accurate and reliable results, normalization of data with reference genes is essential. In this work, we evaluate the stability of expression of genes to use as reference for qRT-PCR in the grass P. virgatum. Eleven candidate reference genes, including eEF-1α, UBQ6, ACT12, TUB6, eIF-4a, GAPDH, SAMDC, TUA6, CYP5, U2AF, and FTSH4, were validated for qRT-PCR normalization in different plant tissues and under different stress conditions. The expression stability of these genes was verified by the use of two distinct algorithms, geNorm and NormFinder. Differences were observed after comparison of the ranking of the candidate reference genes identified by both programs but eEF-1α, eIF-4a, CYP5 and U2AF are ranked as the most stable genes in the samples sets under study. Both programs discard the use of SAMDC and TUA6 for normalization. Validation of the reference genes proposed by geNorm and NormFinder were performed by normalization of transcript abundance of a group of target genes in different samples. Results show similar expression patterns when the best reference genes selected by both programs were used but differences were detected in the transcript abundance of the target genes. Based on the above research, we recommend the use of different statistical algorithms to identify the best reference genes for expression data normalization. The best genes selected in this study will help to improve the quality of gene expression data in a wide variety of samples in switchgrass.

  6. Protein Analysis Using Real-Time PCR Instrumentation: Incorporation in an Integrated, Inquiry-Based Project

    Science.gov (United States)

    Southard, Jonathan N.

    2014-01-01

    Instrumentation for real-time PCR is used primarily for amplification and quantitation of nucleic acids. The capability to measure fluorescence while controlling temperature in multiple samples can also be applied to the analysis of proteins. Conformational stability and changes in stability due to ligand binding are easily assessed. Protein…

  7. Molecular quantification of lactic acid bacteria in fermented milk products using real-time quantitative PCR.

    Science.gov (United States)

    Furet, Jean-Pierre; Quénée, Pascal; Tailliez, Patrick

    2004-12-15

    Real-time quantitative PCR assays were developed for the absolute quantification of lactic acid bacteria (LAB) (Streptococcus thermophilus, Lactobacillus delbrueckii, L. casei, L. paracasei, L. rhamnosus, L. acidophilus and L. johnsonii) in fermented milk products. The results of molecular quantification and classic bacterial enumeration did not differ significantly with respect to S. thermophilus and the species of the L. casei group which were detected in the six commercial fermented products tested, thus showing that DNA extraction was efficient and that genomic DNA solutions were free of PCR inhibitors. For L. delbrueckii, the results of bacterial enumeration were generally lower by a factor 10 to 100 than those of PCR quantification, suggesting a loss of viability during storage of the dairy products at 1-8 degrees C for most of the strains in this species. Real-time quantitative assays enabled identification of the species of lactic acid bacterial strains initially present in commercial fermented milk products and their accurate quantification with a detection threshold of 10(3) cells per ml of product.

  8. A human fecal contamination index for ranking impaired recreational watersusing the HF183 quantitative real-time PCR method

    Science.gov (United States)

    Human fecal pollution of surface water remains a public health concern worldwide. As a result, there is a growing interest in the application of human-associated fecal source identification quantitative real-time PCR (qPCR) technologies for recreational water quality risk managem...

  9. Comparative Evaluation of Four Real-Time PCR Methods for the Quantitative Detection of Epstein-Barr Virus from Whole Blood Specimens.

    Science.gov (United States)

    Buelow, Daelynn; Sun, Yilun; Tang, Li; Gu, Zhengming; Pounds, Stanley; Hayden, Randall

    2016-07-01

    Monitoring of Epstein-Barr virus (EBV) load in immunocompromised patients has become integral to their care. An increasing number of reagents are available for quantitative detection of EBV; however, there are little published comparative data. Four real-time PCR systems (one using laboratory-developed reagents and three using analyte-specific reagents) were compared with one another for detection of EBV from whole blood. Whole blood specimens seeded with EBV were used to determine quantitative linearity, analytical measurement range, lower limit of detection, and CV for each assay. Retrospective testing of 198 clinical samples was performed in parallel with all methods; results were compared to determine relative quantitative and qualitative performance. All assays showed similar performance. No significant difference was found in limit of detection (3.12-3.49 log10 copies/mL; P = 0.37). A strong qualitative correlation was seen with all assays that used clinical samples (positive detection rates of 89.5%-95.8%). Quantitative correlation of clinical samples across assays was also seen in pairwise regression analysis, with R(2) ranging from 0.83 to 0.95. Normalizing clinical sample results to IU/mL did not alter the quantitative correlation between assays. Quantitative EBV detection by real-time PCR can be performed over a wide linear dynamic range, using three different commercially available reagents and laboratory-developed methods. EBV was detected with comparable sensitivity and quantitative correlation for all assays. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  10. Low-cost monitoring of campylobacter in poultry houses by air sampling and quantitative PCR

    DEFF Research Database (Denmark)

    Søndergaard, Mette Sofie Rousing; Josefsen, Mathilde Hasseldam; Löfström, Charlotta

    2014-01-01

    approximately 10(4) and 10(5) CCE per sample for boot swabs and air, respectively. In conclusion, using air samples combined with quantitative real-time PCR, Campylobacter contamination could be detected earlier than by boot swabs and was found to be a more convenient technique for monitoring and/or to obtain......The present study describes the evaluation of a method for the quantification of Campylobacter by air sampling in poultry houses. Sampling was carried out in conventional chicken houses in Poland, in addition to a preliminary sampling in Denmark. Each measurement consisted of three air samples, two...... standard boot swab fecal samples, and one airborne particle count. Sampling was conducted over an 8-week period in three flocks, assessing the presence and levels of Campylobacter in boot swabs and air samples using quantitative real-time PCR. The detection limit for air sampling was approximately 100...

  11. No control genes required: Bayesian analysis of qRT-PCR data.

    Directory of Open Access Journals (Sweden)

    Mikhail V Matz

    Full Text Available Model-based analysis of data from quantitative reverse-transcription PCR (qRT-PCR is potentially more powerful and versatile than traditional methods. Yet existing model-based approaches cannot properly deal with the higher sampling variances associated with low-abundant targets, nor do they provide a natural way to incorporate assumptions about the stability of control genes directly into the model-fitting process.In our method, raw qPCR data are represented as molecule counts, and described using generalized linear mixed models under Poisson-lognormal error. A Markov Chain Monte Carlo (MCMC algorithm is used to sample from the joint posterior distribution over all model parameters, thereby estimating the effects of all experimental factors on the expression of every gene. The Poisson-based model allows for the correct specification of the mean-variance relationship of the PCR amplification process, and can also glean information from instances of no amplification (zero counts. Our method is very flexible with respect to control genes: any prior knowledge about the expected degree of their stability can be directly incorporated into the model. Yet the method provides sensible answers without such assumptions, or even in the complete absence of control genes. We also present a natural Bayesian analogue of the "classic" analysis, which uses standard data pre-processing steps (logarithmic transformation and multi-gene normalization but estimates all gene expression changes jointly within a single model. The new methods are considerably more flexible and powerful than the standard delta-delta Ct analysis based on pairwise t-tests.Our methodology expands the applicability of the relative-quantification analysis protocol all the way to the lowest-abundance targets, and provides a novel opportunity to analyze qRT-PCR data without making any assumptions concerning target stability. These procedures have been implemented as the MCMC.qpcr package in R.

  12. No control genes required: Bayesian analysis of qRT-PCR data.

    Science.gov (United States)

    Matz, Mikhail V; Wright, Rachel M; Scott, James G

    2013-01-01

    Model-based analysis of data from quantitative reverse-transcription PCR (qRT-PCR) is potentially more powerful and versatile than traditional methods. Yet existing model-based approaches cannot properly deal with the higher sampling variances associated with low-abundant targets, nor do they provide a natural way to incorporate assumptions about the stability of control genes directly into the model-fitting process. In our method, raw qPCR data are represented as molecule counts, and described using generalized linear mixed models under Poisson-lognormal error. A Markov Chain Monte Carlo (MCMC) algorithm is used to sample from the joint posterior distribution over all model parameters, thereby estimating the effects of all experimental factors on the expression of every gene. The Poisson-based model allows for the correct specification of the mean-variance relationship of the PCR amplification process, and can also glean information from instances of no amplification (zero counts). Our method is very flexible with respect to control genes: any prior knowledge about the expected degree of their stability can be directly incorporated into the model. Yet the method provides sensible answers without such assumptions, or even in the complete absence of control genes. We also present a natural Bayesian analogue of the "classic" analysis, which uses standard data pre-processing steps (logarithmic transformation and multi-gene normalization) but estimates all gene expression changes jointly within a single model. The new methods are considerably more flexible and powerful than the standard delta-delta Ct analysis based on pairwise t-tests. Our methodology expands the applicability of the relative-quantification analysis protocol all the way to the lowest-abundance targets, and provides a novel opportunity to analyze qRT-PCR data without making any assumptions concerning target stability. These procedures have been implemented as the MCMC.qpcr package in R.

  13. Rapid diagnosis of aneuploidy using segmental duplication quantitative fluorescent PCR.

    Directory of Open Access Journals (Sweden)

    Xiangdong Kong

    Full Text Available The aim of this study was use a simple and rapid procedure, called segmental duplication quantitative fluorescent polymerase chain reaction (SD-QF-PCR, for the prenatal diagnosis of fetal chromosomal aneuploidies. This method is based on the co-amplification of segmental duplications located on two different chromosomes using a single pair of fluorescent primers. The PCR products of different sizes were subsequently analyzed through capillary electrophoresis, and the aneuploidies were determined based on the relative dosage between the two chromosomes. Each primer set, containing five pairs of primers, was designed to simultaneously detect aneuploidies located on chromosomes 21, 18, 13, X and Y in a single reaction. We applied these two primer sets to DNA samples isolated from individuals with trisomy 21 (n = 36; trisomy 18 (n = 6; trisomy 13 (n = 4; 45, X (n = 5; 47, XXX (n = 3; 48, XXYY (n = 2; and unaffected controls (n = 40. We evaluated the performance of this method using the karyotyping results. A correct and unambiguous diagnosis with 100% sensitivity and 100% specificity, was achieved for clinical samples examined. Thus, the present study demonstrates that SD-QF-PCR is a robust, rapid and sensitive method for the diagnosis of common aneuploidies, and these analyses can be performed in less than 4 hours for a single sample, providing a competitive alternative for routine use.

  14. Real-time PCR assays for the quantitation of rDNA from apricot and other plant species in marzipan.

    Science.gov (United States)

    Haase, Ilka; Brüning, Philipp; Matissek, Reinhard; Fischer, Markus

    2013-04-10

    Marzipan or marzipan raw paste is a typical German sweet which is consumed directly or is used as an ingredient in the bakery industry/confectionery (e.g., in stollen) and as filling for chocolate candies. Almonds (blanched and pealed) and sugar are the only ingredients for marzipan production according to German food guidelines. Especially for the confectionery industry, the use of persipan, which contains apricot or peach kernels instead of almonds, is preferred due to its stronger aroma. In most of the companies, both raw pastes are produced, in most cases on the same production line, running the risk of an unintended cross contamination. Additionally, due to high almond market values, dilutions of marzipan with cheaper seeds may occur. Especially in the case of apricot and almond, the close relationship of both species is a challenge for the analysis. DNA based methods for the qualitative detection of apricot, peach, pea, bean, lupine, soy, cashew, pistachio, and chickpea in marzipan have recently been published. In this study, different quantitation strategies on the basis of real-time PCR have been evaluated and a relative quantitation method with a reference amplification product was shown to give the best results. As the real-time PCR is based on the high copy rDNA-cluster, even contaminations <1% can be reliably quantitated.

  15. Applying real-time quantitative PCR to diagnosis of freemartin in Holstein cattle by quantifying SRY gene: a comparison experiment

    Directory of Open Access Journals (Sweden)

    Qinghua Qiu

    2018-04-01

    Full Text Available Background Freemartinism generally occurs in female offspring of dizygotic twins in a mixed-sex pregnancy. Most bovine heterosexual twin females are freemartins. However, about 10% of bovine heterosexual twin females are fertile. Farmers mostly cull bovine fertile heterosexual twin females due to the lack of a practical diagnostic approach. Culling of such animals results in economic and genetic-material losses both for dairy and beef industry. Methods In this study, a comparative test, including qualitative detection of SRY gene by polymerase chain reaction (PCR, quantitative detection of relative content of SRY by real-time quantitative polymerase chain reaction (qPCR, and quantitative detection of H-Y antigen, was performed to establish the most accurate diagnosis for freemartin. Twelve Holstein heterosexual twin females were used in this study, while three normal Holstein bulls and three normal Holstein cows were used as a positive and negative control, respectively. Results Polymerase chain reaction results revealed that SRY gene were absent in three heterosexual twin females and only two of them were verified as fertile in later age. The qPCR results showed that relative content of SRY was more than 14.2% in freemartins and below 0.41% in fertile heterosexual twin females. The H-Y antigen test showed no significant numerical difference between freemartin and fertile heterosexual twin female. Discussion Our results show that relative content of SRY quantified by qPCR is a better detection method for diagnosis of freemartin in Holstein cattle as compare to qualitative detection of SRY gene by PCR or quantitative detection of H-Y antigen. To the authors’ knowledge, this is the first time we applied qPCR to diagnosing freemartin by quantifying SRY gene and got relative SRY content of each freemartin and fertile heterosexual twin female. We concluded that low-level of SRY would not influence fertility of bovine heterosexual twin female.

  16. Development and evaluation of event-specific quantitative PCR method for genetically modified soybean A2704-12.

    Science.gov (United States)

    Takabatake, Reona; Akiyama, Hiroshi; Sakata, Kozue; Onishi, Mari; Koiwa, Tomohiro; Futo, Satoshi; Minegishi, Yasutaka; Teshima, Reiko; Mano, Junichi; Furui, Satoshi; Kitta, Kazumi

    2011-01-01

    A novel real-time PCR-based analytical method was developed for the event-specific quantification of a genetically modified (GM) soybean event; A2704-12. During the plant transformation, DNA fragments derived from pUC19 plasmid were integrated in A2704-12, and the region was found to be A2704-12 specific. The pUC19-derived DNA sequences were used as primers for the specific detection of A2704-12. We first tried to construct a standard plasmid for A2704-12 quantification using pUC19. However, non-specific signals appeared with both qualitative and quantitative PCR analyses using the specific primers with pUC19 as a template, and we then constructed a plasmid using pBR322. The conversion factor (C(f)), which is required to calculate the amount of the genetically modified organism (GMO), was experimentally determined with two real-time PCR instruments, the Applied Biosystems 7900HT and the Applied Biosystems 7500. The determined C(f) values were both 0.98. The quantitative method was evaluated by means of blind tests in multi-laboratory trials using the two real-time PCR instruments. The limit of quantitation for the method was estimated to be 0.1%. The trueness and precision were evaluated as the bias and reproducibility of relative standard deviation (RSD(R)), and the determined bias and RSD(R) values for the method were each less than 20%. These results suggest that the developed method would be suitable for practical analyses for the detection and quantification of A2704-12.

  17. Evaluation of Reference Genes for Real-Time Quantitative PCR Analysis in Larvae of Spodoptera litura Exposed to Azadirachtin Stress Conditions

    OpenAIRE

    Benshui Shu; Jingjing Zhang; Gaofeng Cui; Ranran Sun; Veeran Sethuraman; Xin Yi; Guohua Zhong

    2018-01-01

    Azadirachtin is an efficient and broad-spectrum botanical insecticide against more than 150 kinds of agricultural pests with the effects of mortality, antifeedant and growth regulation. Real-time quantitative polymerase chain reaction (RT-qPCR) could be one of the powerful tools to analyze the gene expression level and investigate the mechanism of azadirachtin at transcriptional level, however, the ideal reference genes are needed to normalize the expression profiling of target genes. In this...

  18. Comparison of Enterococcus quantitative polymerase chain reaction analysis results from midwest U.S. river samples using EPA Method 1611 and Method 1609 PCR reagents

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) has provided recommended beach advisory values in its 2012 recreational water quality criteria (RWQC) for states wishing to use quantitative polymerase chain reaction (qPCR) for the monitoring of Enterococcus fecal indicator bacteria...

  19. A two-step real-time PCR assay for quantitation and genotyping of human parvovirus 4.

    Science.gov (United States)

    Väisänen, E; Lahtinen, A; Eis-Hübinger, A M; Lappalainen, M; Hedman, K; Söderlund-Venermo, M

    2014-01-01

    Human parvovirus 4 (PARV4) of the family Parvoviridae was discovered in a plasma sample of a patient with an undiagnosed acute infection in 2005. Currently, three PARV4 genotypes have been identified, however, with an unknown clinical significance. Interestingly, these genotypes seem to differ in epidemiology. In Northern Europe, USA and Asia, genotypes 1 and 2 have been found to occur mainly in persons with a history of injecting drug use or other parenteral exposure. In contrast, genotype 3 appears to be endemic in sub-Saharan Africa, where it infects children and adults without such risk behaviour. In this study, a novel straightforward and cost-efficient molecular assay for both quantitation and genotyping of PARV4 DNA was developed. The two-step method first applies a single-probe pan-PARV4 qPCR for screening and quantitation of this relatively rare virus, and subsequently, only the positive samples undergo a real-time PCR-based multi-probe genotyping. The new qPCR-GT method is highly sensitive and specific regardless of the genotype, and thus being suitable for studying the clinical impact and occurrence of the different PARV4 genotypes. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process

    Directory of Open Access Journals (Sweden)

    Borges-Pérez Andrés

    2008-12-01

    Full Text Available Abstract Background The elucidation of gene expression patterns leads to a better understanding of biological processes. Real-time quantitative RT-PCR has become the standard method for in-depth studies of gene expression. A biologically meaningful reporting of target mRNA quantities requires accurate and reliable normalization in order to identify real gene-specific variation. The purpose of normalization is to control several variables such as different amounts and quality of starting material, variable enzymatic efficiencies of retrotranscription from RNA to cDNA, or differences between tissues or cells in overall transcriptional activity. The validity of a housekeeping gene as endogenous control relies on the stability of its expression level across the sample panel being analysed. In the present report we describe the first systematic evaluation of potential internal controls during tomato development process to identify which are the most reliable for transcript quantification by real-time RT-PCR. Results In this study, we assess the expression stability of 7 traditional and 4 novel housekeeping genes in a set of 27 samples representing different tissues and organs of tomato plants at different developmental stages. First, we designed, tested and optimized amplification primers for real-time RT-PCR. Then, expression data from each candidate gene were evaluated with three complementary approaches based on different statistical procedures. Our analysis suggests that SGN-U314153 (CAC, SGN-U321250 (TIP41, SGN-U346908 ("Expressed" and SGN-U316474 (SAND genes provide superior transcript normalization in tomato development studies. We recommend different combinations of these exceptionally stable housekeeping genes for suited normalization of different developmental series, including the complete tomato development process. Conclusion This work constitutes the first effort for the selection of optimal endogenous controls for quantitative real

  1. La PCR quantitative en temps réel : application à la quantification des OGM

    Directory of Open Access Journals (Sweden)

    Alary Rémi

    2002-11-01

    Full Text Available Suite à l’obligation d’étiquetage, au seuil de 1 %, des aliments contenant des OGM autorisés, il est nécessaire de disposer de méthodes fiables de quantification. Pour répondre à cette obligation, la technique de PCR quantitative en temps réel semble actuellement la mieux adaptée. Son principe, ses avantages et sa mise en oeuvre pour la détermination de la teneur en OGM de farines de soja sont présentés. Les PCR simplex et duplex sont comparées.

  2. Expression analysis of fusarium wilt resistance gene in melon by real-time quantitative pcr

    International Nuclear Information System (INIS)

    Wang, X.; Xu, B.; Zhao, L.; Gao, P.; Luan, F.

    2014-01-01

    Melon Actin gene was used as a reference gene, to explore the gene expression profiles of the Fom-2 gene in roots, stems, and leaves of melon MR-1 under induction by Fusarium oxysporum f. sp. melonis. Monitoring using real-time quantitative PCR showed similar accumulation patterns of Fom-2 in roots, stems, and leaves over the observation period of 1 to 11 days; the expression level in stems was the highest. The expression of the Fom-2 gene was strengthened by the prolongation of induction time. In stems, the expression of Fom-2 was 5.737 times higher than in the control at three days; in roots, expression of Fom-2 was 5.617 times higher than in the control at five days. Similarly, the expression of Fom-2 in leaves obviously increased. It was 4.441 times higher than in the control at 5 days. The expression of Fom-2 was non-tissue specific, up-regulated under induction by Fusarium, and related to early resistance to Fusarium wilt. (author)

  3. Selection of reference genes for quantitative RT-PCR studies in striped dolphin (Stenella coeruleoalba skin biopsies

    Directory of Open Access Journals (Sweden)

    Casini Silvia

    2006-09-01

    Full Text Available Abstract Background Odontocete cetaceans occupy the top position of the marine food-web and are particularly sensitive to the bioaccumulation of lipophilic contaminants. The effects of environmental pollution on these species are highly debated and various ecotoxicological studies have addressed the impact of xenobiotic compounds on marine mammals, raising conservational concerns. Despite its sensitivity, quantitative real-time PCR (qRT-PCR has never been used to quantify gene induction caused by exposure of cetaceans to contaminants. A limitation for the application of qRT-PCR is the need for appropriate reference genes which allow the correct quantification of gene expression. A systematic evaluation of potential reference genes in cetacean skin biopsies is presented, in order to validate future qRT-PCR studies aiming at using the expression of selected genes as non-lethal biomarkers. Results Ten commonly used housekeeping genes (HKGs were partially sequenced in the striped dolphin (Stenella coeruleoalba and, for each gene, PCR primer pairs were specifically designed and tested in qRT-PCR assays. The expression of these potential control genes was examined in 30 striped dolphin skin biopsy samples, obtained from specimens sampled in the north-western Mediterranean Sea. The stability of selected control genes was determined using three different specific VBA applets (geNorm, NormFinder and BestKeeper which produce highly comparable results. Glyceraldehyde-3P-dehydrogenase (GAPDH and tyrosine 3-monooxygenase (YWHAZ always rank as the two most stably expressed HKGs according to the analysis with geNorm and Normfinder, and are defined as optimal control genes by BestKepeer. Ribosomal protein L4 (RPL4 and S18 (RPS18 also exhibit a remarkable stability of their expression levels. On the other hand, transferrin receptor (TFRC, phosphoglycerate kinase 1 (PGK1, hypoxanthine ribosyltransferase (HPRT1 and β-2-microglobin (B2M show variable expression

  4. Detection of Legionella species in environmental water by the quantitative PCR method in combination with ethidium monoazide treatment.

    Science.gov (United States)

    Inoue, Hiroaki; Takama, Tomoko; Yoshizaki, Miwa; Agata, Kunio

    2015-01-01

    We detected Legionella species in 111 bath water samples and 95 cooling tower water samples by using a combination of conventional plate culture, quantitative polymerase chain reaction (qPCR) and qPCR combined with ethidium monoazide treatment (EMA-qPCR) methods. In the case of bath water samples, Legionella spp. were detected in 30 samples by plate culture, in 85 samples by qPCR, and in 49 samples by EMA-qPCR. Of 81 samples determined to be Legionella-negative by plate culture, 56 and 23 samples were positive by qPCR and EMA-qPCR, respectively. Therefore, EMA treatment decreased the number of Legionella-positive bath water samples detected by qPCR. In contrast, EMA treatment had no effect on cooling tower water samples. We therefore expect that EMA-qPCR is a useful method for the rapid detection of viable Legionella spp. from bath water samples.

  5. PCR-free quantitative detection of genetically modified organism from raw materials. An electrochemiluminescence-based bio bar code method.

    Science.gov (United States)

    Zhu, Debin; Tang, Yabing; Xing, Da; Chen, Wei R

    2008-05-15

    A bio bar code assay based on oligonucleotide-modified gold nanoparticles (Au-NPs) provides a PCR-free method for quantitative detection of nucleic acid targets. However, the current bio bar code assay requires lengthy experimental procedures including the preparation and release of bar code DNA probes from the target-nanoparticle complex and immobilization and hybridization of the probes for quantification. Herein, we report a novel PCR-free electrochemiluminescence (ECL)-based bio bar code assay for the quantitative detection of genetically modified organism (GMO) from raw materials. It consists of tris-(2,2'-bipyridyl) ruthenium (TBR)-labeled bar code DNA, nucleic acid hybridization using Au-NPs and biotin-labeled probes, and selective capture of the hybridization complex by streptavidin-coated paramagnetic beads. The detection of target DNA is realized by direct measurement of ECL emission of TBR. It can quantitatively detect target nucleic acids with high speed and sensitivity. This method can be used to quantitatively detect GMO fragments from real GMO products.

  6. Novel reference genes for quantifying transcriptional responses of Escherichia coli to protein overexpression by quantitative PCR

    Directory of Open Access Journals (Sweden)

    Zou Ruiyang

    2011-04-01

    Full Text Available Abstract Background Accurate interpretation of quantitative PCR (qPCR data requires normalization using constitutively expressed reference genes. Ribosomal RNA is often used as a reference gene for transcriptional studies in E. coli. However, the choice of reliable reference genes has not been systematically validated. The objective of this study is to identify a set of reliable reference genes for transcription analysis in recombinant protein over-expression studies in E. coli. Results In this study, the meta-analysis of 240 sets of single-channel Affymetrix microarray data representing over-expressions of 63 distinct recombinant proteins in various E. coli strains identified twenty candidate reference genes that were stably expressed across all conditions. The expression of these twenty genes and two commonly used reference genes, rrsA encoding ribosomal RNA 16S and ihfB, was quantified by qPCR in E. coli cells over-expressing four genes of the 1-Deoxy-D-Xylulose 5-Phosphate pathway. From these results, two independent statistical algorithms identified three novel reference genes cysG, hcaT, and idnT but not rrsA and ihfB as highly invariant in two E. coli strains, across different growth temperatures and induction conditions. Transcriptomic data normalized by the geometric average of these three genes demonstrated that genes of the lycopene synthetic pathway maintained steady expression upon enzyme overexpression. In contrast, the use of rrsA or ihfB as reference genes led to the mis-interpretation that lycopene pathway genes were regulated during enzyme over-expression. Conclusion This study identified cysG/hcaT/idnT to be reliable novel reference genes for transcription analysis in recombinant protein producing E. coli.

  7. Species Identification of Fox-, Mink-, Dog-, and Rabbit-Derived Ingredients by Multiplex PCR and Real-Time PCR Assay.

    Science.gov (United States)

    Wu, Qingqing; Xiang, Shengnan; Wang, Wenjun; Zhao, Jinyan; Xia, Jinhua; Zhen, Yueran; Liu, Bang

    2018-05-01

    Various detection methods have been developed to date for identification of animal species. New techniques based on PCR approach have raised the hope of developing better identification methods, which can overcome the limitations of the existing methods. PCR-based methods used the mitochondrial DNA (mtDNA) as well as nuclear DNA sequences. In this study, by targeting nuclear DNA, multiplex PCR and real-time PCR methods were developed to assist with qualitative and quantitative analysis. The multiplex PCR was found to simultaneously and effectively distinguish four species (fox, dog, mink, and rabbit) ingredients by the different sizes of electrophoretic bands: 480, 317, 220, and 209 bp. Real-time fluorescent PCR's amplification profiles and standard curves showed good quantitative measurement responses and linearity, as indicated by good repeatability and coefficient of determination R 2  > 0.99. The quantitative results of quaternary DNA mixtures including mink, fox, dog, and rabbit DNA are in line with our expectations: R.D. (relative deviation) varied between 1.98 and 12.23% and R.S.D. (relative standard deviation) varied between 3.06 and 11.51%, both of which are well within the acceptance criterion of ≤ 25%. Combining the two methods is suitable for the rapid identification and accurate quantification of fox-, dog-, mink-, and rabbit-derived ingredients in the animal products.

  8. Identification of normalization factors for quantitative real-time RT-PCR analysis of gene expression in Pacific abalone Haliotis discus hannai

    Science.gov (United States)

    Qiu, Reng; Sun, Boguang; Fang, Shasha; Sun, Li; Liu, Xiao

    2013-03-01

    Quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) is widely used in studies of gene expression. In most of these studies, housekeeping genes are used as internal references without validation. To identify appropriate reference genes for qRT-PCR in Pacific abalone Haliotis discus hannai, we examined the transcription stability of six housekeeping genes in abalone tissues in the presence and absence of bacterial infection. For this purpose, abalone were infected with the bacterial pathogen Vibrio anguillarum for 12 h and 48 h. The mRNA levels of the housekeeping genes in five tissues (digestive glands, foot muscle, gill, hemocyte, and mantle) were determined by qRT-PCR. The PCR data was subsequently analyzed with the geNorm and NormFinder algorithms. The results show that in the absence of bacterial infection, elongation factor-1-alpha and beta-actin were the most stably expressed genes in all tissues, and thus are suitable as cross-tissue type normalization factors. However, we did not identify any universal reference genes post infection because the most stable genes varied between tissue types. Furthermore, for most tissues, the optimal reference genes identified by both algorithms at 12 h and 48 h post-infection differed. These results indicate that bacterial infection induced significant changes in the expression of abalone housekeeping genes in a manner that is dependent on tissue type and duration of infection. As a result, different normalization factors must be used for different tissues at different infection points.

  9. RFLP Analysis and Allelic Discrimination with Real-Time PCR Using the Human Lactase Persistence Trait: A Pair of Molecular Genetic Investigations

    Science.gov (United States)

    Weinlander, Kenneth M.; Hall, David J.; De Stasio, Elizabeth A.

    2010-01-01

    We describe here two open-ended laboratory investigations for an undergraduate laboratory course that uses students' DNA as templates for quantitative real-time PCR and for traditional PCR followed by RFLP analysis. Students are captivated by the immediacy of the application and the relevance of the genotypes and traits, lactase persistence or…

  10. Real-Time PCR (qPCR) Primer Design Using Free Online Software

    Science.gov (United States)

    Thornton, Brenda; Basu, Chhandak

    2011-01-01

    Real-time PCR (quantitative PCR or qPCR) has become the preferred method for validating results obtained from assays which measure gene expression profiles. The process uses reverse transcription polymerase chain reaction (RT-PCR), coupled with fluorescent chemistry, to measure variations in transcriptome levels between samples. The four most…

  11. Combining real-time PCR and next-generation DNA sequencing to provide quantitative comparisons of fungal aerosol populations

    Science.gov (United States)

    Dannemiller, Karen C.; Lang-Yona, Naama; Yamamoto, Naomichi; Rudich, Yinon; Peccia, Jordan

    2014-02-01

    We examined fungal communities associated with the PM10 mass of Rehovot, Israel outdoor air samples collected in the spring and fall seasons. Fungal communities were described by 454 pyrosequencing of the internal transcribed spacer (ITS) region of the fungal ribosomal RNA encoding gene. To allow for a more quantitative comparison of fungal exposure in humans, the relative abundance values of specific taxa were transformed to absolute concentrations through multiplying these values by the sample's total fungal spore concentration (derived from universal fungal qPCR). Next, the sequencing-based absolute concentrations for Alternaria alternata, Cladosporium cladosporioides, Epicoccum nigrum, and Penicillium/Aspergillus spp. were compared to taxon-specific qPCR concentrations for A. alternata, C. cladosporioides, E. nigrum, and Penicillium/Aspergillus spp. derived from the same spring and fall aerosol samples. Results of these comparisons showed that the absolute concentration values generated from pyrosequencing were strongly associated with the concentration values derived from taxon-specific qPCR (for all four species, p 0.70). The correlation coefficients were greater for species present in higher concentrations. Our microbial aerosol population analyses demonstrated that fungal diversity (number of fungal operational taxonomic units) was higher in the spring compared to the fall (p = 0.02), and principal coordinate analysis showed distinct seasonal differences in taxa distribution (ANOSIM p = 0.004). Among genera containing allergenic and/or pathogenic species, the absolute concentrations of Alternaria, Aspergillus, Fusarium, and Cladosporium were greater in the fall, while Cryptococcus, Penicillium, and Ulocladium concentrations were greater in the spring. The transformation of pyrosequencing fungal population relative abundance data to absolute concentrations can improve next-generation DNA sequencing-based quantitative aerosol exposure assessment.

  12. Application of quantitative real-time PCR compared to filtration methods for the enumeration of Escherichia coli in surface waters within Vietnam.

    Science.gov (United States)

    Vital, Pierangeli G; Van Ha, Nguyen Thi; Tuyet, Le Thi Hong; Widmer, Kenneth W

    2017-02-01

    Surface water samples in Vietnam were collected from the Saigon River, rural and suburban canals, and urban runoff canals in Ho Chi Minh City, Vietnam, and were processed to enumerate Escherichia coli. Quantification was done through membrane filtration and quantitative real-time polymerase chain reaction (PCR). Mean log colony-forming unit (CFU)/100 ml E. coli counts in the dry season for river/suburban canals and urban canals were log 2.8 and 3.7, respectively, using a membrane filtration method, while using Taqman quantitative real-time PCR they were log 2.4 and 2.8 for river/suburban canals and urban canals, respectively. For the wet season, data determined by the membrane filtration method in river/suburban canals and urban canals samples had mean counts of log 3.7 and 4.1, respectively. While mean log CFU/100 ml counts in the wet season using quantitative PCR were log 3 and 2, respectively. Additionally, the urban canal samples were significantly lower than those determined by conventional culture methods for the wet season. These results show that while quantitative real-time PCR can be used to determine levels of fecal indicator bacteria in surface waters, there are some limitations to its application and it may be impacted by sources of runoff based on surveyed samples.

  13. A kinetic-based sigmoidal model for the polymerase chain reaction and its application to high-capacity absolute quantitative real-time PCR

    Directory of Open Access Journals (Sweden)

    Stewart Don

    2008-05-01

    Full Text Available Abstract Background Based upon defining a common reference point, current real-time quantitative PCR technologies compare relative differences in amplification profile position. As such, absolute quantification requires construction of target-specific standard curves that are highly resource intensive and prone to introducing quantitative errors. Sigmoidal modeling using nonlinear regression has previously demonstrated that absolute quantification can be accomplished without standard curves; however, quantitative errors caused by distortions within the plateau phase have impeded effective implementation of this alternative approach. Results Recognition that amplification rate is linearly correlated to amplicon quantity led to the derivation of two sigmoid functions that allow target quantification via linear regression analysis. In addition to circumventing quantitative errors produced by plateau distortions, this approach allows the amplification efficiency within individual amplification reactions to be determined. Absolute quantification is accomplished by first converting individual fluorescence readings into target quantity expressed in fluorescence units, followed by conversion into the number of target molecules via optical calibration. Founded upon expressing reaction fluorescence in relation to amplicon DNA mass, a seminal element of this study was to implement optical calibration using lambda gDNA as a universal quantitative standard. Not only does this eliminate the need to prepare target-specific quantitative standards, it relegates establishment of quantitative scale to a single, highly defined entity. The quantitative competency of this approach was assessed by exploiting "limiting dilution assay" for absolute quantification, which provided an independent gold standard from which to verify quantitative accuracy. This yielded substantive corroborating evidence that absolute accuracies of ± 25% can be routinely achieved. Comparison

  14. Detection and semi-quantification of Strongylus vulgaris DNA in equine faeces by real-time quantitative PCR.

    Science.gov (United States)

    Nielsen, Martin K; Peterson, David S; Monrad, Jesper; Thamsborg, Stig M; Olsen, Susanne N; Kaplan, Ray M

    2008-03-01

    Strongylus vulgaris is an important strongyle nematode with high pathogenic potential infecting horses world-wide. Several decades of intensive anthelmintic use has virtually eliminated clinical disease caused by S. vulgaris, but has also caused high levels of anthelmintic resistance in equine small strongyle (cyathostomin) nematodes. Recommendations aimed at limiting the development of anthelmintic resistance by reducing treatment intensity raises a simultaneous demand for reliable and accurate diagnostic tools for detecting important parasitic pathogens. Presently, the only means available to differentiate among strongyle species in a faecal sample is by identifying individual L3 larvae following a two week coproculture procedure. The aim of the present study is to overcome this diagnostic obstacle by developing a fluorescence-based quantitative PCR assay capable of identifying S. vulgaris eggs in faecal samples from horses. Species-specific primers and a TaqMan probe were designed by alignment of published ribosomal DNA sequences of the second internal transcribed spacer of cyathostomin and Strongylus spp. nematodes. The assay was tested for specificity and optimized using genomic DNA extracted from identified male worms of Strongylus and cyathostomin species. In addition, eggs were collected from adult female worms and used to evaluate the quantitative potential of the assay. Statistically significant linear relationships were found between egg numbers and cycle of threshold (Ct) values. PCR results were unaffected by the presence of cyathostomin DNA in the sample and there was no indication of PCR inhibition by faecal sources. A field evaluation on faecal samples obtained from four Danish horse farms revealed a good agreement with the traditional larval culture (kappa-value=0.78), but with a significantly higher performance of the PCR assay. An association between Ct values and S. vulgaris larval counts was statistically significant. The present assay can

  15. Development of a Rapid Real-Time PCR Assay for Quantitation of Pneumocystis carinii f. sp. Carinii

    DEFF Research Database (Denmark)

    Larsen, Hans Henrik; Kovacs, Joseph A; Stock, Frida

    2002-01-01

    ) PCR assay for detecting P. carinii f. sp. carinii, the subspecies of P. carinii commonly used in research models of PCP. The assay was based on the single-copy dihydrofolate reductase gene and was able to detect r = 0.99) over...... 6 log values for standards containing > or =5 copies/tube. Application of the assay to a series of 10-fold dilutions of P. carinii organisms isolated from rat lung demonstrated that it was reproducibly quantitative over 5 log values (r = 0.99). The assay was applied to a recently reported in vitro....... In conclusion, a rapid, sensitive, and reproducible quantitative PCR assay for P. carinii f. sp. carinii has been developed and is applicable to in vivo as well as in vitro systems. The assay should prove useful for conducting studies in which quantification of organism burden or growth assessment is critical...

  16. Validation of a quantitative Eimeria spp. PCR for fresh droppings of broiler chickens.

    Science.gov (United States)

    Peek, H W; Ter Veen, C; Dijkman, R; Landman, W J M

    2017-12-01

    A quantitative Polymerase Chain Reaction (qPCR) for the seven chicken Eimeria spp. was modified and validated for direct use on fresh droppings. The analytical specificity of the qPCR on droppings was 100%. Its analytical sensitivity (non-sporulated oocysts/g droppings) was 41 for E. acervulina, ≤2900 for E. brunetti, 710 for E. praecox, 1500 for E. necatrix, 190 for E. tenella, 640 for E. maxima, and 1100 for E. mitis. Field validation of the qPCR was done using droppings with non-sporulated oocysts from 19 broiler flocks. To reduce the number of qPCR tests five grams of each pooled sample (consisting of ten fresh droppings) per time point were blended into one mixed sample. Comparison of the oocysts per gram (OPG)-counting method with the qPCR using pooled samples (n = 1180) yielded a Pearson's correlation coefficient of 0.78 (95% CI: 0.76-0.80) and a Pearson's correlation coefficient of 0.76 (95% CI: 0.70-0.81) using mixed samples (n = 236). Comparison of the average of the OPG-counts of the five pooled samples with the mixed sample per time point (n = 236) showed a Pearson's correlation coefficient (R) of 0.94 (95% CI: 0.92-0.95) for the OPG-counting method and 0.87 (95% CI: 0.84-0.90) for the qPCR. This indicates that mixed samples are practically equivalent to the mean of five pooled samples. The good correlation between the OPG-counting method and the qPCR was further confirmed by the visual agreement between the total oocyst/g shedding patterns measured with both techniques in the 19 broiler flocks using the mixed samples.

  17. Quantitative high-resolution genomic analysis of single cancer cells.

    Science.gov (United States)

    Hannemann, Juliane; Meyer-Staeckling, Sönke; Kemming, Dirk; Alpers, Iris; Joosse, Simon A; Pospisil, Heike; Kurtz, Stefan; Görndt, Jennifer; Püschel, Klaus; Riethdorf, Sabine; Pantel, Klaus; Brandt, Burkhard

    2011-01-01

    During cancer progression, specific genomic aberrations arise that can determine the scope of the disease and can be used as predictive or prognostic markers. The detection of specific gene amplifications or deletions in single blood-borne or disseminated tumour cells that may give rise to the development of metastases is of great clinical interest but technically challenging. In this study, we present a method for quantitative high-resolution genomic analysis of single cells. Cells were isolated under permanent microscopic control followed by high-fidelity whole genome amplification and subsequent analyses by fine tiling array-CGH and qPCR. The assay was applied to single breast cancer cells to analyze the chromosomal region centred by the therapeutical relevant EGFR gene. This method allows precise quantitative analysis of copy number variations in single cell diagnostics.

  18. Quantitative PCR analysis reveals a high incidence of large intragenic deletions in the FANCA gene in Spanish Fanconi anemia patients.

    Science.gov (United States)

    Callén, E; Tischkowitz, M D; Creus, A; Marcos, R; Bueren, J A; Casado, J A; Mathew, C G; Surrallés, J

    2004-01-01

    Fanconi anaemia is an autosomal recessive disease characterized by chromosome fragility, multiple congenital abnormalities, progressive bone marrow failure and a high predisposition to develop malignancies. Most of the Fanconi anaemia patients belong to complementation group FA-A due to mutations in the FANCA gene. This gene contains 43 exons along a 4.3-kb coding sequence with a very heterogeneous mutational spectrum that makes the mutation screening of FANCA a difficult task. In addition, as the FANCA gene is rich in Alu sequences, it was reported that Alu-mediated recombination led to large intragenic deletions that cannot be detected in heterozygous state by conventional PCR, SSCP analysis, or DNA sequencing. To overcome this problem, a method based on quantitative fluorescent multiplex PCR was proposed to detect intragenic deletions in FANCA involving the most frequently deleted exons (exons 5, 11, 17, 21 and 31). Here we apply the proposed method to detect intragenic deletions in 25 Spanish FA-A patients previously assigned to complementation group FA-A by FANCA cDNA retroviral transduction. A total of eight heterozygous deletions involving from one to more than 26 exons were detected. Thus, one third of the patients carried a large intragenic deletion that would have not been detected by conventional methods. These results are in agreement with previously published data and indicate that large intragenic deletions are one of the most frequent mutations leading to Fanconi anaemia. Consequently, this technology should be applied in future studies on FANCA to improve the mutation detection rate. Copyright 2003 S. Karger AG, Basel

  19. A human fecal contamination score for ranking recreational sites using the HF183/BacR287 quantitative real-time PCR method.

    Science.gov (United States)

    Cao, Yiping; Sivaganesan, Mano; Kelty, Catherine A; Wang, Dan; Boehm, Alexandria B; Griffith, John F; Weisberg, Stephen B; Shanks, Orin C

    2018-01-01

    Human fecal pollution of recreational waters remains a public health concern worldwide. As a result, there is a growing interest in the application of human-associated fecal source identification quantitative real-time PCR (qPCR) technologies for water quality research and management. However, there are currently no standardized approaches for field implementation and interpretation of qPCR data. In this study, a standardized HF183/BacR287 qPCR method was combined with a water sampling strategy and a novel Bayesian weighted average approach to establish a human fecal contamination score (HFS) that can be used to prioritize sampling sites for remediation based on measured human waste levels. The HFS was then used to investigate 975 study design scenarios utilizing different combinations of sites with varying sampling intensities (daily to once per week) and number of qPCR replicates per sample (2-14 replicates). Findings demonstrate that site prioritization with HFS is feasible and that both sampling intensity and number of qPCR replicates influence reliability of HFS estimates. The novel data analysis strategy presented here provides a prescribed approach for the implementation and interpretation of human-associated HF183/BacR287 qPCR data with the goal of site prioritization based on human fecal pollution levels. In addition, information is provided for future users to customize study designs for optimal HFS performance. Published by Elsevier Ltd.

  20. Detection of Legionella by quantitative-polymerase chain reaction (qPCR) for monitoring and risk assessment

    DEFF Research Database (Denmark)

    Krøjgaard, Louise H.; Krogfelt, Karen A.; Albrechtsen, Hans-Jorgen

    2011-01-01

    Background: Culture and quantitative polymerase chain reaction (qPCR) assays for the detection of Legionella were compared on samples from a residential area before and after two interventions. A total of 84 samples were collected from shower hoses and taps as first flush samples and at constant...... temperature. Samples were grouped according to the origin of the sample, a) circulation water b) water from empty apartments c) water from shower hoses. The aims were to investigate the usefulness of qPCR compared to culture for monitoring remedial actions for elimination of Legionella bacteria and as a tool...

  1. OPPORTUNISTIC ASPERGILLUS PATHOGENS MEASURED IN HOME AND HOSPITAL TAP WATER BY MOLD SPECIFIC QUANTITATIVE PCR (MSQPCR)

    Science.gov (United States)

    Opportunistic fungal pathogens are a concern because of the increasing number of immunocompromised patients. The goal of this research was to test a simple extraction method and rapid quantitative PCR (QPCR) measurement of the occurrence of potential pathogens, Aspergillus fumiga...

  2. Selecting and validating reference genes for quantitative real-time PCR in Plutella xylostella (L.).

    Science.gov (United States)

    You, Yanchun; Xie, Miao; Vasseur, Liette; You, Minsheng

    2018-05-01

    Gene expression analysis provides important clues regarding gene functions, and quantitative real-time PCR (qRT-PCR) is a widely used method in gene expression studies. Reference genes are essential for normalizing and accurately assessing gene expression. In the present study, 16 candidate reference genes (ACTB, CyPA, EF1-α, GAPDH, HSP90, NDPk, RPL13a, RPL18, RPL19, RPL32, RPL4, RPL8, RPS13, RPS4, α-TUB, and β-TUB) from Plutella xylostella were selected to evaluate gene expression stability across different experimental conditions using five statistical algorithms (geNorm, NormFinder, Delta Ct, BestKeeper, and RefFinder). The results suggest that different reference genes or combinations of reference genes are suitable for normalization in gene expression studies of P. xylostella according to the different developmental stages, strains, tissues, and insecticide treatments. Based on the given experimental sets, the most stable reference genes were RPS4 across different developmental stages, RPL8 across different strains and tissues, and EF1-α across different insecticide treatments. A comprehensive and systematic assessment of potential reference genes for gene expression normalization is essential for post-genomic functional research in P. xylostella, a notorious pest with worldwide distribution and a high capacity to adapt and develop resistance to insecticides.

  3. Qualitative and quantitative polymerase chain reaction (PCR) for detection of Leishmania in spleen samples from naturally infected dogs.

    Science.gov (United States)

    Solcà, Manuela da Silva; Guedes, Carlos Eduardo Sampaio; Nascimento, Eliane Gomes; Oliveira, Geraldo Gileno de Sá; dos Santos, Washington Luis Conrado; Fraga, Deborah Bittencourt Mothé; Veras, Patrícia Sampaio Tavares

    2012-03-23

    Because infected dogs are widely considered to be the main domestic reservoir for Leishmania infantum (syn Leishmania chagasi) parasites in Brazil, the diagnosis of canine visceral leishmaniasis (CVL) must be made both accurately and promptly. The present study attempted to standardize a conventional polymerase chain reaction (cPCR) protocol for the detection of L. infantum DNA in canine spleen samples. Quantitative PCR (qPCR) technique was used to confirm the presence of Leishmania DNA in the canine spleen fragments. A comparison was made between the efficacies of these molecular diagnostic techniques and conventional parasitological and serological methods. cPCR protocols for spleen samples were standardized using primers that amplify a 145 bp fragment, located at the parasite kinetoplast minicircle. The genus specificity of the cPCR protocol was assessed by its inability to amplify the DNA of other common canine pathogens, such as Ehrlichia canis, Babesia canis, Toxoplasma gondii and Trypanosoma cruzi. cPCR protocol sensitivity was tested by assessing the reaction detection limit, determined to be 10 fg of L. infantum reference strain DNA, which corresponds to a range of 0.03-0.1 parasites per fragment. Standardized cPCR protocol was used to detect the presence of Leishmania in 45 dog spleen samples. Our results showed that 40% of the spleen fragment cultures were positive for Leishmania parasites, 58% of the dog serum samples tested positive using ELISA, and parasite DNA was detected in 44% using qPCR, while 47% of the spleen samples using cPCR. Diagnostic methods performance was assessed and revealed a better degree of ascertainment for cPCR when compared to other diagnostic methods. The sensitivity of ELISA was 83.3%, qPCR was 83.3%, and cPCR was 88.9%; PPV for ELISA was 57.7%, qPCR was 75% and cPCR was 76.2%; the Kappa coefficients were found to be 0.40 (fair) for ELISA, 0.64 (substantial) for qPCR and 0.68 (substantial) for cPCR. In both oligosymptomatic

  4. PCR-free quantitative detection of genetically modified organism from raw materials – A novel electrochemiluminescence-based bio-barcode method

    Science.gov (United States)

    Zhu, Debin; Tang, Yabing; Xing, Da; Chen, Wei R.

    2018-01-01

    Bio-barcode assay based on oligonucleotide-modified gold nanoparticles (Au-NPs) provides a PCR-free method for quantitative detection of nucleic acid targets. However, the current bio-barcode assay requires lengthy experimental procedures including the preparation and release of barcode DNA probes from the target-nanoparticle complex, and immobilization and hybridization of the probes for quantification. Herein, we report a novel PCR-free electrochemiluminescence (ECL)-based bio-barcode assay for the quantitative detection of genetically modified organism (GMO) from raw materials. It consists of tris-(2’2’-bipyridyl) ruthenium (TBR)-labele barcode DNA, nucleic acid hybridization using Au-NPs and biotin-labeled probes, and selective capture of the hybridization complex by streptavidin-coated paramagnetic beads. The detection of target DNA is realized by direct measurement of ECL emission of TBR. It can quantitatively detect target nucleic acids with high speed and sensitivity. This method can be used to quantitatively detect GMO fragments from real GMO products. PMID:18386909

  5. Statistical aspects of quantitative real-time PCR experiment design

    Czech Academy of Sciences Publication Activity Database

    Kitchen, R.R.; Kubista, Mikael; Tichopád, Aleš

    2010-01-01

    Roč. 50, č. 4 (2010), s. 231-236 ISSN 1046-2023 R&D Projects: GA AV ČR IAA500520809 Institutional research plan: CEZ:AV0Z50520701 Keywords : Real-time PCR * Experiment design * Nested analysis of variance Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.527, year: 2010

  6. Laboratory evaluation of a quantitative real-time reverse transcription PCR assay for the detection and identification of the four subgroups of avian metapneumovirus.

    Science.gov (United States)

    Guionie, O; Toquin, D; Sellal, E; Bouley, S; Zwingelstein, F; Allée, C; Bougeard, S; Lemière, S; Eterradossi, N

    2007-02-01

    Avian metapneumovirus (AMPV) is an important pathogen causing respiratory diseases and egg drops in several avian species. Four AMPV subgroups have been identified. The laboratory diagnosis of AMPV infections relies on serological methods, on labour-intensive virus isolation procedures, and on recently developed subgroup specific reverse transcription PCR (RT-PCR) protocols. In the present study, both the specificity and sensitivity of a commercial real-time reverse transcription PCR (RRT-PCR) for the detection and identification of the four AMPV subgroups were evaluated. Fifteen non-AMPV avian viruses belonging to 7 genera and 32 AMPV belonging to the 4 subgroups were tested. No non-AMPV virus was detected, whereas all AMPV viruses were identified in agreement with their previous molecular and antigenic subgroup assignment. The sensitivity and quantitating ability of the RRT-PCR assay were determined using serial dilutions of RNA derived either from AMPV virus stocks or from runoff transcripts. In all cases, linear dose/responses were observed. The detection limits of the different subgroups ranged from 500 to 5000 RNA copies and from 0.03 to 3.16TCID50/ml. The results were reproducible under laboratory conditions, thus showing that quantitative RRT-PCR is a new and powerful tool for the rapid and sensitive detection, identification and quantitation of AMPVs.

  7. Rapid Determination of Lymphogranuloma Venereum Serovars of Chlamydia trachomatis by Quantitative High-Resolution Melt Analysis (HRMA)

    Science.gov (United States)

    Stevens, Matthew P.; Garland, Suzanne M.; Zaia, Angelo M.; Tabrizi, Sepehr N.

    2012-01-01

    A quantitative high-resolution melt analysis assay was developed to differentiate lymphogranuloma venereum-causing serovars of Chlamydia trachomatis (L1 to L3) from other C. trachomatis serovars (D to K). The detection limit of this assay is approximately 10 copies per reaction, comparable to the limits of other quantitative-PCR-based methods. PMID:22933594

  8. A Human Fecal Contamination Score for Ranking Recreational Sites using the HF183/BacR287 Quantitative Real-Time PCR Method

    Science.gov (United States)

    Human fecal pollution of recreational waters remains a public health concern worldwide. As a result, there is a growing interest in the application of human-associated fecal source identification quantitative real-time PCR (qPCR) technologies for water quality research and manag...

  9. Differentiation of five enterohepatic Helicobacter species by nested PCR with high-resolution melting curve analysis.

    Science.gov (United States)

    Wu, Miaoli; Rao, Dan; Zhu, Yujun; Wang, Jing; Yuan, Wen; Zhang, Yu; Huang, Ren; Guo, Pengju

    2017-04-01

    Enterohepatic Helicobacter species (EHS) are widespread in rodent species around the world. Several studies have demonstrated that infection with EHS can interfere with the outcomes of animal experiments in cancer research and significantly influence the study results. Therefore, it is essential to establish a rapid detection and identification of EHS for biomedical research using laboratory rodents. Our study aimed to develop a rapid and sensitive method to detect and distinguish five enterohepatic Helicobacter species. Nested PCR followed by high-resolution melting curve analysis (HRM) was developed for identification of H. bilis, H. rodentium, H. muridarum, H. typhlonius, as well as H. hepaticus. To validate the accuracy of nested PCR-HRM analysis, quantitative real-time PCR methods for five different enterohepatic Helicobacter species were developed. A total of 50 cecal samples were tested using both nested PCR-HRM analysis and qPCR method. The nested PCR-HRM method could distinguish five enterohepatic Helicobacter species by different melting temperatures. The melting curve were characterized by peaks of 78.7 ± 0.12°C for H. rodentium, 80.51 ± 0.09°C for H. bilis, 81.6 ± 0.1°C for H. typhlonius, 82.11 ± 0.18°C for H. muridarum, and 82.95 ± 0.09°C for H. hepaticus. The nested PCR-HRM assay is a simple, rapid, and cost-effective assay. This assay could be a useful tool for molecular epidemiology study of enterohepatic Helicobacter infection and an attractive alternative for genotyping of enterohepatic Helicobacter species. © 2016 John Wiley & Sons Ltd.

  10. Development and evaluation of a real-time one step Reverse-Transcriptase PCR for quantitation of Chandipura Virus

    Directory of Open Access Journals (Sweden)

    Tandale Babasaheb V

    2008-12-01

    Full Text Available Abstract Background Chandipura virus (CHPV, a member of family Rhabdoviridae was attributed to an explosive outbreak of acute encephalitis in children in Andhra Pradesh, India in 2003 and a small outbreak among tribal children from Gujarat, Western India in 2004. The case-fatality rate ranged from 55–75%. Considering the rapid progression of the disease and high mortality, a highly sensitive method for quantifying CHPV RNA by real-time one step reverse transcriptase PCR (real-time one step RT-PCR using TaqMan technology was developed for rapid diagnosis. Methods Primers and probe for P gene were designed and used to standardize real-time one step RT-PCR assay for CHPV RNA quantitation. Standard RNA was prepared by PCR amplification, TA cloning and run off transcription. The optimized real-time one step RT-PCR assay was compared with the diagnostic nested RT-PCR and different virus isolation systems [in vivo (mice in ovo (eggs, in vitro (Vero E6, PS, RD and Sand fly cell line] for the detection of CHPV. Sensitivity and specificity of real-time one step RT-PCR assay was evaluated with diagnostic nested RT-PCR, which is considered as a gold standard. Results Real-time one step RT-PCR was optimized using in vitro transcribed (IVT RNA. Standard curve showed linear relationship for wide range of 102-1010 (r2 = 0.99 with maximum Coefficient of variation (CV = 5.91% for IVT RNA. The newly developed real-time RT-PCR was at par with nested RT-PCR in sensitivity and superior to cell lines and other living systems (embryonated eggs and infant mice used for the isolation of the virus. Detection limit of real-time one step RT-PCR and nested RT-PCR was found to be 1.2 × 100 PFU/ml. RD cells, sand fly cells, infant mice, and embryonated eggs showed almost equal sensitivity (1.2 × 102 PFU/ml. Vero and PS cell-lines (1.2 × 103 PFU/ml were least sensitive to CHPV infection. Specificity of the assay was found to be 100% when RNA from other viruses or healthy

  11. Selection and evaluation of potential reference genes for gene expression analysis in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae using reverse-transcription quantitative PCR.

    Directory of Open Access Journals (Sweden)

    Miao Yuan

    Full Text Available The brown planthopper (BPH, Nilaparvata lugens (Hemiptera, Delphacidae, is one of the most important rice pests. Abundant genetic studies on BPH have been conducted using reverse-transcription quantitative real-time PCR (qRT-PCR. Using qRT-PCR, the expression levels of target genes are calculated on the basis of endogenous controls. These genes need to be appropriately selected by experimentally assessing whether they are stably expressed under different conditions. However, such studies on potential reference genes in N. lugens are lacking. In this paper, we presented a systematic exploration of eight candidate reference genes in N. lugens, namely, actin 1 (ACT, muscle actin (MACT, ribosomal protein S11 (RPS11, ribosomal protein S15e (RPS15, alpha 2-tubulin (TUB, elongation factor 1 delta (EF, 18S ribosomal RNA (18S, and arginine kinase (AK and used four alternative methods (BestKeeper, geNorm, NormFinder, and the delta Ct method to evaluate the suitability of these genes as endogenous controls. We examined their expression levels among different experimental factors (developmental stage, body part, geographic population, temperature variation, pesticide exposure, diet change, and starvation following the MIQE (Minimum Information for publication of Quantitative real time PCR Experiments guidelines. Based on the results of RefFinder, which integrates four currently available major software programs to compare and rank the tested candidate reference genes, RPS15, RPS11, and TUB were found to be the most suitable reference genes in different developmental stages, body parts, and geographic populations, respectively. RPS15 was the most suitable gene under different temperature and diet conditions, while RPS11 was the most suitable gene under different pesticide exposure and starvation conditions. This work sheds light on establishing a standardized qRT-PCR procedure in N. lugens, and serves as a starting point for screening for reference genes for

  12. Quantitative high-resolution genomic analysis of single cancer cells.

    Directory of Open Access Journals (Sweden)

    Juliane Hannemann

    Full Text Available During cancer progression, specific genomic aberrations arise that can determine the scope of the disease and can be used as predictive or prognostic markers. The detection of specific gene amplifications or deletions in single blood-borne or disseminated tumour cells that may give rise to the development of metastases is of great clinical interest but technically challenging. In this study, we present a method for quantitative high-resolution genomic analysis of single cells. Cells were isolated under permanent microscopic control followed by high-fidelity whole genome amplification and subsequent analyses by fine tiling array-CGH and qPCR. The assay was applied to single breast cancer cells to analyze the chromosomal region centred by the therapeutical relevant EGFR gene. This method allows precise quantitative analysis of copy number variations in single cell diagnostics.

  13. TaqMan MGB probe fluorescence real-time quantitative PCR for rapid detection of Chinese Sacbrood virus.

    Directory of Open Access Journals (Sweden)

    Ma Mingxiao

    Full Text Available Sacbrood virus (SBV is a picorna-like virus that affects honey bees (Apis mellifera and results in the death of the larvae. Several procedures are available to detect Chinese SBV (CSBV in clinical samples, but not to estimate the level of CSBV infection. The aim of this study was develop an assay for rapid detection and quantification of this virus. Primers and probes were designed that were specific for CSBV structural protein genes. A TaqMan minor groove binder (MGB probe-based, fluorescence real-time quantitative PCR was established. The specificity, sensitivity and stability of the assay were assessed; specificity was high and there were no cross-reactivity with healthy larvae or other bee viruses. The assay was applied to detect CSBV in 37 clinical samples and its efficiency was compared with clinical diagnosis, electron microscopy observation, and conventional RT-PCR. The TaqMan MGB-based probe fluorescence real-time quantitative PCR for CSBV was more sensitive than other methods tested. This assay was a reliable, fast, and sensitive method that was used successfully to detect CSBV in clinical samples. The technology can provide a useful tool for rapid detection of CSBV. This study has established a useful protocol for CSBV testing, epidemiological investigation, and development of animal models.

  14. Identification of the major capsid protein of erythrocytic necrosis virus (ENV) and development of quantitative real-time PCR assays for quantification of ENV DNA

    Science.gov (United States)

    Purcell, Maureen K.; Pearman-Gillman, Schuyler; Thompson, Rachel L.; Gregg, Jacob L.; Hart, Lucas M.; Winton, James R.; Emmenegger, Eveline J.; Hershberger, Paul K.

    2016-01-01

    Viral erythrocytic necrosis (VEN) is a disease of marine and anadromous fish that is caused by the erythrocytic necrosis virus (ENV), which was recently identified as a novel member of family Iridoviridae by next-generation sequencing. Phylogenetic analysis of the ENV DNA polymerase grouped ENV with other erythrocytic iridoviruses from snakes and lizards. In the present study, we identified the gene encoding the ENV major capsid protein (MCP) and developed a quantitative real-time PCR (qPCR) assay targeting this gene. Phylogenetic analysis of the MCP gene sequence supported the conclusion that ENV does not group with any of the currently described iridovirus genera. Because there is no information regarding genetic variation of the MCP gene across the reported host and geographic range for ENV, we also developed a second qPCR assay for a more conserved ATPase-like gene region. The MCP and ATPase qPCR assays demonstrated good analytical and diagnostic sensitivity and specificity based on samples from laboratory challenges of Pacific herring Clupea pallasii. The qPCR assays had similar diagnostic sensitivity and specificity as light microscopy of stained blood smears for the presence of intraerythrocytic inclusion bodies. However, the qPCR assays may detect viral DNA early in infection prior to the formation of inclusion bodies. Both qPCR assays appear suitable for viral surveillance or as a confirmatory test for ENV in Pacific herring from the Salish Sea.

  15. Species-specific detection and quantification of common barnacle larvae from the Japanese coast using quantitative real-time PCR.

    Science.gov (United States)

    Endo, Noriyuki; Sato, Kana; Matsumura, Kiyotaka; Yoshimura, Erina; Odaka, Yukiko; Nogata, Yasuyuki

    2010-11-01

    Species-specific detection and quantification methods for barnacle larvae using quantitative real-time polymerase chain reaction (qPCR) were developed. Species-specific primers for qPCR were designed for 13 barnacle species in the mitochondrial 12S ribosomal RNA gene region. Primer specificity was examined by PCR using template DNA extracted from each of the 13 barnacle species, other unidentified barnacle species, and field collected zooplankton samples. The resulting PCR products comprised single bands following agarose gel electrophoresis when the templates corresponded to primers. The amplifications were highly species-specific even for the field plankton samples. The field plankton samples were subjected to qPCR assay. The calculated DNA contents for each barnacle species were closely correlated with the number of larvae measured by microscopic examination. The method could be applied to quantify barnacle larvae in natural plankton samples.

  16. Establishment of a minor groove binder-probe based quantitative real time PCR to detect Borrelia burgdorferi sensu lato and differentiation of Borrelia spielmanii by ospA-specific conventional PCR

    Directory of Open Access Journals (Sweden)

    Strube Christina

    2010-08-01

    Full Text Available Abstract Background Borrelia burgdorferi sensu lato (sl, the causative agent of Lyme borreliosis, is transmitted by ticks of the genus Ixodes as vector. For identification of Borrelia infections in ticks a TaqMan™ minor groove binder (MGB probe-based quantitative real time PCR (qPCR was established targeting the 5S-23S intergenic spacer. Extension to a duplex qPCR included an Ixodes spp. positive control to verify successful DNA isolation. Besides qPCR, an ospA-specific conventional PCR for species-specific identification of B. spielmanii was established. Afterwards 1000 I. ricinus flagged in the city of Hanover, Germany, were investigated for B. burgdorferi sl infections followed by species identification. Furthermore, I. hexagonus ticks were investigated to proof applicability of the PCRs. Results Quantitative real time PCR (qPCR identifying B. burgdorferi sl in ticks was able to detect 1-10 copies per reaction. B. spielmanii ospA-specific conventional PCR was also highly specific and showed no cross reactions with the other tested Borrelia species. From 1000 hanoveranian ticks 24.3% were positive compared to only 7.4% positives by dark-field microscopy. Related to tick stage 1.7% larvae, 18.1% nymphs, and 34.6% adults were positive. The most frequent species was B. garinii, followed by B. afzelii, B. spielmanii, B. valaisiana and B. burgdorferi sensu stricto (ss. 70.6% of I. ricinus were mono-infected, whereas 28.0% and 1.4% were infected with two and three Borrelia species, respectively. From 232 I. hexagonus collected from hedgehogs in different sites of Germany, qPCR detected 5.7% to be infected with B. burgdorferi sl, which were identified as B. afzelii, B. garinii and B. spielmanii. Conclusions The evaluated qPCR to detect B. burgdorferi sl in Ixodes spp. is highly specific and sensitive. As a duplex qPCR including detection of Ixodes spp. DNA it is the first DNA based technique incorporating a control for successful DNA isolation from

  17. Competitive PCR-High Resolution Melting Analysis (C-PCR-HRMA) for large genomic rearrangements (LGRs) detection: A new approach to assess quantitative status of BRCA1 gene in a reference laboratory.

    Science.gov (United States)

    Minucci, Angelo; De Paolis, Elisa; Concolino, Paola; De Bonis, Maria; Rizza, Roberta; Canu, Giulia; Scaglione, Giovanni Luca; Mignone, Flavio; Scambia, Giovanni; Zuppi, Cecilia; Capoluongo, Ettore

    2017-07-01

    Evaluation of copy number variation (CNV) in BRCA1/2 genes, due to large genomic rearrangements (LGRs), is a mandatory analysis in hereditary breast and ovarian cancers families, if no pathogenic variants are found by sequencing. LGRs cannot be detected by conventional methods and several alternative methods have been developed. Since these approaches are expensive and time consuming, identification of alternative screening methods for LGRs detection is needed in order to reduce and optimize the diagnostic procedure. The aim of this study was to investigate a Competitive PCR-High Resolution Melting Analysis (C-PCR-HRMA) as molecular tool to detect recurrent BRCA1 LGRs. C-PCR-HRMA was performed on exons 3, 14, 18, 19, 20 and 21 of the BRCA1 gene; exons 4, 6 and 7 of the ALB gene were used as reference fragments. This study showed that it is possible to identify recurrent BRCA1 LGRs, by melting peak height ratio between target (BRCA1) and reference (ALB) fragments. Furthermore, we underline that a peculiar amplicon-melting profile is associated to a specific BRCA1 LGR. All C-PCR-HRMA results were confirmed by Multiplex ligation-dependent probe amplification. C-PCR-HRMA has proved to be an innovative, efficient and fast method for BRCA1 LGRs detection. Given the sensitivity, specificity and ease of use, c-PCR-HRMA can be considered an attractive and powerful alternative to other methods for BRCA1 CNVs screening, improving molecular strategies for BRCA testing in the context of Massive Parallel Sequencing. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Selection of reference genes for quantitative real-time PCR in bovine preimplantation embryos

    Directory of Open Access Journals (Sweden)

    Van Zeveren Alex

    2005-12-01

    Full Text Available Abstract Background Real-time quantitative PCR is a sensitive and very efficient technique to examine gene transcription patterns in preimplantation embryos, in order to gain information about embryo development and to optimize assisted reproductive technologies. Critical to the succesful application of real-time PCR is careful assay design, reaction optimization and validation to maximize sensitivity and accuracy. In most of the studies published GAPD, ACTB or 18S rRNA have been used as a single reference gene without prior verification of their expression stability. Normalization of the data using unstable controls can result in erroneous conclusions, especially when only one reference gene is used. Results In this study the transcription levels of 8 commonly used reference genes (ACTB, GAPD, Histone H2A, TBP, HPRT1, SDHA, YWHAZ and 18S rRNA were determined at different preimplantation stages (2-cell, 8-cell, blastocyst and hatched blastocyst in order to select the most stable genes to normalize quantitative data within different preimplantation embryo stages. Conclusion Using the geNorm application YWHAZ, GAPD and SDHA were found to be the most stable genes across the examined embryonic stages, while the commonly used ACTB was shown to be highly regulated. We recommend the use of the geometric mean of those 3 reference genes as an accurate normalization factor, which allows small expression differences to be reliably measured.

  19. Identification and validation of reference genes for quantitative real-time PCR in Drosophila suzukii (Diptera: Drosophilidae.

    Directory of Open Access Journals (Sweden)

    Yifan Zhai

    Full Text Available To accurately evaluate gene expression levels and obtain more accurate quantitative real-time RT-PCR (qRT-PCR data, normalization relative to reliable reference gene(s is required. Drosophila suzukii, is an invasive fruit pest native to East Asia, and recently invaded Europe and North America, the stability of its reference genes have not been previously investigated. In this study, ten candidate reference genes (RPL18, RPS3, AK, EF-1β, TBP, NADH, HSP22, GAPDH, Actin, α-Tubulin, were evaluated for their suitability as normalization genes under different biotic (developmental stage, tissue and population, and abiotic (photoperiod, temperature conditions. The three statistical approaches (geNorm, NormFinder and BestKeeper and one web-based comprehensive tool (RefFinder were used to normalize analysis of the ten candidate reference genes identified α-Tubulin, TBP and AK as the most stable candidates, while HSP22 and Actin showed the lowest expression stability. We used three most stable genes (α-Tubulin, TBP and AK and one unstably expressed gene to analyze the expression of P-glycoprotein in abamectin-resistant and sensitive strains, and the results were similar to reference genes α-Tubulin, TBP and AK, which show good stability, while the result of HSP22 has a certain bias. The three validated reference genes can be widely used for quantification of target gene expression with qRT-PCR technology in D.suzukii.

  20. A comparative kinetic RT/-PCR strategy for the quantitation of mRNAs in microdissected human renal biopsy specimens.

    Science.gov (United States)

    Del Prete, D; Forino, M; Gambaro, G; D'Angelo, A; Baggio, B; Anglani, F

    1998-01-01

    Molecular biology techniques, to be applicable to a diagnostic renal biopsy specimen, should (1) be highly sensitive to be performed on a very small quantity of tissue; (2) be quantitative because they have to analyze genes normally expressed in the tissue and (3) allow the analysis of as large a number of genes as possible. Among different methods, only the reverse-transcriptase polymerase chain reaction (RT/-PCR) might comply with previous requisites, but the few RT/-PCR examples on renal biopsies in the literature do not allow starting RNA quantification and quality control; furthermore they have the drawback of analyzing only few genes. In an ongoing study to assess the expression of a number of genes in glomeruli and in tubulointerstitium of patients with different nephropathies, we developed a comparative RT/-PCR kinetic strategy based on the purification and quantification of total glomerular and tubulointerstitial RNA and on the use of an internal standard, the housekeeping gene G3PDH. We demonstrate that in microdissected diagnostic renal biopsies (1) glomerular and interstitial starting RNA can be quantified; (2) the G3PDH gene may be used both as an internal standard and as an indirect marker of RNA integrity; (3) as low as 28 ng of total RNA is sufficient to obtain PCR products of eight genes, and (4) it is worth to operate on microdissected biopsy specimens because of the different expression of genes in the two renal compartments.

  1. Evaluation of changes in periodontal bacteria in healthy dogs over 6 months using quantitative real-time PCR.

    Science.gov (United States)

    Maruyama, N; Mori, A; Shono, S; Oda, H; Sako, T

    2018-03-01

    Porphyromonas gulae, Tannerella forsythia and Campylobacter rectus are considered dominant periodontal pathogens in dogs. Recently, quantitative real-time PCR (qRT-PCR) methods have been used for absolute quantitative determination of oral bacterial counts. The purpose of the present study was to establish a standardized qRT-PCR procedure to quantify bacterial counts of the three target periodontal bacteria (P. gulae, T. forsythia and C. rectus). Copy numbers of the three target periodontal bacteria were evaluated in 26 healthy dogs. Then, changes in bacterial counts of the three target periodontal bacteria were evaluated for 24 weeks in 7 healthy dogs after periodontal scaling. Analytical evaluation of each self-designed primer indicated acceptable analytical imprecision. All 26 healthy dogs were found to be positive for P. gulae, T. forsythia and C. rectus. Median total bacterial counts (copies/ng) of each target genes were 385.612 for P. gulae, 25.109 for T. forsythia and 5.771 for C. rectus. Significant differences were observed between the copy numbers of the three target periodontal bacteria. Periodontal scaling reduced median copy numbers of the three target periodontal bacteria in 7 healthy dogs. However, after periodontal scaling, copy numbers of all three periodontal bacteria significantly increased over time (pperiodontal bacteria in dogs. Furthermore, the present study has revealed that qRT-PCR method can be considered as a new objective evaluation system for canine periodontal disease. Copyright© by the Polish Academy of Sciences.

  2. The use of quantitative PCR for identification and quantification of Brachyspira pilosicoli, Lawsonia intracellularis and Escherichia coli fimbrial types F4 and F18 in pig feces

    DEFF Research Database (Denmark)

    Ståhl, Marie; Kokotovic, Branko; Hjulsager, Charlotte Kristiane

    2011-01-01

    Four quantitative PCR (qPCR) assays were evaluated for quantitative detection of Brachyspira pilosicoli, Lawsonia intracellularis, and E. coli fimbrial types F4 and F18 in pig feces. Standard curves were based on feces spiked with the respective reference strains. The detection limits from...... the spiking experiments were 102 bacteria/g feces for BpiloqPCR and Laws-qPCR, 103 CFU/g feces for F4-qPCR and F18-qPCR. The PCR efficiency for all four qPCR assays was between 0.91 and 1.01 with R2 above 0.993. Standard curves, slopes and elevation, varied between assays and between measurements from pure...... DNA from reference strains and feces spiked with the respective strains. The linear ranges found for spiked fecal samples differed both from the linear ranges from pure culture of the reference strains and between the qPCR tests. The linear ranges were five log units for F4- qPCR, and Laws-qPCR, six...

  3. Automated PCR setup for forensic casework samples using the Normalization Wizard and PCR Setup robotic methods.

    Science.gov (United States)

    Greenspoon, S A; Sykes, K L V; Ban, J D; Pollard, A; Baisden, M; Farr, M; Graham, N; Collins, B L; Green, M M; Christenson, C C

    2006-12-20

    Human genome, pharmaceutical and research laboratories have long enjoyed the application of robotics to performing repetitive laboratory tasks. However, the utilization of robotics in forensic laboratories for processing casework samples is relatively new and poses particular challenges. Since the quantity and quality (a mixture versus a single source sample, the level of degradation, the presence of PCR inhibitors) of the DNA contained within a casework sample is unknown, particular attention must be paid to procedural susceptibility to contamination, as well as DNA yield, especially as it pertains to samples with little biological material. The Virginia Department of Forensic Science (VDFS) has successfully automated forensic casework DNA extraction utilizing the DNA IQ(trade mark) System in conjunction with the Biomek 2000 Automation Workstation. Human DNA quantitation is also performed in a near complete automated fashion utilizing the AluQuant Human DNA Quantitation System and the Biomek 2000 Automation Workstation. Recently, the PCR setup for casework samples has been automated, employing the Biomek 2000 Automation Workstation and Normalization Wizard, Genetic Identity version, which utilizes the quantitation data, imported into the software, to create a customized automated method for DNA dilution, unique to that plate of DNA samples. The PCR Setup software method, used in conjunction with the Normalization Wizard method and written for the Biomek 2000, functions to mix the diluted DNA samples, transfer the PCR master mix, and transfer the diluted DNA samples to PCR amplification tubes. Once the process is complete, the DNA extracts, still on the deck of the robot in PCR amplification strip tubes, are transferred to pre-labeled 1.5 mL tubes for long-term storage using an automated method. The automation of these steps in the process of forensic DNA casework analysis has been accomplished by performing extensive optimization, validation and testing of the

  4. Quantitative analysis chemistry

    International Nuclear Information System (INIS)

    Ko, Wansuk; Lee, Choongyoung; Jun, Kwangsik; Hwang, Taeksung

    1995-02-01

    This book is about quantitative analysis chemistry. It is divided into ten chapters, which deal with the basic conception of material with the meaning of analysis chemistry and SI units, chemical equilibrium, basic preparation for quantitative analysis, introduction of volumetric analysis, acid-base titration of outline and experiment examples, chelate titration, oxidation-reduction titration with introduction, titration curve, and diazotization titration, precipitation titration, electrometric titration and quantitative analysis.

  5. Comparison of high and low virulence serotypes of Actinobacillus pleuropneumoniae by quantitative real-time PCR

    DEFF Research Database (Denmark)

    Schou, Kirstine Klitgaard; Angen, Øystein; Boye, Mette

    PCR data. Preliminary results showed that in both serotype 2 and serotype 6, the toxin producing gene apxIV was the most highly expressed of the investigated genes. The major difference observed between the two serotypes was that apfA, involved in type IV vili production, was significantly upregulated...... of high virulence while serotype 6 strains are normally found to be less pathogenic. To gain an understanding of the differential virulence of serotype 2 and 6, the expression of a panel of Ap genes during infection of porcine epithelial lung cells (SJPL) were examined by quantitative real-time PCR (q...... to be important for early establishment of the bacteria in the host were examined by qPCR. The genes examined were apfA, coding for a subunit of Type IV pili, kdsB coding for a gene involved in lippopolysacceride biosynthesis, and pgaB which is involved in biofilm formation, all three believed to be important...

  6. Development and Evaluation of Event-Specific Quantitative PCR Method for Genetically Modified Soybean MON87701.

    Science.gov (United States)

    Tsukahara, Keita; Takabatake, Reona; Masubuchi, Tomoko; Futo, Satoshi; Minegishi, Yasutaka; Noguchi, Akio; Kondo, Kazunari; Nishimaki-Mogami, Tomoko; Kurashima, Takeyo; Mano, Junichi; Kitta, Kazumi

    2016-01-01

    A real-time PCR-based analytical method was developed for the event-specific quantification of a genetically modified (GM) soybean event, MON87701. First, a standard plasmid for MON87701 quantification was constructed. The conversion factor (C f ) required to calculate the amount of genetically modified organism (GMO) was experimentally determined for a real-time PCR instrument. The determined C f for the real-time PCR instrument was 1.24. For the evaluation of the developed method, a blind test was carried out in an inter-laboratory trial. The trueness and precision were evaluated as the bias and reproducibility of relative standard deviation (RSDr), respectively. The determined biases and the RSDr values were less than 30 and 13%, respectively, at all evaluated concentrations. The limit of quantitation of the method was 0.5%, and the developed method would thus be applicable for practical analyses for the detection and quantification of MON87701.

  7. A real-time, quantitative PCR protocol for assessing the relative parasitemia of Leucocytozoon in waterfowl

    Science.gov (United States)

    Smith, Matthew M.; Schmutz, Joel A.; Apelgren, Chloe; Ramey, Andy M.

    2015-01-01

    Microscopic examination of blood smears can be effective at diagnosing and quantifying hematozoa infections. However, this method requires highly trained observers, is time consuming, and may be inaccurate for detection of infections at low levels of parasitemia. To develop a molecular methodology for identifying and quantifying Leucocytozoon parasite infection in wild waterfowl (Anseriformes), we designed a real-time, quantitative PCR protocol to amplify Leucocytozoon mitochondrial DNA using TaqMan fluorogenic probes and validated our methodology using blood samples collected from waterfowl in interior Alaska during late summer and autumn (n = 105). By comparing our qPCR results to those derived from a widely used nested PCR protocol, we determined that our assay showed high levels of sensitivity (91%) and specificity (100%) in detecting Leucocytozoon DNA from host blood samples. Additionally, results of a linear regression revealed significant correlation between the raw measure of parasitemia produced by our qPCR assay (Ct values) and numbers of parasites observed on blood smears (R2 = 0.694, P = 0.003), indicating that our assay can reliably determine the relative parasitemia levels among samples. This methodology provides a powerful new tool for studies assessing effects of haemosporidian infection in wild avian species.

  8. Performance of two quantitative PCR methods for microbial source tracking of human sewage and implications for microbial risk assessment in recreational waters

    Science.gov (United States)

    Before new, rapid quantitative PCR (qPCR) methods for recreational water quality assessment and microbial source tracking (MST) can be useful in a regulatory context, an understanding of the ability of the method to detect a DNA target (marker) when the contaminant soure has been...

  9. Ultrasensitive quantitation of human papillomavirus type 16 E6 oncogene sequences by nested real time PCR

    Directory of Open Access Journals (Sweden)

    López-Revilla Rubén

    2010-05-01

    Full Text Available Abstract Background We have developed an ultrasensitive method based on conventional PCR preamplification followed by nested amplification through real time PCR (qPCR in the presence of the DNA intercalating agent EvaGreen. Results Amplification mixtures calibrated with a known number of pHV101 copies carrying a 645 base pair (bp-long insert of the human papillomavirus type 16 (HPV16 E6 oncogene were used to generate the E6-1 amplicon of 645 bp by conventional PCR and then the E6-2 amplicon of 237 bp by nested qPCR. Direct and nested qPCR mixtures for E6-2 amplification corresponding to 2.5 × 102-2.5 × 106 initial pHV101 copies had threshold cycle (Ct values in the ranges of 18.7-29.0 and 10.0-25.0, respectively. The Ct of qPCR mixtures prepared with 1/50 volumes of preamplified mixtures containing 50 ng of DNA of the SiHa cell line (derived from an invasive cervical cancer with one HPV16 genome per cell was 19.9. Thermal fluorescence extinction profiles of E6-2 amplicons generated from pHV101 and SiHa DNA were identical, with a peak at 85.5°C. Conclusions Our method based on conventional preamplification for 15 cycles increased 10,750 times the sensitivity of nested qPCR for the quantitation of the E6 viral oncogene and confirmed that the SiHa cell line contains one E6-HPV16 copy per cell.

  10. Comparison of Hybrid Capture 2 Assay with Real-time-PCR for Detection and Quantitation of Hepatitis B Virus DNA.

    Science.gov (United States)

    Majid, Farjana; Jahan, Munira; Lutful Moben, Ahmed; Tabassum, Shahina

    2014-01-01

    Both real-time-polymerase chain reaction (PCR) and hybrid capture 2 (HC2) assay can detect and quantify hepatitis B virus (HBV) DNA. However, real-time-PCR can detect a wide range of HBV DNA, while HC2 assay could not detect lower levels of viremia. The present study was designed to detect and quantify HBV DNA by real-time-PCR and HC2 assay and compare the quantitative data of these two assays. A cross-sectional study was conducted in between July 2010 and June 2011. A total of 66 serologically diagnosed chronic hepatitis B (CHB) patients were selected for the study. Real-time-PCR and HC2 assay was done to detect HBV DNA. Data were analyzed by statistical Package for the social sciences (SPSS). Among 66 serologically diagnosed chronic hepatitis B patients 40 (60.61%) patients had detectable and 26 (39.39%) had undetectable HBV DNA by HC2 assay. Concordant results were obtained for 40 (60.61%) out of these 66 patients by real-time-PCR and HC2 assay with mean viral load of 7.06 ± 1.13 log 10 copies/ml and 6.95 ± 1.08 log 10 copies/ml, respectively. In the remaining 26 patients, HBV DNA was detectable by real-time-PCR in 20 patients (mean HBV DNA level was 3.67 ± 0.72 log 10 copies/ml. However, HBV DNA could not be detectable in six cases by the both assays. The study showed strong correlation (r = 0.915) between real-time-PCR and HC2 assay for the detection and quantification of HBV DNA. HC2 assay may be used as an alternative to real-time-PCR for CHB patients. How to cite this article: Majid F, Jahan M, Moben AL, Tabassum S. Comparison of Hybrid Capture 2 Assay with Real-time-PCR for Detection and Quantitation of Hepatitis B Virus DNA. Euroasian J Hepato-Gastroenterol 2014;4(1):31-35.

  11. Evaluation of Faecalibacterium 16S rDNA genetic markers for accurate identification of swine faecal waste by quantitative PCR.

    Science.gov (United States)

    Duan, Chuanren; Cui, Yamin; Zhao, Yi; Zhai, Jun; Zhang, Baoyun; Zhang, Kun; Sun, Da; Chen, Hang

    2016-10-01

    A genetic marker within the 16S rRNA gene of Faecalibacterium was identified for use in a quantitative PCR (qPCR) assay to detect swine faecal contamination in water. A total of 146,038 bacterial sequences were obtained using 454 pyrosequencing. By comparative bioinformatics analysis of Faecalibacterium sequences with those of numerous swine and other animal species, swine-specific Faecalibacterium 16S rRNA gene sequences were identified and Polymerase Chain Okabe (PCR) primer sets designed and tested against faecal DNA samples from swine and non-swine sources. Two PCR primer sets, PFB-1 and PFB-2, showed the highest specificity to swine faecal waste and had no cross-reaction with other animal samples. PFB-1 and PFB-2 amplified 16S rRNA gene sequences from 50 samples of swine with positive ratios of 86 and 90%, respectively. We compared swine-specific Faecalibacterium qPCR assays for the purpose of quantifying the newly identified markers. The quantification limits (LOQs) of PFB-1 and PFB-2 markers in environmental water were 6.5 and 2.9 copies per 100 ml, respectively. Of the swine-associated assays tested, PFB-2 was more sensitive in detecting the swine faecal waste and quantifying the microbial load. Furthermore, the microbial abundance and diversity of the microbiomes of swine and other animal faeces were estimated using operational taxonomic units (OTUs). The species specificity was demonstrated for the microbial populations present in various animal faeces. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Have you tried spermine? A rapid and cost-effective method to eliminate dextran sodium sulfate inhibition of PCR and RT-PCR.

    Science.gov (United States)

    Krych, Łukasz; Kot, Witold; Bendtsen, Katja M B; Hansen, Axel K; Vogensen, Finn K; Nielsen, Dennis S

    2018-01-01

    The Dextran Sulfate Sodium (DSS) induced colitis mouse model is commonly used to investigate human inflammatory bowel disease (IBD). Nucleic acid extracts originating from these animals are often contaminated with DSS, which is a strong inhibitor of many enzymatic based molecular biology reactions including PCR and reverse-transcription (RT). Methods for removing DSS from nucleic acids extracts exist for RNA, but no effective protocol for DNA or cDNA is currently available. However, spermine has previously been shown to be an effective agent for counteracting DSS inhibition of polynucleotide kinase, which led to the hypothesis, that spermine could be used to counteract DSS inhibition of PCR and RT. We investigated the means of adding spermine in an adequate concentration to PCR based protocols (including qPCR, two-step RT-qPCR, and amplicon sequencing library preparation) to remove DSS inhibition. Within the range up to 0.01g/L, spermine can be added to PCR/qPCR or RT prophylactically without a significant reduction of reaction efficiency. Addition of spermine at the concentration of 0.08g/L can be used to recover qualitative PCR signal inhibited by DSS in concentrations up to 0.32g/L. For optimal quantitative analysis, the concentration of spermine requires fine adjustment. Hence, we present here a simple fluorometric based method for adjusting the concentration of spermine ensuring an optimal efficiency of the reaction exposed to an unknown concentration of DSS. In conclusion, we demonstrate a cost effective and easy method to counteract DSS inhibition in PCR and two-step RT-qPCR. Fixed or fine-tuned concentrations of spermine can be administered depending on the qualitative or quantitative character of the analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Statistical aspects of quantitative real-time PCR experiment design.

    Science.gov (United States)

    Kitchen, Robert R; Kubista, Mikael; Tichopad, Ales

    2010-04-01

    Experiments using quantitative real-time PCR to test hypotheses are limited by technical and biological variability; we seek to minimise sources of confounding variability through optimum use of biological and technical replicates. The quality of an experiment design is commonly assessed by calculating its prospective power. Such calculations rely on knowledge of the expected variances of the measurements of each group of samples and the magnitude of the treatment effect; the estimation of which is often uninformed and unreliable. Here we introduce a method that exploits a small pilot study to estimate the biological and technical variances in order to improve the design of a subsequent large experiment. We measure the variance contributions at several 'levels' of the experiment design and provide a means of using this information to predict both the total variance and the prospective power of the assay. A validation of the method is provided through a variance analysis of representative genes in several bovine tissue-types. We also discuss the effect of normalisation to a reference gene in terms of the measured variance components of the gene of interest. Finally, we describe a software implementation of these methods, powerNest, that gives the user the opportunity to input data from a pilot study and interactively modify the design of the assay. The software automatically calculates expected variances, statistical power, and optimal design of the larger experiment. powerNest enables the researcher to minimise the total confounding variance and maximise prospective power for a specified maximum cost for the large study. Copyright 2010 Elsevier Inc. All rights reserved.

  14. Recombinant plasmid-based quantitative Real-Time PCR analysis of Salmonella enterica serotypes and its application to milk samples.

    Science.gov (United States)

    Gokduman, Kurtulus; Avsaroglu, M Dilek; Cakiris, Aris; Ustek, Duran; Gurakan, G Candan

    2016-03-01

    The aim of the current study was to develop, a new, rapid, sensitive and quantitative Salmonella detection method using a Real-Time PCR technique based on an inexpensive, easy to produce, convenient and standardized recombinant plasmid positive control. To achieve this, two recombinant plasmids were constructed as reference molecules by cloning the two most commonly used Salmonella-specific target gene regions, invA and ttrRSBC. The more rapid detection enabled by the developed method (21 h) compared to the traditional culture method (90 h) allows the quantitative evaluation of Salmonella (quantification limits of 10(1)CFU/ml and 10(0)CFU/ml for the invA target and the ttrRSBC target, respectively), as illustrated using milk samples. Three advantages illustrated by the current study demonstrate the potential of the newly developed method to be used in routine analyses in the medical, veterinary, food and water/environmental sectors: I--The method provides fast analyses including the simultaneous detection and determination of correct pathogen counts; II--The method is applicable to challenging samples, such as milk; III--The method's positive controls (recombinant plasmids) are reproducible in large quantities without the need to construct new calibration curves. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Identification of Reference Genes for Normalizing Quantitative Real-Time PCR in Urechis unicinctus

    Science.gov (United States)

    Bai, Yajiao; Zhou, Di; Wei, Maokai; Xie, Yueyang; Gao, Beibei; Qin, Zhenkui; Zhang, Zhifeng

    2018-06-01

    The reverse transcription quantitative real-time PCR (RT-qPCR) has become one of the most important techniques of studying gene expression. A set of valid reference genes are essential for the accurate normalization of data. In this study, five candidate genes were analyzed with geNorm, NormFinder, BestKeeper and ΔCt methods to identify the genes stably expressed in echiuran Urechis unicinctus, an important commercial marine benthic worm, under abiotic (sulfide stress) and normal (adult tissues, embryos and larvae at different development stages) conditions. The comprehensive results indicated that the expression of TBP was the most stable at sulfide stress and in developmental process, while the expression of EF- 1- α was the most stable at sulfide stress and in various tissues. TBP and EF- 1- α were recommended as a suitable reference gene combination to accurately normalize the expression of target genes at sulfide stress; and EF- 1- α, TBP and TUB were considered as a potential reference gene combination for normalizing the expression of target genes in different tissues. No suitable gene combination was obtained among these five candidate genes for normalizing the expression of target genes for developmental process of U. unicinctus. Our results provided a valuable support for quantifying gene expression using RT-qPCR in U. unicinctus.

  16. O-5S quantitative real-time PCR: a new diagnostic tool for laboratory confirmation of human onchocerciasis.

    Science.gov (United States)

    Mekonnen, Solomon A; Beissner, Marcus; Saar, Malkin; Ali, Solomon; Zeynudin, Ahmed; Tesfaye, Kassahun; Adbaru, Mulatu G; Battke, Florian; Poppert, Sven; Hoelscher, Michael; Löscher, Thomas; Bretzel, Gisela; Herbinger, Karl-Heinz

    2017-10-02

    Onchocerciasis is a parasitic disease caused by the filarial nematode Onchocerca volvulus. In endemic areas, the diagnosis is commonly confirmed by microscopic examination of skin snip samples, though this technique is considered to have low sensitivity. The available melting-curve based quantitative real-time PCR (qPCR) using degenerated primers targeting the O-150 repeat of O. volvulus was considered insufficient for confirming the individual diagnosis, especially in elimination studies. This study aimed to improve detection of O. volvulus DNA in clinical samples through the development of a highly sensitive qPCR assay. A novel hydrolysis probe based qPCR assay was designed targeting the specific sequence of the O. volvulus O-5S rRNA gene. A total of 200 clinically suspected onchocerciasis cases were included from Goma district in South-west Ethiopia, from October 2012 through May 2013. Skin snip samples were collected and subjected to microscopy, O-150 qPCR, and the novel O-5S qPCR. Among the 200 individuals, 133 patients tested positive (positivity rate of 66.5%) and 67 negative by O-5S qPCR, 74 tested positive by microscopy (37.0%) and 78 tested positive by O-150 qPCR (39.0%). Among the 133 O-5S qPCR positive individuals, microscopy and O-150 qPCR detected 55.6 and 59.4% patients, respectively, implying a higher sensitivity of O-5S qPCR than microscopy and O-150 qPCR. None of the 67 individuals who tested negative by O-5S qPCR tested positive by microscopy or O-150 qPCR, implying 100% specificity of the newly designed O-5S qPCR assay. The novel O-5S qPCR assay is more sensitive than both microscopic examination and the existing O-150 qPCR for the detection of O. volvulus from skin snip samples. The newly designed assay is an important step towards appropriate individual diagnosis and control of onchocerciasis.

  17. Quantification of Human Fecal Bifidobacterium Species by Use of Quantitative Real-Time PCR Analysis Targeting the groEL Gene

    Science.gov (United States)

    Junick, Jana

    2012-01-01

    Quantitative real-time PCR assays targeting the groEL gene for the specific enumeration of 12 human fecal Bifidobacterium species were developed. The housekeeping gene groEL (HSP60 in eukaryotes) was used as a discriminative marker for the differentiation of Bifidobacterium adolescentis, B. angulatum, B. animalis, B. bifidum, B. breve, B. catenulatum, B. dentium, B. gallicum, B. longum, B. pseudocatenulatum, B. pseudolongum, and B. thermophilum. The bifidobacterial chromosome contains a single copy of the groEL gene, allowing the determination of the cell number by quantification of the groEL copy number. Real-time PCR assays were validated by comparing fecal samples spiked with known numbers of a given Bifidobacterium species. Independent of the Bifidobacterium species tested, the proportion of groEL copies recovered from fecal samples spiked with 5 to 9 log10 cells/g feces was approximately 50%. The quantification limit was 5 to 6 log10 groEL copies/g feces. The interassay variability was less than 10%, and variability between different DNA extractions was less than 23%. The method developed was applied to fecal samples from healthy adults and full-term breast-fed infants. Bifidobacterial diversity in both adults and infants was low, with mostly ≤3 Bifidobacterium species and B. longum frequently detected. The predominant species in infant and adult fecal samples were B. breve and B. adolescentis, respectively. It was possible to distinguish B. catenulatum and B. pseudocatenulatum. We conclude that the groEL gene is a suitable molecular marker for the specific and accurate quantification of human fecal Bifidobacterium species by real-time PCR. PMID:22307308

  18. Tracking antibiotic resistome during wastewater treatment using high throughput quantitative PCR.

    Science.gov (United States)

    An, Xin-Li; Su, Jian-Qiang; Li, Bing; Ouyang, Wei-Ying; Zhao, Yi; Chen, Qing-Lin; Cui, Li; Chen, Hong; Gillings, Michael R; Zhang, Tong; Zhu, Yong-Guan

    2018-05-08

    Wastewater treatment plants (WWTPs) contain diverse antibiotic resistance genes (ARGs), and thus are considered as a major pathway for the dissemination of these genes into the environments. However, comprehensive evaluations of ARGs dynamic during wastewater treatment process lack extensive investigations on a broad spectrum of ARGs. Here, we investigated the dynamics of ARGs and bacterial community structures in 114 samples from eleven Chinese WWTPs using high-throughput quantitative PCR and 16S rRNA-based Illumina sequencing analysis. Significant shift of ARGs profiles was observed and wastewater treatment process could significantly reduce the abundance and diversity of ARGs, with the removal of ARGs concentration by 1-2 orders of magnitude. Whereas, a considerable number of ARGs were detected and enriched in effluents compared with influents. In particular, seven ARGs mainly conferring resistance to beta-lactams and aminoglycosides and three mobile genetic elements persisted in all WWTPs samples after wastewater treatment. ARGs profiles varied with wastewater treatment processes, seasons and regions. This study tracked the footprint of ARGs during wastewater treatment process, which would support the assessment on the spread of ARGs from WWTPs and provide data for identifying management options to improve ARG mitigation in WWTPs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. DAG expression: high-throughput gene expression analysis of real-time PCR data using standard curves for relative quantification.

    Directory of Open Access Journals (Sweden)

    María Ballester

    Full Text Available BACKGROUND: Real-time quantitative PCR (qPCR is still the gold-standard technique for gene-expression quantification. Recent technological advances of this method allow for the high-throughput gene-expression analysis, without the limitations of sample space and reagent used. However, non-commercial and user-friendly software for the management and analysis of these data is not available. RESULTS: The recently developed commercial microarrays allow for the drawing of standard curves of multiple assays using the same n-fold diluted samples. Data Analysis Gene (DAG Expression software has been developed to perform high-throughput gene-expression data analysis using standard curves for relative quantification and one or multiple reference genes for sample normalization. We discuss the application of DAG Expression in the analysis of data from an experiment performed with Fluidigm technology, in which 48 genes and 115 samples were measured. Furthermore, the quality of our analysis was tested and compared with other available methods. CONCLUSIONS: DAG Expression is a freely available software that permits the automated analysis and visualization of high-throughput qPCR. A detailed manual and a demo-experiment are provided within the DAG Expression software at http://www.dagexpression.com/dage.zip.

  20. Performance of Droplet Digital PCR in Non-Invasive Fetal RHD Genotyping - Comparison with a Routine Real-Time PCR Based Approach.

    Directory of Open Access Journals (Sweden)

    Iveta Svobodová

    Full Text Available Detection and characterization of circulating cell-free fetal DNA (cffDNA from maternal circulation requires an extremely sensitive and precise method due to very low cffDNA concentration. In our study, droplet digital PCR (ddPCR was implemented for fetal RHD genotyping from maternal plasma to compare this new quantification alternative with real-time PCR (qPCR as a golden standard for quantitative analysis of cffDNA. In the first stage of study, a DNA quantification standard was used. Clinical samples, including 10 non-pregnant and 35 pregnant women, were analyzed as a next step. Both methods' performance parameters-standard curve linearity, detection limit and measurement precision-were evaluated. ddPCR in comparison with qPCR has demonstrated sufficient sensitivity for analysing of cffDNA and determination of fetal RhD status from maternal circulation, results of both methods strongly correlated. Despite the more demanding workflow, ddPCR was found to be slightly more precise technology, as evaluated using quantitative standard. Regarding the clinical samples, the precision of both methods equalized with decreasing concentrations of tested DNA samples. In case of cffDNA with very low concentrations, variance parameters of both techniques were comparable. Detected levels of fetal cfDNA in maternal plasma were slightly higher than expected and correlated significantly with gestational age as measured by both methods (ddPCR r = 0.459; qPCR r = 0.438.

  1. Analysis of minimal residual disease by Ig/TCR gene rearrangements: guidelines for interpretation of real-time quantitative PCR data

    NARCIS (Netherlands)

    van der Velden, V. H. J.; Cazzaniga, G.; Schrauder, A.; Hancock, J.; Bader, P.; Panzer-Grumayer, E. R.; Flohr, T.; Sutton, R.; Cave, H.; Madsen, H. O.; Cayuela, J. M.; Trka, J.; Eckert, C.; Foroni, L.; Zur Stadt, U.; Beldjord, K.; Raff, T.; van der Schoot, C. E.; van Dongen, J. J. M.

    2007-01-01

    Most modern treatment protocols for acute lymphoblastic leukaemia (ALL) include the analysis of minimal residual disease (MRD). To ensure comparable MRD results between different MRD-polymerase chain reaction (PCR) laboratories, standardization and quality control are essential. The European Study

  2. A high-throughput qPCR system for simultaneous quantitative detection of dairy Lactococcus lactis and Leuconostoc bacteriophages

    DEFF Research Database (Denmark)

    Muhammed, Musemma Kedir; Krych, Lukasz; Nielsen, Dennis Sandris

    2017-01-01

    simultaneous quantitative detection of Lc. lactis 936 (now SK1virus), P335, c2 (now C2virus) and Leuconostoc phage groups. Component assays are designed to have high efficiencies and nearly the same dynamic detection ranges, i.e., from 1.1 x 105 to 1.1 x 101 phage genomes per reaction, which corresponds to 9 x......Simultaneous quantitative detection of Lactococcus (Lc.) lactis and Leuconostoc species bacteriophages (phages) has not been reported in dairies using undefined mixed-strain DL-starters, probably due to the lack of applicable methods. We optimized a high-throughput qPCR system that allows...... 107 to 9 x 103 phage particles mL-1 without any additional up-concentrating steps. The amplification efficiencies of the corresponding assays were 100.1±2.6, 98.7±2.3, 101.0±2.3 and 96.2±6.2. The qPCR system was tested on samples obtained from a dairy plant that employed traditional mother...

  3. A tool for design of primers for microRNA-specific quantitative RT-qPCR. BMC Bioinformatics

    DEFF Research Database (Denmark)

    Busk, Peter Kamp

    2014-01-01

    of formation of secondary structures and primer dimers. Testing of the primers showed that 76 out of 79 primers (96%) worked for quantification of microRNAs by miR-specific RT-qPCR of mammalian RNA samples. This success rate corresponds to the success rate of manual primer design. Furthermore, primers designed......Background MicroRNAs are small but biologically important RNA molecules. Although different methods can be used for quantification of microRNAs, quantitative PCR is regarded as the reference that is used to validate other methods. Several commercial qPCR assays are available but they often come...... at a high price and the sequences of the primers are not disclosed. An alternative to commercial assays is to manually design primers but this work is tedious and, hence, not practical for the design of primers for a larger number of targets. Results I have developed the software miRprimer for automatic...

  4. Single-Cell Quantitative PCR: Advances and Potential in Cancer Diagnostics.

    Science.gov (United States)

    Ok, Chi Young; Singh, Rajesh R; Salim, Alaa A

    2016-01-01

    Tissues are heterogeneous in their components. If cells of interest are a minor population of collected tissue, it would be difficult to obtain genetic or genomic information of the interested cell population with conventional genomic DNA extraction from the collected tissue. Single-cell DNA analysis is important in the analysis of genetics of cell clonality, genetic anticipation, and single-cell DNA polymorphisms. Single-cell PCR using Single Cell Ampligrid/GeXP platform is described in this chapter.

  5. A Quantitative PCR Protocol for Detection of Oxyspirura petrowi in Northern Bobwhites (Colinus virginianus).

    Science.gov (United States)

    Kistler, Whitney M; Parlos, Julie A; Peper, Steven T; Dunham, Nicholas R; Kendall, Ronald J

    2016-01-01

    Oxyspirura petrowi is a parasitic nematode that infects wild birds. This parasite has a broad host range, but has recently been reported in high prevalences from native Galliformes species in the United States. In order to better understand the impact O. petrowi has on wild bird populations, we developed a quantitative PCR protocol to detect infections in wild northern bobwhites (Colinus virginianus). We used paired fecal and cloacal swab samples from wild caught and experimentally infected northern bobwhites and matching fecal float data from experimentally infected birds to validate our assay. Overall we detected more positive birds from fecal samples than the paired cloacal swabs and there was strong agreement between the qPCR results from fecal samples and from fecal flotation (84%; κ = 0.69 [0.53-0.84 95% CI]). We also detected O. petrowi DNA in ten replicates of samples spiked with one O. petrowi egg. This qPCR assay is an effective assay to detect O. petrowi infections in wild birds. Our results suggest that fecal samples are the most appropriate sample for detecting infections; although, cloacal swabs can be useful for determining if O. petrowi is circulating in a population.

  6. Identification of pyrG Used as an Endogenous Reference Gene in Qualitative and Real-Time Quantitative PCR Detection of Pleurotus ostreatus.

    Science.gov (United States)

    Zheng, Shi; Shan, Luying; Zhuang, Yongliang; Shang, Ying

    2018-03-01

    As a well-known edible fungus rich in nutrients, Pleurotus ostreatus has been used as an alternative to expensive wild edible fungi. Specifically, the fact that using P. ostreatus instead of other expensive wild edible fungi has damaged the rights and interests of consumers. Among the existing methods for detection of food adulteration, the amplification of endogenous reference gene is the most accurate method. However, an ideal endogenous reference gene for P. ostreatus has yet to be developed. In this study, a DNA extraction method for P. ostreatus was optimized, and pyrG was selected as a species-specific gene through sequence alignment. This gene was subsequently subjected to qualitative and quantitative Polymerase Chain Reaction (PCR) assays with 3 different P. ostreatus varieties and 7 other species. A low detection limit of 5 pg/μL was obtained by TaqMan quantitative PCR, and no pyrG amplification product was observed in the 7 other species. No allelic variation was detected in P. ostreatus varieties. These experiments confirmed that pyrG was an ideal endogenous reference gene for the qualitative and real-time quantitative PCR detection of P. ostreatus. This method was also suitable for the examination of processed P. ostreatus samples and determination of adulteration in wild mushrooms. The pyrG gene was chosen as an ideal endogenous reference gene for the qualitative and real-time quantitative PCR detection of P. ostreatus, and the detection limit was 5 pg/μL for the quantification. This method is used not only for raw materials but also for processed P. ostreatus products and other processed mushroom foods. © 2018 Institute of Food Technologists®.

  7. Quantitative PCR assay to determine prevalence and intensity of MSX (Haplosporidium nelsoni) in North Carolina and Rhode Island oysters Crassostrea virginica.

    Science.gov (United States)

    Wilbur, Ami E; Ford, Susan E; Gauthier, Julie D; Gomez-Chiarri, Marta

    2012-12-27

    The continuing challenges to the management of both wild and cultured eastern oyster Crassostrea virginica populations resulting from protozoan parasites has stimulated interest in the development of molecular assays for their detection and quantification. For Haplosporidium nelsoni, the causative agent of multinucleated sphere unknown (MSX) disease, diagnostic evaluations depend extensively on traditional but laborious histological approaches and more recently on rapid and sensitive (but not quantitative) end-point polymerase chain reaction (PCR) assays. Here, we describe the development and application of a quantitative PCR (qPCR) assay for H. nelsoni using an Applied Biosystems TaqMan® assay designed with minor groove binder (MGB) probes. The assay was highly sensitive, detecting as few as 20 copies of cloned target DNA. Histologically evaluated parasite density was significantly correlated with the quantification cycle (Cq), regardless of whether quantification was categorical (r2 = 0.696, p < 0.0001) or quantitative (r2 = 0.797, p < 0.0001). Application in field studies conducted in North Carolina, USA (7 locations), revealed widespread occurrence of the parasite with moderate to high intensities noted in some locations. In Rhode Island, USA, application of the assay on oysters from 2 locations resulted in no positives.

  8. Quantitative microbial community analysis of three different sulfidic mine tailing dumps generating acid mine drainage.

    Science.gov (United States)

    Kock, Dagmar; Schippers, Axel

    2008-08-01

    The microbial communities of three different sulfidic and acidic mine waste tailing dumps located in Botswana, Germany, and Sweden were quantitatively analyzed using quantitative real-time PCR (Q-PCR), fluorescence in situ hybridization (FISH), catalyzed reporter deposition-FISH (CARD-FISH), Sybr green II direct counting, and the most probable number (MPN) cultivation technique. Depth profiles of cell numbers showed that the compositions of the microbial communities are greatly different at the three sites and also strongly varied between zones of oxidized and unoxidized tailings. Maximum cell numbers of up to 10(9) cells g(-1) dry weight were determined in the pyrite or pyrrhotite oxidation zones, whereas cell numbers in unoxidized tailings were significantly lower. Bacteria dominated over Archaea and Eukarya at all tailing sites. The acidophilic Fe(II)- and/or sulfur-oxidizing Acidithiobacillus spp. dominated over the acidophilic Fe(II)-oxidizing Leptospirillum spp. among the Bacteria at two sites. The two genera were equally abundant at the third site. The acidophilic Fe(II)- and sulfur-oxidizing Sulfobacillus spp. were generally less abundant. The acidophilic Fe(III)-reducing Acidiphilium spp. could be found at only one site. The neutrophilic Fe(III)-reducing Geobacteraceae as well as the dsrA gene of sulfate reducers were quantifiable at all three sites. FISH analysis provided reliable data only for tailing zones with high microbial activity, whereas CARD-FISH, Q-PCR, Sybr green II staining, and MPN were suitable methods for a quantitative microbial community analysis of tailings in general.

  9. Identification and validation of quantitative real-time reverse transcription PCR reference genes for gene expression analysis in teak (Tectona grandis L.f.).

    Science.gov (United States)

    Galeano, Esteban; Vasconcelos, Tarcísio Sales; Ramiro, Daniel Alves; De Martin, Valentina de Fátima; Carrer, Helaine

    2014-07-22

    Teak (Tectona grandis L.f.) is currently the preferred choice of the timber trade for fabrication of woody products due to its extraordinary qualities and is widely grown around the world. Gene expression studies are essential to explore wood formation of vascular plants, and quantitative real-time reverse transcription PCR (qRT-PCR) is a sensitive technique employed for quantifying gene expression levels. One or more appropriate reference genes are crucial to accurately compare mRNA transcripts through different tissues/organs and experimental conditions. Despite being the focus of some genetic studies, a lack of molecular information has hindered genetic exploration of teak. To date, qRT-PCR reference genes have not been identified and validated for teak. Identification and cloning of nine commonly used qRT-PCR reference genes from teak, including ribosomal protein 60s (rp60s), clathrin adaptor complexes medium subunit family (Cac), actin (Act), histone 3 (His3), sand family (Sand), β-Tubulin (Β-Tub), ubiquitin (Ubq), elongation factor 1-α (Ef-1α), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Expression profiles of these genes were evaluated by qRT-PCR in six tissue and organ samples (leaf, flower, seedling, root, stem and branch secondary xylem) of teak. Appropriate gene cloning and sequencing, primer specificity and amplification efficiency was verified for each gene. Their stability as reference genes was validated by NormFinder, BestKeeper, geNorm and Delta Ct programs. Results obtained from all programs showed that TgUbq and TgEf-1α are the most stable genes to use as qRT-PCR reference genes and TgAct is the most unstable gene in teak. The relative expression of the teak cinnamyl alcohol dehydrogenase (TgCAD) gene in lignified tissues at different ages was assessed by qRT-PCR, using TgUbq and TgEf-1α as internal controls. These analyses exposed a consistent expression pattern with both reference genes. This study proposes a first broad

  10. Normalizing gene expression by quantitative PCR during somatic embryogenesis in two representative conifer species: Pinus pinaster and Picea abies.

    Science.gov (United States)

    de Vega-Bartol, José J; Santos, Raquen Raissa; Simões, Marta; Miguel, Célia M

    2013-05-01

    Suitable internal control genes to normalize qPCR data from different stages of embryo development and germination were identified in two representative conifer species. Clonal propagation by somatic embryogenesis has a great application potentiality in conifers. Quantitative PCR (qPCR) is widely used for gene expression analysis during somatic embryogenesis and embryo germination. No single reference gene is universal, so a systematic characterization of endogenous genes for concrete conditions is fundamental for accuracy. We identified suitable internal control genes to normalize qPCR data obtained at different steps of somatic embryogenesis (embryonal mass proliferation, embryo maturation and germination) in two representative conifer species, Pinus pinaster and Picea abies. Candidate genes included endogenous genes commonly used in conifers, genes previously tested in model plants, and genes with a lower variation of the expression along embryo development according to genome-wide transcript profiling studies. Three different algorithms were used to evaluate expression stability. The geometric average of the expression values of elongation factor-1α, α-tubulin and histone 3 in P. pinaster, and elongation factor-1α, α-tubulin, adenosine kinase and CAC in P. abies were adequate for expression studies throughout somatic embryogenesis. However, improved accuracy was achieved when using other gene combinations in experiments with samples at a single developmental stage. The importance of studies selecting reference genes to use in different tissues or developmental stages within one or close species, and the instability of commonly used reference genes, is highlighted.

  11. High-level expression of podoplanin in benign and malignant soft tissue tumors: immunohistochemical and quantitative real-time RT-PCR analysis.

    Science.gov (United States)

    Xu, Yongjun; Ogose, Akira; Kawashima, Hiroyuki; Hotta, Tetsuo; Ariizumi, Takashi; Li, Guidong; Umezu, Hajime; Endo, Naoto

    2011-03-01

    Podoplanin is a 38 kDa mucin-type transmembrane glycoprotein that was first identified in rat glomerular epithelial cells (podocytes). It is expressed in normal lymphatic endothelium, but is absent from vascular endothelial cells. D2-40 is a commercially available mouse monoclonal antibody which binds to an epitope on human podoplanin. D2-40 immunoreactivity is therefore highly sensitive and specific for lymphatic endothelium. Recent investigations have shown widespread applications of immunohistochemical staining with D2-40 in evaluating podoplanin expression as an immunohistochemical marker for diagnosis and prognosis in various tumors. To determine whether the podoplanin (D2-40) antibody may be useful for the diagnosis of soft tissue tumors, 125 cases, including 4 kinds of benign tumors, 15 kinds of malignant tumors and 3 kinds of tumor-like lesions were immunostained using the D2-40 antibody. Total RNA was extracted from frozen tumor tissue obtained from 41 corresponding soft tissue tumor patients and 12 kinds of soft tissue tumor cell lines. Quantitative real-time PCR reactions were performed. Immunohistochemical and quantitative real-time RT-PCR analyses demonstrated the expression of the podoplanin protein and mRNA in the majority of benign and malignant soft tissue tumors and tumor-like lesions examined, with the exception of alveolar soft part sarcoma, embryonal and alveolar rhabdomyosarcoma, extraskeletal Ewing's sarcoma/peripheral primitive neuro-ectodermal tumor and lipoma, which were completely negative for podoplanin. Since it is widely and highly expressed in nearly all kinds of soft tissue tumors, especially in spindle cell sarcoma, myxoid type soft tissue tumors and soft tissue tumors of the nervous system, podoplanin is considered to have little value in the differential diagnosis of soft tissue tumors.

  12. Selection and validation of appropriate reference genes for quantitative real-time PCR analysis in Salvia hispanica.

    Directory of Open Access Journals (Sweden)

    Rahul Gopalam

    Full Text Available Quantitative real-time polymerase chain reaction (qRT-PCR has become the most popular choice for gene expression studies. For accurate expression analysis, it is pertinent to select a stable reference gene to normalize the data. It is now known that the expression of internal reference genes varies considerably during developmental stages and under different experimental conditions. For Salvia hispanica, an economically important oilseed crop, there are no reports of stable reference genes till date. In this study, we chose 13 candidate reference genes viz. Actin11 (ACT, Elongation factor 1-alpha (EF1-α, Eukaryotic translation initiation factor 3E (ETIF3E, alpha tubulin (α-TUB, beta tubulin (β-TUB, Glyceraldehyde 3-phosphate dehydrogenase (GAPDH, Cyclophilin (CYP, Clathrin adaptor complex (CAC, Serine/threonine-protein phosphatase 2A (PP2A, FtsH protease (FtsH, 18S ribosomal RNA (18S rRNA, S-adenosyl methionine decarboxylase (SAMDC and Rubisco activase (RCA and the expression levels of these genes were assessed in a diverse set of tissue samples representing vegetative stages, reproductive stages and various abiotic stress treatments. Two of the widely used softwares, geNorm and Normfinder were used to evaluate the expression stabilities of these 13 candidate reference genes under different conditions. Results showed that GAPDH and CYP expression remain stable throughout in the different abiotic stress treatments, CAC and PP2A expression were relatively stable under reproductive stages and α-TUB, PP2A and ETIF3E were found to be stably expressed in vegetative stages. Further, the expression levels of Diacylglycerol acyltransferase (DGAT1, a key enzyme in triacylglycerol synthesis was analyzed to confirm the validity of reference genes identified in the study. This is the first systematic study of selection of reference genes in S. hispanica, and will benefit future expression studies in this crop.

  13. Real-Time PCR Quantification of Chloroplast DNA Supports DNA Barcoding of Plant Species.

    Science.gov (United States)

    Kikkawa, Hitomi S; Tsuge, Kouichiro; Sugita, Ritsuko

    2016-03-01

    Species identification from extracted DNA is sometimes needed for botanical samples. DNA quantification is required for an accurate and effective examination. If a quantitative assay provides unreliable estimates, a higher quantity of DNA than the estimated amount may be used in additional analyses to avoid failure to analyze samples from which extracting DNA is difficult. Compared with conventional methods, real-time quantitative PCR (qPCR) requires a low amount of DNA and enables quantification of dilute DNA solutions accurately. The aim of this study was to develop a qPCR assay for quantification of chloroplast DNA from taxonomically diverse plant species. An absolute quantification method was developed using primers targeting the ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene using SYBR Green I-based qPCR. The calibration curve was generated using the PCR amplicon as the template. DNA extracts from representatives of 13 plant families common in Japan. This demonstrates that qPCR analysis is an effective method for quantification of DNA from plant samples. The results of qPCR assist in the decision-making will determine the success or failure of DNA analysis, indicating the possibility of optimization of the procedure for downstream reactions.

  14. Comparison of lung cancer cell lines representing four histopathological subtypes with gene expression profiling using quantitative real-time PCR

    Directory of Open Access Journals (Sweden)

    Kawaguchi Makoto

    2010-01-01

    Full Text Available Abstract Background Lung cancers are the most common type of human malignancy and are intractable. Lung cancers are generally classified into four histopathological subtypes: adenocarcinoma (AD, squamous cell carcinoma (SQ, large cell carcinoma (LC, and small cell carcinoma (SC. Molecular biological characterization of these subtypes has been performed mainly using DNA microarrays. In this study, we compared the gene expression profiles of these four subtypes using twelve human lung cancer cell lines and the more reliable quantitative real-time PCR (qPCR. Results We selected 100 genes from public DNA microarray data and examined them by DNA microarray analysis in eight test cell lines (A549, ABC-1, EBC-1, LK-2, LU65, LU99, STC 1, RERF-LC-MA and a normal control lung cell line (MRC-9. From this, we extracted 19 candidate genes. We quantified the expression of the 19 genes and a housekeeping gene, GAPDH, with qPCR, using the same eight cell lines plus four additional validation lung cancer cell lines (RERF-LC-MS, LC-1/sq, 86-2, and MS-1-L. Finally, we characterized the four subtypes of lung cancer cell lines using principal component analysis (PCA of gene expression profiling for 12 of the 19 genes (AMY2A, CDH1, FOXG1, IGSF3, ISL1, MALL, PLAU, RAB25, S100P, SLCO4A1, STMN1, and TGM2. The combined PCA and gene pathway analyses suggested that these genes were related to cell adhesion, growth, and invasion. S100P in AD cells and CDH1 in AD and SQ cells were identified as candidate markers of these lung cancer subtypes based on their upregulation and the results of PCA analysis. Immunohistochemistry for S100P and RAB25 was closely correlated to gene expression. Conclusions These results show that the four subtypes, represented by 12 lung cancer cell lines, were well characterized using qPCR and PCA for the 12 genes examined. Certain genes, in particular S100P and CDH1, may be especially important for distinguishing the different subtypes. Our results

  15. Quantification of viable bacterial starter cultures of Virgibacillus sp. and Tetragenococcus halophilus in fish sauce fermentation by real-time quantitative PCR.

    Science.gov (United States)

    Udomsil, Natteewan; Chen, Shu; Rodtong, Sureelak; Yongsawatdigul, Jirawat

    2016-08-01

    Real-time quantitative polymerase chain reaction (qPCR) methods were developed for the quantification of Virgibacillus sp. SK37 and Tetragenococcus halophilus MS33, which were added as starter cultures in fish sauce fermentation. The PCR assays were coupled with propidium monoazide (PMA) treatment of samples to selectively quantify viable cells and integrated with exogenous recombinant Escherichia coli cells to control variabilities in analysis procedures. The qPCR methods showed species-specificity for both Virgibacillus halodenitrificans and T. halophilus as evaluated using 6 reference strains and 28 strains of bacteria isolated from fish sauce fermentation. The qPCR efficiencies were 101.1% for V. halodenitrificans and 90.2% for T. halophilus. The quantification limits of the assays were 10(3) CFU/mL and 10(2) CFU/mL in fish sauce samples with linear correlations over 4 Logs for V. halodenitrificans and T. halophilus, respectively. The matrix effect was not observed when evaluated using fish sauce samples fermented for 1-6 months. The developed PMA-qPCR methods were successfully applied to monitor changes of Virgibacillus sp. SK37 and T. halophilus MS33 in a mackerel fish sauce fermentation model where culture-dependent techniques failed to quantify the starter cultures. The results demonstrated the usability of the methods as practical tools for monitoring the starter cultures in fish sauce fermentation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Reliable reference miRNAs for quantitative gene expression analysis of stress responses in Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Kagias, Konstantinos; Podolska, Agnieszka; Pocock, Roger David John

    2014-01-01

    Quantitative real-time PCR (qPCR) has become the "gold standard" for measuring expression levels of individual miRNAs. However, little is known about the validity of reference miRNAs, the improper use of which can result in misleading interpretation of data.......Quantitative real-time PCR (qPCR) has become the "gold standard" for measuring expression levels of individual miRNAs. However, little is known about the validity of reference miRNAs, the improper use of which can result in misleading interpretation of data....

  17. Development and application of an oligonucleotide microarray and real-time quantitative PCR for detection of wastewater bacterial pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dae-Young [National Water Research Institute, Environment Canada, 867 Lakeshore Road, Burlington, Ontario, L7R 4A6 (Canada)], E-mail: daeyoung.lee@ec.gc.ca; Lauder, Heather; Cruwys, Heather; Falletta, Patricia [National Water Research Institute, Environment Canada, 867 Lakeshore Road, Burlington, Ontario, L7R 4A6 (Canada); Beaudette, Lee A. [Environmental Science and Technology Centre, Environment Canada, 335 River Road South, Ottawa, Ontario, K1A 0H3 (Canada)], E-mail: lee.beaudette@ec.gc.ca

    2008-07-15

    Conventional microbial water quality test methods are well known for their technical limitations, such as lack of direct pathogen detection capacity and low throughput capability. The microarray assay has recently emerged as a promising alternative for environmental pathogen monitoring. In this study, bacterial pathogens were detected in municipal wastewater using a microarray equipped with short oligonucleotide probes targeting 16S rRNA sequences. To date, 62 probes have been designed against 38 species, 4 genera, and 1 family of pathogens. The detection sensitivity of the microarray for a waterborne pathogen Aeromonas hydrophila was determined to be approximately 1.0% of the total DNA, or approximately 10{sup 3}A. hydrophila cells per sample. The efficacy of the DNA microarray was verified in a parallel study where pathogen genes and E. coli cells were enumerated using real-time quantitative PCR (qPCR) and standard membrane filter techniques, respectively. The microarray and qPCR successfully detected multiple wastewater pathogen species at different stages of the disinfection process (i.e. secondary effluents vs. disinfected final effluents) and at two treatment plants employing different disinfection methods (i.e. chlorination vs. UV irradiation). This result demonstrates the effectiveness of the DNA microarray as a semi-quantitative, high throughput pathogen monitoring tool for municipal wastewater.

  18. Relative quantification of mRNA: comparison of methods currently used for real-time PCR data analysis

    Directory of Open Access Journals (Sweden)

    Koppel Juraj

    2007-12-01

    Full Text Available Abstract Background Fluorescent data obtained from real-time PCR must be processed by some method of data analysis to obtain the relative quantity of target mRNA. The method chosen for data analysis can strongly influence results of the quantification. Results To compare the performance of six techniques which are currently used for analysing fluorescent data in real-time PCR relative quantification, we quantified four cytokine transcripts (IL-1β, IL-6 TNF-α, and GM-CSF in an in vivo model of colonic inflammation. Accuracy of the methods was tested by quantification on samples with known relative amounts of target mRNAs. Reproducibility of the methods was estimated by the determination of the intra-assay and inter-assay variability. Cytokine expression normalized to the expression of three reference genes (ACTB, HPRT, SDHA was then determined using the six methods for data analysis. The best results were obtained with the relative standard curve method, comparative Ct method and with DART-PCR, LinRegPCR and Liu & Saint exponential methods when average amplification efficiency was used. The use of individual amplification efficiencies in DART-PCR, LinRegPCR and Liu & Saint exponential methods significantly impaired the results. The sigmoid curve-fitting (SCF method produced medium performance; the results indicate that the use of appropriate type of fluorescence data and in some instances manual selection of the number of amplification cycles included in the analysis is necessary when the SCF method is applied. We also compared amplification efficiencies (E and found that although the E values determined by different methods of analysis were not identical, all the methods were capable to identify two genes whose E values significantly differed from other genes. Conclusion Our results show that all the tested methods can provide quantitative values reflecting the amounts of measured mRNA in samples, but they differ in their accuracy and

  19. Quantitative RT-PCR based platform for rapid quantification of the transcripts of highly homologous multigene families and their members during grain development

    DEFF Research Database (Denmark)

    Kaczmarczyk, Agnieszka Ewa; Bowra, Steve; Elek, Zoltan

    2012-01-01

    expression combined with genetic variation in large multigene families with high homology among the alleles is very challenging. Results We designed a rapid qRT-PCR system with the aim of characterising the variation in the expression of hordein genes families. All the known D-, C-, B-, and gamma......-hordein sequences coding full length open reading frames were collected from commonly available databases. Phylogenetic analysis was performed and the members of the different hordein families were classified into subfamilies. Primer sets were designed to discriminate the gene expression level of whole families...... and its subgroups. More over the results indicate the genotypic specific gene expression. Conclusions Quantitative RT-PCR with SYBR Green labelling can be a useful technique to follow gene expression levels of large gene families with highly homologues members. We showed variation in the temporal...

  20. Detection of Campylobacter jejuni in Lizard Faeces from Central Australia Using Quantitative PCR

    Directory of Open Access Journals (Sweden)

    Harriet Whiley

    2016-12-01

    Full Text Available Worldwide, Campylobacter is a significant cause of gastrointestinal illness. It is predominately considered a foodborne pathogen, with human exposure via non-food transmission routes generally overlooked. Current literature has been exploring environmental reservoirs of campylobacteriosis including potential wildlife reservoirs. Given the close proximity between lizards and human habitats in Central Australia, this study examined the presence of Campylobacter jejuni from lizard faeces collected from this region. Of the 51 samples collected, 17 (33% (this included 14/46 (30% wild and 3/5 (60% captive lizard samples were positive for C. jejuni using quantitative PCR (qPCR. This was the first study to investigate the presence of C. jejuni in Australian lizards. This has public health implications regarding the risk of campylobacteriosis from handling of pet reptiles and through cross-contamination or contact with wild lizard faeces. Additionally this has implication for horizontal transmission via lizards of C. jejuni to food production farms. Further research is needed on this environmental reservoir and potential transmission routes to reduce the risk to public health.

  1. LPS-induced cytokine production in the monocytic cell line THP-1 determined by multiple quantitative competitive PCR (QC-PCR)

    DEFF Research Database (Denmark)

    Glue, C; Hansen, J B; Schjerling, P

    2002-01-01

    Quantifying cytokines on the protein level can be problematic because of low concentrations or degradation during sample handling. Aiming towards finding a simple method by which to quantify cytokines on the mRNA level, we combined existing and established molecular biology techniques. Based on t...... on the principle of quantitative competitive RT-PCR with a DNA-competitor, IL-1beta, IL-6, IL-12alpha and the housekeeping enzyme GAPDH are measured at levels down to 200 copies of mRNA.......Quantifying cytokines on the protein level can be problematic because of low concentrations or degradation during sample handling. Aiming towards finding a simple method by which to quantify cytokines on the mRNA level, we combined existing and established molecular biology techniques. Based...

  2. Selection of Reliable Reference Genes for Gene Expression Studies of a Promising Oilseed Crop, Plukenetia volubilis, by Real-Time Quantitative PCR

    Directory of Open Access Journals (Sweden)

    Longjian Niu

    2015-06-01

    Full Text Available Real-time quantitative PCR (RT-qPCR is a reliable and widely used method for gene expression analysis. The accuracy of the determination of a target gene expression level by RT-qPCR demands the use of appropriate reference genes to normalize the mRNA levels among different samples. However, suitable reference genes for RT-qPCR have not been identified in Sacha inchi (Plukenetia volubilis, a promising oilseed crop known for its polyunsaturated fatty acid (PUFA-rich seeds. In this study, using RT-qPCR, twelve candidate reference genes were examined in seedlings and adult plants, during flower and seed development and for the entire growth cycle of Sacha inchi. Four statistical algorithms (delta cycle threshold (ΔCt, BestKeeper, geNorm, and NormFinder were used to assess the expression stabilities of the candidate genes. The results showed that ubiquitin-conjugating enzyme (UCE, actin (ACT and phospholipase A22 (PLA were the most stable genes in Sacha inchi seedlings. For roots, stems, leaves, flowers, and seeds from adult plants, 30S ribosomal protein S13 (RPS13, cyclophilin (CYC and elongation factor-1alpha (EF1α were recommended as reference genes for RT-qPCR. During the development of reproductive organs, PLA, ACT and UCE were the optimal reference genes for flower development, whereas UCE, RPS13 and RNA polymerase II subunit (RPII were optimal for seed development. Considering the entire growth cycle of Sacha inchi, UCE, ACT and EF1α were sufficient for the purpose of normalization. Our results provide useful guidelines for the selection of reliable reference genes for the normalization of RT-qPCR data for seedlings and adult plants, for reproductive organs, and for the entire growth cycle of Sacha inchi.

  3. Selection of Reliable Reference Genes for Gene Expression Studies of a Promising Oilseed Crop, Plukenetia volubilis, by Real-Time Quantitative PCR

    Science.gov (United States)

    Niu, Longjian; Tao, Yan-Bin; Chen, Mao-Sheng; Fu, Qiantang; Li, Chaoqiong; Dong, Yuling; Wang, Xiulan; He, Huiying; Xu, Zeng-Fu

    2015-01-01

    Real-time quantitative PCR (RT-qPCR) is a reliable and widely used method for gene expression analysis. The accuracy of the determination of a target gene expression level by RT-qPCR demands the use of appropriate reference genes to normalize the mRNA levels among different samples. However, suitable reference genes for RT-qPCR have not been identified in Sacha inchi (Plukenetia volubilis), a promising oilseed crop known for its polyunsaturated fatty acid (PUFA)-rich seeds. In this study, using RT-qPCR, twelve candidate reference genes were examined in seedlings and adult plants, during flower and seed development and for the entire growth cycle of Sacha inchi. Four statistical algorithms (delta cycle threshold (ΔCt), BestKeeper, geNorm, and NormFinder) were used to assess the expression stabilities of the candidate genes. The results showed that ubiquitin-conjugating enzyme (UCE), actin (ACT) and phospholipase A22 (PLA) were the most stable genes in Sacha inchi seedlings. For roots, stems, leaves, flowers, and seeds from adult plants, 30S ribosomal protein S13 (RPS13), cyclophilin (CYC) and elongation factor-1alpha (EF1α) were recommended as reference genes for RT-qPCR. During the development of reproductive organs, PLA, ACT and UCE were the optimal reference genes for flower development, whereas UCE, RPS13 and RNA polymerase II subunit (RPII) were optimal for seed development. Considering the entire growth cycle of Sacha inchi, UCE, ACT and EF1α were sufficient for the purpose of normalization. Our results provide useful guidelines for the selection of reliable reference genes for the normalization of RT-qPCR data for seedlings and adult plants, for reproductive organs, and for the entire growth cycle of Sacha inchi. PMID:26047338

  4. Annual distribution of allergenic fungal spores in atmospheric particulate matter in the Eastern Mediterranean; a comparative study between ergosterol and quantitative PCR analysis

    Science.gov (United States)

    Lang-Yona, N.; Dannemiller, K.; Yamamoto, N.; Burshtein, N.; Peccia, J.; Yarden, O.; Rudich, Y.

    2012-03-01

    Airborne fungal spores are an important fraction of atmospheric particulate matter and are major causative agents of allergenic and infectious diseases. Predicting the variability and species of allergy-causing fungal spores requires detailed and reliable methods for identification and quantification. There are diverse methods for their detection in the atmosphere and in the indoor environments; yet, it is important to optimize suitable methods for characterization of fungal spores in atmospheric samples. In this study we sampled and characterized total and specific airborne fungal spores from PM10 samples collected in Rehovot, Israel over an entire year. The total fungal spore concentrations vary throughout the year although the species variability was nearly the same. Seasonal equivalent spore concentrations analyzed by real-time quantitative-PCR-based methods were fall > winter > spring > summer. Reported concentrations based on ergosterol analysis for the same samples were and fall > spring > winter > summer. Correlation between the two analytical methods was found only for the spring season. These poor associations may be due to the per-spore ergosterol variations that arise from both varying production rates, as well as molecular degradation of ergosterol. While conversion of genome copies to spore concentration is not yet straightforward, the potential for improving this conversion and the ability of qPCR to identify groups of fungi or specific species makes this method preferable for environmental spore quantification. Identifying tools for establishing the relation between the presence of species and the actual ability to induce allergies is still needed in order to predict the effect on human health.

  5. Analysis of hepcidin expression: in situ hybridization and quantitative polymerase chain reaction from paraffin sections.

    Science.gov (United States)

    Sakuraoka, Yuhki; Sawada, Tokihiko; Shiraki, Takayuki; Park, Kyunghwa; Sakurai, Yuhichiro; Tomosugi, Naohisa; Kubota, Keiichi

    2012-07-28

    To establish methods for quantitative polymerase chain reaction (PCR) for hepcidin using RNAs isolated from paraffin-embedded sections and in situ hybridization of hepatocellular carcinoma (HCC). Total RNA from paraffin-embedded sections was isolated from 68 paraffin-embedded samples of HCC. Samples came from 54 male and 14 female patients with a mean age of 66.8 ± 7.8 years. Quantitative PCR was performed. Immunohistochemistry and in situ hybridization for hepcidin were also performed. Quantitative PCR for hepcidin using RNAs isolated from paraffin-embedded sections of HCC was performed successfully. The expression level of hepcidin mRNA in cancer tissues was significantly higher than that in non-cancer tissues. A method of in situ hybridization for hepcidin was established successfully, and this demonstrated that hepcidin mRNA was expressed in non-cancerous tissue but absent in cancerous tissue. We have established novel methods for quantitative PCR for hepcidin using RNAs isolated from paraffin-embedded sections and in situ hybridization of HCC.

  6. Analysis of ELA-DQB exon 2 polymorphism in Argentine Creole horses by PCR-RFLP and PCR-SSCP.

    Science.gov (United States)

    Villegas-Castagnasso, E E; Díaz, S; Giovambattista, G; Dulout, F N; Peral-García, P

    2003-08-01

    The second exon of equine leucocyte antigen (ELA)-DQB genes was amplified from genomic DNA of 32 Argentine Creole horses by PCR. Amplified DNA was analysed by PCR-restriction fragment length polymorphism (RFLP) and PCR-single-strand conformation polymorphism (SSCP). The PCR-RFLP analysis revealed two HaeIII patterns, four RsaI patterns, five MspI patterns and two HinfI patterns. EcoRI showed no variation in the analysed sample. Additional patterns that did not account for known exon 2 DNA sequences were observed, suggesting the existence of novel ELA-DQB alleles. PCR-SSCP analysis exhibited seven different band patterns, and the number of bands per animal ranged from four to nine. Both methods indicated that at least two DQB genes are present. The presence of more than two alleles in each animal showed that the primers employed in this work are not specific for a unique DQB locus. The improvement of this PCR-RFLP method should provide a simple and rapid technique for an accurate definition of ELA-DQB typing in horses.

  7. Selection of reference genes for quantitative real time RT-PCR during dimorphism in the zygomycete Mucor circinelloides.

    Science.gov (United States)

    Valle-Maldonado, Marco I; Jácome-Galarza, Irvin E; Gutiérrez-Corona, Félix; Ramírez-Díaz, Martha I; Campos-García, Jesús; Meza-Carmen, Víctor

    2015-03-01

    Mucor circinelloides is a dimorphic fungal model for studying several biological processes including cell differentiation (yeast-mold transitions) as well as biodiesel and carotene production. The recent release of the first draft sequence of the M. circinelloides genome, combined with the availability of analytical methods to determine patterns of gene expression, such as quantitative Reverse transcription-Polymerase chain reaction (qRT-PCR), and the development of molecular genetic tools for the manipulation of the fungus, may help identify M. circinelloides gene products and analyze their relevance in different biological processes. However, no information is available on M. circinelloides genes of stable expression that could serve as internal references in qRT-PCR analyses. One approach to solve this problem consists in the use of housekeeping genes as internal references. However, validation of the usability of these reference genes is a fundamental step prior to initiating qRT-PCR assays. This work evaluates expression of several constitutive genes by qRT-PCR throughout the morphological differentiation stages of M. circinelloides; our results indicate that tfc-1 and ef-1 are the most stable genes for qRT-PCR assays during differentiation studies and they are proposed as reference genes to carry out gene expression studies in this fungus.

  8. Development of a non invasion real-time PCR assay for the quantitation of chicken parvovirus in fecal swabs

    Science.gov (United States)

    The present study describes the development of a real time Taqman polymerase chain reaction (PCR) assay using a fluorescent labeled probe for the detection and quantitation of chicken parvovirus (ChPV) in feces. The primers and probes were designed based on the nucleotide sequence of the non struct...

  9. Assessing reference genes for accurate transcript normalization using quantitative real-time PCR in pearl millet [Pennisetum glaucum (L. R. Br].

    Directory of Open Access Journals (Sweden)

    Prasenjit Saha

    Full Text Available Pearl millet [Pennisetum glaucum (L. R.Br.], a close relative of Panicoideae food crops and bioenergy grasses, offers an ideal system to perform functional genomics studies related to C4 photosynthesis and abiotic stress tolerance. Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR provides a sensitive platform to conduct such gene expression analyses. However, the lack of suitable internal control reference genes for accurate transcript normalization during qRT-PCR analysis in pearl millet is the major limitation. Here, we conducted a comprehensive assessment of 18 reference genes on 234 samples which included an array of different developmental tissues, hormone treatments and abiotic stress conditions from three genotypes to determine appropriate reference genes for accurate normalization of qRT-PCR data. Analyses of Ct values using Stability Index, BestKeeper, ΔCt, Normfinder, geNorm and RefFinder programs ranked PP2A, TIP41, UBC2, UBQ5 and ACT as the most reliable reference genes for accurate transcript normalization under different experimental conditions. Furthermore, we validated the specificity of these genes for precise quantification of relative gene expression and provided evidence that a combination of the best reference genes are required to obtain optimal expression patterns for both endogeneous genes as well as transgenes in pearl millet.

  10. Quantitative real-time PCR identifies a critical region of deletion on 22q13 related to prognosis in oral cancer

    DEFF Research Database (Denmark)

    Reis, Patricia P; Rogatto, Silvia R; Kowalski, Luiz P

    2002-01-01

    Quantitative real time PCR was performed on genomic DNA from 40 primary oral carcinomas and the normal adjacent tissues. The target genes ECGFB, DIA1, BIK, and PDGFB and the microsatellite markers D22S274 and D22S277, mapped on 22q13, were selected according to our previous loss of heterozygosity...... findings in head and neck tumors. Quantitative PCR relies on the comparison of the amount of product generated from a target gene and that generated from a disomic reference gene (GAPDH-housekeeping gene). Reactions have been performed with normal control in triplicates, using the 7700 Sequence Detection.......0018) for patients with DIA1 gene loss. Relative copy number losses detected in these sequences may be related to disease progression and a worse prognosis in patients with oral cancer....

  11. Droplet digital PCR (ddPCR) vs quantitative real-time PCR (qPCR) approach for detection and quantification of Merkel cell polyomavirus (MCPyV) DNA in formalin fixed paraffin embedded (FFPE) cutaneous biopsies.

    Science.gov (United States)

    Arvia, Rosaria; Sollai, Mauro; Pierucci, Federica; Urso, Carmelo; Massi, Daniela; Zakrzewska, Krystyna

    2017-08-01

    Merkel cell polyomavirus (MCPyV) is associated with Merkel cell carcinoma and high viral load in the skin was proposed as a risk factor for the occurrence of this tumour. MCPyV DNA was detected, with lower frequency, in different skin cancers but since the viral load was usually low, the real prevalence of viral DNA could be underestimated. To evaluate the performance of two assays (qPCR and ddPCR) for MCPyV detection and quantification in formalin fixed paraffin embedded (FFPE) tissue samples. Both assays were designed to simultaneous detection and quantification of both MCPyV as well as house-keeping DNA in clinical samples. The performance of MCPyV quantification was investigated using serial dilutions of cloned target DNA. We also evaluated the applicability of both tests for the analysis of 76 FFPE cutaneous biopsies. The two approaches resulted equivalent with regard to the reproducibility and repeatability and showed a high degree of linearity in the dynamic range tested in the present study. Moreover, qPCR was able to quantify ≥10 5 copies per reaction, while the upper limit of ddPCR was 10 4 copies. There was not significant difference between viral load measured by the two methods The detection limit of both tests was 0,15 copies per reaction, however, the number of positive samples obtained by ddPCR was higher than that obtained by qPCR (45% and 37% respectively). The ddPCR represents a better method for detection of MCPyV in FFPE biopsies, mostly these containing low copies number of viral genome. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Quantitative sexing (Q-Sexing) and relative quantitative sexing (RQ ...

    African Journals Online (AJOL)

    samer

    Key words: Polymerase chain reaction (PCR), quantitative real time polymerase chain reaction (qPCR), quantitative sexing, Siberian tiger. INTRODUCTION. Animal molecular sexing .... 43:3-12. Ellegren H (1996). First gene on the avian W chromosome (CHD) provides a tag for universal sexing of non-ratite birds. Proc.

  13. The quantification of spermatozoa by real-time quantitative PCR, spectrophotometry, and spermatophore cap size.

    Science.gov (United States)

    Doyle, Jacqueline M; McCormick, Cory R; DeWoody, J Andrew

    2011-01-01

    Many animals, such as crustaceans, insects, and salamanders, package their sperm into spermatophores, and the number of spermatozoa contained in a spermatophore is relevant to studies of sexual selection and sperm competition. We used two molecular methods, real-time quantitative polymerase chain reaction (RT-qPCR) and spectrophotometry, to estimate sperm numbers from spermatophores. First, we designed gene-specific primers that produced a single amplicon in four species of ambystomatid salamanders. A standard curve generated from cloned amplicons revealed a strong positive relationship between template DNA quantity and cycle threshold, suggesting that RT-qPCR could be used to quantify sperm in a given sample. We then extracted DNA from multiple Ambystoma maculatum spermatophores, performed RT-qPCR on each sample, and estimated template copy numbers (i.e. sperm number) using the standard curve. Second, we used spectrophotometry to determine the number of sperm per spermatophore by measuring DNA concentration relative to the genome size. We documented a significant positive relationship between the estimates of sperm number based on RT-qPCR and those based on spectrophotometry. When these molecular estimates were compared to spermatophore cap size, which in principle could predict the number of sperm contained in the spermatophore, we also found a significant positive relationship between sperm number and spermatophore cap size. This linear model allows estimates of sperm number strictly from cap size, an approach which could greatly simplify the estimation of sperm number in future studies. These methods may help explain variation in fertilization success where sperm competition is mediated by sperm quantity. © 2010 Blackwell Publishing Ltd.

  14. Development of a real-time RT-PCR assay for the simultaneous identification, quantitation and differentiation of avian metapneumovirus subtypes A and B.

    Science.gov (United States)

    Cecchinato, Mattia; Lupini, Caterina; Munoz Pogoreltseva, Olga Svetlana; Listorti, Valeria; Mondin, Alessandra; Drigo, Michele; Catelli, Elena

    2013-01-01

    In recent years, special attention has been paid to real-time polymerase chain reaction (PCR) for avian metapneumovirus (AMPV) diagnosis, due to its numerous advantages over classical PCR. A new multiplex quantitative real-time reverse transcription-PCR (qRT-PCR) with molecular beacon probe assay, designed to target the SH gene, was developed. The test was evaluated in terms of specificity, sensitivity and repeatability, and compared with conventional RT nested-PCR based on the G gene. All of the AMPV subtype A and B strains tested were amplified and specifically detected while no amplification occurred with other non-target bird respiratory pathogens. The detection limit of the assay was 10(-0.41) median infectious dose/ml and 10(1.15) median infectious dose/ml when the AMPV-B strain IT/Ty/B/Vr240/87 and the AMPV-A strain IT/Ty/A/259-01/03 were used, respectively, as templates. In all cases, the amplification efficiency was approximately 2 and the error values were 0.9375) between crossing point values and virus quantities, making the assay herein designed reliable for quantification. When the newly developed qRT-PCR was compared with a conventional RT nested-PCR, it showed greater sensitivity with RNA extracted from both positive controls and from experimentally infected birds. This assay can be effectively used for the detection, identification, differentiation and quantitation of AMPV subtype A or subtype B to assist in disease diagnosis and to carry out rapid surveillance with high levels of sensitivity and specificity.

  15. Identification of Optimal Reference Genes for Normalization of qPCR Analysis during Pepper Fruit Development

    Directory of Open Access Journals (Sweden)

    Yuan Cheng

    2017-06-01

    Full Text Available Due to its high sensitivity and reproducibility, quantitative real-time PCR (qPCR is practiced as a useful research tool for targeted gene expression analysis. For qPCR operations, the normalization with suitable reference genes (RGs is a crucial step that eventually determines the reliability of the obtained results. Although pepper is considered an ideal model plant for the study of non-climacteric fruit development, at present no specific RG have been developed or validated for the qPCR analyses of pepper fruit. Therefore, this study aimed to identify stably expressed genes for their potential use as RGs in pepper fruit studies. Initially, a total of 35 putative RGs were selected by mining the pepper transcriptome data sets derived from the PGP (Pepper Genome Platform and PGD (Pepper Genome Database. Their expression stabilities were further measured in a set of pepper (Capsicum annuum L. var. 007e fruit samples, which represented four different fruit developmental stages (IM: Immature; MG: Mature green; B: Break; MR: Mature red using the qPCR analysis. Then, based on the qPCR results, three different statistical algorithms, namely geNorm, Normfinder, and boxplot, were chosen to evaluate the expression stabilities of these putative RGs. It should be noted that nine genes were proven to be qualified as RGs during pepper fruit development, namely CaREV05 (CA00g79660; CaREV08 (CA06g02180; CaREV09 (CA06g05650; CaREV16 (Capana12g002666; CaREV21 (Capana10g001439; CaREV23 (Capana05g000680; CaREV26 (Capana01g002973; CaREV27 (Capana11g000123; CaREV31 (Capana04g002411; and CaREV33 (Capana08g001826. Further analysis based on geNorm suggested that the application of the two most stably expressed genes (CaREV05 and CaREV08 would provide optimal transcript normalization in the qPCR experiments. Therefore, a new and comprehensive strategy for the identification of optimal RGs was developed. This strategy allowed for the effective normalization of the qPCR

  16. Standardisation and evaluation of a quantitative multiplex real-time PCR assay for the rapid identification of Streptococcus pneumoniae

    Directory of Open Access Journals (Sweden)

    Feroze Ahmed Ganaie

    2015-01-01

    Full Text Available Rapid diagnosis of Streptococcus pneumoniae can play a significant role in decreasing morbidity and mortality of infection. The accurate diagnosis of pneumococcal disease is hampered by the difficulties in growing the isolates from clinical specimens and also by misidentification. Molecular methods have gained popularity as they offer improvement in the detection of causative pathogens with speed and ease. The present study aims at validating and standardising the use of 4 oligonucleotide primer-probe sets (pneumolysin [ply], autolysin [lytA], pneumococcal surface adhesion A [psaA] and Spn9802 [DNA fragment] in a single-reaction mixture for the detection and discrimination of S. pneumoniae. Here, we validate a quantitative multiplex real-time PCR (qmPCR assay with a panel consisting of 43 S. pneumoniae and 29 non-pneumococcal isolates, 20 culture positive, 26 culture negative and 30 spiked serum samples. A standard curve was obtained using S. pneumoniae ATCC 49619 strain and glyceraldehyde 3-phosphate dehydrogenase (GAPDH gene was used as an endogenous internal control. The experiment showed high sensitivity with lower limit of detection equivalent to 4 genome copies/µl. The efficiency of the reaction was 100% for ply, lytA, Spn9802 and 97% for psaA. The test showed sensitivity and specificity of 100% with culture isolates and serum specimens. This study demonstrates that qmPCR analysis of sera using 4 oligonucleotide primers appears to be an appropriate method for the genotypic identification of S. pneumoniae infection.

  17. Spatiotemporal Dynamics of Vibrio cholerae in Turbid Alkaline Lakes as Determined by Quantitative PCR.

    Science.gov (United States)

    Bliem, Rupert; Reischer, Georg; Linke, Rita; Farnleitner, Andreas; Kirschner, Alexander

    2018-06-01

    In recent years, global warming has led to a growing number of Vibrio cholerae infections in bathing water users in regions formerly unaffected by this pathogen. It is therefore of high importance to monitor V. cholerae in aquatic environments and to elucidate the main factors governing its prevalence and abundance. For this purpose, rapid and standardizable methods that can be performed by routine water laboratories are prerequisite. In this study, we applied a recently developed multiplex quantitative PCR (qPCR) strategy (i) to monitor the spatiotemporal variability of V. cholerae abundance in two small soda pools and a large lake that is intensively used for recreation and (ii) to elucidate the main factors driving V. cholerae dynamics in these environments. V. cholerae was detected with qPCR at high concentrations of up to 970,000 genomic units 100 ml -1 during the warm season, up to 2 orders of magnitude higher than values obtained by cultivation. An independent cytometric approach led to results comparable to qPCR data but with significantly more positive samples due to problems with DNA recovery for qPCR. Not a single sample was positive for toxigenic V. cholerae , indicating that only nontoxigenic V. cholerae (NTVC) was present. Temperature was the main predictor of NTVC abundance, but the quality and quantity of dissolved organic matter were also important environmental correlates. Based on this study, we recommend using the developed qPCR strategy for quantification of toxigenic and nontoxigenic V. cholerae in bathing waters with the need for improvements in DNA recovery. IMPORTANCE There is a definitive need for rapid and standardizable methods to quantify waterborne bacterial pathogens. Such methods have to be thoroughly tested for their applicability to environmental samples. In this study, we critically tested a recently developed multiplex qPCR strategy for its applicability to determine the spatiotemporal variability of V. cholerae abundance in

  18. Validation of putative reference genes for gene expression studies in human hepatocellular carcinoma using real-time quantitative RT-PCR

    International Nuclear Information System (INIS)

    Cicinnati, Vito R; Shen, Qingli; Sotiropoulos, Georgios C; Radtke, Arnold; Gerken, Guido; Beckebaum, Susanne

    2008-01-01

    Reference genes, which are often referred to as housekeeping genes are frequently used to normalize mRNA levels between different samples in quantitative reverse transcription polymerase chain reaction (qRT-PCR). The selection of reference genes is critical for gene expression studies because the expression of these genes may vary among tissues or cells and may change under certain circumstances. Here, a systematic evaluation of six putative reference genes for gene expression studies in human hepatocellular carcinoma (HCC) is presented. Six genes, beta-2-microglobulin (B2M), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), hydroxymethyl-bilane synthase (HMBS), hypoxanthine phosphoribosyl-transferase 1 (HPRT1), succinate dehydrogenase complex, subunit A (SDHA) and ubiquitin C (UBC), with distinct functional characteristics and expression patterns were evaluated by qRT-PCR. Inhibitory substances in RNA samples were quantitatively assessed and controlled using an external RNA control. The stability of selected reference genes was analyzed using both geNorm and NormFinder software. HMBS and GAPDH were identified as the optimal reference genes for normalizing gene expression data between paired tumoral and adjacent non-tumoral tissues derived from patients with HCC. HMBS, GAPDH and UBC were identified to be suitable for the normalization of gene expression data among tumor tissues; whereas the combination of HMBS, B2M, SDHA and GAPDH was suitable for normalizing gene expression data among five liver cancer cell lines, namely Hep3B, HepG2, HuH7, SK-HEP-1 and SNU-182. The determined gene stability was increased after exclusion of RNA samples containing relatively higher inhibitory substances. Of six genes studied, HMBS was found to be the single best reference gene for gene expression studies in HCC. The appropriate choice of combination of more than one reference gene to improve qRT-PCR accuracy depends on the kind of liver tissues or cells under investigation

  19. Validation of putative reference genes for gene expression studies in human hepatocellular carcinoma using real-time quantitative RT-PCR

    Directory of Open Access Journals (Sweden)

    Radtke Arnold

    2008-11-01

    Full Text Available Abstract Background Reference genes, which are often referred to as housekeeping genes are frequently used to normalize mRNA levels between different samples in quantitative reverse transcription polymerase chain reaction (qRT-PCR. The selection of reference genes is critical for gene expression studies because the expression of these genes may vary among tissues or cells and may change under certain circumstances. Here, a systematic evaluation of six putative reference genes for gene expression studies in human hepatocellular carcinoma (HCC is presented. Methods Six genes, beta-2-microglobulin (B2M, glyceraldehyde-3-phosphate dehydrogenase (GAPDH, hydroxymethyl-bilane synthase (HMBS, hypoxanthine phosphoribosyl-transferase 1 (HPRT1, succinate dehydrogenase complex, subunit A (SDHA and ubiquitin C (UBC, with distinct functional characteristics and expression patterns were evaluated by qRT-PCR. Inhibitory substances in RNA samples were quantitatively assessed and controlled using an external RNA control. The stability of selected reference genes was analyzed using both geNorm and NormFinder software. Results HMBS and GAPDH were identified as the optimal reference genes for normalizing gene expression data between paired tumoral and adjacent non-tumoral tissues derived from patients with HCC. HMBS, GAPDH and UBC were identified to be suitable for the normalization of gene expression data among tumor tissues; whereas the combination of HMBS, B2M, SDHA and GAPDH was suitable for normalizing gene expression data among five liver cancer cell lines, namely Hep3B, HepG2, HuH7, SK-HEP-1 and SNU-182. The determined gene stability was increased after exclusion of RNA samples containing relatively higher inhibitory substances. Conclusion Of six genes studied, HMBS was found to be the single best reference gene for gene expression studies in HCC. The appropriate choice of combination of more than one reference gene to improve qRT-PCR accuracy depends on the

  20. Validation of putative reference genes for gene expression studies in human hepatocellular carcinoma using real-time quantitative RT-PCR

    Science.gov (United States)

    Cicinnati, Vito R; Shen, Qingli; Sotiropoulos, Georgios C; Radtke, Arnold; Gerken, Guido; Beckebaum, Susanne

    2008-01-01

    Background Reference genes, which are often referred to as housekeeping genes are frequently used to normalize mRNA levels between different samples in quantitative reverse transcription polymerase chain reaction (qRT-PCR). The selection of reference genes is critical for gene expression studies because the expression of these genes may vary among tissues or cells and may change under certain circumstances. Here, a systematic evaluation of six putative reference genes for gene expression studies in human hepatocellular carcinoma (HCC) is presented. Methods Six genes, beta-2-microglobulin (B2M), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), hydroxymethyl-bilane synthase (HMBS), hypoxanthine phosphoribosyl-transferase 1 (HPRT1), succinate dehydrogenase complex, subunit A (SDHA) and ubiquitin C (UBC), with distinct functional characteristics and expression patterns were evaluated by qRT-PCR. Inhibitory substances in RNA samples were quantitatively assessed and controlled using an external RNA control. The stability of selected reference genes was analyzed using both geNorm and NormFinder software. Results HMBS and GAPDH were identified as the optimal reference genes for normalizing gene expression data between paired tumoral and adjacent non-tumoral tissues derived from patients with HCC. HMBS, GAPDH and UBC were identified to be suitable for the normalization of gene expression data among tumor tissues; whereas the combination of HMBS, B2M, SDHA and GAPDH was suitable for normalizing gene expression data among five liver cancer cell lines, namely Hep3B, HepG2, HuH7, SK-HEP-1 and SNU-182. The determined gene stability was increased after exclusion of RNA samples containing relatively higher inhibitory substances. Conclusion Of six genes studied, HMBS was found to be the single best reference gene for gene expression studies in HCC. The appropriate choice of combination of more than one reference gene to improve qRT-PCR accuracy depends on the kind of liver tissues

  1. Quantitative PCR is a Valuable Tool to Monitor the Performance of DNA-Encoded Chemical Library Selections.

    Science.gov (United States)

    Li, Yizhou; Zimmermann, Gunther; Scheuermann, Jörg; Neri, Dario

    2017-05-04

    Phage-display libraries and DNA-encoded chemical libraries (DECLs) represent useful tools for the isolation of specific binding molecules from large combinatorial sets of compounds. With both methods, specific binders are recovered at the end of affinity capture procedures by using target proteins of interest immobilized on a solid support. However, although the efficiency of phage-display selections is routinely quantified by counting the phage titer before and after the affinity capture step, no similar quantification procedures have been reported for the characterization of DECL selections. In this article, we describe the potential and limitations of quantitative PCR (qPCR) methods for the evaluation of selection efficiency by using a combinatorial chemical library with more than 35 million compounds. In the experimental conditions chosen for the selections, a quantification of DNA input/recovery over five orders of magnitude could be performed, revealing a successful enrichment of abundant binders, which could be confirmed by DNA sequencing. qPCR provided rapid information about the performance of selections, thus facilitating the optimization of experimental conditions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A probe-based quantitative PCR assay for detecting Tetracapsuloides bryosalmonae in fish tissue and environmental DNA water samples

    Science.gov (United States)

    Hutchins, Patrick; Sepulveda, Adam; Martin, Renee; Hopper, Lacey

    2017-01-01

    A probe-based quantitative real-time PCR assay was developed to detect Tetracapsuloides bryosalmonae, which causes proliferative kidney disease in salmonid fish, in kidney tissue and environmental DNA (eDNA) water samples. The limits of detection and quantification were 7 and 100 DNA copies for calibration standards and T. bryosalmonae was reliably detected down to 100 copies in tissue and eDNA samples. The assay presented here is a highly sensitive and quantitative tool for detecting T. bryosalmonae with potential applications for tissue diagnostics and environmental detection.

  3. Evaluation of reference genes for quantitative real-time PCR in oil palm elite planting materials propagated by tissue culture.

    Directory of Open Access Journals (Sweden)

    Pek-Lan Chan

    Full Text Available BACKGROUND: The somatic embryogenesis tissue culture process has been utilized to propagate high yielding oil palm. Due to the low callogenesis and embryogenesis rates, molecular studies were initiated to identify genes regulating the process, and their expression levels are usually quantified using reverse transcription quantitative real-time PCR (RT-qPCR. With the recent release of oil palm genome sequences, it is crucial to establish a proper strategy for gene analysis using RT-qPCR. Selection of the most suitable reference genes should be performed for accurate quantification of gene expression levels. RESULTS: In this study, eight candidate reference genes selected from cDNA microarray study and literature review were evaluated comprehensively across 26 tissue culture samples using RT-qPCR. These samples were collected from two tissue culture lines and media treatments, which consisted of leaf explants cultures, callus and embryoids from consecutive developmental stages. Three statistical algorithms (geNorm, NormFinder and BestKeeper confirmed that the expression stability of novel reference genes (pOP-EA01332, PD00380 and PD00569 outperformed classical housekeeping genes (GAPDH, NAD5, TUBULIN, UBIQUITIN and ACTIN. PD00380 and PD00569 were identified as the most stably expressed genes in total samples, MA2 and MA8 tissue culture lines. Their applicability to validate the expression profiles of a putative ethylene-responsive transcription factor 3-like gene demonstrated the importance of using the geometric mean of two genes for normalization. CONCLUSIONS: Systematic selection of the most stably expressed reference genes for RT-qPCR was established in oil palm tissue culture samples. PD00380 and PD00569 were selected for accurate and reliable normalization of gene expression data from RT-qPCR. These data will be valuable to the research associated with the tissue culture process. Also, the method described here will facilitate the selection

  4. Evaluation of Reference Genes for Quantitative Real-Time PCR in Oil Palm Elite Planting Materials Propagated by Tissue Culture

    Science.gov (United States)

    Chan, Pek-Lan; Rose, Ray J.; Abdul Murad, Abdul Munir; Zainal, Zamri; Leslie Low, Eng-Ti; Ooi, Leslie Cheng-Li; Ooi, Siew-Eng; Yahya, Suzaini; Singh, Rajinder

    2014-01-01

    Background The somatic embryogenesis tissue culture process has been utilized to propagate high yielding oil palm. Due to the low callogenesis and embryogenesis rates, molecular studies were initiated to identify genes regulating the process, and their expression levels are usually quantified using reverse transcription quantitative real-time PCR (RT-qPCR). With the recent release of oil palm genome sequences, it is crucial to establish a proper strategy for gene analysis using RT-qPCR. Selection of the most suitable reference genes should be performed for accurate quantification of gene expression levels. Results In this study, eight candidate reference genes selected from cDNA microarray study and literature review were evaluated comprehensively across 26 tissue culture samples using RT-qPCR. These samples were collected from two tissue culture lines and media treatments, which consisted of leaf explants cultures, callus and embryoids from consecutive developmental stages. Three statistical algorithms (geNorm, NormFinder and BestKeeper) confirmed that the expression stability of novel reference genes (pOP-EA01332, PD00380 and PD00569) outperformed classical housekeeping genes (GAPDH, NAD5, TUBULIN, UBIQUITIN and ACTIN). PD00380 and PD00569 were identified as the most stably expressed genes in total samples, MA2 and MA8 tissue culture lines. Their applicability to validate the expression profiles of a putative ethylene-responsive transcription factor 3-like gene demonstrated the importance of using the geometric mean of two genes for normalization. Conclusions Systematic selection of the most stably expressed reference genes for RT-qPCR was established in oil palm tissue culture samples. PD00380 and PD00569 were selected for accurate and reliable normalization of gene expression data from RT-qPCR. These data will be valuable to the research associated with the tissue culture process. Also, the method described here will facilitate the selection of appropriate

  5. Event-specific qualitative and quantitative PCR detection of the GMO carnation (Dianthus caryophyllus) variety Moonlite based upon the 5'-transgene integration sequence.

    Science.gov (United States)

    Li, P; Jia, J W; Jiang, L X; Zhu, H; Bai, L; Wang, J B; Tang, X M; Pan, A H

    2012-04-27

    To ensure the implementation of genetically modified organism (GMO)-labeling regulations, an event-specific detection method was developed based on the junction sequence of an exogenous integrant in the transgenic carnation variety Moonlite. The 5'-transgene integration sequence was isolated by thermal asymmetric interlaced PCR. Based upon the 5'-transgene integration sequence, the event-specific primers and TaqMan probe were designed to amplify the fragments, which spanned the exogenous DNA and carnation genomic DNA. Qualitative and quantitative PCR assays were developed employing the designed primers and probe. The detection limit of the qualitative PCR assay was 0.05% for Moonlite in 100 ng total carnation genomic DNA, corresponding to about 79 copies of the carnation haploid genome; the limit of detection and quantification of the quantitative PCR assay were estimated to be 38 and 190 copies of haploid carnation genomic DNA, respectively. Carnation samples with different contents of genetically modified components were quantified and the bias between the observed and true values of three samples were lower than the acceptance criterion (GMO detection method. These results indicated that these event-specific methods would be useful for the identification and quantification of the GMO carnation Moonlite.

  6. Optimization and analysis of a quantitative real-time PCR-based technique to determine microRNA expression in formalin-fixed paraffin-embedded samples

    Directory of Open Access Journals (Sweden)

    Reis Patricia P

    2010-06-01

    Full Text Available Abstract Background MicroRNAs (miRs are non-coding RNA molecules involved in post-transcriptional regulation, with diverse functions in tissue development, differentiation, cell proliferation and apoptosis. miRs may be less prone to degradation during formalin fixation, facilitating miR expression studies in formalin-fixed paraffin-embedded (FFPE tissue. Results Our study demonstrates that the TaqMan Human MicroRNA Array v1.0 (Early Access platform is suitable for miR expression analysis in FFPE tissue with a high reproducibility (correlation coefficients of 0.95 between duplicates, p 35, we show that reproducibility between technical replicates, equivalent dilutions, and FFPE vs. frozen samples is best in the high abundance stratum. We also demonstrate that the miR expression profiles of FFPE samples are comparable to those of fresh-frozen samples, with a correlation of up to 0.87 (p Conclusion Our study thus demonstrates the utility, reproducibility, and optimization steps needed in miR expression studies using FFPE samples on a high-throughput quantitative PCR-based miR platform, opening up a realm of research possibilities for retrospective studies.

  7. Comparative analysis of minimal residual disease detection by multiparameter flow cytometry and enhanced ASO RQ-PCR in multiple myeloma

    International Nuclear Information System (INIS)

    Silvennoinen, R; Lundan, T; Kairisto, V; Pelliniemi, T-T; Putkonen, M; Anttila, P; Huotari, V; Mäntymaa, P; Siitonen, S; Uotila, L; Penttilä, T-L; Juvonen, V; Selander, T; Remes, K

    2014-01-01

    Multiparameter flow cytometry (MFC) and allele-specific oligonucleotide real-time quantitative PCR (ASO RQ-PCR) are the two most sensitive methods to detect minimal residual disease (MRD) in multiple myeloma (MM). We compared these methods in 129 paired post-therapy samples from 22 unselected, consecutive MM patients in complete/near complete remission. Appropriate immunophenotypic and ASO RQ-PCR-MRD targets could be detected and MRD analyses constructed for all patients. The high PCR coverage could be achieved by gradual widening of the primer sets used for clonality detection. In addition, for 13 (55%) of the patients, reverse orientation of the ASO primer and individual design of the TaqMan probe improved the sensitivity and specificity of ASO RQ-PCR analysis. A significant nonlinear correlation prevailed between MFC-MRD and PCR-MRD when both were positive. Discordance between the methods was found in 32 (35%) paired samples, which were negative by MFC-MRD, but positive by ASO RQ-PCR. The findings suggest that with the described technique, ASO RQ-PCR can be constructed for all patients with MM. ASO RQ-PCR is slightly more sensitive in MRD detection than 6−10-color flow cytometry. Owing to technical demands ASO RQ-PCR could be reserved for patients in immunophenotypic remission, especially in efficacy comparisons between different drugs and treatment modalities

  8. Development of quantitative real-time PCR for detection and enumeration of Enterobacteriaceae.

    Science.gov (United States)

    Takahashi, Hajime; Saito, Rumi; Miya, Satoko; Tanaka, Yuichiro; Miyamura, Natsumi; Kuda, Takashi; Kimura, Bon

    2017-04-04

    The family Enterobacteriaceae, members of which are widely distributed in the environment, includes many important human pathogens. In this study, a rapid real-time PCR method targeting rplP, coding for L16 protein, a component of the ribosome large subunit, was developed for enumerating Enterobacteriaceae strains, and its efficiency was evaluated using naturally contaminated food products. The rplP-targeted real-time PCR amplified Enterobacteriaceae species with Ct values of 14.0-22.8, whereas the Ct values for non-Enterobacteriaceae species were >30, indicating the specificity of this method for the Enterobacteriaceae. Using a calibration curve of Ct=-3.025 (log CFU/g)+37.35, which was calculated from individual plots of the cell numbers in different concentrations of 5 Enterobacteriaceae species, the rplP-targeted real-time PCR was applied to 51 food samples. A Enterobacteriaceae species in foods rapidly and accurately, and therefore, it can be used for the microbiological risk analysis of foods. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. MIQE précis: Practical implementation of minimum standard guidelines for fluorescence-based quantitative real-time PCR experiments

    NARCIS (Netherlands)

    Bustin, S.A.; Beaulieu, J.F.; Huggett, J.; Jaggi, R.; Kibenge, F.S.; Olsvik, P.A.; Penning, L.C.; Toegel, S.

    2010-01-01

    MIQE précis: Practical implementation of minimum standard guidelines for fluorescence-based quantitative real-time PCR experiments Stephen A Bustin1 , Jean-François Beaulieu2 , Jim Huggett3 , Rolf Jaggi4 , Frederick SB Kibenge5 , Pål A Olsvik6 , Louis C Penning7 and Stefan Toegel8 1 Centre for

  10. Application of propidium monoazide quantitative real-time PCR to quantify the viability of Lactobacillus delbrueckii ssp. bulgaricus.

    Science.gov (United States)

    Shao, Yuyu; Wang, Zhaoxia; Bao, Qiuhua; Zhang, Heping

    2016-12-01

    In this study, a combination of propidium monoazide (PMA) and quantitative real-time PCR (qPCR) was used to develop a method to determine the viability of cells of Lactobacillus delbrueckii ssp. bulgaricus ND02 (L. bulgaricus) that may have entered into a viable but nonculturable state. This can happen due to its susceptibility to cold shock during lyophilization and storage. Propidium monoazide concentration, PMA incubation time, and light exposure time were optimized to fully exploit the PMA-qPCR approach to accurately assess the total number of living L. bulgaricus ND02. Although PMA has little influence on living cells, when concentrations of PMA were higher than 30μg/mL the number of PCR-positive living bacteria decreased from 10 6 to 10 5 cfu/mL in comparison with qPCR enumeration. Mixtures of living and dead cells were used as method verification samples for enumeration by PMA-qPCR, demonstrating that this method was feasible and effective for distinguishing living cells of L. bulgaricus when mixed with a known number of dead cells. We suggest that several conditions need to be studied further before PMA-qPCR methods can be accurately used to distinguish living from dead cells for enumeration under more realistic sampling situations. However, this research provides a rapid way to enumerate living cells of L. bulgaricus and could be used to optimize selection of cryoprotectants in the lyophilization process and develop technologies for high cell density cultivation and optimal freeze-drying processes. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Highly Sensitive Quantitative PCR for the Detection and Differentiation of Pseudogymnoascus destructans and Other Pseudogymnoascus Species

    OpenAIRE

    Shuey, Megan M.; Drees, Kevin P.; Lindner, Daniel L.; Keim, Paul; Foster, Jeffrey T.

    2014-01-01

    White-nose syndrome is a fungal disease that has decimated bat populations across eastern North America. Identification of the etiologic agent, Pseudogymnoascus destructans (formerly Geomyces destructans), in environmental samples is essential to proposed management plans. A major challenge is the presence of closely related species, which are ubiquitous in many soils and cave sediments and often present in high abundance. We present a dual-probe real-time quantitative PCR assay capable of de...

  12. Developing high throughput quantitative PCR assays for diagnosing Ikeda and other Theileria orientalis types common to New Zealand in bovine blood samples.

    Science.gov (United States)

    Pulford, D J; Gias, E; Bueno, I M; McFadden, Amj

    2016-01-01

    To develop rapid, quantitative PCR (qPCR) assays using high resolution melt (HRM) analysis and type-specific TaqMan assays for identifying the prevalent types of Theileria orientalis found in New Zealand cattle; and to evaluate their analytical and diagnostic characteristics compared with other assays for T. orientalis. Nucleotide sequences aligned with T. orientalis Buffeli, Chitose and Ikeda types, obtained from DNA extracted from blood samples from infected cattle, were used to design HRM and type-specific probe-based qPCR assays. The three type-specific assays were also incorporated into a single-tube multiplex qPCR assay. These assays were validated using DNA extracted from blood samples from cattle in herds with or without clinical signs of T. orientalis infection, other veterinary laboratory samples, as well as plasmids containing T. orientalis type-specific sequences. Diagnostic specificity (DSp) and sensitivity (DSe) estimates for the qPCR assays were compared to blood smear piroplasm results, and other PCR assays for T. orientalis. Copy number estimates of Ikeda DNA in blood were determined from cattle exhibiting anaemia using the Ikeda-specific qPCR assay. The T. orientalis type-specific and the HRM qPCR assays displayed 100% analytical specificity. The Ikeda-specific qPCR assay exhibited linearity (R(2) = 0.997) with an efficiency of 94.3%. Intra-assay CV were ≤0.08 and inter-assay CV were ≤0.095. For blood samples from cows with signs of infection with T. orientalis, the DSp and DSe of the multiplex probe qPCR assay were 93 and 96%, respectively compared with blood smears, and 97 and 100%, respectively compared with conventional PCR assays. For the Ikeda-specific qPCR assay, the number of positive samples (n=66) was slightly higher than a conventional PCR assay (n=64). The concentration of Ikeda genomes in blood samples from 41 dairy cows with signs of infection with T. orientalis ranged between 5.6 × 10(4) and 3.3 × 10(6) genomes per

  13. Selection of suitable housekeeping genes for real-time quantitative PCR in CD4(+ lymphocytes from asthmatics with or without depression.

    Directory of Open Access Journals (Sweden)

    Ting Wang

    Full Text Available OBJECTIVE: No optimal housekeeping genes (HKGs have been identified for CD4(+ T cells from non-depressive asthmatic and depressive asthmatic adults for normalizing quantitative real-time PCR (qPCR assays. The aim of present study was to select appropriate HKGs for gene expression analysis in purified CD4(+ T cells from these asthmatics. METHODS: Three groups of subjects (Non-depressive asthmatic, NDA, n = 10, Depressive asthmatic, DA, n = 11, and Healthy control, HC, n = 10 respectively were studied. qPCR for 9 potential HKGs, namely RNA, 28S ribosomal 1 (RN28S1, ribosomal protein, large, P0 (RPLP0, actin, beta (ACTB, cyclophilin A (PPIA, glyceraldehyde-3-phosphate dehydrogenase (GAPDH, phosphoglycerate kinase 1 (PGK1, beta-2-microglobulin (B2M, glucuronidase, beta (GUSB and ribosomal protein L13a (RPL13A, was performed. Then the data were analyzed with three different applications namely BestKeeper, geNorm, and NormFinder. RESULTS: The analysis of gene expression data identified B2M and RPLP0 as the most stable reference genes and showed that the level of PPIA was significantly different among subjects of three groups when the two best HKGs identified were applied. Post-hoc analysis by Student-Newman-Keuls correction shows that depressive asthmatics and non-depressive asthmatics exhibited lower expression level of PPIA than healthy controls (p<0.05. CONCLUSIONS: B2M and RPLP0 were identified as the most optimal HKGs in gene expression studies involving human blood CD4(+ T cells derived from normal, depressive asthmatics and non-depressive asthmatics. The suitability of using the PPIA gene as the HKG for such studies was questioned due to its low expression in asthmatics.

  14. Validation of reference genes for quantitative real-time PCR in Périgord black truffle (Tuber melanosporum) developmental stages.

    Science.gov (United States)

    Zarivi, Osvaldo; Cesare, Patrizia; Ragnelli, Anna Maria; Aimola, Pierpaolo; Leonardi, Marco; Bonfigli, Antonella; Colafarina, Sabrina; Poma, Anna Maria; Miranda, Michele; Pacioni, Giovanni

    2015-08-01

    The symbiotic fungus Tuber melanosporum Vittad. (Périgord black truffle) belongs to the Ascomycota and forms mutualistic symbiosis with tree and shrub roots. This truffle has a high value in a global market and is cultivated in many countries of both hemispheres. The publication of the T. melanosporum genome has given researchers unique opportunities to learn more about the biology of the fungus. Real-time quantitative PCR (qRT-PCR) is a definitive technique for quantitating differences in transcriptional gene expression levels between samples. To facilitate gene expression studies and obtain more accurate qRT-PCR data, normalization relative to stable housekeeping genes is required. These housekeeping genes must show stable expression under given experimental conditions for the qRT-PCR results to be accurate. Unfortunately, there are no studies on the stability of housekeeping genes used in T. melanosporum development. In this study, we present a morphological and microscopical classification of the developmental stages of T. melanosporum fruit body, and investigate the expression levels of 12 candidate reference genes (18S rRNA; 5.8S rRNA; Elongation factor 1-alpha; Elongation factor 1-beta; α-tubulin; 60S ribosomal protein L29; β-tubulin; 40S ribosomal protein S1; 40S ribosomal protein S3; Glucose-6-phosphate dehydrogenase; β-actin; Ubiquitin-conjugating enzyme). To evaluate the suitability of these genes as endogenous controls, five software-based approaches and one web-based comprehensive tool (RefFinder) were used to analyze and rank the tested genes. We demonstrate here that the 18S rRNA gene shows the most stable expression during T. melanosporum development and that a set of three genes, 18S rRNA, Elongation factor 1-alpha and 40S ribosomal protein S3, is the most suitable to normalize qRT-PCR data from all the analyzed developmental stages; conversely, 18S rRNA, Glucose-6-phosphate dehydrogenase and Elongation factor 1-alpha are the most suitable

  15. Stochastic filtering of quantitative data from STR DNA analysis

    DEFF Research Database (Denmark)

    Tvedebrink, Torben; Eriksen, Poul Svante; Mogensen, Helle Smidt

    due to the apparatus used for measurements). Pull-up effects (more systematic increase caused by overlap in the spectrum) Stutters (peaks located four basepairs before the true peak). We present filtering techniques for all three technical artifacts based on statistical analysis of data from......The quantitative data observed from analysing STR DNA is a mixture of contributions from various sources. Apart from the true allelic peaks, the observed signal consists of at least three components resulting from the measurement technique and the PCR amplification: Background noise (random noise...... controlled experiments conducted at The Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health Sciences, Universityof Copenhagen, Denmark....

  16. The level of embryonation influences detection of Ostertagia ostertagi eggs by semi-quantitative PCR

    DEFF Research Database (Denmark)

    Drag, Markus; Höglund, Johan; Nejsum, Peter

    2016-01-01

    The Internal Transcribed Spacer 2 (ITS2) is a candidate diagnostic marker of the pathogenic cattle nematode Ostertagia ostertagi. The aims of this study were: (i) to document and quantify how the development of O. ostertagi eggs affects ITS2 copies under different storage conditions, and (ii......) to suggest optimal storage conditions for faecal samples in a diagnostic pipeline that involves detection and semi-quantification by real-time semi-quantitative polymerase chain reaction (qPCR). Eggs of Ostertagia ostertagi were obtained from fresh faeces and stored at 4 °C or 25 °C under aerobic...

  17. Quantification of integrated HIV DNA by repetitive-sampling Alu-HIV PCR on the basis of poisson statistics.

    Science.gov (United States)

    De Spiegelaere, Ward; Malatinkova, Eva; Lynch, Lindsay; Van Nieuwerburgh, Filip; Messiaen, Peter; O'Doherty, Una; Vandekerckhove, Linos

    2014-06-01

    Quantification of integrated proviral HIV DNA by repetitive-sampling Alu-HIV PCR is a candidate virological tool to monitor the HIV reservoir in patients. However, the experimental procedures and data analysis of the assay are complex and hinder its widespread use. Here, we provide an improved and simplified data analysis method by adopting binomial and Poisson statistics. A modified analysis method on the basis of Poisson statistics was used to analyze the binomial data of positive and negative reactions from a 42-replicate Alu-HIV PCR by use of dilutions of an integration standard and on samples of 57 HIV-infected patients. Results were compared with the quantitative output of the previously described Alu-HIV PCR method. Poisson-based quantification of the Alu-HIV PCR was linearly correlated with the standard dilution series, indicating that absolute quantification with the Poisson method is a valid alternative for data analysis of repetitive-sampling Alu-HIV PCR data. Quantitative outputs of patient samples assessed by the Poisson method correlated with the previously described Alu-HIV PCR analysis, indicating that this method is a valid alternative for quantifying integrated HIV DNA. Poisson-based analysis of the Alu-HIV PCR data enables absolute quantification without the need of a standard dilution curve. Implementation of the CI estimation permits improved qualitative analysis of the data and provides a statistical basis for the required minimal number of technical replicates. © 2014 The American Association for Clinical Chemistry.

  18. Quantitation of hepatitis B virus DNA in plasma using a sensitive cost-effective "in-house" real-time PCR assay

    Directory of Open Access Journals (Sweden)

    Daniel Hubert Darius

    2009-01-01

    Full Text Available Background: Sensitive nucleic acid testing for the detection and accurate quantitation of hepatitis B virus (HBV is necessary to reduce transmission through blood and blood products and for monitoring patients on antiviral therapy. The aim of this study is to standardize an "in-house" real-time HBV polymerase chain reaction (PCR for accurate quantitation and screening of HBV. Materials and Methods: The "in-house" real-time assay was compared with a commercial assay using 30 chronically infected individuals and 70 blood donors who are negative for hepatitis B surface antigen, hepatitis C virus (HCV antibody and human immunodeficiency virus (HIV antibody. Further, 30 HBV-genotyped samples were tested to evaluate the "in-house" assay′s capacity to detect genotypes prevalent among individuals attending this tertiary care hospital. Results: The lower limit of detection of this "in-house" HBV real-time PCR was assessed against the WHO international standard and found to be 50 IU/mL. The interassay and intra-assay coefficient of variation (CV of this "in-house" assay ranged from 1.4% to 9.4% and 0.0% to 2.3%, respectively. Virus loads as estimated with this "in-house" HBV real-time assay correlated well with the commercial artus HBV RG PCR assay ( r = 0.95, P < 0.0001. Conclusion: This assay can be used for the detection and accurate quantitation of HBV viral loads in plasma samples. This assay can be employed for the screening of blood donations and can potentially be adapted to a multiplex format for simultaneous detection of HBV, HIV and HCV to reduce the cost of testing in blood banks.

  19. Detection of five potentially periodontal pathogenic bacteria in peri-implant disease: A comparison of PCR and real-time PCR.

    Science.gov (United States)

    Schmalz, Gerhard; Tsigaras, Sandra; Rinke, Sven; Kottmann, Tanja; Haak, Rainer; Ziebolz, Dirk

    2016-07-01

    The aim of this study was to compare the microbial analysis methods of polymerase chain reaction (PCR) and real-time PCR (RT-PCR) in terms of detection of five selected potentially periodontal pathogenic bacteria in peri-implant disease. Therefore 45 samples of healthy, mucositis and peri-implantitis (n = 15 each) were assessed according to presence of the following bacteria using PCR (DNA-strip technology) and RT-PCR (fluorescent dye SYBR green-system): Aggregatibacter actinomycetemcomitans (Aa), Porphyromonas gingivalis (Pg), Treponema denticola (Td), Tanerella forsythia (Tf), and Fusobacterium nucleatum (Fn). There were no significant correlations between the bacterial and disease patterns, so the benefit of using microbiological tests for the diagnosis of peri-implant diseases is questionable. Correlations between the methods were highest for Tf (Kendall's Tau: 0.65, Spearman: 0.78), Fn (0.49, 0.61) and Td (0.49, 0.59). For Aa (0.38, 0.42) and Pg (0.04, 0.04), lower correlation values were detected. Accordingly, conventional semi-quantitative PCR seems to be sufficient for analyzing potentially periodontal pathogenic bacterial species. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Rapid quantitative detection of Lactobacillus sakei in meat and fermented sausages by real-time PCR.

    Science.gov (United States)

    Martín, Belén; Jofré, Anna; Garriga, Margarita; Pla, Maria; Aymerich, Teresa

    2006-09-01

    A quick and simple method for quantitative detection of Lactobacillus sakei in fermented sausages was successfully developed. It is based on Chelex-100-based DNA purification and real-time PCR enumeration using a TaqMan fluorescence probe. Primers and probes were designed in the L. sakei 16S-23S rRNA intergenic transcribed spacer region, and the assay was evaluated using L. sakei genomic DNA and an artificially inoculated sausage model. The detection limit of this technique was approximately 3 cells per reaction mixture using both purified DNA and the inoculated sausage model. The quantification limit was established at 30 cells per reaction mixture in both models. The assay was then applied to enumerate L. sakei in real samples, and the results were compared to the MRS agar count method followed by confirmation of the percentage of L. sakei colonies. The results obtained by real-time PCR were not statistically significantly different than those obtained by plate count on MRS agar (P > 0.05), showing a satisfactory agreement between both methods. Therefore, the real-time PCR assay developed can be considered a promising rapid alternative method for the quantification of L. sakei and evaluation of the implantation of starter strains of L. sakei in fermented sausages.

  1. A comparative study of digital PCR and real-time qPCR for the detection and quantification of HPV mRNA in sentinel lymph nodes of cervical cancer patients.

    Science.gov (United States)

    Carow, Katrin; Read, Christina; Häfner, Norman; Runnebaum, Ingo B; Corner, Adam; Dürst, Matthias

    2017-10-30

    Qualitative analyses showed that the presence of HPV mRNA in sentinel lymph nodes of cervical cancer patients with pN0 status is associated with significantly decreased recurrence free survival. To further address the clinical potential of the strategy and to define prognostic threshold levels it is necessary to use a quantitative assay. Here, we compare two methods of quantification: digital PCR and standard quantitative PCR. Serial dilutions of 5 ng-5 pg RNA (≙ 500-0.5 cells) of the cervical cancer cell line SiHa were prepared in 5 µg RNA of the HPV-negative human keratinocyte cell line HaCaT. Clinical samples consisted of 10 sentinel lymph nodes with varying HPV transcript levels. Reverse transcription of total RNA (5 µg RNA each) was performed in 100 µl and cDNA aliquots were analyzed by qPCR and dPCR. Digital PCR was run in the RainDrop ® Digital PCR system (RainDance Technologies) using a probe-based detection of HPV E6/E7 cDNA PCR products with 11 µl template. qPCR was done using a Rotor Gene Q 5plex HRM (Qiagen) amplifying HPV E6/E7 cDNA in a SYBR Green format with 1 µl template. For the analysis of both, clinical samples and serial dilution samples, dPCR and qPCR showed comparable sensitivity. With regard to reproducibility, both methods differed considerably, especially for low template samples. Here, we found with qPCR a mean variation coefficient of 126% whereas dPCR enabled a significantly lower mean variation coefficient of 40% (p = 0.01). Generally, we saw with dPCR a substantial reduction of subsampling errors, which most likely reflects the large cDNA amounts available for analysis. Compared to real-time PCR, dPCR shows higher reliability. Thus, our HPV mRNA dPCR assay holds promise for the clinical evaluation of occult tumor cells in histologically tumor-free lymph nodes in future studies.

  2. SNPs and real-time quantitative PCR method for constitutional allelic copy number determination, the VPREB1 marker case

    Directory of Open Access Journals (Sweden)

    Costa Elena

    2011-05-01

    Full Text Available Abstract Background 22q11.2 microdeletion is responsible for the DiGeorge Syndrome, characterized by heart defects, psychiatric disorders, endocrine and immune alterations and a 1 in 4000 live birth prevalence. Real-time quantitative PCR (qPCR approaches for allelic copy number determination have recently been investigated in 22q11.2 microdeletions detection. The qPCR method was performed for 22q11.2 microdeletions detection as a first-level screening approach in a genetically unknown series of patients with congenital heart defects. A technical issue related to the VPREB1 qPCR marker was pointed out. Methods A set of 100 unrelated Italian patients with congenital heart defects were tested for 22q11.2 microdeletions by a qPCR method using six different markers. Fluorescence In Situ Hybridization technique (FISH was used for confirmation. Results qPCR identified six patients harbouring the 22q11.2 microdeletion, confirmed by FISH. The VPREB1 gene marker presented with a pattern consistent with hemideletion in one 3 Mb deleted patient, suggestive for a long distal deletion, and in additional five non-deleted patients. The long distal 22q11.2 deletion was not confirmed by Comparative Genomic Hybridization. Indeed, the VPREB1 gene marker generated false positive results in association with the rs1320 G/A SNP, a polymorphism localized within the VPREB1 marker reverse primer sequence. Patients heterozygous for rs1320 SNP, showed a qPCR profile consistent with the presence of a hemideletion. Conclusions Though the qPCR technique showed advantages as a screening approach in terms of cost and time, the VPREB1 marker case revealed that single nucleotide polymorphisms can interfere with qPCR data generating erroneous allelic copy number interpretations.

  3. Technical aspects and recommendations for single-cell qPCR.

    Science.gov (United States)

    Ståhlberg, Anders; Kubista, Mikael

    2018-02-01

    Single cells are basic physiological and biological units that can function individually as well as in groups in tissues and organs. It is central to identify, characterize and profile single cells at molecular level to be able to distinguish different kinds, to understand their functions and determine how they interact with each other. During the last decade several technologies for single-cell profiling have been developed and used in various applications, revealing many novel findings. Quantitative PCR (qPCR) is one of the most developed methods for single-cell profiling that can be used to interrogate several analytes, including DNA, RNA and protein. Single-cell qPCR has the potential to become routine methodology but the technique is still challenging, as it involves several experimental steps and few molecules are handled. Here, we discuss technical aspects and provide recommendation for single-cell qPCR analysis. The workflow includes experimental design, sample preparation, single-cell collection, direct lysis, reverse transcription, preamplification, qPCR and data analysis. Detailed reporting and sharing of experimental details and data will promote further development and make validation studies possible. Efforts aiming to standardize single-cell qPCR open up means to move single-cell analysis from specialized research settings to standard research laboratories. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Immunomagnetic nanoparticle based quantitative PCR for rapid detection of Salmonella

    International Nuclear Information System (INIS)

    Bakthavathsalam, Padmavathy; Rajendran, Vinoth Kumar; Saran, Uttara; Chatterjee, Suvro; Ali, Baquir Mohammed Jaffar

    2013-01-01

    We have developed a rapid and sensitive method for immunomagnetic separation (IMS) of Salmonella along with their real time detection via PCR. Silica-coated magnetic nanoparticles were functionalized with carboxy groups to which anti-Salmonella antibody raised against heat-inactivated whole cells of Salmonella were covalently attached. The immuno-captured target cells were detected in beverages like milk and lemon juice by multiplex PCR and real time PCR with a detection limit of 10 4 cfu.mL −1 and 10 3 cfu.mL −1 , respectively. We demonstrate that IMS can be used for selective concentration of target bacteria from beverages for subsequent use in PCR detection. PCR also enables differentiation of Salmonella typhi and Salmonella paratyphi A using a set of four specific primers. In addition, IMS—PCR can be used as a screening tool in the food and beverage industry for the detection of Salmonella within 3–4 h which compares favorably to the time of several days that is needed in case of conventional detection based on culture and biochemical methods. (author)

  5. Specific and sensitive quantitative RT-PCR of miRNAs with DNA primers

    DEFF Research Database (Denmark)

    Balcells, Ingrid; Cirera Salicio, Susanna; Busk, Peter K.

    2011-01-01

    BACKGROUND: MicroRNAs are important regulators of gene expression at the post-transcriptional level and play an important role in many biological processes. Due to the important biological role it is of great interest to quantitatively determine their expression level in different biological...... be designed with a success rate of 94%. The method was able to quantify synthetic templates over eight orders of magnitude and readily discriminated between microRNAs with single nucleotide differences. Importantly, PCR with DNA primers yielded significantly higher amplification efficiencies of biological...... samples than a similar method based on locked nucleic acids-spiked primers, which is in agreement with the observation that locked nucleic acid interferes with efficient amplification of short templates. The higher amplification efficiency of DNA primers translates into higher sensitivity and precision...

  6. Why the need for qPCR publication guidelines?--The case for MIQE.

    Science.gov (United States)

    Bustin, Stephen A

    2010-04-01

    The polymerase chain reaction (PCR) has matured from a labour- and time-intensive, low throughput qualitative gel-based technique to an easily automated, rapid, high throughput quantitative technology. Real-time quantitative PCR (qPCR) has become the benchmark technology for the detection and quantification of nucleic acids in a research, diagnostic, forensic and biotechnology setting. However, ill-assorted pre-assay conditions, poor assay design and inappropriate data analysis methodologies have resulted in the recurrent publication of data that are at best inconsistent and at worst irrelevant and even misleading. Furthermore, there is a lamentable lack of transparency of reporting, with the "Materials and Methods" sections of many publications, especially those with high impact factors, not fit for the purpose of evaluating the quality of any reported qPCR data. This poses a challenge to the integrity of the scientific literature, with serious consequences not just for basic research, but potentially calamitous implications for drug development and disease monitoring. These issues are being addressed by a set of guidelines that propose a minimum standard for the provision of information for qPCR experiments ("MIQE"). MIQE aims to restructure to-day's free-for-all qPCR methods into a more consistent format that will encourage detailed auditing of experimental detail, data analysis and reporting principles. General implementation of these guidelines is an important requisite for the maturing of qPCR into a robust, accurate and reliable nucleic acid quantification technology. Copyright 2009 Elsevier Inc. All rights reserved.

  7. A multiplex calibrated real-time PCR assay for quantitation of DNA of EBV-1 and 2.

    Science.gov (United States)

    Gatto, Francesca; Cassina, Giulia; Broccolo, Francesco; Morreale, Giuseppe; Lanino, Edoardo; Di Marco, Eddi; Vardas, Efthiya; Bernasconi, Daniela; Buttò, Stefano; Principi, Nicola; Esposito, Susanna; Scarlatti, Gabriella; Lusso, Paolo; Malnati, Mauro S

    2011-12-01

    Accurate and highly sensitive tests for the diagnosis of active Epstein-Barr virus (EBV) infection are essential for the clinical management of individuals infected with EBV. A calibrated quantitative real-time PCR assay for the measurement of EBV DNA of both EBV-1 and 2 subtypes was developed, combining the detection of the EBV DNA and a synthetic DNA calibrator in a multiplex PCR format. The assay displays a wide dynamic range and a high degree of accuracy even in the presence of 1μg of human genomic DNA. This assay measures with the same efficiency EBV DNA from strains prevalent in different geographic areas. The clinical sensitivity and specificity of the system were evaluated by testing 181 peripheral blood mononuclear cell (PBMCs) and plasma specimens obtained from 21 patients subjected to bone marrow transplantation, 70 HIV-seropositive subjects and 23 healthy controls. Patients affected by EBV-associated post-transplant lymphoprolipherative disorders had the highest frequency of EBV detection and the highest viral load. Persons infected with HIV had higher levels of EBV DNA load in PBMCs and a higher frequency of EBV plasma viremia compared to healthy controls. In conclusion, this new assay provides a reliable high-throughput method for the quantitation of EBV DNA in clinical samples. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Validation of chimerism in pediatric recipients of allogeneic hematopoietic stem cell transplantation (HSCT) a comparison between two methods: real-time PCR (qPCR) vs. variable number tandem repeats PCR (VNTR PCR).

    Science.gov (United States)

    Kletzel, Morris; Huang, Wei; Olszewski, Marie; Khan, Sana

    2013-01-01

    Post-hematopoietic stem cell transplantation (HSCT) chimerism monitoring is important to assess relapse and therapeutic intervention. The purpose of our study is to compare two methods variable number tandem repeats (VNTR) vs. quantitative real- time polymerase chain reaction (qPCR) in terms of determining chimerism. 127 (peripheral blood n=112, bone marrow n=15) samples were simultaneously tested by VNTR using APO-B, D1S80, D1S111, D17S30, gene loci SRY and ZP3 and qPCR using 34 assays (CA001-CA034) that are designed to a bi-allelic insertion/deletion (indel) polymorphism in the human genome. Samples were separated in three subsets: total WBC, T-cell and Myeloid cells. Extraction of DNA was performed then quantified. We analyzed column statistics, paired t-test and regression analysis for both methods. There was complete correlation between the two methods. The simplicity and rapidity of the test results from the qPCR method is more efficient and accurate to assess chimerism.

  9. Combined mutation and rearrangement screening by quantitative PCR high-resolution melting: is it relevant for hereditary recurrent Fever genes?

    Directory of Open Access Journals (Sweden)

    Nathalie Pallares-Ruiz

    2010-11-01

    Full Text Available The recent identification of genes implicated in hereditary recurrent fevers has allowed their specific diagnosis. So far however, only punctual mutations have been identified and a significant number of patients remain with no genetic confirmation of their disease after routine molecular approaches such as sequencing. The possible involvement of sequence rearrangements in these patients has only been examined in familial Mediterranean fever and was found to be unlikely. To assess the existence of larger genetic alterations in 3 other concerned genes, MVK (Mevalonate kinase, NLRP3 (Nod like receptor family, pyrin domain containing 3 and TNFRSF1A (TNF receptor superfamily 1A, we adapted the qPCR-HRM method to study possible intragenic deletions and duplications. This single-tube approach, combining both qualitative (mutations and quantitative (rearrangement screening, has proven effective in Lynch syndrome diagnosis. Using this approach, we studied 113 unselected (prospective group and 88 selected (retrospective group patients and identified no intragenic rearrangements in the 3 genes. Only qualitative alterations were found with a sensitivity similar to that obtained using classical molecular techniques for screening punctual mutations. Our results support that deleterious copy number alterations in MVK, NLRP3 and TNFRSF1A are rare or absent from the mutational spectrum of hereditary recurrent fevers, and demonstrate that a routine combined method such as qPCR-HRM provides no further help in genetic diagnosis. However, quantitative approaches such as qPCR or SQF-PCR did prove to be quick and effective and could still be useful after non contributory punctual mutation screening in the presence of clinically evocative signs.

  10. Evaluation of Rice Resistance to Southern Rice Black-Streaked Dwarf Virus and Rice Ragged Stunt Virus through Combined Field Tests, Quantitative Real-Time PCR, and Proteome Analysis.

    Science.gov (United States)

    Wang, Zhenchao; Yu, Lu; Jin, Linhong; Wang, Wenli; Zhao, Qi; Ran, Longlu; Li, Xiangyang; Chen, Zhuo; Guo, Rong; Wei, Yongtian; Yang, Zhongcheng; Liu, Enlong; Hu, Deyu; Song, Baoan

    2017-02-22

    Diseases caused by southern rice black-streaked dwarf virus (SRBSDV) and rice ragged stunt virus (RRSV) considerably decrease grain yield. Therefore, determining rice cultivars with high resistance to SRBSDV and RRSV is necessary. In this study, rice cultivars with high resistance to SRBSDV and RRSV were evaluated through field trials in Shidian and Mangshi county, Yunnan province, China. SYBR Green I-based quantitative real-time polymerase chain reaction (qRT-PCR) analysis was used to quantitatively detect virus gene expression levels in different rice varieties. The following parameters were applied to evaluate rice resistance: acre yield (A.Y.), incidence of infected plants (I.I.P.), virus load (V.L.), disease index (D.I.), and insect quantity (I.Q.) per 100 clusters. Zhongzheyou1 (Z1) and Liangyou2186 (L2186) were considered the most suitable varieties with integrated higher A.Y., lower I.I.P., V.L., D.I. and I.Q. In order to investigate the mechanism of rice resistance, comparative label-free shotgun liquid chromatography tandem-mass spectrometry (LC-MS/MS) proteomic approaches were applied to comprehensively describe the proteomics of rice varieties' SRBSDV tolerance. Systemic acquired resistance (SAR)-related proteins in Z1 and L2186 may result in the superior resistance of these varieties compared with Fengyouxiangzhan (FYXZ).

  11. Comparison of antigen detection and quantitative PCR in the detection of chlamydial infection in koalas (Phascolarctos cinereus).

    Science.gov (United States)

    Hanger, Jon; Loader, Joanne; Wan, Charles; Beagley, Kenneth W; Timms, Peter; Polkinghorne, Adam

    2013-03-01

    The gold standard method for detecting chlamydial infection in domestic and wild animals is PCR, but the technique is not suited to testing animals in the field when a rapid diagnosis is frequently required. The objective of this study was to compare the results of a commercially available enzyme immunoassay test for Chlamydia against a quantitative Chlamydia pecorum-specific PCR performed on swabs collected from the conjunctival sac, nasal cavity and urogenital sinuses of naturally infected koalas (Phascolarctos cinereus). The level of agreement for positive results between the two assays was low (43.2%). The immunoassay detection cut-off was determined as approximately 400 C. pecorum copies, indicating that the test was sufficiently sensitive to be used for the rapid diagnosis of active chlamydial infections. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Aspergillus Galactomannan Enzyme Immunoassay and Quantitative PCR for Diagnosis of Invasive Aspergillosis with Bronchoalveolar Lavage Fluid

    Science.gov (United States)

    Musher, Benjamin; Fredricks, David; Leisenring, Wendy; Balajee, S. Arunmozhi; Smith, Caitlin; Marr, Kieren A.

    2004-01-01

    Invasive pulmonary aspergillosis (IPA) is frequent and often fatal in hematopoietic stem cell transplant patients. Diagnosis requires microbiological or histopathologic demonstration of the organism in tissues; however, cultivation of Aspergillus species from respiratory secretions has low diagnostic sensitivity. Assays to detect Aspergillus antigen or DNA in bronchoalveolar lavage (BAL) fluid could facilitate earlier diagnosis, thereby guiding optimal therapy and obviating the need for additional costly and potentially morbid diagnostic evaluation. We evaluated the performance of a galactomannan enzyme immunoassay (GM EIA; Bio-Rad) by using a range of index cutoffs to define positivity and a quantitative PCR (qPCR) assay for the detection of Aspergillus species from BAL samples of patients with proven and probable IPA (case patients; n = 49) and without IPA (control patients; n = 50). The sensitivity of the GM EIA was 61% with an index cutoff of 1.0 and 76% with an index cutoff of 0.5; the corresponding specificities were 98 and 94%, respectively. The sensitivity and specificity of qPCR assay were 67 and 100%, respectively. The sensitivity with 22 culture-negative BAL specimens from patients with IPA was 41% for GM EIA with an index cutoff of 1.0, 59% for GM EIA with an index cutoff of 0.5, and 36% for qPCR assay. GM EIA indices and DNA quantities corresponded to BAL fungal burdens, with culture-positive samples having larger amounts of antigen and DNA compared to culture-negative samples. GM EIA and qPCR assay add to the sensitivity of BAL for diagnosing IPA in high-risk patients, with excellent specificity. Adjunctive use of these tests may reduce dependence on invasive diagnostic procedures. PMID:15583275

  13. Evaluation of reference genes for real-time quantitative PCR studies in Candida glabrata following azole treatment

    Directory of Open Access Journals (Sweden)

    Li Qingdi

    2012-06-01

    Full Text Available Abstract Background The selection of stable and suitable reference genes for real-time quantitative PCR (RT-qPCR is a crucial prerequisite for reliable gene expression analysis under different experimental conditions. The present study aimed to identify reference genes as internal controls for gene expression studies by RT-qPCR in azole-stimulated Candida glabrata. Results The expression stability of 16 reference genes under fluconazole stress was evaluated using fold change and standard deviation computations with the hkgFinder tool. Our data revealed that the mRNA expression levels of three ribosomal RNAs (RDN5.8, RDN18, and RDN25 remained stable in response to fluconazole, while PGK1, UBC7, and UBC13 mRNAs showed only approximately 2.9-, 3.0-, and 2.5-fold induction by azole, respectively. By contrast, mRNA levels of the other 10 reference genes (ACT1, EF1α, GAPDH, PPIA, RPL2A, RPL10, RPL13A, SDHA, TUB1, and UBC4 were dramatically increased in C. glabrata following antifungal treatment, exhibiting changes ranging from 4.5- to 32.7-fold. We also assessed the expression stability of these reference genes using the 2-ΔΔCT method and three other software packages. The stability rankings of the reference genes by geNorm and the 2-ΔΔCT method were identical to those by hkgFinder, whereas the stability rankings by BestKeeper and NormFinder were notably different. We then validated the suitability of six candidate reference genes (ACT1, PGK1, RDN5.8, RDN18, UBC7, and UBC13 as internal controls for ten target genes in this system using the comparative CT method. Our validation experiments passed for all six reference genes analyzed except RDN18, where the amplification efficiency of RDN18 was different from that of the ten target genes. Finally, we demonstrated that the relative quantification of target gene expression varied according to the endogenous control used, highlighting the importance of the choice of internal controls in such

  14. Development of a Rapid Real-Time PCR Assay for Quantitation of Pneumocystis carinii f. sp. Carinii

    DEFF Research Database (Denmark)

    Larsen, Hans Henrik; Kovacs, Joseph A; Stock, Frida

    2002-01-01

    A method for reliable quantification of Pneumocystis carinii in research models of P. carinii pneumonia (PCP) that is more convenient and reproducible than microscopic enumeration of organisms would greatly facilitate investigations of this organism. We developed a rapid quantitative touchdown (QTD......) PCR assay for detecting P. carinii f. sp. carinii, the subspecies of P. carinii commonly used in research models of PCP. The assay was based on the single-copy dihydrofolate reductase gene and was able to detect ... 6 log values for standards containing > or =5 copies/tube. Application of the assay to a series of 10-fold dilutions of P. carinii organisms isolated from rat lung demonstrated that it was reproducibly quantitative over 5 log values (r = 0.99). The assay was applied to a recently reported in vitro...

  15. A plastome primer set for comprehensive quantitative real time RT-PCR analysis of Zea mays: a starter primer set for other Poaceae species

    Directory of Open Access Journals (Sweden)

    Dunn Sade N

    2008-06-01

    Full Text Available Abstract Background Quantitative Real Time RT-PCR (q2(RTPCR is a maturing technique which gives researchers the ability to quantify and compare very small amounts of nucleic acids. Primer design and optimization is an essential yet time consuming aspect of using q2(RTPCR. In this paper we describe the design and empirical optimization of primers to amplify and quantify plastid RNAs from Zea mays that are robust enough to use with other closely related species. Results Primers were designed and successfully optimized for 57 of the 104 reported genes in the maize plastome plus two nuclear genes. All 59 primer pairs produced single amplicons after end-point reverse transcriptase polymerase chain reactions (RT-PCR as visualized on agarose gels and subsequently verified by q2(RTPCR. Primer pairs were divided into several categories based on the optimization requirements or the uniqueness of the target gene. An in silico test suggested the majority of the primer sets should work with other members of the Poaceae family. An in vitro test of the primer set on two unsequenced species (Panicum virgatum and Miscanthus sinensis supported this assumption by successfully producing single amplicons for each primer pair. Conclusion Due to the highly conserved chloroplast genome in plant families it is possible to utilize primer pairs designed against one genomic sequence to detect the presence and abundance of plastid genes or transcripts from genomes that have yet to be sequenced. Analysis of steady state transcription of vital system genes is a necessary requirement to comprehensively elucidate gene expression in any organism. The primer pairs reported in this paper were designed for q2(RTPCR of maize chloroplast genes but should be useful for other members of the Poaceae family. Both in silico and in vitro data are presented to support this assumption.

  16. Magnetic particle separation technique: a reliable and simple tool for RIA/IRMA and quantitative PCR assay

    International Nuclear Information System (INIS)

    Shen Rongsen; Shen Decun

    1998-01-01

    Five types of magnetic particles without or with aldehyde, amino and carboxyl functional groups, respectively were used to immobilize first or second antibody by three models, i. e. physical adsorption, chemical coupling and immuno-affinity, forming four types of magnetic particle antibodies. The second antibody immobilized on polyacrolein magnetic particles through aldehyde functional groups and the first antibodies immobilized on carboxylic polystyrene magnetic particles through carboxyl functional groups were recommended to apply to RIAs and/or IRMAs. Streptavidin immobilized on commercial magnetic particles through amino functional groups was successfully applied to separating specific PCR product for quantification of human cytomegalovirus. In the paper typical data on reliability of these magnetic particle ligands were reported and simplicity of the magnetic particle separation technique was discussed. The results showed that the technique was a reliable and simple tool for RIA/IRMA and quantitative PCR assay. (author)

  17. Quantitative investment analysis

    CERN Document Server

    DeFusco, Richard

    2007-01-01

    In the "Second Edition" of "Quantitative Investment Analysis," financial experts Richard DeFusco, Dennis McLeavey, Jerald Pinto, and David Runkle outline the tools and techniques needed to understand and apply quantitative methods to today's investment process.

  18. Quantitation of HBV cccDNA in anti-HBc-positive liver donors by droplet digital PCR: a new tool to detect occult infection.

    Science.gov (United States)

    Caviglia, Gian Paolo; Abate, Maria Lorena; Tandoi, Francesco; Ciancio, Alessia; Amoroso, Antonio; Salizzoni, Mauro; Saracco, Giorgio Maria; Rizzetto, Mario; Romagnoli, Renato; Smedile, Antonina

    2018-04-02

    The accurate diagnosis of occult HBV infection (OBI) requires the demonstration of HBV DNA in liver biopsies of HBsAg-negative subjects. However, in clinical practice a latent OBI is deduced by the finding of the antibody to the HB-core antigen (anti-HBc). We investigated the true prevalence of OBI and the molecular features of intrahepatic HBV in anti-HBc-positive subjects. The livers of 100 transplant donors (median age 68.2 years; 64 males, 36 females) positive for anti-HBc at standard serologic testing, were examined for total HBV DNA by nested-PCR and for the HBV covalently closed circular DNA (HBV cccDNA) with an in-house droplet digital PCR assay (ddPCR) (Linearity: R 2 = 0.9998; lower limit of quantitation and detection of 2.4 and 0.8 copies/10 5 cells, respectively). A true OBI status was found in 52% (52/100) of the subjects and cccDNA was found in 52% (27/52) of the OBI-positive, with a median 13 copies/10 5 cells (95% confidence interval 5-25). Using an assay specific for anti-HBc of IgG class, the median antibody level was significantly higher in HBV cccDNA-positive than negative donors (5.7 [3.6-9.7] vs. 17.0 [7.0-39.2] COI, p = 0.007). By multivariate analysis, an anti-HBc IgG value above a 4.4 cut-off index (COI) was associated with the finding of intrahepatic HBV cccDNA (OR = 8.516, p = 0.009); a lower value ruled out its presence with a negative predictive value of 94.6%. With a new in-house ddPCR-based method, intrahepatic HBV cccDNA was detectable in quantifiable levels in about half of the OBI cases examined. The titer of anti-HBc IgG may be a useful surrogate to predict the risk of OBI reactivation in immunosuppressed patients. The covalently closed circular DNA (cccDNA) form of the Hepatitis B virus (HBV) sustains the persistence of the virus even after decades of resolution of the florid infection (Occult HBV infection=OBI). In the present study we developed an highly sensitive method based on droplet digital PCR technology for the detection

  19. Selection of reference genes for RT-qPCR analysis in the monarch butterfly, Danaus plexippus (L.), a migrating bio-indicator

    Science.gov (United States)

    Quantitative real-time PCR (qRT-PCR) is a reliable and reproducible technique for measuring and evaluating changes in gene expression. To facilitate gene expression studies and obtain more accurate qRT-PCR data, normalization relative to stable housekeeping genes is required. In this study, expres...

  20. Using quantitative real-time PCR to detect chimeras in transgenic tobacco and apricot and to monitor their dissociation

    Directory of Open Access Journals (Sweden)

    Burgos Lorenzo

    2010-07-01

    Full Text Available Abstract Background The routine generation of transgenic plants involves analysis of transgene integration into the host genome by means of Southern blotting. However, this technique cannot distinguish between uniformly transformed tissues and the presence of a mixture of transgenic and non-transgenic cells in the same tissue. On the other hand, the use of reporter genes often fails to accurately detect chimerical tissues because their expression can be affected by several factors, including gene silencing and plant development. So, new approaches based on the quantification of the amount of the transgene are needed urgently. Results We show here that chimeras are a very frequent phenomenon observed after regenerating transgenic plants. Spatial and temporal analyses of transformed tobacco and apricot plants with a quantitative, real-time PCR amplification of the neomycin phosphotransferase (nptII transgene as well as of an internal control (β-actin, used to normalise the amount of target DNA at each reaction, allowed detection of chimeras at unexpected rates. The amount of the nptII transgene differed greatly along with the sub-cultivation period of these plants and was dependent on the localisation of the analysed leaves; being higher in roots and basal leaves, while in the apical leaves it remained at lower levels. These data demonstrate that, unlike the use of the gus marker gene, real-time PCR is a powerful tool for detection of chimeras. Although some authors have proposed a consistent, positive Southern analysis as an alternative methodology for monitoring the dissociation of chimeras, our data show that it does not provide enough proof of uniform transformation. In this work, however, real-time PCR was applied successfully to monitor the dissociation of chimeras in tobacco plants and apricot callus. Conclusions We have developed a rapid and reliable method to detect and estimate the level of chimeras in transgenic tobacco and apricot

  1. Real-time PCR (qPCR) primer design using free online software.

    Science.gov (United States)

    Thornton, Brenda; Basu, Chhandak

    2011-01-01

    Real-time PCR (quantitative PCR or qPCR) has become the preferred method for validating results obtained from assays which measure gene expression profiles. The process uses reverse transcription polymerase chain reaction (RT-PCR), coupled with fluorescent chemistry, to measure variations in transcriptome levels between samples. The four most commonly used fluorescent chemistries are SYBR® Green dyes and TaqMan®, Molecular Beacon or Scorpion probes. SYBR® Green is very simple to use and cost efficient. As SYBR® Green dye binds to any double-stranded DNA product, its success depends greatly on proper primer design. Many types of online primer design software are available, which can be used free of charge to design desirable SYBR® Green-based qPCR primers. This laboratory exercise is intended for those who have a fundamental background in PCR. It addresses the basic fluorescent chemistries of real-time PCR, the basic rules and pitfalls of primer design, and provides a step-by-step protocol for designing SYBR® Green-based primers with free, online software. Copyright © 2010 Wiley Periodicals, Inc.

  2. Comparison of real-time quantitative PCR and culture for the diagnosis of emerging Rickettsioses.

    Directory of Open Access Journals (Sweden)

    Emmanouil Angelakis

    Full Text Available BACKGROUND: Isolation of Rickettsia species from skin biopsies may be replaced by PCR. We evaluated culture sensitivity compared to PCR based on sampling delay and previous antibiotic treatment. METHODOLOGY/PRINCIPAL FINDINGS: Skin biopsies and ticks from patients with suspected Rickettsia infection were screened for Rickettsia spp. using qPCR, and positive results were amplified and sequenced for the gltA and ompA genes. Immunofluorescence for spotted fever group rickettsial antigens was done for 79 patients. All skin biopsies and only ticks that tested positive using qPCR were cultured in human embryonic lung (HEL fibroblasts using the centrifugation-shell vial technique. Patients and ticks were classified as definitely having rickettsioses if there was direct evidence of infection with a Rickettsia sp. using culture or molecular assays or in patients if serology was positive. Data on previous antibiotic treatments were obtained for patients with rickettsiosis. Rickettsia spp. infection was diagnosed in 47 out of 145 patients (32%, 41 by PCR and 12 by culture, whereas 3 isolates were obtained from PCR negative biopsies. For 3 of the patients serology was positive although PCR and culture were negative. Rickettsia africae was the most common detected species (n = 25, [17.2%] and isolated bacterium (n = 5, [3.4%]. The probability of isolating Rickettsia spp. was 12 times higher in untreated patients and 5.4 times higher in patients from our hometown. Rickettsia spp. was amplified in 24 out of 95 ticks (25% and we isolated 7 R. slovaca and 1 R. raoultii from Dermacentor marginatus. CONCLUSIONS/SIGNIFICANCE: We found a positive correlation between the bacteria copies and the isolation success in skin biopsies and ticks. Culture remains critical for strain analysis but is less sensitive than serology and PCR for the diagnosis of a Rickettsia infection.

  3. Investigation of Legionella Contamination in Bath Water Samples by Culture, Amoebic Co-Culture, and Real-Time Quantitative PCR Methods.

    Science.gov (United States)

    Edagawa, Akiko; Kimura, Akio; Kawabuchi-Kurata, Takako; Adachi, Shinichi; Furuhata, Katsunori; Miyamoto, Hiroshi

    2015-10-19

    We investigated Legionella contamination in bath water samples, collected from 68 bathing facilities in Japan, by culture, culture with amoebic co-culture, real-time quantitative PCR (qPCR), and real-time qPCR with amoebic co-culture. Using the conventional culture method, Legionella pneumophila was detected in 11 samples (11/68, 16.2%). Contrary to our expectation, the culture method with the amoebic co-culture technique did not increase the detection rate of Legionella (4/68, 5.9%). In contrast, a combination of the amoebic co-culture technique followed by qPCR successfully increased the detection rate (57/68, 83.8%) compared with real-time qPCR alone (46/68, 67.6%). Using real-time qPCR after culture with amoebic co-culture, more than 10-fold higher bacterial numbers were observed in 30 samples (30/68, 44.1%) compared with the same samples without co-culture. On the other hand, higher bacterial numbers were not observed after propagation by amoebae in 32 samples (32/68, 47.1%). Legionella was not detected in the remaining six samples (6/68, 8.8%), irrespective of the method. These results suggest that application of the amoebic co-culture technique prior to real-time qPCR may be useful for the sensitive detection of Legionella from bath water samples. Furthermore, a combination of amoebic co-culture and real-time qPCR might be useful to detect viable and virulent Legionella because their ability to invade and multiply within free-living amoebae is considered to correlate with their pathogenicity for humans. This is the first report evaluating the efficacy of the amoebic co-culture technique for detecting Legionella in bath water samples.

  4. Comparison of reverse transcription-quantitative polymerase chain reaction methods and platforms for single cell gene expression analysis.

    Science.gov (United States)

    Fox, Bridget C; Devonshire, Alison S; Baradez, Marc-Olivier; Marshall, Damian; Foy, Carole A

    2012-08-15

    Single cell gene expression analysis can provide insights into development and disease progression by profiling individual cellular responses as opposed to reporting the global average of a population. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is the "gold standard" for the quantification of gene expression levels; however, the technical performance of kits and platforms aimed at single cell analysis has not been fully defined in terms of sensitivity and assay comparability. We compared three kits using purification columns (PicoPure) or direct lysis (CellsDirect and Cells-to-CT) combined with a one- or two-step RT-qPCR approach using dilutions of cells and RNA standards to the single cell level. Single cell-level messenger RNA (mRNA) analysis was possible using all three methods, although the precision, linearity, and effect of lysis buffer and cell background differed depending on the approach used. The impact of using a microfluidic qPCR platform versus a standard instrument was investigated for potential variability introduced by preamplification of template or scaling down of the qPCR to nanoliter volumes using laser-dissected single cell samples. The two approaches were found to be comparable. These studies show that accurate gene expression analysis is achievable at the single cell level and highlight the importance of well-validated experimental procedures for low-level mRNA analysis. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Quantitative Real-time PCR detection of putrescine-producing Gram-negative bacteria

    Directory of Open Access Journals (Sweden)

    Kristýna Maršálková

    2017-01-01

    Full Text Available Biogenic amines are indispensable components of living cells; nevertheless these compounds could be toxic for human health in higher concentrations. Putrescine is supposed to be the major biogenic amine associated with microbial food spoilage. Development of reliable, fast and culture-independent molecular methods to detect bacteria producing biogenic amines deserves the attention, especially of the food industry in purpose to protect health. The objective of this study was to verify the newly designed primer sets for detection of two inducible genes adiA and speF together in Salmonella enterica and Escherichia coli genome by Real-time PCR. These forenamed genes encode enzymes in the metabolic pathway which leads to production of putrescine in Gram-negative bacteria. Moreover, relative expression of these genes was studied in E. coli CCM 3954 strain using Real-time PCR. In this study, sets of new primers for the detection two inducible genes (speF and adiA in Salmonella enterica and E. coli by Real-time PCR were designed and tested. Amplification efficiency of a Real-time PCR was calculated from the slope of the standard curves (adiA, speF, gapA. An efficiency in a range from 95 to 105 % for all tested reactions was achieved. The gene expression (R of adiA and speF genes in E. coli was varied depending on culture conditions. The highest gene expression of adiA and speF was observed at 6, 24 and 36 h (RadiA ~ 3, 5, 9; RspeF ~11, 10, 9; respectively after initiation of growth of this bacteria in nutrient broth medium enchired with amino acids. The results show that these primers could be used for relative quantification analysis of E. coli.

  6. Quantifying fungal viability in air and water samples using quantitative PCR after treatment with propidium monoazide (PMA)

    International Nuclear Information System (INIS)

    Vesper, Stephen; McKinstry, Craig A.; Hartmann, Chris; Neace, Michelle; Yoder, Stephanie; Vesper, Alex

    2007-01-01

    A method is described to discriminate between live and dead cells of the infectious fungi Aspergillus fumigatus, Aspergillus flavus, Aspergillus terreus, Mucor racemosus, Rhizopus stolonifer and Paecilomyces variotii. To test the method, conidial suspensions were heat inactivated at 85 C or held at 5 C (controls) for 1 h. Polycarbonate filters (25 mm diameter, 0.8 (micro)m pore size) were placed on 'welled' slides (14 mm diameter) and the filters treated with either PBS or PMA. Propidium monoazide (PMA), which enters dead cells but not live cells, was incubated with cell suspensions, exposed to blue wavelength light-emitting diodes (LED) to inactivate remaining PMA and secure intercalation of PMA with DNA of dead cells. Treated cells were extracted and the live and dead cells evaluated with quantitative PCR (QPCR). After heat treatment and DNA modification with PMA, all fungal species tested showed an approximate 100- to 1000-fold difference in cell viability estimated by QPCR analysis which was consistent with estimates of viability based on culturing.

  7. Development of a Rapid Real-Time PCR Assay for Quantitation of Pneumocystis carinii f. sp. Carinii

    DEFF Research Database (Denmark)

    Larsen, Hans Henrik; Kovacs, Joseph A; Stock, Frida

    2002-01-01

    6 log values for standards containing > or =5 copies/tube. Application of the assay to a series of 10-fold dilutions of P. carinii organisms isolated from rat lung demonstrated that it was reproducibly quantitative over 5 log values (r = 0.99). The assay was applied to a recently reported in vitro...... axenic cultivation system for P. carinii and confirmed our microscopy findings that no organism multiplication had occurred during culture. For all cultures analyzed, QTD PCR assays showed a decrease in P. carinii DNA that exceeded the expected decrease due to dilution of the inoculum upon transfer......A method for reliable quantification of Pneumocystis carinii in research models of P. carinii pneumonia (PCP) that is more convenient and reproducible than microscopic enumeration of organisms would greatly facilitate investigations of this organism. We developed a rapid quantitative touchdown (QTD...

  8. Development and validation of an event-specific quantitative PCR method for genetically modified maize MIR162.

    Science.gov (United States)

    Takabatake, Reona; Masubuchi, Tomoko; Futo, Satoshi; Minegishi, Yasutaka; Noguchi, Akio; Kondo, Kazunari; Teshima, Reiko; Kurashima, Takeyo; Mano, Junichi; Kitta, Kazumi

    2014-01-01

    A novel real-time PCR-based analytical method was developed for the event-specific quantification of a genetically modified (GM) maize event, MIR162. We first prepared a standard plasmid for MIR162 quantification. The conversion factor (Cf) required to calculate the genetically modified organism (GMO) amount was empirically determined for two real-time PCR instruments, the Applied Biosystems 7900HT (ABI7900) and the Applied Biosystems 7500 (ABI7500) for which the determined Cf values were 0.697 and 0.635, respectively. To validate the developed method, a blind test was carried out in an interlaboratory study. The trueness and precision were evaluated as the bias and reproducibility of relative standard deviation (RSDr). The determined biases were less than 25% and the RSDr values were less than 20% at all evaluated concentrations. These results suggested that the limit of quantitation of the method was 0.5%, and that the developed method would thus be suitable for practical analyses for the detection and quantification of MIR162.

  9. Development and validation of quantitative PCR for detection of Terrapene herpesvirus 1 utilizing free-ranging eastern box turtles (Terrapene carolina carolina).

    Science.gov (United States)

    Kane, Lauren P; Bunick, David; Abd-Eldaim, Mohamed; Dzhaman, Elena; Allender, Matthew C

    2016-06-01

    Diseases that affect the upper respiratory tract (URT) in chelonians have been well described as a significant contributor of morbidity and mortality. Specifically, herpesviruses are common pathogens in captive chelonians worldwide, but their importance on free-ranging populations is less well known. Historical methods for the diagnosis of herpesvirus infections include virus isolation and conventional PCR. Real-time PCR has become an essential tool for detection and quantitation of many pathogens, but has not yet been developed for herpesviruses in box turtles. Two quantitative real-time TaqMan PCR assays, TerHV58 and TerHV64, were developed targeting the DNA polymerase gene of Terrapene herpesvirus 1 (TerHV1). The assay detected a viral DNA segment cloned within a plasmid with 10-fold serial dilutions from 1.04 × 10(7) to 1.04 × 10(1) viral copies per reaction. Even though both primers had acceptable levels of efficiency and variation, TerHV58 was utilized to test clinical samples based on less variation and increased efficiency. This assay detected as few as 10 viral copies per reaction and should be utilized in free-ranging and captive box turtles to aid in the characterization of the epidemiology of this disease. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Detection, quantitation and identification of enteroviruses from surface waters and sponge tissue from the Florida Keys using real-time RT-PCR

    Science.gov (United States)

    Donaldson, K.A.; Griffin, Dale W.; Paul, J.H.

    2002-01-01

    A method was developed for the quantitative detection of pathogenic human enteroviruses from surface waters in the Florida Keys using Taqman (R) one-step Reverse transcription (RT)-PCR with the Model 7700 ABI Prism (R) Sequence Detection System. Viruses were directly extracted from unconcentrated grab samples of seawater, from seawater concentrated by vortex flow filtration using a 100kD filter and from sponge tissue. Total RNA was extracted from the samples, purified and concentrated using spin-column chromatography. A 192-196 base pair portion of the 5??? untranscribed region was amplified from these extracts. Enterovirus concentrations were estimated using real-time RT-PCR technology. Nine of 15 sample sites or 60% were positive for the presence of pathogenic human enteroviruses. Considering only near-shore sites, 69% were positive with viral concentrations ranging from 9.3viruses/ml to 83viruses/g of sponge tissue (uncorrected for extraction efficiency). Certain amplicons were selected for cloning and sequencing for identification. Three strains of waterborne enteroviruses were identified as Coxsackievirus A9, Coxsackievirus A16, and Poliovirus Sabin type 1. Time and cost efficiency of this one-step real-time RT-PCR methodology makes this an ideal technique to detect, quantitate and identify pathogenic enteroviruses in recreational waters. Copyright ?? 2002 Elsevier Science Ltd.

  11. Comparison of allele-specific PCR, created restriction-site PCR, and PCR with primer-introduced restriction analysis methods used for screening complex vertebral malformation carriers in Holstein cattle

    Science.gov (United States)

    Altınel, Ahmet

    2017-01-01

    Complex vertebral malformation (CVM) is an inherited, autosomal recessive disorder of Holstein cattle. The aim of this study was to compare sensitivity, specificity, positive and negative predictive values, accuracy, and rapidity of allele-specific polymerase chain reaction (AS-PCR), created restriction-site PCR (CRS-PCR), and PCR with primer-introduced restriction analysis (PCR-PIRA), three methods used in identification of CVM carriers in a Holstein cattle population. In order to screen for the G>T mutation in the solute carrier family 35 member A3 (SLC35A3) gene, DNA sequencing as the gold standard method was used. The prevalence of carriers and the mutant allele frequency were 3.2% and 0.016, respectively, among Holstein cattle in the Thrace region of Turkey. Among the three methods, the fastest but least accurate was AS-PCR. Although the rapidity of CRS-PCR and PCR-PIRA were nearly equal, the accuracy of PCR-PIRA was higher than that of CRS-PCR. Therefore, among the three methods, PCR-PIRA appears to be the most efficacious for screening of mutant alleles when identifying CVM carriers in a Holstein cattle population. PMID:28927256

  12. International Interlaboratory Digital PCR Study Demonstrating High Reproducibility for the Measurement of a Rare Sequence Variant.

    Science.gov (United States)

    Whale, Alexandra S; Devonshire, Alison S; Karlin-Neumann, George; Regan, Jack; Javier, Leanne; Cowen, Simon; Fernandez-Gonzalez, Ana; Jones, Gerwyn M; Redshaw, Nicholas; Beck, Julia; Berger, Andreas W; Combaret, Valérie; Dahl Kjersgaard, Nina; Davis, Lisa; Fina, Frederic; Forshew, Tim; Fredslund Andersen, Rikke; Galbiati, Silvia; González Hernández, Álvaro; Haynes, Charles A; Janku, Filip; Lacave, Roger; Lee, Justin; Mistry, Vilas; Pender, Alexandra; Pradines, Anne; Proudhon, Charlotte; Saal, Lao H; Stieglitz, Elliot; Ulrich, Bryan; Foy, Carole A; Parkes, Helen; Tzonev, Svilen; Huggett, Jim F

    2017-02-07

    This study tested the claim that digital PCR (dPCR) can offer highly reproducible quantitative measurements in disparate laboratories. Twenty-one laboratories measured four blinded samples containing different quantities of a KRAS fragment encoding G12D, an important genetic marker for guiding therapy of certain cancers. This marker is challenging to quantify reproducibly using quantitative PCR (qPCR) or next generation sequencing (NGS) due to the presence of competing wild type sequences and the need for calibration. Using dPCR, 18 laboratories were able to quantify the G12D marker within 12% of each other in all samples. Three laboratories appeared to measure consistently outlying results; however, proper application of a follow-up analysis recommendation rectified their data. Our findings show that dPCR has demonstrable reproducibility across a large number of laboratories without calibration. This could enable the reproducible application of molecular stratification to guide therapy and, potentially, for molecular diagnostics.

  13. Enrichment of methylated molecules using enhanced-ice-co-amplification at lower denaturation temperature-PCR (E-ice-COLD-PCR) for the sensitive detection of disease-related hypermethylation.

    Science.gov (United States)

    Mauger, Florence; Kernaleguen, Magali; Lallemand, Céline; Kristensen, Vessela N; Deleuze, Jean-François; Tost, Jörg

    2018-05-01

    The detection of specific DNA methylation patterns bears great promise as biomarker for personalized management of cancer patients. Co-amplification at lower denaturation temperature-PCR (COLD-PCR) assays are sensitive methods, but have previously only been able to analyze loss of DNA methylation. Enhanced (E)-ice-COLD-PCR reactions starting from 2 ng of bisulfite-converted DNA were developed to analyze methylation patterns in two promoters with locked nucleic acid (LNA) probes blocking amplification of unmethylated CpGs. The enrichment of methylated molecules was compared to quantitative (q)PCR and quantified using serial dilutions. E-ice-COLD-PCR allowed the multiplexed enrichment and quantification of methylated DNA. Assays were validated in primary breast cancer specimens and circulating cell-free DNA from cancer patients. E-ice-COLD-PCR could prove a useful tool in the context of DNA methylation analysis for personalized medicine.

  14. Application of clone library analysis and real-time PCR for comparison of microbial communities in a low-grade copper sulfide ore bioheap leachate.

    Science.gov (United States)

    Bowei, Chen; Xingyu, Liu; Wenyan, Liu; Jiankang, Wen

    2009-11-01

    The microbial communities of leachate from a bioleaching heap located in China were analyzed using the 16S rRNA gene clone library and real-time quantitative PCR. Both methods showed that Leptospirillum spp. were the dominant bacteria, and Ferroplasma acidiphilum were the only archaea detected in the leachate. Clone library results indicated that nine operational taxonomic units (OTUs) were obtained, which fell into four divisions, the Nitrospirae (74%), the gamma-Proteobacteria (14%), the Actinobacteria (6%) and the Euryarchaeota (6%). The results obtained by real-time PCR in some ways were the same as clone library analysis. Furthermore, Sulfobacillus spp., detected only by real-time PCR, suggests that real-time PCR was a reliable technology to study the microbial communities in bioleaching environments. It is a useful tool to assist clone library analysis, to further understand microbial consortia and to have comprehensive and exact microbiological information about bioleaching environments. Finally, the interactions among the microorganisms detected in the leachate were summarized according to the characteristics of these species.

  15. GETPrime: a gene- or transcript-specific primer database for quantitative real-time PCR.

    Science.gov (United States)

    Gubelmann, Carine; Gattiker, Alexandre; Massouras, Andreas; Hens, Korneel; David, Fabrice; Decouttere, Frederik; Rougemont, Jacques; Deplancke, Bart

    2011-01-01

    The vast majority of genes in humans and other organisms undergo alternative splicing, yet the biological function of splice variants is still very poorly understood in large part because of the lack of simple tools that can map the expression profiles and patterns of these variants with high sensitivity. High-throughput quantitative real-time polymerase chain reaction (qPCR) is an ideal technique to accurately quantify nucleic acid sequences including splice variants. However, currently available primer design programs do not distinguish between splice variants and also differ substantially in overall quality, functionality or throughput mode. Here, we present GETPrime, a primer database supported by a novel platform that uniquely combines and automates several features critical for optimal qPCR primer design. These include the consideration of all gene splice variants to enable either gene-specific (covering the majority of splice variants) or transcript-specific (covering one splice variant) expression profiling, primer specificity validation, automated best primer pair selection according to strict criteria and graphical visualization of the latter primer pairs within their genomic context. GETPrime primers have been extensively validated experimentally, demonstrating high transcript specificity in complex samples. Thus, the free-access, user-friendly GETPrime database allows fast primer retrieval and visualization for genes or groups of genes of most common model organisms, and is available at http://updepla1srv1.epfl.ch/getprime/. Database URL: http://deplanckelab.epfl.ch.

  16. Design and analysis of Q-RT-PCR assays for haematological malignancies using mixed effects models

    DEFF Research Database (Denmark)

    Bøgsted, Martin; Mandrup, Charlotte; Petersen, Anders

    2009-01-01

    research use and needs qualit control for accuracy and precision. Especially the identification of experimental variations and statistical analysis has recently created discussions. The standard analytical technique is to use the Delta-Delta-Ct method. Although this method accounts for sample specific...... developed based on a linear mixed effects model for factorial designs. The model consists of an analysis of variance where the variation of each fixed effect of interest and identified experimental and biological nuisance variations are split. Hereby it accounts for varying efficiency, inhomogeneous......The recent WHO classification of haematological malignancies includes detection of genetic abnormalities with rognostic significance. Consequently, an increasing number of specific real-time quantitative reverse transcription polymerase chain reaction (Q-RT-PCR) based assays are in clinical...

  17. Investigation of Legionella Contamination in Bath Water Samples by Culture, Amoebic Co-Culture, and Real-Time Quantitative PCR Methods

    Directory of Open Access Journals (Sweden)

    Akiko Edagawa

    2015-10-01

    Full Text Available We investigated Legionella contamination in bath water samples, collected from 68 bathing facilities in Japan, by culture, culture with amoebic co-culture, real-time quantitative PCR (qPCR, and real-time qPCR with amoebic co-culture. Using the conventional culture method, Legionella pneumophila was detected in 11 samples (11/68, 16.2%. Contrary to our expectation, the culture method with the amoebic co-culture technique did not increase the detection rate of Legionella (4/68, 5.9%. In contrast, a combination of the amoebic co-culture technique followed by qPCR successfully increased the detection rate (57/68, 83.8% compared with real-time qPCR alone (46/68, 67.6%. Using real-time qPCR after culture with amoebic co-culture, more than 10-fold higher bacterial numbers were observed in 30 samples (30/68, 44.1% compared with the same samples without co-culture. On the other hand, higher bacterial numbers were not observed after propagation by amoebae in 32 samples (32/68, 47.1%. Legionella was not detected in the remaining six samples (6/68, 8.8%, irrespective of the method. These results suggest that application of the amoebic co-culture technique prior to real-time qPCR may be useful for the sensitive detection of Legionella from bath water samples. Furthermore, a combination of amoebic co-culture and real-time qPCR might be useful to detect viable and virulent Legionella because their ability to invade and multiply within free-living amoebae is considered to correlate with their pathogenicity for humans. This is the first report evaluating the efficacy of the amoebic co-culture technique for detecting Legionella in bath water samples.

  18. A novel approach for evaluating the performance of real time quantitative loop-mediated isothermal amplification-based methods.

    Science.gov (United States)

    Nixon, Gavin J; Svenstrup, Helle F; Donald, Carol E; Carder, Caroline; Stephenson, Judith M; Morris-Jones, Stephen; Huggett, Jim F; Foy, Carole A

    2014-12-01

    Molecular diagnostic measurements are currently underpinned by the polymerase chain reaction (PCR). There are also a number of alternative nucleic acid amplification technologies, which unlike PCR, work at a single temperature. These 'isothermal' methods, reportedly offer potential advantages over PCR such as simplicity, speed and resistance to inhibitors and could also be used for quantitative molecular analysis. However there are currently limited mechanisms to evaluate their quantitative performance, which would assist assay development and study comparisons. This study uses a sexually transmitted infection diagnostic model in combination with an adapted metric termed isothermal doubling time (IDT), akin to PCR efficiency, to compare quantitative PCR and quantitative loop-mediated isothermal amplification (qLAMP) assays, and to quantify the impact of matrix interference. The performance metric described here facilitates the comparison of qLAMP assays that could assist assay development and validation activities.

  19. PCR-SSCP analysis and its application to human genome study

    International Nuclear Information System (INIS)

    Hayashi, Kenshi

    1994-01-01

    A large amount of DNA sequence data are now available owing to the development of the human genome project. These data are deposited in public databases, e.g. DDBJ, GebBank and EMBL, and freely accessible to scientific community. One of the major advantages of having these databases is that we can now detect sequence differences between individuals in a large scale. Using the sequence informations, we can design primer sequences, amplify various target regions of the sample DNA's by PCR and detect abnormal sequence changes from reference, or normal sequences. Detecting sequence changes, or mutations, are essential part of searching genes responsible for hereditary diseases and also DNA diagnosis of hereditary diseases or cancer. We can also measure mutation frequency of the human genome by knowing its variability. Our group has developed and been improving a method, PCR-SSCP analysis, as an extremely rapid and easy technique for detection of sequence differences between sample DNA's. Knowing the sensitivity (percentage detection of mutations) of this technique is important in evaluating usefulness of it for the purposes stated above. Considerable number of experiences on PCR-SSCP analysis of fragments shorter than 300 b.p. are accumulating. We summarize here the sensitivity of PCR-SSCP analysis for various sequence context of this size range examined in various electrophoretic conditions conducted in many laboratories. Data on mutation detection by this technique for longer fragments are limited. We also present oue effort for defining electrophoretic conditions of PCR-SSCP analysis when examining longer (350 to 600 b.p.) fragments. (author)

  20. Accurate, Fast and Cost-Effective Diagnostic Test for Monosomy 1p36 Using Real-Time Quantitative PCR

    Directory of Open Access Journals (Sweden)

    Pricila da Silva Cunha

    2014-01-01

    Full Text Available Monosomy 1p36 is considered the most common subtelomeric deletion syndrome in humans and it accounts for 0.5–0.7% of all the cases of idiopathic intellectual disability. The molecular diagnosis is often made by microarray-based comparative genomic hybridization (aCGH, which has the drawback of being a high-cost technique. However, patients with classic monosomy 1p36 share some typical clinical characteristics that, together with its common prevalence, justify the development of a less expensive, targeted diagnostic method. In this study, we developed a simple, rapid, and inexpensive real-time quantitative PCR (qPCR assay for targeted diagnosis of monosomy 1p36, easily accessible for low-budget laboratories in developing countries. For this, we have chosen two target genes which are deleted in the majority of patients with monosomy 1p36: PRKCZ and SKI. In total, 39 patients previously diagnosed with monosomy 1p36 by aCGH, fluorescent in situ hybridization (FISH, and/or multiplex ligation-dependent probe amplification (MLPA all tested positive on our qPCR assay. By simultaneously using these two genes we have been able to detect 1p36 deletions with 100% sensitivity and 100% specificity. We conclude that qPCR of PRKCZ and SKI is a fast and accurate diagnostic test for monosomy 1p36, costing less than 10 US dollars in reagent costs.

  1. Development of a quantitative PCR assay for measurement of trichechid herpesvirus 1 load in the Florida manatee ( Trichechus manatus latirostris).

    Science.gov (United States)

    Ferrante, Jason A; Cortés-Hinojosa, Galaxia; Archer, Linda L; Wellehan, James F X

    2017-07-01

    Trichechid herpesvirus 1 (TrHV-1) is currently the only known herpesvirus in any sirenian. We hypothesized that stress may lead to recrudescence of TrHV-1 in manatees, thus making TrHV-1 a potential biomarker of stress. We optimized and validated a TrHV-1 real-time quantitative probe hybridization PCR (qPCR) assay that was used to quantify TrHV-1 in manatee peripheral blood mononuclear cells (PBMCs). Average baseline TrHV-1 loads in a clinically healthy wild Florida manatee ( Trichechus manatus latirostris) population ( n = 42) were 40.9 ± SD 21.2 copies/100 ng DNA; 19 of 42 manatees were positive. TrHV-1 loads were significantly different between the 2 field seasons ( p < 0.025). This optimized and validated qPCR assay may be used as a tool for further research into TrHV-1 in Florida manatees.

  2. Kinetic characterisation of primer mismatches in allele-specific PCR: a quantitative assessment.

    Science.gov (United States)

    Waterfall, Christy M; Eisenthal, Robert; Cobb, Benjamin D

    2002-12-20

    A novel method of estimating the kinetic parameters of Taq DNA polymerase during rapid cycle PCR is presented. A model was constructed using a simplified sigmoid function to represent substrate accumulation during PCR in combination with the general equation describing high substrate inhibition for Michaelis-Menten enzymes. The PCR progress curve was viewed as a series of independent reactions where initial rates were accurately measured for each cycle. Kinetic parameters were obtained for allele-specific PCR (AS-PCR) amplification to examine the effect of mismatches on amplification. A high degree of correlation was obtained providing evidence of substrate inhibition as a major cause of the plateau phase that occurs in the later cycles of PCR.

  3. Determining Fungi rRNA Copy Number by PCR

    Science.gov (United States)

    The goal of this project is to improve the quantification of indoor fungal pollutants via the specific application of quantitative PCR (qPCR). Improvement will be made in the controls used in current qPCR applications. This work focuses on the use of two separate controls within ...

  4. A novel approach for evaluating the performance of real time quantitative loop-mediated isothermal amplification-based methods

    Directory of Open Access Journals (Sweden)

    Gavin J. Nixon

    2014-12-01

    Full Text Available Molecular diagnostic measurements are currently underpinned by the polymerase chain reaction (PCR. There are also a number of alternative nucleic acid amplification technologies, which unlike PCR, work at a single temperature. These ‘isothermal’ methods, reportedly offer potential advantages over PCR such as simplicity, speed and resistance to inhibitors and could also be used for quantitative molecular analysis. However there are currently limited mechanisms to evaluate their quantitative performance, which would assist assay development and study comparisons. This study uses a sexually transmitted infection diagnostic model in combination with an adapted metric termed isothermal doubling time (IDT, akin to PCR efficiency, to compare quantitative PCR and quantitative loop-mediated isothermal amplification (qLAMP assays, and to quantify the impact of matrix interference. The performance metric described here facilitates the comparison of qLAMP assays that could assist assay development and validation activities.

  5. Analytical Validation of Quantitative Real-Time PCR Methods for Quantification of Trypanosoma cruzi DNA in Blood Samples from Chagas Disease Patients.

    Science.gov (United States)

    Ramírez, Juan Carlos; Cura, Carolina Inés; da Cruz Moreira, Otacilio; Lages-Silva, Eliane; Juiz, Natalia; Velázquez, Elsa; Ramírez, Juan David; Alberti, Anahí; Pavia, Paula; Flores-Chávez, María Delmans; Muñoz-Calderón, Arturo; Pérez-Morales, Deyanira; Santalla, José; Marcos da Matta Guedes, Paulo; Peneau, Julie; Marcet, Paula; Padilla, Carlos; Cruz-Robles, David; Valencia, Edward; Crisante, Gladys Elena; Greif, Gonzalo; Zulantay, Inés; Costales, Jaime Alfredo; Alvarez-Martínez, Miriam; Martínez, Norma Edith; Villarroel, Rodrigo; Villarroel, Sandro; Sánchez, Zunilda; Bisio, Margarita; Parrado, Rudy; Maria da Cunha Galvão, Lúcia; Jácome da Câmara, Antonia Cláudia; Espinoza, Bertha; Alarcón de Noya, Belkisyole; Puerta, Concepción; Riarte, Adelina; Diosque, Patricio; Sosa-Estani, Sergio; Guhl, Felipe; Ribeiro, Isabela; Aznar, Christine; Britto, Constança; Yadón, Zaida Estela; Schijman, Alejandro G

    2015-09-01

    An international study was performed by 26 experienced PCR laboratories from 14 countries to assess the performance of duplex quantitative real-time PCR (qPCR) strategies on the basis of TaqMan probes for detection and quantification of parasitic loads in peripheral blood samples from Chagas disease patients. Two methods were studied: Satellite DNA (SatDNA) qPCR and kinetoplastid DNA (kDNA) qPCR. Both methods included an internal amplification control. Reportable range, analytical sensitivity, limits of detection and quantification, and precision were estimated according to international guidelines. In addition, inclusivity and exclusivity were estimated with DNA from stocks representing the different Trypanosoma cruzi discrete typing units and Trypanosoma rangeli and Leishmania spp. Both methods were challenged against 156 blood samples provided by the participant laboratories, including samples from acute and chronic patients with varied clinical findings, infected by oral route or vectorial transmission. kDNA qPCR showed better analytical sensitivity than SatDNA qPCR with limits of detection of 0.23 and 0.70 parasite equivalents/mL, respectively. Analyses of clinical samples revealed a high concordance in terms of sensitivity and parasitic loads determined by both SatDNA and kDNA qPCRs. This effort is a major step toward international validation of qPCR methods for the quantification of T. cruzi DNA in human blood samples, aiming to provide an accurate surrogate biomarker for diagnosis and treatment monitoring for patients with Chagas disease. Copyright © 2015 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  6. Dynamics of vaginal bacterial communities in women developing bacterial vaginosis, candidiasis, or no infection, analyzed by PCR-denaturing gradient gel electrophoresis and real-time PCR.

    Science.gov (United States)

    Vitali, Beatrice; Pugliese, Ciro; Biagi, Elena; Candela, Marco; Turroni, Silvia; Bellen, Gert; Donders, Gilbert G G; Brigidi, Patrizia

    2007-09-01

    The microbial flora of the vagina plays a major role in preventing genital infections, including bacterial vaginosis (BV) and candidiasis (CA). An integrated approach based on PCR-denaturing gradient gel electrophoresis (PCR-DGGE) and real-time PCR was used to study the structure and dynamics of bacterial communities in vaginal fluids of healthy women and patients developing BV and CA. Universal eubacterial primers and Lactobacillus genus-specific primers, both targeted at 16S rRNA genes, were used in DGGE and real-time PCR analysis, respectively. The DGGE profiles revealed that the vaginal flora was dominated by Lactobacillus species under healthy conditions, whereas several potentially pathogenic bacteria were present in the flora of women with BV. Lactobacilli were the predominant bacterial population in the vagina for patients affected by CA, but changes in the composition of Lactobacillus species were observed. Real-time PCR analysis allowed the quantitative estimation of variations in lactobacilli associated with BV and CA diseases. A statistically significant decrease in the relative abundance of lactobacilli was found in vaginal fluids of patients with BV compared to the relative abundance of lactobacilli in the vaginal fluids of healthy women and patients with CA.

  7. Selection of Suitable Reference Genes for Quantitative Real-time PCR in Sapium sebiferum

    Directory of Open Access Journals (Sweden)

    Xue Chen

    2017-05-01

    Full Text Available Chinese tallow (Sapium sebiferum L. is a promising landscape and bioenergy plant. Measuring gene expression by quantitative real-time polymerase chain reaction (qRT-PCR can provide valuable information on gene function. Stably expressed reference genes for normalization are a prerequisite for ensuring the accuracy of the target gene expression level among different samples. However, the reference genes in Chinese tallow have not been systematically validated. In this study, 12 candidate reference genes (18S, GAPDH, UBQ, RPS15, SAND, TIP41, 60S, ACT7, PDF2, APT, TBP, and TUB were investigated with qRT-PCR in 18 samples, including those from different tissues, from plants treated with sucrose and cold stresses. The data were calculated with four common algorithms, geNorm, BestKeeper, NormFinder, and the delta cycle threshold (ΔCt. TIP41 and GAPDH were the most stable for the tissue-specific experiment, GAPDH and 60S for cold treatment, and GAPDH and UBQ for sucrose stresses, while the least stable genes were 60S, TIP41, and 18S respectively. The comprehensive results showed APT, GAPDH, and UBQ to be the top-ranked stable genes across all the samples. The stability of 60S was the lowest during all experiments. These selected reference genes were further validated by comparing the expression profiles of the chalcone synthase gene in Chinese tallow in different samples. The results will help to improve the accuracy of gene expression studies in Chinese tallow.

  8. Evaluation of methods for oligonucleotide array data via quantitative real-time PCR.

    Science.gov (United States)

    Qin, Li-Xuan; Beyer, Richard P; Hudson, Francesca N; Linford, Nancy J; Morris, Daryl E; Kerr, Kathleen F

    2006-01-17

    There are currently many different methods for processing and summarizing probe-level data from Affymetrix oligonucleotide arrays. It is of great interest to validate these methods and identify those that are most effective. There is no single best way to do this validation, and a variety of approaches is needed. Moreover, gene expression data are collected to answer a variety of scientific questions, and the same method may not be best for all questions. Only a handful of validation studies have been done so far, most of which rely on spike-in datasets and focus on the question of detecting differential expression. Here we seek methods that excel at estimating relative expression. We evaluate methods by identifying those that give the strongest linear association between expression measurements by array and the "gold-standard" assay. Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) is generally considered the "gold-standard" assay for measuring gene expression by biologists and is often used to confirm findings from microarray data. Here we use qRT-PCR measurements to validate methods for the components of processing oligo array data: background adjustment, normalization, mismatch adjustment, and probeset summary. An advantage of our approach over spike-in studies is that methods are validated on a real dataset that was collected to address a scientific question. We initially identify three of six popular methods that consistently produced the best agreement between oligo array and RT-PCR data for medium- and high-intensity genes. The three methods are generally known as MAS5, gcRMA, and the dChip mismatch mode. For medium- and high-intensity genes, we identified use of data from mismatch probes (as in MAS5 and dChip mismatch) and a sequence-based method of background adjustment (as in gcRMA) as the most important factors in methods' performances. However, we found poor reliability for methods using mismatch probes for low-intensity genes

  9. Evaluation of methods for oligonucleotide array data via quantitative real-time PCR

    Directory of Open Access Journals (Sweden)

    Morris Daryl E

    2006-01-01

    Full Text Available Abstract Background There are currently many different methods for processing and summarizing probe-level data from Affymetrix oligonucleotide arrays. It is of great interest to validate these methods and identify those that are most effective. There is no single best way to do this validation, and a variety of approaches is needed. Moreover, gene expression data are collected to answer a variety of scientific questions, and the same method may not be best for all questions. Only a handful of validation studies have been done so far, most of which rely on spike-in datasets and focus on the question of detecting differential expression. Here we seek methods that excel at estimating relative expression. We evaluate methods by identifying those that give the strongest linear association between expression measurements by array and the "gold-standard" assay. Quantitative reverse-transcription polymerase chain reaction (qRT-PCR is generally considered the "gold-standard" assay for measuring gene expression by biologists and is often used to confirm findings from microarray data. Here we use qRT-PCR measurements to validate methods for the components of processing oligo array data: background adjustment, normalization, mismatch adjustment, and probeset summary. An advantage of our approach over spike-in studies is that methods are validated on a real dataset that was collected to address a scientific question. Results We initially identify three of six popular methods that consistently produced the best agreement between oligo array and RT-PCR data for medium- and high-intensity genes. The three methods are generally known as MAS5, gcRMA, and the dChip mismatch mode. For medium- and high-intensity genes, we identified use of data from mismatch probes (as in MAS5 and dChip mismatch and a sequence-based method of background adjustment (as in gcRMA as the most important factors in methods' performances. However, we found poor reliability for methods

  10. Quantitative contrast-enhanced ultrasound evaluation of pathological complete response in patients with locally advanced breast cancer receiving neoadjuvant chemotherapy.

    Science.gov (United States)

    Wan, Cai-Feng; Liu, Xue-Song; Wang, Lin; Zhang, Jie; Lu, Jin-Song; Li, Feng-Hua

    2018-06-01

    To clarify whether the quantitative parameters of contrast-enhanced ultrasound (CEUS) can be used to predict pathological complete response (pCR) in patients with locally advanced breast cancer receiving neoadjuvant chemotherapy (NAC). Fifty-one patients with histologically proved locally advanced breast cancer scheduled for NAC were enrolled. The quantitative data for CEUS and the tumor diameter were collected at baseline and before surgery, and compared with the pathological response. Multiple logistic regression analysis was performed to examine quantitative parameters at CEUS and the tumor diameter to predict the pCR, and receiver operating characteristic (ROC) curve analysis was used as a summary statistic. Multiple logistic regression analysis revealed that PEAK (the maximum intensity of the time-intensity curve during bolus transit), PEAK%, TTP% (time to peak), and diameter% were significant independent predictors of pCR, and the area under the ROC curve was 0.932(Az 1 ), and the sensitivity and specificity to predict pCR were 93.7% and 80.0%. The area under the ROC curve for the quantitative parameters was 0.927(Az 2 ), and the sensitivity and specificity to predict pCR were 81.2% and 94.3%. For diameter%, the area under the ROC curve was 0.786 (Az 3 ), and the sensitivity and specificity to predict pCR were 93.8% and 54.3%. The values of Az 1 and Az 2 were significantly higher than that of Az 3 (P = 0.027 and P = 0.034, respectively). However, there was no significant difference between the values of Az 1 and Az 2 (P = 0.825). Quantitative analysis of tumor blood perfusion with CEUS is superior to diameter% to predict pCR, and can be used as a functional technique to evaluate tumor response to NAC. Copyright © 2018. Published by Elsevier B.V.

  11. Rapid and Quantitative Detection of Leifsonia xyli subsp. xyli in Sugarcane Stalk Juice Using a Real-Time Fluorescent (TaqMan PCR Assay

    Directory of Open Access Journals (Sweden)

    Hua-Ying Fu

    2016-01-01

    Full Text Available Ratoon stunting disease (RSD of sugarcane, one of the most important diseases seriously affecting the productivity of sugarcane crops, was caused by the bacterial agent Leifsonia xyli subsp. xyli (Lxx. A TaqMan probe-based real-time quantitative polymerase chain reaction (qPCR assay was established in this study for the quantification of Lxx detection in sugarcane stalk juice. A pair of PCR primers (Pat1-QF/Pat1-QR and a fluorogenic probe (Pat1-QP targeting the Part1 gene of Lxx were used for the qPCR assay. The assay had a detection limit of 100 copies of plasmid DNA and 100 fg of Lxx genomic DNA, which was 100-fold more sensitive than the conventional PCR. Fifty (28.7% of 174 stalk juice samples from two field trials were tested to be positive by qPCR assay, whereas, by conventional PCR, only 12.1% (21/174 were tested to be positive with a published primer pair CxxITSf#5/CxxITSr#5 and 15.5% (27/174 were tested to be positive with a newly designed primer pair Pat1-F2/Pat1-R2. The new qPCR assay can be used as an alternative to current diagnostic methods for Lxx, especially when dealing with certificating a large number of healthy cane seedlings and determining disease incidence accurately in commercial fields.

  12. Quantitative real-time RT-PCR and chromogenic in situ hybridization: precise methods to detect HER-2 status in breast carcinoma

    International Nuclear Information System (INIS)

    Rosa, Fabíola E; Silveira, Sara M; Silveira, Cássia GT; Bérgamo, Nádia A; Neto, Francisco A Moraes; Domingues, Maria AC; Soares, Fernando A; Caldeira, José RF; Rogatto, Silvia R

    2009-01-01

    HER-2 gene testing has become an integral part of breast cancer patient diagnosis. The most commonly used assay in the clinical setting for evaluating HER-2 status is immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH). These procedures permit correlation between HER-2 expression and morphological features. However, FISH signals are labile and fade over time, making post-revision of the tumor difficult. CISH (chromogenic in situ hybridization) is an alternative procedure, with certain advantages, although still limited as a diagnostic tool in breast carcinomas. To elucidate the molecular profile of HER-2 status, mRNA and protein expression in 75 invasive breast carcinomas were analyzed by real time quantitative RT-PCR (qRT-PCR) and IHC, respectively. Amplifications were evaluated in 43 of these cases by CISH and in 11 by FISH. The concordance rate between IHC and qRT-PCR results was 78.9%, and 94.6% for qRT-PCR and CISH. Intratumoral heterogeneity of HER-2 status was identified in three cases by CISH. The results of the three procedures were compared and showed a concordance rate of 83.8%; higher discordances were observed in 0 or 1+ immunostaining cases, which showed high-level amplification (15.4%) and HER-2 transcript overexpression (20%). Moreover, 2+ immunostaining cases presented nonamplified status (50%) by CISH and HER-2 downexpression (38.5%) by qRT-PCR. In general, concordance occurred between qRT-PCR and CISH results. A high concordance was observed between CISH/qRT-PCR and FISH. Comparisons with clinicopathological data revealed a significant association between HER-2 downexpression and the involvement of less than four lymph nodes (P = 0.0350). Based on these findings, qRT-PCR was more precise and reproducible than IHC. Furthermore, CISH was revealed as an alternative and useful procedure for investigating amplifications involving the HER-2 gene

  13. Development of a quantitative PCR assay for monitoring Streptococcus agalactiae colonization and tissue tropism in experimentally infected tilapia.

    Science.gov (United States)

    Su, Y-L; Feng, J; Li, Y-W; Bai, J-S; Li, A-X

    2016-02-01

    Streptococcus agalactiae has become one of the most important emerging pathogens in the aquaculture industry and has resulted in large economic losses for tilapia farms in China. In this study, three pairs of specific primers were designed and tested for their specificities and sensitivities in quantitative real-time polymerase chain reactions (qPCRs) after optimization of the annealing temperature. The primer pair IGS-s/IGS-a, which targets the 16S-23S rRNA intergenic spacer region, was finally chosen, having a detection limit of 8.6 copies of S. agalactiae DNA in a 20 μL reaction mixture. Bacterial tissue tropism was demonstrated by qPCR in Oreochromis niloticus 5 days post-injection with a virulent S. agalactiae strain. Bacterial loads were detected at the highest level in brain, followed by moderately high levels in kidney, heart, spleen, intestines, and eye. Significantly lower bacterial loads were observed in muscle, gill and liver. In addition, significantly lower bacterial loads were observed in the brain of convalescent O. niloticus 14 days post-injection with several different S. agalactiae strains. The qPCR for the detection of S. agalactiae developed in this study provides a quantitative tool for investigating bacterial tissue tropism in infected fish, as well as for monitoring bacterial colonization in convalescent fish. © 2015 John Wiley & Sons Ltd.

  14. Quantitative PCR Profiling of Escherichia coli in Livestock Feces Reveals Increased Population Resilience Relative to Culturable Counts under Temperature Extremes.

    Science.gov (United States)

    Oliver, David M; Bird, Clare; Burd, Emmy; Wyman, Michael

    2016-09-06

    The relationship between culturable counts (CFU) and quantitative PCR (qPCR) cell equivalent counts of Escherichia coli in dairy feces exposed to different environmental conditions and temperature extremes was investigated. Fecal samples were collected in summer and winter from dairy cowpats held under two treatments: field-exposed versus polytunnel-protected. A significant correlation in quantified E. coli was recorded between the qPCR and culture-based methods (r = 0.82). Evaluation of the persistence profiles of E. coli over time revealed no significant difference in the E. coli numbers determined as either CFU or gene copies during the summer for the field-exposed cowpats, whereas significantly higher counts were observed by qPCR for the polytunnel-protected cowpats, which were exposed to higher ambient temperatures. In winter, the qPCR returned significantly higher counts of E. coli for the field-exposed cowpats, thus representing a reversal of the findings from the summer sampling campaign. Results from this study suggest that with increasing time post-defecation and with the onset of challenging environmental conditions, such as extremes in temperature, culture-based counts begin to underestimate the true resilience of viable E. coli populations in livestock feces. This is important not only in the long term as the Earth changes in response to climate-change drivers but also in the short term during spells of extremely cold or hot weather.

  15. chipPCR: an R package to pre-process raw data of amplification curves.

    Science.gov (United States)

    Rödiger, Stefan; Burdukiewicz, Michał; Schierack, Peter

    2015-09-01

    Both the quantitative real-time polymerase chain reaction (qPCR) and quantitative isothermal amplification (qIA) are standard methods for nucleic acid quantification. Numerous real-time read-out technologies have been developed. Despite the continuous interest in amplification-based techniques, there are only few tools for pre-processing of amplification data. However, a transparent tool for precise control of raw data is indispensable in several scenarios, for example, during the development of new instruments. chipPCR is an R: package for the pre-processing and quality analysis of raw data of amplification curves. The package takes advantage of R: 's S4 object model and offers an extensible environment. chipPCR contains tools for raw data exploration: normalization, baselining, imputation of missing values, a powerful wrapper for amplification curve smoothing and a function to detect the start and end of an amplification curve. The capabilities of the software are enhanced by the implementation of algorithms unavailable in R: , such as a 5-point stencil for derivative interpolation. Simulation tools, statistical tests, plots for data quality management, amplification efficiency/quantification cycle calculation, and datasets from qPCR and qIA experiments are part of the package. Core functionalities are integrated in GUIs (web-based and standalone shiny applications), thus streamlining analysis and report generation. http://cran.r-project.org/web/packages/chipPCR. Source code: https://github.com/michbur/chipPCR. stefan.roediger@b-tu.de Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Quantifying fungal viability in air and water samples using quantitative PCR after treatment with propidium monoazide (PMA)

    Energy Technology Data Exchange (ETDEWEB)

    Vesper, Stephen; McKinstry, Craig A.; Hartmann, Chris; Neace, Michelle; Yoder, Stephanie; Vesper, Alex

    2007-11-28

    A method is described to discriminate between live and dead cells of the infectious fungi Aspergillus fumigatus, Aspergillus flavus, Aspergillus terreus, Mucor racemosus, Rhizopus stolonifer and Paecilomyces variotii. To test the method, conidial suspensions were heat inactivated at 85 °C or held at 5 °C (controls) for 1 h. Polycarbonate filters (25 mm diameter, 0.8 μm pore size) were placed on "welled" slides (14 mm diameter) and the filters treated with either PBS or PMA. Propidium monoazide (PMA), which enters dead cells but not live cells, was incubated with cell suspensions, exposed to blue wavelength light-emitting diodes (LED) to inactivate remaining PMA and secure intercalation of PMAwith DNA of dead cells. Treated cells were extracted and the live and dead cells evaluated with quantitative PCR (QPCR). After heat treatment and DNA modification with PMA, all fungal species tested showed an approximate 100- to 1000-fold difference in cell viability estimated by QPCR analysis which was consistent with estimates of viability based on culturing.

  17. Detection of foodborne pathogens by qPCR: A practical approach for food industry applications

    Directory of Open Access Journals (Sweden)

    María-José Chapela

    2015-12-01

    Full Text Available Microbiological analysis of food is an integrated part of microbial safety management in the food chain. Monitoring and controlling foodborne pathogens are traditionally carried out by conventional microbiological methods based on culture-dependent approaches in control laboratories and private companies. However, polymerase chain reaction (PCR has revolutionized microbiological analysis allowing detection of pathogenic microorganisms in food, without the necessity of classical isolation and identification. However, at present, PCR and quantitative polymerase chain reaction (qPCR are essential analytical tools for researchers working in the field of foodborne pathogens. This manuscript reviews recently described qPCR methods applied for foodborne bacteria detection, serving as economical, safe, and reliable alternatives for application in the food industry and control laboratories. Multiplex qPCR, which allows the simultaneous detection of more than one pathogen in one single reaction, saving considerable effort, time, and money, is emphasized in the article.

  18. Comparison of droplet digital PCR and seminested real-time PCR for quantification of cell-associated HIV-1 RNA

    NARCIS (Netherlands)

    Kiselinova, Maja; Pasternak, Alexander O.; de Spiegelaere, Ward; Vogelaers, Dirk; Berkhout, Ben; Vandekerckhove, Linos

    2014-01-01

    Cell-associated (CA) HIV-1 RNA is considered a potential marker for assessment of viral reservoir dynamics and antiretroviral therapy (ART) response in HIV-infected patients. Recent studies employed sensitive seminested real-time quantitative (q)PCR to quantify CA HIV-1 RNA. Digital PCR has been

  19. Identification and evaluation of new reference genes in Gossypium hirsutum for accurate normalization of real-time quantitative RT-PCR data

    Directory of Open Access Journals (Sweden)

    Alves-Ferreira Marcio

    2010-03-01

    Full Text Available Abstract Background Normalizing through reference genes, or housekeeping genes, can make more accurate and reliable results from reverse transcription real-time quantitative polymerase chain reaction (qPCR. Recent studies have shown that no single housekeeping gene is universal for all experiments. Thus, suitable reference genes should be the first step of any qPCR analysis. Only a few studies on the identification of housekeeping gene have been carried on plants. Therefore qPCR studies on important crops such as cotton has been hampered by the lack of suitable reference genes. Results By the use of two distinct algorithms, implemented by geNorm and NormFinder, we have assessed the gene expression of nine candidate reference genes in cotton: GhACT4, GhEF1α5, GhFBX6, GhPP2A1, GhMZA, GhPTB, GhGAPC2, GhβTUB3 and GhUBQ14. The candidate reference genes were evaluated in 23 experimental samples consisting of six distinct plant organs, eight stages of flower development, four stages of fruit development and in flower verticils. The expression of GhPP2A1 and GhUBQ14 genes were the most stable across all samples and also when distinct plants organs are examined. GhACT4 and GhUBQ14 present more stable expression during flower development, GhACT4 and GhFBX6 in the floral verticils and GhMZA and GhPTB during fruit development. Our analysis provided the most suitable combination of reference genes for each experimental set tested as internal control for reliable qPCR data normalization. In addition, to illustrate the use of cotton reference genes we checked the expression of two cotton MADS-box genes in distinct plant and floral organs and also during flower development. Conclusion We have tested the expression stabilities of nine candidate genes in a set of 23 tissue samples from cotton plants divided into five different experimental sets. As a result of this evaluation, we recommend the use of GhUBQ14 and GhPP2A1 housekeeping genes as superior references

  20. Identification and evaluation of new reference genes in Gossypium hirsutum for accurate normalization of real-time quantitative RT-PCR data.

    Science.gov (United States)

    Artico, Sinara; Nardeli, Sarah M; Brilhante, Osmundo; Grossi-de-Sa, Maria Fátima; Alves-Ferreira, Marcio

    2010-03-21

    Normalizing through reference genes, or housekeeping genes, can make more accurate and reliable results from reverse transcription real-time quantitative polymerase chain reaction (qPCR). Recent studies have shown that no single housekeeping gene is universal for all experiments. Thus, suitable reference genes should be the first step of any qPCR analysis. Only a few studies on the identification of housekeeping gene have been carried on plants. Therefore qPCR studies on important crops such as cotton has been hampered by the lack of suitable reference genes. By the use of two distinct algorithms, implemented by geNorm and NormFinder, we have assessed the gene expression of nine candidate reference genes in cotton: GhACT4, GhEF1alpha5, GhFBX6, GhPP2A1, GhMZA, GhPTB, GhGAPC2, GhbetaTUB3 and GhUBQ14. The candidate reference genes were evaluated in 23 experimental samples consisting of six distinct plant organs, eight stages of flower development, four stages of fruit development and in flower verticils. The expression of GhPP2A1 and GhUBQ14 genes were the most stable across all samples and also when distinct plants organs are examined. GhACT4 and GhUBQ14 present more stable expression during flower development, GhACT4 and GhFBX6 in the floral verticils and GhMZA and GhPTB during fruit development. Our analysis provided the most suitable combination of reference genes for each experimental set tested as internal control for reliable qPCR data normalization. In addition, to illustrate the use of cotton reference genes we checked the expression of two cotton MADS-box genes in distinct plant and floral organs and also during flower development. We have tested the expression stabilities of nine candidate genes in a set of 23 tissue samples from cotton plants divided into five different experimental sets. As a result of this evaluation, we recommend the use of GhUBQ14 and GhPP2A1 housekeeping genes as superior references for normalization of gene expression measures in

  1. Multivariate calibration applied to the quantitative analysis of infrared spectra

    Energy Technology Data Exchange (ETDEWEB)

    Haaland, D.M.

    1991-01-01

    Multivariate calibration methods are very useful for improving the precision, accuracy, and reliability of quantitative spectral analyses. Spectroscopists can more effectively use these sophisticated statistical tools if they have a qualitative understanding of the techniques involved. A qualitative picture of the factor analysis multivariate calibration methods of partial least squares (PLS) and principal component regression (PCR) is presented using infrared calibrations based upon spectra of phosphosilicate glass thin films on silicon wafers. Comparisons of the relative prediction abilities of four different multivariate calibration methods are given based on Monte Carlo simulations of spectral calibration and prediction data. The success of multivariate spectral calibrations is demonstrated for several quantitative infrared studies. The infrared absorption and emission spectra of thin-film dielectrics used in the manufacture of microelectronic devices demonstrate rapid, nondestructive at-line and in-situ analyses using PLS calibrations. Finally, the application of multivariate spectral calibrations to reagentless analysis of blood is presented. We have found that the determination of glucose in whole blood taken from diabetics can be precisely monitored from the PLS calibration of either mind- or near-infrared spectra of the blood. Progress toward the non-invasive determination of glucose levels in diabetics is an ultimate goal of this research. 13 refs., 4 figs.

  2. Detection of 22 common leukemic fusion genes using a single-step multiplex qRT-PCR-based assay.

    Science.gov (United States)

    Lyu, Xiaodong; Wang, Xianwei; Zhang, Lina; Chen, Zhenzhu; Zhao, Yu; Hu, Jieying; Fan, Ruihua; Song, Yongping

    2017-07-25

    Fusion genes generated from chromosomal translocation play an important role in hematological malignancies. Detection of fusion genes currently employ use of either conventional RT-PCR methods or fluorescent in situ hybridization (FISH), where both methods involve tedious methodologies and require prior characterization of chromosomal translocation events as determined by cytogenetic analysis. In this study, we describe a real-time quantitative reverse transcription PCR (qRT-PCR)-based multi-fusion gene screening method with the capacity to detect 22 fusion genes commonly found in leukemia. This method does not require pre-characterization of gene translocation events, thereby facilitating immediate diagnosis and therapeutic management. We performed fluorescent qRT-PCR (F-qRT-PCR) using a commercially-available multi-fusion gene detection kit on a patient cohort of 345 individuals comprising 108 cases diagnosed with acute myeloid leukemia (AML) for initial evaluation; remaining patients within the cohort were assayed for confirmatory diagnosis. Results obtained by F-qRT-PCR were compared alongside patient analysis by cytogenetic characterization. Gene translocations detected by F-qRT-PCR in AML cases were diagnosed in 69.4% of the patient cohort, which was comparatively similar to 68.5% as diagnosed by cytogenetic analysis, thereby demonstrating 99.1% concordance. Overall gene fusion was detected in 53.7% of the overall patient population by F-qRT-PCR, 52.9% by cytogenetic prediction in leukemia, and 9.1% in non-leukemia patients by both methods. The overall concordance rate was calculated to be 99.0%. Fusion genes were detected by F-qRT-PCR in 97.3% of patients with CML, followed by 69.4% with AML, 33.3% with acute lymphoblastic leukemia (ALL), 9.1% with myelodysplastic syndromes (MDS), and 0% with chronic lymphocytic leukemia (CLL). We describe the use of a F-qRT-PCR-based multi-fusion gene screening method as an efficient one-step diagnostic procedure as an

  3. Creation of a bovine herpes virus 1 (BoHV-1) quantitative particle standard by transmission electron microscopy and comparison with established standards for use in real-time PCR.

    Science.gov (United States)

    Hoferer, Marc; Braun, Anne; Sting, Reinhard

    2017-07-01

    Standards are pivotal for pathogen quantification by real-time PCR (qPCR); however, the creation of a complete and universally applicable virus particle standard is challenging. In the present study a procedure based on purification of bovine herpes virus type 1 (BoHV-1) and subsequent quantification by transmission electron microscopy (TEM) is described. Accompanying quantitative quality controls of the TEM preparation procedure using qPCR yielded recovery rates of more than 95% of the BoHV-1 virus particles on the grid used for virus counting, which was attributed to pre-treatment of the grid with 5% bovine albumin. To compare the value of the new virus particle standard for use in qPCR, virus counter based quantification and established pure DNA standards represented by a plasmid and an oligonucleotide were included. It could be shown that the numbers of virus particles, plasmid and oligonucleotide equivalents were within one log10 range determined on the basis of standard curves indicating that different approaches provide comparable quantitative values. However, only virus particles represent a complete, universally applicable quantitative virus standard that meets the high requirements of an RNA and DNA virus gold standard. In contrast, standards based on pure DNA have to be considered as sub-standard due to limited applications. Copyright © 2017 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  4. Critical Evaluation of Urine-Based PCR Assay for Diagnosis of Lyme Borreliosis

    OpenAIRE

    Rauter, Carolin; Mueller, Markus; Diterich, Isabel; Zeller, Sabine; Hassler, Dieter; Meergans, Thomas; Hartung, Thomas

    2005-01-01

    Many approaches were made in recent years to establish urine PCR as a diagnostic tool for Lyme borreliosis, but results are contradictory. In the present study, a standardized protocol spiking urine from healthy donors with a defined amount of whole Borrelia or Borrelia DNA was established. The development of a nested real-time PCR targeting ospA enabled a highly sensitive and quantitative analysis of these samples. We show the following. (i) Storage of spiked urine samples for up to 6 months...

  5. On-Orbit Quantitative Real-Time Gene Expression Analysis Using the Wetlab-2 System

    Science.gov (United States)

    Parra, Macarena; Jung, Jimmy; Almeida, Eduardo; Boone, Travis; Tran, Luan; Schonfeld, Julie

    2015-01-01

    NASA Ames Research Center's WetLab-2 Project enables on-orbit quantitative Reverse Transcriptase PCR (qRT-PCR) analysis without the need for sample return. The WetLab-2 system is capable of processing sample types ranging from microbial cultures to animal tissues dissected on-orbit. The project developed a RNA preparation module that can lyse cells and extract RNA of sufficient quality and quantity for use as templates in qRT-PCR reactions. Our protocol has the advantage of using non-toxic chemicals and does not require alcohols or other organics. The resulting RNA is dispensed into reaction tubes that contain all lyophilized reagents needed to perform qRT-PCR reactions. System operations require simple and limited crew actions including syringe pushes, valve turns and pipette dispenses. The project selected the Cepheid SmartCycler (TradeMark), a Commercial-Off-The-Shelf (COTS) qRT-PCR unit, because of its advantages including rugged modular design, low power consumption, rapid thermal ramp times and four-color multiplex detection. Single tube multiplex assays can be used to normalize for RNA concentration and integrity, and to study multiple genes of interest in each module. The WetLab-2 system can downlink data from the ISS to the ground after a completed run and uplink new thermal cycling programs. The ability to conduct qRT-PCR and generate results on-orbit is an important step towards utilizing the ISS as a National Laboratory facility. Specifically, the ability to get on-orbit data will provide investigators with the opportunity to adjust experimental parameters in real time without the need for sample return and re-flight. On orbit gene expression analysis can also eliminate the confounding effects on gene expression of reentry stresses and shock acting on live cells and organisms or the concern of RNA degradation of fixed samples and provide on-orbit gene expression benchmarking prior to sample return. Finally, the system can also be used for analysis of

  6. Detection of Ophiocordyceps sinensis in soil by quantitative real-time PCR.

    Science.gov (United States)

    Peng, Qingyun; Zhong, Xin; Lei, Wei; Zhang, Guren; Liu, Xin

    2013-03-01

    Ophiocordyceps sinensis, one of the best known entomopathogenic fungi in traditional Chinese medicine, parasitizes larvae of the moth genus Thitarodes, which lives in soil tunnels. However, little is known about the spatial distribution of O. sinensis in the soil. We established a protocol for DNA extraction, purification, and quantification of O. sinensis in soil with quantitative real-time PCR targeting the internal transcribed spacer region. The method was assessed using 34 soil samples from Tibet. No inhibitory effects in purified soil DNA extracts were detected. The standard curve method for absolute DNA quantification generated crossing point values that were strongly and linearly correlated to the log10 of the initial amount of O. sinensis genomic DNA (r(2) = 0.999) over 7 orders of magnitude (4 × 10(1) to 4 × 10(7) fg). The amplification efficiency and y-intercept value of the standard curve were 1.953 and 37.70, respectively. The amount of O. sinensis genomic DNA decreased with increasing soil depth and horizontal distance from a sclerotium (P protocol is rapid, specific, sensitive, and provides a powerful tool for quantification of O. sinensis from soil.

  7. Selection of reliable reference genes for quantitative real-time PCR in human T cells and neutrophils

    Directory of Open Access Journals (Sweden)

    Ledderose Carola

    2011-10-01

    Full Text Available Abstract Background The choice of reliable reference genes is a prerequisite for valid results when analyzing gene expression with real-time quantitative PCR (qPCR. This method is frequently applied to study gene expression patterns in immune cells, yet a thorough validation of potential reference genes is still lacking for most leukocyte subtypes and most models of their in vitro stimulation. In the current study, we evaluated the expression stability of common reference genes in two widely used cell culture models-anti-CD3/CD28 activated T cells and lipopolysaccharide stimulated neutrophils-as well as in unselected untreated leukocytes. Results The mRNA expression of 17 (T cells, 7 (neutrophils or 8 (unselected leukocytes potential reference genes was quantified by reverse transcription qPCR, and a ranking of the preselected candidate genes according to their expression stability was calculated using the programs NormFinder, geNorm and BestKeeper. IPO8, RPL13A, TBP and SDHA were identified as suitable reference genes in T cells. TBP, ACTB and SDHA were stably expressed in neutrophils. TBP and SDHA were also the most stable genes in untreated total blood leukocytes. The critical impact of reference gene selection on the estimated target gene expression is demonstrated for IL-2 and FIH expression in T cells. Conclusions The study provides a shortlist of suitable reference genes for normalization of gene expression data in unstimulated and stimulated T cells, unstimulated and stimulated neutrophils and in unselected leukocytes.

  8. Quantitative real-time PCR combined with propidium monoazide for the selective quantification of viable periodontal pathogens in an in vitro subgingival biofilm model.

    Science.gov (United States)

    Sánchez, M C; Marín, M J; Figuero, E; Llama-Palacios, A; León, R; Blanc, V; Herrera, D; Sanz, M

    2014-02-01

    Differentiation of live and dead cells is an important challenge when using molecular diagnosis for microbial identification. This is particularly relevant when bacteria have been exposed to antimicrobial agents. The objective of this study was to test a method using quantitative real-time polymerase chain reaction (qPCR) combined with propidium monoazide (PMA), developed for the selective quantification of viable P. gingivalis, A. actinomycetemcomitans, F. nucleatum and total bacteria in an in vitro biofilm model after antimicrobial treatment. PMA-qPCR method was tested in an in vitro biofilm model, using isopropyl alcohol as the antimicrobial agent. Matured biofilms were exposed for 1, 5, 10 and 30 min to isopropyl alcohol by immersion. Biofilms were disrupted and PMA added (final concentration of 100 μm). After DNA isolation, qPCR was carried out using specific primers and probes for the target bacteria. The differentiation of live and dead cells was tested by analysis of variance. When PMA was used in the presence of viable target bacterial cells, no statistically significant inhibition of qPCR amplification was detected (p > 0.05 in all cases). Conversely, after immersion in isopropyl alcohol of the biofilm, PMA resulted in a significant total reduction of qPCR amplification of about 4 log10 . P. gingivalis showed a vitality reduction in the biofilm of 3 log10 , while A. actinomycetemcomitans and F. nucleatum showed a 2 log10 reduction. These results demonstrate the efficiency of PMA for differentiating viable and dead P. gingivalis, A. actinomycetemcomitans and F. nucleatum cells, as well as total bacteria, in an in vitro biofilm model, after being exposed to an antimicrobial agent. Hence, this PMA-qPCR method may be useful for studying the effect of antimicrobial agents aimed at oral biofilms. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Digital PCR for detection of citrus pathogens

    Science.gov (United States)

    Citrus trees are often infected with multiple pathogens of economic importance, especially those with insect or mite vectors. Real-time/quantitative PCR (qPCR) has been used for high-throughput detection and relative quantification of pathogens; however, target reference or standards are required. I...

  10. Investigations on abundance and activity of microbial sponge symbionts using quantitative real - time PCR

    DEFF Research Database (Denmark)

    Kumala, Lars; Hentschel, Ute; Bayer, Kristina

    Marine sponges are hosts to dense and diverse microbial consortia that are likely to play a key role in the metabolic processes of the host sponge due to their enormous abundance. Common symbioses between nitrogen transforming microorganisms and sponges indicate complex nitrogen cycling within...... the host. Of particular interest is determining the community structure and function of microbial symbionts in order to gain deeper insight into host-symbiont interactions. We investigated the abundance and activity of microbial symbionts in two Mediterranean sponge species using quantitative real-time PCR....... An absolute quantification of functional genes and transcripts in archaeal and bacterial symbionts was conducted to determine their involvement in nitrification and denitrification, comparing the low microbial abundance (LMA) sponge Dysidea avara with the high microbial abundance (HMA) representative Aplysina...

  11. [Usefulness of a real-time quantitative polymerase-chain reaction (PCR) assay for the diagnosis of congenital and postnatal cytomegalovirus infection].

    Science.gov (United States)

    Reina, J; Weber, I; Riera, E; Busquets, M; Morales, C

    2014-05-01

    Cytomegalovirus (CMV) is the main virus causing congenital and postnatal infections in the pediatric population. The aim of this study is to evaluate the usefulness of a quantitative real-time PCR in the diagnosis of these infections using urine as a single sample. We studied all the urine samples of newborns (< 7 days) with suspected congenital infection, and urine of patients with suspected postnatal infection (urine negative at birth). Urines were simultaneously studied by cell culture, qualitative PCR (PCRc), and quantitative real-time PCR (PCRq). We analyzed 332 urine samples (270 to rule out congenital infection and 62 postnatal infections). Of the first, 22 were positive in the PCRq, 19 in the PCRc, and 17 in the culture. PCRq had a sensitivity of 100%, on comparing the culture with the rest of the techniques. Using the PCRq as a reference method, culture had a sensitivity of 77.2%, and PCRc 86.3%. In cases of postnatal infection, PCRq detected 16 positive urines, the PCRq 12, and the cell culture 10. The urines showed viral loads ranging from 2,178 to 116,641 copies/ml. The genomic amplification technique PCRq in real time was more sensitive than the other techniques evaluated. This technique should be considered as a reference (gold standard), leaving the cell culture as a second diagnostic level. The low cost and the automation of PCRq would enable the screening for CMV infection in large neonatal and postnatal populations. Copyright © 2013 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  12. Recommended Reference Genes for Quantitative PCR Analysis in Soybean Have Variable Stabilities during Diverse Biotic Stresses.

    Directory of Open Access Journals (Sweden)

    Raman Bansal

    Full Text Available For real-time reverse transcription-PCR (qRT-PCR in soybean, reference genes in different tissues, developmental stages, various cultivars, and under stress conditions have been suggested but their usefulness for research on soybean under various biotic stresses occurring in North-Central U.S. is not known. Here, we investigated the expression stabilities of ten previously recommended reference genes (ABCT, CYP, EF1A, FBOX, GPDH, RPL30, TUA4, TUB4, TUA5, and UNK2 in soybean under biotic stress from Bean pod mottle virus (BPMV, powdery mildew (PMD, soybean aphid (SBA, and two-spotted spider mite (TSSM. BPMV, PMD, SBA, and TSSM are amongst the most common pest problems on soybean in North-Central U.S. and other regions. Reference gene stability was determined using three software algorithms (geNorm, NormFinder, BestKeeper and a web-based tool (RefFinder. Reference genes showed variability in their expression as well as stability across various stressors and the best reference genes were stress-dependent. ABCT and FBOX were found to be the most stable in soybean under both BPMV and SBA stress but these genes had only minimal to moderate stability during PMD and TSSM stress. Expression of TUA4 and CYP was found to be most stable during PMD stress; TUB4 and TUA4 were stable under TSSM stress. Under various biotic stresses on soybean analyzed, GPDH expression was found to be consistently unstable. For all biotic stressors on soybean, we obtained pairwise variation (V2/3 values less than 0.15 which suggested that combined use of the two most stable reference genes would be sufficient for normalization. Further, we demonstrated the utility of normalizing the qRT-PCR data for target genes using the most stable reference genes validated in current study. Following of the recommendations from our current study will enable an accurate and reliable normalization of qRT-PCR data in soybean under biotic stress.

  13. Detection of hepatitis C virus RNA using reverse transcription PCR

    International Nuclear Information System (INIS)

    Yap, S.F.

    1998-01-01

    Detection of the viral genome (HCV RNA) is by a combination of cDNA synthesis and PCR followed by gel analysis and/or hybridization assay. In principle, cDNA is synthesized using the viral RNA as template and the enzyme, reverse transcriptase. The cDNA is then amplified by PCR and the product detected. Agarose gel electrophoresis provides a rapid and simple detection method; however, it is non-quantitative. The assay protocol described in this paper is adapted from that published by Chan et al. Comments on various aspects of the assay are based on experience with the method in our laboratory

  14. The numbers game: quantitative analysis of Neorickettsia sp. propagation through complex life cycle of its digenean host using real-time qPCR.

    Science.gov (United States)

    Greiman, Stephen E; Tkach, Vasyl V

    2016-07-01

    Bacteria of the genus Neorickettsia are obligate intracellular endosymbionts of parasitic flukes (Digenea) and are passed through the entire complex life cycle of the parasite by vertical transmission. Several species of Neorickettsia are known to cause diseases in domestic animals, wildlife, and humans. Quantitative data on the transmission of the bacteria through the digenean life cycle is almost completely lacking. This study quantified for the first time the abundance of Neorickettsia within multiple stages of the life cycle of the digenean Plagiorchis elegans. Snails Lymnaea stagnalis collected from a pond in North Dakota were screened for the presence of digenean cercariae, which were subsequently tested for the presence of Neorickettsia. Three L. stagnalis were found shedding P. elegans cercariae infected with Neorickettsia. These snails were used to initiate three separate laboratory life cycles and obtain all life cycle stages for bacterial quantification. A quantitative real-time PCR assay targeting the GroEL gene was developed to enumerate Neorickettsia sp. within different stages of the digenean life cycle. The number of bacteria significantly increased throughout all stages, from eggs to adults. The two largest increases in number of bacteria occurred during the period from eggs to cercariae and from 6-day metacercariae to 48-h juvenile worms. These two periods seem to be the most important for Neorickettsia propagation through the complex digenean life cycle and maturation in the definitive host.

  15. The use of laser microdissection in the identification of suitable reference genes for normalization of quantitative real-time PCR in human FFPE epithelial ovarian tissue samples.

    Science.gov (United States)

    Cai, Jing; Li, Tao; Huang, Bangxing; Cheng, Henghui; Ding, Hui; Dong, Weihong; Xiao, Man; Liu, Ling; Wang, Zehua

    2014-01-01

    Quantitative real-time PCR (qPCR) is a powerful and reproducible method of gene expression analysis in which expression levels are quantified by normalization against reference genes. Therefore, to investigate the potential biomarkers and therapeutic targets for epithelial ovarian cancer by qPCR, it is critical to identify stable reference genes. In this study, twelve housekeeping genes (ACTB, GAPDH, 18S rRNA, GUSB, PPIA, PBGD, PUM1, TBP, HRPT1, RPLP0, RPL13A, and B2M) were analyzed in 50 ovarian samples from normal, benign, borderline, and malignant tissues. For reliable results, laser microdissection (LMD), an effective technique used to prepare homogeneous starting material, was utilized to precisely excise target tissues or cells. One-way analysis of variance (ANOVA) and nonparametric (Kruskal-Wallis) tests were used to compare the expression differences. NormFinder and geNorm software were employed to further validate the suitability and stability of the candidate genes. Results showed that epithelial cells occupied a small percentage of the normal ovary indeed. The expression of ACTB, PPIA, RPL13A, RPLP0, and TBP were stable independent of the disease progression. In addition, NormFinder and geNorm identified the most stable combination (ACTB, PPIA, RPLP0, and TBP) and the relatively unstable reference gene GAPDH from the twelve commonly used housekeeping genes. Our results highlight the use of homogeneous ovarian tissues and multiple-reference normalization strategy, e.g. the combination of ACTB, PPIA, RPLP0, and TBP, for qPCR in epithelial ovarian tissues, whereas GAPDH, the most commonly used reference gene, is not recommended, especially as a single reference gene.

  16. The use of laser microdissection in the identification of suitable reference genes for normalization of quantitative real-time PCR in human FFPE epithelial ovarian tissue samples.

    Directory of Open Access Journals (Sweden)

    Jing Cai

    Full Text Available Quantitative real-time PCR (qPCR is a powerful and reproducible method of gene expression analysis in which expression levels are quantified by normalization against reference genes. Therefore, to investigate the potential biomarkers and therapeutic targets for epithelial ovarian cancer by qPCR, it is critical to identify stable reference genes. In this study, twelve housekeeping genes (ACTB, GAPDH, 18S rRNA, GUSB, PPIA, PBGD, PUM1, TBP, HRPT1, RPLP0, RPL13A, and B2M were analyzed in 50 ovarian samples from normal, benign, borderline, and malignant tissues. For reliable results, laser microdissection (LMD, an effective technique used to prepare homogeneous starting material, was utilized to precisely excise target tissues or cells. One-way analysis of variance (ANOVA and nonparametric (Kruskal-Wallis tests were used to compare the expression differences. NormFinder and geNorm software were employed to further validate the suitability and stability of the candidate genes. Results showed that epithelial cells occupied a small percentage of the normal ovary indeed. The expression of ACTB, PPIA, RPL13A, RPLP0, and TBP were stable independent of the disease progression. In addition, NormFinder and geNorm identified the most stable combination (ACTB, PPIA, RPLP0, and TBP and the relatively unstable reference gene GAPDH from the twelve commonly used housekeeping genes. Our results highlight the use of homogeneous ovarian tissues and multiple-reference normalization strategy, e.g. the combination of ACTB, PPIA, RPLP0, and TBP, for qPCR in epithelial ovarian tissues, whereas GAPDH, the most commonly used reference gene, is not recommended, especially as a single reference gene.

  17. Real-time quantitative PCR for retrovirus-like particle quantification in CHO cell culture.

    Science.gov (United States)

    de Wit, C; Fautz, C; Xu, Y

    2000-09-01

    Chinese hamster ovary (CHO) cells have been widely used to manufacture recombinant proteins intended for human therapeutic uses. Retrovirus-like particles, which are apparently defective and non-infectious, have been detected in all CHO cells by electron microscopy (EM). To assure viral safety of CHO cell-derived biologicals, quantification of retrovirus-like particles in production cell culture and demonstration of sufficient elimination of such retrovirus-like particles by the down-stream purification process are required for product market registration worldwide. EM, with a detection limit of 1x10(6) particles/ml, is the standard retrovirus-like particle quantification method. The whole process, which requires a large amount of sample (3-6 litres), is labour intensive, time consuming, expensive, and subject to significant assay variability. In this paper, a novel real-time quantitative PCR assay (TaqMan assay) has been developed for the quantification of retrovirus-like particles. Each retrovirus particle contains two copies of the viral genomic particle RNA (pRNA) molecule. Therefore, quantification of retrovirus particles can be achieved by quantifying the pRNA copy number, i.e. every two copies of retroviral pRNA is equivalent to one retrovirus-like particle. The TaqMan assay takes advantage of the 5'-->3' exonuclease activity of Taq DNA polymerase and utilizes the PRISM 7700 Sequence Detection System of PE Applied Biosystems (Foster City, CA, U.S.A.) for automated pRNA quantification through a dual-labelled fluorogenic probe. The TaqMan quantification technique is highly comparable to the EM analysis. In addition, it offers significant advantages over the EM analysis, such as a higher sensitivity of less than 600 particles/ml, greater accuracy and reliability, higher sample throughput, more flexibility and lower cost. Therefore, the TaqMan assay should be used as a substitute for EM analysis for retrovirus-like particle quantification in CHO cell

  18. Identification and Evaluation of Reliable Reference Genes for Quantitative Real-Time PCR Analysis in Tea Plant (Camellia sinensis (L.) O. Kuntze)

    Science.gov (United States)

    Hao, Xinyuan; Horvath, David P.; Chao, Wun S.; Yang, Yajun; Wang, Xinchao; Xiao, Bin

    2014-01-01

    Reliable reference selection for the accurate quantification of gene expression under various experimental conditions is a crucial step in qRT-PCR normalization. To date, only a few housekeeping genes have been identified and used as reference genes in tea plant. The validity of those reference genes are not clear since their expression stabilities have not been rigorously examined. To identify more appropriate reference genes for qRT-PCR studies on tea plant, we examined the expression stability of 11 candidate reference genes from three different sources: the orthologs of Arabidopsis traditional reference genes and stably expressed genes identified from whole-genome GeneChip studies, together with three housekeeping gene commonly used in tea plant research. We evaluated the transcript levels of these genes in 94 experimental samples. The expression stabilities of these 11 genes were ranked using four different computation programs including geNorm, Normfinder, BestKeeper, and the comparative ∆CT method. Results showed that the three commonly used housekeeping genes of CsTUBULIN1, CsACINT1 and Cs18S rRNA1 together with CsUBQ1 were the most unstable genes in all sample ranking order. However, CsPTB1, CsEF1, CsSAND1, CsCLATHRIN1 and CsUBC1 were the top five appropriate reference genes for qRT-PCR analysis in complex experimental conditions. PMID:25474086

  19. Detection of exogenous gene doping of IGF-I by a real-time quantitative PCR assay.

    Science.gov (United States)

    Zhang, Jin-Ju; Xu, Jing-Feng; Shen, Yong-Wei; Ma, Shi-Jiao; Zhang, Ting-Ting; Meng, Qing-Lin; Lan, Wen-Jun; Zhang, Chun; Liu, Xiao-Mei

    2017-07-01

    Gene doping can be easily concealed since its product is similar to endogenous protein, making its effective detection very challenging. In this study, we selected insulin-like growth factor I (IGF-I) exogenous gene for gene doping detection. First, the synthetic IGF-I gene was subcloned to recombinant adeno-associated virus (rAAV) plasmid to produce recombinant rAAV2/IGF-I-GFP vectors. Second, in an animal model, rAAV2/IGF-I-GFP vectors were injected into the thigh muscle tissue of mice, and then muscle and blood specimens were sampled at different time points for total DNA isolation. Finally, real-time quantitative PCR was employed to detect the exogenous gene doping of IGF-I. In view of the characteristics of endogenous IGF-I gene sequences, a TaqMan probe was designed at the junction of exons 2 and 3 of IGF-I gene to distinguish it from the exogenous IGF-I gene. In addition, an internal reference control plasmid and its probe were used in PCR to rule out false-positive results through comparison of their threshold cycle (Ct) values. Thus, an accurate exogenous IGF-I gene detection approach was developed in this study. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  20. Cross-platform comparison of SYBR® Green real-time PCR with TaqMan PCR, microarrays and other gene expression measurement technologies evaluated in the MicroArray Quality Control (MAQC study

    Directory of Open Access Journals (Sweden)

    Dial Stacey L

    2008-07-01

    Full Text Available Abstract Background The MicroArray Quality Control (MAQC project evaluated the inter- and intra-platform reproducibility of seven microarray platforms and three quantitative gene expression assays in profiling the expression of two commercially available Reference RNA samples (Nat Biotechnol 24:1115-22, 2006. The tested microarrays were the platforms from Affymetrix, Agilent Technologies, Applied Biosystems, GE Healthcare, Illumina, Eppendorf and the National Cancer Institute, and quantitative gene expression assays included TaqMan® Gene Expression PCR Assay, Standardized (Sta RT-PCR™ and QuantiGene®. The data showed great consistency in gene expression measurements across different microarray platforms, different technologies and test sites. However, SYBR® Green real-time PCR, another common technique utilized by half of all real-time PCR users for gene expression measurement, was not addressed in the MAQC study. In the present study, we compared the performance of SYBR Green PCR with TaqMan PCR, microarrays and other quantitative technologies using the same two Reference RNA samples as the MAQC project. We assessed SYBR Green real-time PCR using commercially available RT2 Profiler™ PCR Arrays from SuperArray, containing primer pairs that have been experimentally validated to ensure gene-specificity and high amplification efficiency. Results The SYBR Green PCR Arrays exhibit good reproducibility among different users, PCR instruments and test sites. In addition, the SYBR Green PCR Arrays have the highest concordance with TaqMan PCR, and a high level of concordance with other quantitative methods and microarrays that were evaluated in this study in terms of fold-change correlation and overlap of lists of differentially expressed genes. Conclusion These data demonstrate that SYBR Green real-time PCR delivers highly comparable results in gene expression measurement with TaqMan PCR and other high-density microarrays.

  1. Direct comparison of flow-FISH and qPCR as diagnostic tests for telomere length measurement in humans.

    Directory of Open Access Journals (Sweden)

    Fernanda Gutierrez-Rodrigues

    Full Text Available Telomere length measurement is an essential test for the diagnosis of telomeropathies, which are caused by excessive telomere erosion. Commonly used methods are terminal restriction fragment (TRF analysis by Southern blot, fluorescence in situ hybridization coupled with flow cytometry (flow-FISH, and quantitative PCR (qPCR. Although these methods have been used in the clinic, they have not been comprehensively compared. Here, we directly compared the performance of flow-FISH and qPCR to measure leukocytes' telomere length of healthy individuals and patients evaluated for telomeropathies, using TRF as standard. TRF and flow-FISH showed good agreement and correlation in the analysis of healthy subjects (R(2 = 0.60; p<0.0001 and patients (R(2 = 0.51; p<0.0001. In contrast, the comparison between TRF and qPCR yielded modest correlation for the analysis of samples of healthy individuals (R(2 = 0.35; p<0.0001 and low correlation for patients (R(2 = 0.20; p = 0.001; Bland-Altman analysis showed poor agreement between the two methods for both patients and controls. Quantitative PCR and flow-FISH modestly correlated in the analysis of healthy individuals (R(2 = 0.33; p<0.0001 and did not correlate in the comparison of patients' samples (R(2 = 0.1, p = 0.08. Intra-assay coefficient of variation (CV was similar for flow-FISH (10.8 ± 7.1% and qPCR (9.5 ± 7.4%; p = 0.35, but the inter-assay CV was lower for flow-FISH (9.6 ± 7.6% vs. 16 ± 19.5%; p = 0.02. Bland-Altman analysis indicated that flow-FISH was more precise and reproducible than qPCR. Flow-FISH and qPCR were sensitive (both 100% and specific (93% and 89%, respectively to distinguish very short telomeres. However, qPCR sensitivity (40% and specificity (63% to detect telomeres below the tenth percentile were lower compared to flow-FISH (80% sensitivity and 85% specificity. In the clinical setting, flow-FISH was more accurate, reproducible, sensitive, and specific in the measurement of human

  2. Analysis of Light Gathering Abilities of Dynamically Solidified Micro-lenses, and Their Implementation to Improve Sensitivity of Fluorescent PCR Micro-detectors.

    Science.gov (United States)

    Wu, Jian; Guo, Wei; Wang, Chunyan; Yu, Kuanxin; Chen, Tao; Li, Yinghui

    2015-06-01

    Fluorescent polymerase chain reaction (PCR) is becoming the preferred method of quantitative analysis due to its high specificity and sensitivity. We propose to use a new kind of micro-lens, dynamically solidified with optic glue, to improve the sensitivity of fluorescent PCR micro-detector. We developed light ray track equations for these lenses and used them to calculate relative light intensity distribution curve for stimulation lenses and illumination point probability distribution curve for detection lenses. We manufactured dynamically solidified micro-lenses using optic glue NOA61, and measured their light gathering ability. Lenses with radius/thickness (R/H) ratio of 4 reached light focusing ratio of 3.85 (stimulation lens) and photon collection efficiency of 0.86 (detection lens). We then used dynamically solidified lenses in PCR fluorescence micro-detector and analyzed their effect on the detector sensitivity. We showed that the use of dynamically solidified micro-lenses with R/H = 4 resulted in over 4.4-fold increased sensitivity of the detector.

  3. Evaluation of Propranolol Effect on Experimental Acute and Chronic Toxoplasmosis Using Quantitative PCR

    Science.gov (United States)

    Montazeri, Mahbobeh; Ebrahimzadeh, Mohammad Ali; Ahmadpour, Ehsan; Sharif, Mehdi; Sarvi, Shahabeddin

    2016-01-01

    Current therapies against toxoplasmosis are limited, and drugs have significant side effects and low efficacies. We evaluated the potential anti-Toxoplasma activity of propranolol at a dose of 2 or 3 mg/kg of body weight/day in vivo in the acute and chronic phases. Propranolol as a cell membrane-stabilizing agent is a suitable drug for inhibiting the entrance of Toxoplasma gondii tachyzoites into cells. The acute-phase assay was performed using propranolol, pyrimethamine, and propranolol plus pyrimethamine before (pretreatment) and after (posttreatment) intraperitoneal challenge with 1 × 103 tachyzoites of the virulent T. gondii strain RH in BALB/c mice. Also, in the chronic phase, treatment was performed 12 h before intraperitoneal challenge with 1 × 106 tachyzoites of the virulent strain RH of T. gondii in rats. One week (in the acute phase) and 2 months (in the chronic phase) after postinfection, tissues were isolated and DNA was extracted. Subsequently, parasite load was calculated using quantitative PCR (qPCR). In the acute phase, in both groups, significant anti-Toxoplasma activity was observed using propranolol (P toxoplasmosis. Also, propranolol combined with pyrimethamine reduced the parasite load as well as significantly increased survival of mice in the pretreatment group. In the chronic phase, anti-Toxoplasma activity and decreased parasite load in tissues were observed with propranolol. In conclusion, the presented results demonstrate that propranolol, as an orally available drug, is effective at low doses against acute and latent murine toxoplasmosis, and the efficiency of the drug is increased when it is used in combination therapy with pyrimethamine. PMID:27645234

  4. Introduction on Using the FastPCR Software and the Related Java Web Tools for PCR and Oligonucleotide Assembly and Analysis.

    Science.gov (United States)

    Kalendar, Ruslan; Tselykh, Timofey V; Khassenov, Bekbolat; Ramanculov, Erlan M

    2017-01-01

    This chapter introduces the FastPCR software as an integrated tool environment for PCR primer and probe design, which predicts properties of oligonucleotides based on experimental studies of the PCR efficiency. The software provides comprehensive facilities for designing primers for most PCR applications and their combinations. These include the standard PCR as well as the multiplex, long-distance, inverse, real-time, group-specific, unique, overlap extension PCR for multi-fragments assembling cloning and loop-mediated isothermal amplification (LAMP). It also contains a built-in program to design oligonucleotide sets both for long sequence assembly by ligase chain reaction and for design of amplicons that tile across a region(s) of interest. The software calculates the melting temperature for the standard and degenerate oligonucleotides including locked nucleic acid (LNA) and other modifications. It also provides analyses for a set of primers with the prediction of oligonucleotide properties, dimer and G/C-quadruplex detection, linguistic complexity as well as a primer dilution and resuspension calculator. The program consists of various bioinformatical tools for analysis of sequences with the GC or AT skew, CG% and GA% content, and the purine-pyrimidine skew. It also analyzes the linguistic sequence complexity and performs generation of random DNA sequence as well as restriction endonucleases analysis. The program allows to find or create restriction enzyme recognition sites for coding sequences and supports the clustering of sequences. It performs efficient and complete detection of various repeat types with visual display. The FastPCR software allows the sequence file batch processing that is essential for automation. The program is available for download at http://primerdigital.com/fastpcr.html , and its online version is located at http://primerdigital.com/tools/pcr.html .

  5. DEVELOPMENT OF REAL-TIME MULTIPLEX PCR FOR THE QUANTITATIVE DETERMINATION OF TREC'S AND KREC'S IN WHOLE BLOOD AND IN DRIED BLOOD SPOTS

    Directory of Open Access Journals (Sweden)

    M. A. Gordukova

    2015-01-01

    Full Text Available Primary immunodeficiencies (PID such as severe combined immunodeficiency (SCID and X-linked agammaglobulinemia are characterized by the lack of functional Tand B-cells, respectively. Without early diagnosis and prompt treatment children with PID suffer from severe infectious diseases, leading to their death or disability. Our purpose was developing of simple, inexpensive, high throughput technique based on the quantitative determination of TREC and KREC molecules by real-time PCR, and its validation in a group of children with a verified diagnosis of SCID and X-linked agammaglobulinemia.In this study, we developed and validated multiplex real-time PCR for the TREC’s and KREC’s quantitative analysis. We have shown that linear range of Ct changes depending on the concentrations of targets with a correlation coefficient R2 not worse than 0.98 was observed at concentrations from 109 to 5 × 104 copies per ml. The lowest amount of targets reliably detected in a reaction volume was 10 TREC’s copies, 5 KREC ‘s copies and 5 copies of internal control (IL17RA. We determined the age-depended reference values of TRECs and KRECs in whole blood in 29 boys and 27 girls with normal immunological parameters. The normal cut-offs for TRECs and KRECs were defined in dry blood spots depending on the method of extraction.The proposed method showed 100% diagnostic sensitivity and specificity in the studied group. The method can be proposed as a screening tool for the diagnosis of SCID and X-linked agammaglobulinemia both in whole blood and in the dry blood spots. The further investigation is required with larger number of samples. 

  6. Alkaline Extraction of DNA from Pathogenic Fungi for PCR-RFLP Analysis

    OpenAIRE

    Matsumoto, Masaru; Mishima, Shinobu; Matsuyama, Nobuaki; 松元, 賢; 松山, 宣明

    1997-01-01

    For the preparation of DNA samples from fungal mycelia alkaline extraction method was applied and assessed its usefulness for PCR-RFLP analysis. Using alkaline treatment protocols, 18S ribosomal DNAs (rDNA) derived from fungal genomic DNA of Pyricularia oryzae, P. zingiberi, Rhizoctonia solani and R. oryzae were PCR-amplified and digested with Hha I, Msp I and Hae ill. RFLP analysis with HhaI showed the divergent polymorphism between genus Pyricularia and Rhizoctonia. The alkaline DNA extract...

  7. Assessment of reference gene stability in Rice stripe virus and Rice black streaked dwarf virus infection rice by quantitative Real-time PCR.

    Science.gov (United States)

    Fang, Peng; Lu, Rongfei; Sun, Feng; Lan, Ying; Shen, Wenbiao; Du, Linlin; Zhou, Yijun; Zhou, Tong

    2015-10-24

    Stably expressed reference gene(s) normalization is important for the understanding of gene expression patterns by quantitative Real-time PCR (RT-qPCR), particularly for Rice stripe virus (RSV) and Rice black streaked dwarf virus (RBSDV) that caused seriously damage on rice plants in China and Southeast Asia. The expression of fourteen common used reference genes of Oryza sativa L. were evaluated by RT-qPCR in RSV and RBSDV infected rice plants. Suitable normalization reference gene(s) were identified by geNorm and NormFinder algorithms. UBQ 10 + GAPDH and UBC + Actin1 were identified as suitable reference genes for RT-qPCR normalization under RSV and RBSDV infection, respectively. When using multiple reference genes, the expression patterns of OsPRIb and OsWRKY, two virus resistance genes, were approximately similar with that reported previously. Comparatively, by using single reference gene (TIP41-Like), a weaker inducible response was observed. We proposed that the combination of two reference genes could obtain more accurate and reliable normalization of RT-qPCR results in RSV- and RBSDV-infected plants. This work therefore sheds light on establishing a standardized RT-qPCR procedure in RSV- and RBSDV-infected rice plants, and might serve as an important point for discovering complex regulatory networks and identifying genes relevant to biological processes or implicated in virus.

  8. A common base method for analysis of qPCR data and the application of simple blocking in qPCR experiments.

    Science.gov (United States)

    Ganger, Michael T; Dietz, Geoffrey D; Ewing, Sarah J

    2017-12-01

    qPCR has established itself as the technique of choice for the quantification of gene expression. Procedures for conducting qPCR have received significant attention; however, more rigorous approaches to the statistical analysis of qPCR data are needed. Here we develop a mathematical model, termed the Common Base Method, for analysis of qPCR data based on threshold cycle values (C q ) and efficiencies of reactions (E). The Common Base Method keeps all calculations in the logscale as long as possible by working with log 10 (E) ∙ C q , which we call the efficiency-weighted C q value; subsequent statistical analyses are then applied in the logscale. We show how efficiency-weighted C q values may be analyzed using a simple paired or unpaired experimental design and develop blocking methods to help reduce unexplained variation. The Common Base Method has several advantages. It allows for the incorporation of well-specific efficiencies and multiple reference genes. The method does not necessitate the pairing of samples that must be performed using traditional analysis methods in order to calculate relative expression ratios. Our method is also simple enough to be implemented in any spreadsheet or statistical software without additional scripts or proprietary components.

  9. Quantitative PCR--new diagnostic tool for quantifying specific mRNA and DNA molecules

    DEFF Research Database (Denmark)

    Schlemmer, B O; Sorensen, B S; Overgaard, J

    2004-01-01

    of a subset of ligands from the EGF system is increased in bladder cancer. Furthermore, measurement of the mRNA concentration gives important information such as the expression of these ligands correlated to the survival of the patients. In addition to the alterations at the mRNA level, changes also can occur...... at the DNA level in the EGF system. Thus, it has been demonstrated that the number of genes coding for the human epidermal growth factor receptor 2 (HER2) is increased in a number of breast tumors. It is now possible to treat breast cancer patients with a humanized antibody reacting with HER2...... of mRNA or DNA in biological samples. In this study quantitative PCR was used to investigate the role of the EGF (epidermal growth factor) system in cancer both for measurements of mRNA concentrations and for measurements of the number of copies of specific genes. It is shown that the mRNA expression...

  10. Selection of internal control genes for real-time quantitative PCR in ovary and uterus of sows across pregnancy.

    Directory of Open Access Journals (Sweden)

    María Martínez-Giner

    Full Text Available BACKGROUND: Reproductive traits play a key role in pig production in order to reduce costs and increase economic returns. Among others, gene expression analyses represent a useful approach to study genetic mechanisms underlying reproductive traits in pigs. The application of reverse-transcription quantitative PCR requires the selection of appropriate reference genes, whose expression levels should not be affected by the experimental conditions, especially when comparing gene expression across different physiological stages. RESULTS: The gene expression stability of ten potential reference genes was studied by three different methods (geNorm, NormFinder and BestKeeper in ovary and uterus collected at five different physiological time points (heat, and 15, 30, 45 and 60 days of pregnancy. Although final ranking differed, the three algorithms gave very similar results. Thus, the most stable genes across time were TBP and UBC in uterus and TBP and HPRT1 in ovary, while HMBS and ACTB showed the less stable expression in uterus and ovary, respectively. When studied as a systematic effect, the reproductive stage did not significantly affect the expression of the candidate reference genes except at 30d and 60d of pregnancy, when a general drop in expression was observed in ovary. CONCLUSIONS: Based in our results, we propose the use of TBP, UBC and SDHA in uterus and TBP, GNB2L1 and HPRT1 in ovary for normalization of longitudinal expression studies using quantitative PCR in sows.

  11. Quantitative PCR for the specific quantification of Lactococcus lactis and Lactobacillus paracasei and its interest for Lactococcus lactis in cheese samples.

    Science.gov (United States)

    Achilleos, Christine; Berthier, Françoise

    2013-12-01

    The first objective of this work was to develop real-time quantitative PCR (qPCR) assays to quantify two species of mesophilic lactic acid bacteria technologically active in food fermentation, including cheese making: Lactococcus lactis and Lactobacillus paracasei. The second objective was to compare qPCR and plate counts of these two species in cheese samples. Newly designed primers efficiently amplified a region of the tuf gene from the target species. Sixty-three DNA samples from twenty different bacterial species, phylogenetically related or commonly found in raw milk and dairy products, were selected as positive and negative controls. Target DNA was successfully amplified showing a single peak on the amplicon melting curve; non-target DNA was not amplified. Quantification was linear over 5 log units (R(2) > 0.990), down to 22 gene copies/μL per well for Lc. lactis and 73 gene copies/μL per well for Lb. paracasei. qPCR efficiency ranged from 82.9% to 93.7% for Lc. lactis and from 81.1% to 99.5% for Lb. paracasei. At two stages of growth, Lc. lactis was quantified in 12 soft cheeses and Lb. paracasei in 24 hard cooked cheeses. qPCR proved to be useful for quantifying Lc. lactis, but not Lb. paracasei. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Quantitative and qualitative analysis of telomerase activity in benign and malignant thyroid tissues

    International Nuclear Information System (INIS)

    Zheng Rongxiu; Fang Peihua; Tan Jian; Lu Mei; Li Yigong

    2002-01-01

    Objective: To study the status of telomerase activity during the development of thyroid tumors, and to determine whether telomerase activity can be used clinically as a molecular marker in the differential diagnosis of thyroid cancer. Methods: Telomerase activity was measured in 37 thyroid carcinomas, 33 benign thyroid lesions and 30 normal thyroid tissue samples by means of a modified TRAP-PCR. The assay was also applied to 15 fine needle aspirates (FNAs) of thyroid carcinomas to test its sensitivity. Results: Thirty-one of 37 thyroid carcinomas (83.8%), 7 of 33 benign thyroid lesions (21.2%), and 4 of 30 adjacent normal thyroid tissue samples expressed telomerase activity, 15 FNAs also had positive telomerase activity, just as their corresponding tissue specimens. The quantitative analysis showed that the telomerase activity was significantly higher in thyroid carcinomas than that in benign thyroid tissue samples. And medullary carcinomas and anaplastic carcinomas had higher levels of telomerase activity than papillary carcinomas. Conclusions: Telomerase activity is a good marker for thyroid carcinomas. The quantitative TRAP-PCR might have more potential application in the differential diagnosis of tumors and the estimation of tumor progression and prognosis. And this sensitive assay could become a useful new modality for supplementing microscopic cytopathology in the detection of cancer cells in small tissue samples and FNAs

  13. Multi-laboratory survey of qPCR enterococci analysis method performance in U.S. coastal and inland surface waters

    Data.gov (United States)

    U.S. Environmental Protection Agency — Quantitative polymerase chain reaction (qPCR) has become a frequently used technique for quantifying enterococci in recreational surface waters, but there are...

  14. Quantitative real-time RT-PCR and chromogenic in situ hybridization: precise methods to detect HER-2 status in breast carcinoma

    Directory of Open Access Journals (Sweden)

    Soares Fernando A

    2009-03-01

    Full Text Available Abstract Background HER-2 gene testing has become an integral part of breast cancer patient diagnosis. The most commonly used assay in the clinical setting for evaluating HER-2 status is immunohistochemistry (IHC and fluorescence in situ hybridization (FISH. These procedures permit correlation between HER-2 expression and morphological features. However, FISH signals are labile and fade over time, making post-revision of the tumor difficult. CISH (chromogenic in situ hybridization is an alternative procedure, with certain advantages, although still limited as a diagnostic tool in breast carcinomas. Methods To elucidate the molecular profile of HER-2 status, mRNA and protein expression in 75 invasive breast carcinomas were analyzed by real time quantitative RT-PCR (qRT-PCR and IHC, respectively. Amplifications were evaluated in 43 of these cases by CISH and in 11 by FISH. Results The concordance rate between IHC and qRT-PCR results was 78.9%, and 94.6% for qRT-PCR and CISH. Intratumoral heterogeneity of HER-2 status was identified in three cases by CISH. The results of the three procedures were compared and showed a concordance rate of 83.8%; higher discordances were observed in 0 or 1+ immunostaining cases, which showed high-level amplification (15.4% and HER-2 transcript overexpression (20%. Moreover, 2+ immunostaining cases presented nonamplified status (50% by CISH and HER-2 downexpression (38.5% by qRT-PCR. In general, concordance occurred between qRT-PCR and CISH results. A high concordance was observed between CISH/qRT-PCR and FISH. Comparisons with clinicopathological data revealed a significant association between HER-2 downexpression and the involvement of less than four lymph nodes (P = 0.0350. Conclusion Based on these findings, qRT-PCR was more precise and reproducible than IHC. Furthermore, CISH was revealed as an alternative and useful procedure for investigating amplifications involving the HER-2 gene.

  15. Quantitative PCR Assays for Detecting Loach Minnow (Rhinichthys cobitis and Spikedace (Meda fulgida in the Southwestern United States.

    Directory of Open Access Journals (Sweden)

    Joseph C Dysthe

    Full Text Available Loach minnow (Rhinichthys cobitis and spikedace (Meda fulgida are legally protected with the status of Endangered under the U.S. Endangered Species Act and are endemic to the Gila River basin of Arizona and New Mexico. Efficient and sensitive methods for monitoring these species' distributions are critical for prioritizing conservation efforts. We developed quantitative PCR assays for detecting loach minnow and spikedace DNA in environmental samples. Each assay reliably detected low concentrations of target DNA without detection of non-target species, including other cyprinid fishes with which they co-occur.

  16. The utility of optical detection system (qPCR) and bioinformatics methods in reference gene expression analysis

    Science.gov (United States)

    Skarzyńska, Agnieszka; Pawełkowicz, Magdalena; PlÄ der, Wojciech; Przybecki, Zbigniew

    2016-09-01

    Real-time quantitative polymerase chain reaction is consider as the most reliable method for gene expression studies. However, the expression of target gene could be misinterpreted due to improper normalization. Therefore, the crucial step for analysing of qPCR data is selection of suitable reference genes, which should be validated experimentally. In order to choice the gene with stable expression in the designed experiment, we performed reference gene expression analysis. In this study genes described in the literature and novel genes predicted as control genes, based on the in silico analysis of transcriptome data were used. Analysis with geNorm and NormFinder algorithms allow to create the ranking of candidate genes and indicate the best reference for flower morphogenesis study. According to the results, genes CACS and CYCL were characterised the most stable expression, but the least suitable genes were TUA and EF.

  17. Detection of gene copy number aberrations in mantle cell lymphoma by a single quantitative multiplex PCR assay: clinicopathological relevance and prognosis value.

    Science.gov (United States)

    Jardin, Fabrice; Picquenot, Jean-Michel; Parmentier, Françoise; Ruminy, Philippe; Cornic, Marie; Penther, Dominique; Bertrand, Philippe; Lanic, Hélène; Cassuto, Ophélie; Humbrecht, Catherine; Lemasle, Emilie; Wautier, Agathe; Bastard, Christian; Tilly, Hervé

    2009-09-01

    The t(11;14)(q13;q32) is the hallmark of mantle cell lymphoma (MCL). Additional genetic alterations occur in the majority of cases. This study aimed to design a polymerase chain reaction (PCR) assay to determine the incidence and relevance of recurrent gene copy number aberrations in this disease. Forty-two MCL cases with frozen- or paraffin-embedded (FFPE) tissues were selected. Three different quantitative Multiplex PCR of Short Fluorescent Fragments (QMPSF) assays were designed to simultaneously analyse eight genes (CDKN2A, RB1, ATM, CDK2, TP53, MYC, CDKN1B, MDM2), to analyse the 9p21 locus (CDKN2A/CDKN2B) and FFPE tissues. Gains of MYC, CDK2, CDKN1B, and MDM2 were observed in 10% of cases. Losses of RB1, CDKN2A, ATM or TP53 were observed in 38%, 31%, 24% and 10% of cases, respectively. Analysis of the 9p21 locus indicated that, in most cases, tumours displayed a complete inactivation of p14(ARF)/p15I(NK4B)/p16I(NK4A). CDKN2A and MYC aberrations were associated with a high MCL international prognostic index (MIPI). CDK2/MDM2 gains and CDKN2A/TP53 losses correlated with an unfavourable outcome. PCR experiments with frozen and FFPE-tissues indicated that our approach is valid in a routine diagnostic setting, providing a powerful tool that could be used for patient stratification in combination with MIPI in future clinical trials.

  18. Decoding DNA labels by melting curve analysis using real-time PCR.

    Science.gov (United States)

    Balog, József A; Fehér, Liliána Z; Puskás, László G

    2017-12-01

    Synthetic DNA has been used as an authentication code for a diverse number of applications. However, existing decoding approaches are based on either DNA sequencing or the determination of DNA length variations. Here, we present a simple alternative protocol for labeling different objects using a small number of short DNA sequences that differ in their melting points. Code amplification and decoding can be done in two steps using quantitative PCR (qPCR). To obtain a DNA barcode with high complexity, we defined 8 template groups, each having 4 different DNA templates, yielding 158 (>2.5 billion) combinations of different individual melting temperature (Tm) values and corresponding ID codes. The reproducibility and specificity of the decoding was confirmed by using the most complex template mixture, which had 32 different products in 8 groups with different Tm values. The industrial applicability of our protocol was also demonstrated by labeling a drone with an oil-based paint containing a predefined DNA code, which was then successfully decoded. The method presented here consists of a simple code system based on a small number of synthetic DNA sequences and a cost-effective, rapid decoding protocol using a few qPCR reactions, enabling a wide range of authentication applications.

  19. Quantitative Real-Time PCR Fecal Source Identification in the ...

    Science.gov (United States)

    Rivers in the Tillamook Basin play a vital role in supporting a thriving dairy and cheese-making industry, as well as providing a safe water resource for local human and wildlife populations. Historical concentrations of fecal bacteria in these waters are at times too high to allow for safe use leading to economic loss, endangerment of local wildlife, and poor conditions for recreational use. In this study, we employ host-associated qPCR methods for human (HF183/BacR287 and HumM2), ruminant (Rum2Bac), cattle (CowM2 and CowM3), canine (DG3 and DG37), and avian (GFD) fecal pollution combined with high-resolution geographic information system (GIS) land use data and general indicator bacteria measurements to elucidatewater quality spatial and temporal trends. Water samples (n=584) were collected over a 1-year period at 29 sites along the Trask, Kilchis, and Tillamook rivers and tributaries (Tillamook Basin, OR). A total of 16.6% of samples (n=97) yielded E. coli levels considered impaired based on Oregon Department of Environmental Quality bacteria criteria (406 MPN/100mL). Hostassociated genetic indicators were detected at frequencies of 39.2% (HF183/BacR287), 16.3% (HumM2), 74.6% (Rum2Bac), 13.0% (CowM2), 26.7% (CowM3), 19.8% (DG3), 3.2% (DG37), and 53.4% (GFD) across all water samples (n=584). Seasonal trends in avian, cattle, and human fecal pollution sources were evident over the study area. On a sample site basis, quantitative fecal source identification and

  20. Selection and Verification of Candidate Reference Genes for Mature MicroRNA Expression by Quantitative RT-PCR in the Tea Plant (Camellia sinensis

    Directory of Open Access Journals (Sweden)

    Hui Song

    2016-05-01

    Full Text Available Quantitative reverse transcription-polymerase chain reaction (qRT-PCR is a rapid and sensitive method for analyzing microRNA (miRNA expression. However, accurate qRT-PCR results depend on the selection of reliable reference genes as internal positive controls. To date, few studies have identified reliable reference genes for differential expression analysis of miRNAs among tissues, and among experimental conditions in plants. In this study, three miRNAs and four non-coding small RNAs (ncRNA were selected as reference candidates, and the stability of their expression was evaluated among different tissues and under different experimental conditions in the tea plant (Camellia sinensis using the geNorm and NormFinder programs. It was shown that miR159a was the best single reference gene in the bud to the fifth leaf, 5S rRNA was the most suitable gene in different organs, miR6149 was the most stable gene when the leaves were attacked by Ectropis oblique and U4, miR5368n and miR159a were the best genes when the leaves were treated by methyl jasmonate (MeJA, salicylic acid (SA and abscisic acid (ABA, respectively. Our results provide suitable reference genes for future investigations on miRNA functions in tea plants.

  1. Quantitative analysis of receptor imaging

    International Nuclear Information System (INIS)

    Fu Zhanli; Wang Rongfu

    2004-01-01

    Model-based methods for quantitative analysis of receptor imaging, including kinetic, graphical and equilibrium methods, are introduced in detail. Some technical problem facing quantitative analysis of receptor imaging, such as the correction for in vivo metabolism of the tracer and the radioactivity contribution from blood volume within ROI, and the estimation of the nondisplaceable ligand concentration, is also reviewed briefly

  2. Diagnostic performance of semi-quantitative and quantitative stress CMR perfusion analysis: a meta-analysis.

    Science.gov (United States)

    van Dijk, R; van Assen, M; Vliegenthart, R; de Bock, G H; van der Harst, P; Oudkerk, M

    2017-11-27

    Stress cardiovascular magnetic resonance (CMR) perfusion imaging is a promising modality for the evaluation of coronary artery disease (CAD) due to high spatial resolution and absence of radiation. Semi-quantitative and quantitative analysis of CMR perfusion are based on signal-intensity curves produced during the first-pass of gadolinium contrast. Multiple semi-quantitative and quantitative parameters have been introduced. Diagnostic performance of these parameters varies extensively among studies and standardized protocols are lacking. This study aims to determine the diagnostic accuracy of semi- quantitative and quantitative CMR perfusion parameters, compared to multiple reference standards. Pubmed, WebOfScience, and Embase were systematically searched using predefined criteria (3272 articles). A check for duplicates was performed (1967 articles). Eligibility and relevance of the articles was determined by two reviewers using pre-defined criteria. The primary data extraction was performed independently by two researchers with the use of a predefined template. Differences in extracted data were resolved by discussion between the two researchers. The quality of the included studies was assessed using the 'Quality Assessment of Diagnostic Accuracy Studies Tool' (QUADAS-2). True positives, false positives, true negatives, and false negatives were subtracted/calculated from the articles. The principal summary measures used to assess diagnostic accuracy were sensitivity, specificity, andarea under the receiver operating curve (AUC). Data was pooled according to analysis territory, reference standard and perfusion parameter. Twenty-two articles were eligible based on the predefined study eligibility criteria. The pooled diagnostic accuracy for segment-, territory- and patient-based analyses showed good diagnostic performance with sensitivity of 0.88, 0.82, and 0.83, specificity of 0.72, 0.83, and 0.76 and AUC of 0.90, 0.84, and 0.87, respectively. In per territory

  3. Analysis of Multiallelic CNVs by Emulsion Haplotype Fusion PCR.

    Science.gov (United States)

    Tyson, Jess; Armour, John A L

    2017-01-01

    Emulsion-fusion PCR recovers long-range sequence information by combining products in cis from individual genomic DNA molecules. Emulsion droplets act as very numerous small reaction chambers in which different PCR products from a single genomic DNA molecule are condensed into short joint products, to unite sequences in cis from widely separated genomic sites. These products can therefore provide information about the arrangement of sequences and variants at a larger scale than established long-read sequencing methods. The method has been useful in defining the phase of variants in haplotypes, the typing of inversions, and determining the configuration of sequence variants in multiallelic CNVs. In this description we outline the rationale for the application of emulsion-fusion PCR methods to the analysis of multiallelic CNVs, and give practical details for our own implementation of the method in that context.

  4. Selection of appropriate reference genes for the detection of rhythmic gene expression via quantitative real-time PCR in Tibetan hulless barley.

    Directory of Open Access Journals (Sweden)

    Jing Cai

    Full Text Available Hulless barley (Hordeum vulgare L. var. nudum. hook. f. has been cultivated as a major crop in the Qinghai-Tibet plateau of China for thousands of years. Compared to other cereal crops, the Tibetan hulless barley has developed stronger endogenous resistances to survive in the severe environment of its habitat. To understand the unique resistant mechanisms of this plant, detailed genetic studies need to be performed. The quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR is the most commonly used method in detecting gene expression. However, the selection of stable reference genes under limited experimental conditions was considered to be an essential step for obtaining accurate results in qRT-PCR. In this study, 10 candidate reference genes-ACT (Actin, E2 (Ubiquitin conjugating enzyme 2, TUBα (Alpha-tubulin, TUBβ6 (Beta-tubulin 6, GAPDH (Glyceraldehyde 3-phosphate dehydrogenase, EF-1α (Elongation factor 1-alpha, SAMDC (S-adenosylmethionine decarboxylase, PKABA1 (Gene for protein kinase HvPKABA1, PGK (Phosphoglycerate kinase, and HSP90 (Heat shock protein 90-were selected from the NCBI gene database of barley. Following qRT-PCR amplifications of all candidate reference genes in Tibetan hulless barley seedlings under various stressed conditions, the stabilities of these candidates were analyzed by three individual software packages including geNorm, NormFinder, and BestKeeper. The results demonstrated that TUBβ6, E2, TUBα, and HSP90 were generally the most suitable sets under all tested conditions; similarly, TUBα and HSP90 showed peak stability under salt stress, TUBα and EF-1α were the most suitable reference genes under cold stress, and ACT and E2 were the most stable under drought stress. Finally, a known circadian gene CCA1 was used to verify the service ability of chosen reference genes. The results confirmed that all recommended reference genes by the three software were suitable for gene expression

  5. Selection of appropriate reference genes for the detection of rhythmic gene expression via quantitative real-time PCR in Tibetan hulless barley.

    Science.gov (United States)

    Cai, Jing; Li, Pengfei; Luo, Xiao; Chang, Tianliang; Li, Jiaxing; Zhao, Yuwei; Xu, Yao

    2018-01-01

    Hulless barley (Hordeum vulgare L. var. nudum. hook. f.) has been cultivated as a major crop in the Qinghai-Tibet plateau of China for thousands of years. Compared to other cereal crops, the Tibetan hulless barley has developed stronger endogenous resistances to survive in the severe environment of its habitat. To understand the unique resistant mechanisms of this plant, detailed genetic studies need to be performed. The quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) is the most commonly used method in detecting gene expression. However, the selection of stable reference genes under limited experimental conditions was considered to be an essential step for obtaining accurate results in qRT-PCR. In this study, 10 candidate reference genes-ACT (Actin), E2 (Ubiquitin conjugating enzyme 2), TUBα (Alpha-tubulin), TUBβ6 (Beta-tubulin 6), GAPDH (Glyceraldehyde 3-phosphate dehydrogenase), EF-1α (Elongation factor 1-alpha), SAMDC (S-adenosylmethionine decarboxylase), PKABA1 (Gene for protein kinase HvPKABA1), PGK (Phosphoglycerate kinase), and HSP90 (Heat shock protein 90)-were selected from the NCBI gene database of barley. Following qRT-PCR amplifications of all candidate reference genes in Tibetan hulless barley seedlings under various stressed conditions, the stabilities of these candidates were analyzed by three individual software packages including geNorm, NormFinder, and BestKeeper. The results demonstrated that TUBβ6, E2, TUBα, and HSP90 were generally the most suitable sets under all tested conditions; similarly, TUBα and HSP90 showed peak stability under salt stress, TUBα and EF-1α were the most suitable reference genes under cold stress, and ACT and E2 were the most stable under drought stress. Finally, a known circadian gene CCA1 was used to verify the service ability of chosen reference genes. The results confirmed that all recommended reference genes by the three software were suitable for gene expression analysis

  6. Progesterone receptor isoform analysis by quantitative real-time polymerase chain reaction in formalin-fixed, paraffin-embedded canine mammary dysplasias and tumors

    DEFF Research Database (Denmark)

    Guil-Luna, S.; Stenvang, Jan; Brünner, Nils

    2014-01-01

    and its isoforms in formalin-fixed, paraffin-embedded tissue samples from canine mammary lesions (4 dysplasias, 10 benign tumors, and 46 carcinomas) using 1-step SYBR Green quantitative real-time polymerase chain reaction (RT-qPCR). Progesterone receptor was expressed in 75% of dysplasias, all benign...... in the expression of isoform A versus B. Analysis of progesterone receptor mRNA isoforms by RT-qPCR was successful in routinely formalin-fixed, paraffin-embedded tissue samples and enabled the distribution of isoforms A and B to be identified for the first time in dysplasias, benign tumors, and malignant tumors...

  7. MALDI-TOF mass spectrometry for quantitative gene expression analysis of acid responses in Staphylococcus aureus.

    Science.gov (United States)

    Rode, Tone Mari; Berget, Ingunn; Langsrud, Solveig; Møretrø, Trond; Holck, Askild

    2009-07-01

    Microorganisms are constantly exposed to new and altered growth conditions, and respond by changing gene expression patterns. Several methods for studying gene expression exist. During the last decade, the analysis of microarrays has been one of the most common approaches applied for large scale gene expression studies. A relatively new method for gene expression analysis is MassARRAY, which combines real competitive-PCR and MALDI-TOF (matrix-assisted laser desorption/ionization time-of-flight) mass spectrometry. In contrast to microarray methods, MassARRAY technology is suitable for analysing a larger number of samples, though for a smaller set of genes. In this study we compare the results from MassARRAY with microarrays on gene expression responses of Staphylococcus aureus exposed to acid stress at pH 4.5. RNA isolated from the same stress experiments was analysed using both the MassARRAY and the microarray methods. The MassARRAY and microarray methods showed good correlation. Both MassARRAY and microarray estimated somewhat lower fold changes compared with quantitative real-time PCR (qRT-PCR). The results confirmed the up-regulation of the urease genes in acidic environments, and also indicated the importance of metal ion regulation. This study shows that the MassARRAY technology is suitable for gene expression analysis in prokaryotes, and has advantages when a set of genes is being analysed for an organism exposed to many different environmental conditions.

  8. Selection of reference genes for quantitative real-time RT-PCR studies in tomato fruit of the genotype MT-Rg1

    Directory of Open Access Journals (Sweden)

    Karla L. González-Aguilera

    2016-09-01

    Full Text Available Quantitative real-time RT-PCR (qRT-PCR has become one of the most widely used methods for accurate quantification of gene expression. Since there are no universal reference genes for normalization, the optimal strategy to normalize raw qRT-PCR data is to perform an initial comparison of a set of independent reference genes to assess the most stable ones in each biological model. Normalization of a qRT-PCR experiment helps to ensure that the results are both statistically significant and biologically meaningful. Tomato is the model of choice to study fleshy fruit development. The miniature tomato (Solanum lycopersicum L. cultivar Micro-Tom (MT is considered a model system for tomato genetics and functional genomics. A new genotype, containing the Rg1 allele, improves tomato in vitro regeneration. In this work, we evaluated the expression stability of four tomato reference genes, namely CAC, SAND, Expressed and ACTIN2. We showed that the genes CAC and Exp are the best reference genes of the four we tested during fruit development in the MT-Rg1 genotype. Furthermore, we validated the reference genes by showing that the expression profiles of the transcription factors FRUITFULL1 (FUL1 and APETALA2c (AP2c during fruit development are comparable to previous reports using other tomato cultivars.

  9. Soil Baiting, Rapid PCR Assay and Quantitative Real Time PCR to Diagnose Late Blight of Potato in Quarantine Programs

    Directory of Open Access Journals (Sweden)

    Touseef Hussain

    2018-05-01

    Full Text Available Phytophthora infestans (mont de Bary is a pathogen of great concern across the globe, and accurate detection is an important component in responding to the outbreaks of potential disease. Although the molecular diagnostic protocol used in regulatory programs has been evaluated but till date methods implying direct comparison has rarely used. In this study, a known area soil samples from potato fields where light blight appear every year (both A1 and A2 mating type was assayed by soil bait method, PCR assay detection and quantification of the inoculums. Suspected disease symptoms appeared on bait tubers were further confirmed by rapid PCR, inoculums were quantified through Real Time PCR, which confirms presence of P. infestans. These diagnostic methods can be highly correlated with one another. Potato tuber baiting increased the sensitivity of the assay compared with direct extraction of DNA from tuber and soil samples. Our study determines diagnostic sensitivity and specificity of the assays to determine the performance of each method. Overall, molecular techniques based on different types of PCR amplification and Real-time PCR can lead to high throughput, faster and more accurate detection method which can be used in quarantine programmes in potato industry and diagnostic laboratory.

  10. Simultaneous quantitative assessment of circulating cell-free mitochondrial and nuclear DNA by multiplex real-time PCR

    Directory of Open Access Journals (Sweden)

    Peng Xia

    2009-01-01

    Full Text Available Quantification of circulating nucleic acids in plasma and serum could be used as a non-invasive diagnostic tool for monitoring a wide variety of diseases and conditions. We describe here a rapid, simple and accurate multiplex real-time PCR method for direct synchronized analysis of circulating cell-free (ccf mitochondrial (mtDNA and nuclear (nDNA DNA in plasma and serum samples. The method is based on one-step multiplex real-time PCR using a FAM-labeled MGB probe and primers to amplify the mtDNA sequence of the ATP 8 gene, and a VIC-labeled MGB probe and primers to amplify the nDNA sequence of the glycerinaldehyde-3-phosphate-dehydrogenase (GAPDH gene, in plasma and serum samples simultaneously. The efficiencies of the multiplex assays were measured in serial dilutions. Based on the simulation of the PCR reaction kinetics, the relative quantities of ccf mtDNA were calculated using a very simple equation. Using our optimised real-time PCR conditions, close to 100% efficiency was obtained from the two assays. The two assays performed in the dilution series showed very good and reproducible correlation to each other. This optimised multiplex real-time PCR protocol can be widely used for synchronized quantification of mtDNA and nDNA in different samples, with a very high rate of efficiency.

  11. Design and Optimization of Reverse-Transcription Quantitative PCR Experiments

    Czech Academy of Sciences Publication Activity Database

    Tichopád, A.; Kitchen, R.; Riedmaier, I.; Becker, Ch.; Ståhlberg, A.; Kubista, Mikael

    2009-01-01

    Roč. 55, č. 10 (2009), s. 1816-1823 ISSN 0009-9147 Institutional research plan: CEZ:AV0Z50520701 Keywords : Design * optimization * RT qPCR Subject RIV: EG - Zoology Impact factor: 6.263, year: 2009

  12. Validation of reference genes for RT-qPCR analysis of CYP4T expression in crucian carp

    Directory of Open Access Journals (Sweden)

    Fei Mo

    2014-09-01

    Full Text Available Reference genes are commonly used for normalization of target gene expression during RT-qPCR analysis. However, no housekeeping genes or reference genes have been identified to be stable across different tissue types or under different experimental conditions. To identify the most suitable reference genes for RT-qPCR analysis of target gene expression in the hepatopancreas of crucian carp (Carassius auratus under various conditions (sex, age, water temperature, and drug treatments, seven reference genes, including beta actin (ACTB, beta-2 microglobulin (B2M, embryonic elongation factor-1 alpha (EEF1A, glyceraldehyde phosphate dehydrogenase (GAPDH, alpha tubulin (TUBA, ribosomal protein l8 (RPL8 and glucose-6-phosphate dehydrogenase (G6PDH, were evaluated in this study. The stability and ranking of gene expression were analyzed using three different statistical programs: GeNorm, Normfinder and Bestkeeper. The expression errors associated with selection of the genes were assessed by the relative quantity of CYP4T. The results indicated that all the seven genes exhibited variability under the experimental conditions of this research, and the combination of ACTB/TUBA/EEF1A or of ACTB/EEF1A was the best candidate that raised the accuracy of quantitative analysis of gene expression. The findings highlighted the importance of validation of housekeeping genes for research on gene expression under different conditions of experiment and species.

  13. The combination of quantitative PCR and western blot detecting CP4-EPSPS component in Roundup Ready soy plant tissues and commercial soy-related foodstuffs.

    Science.gov (United States)

    Xiao, Xiao; Wu, Honghong; Zhou, Xinghu; Xu, Sheng; He, Jian; Shen, Wenbiao; Zhou, Guanghong; Huang, Ming

    2012-06-01

    With the widespread use of Roundup Ready soy (event 40-3-2) (RRS), the comprehensive detection of genetically modified component in foodstuffs is of significant interest, but few protein-based approaches have been found useful in processed foods. In this report, the combination of quantitative PCR (qPCR) and western blot was used to detect cp4-epsps gene and its protein product in different RRS plant tissues and commercial soy-containing foodstuffs. The foods included those of plant origin produced by different processing procedures and also some products containing both meat and plant protein concentrates. The validity of the 2 methods was confirmed first. We also showed that the CP4-EPSPS protein existed in different RRS plant tissues. In certain cases, the results from the western blot and the qPCR were not consistent. To be specific, at least 2 degraded fragments of CP4-EPSPS protein (35.5 and 24.6 kDa) were observed. For dried bean curd crust and deep-fried bean curd, a degraded protein fragment with the size of 24.6 kDa appeared, while cp4-epsps gene could not be traced by qPCR. In contrast, we found a signal of cp4-epsps DNA in 3 foodstuffs, including soy-containing ham cutlet product, meat ball, and sausage by qPCR, while CP4-EPSPS protein could not be detected by western blot in such samples. Our study therefore concluded that the combination of DNA- and protein-based methods would compensate each other, thus resulting in a more comprehensive detection from nucleic acid and protein levels. The combination of quantitative PCR (qPCR) and western blot was used to detect cp4-epsps gene and its protein product in different Roundup Ready soy (event 40-3-2) plant tissues and commercial soy-containing foodstuffs. The foods included those of plant origin produced by different processing procedures and also some products containing a combination of both meat and plant protein concentrates. This study indicated that the combination of DNA- and protein-based methods

  14. Detection of hydrogen peroxide-producing Lactobacillus species in the vagina: a comparison of culture and quantitative PCR among HIV-1 seropositive women

    Directory of Open Access Journals (Sweden)

    Balkus Jennifer E

    2012-08-01

    Full Text Available Abstract Background The presence of hydrogen peroxide (H2O2 producing Lactobacillus in the vagina may play a role in controlling genital HIV-1 shedding. Sensitive molecular methods improve our ability to characterize the vaginal microbiota; however, they cannot characterize phenotype. We assessed the concordance of H2O2-producing Lactobacillus detected by culture with quantitative PCR (qPCR detection of Lactobacillus species commonly assumed to be H2O2-producers. Methods Samples were collected as part of a prospective cohort study of HIV-1 seropositive US women. Cervicovaginal lavage specimens were tested for L. crispatus and L. jensenii using 16S rRNA gene qPCR assays. Vaginal swabs were cultured for Lactobacillus and tested for H2O2-production. We calculated a kappa statistic to assess concordance between culture and qPCR. Results Culture and qPCR results were available for 376 visits from 57 women. Lactobacilli were detected by culture at 308 (82% visits, of which 233 of 308 (76% produced H2O2. L. crispatus and/or L. jensenii were detected at 215 (57% visits. Concordance between detection of L. crispatus and/or L. jensenii by qPCR and H2O2-producing Lactobacillus by culture was 75% (kappa = 0.45. Conclusions Among HIV-1 seropositive women, there was a moderate level of concordance between H2O2-producing Lactobacillus detected by culture and the presence of L. crispatus and/or L. jensenii by qPCR. However, one-quarter of samples with growth of H2O2-producing lactobacilli did not have L. crispatus or L. jensenii detected by qPCR. This discordance may be due to the presence of other H2O2-producing Lactobacillus species.

  15. Quantitative CrAssphage PCR Assays for Human Fecal ...

    Science.gov (United States)

    Environmental waters are monitored for fecal pollution to protect public health and water resources. Traditionally, general fecal indicator bacteria are used; however, they cannot distinguish human fecal waste from pollution from other animals. Recently, a novel bacteriophage, crAssphage, was discovered by metagenomic data mining and reported to be abundant in and closely associated with human fecal waste. To confirm bioinformatic predictions, 384 primer sets were designed along the length of the crAssphage genome. Based upon initial screening, two novel crAssphage qPCR assays (CPQ_056 and CPQ_064) were designed and evaluated in reference fecal samples and water matrices. The assays exhibited high specificities (98.6%) when tested against a large animal fecal reference library and were highly abundant in raw sewage and sewage impacted water samples. In addition, CPQ_056 and CPQ_064 assay performance was compared to HF183/BacR287 and HumM2 methods in paired experiments. Findings confirm viral crAssphage qPCR assays perform at a similar level to well established bacterial human-associated fecal source identification technologies. These new viral based assays could become important water quality management and research tools. To inform the public.

  16. Absolute quantification by droplet digital PCR versus analog real-time PCR

    Science.gov (United States)

    Hindson, Christopher M; Chevillet, John R; Briggs, Hilary A; Gallichotte, Emily N; Ruf, Ingrid K; Hindson, Benjamin J; Vessella, Robert L; Tewari, Muneesh

    2014-01-01

    Nanoliter-sized droplet technology paired with digital PCR (ddPCR) holds promise for highly precise, absolute nucleic acid quantification. Our comparison of microRNA quantification by ddPCR and real-time PCR revealed greater precision (coefficients of variation decreased by 37–86%) and improved day-to-day reproducibility (by a factor of seven) of ddPCR but with comparable sensitivity. When we applied ddPCR to serum microRNA biomarker analysis, this translated to superior diagnostic performance for identifying individuals with cancer. PMID:23995387

  17. Identification of five sea cucumber species through PCR-RFLP analysis

    Science.gov (United States)

    Lv, Yingchun; Zheng, Rong; Zuo, Tao; Wang, Yuming; Li, Zhaojie; Xue, Yong; Xue, Changhu; Tang, Qingjuan

    2014-10-01

    Sea cucumbers are traditional marine food and Chinese medicine in Asia. The rapid expansion of sea cucumber market has resulted in various problems, such as commercial fraud and mislabeling. Conventionally, sea cucumber species could be distinguished by their morphological and anatomical characteristics; however, their identification becomes difficult when they are processed. The aim of this study was to develop a new convenient method of identifying and distinguishing sea cucumber species. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis of mitochondrial cytochrome oxidase I gene ( COI) was used to identifing five sea cucumber species ( Apostichopus japonicus, Cucumaria frondosa, Thelenota ananas, Parastichopus californicus and Actinopyga lecanora). A 692 bp fragment of COI was searched for BamHI, KpnI, PstI, XbaI and Eco31I restriction sites with DNAMAN 6.0, which were then used to PCR-RFLP analysis. These five sea cucumber species can be discriminated from mixed sea cucumbers. The developed PCR-RFLP assay will facilitate the identification of sea cucumbers, making their source tracing and quality controlling feasible.

  18. Data Analysis of Sequences and qPCR for Microbial Communities during Algal Blooms

    Science.gov (United States)

    A training opportunity is open to a highly microbial-research-motivated student to conduct sequence analysis, explore novel genes and metabolic pathways, validate resultant findings using qPCR/RT-qPCR and summarize the findings

  19. Detection of Tumor Markers in Prostate Cancer and Comparison of Sensitivity between Real Time and Nested PCR

    OpenAIRE

    Matsuoka, Takayuki; Shigemura, Katsumi; Yamamichi, Fukashi; Fujisawa, Masato; Kawabata, Masato; Shirakawa, Toshiro

    2012-01-01

    The objective of this study is to investigate and compare the sensitivity in conventional PCR, quantitative real time PCR, nested PCR and western blots for detection of prostate cancer tumor markers using prostate cancer (PCa) cells. We performed conventional PCR, quantitative real time PCR, nested PCR, and western blots using 5 kinds of PCa cells. Prostate specific antigen (PSA), prostate specific membrane antigen (PSMA), and androgen receptor (AR) were compared for their detection sensitivi...

  20. Strategy for Extracting DNA from Clay Soil and Detecting a Specific Target Sequence via Selective Enrichment and Real-Time (Quantitative) PCR Amplification ▿

    Science.gov (United States)

    Yankson, Kweku K.; Steck, Todd R.

    2009-01-01

    We present a simple strategy for isolating and accurately enumerating target DNA from high-clay-content soils: desorption with buffers, an optional magnetic capture hybridization step, and quantitation via real-time PCR. With the developed technique, μg quantities of DNA were extracted from mg samples of pure kaolinite and a field clay soil. PMID:19633108

  1. Comparison of two quantitative PCR techniques for porcine circovirus Type 2 (PCV2) nucleic acid in field samples

    DEFF Research Database (Denmark)

    Hjulsager, Charlotte Kristiane; Grau-Roma, Llorenc; Sibila, M.

    Porcine circovirus type 2 /PCV2) is considered the essential infectious agent of postweaning multisystemic wasting syndrome (PMWS), a global swine disease of devastating economic and animal welfare impact. Most pigs become infected with PCV2 during their life, but only a proportion of them develop...... PMWS (1). PMWS is associated with a high PCV2 load, and a general threshold of 10 7 copies of PCV2 per ml serum has been suggested for PMWS diagnosis (2,3). The objective of this study was to compare the performance of two different real-time quantitative polymerase chain reaction (qPCR) assays for PCV...

  2. Comparison of conventional culture and real-time quantitative PCR ...

    African Journals Online (AJOL)

    2009-10-28

    Oct 28, 2009 ... for each sample), which can be used to determine the success of the PCR reaction ... good performance in the absence of an internal control. First, a. GenBank query ..... the context of a health risk management programme.

  3. Apparent polyploidization after gamma irradiation: pitfalls in the use of quantitative polymerase chain reaction (qPCR) for the estimation of mitochondrial and nuclear DNA gene copy numbers.

    Science.gov (United States)

    Kam, Winnie W Y; Lake, Vanessa; Banos, Connie; Davies, Justin; Banati, Richard

    2013-05-30

    Quantitative polymerase chain reaction (qPCR) has been widely used to quantify changes in gene copy numbers after radiation exposure. Here, we show that gamma irradiation ranging from 10 to 100 Gy of cells and cell-free DNA samples significantly affects the measured qPCR yield, due to radiation-induced fragmentation of the DNA template and, therefore, introduces errors into the estimation of gene copy numbers. The radiation-induced DNA fragmentation and, thus, measured qPCR yield varies with temperature not only in living cells, but also in isolated DNA irradiated under cell-free conditions. In summary, the variability in measured qPCR yield from irradiated samples introduces a significant error into the estimation of both mitochondrial and nuclear gene copy numbers and may give spurious evidence for polyploidization.

  4. Validation of reference genes for quantitative RT-PCR studies of gene expression in perennial ryegrass (Lolium perenne L.

    Directory of Open Access Journals (Sweden)

    Thrush Anthony

    2010-01-01

    Full Text Available Abstract Background Perennial ryegrass (Lolium perenne L. is an important pasture and turf crop. Biotechniques such as gene expression studies are being employed to improve traits in this temperate grass. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR is among the best methods available for determining changes in gene expression. Before analysis of target gene expression, it is essential to select an appropriate normalisation strategy to control for non-specific variation between samples. Reference genes that have stable expression at different biological and physiological states can be effectively used for normalisation; however, their expression stability must be validated before use. Results Existing Serial Analysis of Gene Expression data were queried to identify six moderately expressed genes that had relatively stable gene expression throughout the year. These six candidate reference genes (eukaryotic elongation factor 1 alpha, eEF1A; TAT-binding protein homolog 1, TBP-1; eukaryotic translation initiation factor 4 alpha, eIF4A; YT521-B-like protein family protein, YT521-B; histone 3, H3; ubiquitin-conjugating enzyme, E2 were validated for qRT-PCR normalisation in 442 diverse perennial ryegrass (Lolium perenne L. samples sourced from field- and laboratory-grown plants under a wide range of experimental conditions. Eukaryotic EF1A is encoded by members of a multigene family exhibiting differential expression and necessitated the expression analysis of different eEF1A encoding genes; a highly expressed eEF1A (h, a moderately, but stably expressed eEF1A (s, and combined expression of multigene eEF1A (m. NormFinder identified eEF1A (s and YT521-B as the best combination of two genes for normalisation of gene expression data in perennial ryegrass following different defoliation management in the field. Conclusions This study is unique in the magnitude of samples tested with the inclusion of numerous field-grown samples

  5. ddPCRclust - An R package and Shiny app for automated analysis of multiplexed ddPCR data.

    Science.gov (United States)

    Brink, Benedikt G; Meskas, Justin; Brinkman, Ryan R

    2018-03-09

    Droplet digital PCR (ddPCR) is an emerging technology for quantifying DNA. By partitioning the target DNA into ∼20000 droplets, each serving as its own PCR reaction compartment, a very high sensitivity of DNA quantification can be achieved. However, manual analysis of the data is time consuming and algorithms for automated analysis of non-orthogonal, multiplexed ddPCR data are unavailable, presenting a major bottleneck for the advancement of ddPCR transitioning from low-throughput to high- throughput. ddPCRclust is an R package for automated analysis of data from Bio-Rad's droplet digital PCR systems (QX100 and QX200). It can automatically analyse and visualise multiplexed ddPCR experiments with up to four targets per reaction. Results are on par with manual analysis, but only take minutes to compute instead of hours. The accompanying Shiny app ddPCRvis provides easy access to the functionalities of ddPCRclust through a web-browser based GUI. R package: https://github.com/bgbrink/ddPCRclust; Interface: https://github.com/bgbrink/ddPCRvis/; Web: https://bibiserv.cebitec.uni-bielefeld.de/ddPCRvis/. bbrink@cebitec.uni-bielefeld.de.

  6. Detection of ROS1 Gene Rearrangement in Lung Adenocarcinoma: Comparison of IHC, FISH and Real-Time RT-PCR

    OpenAIRE

    Shan, Ling; Lian, Fang; Guo, Lei; Qiu, Tian; Ling, Yun; Ying, Jianming; Lin, Dongmei

    2015-01-01

    Aims To compare fluorescence in situ hybridization (FISH), immunohistochemistry (IHC) and quantitative real-time reverse transcription-PCR (qRT-PCR) assays for detection of ROS1 fusion in a large number of ROS1-positive lung adenocatcinoma (ADC) patients. Methods Using IHC analysis, sixty lung ADCs including 16 cases with ROS1 protein expression and 44 cases without ROS1 expression were selected for this study. The ROS1 fusion status was examined by FISH and qRT-PCR assay. Results Among 60 ca...

  7. Quantification of organellar DNA and RNA using real-time PCR.

    Science.gov (United States)

    Weihe, Andreas

    2014-01-01

    Quantitative (real-time) polymerase chain reaction (PCR) allows the measurement of relative organellar gene copy numbers as well as transcript abundance of individual mitochondrial or plastidial genes. Requiring only minute amounts of total DNA or RNA, the described method can replace traditional analyses like Southern or Northern hybridization which require large amounts of organellar nucleic acids and usually provide only semiquantitative data. Here we describe prerequisites, reaction conditions, and data analysis principles, which should be applicable for a wide range of plant species and experimental situations where comparative and precise determination of gene copy numbers or transcript abundance is requested. Sequences of amplification primers for qPCR of organellar genes from Arabidopsis are provided.

  8. Selection and Validation of Reference Genes for qRT-PCR Expression Analysis of Candidate Genes Involved in Olfactory Communication in the Butterfly Bicyclus anynana

    OpenAIRE

    Arun, Alok; Bauml?, V?ronique; Amelot, Ga?l; Nieberding, Caroline M.

    2015-01-01

    Real-time quantitative reverse transcription PCR (qRT-PCR) is a technique widely used to quantify the transcriptional expression level of candidate genes. qRT-PCR requires the selection of one or several suitable reference genes, whose expression profiles remain stable across conditions, to normalize the qRT-PCR expression profiles of candidate genes. Although several butterfly species (Lepidoptera) have become important models in molecular evolutionary ecology, so far no study aimed at ident...

  9. Strategy for the extraction of yeast DNA from artisan agave must for quantitative PCR analysis.

    Science.gov (United States)

    Kirchmayr, Manuel Reinhart; Segura-Garcia, Luis Eduardo; Flores-Berrios, Ericka Patricia; Gschaedler, Anne

    2011-11-01

    An efficient method for the direct extraction of yeast genomic DNA from agave must was developed. The optimized protocol, which was based on silica-adsorption of DNA on microcolumns, included an enzymatic cell wall degradation step followed by prolonged lysis with hot detergent. The resulting extracts were suitable templates for subsequent qPCR assays that quantified mixed yeast populations in artisan Mexican mezcal fermentations. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. Development of Quantitative Real-Time PCR Assays for Detection and Quantification of Surrogate Biological Warfare Agents in Building Debris and Leachate▿

    Science.gov (United States)

    Saikaly, Pascal E.; Barlaz, Morton A.; de los Reyes, Francis L.

    2007-01-01

    Evaluation of the fate and transport of biological warfare (BW) agents in landfills requires the development of specific and sensitive detection assays. The objective of the current study was to develop and validate SYBR green quantitative real-time PCR (Q-PCR) assays for the specific detection and quantification of surrogate BW agents in synthetic building debris (SBD) and leachate. Bacillus atrophaeus (vegetative cells and spores) and Serratia marcescens were used as surrogates for Bacillus anthracis (anthrax) and Yersinia pestis (plague), respectively. The targets for SYBR green Q-PCR assays were the 16S-23S rRNA intergenic transcribed spacer (ITS) region and recA gene for B. atrophaeus and the gyrB, wzm, and recA genes for S. marcescens. All assays showed high specificity when tested against 5 ng of closely related Bacillus and Serratia nontarget DNA from 21 organisms. Several spore lysis methods that include a combination of one or more of freeze-thaw cycles, chemical lysis, hot detergent treatment, bead beat homogenization, and sonication were evaluated. All methods tested showed similar threshold cycle values. The limit of detection of the developed Q-PCR assays was determined using DNA extracted from a pure bacterial culture and DNA extracted from sterile water, leachate, and SBD samples spiked with increasing quantities of surrogates. The limit of detection for B. atrophaeus genomic DNA using the ITS and B. atrophaeus recA Q-PCR assays was 7.5 fg per PCR. The limits of detection of S. marcescens genomic DNA using the gyrB, wzm, and S. marcescens recA Q-PCR assays were 7.5 fg, 75 fg, and 7.5 fg per PCR, respectively. Quantification of B. atrophaeus vegetative cells and spores was linear (R2 > 0.98) over a 7-log-unit dynamic range down to 101 B. atrophaeus cells or spores. Quantification of S. marcescens (R2 > 0.98) was linear over a 6-log-unit dynamic range down to 102 S. marcescens cells. The developed Q-PCR assays are highly specific and sensitive and can

  11. Multiplex quantitative PCR for detection of lower respiratory tract infection and meningitis caused by Streptococcus pneumoniae, Haemophilus influenzae and Neisseria meningitidis.

    Science.gov (United States)

    Abdeldaim, Guma M K; Strålin, Kristoffer; Korsgaard, Jens; Blomberg, Jonas; Welinder-Olsson, Christina; Herrmann, Björn

    2010-12-03

    Streptococcus pneumoniae and Haemophilus influenzae cause pneumonia and as Neisseria meningitidis they are important agents of meningitis. Although several PCR methods have been described for these bacteria the specificity is an underestimated problem. Here we present a quantitative multiplex real-time PCR (qmPCR) for detection of S. pneumoniae (9802 gene fragment), H. influenzae (omp P6 gene) and N. meningitidis (ctrA gene). The method was evaluated on bronchoalveolar lavage (BAL) samples from 156 adults with lower respiratory tract infection (LRTI) and 31 controls, and on 87 cerebrospinal fluid (CSF) samples from meningitis patients. The analytical sensitivity was not affected by using a combined mixture of reagents and a combined DNA standard (S. pneumoniae/H. influenzae/N. meningitidis) in single tubes. By blood- and BAL-culture and S. pneumoniae urinary antigen test, S. pneumoniae and H. influenzae were aetiological agents in 21 and 31 of the LTRI patients, respectively. These pathogens were identified by qmPCR in 52 and 72 of the cases, respectively, yielding sensitivities and specificities of 95% and 75% for S. pneumoniae, and 90% and 65% for H. influenzae, respectively. When using a cut-off of 10⁵ genome copies/mL for clinical positivity the sensitivities and specificities were 90% and 80% for S. pneumoniae, and 81% and 85% for H. influenzae, respectively. Of 44 culture negative but qmPCR positive for H. influenzae, 41 were confirmed by fucK PCR as H. influenzae. Of the 103 patients who had taken antibiotics prior to sampling, S. pneumoniae and H. influenzae were identified by culture in 6% and 20% of the cases, respectively, and by the qmPCR in 36% and 53% of the cases, respectively.In 87 CSF samples S. pneumoniae and N. meningitidis were identified by culture and/or 16 S rRNA in 14 and 10 samples and by qmPCR in 14 and 10 samples, respectively, giving a sensitivity of 100% and a specificity of 100% for both bacteria. The PCR provides increased

  12. Multiplex quantitative PCR for detection of lower respiratory tract infection and meningitis caused by Streptococcus pneumoniae, Haemophilus influenzae and Neisseria meningitidis

    Directory of Open Access Journals (Sweden)

    Welinder-Olsson Christina

    2010-12-01

    Full Text Available Abstract Background Streptococcus pneumoniae and Haemophilus influenzae cause pneumonia and as Neisseria meningitidis they are important agents of meningitis. Although several PCR methods have been described for these bacteria the specificity is an underestimated problem. Here we present a quantitative multiplex real-time PCR (qmPCR for detection of S. pneumoniae (9802 gene fragment, H. influenzae (omp P6 gene and N. meningitidis (ctrA gene. The method was evaluated on bronchoalveolar lavage (BAL samples from 156 adults with lower respiratory tract infection (LRTI and 31 controls, and on 87 cerebrospinal fluid (CSF samples from meningitis patients. Results The analytical sensitivity was not affected by using a combined mixture of reagents and a combined DNA standard (S. pneumoniae/H. influenzae/N. meningitidis in single tubes. By blood- and BAL-culture and S. pneumoniae urinary antigen test, S. pneumoniae and H. influenzae were aetiological agents in 21 and 31 of the LTRI patients, respectively. These pathogens were identified by qmPCR in 52 and 72 of the cases, respectively, yielding sensitivities and specificities of 95% and 75% for S. pneumoniae, and 90% and 65% for H. influenzae, respectively. When using a cut-off of 105 genome copies/mL for clinical positivity the sensitivities and specificities were 90% and 80% for S. pneumoniae, and 81% and 85% for H. influenzae, respectively. Of 44 culture negative but qmPCR positive for H. influenzae, 41 were confirmed by fucK PCR as H. influenzae. Of the 103 patients who had taken antibiotics prior to sampling, S. pneumoniae and H. influenzae were identified by culture in 6% and 20% of the cases, respectively, and by the qmPCR in 36% and 53% of the cases, respectively. In 87 CSF samples S. pneumoniae and N. meningitidis were identified by culture and/or 16 S rRNA in 14 and 10 samples and by qmPCR in 14 and 10 samples, respectively, giving a sensitivity of 100% and a specificity of 100% for both

  13. Single base pair mutation analysis by PNA directed PCR clamping

    DEFF Research Database (Denmark)

    Ørum, H.; Nielsen, P.E.; Egholm, M.

    1993-01-01

    A novel method that allows direct analysis of single base mutation by the polymerase chain reaction (PCR) is described. The method utilizes the finding that PNAs (peptide nucleic acids) recognize and bind to their complementary nucleic acid sequences with higher thermal stability and specificity...... allows selective amplification/suppression of target sequences that differ by only one base pair. Finally we show that PNAs can be designed in such a way that blockage can be accomplished when the PNA target sequence is located between the PCR primers....

  14. DETECTION OF MALNUTRITION IN PATIENTS UNDERGOING MAINTENANCE HAEMODIALYSIS: A QUANTITATIVE DATA ANALYSIS ON 12 PARAMETERS.

    Science.gov (United States)

    Nafzger, Sonja; Fleury, Lea-Angelica; Uehlinger, Dominik E; Plüss, Petra; Scura, Ninetta; Kurmann, Silvia

    2015-09-01

    Protein-energy-malnutrition (PEM) is common in people with end stage kidney disease (ESKD) undergoing maintenance haemodialysis (MHD) and correlates strongly with mortality. To this day, there is no gold standard for detecting PEM in patients on MHD. The aim of this study was to evaluate if Nutritional Risk Screening 2002 (NRS-2002), handgrip strength measurement, mid-upper arm muscle area (MUAMA), triceps skin fold measurement (TSF), serum albumin, normalised protein catabolic rate (nPCR), Kt/V and eKt/V, dry body weight, body mass index (BMI), age and time since start on MHD are relevant for assessing PEM in patients on MHD. The predictive value of the selected parameters on mortality and mortality or weight loss of more than 5% was assessed. Quantitative data analysis of the 12 parameters in the same patients on MHD in autumn 2009 (n = 64) and spring 2011 (n = 40) with paired statistical analysis and multivariate logistic regression analysis was performed. Paired data analysis showed significant reduction of dry body weight, BMI and nPCR. Kt/Vtot did not change, eKt/v and hand grip strength measurements were significantly higher in spring 2011. No changes were detected in TSF, serum albumin, NRS-2002 and MUAMA. Serum albumin was shown to be the only predictor of death and of the combined endpoint "death or weight loss of more than 5%". We now screen patients biannually for serum albumin, nPCR, Kt/V, handgrip measurement of the shunt-free arm, dry body weight, age and time since initiation of MHD. © 2015 European Dialysis and Transplant Nurses Association/European Renal Care Association.

  15. Efficiency of peracetic acid in inactivating bacteria, viruses, and spores in water determined with ATP bioluminescence, quantitative PCR, and culture-based methods.

    Science.gov (United States)

    Park, Eunyoung; Lee, Cheonghoon; Bisesi, Michael; Lee, Jiyoung

    2014-03-01

    The disinfection efficiency of peracetic acid (PAA) was investigated on three microbial types using three different methods (filtration-based ATP (adenosine-triphosphate) bioluminescence, quantitative polymerase chain reaction (qPCR), culture-based method). Fecal indicator bacteria (Enterococcus faecium), virus indicator (male-specific (F(+)) coliphages (coliphages)), and protozoa disinfection surrogate (Bacillus subtilis spores (spores)) were tested. The mode of action for spore disinfection was visualized using scanning electron microscopy. The results indicated that PAA concentrations of 5 ppm (contact time: 5 min), 50 ppm (10 min), and 3,000 ppm (5 min) were needed to achieve 3-log reduction of E. faecium, coliphages, and spores, respectively. Scanning electron microscopy observation showed that PAA targets the external layers of spores. The lower reduction rates of tested microbes measured with qPCR suggest that qPCR may overestimate the surviving microbes. Collectively, PAA showed broad disinfection efficiency (susceptibility: E. faecium > coliphages > spores). For E. faecium and spores, ATP bioluminescence was substantially faster (∼5 min) than culture-based method (>24 h) and qPCR (2-3 h). This study suggests PAA as an effective alternative to inactivate broad types of microbial contaminants in water. Together with the use of rapid detection methods, this approach can be useful for urgent situations when timely response is needed for ensuring water quality.

  16. A versatile method to design stem-loop primer-based quantitative PCR assays for detecting small regulatory RNA molecules.

    Directory of Open Access Journals (Sweden)

    Zsolt Czimmerer

    Full Text Available Short regulatory RNA-s have been identified as key regulators of gene expression in eukaryotes. They have been involved in the regulation of both physiological and pathological processes such as embryonal development, immunoregulation and cancer. One of their relevant characteristics is their high stability, which makes them excellent candidates for use as biomarkers. Their number is constantly increasing as next generation sequencing methods reveal more and more details of their synthesis. These novel findings aim for new detection methods for the individual short regulatory RNA-s in order to be able to confirm the primary data and characterize newly identified subtypes in different biological conditions. We have developed a flexible method to design RT-qPCR assays that are very sensitive and robust. The newly designed assays were tested extensively in samples from plant, mouse and even human formalin fixed paraffin embedded tissues. Moreover, we have shown that these assays are able to quantify endogenously generated shRNA molecules. The assay design method is freely available for anyone who wishes to use a robust and flexible system for the quantitative analysis of matured regulatory RNA-s.

  17. Rapid detection of pathological mutations and deletions of the haemoglobin beta gene (HBB) by High Resolution Melting (HRM) analysis and Gene Ratio Analysis Copy Enumeration PCR (GRACE-PCR).

    Science.gov (United States)

    Turner, Andrew; Sasse, Jurgen; Varadi, Aniko

    2016-10-19

    Inherited disorders of haemoglobin are the world's most common genetic diseases, resulting in significant morbidity and mortality. The large number of mutations associated with the haemoglobin beta gene (HBB) makes gene scanning by High Resolution Melting (HRM) PCR an attractive diagnostic approach. However, existing HRM-PCR assays are not able to detect all common point mutations and have only a very limited ability to detect larger gene rearrangements. The aim of the current study was to develop a HBB assay, which can be used as a screening test in highly heterogeneous populations, for detection of both point mutations and larger gene rearrangements. The assay is based on a combination of conventional HRM-PCR and a novel Gene Ratio Analysis Copy Enumeration (GRACE) PCR method. HRM-PCR was extensively optimised, which included the use of an unlabelled probe and incorporation of universal bases into primers to prevent interference from common non-pathological polymorphisms. GRACE-PCR was employed to determine HBB gene copy numbers relative to a reference gene using melt curve analysis to detect rearrangements in the HBB gene. The performance of the assay was evaluated by analysing 410 samples. A total of 44 distinct pathological genotypes were detected. In comparison with reference methods, the assay has a sensitivity of 100 % and a specificity of 98 %. We have developed an assay that detects both point mutations and larger rearrangements of the HBB gene. This assay is quick, sensitive, specific and cost effective making it suitable as an initial screening test that can be used for highly heterogeneous cohorts.

  18. Development and validation of a real-time quantitative PCR assay to detect Xanthomonas axonopodis pv. allii from onion seed.

    Science.gov (United States)

    Robène, Isabelle; Perret, Marion; Jouen, Emmanuel; Escalon, Aline; Maillot, Marie-Véronique; Chabirand, Aude; Moreau, Aurélie; Laurent, Annie; Chiroleu, Frédéric; Pruvost, Olivier

    2015-07-01

    Bacterial blight of onion is an emerging disease threatening world onion production. The causal agent Xanthomonas axonopodis pv. allii is seed transmitted and a reliable and sensitive tool is needed to monitor seed exchanges. A triplex quantitative real-time PCR assay was developed targeting two X. axonopodis pv. allii-specific markers and an internal control chosen in 5.8S rRNA gene from Alliaceae. Amplification of at least one marker indicates the presence of the bacterium in seed extracts. This real-time PCR assay detected all the 79 X. axonopodis pv. allii strains tested and excluded 85.2% of the 135 non-target strains and particularly all 39 saprophytic and pathogenic bacteria associated with onion. Cross-reactions were mainly obtained for strains assigned to nine phylogenetically related X. axonopodis pathovars. The cycle cut-off was estimated statistically at 36.3 considering a risk of false positive of 1%. The limit of detection obtained in at least 95% of the time (LOD 95%) was 5×10(3) CFU/g (colony forming unit/g). The sensitivity threshold was found to be 1 infected seed in 32,790 seeds. This real-time PCR assay should be useful for preventing the long-distance spread of X. axonopodis pv. allii via contaminated seed lots and determining the epidemiology of the bacterium. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Real-Time PCR-Based Quantitation Method for the Genetically Modified Soybean Line GTS 40-3-2.

    Science.gov (United States)

    Kitta, Kazumi; Takabatake, Reona; Mano, Junichi

    2016-01-01

    This chapter describes a real-time PCR-based method for quantitation of the relative amount of genetically modified (GM) soybean line GTS 40-3-2 [Roundup Ready(®) soybean (RRS)] contained in a batch. The method targets a taxon-specific soybean gene (lectin gene, Le1) and the specific DNA construct junction region between the Petunia hybrida chloroplast transit peptide sequence and the Agrobacterium 5-enolpyruvylshikimate-3-phosphate synthase gene (epsps) sequence present in GTS 40-3-2. The method employs plasmid pMulSL2 as a reference material in order to quantify the relative amount of GTS 40-3-2 in soybean samples using a conversion factor (Cf) equal to the ratio of the RRS-specific DNA to the taxon-specific DNA in representative genuine GTS 40-3-2 seeds.

  20. Application of a Multiplex Quantitative PCR to Assess Prevalence and Intensity Of Intestinal Parasite Infections in a Controlled Clinical Trial

    Science.gov (United States)

    Llewellyn, Stacey; Inpankaew, Tawin; Nery, Susana Vaz; Gray, Darren J.; Verweij, Jaco J.; Clements, Archie C. A.; Gomes, Santina J.; Traub, Rebecca; McCarthy, James S.

    2016-01-01

    Background Accurate quantitative assessment of infection with soil transmitted helminths and protozoa is key to the interpretation of epidemiologic studies of these parasites, as well as for monitoring large scale treatment efficacy and effectiveness studies. As morbidity and transmission of helminth infections are directly related to both the prevalence and intensity of infection, there is particular need for improved techniques for assessment of infection intensity for both purposes. The current study aimed to evaluate two multiplex PCR assays to determine prevalence and intensity of intestinal parasite infections, and compare them to standard microscopy. Methodology/Principal Findings Faecal samples were collected from a total of 680 people, originating from rural communities in Timor-Leste (467 samples) and Cambodia (213 samples). DNA was extracted from stool samples and subject to two multiplex real-time PCR reactions the first targeting: Necator americanus, Ancylostoma spp., Ascaris spp., and Trichuris trichiura; and the second Entamoeba histolytica, Cryptosporidium spp., Giardia. duodenalis, and Strongyloides stercoralis. Samples were also subject to sodium nitrate flotation for identification and quantification of STH eggs, and zinc sulphate centrifugal flotation for detection of protozoan parasites. Higher parasite prevalence was detected by multiplex PCR (hookworms 2.9 times higher, Ascaris 1.2, Giardia 1.6, along with superior polyparasitism detection with this effect magnified as the number of parasites present increased (one: 40.2% vs. 38.1%, two: 30.9% vs. 12.9%, three: 7.6% vs. 0.4%, four: 0.4% vs. 0%). Although, all STH positive samples were low intensity infections by microscopy as defined by WHO guidelines the DNA-load detected by multiplex PCR suggested higher intensity infections. Conclusions/Significance Multiplex PCR, in addition to superior sensitivity, enabled more accurate determination of infection intensity for Ascaris, hookworms and

  1. Real-time PCR in virology.

    Science.gov (United States)

    Mackay, Ian M; Arden, Katherine E; Nitsche, Andreas

    2002-03-15

    The use of the polymerase chain reaction (PCR) in molecular diagnostics has increased to the point where it is now accepted as the gold standard for detecting nucleic acids from a number of origins and it has become an essential tool in the research laboratory. Real-time PCR has engendered wider acceptance of the PCR due to its improved rapidity, sensitivity, reproducibility and the reduced risk of carry-over contamination. There are currently five main chemistries used for the detection of PCR product during real-time PCR. These are the DNA binding fluorophores, the 5' endonuclease, adjacent linear and hairpin oligoprobes and the self-fluorescing amplicons, which are described in detail. We also discuss factors that have restricted the development of multiplex real-time PCR as well as the role of real-time PCR in quantitating nucleic acids. Both amplification hardware and the fluorogenic detection chemistries have evolved rapidly as the understanding of real-time PCR has developed and this review aims to update the scientist on the current state of the art. We describe the background, advantages and limitations of real-time PCR and we review the literature as it applies to virus detection in the routine and research laboratory in order to focus on one of the many areas in which the application of real-time PCR has provided significant methodological benefits and improved patient outcomes. However, the technology discussed has been applied to other areas of microbiology as well as studies of gene expression and genetic disease.

  2. WetLab-2: Tools for Conducting On-Orbit Quantitative Real-Time Gene Expression Analysis on ISS

    Science.gov (United States)

    Parra, Macarena; Almeida, Eduardo; Boone, Travis; Jung, Jimmy; Schonfeld, Julie

    2014-01-01

    The objective of NASA Ames Research Centers WetLab-2 Project is to place on the ISS a research platform capable of conducting gene expression analysis via quantitative real-time PCR (qRT-PCR) of biological specimens sampled or cultured on orbit. The project has selected a Commercial-Off-The-Shelf (COTS) qRT-PCR system, the Cepheid SmartCycler and will fly it in its COTS configuration. The SmartCycler has a number of advantages including modular design (16 independent PCR modules), low power consumption, rapid ramp times and the ability to detect up to four separate fluorescent channels at one time enabling multiplex assays that can be used for normalization and to study multiple genes of interest in each module. The team is currently working with Cepheid to enable the downlink of data from the ISS to the ground and provide uplink capabilities for programming, commanding, monitoring, and instrument maintenance. The project has adapted commercial technology to design a module that can lyse cells and extract RNA of sufficient quality and quantity for use in qRT-PCR reactions while using a housekeeping gene to normalize RNA concentration and integrity. The WetLab-2 system is capable of processing multiple sample types ranging from microbial cultures to animal tissues dissected on-orbit. The ability to conduct qRT-PCR on-orbit eliminates the confounding effects on gene expression of reentry stresses and shock acting on live cells and organisms or the concern of RNA degradation of fixed samples. The system can be used to validate terrestrial analyses of samples returned from ISS by providing on-orbit gene expression benchmarking prior to sample return. The ability to get on orbit data will provide investigators with the opportunity to adjust experiment parameters for subsequent trials based on the real-time data analysis without need for sample return and re-flight. Researchers will also be able to sample multigenerational changes in organisms. Finally, the system can be

  3. EPA Method 1615. Measurement of Enterovirus and Norovirus Occurrence in Water by Culture and RT-qPCR. Part III. Virus Detection by RT-qPCR

    Science.gov (United States)

    EPA Method 1615 measures enteroviruses and noroviruses present in environmental and drinking waters. The viral ribonucleic acid (RNA) from water sample concentrates is extracted and tested for enterovirus and norovirus RNA using reverse transcription-quantitative PCR (RT-qPCR). V...

  4. Quantitative monitoring of microbial species during bioleaching of a copper concentrate

    Directory of Open Access Journals (Sweden)

    Sabrina Hedrich

    2016-12-01

    Full Text Available Monitoring of the microbial community in bioleaching processes is essential in order to control process parameters and enhance the leaching efficiency. Suitable methods are, however, limited as they are usually not adapted to bioleaching samples and often no taxon-specific assays are available in the literature for these types of consortia. Therefore, our study focused on the development of novel quantitative real-time PCR (qPCR assays for the quantification of Acidithiobacillus caldus, Leptospirillum ferriphilum, Sulfobacillus thermosulfidooxidans and Sulfobacillus benefaciens and comparison of the results with data from other common molecular monitoring methods in order to evaluate their accuracy and specificity. Stirred tank bioreactors for the leaching of copper concentrate, housing a consortium of acidophilic, moderately-thermophilic bacteria, relevant in several bioleaching operations, served as a model system. The microbial community analysis via qPCR allowed a precise monitoring of the evolution of total biomass as well as abundance of specific species. Data achieved by the standard fingerprinting methods, terminal restriction fragment length polymorphism (T-RFLP and capillary electrophoresis single strand conformation polymorphism (CE-SSCP on the same samples followed the same trend as qPCR data. The main added value of qPCR was, however, to provide quantitative data for each species whereas only relative abundance could be deduced from T-RFLP and CE-SSCP profiles. Additional value was obtained by applying two further quantitative methods which do not require nucleic acid extraction, total cell counting after SYBR Green staining and metal sulfide oxidation activity measurements via microcalorimetry. Overall, these complementary methods allow for an efficient quantitative microbial community monitoring in various bioleaching operations.

  5. Quantitative Monitoring of Microbial Species during Bioleaching of a Copper Concentrate.

    Science.gov (United States)

    Hedrich, Sabrina; Guézennec, Anne-Gwenaëlle; Charron, Mickaël; Schippers, Axel; Joulian, Catherine

    2016-01-01

    Monitoring of the microbial community in bioleaching processes is essential in order to control process parameters and enhance the leaching efficiency. Suitable methods are, however, limited as they are usually not adapted to bioleaching samples and often no taxon-specific assays are available in the literature for these types of consortia. Therefore, our study focused on the development of novel quantitative real-time PCR (qPCR) assays for the quantification of Acidithiobacillus caldus, Leptospirillum ferriphilum, Sulfobacillus thermosulfidooxidans , and Sulfobacillus benefaciens and comparison of the results with data from other common molecular monitoring methods in order to evaluate their accuracy and specificity. Stirred tank bioreactors for the leaching of copper concentrate, housing a consortium of acidophilic, moderately thermophilic bacteria, relevant in several bioleaching operations, served as a model system. The microbial community analysis via qPCR allowed a precise monitoring of the evolution of total biomass as well as abundance of specific species. Data achieved by the standard fingerprinting methods, terminal restriction fragment length polymorphism (T-RFLP) and capillary electrophoresis single strand conformation polymorphism (CE-SSCP) on the same samples followed the same trend as qPCR data. The main added value of qPCR was, however, to provide quantitative data for each species whereas only relative abundance could be deduced from T-RFLP and CE-SSCP profiles. Additional value was obtained by applying two further quantitative methods which do not require nucleic acid extraction, total cell counting after SYBR Green staining and metal sulfide oxidation activity measurements via microcalorimetry. Overall, these complementary methods allow for an efficient quantitative microbial community monitoring in various bioleaching operations.

  6. PCR analysis is superior to histology for diagnosis of Whipple's disease mimicking seronegative rheumatic diseases.

    Science.gov (United States)

    Lehmann, P; Ehrenstein, B; Hartung, W; Dragonas, C; Reischl, U; Fleck, M

    2017-03-01

    The diagnosis of Whipple's disease (WD) is commonly confirmed by histology demonstrating Periodic Acid Schiff (PAS)-positive macrophages in the duodenal mucosa. Analysis of intestinal tissue or other specimens using polymerase chain reaction (PCR) is a more sensitive method. However, the relevance of positive PCR findings is still controversial. Therefore, we evaluated the relevance of histology and PCR findings to establishing the diagnosis of WD in a series of WD patients initially presenting with suspected rheumatic diseases. Between 2006 and 2014, 20 patients with seronegative rheumatic diseases tested positive for Tropheryma whipplei (Tw) by PCR and/or histology and were enrolled in a retrospective analysis of the diagnostic value of both procedures. Seven of the 20 cases (35%) were diagnosed with 'classic' WD as indicated by PAS-positive macrophages. In the remaining 13 patients, the presence of Tw was detected by intestinal (n = 10) or synovial PCR analysis (n = 3). Two of the 20 patients (10%) with evidence of Tw did not respond to antibiotic therapy. They were not considered to suffer from WD. Therefore, relying only on histological findings of intestinal biopsies would have missed 11 (61%) of the 18 patients with WD in our cohort. In comparison, PCR of intestinal biopsies detected Tw-DNA in 14 (93%) of the 15 WD patients evaluated. Patients with a positive histology did not differ from PCR-positive patients with regard to sex, age, or duration of disease, but more often presented with gastrointestinal symptoms. A substantial number of WD patients present without typical intestinal histology findings. Additional PCR analysis of intestinal tissue or synovial fluid increased the sensitivity of the diagnostic evaluation and should be considered particularly in patients presenting with atypical seronegative rheumatic diseases and a high-risk profile for WD.

  7. Selection of reference genes for expression analysis using quantitative real-time PCR in the pea aphid, Acyrthosiphon pisum (Harris (Hemiptera, Aphidiae.

    Directory of Open Access Journals (Sweden)

    Chunxiao Yang

    Full Text Available To facilitate gene expression study and obtain accurate qRT-PCR analysis, normalization relative to stable expressed housekeeping genes is required. In this study, expression profiles of 11 candidate reference genes, including actin (Actin, elongation factor 1 α (EF1A, TATA-box-binding protein (TATA, ribosomal protein L12 (RPL12, β-tubulin (Tubulin, NADH dehydrogenase (NADH, vacuolar-type H+-ATPase (v-ATPase, succinate dehydrogenase B (SDHB, 28S ribosomal RNA (28S, 16S ribosomal RNA (16S, and 18S ribosomal RNA (18S from the pea aphid Acyrthosiphon pisum, under different developmental stages and temperature conditions, were investigated. A total of four analytical tools, geNorm, Normfinder, BestKeeper, and the ΔCt method, were used to evaluate the suitability of these genes as endogenous controls. According to RefFinder, a web-based software tool which integrates all four above-mentioned algorithms to compare and rank the reference genes, SDHB, 16S, and NADH were the three most stable house-keeping genes under different developmental stages and temperatures. This work is intended to establish a standardized qRT-PCR protocol in pea aphid and serves as a starting point for the genomics and functional genomics research in this emerging insect model.

  8. Development and application of a real-time quantitative PCR assay ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-01

    Dec 1, 2009 ... and a gel band purification kit (GE Health Care, UK), the PCR products obtained were ... amino acid sequences from various species, sequence alignment ..... sequence weighting, positions-specific gap penalties and weight.

  9. PCR biocompatibility of Lab-on-a-chip and MEMS materials

    DEFF Research Database (Denmark)

    Christensen, Troels Balmer; Pedersen, Christian Møller; Grøndahl, K. G.

    2007-01-01

    the possibility of interaction between the surfaces and ingredients in the PCR mixture. By proper surface treatment the PCR reaction can be facilitated and in this paper we present a systematic and quantitative study of the impact on the PCR compatibility of a chemical and a biological surface treatment....... The chemical treatments are based on the silanizing agent dichlordimethylsilane [(CH3)(2)SiCl2

  10. Identification and Quantification of Celery Allergens Using Fiber Optic Surface Plasmon Resonance PCR.

    Science.gov (United States)

    Daems, Devin; Peeters, Bernd; Delport, Filip; Remans, Tony; Lammertyn, Jeroen; Spasic, Dragana

    2017-07-31

    Abstract : Accurate identification and quantification of allergens is key in healthcare, biotechnology and food quality and safety. Celery ( Apium graveolens ) is one of the most important elicitors of food allergic reactions in Europe. Currently, the golden standards to identify, quantify and discriminate celery in a biological sample are immunoassays and two-step molecular detection assays in which quantitative PCR (qPCR) is followed by a high-resolution melting analysis (HRM). In order to provide a DNA-based, rapid and simple detection method suitable for one-step quantification, a fiber optic PCR melting assay (FO-PCR-MA) was developed to determine different concentrations of celery DNA (1 pM-0.1 fM). The presented method is based on the hybridization and melting of DNA-coated gold nanoparticles to the FO sensor surface in the presence of the target gene (mannitol dehydrogenase, Mtd ). The concept was not only able to reveal the presence of celery DNA, but also allowed for the cycle-to-cycle quantification of the target sequence through melting analysis. Furthermore, the developed bioassay was benchmarked against qPCR followed by HRM, showing excellent agreement ( R ² = 0.96). In conclusion, this innovative and sensitive diagnostic test could further improve food quality control and thus have a large impact on allergen induced healthcare problems.

  11. Selection and Validation of Reference Genes for Quantitative Real-Time PCR Normalization Under Ethanol Stress Conditions in Oenococcus oeni SD-2a

    Directory of Open Access Journals (Sweden)

    Shuai Peng

    2018-05-01

    Full Text Available The powerful Quantitative real-time PCR (RT-qPCR was widely used to assess gene expression levels, which requires the optimal reference genes used for normalization. Oenococcus oeni (O. oeni, as the one of most important microorganisms in wine industry and the most resistant lactic acid bacteria (LAB species to ethanol, has not been investigated regarding the selection of stable reference genes for RT-qPCR normalization under ethanol stress conditions. In this study, nine candidate reference genes (proC, dnaG, rpoA, ldhD, ddlA, rrs, gyrA, gyrB, and dpoIII were analyzed to determine the most stable reference genes for RT-qPCR in O. oeni SD-2a under different ethanol stress conditions (8, 12, and 16% (v/v ethanol. The transcript stabilities of these genes were evaluated using the algorithms geNorm, NormFinder, and BestKeeper. The results showed that dnaG and dpoIII were selected as the best reference genes across all experimental ethanol conditions. Considering single stress experimental modes, dpoIII and dnaG would be suitable to normalize expression level for 8% ethanol shock treatment, while the combination of gyrA, gyrB, and rrs would be suitable for 12% ethanol shock treatment. proC and gyrB revealed the most stable expression in 16% ethanol shock treatment. This study selected and validated for the first time the reference genes for RT-qPCR normalization in O. oeni SD-2a under ethanol stress conditions.

  12. PCR Expression Analysis Of the Estrogeninducible Gene Bcei in Gastrointestinal and Other Human Tumors

    Directory of Open Access Journals (Sweden)

    Iris Wundrack

    1994-01-01

    Full Text Available A polymerase chain reaction (PCR assay was developed to test for tumor cell specific expression of the BCEI gene. This new marker gene, reported at first for human breast cancer, was found specifically active in various gastrointestinal carcinomas by previously applying immunohistochemistry and RNA (Northern blot analysis. Presently, by using reverse transcription -PCR analysis, a series of primary tumor tissues and established tumor cell lines were testcd for BCEI transcription. This approach was compared to immunostaining achieved by an antibody directed against the BCEI gene’s product. The result demonstrate the superior sensitivity of PCR by indicating the gene’ s expression in cases where immunohistochemical testing remained negative.

  13. A propidium monoazide–quantitative PCR method for the detection and quantification of viable Enterococcus faecalis in large-volume samples of marine waters

    KAUST Repository

    Salam, Khaled W.; El-Fadel, Mutasem E.; Barbour, Elie K.; Saikaly, Pascal

    2014-01-01

    The development of rapid detection assays of cell viability is essential for monitoring the microbiological quality of water systems. Coupling propidium monoazide with quantitative PCR (PMA-qPCR) has been successfully applied in different studies for the detection and quantification of viable cells in small-volume samples (0.25-1.00 mL), but it has not been evaluated sufficiently in marine environments or in large-volume samples. In this study, we successfully integrated blue light-emitting diodes for photoactivating PMA and membrane filtration into the PMA-qPCR assay for the rapid detection and quantification of viable Enterococcus faecalis cells in 10-mL samples of marine waters. The assay was optimized in phosphate-buffered saline and seawater, reducing the qPCR signal of heat-killed E. faecalis cells by 4 log10 and 3 log10 units, respectively. Results suggest that high total dissolved solid concentration (32 g/L) in seawater can reduce PMA activity. Optimal PMA-qPCR standard curves with a 6-log dynamic range and detection limit of 102 cells/mL were generated for quantifying viable E. faecalis cells in marine waters. The developed assay was compared with the standard membrane filter (MF) method by quantifying viable E. faecalis cells in seawater samples exposed to solar radiation. The results of the developed PMA-qPCR assay did not match that of the standard MF method. This difference in the results reflects the different physiological states of E. faecalis cells in seawater. In conclusion, the developed assay is a rapid (∼5 h) method for the quantification of viable E. faecalis cells in marine recreational waters, which should be further improved and tested in different seawater settings. © 2014 Springer-Verlag Berlin Heidelberg.

  14. A propidium monoazide–quantitative PCR method for the detection and quantification of viable Enterococcus faecalis in large-volume samples of marine waters

    KAUST Repository

    Salam, Khaled W.

    2014-08-23

    The development of rapid detection assays of cell viability is essential for monitoring the microbiological quality of water systems. Coupling propidium monoazide with quantitative PCR (PMA-qPCR) has been successfully applied in different studies for the detection and quantification of viable cells in small-volume samples (0.25-1.00 mL), but it has not been evaluated sufficiently in marine environments or in large-volume samples. In this study, we successfully integrated blue light-emitting diodes for photoactivating PMA and membrane filtration into the PMA-qPCR assay for the rapid detection and quantification of viable Enterococcus faecalis cells in 10-mL samples of marine waters. The assay was optimized in phosphate-buffered saline and seawater, reducing the qPCR signal of heat-killed E. faecalis cells by 4 log10 and 3 log10 units, respectively. Results suggest that high total dissolved solid concentration (32 g/L) in seawater can reduce PMA activity. Optimal PMA-qPCR standard curves with a 6-log dynamic range and detection limit of 102 cells/mL were generated for quantifying viable E. faecalis cells in marine waters. The developed assay was compared with the standard membrane filter (MF) method by quantifying viable E. faecalis cells in seawater samples exposed to solar radiation. The results of the developed PMA-qPCR assay did not match that of the standard MF method. This difference in the results reflects the different physiological states of E. faecalis cells in seawater. In conclusion, the developed assay is a rapid (∼5 h) method for the quantification of viable E. faecalis cells in marine recreational waters, which should be further improved and tested in different seawater settings. © 2014 Springer-Verlag Berlin Heidelberg.

  15. Selection of Suitable Internal Control Genes for Accurate Normalization of Real-Time Quantitative PCR Data of Buffalo (Bubalus bubalis) Blastocysts Produced by SCNT and IVF.

    Science.gov (United States)

    Sood, Tanushri Jerath; Lagah, Swati Viviyan; Sharma, Ankita; Singla, Suresh Kumar; Mukesh, Manishi; Chauhan, Manmohan Singh; Manik, Radheysham; Palta, Prabhat

    2017-10-01

    We evaluated the suitability of 10 candidate internal control genes (ICGs), belonging to different functional classes, namely ACTB, EEF1A1, GAPDH, HPRT1, HMBS, RPS15, RPS18, RPS23, SDHA, and UBC for normalizing the real-time quantitative polymerase chain reaction (qPCR) data of blastocyst-stage buffalo embryos produced by hand-made cloning and in vitro fertilization (IVF). Total RNA was isolated from three pools, each of cloned and IVF blastocysts (n = 50/pool) for cDNA synthesis. Two different statistical algorithms geNorm and NormFinder were used for evaluating the stability of these genes. Based on gene stability measure (M value) and pairwise variation (V value), calculated by geNorm analysis, the most stable ICGs were RPS15, HPRT1, and ACTB for cloned blastocysts, HMBS, UBC, and HPRT1 for IVF blastocysts and RPS15, GAPDH, and HPRT1 for both the embryo types analyzed together. RPS18 was the least stable gene for both cloned and IVF blastocysts. Following NormFinder analysis, the order of stability was RPS15 = HPRT1>GAPDH for cloned blastocysts, HMBS = UBC>RPS23 for IVF blastocysts, and HPRT1>GAPDH>RPS15 for cloned and IVF blastocysts together. These results suggest that despite overlapping of the three most stable ICGs between cloned and IVF blastocysts, the panel of ICGs selected for normalization of qPCR data of cloned and IVF blastocyst-stage embryos should be different.

  16. Quantitative analysis of dengue-2 virus RNA during the extrinsic incubation period in individual Aedes aegypti.

    Science.gov (United States)

    Richardson, Jason; Molina-Cruz, Alvaro; Salazar, Ma Isabel; Black, William

    2006-01-01

    Dengue virus-2 (DENV-2) RNA was quantified from the midgut and legs of individual Aedes aegypti at each of 14 days postinfectious blood meal (dpi) in a DENV-2 susceptible strain from Chetumal, Mexico. A SYBR Green I based strand-specific, quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) assay was developed. The lower detection and quantitation limits were 20 and 200 copies per reaction, respectively. Amounts of positive and negative strand viral RNA strands were correlated. Numbers of plaque-forming units (PFU) were correlated with DENV-2 RNA copy number in both C6/36 cell cultures and mosquitoes. PFU were consistently lower than RNA copy number by 2-3 log(10). Midgut levels of DENV-2 RNA peaked 8 dpi and fluctuated erratically between 6 and 9 dpi. Copies of DENV-2 RNA varied significantly among infected mosquitoes at each time point. Quantitative real-time RT-PCR is a convenient and reliable method that provides new insights into virus-vector interactions.

  17. Detection and characterization of Leishmania (Leishmania and Leishmania (Viannia by SYBR green-based real-time PCR and high resolution melt analysis targeting kinetoplast minicircle DNA.

    Directory of Open Access Journals (Sweden)

    Marcello Ceccarelli

    Full Text Available Leishmaniasis is a neglected disease with a broad clinical spectrum which includes asymptomatic infection. A thorough diagnosis, able to distinguish and quantify Leishmania parasites in a clinical sample, constitutes a key step in choosing an appropriate therapy, making an accurate prognosis and performing epidemiological studies. Several molecular techniques have been shown to be effective in the diagnosis of leishmaniasis. In particular, a number of PCR methods have been developed on various target DNA sequences including kinetoplast minicircle constant regions. The first aim of this study was to develop a SYBR green-based qPCR assay for Leishmania (Leishmania infantum detection and quantification, using kinetoplast minicircle constant region as target. To this end, two assays were compared: the first used previously published primer pairs (qPCR1, whereas the second used a nested primer pairs generating a shorter PCR product (qPCR2. The second aim of this study was to evaluate the possibility to discriminate among subgenera Leishmania (Leishmania and Leishmania (Viannia using the qPCR2 assay followed by melting or High Resolution Melt (HRM analysis. Both assays used in this study showed good sensitivity and specificity, and a good correlation with standard IFAT methods in 62 canine clinical samples. However, the qPCR2 assay allowed to discriminate between Leishmania (Leishmania and Leishmania (Viannia subgenera through melting or HRM analysis. In addition to developing assays, we investigated the number and genetic variability of kinetoplast minicircles in the Leishmania (L. infantum WHO international reference strain (MHOM/TN/80/IPT1, highlighting the presence of minicircle subclasses and sequence heterogeneity. Specifically, the kinetoplast minicircle number per cell was estimated to be 26,566±1,192, while the subclass of minicircles amplifiable by qPCR2 was estimated to be 1,263±115. This heterogeneity, also observed in canine clinical

  18. Use of quantitative real-time PCR for direct detection of serratia marcescens in marine and other aquatic environments.

    Science.gov (United States)

    Joyner, Jessica; Wanless, David; Sinigalliano, Christopher D; Lipp, Erin K

    2014-03-01

    Serratia marcescens is the etiological agent of acroporid serratiosis, a distinct form of white pox disease in the threatened coral Acropora palmata. The pathogen is commonly found in untreated human waste in the Florida Keys, which may contaminate both nearshore and offshore waters. Currently there is no direct method for detection of this bacterium in the aquatic or reef environment, and culture-based techniques may underestimate its abundance in marine waters. A quantitative real-time PCR assay was developed to detect S. marcescens directly from environmental samples, including marine water, coral mucus, sponge tissue, and wastewater. The assay targeted the luxS gene and was able to distinguish S. marcescens from other Serratia species with a reliable quantitative limit of detection of 10 cell equivalents (CE) per reaction. The method could routinely discern the presence of S. marcescens for as few as 3 CE per reaction, but it could not be reliably quantified at this level. The assay detected environmental S. marcescens in complex sewage influent samples at up to 761 CE ml(-1) and in septic system-impacted residential canals in the Florida Keys at up to 4.1 CE ml(-1). This detection assay provided rapid quantitative abilities and good sensitivity and specificity, which should offer an important tool for monitoring this ubiquitous pathogen that can potentially impact both human health and coral health.

  19. Combination and Integration of Qualitative and Quantitative Analysis

    Directory of Open Access Journals (Sweden)

    Philipp Mayring

    2001-02-01

    Full Text Available In this paper, I am going to outline ways of combining qualitative and quantitative steps of analysis on five levels. On the technical level, programs for the computer-aided analysis of qualitative data offer various combinations. Where the data are concerned, the employment of categories (for instance by using qualitative content analysis allows for combining qualitative and quantitative forms of data analysis. On the individual level, the creation of types and the inductive generalisation of cases allow for proceeding from individual case material to quantitative generalisations. As for research design, different models can be distinguished (preliminary study, generalisation, elaboration, triangulation which combine qualitative and quantitative steps of analysis. Where the logic of research is concerned, it can be shown that an extended process model which combined qualitative and quantitative research can be appropriate and thus lead to an integration of the two approaches. URN: urn:nbn:de:0114-fqs010162

  20. Molecular analysis of single oocyst of Eimeria by whole genome amplification (WGA) based nested PCR.

    Science.gov (United States)

    Wang, Yunzhou; Tao, Geru; Cui, Yujuan; Lv, Qiyao; Xie, Li; Li, Yuan; Suo, Xun; Qin, Yinghe; Xiao, Lihua; Liu, Xianyong

    2014-09-01

    PCR-based molecular tools are widely used for the identification and characterization of protozoa. Here we report the molecular analysis of Eimeria species using combined methods of whole genome amplification (WGA) and nested PCR. Single oocyst of Eimeria stiedai or Eimeriamedia was directly used for random amplification of the genomic DNA with either primer extension preamplification (PEP) or multiple displacement amplification (MDA), and then the WGA product was used as template in nested PCR with species-specific primers for ITS-1, 18S rDNA and 23S rDNA of E. stiedai and E. media. WGA-based PCR was successful for the amplification of these genes from single oocyst. For the species identification of single oocyst isolated from mixed E. stiedai or E. media, the results from WGA-based PCR were exactly in accordance with those from morphological identification, suggesting the availability of this method in molecular analysis of eimerian parasites at the single oocyst level. WGA-based PCR method can also be applied for the identification and genetic characterization of other protists. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Characterization of bovine ruminal epithelial bacterial communities using 16S rRNA sequencing, PCR-DGGE, and qRT-PCR analysis.

    Science.gov (United States)

    Li, Meiju; Zhou, Mi; Adamowicz, Elizabeth; Basarab, John A; Guan, Le Luo

    2012-02-24

    Currently, knowledge regarding the ecology and function of bacteria attached to the epithelial tissue of the rumen wall is limited. In this study, the diversity of the bacterial community attached to the rumen epithelial tissue was compared to the rumen content bacterial community using 16S rRNA gene sequencing, PCR-DGGE, and qRT-PCR analysis. Sequence analysis of 2785 randomly selected clones from six 16S rDNA (∼1.4kb) libraries showed that the community structures of three rumen content libraries clustered together and were separated from the rumen tissue libraries. The diversity index of each library revealed that ruminal content bacterial communities (4.12/4.42/4.88) were higher than ruminal tissue communities (2.90/2.73/3.23), based on 97% similarity. The phylum Firmicutes was predominant in the ruminal tissue communities, while the phylum Bacteroidetes was predominant in the ruminal content communities. The phyla Fibrobacteres, Planctomycetes, and Verrucomicrobia were only detected in the ruminal content communities. PCR-DGGE analysis of the bacterial profiles of the rumen content and ruminal epithelial tissue samples from 22 steers further confirmed that there is a distinct bacterial community that inhibits the rumen epithelium. The distinctive epimural bacterial communities suggest that Firmicutes, together with other epithelial-specific species, may have additional functions other than food digestion. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Development, validation and field evaluation of a quantitative real-time PCR able to differentiate between field Mycoplasma synoviae and the MS-H-live vaccine strain.

    Science.gov (United States)

    Dijkman, R; Feberwee, A; Landman, W J M

    2017-08-01

    A quantitative PCR (qPCR) able to differentiate between field Mycoplasma synoviae and MS-H vaccine strain was developed, validated and evaluated. It was developed using nucleotide differences in the obg gene. Analytical specificity and sensitivity assessed using DNA from 194 M. synoviae field samples, three different batches of MS-H vaccine and from 43 samples representing four other avian Mycoplasma species proved to be 100%. The detection limit for field M. synoviae and MS-H vaccine strain was 10 2-3 and 10 2 colony-forming units PCR equivalents/g trachea mucus, respectively. The qPCR was able to detect both, field M. synoviae and MS-H vaccine strain in ratios of 1:100 determined both using spiked and field samples. One hundred and twenty samples from M. synoviae-infected non-vaccinated birds, 110 samples from M. synoviae-vaccinated birds from a bird experiment and 224 samples from M. synoviae negative (serology and PCR) birds were used to determine the relative sensitivity and specificity using a previously described M. synoviae PCR as reference. The relative sensitivity and specificity for field M. synoviae were 95.0% and 99.6%, respectively, and 94.6% and 100% for the MS-H-live vaccine, respectively. Field validation and confirmation by multi locus sequence typing revealed that the qPCR correctly distinguished between MS-H and field M. synoviae. Evaluation of the differentiating M. synoviae qPCR in three commercial flocks suggested transmission of MS-H-live vaccine from vaccinated to non-vaccinated flocks at the same farm. Furthermore, it showed evidence for the colonization with field M. synoviae in MS-H-vaccinated flocks.

  3. Reliability and short-term intra-individual variability of telomere length measurement using monochrome multiplexing quantitative PCR.

    Directory of Open Access Journals (Sweden)

    Sangmi Kim

    Full Text Available Studies examining the association between telomere length and cancer risk have often relied on measurement of telomere length from a single blood draw using a real-time PCR technique. We examined the reliability of telomere length measurement using sequential samples collected over a 9-month period.Relative telomere length in peripheral blood was estimated using a single tube monochrome multiplex quantitative PCR assay in blood DNA samples from 27 non-pregnant adult women (aged 35 to 74 years collected in 7 visits over a 9-month period. A linear mixed model was used to estimate the components of variance for telomere length measurements attributed to variation among women and variation between time points within women. Mean telomere length measurement at any single visit was not significantly different from the average of 7 visits. Plates had a significant systematic influence on telomere length measurements, although measurements between different plates were highly correlated. After controlling for plate effects, 64% of the remaining variance was estimated to be accounted for by variance due to subject. Variance explained by time of visit within a subject was minor, contributing 5% of the remaining variance.Our data demonstrate good short-term reliability of telomere length measurement using blood from a single draw. However, the existence of technical variability, particularly plate effects, reinforces the need for technical replicates and balancing of case and control samples across plates.

  4. Evaluation of four endogenous reference genes and their real-time PCR assays for common wheat quantification in GMOs detection.

    Science.gov (United States)

    Huang, Huali; Cheng, Fang; Wang, Ruoan; Zhang, Dabing; Yang, Litao

    2013-01-01

    Proper selection of endogenous reference genes and their real-time PCR assays is quite important in genetically modified organisms (GMOs) detection. To find a suitable endogenous reference gene and its real-time PCR assay for common wheat (Triticum aestivum L.) DNA content or copy number quantification, four previously reported wheat endogenous reference genes and their real-time PCR assays were comprehensively evaluated for the target gene sequence variation and their real-time PCR performance among 37 common wheat lines. Three SNPs were observed in the PKABA1 and ALMT1 genes, and these SNPs significantly decreased the efficiency of real-time PCR amplification. GeNorm analysis of the real-time PCR performance of each gene among common wheat lines showed that the Waxy-D1 assay had the lowest M values with the best stability among all tested lines. All results indicated that the Waxy-D1 gene and its real-time PCR assay were most suitable to be used as an endogenous reference gene for common wheat DNA content quantification. The validated Waxy-D1 gene assay will be useful in establishing accurate and creditable qualitative and quantitative PCR analysis of GM wheat.

  5. Evaluation of four endogenous reference genes and their real-time PCR assays for common wheat quantification in GMOs detection.

    Directory of Open Access Journals (Sweden)

    Huali Huang

    Full Text Available Proper selection of endogenous reference genes and their real-time PCR assays is quite important in genetically modified organisms (GMOs detection. To find a suitable endogenous reference gene and its real-time PCR assay for common wheat (Triticum aestivum L. DNA content or copy number quantification, four previously reported wheat endogenous reference genes and their real-time PCR assays were comprehensively evaluated for the target gene sequence variation and their real-time PCR performance among 37 common wheat lines. Three SNPs were observed in the PKABA1 and ALMT1 genes, and these SNPs significantly decreased the efficiency of real-time PCR amplification. GeNorm analysis of the real-time PCR performance of each gene among common wheat lines showed that the Waxy-D1 assay had the lowest M values with the best stability among all tested lines. All results indicated that the Waxy-D1 gene and its real-time PCR assay were most suitable to be used as an endogenous reference gene for common wheat DNA content quantification. The validated Waxy-D1 gene assay will be useful in establishing accurate and creditable qualitative and quantitative PCR analysis of GM wheat.

  6. Evaluation of Four Endogenous Reference Genes and Their Real-Time PCR Assays for Common Wheat Quantification in GMOs Detection

    Science.gov (United States)

    Huang, Huali; Cheng, Fang; Wang, Ruoan; Zhang, Dabing; Yang, Litao

    2013-01-01

    Proper selection of endogenous reference genes and their real-time PCR assays is quite important in genetically modified organisms (GMOs) detection. To find a suitable endogenous reference gene and its real-time PCR assay for common wheat (Triticum aestivum L.) DNA content or copy number quantification, four previously reported wheat endogenous reference genes and their real-time PCR assays were comprehensively evaluated for the target gene sequence variation and their real-time PCR performance among 37 common wheat lines. Three SNPs were observed in the PKABA1 and ALMT1 genes, and these SNPs significantly decreased the efficiency of real-time PCR amplification. GeNorm analysis of the real-time PCR performance of each gene among common wheat lines showed that the Waxy-D1 assay had the lowest M values with the best stability among all tested lines. All results indicated that the Waxy-D1 gene and its real-time PCR assay were most suitable to be used as an endogenous reference gene for common wheat DNA content quantification. The validated Waxy-D1 gene assay will be useful in establishing accurate and creditable qualitative and quantitative PCR analysis of GM wheat. PMID:24098735

  7. Quantitative monitoring of HCMV DNAlactia in human milk by real time PCR assay: Implementation of internal control contributes to standardization and quality control.

    Science.gov (United States)

    Hartleif, Steffen; Göhring, Katharina; Goelz, Rangmar; Jahn, Gerhard; Hamprecht, Klaus

    2016-11-01

    For cytomegalovirus screening of breastfeeding mothers of preterm infants under risk, we present a rapid, quantitative real-time PCR protocol using the hybridization format of the viral gB target region. For quantification, we used an external gB fragment cloned into a vector system. For standardization, we created an internal control-plasmid by site-directed mutagenesis with an exchange of 9 nucleotides. Spiked with internal control, patient wildtype amplicons could be discriminated from internal controls by hybridization probes using two-channel fluorescence detection. Potential bias of formerly reported false nucleotide sequence data of gB-hybridization probes was excluded. Using this approach, we could demonstrate excellent analytical performance and high reproducibility of HCMV detection during lactation. This assay shows very good correlation with a commercial quantitative HCMV DNA PCR and may help to identify rapidly HCMV shedding mothers of very low birth weight preterm infants to prevent HCMV transmission. On the other hand, negative DNA amplification results allow feeding of milk samples of seropositive mothers to their preterm infants under risk (<30 weeks of gestational age, <1000g birth weight) during the onset and late stage of HCMV shedding during lactation. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Energy Dispersive Spectrometry and Quantitative Analysis Short Course. Introduction to X-ray Energy Dispersive Spectrometry and Quantitative Analysis

    Science.gov (United States)

    Carpenter, Paul; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    This course will cover practical applications of the energy-dispersive spectrometer (EDS) to x-ray microanalysis. Topics covered will include detector technology, advances in pulse processing, resolution and performance monitoring, detector modeling, peak deconvolution and fitting, qualitative and quantitative analysis, compositional mapping, and standards. An emphasis will be placed on use of the EDS for quantitative analysis, with discussion of typical problems encountered in the analysis of a wide range of materials and sample geometries.

  9. Rapid quantification of plant-powdery mildew interactions by qPCR and conidiospore counts.

    Science.gov (United States)

    Weßling, Ralf; Panstruga, Ralph

    2012-08-31

    The powdery mildew disease represents a valuable patho-system to study the interaction between plant hosts and obligate biotrophic fungal pathogens. Numerous discoveries have been made on the basis of the quantitative evaluation of plant-powdery mildew interactions, especially in the context of hyper-susceptible and/or resistant plant mutants. However, the presently available methods to score the pathogenic success of powdery mildew fungi are laborious and thus not well suited for medium- to high-throughput analysis. Here we present two new protocols that allow the rapid quantitative assessment of powdery mildew disease development. One procedure depends on quantitative polymerase chain reaction (qPCR)-based evaluation of fungal biomass, while the other relies on the quantification of fungal conidiospores. We validated both techniques using the powdery mildew pathogen Golovinomyces orontii on a set of hyper-susceptible and resistant Arabidopsis thaliana mutants and found that both cover a wide dynamic range of one to two (qPCR) and four to five (quantification of conidia) orders of magnitude, respectively. The two approaches yield reproducible results and are easy to perform without specialized equipment. The qPCR and spore count assays rapidly and reproducibly quantify powdery mildew pathogenesis. Our methods are performed at later stages of infection and discern mutant phenotypes accurately. The assays therefore complement currently used procedures of powdery mildew quantification and can overcome some of their limitations. In addition, they can easily be adapted to other plant-powdery mildew patho-systems.

  10. Selecting a set of housekeeping genes for quantitative real-time PCR in normal and tetraploid haemocytes of soft-shell clams, Mya arenaria.

    Science.gov (United States)

    Siah, A; Dohoo, C; McKenna, P; Delaporte, M; Berthe, F C J

    2008-09-01

    The transcripts involved in the molecular mechanisms of haemic neoplasia in relation to the haemocyte ploidy status of the soft-shell clam, Mya arenaria, have yet to be identified. For this purpose, real-time quantitative RT-PCR constitutes a sensitive and efficient technique, which can help determine the gene expression involved in haemocyte tetraploid status in clams affected by haemic neoplasia. One of the critical steps in comparing transcription profiles is the stability of selected housekeeping genes, as well as an accurate normalization. In this study, we selected five reference genes, S18, L37, EF1, EF2 and actin, generally used as single control genes. Their expression was analyzed by real-time quantitative RT-PCR at different levels of haemocyte ploidy status in order to select the most stable genes. Using the geNorm software, our results showed that L37, EF1 and S18 represent the most stable gene expressions related to various ploidy status ranging from 0 to 78% of tetraploid haemocytes in clams sampled in North River (Prince Edward Island, Canada). However, actin gene expression appeared to be highly regulated. Hence, using it as a housekeeping gene in tetraploid haemocytes can result in inaccurate data. To compare gene expression levels related to haemocyte ploidy status in Mya arenaria, using L37, EF1 and S18 as housekeeping genes for accurate normalization is therefore recommended.

  11. A quantitative and direct PCR assay for the subspecies-specific detection of Clavibacter michiganensis subsp. michiganensis based on a ferredoxin reductase gene.

    Science.gov (United States)

    Cho, Min Seok; Lee, Jang Ha; Her, Nam Han; Kim, Changkug; Seol, Young-Joo; Hahn, Jang Ho; Baeg, Ji Hyoun; Kim, Hong Gi; Park, Dong Suk

    2012-06-01

    The Gram-positive bacterium Clavibacter michiganensis subsp. michiganensis is the causal agent of canker disease in tomato. Because it is very important to control newly introduced inoculum sources from commercial materials, the specific detection of this pathogen in seeds and seedlings is essential for effective disease control. In this study, a novel and efficient assay for the detection and quantitation of C. michiganensis subsp. michiganensis in symptomless tomato and red pepper seeds was developed. A pair of polymerase chain reaction (PCR) primers (Cmm141F/R) was designed to amplify a specific 141 bp fragment on the basis of a ferredoxin reductase gene of C. michiganensis subsp. michiganensis NCPPB 382. The specificity of the primer set was evaluated using purified DNA from 16 isolates of five C. michiganensis subspecies, one other Clavibacter species, and 17 other reference bacteria. The primer set amplified a single band of expected size from the genomic DNA obtained from the C. michiganensis subsp. michiganensis strains but not from the other C. michiganensis subspecies or from other Clavibacter species. The detection limit was a single cloned copy of the ferredoxin reductase gene of C. michiganensis subsp. michiganensis. In conclusion, this quantitative direct PCR assay can be applied as a practical diagnostic method for epidemiological research and the sanitary management of seeds and seedlings with a low level or latent infection of C. michiganensis subsp. michiganensis.

  12. Inspection, visualisation and analysis of quantitative proteomics data

    OpenAIRE

    Gatto, Laurent

    2016-01-01

    Material Quantitative Proteomics and Data Analysis Course. 4 - 5 April 2016, Queen Hotel, Chester, UK Table D - Inspection, visualisation and analysis of quantitative proteomics data, Laurent Gatto (University of Cambridge)

  13. Improved molecular detection of Babesia infections in animals using a novel quantitative real-time PCR diagnostic assay targeting mitochondrial DNA.

    Science.gov (United States)

    Qurollo, Barbara A; Archer, Nikole R; Schreeg, Megan E; Marr, Henry S; Birkenheuer, Adam J; Haney, Kaitlin N; Thomas, Brittany S; Breitschwerdt, Edward B

    2017-03-07

    Babesiosis is a protozoal, tick transmitted disease found worldwide in humans, wildlife and domesticated animals. Commonly used approaches to diagnose babesiosis include microscopic examination of peripheral blood smears, detection of circulating antibodies and PCR. To screen and differentiate canine Babesia infections many PCR assays amplify the 18S rRNA gene. These sequences contain hypervariable regions flanked by highly conserved regions allowing for amplification of a broad-range of Babesia spp. However, differences in the 18S rRNA gene sequence of distantly related clades can make it difficult to design assays that will amplify all Babesia species while excluding the amplification of other eukaryotes. By targeting Babesia mitochondrial genome (mtDNA), we designed a novel three primer qPCR with greater sensitivity and broader screening capabilities to diagnose and differentiate Babesia spp. Using 13 Babesia mtDNA sequences, a region spanning two large subunit rRNA gene fragments (lsu5-lsu4) was aligned to design three primers for use in a qPCR assay (LSU qPCR) capable of amplifying a wide range of Babesia spp. Plasmid clones were generated and used as standards to determine efficiency, linear dynamic range and analytical sensitivity. Animals naturally infected with vector-borne pathogens were tested retrospectively and prospectively to determine relative clinical sensitivity and specificity by comparing the LSU qPCR to an established 18S rDNA qPCR. The LSU qPCR efficiencies ranged between 92 and 100% with the limit of detection at five copies/reaction. The assay did not amplify mammalian host or other vector-borne pathogen gDNA except Cytauxzoon felis (a feline protozoal pathogen). The LSU qPCR assay amplified 12 different Babesia. sp. and C. felis from 31/31 (100%) archived samples, whereas the 18S qPCR amplified only 26/31 (83.9%). By prospective analysis, 19/394 diagnostic accessions (4.8%) were LSU qPCR positive, compared to 11/394 (2.8%) 18S rDNA qPCR

  14. The Pseudomonas community in metal-contaminated sediments as revealed by quantitative PCR: a link with metal bioavailability.

    Science.gov (United States)

    Roosa, Stéphanie; Wauven, Corinne Vander; Billon, Gabriel; Matthijs, Sandra; Wattiez, Ruddy; Gillan, David C

    2014-10-01

    Pseudomonas bacteria are ubiquitous Gram-negative and aerobic microorganisms that are known to harbor metal resistance mechanisms such as efflux pumps and intracellular redox enzymes. Specific Pseudomonas bacteria have been quantified in some metal-contaminated environments, but the entire Pseudomonas population has been poorly investigated under these conditions, and the link with metal bioavailability was not previously examined. In the present study, quantitative PCR and cell cultivation were used to monitor and characterize the Pseudomonas population at 4 different sediment sites contaminated with various levels of metals. At the same time, total metals and metal bioavailability (as estimated using an HCl 1 m extraction) were measured. It was found that the total level of Pseudomonas, as determined by qPCR using two different genes (oprI and the 16S rRNA gene), was positively and significantly correlated with total and HCl-extractable Cu, Co, Ni, Pb and Zn, with high correlation coefficients (>0.8). Metal-contaminated sediments featured isolates of the Pseudomonas putida, Pseudomonas fluorescens, Pseudomonas lutea and Pseudomonas aeruginosa groups, with other bacterial genera such as Mycobacterium, Klebsiella and Methylobacterium. It is concluded that Pseudomonas bacteria do proliferate in metal-contaminated sediments, but are still part of a complex community. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  15. Sampling methods for rumen microbial counts by Real-Time PCR techniques

    Directory of Open Access Journals (Sweden)

    S. Puppo

    2010-02-01

    Full Text Available Fresh rumen samples were withdrawn from 4 cannulated buffalo females fed a fibrous diets in order to quantify bacteria concentration in the rumen by Real-Time PCR techniques. To obtain DNA of a good quality from whole rumen fluid, eight (M1-M8 different pre-filtration methods (cheese cloths, glass-fibre and nylon filter in combination with various centrifugation speeds (1000, 5000 and 14,000 rpm were tested. Genomic DNA extraction was performed either on fresh or frozen samples (-20°C. The quantitative bacteria analysis was realized according to Real-Time PCR procedure for Butyrivibrio fibrisolvens reported in literature. M5 resulted the best sampling procedure allowing to obtain a suitable genomic DNA. No differences were revealed between fresh and frozen samples.

  16. Identification of subtelomeric genomic imbalances and breakpoint mapping with quantitative PCR in 296 individuals with congenital defects and/or mental retardation

    Directory of Open Access Journals (Sweden)

    Brockmann Knut

    2009-03-01

    Full Text Available Abstract Background Submicroscopic imbalances in the subtelomeric regions of the chromosomes are considered to play an important role in the aetiology of mental retardation (MR. The aim of the study was to evaluate a quantitative PCR (qPCR protocol established by Boehm et al. (2004 in the clinical routine of subtelomeric testing. Results 296 patients with MR and a normal karyotype (500–550 bands were screened for subtelomeric imbalances by using qPCR combined with SYBR green detection. In total, 17 patients (5.8% with 20 subtelomeric imbalances were identified. Six of the aberrations (2% were classified as causative for the symptoms, because they occurred either de novo in the patients (5 cases or the aberration were be detected in the patient and an equally affected parent (1 case. The extent of the deletions ranged from 1.8 to approximately 10 Mb, duplications were 1.8 to approximately 5 Mb in size. In 6 patients, the copy number variations (CNVs were rated as benign polymorphisms, and the clinical relevance of these CNVs remains unclear in 5 patients (1.7%. Therefore, the overall frequency of clinically relevant imbalances ranges between 2% and 3.7% in our cohort. Conclusion This study illustrates that the qPCR/SYBR green technique represents a rapid and versatile method for the detection of subtelomeric imbalances and the option to map the breakpoint. Thus, this technique is highly suitable for genotype/phenotype studies in patients with MR/developmental delay and/or congenital defects.

  17. Oxidative stress provokes distinct transcriptional responses in the stress-tolerant atr7 and stress-sensitive loh2 Arabidopsis thaliana mutants as revealed by multi-parallel quantitative real-time PCR analysis of ROS marker and antioxidant genes.

    Science.gov (United States)

    Mehterov, Nikolay; Balazadeh, Salma; Hille, Jacques; Toneva, Valentina; Mueller-Roeber, Bernd; Gechev, Tsanko

    2012-10-01

    The Arabidopsis thaliana atr7 mutant is tolerant to oxidative stress induced by paraquat (PQ) or the catalase inhibitor aminotriazole (AT), while its original background loh2 and wild-type plants are sensitive. Both, AT and PQ, which stimulate the intracellular formation of H₂O₂ or superoxide anions, respectively, trigger cell death in loh2 but do not lead to visible damage in atr7. To study gene expression during oxidative stress and ROS-induced programmed cell death, two platforms for multi-parallel quantitative real-time PCR (qRT-PCR) analysis of 217 antioxidant and 180 ROS marker genes were employed. The qRT-PCR analyses revealed AT- and PQ-induced expression of many ROS-responsive genes mainly in loh2, confirming that an oxidative burst plays a role in the activation of the cell death in this mutant. Some of the genes were specifically regulated by either AT or PQ, serving as markers for particular types of ROS. Genes significantly induced by both AT and PQ in loh2 included transcription factors (ANAC042/JUB1, ANAC102, DREB19, HSFA2, RRTF1, ZAT10, ZAT12, ethylene-responsive factors), signaling compounds, ferritins, alternative oxidases, and antioxidant enzymes. Many of these genes were upregulated in atr7 compared to loh2 under non-stress conditions at the first time point, indicating that higher basal levels of ROS and higher antioxidant capacity in atr7 are responsible for the enhanced tolerance to oxidative stress and suggesting a possible tolerance against multiple stresses of this mutant. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  18. Comparative evaluation of three automated systems for DNA extraction in conjunction with three commercially available real-time PCR assays for quantitation of plasma Cytomegalovirus DNAemia in allogeneic stem cell transplant recipients.

    Science.gov (United States)

    Bravo, Dayana; Clari, María Ángeles; Costa, Elisa; Muñoz-Cobo, Beatriz; Solano, Carlos; José Remigia, María; Navarro, David

    2011-08-01

    Limited data are available on the performance of different automated extraction platforms and commercially available quantitative real-time PCR (QRT-PCR) methods for the quantitation of cytomegalovirus (CMV) DNA in plasma. We compared the performance characteristics of the Abbott mSample preparation system DNA kit on the m24 SP instrument (Abbott), the High Pure viral nucleic acid kit on the COBAS AmpliPrep system (Roche), and the EZ1 Virus 2.0 kit on the BioRobot EZ1 extraction platform (Qiagen) coupled with the Abbott CMV PCR kit, the LightCycler CMV Quant kit (Roche), and the Q-CMV complete kit (Nanogen), for both plasma specimens from allogeneic stem cell transplant (Allo-SCT) recipients (n = 42) and the OptiQuant CMV DNA panel (AcroMetrix). The EZ1 system displayed the highest extraction efficiency over a wide range of CMV plasma DNA loads, followed by the m24 and the AmpliPrep methods. The Nanogen PCR assay yielded higher mean CMV plasma DNA values than the Abbott and the Roche PCR assays, regardless of the platform used for DNA extraction. Overall, the effects of the extraction method and the QRT-PCR used on CMV plasma DNA load measurements were less pronounced for specimens with high CMV DNA content (>10,000 copies/ml). The performance characteristics of the extraction methods and QRT-PCR assays evaluated herein for clinical samples were extensible at cell-based standards from AcroMetrix. In conclusion, different automated systems are not equally efficient for CMV DNA extraction from plasma specimens, and the plasma CMV DNA loads measured by commercially available QRT-PCRs can differ significantly. The above findings should be taken into consideration for the establishment of cutoff values for the initiation or cessation of preemptive antiviral therapies and for the interpretation of data from clinical studies in the Allo-SCT setting.

  19. Quantitative Moessbauer analysis

    International Nuclear Information System (INIS)

    Collins, R.L.

    1978-01-01

    The quantitative analysis of Moessbauer data, as in the measurement of Fe 3+ /Fe 2+ concentration, has not been possible because of the different mean square velocities (x 2 ) of Moessbauer nuclei at chemically different sites. A method is now described which, based on Moessbauer data at several temperatures, permits the comparison of absorption areas at (x 2 )=0. (Auth.)

  20. Comparison of commercial DNA preparation kits for the detection of Brucellae in tissue using quantitative real-time PCR

    Directory of Open Access Journals (Sweden)

    Straube Eberhard

    2010-04-01

    Full Text Available Abstract Background The detection of Brucellae in tissue specimens using PCR assays is difficult because the amount of bacteria is usually low. Therefore, optimised DNA extraction methods are critical. The aim of this study was to assess the performance of commercial kits for the extraction of Brucella DNA. Methods Five kits were evaluated using clinical specimens: QIAamp™ DNA Mini Kit (QIAGEN, peqGold™ Tissue DNA Mini Kit (PeqLab, UltraClean™ Tissue and Cells DNA Isolation Kit (MoBio, DNA Isolation Kit for Cells and Tissues (Roche, and NucleoSpin™ Tissue (Macherey-Nagel. DNA yield was determined using a quantitative real-time PCR assay targeting IS711 that included an internal amplification control. Results Kits of QIAGEN and Roche provided the highest amount of DNA, Macherey-Nagel and Peqlab products were intermediate whereas MoBio yielded the lowest amount of DNA. Differences were significant (p Conclusions We observed differences in DNA yield as high as two orders of magnitude for some samples between the best and the worst DNA extraction kits and inhibition was observed occasionally. This indicates that DNA purification may be more relevant than expected when the amount of DNA in tissue is very low.

  1. Evaluation of pre-PCR processing approaches for enumeration of Salmonella enterica in naturally contaminated animal feed

    DEFF Research Database (Denmark)

    Schelin, Jenny; Andersson, Gunnar; Vigre, Håkan

    2014-01-01

    Three pre‐PCR processing strategies for the detection and/or quantification of Salmonella in naturally contaminated soya bean meal were evaluated. Methods included: (i) flotation‐qPCR [enumeration of intact Salmonella cells prior to quantitative PCR (qPCR)], (ii) MPN‐PCR (modified most probable...... be due to the presence of nonculturable Salmonella and/or a heterogeneous distribution of Salmonella in the material. The evaluated methods provide different possibilities to assess the prevalence of Salmonella in feed, together with the numbers of culturable, as well as nonculturable cells, and can...... be applied to generate data to allow more accurate quantitative microbial risk assessment for Salmonella in the feed chain....

  2. Detection of Leishmania infantum in animals and their ectoparasites by conventional PCR and real time PCR.

    Science.gov (United States)

    de Morais, Rayana Carla Silva; Gonçalves, Suênia da Cunha; Costa, Pietra Lemos; da Silva, Kamila Gaudêncio; da Silva, Fernando José; Silva, Rômulo Pessoa E; de Brito, Maria Edileuza Felinto; Brandão-Filho, Sinval Pinto; Dantas-Torres, Filipe; de Paiva-Cavalcanti, Milena

    2013-04-01

    Visceral leishmaniosis (VL) is a parasitic disease caused by Leishmania infantum, which is primarily transmitted by phlebotomine sandflies. However, there has been much speculation on the role of other arthropods in the transmission of VL. Thus, the aim of this study was to assess the presence of L. infantum in cats, dogs and their ectoparasites in a VL-endemic area in northeastern Brazil. DNA was extracted from blood samples and ectoparasites, tested by conventional PCR (cPCR) and quantitative real time PCR (qPCR) targeting the L. infantum kinetoplast DNA. A total of 280 blood samples (from five cats and 275 dogs) and 117 ectoparasites from dogs were collected. Animals were apparently healthy and not previously tested by serological or molecular diagnostic methods. Overall, 213 (76.1 %) animals and 51 (43.6 %) ectoparasites were positive to L. infantum, with mean parasite loads of 795.2, 31.9 and 9.1 fg in dogs, cats and ectoparasites, respectively. Concerning the positivity between dogs and their ectoparasites, 32 (15.3 %) positive dogs were parasitized by positive ectoparasites. The overall concordance between the PCR protocols used was 59.2 %, with qPCR being more efficient than cPCR; 34.1 % of all positive samples were exclusively positive by qPCR. The high number of positive animals and ectoparasites also indicates that they could serve as sentinels or indicators of the circulation of L. infantum in risk areas.

  3. Changes in content and synthesis of collagen types and proteoglycans in osteoarthritis of the knee joint and comparison of quantitative analysis with Photoshop-based image analysis.

    Science.gov (United States)

    Lahm, Andreas; Mrosek, Eike; Spank, Heiko; Erggelet, Christoph; Kasch, Richard; Esser, Jan; Merk, Harry

    2010-04-01

    The different cartilage layers vary in synthesis of proteoglycan and of the distinct types of collagen with the predominant collagen Type II with its associated collagens, e.g. types IX and XI, produced by normal chondrocytes. It was demonstrated that proteoglycan decreases in degenerative tissue and a switch from collagen type II to type I occurs. The aim of this study was to evaluate the correlation of real-time (RT)-PCR and Photoshop-based image analysis in detecting such lesions and find new aspects about their distribution. We performed immunohistochemistry and histology with cartilage tissue samples from 20 patients suffering from osteoarthritis compared with 20 healthy biopsies. Furthermore, we quantified our results on the gene expression of collagen type I and II and aggrecan with the help of real-time (RT)-PCR. Proteoglycan content was measured colorimetrically. Using Adobe Photoshop the digitized images of histology and immunohistochemistry stains of collagen type I and II were stored on an external data storage device. The area occupied by any specific colour range can be specified and compared in a relative manner directly from the histogram using the "magic wand tool" in the select similar menu. In the image grow menu gray levels or luminosity (colour) of all pixels within the selected area, including mean, median and standard deviation, etc. are depicted. Statistical Analysis was performed using the t test. With the help of immunohistochemistry, RT-PCR and quantitative RT- PCR we found that not only collagen type II, but also collagen type I is synthesized by the cells of the diseased cartilage tissue, shown by increasing amounts of collagen type I mRNA especially in the later stages of osteoarthritis. A decrease of collagen type II is visible especially in the upper fibrillated area of the advanced osteoarthritic samples, which leads to an overall decrease. Analysis of proteoglycan showed a loss of the overall content and a quite uniform staining in

  4. Droplet digital PCR analysis of NOTCH1 gene mutations in chronic lymphocytic leukemia.

    Science.gov (United States)

    Minervini, Angela; Francesco Minervini, Crescenzio; Anelli, Luisa; Zagaria, Antonella; Casieri, Paola; Coccaro, Nicoletta; Cumbo, Cosimo; Tota, Giuseppina; Impera, Luciana; Orsini, Paola; Brunetti, Claudia; Giordano, Annamaria; Specchia, Giorgina; Albano, Francesco

    2016-12-27

    In chronic lymphocytic leukemia (CLL), NOTCH1 gene mutations (NOTCH1mut) have been associated with adverse prognostic features but the independence of these as a prognostic factor is still controversial. In our study we validated a c.7541-7542delCT NOTCH1 mutation assay based on droplet digital PCR (ddPCR); we also analyzed the NOTCH1mut allelic burden, expressed as fractional abundance (FA), in 88 CLL patients at diagnosis to assess its prognostic role and made a longitudinal ddPCR analysis in 10 cases harboring NOTCH1mut to verify the FA variation over time. Our data revealed that with the ddPCR approach the incidence of NOTCH1mut in CLL was much higher (53.4%) than expected. However, longitudinal ddPCR analysis of CLL cases showed a statistically significant reduction of the NOTCH1mut FA detected at diagnosis after treatment (median FA 11.67 % vs 0.09 %, respectively, p = 0.01); the same difference, in terms of NOTCH1mut FA, was observed in the relapsed cases compared to the NOTCH1mut allelic fraction observed in patients in complete or partial remission (median FA 4.75% vs 0.43%, respectively, p = 0.007). Our study demonstrated a much higher incidence of NOTCH1mut in CLL than has previously been reported, and showed that the NOTCH1mut allelic burden evaluation by ddPCR might identify patients in need of a closer clinical follow-up during the "watch and wait" interval and after standard chemotherapy.

  5. Performance Evaluation of the Bioneer AccuPower® HIV-1 Quantitative RT-PCR kit: Comparison with the Roche COBAS® AmpliPrep/COBAS TaqMan® HIV-1 Test Ver.2.0 for Quantification of HIV-1 Viral Load in Indonesia.

    Science.gov (United States)

    Kosasih, Agus Susanto; Sugiarto, Christine; Hayuanta, Hubertus Hosti; Juhaendi, Runingsih; Setiawan, Lyana

    2017-08-08

    Measurement of viral load in human immunodeficiency virus type 1 (HIV-1) infected patients is essential for the establishment of a therapeutic strategy. Several assays based on qPCR are available for the measurement of viral load; they differ in sample volume, technology applied, target gene, sensitivity and dynamic range. The Bioneer AccuPower® HIV-1 Quantitative RT-PCR is a novel commercial kit that has not been evaluated for its performance. This study aimed to evaluate the performance of the Bioneer AccuPower® HIV-1 Quantitative RT-PCR kit. In total, 288 EDTA plasma samples from the Dharmais Cancer Hospital were analyzed with the Bioneer AccuPower® HIV-1 Quantitative RT-PCR kit and the Roche COBAS? AmpliPrep/COBAS® TaqMan® HIV-1 version 2.0 (CAP/CTM v2.0). The performance of the Bioneer assay was then evaluated against the Roche CAP/CTM v2.0. Overall, there was good agreement between the two assays. The Bioneer assay showed significant linear correlation with CAP/CTM v2.0 (R2=0.963, plaboratories.

  6. Molecular analysis of the genera eremopyrum (ledeb). jaub. and spach and agropyron gaertner (poaceae) by pcr methods

    International Nuclear Information System (INIS)

    Yilmaz, R.; Cabi, E.; Dogan, M.

    2014-01-01

    RAPD-PCR (Random Amplified Polymorphic DNA Polymerase Chain Reaction) and Post PCR (Polymerase Chain Reaction) Melting Curve Analysis (MCA) have been used to investigate the pattern of genetic variation among some species in the genera Eremopyrum (Ledeb.) Jaub. and Spach and Agropyron Gaertner (Poaceae). Thirteen primers have been used in the study based on the RAPD-PCR and MCA analyses. Each species produced a distinct pattern of DNA fragments which have been used as a measure of the degree of relationship between species by means of using the RAPD-PCR results with three primers selected for identifying the genetic similarities. Polymorphic melting profiles have been obtained with Post PCR MCA method using three primers. Genetic similarities are calculated for all the species studied with RAPD-PCR and MCA methods, the dendrograms are obtained with the MVSP (Multi Variate Statistical Package) software using UPGMA (Unweighted Pair Group Method with Arithmetic Averages) and Jaccard's Coefficient. Polymorphism between 18 populations of Eremopyrum and 6 Agropyron populations and within the species are determined by using RAPD-PCR and Post PCR melting curve analysis (MCA) respectively. (author)

  7. Quantitative Data Analysis--In the Graduate Curriculum

    Science.gov (United States)

    Albers, Michael J.

    2017-01-01

    A quantitative research study collects numerical data that must be analyzed to help draw the study's conclusions. Teaching quantitative data analysis is not teaching number crunching, but teaching a way of critical thinking for how to analyze the data. The goal of data analysis is to reveal the underlying patterns, trends, and relationships of a…

  8. [A Duplex PCR Method for Detection of Babesia caballi and Theileria equi].

    Science.gov (United States)

    Zhang, Yang; Zhang, Yu-ting; Wang, Zhen-bao; Bolati; Li, Hai; Bayinchahan

    2015-04-01

    To develop a duplex PCR assay for detection of Babesia caballi and Theileria equi. Two pairs of primers were designed according to the BC48 gene of B. caballi and 18 s rRNA gene of T. equi, and a duplex PCR assay was developed by the optimization of reaction conditions. The specificity, sensitivity and reliability of the method were tested. The horse blood samples of suspected cases were collected from Yili region, and detected by the duplex PCR, microspopy, conventional PCR, and fluorescence quantitative PCR, and the results were compared. Using the duplex PCR assay, the specific fragments of 155 bp and 280 bp were amplified from DNA samples of B. caballi and T. equi, respectively. No specific fragment was amplified from DNA samples of B. bigemina, Theilerdia annulata, Theilerdia sergenti, Toxoplasma gondii, Neospora caninum, and Trypanosoma evansi. The limit of detection was 4.85 x 10(5) copies/L for B. caballi DNA and 4.85 x 10(4) copies/µl for T. equi DNA, respectively. Among the 24 blood samples, 11 were found B. caballi-positive by the duplex PCR assay, and 18 were T. equi-positive. The coincidence rate of microscopy, conventional PCR, and fluorescence quantitative PCR with duplex PCR was 91.7% (22/24), 95.8% (23/24), and 95.8% (23/24), respectively. A duplex PCR assay for simultaneous detection of B. caballi and T. equi is established.

  9. Evaluation of the CBL family gene expression under drought stress and virus attack in two susceptible and drought tolerant tomato cultivars using semi-quantitative PCR analysis

    Directory of Open Access Journals (Sweden)

    Peyman Aghaie

    2017-08-01

    Full Text Available Eleven genes encoding Calcineurin B-Like proteins with a high degree of sequence conservation were identified using bioinformatics approaches in tomato. These proteins classified into five clusters including SlCBL1, SlCBL3, SlCBL4, SlCBL8 and SlCBL10 using orthology-based method of nomenclature. Sequence analysis showed that all five members of SlCBL1 and SlCBL4 contained a myristoylation conserved motif (MGXXXS/T at their N-terminals. Semi-quantitative RT-PCR showed that among the SlCBL1 members, SlCBL1-3 up-regulated under both drought and virus stresses, as well as the combined treatment. Although, both SlCBL3-1 and SlCBL3-2 up-regulated under both drought and virus stresses in both susceptive and resistant cultivars, the combined stress did not have any additional effect on the expression. Among SlCBL4 members, only SlCBL4-1 up-regulated under drought or virus attack. There was a diverse pattern of expression between the two SlCBL8 members under different stresses in both cultivars. SlCBL10 showed no change in expression pattern under drought or virus stresses in susceptive cultivar and this gene showed to be up-regulated under drought in resistant cultivar. Overall, it was concluded that changes in the expression pattern of CBL genes under biotic and abiotic stresses seemingly induced various CBL/CIPK patways in suseptive or resistant plants.

  10. Detection and enumeration of Salmonella enteritidis in homemade ice cream associated with an outbreak: comparison of conventional and real-time PCR methods.

    Science.gov (United States)

    Seo, K H; Valentin-Bon, I E; Brackett, R E

    2006-03-01

    Salmonellosis caused by Salmonella Enteritidis (SE) is a significant cause of foodborne illnesses in the United States. Consumption of undercooked eggs and egg-containing products has been the primary risk factor for the disease. The importance of the bacterial enumeration technique has been enormously stressed because of the quantitative risk analysis of SE in shell eggs. Traditional enumeration methods mainly depend on slow and tedious most-probable-number (MPN) methods. Therefore, specific, sensitive, and rapid methods for SE quantitation are needed to collect sufficient data for risk assessment and food safety policy development. We previously developed a real-time quantitative PCR assay for the direct detection and enumeration of SE and, in this study, applied it to naturally contaminated ice cream samples with and without enrichment. The detection limit of the real-time PCR assay was determined with artificially inoculated ice cream. When applied to the direct detection and quantification of SE in ice cream, the real-time PCR assay was as sensitive as the conventional plate count method in frequency of detection. However, populations of SE derived from real-time quantitative PCR were approximately 1 log higher than provided by MPN and CFU values obtained by conventional culture methods. The detection and enumeration of SE in naturally contaminated ice cream can be completed in 3 h by this real-time PCR method, whereas the cultural enrichment method requires 5 to 7 days. A commercial immunoassay for the specific detection of SE was also included in the study. The real-time PCR assay proved to be a valuable tool that may be useful to the food industry in monitoring its processes to improve product quality and safety.

  11. Determination of the Effects of Medium Composition on the Monochloramine Disinfection Kinetics of Nitrosomonas europaea by the Propidium Monoazide Quantitative PCR and Live/Dead BacLight Methods ▿

    Science.gov (United States)

    Wahman, David G.; Schrantz, Karen A.; Pressman, Jonathan G.

    2010-01-01

    Various medium compositions (phosphate, 1 to 50 mM; ionic strength, 2.8 to 150 meq/liter) significantly affected Nitrosomonas europaea monochloramine disinfection kinetics, as determined by the Live/Dead BacLight (LD) and propidium monoazide quantitative PCR (PMA-qPCR) methods (lag coefficient, 37 to 490 [LD] and 91 to 490 [PMA-qPCR] mg·min/liter; Chick-Watson rate constant, 4.0 × 10−3 to 9.3 × 10−3 [LD] and 1.6 × 10−3 to 9.6 × 10−3 [PMA-qPCR] liter/mg·min). Two competing effects may account for the variation in disinfection kinetic parameters: (i) increasing kinetics (disinfection rate constant [k] increased, lag coefficient [b] decreased) with increasing phosphate concentration and (ii) decreasing kinetics (k decreased, b increased) with increasing ionic strength. The results support development of a standard medium for evaluating disinfection kinetics in drinking water. PMID:20952645

  12. The Digital MIQE Guidelines: Minimum Information for Publication of Quantitative Digital PCR Experiments

    Czech Academy of Sciences Publication Activity Database

    Huggett, J.F.; Foy, C.A.; Benes, V.; Emslie, K.; Garson, J.A.; Haynes, R.; Hellemans, J.; Kubista, Mikael; Mueller, R.D.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; Vandesompele, J.; Wittwer, C.T.; Bustin, S.A.

    2013-01-01

    Roč. 59, č. 6 (2013), s. 892-902 ISSN 0009-9147 R&D Projects: GA ČR GAP303/10/1338 Institutional research plan: CEZ:AV0Z50520701 Keywords : REAL - TIME PCR * POLYMERASE-CHAIN-REACTION * COPY NUMBER VARIATION * RT-PCR Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.768, year: 2013

  13. Identification and Quantification of Celery Allergens Using Fiber Optic Surface Plasmon Resonance PCR

    Directory of Open Access Journals (Sweden)

    Devin Daems

    2017-07-01

    Full Text Available Abstract: Accurate identification and quantification of allergens is key in healthcare, biotechnology and food quality and safety. Celery (Apium graveolens is one of the most important elicitors of food allergic reactions in Europe. Currently, the golden standards to identify, quantify and discriminate celery in a biological sample are immunoassays and two-step molecular detection assays in which quantitative PCR (qPCR is followed by a high-resolution melting analysis (HRM. In order to provide a DNA-based, rapid and simple detection method suitable for one-step quantification, a fiber optic PCR melting assay (FO-PCR-MA was developed to determine different concentrations of celery DNA (1 pM–0.1 fM. The presented method is based on the hybridization and melting of DNA-coated gold nanoparticles to the FO sensor surface in the presence of the target gene (mannitol dehydrogenase, Mtd. The concept was not only able to reveal the presence of celery DNA, but also allowed for the cycle-to-cycle quantification of the target sequence through melting analysis. Furthermore, the developed bioassay was benchmarked against qPCR followed by HRM, showing excellent agreement (R2 = 0.96. In conclusion, this innovative and sensitive diagnostic test could further improve food quality control and thus have a large impact on allergen induced healthcare problems.

  14. Original methods of quantitative analysis developed for diverse samples in various research fields. Quantitative analysis at NMCC

    International Nuclear Information System (INIS)

    Sera, Koichiro

    2003-01-01

    Nishina Memorial Cyclotron Center (NMCC) has been opened for nationwide-common utilization of positron nuclear medicine (PET) and PIXE since April 1993. At the present time, nearly 40 subjects of PIXE in various research fields are pursued here, and more than 50,000 samples have been analyzed up to the present. In order to perform quantitative analyses of diverse samples, technical developments in sample preparation, measurement and data analysis have been continuously carried out. Especially, a standard-free method for quantitative analysis'' made it possible to perform analysis of infinitesimal samples, powdered samples and untreated bio samples, which could not be well analyzed quantitatively in the past. The standard-free method'' and a ''powdered internal standard method'' made the process for target preparation quite easier. It has been confirmed that results obtained by these methods show satisfactory accuracy and reproducibility preventing any ambiguity coming from complicated target preparation processes. (author)

  15. Quantitation of O6-methylguanine-DNA methyltransferase gene messenger RNA in gliomas by means of real-time RT-PCR and clinical response to nitrosoureas.

    Science.gov (United States)

    Tanaka, Satoshi; Oka, Hidehiro; Fujii, Kiyotaka; Watanabe, Kaoru; Nagao, Kumi; Kakimoto, Atsushi

    2005-09-01

    1. O6-methylguanine-DNA methyltransferase (MGMT) mRNA was measured in 50 malignant gliomas that had received 1-(4-amino-2-methyl-5-pyrimidynyl) methyl-3-(2-chloroethyl)-3-nitrosourea hydrochloride (ACNU) after the resection of the tumor by real-time reverse transcription-polymerase chain reaction (RT-PCR) using TaqMan probe. 2. The mean absolute value of MGMTmRNA normalized to the level of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) for 50 tumors was 1.29 x 10(4)+/- 1.28 x 10(4) copy/microg RNA (mean +/- SD). The amount of MGMTmRNA less than 6 x 10(3) copy/microg RNA was the most significant factor in predicting the initial effect of treatment with ACNU by multi-variant regression analysis (p = 0.0157). 3. These results suggest that quantitation of MGMTmRNA is the excellent method for predicting for the effect of ACNU in glioma therapy.

  16. Quantitative fucK gene polymerase chain reaction on sputum and nasopharyngeal secretions to detect Haemophilus influenzae pneumonia.

    Science.gov (United States)

    Abdeldaim, Guma M K; Strålin, Kristoffer; Olcén, Per; Blomberg, Jonas; Mölling, Paula; Herrmann, Björn

    2013-06-01

    A quantitative polymerase chain reaction (PCR) for the fucK gene was developed for specific detection of Haemophilus influenzae. The method was tested on sputum and nasopharyngeal aspirate (NPA) from 78 patients with community-acquired pneumonia (CAP). With a reference standard of sputum culture and/or serology against the patient's own nasopharyngeal isolate, H. influenzae etiology was detected in 20 patients. Compared with the reference standard, fucK PCR (using the detection limit 10(5) DNA copies/mL) on sputum and NPA showed a sensitivity of 95.0% (19/20) in both cases, and specificities of 87.9% (51/58) and 89.5% (52/58), respectively. In a receiver operating characteristic curve analysis, sputum fucK PCR was found to be significantly superior to sputum P6 PCR for detection of H. influenzae CAP. NPA fucK PCR was positive in 3 of 54 adult controls without respiratory symptoms. In conclusion, quantitative fucK real-time PCR provides a sensitive and specific identification of H. influenzae in respiratory secretions. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Screening and Validation of Housekeeping Genes of the Root and Cotyledon of Cunninghamia lanceolata under Abiotic Stresses by Using Quantitative Real-Time PCR

    Directory of Open Access Journals (Sweden)

    Wenlong Bao

    2016-07-01

    Full Text Available Cunninghamia lanceolata (Chinese fir is a fast-growing and commercially important conifer of the Cupressaceae family. Due to the unavailability of complete genome sequences and relatively poor genetic background information of the Chinese fir, it is necessary to identify and analyze the expression levels of suitable housekeeping genes (HKGs as internal reference for precise analysis. Based on the results of database analysis and transcriptome sequencing, we have chosen five candidate HKGs (Actin, GAPDH, EF1a, 18S rRNA, and UBQ with conservative sequences in the Chinese fir and related species for quantitative analysis. The expression levels of these HKGs in roots and cotyledons under five different abiotic stresses in different time intervals were measured by qRT-PCR. The data were statistically analyzed using the following algorithms: NormFinder, BestKeeper, and geNorm. Finally, RankAggreg was applied to merge the sequences generated from three programs and rank these according to consensus sequences. The expression levels of these HKGs showed variable stabilities under different abiotic stresses. Among these, Actin was the most stable internal control in root, and GAPDH was the most stable housekeeping gene in cotyledon. We have also described an experimental procedure for selecting HKGs based on the de novo sequencing database of other non-model plants.

  18. Construction of an adult barnacle (Balanus amphitrite cDNA library and selection of reference genes for quantitative RT-PCR studies

    Directory of Open Access Journals (Sweden)

    Burgess J Grant

    2009-06-01

    Full Text Available Abstract Background Balanus amphitrite is a barnacle commonly used in biofouling research. Although many aspects of its biology have been elucidated, the lack of genetic information is impeding a molecular understanding of its life cycle. As part of a wider multidisciplinary approach to reveal the biogenic cues influencing barnacle settlement and metamorphosis, we have sequenced and annotated the first cDNA library for B. amphitrite. We also present a systematic validation of potential reference genes for normalization of quantitative real-time PCR (qRT-PCR data obtained from different developmental stages of this animal. Results We generated a cDNA library containing expressed sequence tags (ESTs from adult B. amphitrite. A total of 609 unique sequences (comprising 79 assembled clusters and 530 singlets were derived from 905 reliable unidirectionally sequenced ESTs. Bioinformatics tools such as BLAST, HMMer and InterPro were employed to allow functional annotation of the ESTs. Based on these analyses, we selected 11 genes to study their ability to normalize qRT-PCR data. Total RNA extracted from 7 developmental stages was reverse transcribed and the expression stability of the selected genes was compared using geNorm, BestKeeper and NormFinder. These software programs produced highly comparable results, with the most stable gene being mt-cyb, while tuba, tubb and cp1 were clearly unsuitable for data normalization. Conclusion The collection of B. amphitrite ESTs and their annotation has been made publically available representing an important resource for both basic and applied research on this species. We developed a qRT-PCR assay to determine the most reliable reference genes. Transcripts encoding cytochrome b and NADH dehydrogenase subunit 1 were expressed most stably, although other genes also performed well and could prove useful to normalize gene expression studies.

  19. Reverse transcriptase-quantitative polymerase chain reaction (RT ...

    African Journals Online (AJOL)

    The reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) is a highly specific polymerase chain reaction (PCR) method that allows one to detect very low transcription levels of functional gene(s) in soil. RT-qPCR helps us to know the active members of the microbial community, and their activities can be ...

  20. Identification of Reference Genes for Quantitative Real Time PCR Assays in Aortic Tissue of Syrian Hamsters with Bicuspid Aortic Valve.

    Science.gov (United States)

    Rueda-Martínez, Carmen; Fernández, M Carmen; Soto-Navarrete, María Teresa; Jiménez-Navarro, Manuel; Durán, Ana Carmen; Fernández, Borja

    2016-01-01

    Bicuspid aortic valve (BAV) is the most frequent congenital cardiac malformation in humans, and appears frequently associated with dilatation of the ascending aorta. This association is likely the result of a common aetiology. Currently, a Syrian hamster strain with a relatively high (∼40%) incidence of BAV constitutes the only spontaneous animal model of BAV disease. The characterization of molecular alterations in the aorta of hamsters with BAV may serve to identify pathophysiological mechanisms and molecular markers of disease in humans. In this report, we evaluate the expression of ten candidate reference genes in aortic tissue of hamsters in order to identify housekeeping genes for normalization using quantitative real time PCR (RT-qPCR) assays. A total of 51 adult (180-240 days old) and 56 old (300-440 days old) animals were used. They belonged to a control strain of hamsters with normal, tricuspid aortic valve (TAV; n = 30), or to the affected strain of hamsters with TAV (n = 45) or BAV (n = 32). The expression stability of the candidate reference genes was determined by RT-qPCR using three statistical algorithms, GeNorm, NormFinder and Bestkeeper. The expression analyses showed that the most stable reference genes for the three algorithms employed were Cdkn1β, G3pdh and Polr2a. We propose the use of Cdkn1β, or both Cdkn1β and G3pdh as reference genes for mRNA expression analyses in Syrian hamster aorta.

  1. Identification of Reference Genes for Quantitative Real Time PCR Assays in Aortic Tissue of Syrian Hamsters with Bicuspid Aortic Valve.

    Directory of Open Access Journals (Sweden)

    Carmen Rueda-Martínez

    Full Text Available Bicuspid aortic valve (BAV is the most frequent congenital cardiac malformation in humans, and appears frequently associated with dilatation of the ascending aorta. This association is likely the result of a common aetiology. Currently, a Syrian hamster strain with a relatively high (∼40% incidence of BAV constitutes the only spontaneous animal model of BAV disease. The characterization of molecular alterations in the aorta of hamsters with BAV may serve to identify pathophysiological mechanisms and molecular markers of disease in humans. In this report, we evaluate the expression of ten candidate reference genes in aortic tissue of hamsters in order to identify housekeeping genes for normalization using quantitative real time PCR (RT-qPCR assays. A total of 51 adult (180-240 days old and 56 old (300-440 days old animals were used. They belonged to a control strain of hamsters with normal, tricuspid aortic valve (TAV; n = 30, or to the affected strain of hamsters with TAV (n = 45 or BAV (n = 32. The expression stability of the candidate reference genes was determined by RT-qPCR using three statistical algorithms, GeNorm, NormFinder and Bestkeeper. The expression analyses showed that the most stable reference genes for the three algorithms employed were Cdkn1β, G3pdh and Polr2a. We propose the use of Cdkn1β, or both Cdkn1β and G3pdh as reference genes for mRNA expression analyses in Syrian hamster aorta.

  2. Selection of Reference Genes for qRT-PCR Analysis of Gene Expression in Stipa grandis during Environmental Stresses.

    Directory of Open Access Journals (Sweden)

    Dongli Wan

    Full Text Available Stipa grandis P. Smirn. is a dominant plant species in the typical steppe of the Xilingole Plateau of Inner Mongolia. Selection of suitable reference genes for the quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR is important for gene expression analysis and research into the molecular mechanisms underlying the stress responses of S. grandis. In the present study, 15 candidate reference genes (EF1 beta, ACT, GAPDH, SamDC, CUL4, CAP, SNF2, SKIP1, SKIP5, SKIP11, UBC2, UBC15, UBC17, UCH, and HERC2 were evaluated for their stability as potential reference genes for qRT-PCR under different stresses. Four algorithms were used: GeNorm, NormFinder, BestKeeper, and RefFinder. The results showed that the most stable reference genes were different under different stress conditions: EF1beta and UBC15 during drought and salt stresses; ACT and GAPDH under heat stress; SKIP5 and UBC17 under cold stress; UBC15 and HERC2 under high pH stress; UBC2 and UBC15 under wounding stress; EF1beta and UBC17 under jasmonic acid treatment; UBC15 and CUL4 under abscisic acid treatment; and HERC2 and UBC17 under salicylic acid treatment. EF1beta and HERC2 were the most suitable genes for the global analysis of all samples. Furthermore, six target genes, SgPOD, SgPAL, SgLEA, SgLOX, SgHSP90 and SgPR1, were selected to validate the most and least stable reference genes under different treatments. Our results provide guidelines for reference gene selection for more accurate qRT-PCR quantification and will promote studies of gene expression in S. grandis subjected to environmental stress.

  3. Molecular characterization of Salmonella isolates by REP-PCR and RAPD analysis.

    Science.gov (United States)

    Albufera, U; Bhugaloo-Vial, P; Issack, M I; Jaufeerally-Fakim, Y

    2009-05-01

    Eighteen Salmonella isolates from both human and food (non-human) sources (fish, meat, and poultry) were characterized using conventional culture methods, biochemical, serological, and molecular analyses. REP-PCR and RAPD produced DNA profiles for differentiation purposes. Enterobacterial repetitive intergenic consensus (ERIC), repetitive extragenic palindronic (REP) and BOXAIR primers were selected for REP-PCR and two arbitrary primers, namely OPP-16 and OPS-11 were used for RAPD to generate DNA fingerprints from the Salmonella isolates. REP-PCR method showed greater discriminatory power in differentiating closely related strains of the related strains of Salmonella and produced more complex banding patterns as compared with RAPD. A dendogram was constructed with both sets of profiles using SPSS Version 13.0 computer software and showed that most human isolates were separately clustered from the non-human isolates. Two of the human isolates were closely related to some of the non-human isolates. A good correlation was also observed between the serogrouping of the O antigen and the molecular profiles obtained from REP-PCR and RAPD data of the Salmonella isolates. The results of a principal coordinate analysis (PCA) corresponded to the clustering in the dendrogram.

  4. Stepwise kinetic equilibrium models of quantitative polymerase chain reaction

    Directory of Open Access Journals (Sweden)

    Cobbs Gary

    2012-08-01

    Full Text Available Abstract Background Numerous models for use in interpreting quantitative PCR (qPCR data are present in recent literature. The most commonly used models assume the amplification in qPCR is exponential and fit an exponential model with a constant rate of increase to a select part of the curve. Kinetic theory may be used to model the annealing phase and does not assume constant efficiency of amplification. Mechanistic models describing the annealing phase with kinetic theory offer the most potential for accurate interpretation of qPCR data. Even so, they have not been thoroughly investigated and are rarely used for interpretation of qPCR data. New results for kinetic modeling of qPCR are presented. Results Two models are presented in which the efficiency of amplification is based on equilibrium solutions for the annealing phase of the qPCR process. Model 1 assumes annealing of complementary targets strands and annealing of target and primers are both reversible reactions and reach a dynamic equilibrium. Model 2 assumes all annealing reactions are nonreversible and equilibrium is static. Both models include the effect of primer concentration during the annealing phase. Analytic formulae are given for the equilibrium values of all single and double stranded molecules at the end of the annealing step. The equilibrium values are then used in a stepwise method to describe the whole qPCR process. Rate constants of kinetic models are the same for solutions that are identical except for possibly having different initial target concentrations. Analysis of qPCR curves from such solutions are thus analyzed by simultaneous non-linear curve fitting with the same rate constant values applying to all curves and each curve having a unique value for initial target concentration. The models were fit to two data sets for which the true initial target concentrations are known. Both models give better fit to observed qPCR data than other kinetic models present in the

  5. Stepwise kinetic equilibrium models of quantitative polymerase chain reaction.

    Science.gov (United States)

    Cobbs, Gary

    2012-08-16

    Numerous models for use in interpreting quantitative PCR (qPCR) data are present in recent literature. The most commonly used models assume the amplification in qPCR is exponential and fit an exponential model with a constant rate of increase to a select part of the curve. Kinetic theory may be used to model the annealing phase and does not assume constant efficiency of amplification. Mechanistic models describing the annealing phase with kinetic theory offer the most potential for accurate interpretation of qPCR data. Even so, they have not been thoroughly investigated and are rarely used for interpretation of qPCR data. New results for kinetic modeling of qPCR are presented. Two models are presented in which the efficiency of amplification is based on equilibrium solutions for the annealing phase of the qPCR process. Model 1 assumes annealing of complementary targets strands and annealing of target and primers are both reversible reactions and reach a dynamic equilibrium. Model 2 assumes all annealing reactions are nonreversible and equilibrium is static. Both models include the effect of primer concentration during the annealing phase. Analytic formulae are given for the equilibrium values of all single and double stranded molecules at the end of the annealing step. The equilibrium values are then used in a stepwise method to describe the whole qPCR process. Rate constants of kinetic models are the same for solutions that are identical except for possibly having different initial target concentrations. Analysis of qPCR curves from such solutions are thus analyzed by simultaneous non-linear curve fitting with the same rate constant values applying to all curves and each curve having a unique value for initial target concentration. The models were fit to two data sets for which the true initial target concentrations are known. Both models give better fit to observed qPCR data than other kinetic models present in the literature. They also give better estimates of

  6. Using high-throughput DNA sequencing, genetic fingerprinting, and quantitative PCR as tools for monitoring bloom-forming and toxigenic cyanobacteria in Upper Klamath Lake, Oregon, 2013 and 2014

    Science.gov (United States)

    Caldwell Eldridge, Sara L.; Driscoll, Conner; Dreher, Theo W.

    2017-06-05

    Monitoring the community structure and metabolic activities of cyanobacterial blooms in Upper Klamath Lake, Oregon, is critical to lake management because these blooms degrade water quality and produce toxic microcystins that are harmful to humans, domestic animals, and wildlife. Genetic tools, such as DNA fingerprinting by terminal restriction fragment length polymorphism (T-RFLP) analysis, high-throughput DNA sequencing (HTS), and real-time, quantitative polymerase chain reaction (qPCR), provide more sensitive and rapid assessments of bloom ecology than traditional techniques. The objectives of this study were (1) to characterize the microbial community at one site in Upper Klamath Lake and determine changes in the cyanobacterial community through time using T-RFLP and HTS in comparison with traditional light microscopy; (2) to determine relative abundances and changes in abundance over time of toxigenic Microcystis using qPCR; and (3) to determine relative abundances and changes in abundance over time of Aphanizomenon, Microcystis, and total cyanobacteria using qPCR. T-RFLP analysis of total cyanobacteria showed a dominance of only one or two distinct genotypes in samples from 2013, but results of HTS in 2013 and 2014 showed more variations in the bloom cycle that fit with the previous understanding of bloom dynamics in Upper Klamath Lake and indicated that potentially toxigenic Microcystis was more prevalent in 2014 than in years prior. The qPCR-estimated copy numbers of all target genes were higher in 2014 than in 2013, when microcystin concentrations also were higher. Total Microcystis density was shown with qPCR to be a better predictor of late-season increases in microcystin concentrations than the relative proportions of potentially toxigenic cells. In addition, qPCR targeting Aphanizomenon at one site in Upper Klamath Lake indicated a moderate bloom of this species (corresponding to chlorophyll a concentrations between approximately 75 and 200 micrograms

  7. Pathway and network-based analysis of genome-wide association studies and RT-PCR validation in polycystic ovary syndrome.

    Science.gov (United States)

    Shen, Haoran; Liang, Zhou; Zheng, Saihua; Li, Xuelian

    2017-11-01

    The purpose of this study was to identify promising candidate genes and pathways in polycystic ovary syndrome (PCOS). Microarray dataset GSE345269 obtained from the Gene Expression Omnibus database includes 7 granulosa cell samples from PCOS patients, and 3 normal granulosa cell samples. Differentially expressed genes (DEGs) were screened between PCOS and normal samples. Pathway enrichment analysis was conducted for DEGs using ClueGO and CluePedia plugin of Cytoscape. A Reactome functional interaction (FI) network of the DEGs was built using ReactomeFIViz, and then network modules were extracted, followed by pathway enrichment analysis for the modules. Expression of DEGs in granulosa cell samples was measured using quantitative RT-PCR. A total of 674 DEGs were retained, which were significantly enriched with inflammation and immune-related pathways. Eight modules were extracted from the Reactome FI network. Pathway enrichment analysis revealed significant pathways of each module: module 0, Regulation of RhoA activity and Signaling by Rho GTPases pathways shared ARHGAP4 and ARHGAP9; module 2, GlycoProtein VI-mediated activation cascade pathway was enriched with RHOG; module 3, Thromboxane A2 receptor signaling, Chemokine signaling pathway, CXCR4-mediated signaling events pathways were enriched with LYN, the hub gene of module 3. Results of RT-PCR confirmed the finding of the bioinformatic analysis that ARHGAP4, ARHGAP9, RHOG and LYN were significantly upregulated in PCOS. RhoA-related pathways, GlycoProtein VI-mediated activation cascade pathway, ARHGAP4, ARHGAP9, RHOG and LYN may be involved in the pathogenesis of PCOS.

  8. Quantification of bacteria adherent to gastrointestinal mucosa by real-time PCR

    NARCIS (Netherlands)

    Huijsdens, Xander W.; Linskens, Ronald K.; Mak, Mariëtte; Meuwissen, Stephan G. M.; Vandenbroucke-Grauls, Christina M. J. E.; Savelkoul, Paul H. M.

    2002-01-01

    The use of real-time quantitative PCR (5' nuclease PCR assay) as a tool to study the gastrointestinal microflora that adheres to the colonic mucosa was evaluated. We developed primers and probes based on the 16S ribosomal DNA gene sequences for the detection of Escherichia coli and Bacteroides

  9. Evaluation of PCR and high-resolution melt curve analysis for differentiation of Salmonella isolates.

    Science.gov (United States)

    Saeidabadi, Mohammad Sadegh; Nili, Hassan; Dadras, Habibollah; Sharifiyazdi, Hassan; Connolly, Joanne; Valcanis, Mary; Raidal, Shane; Ghorashi, Seyed Ali

    2017-06-01

    Consumption of poultry products contaminated with Salmonella is one of the major causes of foodborne diseases worldwide and therefore detection and differentiation of Salmonella spp. in poultry is important. In this study, oligonucleotide primers were designed from hemD gene and a PCR followed by high-resolution melt (HRM) curve analysis was developed for rapid differentiation of Salmonella isolates. Amplicons of 228 bp were generated from 16 different Salmonella reference strains and from 65 clinical field isolates mainly from poultry farms. HRM curve analysis of the amplicons differentiated Salmonella isolates and analysis of the nucleotide sequence of the amplicons from selected isolates revealed that each melting curve profile was related to a unique DNA sequence. The relationship between reference strains and tested specimens was also evaluated using a mathematical model without visual interpretation of HRM curves. In addition, the potential of the PCR-HRM curve analysis was evaluated for genotyping of additional Salmonella isolates from different avian species. The findings indicate that PCR followed by HRM curve analysis provides a rapid and robust technique for genotyping of Salmonella isolates to determine the serovar/serotype.

  10. Comparison of ELISA, nested PCR and sequencing and a novel qPCR for detection of Giardia isolates from Jordan.

    Science.gov (United States)

    Hijjawi, Nawal; Yang, Rongchang; Hatmal, Ma'mon; Yassin, Yasmeen; Mharib, Taghrid; Mukbel, Rami; Mahmoud, Sameer Alhaj; Al-Shudifat, Abdel-Ellah; Ryan, Una

    2018-02-01

    Little is known about the prevalence of Giardia duodenalis in human patients in Jordan and all previous studies have used direct microscopy, which lacks sensitivity. The present study developed a novel quantitative PCR (qPCR) assay at the β-giardin (bg) locus and evaluated its use as a frontline test for the diagnosis of giardiasis in comparison with a commercially available ELISA using nested PCR and sequencing of the glutamate dehydrogenase (gdh) locus (gdh nPCR) as the gold standard. A total of 96 human faecal samples were collected from 96 patients suffering from diarrhoea from 5 regions of Jordan and were screened using the ELISA and qPCR. The analytical specificity of the bg qPCR assay revealed no cross-reactions with other genera and detected all the Giardia isolates tested. Analytical sensitivity was 1 Giardia cyst per μl of DNA extract. The overall prevalence of Giardia was 64.6%. The clinical sensitivity and specificity of the bg qPCR was 89.9% and 82.9% respectively compared to 76.5 and 68.0% for the ELISA. This study is the first to compare three different methods (ELISA, bg qPCR, nested PCR and sequencing at the gdh locus) to diagnose Jordanian patients suffering from giardiasis and to analyze their demographic data. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Highly sensitive quantitative PCR for the detection and differentiation of Pseudogymnoascus destructans and other Pseudogymnoascus species.

    Science.gov (United States)

    Shuey, Megan M; Drees, Kevin P; Lindner, Daniel L; Keim, Paul; Foster, Jeffrey T

    2014-03-01

    White-nose syndrome is a fungal disease that has decimated bat populations across eastern North America. Identification of the etiologic agent, Pseudogymnoascus destructans (formerly Geomyces destructans), in environmental samples is essential to proposed management plans. A major challenge is the presence of closely related species, which are ubiquitous in many soils and cave sediments and often present in high abundance. We present a dual-probe real-time quantitative PCR assay capable of detecting and differentiating P. destructans from closely related fungi in environmental samples from North America. The assay, based on a single nucleotide polymorphism (SNP) specific to P. destructans, is capable of rapid low-level detection from various sampling media, including sediment, fecal samples, wing biopsy specimens, and skin swabs. This method is a highly sensitive, high-throughput method for identifying P. destructans, other Pseudogymnoascus spp., and Geomyces spp. in the environment, providing a fundamental component of research and risk assessment for addressing this disease, as well as other ecological and mycological work on related fungi.

  12. Advanced Analysis to Distinguish between Physical Decrease and Inactivation of Viable Phages in Aerosol by Quantitating Phage-Specific Particles.

    Science.gov (United States)

    Shimasaki, Noriko; Nojima, Yasuhiro; Sakakibara, Masaya; Kikuno, Ritsuko; Iizuka, Chiori; Okaue, Akira; Okuda, Shunji; Shinohara, Katsuaki

    2018-01-01

     Recent studies have investigated the efficacy of air-cleaning products against pathogens in the air. A standard method to evaluate the reduction in airborne viruses caused by an air cleaner has been established using a safe bacteriophage instead of pathogenic viruses; the reduction in airborne viruses is determined by counting the number of viable airborne phages by culture, after operating the air cleaner. The reduction in the number of viable airborne phages could be because of "physical decrease" or "inactivation". Therefore, to understand the mechanism of reduction correctly, an analysis is required to distinguish between physical decrease and inactivation. The purpose of this study was to design an analysis to distinguish between the physical decrease and inactivation of viable phi-X174 phages in aerosols. We established a suitable polymerase chain reaction (PCR) system by selecting an appropriate primer-probe set for PCR and validating the sensitivity, linearity, and specificity of the primer-probe set to robustly quantify phi-X174-specific airborne particles. Using this quantitative PCR system and culture assay, we performed a behavior analysis of the phage aerosol in a small chamber (1 m 3 ) at different levels of humidity, as humidity is known to affect the number of viable airborne phages. The results revealed that the reduction in the number of viable airborne phages was caused not only by physical decrease but also by inactivation under particular levels of humidity. Our study could provide an advanced analysis to differentiate between the physical decrease and inactivation of viable airborne phages.

  13. ReadqPCR and NormqPCR: R packages for the reading, quality checking and normalisation of RT-qPCR quantification cycle (Cq data

    Directory of Open Access Journals (Sweden)

    Perkins James R

    2012-07-01

    Full Text Available Abstract Background Measuring gene transcription using real-time reverse transcription polymerase chain reaction (RT-qPCR technology is a mainstay of molecular biology. Technologies now exist to measure the abundance of many transcripts in parallel. The selection of the optimal reference gene for the normalisation of this data is a recurring problem, and several algorithms have been developed in order to solve it. So far nothing in R exists to unite these methods, together with other functions to read in and normalise the data using the chosen reference gene(s. Results We have developed two R/Bioconductor packages, ReadqPCR and NormqPCR, intended for a user with some experience with high-throughput data analysis using R, who wishes to use R to analyse RT-qPCR data. We illustrate their potential use in a workflow analysing a generic RT-qPCR experiment, and apply this to a real dataset. Packages are available from http://www.bioconductor.org/packages/release/bioc/html/ReadqPCR.htmland http://www.bioconductor.org/packages/release/bioc/html/NormqPCR.html Conclusions These packages increase the repetoire of RT-qPCR analysis tools available to the R user and allow them to (amongst other things read their data into R, hold it in an ExpressionSet compatible R object, choose appropriate reference genes, normalise the data and look for differential expression between samples.

  14. Response of a diuron-degrading community to diuron exposure assessed by real-time quantitative PCR monitoring of phenylurea hydrolase A and B encoding genes

    OpenAIRE

    Pesce , S.; Beguet , J.; Rouard , N.; Devers Lamrani , M.; Martin Laurent , F.

    2013-01-01

    A real-time quantitative PCR method was developed to detect and quantify phenlylurea hydrolase genes' (puhA and puhB) sequences from environmental DNA samples to assess diuron-degrading genetic potential in some soil and sediment microbial communities. In the soil communities, mineralization rates (determined with [ring-14C]-labeled diuron) were linked to diuron-degrading genetic potentials estimated from puhB number copies, which increased following repeated diuron treatments. In the sedimen...

  15. Evaluation of candidate reference genes for gene expression normalization in Brassica juncea using real time quantitative RT-PCR.

    Directory of Open Access Journals (Sweden)

    Ruby Chandna

    Full Text Available The real time quantitative reverse transcription PCR (qRT-PCR is becoming increasingly important to gain insight into function of genes. Given the increased sensitivity, ease and reproducibility of qRT-PCR, the requirement of suitable reference genes for normalization has become important and stringent. It is now known that the expression of internal control genes in living organism vary considerably during developmental stages and under different experimental conditions. For economically important Brassica crops, only a couple of reference genes are reported till date. In this study, expression stability of 12 candidate reference genes including ACT2, ELFA, GAPDH, TUA, UBQ9 (traditional housekeeping genes, ACP, CAC, SNF, TIPS-41, TMD, TSB and ZNF (new candidate reference genes, in a diverse set of 49 tissue samples representing different developmental stages, stress and hormone treated conditions and cultivars of Brassica juncea has been validated. For the normalization of vegetative stages the ELFA, ACT2, CAC and TIPS-41 combination would be appropriate whereas TIPS-41 along with CAC would be suitable for normalization of reproductive stages. A combination of GAPDH, TUA, TIPS-41 and CAC were identified as the most suitable reference genes for total developmental stages. In various stress and hormone treated samples, UBQ9 and TIPS-41 had the most stable expression. Across five cultivars of B. juncea, the expression of CAC and TIPS-41 did not vary significantly and were identified as the most stably expressed reference genes. This study provides comprehensive information that the new reference genes selected herein performed better than the traditional housekeeping genes. The selection of most suitable reference genes depends on the experimental conditions, and is tissue and cultivar-specific. Further, to attain accuracy in the results more than one reference genes are necessary for normalization.

  16. Application of droplet digital PCR for quantitative detection of Spiroplasma citri in comparison with real time PCR

    Science.gov (United States)

    Droplet digital Polymerase chain reaction (ddPCR) is a unique approach to measure the absolute copy number of nucleic acid targets without the need of external standards. It is a promising DNA quantification technology for medical diagnostics but there are only a few reports of its use for plant pat...

  17. Viability-qPCR for detecting Legionella: Comparison of two assays based on different amplicon lengths.

    Science.gov (United States)

    Ditommaso, Savina; Giacomuzzi, Monica; Ricciardi, Elisa; Zotti, Carla M

    2015-08-01

    Two different real-time quantitative PCR (PMA-qPCR) assays were applied for quantification of Legionella spp. by targeting a long amplicon (approx 400 bp) of 16S rRNA gene and a short amplicon (approx. 100 bp) of 5S rRNA gene. Purified DNA extracts from pure cultures of Legionella spp. and from environmental water samples were quantified. Application of the two assays to quantify Legionella in artificially contaminated water achieved that both assays were able to detect Legionella over a linear range of 10 to 10(5) cells ml(-1). A statistical analysis of the standard curves showed that both assays were linear with a good correlation coefficient (R(2) = 0.99) between the Ct and the copy number. Amplification with the reference assay was the most effective for detecting low copy numbers (1 bacterium per PCR mixture). Using selective quantification of viable Legionella by the PMA-qPCR method we obtained a greater inhibition of the amplification of the 400-bp 16S gene fragment (Δlog(10) = 3.74 ± 0.39 log(10) GU ml(-1)). A complete inhibition of the PCR signal was obtained when heat-killed cells in a concentration below 1 × 10(5) cells ml(-1) were pretreated with PMA. Analysing short amplicon sizes led to only 2.08 log reductions in the Legionella dead-cell signal. When we tested environmental water samples, the two qPCR assays were in good agreement according to the kappa index (0.741). Applying qPCR combined with PMA treatment, we also obtained a good agreement (kappa index 0.615). The comparison of quantitative results shows that both assays yielded the same quantification sensitivity (mean log = 4.59 vs mean log = 4.31). Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. The need for transparency and good practices in the qPCR literature

    DEFF Research Database (Denmark)

    Bustin, Stephen A; Benes, Vladimir; Garson, Jeremy

    2013-01-01

    Two surveys of over 1,700 publications whose authors use quantitative real-time PCR (qPCR) reveal a lack of transparent and comprehensive reporting of essential technical information. Reporting standards are significantly improved in publications that cite the Minimum Information for Publication...

  19. A multiplex real-time PCR assay for routine diagnosis of bacterial vaginosis

    NARCIS (Netherlands)

    Kusters, J. G.; Reuland, E. A.; Bouter, S.; Koenig, P.; Dorigo-Zetsma, J. W.

    2015-01-01

    A semi-quantitative multiplex PCR assay for the diagnosis of bacterial vaginosis (BV) was evaluated in a prospective study in a population of Dutch women with complaints of abnormal vaginal discharge. The PCR targets Gardnerella vaginalis, Atopobium vaginae, Megasphaera phylotype 1, Lactobacillus

  20. A semi-nested real-time PCR method to detect low chimerism percentage in small quantity of hematopoietic stem cell transplant DNA samples.

    Science.gov (United States)

    Aloisio, Michelangelo; Bortot, Barbara; Gandin, Ilaria; Severini, Giovanni Maria; Athanasakis, Emmanouil

    2017-02-01

    Chimerism status evaluation of post-allogeneic hematopoietic stem cell transplantation samples is essential to predict post-transplant relapse. The most commonly used technique capable of detecting small increments of chimerism is quantitative real-time PCR. Although this method is already used in several laboratories, previously described protocols often lack sensitivity and the amount of the DNA required for each chimerism analysis is too high. In the present study, we compared a novel semi-nested allele-specific real-time PCR (sNAS-qPCR) protocol with our in-house standard allele-specific real-time PCR (gAS-qPCR) protocol. We selected two genetic markers and analyzed technical parameters (slope, y-intercept, R2, and standard deviation) useful to determine the performances of the two protocols. The sNAS-qPCR protocol showed better sensitivity and precision. Moreover, the sNAS-qPCR protocol requires, as input, only 10 ng of DNA, which is at least 10-fold less than the gAS-qPCR protocols described in the literature. Finally, the proposed sNAS-qPCR protocol could prove very useful for performing chimerism analysis with a small amount of DNA, as in the case of blood cell subsets.