Sample records for analysis chromosomal localization

  1. Porcine gamma-synuclein: molecular cloning, expression analysis, chromosomal localization and functional expression

    Frandsen, Pernille Munk; Madsen, Lone Bruhn; Bendixen, Christian;


    human SNCG gene. Expression analysis by quantitative real-time RT-PCR revealed the presence of SNCG transcripts in all examined organs and tissues. Differential expression was observed, with very high levels of SNCG mRNA in fat tissue and high expression levels in spleen, cerebellum, frontal cortex and...... pituitary gland. Expression analysis also showed that porcine SNCG transcripts could be detected in different brain regions during early stages of embryo development. The porcine SNCG orthologue was mapped to chromosome 14q25-q29. The distribution of recombinant porcine γ-synuclein was studied in three...

  2. Chromosome localization analysis of genes strongly expressed in human visceral adipose tissue.

    Yang, Yi-Sheng; Song, Huai-Dong; Shi, Wen-Jing; Hu, Ren-Ming; Han, Ze-Guang; Chen, Jia-Lun


    To understand fully the physiologic functions of visceral adipose tissue and to provide a basis for the identification of novel genes related to obesity and insulin resistance, the gene expression profiling of human visceral adipose tissue was established by using cDNA array. The characterization and chromosome localization of 400 expressed sequence tags (ESTs) strongly expressed in visceral adipose tissue were analyzed by searching PubMed, UniGene, the Human Genome Draft Database, and Location Data Base. Two hundred eighty-nine clones were classified into known genes among the 400 ESTs strongly expressed in the tissue. Among them, proteina; and phosphoinositide-3-kinase, regulatory subunit, polypeptide 2 (p85beta), were also localized in the concentrated regions, which may provide clues to identifying novel genes closely related to adipocyte function with potential pathophysiologic implications. PMID:12166625

  3. Chromosome localization of novel satellite repeats identified in pea (Pisum sativum) by computer analysis of 454-sequencing data

    Navrátilová, Alice; Macas, Jiří


    Roč. 15, Suppl. 2 (2007), s. 45. ISSN 0967-3849. [International Chromosome Conference /16./. 25.08.2007-29.08.2007, Amsterdam] Institutional research plan: CEZ:AV0Z50510513 Keywords : pea ( Pisum sativum ) * Chromosome localization Subject RIV: EB - Genetics ; Molecular Biology

  4. Fetal chromosome analysis: screening for chromosome disease?

    Philip, J; Tabor, Ann; Bang, J;


    A + B). Pregnant women 35 years of age, women who previously had a chromosomally abnormal child, families with translocation carriers or other heritable chromosomal disease, families where the father was 50 years or more and women in families with a history of Down's syndrome (group A), were...... unbalanced chromosome abnormality in group A (women with elevated risk) is significantly higher than in group B + C (women without elevated risk) (relative risk 2.4). Women with a known familial translocation and women 40 years or more have a relative risk of 5.7 of having an unbalanced chromosome......The aim of the study was to investigate the rationale of the current indications for fetal chromosome analysis. 5372 women had 5423 amniocentesis performed, this group constituting a consecutive sample at the chromosome laboratory, Rigshospitalet, Copenhagen from March 1973 to September 1980 (Group...

  5. Meta-Analysis Reveals that Genes Regulated by the Y Chromosome in Drosophila melanogaster Are Preferentially Localized to Repressive Chromatin

    Sackton, Timothy; Hartl, Daniel L.


    The Drosophila Y chromosome is a degenerated, heterochromatic chromosome with few functional genes. Despite this, natural variation on the Y chromosome in D. melanogaster has substantial trans-acting effects on the regulation of X-linked and autosomal genes. It is not clear, however, whether these genes simply represent a random subset of the genome or whether specific functional properties are associated with susceptibility to regulation by Y-linked variation. Here, we present a meta-analysi...

  6. Autoregressive higher-order hidden Markov models: exploiting local chromosomal dependencies in the analysis of tumor expression profiles.

    Michael Seifert

    Full Text Available Changes in gene expression programs play a central role in cancer. Chromosomal aberrations such as deletions, duplications and translocations of DNA segments can lead to highly significant positive correlations of gene expression levels of neighboring genes. This should be utilized to improve the analysis of tumor expression profiles. Here, we develop a novel model class of autoregressive higher-order Hidden Markov Models (HMMs that carefully exploit local data-dependent chromosomal dependencies to improve the identification of differentially expressed genes in tumor. Autoregressive higher-order HMMs overcome generally existing limitations of standard first-order HMMs in the modeling of dependencies between genes in close chromosomal proximity by the simultaneous usage of higher-order state-transitions and autoregressive emissions as novel model features. We apply autoregressive higher-order HMMs to the analysis of breast cancer and glioma gene expression data and perform in-depth model evaluation studies. We find that autoregressive higher-order HMMs clearly improve the identification of overexpressed genes with underlying gene copy number duplications in breast cancer in comparison to mixture models, standard first- and higher-order HMMs, and other related methods. The performance benefit is attributed to the simultaneous usage of higher-order state-transitions in combination with autoregressive emissions. This benefit could not be reached by using each of these two features independently. We also find that autoregressive higher-order HMMs are better able to identify differentially expressed genes in tumors independent of the underlying gene copy number status in comparison to the majority of related methods. This is further supported by the identification of well-known and of previously unreported hotspots of differential expression in glioblastomas demonstrating the efficacy of autoregressive higher-order HMMs for the analysis of individual

  7. cDNA cloning, sequence analysis, and chromosomal localization of the gene for human carnitine palmitoyltransferase

    Finocchiaro, G.; Taroni, F.; Martin, A.L.; Colombo, I.; Tarelli, G.T.; DiDonato, S. (Istituto Nazionale Neurologico C. Besta, Milan (Italy)); Rocchi, M. (Istituto G. Gaslini, Genoa (Italy))


    The authors have cloned and sequenced a cDNA encoding human liver carnitine palmitoyltransferase an inner mitochondrial membrane enzyme that plays a major role in the fatty acid oxidation pathway. Mixed oligonucleotide primers whose sequences were deduced from one tryptic peptide obtained from purified CPTase were used in a polymerase chain reaction, allowing the amplification of a 0.12-kilobase fragment of human genomic DNA encoding such a peptide. A 60-base-pair (bp) oligonucleotide synthesized on the basis of the sequence from this fragment was used for the screening of a cDNA library from human liver and hybridized to a cDNA insert of 2255 bp. This cDNA contains an open reading frame of 1974 bp that encodes a protein of 658 amino acid residues including 25 residues of an NH{sub 2}-terminal leader peptide. The assignment of this open reading frame to human liver CPTase is confirmed by matches to seven different amino acid sequences of tryptic peptides derived from pure human CPTase and by the 82.2% homology with the amino acid sequence of rat CPTase. The NH{sub 2}-terminal region of CPTase contains a leucine-proline motif that is shared by carnitine acetyl- and octanoyltransferases and by choline acetyltransferase. The gene encoding CPTase was assigned to human chromosome 1, region 1q12-1pter, by hybridization of CPTase cDNA with a DNA panel of 19 human-hanster somatic cell hybrids.

  8. cDNA cloning, sequence analysis, and chromosomal localization of the gene for human carnitine palmitoyltransferase

    The authors have cloned and sequenced a cDNA encoding human liver carnitine palmitoyltransferase an inner mitochondrial membrane enzyme that plays a major role in the fatty acid oxidation pathway. Mixed oligonucleotide primers whose sequences were deduced from one tryptic peptide obtained from purified CPTase were used in a polymerase chain reaction, allowing the amplification of a 0.12-kilobase fragment of human genomic DNA encoding such a peptide. A 60-base-pair (bp) oligonucleotide synthesized on the basis of the sequence from this fragment was used for the screening of a cDNA library from human liver and hybridized to a cDNA insert of 2255 bp. This cDNA contains an open reading frame of 1974 bp that encodes a protein of 658 amino acid residues including 25 residues of an NH2-terminal leader peptide. The assignment of this open reading frame to human liver CPTase is confirmed by matches to seven different amino acid sequences of tryptic peptides derived from pure human CPTase and by the 82.2% homology with the amino acid sequence of rat CPTase. The NH2-terminal region of CPTase contains a leucine-proline motif that is shared by carnitine acetyl- and octanoyltransferases and by choline acetyltransferase. The gene encoding CPTase was assigned to human chromosome 1, region 1q12-1pter, by hybridization of CPTase cDNA with a DNA panel of 19 human-hanster somatic cell hybrids

  9. cDNA cloning, sequence analysis, and chromosomal localization of the gene for human carnitine palmitoyltransferase.

    Finocchiaro, G; Taroni, F; Rocchi, M; Martin, A L; Colombo, I; Tarelli, G T; DiDonato, S


    We have cloned and sequenced a cDNA encoding human liver carnitine palmitoyltransferase (CPTase; palmitoyl-CoA:L-carnitine O-palmitoyltransferase, EC, an inner mitochondrial membrane enzyme that plays a major role in the fatty acid oxidation pathway. Mixed oligonucleotide primers whose sequences were deduced from one tryptic peptide obtained from purified CPTase were used in a polymerase chain reaction, allowing the amplification of a 0.12-kilobase fragment of human genomic DNA encoding such a peptide. A 60-base-pair (bp) oligonucleotide synthesized on the basis of the sequence from this fragment was used for the screening of a cDNA library from human liver and hybridized to a cDNA insert of 2255 bp. This cDNA contains an open reading frame of 1974 bp that encodes a protein of 658 amino acid residues including 25 residues of an NH2-terminal leader peptide. The assignment of this open reading frame to human liver CPTase is confirmed by matches to seven different amino acid sequences of tryptic peptides derived from pure human CPTase and by the 82.2% homology with the amino acid sequence of rat CPTase. The NH2-terminal region of CPTase contains a leucine-proline motif that is shared by carnitine acetyl- and octanoyltransferases and by choline acetyltransferase. The gene encoding CPTase was assigned to human chromosome 1, region 1q12-1pter, by hybridization of CPTase cDNA with a DNA panel of 19 human-hamster somatic cell hybrids. Images PMID:1988962

  10. Chromosome analysis and sorting

    Doležel, Jaroslav; Kubaláková, Marie; Suchánková, Pavla; Kovářová, Pavlína; Bartoš, Jan; Šimková, Hana

    Weinheim : Wiley-VCH, 2007 - (Doležel, J.; Greilhuber, J.; Suda, J.), s. 373-403 ISBN 978-3-527-31487-4 R&D Projects: GA ČR GA521/04/0607; GA ČR GP521/05/P257; GA ČR GD521/05/H013; GA MŠk(CZ) LC06004 Grant ostatní: Mendelova zemědělská a lesnická univerzita v Brně / Agronomická fakulta(CZ) ME 844 Institutional research plan: CEZ:AV0Z5038910 Source of funding: V - iné verejné zdroje ; V - iné verejné zdroje ; V - iné verejné zdroje ; V - iné verejné zdroje ; V - iné verejné zdroje Keywords : Plant flow cytometry * chromosome sorting * flow cytogenetics Subject RIV: EB - Genetics ; Molecular Biology http://books. google .com/books?id=3cwakORieqUC&pg=PA373&lpg=PA373&dq=Chromosome+analysis+and+sorting&source=web&ots=8IyvJlBQyq&sig=_NlXyQQgBCwpj1pTC9YITvvVZqU

  11. Localization of ecdysterone on polytene chromosomes of Drosophila melanogaster.

    Gronemeyer, H; Pongs, O


    Ecdysterone has been crosslinked in situ to polytene chromosomes of salivary glands of Drosophila melanogaster by photoactivation. The crosslinked hormone has been localized on the chromosomes by indirect immunofluorescence microscopy. At different developmental stages the hormone was detected at different chromosomal loci. These chromosomal sites correspond to ecdysterone-inducible puff sites. Thus, the hormone binds directly to chromosomal loci, whose transcription depends on the presence o...

  12. Linkage disequilibrium network analysis (LDna) gives a global view of chromosomal inversions, local adaptation and geographic structure

    Kemppainen, Petri; Knight, C. G.; Sarma, D. K.; Hlaing, T.; Prakash, A.; Maung, Y. N. M.; Somboon, P.; Mahanta, J.; Walton, C.


    Roč. 15, č. 5 (2015), s. 1031-1045. ISSN 1755-098X R&D Projects: GA MŠk EE2.3.20.0303 Institutional support: RVO:68081766 Keywords : Anopheles dirus * Anopheles gambiae * chromosomal rearrangement * graph theory * landscape genomics * R package Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.712, year: 2014

  13. Localization of the CYP2D gene locus to human chromosome 22q13. 1 by polymerase chain reaction, in situ hybridization, and linkage analysis

    Gouch, A.C.; Howell, S.M.; Bryant, S.P.; Spurr, N.K. (Clare Hall Lab., Hertfordshire (United Kingdom)); Smith, C.A.D.; Wolf, C.R. (Cancer Research Fund, Edinburgh (United Kingdom))


    Using a combination of somatic cell hybrids, in situ hybridization, and linkage mapping, we have been able to localize the cytochrome P450 CYP2D6 gene to chromosome 22 in the region q13.1. Linkage analysis, using locus-specific primers, showed a maximum sex-average lod score of 8.12 ([theta] = 0.00) between the marker pH130 (D22S64) and CYPsD6, of 6.92 ([theta] - 0.00) between the marker KI839 (D22S95) and CYP2D6, and 4.80 ([theta] = 0.036) between the platelet-derived growth factor [beta] subunit gene (PDGFB) and CYP2D6. 16 refs., 2 figs.

  14. Localization of topoisomerase II in mitotic chromosomes


    In the preceding article we described a polyclonal antibody that recognizes cSc-1, a major polypeptide component of the chicken mitotic chromosome scaffold. This polypeptide was shown to be chicken topoisomerase II. In the experiments described in the present article we use indirect immunofluorescence and immunoelectron microscopy to examine the distribution of topoisomerase II within intact chromosomes. We also describe a simple experimental protocol that differentiates antigens that are int...

  15. Chromosomal localization of the human and mouse hyaluronan synthase genes

    Spicer, A.P.; McDonald, J.A. [Mayo Clinic Scottsdale, AZ (United States); Seldin, M.F. [Univ. of California Davis, CA (United States)] [and others


    We have recently identified a new vertebrate gene family encoding putative hyaluronan (HA) synthases. Three highly conserved related genes have been identified, designated HAS1, HAS2, and HAS3 in humans and Has1, Has2, and Has3 in the mouse. All three genes encode predicted plasma membrane proteins with multiple transmembrane domains and approximately 25% amino acid sequence identity to the Streptococcus pyogenes HA synthase, HasA. Furthermore, expression of any one HAS gene in transfected mammalian cells leads to high levels of HA biosynthesis. We now report the chromosomal localization of the three HAS genes in human and in mouse. The genes localized to three different positions within both the human and the mouse genomes. HAS1 was localized to the human chromosome 19q13.3-q13.4 boundary and Has1 to mouse Chr 17. HAS2 was localized to human chromosome 8q24.12 and Has2 to mouse Chr 15. HAS3 was localized to human chromosome 16q22.1 and Has3 to mouse Chr 8. The map position for HAS1 reinforces the recently reported relationship between a small region of human chromosome 19q and proximal mouse chromosome 17. HAS2 mapped outside the predicted critical region delineated for the Langer-Giedion syndrome and can thus be excluded as a candidate gene for this genetic syndrome. 33 refs., 2 figs.

  16. Semi-automatic laser beam microdissection of the Y chromosome and analysis of Y chromosome DNA in a dioecious plant, Silene latifolia

    Silene latifolia has heteromorphic sex chromosomes, the X and Y chromosomes. The Y chromosome, which is thought to carry the male determining gene, was isolated by UV laser microdissection and amplified by degenerate oligonucleotide-primed PCR. In situ chromosome suppression of the amplified Y chromosome DNA in the presence of female genomic DNA as a competitor showed that the microdissected Y chromosome DNA did not specifically hybridize to the Y chromosome, but-hybridized to all chromosomes. This result suggests that the Y chromosome does not contain Y chromosome-enriched repetitive sequences. A repetitive sequence in the microdissected Y chromosome, RMY1, was isolated while screening repetitive sequences in the amplified Y chromosome. Part of the nucleotide sequence shared a similarity to that of X-43.1, which was isolated from microdissected X chromosomes. Since fluorescence in situ hybridization analysis with RMY1 demonstrated that RMY1 was localized at the ends of the chromosome, RMY1 may be a subtelomeric repetitive sequence. Regarding the sex chromosomes, RMY1 was detected at both ends of the X chromosome and at one end near the pseudoautosomal region of the Y chromosome. The different localization of RMY1 on the sex chromosomes provides a clue to the problem of how the sex chromosomes arose from autosomes

  17. Local adaptation and the evolution of chromosome fusions.

    Guerrero, Rafael F; Kirkpatrick, Mark


    We use forward and coalescent models of population genetics to study chromosome fusions that reduce the recombination between two locally adapted loci. Under a continent-island model, a fusion spreads and reaches a polymorphic equilibrium when it causes recombination between locally adapted alleles to be less than their selective advantage. In contrast, fusions in a two-deme model always spread; whether it reaches a polymorphic equilibrium or becomes fixed depends on the relative recombination rates of fused homozygotes and heterozygotes. Neutral divergence around fusion polymorphisms is markedly increased, showing peaks at the point of fusion and at the locally adapted loci. Local adaptation could explain the evolution of many of chromosome fusions, which are some of the most common chromosome rearrangements in nature. PMID:24964074

  18. Chromosome analysis of arsenic affected cattle

    S. Shekhar


    Full Text Available Aim: The aim was to study the chromosome analysis of arsenic affected cattle. Materials and Methods: 27 female cattle (21 arsenic affected and 6 normal were selected for cytogenetical study. The blood samples were collected, incubated, and cultured using appropriate media and specific methods. The samples were analyzed for chromosome number and morphology, relative length of the chromosome, arm ratio, and centromere index of X chromosome and chromosomal abnormalities in arsenic affected cattle to that of normal ones. Results: The diploid number of metaphase chromosomes in arsenic affected cattle as well as in normal cattle were all 2n=60, 58 being autosomes and 2 being sex chromosomes. From the centromeric position, karyotyping studies revealed that all the 29 pair of autosomes was found to be acrocentric or telocentric, and the sex chromosomes (XX were submetacentric in both normal and arsenic affected cattle. The relative length of all the autosome pairs and sex chrosomosome pair was found to be higher in normal than that of arsenic affected cattle. The mean arm ratio of X-chromosome was higher in normal than that of arsenic affected cattle, but it is reverse in case of centromere index value of X-chromosome. There was no significant difference of arm ratio and centromere index of X-chromosomes between arsenic affected and normal cattle. No chromosomal abnormalities were found in arsenic affected cattle. Conclusion: The chromosome analysis of arsenic affected cattle in West Bengal reported for the first time in this present study which may serve as a guideline for future studies in other species. These reference values will also help in comparison of cytological studies of arsenic affected cattle to that of various toxicants.

  19. System for the analysis of plant chromosomes

    The paper describes a computer system for the automation workers of recognition analysis and interpretation of plant chromosomes. This system permit to carry out the analysis in a more comfortable and faster way, using the image processing techniques

  20. Identification of Local Melon (Cucumis melo L. var. Bartek Based on Chromosomal Characters



    Full Text Available Bartek is one of local melon varieties mainly cultivated in Pemalang, Central Java. Bartek has three variations of fruits; Long-Green, Ellips-Green, and Yellow. Chromosome characterization of the Bartek was investigated to determine the genetic variation. The main purpose of this research was to determine the genetic characters of Bartek including chromosome number, mitosis, cell cycle, and karyotype. Squash method was used for chromosome preparation. The results showed that all of Bartek observed in this study have similar diploid (2n chromosome number = 24. According to the total number of chromosome, Bartek is closer to melon than cucumber. The mitotic analysis exhibited that the Bartek has similar karyotype formula, 2n = 2x = 24m. Based on the R value of the three kinds of Bartek (R < 0.27, it indicated that three kinds of Bartek were considered to be originated from similar species and one of melon varieties (Cucumis melo L. var. Bartek.

  1. Chromosome analysis of three species of Myoxidae

    Maria Vittoria Civitelli


    Full Text Available Abstract Karyotype analysis was carried out on three species of dormice: Myoxus glis, 4 populations from Northern and Southern Italy and from Turkey; Dryomys nitedula, 4 populations from Northern and Southern Italy, from Israel and from Turkey; Myomimus roachi, 1 specimen from Turkey. Myoxus glis shows 2n=62; comparison of our specimens from different localities shows complete correspondence between karyotypes, both for the autosomes and the heterochromosomes. Dryomys nitedula shows 2n=48. All populations we studied, show the same karyotypic pattern, except for the NOR-bearing chromosomes. Myomimus roachi, here studied for the first time, shows 2n=44. All the autosomes are biarmed of decreasing size. The X-chromosome is a medium size metacentric, while the Y-chromosome is the smallest one. All the three species we studied, show one pair of NOR-bearing chromosomes, Ag-NORs always correspond to the secondary constriction. Differences in the fundamental number and in heterochromosome morphology, have been observed by other authors, in different European populations. This variability is analysed and discussed. Riassunto Analisi cromosomica in tre specie di Myoxidae - L'analisi cromosomica è stata condotta su popolazioni europee di tre specie di Myoxidae: Myoxus glis, 4 popolazioni provenienti dal Nord e Sud Italia, e dalla Turchia; Dryomys nitedula, 4 popolazioni provenienti dal Nord e Sud Italia, da Israele e dalla Turchia; Myomimus roachi, 1 esemplare, proveniente dalla Turchia. Myoxus glis presenta 2n=62. Gli esemplari, provenienti dalle diverse popolazioni, mostrano corrispondenza nella morfologia sia degli autosomi che degli eterocromosomi. Dryomys nitedula presenta 2n=48. La morfologia dei cromosomi nei cariotipi appare corrispondente mentre diversa è la localizzazione degli Ag-NOR.

  2. Globally Divergent but Locally Convergent X- and Y-Chromosome Influences on Cortical Development.

    Raznahan, Armin; Lee, Nancy Raitano; Greenstein, Deanna; Wallace, Gregory L; Blumenthal, Jonathan D; Clasen, Liv S; Giedd, Jay N


    Owing to their unique evolutionary history, modern mammalian X- and Y-chromosomes have highly divergent gene contents counterbalanced by regulatory features, which preferentially restrict expression of X- and Y-specific genes. These 2 characteristics make opposing predictions regarding the expected dissimilarity of X- vs. Y-chromosome influences on biological structure and function. Here, we quantify this dissimilarity using in vivo neuroimaging within a rare cohort of humans with diverse sex chromosome aneuploidies (SCAs). We show that X- and Y-chromosomes have opposing effects on overall brain size but exert highly convergent influences on local brain anatomy, which manifest across biologically distinct dimensions of the cerebral cortex. Large-scale online meta-analysis of functional neuroimaging data indicates that convergent sex chromosome dosage effects preferentially impact centers for social perception, communication, and decision-making. Thus, despite an almost complete lack of sequence homology, and opposing effects on overall brain size, X- and Y-chromosomes exert congruent effects on the proportional size of cortical systems involved in adaptive social functioning. These convergent X-Y effects (i) track the dosage of those few genes that are still shared by X- and Y-chromosomes, and (ii) may provide a biological substrate for the link between SCA and increased rates of psychopathology. PMID:25146371

  3. Human liver mitochondrial carnitine palmitoyltransferase I: characterization of its cDNA and chromosomal localization and partial analysis of the gene.

    Britton, C H; Schultz, R A; Zhang, B; Esser, V; Foster, D W; McGarry, J D


    Using the cDNA for rat liver mitochondrial carnitine palmitoyltransferase I (CPT I; EC as a probe, we isolated its counterpart as three overlapping clones from a human liver cDNA library. Both the nucleotide sequence of the human cDNA and the predicted primary structure of the protein (773 aa) proved to be very similar to those of the rat enzyme (82% and 88% identity, respectively). The CPT I mRNA size was also found to be the same (approximately 4.7 kb) in both species. Screening of a human genomic library with the newly obtained cDNA yielded a positive clone of approximately 6.5 kb which, upon partial analysis, was found to contain at least two complete exons linked by a 2.3-kb intron. Oligonucleotide primers specific to upstream and downstream regions of one of the exon/intron junctions were tested in PCRs with DNA from a panel of somatic cell hybrids, each containing a single human chromosome. The results allowed unambiguous assignment of the human liver CPT I gene to the q (long) arm of chromosome 11. Additional experiments established that liver and fibroblasts express the same isoform of mitochondrial CPT I, legitimizing the use of fibroblast assays in the differential diagnosis of the "muscle" and "hepatic" forms of CPT deficiency. The data provide insights into the structure of a human CPT I isoform and its corresponding gene and establish unequivocally that CPT I and CPT II are distinct gene products. Availability of the human CPT I cDNA should open the way to an understanding of the genetic basis of inherited CPT I deficiency syndromes, how the liver CPT I gene is regulated, and which tissues other than liver express this particular variant of the enzyme. Images Fig. 4 Fig. 5 PMID:7892212

  4. Retrospective dosimetry by chromosomal analysis

    The joint EU/CIS project ECP-6, was set up to examine whether cytogenetic dosimetry is possible for persons irradiated years previously at Chernobyl. The paper describes the possibility of achieving this by the examination of blood lymphocytes for unstable and stable chromosome aberrations; dicentrics and translocations. Emphasis was placed on the relatively new fluorescence in situ hybridization (FISH) method for rapid screening for stable translocations. In a collaborative experiment in vitro dose response calibration curves for dicentrics and FISH were produced with gamma radiation over the range 0-1.0 Gy. A pilot study of about 60 liquidators with registered doses ranging from 0-300 mSv was undertaken to determine whether the chromosomal methods may verify the recorded doses. It was concluded that the dicentric is no longer valid as a measured endpoint. Translocations may be used to verify early dosimetry carried out on highly irradiated persons. For the vast majority of lesser exposed subjects FISH is impractical as an individual dosimeter; it may have some value for comparing groups of subjects

  5. Chromosome Analysis and Sorting Using Flow Cytometry

    Doležel, Jaroslav; Kubaláková, Marie; Čihalíková, Jarmila; Suchánková, Pavla; Šimková, Hana

    New Jersey : Humana Press, 2011 - (Birchler, J.), s. 221-237 ISBN 978-1-61737-956-7 R&D Projects: GA ČR GA521/07/1573; GA MŠk(CZ) LC06004 Institutional research plan: CEZ:AV0Z50380511 Keywords : Chromosome analysis * flow cytometry * root meristems Subject RIV: EB - Genetics ; Molecular Biology

  6. Cloning, structure, and chromosome localization of the mouse glutaryl-CoA dehydrogenase gene

    Koeller, D.M.; DiGiulio, A.; Frerman, F.E. [Univ. of Colorado Health Sciences Center, Denver, CO (United States)] [and others


    Glutaryl-CoA dehydrogenase (GCDH) is a nuclear-encoded, mitochondrial matrix enzyme. In humans, deficiency of GCDH leads to glutaric acidemia type I, and inherited disorder of amino acid metabolism characterized by a progressive neurodegenerative disease. In this report we describe the cloning and structure of the mouse GCDH (Gcdh) gene and cDNA and its chromosomal localization. The mouse Gcdh cDNA is 1.75 kb long and contains and open reading frame of 438 amino acids. The amino acid sequences of mouse, human, and pig GCDH are highly conserved. The mouse Gcdh gene contains 11 exons and spans 7 kb of genomic DNA. Gcdh was mapped by backcross analysis to mouse chromosome 8 within a region that is homologous to a region of human chromosome 19, where the human gene was previously mapped. 14 refs., 3 figs.

  7. An approach to automated chromosome analysis

    The methods of approach developed with a view to automatic processing of the different stages of chromosome analysis are described in this study divided into three parts. Part 1 relates the study of automated selection of metaphase spreads, which operates a decision process in order to reject ail the non-pertinent images and keep the good ones. This approach has been achieved by Computing a simulation program that has allowed to establish the proper selection algorithms in order to design a kit of electronic logical units. Part 2 deals with the automatic processing of the morphological study of the chromosome complements in a metaphase: the metaphase photographs are processed by an optical-to-digital converter which extracts the image information and writes it out as a digital data set on a magnetic tape. For one metaphase image this data set includes some 200 000 grey values, encoded according to a 16, 32 or 64 grey-level scale, and is processed by a pattern recognition program isolating the chromosomes and investigating their characteristic features (arm tips, centromere areas), in order to get measurements equivalent to the lengths of the four arms. Part 3 studies a program of automated karyotyping by optimized pairing of human chromosomes. The data are derived from direct digitizing of the arm lengths by means of a BENSON digital reader. The program supplies' 1/ a list of the pairs, 2/ a graphic representation of the pairs so constituted according to their respective lengths and centromeric indexes, and 3/ another BENSON graphic drawing according to the author's own representation of the chromosomes, i.e. crosses with orthogonal arms, each branch being the accurate measurement of the corresponding chromosome arm. This conventionalized karyotype indicates on the last line the really abnormal or non-standard images unpaired by the program, which are of special interest for the biologist. (author)

  8. Molecular localization of the t(11;22)(q24;q12) translocation of Ewing sarcoma by chromosomal in situ suppression hybridization

    Chromosome translocations are associated with a variety of human leukemias, lymphomas, and solid tumors. To localize molecular markers flanking the t(11;22)(q24;q12) breakpoint that occurs in virtually all cases of Ewing sarcoma and peripheral neuroepithelioma, high-resolution chromosomal in situ suppression hybridization was carried out using a panel of cosmid clones localized and ordered on chromosome 11q. The location of the Ewing sarcoma translocation breakpoint was determined relative to the nearest two cosmid markers on 11q, clones 23.2 and 5.8, through the analysis of metaphase chromosome hybridization. By in situ hybridization to interphase nuclei, the approximate physical separation of these two markers was determined. In both Ewing sarcoma and peripheral neuroepithelioma, cosmid clone 5.8 is translocated from chromosome 11q24 to the derivative chromosome 22 and a portion of chromosome 22q12 carrying the leukemia inhibitory factor gene is translocated to the derivative chromosome 11. The physical distance between the flanking cosmid markers on chromosome 11 was determined to be in the range of 1,000 kilobases, and genomic analysis using pulsed-field gel electrophoresis showed no abnormalities over a region of 650 kilobases in the vicinity of the leukemia inhibitory factor gene on chromosome 22. This approach localizes the Ewing sarcoma breakpoint to a small region on chromosome 11q24 and provides a rapid and precise technique for the molecular characterization of chromosomal aberrations

  9. Structure and chromosomal localization of the human renal kallikrein gene

    Glandular kallikreins are a family of proteases encoded by a variable number of genes in different mammalian species. In all species examined, however, one particular kallikrein is functionally conserved in its capacity to release the vasoactive peptide, Lys-bradykinin, from low molecular weight kininogen. This kallikrein is found in the kidney, pancreas, and salivary gland, showing a unique pattern of tissue-specific expression relative to other members of the family. The authors have isolated a genomic clone carrying the human renal kallikrein gene and compared the nucleotide sequence of its promoter region with those of the mouse renal kallikrein gene and another mouse kallikrein gene expressed in a distinct cell type. They find four sequence elements conserved between renal kallikrein genes from the two species. They have also shown that the human gene is localized to 19q13, a position analogous to that of the kallikrein gene family on mouse chromosome 7

  10. Y chromosomal STR analysis using Pyrosequencing technology.

    Edlund, Hanna; Allen, Marie


    Analysis of Y chromosome STR markers has proven to be useful in forensic cases where the samples contain a mixture of DNA from several individuals. STR markers are commonly genotyped based on length separation of PCR products. In this study we evaluated if Pyrosequencing can be used as an alternative method for determining Y-STR variants. In total 70 unrelated Swedish males were typed for the Y chromosomal markers (DYS19, DYS389 I-II, DYS390, DYS391, DYS392, DYS393 and DYS438) using Pyrosequencing. Using the 8 markers, 57 unique haplotypes were observed with a discrimination capacity of 0.81. At four loci, the Pyrosequencing analysis revealed sequence variants. The sequence variants were found in the DYS389 II, DYS390, DYS391, and DYS393 loci in frequencies between 1.43% and 14.3%. Pyrosequencing has here been shown to be a useful tool for typing Y chromosomal STRs and the method can provide a complement to conventional forensic Y STR analyses. Moreover, the Pyrosequencing method can be used to rapidly evaluate novel markers. PMID:19215881

  11. Local damage and chromosome count changes after radiocobalt irradiation

    A 60Co emitter of about 100 TBq (3 kCi) activity fall out during the replacement of the source in the head of an irradiator at an oncological unit. The assembly technician was significantly exposed. Acute skin changes affected in particu--lar digits 2 to 5 of the left hand. A necrotic focus developed which, following the failure of conservative treatment, necessitated the gradual amputation of the fingers involved and part of the hand. At the standard reference point, a film dosimeter recorded the equivalent of 1.59 Gy (159 rad). The equivalent whole body exposure estimated on the basis of chromosomal analysis was in the range of 1.2 to 1.6 Gy (120 to 160 rad). Chromosomal examination repeated during the period of 1 to 28 months after the accident showed the decrease of dicentric forms in peripheral blood lymphocytes to be similar to that in analogical cases reported in literature. Deviations from Poisson's distribution of dicentrics in the particular cells confirmed the assumption of a considerable irradiation non homogeneity. The results obtained by the banding technique are discussed in relation to the possibilities of clonal cell population proof. As regards practical radiation protection the authors stress that high-activity sealed sources must now be regarded as the most dangerous sources of accidental overexposure. (author)

  12. Chromosomal localization and sequence variation of 5S rRNA gene in five Capsicum species.

    Park, Y K; Park, K C; Park, C H; Kim, N S


    Chromosomal localization and sequence analysis of the 5S rRNA gene were carried out in five Capsicum species. Fluorescence in situ hybridization revealed that chromosomal location of the 5S rRNA gene was conserved in a single locus at a chromosome which was assigned to chromosome 1 by the synteny relationship with tomato. In sequence analysis, the repeating units of the 5S rRNA genes in the Capsicum species were variable in size from 278 bp to 300 bp. In sequence comparison of our results to the results with other Solanaceae plants as published by others, the coding region was highly conserved, but the spacer regions varied in size and sequence. T stretch regions, just after the end of the coding sequences, were more prominant in the Capsicum species than in two other plants. High G x C rich regions, which might have similar functions as that of the GC islands in the genes transcribed by RNA PolII, were observed after the T stretch region. Although we could not observe the TATA like sequences, an AT rich segment at -27 to -18 was detected in the 5S rRNA genes of the Capsicum species. Species relationship among the Capsicum species was also studied by the sequence comparison of the 5S rRNA genes. While C. chinense, C. frutescens, and C. annuum formed one lineage, C. baccatum was revealed to be an intermediate species between the former three species and C. pubescens. PMID:10774742

  13. The oxytocin receptor gene (OXTR) localizes to human chromosome 3p25 by fluorescence in situ hybridization and PCR analysis of somatic cell hybrids

    Simmons, C.F. Jr.; Clancy, T.E.; Quan, R. [Children`s Hospital, Boston, MA (United States)] [and others


    The human oxytocin receptor regulates parturition and myometrial contractility, breast milk let-down, and reproductive behaviors in the mammalian central nervous system. Kimura et al. recently identified a human oxytocin receptor cDNA by means of expression cloning from a human myometrial cDNA library. To elucidate further the molecular mechanisms that regulate oxytocin receptor gene expression and to define the expected Mendelian inheritance of possible human disease states, we must determine the number of genes, their localization, and their organization and structure. We summarize below our data indicating that the human oxytocin receptor gene is localized to 3p25 and exists as a single copy in the haploid genome. 9 refs., 2 figs.

  14. Cloning, chromosome localization and features of a novel human gene, MATH2

    Lingchen Guo; Min Jiang; Yushu Ma; Haipeng Cheng; Xiaohua Ni; Yangsheng Jin; Yi Xie; Yumin Mao


    We report cloning and some features of a novel human gene, MATH2, which encodes a protein of 337 amino acid residues with a basic helix–loop–helix domain and exhibits 98% similarity to mouse Math2. Results of Northern blot analysis revealed two transcripts of the MATH2 gene of 1.7 kb and 2.4 kb in human brain. We localized MATH2 to chromosome 7 at 7p14–15 by matching with the Human Genome Sequence Database. Human MATH2 and mouse Math2 may have the same functions in the nervous system.

  15. DNA sequence and analysis of human chromosome 18.

    Nusbaum, Chad; Zody, Michael C; Borowsky, Mark L; Kamal, Michael; Kodira, Chinnappa D; Taylor, Todd D; Whittaker, Charles A; Chang, Jean L; Cuomo, Christina A; Dewar, Ken; FitzGerald, Michael G; Yang, Xiaoping; Abouelleil, Amr; Allen, Nicole R; Anderson, Scott; Bloom, Toby; Bugalter, Boris; Butler, Jonathan; Cook, April; DeCaprio, David; Engels, Reinhard; Garber, Manuel; Gnirke, Andreas; Hafez, Nabil; Hall, Jennifer L; Norman, Catherine Hosage; Itoh, Takehiko; Jaffe, David B; Kuroki, Yoko; Lehoczky, Jessica; Lui, Annie; Macdonald, Pendexter; Mauceli, Evan; Mikkelsen, Tarjei S; Naylor, Jerome W; Nicol, Robert; Nguyen, Cindy; Noguchi, Hideki; O'Leary, Sinéad B; O'Neill, Keith; Piqani, Bruno; Smith, Cherylyn L; Talamas, Jessica A; Topham, Kerri; Totoki, Yasushi; Toyoda, Atsushi; Wain, Hester M; Young, Sarah K; Zeng, Qiandong; Zimmer, Andrew R; Fujiyama, Asao; Hattori, Masahira; Birren, Bruce W; Sakaki, Yoshiyuki; Lander, Eric S


    Chromosome 18 appears to have the lowest gene density of any human chromosome and is one of only three chromosomes for which trisomic individuals survive to term. There are also a number of genetic disorders stemming from chromosome 18 trisomy and aneuploidy. Here we report the finished sequence and gene annotation of human chromosome 18, which will allow a better understanding of the normal and disease biology of this chromosome. Despite the low density of protein-coding genes on chromosome 18, we find that the proportion of non-protein-coding sequences evolutionarily conserved among mammals is close to the genome-wide average. Extending this analysis to the entire human genome, we find that the density of conserved non-protein-coding sequences is largely uncorrelated with gene density. This has important implications for the nature and roles of non-protein-coding sequence elements. PMID:16177791

  16. Analysis of the Ceratitis capitata y chromosome using in situ hybridization to mitotic chromosomes

    In Ceratitis capitata the Y chromosome is responsible for sex-determination. We used fluorescence in situ hybridization (FISH) for cytogenetic analysis of mitotic chromosomes. FISH with the wild-type strain EgyptII and two repetitive DNA probes enabled us to differentiate between the short and the long arm of the Y chromosome and gives a much better resolution than C-banding of mitotic chromosomes. We identified the Y-chromosomal breakpoints in Y-autosome translocations using FISH. Even more complex rearrangements i.e. deletions and insertions in some translocation strains were detected by this method. A strategy for mapping the primary sex determination factor in Ceratitis capitata by FISH is presented. (author)

  17. Localization of latency-associated nuclear antigen (LANA) on mitotic chromosomes.

    Rahayu, Retno; Ohsaki, Eriko; Omori, Hiroko; Ueda, Keiji


    In latent infection of Kaposi's sarcoma-associated herpesvirus (KSHV), viral gene expression is extremely limited and copy numbers of viral genomes remain constant. Latency-associated nuclear antigen (LANA) is known to have a role in maintaining viral genome copy numbers in growing cells. Several studies have shown that LANA is localized in particular regions on mitotic chromosomes, such as centromeres/pericentromeres. We independently examined the distinct localization of LANA on mitotic chromosomes during mitosis, using super-resolution laser confocal microscopy and correlative fluorescence microscopy-electron microscopy (FM-EM) analyses. We found that the majority of LANA were not localized at particular regions such as telomeres/peritelomeres, centromeres/pericentromeres, and cohesion sites, but at the bodies of condensed chromosomes. Thus, LANA may undergo various interactions with the host factors on the condensed chromosomes in order to tether the viral genome to mitotic chromosomes and realize faithful viral genome segregation during cell division. PMID:27254595

  18. Cytogenetic analysis of chromosomal abnormalities in Sri Lankan children

    Colombo; Sri Lanka


    Background: Cytogenetic analysis is a valuable investigation in the diagnostic work up of children with suspected chromosomal disorders. The objective of this study was to describe the prevalence of various types of chromosomal abnormalities in Sri Lankan children undergoing cytogenetic analysis. Methods: Cytogenetic reports of 1554 consecutive children with suspected chromosomal disorders who underwent karyotyping in two genetic centers in Sri Lanka from January 2006 to December 2011 were reviewed retrospectively. Results: A total of 1548 children were successfully karyotyped. Abnormal karyotypes were found in 783 (50.6%) children. Numerical and structural abnormalities accounted for 90.8% and 9.2%, respectively. Down syndrome was the commonest aneuploidy identifi ed. Other various autosomal and sex chromosomal aneuploidies as well as micro-deletion syndromes were also detected. Conclusions: The prevalence of chromosomal abnormalities in Sri Lankan children undergoing cytogenetic analysis for suspected chromosomal disorders was relatively higher than that in Caucasian and other Asian populations.

  19. Chromosomal Localization of DNA Amplifications in Neuroblastoma Tumors Using cDNA Microarray Comparative Genomic Hybridization

    Ben Beheshti


    Full Text Available Conventional comparative genomic hybridization (CGH profiling of neuroblastomas has identified many genomic aberrations, although the limited resolution has precluded a precise localization of sequences of interest within amplicons. To map high copy number genomic gains in clinically matched stage IV neuroblastomas, CGH analysis using a 19,200-feature cDNA microarray was used. A dedicated (freely available algorithm was developed for rapid in silico determination of chromosomal localizations of microarray cDNA targets, and for generation of an ideogram-type profile of copy number changes. Using these methodologies, novel gene amplifications undetectable by chromosome CGH were identified, and larger MYCN amplicon sizes (in one tumor up to 6 Mb than those previously reported in neuroblastoma were identified. The genes HPCAL1, LPIN1/KIAA0188, NAG, and NSE1/LOC151354 were found to be coamplified with MYCN. To determine whether stage IV primary tumors could be further subclassified based on their genomic copy number profiles, hierarchical clustering was performed. Cluster analysis of microarray CGH data identified three groups: 1 no amplifications evident, 2 a small MYCN amplicon as the only detectable imbalance, and 3 a large MYCN amplicon with additional gene amplifications. Application of CGH to cDNA microarray targets will help to determine both the variation of amplicon size and help better define amplification-dependent and independent pathways of progression in neuroblastoma.

  20. Dynamic in situ chromosome immobilisation and DNA extraction using localized poly(N-isopropylacrylamide) phase transition

    Eriksen, Johan; Thilsted, Anil Haraksingh; Marie, Rodolphe;


    A method of in situ chromosome immobilisation and DNA extraction in a microfluidic polymer chip was presented. Light-induced local heating was used to induce poly(N-isopropylacrylamide) phase transition in order to create a hydrogel and embed a single chromosome such that it was immobilised. This...... was achieved with the use of a near-infrared laser focused on an absorption layer integrated in the polymer chip in close proximity to the microchannel. It was possible to proceed to DNA extraction while holding on the chromosome at an arbitrary location by introducing protease K into the microchannel...

  1. Flow cytometric analysis of chromosome damage after irradiation: Relation to chromosome aberrations and cell survival

    Reproductive death of cultured cells is commonly assessed by measurement of clonogenic capacity which requires a culture period equivalent to about ten cell doubling times. Chromosome structural changes can be observed microscopically in stained preparations of mitotic cells but this requires tedious counting. For a rapid determination of cellular sensitivity which might provide predictions of responses of tumors to various treatments, a new technique would be valuable if the dependence of responses on dose and radiation quality would correlate well with other cellular responses. Flow cytometry has provided a technique for the rapid determination of DNA content of individual chromosomes of mammalian cells and of changes induced by various treatments. This technique involves selection of mitotic cells, the preparation of mono-disperse chromosome suspensions, measurement of DNA content histograms and the analysis of these histograms by a computer program

  2. A microfabricated platform for chromosome separation and analysis

    More and more diseases find their cause in malfunctioning genes. There is therefore still need for rapid, low-cost and direct methods to accurately perform genetic analysis. Currently the process takes a long time to complete and is very expensive. We are proposing a system that will be able to isolate white blood cells from blood, lyse them in order to extract the chromosomes and then perform chromosome sorting on chip. As the physical properties of the chromosomes, such as size and dielectric properties, are needed for designing the chip, we have measured them using an AFM microscope

  3. Further evidence for clustering of human GABA[sub A] receptor subunit genes: Localization of the [alpha][sub 6]-subunit gene (GABRA6) to distal chromosome 5q by linkage analysis

    Hicks, A.A.; Kamphuis, W.; Darlison, M.G. (MRC Molecular Neurobiology Unit, Cambride (United Kingdom)); Bailey, M.E.S.; Johnson, K.J. (Charing Cross and Westminster Medical School, London (United Kingdom)); Riley, B.P. (St. Mary' s Hospital Medical School, London (United Kingdom)); Siciliano, M.J. (Univ. of Texas M.D. Anderson Cancer Center, Houston, TX (United States))


    GABA[sub A] receptors are hetero-oligomeric ion-channel complexes that are composed of combinations of [alpha], [beta], [gamma], and [delta] subunits and play a major role in inhibitory neurotransmission in the mammalian brain. The authors report here a microsatellite polymorphism within the human [alpha][sub 6]-subunit gene (GABRA6). Mapping of this marker in a human-hamster hybrid cell-line panel and typing of the repeat in the Centre d'Etude du Polymorphisme Humain (CEPH) reference families enabled the localization of this gene to chromosome 5q and established its linkage to the GABA[sub A] receptor [alpha][sub 1]-subunit gene (GA-BRA1) with a maximum lod score (Z[sub max]) of 39.87 at a [theta] of 0.069 (males) and 0.100 (females). These results reveal the clustering of GABRA6, GABRA1, and the GABA[sub A] receptor [gamma][sub 2]-subunit gene (GABRG2) on distal chromosome 5q. 17 refs., 1 fig., 1 tab.

  4. The DNA sequence and comparative analysis of human chromosome 10.

    Deloukas, P; Earthrowl, M E; Grafham, D V; Rubenfield, M; French, L; Steward, C A; Sims, S K; Jones, M C; Searle, S; Scott, C; Howe, K; Hunt, S E; Andrews, T D; Gilbert, J G R; Swarbreck, D; Ashurst, J L; Taylor, A; Battles, J; Bird, C P; Ainscough, R; Almeida, J P; Ashwell, R I S; Ambrose, K D; Babbage, A K; Bagguley, C L; Bailey, J; Banerjee, R; Bates, K; Beasley, H; Bray-Allen, S; Brown, A J; Brown, J Y; Burford, D C; Burrill, W; Burton, J; Cahill, P; Camire, D; Carter, N P; Chapman, J C; Clark, S Y; Clarke, G; Clee, C M; Clegg, S; Corby, N; Coulson, A; Dhami, P; Dutta, I; Dunn, M; Faulkner, L; Frankish, A; Frankland, J A; Garner, P; Garnett, J; Gribble, S; Griffiths, C; Grocock, R; Gustafson, E; Hammond, S; Harley, J L; Hart, E; Heath, P D; Ho, T P; Hopkins, B; Horne, J; Howden, P J; Huckle, E; Hynds, C; Johnson, C; Johnson, D; Kana, A; Kay, M; Kimberley, A M; Kershaw, J K; Kokkinaki, M; Laird, G K; Lawlor, S; Lee, H M; Leongamornlert, D A; Laird, G; Lloyd, C; Lloyd, D M; Loveland, J; Lovell, J; McLaren, S; McLay, K E; McMurray, A; Mashreghi-Mohammadi, M; Matthews, L; Milne, S; Nickerson, T; Nguyen, M; Overton-Larty, E; Palmer, S A; Pearce, A V; Peck, A I; Pelan, S; Phillimore, B; Porter, K; Rice, C M; Rogosin, A; Ross, M T; Sarafidou, T; Sehra, H K; Shownkeen, R; Skuce, C D; Smith, M; Standring, L; Sycamore, N; Tester, J; Thorpe, A; Torcasso, W; Tracey, A; Tromans, A; Tsolas, J; Wall, M; Walsh, J; Wang, H; Weinstock, K; West, A P; Willey, D L; Whitehead, S L; Wilming, L; Wray, P W; Young, L; Chen, Y; Lovering, R C; Moschonas, N K; Siebert, R; Fechtel, K; Bentley, D; Durbin, R; Hubbard, T; Doucette-Stamm, L; Beck, S; Smith, D R; Rogers, J


    The finished sequence of human chromosome 10 comprises a total of 131,666,441 base pairs. It represents 99.4% of the euchromatic DNA and includes one megabase of heterochromatic sequence within the pericentromeric region of the short and long arm of the chromosome. Sequence annotation revealed 1,357 genes, of which 816 are protein coding, and 430 are pseudogenes. We observed widespread occurrence of overlapping coding genes (either strand) and identified 67 antisense transcripts. Our analysis suggests that both inter- and intrachromosomal segmental duplications have impacted on the gene count on chromosome 10. Multispecies comparative analysis indicated that we can readily annotate the protein-coding genes with current resources. We estimate that over 95% of all coding exons were identified in this study. Assessment of single base changes between the human chromosome 10 and chimpanzee sequence revealed nonsense mutations in only 21 coding genes with respect to the human sequence. PMID:15164054

  5. The Gene for May-Hegglin Anomaly Localizes to a <1-Mb Region on Chromosome 22q12.3-13.1

    Martignetti, John A.; Heath, Karen E.; Harris, Juliette; Bizzaro, Nicola; Savoia, Anna; Balduini, Carlo L.; Desnick, Robert J.


    The May-Hegglin anomaly (MHA) is an autosomal dominant platelet disorder of unknown etiology. It is characterized by thrombocytopenia, giant platelets, and leukocyte inclusion bodies, and affected heterozygotes are predisposed to bleeding episodes. The MHA gene has recently been localized, by means of linkage analysis, to a 13.6-cM region on chromosome 22, and the complete chromosome 22 sequence has been reported. We recently performed a genome scan for the MHA gene in 29 members of a large, ...

  6. Root tip chromosome karyotype analysis of hyacinth cultivars.

    Hu, F R; Liu, H H; Wang, F; Bao, R L; Liu, G X


    Karyotype analysis in plants helps to reveal the affinity relationships of species and their genetic evolution. The current study aimed to observe chromosome karyotypes and structures of Hyacinthus orientalis. Twenty hyacinth cultivars were introduced from Holland, and their water-cultivated root tips were used as experimental samples. A solution of colchicine (0.02%) and 8-hydroxyquinoline (0.02 M) was used as a 20-h pre-treatment. Subsequently, Carnot I was used for fixation and 45% acetic acid was used for dissociation. The squash method was selected to prepare chromosome spreads for microscopic observation. The basic chromosome number of the hyacinth cultivar was 8, and the number of chromosomes in the diploid, triploid, tetraploid, and aneuploid cultivars was 16, 23, 24, 31, and 32, respectively. The L-type chromosome was predominant in the chromosomal composition. The hyacinth satellite was located on the short arm in numbers equivalent to the ploidy. This satellite is located on the middle-sized chromosome in the fourth group of chromosomes, demonstrating that Hyacinthus has a more primitive evolution than Lilium and Polygonatum. Among 20 hyacinth cultivars, 'Fondant' had the highest level of evolution and a maximum asymmetric coefficient of 61.69%. Moreover, the ratio between the shortest and longest chromosomes in this cultivar was 4.40, and its karyotype was type 2C. This study may elucidate long-term homonym and synonym phenomena. It may also provide a method of cytological identification as well as direct proof of the high outcross compatibility between hyacinth cultivars. PMID:26400314

  7. Biological dosimetry: chromosomal aberration analysis for dose assessment

    In view of the growing importance of chromosomal aberration analysis as a biological dosimeter, the present report provides a concise summary of the scientific background of the subject and a comprehensive source of information at the technical level. After a review of the basic principles of radiation dosimetry and radiation biology basic information on the biology of lymphocytes, the structure of chromosomes and the classification of chromosomal aberrations are presented. This is followed by a presentation of techniques for collecting blood, storing, transporting, culturing, making chromosomal preparations and scaring of aberrations. The physical and statistical parameters involved in dose assessment are discussed and examples of actual dose assessments taken from the scientific literature are given

  8. Human oocyte chromosome analysis: complicated cases and major pitfalls

    Bernd Rosenbusch; Michael Schneider; Hans Wilhelm Michelmann


    Human oocytes that remained unfertilized in programmes of assisted reproduction have been analysed cytogenetically for more than 20 years to assess the incidence of aneuploidy in female gametes. However, the results obtained so far are not indisputable as a consequence of difficulties in evaluating oocyte chromosome preparations. Because of the lack of guidelines, we decided to summarize for the first time, the possible pitfalls in human oocyte chromosome analysis. Therefore, we screened the material from our previous studies and compiled representative, complicated cases with recommendations for their cytogenetic classification. We point out that maturity and size of the oocyte are important parameters and that fixation artefacts, as well as the particular structure of oocyte chromosomes, may predispose one to misinterpretations. Moreover, phenomena related to oocyte activation and fertilization are illustrated and explained. This compilation may help to avoid major problems in future studies and contribute to a more precise, and uniform assessment of human oocyte chromosomes.

  9. Preparation and Fluorescent Analysis of Plant Metaphase Chromosomes.

    Schwarzacher, Trude


    Good preparations are essential for informative analysis of both somatic and meiotic chromosomes, cytogenetics, and cell divisions. Fluorescent chromosome staining allows even small chromosomes to be visualized and counted, showing their morphology. Aneuploidies and polyploidies can be established for species, populations, or individuals while changes occurring in breeding lines during hybridization or tissue culture and transformation protocols can be assessed. The process of division can be followed during mitosis and meiosis including pairing and chiasma distribution, as well as DNA organization and structure during the evolution of chromosomes can be studied. This chapter presents protocols for pretreatment and fixation of material, including tips of how to grow plants to get good and healthy meristem with many divisions. The chromosome preparation technique is described using proteolytic enzymes, but acids can be used instead. Chromosome slide preparations are suitable for fluorochrome staining for fast screening (described in the chapter) or fluorescent in situ hybridization (see Schwarzacher and Heslop-Harrison, In situ hybridization. BIOS Scientific Publishers, Oxford, 2000). PMID:26659956

  10. Linkage analysis of neurofibromatosis type I, using chromosome 17 DNA markers.

    Kittur, S D; Bagdon, M M; Lubs, M L; Phillips, J. A.; Murray, J C; Slaugenhaupt, S A; Chakravarti, A; Adler, W. H.


    The gene for von Recklinghausen neurofibromatosis type 1 (NF1) has recently been mapped to the pericentromeric region of human chromosome 17. To further localize the NF1 gene, linkage analysis using chromosome 17 DNA markers was performed on 11 multigeneration families with 175 individuals, 57 of whom were affected. The markers used were D17Z1 (p17H8), D17S58 (EW301), D17S54 (EW203), D17S57 (EW206), D17S73 (EW207), CRI-L946, HOX-2, and growth hormone. Tight linkage was found between NF1 and D...

  11. Dynamic in situ chromosome immobilisation and DNA extraction using localized poly(N-isopropylacrylamide) phase transition

    Eriksen, Johan; Thilsted, Anil Haraksingh; Marie, Rodolphe; Lüscher, Christopher James; Nielsen, Lars Bue; Svendsen, Winnie Edith; Szabo, Peter; Kristensen, Anders


    A method of in situ chromosome immobilisation and DNA extraction in a microfluidic polymer chip was presented. Light-induced local heating was used to induce poly(N-isopropylacrylamide) phase transition in order to create a hydrogel and embed a single chromosome such that it was immobilised. This was achieved with the use of a near-infrared laser focused on an absorption layer integrated in the polymer chip in close proximity to the microchannel. It was possible to proceed to DNA extraction w...

  12. Localization of UvrA and Effect of DNA Damage on the Chromosome of Bacillus subtilis

    Smith, Bradley T.; Grossman, Alan D.; Walker, Graham C.


    We found that the nucleotide excision repair protein UvrA, which is involved in DNA damage recognition, localizes to the entire chromosome both before and after damage in living Bacillus subtilis cells. We suggest that the UvrA2B damage recognition complex is constantly scanning the genome, searching for lesions in the DNA. We also found that DNA damage induces a dramatic reconfiguration of the chromosome such that it no longer fills the entire cell as it does during normal growth. This recon...

  13. Localization of the human fibromodulin gene (FMOD) to chromosome 1q32 and completion of the cDNA sequence

    Sztrolovics, R.; Grover, J.; Roughley, P.J. [McGill Univ., Montreal (Canada)] [and others


    This report describes the cloning of the 3{prime}-untranslated region of the human fibromodulin cDNA and its use to map the gene. For somatic cell hybrids, the generation of the PCR product was concordant with the presence of chromosome 1 and discordant with the presence of all other chromosomes, confirming that the fibromodulin gene is located within region q32 of chromosome 1. The physical mapping of genes is a critical step in the process of identifying which genes may be responsible for various inherited disorders. Specifically, the mapping of the fibromodulin gene now provides the information necessary to evaluate its potential role in genetic disorders of connective tissues. The analysis of previously reported diseases mapped to chromosome 1 reveals two genes located in the proximity of the fibromodulin locus. These are Usher syndrome type II, a recessive disorder characterized by hearing loss and retinitis pigmentosa, and Van der Woude syndrome, a dominant condition associated with abnormalities such as cleft lip and palate and hyperdontia. The genes for both of these disorders have been projected to be localized to 1q32 of a physical map that integrates available genetic linkage and physical data. However, it seems improbable that either of these disorders, exhibiting restricted tissue involvement, could be linked to the fibromodulin gene, given the wide tissue distribution of the encoded proteoglycan, although it remains possible that the relative importance of the quantity and function of the proteoglycan may avry between tissues. 11 refs., 1 fig.

  14. Localization of monoamine oxidase A and B genes on the mouse X chromosome

    Derry, J.M.J.; Barnard, E.A.; Barnard, P.J. (Medical Research Council Centre, Cambridge (England)); Lan, N.C.; Shih, J.C. (Univ. of Southern California School of Pharmacy, Los Angeles (USA))


    A 700bp Sacl fragment of the 2.1 kb human monoamine oxidase A(MAOA) cDNA were cloned in the EcoR1 site of pUC19, and a 2.5 kb cDNA of the human monoamine oxidase B gene(MAOB) was cloned in the EcoR1 site of pSP6T719. The MAOA probe recognizes a 14 kb S allele and two M alleles at 6.6 and 4.4 kb in Taq digests. The MAOB cDNA recognizes two S alleles at 6.6 and 4.8 kb and two M alleles at 9.0 and 5.1 kb in Taq digests. The M alleles are detected in the inbred Mus musculus (C57BL/10) strain, and the S alleles in the Mus spretus mouse. The mouse genes homologous for MAOA and MAOB have been mapped to the Cybb - Timp interval of the proximal mouse X chromosome by genetic breakpoint analysis. This predicts a human localization of Xp21.1-p11.21 for both genes, and is in agreement with published human mapping data showing conservation of gene order. Segregation of the restriction fragments was followed in 60 recombinant backcross progeny, resulting from an interspecific backcross between Mus musculus x Mus spretus mice. 6 animals in this pedigree recombine in the Cybb - Timp interval and both Maoa and Maob co-segregate with Timp in 5 of 6 recombinant animals. This suggests Maoa and Maob lie close together on the mouse X-chromosome and centromeric to Timp.

  15. Human thrombomodulin: complete cDNA sequence and chromosome localization of the gene

    A human umbilical vein endothelial cell cDNA library in λgt11 was screened for expression of thrombomodulin antigens with affinity-purified rabbit polyclonal anti-thrombomodulin immunoglobulin G (IgG) and mouse monoclonal anti-human thrombomodulin IgG. Among 7 million recombinant clones screened, 12 were recognized by both antibodies. Two of these, λHTm10 and λHTm12, were shown to encode thrombomodulin by comparison of the amino acid sequence deduced from the nucleotide sequence to the amino acid sequence determined directly from tryptic peptides of thrombomodulin. Thrombomodulin mRNA was estimated to be 3.7 kilobases in length by Northern blot analysis of endothelial cell and placental poly(A) + RNA. Thrombomodulin mRNA was not detected in human brain, HepG2 hepatoma cells, or the monocytic U937 cell line. Additional cDNA clones were selected by hybridization with the 1.2-kilobase insert of λHTm10. One isolate, λHTm15, contained a 3693 base pair cDNA insert with an apparent 5'-noncoding region of 146 base pairs, an open reading frame of 1725 base pairs, a stop codon, a 3'-noncoding region of 1779 base pairs, and a poly(A) tail of 40 base pairs. The cDNA sequence encodes a 60.3-kDa protein of 575 amino acids. The organization of thrombomodulin is similar to that of the low-density lipoprotein receptor, and the protein is homologous to a large number of other proteins that also contain EGF-like domains, including factor VII, factor IX, factor X, factor XII, protein C, tissue plasminogen activator, and urokinase. The gene for thrombomodulin has been localized to chromosome 20 by hybridization of cDNA probes to purified human chromosomes

  16. Structure, sequence, expression, and chromosomal localization of the human V{sub 1a} vasopressin receptor gene

    Thibonnier, M.; Graves, M.K.; Wagner, M.S. [Case Western Reserve Univ. School of Medicine, Cleveland, OH (United States)] [and others


    We recently reported the structure and functional expression of a human V{sub 1a} vasopressin receptor (V{sub 1a}R) cDNA isolated from human liver cDNA libraries. To understand further the expression and regulation of the V{sub 1a}R, we now describe the genomic characteristics, tissue expression, chromosomal localization, and regional mapping of the human V{sub 1a}R gene, AVPR1A. Tissue distribution of the human V{sub 1a}R mRNA explored by Northern blot analysis of various human tissues or organs revealed the presence of a 5.5-kb mRNA transcript expressed in the liver and to a lesser degree in the heart, the kidney, and skeletal muscle. Screening of human genomic libraries revealed that the human AVPR1A gene is included entirely within a 6.4-kb rated by a 2.2-kb intron located before the corresponding seventh transmembrane domain of the receptor sequence. The first exon also contains 2 kb of 5{prime}-untranslated region, and the second exon includes 1 kb of 3{prime}-untranslated region. 5{prime}-RACE analysis of human liver mRNA by PCR localized the V{sub 1a}R mRNA transcription start site 1973 bp upstream of the translation the intron sequence were used as primers in polymerase chain reaction (PCR) analysis of human/rodent somatic cell hybrids. AVPR1A was localized by PCR analysis of a somatic cell hybrid panel to chromosome 12. Fluorescence in situ hybridization using a yeast artificial chromosome physically mapped AVPR1A to region 12q14-q15. 34 refs., 4 figs.

  17. Molecular karyotype and chromosomal localization of genes encoding ß-tubulin, cysteine proteinase, hsp 70 and actin in Trypanosoma rangeli

    CB Toaldo


    Full Text Available The molecular karyotype of nine Trypanosoma rangeli strains was analyzed by contour-clamped homogeneous electric field electrophoresis, followed by the chromosomal localization of ß-tubulin, cysteine proteinase, 70 kDa heat shock protein (hsp 70 and actin genes. The T. rangeli strains were isolated from either insects or mammals from El Salvador, Honduras, Venezuela, Colombia, Panama and southern Brazil. Also, T. cruzi CL-Brener clone was included for comparison. Despite the great similarity observed among strains from Brazil, the molecular karyotype of all T. rangeli strains analyzed revealed extensive chromosome polymorphism. In addition, it was possible to distinguish T. rangeli from T. cruzi by the chromosomal DNA electrophoresis pattern. The localization of ß-tubulin genes revealed differences among T. rangeli strains and confirmed the similarity between the isolates from Brazil. Hybridization assays using probes directed to the cysteine proteinase, hsp 70 and actin genes discriminated T. rangeli from T. cruzi, proving that these genes are useful molecular markers for the differential diagnosis between these two species. Numerical analysis based on the molecular karyotype data revealed a high degree of polymorphism among T. rangeli strains isolated from southern Brazil and strains isolated from Central and the northern South America. The T. cruzi reference strain was not clustered with any T. rangeli strain.

  18. Should the indications for prenatal chromosome analysis be changed?

    Philip, J; Bang, J; Madsen, Mette


    Amniocentesis for chromosome analysis was performed in 1086 pergnant women, 739 of whom had an increased risk of giving birth to a child with chromosome abnormalities. Such abnormalities were found in almost identical proportions among the fetuses with an increased risk (1.2%) and among those with...... no increased risk (1.4%). Findings in several other studies seem to confirm that there is no significant difference between the risk groups in the proportion of abnormalities found. This suggests that our current risk groups may not be the right ones, but a much larger study is needed to confirm this....

  19. Biological dosimetry of ionizing radiation by chromosomal aberration analysis

    Biological dosimetry consists of estimating absorbed doses for people exposed to radiation by mean biological methods. Several indicators used are based in haematological, biochemical, and cytogenetic data, although nowadays without doubt, the cytogenetic method is considered to be the most reliable. In this case, the study ol chromosomal aberrations, normally dicentric chromosomes, in peripheral lymphocytes can be related to absorbed dose through an experimental calibration curve. An experimental dose-response curve, using dicentric chromosomes analysis, X-rays at 300 kVp, 114 rad/min and temperature 37 degree celsius has been produced. Experimental data is fitted to model Y =α + β1D + β2D 2 , where Y is the number of dicentrics per cell and D the dose. The curve is compared with those produced elsewhere. (Author) 14 refs

  20. Chromosome aberration analysis based on a beta-binomial distribution

    Analyses carried out here generalized on earlier studies of chromosomal aberrations in the populations of Hiroshima and Nagasaki, by allowing extra-binomial variation in aberrant cell counts corresponding to within-subject correlations in cell aberrations. Strong within-subject correlations were detected with corresponding standard errors for the average number of aberrant cells that were often substantially larger than was previously assumed. The extra-binomial variation is accomodated in the analysis in the present report, as described in the section on dose-response models, by using a beta-binomial (B-B) variance structure. It is emphasized that we have generally satisfactory agreement between the observed and the B-B fitted frequencies by city-dose category. The chromosomal aberration data considered here are not extensive enough to allow a precise discrimination between competing dose-response models. A quadratic gamma ray and linear neutron model, however, most closely fits the chromosome data. (author)

  1. Comparative analysis of sex chromosomes in Leporinus species (Teleostei, Characiformes) using chromosome painting


    Background The Leporinus genus, belonging to the Anostomidae family, is an interesting model for studies of sex chromosome evolution in fish, particularly because of the presence of heteromorphic sex chromosomes only in some species of the genus. In this study we used W chromosome-derived probes in a series of cross species chromosome painting experiments to try to understand events of sex chromosome evolution in this family. Results W chromosome painting probes from Leporinus elongatus, L. macrocephalus and L. obtusidens were hybridized to each others chromosomes. The results showed signals along their W chromosomes and the use of L. elongatus W probe against L. macrocephalus and L. obtusidens also showed signals over the Z chromosome. No signals were observed when the later aforementioned probe was used in hybridization procedures against other four Anostomidae species without sex chromosomes. Conclusions Our results demonstrate a common origin of sex chromosomes in L. elongatus, L. macrocephalus and L. obtusidens but suggest that the L. elongatus chromosome system is at a different evolutionary stage. The absence of signals in the species without differentiated sex chromosomes does not exclude the possibility of cryptic sex chromosomes, but they must contain other Leporinus W sequences than those described here. PMID:23822802

  2. The gene for human TATA-binding-protein-associated factor (TAFII) 170: structure, promoter and chromosomal localization.

    Van Der Knaap, J A; Van Den Boom, V; Kuipers, J; Van Eijk, M J; Van Der Vliet, P C; Timmers, H T


    The TATA-binding protein (TBP) plays a central role in eukaryotic transcription and forms protein complexes with TBP-associated factors (TAFs). The genes encoding TAF(II) proteins frequently map to chromosomal regions altered in human neoplasias. TAF(II)170 of B-TFIID is a member of the SF2 superfamily of putative helicases. Members of this superfamily have also been implicated in several human genetic disorders. In this study we have isolated human genomic clones encoding TAF(II)170 and we show that the gene contains 37 introns. Ribonuclease-protection experiments revealed that TAF(II)170 has multiple transcription start sites, consistent with the observation that the promoter lacks a canonical TATA box and initiator element. Deletion analysis of the promoter region showed that a fragment of 264 bp is sufficient to direct transcription. In addition, we determined the chromosomal localization by two independent methods which mapped the gene to human chromosome 10q22-q23 between the markers D10S185 and WI-1183. The region surrounding these markers has been implicated in several human disorders. PMID:10642510

  3. Proteomics Analysis with a Nano Random Forest Approach Reveals Novel Functional Interactions Regulated by SMC Complexes on Mitotic Chromosomes.

    Ohta, Shinya; Montaño-Gutierrez, Luis F; de Lima Alves, Flavia; Ogawa, Hiromi; Toramoto, Iyo; Sato, Nobuko; Morrison, Ciaran G; Takeda, Shunichi; Hudson, Damien F; Rappsilber, Juri; Earnshaw, William C


    Packaging of DNA into condensed chromosomes during mitosis is essential for the faithful segregation of the genome into daughter nuclei. Although the structure and composition of mitotic chromosomes have been studied for over 30 years, these aspects are yet to be fully elucidated. Here, we used stable isotope labeling with amino acids in cell culture to compare the proteomes of mitotic chromosomes isolated from cell lines harboring conditional knockouts of members of the condensin (SMC2, CAP-H, CAP-D3), cohesin (Scc1/Rad21), and SMC5/6 (SMC5) complexes. Our analysis revealed that these complexes associate with chromosomes independently of each other, with the SMC5/6 complex showing no significant dependence on any other chromosomal proteins during mitosis. To identify subtle relationships between chromosomal proteins, we employed a nano Random Forest (nanoRF) approach to detect protein complexes and the relationships between them. Our nanoRF results suggested that as few as 113 of 5058 detected chromosomal proteins are functionally linked to chromosome structure and segregation. Furthermore, nanoRF data revealed 23 proteins that were not previously suspected to have functional interactions with complexes playing important roles in mitosis. Subsequent small-interfering-RNA-based validation and localization tracking by green fluorescent protein-tagging highlighted novel candidates that might play significant roles in mitotic progression. PMID:27231315

  4. Localization of the gene for the ciliary neutrotrophic factor receptor (CNTFR) to human chromosome 9

    Donaldson, D.H.; Jones, C.; Patterson, D. (Eleanor Roosevelt Institute, Denver, CO (United States) Univ. of Colorado Health Science Center, Denver, CO (United States)); Britt, D.E.; Jackson, C.L. (Brown Univ., Providence, RI (United States))


    Ciliary neurotrophic factor (CNTF) has recently been found to be important for the survival of motor neurons and has shown activity in animal models of amyotrophic lateral sclerosis (ALS). CNTF therefore holds promise as a treatment for ALS, and it and its receptor (CNTFR) are candidates for a gene involved in familial ALS. The CNTFR gene was mapped to chromosome 9 by PCR on a panel of human/CHO somatic cell hybrids and localized to 9p13 by PCR on a panel of radiation hybrids. 18 ref., 1 fig., 2 tabs.

  5. Structural analysis and physical mapping of a pericentromeric region of chromosome 5 of Arabidopsis thaliana.

    Tutois, S; Cloix, C; Cuvillier, C; Espagnol, M C; Lafleuriel, J; Picard, G; Tourmente, S


    The Arabidopsis thaliana CIC YAC 2D2, 510 kb long and containing a small block of 180 bp satellite units was subcloned after EcoR1 digestion in the pBluescript plasmid. One of these clones was mapped genetically in the pericentromeric region of chromosome 5. The analysis of 40 subclones of this YAC showed that they all contain repeated sequences with a high proportion of transposable elements. Three new retrotransposons, two Ty-3 Gypsy-like and one Ty-1 Copia, were identified in addition to two new tandem-repeat families. A physical map of the chromosome 5 pericentromeric region was established using CIC YAC clones, spanning around 1000 kb. This contig extends from the CIC YAC 9F5 and 7A2 positioned on the left arm of chromosome 5 to a 5S rDNA genes block localized by in-situ hybridization in the pericentromeric region. Hybridization of the subclones on the CIC YAC library showed that some of them are restricted to the pericentromeric region of chromosome 5 and represent specific markers of this region. PMID:10328626

  6. In situ chromosomal localization of rDNA sites in "Safed Musli" Chlorophytum ker-gawl and their physical measurement by fiber FISH.

    Lavania, U C; Basu, S; Srivastava, S; Mukai, Y; Lavania, S


    Fluorescence In Situ Hybridization (FISH) technique has been applied on somatic chromosomes and extended DNA fibers in the medicinally important species of Chlorophytum to elucidate physical localization and measurement of the rDNA sites using two rRNA multigene families homologous to 45S and 5S rDNA. The two species of Chlorophytum, namely C. borivillianum and C. comosum, both with 2n = 28, reveal diversity for copy number and localization of rDNA sites. C. borivillianum is comprised of five 45S-rDNA sites:one each in the secondary constriction region of chromosomes 7, 8, 9; one in the subtelomeric region of the short arm of chromosome 2 and the telomeric region of the short arm of chromosome 12; and one 5S-rDNA site in the subtelomeric region of the long arm of chromosome 1. In C. comosum, there are three 45S-rDNA sites (one each in the short arm of chromosomes 12, 13, and 14) and two 5S-rDNA sites (in the secondary constriction regions of chromosomes 2 and 13). Fiber FISH analysis conducted on extended DNA fibers revealed variation in the size of continuous tandem strings for the two r-DNA families. Taking the standard value of native B DNA equivalent to 3.27 kb for 1 mum, it was estimated that the physical size of continuous DNA strings is of the order of approximately 90 kb, 180 kb, and 300 kb for 45S-rDNA and of the order of 60 kb, 150 kb for 5S-rDNA in C. comosum, grossly in correspondence to their respective physical sizes at metaphase. PMID:15618304

  7. Comparison of genomes of eight species of sections Linum and Adenolinum from the genus Linum based on chromosome banding, molecular markers and RAPD analysis.

    Muravenko, Olga V; Yurkevich, Olga Yu; Bolsheva, Nadezhda L; Samatadze, Tatiana E; Nosova, Inna V; Zelenina, Daria A; Volkov, Alexander A; Popov, Konstantin V; Zelenin, Alexander V


    Karyotypes of species sects. Linum and Adenolinum have been studied using C/DAPI-banding, Ag-NOR staining, FISH with 5S and 26S rDNA and RAPD analysis. C/DAPI-banding patterns enabled identification of all homologous chromosome pairs in the studied karyotypes. The revealed high similarity between species L. grandiflorum (2n = 16) and L. decumbens by chromosome and molecular markers proved their close genome relationship and identified the chromosome number in L. decumbens as 2n = 16. The similarity found for C/DAPI-banding patterns between species with the same chromosome numbers corresponds with the results obtained by RAPD-analysis, showing clusterization of 16-, 18- and 30-chromosome species into three separate groups. 5S rDNA and 26S rDNA were co-localized in NOR-chromosome 1 in the genomes of all species investigated. In 30-chromosome species, there were three separate 5S rDNA sites in chromosomes 3, 8 and 13. In 16-chromosome species, a separate 5S rDNA site was also located in chromosome 3, whereas in 18-chromosome species it was found in the long arm of NOR-chromosome 1. Thus, the difference in localization of rDNA sites in species with 2n = 16, 2n = 30 and 2n = 18 confirms taxonomists opinion, who attributed these species to different sects. Linum and Adenolinum, respectively. The obtained results suggest that species with 2n = 16, 2n = 18 and 2n = 30 originated from a 16-chromosome ancestor. PMID:18500654

  8. Human placental Na+, K+-ATPase α subunit: cDNA cloning, tissue expression, DNA polymorphism, and chromosomal localization

    A 2.2-kilobase clone comprising a major portion of the coding sequence of the Na+, K+-ATPase α subunit was cloned from human placenta and its sequence was identical to that encoding the α subunit of human kidney and HeLa cells. Transfer blot analysis of the mRNA products of the Na+, K+-ATPase gene from various human tissues and cell lines revealed only one band (≅ 4.7 kilobases) under low and high stringency washing conditions. The levels of expression in the tissues were intestine > placenta > liver > pancreas, and in the cell lines the levels were human erythroleukemia > butyrate-induced colon > colon > brain > HeLa cells. mRNA was undetectable in reticulocytes, consistent with the authors failure to detect positive clones in a size-selected ( > 2 kilobases) λgt11 reticulocyte cDNA library. DNA analysis revealed by a polymorphic EcoRI band and chromosome localization by flow sorting and in situ hybridization showed that the α subunit is on the short is on the short arm (band p11-p13) of chromosome 1

  9. Tiling microarray analysis of rice chromosome 10 to identify the transcriptome and relate its expression to chromosomal architecture

    Li, Lei; Wang, Xiangfeng; Xia, Mian;


    BACKGROUND: Sequencing and annotation of the genome of rice (Oryza sativa) have generated gene models in numbers that top all other fully sequenced species, with many lacking recognizable sequence homology to known genes. Experimental evaluation of these gene models and identification of new models...... will facilitate rice genome annotation and the application of this knowledge to other more complex cereal genomes. RESULTS: We report here an analysis of the chromosome 10 transcriptome of the two major rice subspecies, japonica and indica, using oligonucleotide tiling microarrays. This analysis...... comparative gene model mapping, the tiling microarray analysis identified 549 new models for the japonica chromosome, representing an 18% increase in the annotated protein-coding capacity. Furthermore, an asymmetric distribution of genome elements along the chromosome was found that coincides with the...

  10. Chromosome aberration analysis for biological dosimetry: a review

    Among various biological dosimetry techniques, dicentric chromosome aberration method appears to be the method of choice in analysing accidental radiation exposure in most of the laboratories. The major advantage of this method is its sensitivity as the number of dicentric chromosomes present in control population is too small and more importantly radiation induces mainly dicentric chromosome aberration among unstable aberration. This report brings out the historical development of various cytogenetic methods, the basic structure of DNA, chromosomes and different forms of chromosome aberrations. It also highlights the construction of dose-response curve for dicentric chromosome and its use in the estimation of radiation dose. (author)

  11. Local models for spatial analysis

    Lloyd, Christopher D


    In both the physical and social sciences, there are now available large spatial data sets with detailed local information. Global models for analyzing these data are not suitable for investigating local variations; consequently, local models are the subject of much recent research. Collecting a variety of models into a single reference, Local Models for Spatial Analysis explains in detail a variety of approaches for analyzing univariate and multivariate spatial data. Different models make use of data in unique ways, and this book offers perspectives on various definitions of what constitutes

  12. Chromosomal localization of rDNA genes and genomic organization of 5S rDNA in Oreochromis mossambicus, O. urolepis hornorum and their hybrid

    Hua Ping Zhu; Mai Xin Lu; Feng Ying Gao; Zhang Han Huang; Li Ping Yang; Jain Fang Gui


    In this study, classical and molecular cytogenetic analyses were performed in tilapia fishes, Oreochromis mossambicus (XX/XY sex determination system), O. urolepis hornorum (WZ/ZZ sex determination system) and their hybrid by crossing O. mossambicus female × O. u. hornorum male. An identical karyotype (($2n = 44$, NF (total number of chromosomal arms) = 50) was obtained from three examined tilapia samples. Genomic organization analysis of 5S rDNA revealed two different types of 5S rDNA sequences, 5S type I and 5S type II. Moreover, fluorescence in situ hybridization (FISH) with 5S rDNA probes showed six positive fluorescence signals on six chromosomes of all the analysed metaphases from the three tilapia samples. Subsequently, 45S rDNA probes were also prepared, and six positive fluorescence signals were observed on three chromosome pairs in all analysed metaphases of the three tilapia samples. The correlation between 45 rDNA localization and nucleolar organizer regions (NORs) was confirmed by silver nitrate staining in tilapia fishes. Further, different chromosomal localizations of 5S rDNA and 45S rDNA were verified by two different colour FISH probes. Briefly, the current data provide an insights for hybridization projects and breeding improvement of tilapias.

  13. Localization of Sry gene on Y chromosome of Muntjac munticus vaginalis


    The chromosomes 1, Y1, Y2 of Muntjac munticus vaginalis were isolated by fluorescence activated chromosome sorting and amplified by degenerate oligonucleotide primed-polymerase chain reaction (DOP-PCR). A primer pair within human Sry HMG box was designed and the Sry gene of the male M. m vaginalis was amplified. The product was cloned and sequenced. The result proved that Sry is located on chromosome Y2, which is the sex-determining chromosome in the male M. m vaginalis.

  14. Localization of a human homolog of the mouse pericentrin gene (PCNT) to chromosome 21qter

    Chen, Haiming [Univ. of Geneva Medical School (Switzerland); Gos, A.; Morris, M.A. [Cantonal Hospital, Geneva (Switzerland)] [and others


    Exon trapping was used to identify portions of genes from cosmid DNA of a human chromosome 21-specific library LL21NC02-Q. More than 650 potential exons have been cloned and characterized to date. Among these, 3 trapped {open_quotes}exons{close_quotes} showed strong homology to different regions of the cDNA for the mouse pericentrin (Pcnt) gene, indicating that these 3 exons are portions of a human homolog of the mouse pericentrin gene. With PCR amplification, Southern blot analysis, and FISH, we have mapped this presumed human pericentrin gene (PCNT) to the long arm of chromosome 21 between marker PFKL and 21qter. Pericentrin is a conserved protein component of the filamentous matrix of the centrosome involved in the initial establishment of the organized microtubule array. No candidate hereditary disorder for pericentrin deficiency/abnormality has yet been mapped in the most distal region of 21q; in addition the role of triplication of the pericentrin gene in the pathophysiology or etiology of trisomy 21 is currently unknown. 16 refs., 3 figs.

  15. Hematoxylin: a simple, multiple-use dye for chromosome analysis

    Guerra Marcelo


    Full Text Available A staining mixture of hematoxylin-iron alum combined with a strong hydrochloric hydrolysis was successfully applied for chromosome observation of several kinds of plants and some animals. Slightly different procedures were developed for different materials and objectives. For plant cells, the most important technical aspect was the use of 5 N HCl hydrolysis, which resulted in a very transparent cytoplasm, combined with an intense, specific hematoxylin stain. This technique is recommended for cytogenetical analysis in general, and it is especially indicated for practical classes, due to its simplicity and high reproducibility of results. Moreover, the deep contrast observed makes this technique very useful for sequential staining of cells previously analyzed with other stains, as well as for materials with fixation problems.

  16. Linkage analysis on chromosome 2 in essential hypotension pedigrees


    It is a new approach to study the important genes related to the control of blood pressure by probing into hypotension and hypertension at the same time. Genome scanning on whole chromosome 2 in 8 hypotension pedigrees has been done and parameter (LOD score) and non-pa- rameter (NPL score) were used in the linkage analysis by GENEHUNTER software. The results show the evidence of linkage between D2S112 and D2S117, indicating a number of critical genes may lie in thisregion and contribute to the mechanism of blood pressure regulation. Also this region has been found in the previous study in hypertension pedigrees. These genes may play an important role in the regulation of blood pressure and can also be the important candidate genes in hypertension studies.

  17. Analysis of SINE and LINE repeat content of Y chromosomes in the platypus, Ornithorhynchus anatinus.

    Kortschak, R Daniel; Tsend-Ayush, Enkhjargal; Grützner, Frank


    Monotremes feature an extraordinary sex-chromosome system that consists of five X and five Y chromosomes in males. These sex chromosomes share homology with bird sex chromosomes but no homology with the therian X. The genome of a female platypus was recently completed, providing unique insights into sequence and gene content of autosomes and X chromosomes, but no Y-specific sequence has so far been analysed. Here we report the isolation, sequencing and analysis of approximately 700 kb of sequence of the non-recombining regions of Y2, Y3 and Y5, which revealed differences in base composition and repeat content between autosomes and sex chromosomes, and within the sex chromosomes themselves. This provides the first insights into repeat content of Y chromosomes in platypus, which overall show similar patterns of repeat composition to Y chromosomes in other species. Interestingly, we also observed differences between the various Y chromosomes, and in combination with timing and activity patterns we provide an approach that can be used to examine the evolutionary history of the platypus sex-chromosome chain. PMID:19874720

  18. Chromosomes in the flow to simplify genome analysis

    Doležel, Jaroslav; Vrána, Jan; Šafář, Jan; Bartoš, Jan; Kubaláková, Marie; Šimková, Hana


    Roč. 12, č. 3 (2012), s. 397-416. ISSN 1438-793X R&D Projects: GA ČR GAP501/10/1740; GA ČR GAP501/10/1778 Institutional research plan: CEZ:AV0Z50380511 Keywords : Chromosome sorting * Chromosome-specific BAC libraries * Chromosome sequencing Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.292, year: 2012

  19. Cytogenetic and molecular analysis of sex-chromosome monosomy.

    Hassold, T.; Benham, F; Leppert, M


    X chromosome- and Y chromosome-specific DNA probes were used to study different aspects of the genesis of sex-chromosome monosomy. Using X-linked RFLPs, we studied the parental origin of the single X chromosome in 35 spontaneously aborted and five live-born 45,X conceptions. We determined the origin in 35 cases; 28 had a maternal X (Xm) and seven had a paternal X (Xp). There was a correlation between parental origin and parental age, with the Xp category having a significantly reduced mean ma...

  20. Localization of introduced genes on the chromosomes of transgenic barley, wheat and triticale by fluorescence in situ hybridization

    Pedersen, C.; Zimny, J.; Becker, D.;


    Using fluorescence in situ hybridization (FISH) we localized introduced genes on metaphase chromosomes of barley, wheat, and triticale transformed by microprojectile bombardment of microspores and scutellar tissue with the pDB1 plasmid containing the uidA and bar genes. Thirteen integration sites...

  1. Evolution of a Distinct Genomic Domain in Drosophila: Comparative Analysis of the Dot Chromosome in Drosophila melanogaster and Drosophila virilis

    Leung, Wilson; Shaffer, Christopher D.; Cordonnier, Taylor; Wong, Jeannette; Itano, Michelle S.; Slawson Tempel, Elizabeth E.; Kellmann, Elmer; Desruisseau, David Michael; Cain, Carolyn; Carrasquillo, Robert; Chusak, Tien M.; Falkowska, Katazyna; Grim, Kelli D.; Guan, Rui; Honeybourne, Jacquelyn; Khan, Sana; Lo, Louis; McGaha, Rebecca; Plunkett, Jevon; Richner, Justin M.; Richt, Ryan; Sabin, Leah; Shah, Anita; Sharma, Anushree; Singhal, Sonal; Song, Fine; Swope, Christopher; Wilen, Craig B.; Buhler, Jeremy; Mardis, Elaine R.; Elgin, Sarah C. R.


    The distal arm of the fourth (“dot”) chromosome of Drosophila melanogaster is unusual in that it exhibits an amalgamation of heterochromatic properties (e.g., dense packaging, late replication) and euchromatic properties (e.g., gene density similar to euchromatic domains, replication during polytenization). To examine the evolution of this unusual domain, we undertook a comparative study by generating high-quality sequence data and manually curating gene models for the dot chromosome of D. virilis (Tucson strain 15010–1051.88). Our analysis shows that the dot chromosomes of D. melanogaster and D. virilis have higher repeat density, larger gene size, lower codon bias, and a higher rate of gene rearrangement compared to a reference euchromatic domain. Analysis of eight “wanderer” genes (present in a euchromatic chromosome arm in one species and on the dot chromosome in the other) shows that their characteristics are similar to other genes in the same domain, which suggests that these characteristics are features of the domain and are not required for these genes to function. Comparison of this strain of D. virilis with the strain sequenced by the Drosophila 12 Genomes Consortium (Tucson strain 15010–1051.87) indicates that most genes on the dot are under weak purifying selection. Collectively, despite the heterochromatin-like properties of this domain, genes on the dot evolve to maintain function while being responsive to changes in their local environment. PMID:20479145

  2. Chromosome Aberrations in Human Epithelial Cells Exposed Los Alamos High-Energy Secondary Neutrons: M-BAND Analysis

    Hada, M.; Saganti, P. B.; Gersey, B.; Wilkins, R.; Cucinotta, F. A.; Wu, H.


    High-energy secondary neutrons, produced by the interaction of galactic cosmic rays (GCR) with the atmosphere, spacecraft structure and planetary surfaces, contribute a significant fraction to the dose equivalent radiation measurement in crew members and passengers of commercial aviation travel as well as astronauts in space missions. The Los Alamos Nuclear Science Center (LANSCE) neutron facility's 30L beam line (4FP30L-A/ICE House) is known to generate neutrons that simulate the secondary neutron spectrum of the Earth's atmosphere at high altitude. The neutron spectrum is also similar to that measured onboard spacecrafts like the MIR and the International Space Station (ISS). To evaluate the biological damage, we exposed human epithelial cells in vitro to the LANSCE neutron beams with an entrance dose rate of 2.5 cGy/hr, and studied the induction of chromosome aberrations that were identified with multicolor-banding in situ hybridization (mBAND) technique. With this technique, individually painted chromosomal bands on one chromosome allowed the identification of inter-chromosomal aberrations (translocation to unpainted chromosomes) and intra-chromosomal aberrations (inversions and deletions within a single painted chromosome). Compared to our previous results with gamma-rays and 600 MeV/nucleon Fe ions of high dose rate at NSRL (NASA Space Radiation Laboratory at Brookhaven National Laboratory), the neutron data from the LANSCE experiments showed significantly higher frequency of chromosome aberrations. However, detailed analysis of the inversion type revealed that all of the three radiation types in the study induced a low incidence of simple inversions. Most of the inversions in gamma-ray irradiated samples were accompanied by other types of intrachromosomal aberrations but few inversions were accompanied by interchromosomal aberrations. In contrast, neutrons and Fe ions induced a significant fraction of inversions that involved complex rearrangements of both

  3. Clinical diversity and chromosomal localization of X-linked cone dystrophy (CODI)

    Hong, Hee-Kyung; Ferrell, R.E.; Gorin, M.B. [Univ. of Pittsburgh, PA (United States)


    X-linked progressive cone dystrophy (COD1) causes progressive deterioration of visual acuity, deepening of central scotomas, macular changes, and bull`s-eye lesions. The cone electroretinography (ERG) is variably abnormal in affected males, and the rod ERG may also be abnormal. The clinical picture of heterozygous females ranges from asymptomatic to a widespread spectrum of cone-mediated dysfunction. A prior linkage study demonstrated linkage between the COD1 locus and the marker locus DXS84, assigned to Xp21.1, with no recombination. In the present study, we have clinically characterized a large four-generation family with COD1 and have performed a linkage analysis using seven polymorphic markers on the short arm of the X chromosome. No recombination was observed between the disease and the marker loci DXS7 and MAOA, suggesting that the location of COD1 is in the region Xp11.3, distal to DXS84 and proximal to ARAF1.

  4. Computer aided analysis of additional chromosome aberrations in Philadelphia chromosome positive acute lymphoblastic leukaemia using a simplified computer readable cytogenetic notation

    Mohr Brigitte


    Full Text Available Abstract Background The analysis of complex cytogenetic databases of distinct leukaemia entities may help to detect rare recurring chromosome aberrations, minimal common regions of gains and losses, and also hot spots of genomic rearrangements. The patterns of the karyotype alterations may provide insights into the genetic pathways of disease progression. Results We developed a simplified computer readable cytogenetic notation (SCCN by which chromosome findings are normalised at a resolution of 400 bands. Lost or gained chromosomes or chromosome segments are specified in detail, and ranges of chromosome breakpoint assignments are recorded. Software modules were written to summarise the recorded chromosome changes with regard to the respective chromosome involvement. To assess the degree of karyotype alterations the ploidy levels and numbers of numerical and structural changes were recorded separately, and summarised in a complex karyotype aberration score (CKAS. The SCCN and CKAS were used to analyse the extend and the spectrum of additional chromosome aberrations in 94 patients with Philadelphia chromosome positive (Ph-positive acute lymphoblastic leukemia (ALL and secondary chromosome anomalies. Dosage changes of chromosomal material represented 92.1% of all additional events. Recurring regions of chromosome losses were identified. Structural rearrangements affecting (pericentromeric chromosome regions were recorded in 24.6% of the cases. Conclusions SCCN and CKAS provide unifying elements between karyotypes and computer processable data formats. They proved to be useful in the investigation of additional chromosome aberrations in Ph-positive ALL, and may represent a step towards full automation of the analysis of large and complex karyotype databases.

  5. Tropomyosin is localized in the nuclear matrix and chromosome scaffold of physarum polycephalum



    The nuclei and chromosomes were isolated from plasmodia of Physarum polycephalum.The nuclear matrix and chromosome scaffold were obtained after the DNA and most of the proteins were extracted with DNase I and 2 M NaCl.SD-PAGE analyses revealed that the nuclear matrix and chromosome scaffold contained a 37 kD polypeptide which is equivalent to tropomyosin in molecular weight.Immunofluorescence observations upon slide preparations labeled with anti-tropomyosin antibody showed that the nuclear matrix and chromosome scaffold emanated bright fluorescence,suggesting the presence of the antigen in them.Immunodotting results confirmed the presence of tropomyosin in the nuclear matrix and chromosome scaffold.Immunoelectron microscopic observations further demonstrated that tropomyosin was dispersively distributed in the interphase nuclei and metaphase chromosomes.

  6. Flow analysis of human chromosome sets by means of mixing-stirring device

    Zenin, Valeri V.; Aksenov, Nicolay D.; Shatrova, Alla N.; Klopov, Nicolay V.; Cram, L. Scott; Poletaev, Andrey I.


    A new mixing and stirring device (MSD) was used to perform flow karyotype analysis of single human mitotic chromosomes analyzed so as to maintain the identity of chromosomes derived from the same cell. An improved method for cell preparation and intracellular staining of chromosomes was developed. The method includes enzyme treatment, incubation with saponin and separation of prestained cells from debris on a sucrose gradient. Mitotic cells are injected one by one in the MSD which is located inside the flow chamber where cells are ruptured, thereby releasing chromosomes. The set of chromosomes proceeds to flow in single file fashion to the point of analysis. The device works in a stepwise manner. The concentration of cells in the sample must be kept low to ensure that only one cell at a time enters the breaking chamber. Time-gated accumulation of data in listmode files makes it possible to separate chromosome sets comprising of single cells. The software that was developed classifies chromosome sets according to different criteria: total number of chromosomes, overall DNA content in the set, and the number of chromosomes of certain types. This approach combines the high performance of flow cytometry with the advantages of image analysis. Examples obtained with different human cell lines are presented.

  7. Chromosomal localization of genes encoding guanine nucleotide-binding protein subunits in mouse and human

    Blatt, C.; Eversole-Cire, P.; Cohn, V.H.; Zollman, S.; Fournier, R.E.K.; Mohandas, L.T.; Nesbitt, M.; Lugo, T.; Jones, D.T.; Reed, R.R.; Weiner, L.P.; Sparkes, R.S.; Simon, M.I. (Weizmann Institute, Rehovoth (Israel))


    A variety of genes have been identified that specify the synthesis of the components of guanine nucleotide-binding proteins (G proteins). Eight different guanine nucleotide-binding {alpha}-subunit proteins, two different {beta} subunits, and one {gamma} subunit have been described. Hybridization of cDNA clones with DNA from human-mouse somatic cell hybrids was used to assign many of these genes to human chromosomes. The retinal-specific transducin subunit genes GNAT1 and GNAT2 were on chromosomes 3 and 1; GNAI1, GNAI2, and GNAI3 were assigned to chromosomes 7, 3, and 1, respectively; GNAZ and GNAS were found on chromosomes 22 and 20. The {beta} subunits were also assigned-GNB1 to chromosome 1 and GNB2 to chromosome 7. Restriction fragment length polymorphisms were used to map the homologues of some of these genes in the mouse. GNAT1 and GNAI2 were found to map adjacent to each other on mouse chromosome 9 and GNAT2 was mapped on chromosome 17. The mouse GNB1 gene was assigned to chromosome 19. These mapping assignments will be useful in defining the extend of the G{alpha} gene family and may help in attempts to correlate specific genetic diseases and with genes corresponding to G proteins.

  8. Chromosomal localization of genes encoding guanine nucleotide-binding protein subunits in mouse and human.

    Blatt, C; Eversole-Cire, P; Cohn, V H; Zollman, S; Fournier, R E; Mohandas, L T; Nesbitt, M; Lugo, T; Jones, D T; Reed, R R


    A variety of genes have been identified that specify the synthesis of the components of guanine nucleotide-binding proteins (G proteins). Eight different guanine nucleotide-binding alpha-subunit proteins, two different beta subunits, and one gamma subunit have been described. Hybridization of cDNA clones with DNA from human-mouse somatic cell hybrids was used to assign many of these genes to human chromosomes. The retinal-specific transducin subunit genes GNAT1 and GNAT2 were on chromosomes 3 and 1; GNAI1, GNAI2, and GNAI3 were assigned to chromosomes 7, 3, and 1, respectively; GNAZ and GNAS were found on chromosomes 22 and 20. The beta subunits were also assigned--GNB1 to chromosome 1 and GNB2 to chromosome 7. Restriction fragment length polymorphisms were used to map the homologues of some of these genes in the mouse. GNAT1 and GNAI2 were found to map adjacent to each other on mouse chromosome 9 and GNAT2 was mapped on chromosome 17. The mouse GNB1 gene was assigned to chromosome 19. These mapping assignments will be useful in defining the extent of the G alpha gene family and may help in attempts to correlate specific genetic diseases with genes corresponding to G proteins. PMID:2902634

  9. Detailed analysis of X chromosome inactivation in a 49,XXXXX pentasomy

    Moraes, Lucia M; Cardoso, Leila CA; Moura, Vera LS; Moreira, Miguel AM; Menezes, Albert N; Llerena, Juan C; Seuánez, Héctor N


    Background Pentasomy X (49,XXXXX) has been associated with a severe clinical condition, presumably resulting from failure or disruption of X chromosome inactivation. Here we report that some human X chromosomes from a patient with 49,XXXXX pentasomy were functionally active following isolation in inter-specific (human-rodent) cell hybrids. A comparison with cytogenetic and molecular findings provided evidence that more than one active X chromosome was likely to be present in the cells of this patient, accounting for her abnormal phenotype. Results 5-bromodeoxyuridine (BrdU)-pulsed cultures showed different patterns among late replicating X chromosomes suggesting that their replication was asynchronic and likely to result in irregular inactivation. Genotyping of the proband and her mother identified four maternal and one paternal X chromosomes in the proband. It also identified the paternal X chromosome haplotype (P), indicating that origin of this X pentasomy resulted from two maternal, meiotic non-disjunctions. Analysis of the HUMANDREC region of the androgen receptor (AR) gene in the patient's mother showed a skewed inactivation pattern, while a similar analysis in the proband showed an active paternal X chromosome and preferentially inactivated X chromosomes carrying the 173 AR allele. Analyses of 33 cell hybrid cell lines selected in medium containing hypoxanthine, aminopterin and thymidine (HAT) allowed for the identification of three maternal X haplotypes (M1, M2 and MR) and showed that X chromosomes with the M1, M2 and P haplotypes were functionally active. In 27 cell hybrids in which more than one X haplotype were detected, analysis of X inactivation patterns provided evidence of preferential inactivation. Conclusion Our findings indicated that 12% of X chromosomes with the M1 haplotype, 43.5% of X chromosomes with the M2 haplotype, and 100% of the paternal X chromosome (with the P haplotype) were likely to be functionally active in the proband's cells, a

  10. Computational methods for global/local analysis

    Ransom, Jonathan B.; Mccleary, Susan L.; Aminpour, Mohammad A.; Knight, Norman F., Jr.


    Computational methods for global/local analysis of structures which include both uncoupled and coupled methods are described. In addition, global/local analysis methodology for automatic refinement of incompatible global and local finite element models is developed. Representative structural analysis problems are presented to demonstrate the global/local analysis methods.

  11. Chromosome Analysis of Bone Marrow Fibroblast Colony-Forming Cells (CFU-F) in Heavily Exposed Atomic Bomb Survivors

    Shigeta, Chiharu; Tanaka, Kimio; Kawakami, Masahito; Ohkita, Takeshi


    A chromosome analysis was performed on cultured bone marrow fibroblasts (CFU-F) from two atomic bomb survivors exposed within 1 km of the hypocenter, whose estimated radiation dose is 357 rad and 365 rad respectively. In CFU-F of both cases, stable types of chromosome aberrations were detected. The rate of these chromosome aberrations related well to the chromosome aberration rate of peripheral T -lymphocytes of the same case. These findings suggest the possibility that chromosome aberration ...

  12. Human interleukin 2 receptor β-chain gene: Chromosomal localization and identification of 5' regulatory sequences

    Interleukin 2 (IL-2) binds to and stimulates activated T cells through high-affinity IL-2 receptors (IL-2Rs). Such receptors represent a complex consisting of at least two proteins, the 55-kDa IL-2Rα chain and the 70-kDa IL-2Rβ chain. The low-affinity, IL-2Rα chain cannot by itself transduce a mitogenic signal, whereas IL-2 stimulates resting lymphocytes through the intermediate-affinity, IL-2Rβ receptor. The authors report here identification of the genomic locus for IL-2Rβ. The exons are contained on four EcoRI fragments of 1.1, 9.2, 7.2, and 13.7 kilobases. The 1.1-kilobase EcoRI fragment lies at the 5'-most end of the genomic locus and contains promoter sequences. The promoter contains no TATA box-like elements but does contain the d(GT)n class of middle repetitive elements, which may play an interesting regulatory role. The IL-2Rβ gene is localized to chromosome 22q11.2-q12, a region that is the locus for several lymphoid neoplasias

  13. Structure and chromosomal localization of the human antidiuretic hormone receptor gene

    Seibold, A.; Brabet, P.; Rosenthal, W.; Birnbaumer, M. (Baylor College of Medicine, Houston, TX (United States))


    Applying a genomic DNA-expression approach, the authors cloned the gene and cDNA coding for the human antidiuretic hormone receptor, also called vasopressin V2 receptor' (V2R). The nucleotide sequence of both cloned DNAs provided the information to elucidate the structure of the isolated transcriptional unit. The structure of this gene is unusual in that it is the first G protein-coupled receptor gene that contains two very small intervening sequences, the second of which separates the region encoding the seventh transmembrane region from the rest of the open reading frame. The sequence information was used to synthesize appropriate oligonucleotides to be used as primers in the PCR. The V2R gene was localized by PCR using DNA from hybrid cells as template. The gene was found to reside in the q28-qter portion of the human X chromosome, a region identified as the locus for congential nephrogenic diabetes insipidus. 27 refs., 4 figs.

  14. A Semi-Closed Device for Chromosome Spreading for Cytogenetic Analysis

    Kwasny, Dorota; Mednova, Olga; Vedarethinam, Indumathi; Dimaki, Maria; Silahtaroglu, Asli; Tümer, Zeynep; Almdal, Kristoffer; Svendsen, Winnie Edith


    Metaphase chromosome spreading is the most crucial step required for successful karyotyping and FISH analysis. These two techniques are routinely used in cytogenetics to assess the chromosome abnormalities. The spreading process has been studied for years but it is still considered an art more th...

  15. The DNA sequence, annotation and analysis of human chromosome 3

    Muzny, Donna M; Scherer, Steven E; Kaul, Rajinder;


    chromosomes. Chromosome 3 comprises just four contigs, one of which currently represents the longest unbroken stretch of finished DNA sequence known so far. The chromosome is remarkable in having the lowest rate of segmental duplication in the genome. It also includes a chemokine receptor gene cluster as well...... as numerous loci involved in multiple human cancers such as the gene encoding FHIT, which contains the most common constitutive fragile site in the genome, FRA3B. Using genomic sequence from chimpanzee and rhesus macaque, we were able to characterize the breakpoints defining a large pericentric...

  16. Human tissue factor: cDNA sequence and chromosome localization of the gene

    A human placenta cDNA library in λgt11 was screened for the expression of tissue factor antigens with rabbit polyclonal anti-human tissue factor immunoglobulin G. Among 4 million recombinant clones screened, one positive, λHTF8, expressed a protein that shared epitopes with authentic human brain tissue factor. The 1.1-kilobase cDNA insert of λHTF8 encoded a peptide that contained the amino-terminal protein sequence of human brain tissue factor. Northern blotting identified a major mRNA species of 2.2 kilobases and a minor species of ∼ 3.2 kilobases in poly(A) + RNA of placenta. Only 2.2-kilobase mRNA was detected in human brain and in the human monocytic U937 cell line. In U937 cells, the quantity of tissue factor mRNA was increased several fold by exposure of the cells to phorbol 12-myristate 13-acetate. Additional cDNA clones were selected by hybridization with the cDNA insert of λHTF8. These overlapping isolates span 2177 base pairs of the tissue factor cDNA sequence that includes a 5'-noncoding region of 75 base pairs, an open reading frame of 885 base pairs, a stop codon, a 3'-noncoding region of 1141 base pairs, and a poly(a) tail. The open reading frame encodes a 33-kilodalton protein of 295 amino acids. The predicted sequence includes a signal peptide of 32 or 34 amino acids, a probable extracellular factor VII binding domain of 217 or 219 amino acids, a transmembrane segment of 23 acids, and a cytoplasmic tail of 21 amino acids. There are three potential glycosylation sites with the sequence Asn-X-Thr/Ser. The 3'-noncoding region contains an inverted Alu family repetitive sequence. The tissue factor gene was localized to chromosome 1 by hybridization of the cDNA insert of λHTF8 to flow-sorted human chromosomes

  17. Polytene Chromosome Analysis of Bactrocera carambolae (Diptera: Tephritidae

    Farzana Yesmin


    Full Text Available The present investigation constitutes a first effort to study the polytene chromosomes of Bactrocera carambolae Drew and Hancock (Diptera: Tephritidae. It is a serious pest of the Bactrocera dorsalis complex group, infesting various types of fruits and vegetables in Southeast Asia, Australia and the Pacific. The aim of this study was to determine and analyse each arm of the salivary gland polytene chromosomes of this species individually. The tips, distinguishing characteristics as well as significant landmarks are recognized in each chromosome arm. Photographic illustrations of the chromosomes is presented and discussed. The information can be used for comparative studies among species of the tephritid genera which facilitate the development of novel control methods.

  18. Single-Molecule Analysis of Replicating Yeast Chromosomes.

    Gallo, David; Wang, Gang; Yip, Christopher M; Brown, Grant W


    The faithful replication of eukaryotic chromosomal DNA occurs during S phase once per cell cycle. Replication is highly regulated and is initiated at special structures, termed origins, from which replication forks move out bidirectionally. A wide variety of techniques have been developed to study the features and kinetics of replication. Many of these, such as those based on flow cytometry and two-dimensional and pulsed-field gel electrophoresis, give a population-level view of replication. However, an alternative approach, DNA fiber analysis, which was originally developed more than 50 years ago, has the advantage of revealing features of replication at the level of individual DNA fibers. Initially based on autoradiography, this technique has been superseded by immunofluorescence-based detection of incorporated halogenated thymidine analogs. Furthermore, derivations of this technique have been developed to distribute and stretch the labeled DNA fibers uniformly on optically clear surfaces. As described here, one such technique-DNA combing, in which DNA is combed onto silanized coverslips-has been used successfully to monitor replication fork progression and origin usage in budding yeast. PMID:26832692

  19. Highly distinct chromosomal structures in cowpea (Vigna unguiculata), as revealed by molecular cytogenetic analysis.

    Iwata-Otsubo, Aiko; Lin, Jer-Young; Gill, Navdeep; Jackson, Scott A


    Cowpea (Vigna unguiculata (L.) Walp) is an important legume, particularly in developing countries. However, little is known about its genome or chromosome structure. We used molecular cytogenetics to characterize the structure of pachytene chromosomes to advance our knowledge of chromosome and genome organization of cowpea. Our data showed that cowpea has highly distinct chromosomal structures that are cytologically visible as brightly DAPI-stained heterochromatic regions. Analysis of the repetitive fraction of the cowpea genome present at centromeric and pericentromeric regions confirmed that two retrotransposons are major components of pericentromeric regions and that a 455-bp tandem repeat is found at seven out of 11 centromere pairs in cowpea. These repeats likely evolved after the divergence of cowpea from common bean and form chromosomal structure unique to cowpea. The integration of cowpea genetic and physical chromosome maps reveals potential regions of suppressed recombination due to condensed heterochromatin and a lack of pairing in a few chromosomal termini. This study provides fundamental knowledge on cowpea chromosome structure and molecular cytogenetics tools for further chromosome studies. PMID:26758200

  20. An investigation of ring and dicentric chromosomes found in three Turner's syndrome patients using DNA analysis and in situ hybridisation with X and Y chromosome specific probes.

    Cooper, C; Crolla, J. A.; Laister, C; Johnston, D I; Cooke, P.


    We have studied three patients with features of Turner's syndrome, two with a 45,X/46,X,r(?) and the third with a 45,X/46,X,dic?(Y) karyotype. Because Turner's syndrome patients with a mosaic karyotype containing a Y chromosome are known to have a high risk of developing gonadal tumours, we used DNA analysis and in situ hybridisation with X and Y specific probes to identify the chromosomal origin of the rings and dicentric chromosomes in the three index patients. Both ring chromosomes were sh...

  1. DNA sequence and analysis of human chromosome 8.

    Nusbaum, Chad; Mikkelsen, Tarjei S; Zody, Michael C; Asakawa, Shuichi; Taudien, Stefan; Garber, Manuel; Kodira, Chinnappa D; Schueler, Mary G; Shimizu, Atsushi; Whittaker, Charles A; Chang, Jean L; Cuomo, Christina A; Dewar, Ken; FitzGerald, Michael G; Yang, Xiaoping; Allen, Nicole R; Anderson, Scott; Asakawa, Teruyo; Blechschmidt, Karin; Bloom, Toby; Borowsky, Mark L; Butler, Jonathan; Cook, April; Corum, Benjamin; DeArellano, Kurt; DeCaprio, David; Dooley, Kathleen T; Dorris, Lester; Engels, Reinhard; Glöckner, Gernot; Hafez, Nabil; Hagopian, Daniel S; Hall, Jennifer L; Ishikawa, Sabine K; Jaffe, David B; Kamat, Asha; Kudoh, Jun; Lehmann, Rüdiger; Lokitsang, Tashi; Macdonald, Pendexter; Major, John E; Matthews, Charles D; Mauceli, Evan; Menzel, Uwe; Mihalev, Atanas H; Minoshima, Shinsei; Murayama, Yuji; Naylor, Jerome W; Nicol, Robert; Nguyen, Cindy; O'Leary, Sinéad B; O'Neill, Keith; Parker, Stephen C J; Polley, Andreas; Raymond, Christina K; Reichwald, Kathrin; Rodriguez, Joseph; Sasaki, Takashi; Schilhabel, Markus; Siddiqui, Roman; Smith, Cherylyn L; Sneddon, Tam P; Talamas, Jessica A; Tenzin, Pema; Topham, Kerri; Venkataraman, Vijay; Wen, Gaiping; Yamazaki, Satoru; Young, Sarah K; Zeng, Qiandong; Zimmer, Andrew R; Rosenthal, Andre; Birren, Bruce W; Platzer, Matthias; Shimizu, Nobuyoshi; Lander, Eric S


    The International Human Genome Sequencing Consortium (IHGSC) recently completed a sequence of the human genome. As part of this project, we have focused on chromosome 8. Although some chromosomes exhibit extreme characteristics in terms of length, gene content, repeat content and fraction segmentally duplicated, chromosome 8 is distinctly typical in character, being very close to the genome median in each of these aspects. This work describes a finished sequence and gene catalogue for the chromosome, which represents just over 5% of the euchromatic human genome. A unique feature of the chromosome is a vast region of approximately 15 megabases on distal 8p that appears to have a strikingly high mutation rate, which has accelerated in the hominids relative to other sequenced mammals. This fast-evolving region contains a number of genes related to innate immunity and the nervous system, including loci that appear to be under positive selection--these include the major defensin (DEF) gene cluster and MCPH1, a gene that may have contributed to the evolution of expanded brain size in the great apes. The data from chromosome 8 should allow a better understanding of both normal and disease biology and genome evolution. PMID:16421571

  2. Autotriploid origin of Carassius auratus as revealed by chromosomal locus analysis.

    Qin, Qinbo; Wang, Juan; Hu, Min; Huang, Shengnan; Liu, Shaojun


    In the Dongting water system, the Carassius auratus (Crucian carp) complex is characterized by the coexistence of diploid forms (2n=100, 2nCC) and polyploid forms. Chromosomal and karyotypic analyses have suggested that the polyploid C. auratus has a triploid (3n=150, 3nCC) and a tetraploid origin (4n=200), respectively. However, there is a lack of direct genetic evidence to support this conclusion. In this paper, analysis of the 5S rDNA chromosomal locus revealed that the 3nCC is of triploid origin. Analysis of the species-specific chromosomal centromere locus revealed that 3nCC individuals possess three sets of C. auratus-derived chromosomes. Our results provide direct cytogenetic evidence suggesting that individuals with 150 chromosomes are of autotriploid origin within the C. auratus complex. It marks an important contribution to the study of polyploidization and the evolution of vertebrates. PMID:27084707

  3. Localization of the casein gene family to a single mouse chromosome


    A series of mouse-hamster somatic cell hybrids containing a variable number of mouse chromosomes and a constant set of hamster chromosomes have been used to determine the chromosomal location of a family of hormone-inducible genes, the murine caseins. Recombinant mouse cDNA clones encoding the alpha-, beta-, and gamma-caseins were constructed and used in DNA restriction mapping experiments. All three casein cDNAs hybridized to the same set of somatic cell hybrid DNAs isolated from cells conta...

  4. Chromosomal variations in the primate Alouatta seniculus seniculus.

    Yunis, E J; Torres de Caballero, O M; Ramírez, C; Ramírez, Z E


    Chromosome analysis in 23 specimens of Alouatta s. seniculus trapped in different localities of Colombia were examined with the C- and Q-banding techniques. The chromosome numbers (2n=44) showed variations from 2n = 43 to 2n = 45 involving three and five microchromosomes, respectively. Two specimens also showed a structural chromosome variation involving a pericentric inversion of the chromosome No. 13. Chromosome measurements revealed an X chromosome with a value significantly smaller to that established for the standard mammalian X chromosome. PMID:817992

  5. Nevada local government revenues analysis

    This report analyzes the major sources of revenue for Nevada local government for purposes of estimating the impacts associated with the siting of a nuclear waste repository at Yucca Mountain. Each major revenue source is analyzed separately to identify relationships between the economic or demographic base, the revenue base and the revenues generated. Trends and changes in the rates and/or base are highlighted. A model is developed for each component to allow impact estimation. This report is a companion to the report Nevada State Revenues Analysis

  6. cDNA cloning, tissue distribution, and chromosomal localization of myelodysplasia/Myeloid Leukemia Factor 2 (MLF2)

    Kuefer, M.U.; Valentine, V.; Behm, F.G. [St. Jude Children`s Research Hospital, Memphis, TN (United States)] [and others


    A fusion gene between nucleophosmin (NPM) and myelodysplasia/myeloid leukemia factor 1 (MLF1) and myelodysplasia/myeloid leukemia factor 1 (MLF1) is formed by a recurrent t(3;5)(q25.1;q34) in myelodysplastic syndrome and acute myeloid leukemia. Here we report the identification of a novel gene, MLF2, which contains an open reading frame of 744 bp encoding a 248-amino-acid protein highly related to the previously identified MLF1 protein (63% similarity, 40% identity). In contrast to the tissue-restricted expression pattern of MLF1, and MLF2 messenger RNA is expressed ubiquitously. The MLF2 gene locus was mapped by fluorescence in situ hybridization to human chromosome 12p13, a chromosomal region frequently involved in translocations and deletions in acute leukemias of lymphoid or myeloid lineage. In a physical map of chromosome 12, MLF2 was found to reside on the yeast artificial chromosome clone 765b9. Southern blotting analysis of malignant cell DNAs prepared from a series of acute lymphoblastic leukemia cases with translocations involving chromosome arm 12p, as well as a group of acute myeloid leukemias with various cytogenetic abnormalities, failed to reveal MLF2 gene rearrangements. 19 refs., 2 figs.

  7. Localization of an EGF receptor in purified chromosomes from A431 and lymphoblast cells

    Condensed chromosomes from mitotic cells of A431 and lymphoblast GM131 cells were purified by a flow cytometric sorting and collected directly onto nitrocellulose discs. The blots containing purified chromosomes from A431 cells were then hybridized against iodinated protein ligands. Positive autoradiographic signals were obtained from 125I-epidermal growth factor (EGF), 125I-calmodulin(CAM)-IgG and 125I-number528 monoclonal IgG against EGF receptor, but not from 125I-CAM. Binding of 125I-EGF to the purified chromosomes on the nitrocellulose was specific and reversible upon the addition of excess unlabeled EGF to the hybridization solutions. Blots containing the purified chromosomes of lymphoblast cells gave positive signals for 125I-CAM-IgG, while 125I-CAM signals were not detected. Control experiments showed no detectable contamination from A431 membrane EGF receptor in the purified chromosomal fraction, as demonstrated by the absence of EGF receptor autophosphorylation and the absence of a 125I-EGF hybridization signal in the supernatant solution of the purified chromosomal preparation

  8. Porcine UCHL1: genomic organization, chromosome localization and expression analysis

    Larsen, Knud; Madsen, Lone Bruhn; Bendixen, Christian


    The human UCHL1 gene encodes the ubiquitin C-terminal hydrolase UCHL1, which comprises more than 2% of total brain protein. UCHL1 is a component of the ubiquitin–proteasome system, which degrades overexpressed and damaged proteins. Mutations in the UCHL1 gene are associated with susceptibility...... in developing porcine embryos. UCHL1 transcript was detected as early as 40 days of gestation. A significant decrease in UCHL1 transcript was detected in basal ganglia from day 60 to day 115 of gestation...

  9. Developmental potential of clinically discarded human embryos and associated chromosomal analysis.

    Yao, Guidong; Xu, Jiawei; Xin, Zhimin; Niu, Wenbin; Shi, Senlin; Jin, Haixia; Song, Wenyan; Wang, Enyin; Yang, Qingling; Chen, Lei; Sun, Yingpu


    Clinically discarded human embryos, which are generated from both normal and abnormal fertilizations, have the potential of developing into blastocysts. A total of 1,649 discarded human embryos, including zygotes containing normal (2PN) and abnormal (0PN, 1PN, 3PN and ≥4PN) pronuclei and prematurely cleaved embryos (2Cell), were collected for in vitro culture to investigate their developmental potential and chromosomal constitution using an SNP array-based chromosomal analysis. We found that blastocyst formation rates were 63.8% (for 2Cell embryos), 22.6% (2PN), 16.7% (0PN), 11.2% (3PN) and 3.6% (1PN). SNP array-based chromosomal analysis of the resultant blastocysts revealed that the percentages of normal chromosomes were 55.2% (2Cell), 60.7% (2PN), 44.4% (0PN) and 47.4% (0PN). Compared with clinical preimplantation genetic diagnosis (PGD) data generated with clinically acceptable embryos, results of the SNP array-based chromosome analysis on blastocysts from clinically discarded embryos showed similar values for the frequency of abnormal chromosome occurrence, aberrant signal classification and chromosomal distribution. The present study is perhaps the first systematic analysis of the developmental potential of clinically discarded embryos and provides a basis for future studies. PMID:27045374

  10. Risk of chromosomal abnormalities in early spontaneous abortion after assisted reproductive technology: a meta-analysis.

    Jun-Zhen Qin

    Full Text Available BACKGROUND: Studies on the risk of chromosomal abnormalities in early spontaneous abortion after assisted reproductive technology (ART are relatively controversial and insufficient. Thus, to obtain a more precise evaluation of the risk of embryonic chromosomal abnormalities in first-trimester miscarriage after ART, we performed a meta-analysis of all available case-control studies relating to the cytogenetic analysis of chromosomal abnormalities in first-trimester miscarriage after ART. METHODS: Literature search in the electronic databases MEDLINE, EMBASE, and Cochrane Central Register of Controlled Trials (CENTRAL based on the established strategy. Meta-regression, subgroup analysis, and Galbraith plots were conducted to explore the sources of heterogeneity. RESULTS: A total of 15 studies with 1,896 cases and 1,186 controls relevant to the risk of chromosomal abnormalities in first- trimester miscarriage after ART, and 8 studies with 601 cases and 602 controls evaluating frequency of chromosome anomaly for maternal age≥35 versus <35 were eligible for the meta-analysis. No statistical difference was found in risk of chromosomally abnormal miscarriage compared to natural conception and the different types of ART utilized, whereas the risk of fetal aneuploidy significantly increased with maternal age≥35 (OR 2.88, 95% CI: 1.74-4.77. CONCLUSIONS: ART treatment does not present an increased risk for chromosomal abnormalities occurring in a first trimester miscarriage, but incidence of fetal aneuploidy could increase significantly with advancing maternal age.

  11. Chromosome arm-specific BAC end sequences permit comparative analysis of homoeologous chromosomes and genomes of polyploid wheat

    Sehgal Sunish K


    Full Text Available Abstract Background Bread wheat, one of the world’s staple food crops, has the largest, highly repetitive and polyploid genome among the cereal crops. The wheat genome holds the key to crop genetic improvement against challenges such as climate change, environmental degradation, and water scarcity. To unravel the complex wheat genome, the International Wheat Genome Sequencing Consortium (IWGSC is pursuing a chromosome- and chromosome arm-based approach to physical mapping and sequencing. Here we report on the use of a BAC library made from flow-sorted telosomic chromosome 3A short arm (t3AS for marker development and analysis of sequence composition and comparative evolution of homoeologous genomes of hexaploid wheat. Results The end-sequencing of 9,984 random BACs from a chromosome arm 3AS-specific library (TaaCsp3AShA generated 11,014,359 bp of high quality sequence from 17,591 BAC-ends with an average length of 626 bp. The sequence represents 3.2% of t3AS with an average DNA sequence read every 19 kb. Overall, 79% of the sequence consisted of repetitive elements, 1.38% as coding regions (estimated 2,850 genes and another 19% of unknown origin. Comparative sequence analysis suggested that 70-77% of the genes present in both 3A and 3B were syntenic with model species. Among the transposable elements, gypsy/sabrina (12.4% was the most abundant repeat and was significantly more frequent in 3A compared to homoeologous chromosome 3B. Twenty novel repetitive sequences were also identified using de novo repeat identification. BESs were screened to identify simple sequence repeats (SSR and transposable element junctions. A total of 1,057 SSRs were identified with a density of one per 10.4 kb, and 7,928 junctions between transposable elements (TE and other sequences were identified with a density of one per 1.39 kb. With the objective of enhancing the marker density of chromosome 3AS, oligonucleotide primers were successfully designed from

  12. In situ hybridization analysis of isodicentric X-chromosomes with short arm fusion

    Koch, J E; Kølvraa, S; Hertz, Jens Michael; Rasmussen, K; Gregersen, N; Fly, G F; Bolund, L A


    the C-band analysis, while at the same time to some extent replacing the Q-band analysis as well. The advantage of using in situ hybridization is mainly that it allows the very fast screening of a large number of metaphases. We illustrate this new application of the technique by using it for the......We present here an alternative approach to the study of mosaic cell lines containing dicentric chromosomes. The approach is based on chromosome-specific non-radioactive in situ hybridization with centromere (alpha satellite DNA) probes. The hybridization analysis may be used as an alternative to...... analysis of two cases of isodicentric X-chromosomes. The approach is expected to be generally applicable, so that it may be applied to the scoring of other types of chromosomal mosaicism as well....

  13. Sequence and analysis of chromosome 3 of the plant Arabidopsis thaliana.

    Salanoubat, M; Lemcke, K; Rieger, M; Ansorge, W; Unseld, M; Fartmann, B; Valle, G; Blöcker, H; Perez-Alonso, M; Obermaier, B; Delseny, M; Boutry, M; Grivell, L A; Mache, R; Puigdomènech, P; De Simone, V; Choisne, N; Artiguenave, F; Robert, C; Brottier, P; Wincker, P; Cattolico, L; Weissenbach, J; Saurin, W; Quétier, F; Schäfer, M; Müller-Auer, S; Gabel, C; Fuchs, M; Benes, V; Wurmbach, E; Drzonek, H; Erfle, H; Jordan, N; Bangert, S; Wiedelmann, R; Kranz, H; Voss, H; Holland, R; Brandt, P; Nyakatura, G; Vezzi, A; D'Angelo, M; Pallavicini, A; Toppo, S; Simionati, B; Conrad, A; Hornischer, K; Kauer, G; Löhnert, T H; Nordsiek, G; Reichelt, J; Scharfe, M; Schön, O; Bargues, M; Terol, J; Climent, J; Navarro, P; Collado, C; Perez-Perez, A; Ottenwälder, B; Duchemin, D; Cooke, R; Laudie, M; Berger-Llauro, C; Purnelle, B; Masuy, D; de Haan, M; Maarse, A C; Alcaraz, J P; Cottet, A; Casacuberta, E; Monfort, A; Argiriou, A; flores, M; Liguori, R; Vitale, D; Mannhaupt, G; Haase, D; Schoof, H; Rudd, S; Zaccaria, P; Mewes, H W; Mayer, K F; Kaul, S; Town, C D; Koo, H L; Tallon, L J; Jenkins, J; Rooney, T; Rizzo, M; Walts, A; Utterback, T; Fujii, C Y; Shea, T P; Creasy, T H; Haas, B; Maiti, R; Wu, D; Peterson, J; Van Aken, S; Pai, G; Militscher, J; Sellers, P; Gill, J E; Feldblyum, T V; Preuss, D; Lin, X; Nierman, W C; Salzberg, S L; White, O; Venter, J C; Fraser, C M; Kaneko, T; Nakamura, Y; Sato, S; Kato, T; Asamizu, E; Sasamoto, S; Kimura, T; Idesawa, K; Kawashima, K; Kishida, Y; Kiyokawa, C; Kohara, M; Matsumoto, M; Matsuno, A; Muraki, A; Nakayama, S; Nakazaki, N; Shinpo, S; Takeuchi, C; Wada, T; Watanabe, A; Yamada, M; Yasuda, M; Tabata, S


    Arabidopsis thaliana is an important model system for plant biologists. In 1996 an international collaboration (the Arabidopsis Genome Initiative) was formed to sequence the whole genome of Arabidopsis and in 1999 the sequence of the first two chromosomes was reported. The sequence of the last three chromosomes and an analysis of the whole genome are reported in this issue. Here we present the sequence of chromosome 3, organized into four sequence segments (contigs). The two largest (13.5 and 9.2 Mb) correspond to the top (long) and the bottom (short) arms of chromosome 3, and the two small contigs are located in the genetically defined centromere. This chromosome encodes 5,220 of the roughly 25,500 predicted protein-coding genes in the genome. About 20% of the predicted proteins have significant homology to proteins in eukaryotic genomes for which the complete sequence is available, pointing to important conserved cellular functions among eukaryotes. PMID:11130713

  14. The sequence and analysis of duplication rich human chromosome 16

    Martin, J; Han, C; Gordon, L A; Terry, A; Prabhakar, S; She, X; Xie, G; Hellsten, U; Chan, Y M; Altherr, M; Couronne, O; Aerts, A; Bajorek, E; Black, S; Blumer, H; Branscomb, E; Brown, N; Bruno, W J; Buckingham, J; Callen, D F; Campbell, C S; Campbell, M L; Campbell, E W; Caoile, C; Challacombe, J F; Chasteen, L A; Chertkov, O; Chi, H C; Christensen, M; Clark, L M; Cohn, J D; Denys, M; Detter, J C; Dickson, M; Dimitrijevic-Bussod, M; Escobar, J; Fawcett, J J; Flowers, D; Fotopulos, D; Glavina, T; Gomez, M; Gonzales, E; Goodstein, D; Goodwin, L A; Grady, D L; Grigoriev, I; Groza, M; Hammon, N; Hawkins, T; Haydu, L; Hildebrand, C E; Huang, W; Israni, S; Jett, J; Jewett, P B; Kadner, K; Kimball, H; Kobayashi, A; Krawczyk, M; Leyba, T; Longmire, J L; Lopez, F; Lou, Y; Lowry, S; Ludeman, T; Manohar, C F; Mark, G A; McMurray, K L; Meincke, L J; Morgan, J; Moyzis, R K; Mundt, M O; Munk, A C; Nandkeshwar, R D; Pitluck, S; Pollard, M; Predki, P; Parson-Quintana, B; Ramirez, L; Rash, S; Retterer, J; Ricke, D O; Robinson, D; Rodriguez, A; Salamov, A; Saunders, E H; Scott, D; Shough, T; Stallings, R L; Stalvey, M; Sutherland, R D; Tapia, R; Tesmer, J G; Thayer, N; Thompson, L S; Tice, H; Torney, D C; Tran-Gyamfi, M; Tsai, M; Ulanovsky, L E; Ustaszewska, A; Vo, N; White, P S; Williams, A L; Wills, P L; Wu, J; Wu, K; Yang, J; DeJong, P; Bruce, D; Doggett, N A; Deaven, L; Schmutz, J; Grimwood, J; Richardson, P; Rokhsar, D S; Eichler, E E; Gilna, P; Lucas, S M; Myers, R M; Rubin, E M; Pennacchio, L A


    Human chromosome 16 features one of the highest levels of segmentally duplicated sequence among the human autosomes. We report here the 78,884,754 base pairs of finished chromosome 16 sequence, representing over 99.9% of its euchromatin. Manual annotation revealed 880 protein-coding genes confirmed by 1,637 aligned transcripts, 19 tRNA genes, 341 pseudogenes, and 3 RNA pseudogenes. These genes include metallothionein, cadherin, and iroquois gene families, as well as the disease genes for polycystic kidney disease and acute myelomonocytic leukemia. Several large-scale structural polymorphisms spanning hundreds of kilobase pairs were identified and result in gene content differences among humans. While the segmental duplications of chromosome 16 are enriched in the relatively gene poor pericentromere of the p-arm, some are involved in recent gene duplication and conversion events likely to have had an impact on the evolution of primates and human disease susceptibility.

  15. Chromosomal localization of the human V3 pituitary vasopressin receptor gene (AVPR3) to 1q32

    Rousseau-Merck, M.F.; Derre, J.; Berger, R. [INSERM, Paris (France)] [and others


    Vasopressin exerts its physiological effects on liver metabolism, fluid osmolarity, and corticotrophic response to stress through a set of at least three receptors, V1a, V2, and V3 (also called V1b), respectively. These receptors constitute a distinct group of the superfamily of G-protein-coupled cell surface receptors. When bound to vasopressin, they couple to G proteins activating phospholipase C for the V1a and V3 types and adenylate cyclase for the V2. The vasopressin receptor subfamily also includes the receptor for oxytocin, a structurally related hormone that signals through the activation of phospholipase C. The chromosomal position of the V2 receptor gene has been assigned to Xq28-qter by PCR-based screening of somatic cell hybrids, whereas the oxytocin receptor gene has been mapped to chromosome 3q26.2 by fluorescence in situ hybridization (FISH). The chromosomal location of the V1a gene is currently unknown. We recently cloned the cDNA and the gene coding for the human pituitary-specific V3 receptor (HGMW-approved symbol AVPR3). We report here the chromosomal localization of this gene by two distinct in situ hybridization techniques using radioactive and fluorescent probes. 11 refs., 1 fig.

  16. Localization of a human homolog of the mouse Tiam-1 gene to chromosome 21q22.1

    Haiming Chen; Antonarakis, S.E. [Univ. of Geneva Medical School (Switzerland)


    Exon trapping was applied to genomic DNA from a chromosome 21-specific cosmid library (LL21NC02-Q) to clone portions of genes from this chromosome. Among a large number of trapped exons, three showed striking homology to different regions of the cDNA for the mouse T-lymphoma invasion and metastasis gene (Tiam-1) at both nucleotide and predicted amino acid sequence levels, suggesting that these three exons are part of a human homolog of the mouse Tiam-1 gene. We mapped this presumed human TIAM1 gene to chromosome 21 by using appropriate somatic cell hybrids, YACs, and cosmids. The TIAM1 gene localizes to YAC 760H5 of the I. Chumakov et al. YAC contig between markers D21S298 and D21S404 in band 21q22.1. This human gene (which is a member of the group of guanine nucleotide-dissociation stimulators that modulate the activity of Rho-like proteins) may be important in the development or metastasis of malignancies that are associated with abnormalities on chromosome 21, including the various forms of leukemia frequent in trisomy 21. 25 refs., 2 figs.

  17. Novel Integrated Lab-on-Chip System for Chromosome Translocations Analysis

    Svendsen, Winnie Edith; Lange, Jacob Moresco; Shah, Pranjul Jaykumar;


    This presentation will focus on the development of a chromosome total analysis system (C-TAS) starting from the design strategy and simulations to the integration into a final monolithic plug and play device. Individual modules which perform the sample preprocessing and analysis tasks like - cell...... isolation, cell culture, cell lysing, chromosome extraction and Fluorescence In-Situ Hybridization will be presented. How we solved connecting the individual chips and adjusting the microfluidic flows, by using simulations will be discussed....

  18. Shannon Information and Power Law Analysis of the Chromosome Code

    J. A. Tenreiro Machado


    Full Text Available This paper studies the information content of the chromosomes of twenty-three species. Several statistics considering different number of bases for alphabet character encoding are derived. Based on the resulting histograms, word delimiters and character relative frequencies are identified. The knowledge of this data allows moving along each chromosome while evaluating the flow of characters and words. The resulting flux of information is captured by means of Shannon entropy. The results are explored in the perspective of power law relationships allowing a quantitative evaluation of the DNA of the species.

  19. Cytogenetic analysis of Aegilops chromosomes, potentially usable in triticale (X Triticosecale Witt.) breeding.

    Kwiatek, M; Wiśniewska, H; Apolinarska, B


    Chromosome identification using fluorescence in situ hybridization (FISH) is widely used in cytogenetic research. It is a diagnostic tool helpful in chromosome identification. It can also be used to characterize alien introgressions, when exercised in a combination with genomic in situ hybridization (GISH). This work aims to find chromosome identification of Aegilops species and Aegilops × Secale amphiploids, which can be used in cereal breeding as a source of favourable agronomic traits. Four diploid and two tetraploid Aegilops species and three Aegilops × Secale hybrids were analysed using FISH with pSc119.2, pAs1, 5S rDNA and 25S rDNA clones to differentiate the U-, M-, S(sh)- and D-subgenome chromosomes of Aegilops genus. Additionally, GISH for chromosome categorization was carried out. Differences in the hybridization patterns allowed to identify all U-, M-, S(sh)- and D-subgenome chromosomes. Some differences in localization of the rDNA, pSc119.2 and pAs1 sequences between analogue subgenomes in diploid and tetraploid species and Aegilops × Secale hybrids were detected. The hybridization pattern of the M and S genome was more variable than that of the U and D genome. An importance of the cytogenetic markers in plant breeding and their possible role in chromosome structure, function and evolution is discussed. PMID:23378244

  20. Localization of TDPX1, a human homologue of the yeast thioredoxin-dependent peroxide reductase gene (TPX), to chromosome 13q12

    Pahl, P.; Berger, R.; Hart, I. [Eleanor Roosevelt Institute for Cancer Research, Denver, CO (United States)]|[Univ. of Colorado Health Sciences Center and the Univ. of Colorado Cancer Center, Denver, CO (United States)] [and others


    Reactive oxygen species and free radicals that are produced during normal metabolism can potentially damage cellular macromolecules. Defenses against such damage include a number of antioxidant enzymes that specifically target the removal or dismutation of the reactive agent. We report here the isolation and regional mapping of a human gene, TDPX1, that encodes an enzyme homologous to a yeast thioredoxin-dependent peroxide reductase (thioredoxin peroxidase, TPX). The human TDPX1 coding sequence was determined from the product of a polymerase chain reaction (PCR) amplification of human cDNA. Based on PCR analysis of DNA from a human/rodent somatic cell hybrid panel, the TDPX1 locus was assigned to chromosome 13. Further localization of the locus to 13q12 was accomplished by fluorescence in situ hybridization analysis, using as a probe DNA from a yeast artificial chromosome (YAC) that contains the TDPX1 gene. It was also determined by PCR analysis of various YACs that the TDPX1 locus is in the region of the dinucleotide repeat markers D13S289 and D13S290. This regional mapping localizes the TDPX1 gene to a genomic region recently shown to contain the breast cancer susceptibility gene BRCA2 and a gene associated with a form of muscular dystrophy. Oxygen radical metabolism has been hypothesized to be important for cancer, muscular dystrophy, and other disorders, so TDPX1 should be considered a candidate gene for these diseases. 33 refs., 2 figs., 1 tab.

  1. Detailed ordering of markers localizing to the Xq26-Xqter region of the human X chromosome by the use of an interspecific Mus spretus mouse cross

    Five probes localizing to the Xq26-Xqter region of the human X chromosome have been genetically mapped on the mouse X chromosome using an interspecific cross involving Mus spretus to a contiguous region lying proximally to the Tabby (Ta) locus. Pedigree and recombinational analysis establish the marker order as being Hprt-FIX-c11-G6PD-St14-1. The size of this contiguous region is such that the X-linked muscular dystrophy (mdx) mouse mutation probably maps within this segment. This in turn suggests that it is highly improbable that the mouse mdx locus represents a model for Duchenne muscular dystrophy (DMD). It is, however, compatible with the idea that this mutation may correspond in man to Emery Dreifuss muscular dystrophy. The high frequency of restriction fragment length polymorphisms found in this interspecific system for all the human cross-reacting probes examined up until now, using only a limited number of restriction enzymes, suggests that the Mus spretus mapping system may be of great potential value for establishing the linkage relationships existing in man when conserved chromosomal regions are concerned and human/mouse cross-reacting probes are available or can be obtained

  2. Analysis of chromosome aberration data by hybrid-scale models

    This paper presents a new methodology for analyzing data of chromosome aberrations, which is useful to understand the characteristics of dose-response relationships and to construct the calibration curves for the biological dosimetry. The hybrid scale of linear and logarithmic scales brings a particular plotting paper, where the normal section paper, two types of semi-log papers and the log-log paper are continuously connected. The hybrid-hybrid plotting paper may contain nine kinds of linear relationships, and these are conveniently called hybrid scale models. One can systematically select the best-fit model among the nine models by among the conditions for a straight line of data points. A biological interpretation is possible with some hybrid-scale models. In this report, the hybrid scale models were applied to separately reported data on chromosome aberrations in human lymphocytes as well as on chromosome breaks in Tradescantia. The results proved that the proposed models fit the data better than the linear-quadratic model, despite the demerit of the increased number of model parameters. We showed that the hybrid-hybrid model (both variables of dose and response using the hybrid scale) provides the best-fit straight lines to be used as the reliable and readable calibration curves of chromosome aberrations. (author)

  3. Sequence and expression analysis of gaps in human chromosome 20

    Minocherhomji, Sheroy; Seemann, Stefan; Mang, Yuan;


    The finished human genome-assemblies comprise several hundred un-sequenced euchromatic gaps, which may be rich in long polypurine/polypyrimidine stretches. Human chromosome 20 (chr 20) currently has three unfinished gaps remaining on its q-arm. All three gaps are within gene-dense regions and/or ...

  4. Chromosomal analysis of Physalaemus kroyeri and Physalaemus cicada (Anura, Leptodactylidae)

    Vittorazzi, Stenio Eder; Lourenço, Luciana Bolsoni; Solé, Mirco; Faria, Renato Gomes; Recco-Pimentel, Shirlei Maria


    Abstract All the species of Physalaemus Fitzinger, 1826 karyotyped up until now have been classified as 2n = 22. The species of the Physalaemus cuvieri group analyzed by C-banding present a block of heterochromatin in the interstitial region of the short arm of pair 5. Physalaemus cicada Bokermann, 1966 has been considered to be a member of the Physalaemus cuvieri species group, although its interspecific phylogenetic relationships remain unknown. The PcP190 satellite DNA has been mapped on the chromosomes of most of the species of the Physalaemus cuvieri group. For two species, Physalaemus cicada and Physalaemus kroyeri (Reinhardt & Lütken, 1862), however, only the chromosome number and morphology are known. Given this, the objective of the present study was to analyze the chromosomes of Physalaemus cicada and Physalaemus kroyeri, primarily by C-banding and PcP190 mapping. The results indicate that Physalaemus kroyeri and Physalaemus cicada have similar karyotypes, which were typical of Physalaemus. In both species, the NORs are located on the long arm of pair 8, and the C-banding indicated that, among other features, Physalaemus kroyeri has the interstitial band on chromosome 5, which is however absent in Physalaemus cicada. Even so, a number of telomeric bands were observed in Physalaemus cicada. The mapping of the PcP190 satellite DNA highlighted areas of the centromeric region of the chromosomes of pair 1 in both species, although in Physalaemus kroyeri, heteromorphism was also observed in pair 3. The cytogenetic evidence does not support the inclusion of Physalaemus cicada in the Physalaemus cuvieri group. In the case of Physalaemus kroyeri, the interstitial band on pair 5 is consistent with the existence of a cytogenetic synapomorphy in the Physalaemus cuvieri species group. PMID:27551351

  5. Prenatal Chromosomal Microarray Analysis and Identification of Genetic Variants in Congenital Diaphragmatic Hernia.

    Brady, Paul


    Chromosomal microarray analysis has gradually replaced conventional karyotyping over recent years in the postnatal setting which has revolutionized whole genome screening for genomic imbalances in patients. We sought to evaluate the benefits and the challenges of applying chromosomal microarrays to prenatal diagnosis for referrals with abnormal ultrasound findings. Our findings, presented in Chapter 3, demonstrate a diagnostic yield of ~10%. Importantly, ~3% are caused by submicroscopic CN...

  6. The Sequence and Analysis of Duplication Rich Human Chromosome 16

    Martin, Joel; Han, Cliff; Gordon, Laurie A.; Terry, Astrid; Prabhakar, Shyam; She, Xinwei; Xie, Gary; Hellsten, Uffe; Man Chan, Yee; Altherr, Michael; Couronne, Olivier; Aerts, Andrea; Bajorek, Eva; Black, Stacey; Blumer, Heather; Branscomb, Elbert; Brown, Nancy C.; Bruno, William J.; Buckingham, Judith M.; Callen, David F.; Campbell, Connie S.; Campbell, Mary L.; Campbell, Evelyn W.; Caoile, Chenier; Challacombe, Jean F.; Chasteen, Leslie A.; Chertkov, Olga; Chi, Han C.; Christensen, Mari; Clark, Lynn M.; Cohn, Judith D.; Denys, Mirian; Detter, John C.; Dickson, Mark; Dimitrijevic-Bussod, Mira; Escobar, Julio; Fawcett, Joseph J.; Flowers, Dave; Fotopulos, Dea; Glavina, Tijana; Gomez, Maria; Gonzales, Eidelyn; Goodstein, David; Goodwin, Lynne A.; Grady, Deborah L.; Grigoriev, Igor; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Hildebrand, Carl E.; Huang, Wayne; Israni, Sanjay; Jett, Jamie; Jewett, Phillip E.; Kadner, Kristen; Kimball, Heather; Kobayashi, Arthur; Krawczyk, Marie-Claude; Leyba, Tina; Longmire, Jonathan L.; Lopez, Frederick; Lou, Yunian; Lowry, Steve; Ludeman, Thom; Mark, Graham A.; Mcmurray, Kimberly L.; Meincke, Linda J.; Morgan, Jenna; Moyzis, Robert K.; Mundt, Mark O.; Munk, A. Christine; Nandkeshwar, Richard D.; Pitluck, Sam; Pollard, Martin; Predki, Paul; Parson-Quintana, Beverly; Ramirez, Lucia; Rash, Sam; Retterer, James; Ricke, Darryl O.; Robinson, Donna L.; Rodriguez, Alex; Salamov, Asaf; Saunders, Elizabeth H.; Scott, Duncan; Shough, Timothy; Stallings, Raymond L.; Stalvey, Malinda; Sutherland, Robert D.; Tapia, Roxanne; Tesmer, Judith G.; Thayer, Nina; Thompson, Linda S.; Tice, Hope; Torney, David C.; Tran-Gyamfi, Mary; Tsai, Ming; Ulanovsky, Levy E.; Ustaszewska, Anna; Vo, Nu; White, P. Scott; Williams, Albert L.; Wills, Patricia L.; Wu, Jung-Rung; Wu, Kevin; Yang, Joan; DeJong, Pieter; Bruce, David; Doggett, Norman; Deaven, Larry; Schmutz, Jeremy; Grimwood, Jane; Richardson, Paul; et al.


    We report here the 78,884,754 base pairs of finished human chromosome 16 sequence, representing over 99.9 percent of its euchromatin. Manual annotation revealed 880 protein coding genes confirmed by 1,637 aligned transcripts, 19 tRNA genes, 341 pseudogenes and 3 RNA pseudogenes. These genes include metallothionein, cadherin and iroquois gene families, as well as the disease genes for polycystic kidney disease and acute myelomonocytic leukemia. Several large-scale structural polymorphisms spanning hundreds of kilobasepairs were identified and result in gene content differences across humans. One of the unique features of chromosome 16 is its high level of segmental duplication, ranked among the highest of the human autosomes. While the segmental duplications are enriched in the relatively gene poor pericentromere of the p-arm, some are involved in recent gene duplication and conversion events which are likely to have had an impact on the evolution of primates and human disease susceptibility.

  7. The sequence and analysis of duplication rich human chromosome 16

    Martin, Joel; Han, Cliff; Gordon, Laurie A.; Terry, Astrid; Prabhakar, Shyam; She, Xinwei; Xie, Gary; Hellsten, Uffe; Man Chan, Yee; Altherr, Michael; Couronne, Olivier; Aerts, Andrea; Bajorek, Eva; Black, Stacey; Blumer, Heather; Branscomb, Elbert; Brown, Nancy C.; Bruno, William J.; Buckingham, Judith M.; Callen, David F.; Campbell, Connie S.; Campbell, Mary L.; Campbell, Evelyn W.; Caoile, Chenier; Challacombe, Jean F.; Chasteen, Leslie A.; Chertkov, Olga; Chi, Han C.; Christensen, Mari; Clark, Lynn M.; Cohn, Judith D.; Denys, Mirian; Detter, John C.; Dickson, Mark; Dimitrijevic-Bussod, Mira; Escobar, Julio; Fawcett, Joseph J.; Flowers, Dave; Fotopulos, Dea; Glavina, Tijana; Gomez, Maria; Gonzales, Eidelyn; Goodstein, David; Goodwin, Lynne A.; Grady, Deborah L.; Grigoriev, Igor; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Hildebrand, Carl E.; Huang, Wayne; Israni, Sanjay; Jett, Jamie; Jewett, Phillip E.; Kadner, Kristen; Kimball, Heather; Kobayashi, Arthur; Krawczyk, Marie-Claude; Leyba, Tina; Longmire, Jonathan L.; Lopez, Frederick; Lou, Yunian; Lowry, Steve; Ludeman, Thom; Mark, Graham A.; Mcmurray, Kimberly L.; Meincke, Linda J.; Morgan, Jenna; Moyzis, Robert K.; Mundt, Mark O.; Munk, A. Christine; Nandkeshwar, Richard D.; Pitluck, Sam; Pollard, Martin; Predki, Paul; Parson-Quintana, Beverly; Ramirez, Lucia; Rash, Sam; Retterer, James; Ricke, Darryl O.; Robinson, Donna L.; Rodriguez, Alex; Salamov, Asaf; Saunders, Elizabeth H.; Scott, Duncan; Shough, Timothy; Stallings, Raymond L.; Stalvey, Malinda; Sutherland, Robert D.; Tapia, Roxanne; Tesmer, Judith G.; Thayer, Nina; Thompson, Linda S.; Tice, Hope; Torney, David C.; Tran-Gyamfi, Mary; Tsai, Ming; Ulanovsky, Levy E.; Ustaszewska, Anna; Vo, Nu; White, P. Scott; Williams, Albert L.; Wills, Patricia L.; Wu, Jung-Rung; Wu, Kevin; Yang, Joan; DeJong, Pieter; Bruce, David; Doggett, Norman; Deaven, Larry; Schmutz, Jeremy; Grimwood, Jane; Richardson, Paul; et al.


    We report here the 78,884,754 base pairs of finished human chromosome 16 sequence, representing over 99.9 percent of its euchromatin. Manual annotation revealed 880 protein coding genes confirmed by 1,637 aligned transcripts, 19 tRNA genes, 341 pseudogenes and 3 RNA pseudogenes. These genes include metallothionein, cadherin and iroquois gene families, as well as the disease genes for polycystic kidney disease and acute myelomonocytic leukemia. Several large-scale structural polymorphisms spanning hundreds of kilobasepairs were identified and result in gene content differences across humans. One of the unique features of chromosome 16 is its high level of segmental duplication, ranked among the highest of the human autosomes. While the segmental duplications are enriched in the relatively gene poor pericentromere of the p-arm, some are involved in recent gene duplication and conversion events which are likely to have had an impact on the evolution of primates and human disease susceptibility.

  8. Array painting: a protocol for the rapid analysis of aberrant chromosomes using DNA microarrays

    Gribble, Susan M; Ng, Bee Ling; Prigmore, Elena; Fitzgerald, Tomas; Carter, Nigel P


    Aarray painting is a technique that uses microarray technology to rapidly map chromosome translocation breakpoints. previous methods to map translocation breakpoints have used fluorescence in situ hybridization (FIsH) and have consequently been labor-intensive, time-consuming and restricted to the low breakpoint resolution imposed by the use of metaphase chromosomes. array painting combines the isolation of derivative chromosomes (chromosomes with translocations) and high-resolution microarray analysis to refine the genomic location of translocation breakpoints in a single experiment. In this protocol, we describe array painting by isolation of derivative chromosomes using a MoFlo flow sorter, amplification of these derivatives using whole-genome amplification and hybridization onto commercially available oligonucleotide microarrays. although the sorting of derivative chromosomes is a specialized procedure requiring sophisticated equipment, the amplification, labeling and hybridization of Dna is straightforward, robust and can be completed within 1 week. the protocol described produces good quality data; however, array painting is equally achievable using any combination of the available alternative methodologies for chromosome isolation, amplification and hybridization. PMID:19893508

  9. Cytogenetic analysis of quinoa chromosomes using nanoscale imaging and spectroscopy techniques

    Yangquanwei, Zhong; Neethirajan, Suresh; Karunakaran, Chithra


    Here we present a high-resolution chromosomal spectral map derived from synchrotron-based soft X-ray spectromicroscopy applied to quinoa species. The label-free characterization of quinoa metaphase chromosomes shows that it consists of organized substructures of DNA-protein complex. The analysis of spectra of chromosomes using the scanning transmission X-ray microscope (STXM) and its superposition of the pattern with the atomic force microscopy (AFM) and scanning electron microscopy (SEM) images proves that it is possible to precisely locate the gene loci and the DNA packaging inside the chromosomes. STXM has been successfully used to distinguish and quantify the DNA and protein components inside the quinoa chromosomes by visualizing the interphase at up to 30-nm spatial resolution. Our study represents the successful attempt of non-intrusive interrogation and integrating imaging techniques of chromosomes using synchrotron STXM and AFM techniques. The methodology developed for 3-D imaging of chromosomes with chemical specificity and temporal resolution will allow the nanoscale imaging tools to emerge from scientific research and development into broad practical applications such as gene loci tools and biomarker libraries.

  10. Chromosome region-specific libraries for human genome analysis

    Kao, Fa-Ten.


    During the grant period progress has been made in the successful demonstration of regional mapping of microclones derived from microdissection libraries; successful demonstration of the feasibility of converting microclones with short inserts into yeast artificial chromosome clones with very large inserts for high resolution physical mapping of the dissected region; Successful demonstration of the usefulness of region-specific microclones to isolate region-specific cDNA clones as candidate genes to facilitate search for the crucial genes underlying genetic diseases assigned to the dissected region; and the successful construction of four region-specific microdissection libraries for human chromosome 2, including 2q35-q37, 2q33-q35, 2p23-p25 and 2p2l-p23. The 2q35-q37 library has been characterized in detail. The characterization of the other three libraries is in progress. These region-specific microdissection libraries and the unique sequence microclones derived from the libraries will be valuable resources for investigators engaged in high resolution physical mapping and isolation of disease-related genes residing in these chromosomal regions.

  11. Cloning, tissue expression pattern characterization and chromosome localization of human peptide methionine sulfoxide reductase cDNA


    Oxidation and reduction of some amino acids are one of the molecular mechanisms for regulating the function of proteins. The oxidation of methionine (Met) to methionine sulfoxide (Met(O)) results in decreasing or loss of the biological activity of related proteins. It was found that peptide methionine sulfoxide reductase (msrA) can reduce Met(O) to Met and therefore restored the biological function of the oxidized proteins. To reveal the methionine oxidation-reduction mechanism in human body, in this study, the cDNA sequence of bovine msrA was used as an information-probe to screen the human EST database. Based on a contig assembled from homologous ESTs, a 1 256-bp human MSRA cDNA was cloned from several human cDNA libraries. The cDNA contains an open reading frame (ORF) of 705 bp in length, which encodes 235 amino acid residues. Homology comparison revealed that human MSRA shares 88% and 61% identities with bovine and Escherichia coli msrA protein respectively. Expression pattern analysis revealed a single 1.6-kb transcript of human MSRA in most human tissues and with highest expression in kidney. By radiation hybrid panel mapping, the gene was localized to human chromosome 8p22-23 between markers D8S518 and D8S550. There are 2 human inherited diseases Keratolytic Winter Erythema and Microcephaly related genes in this region, it is inferred that human MSRA might be the candidate of the two diseases.

  12. Cyclin B1 is localized to unattached kinetochores and contributes to efficient microtubule attachment and proper chromosome alignment during mitosis

    Qiang Chen; Xiaoyan Zhang; Qing Jiang; Paul R Clarke; Chuanmao Zhang


    Cyclin Bl is a key regulatory protein controlling cell cycle progression in vertebrates. Cyclin Bl binds CDK1, a cyclin-dependent kinase catalytic subunit, forming a complex that orchestrates mitosis through phosphorylation of key proteins. Cyclin Bl regulates both the activation of CDK1 and its subcellular localization, which may be critical for substrate selection. Here, we demonstrate that cyclin Bl is concentrated on the outer plate of the kinetochore during prometaphase. This localization requires the cyclin box region of the protein. Cyclin Bl is displaced from individual kinetochores to the spindle poles by microtubule attachment to the kinetochores, and this displacement is dependent on the dynein/dynactin complex. Depletion of cyclin Bl by vector-based siRNA causes inefficient attachment between kinetochores and microtubules, and chromosome alignment defects, and delays the onset of anaphase. We conclude that cyclin Bl accumulates at kinetochores during prometaphase, where it contributes to the correct attachment of microtubules to kinetochores and efficient alignment of the chromosomes, most likely through localized phosphorylation of specific substrates by cyclin B1-CDK1. Cyclin Bl is then transported from each kinetochore as microtubule attachment is completed, and this relocalization may redirect the activity of cyclin B1-CDK1 and contribute to inactivation of the spindle assembly checkpoint.

  13. Chromosomal aberration analysis of persons occupationally exposed to radiation in Iran (2)

    The results of chromosome aberration analysis on lymphocytes from 333 persons suspected of being overexposed to X and gamma rays in recent years at Iran is presented. 91 persons were associated with industrial radiography, 124 with radiology and 118 with medical research and therapy centers. The total yields of chromosome aberration per 100 cells were respectively 3.76, 2.92 and 2.96. The frequencies of dicentrics which are important in biological dosimetry were respectively 0.18, 0.17 and 0.21. In this investigation, 50 subjects were also examined as control with a mean aberration of 1.14 per 100 cells. With regard to incidence of chromosome aberrations as mentioned, the rate of chromosome aberrations in industrial radiographers was the most significant

  14. Structure and chromosomal localization of the human PD-1 gene (PDCD1)

    Shinohara, T.; Ishida, Y.; Kawaichi, M. [Kyoto Prefectural Medical School, Sakyo-ku (Japan)] [and others


    A cDNA encoding mouse PD-1, a member of the immunoglobulin superfamily, was previously isolated from apoptosis-induced cells by subtractive hybridization. To determine the structure and chromosomal location of the human PD-1 gene, we screened a human T cell cDNA library by mouse PD-1 probe and isolated a cDNA coding for the human PD-1 protein. The deduced amino acid sequence of human PD-1 was 60% identical to the mouse counterpart, and a putative tyrosine kinase-association motif was well conserved. The human PD-1 gene was mapped to 2q37.3 by chromosomal in situ hybridization. 7 refs., 3 figs.

  15. Physical mapping, expression analysis and polymorphism survey of resistance gene analogues on chromosome 11 of rice

    Irfan A Ghazi; Prem S Srivastava; Vivek Dalal; Kishor Gaikwad; Ashok K Singh; Tilak R Sharma; Nagendra K Singh; Trilochan Mohapatra


    Rice is the first cereal genome with a finished sequence and a model crop that has important syntenic relationships with other cereal species. The objectives of our study were to identify resistance gene analogue (RGA) sequences from chromosome 11 of rice, understand their expression in other cereals and dicots by in silico analysis, determine their presence on other rice chromosomes, and evaluate the extent of polymorphism and actual expression in a set of rice genotypes. A total of 195 RGAs were predicted and physically localised. Of these, 91.79% expressed in rice, and 51.28% expressed in wheat, which was the highest among other cereals. Among monocots, sugarcane showed the highest (78.92%) expression, while among dicots, RGAs were maximally expressed in Arabidopsis (11.79%). Interestingly, two of the chromosome 11-specific RGAs were found to be expressing in all the organisms studied. Eighty RGAs of chromosome 11 had significant homology with chromosome 12, which was the maximum among all the rice chromosomes. Thirty-one per cent of the RGAs used in polymerase chain reaction (PCR) amplification showed polymorphism in a set of rice genotypes. Actual gene expression analysis revealed post-inoculation induction of one RGA in the rice line IRBB-4 carrying the bacterial blight resistance gene Xa-4. Our results have implications for the development of sequence-based markers and functional validation of specific RGAs in rice.

  16. Insights into the evolution of mammalian telomerase: Platypus TERT shares similarities with genes of birds and other reptiles and localizes on sex chromosomes

    Hrdličková Radmila


    Full Text Available Abstract Background The TERT gene encodes the catalytic subunit of the telomerase complex and is responsible for maintaining telomere length. Vertebrate telomerase has been studied in eutherian mammals, fish, and the chicken, but less attention has been paid to other vertebrates. The platypus occupies an important evolutionary position, providing unique insight into the evolution of mammalian genes. We report the cloning of a platypus TERT (OanTERT ortholog, and provide a comparison with genes of other vertebrates. Results The OanTERT encodes a protein with a high sequence similarity to marsupial TERT and avian TERT. Like the TERT of sauropsids and marsupials, as well as that of sharks and echinoderms, OanTERT contains extended variable linkers in the N-terminal region suggesting that they were present already in basal vertebrates and lost independently in ray-finned fish and eutherian mammals. Several alternatively spliced OanTERT variants structurally similar to avian TERT variants were identified. Telomerase activity is expressed in all platypus tissues like that of cold-blooded animals and murine rodents. OanTERT was localized on pseudoautosomal regions of sex chromosomes X3/Y2, expanding the homology between human chromosome 5 and platypus sex chromosomes. Synteny analysis suggests that TERT co-localized with sex-linked genes in the last common mammalian ancestor. Interestingly, female platypuses express higher levels of telomerase in heart and liver tissues than do males. Conclusions OanTERT shares many features with TERT of the reptilian outgroup, suggesting that OanTERT represents the ancestral mammalian TERT. Features specific to TERT of eutherian mammals have, therefore, evolved more recently after the divergence of monotremes.

  17. Localization of the {alpha}7 integrin gene (ITGA7) on human chromosome 12q13: Clustering of integrin and Hox genes implies parallel evolution of these gene families

    Wang, W.; Wu, W.; Kaufman, S.J. [Univ. of Illinois, Urbana, IL (United States)] [and others


    Expression of the {alpha}7 integrin gene (ITGA7) is developmentally regulated during the formation of skeletal muscle. Increased levels of expression and production of isoforms containing different cytoplasmic and extracellular domains accompany myogenesis. To determine whether a single or multiple {alpha}7 gene(s) underlie the structural diversity in this alpha chain that accompanies development, we have examined the rat and human genomes by Southern blotting and in situ hybridization. Our results demonstrate that there is only one {alpha}7 gene in both the rat and the human genomes. In the human, ITGA7 is present on chromosome 12q13. Phylogenetic analysis of the integrin alpha chain sequences suggests that the early integrin genes evolved in two pathways to form the I-integrins and the non-I-integrins. The I-integrin alpha chains contain an additional sequence of approximately 180 amino acids and arose as a result of an early insertion into the non-I-gene. The I-chain subfamily further evolved by duplications within the same chromosome. The non-I-integrin alpha chain genes are localized in clusters on chromosomes 2, 12, and 17, and this closely coincides with the localization of the human homeobox gene clusters. Non-I-integrin alpha chain genes appear to have evolved in parallel and in proximity to the Hox clusters. Thus, the Hox genes that underlie the design of body structure and the Integrin genes that underlie informed cell-cell and cell-matrix interactions appear to have evolved in parallel and coordinate fashions. 52 refs., 5 figs., 2 tabs.

  18. Computer aided analysis of additional chromosome aberrations in Philadelphia chromosome positive acute lymphoblastic leukaemia using a simplified computer readable cytogenetic notation

    Mohr Brigitte; Jauch Anna; Heinze Barbara; Fonatsch Christa; Balz Harald; Bradtke Jutta; Schoch Claudia; Rieder Harald


    Abstract Background The analysis of complex cytogenetic databases of distinct leukaemia entities may help to detect rare recurring chromosome aberrations, minimal common regions of gains and losses, and also hot spots of genomic rearrangements. The patterns of the karyotype alterations may provide insights into the genetic pathways of disease progression. Results We developed a simplified computer readable cytogenetic notation (SCCN) by which chromosome findings are normalised at a resolution...

  19. Analysis of chromosome translocation in the residents of Namie Town after the accident of Fukushima Daiichi Nuclear Power Plant

    The dose estimation by behavior survey of the residents carried out by Fukushima Prefecture after the accident reported that there are no residents who were exposed by over 1 mSv radiation. However, a lot of the parents are worrying about the health condition of their children in future. Our Hirosaki University accepted the request of the local government of this Namie-Town in Fukushima which wants to know whether children were exposed by radiological substances or not and started the inspection about the contamination and exposure level and dose estimation at an accident using chromosomal translocation analysis for 855 out of 3700 children whose age was under 18 years old at the time of accident. In order to estimate radiation dose using chromosome aberration in the accidents, there are four kinds of cytogenetic method; dicentric assay, a translocation assay, the PCC-ring assay and micronucleus test. A dicentric assay is used for the dose estimation in acute and external exposure cases, the chromosomal translocation method for dose assessment in chronic and old exposure and the PCC method for high dose exposure, respectively. In the case of the residents in Namie-Town, since about one year and ten months had already passed after the accident when implementation of this inspection was determined, the chromosomal translocation method was applied for the dose estimation of the initial exposure level. The main purpose of this translocation analysis using their own cells is to take away affairs of the residents including parents and children and also to reduce the uneasiness which is not wiped away by the health check due to a behavioral survey. In this inspection, after the contents and process of this analysis were explained in the Tsushima, Namie-Town temporarily constructed clinic, 3∼4 ml of whole 5 blood were taken from each children whose parents agreed with this analysis. The lymphocytic cells are isolated from the whole blood using CPT (Cell Preparation Tube

  20. Chromosomal analysis by G-banding techinque in youngsters of high background radiation area

    It was demonstrated that the frequency of chromosome aberrations of peripheral lymphocytes in inhabitants of the high background radiation area was higher than that in people of the control area. In this study, the chromosome aberrations in inhabitants of both areas were analysed by means of G-banding techique in an efforf to improve the detection of stable aberrations. Chromosome aberrations were studied in blood lymphocytes from 34 inhabitnts of the high background radiation area, and from 40 controls of normal background radiation area. Seabright's trypsin G-banding technique with minor modification was employed. In the result, in the high background group 55 aberrations were found in 1711 banded metaphases with a frequency of 3.21/100 cells, while in the control group only 39 aberrations were observed in 2006 metaphases, showing a frequency of 1.94/100 cells. Obviously, the frequency in the former group was significantly higher than that in the latter. On analysis of the types of aberrations, translocations and deletions accounted for approximately 85% of the total aberrations. There were 86 breaks found by G-banding in the high background group and 67 breaks in the control. A statistical comparison of observed and expected values showed that the distributions of chromosome breaks in both groups were nonrandom. When individual chromosomes were compared separately, it was found that the observed values of the breaks of chromosomes 1, 2 and 8 were higher than the expected

  1. Mucopolysaccharidosis type VI in rats: Isolation of cDNAs encoding arylsulfatase B, chromosomal localization of the gene, and identification of the mutation

    Kunieda, Tetsuo; Simonaro, Calogera M.; Desnick, R.J.; Schuchman, E.H. [Mount Sinai School of Medicine, New York, NY (United States)] [and others


    Mucopolysaccharidosis (MPS) type VI, the lysosomal storage disorder caused by the deficiency of arylsulfatase B (ARSB) activity, occurs in humans, cats, and rats. To characterize the molecular lesion(s) causing MPS VI in rats, cDNAs encoding rat ARSB were isolated from a rat liver cDNA library. The nucleotide and deduced amino acid sequences of rat ARSB had {approximately}80 and 85% identity with the human ARSB sequences, respectively. The chromosomal location of the rat ARSB gene was determined by PCR analysis of rat-mouse somatic cell hybrid panel. The ARSB gene was assigned to rat chromosome 2, where the locus for the MPS VI phenotype in rats has been localized by linkage analysis. To identify the mutations within the ARSB gene causing MPS VI in rats, the ARSB sequence were amplified from affected animals and completely sequenced. Notably, a homoallelic one-base insertion at nucleotide 507 (507insC) was identified, resulting in a frame shift mutation and premature termination at codon 258. The presence of the insertion completely correlated with the occurrence of the MPS VI phenotype among 66 members of the MPR rat colony. Thus, we conclude that 507insC is the causative mutation in these animals and that the MPS VI rats are an authentic model of human MPS VI. 27 refs., 3 figs., 1 tab.

  2. Modified C-band technique for the analysis of chromosome abnormalities in irradiated human lymphocytes

    A modified C-band technique was developed in order to analyze more accurately dicentric, tricentric, and ring chromosomes in irradiated human peripheral lymphocytes. Instead of the original method relying on treatment with barium hydroxide Ba(OH)2, C-bands were obtained using a modified form of heat treatment in formamide followed with DAPI staining. This method was tentatively applied to the analysis of dicentric chromosomes in irradiated human lymphocytes to examine its availability. The frequency of dicentric chromosome was almost the same with conventional Giemsa staining and the modified C-band technique. In the analysis using Giemsa staining, it is relatively difficult to identify the centromere on the elongated chromosomes, over-condensed chromosomes, fragment, and acentric ring. However, the modified C-band method used in this study makes it easier to identify the centromere on such chromosomes than with the use of Giemsa staining alone. Thus, the modified C-band method may give more information about the location of the centromere. Therefore, this method may be available and more useful for biological dose estimation due to the analysis of the dicentric chromosome in human lymphocytes exposed to the radiation. Furthermore, this method is simpler and faster than the original C-band protocol and fluorescence in situ hybridization (FISH) method with the centromeric DNA probe. - Highlights: → The dicentric (dic) assay is the most effective for the radiation biodosimetry. → It is important to recognize the centromere of the dic. → We improved a C-band technique based on heat denaturation. → This technique enables the accurate detection of a centromere. → This method may be available and more useful for biological dose estimation.

  3. Chromosomal localization of a novel retinoic acid induced gene RA28 and the protein distribution of its encoded protein


    Gene RA28 is a retinoic acid induced novel gene isolated in our laboratory previously. All-trans retinoic acid (ATRA) was used to induce lung adenocarcinoma cell line GLC-82, and RA28 was obtained by subtractive hybridization. Green fluorescent protein (GFP) has emerged as a unique tool for examining introcellular phenomena in living cells. GFP possesses an intrinsic fluorescence at 488 nm that does not require other co-factors. In this report, an eukaryotic expression plasmid pEGFP-C1-RA28 was constructed and transfected with parental cell line GLC-82 to analyze protein expression and its distribution in living cells. Moreover, radiation hybrid (RH) technique was used to localize RA28 to the chromosome. The results show that gene RA28 is mapped to the chromosome 19q13.1 region, its encoded protein is distributed on cell membrane. All the results further demonstrate that GFP and RH techniques are accurate, fast, repetitive, and will be powerful methods for investigating the gene and protein localization.

  4. Local models for spatial analysis

    Lloyd, Christopher D


    Focusing on solutions, this second edition provides guidance to a wide variety of real-world problems. The text presents a complete introduction to key concepts and a clear mapping of the methods discussed. It also explores connections between methods. New chapters address spatial patterning in single variables and spatial relations. In addition, every chapter now includes links to key related studies. The author clearly distinguishes between local and global methods and provides more detailed coverage of geographical weighting, image texture measures, local spatial autocorrelation, and multic

  5. Retrospective chromosome aberration analysis of former uranium miners

    In this paper we present our data collected in the period of 1981-1985 on 165 persons exposed by different radon concentrations expressed in working level month (WLM) units from 100 up to 600. Following the decommissioning of the uranium mine in Hungary in 1997 cytogenetic status of 131 persons were within a follow-up-study of their health conditions initiated by the Hungarian Academy of Science. The persons have terminated their underground activities 5 to 20 years before testing. The comparison of the two datasets suggest a long-term persistence of cytogenetic alterations above the population average values in large percentages of persons investigated. The frequency of chromosome aberrations of uranium miners was found increased in function of their exposure to radon. The comparison of the miner's categories 20 years ago and in the recent years demonstrated the long-term existence of aberrations for many years after completion of underground mining activities. (authors)

  6. Doses in radiation accidents investigated by chromosome aberration analysis

    The results are reviewed from investigations during 1980 into 68 cases of suspected overexposure to radiation. Of these, 37 were associated with industrial radiography, 11 with one or other of the major nuclear organisations and 20 with an institution of research, education or health. 55 of the dose estimates were in the range 0.0 - 0.09 Gy (0 - 9 rad) 5 in the range 0.1 - 0.29 Gy (10 - 29 rad) and for various reasons in 8 cases no biological assessment of dose was possible. The dose estimate for the case with the highest confirmed overexposure was 0.22 Gy (22 rads). The chromosome data are compared with information obtained from physical dosimetry and a brief summary is given of the circumstances of each case. (author)

  7. Assignment of human sprouty 4 gene to chromosome segment 5q32∼33 and analysis of its pattern of expression

    Hua Liu; Jin-Zhong Chen; Shao-Hua Gu; Jian-Liang Dai; En-Pang Zhao; Lu Huang; Wang-Xiang Xu; Yi Xie; Yu-Min Mao


    The human sprouty 4 (SPYR4) gene was localized to chromosome band 5q32∼33 by screening the Stanford radiation hybrid G3 panel using a SPRY4-specific primer pair for PCR. Northern blot analysis revealed two different mRNAs (5 kb and 2 kb) in liver, skeletal muscle, heart, lung, kidney, spleen, placenta and small intestine. Reverse transcriptase-PCR analysis showed that SPYR4 was expressed in all tested tissues to different levels.

  8. Morphological images analysis and chromosomic aberrations classification based on fuzzy logic

    This work has implemented a methodology for automation of images analysis of chromosomes of human cells irradiated at IEA-R1 nuclear reactor (located at IPEN, Sao Paulo, Brazil), and therefore subject to morphological aberrations. This methodology intends to be a tool for helping cytogeneticists on identification, characterization and classification of chromosomal metaphasic analysis. The methodology development has included the creation of a software application based on artificial intelligence techniques using Fuzzy Logic combined with image processing techniques. The developed application was named CHRIMAN and is composed of modules that contain the methodological steps which are important requirements in order to achieve an automated analysis. The first step is the standardization of the bi-dimensional digital image acquisition procedure through coupling a simple digital camera to the ocular of the conventional metaphasic analysis microscope. Second step is related to the image treatment achieved through digital filters application; storing and organization of information obtained both from image content itself, and from selected extracted features, for further use on pattern recognition algorithms. The third step consists on characterizing, counting and classification of stored digital images and extracted features information. The accuracy in the recognition of chromosome images is 93.9%. This classification is based on classical standards obtained at Buckton [1973], and enables support to geneticist on chromosomic analysis procedure, decreasing analysis time, and creating conditions to include this method on a broader evaluation system on human cell damage due to ionizing radiation exposure. (author)

  9. Linkage analysis of chromosome 14 and essential hypertension in Chinese population

    ZHAO Wei-yan; HUANG Jian-feng; GE Dong-liang; SU Shao-yong; LI Biao; GU Dong-feng


    Background Hypertension is a complex biological trait that influenced by multiple factors. The encouraging results for hypertension research showed that the linkage analysis can be used to replicate other studies and discover new genetic risk factors. Previous studies linked human chromosome 14 to essential hypertension or blood pressure traits. With a Chinese population, we tried to replicate these findings. Methods A linkage scan was performed on chromosome 14 with 14-microsatellite markers with a density of about 10 centi Morgen (cM) in 147 Chinese hypertensive nuclear families. Multipoint non-parametric linkage analysis and exclusion mapping were performed with the GENEHUNTER software, whereas quantitative analysis was performed with the variance component method integrated in the SOLAR package. Results In the qualitative analysis, the highest non-parametric linkage score is 1.0 (P=0.14) at D14S261 in the single point analysis, and no loci achieved non-parametric linkage score more than 1.0 in the multipoint analysis. Maximum-likelihood mapping showed no significant results, either. Subsequently the traditional exclusion criteria of the log-of-the-odds score-2 were adopted, and the chromosome 14 with λs≥2.4 was excluded. In the quantitative analysis of blood pressure with the SOLAR software, two-point analysis and multipoint analysis suggested no evidence for linkage occurred on chromosome 14 for systolic and diastolic blood pressure. Conclusion There was no substantial evidence to support the linkage of chromosome 14 and essential hypertension or blood pressure trait in Chinese hypertensive subjects in this study.

  10. Analysis of the DNA sequence and duplication history of human chromosome 15.

    Zody, Michael C; Garber, Manuel; Sharpe, Ted; Young, Sarah K; Rowen, Lee; O'Neill, Keith; Whittaker, Charles A; Kamal, Michael; Chang, Jean L; Cuomo, Christina A; Dewar, Ken; FitzGerald, Michael G; Kodira, Chinnappa D; Madan, Anup; Qin, Shizhen; Yang, Xiaoping; Abbasi, Nissa; Abouelleil, Amr; Arachchi, Harindra M; Baradarani, Lida; Birditt, Brian; Bloom, Scott; Bloom, Toby; Borowsky, Mark L; Burke, Jeremy; Butler, Jonathan; Cook, April; DeArellano, Kurt; DeCaprio, David; Dorris, Lester; Dors, Monica; Eichler, Evan E; Engels, Reinhard; Fahey, Jessica; Fleetwood, Peter; Friedman, Cynthia; Gearin, Gary; Hall, Jennifer L; Hensley, Grace; Johnson, Ericka; Jones, Charlien; Kamat, Asha; Kaur, Amardeep; Locke, Devin P; Madan, Anuradha; Munson, Glen; Jaffe, David B; Lui, Annie; Macdonald, Pendexter; Mauceli, Evan; Naylor, Jerome W; Nesbitt, Ryan; Nicol, Robert; O'Leary, Sinéad B; Ratcliffe, Amber; Rounsley, Steven; She, Xinwei; Sneddon, Katherine M B; Stewart, Sandra; Sougnez, Carrie; Stone, Sabrina M; Topham, Kerri; Vincent, Dascena; Wang, Shunguang; Zimmer, Andrew R; Birren, Bruce W; Hood, Leroy; Lander, Eric S; Nusbaum, Chad


    Here we present a finished sequence of human chromosome 15, together with a high-quality gene catalogue. As chromosome 15 is one of seven human chromosomes with a high rate of segmental duplication, we have carried out a detailed analysis of the duplication structure of the chromosome. Segmental duplications in chromosome 15 are largely clustered in two regions, on proximal and distal 15q; the proximal region is notable because recombination among the segmental duplications can result in deletions causing Prader-Willi and Angelman syndromes. Sequence analysis shows that the proximal and distal regions of 15q share extensive ancient similarity. Using a simple approach, we have been able to reconstruct many of the events by which the current duplication structure arose. We find that most of the intrachromosomal duplications seem to share a common ancestry. Finally, we demonstrate that some remaining gaps in the genome sequence are probably due to structural polymorphisms between haplotypes; this may explain a significant fraction of the gaps remaining in the human genome. PMID:16572171

  11. Localization of a female-specific marker on the chromosomes of the brown seaweed Saccharina japonica using fluorescence in situ hybridization.

    Yu Liu

    Full Text Available BACKGROUND: There is a heteromorphic alternative life in the brown seaweed, Saccharina japonica (Aresch. C. E. Lane, C. Mayes et G. W. Saunders ( = Laminaria japonica Aresch., with macroscopic monoecious sporophytes and microscopic diecious gametophytes. Female gametophytes are genetically different from males. It is very difficult to identify the parent of a sporophyte using only routine cytological techniques due to homomorphic chromosomes. A sex-specific marker is one of the best ways to make this determination. METHODOLOGY/PRINCIPAL FINDINGS: To obtain clear images, chromosome preparation was improved using maceration enzymes and fluorochrome 4', 6-diamidino-2-phenylindole (DAPI. The chromosome number of both male and female haploid gametophytes was 31, and there were 62 chromosomes in diploid sporophytes. Although the female chromosomes ranged from 0.77 µm to 2.61 µm in size and were larger than the corresponding ones in the males (from 0.57 µm to 2.16 µm, there was not a very large X chromosome in the females. Based on the known female-related FRML-494 marker, co-electrophoresis and Southern blot profiles demonstrated that it was inheritable and specific to female gametophytes. Using modified fluorescence in situ hybridization (FISH, this marker could be localized on one unique chromosome of the female gametophytes as well as the sporophytes, whereas no hybridization signal was detected in the male gametophytes. CONCLUSIONS/SIGNIFICANCE: Our data suggest that this marker was a female chromosome-specific DNA sequence. This is the first report of molecular marker localization on algal chromosomes. This research provides evidence for the benefit of using FISH for identifying molecular markers for sex identification, isolation of specific genes linked to this marker in the females, and sex determination of S. japonica gametophytes in the future.

  12. Localization of a gene responsible for nonspecific mental retardation (MRX9) to the pericentromeric region of the X chromosome

    Willems, P.; Vits, L.; Buntinx, I.; Raeymaekers, P.; Van Broeckhoven, C.; Ceulemans, B. (Univ. of Antwerp (Belgium))


    Nonspecific X-linked mental retardation (MRX) includes several distinct entities with mental retardation but without additional distinguishing features. The MRX family reported here has been classified previously as MRX9. In this study, the authors performed linkage analysis of MRX9 with a panel of 43 polymorphic DNA markers dispersed over chromosome X. Two-point linkage analysis revealed lod scores of 3.52 and 3.82 at 0% recombination for OATL1 and MAOA, both located in Xp11.2-p11.4. Lod scores for linkage with PGK1P1, DXS106, and DXS132, all located in Xq11-q13, were 3.83, 3.82, and 3.52, respectively, all at 0% recombination. Multipoint linkage analysis showed two peaks with MAOA and DXS132/DXS106, respectively. Analysis of recombinational events indicated a position of the MRX9 gene between DXS164 and DXS453. These findings are compatible with a location of the MRX9 gene in the pericentromeric region of the X chromosome at Xp21-q13. 26 refs., 3 figs., 2 tabs.

  13. Uroporphyrinogen-III synthase: Molecular cloning, nucleotide sequence, expression of a mouse full-length cDNA, and its localization on mouse chromosome 7

    Xu, W.; Desnick, R.J. [Mount Sinai School of Medicine, New York, NY (United States); Kozak, C.A. [National Institute of Health, Bethesda, MD (United States)


    Uroporphyrinogen-III synthase, the fourth enzyme in the heme biosynthetic pathway, is responsible for the conversion of hydroxymethylbilane to the cyclic tetrapyrrole, uroporphyrinogen III. The deficient activity of URO-S is the enzymatic defect in congenital erythropoietic porphyria (CEP), an autosomal recessive disorder. For the generation of a mouse model of CEP, the human URO-S cDNA was used to screen 2 X 10{sup 6} recombinants from a mouse adult liver cDNA library. Ten positive clones were isolated, and dideoxy sequencing of the entire 1.6-kb insert of clone pmUROS-1 revealed 5{prime} and 3{prime} untranslated sequences of 144 and 623 bp, respectively, and an open reading frame of 798 bp encoding a 265-amino-acid polypeptide with a predicted molecular mass of 28,501 Da. The mouse and human coding sequences had 80.5 and 77.8% nucleotide and amino acid identity, respectively. The authenticity of the mouse cDNA was established by expression of the active monomeric enzyme in Escherichia coli. In addition, the analysis of two multilocus genetic crosses localized the mouse gene on chromosome 7, consistent with the mapping of the human gene to a position of conserved synteny on chromosome 10. The isolation, expression, and chromosomal mapping of this full-length cDNA should facilitate studies of the structure and organization of the mouse genomic sequence and the development of a mouse model of CEP for characterization of the disease pathogenesis and evaluation of gene therapy. 38 refs., 1 tab.

  14. Chromosomal localization of the human gene encoding c-myc promoter-binding protein (MPB1) to chromosome 1p35-pter

    White, R.A.; Dowler, L.L. [Univ. of Missouri, Kansas City, MO (United States); Adkison, L.R. [Mercer Univ. School of Medicine, Macon, GA (United States); Ray, R.B. [St. Louis Univ. Health Sciences Center, St. Louis, MO (United States)


    We report the mapping of the human gene MPB1 (c-myc promoter binding protein), a recently identified gene regulatory protein. MPB1 binds to the c-myc P2 promoter and exerts a negative regulatory role on c-myc transcription. Since exogenous expression from transfection of the MPB1 gene suppresses the tumorigenic property of breast cancer cells, there was interest in determining the chromosomal location of this gene. The human MPB1 gene was assigned to human chromosome 1p35-pter using Southern blot analyses of genomic DNAs from rodent-human somatic hybrid cell lines. A specific human genomic fragment was observed only in the somatic cell lines containing human chromosome 1 or the p35-pter region of the chromosome. 10 refs., 2 figs.

  15. Localization of the human indoleamine 2,3-dioxygenase (IDO) gene to the pericentromeric region of human chromosome 8

    Burkin, D.J.; Jones, C. (Eleanor Roosevelt Institute for Cancer Research, Denver, CO (United States)); Kimbro, K.S.; Taylor, M.W. (Indiana Univ., Bloomington, IN (United States)); Barr, B.L.; Gupta, S.L. (Hipple Cancer Research Center, Dayton, OH (United States))


    Indoleamine 2,3-dioxygenase (IDO) is the first enzyme in the catabolic pathway for tryptophan. This extrahepatic enzyme differs from the hepatic enzyme, tryptophan 2,3-dioxygenase (TDO), in molecular as well as enzymatic characteristics, although both enzymes catalyze the same reaction: cleavage of tryptophan into N-formylkynurenine. The induction of IDO by IFN-[gamma] plays a role in the antigrowth effect of IFN-[gamma] in cell cultures and in the inhibition of intracellular pathogens, e.g., Toxoplasma gondii and Chlamydia psittaci. Tryptophan is also the precursor for the synthesis of serotonin, and reduced levels of tryptophan and serotonin found in AIDS patients have been correlated with the presence of IFN-[gamma] and consequent elevation of IDO activity. The IDO enzyme has been purified and characterized, and its cDNA and genomic DNA clones have been isolated and analyzed. DNA from hybrid cells containing fragments of human chromosome 8 was used to determine the regional localization of the IDO gene on chromosome 8. The hybrids R30-5B and R30-2A contain 8p11 [yields] qter and 8q13 [yields] qter, respectively. Hybrid 229-3A contains the 8pter [yields] q11. The hybrid R30-2A was negative for the IDO gene, whereas R30-5B and 229-3A were positive as analyzed by PCR and verified by Southern blotting. Only the region close to the centromere is shared by R30-5B and 229-3A hybrids. The results indicate that the IDO gene is located on chromosome 8p11 [yields] q11.

  16. Composition and chromosomal localization of cetacean highly repetitive DNA with special reference to the blue whale, Balaenoptera musculus.

    Arnason, U; Widegren, B


    Three highly repetitive DNA components--the common cetacean component, the heavy (GC-rich) satellite and the light (AT-rich) satellite--were were studied in the blue whale. Consensus sequences of the common component and the heavy satellite were determined on the basis of three repeats of the common component and eight repeats of the heavy satellite. The tandemly organized common cetacean component, which comprises a large portion of all cetacean--both odontocete (toothed whale) and mysticete (whalebone whale)--genomes has a repeat length of 1,760 bp and the three clones analysed showed a high degree of conformity. The repeat contains a 72 bp sequence with dyad symmetry and striking intrastrand complementarity. The rest of the repeat comprises a unique sequence. The repeat unit of the heavy satellite of the blue whale is 422 bp. Also this component is tandemly organized. About half the length of the repeat constitutes a unique sequence and the other half is made up of subrepeats with TTAGGG as a frequent motif. The light satellite has not been sequenced and its basic repeat unit has not yet been identified. The chromosomal localization of the three components was determined by in situ hybridization using 3H-labelled cloned fragments as probes. The common cetacean component was located in most interstitial and terminal C-bands. The heavy satellite occurred primarily in terminal C-bands. When the two components hybridized to the same terminal C-bands, the localization of the heavy satellite was distal to that of the common cetacean component. Neither component shared localization with the light satellite which is located in centromeric C-bands in just a few chromosome pairs. PMID:2612291

  17. Cloning, tissue expression pattern, and chromosome localization of human protein kinase Bγ gene


    Protein kinase B (PKB) is a member of the second messenger-regulated subfamily of protein kinases, and plays a key role in cell-cycle regulation, glucose uptake and promotion of cell differentiation. Evidence shows that PKB undergoes activation in some human tumors and is involved in Ras pathway, which implies that PKB can trigger a pathway to induce oncogenic transformation. A nucleotide sequence of mouse Pkb? was used as a probe to screen homolog in a human liver cDNA library. A fragment of 1998 bp containing a 1440 bp ORF encoding 479 amino acid residues was obtained. Then the 3'-terminal of this fragment was extended to 2788 bp by 'electronic walking' screening, and the extended fragment was confirmed by PCR amplification. The protein deduced by the gene had a high identity of 83% and 78% to the human PKBγ and γ, respectively, and was designated as human PKB?. Northern hybridization detected two equally expressed transcripts of 8.5 and 6.5 kb in length in all 16 human tissues tested, with the highest expression level in brain, and lower levels with variation in the other tissues. By RH mapping, the PKBγ was placed on chromosome 1q43, between markers D1S304 and D1S2693. It is a valuable clue for cloning the candidate genes related to prostate cancer; Arrhythmogenic Right Ventricular Dysplasia (ARVD); Chediak-Higashi, NK cell Deficiency (CHS); and Hypoparathyrodism with Short Stature, Mental Retardation and Seizures which have already been mapped in this chromosomal region.

  18. Analysis of the frequency of unstable chromosome aberrations in human lymphocytes irradiated with 60Co

    The aim of this study was to analyze the frequency of unstable chromosomal aberrations induced by gamma radiation from a 60Co source at two different doses. Samples were obtained from a healthy donor and exposed to 60Co source (Gammacel 220 ) located in the Department of Nuclear Energy of Pernambuco Federal University (DEN/UFPe/Brazil) with a rate of air Kerma to 3,277 Gy/h. Exposures resulted in absorbed dose 0.51 Gy and 0.77 Gy. Mitotic metaphases were obtained by culturing lymphocytes for chromosome analysis and the slides were stained with 5% Giemsa. Among the unstable chromosomal aberrations the dicentric chromosomes, ring chromosomes and acentric fragments were analyzed. To calculate the significance level the chi - square test was used, considering relevant differences between the frequencies when the value of p < 0.05. To calculate the significance level of the chi - square test was used, considering relevant differences between the frequencies when the value of p < 0.05. The results showed that there was significant difference of the frequencies of dicentric chromosomes (from 0.18 to 0.51 to 0.37 Gy to 0.77 Gy), however there was no statistically significant difference between the frequencies of acentric fragments ( 0.054 to 0, 51 Gy to 0.063 to 0.77 Gy) and ring chromosomes (0.001 to 0.51 Gy to 0.003 to 0.77 Gy). The low number of rings is found justified, considering that in irradiated human lymphocytes, its appearance is rare relative to dicentrics. The results confirm that dicentrics are the most reliable biomarkers in estimating dose after exposure to gamma radiation. These two points will make the calibration curve dose-response being built for Biological Dosimetry Laboratory of CRCN-NE/CNEN

  19. Mammalian E-type cyclins control chromosome pairing, telomere stability and CDK2 localization in male meiosis.

    Laetitia Martinerie


    Full Text Available Loss of function of cyclin E1 or E2, important regulators of the mitotic cell cycle, yields viable mice, but E2-deficient males display reduced fertility. To elucidate the role of E-type cyclins during spermatogenesis, we characterized their expression patterns and produced additional deletions of Ccne1 and Ccne2 alleles in the germline, revealing unexpected meiotic functions. While Ccne2 mRNA and protein are abundantly expressed in spermatocytes, Ccne1 mRNA is present but its protein is detected only at low levels. However, abundant levels of cyclin E1 protein are detected in spermatocytes deficient in cyclin E2 protein. Additional depletion of E-type cyclins in the germline resulted in increasingly enhanced spermatogenic abnormalities and corresponding decreased fertility and loss of germ cells by apoptosis. Profound meiotic defects were observed in spermatocytes, including abnormal pairing and synapsis of homologous chromosomes, heterologous chromosome associations, unrepaired double-strand DNA breaks, disruptions in telomeric structure and defects in cyclin-dependent-kinase 2 localization. These results highlight a new role for E-type cyclins as important regulators of male meiosis.

  20. Diagnostic Yield of Chromosomal Microarray Analysis in an Autism Primary Care Practice: Which Guidelines to Implement?

    McGrew, Susan G.; Peters, Brittany R.; Crittendon, Julie A.; Veenstra-VanderWeele, Jeremy


    Genetic testing is recommended for patients with ASD; however specific recommendations vary by specialty. American Academy of Pediatrics and American Academy of Neurology guidelines recommend G-banded karyotype and Fragile X DNA. The American College of Medical Genetics recommends Chromosomal Microarray Analysis (CMA). We determined the yield of…

  1. Proteomic analysis of human metaphase chromosomes reveals Topoisomerase II alpha as an Aurora B substrate

    Morrison, Ciaran; Henzing, Alexander J; Jensen, Ole Nørregaard; Osheroff, Neil; Dodson, Helen; Kandels-Lewis, Stefanie E; Adams, Richard R; Earnshaw, William C


    B in the presence of radioactive ATP. Immunoblot analysis confirmed the HeLa scaffold fraction to be enriched for known chromosomal proteins including CENP-A, CENP-B, CENP-C, ScII and INCENP. Mass spectrometry of bands excised from one-dimensional polyacrylamide gels further defined the protein...

  2. 40 CFR 798.5385 - In vivo mammalian bone marrow cytogenetics tests: Chromosomal analysis.


    ... 40 Protection of Environment 31 2010-07-01 2010-07-01 true In vivo mammalian bone marrow... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Genetic Toxicity § 798.5385 In vivo mammalian bone marrow cytogenetics tests: Chromosomal analysis....

  3. Analysis of root-knot nematode and fusarium wilt disease resistance in cotton (Gossypium spp.) using chromosome substitution lines from two alien species.

    Ulloa, M; Wang, C; Saha, S; Hutmacher, R B; Stelly, D M; Jenkins, J N; Burke, J; Roberts, P A


    Chromosome substitution (CS) lines in plants are a powerful genetic resource for analyzing the contribution of chromosome segments to phenotypic variance. In this study, a series of interspecific cotton (Gossypium spp.) CS lines were used to identify a new germplasm resource, and to validate chromosomal regions and favorable alleles associated with nematode or fungal disease resistance traits. The CS lines were developed in the G. hirsutum L. TM-1 background with chromosome or chromosome segment substitutions from G. barbadense L. Pima 3-79 or G. tomentosum. Root-knot nematode (Meloidogyne incognita) and fusarium wilt (Fusarium oxysporum f. sp. vasinfectum) (races 1 and 4) resistance alleles and quantitative trait loci (QTL) previously placed on cotton chromosomes using SSR markers in two interspecific recombinant inbred line populations were chosen for testing. Phenotypic responses of increased resistance or susceptibility in controlled inoculation and infested field assays confirmed the resistance QTLs, based on substitution with the positive or negative allele for resistance. Lines CS-B22Lo, CS-B04, and CS-B18 showed high resistance to nematode root-galling, confirming QTLs on chromosomes 4 and 22 (long arm) with resistance alleles from Pima 3-79. Line CS-B16 had less fusarium race 1-induced vascular root staining and higher percent survival than the TM-1 parent, confirming a major resistance QTL on chromosome 16. Lines CS-B(17-11) and CS-B17 had high fusarium race 4 vascular symptoms and low survival due to susceptible alleles introgressed from Pima 3-79, confirming the localization on chromosome 17 of an identified QTL with resistance alleles from TM1 and other resistant lines. Analyses validated regions on chromosomes 11, 16, and 17 harboring nematode and fusarium wilt resistance genes and demonstrated the value of CS lines as both a germplasm resource for breeding programs and as a powerful genetic analysis tool for determining QTL effects for disease

  4. Transcriptomic analysis of fiber strength in upland cotton chromosome introgression lines carrying different Gossypium barbadense chromosomal segments.

    Lei Fang

    Full Text Available Fiber strength is the key trait that determines fiber quality in cotton, and it is closely related to secondary cell wall synthesis. To understand the mechanism underlying fiber strength, we compared fiber transcriptomes from different G. barbadense chromosome introgression lines (CSILs that had higher fiber strengths than their recipient, G. hirsutum acc. TM-1. A total of 18,288 differentially expressed genes (DEGs were detected between CSIL-35431 and CSIL-31010, two CSILs with stronger fiber and TM-1 during secondary cell wall synthesis. Functional classification and enrichment analysis revealed that these DEGs were enriched for secondary cell wall biogenesis, glucuronoxylan biosynthesis, cellulose biosynthesis, sugar-mediated signaling pathways, and fatty acid biosynthesis. Pathway analysis showed that these DEGs participated in starch and sucrose metabolism (328 genes, glycolysis/gluconeogenesis (122 genes, phenylpropanoid biosynthesis (101 genes, and oxidative phosphorylation (87 genes, etc. Moreover, the expression of MYB- and NAC-type transcription factor genes were also dramatically different between the CSILs and TM-1. Being different to those of CSIL-31134, CSIL-35431 and CSIL-31010, there were many genes for fatty acid degradation and biosynthesis, and also for carbohydrate metabolism that were down-regulated in CSIL-35368. Metabolic pathway analysis in the CSILs showed that different pathways were changed, and some changes at the same developmental stage in some pathways. Our results extended our understanding that carbonhydrate metabolic pathway and secondary cell wall biosynthesis can affect the fiber strength and suggested more genes and/or pathways be related to complex fiber strength formation process.

  5. Stability of chromosome aberrations with post-irradiation time. Implications in retrospective biodosimetry. Chromosome aberration analysis in retrospective biodosimetry

    The aim of the present study was to evaluate the persistence chromosome aberrations induced by three doses of X-rays. For this purpose fluorescence in situ hybridisation (FISH) painting and multiplex FISH (mFISH) techniques have been applied to a long-term culture of irradiated cells. By painting, at 2 Gy the frequency of apparently simple translocations remained almost invariable during all the culture, whereas at 4 Gy a rapid decline was observed between the first and the second sample, followed by a slight decrease until the end of the culture. Apparently simple dicentrics and complex aberrations disappeared after the first sample at 2 and 4 Gy. When simple aberrations analysed by mFISH are considered, at 2 Gy the frequency of complete plus one-way translocations remained invariable between the first and last sample, but at 4 Gy a 60% decline was observed. True incomplete simple translocations disappeared at 2 and 4 Gy. The analysis by mFISH showed that the frequency of complex aberrations and their complexity increased with dose and tends to disappear in the last sample. Our results indicate that the dose influence on the decrease of the frequency of simple translocations with post-irradiation time cannot be fully explained by the disappearance of true incomplete translocations and complex aberrations. (author)

  6. Analysis of the SOS response of Vibrio and other bacteria with multiple chromosomes

    Sanchez-Alberola Neus


    Full Text Available Abstract Background The SOS response is a well-known regulatory network present in most bacteria and aimed at addressing DNA damage. It has also been linked extensively to stress-induced mutagenesis, virulence and the emergence and dissemination of antibiotic resistance determinants. Recently, the SOS response has been shown to regulate the activity of integrases in the chromosomal superintegrons of the Vibrionaceae, which encompasses a wide range of pathogenic species harboring multiple chromosomes. Here we combine in silico and in vitro techniques to perform a comparative genomics analysis of the SOS regulon in the Vibrionaceae, and we extend the methodology to map this transcriptional network in other bacterial species harboring multiple chromosomes. Results Our analysis provides the first comprehensive description of the SOS response in a family (Vibrionaceae that includes major human pathogens. It also identifies several previously unreported members of the SOS transcriptional network, including two proteins of unknown function. The analysis of the SOS response in other bacterial species with multiple chromosomes uncovers additional regulon members and reveals that there is a conserved core of SOS genes, and that specialized additions to this basic network take place in different phylogenetic groups. Our results also indicate that across all groups the main elements of the SOS response are always found in the large chromosome, whereas specialized additions are found in the smaller chromosomes and plasmids. Conclusions Our findings confirm that the SOS response of the Vibrionaceae is strongly linked with pathogenicity and dissemination of antibiotic resistance, and suggest that the characterization of the newly identified members of this regulon could provide key insights into the pathogenesis of Vibrio. The persistent location of key SOS genes in the large chromosome across several bacterial groups confirms that the SOS response plays an

  7. Genetic, physical and functional analysis of the ataxia-telangiectasia locus on chromosome 11q22-23

    Shiloh, Y.; Ziv, Y.; Savitski, K. [Tel Aviv Univ. (Israel)] [and others


    Ataxia-telangiectasia (A-T) is an autosomal recessive multisystem disorder featuring cerebellar degeneration, immunodeficiency, chromosomal instability, cancer susceptibility, and radiosensitivity. Four complementation groups have been observed in A-T. The two major groups, A and C, were localized to chromosome 11q22-23, and the other two, D and E, may map to the same chromosomal region. We developed an integrated system of positional and complementation cloning to identify the A-T gene(s). The A-T region was saturated with microsatellite markers by physically mapping markers generated at random by other labs and by identifying new polymorphic CA-repeats in YAC clones obtained from this region. According to recent linkage data based on these markers and linkage disequilibrium analysis in Moroccan Jewish A-T patients, the A-T(A) and A-T(C) mutations are contained within a 2 Mb interval between D11S1819 and D11S1960. This interval was cloned in YAC and cosmid contigs, and transcribed sequences were identified using the following methods: screening of cDNA libraries using cosmid clones; magnetic bead capture using YAC and cosmid clones; direct selection of cDNA clones using YAC clones immobilized on a solid matrix; and 3{prime} exon trapping. Preliminary results indicate that the A-T region is rich in transcribed sequences. Structural and functional analysis of these genes is being carried out by sequence analysis, by physical mapping using the cosmid contigs, and by testing their ability to complement the radiomimetic sensitivity of A-T cells.

  8. Analysis and visualization of chromosomal abnormalities in SNP data with SNPscan

    Thomas George H


    Full Text Available Abstract Background A variety of diseases are caused by chromosomal abnormalities such as aneuploidies (having an abnormal number of chromosomes, microdeletions, microduplications, and uniparental disomy. High density single nucleotide polymorphism (SNP microarrays provide information on chromosomal copy number changes, as well as genotype (heterozygosity and homozygosity. SNP array studies generate multiple types of data for each SNP site, some with more than 100,000 SNPs represented on each array. The identification of different classes of anomalies within SNP data has been challenging. Results We have developed SNPscan, a web-accessible tool to analyze and visualize high density SNP data. It enables researchers (1 to visually and quantitatively assess the quality of user-generated SNP data relative to a benchmark data set derived from a control population, (2 to display SNP intensity and allelic call data in order to detect chromosomal copy number anomalies (duplications and deletions, (3 to display uniparental isodisomy based on loss of heterozygosity (LOH across genomic regions, (4 to compare paired samples (e.g. tumor and normal, and (5 to generate a file type for viewing SNP data in the University of California, Santa Cruz (UCSC Human Genome Browser. SNPscan accepts data exported from Affymetrix Copy Number Analysis Tool as its input. We validated SNPscan using data generated from patients with known deletions, duplications, and uniparental disomy. We also inspected previously generated SNP data from 90 apparently normal individuals from the Centre d'Étude du Polymorphisme Humain (CEPH collection, and identified three cases of uniparental isodisomy, four females having an apparently mosaic X chromosome, two mislabelled SNP data sets, and one microdeletion on chromosome 2 with mosaicism from an apparently normal female. These previously unrecognized abnormalities were all detected using SNPscan. The microdeletion was independently

  9. Localization of a gene (CMT2A) for autosomal dominant Charcot-Marie-Tooth disease type 2 to chromosome 1p and evidence of genetic heterogeneity

    Othmane, K.B.; Loprest, L.J.; Wilkinson, K.M. (Duke Univ. Medical Center, Durham, NC (United States)); Middleton, L.T. (Cyprus Institute of Neurology and Genetics, Nicosia (Cyprus)) (and others)


    Charcot-Marie-Tooth (CMT) disease type 2 (CMT2) is an inherited peripheral neuropathy characterized by variable age of onset and normal or slightly diminished nerve conduction velocity. CMT2 is pathologically and genetically distinct from CMT type 1 (CMT1). While CMT1 has been shown to be genetically heterogeneous, no chromosomal localization has been established for CMT2. The authors have performed pedigree linkage analysis in six large autosomal dominant CMT2 families and have demonstrated linkage and heterogeneity to a series of microsatellites (D1S160, D1S170, D1S244, D1S228 and D1S199) in the distal region of the short arm of chromosome 1. Significant evidence for heterogeneity was found using admixture analyses and the two-point lod scores. Admixture analyses using the multipoint results for the markers D1S244, D1S228, and D1S199 supported the two-point findings. Three families, DUK662, DUK1241, and 1523 gave posterior probabilities of 1.0, 0.98, and 0.88 of being of the linked type. Multipoint analysis examining the [open quotes]linked[close quotes] families showed that the most favored location for the CMT2A gene is within the interval flanked by D1S244 and D1S228 (odds approximately 70:1 of lying within versus outside that interval). These findings suggest that the CMT2 phenotype is secondary to at least two different genes and demonstrate further heterogeneity in the CMT phenotype.

  10. The mouse lp(A3)/Edg7 lysophosphatidic acid receptor gene: genomic structure, chromosomal localization, and expression pattern.

    Contos, J J; Chun, J


    The extracellular signaling molecule, lysophosphatidic acid (LPA), mediates proliferative and morphological effects on cells and has been proposed to be involved in several biological processes including neuronal development, wound healing, and cancer progression. Three mammalian G protein-coupled receptors, encoded by genes designated lp (lysophospholipid) receptor or edg (endothelial differentiation gene), mediate the effects of LPA, activating similar (e.g. Ca(2+) release) as well as distinct (neurite retraction) responses. To understand the evolution and function of LPA receptor genes, we characterized lp(A3)/Edg7 in mouse and human and compared the expression pattern with the other two known LPA receptor genes (lp(A1)/Edg2 and lp(A2)/Edg4non-mutant). We found mouse and human lp(A3) to have nearly identical three-exon genomic structures, with introns upstream of the coding region for transmembrane domain (TMD) I and within the coding region for TMD VI. This structure is similar to lp(A1) and lp(A2), indicating a common ancestral gene with two introns. We localized mouse lp(A3) to distal Chromosome 3 near the varitint waddler (Va) gene, in a region syntenic with the human lp(A3) chromosomal location (1p22.3-31.1). We found highest expression levels of each of the three LPA receptor genes in adult mouse testes, relatively high expression levels of lp(A2) and lp(A3) in kidney, and moderate expression of lp(A2) and lp(A3) in lung. All lp(A) transcripts were expressed during brain development, with lp(A1) and lp(A2) transcripts expressed during the embryonic neurogenic period, and lp(A3) transcript during the early postnatal period. Our results indicate both overlapping as well as distinct functions of lp(A1), lp(A2), and lp(A3). PMID:11313151

  11. Quantitative analysis of mutation and selection pressures on base composition skews in bacterial chromosomes

    Chen Carton W


    Full Text Available Abstract Background Most bacterial chromosomes exhibit asymmetry of base composition with respect to leading vs. lagging strands (GC and AT skews. These skews reflect mainly those in protein coding sequences, which are driven by asymmetric mutation pressures during replication and transcription (notably asymmetric cytosine deamination plus subsequent selection for preferred structures, signals, amino acid or codons. The transcription-associated effects but not the replication-associated effects contribute to the overall skews through the uneven distribution of the coding sequences on the leading and lagging strands. Results Analysis of 185 representative bacterial chromosomes showed diverse and characteristic patterns of skews among different clades. The base composition skews in the coding sequences were used to derive quantitatively the effect of replication-driven mutation plus subsequent selection ('replication-associated pressure', RAP, and the effect of transcription-driven mutation plus subsequent selection at translation level ('transcription-associate pressure', TAP. While different clades exhibit distinct patterns of RAP and TAP, RAP is absent or nearly absent in some bacteria, but TAP is present in all. The selection pressure at the translation level is evident in all bacteria based on the analysis of the skews at the three codon positions. Contribution of asymmetric cytosine deamination was found to be weak to TAP in most phyla, and strong to RAP in all the Proteobacteria but weak in most of the Firmicutes. This possibly reflects the differences in their chromosomal replication machineries. A strong negative correlation between TAP and G+C content and between TAP and chromosomal size were also revealed. Conclusion The study reveals the diverse mutation and selection forces associated with replication and transcription in various groups of bacteria that shape the distinct patterns of base composition skews in the chromosomes during

  12. An Allometric Analysis of Sex and Sex Chromosome Dosage Effects on Subcortical Anatomy in Humans.

    Reardon, Paul Kirkpatrick; Clasen, Liv; Giedd, Jay N; Blumenthal, Jonathan; Lerch, Jason P; Chakravarty, M Mallar; Raznahan, Armin


    Structural neuroimaging of humans with typical and atypical sex-chromosome complements has established the marked influence of both Yand X-/Y-chromosome dosage on total brain volume (TBV) and identified potential cortical substrates for the psychiatric phenotypes associated with sex-chromosome aneuploidy (SCA). Here, in a cohort of 354 humans with varying karyotypes (XX, XY, XXX, XXY, XYY, XXYY, XXXXY), we investigate sex and SCA effects on subcortical size and shape; focusing on the striatum, pallidum and thalamus. We find large effect-size differences in the volume and shape of all three structures as a function of sex and SCA. We correct for TBV effects with a novel allometric method harnessing normative scaling rules for subcortical size and shape in humans, which we derive here for the first time. We show that all three subcortical volumes scale sublinearly with TBV among healthy humans, mirroring known relationships between subcortical volume and TBV among species. Traditional TBV correction methods assume linear scaling and can therefore invert or exaggerate sex and SCA effects on subcortical anatomy. Allometric analysis restricts sex-differences to: (1) greater pallidal volume (PV) in males, and (2) relative caudate head expansion and ventral striatum contraction in females. Allometric analysis of SCA reveals that supernumerary X- and Y-chromosomes both cause disproportionate reductions in PV, and coordinated deformations of striatopallidal shape. Our study provides a novel understanding of sex and sex-chromosome dosage effects on subcortical organization, using an allometric approach that can be generalized to other basic and clinical structural neuroimaging settings. PMID:26911691

  13. Allelic analysis of stripe rust resistance genes on wheat chromosome 2BS.

    Luo, P G; Hu, X Y; Ren, Z L; Zhang, H Y; Shu, K; Yang, Z J


    Stripe rust, caused by Puccinia striiormis Westend f. sp. tritici, is one of the most important foliar diseases of wheat (Triticum aestivum L.) worldwide. Stripe rust resistance genes Yr27, Yr31, YrSp, YrV23, and YrCN19 on chromosome 2BS confer resistance to some or all Chinese P. striiormis f. sp. tritici races CYR31, CYR32, SY11-4, and SY11-14 in the greenhouse. To screen microsatellite (SSR) markers linked with YrCN19, F1, F2, and F3 populations derived from cross Ch377/CN19 were screened with race CYR32 and 35 SSR primer pairs. Linkage analysis indicated that the single dominant gene YrCN19 in cultivar CN19 was linked with SSR markers Xgwm410, Xgwm374, Xwmc477, and Xgwm382 on chromosome 2BS with genetic distances of 0.3, 7.9, 12.3, and 21.2 cM, respectively. Crosses of CN19 with wheat lines carrying other genes on chromosome 2B showed that all were located at different loci. YrCN19 is thus different from the other reported Yr genes in chromosomal location and resistance response and was therefore named Yr41. Prospects and strategies of using Yr41 and other Yr genes in wheat improvement for stripe rust resistance are discussed. PMID:18956025

  14. Molecular analysis of sex chromosome-linked mutants in the silkworm Bombyx mori

    Tsuguru Fujii; Hiroaki Abe; Toru Shimada


    In Bombyx mori, the W chromosome determines the female sex. A few W chromosome-linked mutations that cause masculinization of the female genitalia have been found. In female antennae of a recently isolated mutant, both female-type and male-type Bmdsx mRNAs were expressed, and BmOr1 (bombykol receptor) and BmOr3 (bombykal receptor), which are predominantly expressed in the antennae of male moths, were expressed about 50 times more abundantly in the antennae of mutant females than in those of normal females. These mutants are valuable resources for the molecular analysis of the sex-determination system. Besides the Fem gene, the quantitative egg size-determining gene Esd is thought to be present on the W chromosome, based on the observation that ZWW triploid moths produce larger eggs than ZZW triploids. The most recently updated B. mori genome assembly comprises 20.5 Mb of Z chromosome sequence. Using these sequence data, responsible genes or candidate genes for four Z-linked mutants have been reported. The od (distinct oily) and spli (soft and pliable) are caused by mutation in BmBLOS2 and Bmacj6, respectively. Bmap is a candidate gene for $V_g$ (vestigial). Similarly, Bmprm is a candidate gene for Md (muscle dystrophy), causing abnormal development of indirect flight muscle.

  15. Chromosome analysis of Endochironomus albipennis Meigen, 1830 and morphologically similar Endochironomus sp. (Diptera, Chironomidae) from water bodies of the Volga region, Russia

    Durnova, Natalya; Sigareva, Ludmila; Sinichkina, Olga


    Abstract Based upon the detailed chromosome map of polytene chromosomes of the eurybiont species Endochironomus albipennis Meigen, 1830, the localization of the centromere regions using a C-banding technique is defined. Chromosomal polymorphism in populations from two water bodies in the Volga region has been studied, 17 sequences are described. Polytene chromosomes of Endochironomus sp. (2n=6), having larvae morphologically similar to those of Endochironomus albipennis Meigen, 1830 (2n=6) are described for the first time. PMID:26752268

  16. Human tissue factor pathway inhibitor (TFPI) gene: Complete genomic structure and localization on the genetic map of chromosome 2q

    Enjyoji, Kei-ichi; Emi, Mitsuru; Mukai, Tsunehiro; Imada, Motohiro; Kato, Hisao (National Cardiovascular Center, Osaka (Japan)); Leppert, M.L.; Lalouel, J.M. (Howard Hughes Medical Institute, Salt Lake City, UT (United States) Univ. of Utah Medical School, Salt Lake City, UT (United States))


    Tissue factor pathway inhibitor (TFPI), a protease inhibitor that circulates in association with plasma lipoproteins (VLDL, LDL and HDL), helps to regulate the extrinsic blood coagulation cascade. The authors have cloned a 125-kb genomic region containing the entire human TFPI gene on six overlapping cosmids and prepared a restriction map of this contig to clarify gene structure. More than half (45 kb) of the 85-kb gene is occupied with 5[prime] noncoding elements: coding begins at exon 3. A HindIII RFLP identified with one cosmid was genotyped in the CEPH panel of 559 reference families. Linkage analysis using markers on human chromosome 2 located the TFPI gene on 2q, 36 cM proximal to D2S43(pYNZ15) and 13 cM distal to the crystalline [gamma]-polypeptide locus CRYGP1(p5G1). 31 refs., 3 figs., 3 tabs.

  17. Analysis of a 26,756 bp segment from the left arm of yeast chromosome IV.

    Wölfl, S; Hanemann, V; Saluz, H P


    The nucleotide sequence of a 26.7 kb DNA segment from the left arm of Saccharomyces cerevisiae chromosome IV is presented. An analysis of this segment revealed 11 open reading frames (ORFs) longer than 300 bp and one split gene. These ORFs include the genes encoding the large subunit of RNA polymerase II, the biotin apo-protein ligase, an ADP-ribosylation factor (ARF 2), the 'L35'-ribosomal protein, a rho GDP dissociation factor, and the sequence encoding the protein phosphatase 2A. Further sequence analysis revealed a short ORF encoding the ribosomal protein YL41B, an intron in a 5' untranslated region and an extended homology with another cosmid (X83276) located on the same chromosome. The potential biological relevance of these findings is discussed. PMID:8972577

  18. Chromosome analysis in the Kruger National Park - the chromosomes of the saddle-backed jackal Canis Mesomelas

    C. Wallace


    Full Text Available Among the present-day members of the Canidae family are included the dogs and foxes (Wurster and Benirschke 1968. The genus Canis is represented in Africa by four species of jackal (Bigaike 1972. This paper presents the chromosome Findings in a male saddle-backed jackal Canis mesomelas studied in the Kruger National Park, Republic of South Africa.

  19. DNA linkage analysis of X chromosome-linked chronic granulomatous disease.

    Baehner, R. L.; Kunkel, L M; Monaco, A P; Haines, J. L.; Conneally, P M; Palmer, C.; Heerema, N; Orkin, S H


    Chronic granulomatous disease (CGD) is a disorder of phagocytes that is usually inherited as an X chromosome-linked trait. Previous family studies suggested that the CGD locus resides on the distal short arm (Xp22-Xpter). Using cloned, polymorphic DNA probes we have performed a linkage analysis within CGD families that suggests a more proximal location (Xp21). In addition, the CGD locus is proximal to the Duchenne muscular dystrophy locus and lies within a broad region of Xp in which recombin...

  20. XWAS: A Software Toolset for Genetic Data Analysis and Association Studies of the X Chromosome.

    Gao, Feng; Chang, Diana; Biddanda, Arjun; Ma, Li; Guo, Yingjie; Zhou, Zilu; Keinan, Alon


    XWAS is a new software suite for the analysis of the X chromosome in association studies and similar genetic studies. The X chromosome plays an important role in human disease and traits of many species, especially those with sexually dimorphic characteristics. Special attention needs to be given to its analysis due to the unique inheritance pattern, which leads to analytical complications that have resulted in the majority of genome-wide association studies (GWAS) either not considering X or mishandling it with toolsets that had been designed for non-sex chromosomes. We hence developed XWAS to fill the need for tools that are specially designed for analysis of X. Following extensive, stringent, and X-specific quality control, XWAS offers an array of statistical tests of association, including: 1) the standard test between a SNP (single nucleotide polymorphism) and disease risk, including after first stratifying individuals by sex, 2) a test for a differential effect of a SNP on disease between males and females, 3) motivated by X-inactivation, a test for higher variance of a trait in heterozygous females as compared with homozygous females, and 4) for all tests, a version that allows for combining evidence from all SNPs across a gene. We applied the toolset analysis pipeline to 16 GWAS datasets of immune-related disorders and 7 risk factors of coronary artery disease, and discovered several new X-linked genetic associations. XWAS will provide the tools and incentive for others to incorporate the X chromosome into GWAS and similar studies in any species with an XX/XY system, hence enabling discoveries of novel loci implicated in many diseases and in their sexual dimorphism. PMID:26268243

  1. Molecular analysis of the distribution of chromosomal breakpoints: characterization of a 'hot' region for breaks in human chromosome 11

    Full text: Ionizing radiation randomly damages DNA and chromosomes whereas subsequent chromosome breaks are non-random. Assuming, as an ideal and naive but useful proposition, that breaks are equally likely anywhere in the chromosome and that a deletion always occurs between two breaks, the frequency of fragments would decrease linearly with increasing fragment size. This simple distribution is not, however, observed. To shed light on the 'real' situation of break formation we mapped breakpoints in the human chromosome no. 11 of 353 independent CD59- mutants isolated from human/hamster hybrid AL cells exposed to radiations (high and low dose-rate gamma rays, high LET carbon or nitrogen ions, protons) or chemicals (arsenic or irradiated, mutagenic histidine) or unexposed. The number of breaks per unit length of DNA differed significantly in different regions of chromosome 11.The highest level of breaks (140/mbp) were in the 0.8 mbp segment between CD59 and Catalase (CAT). Finer mapping of break points was carried out using 26 PCR primer pairs spread across this interval in 15 independent mutants. In two mutants, the break point was in a 107 bp fragment; in the other 13 the breaks were in a single 35 mbp fragment, but not all were at exactly the same site; 4 of 13 occurred in 3 different 3 mbp sub-segments. We are sequencing these fragments to look for such features as repeats: 'colder' regions like that between CD59 and WT will also be analyzed. But, since at least some breaks occurred at different sites and the frequency and distribution of breaks was about the same for all treatments, our we postulate that hot (and cold spots) may be due more to structural features or specific repair than to sequence or type of damage

  2. Doses in radiation accidents investigated by chromosome aberration analysis

    Results from cytogenetic investigations into 55 cases of suspected over-exposure to radiation during 1977 are reviewed. This report is the seventh in an annual series (previous results were published in NRPB-R5, R10, R23, R35, R41 and R57) which together contain data on 327 studies. Results from all investigations have been pooled for general analysis. Brief accounts are given in an appendix of the circumstances behind the past year's investigations and, where possible, physical estimates of dose have been included for comparison. Two cases are described in more detail: the first concerned a non-classified worker who put an iridium-192 source in his pocket and took it home; and the second involved the accidental contamination of two people with tritium gas. In a second appendix, the confidence limits on cytogenetic dosimetry for X- and γ-ray over-exposures are given and the derivation of these limits is discussed. (author)

  3. Molecular cloning and in situ localization of the human contactin gene (CNTN1) on chromosome 12q11-q12

    Berglund, E.O.; Ranscht, B. [La Jolla Cancer Research Foundation, CA (United States)


    Chick contactin/F11 (also known as F3 in mouse) is a neuronal cell adhesion molecule of the immunoglobulin (Ig) gene family that is implicated in playing a role in the formation of axon connections in the developing nervous system. In human brain, contactin was first identified by amino terminal and peptide sequencing of the lentil-lectin-binding glycoprotein Gp135. The authors now report the isolation and characterization of cDNA clones encoding human contactin. Human contactin is composed of six C2 Ig-domains and four fibronectin type III (FNIII) repeats and is anchored to the membrane via a glycosyl phosphatidylinositol moiety, as shown by PI-PLC treatment of cells transfected with contactin cDNA and metabolic labeling with [{sup 3}H]-ethanolamine. At the amino acid level, h-contactin is 78% identical to chick contactin/F11 and 94% to mouse F3. Independent cDNAs encoding two putative contactin 1 cDNA encodes a protein with the amino-terminal sequence of purified Gp135, while the putative h-contactin 2 gene has a deletion of 33 nucleotides that predicts a protein with a shortened amino terminus. Northern analysis with a probe common for both isoforms detects one mRNA species of approximately 6.6 kb in adult human brain. Fluorescence in situ hybridization maps the gene for human contactin to human chromosome 12q11-q12. The h-contactin gene locus is thus in close proximity to homeobox 3, integrin subunit {alpha}5, several proto-oncogene genes, a chromosomal breakpoint associated with various tumors, and the gene locus for Stickler syndrome. The cloning of human contactin now permits the study of its role in disorder of the human nervous system. 56 refs., 6 figs., 1 tab.

  4. Structure of the human gene encoding the associated microfibrillar protein (MFAP1) and localization to chromosome 15q15-q21

    Yeh, H.; Chow, M.; Abrams, W.R. [Univ. of Pennsylvania, Philadelphia, PA (United States)] [and others


    Microfibrils with a diameter of 10-12 nm, found either in assocation with elastin or independently, are an important component of the extracellular matrix of many tissues. To extend understanding of the proteins composing these microfibrils, the cDNA and gene encoding the human associated microfibril protein (MRAP1) have been cloned and characterized. The coding portion is contained in 9 exons, and the sequence is very homologous to the previously described chick cDNA, but does not appear to share homology or domain motifs with any other known protein. Interestingly, the gene has been localized to chromosome 15q15-q21 by somatic hybrid cell and chromosome in situ analyses. This is the same chromosomal region to which the fibrillin gene, FBN1, known to be defective in the Marfan syndrome, has been mapped. MFAP1 is a candidate gene for heritable diseases affecting microfibrils. 38 refs., 6 figs.

  5. Chromosomal localization of 45S rDNA, sex-specific C values, and heterochromatin distribution in Coccinia grandis (L.) Voigt.

    Bhowmick, Biplab Kumar; Yamamoto, Masashi; Jha, Sumita


    Coccinia grandis is a widely distributed dioecious cucurbit in India, with heteromorphic sex chromosomes and X-Y sex determination mode. The present study aids in the cytogenetic characterization of four native populations of this plant employing distribution patterns of 45S rDNA on chromosomes and guanine-cytosine (GC)-rich heterochromatin in the genome coupled with flow cytometric determination of genome sizes. Existence of four nucleolar chromosomes could be confirmed by the presence of four telomeric 45S rDNA signals in both male and female plants. All four 45S rDNA sites are rich in heterochromatin evident from the co-localization of telomeric chromomycin A (CMA)(+ve) signals. The size of 45S rDNA signal was found to differ between the homologues of one nucleolar chromosome pair. The distribution of heterochromatin is found to differ among the male and female populations. The average GC-rich heterochromatin content of male and female populations is 23.27 and 29.86 %, respectively. Moreover, the male plants have a genome size of 0.92 pg/2C while the female plants have a size of 0.73 pg/2C, reflecting a huge genomic divergence between the genders. The great variation in genome size is owing to the presence of Y chromosome in the male populations, playing a multifaceted role in sexual divergence in C. grandis. PMID:25795278

  6. Cytogenetic Analysis of Chromosome 3 in DROSOPHILA MELANOGASTER: The Homoeotic Gene Complex in Polytene Chromosome Interval 84a-B

    Kaufman, Thomas C.; Lewis, Ricki; Wakimoto, Barbara


    Cytogenetic evidence is presented demonstrating that the 84A-B interval in the proximal portion of the right arm of chromosome 3 is the residence of a homoeotic gene complex similar to the bithorax locus. This complex, originally defined by the Antennapedia (Antp) mutation, controls segmentation in the anterior portion of the organism. Different lesions within this complex homoeotically transform portions of the prothorax, proboscis, antenna and eye and present clear analogies to similar lesi...

  7. The frequency of chromosome exchanges in critical groups of Chernobyl accident victims according to conventional chromosome analysis and FISH method

    Conventional cytogenetic with group karyotyping and FISH analyses were performed in 16 Chernobyl accident liquidators diagnosed in 1986 with acute radiation sickness of different degree of severity. The data received confirmed the validity of FISH both as for evaluation of stable chromosome aberrations in peripheral lymphocytes of irradiated persons as enough high sensitivity of FISH for the tentative retrospective dose evaluation in the remote period after acute irradiation and during chronic radiation exposure in doses above 0.25 Gy

  8. M-Band Analysis of Chromosome Aberrations in Human Epithelial Cells Induced By Low- and High-Let Radiations

    Hada, M.; Gersey, B.; Saganti, P. B.; Wilkins, R.; Gonda, S. R.; Cucinotta, F. A.; Wu, H.


    Energetic primary and secondary particles pose a health risk to astronauts in extended ISS and future Lunar and Mars missions. High-LET radiation is much more effective than low-LET radiation in the induction of various biological effects, including cell inactivation, genetic mutations, cataracts and cancer. Most of these biological endpoints are closely correlated to chromosomal damage, which can be utilized as a biomarker for radiation insult. In this study, human epithelial cells were exposed in vitro to gamma rays, 1 GeV/nucleon Fe ions and secondary neutrons whose spectrum is similar to that measured inside the Space Station. Chromosomes were condensed using a premature chromosome condensation technique and chromosome aberrations were analyzed with the multi-color banding (mBAND) technique. With this technique, individually painted chromosomal bands on one chromosome allowed the identification of both interchromosomal (translocation to unpainted chromosomes) and intrachromosomal aberrations (inversions and deletions within a single painted chromosome). Results of the study confirmed the observation of higher incidence of inversions for high-LET irradiation. However, detailed analysis of the inversion type revealed that all of the three radiation types in the study induced a low incidence of simple inversions. Half of the inversions observed in the low-LET irradiated samples were accompanied by other types of intrachromosome aberrations, but few inversions were accompanied by interchromosome aberrations. In contrast, Fe ions induced a significant fraction of inversions that involved complex rearrangements of both the inter- and intrachromosome exchanges.

  9. Molecular analysis of recombination in a family with Duchenne muscular dystrophy and a large pericentric X chromosome inversion

    Shashi, V.; Golden, W.L.; Allinson, P.S. [Univ. of Virginia Health Sciences Center, Charlottesville, VA (United States)] [and others


    It has been demonstrated in animal studies that, in animals heterozygous for pericentric chromosomal inversions, loop formation is greatly reduced during meiosis. This results in absence of recombination within the inverted segment, with recombination seen only outside the inversion. A recent study in yeast has shown that telomeres, rather than centromeres, lead in chromosome movement just prior to meiosis and may be involved in promoting recombination. We studied by cytogenetic analysis and DNA polymorphisms the nature of meiotic recombination in a three-generation family with a large pericentric X chromosome inversion, inv(X)(p21.1q26), in which Duchenne muscular dystrophy (DMD) was cosegregating with the inversion. On DNA analysis there was no evidence of meiotic recombination between the inverted and normal X chromosomes in the inverted segment. Recombination was seen at the telomeric regions, Xp22 and Xq27-28. No deletion or point mutation was found on analysis of the DMD gene. On the basis of the FISH results, we believe that the X inversion is the mutation responsible for DMD in this family. Our results indicate that (1) pericentric X chromosome inversions result in reduction of recombination between the normal and inverted X chromosomes; (2) meiotic X chromosome pairing in these individuals is likely initiated at the telomeres; and (3) in this family DMD is caused by the pericentric inversion. 50 refs., 7 figs., 1 tab.

  10. Microarray-based comparative genomic hybridization analysis in neonates with congenital anomalies: detection of chromosomal imbalances

    Luiza Emy Dorfman


    Full Text Available OBJECTIVE: To identify chromosomal imbalances by whole-genome microarray-based comparative genomic hybridization (array-CGH in DNA samples of neonates with congenital anomalies of unknown cause from a birth defects monitoring program at a public maternity hospital. METHODS: A blind genomic analysis was performed retrospectively in 35 stored DNA samples of neonates born between July of 2011 and December of 2012. All potential DNA copy number variations detected (CNVs were matched with those reported in public genomic databases, and their clinical significance was evaluated. RESULTS: Out of a total of 35 samples tested, 13 genomic imbalances were detected in 12/35 cases (34.3%. In 4/35 cases (11.4%, chromosomal imbalances could be defined as pathogenic; in 5/35 (14.3% cases, DNA CNVs of uncertain clinical significance were identified; and in 4/35 cases (11.4%, normal variants were detected. Among the four cases with results considered causally related to the clinical findings, two of the four (50% showed causative alterations already associated with well-defined microdeletion syndromes. In two of the four samples (50%, the chromosomal imbalances found, although predicted as pathogenic, had not been previously associated with recognized clinical entities. CONCLUSIONS: Array-CGH analysis allowed for a higher rate of detection of chromosomal anomalies, and this determination is especially valuable in neonates with congenital anomalies of unknown etiology, or in cases in which karyotype results cannot be obtained. Moreover, although the interpretation of the results must be refined, this method is a robust and precise tool that can be used in the first-line investigation of congenital anomalies, and should be considered for prospective/retrospective analyses of DNA samples by birth defect monitoring programs.

  11. Localization of STCH to human chromosome 21q11.1

    Brodsky, G; Parry, B.B.; Hart, I. [National Center Institute, Bethesda, MD (United States)] [and others


    STCH is a member of the stress70 chaperone family, which plays a major role in the processing of cytosolic and secretory proteins. Members of the stress70 protein chaperone family participate in protein processing events by binding denatured or misfolded peptide sequences and then releasing these polypeptide chains by an ATP-dependent mechanism. Members of this protein family possess an ATPase activity located in the highly conserved amino-terminal domain and a less well-conserved carboxy-terminal domain necessary for peptide binding. The Stch gene encodes a 60-kDa peptide that is constitutively expressed in all human cell types and shares a high degree of amino acid identity with HSP70 and BiP. The protein differs from previously identified stress70 gene products by the presence of a unique hydrophobic signal sequence and the absence of a carboxy-terminal peptide-binding domain. This results in the protein being highly enriched in the lumen of a crude cellular microsome fraction and possessing an ATPase activity that, unlike other HSP70-like proteins, is not peptide inducible. Analysis of the rat Stch cDNA demonstrates that the unique properties of this C-terminal truncated HSP70-like molecule are conserved through mammalian evolution. As with the human Stch gene, the rat cDNA encodes a hydrophobic leader sequence, and the putative translation product lacks a C-terminal peptide-binding domain. 7 refs., 2 figs.

  12. Localization of 5S and 25S rRNA genes on somatic and meiotic chromosomes in Capsicum species of chili pepper.

    Kwon, Jin-Kyung; Kim, Byung-Dong


    The loci of the 5S and 45S rRNA genes were localized on chromosomes in five species of Capsicum, namely, annuum, chacoense, frutescens, baccatum, and chinense by FISH. The 5S rDNA was localized to the distal region of one chromosome in all species observed. The number of 45S rDNA loci varied among species; one in annuum, two in chacoense, frutescens, and chinense, and four in baccatum, with the exceptions that 'CM334' of annuum had three loci and 'tabasco' of frutescens had one locus. 'CM334'-derived BAC clones, 384B09 and 365P05, were screened with 5S rDNA as a probe, and BACs 278M03 and 262A23 were screened with 25S rDNA as a probe. Both ends of these BAC clones were sequenced. FISH with these BAC probes on pachytenes from 'CM334' plant showed one 5S rDNA locus and three 45S rDNA loci, consistent with the patterns on the somatic chromosomes. The 5S rDNA probe was also applied on extended DNA fibers to reveal that its coverage measured as long as 0.439 Mb in the pepper genome. FISH techniques applied on somatic and meiotic chromosomes and fibers have been established for chili to provide valuable information about the copy number variation of 45S rDNA and the actual physical size of the 5S rDNA in chili. PMID:19277503

  13. Chromosome number9 specific repetitive DNA sequence

    Human repetitive DNA libraries have been constructed and various recombinant DNA clones isolated that are likely candidates for chromosome specific sequences. The first clone tested (pHuR 98; plasmid human repeat 98) was biotinylated and hybridized to human chromosomes in situ. The hybridized recombinant probe was detected with fluoresceinated avidin, and chromosomes were counter-stained with either propidium iodide or distamycin-DAPI. Specific hybridization to chromosome band 9q1 was obtained. The localization was confirmed by hybridizing radiolabeled pHuR 98 DNA to human chromosomes sorted by flow cytometry. Various methods, including orthogonal field pulsed gel electrophoresis analysis indicate that 75 kilobase blocks of this sequence are interspersed with other repetitive DNA sequences in this chromosome band. This study is the first to report a human repetitive DNA sequence uniquely localized to a specific chromosome. This clone provides an easily detected and highly specific chromosomal marker for molecular cytogenetic analyses in numerous basic research and clinical studies

  14. Group 3 chromosome bin maps of wheat and their relationship to rice chromosome 1.

    Munkvold, J D; Greene, R A; Bermudez-Kandianis, C E; La Rota, C M; Edwards, H; Sorrells, S F; Dake, T; Benscher, D; Kantety, R; Linkiewicz, A M; Dubcovsky, J; Akhunov, E D; Dvorák, J; Miftahudin; Gustafson, J P; Pathan, M S; Nguyen, H T; Matthews, D E; Chao, S; Lazo, G R; Hummel, D D; Anderson, O D; Anderson, J A; Gonzalez-Hernandez, J L; Peng, J H; Lapitan, N; Qi, L L; Echalier, B; Gill, B S; Hossain, K G; Kalavacharla, V; Kianian, S F; Sandhu, D; Erayman, M; Gill, K S; McGuire, P E; Qualset, C O; Sorrells, M E


    The focus of this study was to analyze the content, distribution, and comparative genome relationships of 996 chromosome bin-mapped expressed sequence tags (ESTs) accounting for 2266 restriction fragments (loci) on the homoeologous group 3 chromosomes of hexaploid wheat (Triticum aestivum L.). Of these loci, 634, 884, and 748 were mapped on chromosomes 3A, 3B, and 3D, respectively. The individual chromosome bin maps revealed bins with a high density of mapped ESTs in the distal region and bins of low density in the proximal region of the chromosome arms, with the exception of 3DS and 3DL. These distributions were more localized on the higher-resolution group 3 consensus map with intermediate regions of high-mapped-EST density on both chromosome arms. Gene ontology (GO) classification of mapped ESTs was not significantly different for homoeologous group 3 chromosomes compared to the other groups. A combined analysis of the individual bin maps using 537 of the mapped ESTs revealed rearrangements between the group 3 chromosomes. Approximately 232 (44%) of the consensus mapped ESTs matched sequences on rice chromosome 1 and revealed large- and small-scale differences in gene order. Of the group 3 mapped EST unigenes approximately 21 and 32% matched the Arabidopsis coding regions and proteins, respectively, but no chromosome-level gene order conservation was detected. PMID:15514041

  15. Molecular cytogenetic analysis of monoecious hemp (Cannabis sativa L.) cultivars reveals its karyotype variations and sex chromosomes constitution.

    Razumova, Olga V; Alexandrov, Oleg S; Divashuk, Mikhail G; Sukhorada, Tatiana I; Karlov, Gennady I


    Hemp (Cannabis sativa L., 2n = 20) is a dioecious plant. Sex expression is controlled by an X-to-autosome balance system consisting of the heteromorphic sex chromosomes XY for males and XX for females. Genetically monoecious hemp offers several agronomic advantages compared to the dioecious cultivars that are widely used in hemp cultivation. The male or female origin of monoecious maternal plants is unknown. Additionally, the sex chromosome composition of monoecious hemp forms remains unknown. In this study, we examine the sex chromosome makeup in monoecious hemp using a cytogenetic approach. Eight monoecious and two dioecious cultivars were used. The DNA of 210 monoecious plants was used for PCR analysis with the male-associated markers MADC2 and SCAR323. All monoecious plants showed female amplification patterns. Fluorescence in situ hybridization (FISH) with the subtelomeric CS-1 probe to chromosomes plates and karyotyping revealed a lack of Y chromosome and presence of XX sex chromosomes in monoecious cultivars with the chromosome number 2n = 20. There was a high level of intra- and intercultivar karyotype variation detected. The results of this study can be used for further analysis of the genetic basis of sex expression in plants. PMID:26149370

  16. Fetal male lineage determination by analysis of Y-chromosome STR haplotype in maternal plasma.

    Barra, Gustavo Barcelos; Santa Rita, Ticiane Henriques; Chianca, Camilla Figueiredo; Velasco, Lara Francielle Ribeiro; de Sousa, Claudia Ferreira; Nery, Lídia Freire Abdalla; Costa, Sandra Santana Soares


    The aim of this study is to determine the fetus Y-STR haplotype in maternal plasma during pregnancy and estimate, non-invasively, if the alleged father and fetus belong to the same male lineage. The study enrolled couples with singleton pregnancies and known paternity. All participants signed informed consent and the local ethics committee approved the study. Peripheral blood was collected in EDTA tubes (mother) and in FTA paper (father). Maternal plasma DNA was extracted by using NucliSens EasyMAG. Fetal gender was determined by qPCR targeting DYS-14 in maternal plasma and it was also confirmed after the delivery. From all included volunteers, the first consecutive 20 mothers bearing male fetuses and 10 mothers bearing female fetuses were selected for the Y-STR analysis. The median gestational age was 12 weeks (range 12-36). All DNA samples were subjected to PCR amplification by PowerPlex Y23, ampFLSTR Yfiler, and two in-house multiplexes, which together accounts for 27 different Y-STR. The PCR products were detected with 3500 Genetic Analyzer and they were analyzed using GeneMapper-IDX. Fetuses' haplotypes (Yfiler format) were compared to other 5328 Brazilian haplotypes available on Y-chromosome haplotypes reference database (YHRD). As a result, between 22 and 27 loci were successfully amplified from maternal plasma in all 20 cases of male fetuses. None of the women bearing female fetuses had a falsely amplified Y-STR haplotype. The haplotype detected in maternal plasma completely matched the alleged father haplotype in 16 out of the 20 cases. Four cases showed single mismatches and they did not configure exclusions; 1 case showed a mutation in the DYS 458 locus due to the loss of one repeat unit and 3 cases showed one DYS 385I/II locus dropout. All mismatches were confirmed after the delivery. Seventeen fetuses' haplotypes were not found in YHRD and one of them had a mutation, which corresponded to the paternity probability of 99.9812% and 95.7028%, respectively

  17. Cri-Du-Chat Syndrome: Clinical Profile and Chromosomal Microarray Analysis in Six Patients.

    Espirito Santo, Layla Damasceno; Moreira, Lília Maria Azevedo; Riegel, Mariluce


    Cri-du-chat syndrome is a chromosomal disorder caused by a deletion of the short arm of chromosome 5. The disease severity, levels of intellectual and developmental delay, and patient prognosis have been related to the size and position of the deletion. Aiming to establish genotype-phenotype correlations, we applied array-CGH to evaluate six patients carrying cytogenetically detected deletions of the short arm of chromosome 5 who were followed at a genetics community service. The patients' cytogenetic and clinical profiles were reevaluated. A database review was performed to predict additional genes and regulatory elements responsible for the characteristic phenotypic and behavioral traits of this disorder. Array-CGH analysis allowed for delineation of the terminal deletions, which ranged in size from approximately 11.2 Mb to 28.6 Mb, with breakpoints from 5p15.2 to 5p13. An additional dup(8)(p23) (3.5 Mb), considered to be a benign copy number variation, was also observed in one patient. The correlation coefficient value (ρ = 0.13) calculated indicated the presence of a weak relationship between developmental delay and deletion size. Genetic background, family history, epigenetic factors, quantitative trait locus polymorphisms, and environmental factors may also affect patient phenotype and must be taken into account in genotype-phenotype correlations. PMID:27144168

  18. Effects of colcemid concentration on chromosome aberration analysis in human lymphocytes

    Kanda, Reiko; Hayata, Isamu; Kobayashi, Sadayoshi (National Inst. of Radiological Sciences, Chiba (Japan)); Jiang, Tao


    As a part of technical improvements of chromosome aberration analysis on human peripheral lymphocytes for biological radiation dosimetry, we examined the optimal conditions for the use of colcemid in chromosome preparation in order to obtain enough number of cells at metaphase in the first cell division. When treated with colcemid at concentrations below 0.01 [mu]g/ml from the beginning of culture, cultures harvested at 48 hours had low mitotic indices. Colcemid treatment at 0.025 to 0.05 [mu]g/ml during 48 hours resulted in high mitotic indices (8 to 15%) and almost of the mitotic cells remaining in the 1st cell division, suggesting that this range of colcemid concentration was appropriate for continuous treatment with colcemid. We further examined the effect of colcemid concentration on the quantitative consistency of the yields of radiation-induced chromosome aberration. Repeated experiments showed that the yield of dicentrics and centric rings in the culture having colcemid at 0.025 [mu]g/ml concentration were larger than that at 0.05 [mu]g/ml. These data indicate the importance of assuring the accuracy of colcemid concentration in the lymphocyte culture for cytogenetic radiation dosimetry. (author).

  19. Analysis of 5S rDNA Arrays in Arabidopsis thaliana: Physical Mapping and Chromosome-Specific Polymorphisms

    Cloix, C.; Tutois, S; O. Mathieu; Cuvillier, C.; Espagnol, M C; G. Picard; Tourmente, S


    A physical map of a pericentromeric region of chromosome 5 containing a 5S rDNA locus and spanning ∼1000 kb was established using the CIC YAC clones. Three 5S rDNA arrays were resolved in this YAC contig by PFGE analysis and we have mapped different types of sequences between these three blocks. 5S rDNA units from each of these three arrays of chromosome 5, and from chromosomes 3 and 4, were isolated by PCR. A total of 38 new DNA sequences were obtained. Two types of 5S rDNA repeated units ex...

  20. Human nuclear NAD+ ADP-ribosyltransferase: Localization of the gene on chromosome 1q41-q42 and expression of an active human enzyme in Escherichia coli

    The gene for human nuclear NAD+ ADP-ribosyltransferase was localized to chromosome 1 at q41-q42 by in situ hybridization with a pADPRT-specific cDNA probe. Expression of a pAD-PRT cDNA under control of the lac promoter in Escherichia coli induces the synthesis of a group of related proteins that were immunoreactive with pADPRT antibody and that had catalytic properties very similar to those of the human enzyme. Purification of this enzymatic activity was performed essentially as described for the human enzyme. The Km, pH optimum, optimal reaction temperature, and inhibition by 3-aminobenzamide and 3-methoxybenzamide were found to be similar for the recombinant and the human enzymes. The purified recombinant enzyme consists of two major proteins of Mr 99,000 and Mr 89,000. Both proteins show pADPRT activity in activity gel analysis with [32P]NAD+ as substrate. Microsequencing of these two proteins isolated by denaturing gel electrophoresis and deletion mutagenesis of the pADPRT expression plasmid shows that the Mr 99,000 and Mr 89,000 proteins derive from initiation of translation at interval translational start signals located within the pADPRT cDNA

  1. Analysis of 22 Y chromosomal STR haplotypes and Y haplogroup distribution in Pathans of Pakistan.

    Lee, Eun Young; Shin, Kyoung-Jin; Rakha, Allah; Sim, Jeong Eun; Park, Myung Jin; Kim, Na Young; Yang, Woo Ick; Lee, Hwan Young


    We analyzed haplotypes for 22 Y chromosomal STRs (Y-STRs), including 17 Yfiler loci (DYS19, DYS385a/b, DYS389I/II, DYS390, DYS391, DYS392, DYS393, DYS437, DY438, DYS439, DYS448, DYS456, DYS458, DYS635 and Y-GATA-H4) and five additional STRs (DYS388, DYS446, DYS447, DYS449 and DYS464), and Y chromosomal haplogroup distribution in 270 unrelated individuals from the Pathans residing in the Federally Administered Tribal Areas and the North-West Frontier Province of Pakistan using in-house multiplex PCR systems. Each Y-STR showed diversities ranging from 0.2506 to 0.8538, and the discriminatory capacity (DC) was 73.7% with 199 observed haplotypes using 17 Yfiler loci. By the addition of 5 Y-STRs to the Yfiler system, the DC was increased to 85.2% while showing 230 observed haplotypes. Among the additional 5 Y-STRs, DYS446, DYS447 and DYS449 were major contributors to enhancing discrimination. In the analysis of molecular variance, the Pathans of this study showed significant differences from other Pathan populations as well as neighboring population sets. In Y-SNP analysis, a total of 12 Y chromosomal haplogroups were observed and the most frequent haplogroup was R1a1a with 49.3% frequency. To obtain insights on the origin of Pathans, the network analysis was performed for the haplogroups G and Q observed from the Pathans and the Jewish population groups including Ashkenazim and Sephardim, but little support for a Jewish origin could be found. In the present study, we report Y-STR population data in Pathans of Pakistan, and we emphasize the need for adding additional markers to the commonly used 17 Yfiler loci to achieve more improved discriminatory capacity in a population with low genetic diversity. PMID:24709582

  2. Analysis of chromosome 22 deletions in neurofibromatosis type 2-related tumors

    Wolff, R.K.; Frazer, K.A.; Jackler, R.K.; Lanser, M.J.; Pitts, L.H.; Cox, D.R. (Univ. of California, San Francisco, CA (United States))


    The neurofibromatosis type 2 (NF2) gene has been hypothesized to be a recessive tumor suppressor, with mutations at the same locus on chromosome 22 that lead to NF2 also leading to sporadic tumors of the types seen in NF2. Flanking markers for this gene have previously been defined as D22S1 centromeric and D22S28 telomeric. Identification of subregions of this interval that are consistently rearranged in the NF2-related tumors would aid in better defining the disease locus. To this end, the authors have compared tumor and constitutional DNAs, isolated from 39 unrelated patients with sporadic and NF2-associated acoustic neuromas, meningiomas, schwannomas, and ependymomas, at eight polymorphic loci on chromosome 22. Two of the tumors studied revealed loss-of-heterozygosity patterns, which is consistent with the presence of chromosome 22 terminal deletions. By using additional polymorphic markers, the terminal deletion breakpoint found in one of the tumors, an acoustic neuroma from an NF2 patient, was mapped within the previously defined NF2 region. The breakpoint occurred between the haplotyped markers D22S41/D22S46 and D22S56. This finding redefines the proximal flanking marker and localizes the NF2 gene between markers D22S41/D22S46 and D22S28. In addition, the authors identified a sporadic acoustic neuroma that reveals a loss-of-heterozygosity pattern consistent with mitotic recombination or deletion and reduplication, which are mechanisms not previously seen in studies of these tumors. This finding, while inconsistent with models of tumorigenesis that invoke single deletions and their gene-dosage effects, lends further support to the recessive tumor-suppressor model. 33 refs., 2 figs., 1 tab.

  3. Fungal ABC transporter deletion and localization analysis.

    Kovalchuk, Andriy; Weber, Stefan S; Nijland, Jeroen G; Bovenberg, Roel A L; Driessen, Arnold J M


    Fungal cells are highly complex as their metabolism is compartmentalized harboring various types of subcellular organelles that are bordered by one or more membranes. Knowledge about the intracellular localization of transporter proteins is often required for the understanding of their biological function. Among different approaches available, the localization analysis based on the expression of GFP fusions is commonly used as a relatively fast and cost-efficient method that allows visualization of proteins of interest in both live and fixed cells. In addition, inactivation of transporter genes is an important tool to resolve their specific function. Here we provide a detailed protocol for the deletion and localization analysis of ABC transporters in the filamentous fungus Penicillium chrysogenum. It includes construction of expression plasmids, their transformation into fungal strains, cultivation of transformants, microscopy analysis, as well as additional protocols on staining of fungal cells with organelle-specific dyes like Hoechst 33342, MitoTracker DeepRed, and FM4-64. PMID:22183644

  4. Physical mapping of the major early-onset familial Alzheimer`s disease locus on chromosome 14 and analysis of candidate gene sequences

    Tanzi, R.E.; Romano, D.M.; Crowley, A.C. [Harvard Medical School, Charlestown, MA (United States)] [and others


    Genetic studies of kindreds displaying evidence for familial AD (FAD) have led to the localization of gene defects responsible for this disorder on chromosomes 14, 19, and 21. A minor early-onset FAD gene on chromosome 21 has been identified to enode the amyloid precursor protein (APP), and the late-onset FAD susceptibility locus on chromosome 19 has been shown to be in linkage disequilibrium with the E4 allele of the APOE gene. Meanwhile, the locus responsible for the major form of early-onset FAD on chromosome 14q24 has not yet been identified. By recombinational analysis, we have refined the minimal candidate region containing the gene defect to approximately 3 megabases in 14q24. We will describe our laboratory`s progress on attempts to finely localize this locus, as well as test known candidate genes from this region for either inclusion in the minimal candidate region or the presence of pathogenic mutations. Candidate genes that have been tested so far include cFOS, heat shock protein 70 member (HSF2A), transforming growth factor beta (TGFB3), the trifunctional protein C1-THF synthase (MTHFD), bradykinin receptor (BR), and the E2k component of a-ketoglutarate dehydrogenase. HSP2A, E2k, MTHFD, and BR do not map to the current defined minimal candidate region; however, sequence analysis must be performed to confirm exclusion of these genes as true candidates. Meanwhile, no pathogenic mutations have yet been found in cFOS or TGFB3. We have also isolated a large number of novel transcribed sequences from the minimal candidate region in the form of {open_quotes}trapped exons{close_quotes} from cosmids identified by hybridization to select YAC clones; we are currently in the process of searching for pathogenic mutations in these exons in affected individuals from FAD families.

  5. Localization of the homolog of a mouse craniofacial mutant to human chromosome 18q11 and evaluation of linkage to human CLP and CPO

    Griffith, A.J.; Burgess, D.L.; Kohrman, D.C.; Yu, J. [Univ. of Michigan, Ann Arbor, MI (United States)] [and others


    The transgene-induced mutation 9257 and the spontaneous mutation twirler cause craniofacial and inner ear malformations and are located on mouse chromosome 18 near the ataxia locus ax. To map the human homolog of 9257, a probe from the transgene insertion site was used to screen a human genomic library. Analysis of a cross-hybridizing human clone identified a 3-kb conserved sequence block that does not appear to contain protein coding sequence. Analysis of somatic cell hybrid panels assigned the human locus to 18q11. The polymorphic microsatellite markers D18S1001 and D18S1002 were isolated from the human locus and mapped by linkage analysis using the CEPH pedigrees. The 9257 locus maps close to the centromeres of human chromosome 18q and mouse chromosome 18 at the proximal end of a conserved linkage group. To evaluate the role of this locus in human craniofacial disorders, linkage to D18S1002 was tested in 11 families with autosomal dominant nonsyndromic cleft lip and palate and 3 families with autosomal dominant cleft palate only. Obligatory recombinants were observed in 8 of the families, and negative lod scores from the other families indicated that these disorders are not linked to the chromosome 18 loci. 23 refs., 4 figs., 2 tabs.

  6. Plasmodium falciparum: analysis of chromosomes separated by contour-clamped homogenous electric fields.

    Gu, H; Inselburg, J W; Bzik, D J; Li, W B


    We have established improved conditions for separating the chromosomes of Plasmodium falciparum by pulsed field gradient gel electrophoresis (PFG) using a contour-clamped homogenous electric field (CHEF) apparatus. Thirteen clearly separable chromosomal bands were reproducibly isolated from the strain FCR3 and their sizes have been determined. Evidence that indicates one band may contain two chromosomes is presented. The relationship between the PFG separable DNA and the number of unique chromosomes in P. falciparum is considered. We have established a relationship between the maximum resolvable sizes of the chromosomes and the pulse times. The chromosomal location of twenty-seven P. falciparum DNA probes is also reported. PMID:2197113

  7. DNA sequence of human chromosome 17 and analysis of rearrangement in the human lineage

    Zody, Michael C; Garber, Manuel; Adams, David J.; Sharpe, Ted; Harrow, Jennifer; James R. Lupski; Nicholson, Christine; Searle, Steven M.; Wilming, Laurens; Young, Sarah K.; Abouelleil, Amr; Van Allen, Nicole R; Bi, Weimin; Bloom, Toby; Borowsky, Mark L


    Chromosome 17 is unusual among the human chromosomes in many respects. It is the largest human autosome with orthology to only a single mouse chromosome1, mapping entirely to the distal half of mouse chromosome 11. Chromosome 17 is rich in protein-coding genes, having the second highest gene density in the genome2,3. It is also enriched in segmental duplications, ranking third in density among the autosomes4. Here we report a finished sequence for human chromosome 17, as well as a structural ...

  8. Comparative genomic hybridization analysis shows different epidemiology of chromosomal and plasmid-borne cpe-carrying Clostridium perfringens type A.

    Päivi Lahti

    Full Text Available Clostridium perfringens, one of the most common causes of food poisonings, can carry the enterotoxin gene, cpe, in its chromosome or on a plasmid. C. perfringens food poisonings are more frequently caused by the chromosomal cpe-carrying strains, while the plasmid-borne cpe-positive genotypes are more commonly found in the human feces and environmental samples. Different tolerance to food processing conditions by the plasmid-borne and chromosomal cpe-carrying strains has been reported, but the reservoirs and contamination routes of enterotoxin-producing C. perfringens remain unknown. A comparative genomic hybridization (CGH analysis with a DNA microarray based on three C. perfringens type A genomes was conducted to shed light on the epidemiology of C. perfringens food poisonings caused by plasmid-borne and chromosomal cpe-carrying strains by comparing chromosomal and plasmid-borne cpe-positive and cpe-negative C. perfringens isolates from human, animal, environmental, and food samples. The chromosomal and plasmid-borne cpe-positive C. perfringens genotypes formed two distinct clusters. Variable genes were involved with myo-inositol, ethanolamine and cellobiose metabolism, suggesting a new epidemiological model for C. perfringens food poisonings. The CGH results were complemented with growth studies, which demonstrated different myo-inositol, ethanolamine, and cellobiose metabolism between the chromosomal and plasmid-borne cpe-carrying strains. These findings support a ubiquitous occurrence of the plasmid-borne cpe-positive strains and their adaptation to the mammalian intestine, whereas the chromosomal cpe-positive strains appear to have a narrow niche in environments containing degrading plant material. Thus the epidemiology of the food poisonings caused by two populations appears different, the plasmid-borne cpe-positive strains probably contaminating foods via humans and the chromosomal strains being connected to plant material.

  9. Mechanism of the t(14;18) chromosomal translocation: structural analysis of both derivative 14 and 18 reciprocal partners

    To elucidate the mechanism of the t(14;18)(q32;q21) chromosomal translocation found in follicular lymphoma, the authors examined the structure of both derivative (der) chromosomal breakpoints as well as their germ-line predecessors. They noted that chromosome segment 18q21 was juxtaposed with immunoglobulin heavy (H) chain gene diversity (D/sub H/) regions on all five der(18) chromosomes they examined, and they confirmed the juncture with immunoglobulin H-chain gene joining (J/sub H/) regions on the der(14) chromosome. However, the t(14;18) was not fully reciprocal in that chromosome 14 DNA between the D/sub H/ and J/sub H/ regions was deleted. Furthermore, extra nucleotides, reminiscent of N segments, were present at the der(14) and possibly der(18) junctions. This indicates that despite the mature B-cell phenotype of follicular lymphoma, the t(14;18) occurs during attempted D/sub H/-J/sub H/ joining, the earliest event in immunoglobulin rearrangement in a pre-B-cell. The detailed analysis of the germ-line 18q21 region indicated that most breakpoints clustered within a 150-base-pair major breakpoint region. A direct repeat duplication of chromosome 18 sequences was discovered at both chromosomal junctures, typical of the repair of a naturally occurring staggered double-stranded DNA break. These results prompt a translocation model with illegitimate pairing of a staggered double-stranded DNA break at 18q21 and an immunoglobulin endonuclease-mediated break at 14q32 and with N-segment addition, repair, and ligation to generate der(14) and der(18) chromosomes

  10. Mechanism of the t(14; 18) chromosomal translocation: structural analysis of both derivative 14 and 18 reciprocal partners

    Bakhshi, A.; Wright, J.J.; Graninger, W.; Seto, M.; Owens, J.; Cossman, J.; Jensen, J.P.; Goldman, P.; Korsmeyer, S.J.


    To elucidate the mechanism of the t(14;18)(q32;q21) chromosomal translocation found in follicular lymphoma, the authors examined the structure of both derivative (der) chromosomal breakpoints as well as their germ-line predecessors. They noted that chromosome segment 18q21 was juxtaposed with immunoglobulin heavy (H) chain gene diversity (D/sub H/) regions on all five der(18) chromosomes they examined, and they confirmed the juncture with immunoglobulin H-chain gene joining (J/sub H/) regions on the der(14) chromosome. However, the t(14;18) was not fully reciprocal in that chromosome 14 DNA between the D/sub H/ and J/sub H/ regions was deleted. Furthermore, extra nucleotides, reminiscent of N segments, were present at the der(14) and possibly der(18) junctions. This indicates that despite the mature B-cell phenotype of follicular lymphoma, the t(14;18) occurs during attempted D/sub H/-J/sub H/ joining, the earliest event in immunoglobulin rearrangement in a pre-B-cell. The detailed analysis of the germ-line 18q21 region indicated that most breakpoints clustered within a 150-base-pair major breakpoint region. A direct repeat duplication of chromosome 18 sequences was discovered at both chromosomal junctures, typical of the repair of a naturally occurring staggered double-stranded DNA break. These results prompt a translocation model with illegitimate pairing of a staggered double-stranded DNA break at 18q21 and an immunoglobulin endonuclease-mediated break at 14q32 and with N-segment addition, repair, and ligation to generate der(14) and der(18) chromosomes.

  11. Analysis of Y chromosome microdeletions and CFTR gene mutations as genetic markers of infertility in Serbian men

    Dinić Jelena


    Full Text Available Background/Aim. Impaired fertility of a male partner is the main cause of infertility in up to one half of all infertile couples. At the genetic level, male infertility can be caused by chromosome aberrations or gene mutations. The presence and types of Y chromosome microdeletions and cystic fybrosis transmembrane conductance regulator (CFTR gene mutations as genetic cause of male infertility was tested in Serbian men. The aim of this study was to analyze CFTR gene mutations and Y chromosome microdelations as potential causes of male infertility in Serbian patients, as well as to test the hypothesis that CFTR mutations in infertile men are predominantly located in the several last exons of the gene. Methods. This study has encompassed 33 men with oligo- or azoospermia. The screening for Y chromosome microdeletions in the azoospermia factor (AZF region was performed by multiplex PCR analysis. The screening of the CFTR gene was performed by denaturing gradient gel electrophoresis (DGGE method. Results. Deletions on Y chromosome were detected in four patients, predominantly in AZFc region (four of total six deletions. Mutations in the CFTR gene were detected on eight out of 66 analyzed chromosomes of infertile men. The most common mutation was F508del (six of total eight mutations. Conclusion. This study confirmed that both Y chromosome microdeletions and CFTR gene mutations played important role in etiology of male infertility in Serbian infertile men. Genetic testing for Y chromosome microdeletions and CFTR gene mutations has been introduced in routine diagnostics and offered to couples undergoing assisted reproduction techniques. Considering that both the type of Y chromosome microdeletion and the type of CFTR mutation have a prognostic value, it is recommended that AZF and CFTR genotyping should not only be performed in patients with reduced sperm quality before undergoing assisted reproduction, but also for the purpose of preimplantation and

  12. [The construction of the genetic map and QTL locating analysis on chromosome 2 in swine].

    Qu, Yan-Chun; Deng, Chang-Yan; Xiong, Yuan-Zhu; Zheng, Rong; Yu, Li; Su, Yu-Hong; Liu, Gui-Lan


    The study constructed the genetic linkage map of porcine chromosome 2 and further analysis of quantitative trait loci was conducted. The results of the study demonstrated that all 7 microsatellite loci we chose were with relatively high polymorphism, and its polymorphic information content was from 0.40182 to 0.58477. The genetic map we constructed for resource family was 152.9 cM in length, with the order of all loci highly consistent with the USDA map. All marker intervals were longer than USDA map with the interval between marker Sw2516 and Sw1201 as an exception. Furthermore, we conducted QTLs locating analysis by combining the genetic map with the phenotypic data. QTLs affecting lively estimated traits such as lean meat percentage, were located at 60-65 cM on chromosome 2, while QTLs for the height and marbling of Longissmus dorsi muscle were located at 20 cM and 55 cM, respectively Among them, QTL for estimated lean meat percentage was significant at chromosome-wise level (P < 0.01) and was responsible for 21.55% of the phenotypic variance. QTLs for the height and marbling of Longissmus dorsi muscle were responsible for 10.12% and 10.97% of the phenotypic variance, respectively. The additive and dominance effect of lively estimated traits were in the inverse tendency, while the QTL for the height of Longissmus dorsi muscle had its additive and dominance effect in the same tendency and was with advantageous allele in Large White. The QTLs we detected had relatively large effect on phenotype and built a basis for molecular marker assisted selection and breeding. PMID:12645259

  13. Cytogenetic analysis of the Amazon stingless bee Melipona seminigra merrillae reveals different chromosome number for the genus

    Izaura Bezerra Francini


    Full Text Available Cytogenetic analysis of the Amazon stingless bee Melipona seminigra merrillae, by conventional Giemsa staining and C-banding, revealed a different chromosome number for Melipona: 2n = 22 for females and diploid drones while the haploid drones present n = 11. There is no evidence of B chromosomes. This result contrasts with previous studies, in which the chromosome number of 19 Melipona species was determined as 2n = 18 for females and n = 9 for haploid males. Based on cytogenetic information available for other Melipona species, we propose that M. s. merrillae has a more derived diploid number. This indicates that chromosome number is not a conservative characteristic within the genus as previously thought. Cytogenetic data for stingless bees are scarce, especially in Amazon region. Additional studies will be very important in order to promote Melipona karyoevolution discussion and consequently a taxonomy review.

  14. Evaluation of genetic potential of Bacopa monnieri extract in Mouse bone marrow cells by chromosomal analysis test

    Shilki Vishnoi


    Full Text Available Herbs have always been used as a common source of medicines, the Bacopa monnieri is an important herb used in Aruveda as a traditional medicinal system of India. In the present investigations, the genotoxic potential of Bacopa monnieri Hydromethanolic extract (BMH was evaluated employing Chromosomal analysis assay invivo. BMH was administered to Swiss Albino mice as i.p. dose of 80mg/kg, 160mg/kg, 240mg/kg body wt., 24 hours prior the administration of cyclophosphamide (CP (positive control at the dose of 50 mg/kg body wt. A dose-dependent, significant decrease in chromosome aberration was observed with respect to control. Result suggested that BMHhave a preventive potential against CP induced chromosomal aberration in Swiss albino mouse bone marrow cells at the dose tested. Therefore seems to have a preventive potential against Chromosomal aberrations in Swiss Albinomouse bone marrow cells.

  15. Chromosome evolution in tiger beetles: Karyotypes and localization of 18S rDNA loci in Neotropical Megacephalini (Coleoptera, Cicindelidae

    Sónia J.R. Proença


    Full Text Available Four Neotropical tiger beetle species, three from the genus Megacephala and one from the genus Oxycheila, currently assigned to the tribe Megacephalini were examined cytogenetically. All three Megacephala species showed simple sex chromosome systems of the X0/XX type but different numbers of autosomal pairs (15 in M. cruciata, 14 in M. sobrina and 12 in M. rutilans, while Oxycheila tristis was inferred to have a multiple sex chromosome system with four X chromosomes (2n = 24 + X1X2X3X4Y/X1X1X2X2X3X3X4X4. Fluorescence in situ hybridization (FISH using a PCR-amplified 18S rDNA fragment as a probe revealed the presence of rDNA clusters located exclusively on the autosomes in all the Megacephala species (five clusters in M. cruciata, eight in M. sobrina and three in M. rutilans, indicating variability in the number of clusters and the presence of structural polymorphisms. The same methodology showed that O. tristis had six rDNA clusters, apparently also located on the autosomes. Although our data also show cytogenetic variability within the genus Megacephala, our findings support the most accepted hypothesis for chromosome evolution in the family Cicindelidae. The description of multiple sex chromosomes in O. tristis along with phylogenetic analyses and larval morphological characters may be assumed as an additional evidence for the exclusion of the genus Oxycheila and related taxa from the tribe Megacephalini.

  16. Local Component Analysis for Nonparametric Bayes Classifier

    Khademi, Mahmoud; safayani, Meharn


    The decision boundaries of Bayes classifier are optimal because they lead to maximum probability of correct decision. It means if we knew the prior probabilities and the class-conditional densities, we could design a classifier which gives the lowest probability of error. However, in classification based on nonparametric density estimation methods such as Parzen windows, the decision regions depend on the choice of parameters such as window width. Moreover, these methods suffer from curse of dimensionality of the feature space and small sample size problem which severely restricts their practical applications. In this paper, we address these problems by introducing a novel dimension reduction and classification method based on local component analysis. In this method, by adopting an iterative cross-validation algorithm, we simultaneously estimate the optimal transformation matrices (for dimension reduction) and classifier parameters based on local information. The proposed method can classify the data with co...

  17. Prenatal assessment of fetal chromosomal and genetic disorders through maternal plasma DNA analysis.

    Liao, Gary J W; Chiu, Rossa W K; Lo, Y M Dennis


    The existence of cell free DNA derived from the fetus in the plasma of pregnant women was first demonstrated in 1997. This discovery offered the possibility of non-invasive sampling of fetal genetic material simply through the collection of a maternal blood sample. Such cell free fetal DNA molecules in the maternal circulation have subsequently been shown to originate from the placenta and could be detected from about 7 weeks of gestation. It has been shown that cell free fetal DNA analysis could offer highly accurate assessment of fetal genotype and chromosomal makeup for some applications. Thus, cell free fetal DNA analysis has been incorporated as a part of prenatal screening programs for the prenatal management of sex-linked and sex-associated diseases, rhesus D incompatibility as well as the prenatal detection of Down's syndrome.Cell free fetal DNA analysis may lead to a change in the way prenatal assessments are made. PMID:22198255


    Homologous chromosome synapsis and crossing-over at meiosis are basic to mammalian gamete development. hey achieve genetic recombination, regulate chromosome segregation, and are believed to function in repair and maturation. ynaptonemal complexes (SCs) are axial correlates of me...

  19. Independent clonal origin of multiple uterine leiomyomas that was determined by X chromosome inactivation and microsatellite analysis

    Canevari, Renata A; Pontes, Anaglória; Rosa, Fabíola E;


    OBJECTIVE: In an attempt to clarify the clonality and genetic relationships that are involved in the tumorigenesis of uterine leiomyomas, we used a total of 43 multiple leiomyomas from 14 patients and analyzed the allelic status with 15 microsatellite markers and X chromosome inactivation analysis....... STUDY DESIGN: We have used a set of 15 microsatellite polymorphism markers mapped on 3q, 7p, 11, and 15q by automated analysis. The X chromosome inactivation was evaluated by the methylation status of the X-linked androgen receptor gene. RESULTS: Loss of heterozygosity analysis showed a different...... pattern in 7 of the 8 cases with allelic loss for at least 1 of 15 microsatellite markers that were analyzed. A similar loss of heterozygosity findings at 7p22-15 was detected in 3 samples from the same patient. X chromosome inactivation analysis demonstrated the same inactivated allele in all tumors...

  20. SKY analysis revealed recurrent numerical and structural chromosome changes in BDII rat endometrial carcinomas

    Behboudi Afrouz


    Full Text Available Abstract Background Genomic alterations are common features of cancer cells, and some of these changes are proven to be neoplastic-specific. Such alterations may serve as valuable tools for diagnosis and classification of tumors, prediction of clinical outcome, disease monitoring, and choice of therapy as well as for providing clues to the location of crucial cancer-related genes. Endometrial carcinoma (EC is the most frequently diagnosed malignancy of the female genital tract, ranking fourth among all invasive tumors affecting women. Cytogenetic studies of human ECs have not produced very conclusive data, since many of these studies are based on karyotyping of limited number of cases and no really specific karyotypic changes have yet been identified. As the majority of the genes are conserved among mammals, the use of inbred animal model systems may serve as a tool for identification of underlying genes and pathways involved in tumorigenesis in humans. In the present work we used spectral karyotyping (SKY to identify cancer-related aberrations in a well-characterized experimental model for spontaneous endometrial carcinoma in the BDII rat tumor model. Results Analysis of 21 experimental ECs revealed specific nonrandom numerical and structural chromosomal changes. The most recurrent numerical alterations were gains in rat chromosome 4 (RNO4 and losses in RNO15. The most commonly structural changes were mainly in form of chromosomal translocations and were detected in RNO3, RNO6, RNO10, RNO11, RNO12, and RNO20. Unbalanced chromosomal translocations involving RNO3p was the most commonly observed structural changes in this material followed by RNO11p and RNO10 translocations. Conclusion The non-random nature of these events, as documented by their high frequencies of incidence, is suggesting for dynamic selection of these changes during experimental EC tumorigenesis and therefore for their potential contribution into development of this malignancy

  1. Comparative karyotype analysis and chromosome evolution in the genus Aplastodiscus (Cophomantini, Hylinae, Hylidae

    Gruber Simone


    Full Text Available Abstract Background The frogs of the Tribe Cophomantini present, in general, 2n = 24 karyotype, but data on Aplastodiscus showed variation in diploid number from 2n = 24 to 2n = 18. Five species were karyotyped, one of them for the first time, using conventional and molecular cytogenetic techniques, with the aim to perform a comprehensive comparative analysis towards the understanding of chromosome evolution in light of the phylogeny. Results Aplastodiscus perviridis showed 2n = 24, A. arildae and A. eugenioi, 2n = 22, A. callipygius, 2n = 20, and A. leucopygius, 2n = 18. In the metaphase I cells of two species only bivalents occurred, whereas in A. arildae, A. callipygius, and A. leucopygius one tetravalent was also observed besides the bivalents. BrdU incorporation produced replication bands especially in the largest chromosomes, and a relatively good banding correspondence was noticed among some of them. Silver impregnation and FISH with an rDNA probe identified a single NOR pair: the 11 in A. perviridis and A. arildae; the 6 in A. eugenioi; and the 9 in A. callipygius and A. leucopygius. C-banding showed a predominantly centromeric distribution of the heterochromatin, and in one of the species distinct molecular composition was revealed by CMA3. The telomeric probe hybridised all chromosome ends and additionally disclosed the presence of telomere-like sequences in centromeric regions of three species. Conclusions Based on the hypothesis of 2n = 24 ancestral karyotype for Aplastodiscus, and considering the karyotype differences and similarities, two evolutionary pathways through fusion events were suggested. One of them corresponded to the reduction of 2n = 24 to 22, and the other, the reduction of 2n = 24 to 20, and subsequently to 18. Regarding the NOR, two conditions were recognised: plesiomorphy, represented by the homeologous small-sized NOR-bearing pairs, and derivation, represented by the NOR in

  2. Prenatal diagnosis and molecular cytogenetic analysis of a de novo isodicentric chromosome 18

    Zhang, Yanliang; Dai, Yong; Ren, Jinghui; Wang, Linqian


    Isodicentric chromosome 18 [idic(18)] is rare structural aberration. We report on a prenatal case described by conventional and molecular cytogenetic analyses. The sonography at 24 weeks of gestation revealed multiple fetal anomalies; radial aplasia and ventricular septal defect were significant features. Routine karyotyping showed a derivative chromosome replacing one normal chromosome 18. The parental karyotypes were normal, indicating that the derivative chromosome was de novo. Array compa...

  3. The SUMO-targeted ubiquitin ligase RNF4 localizes to etoposide-exposed mitotic chromosomes: implication for a novel DNA damage response during mitosis.

    Saito, Masayuki; Fujimitsu, Yuka; Sasano, Takeshi; Yoshikai, Yushi; Ban-Ishihara, Reiko; Nariai, Yuko; Urano, Takeshi; Saitoh, Hisato


    RNF4, a SUMO-targeted ubiquitin ligase (STUbL), localizes to the nucleus and functions in the DNA damage response during interphase of the cell cycle. RNF4 also exists in cells undergoing mitosis, where its regulation and function remain poorly understood. Here we showed that administration of etoposide, an anticancer DNA topoisomerase II poison, to mitotic human cervical cancer HeLa cells induced SUMO-2/3-dependent localization of RNF4 to chromosomes. The FK2 antibody signals, indicative of poly/multi-ubiquitin assembly, were detected on etoposide-exposed mitotic chromosomes, whereas the signals were negligible in cells depleted for RNF4 by RNA interference. This suggests that RNF4 functions as a STUbL in the etoposide-induced damage response during mitosis. Indeed, RNF4-depletion sensitized mitotic HeLa cells to etoposide and increased cells with micronuclei. These results indicate the importance of the RNF4-mediated STUbL pathway during mitosis for the maintenance of chromosome integrity and further implicate RNF4 as a target for topo II poison-based therapy for cancer patients. PMID:24695317

  4. Chromosome mapping of the GD3 synthase gene (SIAT8) in human and mouse

    Matsuda, Yoichi; Saito, Toshiyuki [National Inst. of Radiological Sciences, Chiba (Japan); Nara, Kiyomitsu [Tokyo Metropolitan Inst. of Medical Science (Japan)] [and others


    This article reports on the genetic mapping of the human and mouse GD3 synthase gene (SIAT8) using fluorescence in situ hybridization and interspecific backcross analysis. The human gene was localized to human chromosome 12p12.1-p11.2; the mouse homologue was localized to mouse chromosome 6, which has been shown to be syntenic with the short arm of human chromosome 12, suggesting a common evolution. 16 refs., 1 fig.

  5. Analysis of Chromosome Number in Some Allium and Silene Wild Species with Ornamental Use

    Lucia DRAGHIA


    Full Text Available The present study analyses the number of somatic chromosomes in plant species with ornamental value, in Romanian indigenous flora, Allium (A. flavum L., A. saxatile Bieb. and Silene (S. compacta Fischer., S. supina M.Bieb.. The biological material was identified and harvested in the South-Eastern part of Dobrogea (Tulcea and Constanţa counties, area in the South-Eastern part of Romania, situated between the Danube and the Black Sea. Individuals from two populations of Allium flavum and Allium saxatile, respectively from Tulcea county (Turcoaia town and Constanţa county (from Cheile Dobrogei were analyzed. In the case of Silene compacta and Silene supina, plants of one population in Tulcea county, Turcoaia town, were used. The aim of the analysis was the quantification and comparison of the somatic chromosomes of plants from the same species but different populations, as is the case of the two Allium species, but also to relate them to results from specialty literature, reported by others. The chromosome number was determined in the roots of the small plants that were obtained from seeds collected in their natural habitat. Except the case of Silene supina species, where only diploid forms were identified (2n=24, when in specific literature tetraploid forms are mentioned (2n=48, found in other areas, all other analyzed taxa register similar data to that reported in other geographic regions. Respectively, 2n= 16 in the case of Allium flavum and Allium saxatile and 2n= 24 in the case of Silene compacta.

  6. The multiethnic ancestry of Bolivians as revealed by the analysis of Y-chromosome markers.

    Cárdenas, Jorge Mario; Heinz, Tanja; Pardo-Seco, Jacobo; Álvarez-Iglesias, Vanesa; Taboada-Echalar, Patricia; Sánchez-Diz, Paula; Carracedo, Ángel; Salas, Antonio


    We have analyzed the specific male genetic component of 226 Bolivians recruited in five different regions ("departments"), La Paz, Cochabamba, Pando, Beni, and Santa Cruz. To evaluate the effect of geography on the distribution of genetic variability, the samples were also grouped into three main eco-geographical regions, namely, Andean, Sub-Andean, and Llanos. All the individuals were genotyped for 17 Y-STR and 32 Y-SNP markers. The average Y-chromosome Native American component in Bolivians is 28%, and it is mainly represented by haplogroup Q1a3a, while the average Y-chromosome European ancestry is 65%, and it is mainly represented by haplogroup R1b1-P25. The data indicate that there exists significant population sub-division in the country in terms of continental ancestry. Thus, the partition of ancestries in Llanos, Sub-Andean, and Andean regions is as follows (respectively): (i) Native American ancestry: 47%, 7%, and 19%, (ii) European ancestry: 46%, 86%, and 75%, and (iii) African ancestry: 7%, 7%, and 6%. The population sub-structure in the country is also well mirrored when inferred from an AMOVA analysis, indicating that among-population variance in the country reaches 9.74-11.15%. This suggests the convenience of using regional datasets for forensic applications in Bolivia, instead of using a global and single country database. By comparing the Y-chromosome patterns with those previously reported on the same individuals on autosomal SNPs and mitochondrial DNA (mtDNA), it becomes clear that Bolivians show a strong gender-bias. PMID:25450796

  7. Chromosomal localization of the human placental lactogen-growth hormone gene cluster to 17q22-24.

    Harper, M E; Barrera-Saldaña, H A; Saunders, G F


    Recombinant plasmid HCS-pBR322 containing a 550-base-pair (bp) insert of cDNA to human placental lactogen (hPL) mRNA was 3H-labeled by nick translation and hybridized in situ to human chromosome preparations in the presence of 10% dextran sulfate. A high percentage of cells (80%) were found to exhibit label on the distal end of the long arm of chromosome 17. Silver grains on this region constituted 25.5% of all labeled sites, allowing assignment of the hPL and growth hormone (hGH) genes, whic...

  8. The role of fusion in ant chromosome evolution: insights from cytogenetic analysis using a molecular phylogenetic approach in the genus mycetophylax.

    Cardoso, Danon Clemes; das Graças Pompolo, Silvia; Cristiano, Maykon Passos; Tavares, Mara Garcia


    Among insect taxa, ants exhibit one of the most variable chromosome numbers ranging from n = 1 to n = 60. This high karyotype diversity is suggested to be correlated to ants diversification. The karyotype evolution of ants is usually understood in terms of Robertsonian rearrangements towards an increase in chromosome numbers. The ant genus Mycetophylax is a small monogynous basal Attini ant (Formicidae: Myrmicinae), endemic to sand dunes along the Brazilian coastlines. A recent taxonomic revision validates three species, Mycetophylax morschi, M. conformis and M. simplex. In this paper, we cytogenetically characterized all species that belongs to the genus and analyzed the karyotypic evolution of Mycetophylax in the context of a molecular phylogeny and ancestral character state reconstruction. M. morschi showed a polymorphic number of chromosomes, with colonies showing 2n = 26 and 2n = 30 chromosomes. M. conformis presented a diploid chromosome number of 30 chromosomes, while M. simplex showed 36 chromosomes. The probabilistic models suggest that the ancestral haploid chromosome number of Mycetophylax was 17 (Likelihood framework) or 18 (Bayesian framework). The analysis also suggested that fusions were responsible for the evolutionary reduction in chromosome numbers of M. conformis and M. morschi karyotypes whereas fission may determines the M. simplex karyotype. These results obtained show the importance of fusions in chromosome changes towards a chromosome number reduction in Formicidae and how a phylogenetic background can be used to reconstruct hypotheses about chromosomes evolution. PMID:24489918

  9. mBAND Analysis of Late Chromosome Aberrations in Human Lymphocytes Induced by Gamma Rays and Fe Ions

    Sunagawa, Mayumi; Zhang, Ye; Yeshitla, Samrawit; Kadhim, Munira; Wilson, Bobby; Wu, Honglu


    Chromosomal translocations and inversions are considered stable, and cells containing these types of chromosome aberrations can survive multiple cell divisions. An efficient method to detect an inversion is multi-color banding fluorescent in situ hybridization (mBAND) which allows identification of both inter- and intrachromosome aberrations simultaneously. Post irradiation, chromosome aberrations may also arise after multiple cell divisions as a result of genomic instability. To investigate the stable or late-arising chromosome aberrations induced after radiation exposure, we exposed human lymphocytes to gamma rays and Fe ions ex vivo, and cultured the cells for multiple generations. Chromosome aberrations were analyzed in cells collected at first mitosis and at several time intervals during the culture period post irradiation. With gamma irradiation, about half of the damages observed at first mitosis remained after 7 day- and 14 day- culture, suggesting the transmissibility of damages to the surviving progeny. Detailed analysis of chromosome break ends participating in exchanges revealed a greater fraction of break ends involved in intrachromosome aberrations in the 7- and 14-day samples in comparison to the fraction at first mitosis. In particular, simple inversions were found at 7 and 14 days, but not at the first mitosis, suggesting that some of the aberrations might be formed days post irradiation. In contrast, at the doses that produced similar frequencies of gamma-induced chromosome aberrations as observed at first mitosis, a significantly lower yield of aberrations remained at the same population doublings after Fe ion exposure. At these equitoxic doses, more complex type aberrations were observed for Fe ions, indicating that Fe ion-induced initial chromosome damages are more severe and may lead to cell death. Comparison between low and high doses of Fe ion irradiation in the induction of late damages will also be discussed.

  10. Analysis of Plasmid and Chromosomal DNA of Multidrug-Resistant Salmonella enterica Serovar Typhi from Asia

    Mirza, S.; Kariuki, S.; Mamun, K. Z.; Beeching, N. J.; Hart, C. A.


    Molecular analysis of chromosomal DNA from 193 multidrug-resistant (MDR) Salmonella enterica serovar Typhi isolates from 1990 to 1995 from Pakistan, Kuwait, Malaysia, Bangladesh, and India produced a total of five major different pulsed-field gel electrophoresis (PFGE) patterns. Even within a particular country MDR S. enterica serovar Typhi DNA was found to be in different PFGE groups. Similar self-transferable 98-MDa plasmids belonging to either incompatibility group incHI1 or incHI1/FIIA were implicated in the MDR phenotype in S. enterica serovar Typhi isolates from all the locations except Quetta, Pakistan, where the majority were of incFIA. A total of five different PFGE genotypes with six different plasmids, based on incompatibility and restriction endonuclease analysis groups, were found among these MDR S. enterica serovar Typhi isolates. PMID:10747124

  11. Family-Based Multi-SNP X Chromosome Analysis Using Parent Information.

    Wise, Alison S; Shi, Min; Weinberg, Clarice R


    We propose a method for association analysis of haplotypes on the X chromosome that offers both improved power and robustness to population stratification in studies of affected offspring and their parents if all three have been genotyped. The method makes use of assumed parental haplotype exchangeability (PHE), a weaker assumption than Hardy-Weinberg equilibrium (HWE). PHE requires that in the source population, of the three X chromosome haplotypes carried by the two parents, each is equally likely to be carried by the father. We propose a pseudo-sibling approach that exploits that exchangeability assumption. Our method extends the single-SNP PIX-LRT method to multiple SNPs in a high linkage block. We describe methods for testing the PHE assumption and also for determining how apparent violations can be distinguished from true fetal effects or maternally-mediated effects. We show results of simulations that demonstrate nominal type I error rate and good power. The methods are then applied to dbGaP data on the birth defect oral cleft, using both Asian and Caucasian families with cleft. PMID:26941777

  12. Analysis of the Trojan Y-Chromosome eradication strategy for an invasive species

    Wang, Xueying


    The Trojan Y-Chromosome (TYC) strategy, an autocidal genetic biocontrol method, has been proposed to eliminate invasive alien species. In this work, we analyze the dynamical system model of the TYC strategy, with the aim of studying the viability of the TYC eradication and control strategy of an invasive species. In particular, because the constant introduction of sex-reversed trojan females for all time is not possible in practice, there arises the question: What happens if this injection is stopped after some time? Can the invasive species recover? To answer that question, we perform a rigorous bifurcation analysis and study the basin of attraction of the recovery state and the extinction state in both the full model and a certain reduced model. In particular, we find a theoretical condition for the eradication strategy to work. Additionally, the consideration of an Allee effect and the possibility of a Turing instability are also studied in this work. Our results show that: (1) with the inclusion of an Allee effect, the number of the invasive females is not required to be very low when the introduction of the sex-reversed trojan females is stopped, and the remaining Trojan Y-Chromosome population is sufficient to induce extinction of the invasive females; (2) incorporating diffusive spatial spread does not produce a Turing instability, which would have suggested that the TYC eradication strategy might be only partially effective, leaving a patchy distribution of the invasive species. © 2013 Springer-Verlag Berlin Heidelberg.

  13. Enhancement of Local Climate Analysis Tool

    Horsfall, F. M.; Timofeyeva, M. M.; Dutton, J.


    The National Oceanographic and Atmospheric Administration (NOAA) National Weather Service (NWS) will enhance its Local Climate Analysis Tool (LCAT) to incorporate specific capabilities to meet the needs of various users including energy, health, and other communities. LCAT is an online interactive tool that provides quick and easy access to climate data and allows users to conduct analyses at the local level such as time series analysis, trend analysis, compositing, correlation and regression techniques, with others to be incorporated as needed. LCAT uses principles of Artificial Intelligence in connecting human and computer perceptions on application of data and scientific techniques in multiprocessing simultaneous users' tasks. Future development includes expanding the type of data currently imported by LCAT (historical data at stations and climate divisions) to gridded reanalysis and General Circulation Model (GCM) data, which are available on global grids and thus will allow for climate studies to be conducted at international locations. We will describe ongoing activities to incorporate NOAA Climate Forecast System (CFS) reanalysis data (CFSR), NOAA model output data, including output from the National Multi Model Ensemble Prediction System (NMME) and longer term projection models, and plans to integrate LCAT into the Earth System Grid Federation (ESGF) and its protocols for accessing model output and observational data to ensure there is no redundancy in development of tools that facilitate scientific advancements and use of climate model information in applications. Validation and inter-comparison of forecast models will be included as part of the enhancement to LCAT. To ensure sustained development, we will investigate options for open sourcing LCAT development, in particular, through the University Corporation for Atmospheric Research (UCAR).

  14. Chromosome Mapping, Expression and Polymorphism Analysis of CRABP1 Gene in Pigs

    ZHAO Shuan-ping; TANG Zhong-lin; ZHOU Rong; QU Chang-qing; ZHENG Jian-wei; LI Kui


    Cellular retinoic acid-binding protein 1 (CRABP1) is a well-conserved member of cytosolic lipid-binding protein family. It is an important modulator of retinoic acid signaling. Long serial analysis of gene expression (LongSAGE) analysis suggested that CRABP1 gene was differentially expressed during prenatal skeletal muscle development in porcine. Here, we obtained the full-length coding region sequence and genomic sequence of the porcine CRABP1 gene and analyzed its genomic structures. Subsequently, we examined CRABP1 chromosome assignment using INRA-University of Minnesota 7 000 porcine radiation hybrid panel (IMpRH) and explored its tissue distribution in adult Tongcheng pigs and dynamical expression proifles in prenatal skeletal muscle (33, 65 and 90 days post coitus, dpc) from Landrace (lean-type) (described as L33, L65 and L90) and Tongcheng pigs (obese-type) (described as T33, T65 and T90). The CRABP1 gene was mapped to chromosome 7q11-q23 and closely linked to the microsatellite marker SWR1928. Quantitative real-time PCR showed that CRABP1 mRNA was highly expressed in lung and stomach, moderately expressed in placenta and uterus, and weakly expressed in other tissues. Moreover, CRABP1 gene was down-regulated during prenatal skeletal muscle development in both Landrace and Tongcheng pigs and it was expressed much higher in T33 than L33. Two single-nucleotide polymorphisms (SNPs) were detected by sequencing and mass spectrometry methods, allele frequency analysis indicated that g. 281 (G>A) and g. 2992 (G>A) were deviated from Hardy-Weinberg equilibrium in the Landrace and DLY (Duroc×(Landrace×Yorkshire)) pig breeds.

  15. High-Throughput Live-Cell Microscopy Analysis of Association Between Chromosome Domains and the Nucleolus in S. cerevisiae.

    Wang, Renjie; Normand, Christophe; Gadal, Olivier


    Spatial organization of the genome has important impacts on all aspects of chromosome biology, including transcription, replication, and DNA repair. Frequent interactions of some chromosome domains with specific nuclear compartments, such as the nucleolus, are now well documented using genome-scale methods. However, direct measurement of distance and interaction frequency between loci requires microscopic observation of specific genomic domains and the nucleolus, followed by image analysis to allow quantification. The fluorescent repressor operator system (FROS) is an invaluable method to fluorescently tag DNA sequences and investigate chromosome position and dynamics in living cells. This chapter describes a combination of methods to define motion and region of confinement of a locus relative to the nucleolus in cell's nucleus, from fluorescence acquisition to automated image analysis using two dedicated pipelines. PMID:27576709

  16. Chromosome region-specific libraries for human genome analysis. Final progress report, 1 March 1991--28 February 1994

    Kao, F.T.


    The objectives of this grant proposal include (1) development of a chromosome microdissection and PCR-mediated microcloning technology, (2) application of this microtechnology to the construction of region-specific libraries for human genome analysis. During this grant period, the authors have successfully developed this microtechnology and have applied it to the construction of microdissection libraries for the following chromosome regions: a whole chromosome 21 (21E), 2 region-specific libraries for the long arm of chromosome 2, 2q35-q37 (2Q1) and 2q33-q35 (2Q2), and 4 region-specific libraries for the entire short arm of chromosome 2, 2p23-p25 (2P1), 2p21-p23 (2P2), 2p14-p16 (wP3) and 2p11-p13 (2P4). In addition, 20--40 unique sequence microclones have been isolated and characterized for genomic studies. These region-specific libraries and the single-copy microclones from the library have been used as valuable resources for (1) isolating microsatellite probes in linkage analysis to further refine the disease locus; (2) isolating corresponding clones with large inserts, e.g. YAC, BAC, P1, cosmid and phage, to facilitate construction of contigs for high resolution physical mapping; and (3) isolating region-specific cDNA clones for use as candidate genes. These libraries are being deposited in the American Type Culture Collection (ATCC) for general distribution.

  17. Human ciliary neurotrophic factor: Localization to the proximal region of the long arm of chromosome 11 and association with CA/GT dinucleotide repeat

    Lev, A.A.; Rosen, D.R.; Kos, C.; Brown, R.H. Jr.; Clifford, E.; Landes, G.; Hauser, S.L.


    Ciliary neurotrophic factor (CNTF) promotes survival and differentiation of several types of sensory, motor, sympathetic, and parasympathetic neurons. The authors have used the polymerase chain reaction to amplify, clone, and partially sequence CNTF cDNA from human muscle. Using a rodent-human mapping panel and fluorescence in situ hybridization, they have localized a single copy of the gene for human CNTF to the proximal long arm of chromosome 11. They have also identified a polymorphic tandem CA/GT dinucleotide repeat associated with the human CNTF gene. 14 refs., 1 fig.

  18. Chromosomal localization of silkworm (Bombyx mori) sericin gene 1 and chymotrypsin inhibitor 13 using fluorescence in situ hybridization

    Yutaka; BANNO; Hiroshi; FUJII


    The chromosomal locations of two single-copy genes, Ser-1 and CI-13, in silkworm (Bombyx mori) were detected at the molecular cytogenetics level by fluorescence in situ hybridization in the study. The results showed that Ser-1 is located near the distal end of the 11th linkage group, relatively at the 12.5±1.4 position in pachytene; and that CI-13 has been mapped near the distal end of the 2nd linkage group, relatively at the 8.2±1.2 position in pachytene. Furthermore, their location model map-FISH map on silkworm chromosome was drawn. The FISH technique and its application to silkworm are also discussed in this paper.

  19. Clinical implementation of chromosomal microarray analysis: summary of 2513 postnatal cases.

    Xinyan Lu

    Full Text Available BACKGROUND: Array Comparative Genomic Hybridization (a-CGH is a powerful molecular cytogenetic tool to detect genomic imbalances and study disease mechanism and pathogenesis. We report our experience with the clinical implementation of this high resolution human genome analysis, referred to as Chromosomal Microarray Analysis (CMA. METHODS AND FINDINGS: CMA was performed clinically on 2513 postnatal samples from patients referred with a variety of clinical phenotypes. The initial 775 samples were studied using CMA array version 4 and the remaining 1738 samples were analyzed with CMA version 5 containing expanded genomic coverage. Overall, CMA identified clinically relevant genomic imbalances in 8.5% of patients: 7.6% using V4 and 8.9% using V5. Among 117 cases referred for additional investigation of a known cytogenetically detectable rearrangement, CMA identified the majority (92.5% of the genomic imbalances. Importantly, abnormal CMA findings were observed in 5.2% of patients (98/1872 with normal karyotypes/FISH results, and V5, with expanded genomic coverage, enabled a higher detection rate in this category than V4. For cases without cytogenetic results available, 8.0% (42/524 abnormal CMA results were detected; again, V5 demonstrated an increased ability to detect abnormality. Improved diagnostic potential of CMA is illustrated by 90 cases identified with 51 cryptic microdeletions and 39 predicted apparent reciprocal microduplications in 13 specific chromosomal regions associated with 11 known genomic disorders. In addition, CMA identified copy number variations (CNVs of uncertain significance in 262 probands; however, parental studies usually facilitated clinical interpretation. Of these, 217 were interpreted as familial variants and 11 were determined to be de novo; the remaining 34 await parental studies to resolve the clinical significance. CONCLUSIONS: This large set of clinical results demonstrates the significantly improved sensitivity

  20. Nucleotide sequence, genomic organization and chromosome localization of 5S rDNA in two species of Curimatidae (Teleostei, Characiformes

    Lessandra Viviane de Rosa Santos


    Full Text Available The 5S ribosomal DNA (5S rDNA of higher eukaryotes is organized in repeat units of tandem arrays composed of a 5S rDNA coding region, conserved even among non-related taxa, and a variable non-transcribed spacer sequence (NTS. To contribute to knowledge on the organization and evolution of vertebrate 5S rDNA we used PCR, nucleotide sequencing, Southern blot hybridization and chromosome fluorescence in situ hybridization (FISH to investigate 5S rDNA tandem repeats in the South American Curimatidae fish Steindachnerina insculpta and Cyphocharax modesta. 5S rDNA repeats of 180 base pairs (bp from both species were PCR-generated and sequenced evidencing the shortest 5S rDNA monomer so far described in eukaryote species. Southern blotting revealed that both species contained two tandem 5S rDNA classes, the PCR amplified fragment composed of 180 bp monomers and a class of 1600 bp monomers not detected by PCR. Chromosome mapping of the 5S rDNA repeats identified a major locus in both species and a second minor locus only in C. modesta. The Southern blot and chromosome mapping data indicate the presence of different types of 5S rDNA tandem repeats in the Curimatidae genome.

  1. Comparison of the chromosomal localization of murine and human glucocerebrosidase genes and of the deduced amino acid sequences

    To study structure-function relationships and molecular evolution, the authors determined the nucleotide sequence and chromosomal location of the gene encoding murine glucocerebrosidase. In the protein coding region of the murine cDNA, the nucleotide sequence and the corresponding deduced amino acid sequences were 82% and 86% identical to the respective humans sequences. All five amino acids presently known to be essential for normal enzymatic activity were conserved between mouse and man. The murine enzyme had a single deletion relative to the human enzyme at amino acid number 273. One ATG translation initiation signal was present in the mouse sequence in contrast to the human sequence, where two start codons have been reported. Nucleotide sequencing of a clone derived from murine genomic DNA revealed that the murine signal for translation initiation was located in exon 2. The locations of all 10 introns were conserved among mouse and man. They mapped the genetic locus for glucocerebrosidase to mouse chromosome 3, at a position 7.6 ± 3.2 centimorgans from the locus for the β subunit of nerve growth factor. Comparison of linkage relationships in the human and murine genome indicates that these closely linked mouse genes are also syntenic on human chromosome 1 but in positions that span the centromere

  2. Vibrio chromosomes share common history

    Gevers Dirk


    Full Text Available Abstract Background While most gamma proteobacteria have a single circular chromosome, Vibrionales have two circular chromosomes. Horizontal gene transfer is common among Vibrios, and in light of this genetic mobility, it is an open question to what extent the two chromosomes themselves share a common history since their formation. Results Single copy genes from each chromosome (142 genes from chromosome I and 42 genes from chromosome II were identified from 19 sequenced Vibrionales genomes and their phylogenetic comparison suggests consistent phylogenies for each chromosome. Additionally, study of the gene organization and phylogeny of the respective origins of replication confirmed the shared history. Conclusions Thus, while elements within the chromosomes may have experienced significant genetic mobility, the backbones share a common history. This allows conclusions based on multilocus sequence analysis (MLSA for one chromosome to be applied equally to both chromosomes.

  3. Analysis and visualization of chromosomal abnormalities in SNP data with SNPscan

    Thomas George H; Ye Ying; Ting Jason C; Ruczinski Ingo; Pevsner Jonathan


    Abstract Background A variety of diseases are caused by chromosomal abnormalities such as aneuploidies (having an abnormal number of chromosomes), microdeletions, microduplications, and uniparental disomy. High density single nucleotide polymorphism (SNP) microarrays provide information on chromosomal copy number changes, as well as genotype (heterozygosity and homozygosity). SNP array studies generate multiple types of data for each SNP site, some with more than 100,000 SNPs represented on e...

  4. Sex chromosome analysis in Turner Syndrome by a pentaplex PCR assay.

    Pelotti, S; Bini, C; Ceccardi, S; Ferri, G; Abbondanza, A; Greggio, N A; Ponzano, E; Caenazzo, L


    In this study, we describe a pentaplex PCR to determine the parental origin of the X chromosome and the presence of mosaicism, via amplification of four polymorphic markers located along the X chromosome (DXS10011, DXS6807, HUMARA, DXS101) and the X-Y amelogenin marker, in 41 families having a daughter with Turner Syndrome. Our results confirmed the cytogenetic findings and we found that the parental origin of the single X chromosome to be maternal in 84% of cases. PMID:14642001

  5. The analysis of a large Danish family supports the presence of a susceptibility locus for adenoma and colorectal cancer on chromosome 11q24

    Rudkjøbing, Laura Aviaja; Eiberg, Hans; Mikkelsen, Hanne Birte; Binderup, Marie Louise Mølgaard; Bisgaard, Søs Marie Luise


    . Major rearrangements were excluded after karyotyping. The linkage analysis with SNP6 data revealed three candidate areas, on chromosome 2, 6 and 11 respectively, with a LOD score close to two and no negative LOD scores. After extended linkage analysis, the area on chromosome 6 was excluded, leaving...... areas on chromosome 2 and chromosome 11 with the highest possible LOD scores of 2.6. Two other studies have identified 11q24 as a candidate area for colorectal cancer susceptibility and this area is supported by our results....

  6. DNA sequence of human chromosome 17 and analysis of rearrangement in the human lineage.

    Zody, Michael C; Garber, Manuel; Adams, David J; Sharpe, Ted; Harrow, Jennifer; Lupski, James R; Nicholson, Christine; Searle, Steven M; Wilming, Laurens; Young, Sarah K; Abouelleil, Amr; Allen, Nicole R; Bi, Weimin; Bloom, Toby; Borowsky, Mark L; Bugalter, Boris E; Butler, Jonathan; Chang, Jean L; Chen, Chao-Kung; Cook, April; Corum, Benjamin; Cuomo, Christina A; de Jong, Pieter J; DeCaprio, David; Dewar, Ken; FitzGerald, Michael; Gilbert, James; Gibson, Richard; Gnerre, Sante; Goldstein, Steven; Grafham, Darren V; Grocock, Russell; Hafez, Nabil; Hagopian, Daniel S; Hart, Elizabeth; Norman, Catherine Hosage; Humphray, Sean; Jaffe, David B; Jones, Matt; Kamal, Michael; Khodiyar, Varsha K; LaButti, Kurt; Laird, Gavin; Lehoczky, Jessica; Liu, Xiaohong; Lokyitsang, Tashi; Loveland, Jane; Lui, Annie; Macdonald, Pendexter; Major, John E; Matthews, Lucy; Mauceli, Evan; McCarroll, Steven A; Mihalev, Atanas H; Mudge, Jonathan; Nguyen, Cindy; Nicol, Robert; O'Leary, Sinéad B; Osoegawa, Kazutoyo; Schwartz, David C; Shaw-Smith, Charles; Stankiewicz, Pawel; Steward, Charles; Swarbreck, David; Venkataraman, Vijay; Whittaker, Charles A; Yang, Xiaoping; Zimmer, Andrew R; Bradley, Allan; Hubbard, Tim; Birren, Bruce W; Rogers, Jane; Lander, Eric S; Nusbaum, Chad


    Chromosome 17 is unusual among the human chromosomes in many respects. It is the largest human autosome with orthology to only a single mouse chromosome, mapping entirely to the distal half of mouse chromosome 11. Chromosome 17 is rich in protein-coding genes, having the second highest gene density in the genome. It is also enriched in segmental duplications, ranking third in density among the autosomes. Here we report a finished sequence for human chromosome 17, as well as a structural comparison with the finished sequence for mouse chromosome 11, the first finished mouse chromosome. Comparison of the orthologous regions reveals striking differences. In contrast to the typical pattern seen in mammalian evolution, the human sequence has undergone extensive intrachromosomal rearrangement, whereas the mouse sequence has been remarkably stable. Moreover, although the human sequence has a high density of segmental duplication, the mouse sequence has a very low density. Notably, these segmental duplications correspond closely to the sites of structural rearrangement, demonstrating a link between duplication and rearrangement. Examination of the main classes of duplicated segments provides insight into the dynamics underlying expansion of chromosome-specific, low-copy repeats in the human genome. PMID:16625196

  7. Diagnostic Yield of Chromosomal Microarray Analysis in a Cohort of Patients with Autism Spectrum Disorders from a Highly Consanguineous Population

    Al-Mamari, Watfa; Al-Saegh, Abeer; Al-Kindy, Adila; Bruwer, Zandre; Al-Murshedi, Fathiya; Al-Thihli, Khalid


    Autism Spectrum Disorders are a complicated group of disorders characterized with heterogeneous genetic etiologies. The genetic investigations for this group of disorders have expanded considerably over the past decade. In our study we designed a tired approach and studied the diagnostic yield of chromosomal microarray analysis on patients…

  8. [Effect of gametocidal chromosome 4S' on the phenotype segregation ratio in genetic analysis of common wheat lines].

    Vdovichenko, Zh V; Antoniuk, M Z; Ternovskaia, T K


    Using experimental data on genetic analysis of introgressive lines for the character "hairy leaf sheath" controlled by the "cuckoo" chromosome 4S1, the algorithm for calculation of the theoretical segregation ratio in F2 was developed. Segregation distortion is caused by non-viability of the majority of gametes lacking the chromosome 4S1. The frequency of functioning gametes without the chromosome 4S1 is determined by the probability p versus the theoretically expected ratio 7 nonviable: 9 viable ones. Since segregation involves two characters, gamete viability and hairiness, the ratio 15 hairy: 1 hairless was used as a basis for search of the frequency p by maximum-likelihood method using 16 populations F2 from crossing the lines differing in the character studied. PMID:14650327

  9. Chromosome Painting Reveals Asynaptic Full Alignment of Homologs and HIM-8–Dependent Remodeling of X Chromosome Territories during Caenorhabditis elegans Meiosis

    Nabeshima, Kentaro; Mlynarczyk-Evans, Susanna; Villeneuve, Anne M.


    During early meiotic prophase, a nucleus-wide reorganization leads to sorting of chromosomes into homologous pairs and to establishing associations between homologous chromosomes along their entire lengths. Here, we investigate global features of chromosome organization during this process, using a chromosome painting method in whole-mount Caenorhabditis elegans gonads that enables visualization of whole chromosomes along their entire lengths in the context of preserved 3D nuclear architecture. First, we show that neither spatial proximity of premeiotic chromosome territories nor chromosome-specific timing is a major factor driving homolog pairing. Second, we show that synaptonemal complex-independent associations can support full lengthwise juxtaposition of homologous chromosomes. Third, we reveal a prominent elongation of chromosome territories during meiotic prophase that initiates prior to homolog association and alignment. Mutant analysis indicates that chromosome movement mediated by association of chromosome pairing centers (PCs) with mobile patches of the nuclear envelope (NE)–spanning SUN-1/ZYG-12 protein complexes is not the primary driver of territory elongation. Moreover, we identify new roles for the X chromosome PC (X-PC) and X-PC binding protein HIM-8 in promoting elongation of X chromosome territories, separable from their role(s) in mediating local stabilization of pairing and association of X chromosomes with mobile SUN-1/ZYG-12 patches. Further, we present evidence that HIM-8 functions both at and outside of PCs to mediate chromosome territory elongation. These and other data support a model in which synapsis-independent elongation of chromosome territories, driven by PC binding proteins, enables lengthwise juxtaposition of chromosomes, thereby facilitating assessment of their suitability as potential pairing partners. PMID:21876678

  10. Phosphorylation of Sli15 by Ipl1 Is Important for Proper CPC Localization and Chromosome Stability in Saccharomyces cerevisiae

    Makrantoni, Vasso; Corbishley, Stephen J.; Rachidi, Najma; Morrice, Nicholas A; Robinson, David A.; Stark, Michael J. R.


    The chromosomal passenger complex (CPC) is a key regulator of eukaryotic cell division, consisting of the protein kinase Aurora B/Ipl1 in association with its activator (INCENP/Sli15) and two additional proteins (Survivin/Bir1 and Borealin/Nbl1). Here we have identified multiple sites of CPC autophosphorylation on yeast Sli15 that are located within its central microtubule-binding domain and examined the functional significance of their phosphorylation by Ipl1 through mutation of these sites,...